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Preface 

In 1977 the Mathematics Department at the University of California, Rerke- 
ley, instituted a written examination as one of the first major requirements 
toward the Ph.D. degree in Mathernalics. This examination replaced a 
system of standardized Qualifying Exams. Its purpose was to determine 
whether first-year students in the Ph.D. program had mastered basic math- 
ematics well enough to continue in the program with a reasonable chance 
of success. 

Historically, any one examination is passed by approximately half of the 
students taking it and students are allowed three attempts. Since its incep 
tion, the exam has become a major hurdle to overcome in the pursuit of 
the degree and, therefore, a measure of the minimum requirements to suc- 
cessful completion of the program at Berkeley. Even though students are 
allowed three attempts, most would agree that the ideal time to complete 
the requirement is during the first month of the program rather than in the 
middle or end of the first year. This book was conceived on this premise, 
and its intent is to publicize the material and aid in the preparation for the 
examination during the undergraduate years, when one is deeply involved 
with the material that it covers. 

The examination is now offered twice a year in the second week of each 
semester, and consists of 6 hours of written work given over a 2-day period 
with 9 problems each (10 before 1988). Students select 6 of the 9 problems 
(7 of 10 before 1988). Most of thc examination covers material, mainly in 
analysis and algebra, that should be a part of a well-prepared mathematics 
student’s undergraduate training. This book is a compilation of the almost 
1000 problems which have appeared on the Prelims during the last 20 
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years and currcntly makc up a collection which is a dclightful field to plow 
through, and solutioiis to most of them. 

When Berkeley was on the Quarter system, cxams werc given three times 
a year: Spring, Summer, and Fall. Since 1986, the exams have been given 
twice a year, in January and September. 

From the first cxamination through Fall 1981, the policy was: two at- 
tempts allowed; each examination 6 hours; total 14/20 problems. From 
Winter 1982 through Spring 1988, the policy was: two attempts allowed; 
each examination 8 hours; total 14/20 problems. Starting Fall 1088, the 
policy was: three attempts allowed; each examination 6 hours; total 12/18 
problems. In all cases, the examination must be passed within 13 months 
of entering the Ph.D. program. 

The problems are organized by subject and ordered in incrcasing level 
of difficulty, within clusters. Each one is tagged with the academic term 
of the exam in which it appeared using abbreviations of the type Fa87 
to designate the exam given in the Fall semester of 1987. Problems that 
have appeared more than once have been merged arid show multiple tags 
for each exam. Somctimes the merge required slight modifications in the 
text (a few to make thc problem correct!), but the original tcxt has been 
preserved in an electronic version of the exams (see Appendix A). Othcr 
items in thc Appendices include the syllabus, passing scores for thc exams 
and a Bibliography used throughout the solutions. 

Classifying a collection of problems as vast as this one by subjects is 
not an easy task. Some of the problems are interdisciplinary and sorne 
havc solutions as varied as Analysis and Number Theory (1.1.15 comes 
to mind!), and the choices are invariably hard. In most of these cases, we 
provide the reader with an alternative classification or pointers to similar 
problems elsewhere. 

We would like to hcar about other solutions to the problems herc and 
comments on the existing ones. They can be scnt by e-mail to the authors. 

This project started many ycars ago, when onc of us (PNdS) came to 
Berkcley and had to go through the lack of information and uncertainties 
of the exam and got involved with a problem solving group. First thanks 
go to the group’s members: Din0 Lorenzini, Hung The Dinh, Kin Yin Li, 
and Jorge Zubelli, and then to the many Prelim Workshop leaders, many 
of whose namcs escape us now but the list includes, besides ourselves, 
Matthew Wiener, Dmitry Gokhman, Keith ICearnes, Geori €10 Choe, Mike 
May, Eliza Sachs, Ben Lotto, Ted Jones, David Cruz-Uribe, and Jonathan 
Walden. Many thanks to Debbie Craig for swift typesetting of many of the 
problems and to Janet Yonan for her help with the archeological work of 
finding many of the old and lost problem sets, and finally to Nefeli’s for 
the best coffee west of Rome, we would not have survived without it! 

We thank also the Department of Mathematics and thc Portuguese Stud- 
ies Program of UC Berkeley, University of Lisbon, CMAF, JNICT, PRAXIS 
XXI, FEDER and project PRAXIS/2/2. 1/MAT/125/94, which supported 
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one of the authors on the Summers of 96 and 97, and CNPq grant 20.1553/82- 
MA that supported the other during the initial phase of this project. 

This is a project that could not have been accomplished in any type- 
setting system other than Tj$. The problems and solutions are part of 
a two-pronged database that is called by sourcing programs that gener- 
ate several versions (working, final paper version, per-exams list, and the 
on-line HTML and PDF versions) from a single source. Silvio Levy’s 
support and counseling was a major resource backing our efforts and many 
thanks also t o  Noam Shomron for help with non-standard typesseting. 

Berkeley, April 10, 1998 Paulo Ney de Souza 
desouza@math.berkeley.edu 

Jorge-Nuno Silva 
jnsilva@math.berkeley.edu 
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Part I 

Problems 



Real Analysis 

1.1 Elementary Calculus 

Problem 1.1.1 (Fa87) Prove that (cos0)P 5 cos(p0) for 0 5 0 5 7~ /2  
and 0 < p < 1. 

Problem 1.1.2 (Fa77) Let f : [0,1] ---f R be continuously diflerentiable, 
with f(0) = 0.  Prove that 

Problem 1.1.3 (Sp81) Let f(r) be a real valued function defined for  all 
r 2 1, satisfying f (1) = 1 and 

Prove that 

exists and is ..,ss than 

lim f(x) 
2-00 

+ ;. 
Problem 1.1.4 (Sp95) Let f, g:  [0,1] -+ [0, CO) be continuous functions 
satisfying 

SUP f(r) = SUP g(xc). 
0<2<1 O<X<l 

Prove that there exists t E [0, 11 with f ( t ) 2  4- 3 f ( t )  = g ( t ) 2  + 3 g ( t ) .  



4 1. Rcol Analysis 

Problem 1.1.5 (Fa86) For f a real valued function on the real line, de- 
fine the function A f by A f ( x )  = f (x + 1) - f ( x ) .  For n 2 2,  define An f 
recursively by An f = A(A7'-' f ) .  Prove that An f = 0 i f  and only i f f  has 
the f o r m  f ( x )  = ao(x )  + a l ( x ) z  +. . . + a,-1(x)xn-l where ao, a l ,  . . . , a,-1 
are periodic functions of period 1. 

Problem 1.1.6 (Fa81) Either prove or disprove (by a counterexample) 
each of the following statements: 

1. Let f : R -+ R, g : R + R be such that 

l i m g ( t )  = b and l im f ( t )  = c. 
t -a t-+b 

Then 
l im  f ( g ( t ) )  = c. 
t-a 

2. I f f  : R + R is continuous and U is  a n  open set in R, then f ( U )  is  
an open set in R.  

3. Let f be of class C" on the interval -1 < x < 1. Suppose that 
lj(")(x)I 5 1 for all n, 2 1 and all x in the interval. Then f is real an- 
alytic; that is, i t  has a convergent power series expansion in a neigh- 
borhood of each point of the interval. 

Problem 1.1.7 (Su81) Let 

Justify the statement 

f ( y ( h ) )  = 2 - 4Jz7r + O(h2) 

where 
<ca l im sup - 

h-0 h2 
W2)  

Problem 1.1.8 (Fa82) 1. Prove that there is  n o  continuous map from 

2. Find a continuous surjective map f rom the open interval (0 , l )  onto 

the closed interval [0,1] onto the open interval (0 , l ) .  

the closed interval [0,1]. 

3. Prove that no map in Part 2 can be bijective. 

Problem 1.1.9 (Fa94, Sp98) Find the maximum area of all triangles 
that can be inscribed in an ellipse with semiaxes a and b, and describe 
the triangles that have maximum area. 
Hint: Represent the ellipse by means of the parametric equations 
x = a c o s t ,  y = bs in t ,  0 5 t 5 27r. 
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Problem 1.1.10 (Fa93) Let f be a continuous real valued function on  
[0,00). Let A be the set of real numbers a that can be expressed as 
a = l i m n - + m f ( z n )  for some sequence ( x n )  in [0,00) such that 
lirnn+-xn = 00. Prove that if A contains the two numbers a and b, then 
it contains the entire interval with endpoints a and b. 

Problem 1.1.11 (Su81) Show that the equation 

has, for each suficiently small E > 0 ,  exactly two solutions. Let X ( E )  be the 
smaller one. Show that 

1. Z ( E )  --f 0 as E + O+; 

yet for any s > 0 ,  

2. E - ~ X ( E )  -+ 00 as E -+ O f .  

Problem 1.1.12 (Sp82) Suppose that f ( x )  i s  a polynomial with real co- 
eficients and a i s  a real number ,with f ( a )  # 0.  Show that there exists a 
real polynomial g (x )  such that if we define p by p ( x )  = f ( x ) g ( x ) ,  we have 
p (a )  = 1, p’(a) = 0,  and p”(a) = 0 .  

Problem 1.1.13 (Su84) Let p ( z )  be a nonconstant polynomial with real 
coeficients such that for  some real number a ,  p ( a )  # 0 but p’(a) = p”(a) = 
0. Prove that the equation p ( z )  = 0 has a nonreal root. 

Problem 1.1.14 (Fa84) Let f be a C2 function on the real line. Assume 
f is  bounded with bounded second derivative. Let 

A = SUP I f ( z ) l ,  B = SUP I f ’ ’ ( X ) l .  
X € R  ztR 

Prove that 
sup I f’(x)l  I 2 m .  
z€R 

Problem 1.1.15 (Fa90) Find all pairs of integers a and b satisfying 
0 < a  < b and ab = b”. 

Problem 1.1.16 (Sp92) For which positive numbers a and b, with a > 1, 
does the equation log, x = xb  have a positive solution for x ? 

Problem 1.1.17 (Sp84) Which number is larger, x3 or 3” ? 

Problem 1.1.18 (Sp94) For which numbers a in ( 1 , ~ )  is  i t  true that 
xa 5 a” for all z in (1, 00) ? 
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Problem 1.1.19 (Sp96) Show that a positive constant t can satisfy 

ez > xt f o r  all x > o 
if and only aft < e .  

Problem 1.1.20 (Su77) Suppose that f ( x )  is  defined on [-1,1], and that 
f’”(x) is  continuous. Show that the series 

00 c (n (f (1ln) - f (-1ln)) - 2f”O)) 
71=1 

converges. 

Problem 1.1.21 (Fa96) Iff is  a C2 function on  an open interval, prove 
that 

Problem 1.1.22 (Fa97) Prove that for  all x > 0 ,  sinz > x - z3/6. 

Problem 1.1.23 (Su85) 1 .  For 0 5 9 5 ;, show that 

2 
sin8 2 -0. 

7r 

2. By using Part 1, or b y  any other method7 show that i f  X < 1, then 

- 
lim Rx l’ e - f i  sin 0 dB = 0. 

R-im 

Problem 1.1.24 (Su78) Let f : R + R be continuous. Suppose that R 
contains a countably infinite subset S such that 

lq f ( x )  dx = 0 

i j p  and q are not in S .  Prove that f i s  identically 0 .  

Problem 1.1.25 (Fa89) Let the function f f r o m  [0,1] to [0,1] have the 
following properties: . f i s  of class c1; . f ( 0 )  = f(1) = o ;  

0 f‘ is  nonincreasing (i.e., f is  concave). 

Prove that the arclength of the graph off does not exceed 3. 
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Problem 1.1.26 (Sp93) Let f be a real valued C1 function on  [0, 00) such 
that the improper integral sr I f’(x)ldx converges. Prove that the infinite 
series C;=, f (n) converges i f  and only i f  the integral sr f ( x ) d x  converges. 

Problem 1.1.27 (Su82) Let E be the set of all continuous real valued 
functions u : [O, 11 + R satisfying 

Let cp : E + R be defined b y  

1 

cp(u) = 1 (+? - 44)  dx. 

Show that cp achieves its maximum value at some element of E 

Problem 1.1.28 (Fa87) Let S be the set of all real C’ functions f on  
[0,1] such that f ( 0 )  = 0 and 

1’ f ’ ( x ) 2 d x  5 1. 

Define 

Show that the function J is  bounded on  S ,  and compute its supremum. Is 
there a function f o  E S at which J attains its maximum value? If so, what 
is  f o ?  

Problem 1.1.29 (Fa82, Fa96) Let f be a real valued continuous nonneg- 
ative function on [0, 11 such that 

for t E [0,1]. Show that f ( t )  5 1 + t for t E [0,1]. 
Hint: You might consider 

t 
u ( t )  = 1 + 2 1 f (s) ds. 

Problem 1.1.30 (Sp96) Suppose cp is  a C1 function on  R such that 

cp(x)+a and c p ’ ( x ) ~ b  as x j o o .  

Prove or give a counterexample: b must be zero. 
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Problem 1.1.31 (Su77) Show that 

d x  Jd dl - k c o s 2 x  
F ( k )  = 

0 5 k < 1, is  an increasing function of k .  

Problem 1.1.32 (Fa79) Given that 

find f ’ ( t )  elcplicitly, where 

00 

f ( t )  = / e - tx2  d x ,  t > 0. 
J-CC 

Problem 1.1.33 (Fa80) Define 

cos z 
F ( x )  = / e( t2+zt)dt .  

Jsin T 

Compute F’(0). 

Problem 1.1.34 (Fa95) Lei f : R -+ R be a nonzero C” function such 
that f ( x ) f ( g )  = f ( d m )  for all x and y such that f(x) -+ 0 as 
1x1 --t 00. 

1. Prove that f is  an even function and that f (0) is 1. 

2. Prove that f satisfies the diferential equation f ’ ( x )  = f” (O)x f ( x ) ,  
and find the most general function satisfying the given conditions. 

1.2 Limits and Continuity 

Problem 1.2.1 (Fa90) Suppose that f maps the compact interval I into 
itself and that 

I f ( . )  - fh)l < 12- YI 

for all x ,  y E I ,  x # y. Can one conclude that there is  some conslant M < 1 
such that, for all x ,  y E I ,  

I f ( x )  - f ( Y ) I  5 MIX - YI .? 

Problem 1.2.2 (Sp90) Let the real valued function f on  [0,1] have the 
following two properties: 
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0 If  [a,  b] c [0,1], then f ( [ a ,  b ] )  contains the interval with endpoints 
f ( a )  and f ( b )  (i.e., f has the Intermediate Value Property). 

0 For each c E R, the set f - ' ( c )  is closed. 

Prove that f is  continuous. 

Problem 1.2.3 (Sp83) Suppose that f is  a continuous function on  R 
which is periodic with period 1, i.e., f ( x  3- 1) = f ( x ) .  Show: 

1. The function f is bounded above and below and achieves its maximum 
and minimum. 

2. The function f is  uniformly continuous on  R.  

3. There exists a real number xo such that 

Problem 1.2.4 (Sp77) Let h : [0, 1) -+ W be a map defined on  the half- 
open interval [0,  1). Prove that if h is  uniformly continuous, there exists 
a unique continuous map g : [0,1] 4 IR such that g(x) = h(x)  fo r  all 
x E [O, 1). 

Problem 1.2.5 (Sp84) Prove or supply a counterexample: If the function 
f f rom R to R has both a left limit and a right limit at each point of R, 
then the set of discontinuities of f  is, at most, countable. 

Problem 1.2.6 (Fa78) Let f : R -+ R satisfy f ( x )  5 f ( y )  for x I y .  
Prove that the set where f is  not continuous is  finite or countably infinitc. 

Problem 1.2.7 (Su85, Fa96) A function f : [0,1] t IFS is  said to  be 
upper semicontinuous i f  given x E [0, I ]  and E > 0 ,  there exists a 6 > 0 such 
that i f  ly-xl < 6 ,  then f (y)  < f ( z ) + E .  Prove that an upper semicontinuous 
function f on  [ O , l ]  i s  bounded above and attains its maximum value at some 
point p E [O, 11. 

Problem 1.2.8 (Su83) Prove that a continuous function f r o m  R to W 
which maps open sets to open sets must be monotonic. 

Problem 1.2.9 (Fa91) Let f be a continuous function from R to W such 
that I f(x) - f ( y ) I  2 Iz - yI for all 2 and y .  Prove that the range of f  is  all 

Note: See also Problem 2.1.8. 
of R. 

Problem 1.2.10 (Fa81) Let f be a continuous function on [O,1]. Evalu- 
ate the following limits. 
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1. 

2. 

Proh.-m 1.2. 
whose graph 

lim n 1' x"f(2) dx . 
,"00 

(Fa88, Sp97) Let f be a function from [0,1] into itself 

Gf = { ( . , S ( X ) )  I x E [07 11) 

is a closed subset of the unit square. Prove that f is continuous. 
Note: See also Pvoblem 2.1.2. 

Problem 1.2.12 (Sp89) Let f be a continuous real valued function on 
[o, 11 x [O, 11. Let the function g on [0,1] be defined by 

dx) = nlax { f  (x, 9) I Y [0,11). 

Prove that g is continuous. 

1.3 Sequences, Series, and Products 

Problem 1.3.1 (Su85) Let A1 2 A2 2 ... 2 Ak 2 0. Evaluate 

lim (A;" + A; + . . . + A;>'/".  
TL', 

Note: See also Problem 5.1.10. 

Problem 1.3.2 (Sp96) Compute 

1 / I L  

L =  lim (g) 
71'00 

Problem 1.3.3 (Sp92) Let 20 = 1 and 

3 + 2x7,-1 
3 + 2 , - 1  

x n  = 

for n = 1 , 2 , .  . .. Prove that 

x, = lim x, 
n+00 

exists, and find its value. 
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Problem 1.3.4 (Fa97) Define a sequence of real numbers (x,) b y  

2 0  = 1, for n 2 0. 
1 

xn+1 = - 
2 + 2 7 1  

Show that ( x n )  converges, and evaluate its limit. 

Problem 1.3.5 (Fa89, Sp94) Let cx be a number in (0 , l ) .  Prove that any 
sequence ( x n )  of real numbers satisfying the recurrence relation 

has a limit, and find an expression for the lamit in terms of cx, xo and X I .  

Problem 1.3.6 (Fa92) Let k be a positive integer. Determine those real 
numbers c for which every sequence (2,) of real numbers satisfying the 
recurrence relation 

1 - (xn+1+ xn-1) = cxn 

has period k (i.e., xn+k = x, for all n).  

Problem 1.3.7 (Sp84) Let a be a positive real number. Define a sequence 

xn+l = a + x i ,  

Find a necessary and suficient condition on  a in order that a jini2e limit 
limn+a? xn  should exist. 

Problem 1.3.8 (Fa95) Let x1 be a real number, 0 < x1 < 1, and define 
a sequence by xn+l = x ,  - x E f l .  Show that lim iiifn-,, x ,  > 0.  

Problem 1.3.9 (Fa80) Let f ( x )  = + x - x2 .  For any real number x ,  
define a sequence (x,) by xo = x and xll+l = f ( x , ) .  If the sequence con- 
verges, let x ,  denote the limit. 

(xn) by 
xo = 0, 7~ 2 0 .  

1. For x = 0, show that the sequence is bounded and nondecr-easing and 
find x ,  = A. 

2. Find alE y E IR such that ym = A. 

Problem 1.3.10 (Fa81) The Fibonacci numbers f1, f 2 , .  . . are defined re- 
cursively by f 1  = 1, f2 = 2 ,  and f,.+] = f, -t fn- l  for n 2 2.  Show that 

fn+l 

n-00 f n  
lim __ 

exists, and evaluate the limit. 
Note: See also Problem 7.5.14. 
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Problem 1.3.11 (Fa79) Prove that 

Problem 1.3.12 (Sp90) Suppose X I ,  x2,x3,. . . is  a sequence of nonneg- 
ative real numbers satisfying 

1 
xn+1 I xrz + 7 n 

for all n 2 1. Prove that 

Problem 1.3.13 (Sp93) Let (a,) and (E,) be sequences of positive num- 
bers. Assume that E, = 0 and that there is  a number k in (0 , l )  
such that a,+l 5 ka,  + E, f o r  every n. Prove that lirrh+M a ,  = 0.  

Problem 1.3.14 (Fa83) Prove or disprove (by giving a counterexample), 
the following assertion: Every infinite sequence X I ,  x2, . . . of real numbers 
has either a nondecreasing subsequence or a nonincreasing subsequence. 

Problem 1.3.15 (Su83) Let b l ,  bz, . . . be positive real numbers with 

x ,  exists. 

lim b, = 00 and lim (brL/b,+l) = 1. 
71-00 n-o3 

Assume also that bl < bz < b3 < '... Show that the set of quotients 
(bm/bn)l ln<m is  dense in (1, co). 

Problem 1.3.16 (Sp81) Which of the following series converges? 
1 .  9 (2n ) ! (3n ) !  

n ! ( 4 n ) !  ' 
n=l 

2. 

Problem 1.3.17 (Fa91) Let a l ,  a2, a3, .  . . be positive numbers. 

1. Prove that C a,  < 03 implies C J- < 00. 

2. Prove that the converse of the above statement i s  false. 

Problem 1.3.18 (Su80, Sp97) For each ( a ,  b, c )  E R3, consider the se- 
ries 

Determine the values of ( a ,  b, c )  for  which the series 
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1. converges absolutely; 

2. converges but not absolutely; 

3. diverges. 

Problem 1.3.19 (Sp91) For which real numbers x does the infinite series 

n=l 5 T f i  
converge ? 

Problem 1.3.20 (Fa94) For which values of the real number a does the 
series 

converge ? 

Problem 1.3.21 (Sp91) Let A be the set of positive integers that do not 
contain the digit 9 in their decimal expansions. Prove that 

g < m ;  
aEA 

that is, A defines a convergent subseries of the harmonic series. 

Problem 1.3.22 (Sp89) Let a l ,  a2,. . . be positive numbers such that 

n=l 

Prove that there are positive numbers c1, c 2 , .  . . such that 
M 

lim cTL = 00 and c,an < 00. 
n-+m 

71=1 

Problem 1.3.23 (Fa90) Evaluate the limit 

7r 7r 7r lim cos - cos - . . . cos -. 
n - + M  2 2  2 3  2 7~ 

1.4 Differential Calculus 

Problem 1.4.1 (Su83) Outline a proof, starting f r o m  basic properties of 
the real numbers, of the following theorem: Let f : [a,  b] --+ IW be a continu- 
ous function such that f'(z) = 0 for  all IC e ( a ,  b) .  Then f (b)  = f ( a ) .  
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Problem 1.4.2 (Sp84) Let f ( x )  = x l o g  (1 + x-’), 0 < x < co 

1. Show that f is  strictly monotonically increasing. 

2. Compute lim f(x)  as x + 0 and x ---f 00. 

Problem 1.4.3 (Sp85) Let f(x),  0 2 x < co, be continuous and differ- 
entiable and suppose that f (0)  = 0 and that ]’(z) is  an increasing function 
of x for x 2 0.  Prove that 

is  an increasing function of x. Interpret the result pictorially. 

Problem 1.4.4 (Sp90) Let y : R -+ R be a C” function that satisfies 
the differential equation 

y” + yl - y = 0 

for x E [0, L ] ,  where L is  a positive real number. Suppose that 
y(0) = y(L) = 0. Prove that y = 0 on  [0, L] .  

Problem 1.4.5 (Su85) Let u(x), 0 5 x 5 1, be a real valued C2 function 
which satisfies the differential equation 

u”(x) = e z u ( x ) .  

1. Show that if 0 < 5 0  < 1, then u cannot have a positive local maximum 
at 5 0 .  Similarly, show that u cannot have a negative local minimum 
at X O .  

2. Now suppose that u(0) = u(1) = 0.  Prove that u(x) = 0 ,  0 5 x 2 1. 

Problem 1.4.6 (Sp98) Let K be a real constant. Suppose that y ( t )  is  a 
positive differentiable function satisfying y’(t) 5 K y ( t )  for t 2 0.  Prove 
that y ( t )  5 eKty(0) for t 2 0.  

Problem 1.4.7 (Sp90, Fa91) Let f be an infinitely differentiable func- 
t ion from R to R. Suppose that, for some positive integer n, 

f(1) = f(0) = f ’ (0)  = f”(0)  = .  . . = f‘”’(0) = 0. 

Prove that f(”+’)(x) = 0 for  some x in (0 , l ) .  

Problem 1.4.8 (Fa97) Let f : R -+ R be twice differentiable, and sup- 
pose that for all x E R, If(x)l < 1 and If”(x)I < 1. Prove that 
I f’(x)l 5 2 for all x E R. 
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Problem 1.4.9 (Sp86) Let f be a positive differentiable function on  ( 0 , ~ )  
Prove that 

exists (finitely) and is  nonzero fo r  each x. 

Problem 1.4.10 (Sp88) Suppose that f ( x ) ,  -00 < x < 00, is  a continu- 
ous real valued function, that f ’ ( x )  exists for x # 0 ,  and that lim,,o f ’ ( x )  
exists. Prove that f’(0) exists. 

Problem 1.4.11 (Sp88) For each real value of the parameter t ,  deter- 
mine the number of real roots, counting multiplicities, of the cubic polyno- 
mial p t ( x )  = (1 + t2)x3 - 3t3x + t4.  

Problem 1.4.12 (Sp91) Let the real valued function f be defined in an 
open interval about the point a on  the real line and be differentiable at 
a .  Prove that i f  ( x n )  is  an increasing sequence and (yn) is  a decreasing 
sequence in the domain of f ,  and both sequences converge to a ,  then 

Problem 1.4.13 (Fa86) Let f be a continuous real valued function on  
[0,1] such that, f o r  each xo E [0, l), 

Prove that f is  nondecreasing. 

Problem 1.4.14 (Sp84) Let I be an open interval in R containing zero. 
Assume that f’ exists on a neighborhood of zero and f”(0) exists. Show 
that 

f ( x )  = f(o) + f’(0) sinx + - f ” ( O )  sin2 x + o(x2> 

(o (x2 )  denotes a quantity such that o ( x 2 ) / x 2  + 0 as x -0). 

Problem 1.4.15 (Sp84) Prove that the Taylor coeficients at the origin 
of the function 

1 
2 

are rational numbers. 

Problem 1.4.16 (Sp79) Give a n  example of a function f : R -+ R having 
all three of the following properties: 

0 f ( x )  = 0 for x < 0 and x > 2 ,  
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a f’(1) = 1, 

a f has derivatives of all orders. 

Hint: If the third property is  too hard, change it to: f has n continuous 
derivatives, where n is  as large as you can make it.  

Problem 1.4.17 (Su83) Let f : R ---f R be continuously differentiable, 
periodic of period 1, and nonnegative. Show that 

4 0 (as c -+ m) 

uniformly in x. 

Problem 1.4.18 (Fa83, Fa84) Prove or supply a counterexample: If f 
and g are C‘ real valued functions on (0, l), if 

lim f ( x )  = lirn g(x )  = 0 ,  
x-0 x+o 

i f  g and g’ never vanish, and i f  

then 
. f ’ (4  

x+o g’(x) 
llrn -- = c. 

Problem 1.4.19 (Sp77, Su82) Suppose f is a differentiable function from 
the reals into the reals. Suppose f ’ ( x )  > f ( x )  for all x E R, and f ( x 0 )  = 0.  
Prove that f ( x )  > 0 for all x > 50. 

Problem 1.4.20 (Sp87) Show that the equation ae” = 1- t z+z2 /2 ,  where 
a is  a positive constant, has exactly one real root. 

Problem 1.4.21 (Sp85) Let v1 and v2 be two real valued continuous func- 
tions on  Iw such that V I ( X )  < vz(z) for  all z E R. Let cpl(t) and cpz(t> be, 
respectively, solutions of the diflerential equations 

d x  d x  
dt dt 
- = VI(Z) and - = 4 2 )  

for a < t < b. If cpl ( to)  = cpz(to) for some t o  E ( a , b ) ,  show that 
n ( t )  5 cp2( t )  for  all t E ( t o ,  b ) .  

Problem 1.4.22 (Su78, Fa89) Suppose f : [ O ,  11 ---f R is  continuous with 
f(0) = 0 ,  and for 0 < z < 1 f is  diflerentiable and 0 5 f’(z) 5 2 f (z). Prove 
that f is  identically 0 .  
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Problem 1.4.23 (Su79, Fa97) 1. Give an  example of a differentiable 
map f : R -+ R whose derivative f’ is  not continuous. 

2. Let f be as in Part 1. If f‘(0) < 2 < f‘(l), prove that f ‘ ( x )  = 2 for 
some z E [ O ,  11. 

Problem 1.4.24 (Su81) Let A c IR be the open interval from 0 to 1. 
Let f : A -+ C be C1 (i.e., the real and imaginary parts are continuously 
diflerentiable). Suppose that f ( t )  -+ 0,  f ’ ( t )  3 C # 0 as t --+ Of .  Show 
that the function g ( t )  = 1 f ( t ) l  is  C1 for suficiently small t > 0 and that 
limt,o+ g’(t)  exists, and evaluate the limit. 

Problem 1.4.25 (Sp84) Let f : [0,1] -+ IR be continuous, with f ( 0 )  = 
f(1) = 0.  Assume that f” exists o n 0  < z < 1, with f”+2f ’+  f 2 0. Show 
that f (x)  5 0 fo r  all 0 5 x 5 1. 

Problem 1.4.26 (Fa95) Let f : R --+ R be a C“ function. Assume that 
f ( x )  has a local minimum at x = 0.  Prove there is  a disc centered on the 
g axis which lies above the graph off and touches the graph at (0, f(0)). 

1.5 Integral Calculus 

Problem 1.5.1 (Sp98) Using the properties oj the Riemann integral, show 
that i f  f is  a non-negative continuous function on [ O ,  11, and Jt f (x)dz = 0, then f (z) = 0 for all z E [0,1].  

Problem 1.5.2 (Fa90) Suppose f is  a continuous real valued function. 
Show that 

f o r  some < E [0,1]. 

Problem 1.5.3 (Sp77) Suppose that f is  a real valued function of one 
real variable such that 

lim f(x) 
:C+C 

exists for all c E [a,  b].  Show that f is Riemann integrable on [a,  b]. 

Problem 1.5.4 (Sp78) Let f : [0,1] -+ R be Riemann integrable over 
[b, 11 for all b such that 0 < b 5 1. 

1. I f f  is  bounded, prove that f is  Riemann integrable over [0,1]. 

2. What iff is not bounded? 
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Problem 1.5.5 (Su81) Let f : R + R be continuous, with 

00 s_, If(x)l  d x  < o. 

Show that there is  a sequence (x,,) such that x ,  -+ 00, x ,  f (x,) 4 0 ,  and 
x ,  f ( -xc , )  4 0 as n -+ o. 

Problem 1.5.6 (Su85) Let 

f ( x )  = e 2'12 l" e - t 2 / 2  dt 

for x > 0.  

1. Show that 0 < f ( x )  < $. 
Hint: I n  the integral, make the change of variable t = x + S .  

2. Show that f (x) is strictly decreasing as x increases, x > 0. 

Problem 1.5.7 (Su84) Let p(s) be a C2 function on  [l, 21 with cp and cpl 

vanishing at s = 1 , 2 .  Prove that there is a constant C > 0 such that for 
any X > 1, 

Problem 1.5.8 (Fa85) Let 0 5 a 5 1 be given. Determine all nonnega- 
tive continuous functions f on  [0, 11 which satisfy the following three con- 
ditions: 

1' x2 f ( x )  d x  = a2 

Problem 1.5.9 (Fa85, Sp90) Let f be a differentiable function on  [0, 11 
and let 

sup 
O<.Cc<l  

I f ' (x) l  = M < m. 

Let n be a positive integer. Prove that 
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Problem 1.5.10 (Fa83) Let f : [0,co) ---f R be a unifomnly continzlous 
function with the property that 

b 
lim 1 f ( x ) d x  

b-co 

exists (as a finite limit). Show that 

lim f ( x )  = 0. 
2-03 

Problem 1.5.11 (Fa86) Let f be a real valued continuous function on  

exists. Prove that 
lim f(x)  = 0. 

Problem 1.5.12 (Sp83) Let f : R+ --+ R+ be a monotone decreasing 
function, defined on the positive real numbers with 

X - C C  

/u f ( x ) d z  < 03. 

Show that 
lim z f ( x )  = 0. 

Problem 1.5.13 (Fa90, Sp97) Let f be a continuous real valued func- 
tion satisfying f (x) 2 0 ,  fo r  all x, and 

2-m 

f ( x )  d x  < 03. 

Prove that I" x f ( x )  d x  ----t 0 

as n -+ 03. 

Problem 1.5.14 (Sp87) Evaluate the integral 

'I2 s i n x  I = (  - d x  

to an accuracy of two decimal places; that is, find a number I* such that 
) I  - I * ]  < 0.005.- 

Problem 1.5.15 (Fa87) 

lim 
t+o+ 

Show that the following limit exists and is  finite: 

+logt  . (I' ( 2 4  +dSZ4)1/4 ) 
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Problem 1.5.16 (Fa95) Let f and f' be continuous on [O,m) and 
f ( x )  = 0 for  x 2 lo1'. Show that 

1" f (x)2dx 5 2/- /F . 

Problem 1.5.17 (Fa88) Let f be a continuous, strictly increasing func- 
t ion from [0, m) onto [ O , o o )  and let g = f - l .  Prove that 

f o r  all positive numbers a and b, and determine the condition f o r  equality. 

Problem 1.5.18 (Sp94) Let f be a continuous real valued function on  W 
such that the improper Riemann integral s-", If(x)l dx converges. Define 
the function g on  W by 

m 

d Y )  = 1 f(z) C O S ( Z Y )  dx. 
-m 

Prove that g is  continuous. 

Problem 1.5.19 (Sp88) Prove that the integrals 

1" cos(x2) dx and I" sin(x2) dx 

converge. 

Problem 1.5.20 (Fa85) Let f ( x ) ,  0 5 z 5 1, be a real valued continuous 
function. Show that 

P l  

lim (n  + 1) lo x n f ( x )  dx = f(1). 
n-m 

Problem 1.5.21 (Su83, Sp84, Fa89) Compute 

where a > 0 is  a constant. 
Hint: I t  might be helpful to write the integral as I"+r. 
Problem 1.5.22 (Sp85) Show that 

I = ln log(sin x )  dx 

converges as a n  improper Riemann integral. Evaluate I .  
Hint: The identity sin 2x = 2 sin x cos x may  be useful. 
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1.6 Sequences of Functions 

Problem 1.6.1 (Fa84) Prove or supply a counterexample: Iff i s  a non- 
decreasing real valued function o n  [0, I], then there is  a sequence of contin- 
uous functions on [0,1], {fn}, such that f o r  each x E [0,1], 

lim f,(x) = f(z). 
,--too 

Problem 1.6.2 (Fa77, Sp80) Let f, : R -+ R be diflerentiable for  each 
n = 1 , 2 , .  . . with I fk(x)l 5 1 for all n and x. Assume 

for all x. Prove that g : Il% - R is  continuous. 

Problem 1.6.3 (Sp81) 1. Give an example of a sequence of C1 func- 
tions 

f k : [ o , c o ) - - , w ,  k = 0 , 1 , 2 , . . -  

such that f k ( 0 )  = 0 for all k, and fL (x )  -+ fb(x) f o r  all 2 as k --t 00, 

but fk(x) does not converge to fo(x) for all x as k 3 co. 

2. State an extra condition which would amply that f k ( x )  -+ fo(x) for 
all x as k + 00. 

Problem 1.6.4 (Fa79, Fa80) Let {P,} be a sequence of real polynomi- 
als of degree 5 D ,  a fued integer. Suppose that P,(x) -+ 0 pointwise for 
0 5 x 5 1. Prove that P, + 0 uniformly on  [0,1]. 

Problem 1.6.5 (Fa84) Show that i f f  i s  a homeomorphism of [0,1] onto 
itself, then there is  a sequence {pT1},  n = 1 , 2 , 3 , .  . . of polynomials such 
that p ,  -+ f uniformly on  [0,1] and each p ,  is  a homeomorphism of [0,1] 
onto itself. 
Hint: First assume that f is  C1. 

Problem 1.6.6 (Sp95) Let f,: [O, 11 + [0, GO) be a continuous function, 
for  n = 1,2 , .  . .. Suppose that one has 

(*) fl(x) 2 f2(.) 2 f3(2)  2 . . .  f o r  all E [O, 11. 

Let f ( x )  = f 7 d x )  and M = supoS.51 f (XI. 
1. Prove that there exists t E [0,1] with f ( t )  = M 

2. Show b y  example that the conclusion of Part 1 need not hold if instead 
of (*) we merely know that for each x E [0,1] there exists n, such 
that fo r  all n 2 n, one has f,(x) 2 fn+l(x) .  
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Problem 1.6.7 (Fa82) Let f i ,  fi, . . . be continuous functions on  [0, 11 sat- 
isfying f l  > fi > . . .  and such that limn+m f n ( x )  = 0 for each x. Must the 
sequence { f n }  converge to 0 uniformly on  [ O ,  11 ? 

Problem 1.6.8 (Sp78) Let k 2 0 be an integer and define a sequence of 
maps 

X k  
f n  : R + R, fn (x> = GI n = 1 , 2 , .  . 

For which values of k does the sequence converge uniformly on  R ?  O n  every 
bounded subset of R? 

Problem 1.6.9 (Fa87) Suppose that { fn} is  a sequence of nondecreasing 
functions which map the unit interval into atself. Suppose that 

pointwise and that f is a continuous function. Prove that f n ( x )  -+ f(x) 
uniformly as n - 00, 0 5 x 5 1. Note that the functions f n  are not 
necessarily continuous. 

Problem 1.6.10 (Fa85) Let f and fn, n = 1 , 2 , .  . ., be functions from R 
to R. Assume that f 7 1 ( x n )  4 f(x) as n 4 00 whenever x, -+ x. Show that 
f is  continuous. Note: The functions f T l  are not assumed to be continuous. 

Problem 1.6.11 (Sp81) Let f : [0,1] -+ Iw be continuous. Prove that 
there is a real polynomial P ( x )  of degree 5 10 which minimizes (for all 
such polynomials) 

Problem 1.6.12 (Su85) Let f be a real valued continuous function on a 
compact interval [a,  b]. Given E > 0 ,  show that there is  a polynomial p such 
that p ( a )  = f ( a ) ,  p’(a) = 0 ,  and 1p(x) - f(x)l < E for  z E [a, b].  

Problem 1.6.13 (Sp95) For each positive integer n, define f n  : R 3 R 
by f n ( z )  = cos(nx>. Prove that the sequence of functions { f n }  has no 
uniformly convergent subsequence. 

Problem 1.6.14 (Fa86) The Arzeld-Ascoli Theorem asserts that the se- 
quence { f n }  of continuous real valued functions on  a metric space R is  
precompact (i. e., has a uniformly convergent subsequence) if 

(i)  R is  compact, 

(22) SUP llfiLll < 00 (where l l f n l l  = Sw{lfra(x)l I z E Q}), 

(iii) the sequence is  equicontinuous. 
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Give examples of sequences which are not precompact such that: ( i )  and (i i)  
hold but (iii) fails; (i) and (iii) hold but (ii) fails; ( i i)  and (iii) hold but (i) 
fails. Take R to be a subset of the real line. Sketch the graph of a typacal 
member of the sequence in each case. 

Problem 1.6.15 (Fa92) Let {fn} be a sequence of real valued C1 func- 
tions o n  [0,1] such that, for all n, 

1’ fn(z) d x  = 0. 

Prove that the sequence has a subsequence that converges uniformly o n  [0,1] 

Problem 1.6.16 (Fa96) Let M be the set of real valued continuous func- 
tions f on  [0,1] such that f’ is continuous o n  [0,1], with the norm 

llfll = SUP If(.)l+ S U P  If’(z)l . 
O < _ X < l  O<X<l 

Which subsets of M are compact? 

Problem 1.6.17 (Su80) Let (a,) be a sequence of nonzero real numbers. 
Prove that the sequence of functions fn : R + R 

1 
an 

f,(z) = - sin(a,z) + cos(s + a,) 

has a subsequence converging to a continuous function. 

Problem 1.6.18 (Sp82, Sp93) Let {gn} be a sequence of twice differen- 
tiable functions on  [0,1] such that g,(O) = gh(0) = 0 for all n. Suppose also 
that \g;(z)l 5 1 for all n and a l l x  E [0, 11. Prove that there is a subsequence 
of {g,} which converges uniformly on  [O,1]. 

Problem 1.6.19 (Sp82) Let {fn} be a sequence of continuous functions 
f rom [ O , l ]  to R. Suppose that f n ( x )  -+ 0 as n -+ 00 for each 2 E [0,1] and 
also that, for some constant K ,  we have 

f o r  all n. Does 
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Problem 1.6.20 (Fa93) Let K be a continuous real valued function on  
[0,1] x [0,1]. Let F be the family of functions f on  [0,1] of the f o r m  

with g a real valued continuous function on  [0,1] satisfying )g) 5 1 every- 
where. Prove that the family F is equicontinuous. 

Problem 1.6.21 (Fa78) Let {gn} be a sequence of Riemann integrable 
functions from [O, 11 into R such that lglL(x)l  5 1 for all n, x. Define 

Prove that a subsequence of {G,} converges uniformly. 

Problem 1.6.22 (Su79) Let { f n }  be a sequence of continuous maps 
[0,1] 4 R such that I’ dY I 5  

for all 71. Define g, : [0,1] 3 W by  

1 

gn(zL’> = & G f n ( Y )  dY. 

1. Find a constant I< 2 0 such that lgn(z)l 5 K for all n. 

2. Prove that a subsequence of the sequence {g,} converges uniformly. 

Problem 1.6.23 (Su81) Let {fn} be a sequence of continuous maps 
[0,1] --+ R such that 

Let K : [0,1] x [0,1] 3 R be continuous. Define gn : [0,1] --t R by 

1 

gn(z:> = 1 ~ ( x ,  Y ) f n ( Y )  dy.  

Prove that the sequence {gn} converges uniformly. 

Problem 1.6.24 (Fa82) Let cpl ,cp2 , .  . . , qn,. . . be nonnegative continu- 
ous functions on  [0,1] such that the limit 
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exists for every k = 0,1, .  . . . Show that the limit 

f1 

exists for every continuous function f on  (0,1]. 

Problem 1.6.25 (Sp83) Let XI, Xz, . . . , An,  . . . be real numbers. Show that 
the infinite series 

n=l 2""" 
converges uniformly over W to a continuous limit function f : R -, C .  
Show, further, that the limit 

exists. 

Problem 1.6.26 (Sp85) Define the function ( by 

Prove that <(x) is defined and has continuous derivatives of all orders in 
the interval 1 < 3: 

Problem 1.6.27 

Prove that fn (z )  
[a,  bl. 

Problem 1.6.28 
satisfying 

< 00. 

(Sp85) Let f be continuous on R, and let 

converges unzformly to  a limit o n  every finite interval 

(Sp87) Let f be a continuous real valued function on  R 

If (.>I 5 C/(1 + z2), 

where C is  a positive constant. Define the function F on R by 

n=-w 

1. Prove that F is continuous and periodic with period 1. 
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2. Prove that i f  G is  continuous and periodic with period 1, then 

1' F ( x ) G ( x )  d x  = 

Problem 1.6.29 (Sp79) Show that for any continuous function 
f : [0,1] 4 R and E > 0 ,  there is  a function of the f o r m  

g(x) = E C k X 4 k  

k=O 

for some n E Z, where GO,. . . , C, E Q and 1g(z) - f(x)l < E f o r  all 2 in 
[O, 11. 

1.7 Fourier Series 

Problem 1.7.1 (Sp80) Let f : R + R be the unique function such that 
f(x) = z i f  -7r 6 x < 7r and f ( x  + 2n7r) = f(x) for all n E %. 

1. Prove that the Fourier series off  is  
00 ( - 1 ) ~ + ~ 2 s i n n x  

n n=l 

2. Prove that the series does not converge uniformly. 

3. For each x E R, find the sum of the series. 

Problem 1.7.2 (Su81) Let f : R --f R be the function of period 27r such 
that f (x)  = x3 for  -7r 6 x < 7r. 

1. Prove that the Fourier series for f has the form C';" bn sin nx and 
write an integral formula for b,, (do not evaluate it).  

2. Prove that the Fourier series converges for all x. 

3. Prove 
27r6 M 

b =--. c 2  n 7  
n=l  

Problem 1.7.3 (Su82) Let f : [0,7r] -+ R be continuous and such that 

r n  lo f(z) sin(nx) d x  = 0 

f o r  all integers n 2 1. Is f (x) is  identically 02 
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1.8 Convex Functions 

Problem 1.7.4 (Sp86) Let f be a continuous real valued function 
such that 

f(.) = f ( .  + 1) = f ( 
for  all x. Prove that f i s  constant. 

27 

o n  R 

Problem 1.7.5 (Sp88) Does there exist a continuous real valued function 
f ( x ) ,  0 5 x 5 1, such that 

zcf(x) d x  = 1 and x " f ( x )  d x  = 0 I' 
for n = 0 ,2 ,3 ,4 ,  . . .? Give an example or a proof that no such f exists. 

Problem 1.7.6 (Fa80) Let g be continuous and periodic on  [-T,T] and 
have Fourier series 

M I_ 

ao 
- + c(an cosnx -t b,sinnx). 
3 
" n=l 

Let f be periodic on  [-T,T] and satisfy the differential equation 

f"(4 + kf = g ( x )  

where Ic # n2, n = 1 , 2 , 3 , .  . ,. Find the Fourier series o f f  and prove that at 
converges everywhere. 

Problem 1.7.7 (Su83) Let f be a twice diflerentiable real valued function 
on [ 0 , 2 ~ ] ,  with J;"" f ( s ) d z  = 0 = f(27r) - f ( 0 ) .  Show that 

Problem 1.7.8 (Fa81) Let f and g be continuous functions on R such 
that f(x + 1) = f ( x ) ,  g(x + 1) = g(z), f o r  all x E R. Prove that 

1.8 Convex Functions 

Problem 1.8.1 (Sp81) Let f : [0,1] -+ R be continuous with f ( 0 )  = 0.  
Show there is a continuous concave function g : [0,1] -+ R such that g(0) = 
0 and g(x) 2 f(x) for  all z E [0,1]. 
Note: A function g : I --t R is  concave i f  

9 ( t x  + (1 - t h )  L t d x )  + (1 - t ) g ( y )  

for all x and y in I and 0 5 t 5 1. 
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Problem 1.8.2 (Sp82) Let f : I -+ B (where I is  a n  interval of B) be 
such that f ( x )  > 0 ,  x E I .  Suppose that ecx f (x) is  convex in I for every 
real number c .  Show that log f ( x )  is  convex in I .  
Note: A function g : I -+ R is convex i f  

for all x and y in I and 0 5 t 5 1. 

Problem 1.8.3 (Sp86) Let f be a real valued continuous function on  R 
satisfying the mean value inequality below: 

Prove: 

1. The maximum o f f  on any closed interval is  assumed at one of the 
endpoints. 

2. f is  convex. 

Hint: Iff is  linear, the inequality above and the convexity one hold and 
are, in fact, equalities. 
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Multivariable Calculus 

2.1 Limits and Continuity 

Problem 2.1.1 (Fa94) Let the function f : Rn + Rn satisfy the following 
two conditions: 

(i)  f ( K )  is compact whenever K is a compact subset of R". 

(ii) If {KTL}  is a decreasing sequence of compact subsets of R", then 

Prove that f i s  continuous. 

Problem 2.1.2 (Sp78) Prove that a map g : Iw" + R" is  continuous only 
i f  i ts graph is closed in R" x R". Is the converse true? 
Note: See also Problem 1.211. 

Problem 2.1.3 (Su79) Let U c Rn be an  open set. Suppose that the 
map h : U -+ Wn is  a homeomorphism from U onto R", which i s  uniformly 
continuous. Prove U = R" . 

Problem 2.1.4 (sp89) Let f be a real valued function on R2 with the 
following properties: 

1. For each yo in R, the function x H f(x, yo) is  continuous. 
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2. For each xo in R, the function y H f(x0, y) i s  continuous. 

3. f ( K )  is compact whenever K is a compact subset of R2. 

Prove that f is  continuous. 

Problem 2.1.5 (Sp91) Let f be a continuous function f rom 
B, = {x E Iwn I llxll < 1) into itself. (Here, 1 1  . 1 1  denotes the Euclidean 
norm.) Assume 1 1  f(x)II < 11x11 f o r  all nonzero x E B,. Let 20 be a nonzero 
point of B,, and define the sequence (xk) by setting xk = f ( z k - I ) .  Prove 
that limxk = 0. 

Problem 2.1.6 (Su78) Let N be a norm on the vector space Rn; that is, 
N : RT1 -+ R satisfies 

N ( x )  2 0 and N ( z )  = 0 only i f  x = 0,  

N(Xx)  = IXlN(x) 
N ( .  + 5 N ( x )  + N(Y)l 

f o r  all x, y E and X E EX. 

1. Prove that N is bounded on the unit sphere. 

2. Prove that N is  continuous. 

3. Prove that there exist constants A > 0 and B > 0 ,  such that f o r  all 
x E En, Alxl I N ( x )  5 Blxl. 

Problem 2.1.7 (Fa97)  A map f : IwnL -+ R" is  proper i f  it is  continuous 
and f - ' (B )  is compact for each compact subset B of R7&; f is  closed i f  it 
i s  continuous and f(A) is  closed for  each closed subset A of R". 

1. Prove that every proper map f : R'" -+ Rn i s  closed. 

2. Prove that every one-to-one closed map f : R" --+ Rn is  proper. 

Problem 2.1.8 (Sp83) Suppose that F : Iw" --+ R" is  continuous and 
satisfies 

llF(.) - F(Y) I I  2 41. - YII 

f o r  all x, y E RrL and some X > 0. Prove that F is one-to-one, onto, and 
has a continuous inverse. 
Note: See also Problem 1.2.9. 

2.2 Differential Calculus 

Problem 2.2.1 ( S p 9 3 )  Prove that 5 eS+Y-' for  x 2 0 ,  y 2 0 .  
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Problem 2.2.2 (Fa86) Let f : R2 --f R be defined by: 

~ ~ / ~ s i n ( y / x )  i f  x # O  
i f  x = O .  

Determine all points at which f is  diferentiable and all points at which f 
is not differentiable. 

Problem 2.2.3 (Sp80, Fa92) Let f : R" + R" be continuously differ- 
entiable. Assume the Jacobian matrix (af& /axj)  has rank n everywhere. 
Suppose f is proper; that is, f - '  ( K )  is compact whenever K i s  compact. 
Prove f (Rn)  = R". 

Problem 2.2.4 (Sp89) Suppose f i s  a continuously differentiable function 
of R2 into R2. Assume that f has only finitely many singular points, and 
that f o r  each positive number M ,  the set { z  E R2 I I f ( z ) l  5 M }  i s  bounded. 
Prove that f maps Iw2 onto R2. 

Problem 2.2.5 (Fa81) Let f be a real valued function on R" of class C2. 
A point x E R" i s  a critical point off i f  all the partial derivatives off vanish 
at x; a critical point is nondegenerate if the n x n matrix 

( -9-Cx)) axi ax 

is  nonsingular. 
Let x be a nondegenerate critical point off. Prove that there is  an  open 

neighborhood of x which contains no  other critical points (i.e., the nonde- 
generate critical points are isolated). 

Problem 2.2.6 (Su80) Let f : IRn 4 IR be a function whose partial 
derivatives of order 5 2 are everywhere defined and continuous. 

1. Let a E R" be a critical point off  (i.e., % ( a )  = 0, i = 1,. . . , n ) .  
Prove that a is  a local minimum provided the EZessian matrix 

is  positive definite at x = a .  

2. Assume the Hessian matrix i s  positive definite at all x. Prove that f 

Problem 2.2.7 (Fa88) Prove that a real valued C3 function f on Iw2 
whose Laplacian, 

-+-, 

has, at most, one critical point. 

a 2 f  a 2 f  

ax2 a92 
is everywhere positive cannot have a local maximum. 
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Problem 2.2.8 (Su82) Let f : IK3 -+ IK2 and assume that 0 is  a regular 
value off  (i.e., the digerential o f f  has rank 2 at each point of f-'(O)). 
Prove that IK3 \ f -' (0)  is  arcwise connected. 

' Problem 2.2.9 (Sp87) Let the transformation T from the subset 
U = {(u, v )  I u > v )  of R2 into R2 be defined by T(u,  v )  = (u + v ,  u2 + v2) .  

1. Prove that T is  locally one-to-one. 

2. Determine the range of T ,  and show that T is  globally one-to-one. 

Problem 2.2.10 (Fa91) Let f be a C1 function from the interval ( - 1 , l )  
into R2 such that f (0 )  = 0 and f'(0) # 0.  Prove that there i s  a nzlmber E 

in (0 , l )  such that Ilf(t)II i s  an increasing function o f t  on ( 0 , ~ ) .  

Problem 2.2.11 (Fa80) For a real 2x2 matrix 

let llXll = x2 + y2 + z2 + t2,  and define a metric by d ( X ,  Y )  = IIX - YII. 
Let C = { X  I det(X) = 0). Let 

Find the minimum distance from A to C and exhibit a n  S E C that achieves 
this minimurn. 

Problem 2.2.12 (Su80) Let S c IK3 denote the ellipsoidal surface de- 
fined by 

2x2 + ( y  - 1)2 + ( z  - 10)2 = 1. 

Let T c R3 denote the surface defined by 

1 
z =  

x 2 + y z + 1  

Prove that there exist points in p E S, q E T ,  such that the line i?if is  
perpendicular to S at p and to T at q. 

Problem 2.2.13 (Sp80) Let P2 denote the set of real polynomials of de- 
gree 5 2. Define the map J : P2 + IK by 

J (  f )  = J' f ( x l 2  d x  . 
0 

Let Q = { f E P2 I f (1) = 1). Show that J attains a minimum value on  Q 
and determine where the minimum occurs. 
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Problem 2.2.14 (Fa78) Let W c R" be a n  open connected set and f a 
real valued function on  W such that all partial derivatives o f f  are 0. Prove 
that f is constant. 

Problem 2.2.15 (Sp77) I n  R2, consider the region d defined by 
x2  + y2 > 1. Find differentiable real valued functions f and g on  d such 
that 2 = but there is  no real valued function h o n  A such that f = $$ 
and g = z .  
Hint: Why would Green's Theorem fail to apply? 

Problem 2.2.16 (Sp77) Suppose that u(x ,  t )  is  a continuous function of 
the real variables x and t with continuous second partial derivatives. Suppose 
that u and its first partial derivatives are periodic in x with period 1, and 

a h  

that 

Prove that 

E ( t  ) = 1 2 I' ( ( $ ) + (g ) ') d x  

is  a constant independent o f t  

Problem 2.2.17 (Su77) Let f ( x ,  t )  be a C' function such that 2 = g. 
Suppose that J ( x ,  0) > 0 f o r  all x .  Prove that f (5, t )  > 0 f o r  all x and t.  

Problem 2.2.18 (Fa77) Let f : IWrL -+ R have continuous partial deriva- 
tives and satisfy 

for  all x = ( 5 1 , .  . . , x"), j = 1,. . . , n. Prove that 

I f ( . )  - f ( Y ) l  I 6 K I I X  - Yll 

(where llull = duf + . . + u i  ). 

Problem 2.2.19 (Fa83, Sp87) Let f : R" \ (0 )  -+ R be a function which 
is continuously differentiable and whose partial derivatives are uniformly 
bounded: 

for  all ( X I , .  . . , xn)  # (0,. . . , 0). Show that if n 2 2,  then f can be extended 
to a continuous function defined on all of Rn. Show that this i s  false if 
n = 1 by giving a counterexample. 

Problem 2.2.20 (Sp79) Let f : R" \ (0) -+ R be differentiable. Suppose 

d f  lim -(x) 
x-0 axj 



34 2. Multivariable Calculus 

exists for each j = 1,. . . , n. 

1. Can f be extended to a continuous map f rom R" to R? 

2. Assuming continuity at the origin, is  f differentiable from W" to R ? 

Problem 2.2.21 (Sp82) Let f : R2 + W have directional derivatives in 
all directions at the origin. Is f dzflerenliable at the origin? Prove or give 
a counterexample. 

Problem 2.2.22 (Fa78) Let f : W" t W have the following properties: f 
i s  diflerentiable on  W" \ {0} ,  f i s  continuous at 0 ,  and 

a f  lim -(p) = 0 
P-+O ax, 

for i = 1,. . . , n. Prove that f is differentiable at 0. 

Problem 2.2.23 (Su78) Let U c R" be a convex open set and 
f : U + I$" a daflerentiable function whose partial derivatives are uni- 
formly bounded but not necessarily continuous. Prove that f has a unique 
continuous extension to the closure of U .  

Problem 2.2.24 (Fa78) 1. Show that i f  u ,v  : R2 -+ R are continu- 
= E7 then u = g7 v = 3 fly for some ously differentiable and 

f : R2 -> R.  

2. Prove there is no f : R2 \ ( 0 )  -+ R such that 

Problem 2.2.25 (Su79) Let f : R3 -+ R be such that 

f - ' ( o )  = {x E R3 I ((x(( = l}. 

Suppose f has continuous partial derivatives of orders 5 2. Is there a y E R3 
with ( (y((  5 1 such that 

Problem 2.2.26 (Sp92) Let f be a daflerentiable function from R" to R". 
Assume that there is a differentiable function g from Rn t o  R having no 
critical points such that g o f vanishes identically. Prove that the Jacobian 
determinant of f vanishes identically. 

Problem 2.2.27 (Fa83) Let f , g  : R --+ R be smooth functions with 
f(0) = 0 and J ' (0)  # 0.  Consider the equation f(x) = t g ( x ) ,  t E R. 



2.2 Differential Calculus 35 

1. Show that in a suitably small interval It1 < 6 ,  there is  a unique con- 
tinuous function x ( t )  which solves the equation and satisfies x ( 0 )  = 0 .  

2. Derive the first order Taylor expansion of x ( t )  about t = 0.  

Problem 2.2.28 (Sp78) Consider the system of equations 

32 + y - z + u4 = 0 
z - y + 2 z + u = O  

22 + 2y - 3x + 2u = 0 

1. Prove that for some E > 0 ,  the system can be solved for ( x ,  y , u )  as 
n function of z E [ - - E , E ] ,  with x ( 0 )  = y (0 )  = u(0) = 0.  Are such 
functions ~ ( z ) ,  y ( z )  and u ( z )  continuous? Diflerentiable? Unique? 

2. Show that the system cannot be solved for ( x ,  y ,  z )  as a function of 
u E [-6,6], for all 6 > 0. 

Problem 2.2.20 (Sp81) Describe the two regions in ( a ,  b)-space for which 
the function 

f a , b ( 2 ,  9) = ay2 + bx ; 
restricted to the circle x2+y2 = 1, has exactly two, and exactly four critical 
points, respectively. 

Problem 2.2.30 (Fa87) Let u and v be two real valued C' functions on  
R2 such that the gradient V u  is  never 0 ,  and such that, at each point, Vv 
and V u  are linearly dependent vectors. Given po = (20 ,  yo) E R2, show that 
there is  a C1 function F of one variable such that v ( x ,  y )  = F (u(x ,  y ) )  in 
some neighborhood of po. 

Problem 2.2.31 (Fa94) Let f be a continuously differentiable function 
from R2 into R. Prove that there is  a continuous one-to-one function g 
from [0,1] into R2 such that the composite function f o g is  constant. 

Problem 2.2.32 (Su84) Let f : R + R be C1 and let 

'1L = f ( X I  
21 = -9 + x f ( x ) .  

If f ' ( x0)  # 0 ,  show that this transformation is  locally invertible near ( X O ,  yo) 
and the inverse has the f o r m  

x = g ( u )  
y = -v + ug(u). 

Problem 2.2.33 (Su79) Let X be the space of orthogonal real n x n ma- 
trices. Let vo E R". Locate and describe the elements of X ,  where the map 

f : X - + R ,  f ( A )  = (210, Avo) 

takes its muximum and minimum values. 
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Problem 2.2.34 (Su78) Let Mnxn denote the vector space of real n x n  
matrices. Refine a map f : Mnxn + Mnxn by  f (A) = A'. Find the deriva- 
tive of f  at B E M n x n .  

Problem 2.2.35 (Su82) Let MzX2 be the four-dimensional vector space 
of all 2x2 real matrices and define f : M2x2 4 M2x2 by f ( X )  = X 2 .  

1 .  Show that f has a local inverse near the point 

2. Show that f does not have a local inverse near the point 

x=(' 0 -1 O )  

Problem 2.2.36 (Fa80) Show that there is an E > 0 such that i f  A i s  any 
real 2x2 matrix satisfying laijl 5 E f o r  all entries aij of A, then there is  a 
real 2x2 matrix X such that X 2  + X t  = A, where X t  is  the transpose of 
X .  Is X unique? 

Problem 2.2.37 (Sp96) Let MzX2 be the space of.2x.2 matrices over R, 
identified in the usual way with R4. Let the function F f r o m  M2x2 into 
MzX2 be defined by 

Prove that the range of F contains a neighborhood of the origin. 

Problem 2.2.38 (Fa78) Let M,,, denote the vector space ofn x n real 
matrices (identified with I%"'). Prove that there are neighborhoods U and 
V in Mnxn of the identity matrix such that f o r  every A in U ,  there is  a 
unique X in V such that X4 = A. 

Problem 2.2.39 (Sp79, Fa93) Let Mnxn denote the vector space o f n  x 
n real matrices for  n 2 2. Let det : Mnxn + E% be the determinant map. 

F ( X )  = x + x2. 

1. Show that det is C". 

2. Show that the derivative of det at A E MnXn is  zero if and only i f  A 

Problem 2.2.40 (Fa81) Let A = (az j )  be an n x n matrix whose entries 
aij are real valued differentiable functions defined on R.  Assume that the 
determinant det(A) o f A  is  everywhere positive. Let B = (bi j )  be the inverse 
matrix of A. Prove the formula 

has rank 5 n - 2. 

n d daij 
-log (det(A)) = -bJt. 
dt  dt  

2 ,.I = 1 
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2.3 Integral Calculus 

Problem 2.3.1 (Sp78) What is the volume enclosed by the ellipsoid 

x 2  y2 z2 
- + - + - = 1? 
a2 b2 c2 

Problem 2.3.2 (Sp78) Evaluate 

-,z-yz 

where A = {(z,g) E R2 I x 2  + y2 5 1). 

dXdY 1 L e  
m 

Problem 2.3.3 (Sp98) Given the fact that e-x2dx = ,/?, evaluate 
J -m 

the intearal 

Problem 2.3.4 (Sp80) Let S = {(z, y, z )  E R3 1 x2 +y2 + z2 = 1) denote 
the unit sphere in R3. Evaluate the surface integral over 5’: 

/ s ( x 2  + y + z )  dA. 

Problem 2.3.5 (Sp81) Let 2‘, 5 and 
Let F’ denote the vector field 

be the usual unit vectors in R3. 

(x2 + y - 4)?+ 3zy3’+ (2xz  + z”i. 

1. Compute V x @ (the curl of @). 

2. Compute the integral of V x F’ over the surface x2  + y2 + z2 = 16, 
z 2 0. 

Problem 2.3.6 (Fa86) Evaluate 

where 

R = ((2, y) E R2 1 ( x  + 1)2 + y2 5 9, ( x  - 1 ) 2  + y2 2 1). 

Problem 2.3.7 (Sp91) Let the vector field F in  R3 have the form 

F ( r )  = g(11~11)~ (7- # (070, 011, 
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where g i s  a real valued smooth function on  (0, m) and 1 1  . 1 1  denotes the 
Euclidean norm. (F is undefined at ( O , O , O ) . )  Prove that 

l F . d s = O  

for any smooth closed path C an R3 that does not pass through the origin. 

Problem 2.3.8 (Fa91) Let B denote the unit ball of R3, 
B = {r  E R3 1 J)r\I 5 1). Let J = ( J l 7 J 2 , J 3 )  be a smooth vector field 
on  R3 that vanishes outside of B and satisfies . J'= 0. 

1. For f a smooth, scalar-valued function defined on  a neighborhood of 
B, prove that 1 (ff> . Y d x d y d z  = 0. 

B 

2. Prove that r 

J, J1 dxdydx  = 0. 

Problem 2.3.9 (Fa94) Let V denote the open unit disc in R2. Let u be 
a n  eigenfunction for the Laplacian in V; that is, a real valued function of 
class C2 defined in D,  zero on  the boundary of V but not identically zero, 
and satisfying the differential equation 

d2u d2U - + __ = Xu, 
8x2 dy2 

where X i s  a constant. Prove that 

(*) /l lgrad uI2 d z d y  + X u'dsdy = 0 , ss, 
and hence that X < 0.  

Problem 2.3.10 (Sp92) Let f be a one-to-one C1 map of R3 into R3, 
and let J denote i t s  Jacobian determinant. Prove that i f  xo i s  any point of 
R3 and Q,.(xo) denotes the cube with center XO, side length r ,  and edges 
parallel to  the coordinate axes, then 

Here, 1 1  . 1 1  is the Euclidean norm in R3. 



Differential Equations 

3.1 First Order Equations 

Problem 3.1.1 (Fa93) Let TI be a n  integer larger than 1. Is there a dif- 
ferentiable function on [0,  a) whose derivative equals its nth power and 
whose value at the origin is  positive? 

Problem 3.1.2 (Fa77) Show that the digerential equation x’ = 32’ has 
no solution such that x ( 0 )  = 1 and x ( t )  is  defined fo r  all real numbers t. 

Problem 3.1.3 (Sp78) Consider the diflerential equation 

d x  
dt  
- = x2 t t 2 ,  x ( 0 )  = 1. 

1. Prove that f o r  some b > 0 ,  there is  a solution defined for  t E (0, b].  

2. Find an explicit value of b having the property in Part 1. 

3. Find a c > 0 such that there is no solution on  [0,  c] .  

Problem 3.1.4 (Sp78) 1. For which real numbers a! > 0 does the dif- 
ferential equation 

have a solution on some interval [0, b ] ,  b > 0 2  
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2. For which values of (Y are there intervals on  which two solutions of 
(*) are defined? 

Problem 3.1.5 (Su78) Solve the differential equation g‘ = 2 g ,  g(0) = a ,  
where a is  a real constant. 

Problem 3.1.6 (Fa78) Solve the diflerential equation 

- dY = x2y - 3x2, y (0 )  = 1. d x  

Problem 3.1.7 (Sp79) Find all differentiable solutions to the differential 
equation 

y’ = &, y (0 )  = 0 .  

Problem 3.1.8 (Sp80) Consider the diflerential equation 

‘ x 3 - x  x =-. 
1 + ex 

1. Find all its constant solutions. 

2. Discuss limt,, x ( t ) ,  where x ( t )  is  the solution such that x ( 0 )  = f a  

Problem 3.1.9 (Su77, Su80, Sp82, Sp83) Prove that the initial value 
problem 

d x  
-- - 3x + 85 cos X ,  
dt 

~ ( 0 )  = 7 7 ,  

has a solution x ( t )  defined for all t E R. 

Problem 3.1.10 (Fa82) Let f : R + R be a continuous nowhere vanish- 
ing function, and consider the differential equation 

1. For each real number c,  show that (*) has a unique, continuously 
differentiable solution y = y ( x )  on a neighborhood of 0 which satisfies 
the initial condition y (0 )  =I c.  

2. Deduce the conditions o n  f under which the solution 9 ezists f o r  all 
x E EX, for every initial value c .  

Problem 3.1.11 (Fa82) Find all pairs of Coo functions x ( t )  and y ( t )  on  
JR satisfying 

x’(t) = 2 x ( t )  - y ( t ) ,  y’(t) = x ( t ) .  

Problem 3.1.12 (Sp83) Find all solutions y : R 3 R to 

dY 
d x  - = ( y ( y  - 2))”” y (0 )  = 0. 
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Problem 3.1.13 (Su83) Find all real valued C1 solutions u of the difler- 
ential equation 

Problem 3.1.14 (Fa83) I .  Let u( t )  be a real valued differentiable func- 
tion of a real variable t which satisfies an inequality of the form 

u'(t) 5 a u ( t ) ,  t 2 0 ,  u(0) I b, 

where a and b are positive constants. Starting from first principles, 
derive an upper bound for u(t)  for t > 0.  

2. Let x ( t )  = ( x l ( t ) ,  x2( t ) ,  . . . , zn( t ) )  be a diflerentiable function f r o m  
W to Rn which satisfies a differential equation of the form 

where f : R" + R" is  a continuous function. Assuming that f satis- 
fies the condition 

( f ( Y ) , Y )  5 llY112, 7J E 

(where (., .) and I( . 1 1  denote the Euclidean inner product and norm), 
derive an inequality showing that the norm Ilx(t)II grows, at most, 
exponentially. 

Problem 3.1.15 (Sp84) Consider the equation 

= 7~ - siny.  dY 
d x  
- 

Show that there is  a n  E > 0 such that if Iyo/o) < E ,  then the solution y = f (x) 
with f(0) = yo satisfies 

lim f ( x )  = 0. 
x+--Oo 

Problem 3.1.16 (Fa84) Consider the diflerential equation 

Y 
- = 32y+ ~. dY 
d x  1 t- y2 

Prove 

1. For each n = 1 ,2 ,  . . ., there is  a unique solution y = f n ( x )  defined 
for  0 I z 5 1 such that fn (0)  = l /n.  
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Problem 3.1.17 (Fa85) Let y ( t )  be a real valued solution, defined f o r  
0 < t < 00 of the differential equation 

Show that y ( t )  --+ +m as t + +co. 

Problem 3.1.18 (Fa86) Prove the following theorem, or find a coun- 
terexample: If p and q are continuous real valued functions on  R such that 
1g(x)1 5 lp(x)I for  all x ,  and i f  every solution f of the differential equation 

f’ + gf = 0 

satisfies lim, j+oo f ( x )  = 0 ,  then every solution f of the differential equa- 
t ion 

f ’ + p f  = o  
satisfies lim, j+oo f ( x )  = 0 .  

Problem 3.1.19 (Fa86) Discuss the solvability of the differential equa- 
t ion 

( e z  ~ i n y ) ( y ’ ) ~  -t ( ex  cosy)p’ + elJ t a n x  = o 
with the initial condition y (0 )  = 0.  Does a solution exist in some interval 
about 02 If so, is  i t  unique? 

Problem 3.1.20 (Fa92) Let f and g be positive continuous functions on  
R, with g 5 f everywhere. Assume the initial value problem 

has a solution defined on  all of R. Prove that the initial value problem 

d x  
dt - = g(x ) ,  x ( 0 )  = 0 ,  

also has a solution defined on  all of R. 

Problem 3.1.21 (Sp93) Prove that every solution x ( t )  (t 2 0 )  of the 
digerential equation 

d x  - = x2 - x6 
d t  

with x ( 0 )  > 0 satisfies limt joo x ( t )  = 1. 

Problem 3.1.22 (Sp95) Let f : R + R be a bounded continuously differ- 
entiable function. Show that every solution of y‘(x) = f ( y ( x ) )  is monotone. 
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Problem 3.1.23 (Fa87) Find a curve C in R2, passing through the point 
(3 ,2) ,  with the following property: Let L(x0, yo) be the segment of the tan- 
gent line to  C at (20,  yo) which lies in the first quadrant. Then  each point 
(ZO, yo) of C is  the midpoint of L (Q,  yo). 

3.2 Second Order Equations 

Problem 3.2.1 (Sp97) Suppose that f”(z) = (zz - l)f(z) for all z E R, 
and that f(0) = 1, f’(0) = 0. Show that f(z) -+ 0 as z --t 00. 

Problem 3.2.2 (Sp77) Find the solution of the differential equation 

y” - 2y’ + y = 0, 

subject to  the conditions 

y(0) = 1, y’(0) = 1. 

Problem 3.2.3 (Fa77) Find all solutions of the differential equation 

d2x  d x  
_ _ -  2 - + z = s i n t  
dt2 d t  

subject to the condition z(0) = 1 and ~ ’ ( 0 )  = 0.  
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Problem 3.2.4 (Su79) Let x : R + R be a solution to the diflerential 
equation 

55’’ + lox’ + 6 s  = 0. 

Prove that the map f : R --+ R, 

attains a maximum value. 

Problem 3.2.5 (Su84) Let z ( t )  be the solution of the differential equation 

x”(t) + 8x’(t) + 25x( t )  = 2 cost  

with initial conditions x(0)  = 0 and x’(0) = 0.  Show that for suitable 
constants a and 6 ,  

lim ( x ( t )  - acos ( t  - 6 ) )  = 0. 
t-oo 

Problem 3.2.6 (Fa79, Su81, Fa92) Let y = y ( x )  be a solution of the 
diflerential equation y” = -1yI with --oo < x < 00, y ( 0 )  = 1 and y’(0) = 0.  

1. Show that y is  an even function. 

2. Show that y has exactly one zero on the positive real axis. 

Problem 3.2.7 (Fa80) Consider the differential equation x”+x’-tx3 = 0 
and the function f(x, x’) = (x + x ’ ) ~  + + x4. 

1. Show that f decreases along trajectories of the differential equation. 

2. Show that if x ( t )  is any solution, then (x( t ) ,x’( t ) )  tends to (0,O) as 
t + o .  

Problem 3.2.8 (Fa95) Determine all real numbers L > 1 so that the 
boundary value problem 

x2y”(x) + y(z) = 0, 1 5 x 5 L 

has a nonzero solution. 

Problem 3.2.9 (Fa83) For which real values of p does the diflerential 
equation 

y” + 2py‘ + y = 3 

admit solutions y = f (x) with infinitely many critical points? 
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Problem 3.2.10 (Sp87) Let p ,  q and r be continuous real valued func- 
tions on  R, with p > 0. Prove that the differential equation 

p ( t ) z” ( t )  + q( t )x ’ ( t )  + r ( t ) z ( t )  = 0 

i s  equivalent to  (i.e., has exactly the same solutions as) a differential equa- 
t ion of the f o r m  

(a(t)x’(t))’ + b ( t ) x ( t )  = 0 ,  

where a i s  continuously differentiable and b i s  continuous. 

Problem 3.2.11 (Fa93) Let the function z [ t )  (--00 < t < 00) be a solu- 
t ion of the differential equation 

d x  d 2 x  
dt2 d t  

2b- + C X  = 0 -- 

such that z(0) = x ( 1 )  = 0. (Here, b and c are real constants.) Prove that 
x (n)  = 0 for every integer n. 

Problem 3.2.12 (Sp93) Let k be a positive integer. For which values of 
the real number c does the differential equation 

d2x d x  
dt2 d t  

2c- + z = 0 -- 

have a solution satisjying x (0 )  = x(27rk) = O ?  

Problem 3.2.13 (Sp85) Let h > 0 be given. Consider the linear differ- 
ence equation 

(Note the analogy with the diflerential equation y“ = -y.) 

1. Find the generul solution of (*) b y  trying suitable exponential substi- 
tutions. 

2. Find the solution with y ( 0 )  = 0 and y ( h )  = h. Denote it by 
Sh(nh), 71 = 1 , 2 , .  . .. 

9. Let x be b e d  and h = 2/78. Show that 

Iim Szln(nx/n) = sin(z). 
n-m 
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3.3 Higher Order Equations 

Problem 3.3.1 (Su78) Let E be the set of maps f : R + R which are 
solutions to the differential equation f"' + f" - 2f = 0. 

1. Prove that E is  a vector space and find its dimension. 

2, Let EO c E be the subspace of solutions g such that limt+m g ( t )  = 0.  
Find g E EO such that g(0) = 0 and g'(0) = 2. 

Problem 3.3.2 (Sp87) Let V be a finite-dimensional linear subspace of 
C" (R) (the space of complex valued, infinitely differentiable functions). 
Assume that V is  closed under D ,  the operator of differentiation (i.e., 
f E V 3 D f  E V ) .  Prove that there is  a constant coeficient differen- 
tial operator 

L = x a k D k  
n 

k =O 

such that V consists of all solutions of the differential equation L f  = 0.  

Problem 3.3.3 (Fa94) 1. Find a basis f o r  the space of real solutions 
of the difjerential equation 

2. Find a basis fo r  the subspace of real solutions of (*) that satisfy 

Iim ~ ( t )  = 0. 
t++m 

Problem 3.3.4 (Sp94) 1. Suppose the functions s int  and sin2t are 
both solutions of the differential equation 

where cg,  . . . ) c, are real constants. What i s  the smallest possible 
order of the equation? Explain. Write down a n  equation of minimum 
order having the given functions as solutions. 

2. Will the answers to Part 1 be different if the constants cg, . . . , cTL are 
allowed to be complex? Explain. 

Problem 3.3.5 (Sp95) Let y : R --$ R be a three times differentiable 
function satisfying the differential equation y"' - y = 0.  Suppose that 
limz+oo y(x) = 0.  Find real numbers a ,  b, c, and d ,  not all zero, such 
that ay(0) + y'(0) + cyI'(0) = d .  
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3.4 Systems of Differential Equations 

Problem 3.4.1 (Sp79) Consider the system of differential equations: 

d x  
- = y + t z  
dt 

3 = z + t2x 
d t  
d z  t - = x + e y .  
d t  

Prove there exists a solution defined for all t E [ 0 , 1 ] ,  such that 

(; i )  (?I)=( i )  
and also Jc’ ( X ( t ) ’  + y(t)’ + z(t)’) d t  = 1. 

Problem 3.4.2 (Su79) Find real valued functions of a real variable, s(t),  
y ( t ) ,  and z ( t ) ,  such that 

2’ = y, yl = z ,  zI = y 

x(0)  = 1,  y(0) = 2, x(0) = 3. 
and 

Problem 3.4.3 (Fa79, Su85) Solve the digerential equations 

d x  
- = -32 + lOy, dt 

= -32 + 8y. dy 
dt  

Problem 3.4.4 (Su80) Consider the differential equation 

d x  dY - _  - -x + y, 
dt  d t  

- = log(20 + x )  - y. 

Let x ( t )  and y ( t )  be a solution defined for all t 2 0 with x (0 )  > 0 and 
y(0) > 0. Prove that x ( t )  and y ( t )  are bounded. 

Problem 3.4.5 (Sp81) Consider the system of differential equations 

- d x  = y + x ( l - x 2 - y 2 )  
d t  

dt 
2 2  - d y = - x + y ( l - x  - 9 ) .  
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1. Show that for any zo and 90, there is a unique solution ( x ( t ) , y ( t ) )  
defined for all t E R such that z(0) = zo, y(0) = yo. 

approaches the circle x2  + y2 = 1 as t --+ 00. 

2. Show that if zo # 0 and yo # 0,  the solution referred to in Part 1 

Problem 3.4.6 (Fa81) Consider an autonomous system of dzfferential 
equations 

dxi  
- = Ft(z1,. . * , zn), d t  

where F = (Fl,. . . , F,) : R” ---f R” is a C1 vector field. 

1. Let U and V be two solutions on  a < t < b. Assuming that 

( D F ( z ) z ,  2 )  I 0 

for all z, z in R”, show that lU(t)  - V(t)I2 is  a decreasing function 
o f t .  

2. Let W(t) be a solution defined fo r  t > 0.  Assuming that 

( D F ( z ) z ,  2 )  I -142, 
show that there exists C E R” such that 

l im  W ( t )  = C. 
t-03 

Problem 3.4.7 (Fa81) Let V : RTL + R be a C1 function and consider 
the system of second order differential equations 

z:(t) = f i  ( z ( t ) )  , 1 5 i 5 n, 

where 
dV f -_-. 
ax, a -  

Let z ( t )  = (zl(t), . . . , x,(t)) be a solution of this system on  a finite interval 
a < t < b .  

1. Show that the function 

1 
2 

H ( t )  = -(z’(t), z’(t)) + V ( z ( t ) )  

is  constant for a < t < b. 

2. Assuming that V ( z )  2 A4 > -co for all z E R”, show that z ( t ) ,  
z’(t), and z”(t) are bounded on  a < t < b, and then prove all three 
limits 

l i m z ( t ) ,  l imz ’ ( t ) ,  l i m z ” ( t )  
t-+b t-+b t - b  

exist. 
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Problem 3.4.8 (Sp84) Show that the system of digerential equations 

has a solution which tends to 00 as t 4 -00 and tends to  the origin as 
t + +m. 

Problem 3.4.9 (Sp91) Let x( t )  be a nontrivial solution to the system 

d x  
- = AX,  
d t  

where 
A = (  -'4 4 6 ;I). 

Prove that Ilx(t)II is an increasing function of 1. (Here, ( 1  . 1 )  denotes the 
Euclidean norm.) 

-3 -9 8 

Problem 3.4.10 (Su84) Consider the solution curve ( x ( t ) ,  y ( t ) )  to the 
equations 

d x  1 
- = 1 + - s2s iny  
dt 2 

d t  
- = 3 - x 2  dY 

with initial conditions x(0) = 0 and y(0) = 0.  Prove that the solution must 
cross the line x = 1 in the xy plane b y  the time t = 2 .  

Problem 3.4.11 (Fa84) Consider the differential equation 

- 
d x  
dt d t  
- = y )  -- dy -ay-x3-x5, where a > 0 .  

1. Show that 
y2 x4 z6 

F(z,y) = + - + - 4 6  

decreases along solutions. 

8. Show that for any E > 0, there is a 6 > 0 such that whenever 
1 1  ( ~ ( 0 ) ~  y(0)) ( 1  < 6 ,  there is  a unique solution ( x ( t ) ,  y ( t ) )  of the given 
equations with the initial condition (x(O), y ( 0 ) )  which i s  defined for 
all t 2 0 and satisfies ( 1  ( x ( t ) ,  y ( t ) )  1 )  < E .  
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Problem 3.4.12 (Sp86) For A a real number, $nd all solutions of the 
integral equations 

cp(z> = ex + ~ 1 "  e("-v)cp(y) dy ,  0 5 z 5 1, 

Problem 3.4.13 (Sp86) Let V be a finite-dimensional vector space (over 
C) of C" complex valued functions on  R (the linear operations being de- 
fined pointwise). Prove that if V is  closed under differentiation (i.e., i f  f ' ( x )  
belongs to V whenever f ( x )  does), then V is  closed under translations (i.e., 
f ( x  + a )  belongs to V whenever f ( x )  does, for all real numbers a) .  

Problem 3.4.14 (Fa88) Let the real valued funclions f l ,  . . . , fn+l on  R 
satisfy the system of differential equations 

fL+l + fi = ( k  + l ) f k + l  - k f k ,  k = 1, . . ., n 
f A + I  = -(n + 1)fn+l .  

Prove that for each k, 
lim f k ( t )  = 0. 

t+OO 

Problem 3.4.15 (Fa91) Consider the vector differential equation 

-- dx( t )  - A(t )x ( t )  
dt  

where A is  a smooth n x n function on  R. Assume A has the property that 
( A ( t ) y ,  y) 5 c I I  y1I2 for all y in R" and all t ,  where c is  a f i e d  real number. 
Prove that any solution z ( t )  of the equation satisfies Ilz(t)(I 5 e c t ( ( z ( 0 ) ( (  for 
all t > 0. 
Hint: Consider first the case n = 1. 

Problem 3.4.16 (Sp94) Let W be a real 3x3 antisymmetric matrix (i.e., 
W t  = -W). Let the function 

21 (4  

x 3 ( t )  

X ( t )  = ( xz ( t )  ) 
be a real solution of the vector differential equation d X / d t  = W X .  

1. Prove that IlX(t)ll,  the Euclidean norm of X ( t ) ,  i s  independent o f t .  

2. Prove that if v is  a vector in the null space of W ,  then X ( t )  . v i s  
independent o f t .  
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3. Prove that the values X ( t )  all lie on a fixed circle in !Pi3. 

Problem 3.4.17 (Sp80) For each t E R, let P(t) be a symmetric real 
n x n matrzx whose entries are continuous functions o f t .  Suppose for all t 
that the ezgenvalues of P( t )  are at1 5 -1. Let x ( t )  = ( x l ( t ) ,  . . . , x n ( t ) )  be 
a solution of the vector diflerential equation 

dx 
dt 
- = P(t )x .  

Prove 
lim x ( t )  = 0. 

Hint: First prove that if u(t) 2 0 and u’(t) 5 -u(t) for all t ,  then u(t)  -+ 0 
ast-+cm. 

t-+m 

Problem 3.4.18 (Sp89) Let 

0 0 0 0  0 1 0 0  

A = ( ’  0 1 0 0  ‘1, .-(” 0 0 0 1  ‘ ‘ 1  
0 0 1 0  0 0 0 0  

Find the general solution of the matrix diflerential equation dX/dt = A X B  
for the unknown 4 x 4  matrix function X ( t ) .  



4 
Metric Spaces 

4.1 Topology of Rn 

Problem 4.1.1 (Sp86, Sp94, Sp96) Let K be a compact subset of R" 
and {Bj} a sequence of open balls that covers K .  Prove that there is  a 
positive number E such that each &-ball centered at a point of K is  contained 
in one of the balls Bj. 

Problem 4.1.2 (Su81) Prove or disprove: The set Q of rationaE numbers 
is the intersection of a countable family of open subsets of R. 

Problem 4.1.3 (Fa77) Let X c R be a nonempty connected set of real 
numbers. If e v e y  element of X is  rational, prove X has only one element. 

Problem 4.1.4 (Su80) Give a n  example of a subset of R having uncount- 
ably many connected components. Can such a subset be open? Closed? 

Problem 4.1.5 (Sp83) Show that the interval [0,1] cannot be written as 
a countably infinite disjoint union of closed subintervals of [0,1]. 

Problem 4.1.6 (Su78) Let X and Y be nonempty subsets of R". Define 

d ( X ,  Y )  = inf{ 1x - y J  I x E X ,  y E Y } .  

1 .  Suppose X contains only one point x ,  and Y is  closed. Prove 

4x7 y> = 12 - YI 

f o r  some y E Y. 
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2. Suppose X is  compact and Y is  closed. Prove 

for some x E X ,  y E Y .  

3. Show b y  example that the conclusion of Part 2 can be false if X and 
Y are closed but not compact. 

Problem 4.1.7 (Sp82) Let S c R" be a subset which is  uncountable. 
Prove that there is  a sequence of distinct points an S converging to a point 
of s. 
Problem 4.1.8 (Fa89) Let X c R" be a closed set and r a f i e d  positive 
real number. Let Y = { y  E R" 1 ( x  - yI = r for some x E X } .  Show that Y 
is  closed. 

Problem 4.1.9 (Sp92) Let A be a closed infinite subset of R". Prove that 
there i s  a countable set whose closure i s  A.  

Problem 4.1.10 (Fa86) Let {UI ,  U2, . . .} be a cover of R" by open sets. 
Prove that there is a cover {Vl, V2,. . .} such that 

1. V, c U, for each j ;  

2. each compact subset of R" is  disjoint from all but finitely many of the 
v,. 

Problem 4.1.11 (Sp87) A standard theorem states that a continuous real 
valued function on  a compact set is  bounded. Prove the converse: If K is a 
subset of Rn and if every continuous real valued function on  K is  bounded, 
then K is  compact. 

Problem 4.1.12 (Su77) Let A c Rn be compact, x E A; let ( x ~ )  be a 
sequence in A such that every convergent subsequence of (xi) converges to 
X .  

1. Prove that the entire sequence (xi) converges. 

2. Give an example to show that if A is  not compact, the result in Part 1 
is  not necessarily true. 

Problem 4.1.13 (Fa89) Let X C RTz be compact and let f : X 4 R be 
continuous. Given E > 0 ,  show there is  an M such that for all x, y E X ,  

If(.) - f(dl I M I X  - Yl + E. 

Problem 4.1.14 (Su78) Let { S a }  be a family of connected subsets of R2 
all containing the origin. Prove that u, S, is connected. 
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Problem 4.1.15 (Fa79) Consider the following properties of a map 
f : R" ---$ R: 

1. f i s  continuous. 

2. The graph off is connected in IW" x R. 

Prove or disprove the implications 1 + 2, 2 + 1. 

Problem 4.1.16 (Sp82) Prove or give a counterexample: Every connected, 
locally pathwise connected set in R" is  pathwise connected. 

Problem 4.1.17 (Sp81) The set of real 3 x 9  symmetric matrices i s  a 
real, finite-dimensional vector space isomorphic to R6. Show that the sub- 
set of such matrices of signature ( 2 , l )  is  a n  open connected subspace in the 
usual topology on  R6. 

Problem 4.1.18 (Fa78) Let M,,, be the vector space of real n x n ma- 
trices, identified with Rn2. Let X c M,,, be a compact set. Let S c @. 
be the set of all numbers that are eigenvalues of at least one element of X .  
Prove that S is  compact. 

Problem 4.1.19 (Su81) Let SO(3) denote the group of orthogonal truns- 
formations of R3 of determinant 1. Let Q c SO(3) be the subset of sym- 
metric transformations # I .  Let P2 denote the space of lines through the 
origin in R3. 

1. Show that P2 and SO(3) are compact metric spaces ( i n  their usual 
topologies). 

2. Show that P 2  and Q are homeomorphic. 

Problem 4.1.20 (Fa83) Let m and n be positive integers, with m < n. 
Let M",, be the space of linear transformations of R" into R" (considered 
as n x m matrices) and let L be the set of transformations an M,,, which 
have rank m. 

1. Show that L is  an open subset of Mmxa.  

2. Show that there is  a continuous function T : L --f M,,, such that 
T(A)A = I ,  for all A, where I ,  is  the identity on  R". 

Problem 4.1.21 (Fa91) Let M,,, be the space of real n x n  matrices. 
Regard it as a metric space with the distance function 

n 

d ( A ,  B)  = laij - bijl ( A  = ( a i j ) ,  B = (bi,)) . 
i ,j=l 

Prove that the set of nilpotent matrices in Mnxn is  a closed set. 
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4.2 General Theory 

Problem 4.2.1 (Fa93) Let X be a metric space and (x,) a convergent 
sequence in X with limit XO. Prove that the set C = { x o , x ~ , x ~ ,  ...} is  
compact. 

Problem 4.2.2 (Sp79) Prove that every compact metric space has a count- 
able dense subset. 

Problem 4.2.3 (Fa80) Let X be a compact metric space and f : X -+ X 
an isometry. Show that f ( X )  = X .  

Problem 4.2.4 (Sp97) Let M be a metric space with metric d .  Let C be 
a nonempty closed subset of M .  Define f : M 4 R by 

f ( x )  = i n f {d (x ,  Y )  I Y E C} .  

Show that f is continuous, and that f (x) = 0 if and only if x E C. 

Problem 4.2.5 (Su84) Let C1I3 be the set of real valued functions f on  
the closed interval [0,1] such that 

1. f(0) =o ;  
2. ] I f 1 1  is  finite, where by definition 

Verify that 1 1 . 1 1  is a norm for  the space 
with respect to this norm. 

Problem 4.2.6 (Sp87) Let 3 be a uniformly bounded, equicontinuous 
family of real valued functions on  the metric space ( X ,  d ) .  Prove that the 
function 

is  continuous. 

Problem 4.2.7 (Fa91) Let X and Y be metric spaces and f a continuous 
map of X into Y .  Let K 1 ,  K2,. . . be nonempty compact subsets of X such 
that K,+1 c K, for  all n, and let K = n K,. Prove that f ( K )  = n f ( K n ) .  

Problem 4.2.8 (Fa92) Let ( X I ,  d l )  and (X2, d2)  be metric spaces and 
f : X I  + X2 a continuous surjective map such that d l ( p ,  q )  5 d2( f ( p ) ,  f (9)) 
f o r  every pair of points p ,  q in X I .  

1. If X I  is  complete, must X2 be complete? Give a proof or a counterex- 

2. If X2 is complete, must X I  be complete? Give a proof or a counterex- 

and prove that C1I3 is  complete 

g ( 4  = SUP{f(X) I f E .T} 

ample. 

ample. 
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4.3 Fixed Point Theorem 

Problem 4.3.1 (Fa79) A n  accurate map of California i s  spread out flat 
on  a table in Evans Hall, in Berkeley. Prove that there is exactly one point 
on the map lying directly over the point it represents. 

Problem 4.3.2 (Fa87) Define a sequence of positive numbers as follows. 
Let xo > 0 be any positive number, and let xn+l = (1 + xn)-’. Prove that 
this sequence converges, and find its limit. 

Problem 4.3.3 (Su80) Let f : R --f IR be monotonically increasing (per- 
haps discontinuous). Suppose 0 < f (0) and f (100) < 100. Prove f (x) = x 
for some x. 

Problem 4.3.4 (Su82, Sp95) Let K be a nonempty compact set in a 
metric space with distance function d. Suppose that cp: K -+ K satisfies 

f o r  all x # y in K .  Show there exists precisely one point x E K such that 
x = cp(z). 

Problem 4.3.5 (Fa82) Let K be a continuous function on  the unit square 
0 5 x ,  y 5 1 satisfying IKC(x, y)I < 1 f o r  all x and y .  Show that there is a 
continuous function f(x) on [0,1] such that we have 

f (.) -t s’ K(x ,  Y ) f  (Y) dY = ez2 * 

f(z) - Jd’: f(x - t)e-t2 clt = g ( z ) .  

0 

Can there be more than one such function f? 

Problem 4.3.6 (Fa88) Let g be a continuous real valued function o n  [0,1]. 
Prove that there exists a continuous real valued function f on [0,1] satis- 
f y i n g  the equation 

Problem 4.3.7 (Su84) Show that there is  a unique continuous function 
f : [0,1] --t R such that 

Problem 4.3.8 (Fa85, Sp98) Let ( M ,  d )  be a nonempty complete metric 
space. Let S map M into M ,  and write S2 for S o  S; that is, S2(x) = 
S (S (x ) ) .  Suppose that S2 is  a strict contraction; that is, there is  a constant 
A < 1 such that for all points x ,  y E M ,  d (S2(x) ,  S2(g)) 5 Ad(x, y ) .  Show 
that S has a unique jixed point in M .  



Complex Analysis 

5.1 Complex Numbers 

Problem 5.1.1 (Fa77) If a and b are complex numbers and a # 0 ,  the 
set ab consists of those complex numbers c having a logarithm of the form 
ha, for  some logarithm a of a,. (That is, eba = c and en = a for some 
complex number a.) Describe set ab when a = 1 and b = 113 f a .  

Problem 5.1.2 (Su77) Write all values of ii in the f o r m  a f bi. 

Problem 5.1.3 (Sp85) Show that a necessary and suficient condition tor 
three points a ,  b, and c in the complex plane to  f o r m  an equilateral triangle 
is that 

a2 + b2 3- c2 = bc + ca + ab. 

Problem 5.1.4 (Fa86) Let the points a ,  b, and c lie on  the unit circle of 
the complex plane and satisfy a + b + c = 0. Prove that a ,  b, and c form the 
vertices of a n  equilateral triangle. 

Problem 5.1.5 (Sp77) 1. Evaluate Pn-l(l), where Pn-l(z) is  thepoly- 
nomial 

x n  - 1 
x - 1  

Pn-l(.) = -. 

2. Consider a circle of radius 1, and let Q1, Q 2 ,  . . . , Qn be the vertices 
of a regular n-gon inscribed in the circle. Join &I to Q2, Q 3 ,  . . . , Qn 
by  segments of a straight line. You obtain (n - 1) segments of lengths 
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X 2 ,  XJ, .  . . ,A,. Show that 

Problem 5.1.6 (Sp90) Let z1,22, . . . , z, be complex numbers. Prove that 
there exists a subset J C {1,2 , .  . . , n} such that 

Problem 5.1.7 (Sp94) Let a l ,  a2, .  . . , a,  be complex numbers. Prove that 
there i s  a point x in [O, 11 such that 

k=l 

Problem 5.1.8 (Fa82) Let a and b be complex numbers whose real parts 
are negative or 0 .  Prove the inequality lea - eb( 5 la - b( .  

Problem 5.1.9 (Fa95) Let A be a finite subset of the unit disc in the 
plane, and let N ( A , r )  be the set of points at distance 1. r f rom A, where 
0 < r < 1.  Show that the length of the boundary N ( A , r )  as, at most, C /r  
for some constant C independent of A.  
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1 Problem 5.1.10 (Su82) For complex numbers a1, a2,. . . , a k ,  prove 

lim sup 
n 

Note: See also Problem 1.3.1. 

5.2 Series and Sequences of hnctions 

Problem 5.2.1 (Fa95) Show that 

1 
1-2 

(i+2+z2+. . . + z 9 ~ i + z 1 0 + z 2 0 + .  . .+290x1+z100+z200+. . .+,900) . . . = __ 

f o r  121 < 1. 

Problem 5.2.2 (Fa94) Suppose the coeficients of the power series 

are given by  the recurrence relation 

a ~ = l , a l = - l ,  3arL+4a,-l-a,-z=0, n = 2 , 3  ,.... 

Find the radius of convergence of the series and the function to which at 
converges in its disc of convergence. 

Problem 5.2.3 (F'a93) Describe the region in the complex plane where 
the infinite series 

2 - 2  n=l 

converges. Draw a sketch of the region. 

Problem 5.2.4 (Su77) Let f be a n  analytic function such that 
f(z) = 1 + 22 + 3z2 + . . . for ( z I  < 1. Define a sequence of real numbers 

00 
ao, a1, a2, .  . . by 

f (2)  = C an(z + 2)". 
n=O 

What is the radius of convergence of the series 
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Problem 5.2.5 (Sp77) Let the sequence ao, a l ,  . . . be defined by the equa- 
t ion 

00 

1 - 2 2  +x4 -x6 +. . . = C a , ( x  - 3)" (0 < x < 1). 
n=O 

Find 

Problem 5.2.6 (Su78) Suppose the power series 

00 

converges for IzI < R  where z and the a, are complex numbers. If b, E C 
are such that lbnl < n21an1 for all n, prove that 

n=O 

converges for ( z (  <R. 

Problem 5.2.7 (Sp79) For which z E C does 

00 

n! zn 
n=O 

converge ? 

Problem 5.2.8 (Su79) Show that 

M z 

n=O 

converges for all complex numbers z exterior to the lemniscate 

11 + 221 = 1. 

Problem 5.2.9 (Su82) Determine the complex numbers z for  which the 
power series 

v 2" 
M 

t n l o g n  
n=1 

and its term by term derivatives of all orders converge absolutely. 
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Problem 5.2.10 (Su84) Suppose 

n=O 

has radius of convergence R > 0.  Show that 

n=O '"* 

is entire and that f o r  0 < r < R, there is  a constant M such that 

Problem 5.2.11 (Sp85) Let R > 1 and let f be analytic on  IzI < R 
except at z = 1, where f has a simple pole. If 

M 

n=O 

is  the Maclaurin series for f ,  show that hn,+,M alL exists. 

Problem 5.2.12 (Fa95) Find the radius of convergence R of the Taylor 
series about z = 1 of the function f ( z )  = 1/(1+ z2 + z4 + z6 + z8 + z1'). 
Express your answer in terms of real numbers and square roots only. 

Problem 5.2.13 (Sp78) Prove that the uniform limit of a sequence of 
complex analytic functions is  complex analytic. I s  the analogous theorem 
true for real analytic functions? 

Problem 5.2.14 (Su79) Let gn(z) be a n  entire function having only real 
zeros, n = 1 , 2 , .  . .. Suppose 

uniformly on  compact sets in C , with g not identically zero. Prove that 
g ( z )  has only real zeros. 

Problem 5.2.15 (Sp86) Let f, 91, 92,. . . be entire functions. Assume 
that 

I .  1gi"(0)1 5 I~(')(o)\ for  all n and k; 

2. limn-w gLk)(o) exists for all IC. 

Prove that the sequence { g n }  converges uniformly on compact sets and that 
its limit is  an entire function. 
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5.3 Conformal Mappings 

Problem 5.3.1 (Fa77) Consider the following four types of transforma- 
tions: 

z H z + b, z H l / z ,  z H k z  (where k # 0 ) ,  

a z  + b 
Z H -  

cz + d 
(where ad - bc # 0) .  

Here, z as a variable complex number and the other letters denote constant 
complex numbers, Show that each transformation takes circles to either 
circles or straight lines. 

Problem 5.3.2 (Fa78) Give examples of conformal maps as follows: 

I. from { z  I IzI < 1) onto { z  1 %  < 0 ) ,  

2. f r o m  { z  I (zI < 1 )  onto itself, with f ( 0 )  = 0 and f ( 1 / 2 )  = i / 2 ,  

3. f r o m  { z  I z # O , O  < argz < F} onto { z  I z # O , O  < argz < ;}. 

Problem 5.3.3 (Sp83) A fractional linear transformation maps the an- 
nulus r < IzI < 1 (where r > 0 )  onto the domain bounded by the two circles 
Iz - f l  = a and IzI = 1. Find r .  

Problem 5.3.4 (Sp80) Does there exist an analytic function mapping the 
annulus 

A = { z  I 1 5 IzI 5 4) 
onto the annulus 

B = { z  I 15 IzI 5 2) 

and taking C1 + C1, C d  + CZ, where C, is  the circle of radius r? 
Hint: Consider g ( z )  = f ( z ) 2 / z .  

Problem 5.3.5 (Su80) Exhibit a conformal map f rom the set 
{ z  E C I IzI < 1, ?Jzz > 0) onto D = { z  E C I IzI < 1 ) .  

Problem 5.3.6 (Sp90) Find a one-to-one conformal map of the semidisc 

{ z  E c! I sz > 0, Iz - 1/21 < 1 / 2 }  

onto the upper half-plane. 

Problem 5.3.7 (Fa97) Conformally map the region inside the disc 
{ z  E C I Iz - 1 )  5 1 )  and outside the disc { z  E C I Iz - 5 $}  onto the 
upper half-plane. 

Problem 5.3.8 (Sp95) Prove that there is  no one-to-one conformal map 
of the punctured disc G = { z  E C I 0 < IzI < 1 )  onto the annulus 
A = { z  E C I 1 < Iz( < 2 ) .  
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5.4 Integral Representation of Analytic Functions 

Problem 5.4.1 (Sp96) Let f = u + iv be analytic in a connected open 
set D ,  where and v are real valued. Suppose there are real constants a ,  b 
and c such that a' + b2 # 0 and 

au + bv = c 

in D. Show that f is  constant in D.  

Problem 5.4.2 (Fa93) Let f be a continuous real valued function on  
and let the function h in the complex plane be defined by 

*1 

h ( x )  = 1- f ( t )  cos(zt) dt .  

Prove that h is  analytic in the entire plane. 

Prove that h i s  the zero function only i f f  i s  the zero function. 

Problem 5.4.3 (Su79, Sp82, Sp91, Sp96) Let f be a continuous com- 
plex valued function o n  [0,1], and define the function g by 

,.I 

g(z )  = 1 f ( t ) e t z  dt ( z  E C ) .  
0 

Prove that g i s  analytic in the entire complex plane. 

Problem 5.4.4 (Fa84, Fa95) Let f and g be analytic functions in the 
open unit disc, and let C, denote the circle with center 0 and radius r ,  
oriented counterclockwise. 

1. Prove that the integral 

is  independent of r as long as IzI < r < 1 and that it defines an 
analytic function h(z ) ,  IzI < 1. 

2. Prove or supply a counterexample: Iff $ 0  and g $ 0 ,  then h $0 .  

Problem 5.4.5 (Sp84) Let F be a continuous complex valued function 
on the internal [0,1]. Let 

for z a complex number not in [0,1]. 

1. Prove that f is  a n  analytic function. 

2. Express the coeficients of the Laurent series of f about 00 an terms 
of F .  Use your result to show that F is  uniquely determined by f. 
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5.5 Functions on the Unit Disc 

Problem 5.5.1 (Fa82) Let a and b be nonzero complex numbers and 
f(z) = az -t bz-’. Determine the image under f of the unit  circle 
1. I IzI = 1). 

Problem 5.5.2 (Su83, Fa96) Let f be analytic on and inside the unit 
circle C = { z  I (21 = 1). Let L be the length of the image of C under f .  
Show that L 2 27r( f’(O)(. 

Problem 5.5.3 (Sp80) Let 

be analytic in the disc D = { z  E C I IzI < 1). Assume f maps D one-to-one 
onto a domain G having 

Problem 5.5.4 (Su83) 

area A .  Prove 
M 

n=l 

Compute the area of the image of the unit disc 
( z  I JzJ  < 1) under the map f ( z )  = z + z2 /2 .  

Problem 5.5.5 (Sp80) Let 

n=O 

be an analytic function in the open unit disc D. Assume that 
M 

x n l a n l  5 lull with a1 # 0. 
n=2 

Prove that f is  injective or constant. 

Problem 5.5.6 (Su85) For each k > 0,  let x k  be the set of analytic 
functions f(z) o n  the open unit disc D such that 

i s  finite. Show that f E x k  if and only af f’ E x k + l .  

Problem 5.5.7 (Sp88) Let the junction f be analytic an the open unit 
disc of the complex plane and real valued on the radii [0, 1) and [0, eilrJz).  
Prove that f is  constant. 
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Problem 5.5.8 (Fa91) Let the function f be analytic in the disc IzI < 1 
of the complex plane. Assume that there is  a positive constant M such that 

Prove that 
r 

Problem 5.5.9 (Fa78) Suppose h ( z )  is  analytic in the whole plane, 
h(0) = 3 + 4i ,  and lh(z)I I: 5 if 1x1 < 1. What is  h’(O)? 

Problem 5.5.10 (Fa79, Fa90) Suppose that f i s  analytic on the open 
upper half-plane and satisfies I f ( z ) l  5 1 f o r  all z ,  f ( i )  = 0.  How large can 
I f  (2i)l be under these conditions? 

Problem 5.5.11 (Fa85) Let f ( z )  be analytic on  the right half-plane 
H = { z  I %z > 0) and suppose If(z)l  I 1 f o r  z E H .  Suppose also that 
f (1) = 0.  What is  the largest possible value of If’( 1) I ? 

Problem 5.5.12 (Su82) Let f ( z )  be analytic on the open unit disc 
D = (2 I IzI < 1). Prove that there is  a sequence (2,) in D such that 
Iz,I + 1 and ( f  ( zT8) )  is  bounded. 

Problem 5.5.13 (Sp93) Let f be a n  analytic function in the unit disc, 
IzI < 1. 

1. Prove that there is  a sequence (zTL) in the unit disc with 
limn--tm lzTLI = 1 and limrL+oo f ( z , )  exists (finitely). 

2. Assume f nonconstant. Prove that there are two sequences ( zn )  and 
(w,) in the disc such that limn.+oo lz,l = Iw,I = 1, and such 
that both limits limn--too f (2,) and limn-+w f (wTL) exist (finitely) and 
are not equal. 

Problem 5.5.14 (Fa81, Sp89, Fa97) Let f be a holomorplric map of the 
unit disc ID = { z  I Iz( < 1) into itself, which is not the identity map 
f ( z )  = z .  Show that f can have, at most, one f i e d  point. 

Problem 5.5.15 (Sp85) Let f ( z )  be an analytic function that maps the 
open disc IzI < 1 into itself. Show that If’(z)l 5 (1 - 1 ~ 1 ’ ) > - ~ .  
Problem 5.5.16 (Sp87, Fa89) Let f be an analytic function in the open 
unit disc of the complex plane such that I f  (.)I 5 C/(l - 1 . ~ 1 )  f o r  all z in the 
disc, where C is  a positive constant. Prove that I f ’ (z) l  5 4C/(1 - 1 . ~ 1 ) ~ .  
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Problem 5.5.17 (Fa87) I f f ( z )  i s  analytic in the open disc 
If(z)l 5 1/(1 - lzl), show that 

la,( = ~.+~)(o)/n!l I (n i- 1)(1+ l/n)" < e ( n  + I) 

zI < 1, and 

Problem 5.5.18 (Sp88) 1 .  Let f be a n  analytic function that maps 
the open unit disc, ID, into itself and vanishes at the origin. Prove 
that I f ( z )  + f ( - z ) l  I 21zI2 in ID. 

2. Prove that the inequality in Part 1 i s  strict, except at the origin, 
unless f has the form f ( z )  = Xz2 with X a constant of absolute value 
one. 

Problem 5.5.19 (Sp91) Let the function f be analytic in the unit disc, 
with If(z)l 5 1 and f(0) = 0.  Assume that there i s  a number r in (0,l)  
such that f ( r )  = f ( - r )  = 0.  Prove that 

5.6 Growth Conditions 

Problem 5.6.1 (Fa90) Let the function f be analytic in the entire com- 
plex plane, and suppose that f ( z ) / z  ---f 0 as JzI ---f 00. Prove that f is 
constant. 

Problem 5.6.2 (Fa97) Let f be a n  entire analytic function such that, f o r  
all z ,  If(z)l = I sinzl. Prove that there is  a constant C of modulus 1 such 
that f ( z )  = Csinz. 

Problem 5.6.3 (Fa79, Su81) Suppose f and g are entire functions with 
If(z)l 5 1g(z)1 fo r  all z .  Prove that f(z) = cg(z)  f o r  some constant c. 

Problem 5.6.4 (Sp97) Let f and g be two entire functions such that, f o r  
all z E C,  % f ( z )  5 k % g ( z )  for  some real constant k (independent of 2). 
Show that there are constants a ,  b such that 

f ( z )  = a g ( z )  + b .  

Problem 5.6.5 (Su78) Let f : C 3 C be an entire function and let 
a > 0 and b > 0 be constants. 

1. If If(z)l 5 a m  + b f o r  all z, prove that f is  a constant. 

2. What can you prove about f i f  

I f(z)l 5 alz15'2+ b 

fo r  all z? 
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Problem 5.6.6 (Fa90) Let the function f be analytic in the entire com- 
plex plane and sati.sf?l 

f o r  all r > 0.  Prove that f is  the zero function. 

Problem 5.6.7 (Fa96) Does there exist a function f ,  analytic in the punc- 
tured plane C \ { 0 } ,  such that 

f o r  all nonzero z ?  

Problem 5.6.8 (Fa91) Let the function f be analytic in the entire com- 
plex plane and satisfy the inequality If(z)l 5 I X Z ~ - ' / ~  08 the imaginary 
axis. Prove that f i s  constant. 

5.7 Analytic and Meromorphic Functions 

Problem 5.7.1 (Sp88) True or false: A function f(z) analytic on 
Iz - a1 < r and continuous o n  Iz - a1 5 r extends, f o r  some 6 > 0,  to 
a function analytic on Iz - a1 < r + S? Give a proof or a counterexample. 

Problem 5.7.2 (Fa80) Do there exist functions f(z) and g(z )  that are 
analytic at z = 0 and that satisfy 

I .  f ( i / n )  = f (-i/n) = i/n2, n = 1 , 2 , .  . ., 

2. (iin) = (-iin) = i / n 3 ,  = i , 2 , .  . .? 

Problem 5.7.3 (Su78) 1. Suppose f is  analgtic on a connected open 
set U c C and f takes only real values. Prove that f i s  constant. 

2. Suppose W c C is open, g is  analytic on  W ,  and g'(z) # 0 for  all 
z E C . Show that 

{%g(z) + 5 g ( z )  I z E W }  c R 

is  an open subset of R. 

Problem 5.7.4 (Sp78) Let f : C + C be a nonconstant entire function. 
Prove that f (C ) is  dense in C . 
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Problem 5.7.5 (Su82) Let s(y) and t ( y )  be real differentiable functions 
of y, -a < y < m, such that the complex function 

f (x + i y )  = e” (s(y) + i t ( y ) )  

is  complex analytic with s(0) = 1 and t ( 0 )  = 0 .  Determine s(y) and t ( y ) .  

Problem 5.7.6 (Sp83) Determine all the complex analytic functions f 
defined on the unit disc D which satisfy 

f o r n = 2 , 3 , 4  ,.... 
Problem 5.7.7 (Su83) Let R be an open subset of W2, and let 
f : R 4 W2 be a smooth map. Assume that f preserves orientation and 
maps any pair of orthogonal curves to a pair of orthogonal curves. Show 
that f is  holomorphic. 
Note: Here we identify W2 with CC . 

Problem 5.7.8 (Fa84) Prove or supply a counterexample: I f f  i s  a con- 
tinuous complex valued function defined on a connected open subset of the 
complex plane and i f  f is analytic, then f is analytic. 

Problem 5.7.9 (Sp87) Let f be a complex valued function in the open 
unit disc, D, of the complex plane such that the functions g = f 2  and 
h = f3 are both analytic. Prove that f is  analytic in D. 

Problem 5.7.10 (Sp88) 1. Let G be a71 open connected subset of the 
complex plane, f an analytic function in G, not identically 0, and n 
a positive integer. Assume that f has an  analytic nth root an C; that 
is ,  there i s  an analytic function g in G such that gn = f. Prove that 
f has exactly n analytic nth roots in G. 

2. Give an  example of a continuous real valued function on [0,11 that 
has more than two continuous square roots o n  [0,1]. 

Problem 5.7.11 (Fa92) Let the function f be analytic in the region 
IzI > 1 of the complex plane. Prove that i f  f is  real valued on the interval 
( 1 , ~ )  of the real axis, then f is  also real valued on the interval (--00, -1). 

Problem 5.7.12 (Fa94) Let the function f be analytic in the complex 
plane, real on the real axis, 0 at the origin, and not identically 0. Prove 
that i f f  maps the imaginary axis into a straight line, then that straight 
line must be either the real axis or the imaginary axis. 

Problem 5.7.13 (Fa87) Let f(z) be analytic f o r  z # 0,  and suppose that 
f ( l / z )  = f(z). Suppose also that f ( z )  is real f o r  all z on the unit circle 
IzI = 1. Prove that f ( z )  is  real f o r  all real z # 0. 
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Problem 5.7.14 (Fa91) Let p be a nonconstant complex polynomial whose 
zeros are all in the half-plane 9 z  > 0.  

1. Prove that S(p’ /p)  > 0 on  the real axis. 

2. Find a relation between degp and 

Problem 5.7.15 (Sp92) Let f be a n  analytic function in the connected 
open subset G of the complex plane. Assume that for each point z in G,  
there is a positive integer n such that the ntlL derivative off  vanishes at z .  
Prove that f is a polynomial. 

Problem 5.7.16 (Sp92) Find a Laurent series that converges in the an- 

nulus 1 < IzI < 2 to a branch of the function log = . 
Problem 5.7.17 (Sp92) Let the function f be analytic in the entire com- 
plex plane, real valued on  the real axis, and of positive imaginary part in 
the upper half-plane. Prove f’(x) > 0 for x real. 

(z(2-z)) 

Problem 5.7.18 (Sp93) Prove that for any fixed complex number 5, 

Problem 5.7.19 (Sp94) 1 .  Let U and V be open connected subsets of 
the complex plane, and let f be an analytic function an U such that 
f ( U )  c V .  Assume f-l(K) is  compact whenever K is  a compact 
subset of V .  Prove that f ( U )  = V .  

2. Prove that the last equality can fail i f  analytic is  replaced by contin- 
uous in the preceding statement. 

Problem 5.7.20 (Sp94) Let f = u + iv and g = p + iq be analytic func- 
tions defined in a neighborhood of the origin in the complex plane. Assume 
Ig’(0)l < I f’(0)l. Prove that there is a neighborhood of the origin in which 
the function h = f + 9 is one-to-one. 

Problem 5.7.21 (Sp87) Prove or disprove: If the function f is  analytic 
in the entire complex plane, and i f  f maps every unbounded sequence to a n  
unbounded sequence, then f is  a polynomial. 

Problem 5.7.22 (Fa88, Sp97) Determine the group Aut(C) of all one- 
to-one analytic maps of C onto C . 
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Problem 5.7.23 (Sp77) Let f ( z )  be a nonconstant meromorphic func- 
tion. A complex number w is called a period o f f  i f  f (z  + w) = f (2) f o r  all 
2 .  

1. Show that i f  w 1  and w:! are periods, so are nlwl-tn2w2 f o r  all integers 
n1 and n2. 

2. Show that there are, at most, a finite number of periods of f  in any 
bounded region of the complex plane. 

Problem 5.7.24 (Sp91) Let the function f be analytic in the punctured 
disc 0 < 121 < rg, with Laurent series 

--m 

Assume there i s  a positive number M such that 

0 < r < rg. 

Prove that cn = 0 f o r  n < -2. 

Problem 5.7.25 (Sp98) Let a > 0.  Show that the complex function 

1 + z + az2 
f ( z )  = 1 - 2 + a22 

satisfies I f (z)  1 < 1 for  all z in the open left half plane %z < 0 .  

5.8 Cauchy’s Theorem 

Problem 5.8.1 (Fa85) Evaluate 

i2T eeie do. 

Problem 5.8.2 (Su78) Evaluate 

Problem 5.8.3 (Sp98) Let a be a complex number with la1 < 1. Evaluate 
the integral 
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Problem 5.8.4 (Sp77, Sp82) Prove the Fundamental Theorem of Alge- 
bra: Every nonconstant polynomial with complex coeficients has a complex 
root. 

Problem 5.8.5 (Su77) Let f be continuous on C and analytic on 
{ z  I Sz # 0 ) .  Prove that f must be analytic on @. . 

Problem 5.8.6 (Fa78, Su79) Let f ( z )  = a0 + a l z  + . . . + u,zn be a 
complex polynomial of degree n > 0. Prove 

Problem 5.8.7 (Fa95) Let f(z) = u(z)+iv(z )  be holomorphic in IzI < 1, 
u and v real. Show that 

f o r  0 < r < 1 i f  ~ ( 0 ) '  = ~ ( 0 ) ~ .  

Problem 5.8.8 (Su83) Let f : C --+ C be an  analytic function such that 

(I + IzI")-' d " f  
dznL 

is bounded for some Ic and m. Prove that d" f / d z n  is identically zero for 
suficiently large n. How large must n be, in terms of k and m? 

Problem 5.8.9 (Su83) Suppose 0 as a bounded domain in C with a bound- 
ary consisting of a smooth Jordan curve y. Let f be holomorphic in a 
neighborhood of the closure of 0, and suppose that f ( z )  # 0 f o r  z E y. Let 
21,. . . , z k  be the zeros off in R, and let nj be the order of the zero off at 
zj ('or j = 1,. . . , k). 

1. Use Cauchy's integral formula to show that 

k 

& .I $$$ dz  = nj. 
j=1 

2. Suppose that f has only one zero 21 in R with multiplicity n1 = 1. 
Find a boundary integral involving f whose value is the point z1. 

Problem 5.8.10 (Fa88) Let f be an analytic function on a disc D whose 
center is  the point 20. Assume that I f ' ( z )  - f'(zo)l < I f'(zo)l on D. Prove 
that f is one-to-one on D.  



74 5 .  Complex Analysis 

Problem 5.8.11 (Fa89) Let f(z) be analytic in the annulus 
R = (1 < Iz( < 2 ) .  Assume that f has no zeros in R. Show that there 
exists an integer n and an analytic function g in R such that, for all z E R, 
f ( x )  = xneg(z).  

Problem 5.8.12 (Sp90) Let the function f be analytic and bounded in 
the complex half-plane 82 > 0.  Prove that for any positive real number c,  
the function f is  uniformly continuous in the half-plane 8 z  > c. 

5.9 Zeros and Singularities 

Problem 5.9.1 (Fa77, Fa96) Let C 3  denote the set of ordered triples of 
complex numbers. Define a map F : C --$ C by 

F ( u ,  v, W )  = (U + v + W ,  uv + 'UW + WU, UUW).  

Prove that F is  onto but not one-to-one. 

Problem 5.9.2 (Fa79, Fa89) Prove that the polynomial 

p ( z )  = z47 - z 2 3  + 2211 - 25 + 4.22 + 3 

has at least one root in the disc IzI < 1. 

Problem 5.9.3 (Fa80) Suppose that f is  analytic inside and on  the unit 
circle IzI = 1 and satisfies lf(z)I < 1 for IzI = 1. Show that the equation 
f (2) = z3 has exactly three solutions (counting multiplicities) inside the 
unit circle. 

Problem 5.9.4 (Fa81) 1 .  How many zeros does the function 
f ( z )  = 32'O0 - er have inside the unit circle (counting multiplici- 
ties)? 

2. Are the zeros distinct? 

Problem 5.9.5 (Fa92) 1 .  How many roots does the polynomial 
p ( z )  = 2z5 -t 4z2 + 1 have in the disc IzI < 1 ? 

2. How many roots does the same polynromial have on  the real axis? 

Problem 5.9.6 (Su80) How many zeros does the complex polynomial 

32' + 8z6 + z5 + 2z3 + 1 

have in the annulus 1 < IzI < 2 2  
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Problem 5.9.7 (Fa83) Consider the polynomial 

p ( z )  = z5 + z3 f 5z2 + 2. 

How many zeros (counting multiplicities) does p have in the annular region 
1 < IzJ < 2 2  

Problem 5.9.8 (Sp84, Fa87, Fa96) Find the number of roots of 

7 3 2 - 4 2  -11=0 

which lie between the two circles J z J  = 1 and IzI = 2. 

Problem 5.9.9 (Sp96) Let r < 1 < R. Show that for all suficiently small 
E > 0 ,  the polynomial 

has exactly jive roots (counted with their mdtiplicaties) inside the annulus 

p ( z )  = &Z7 + z2 + 1 

Problem 5.9.10 (Sp86) Let the 3x3 matrixfunction A be defined on  the 
complex plane by  

4z2 1 
A ( z )  = ( ;l 2: ) .  

How many distinct values of z are there such that IzI < 1 and A ( z )  i s  not 
invertible ? 

Problem 5.0.11 (Fa85) How many roots has the polynomial 
z4 + 3z2 + z -t 1 in the right halfz-plane? 

Problem 5.9.12 (Sp87) Prove that zf the nonconstant polynomial p ( z ) ,  
with complex coeficients, has all of its roots in the half-plane Xz > 0, then 
all of the roots of i ts  derivative are an the same half-plane. 

Problem 5.9.13 (Sp92) Let p be a nonconstant polynomial with real co- 
eficients and only real roots. Prove that for each real number r ,  the poly- 
nomial p - rp' has only real roots. 

Problem 5.9.14 (Sp79, Su85, Sp89) Prove that if 1 < X < 00, the 
function 

f ~ ( z )  = z + X - ez 

has only one zero in the half-plane 322 < 0 ,  and this zero is on the real a d s .  

Problem 5.9.15 (Fa85) Prove that for every X > 1, the equation 
zeA-' = 1 has exactly one root in the disc ( z (  < 1 and that this root is  
real. 
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Problem 5.9.16 (Sp85) Prove that for any a E C and any integer 
n 2 2,  the equation 1 + z + axn = 0 has at least one root in the disc IzI 5 2. 

Problem 5.9.17 (Sp98) Prove that the polynomial z4+z3+l  has exactly 
one root in the quadrant { z  = x + i y  1 x ,  y > 0). 

Problem 5.9.18 (Sp98) Let f be analytic in a n  open set containing the 
closed unit disc. Suppose that I f ( z ) l  > m for IzI = 1 and I f(0)l < m. Prove 
that f ( z )  has at least one zero in the open unit disc IzI < 1. 

Problem 5.9.19 (Su82) Let 0 < a0 5 a1 5 ... 5 arL.  Prove that the 
equation 

aOzn + alzn--l + . . . + a, = o 
has no roots in the disc IzI < 1. 

Problem 5.9.20 (Fa86) Show that the polynomial p ( z )  = 2' - 6z + 3 has 
five distinct complex roots, of which exactly three (and not five) are real. 

Problem 5.9.21 (Sp90) Let cg, c1,. . . , c,-l be complex numbers. Prove 
that all the zeros of the polynomial 

2, + c,,_1z,--l + . ' . + c1z + CO 

lie in the open disc with center 0 and radius 

Problem 5.9.22 (Sp95) Let P ( x )  be a polynomial with real coeficients 
and with leading coeficient 1. Suppose that P(0) = -1 and that P ( x )  has 
no complex zeros inside the unit circle. Prove that P(l) = 0. 

Problem 5.9.23 (Su81) Prove that the number of roots of the equation 
z2, + a2z2,-l + p2 = 0 (n  a natural number, Q: and p real, nonzero) that 
have positive real part is 

1. n i f  n is even, and 

2. n - 1 i f  n is  odd. 

Problem 5.9.24 (Su84) Let p > 0.  Show that for n large enough, all the 
zeros of 

1 1  1 
z 2!22 n!zn f , ( z ) = l + -  +-+...+- 

lie in the circle IzI < p. 

Problem 5.9.25 (Fa88) Do the functions f ( z )  = ez  + z and 
g ( z )  = zez + 1 have the same number of zeros in the strip -5 < 9 z  < 5 ? 
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Problem 5.9.26 (Sp93) Let a be a complex number and E a positive num- 
ber. Prove that the function f ( z )  = sinz + has infinitely many zeros 
in the strip ( S z (  < E .  

Problem 5.9.27 (Su77, Sp81) Let 60 + iilz + ... + b,zn be a polyno- 
mial having i as a simple root. Show that there is  a continuous function 
r : U + C , where U is a neighborhood of (iio, . . . , hTL) in C n+l ,  such that 
r(a0, .  . . ,a,) is  always a root of ao+alz+. - -+~,2~', and r(60,. . . , iiTZ) = i. 

Problem 5.9.28 (Su85) Let 

n=O 

where all the a,  are nonnegative reals, and the series has radius of con- 
vergence 1. Prove that f(z) cannot be analytically continued to a function 
analytic in a neighborhood of z = 1. 

Problem 5.9.29 (Su80) Let f be a meromorphic function on C which is 
analytic in a neighborhood of 0. Let i ts  Taylor series at 0 be 

k=O 

with all ak 2 0. Suppose there i s  a pole of norm r > 0 and no pole has 
norm < r .  Prove there is  a pole at z = r .  

Problem 5.9.30 (Sp82) 
a finite limit 

I .  Decide, without too much computation, whether 

lim ((tan z)-2 - z-') 
z+o 

exists, where z is  a complex variable. 

2. If yes, compute the limit. 

Problem 5.9.31 (Sp89) Let f and g be analytic functions in the entire 
complex plane with the property that the function h ( z )  = f ( g ( z ) )  i s  a 
nonconstant polynomial. Prove that f and g are polynomials. 

5.10 Harmonic Functions 

Problem 5.10.1 (Fa77, Fa81) Let u : R2 3 IR be the function defined by 
u(x ,  y )  = x3  - 3xy2 .  Show that u is harmonic and find v : R2 -+ R such 
that the function f : C -+ C defined by 

f ( x  + iY> = 4 x 7  Y> + i 4 x ,  Y) 
is  analytic. 
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Problem 5.10.2 (Fa80) Let f ( z )  be an analytic function defined f o r  
Iz( 5 1 and let 

u(z, y) = !.Rf(z), z = Ic + iy. 
Prove that 

aU 
d x  - - d y  = 0 

ax 
where C is the unit circle, x2  + y2 = 1. 

Problem 5.10.3 (Fa83) 1. Let f be a complex function which is  an- 
alytic on  an open set containing the disc 121 < 1, and which is  real 
valued o n  the unit circle. Prove that f is  constant. 

2. Find a nonconstant function which is  analytic at every point of the 
complex plane except for  a single point on the unit circle IzI = 1, and 
which is  real valued at every other point of the unit circle. 

Problem 5.10.4 (Fa92) Let s be a real number, and let the function ?L be 
defined in CC\(-m, 01 by 

u ( r e z B )  = rs  cosso (r > 0, -7r < 0 < 7 r ) .  

Prove that u is a harmonic function. 

Problem 5.10.5 (Fa87) Let u be a positive harmonic function on  R2; 
that is, 

a2u 8% 
-+--0.  
a x 2  a y 2  

Show that u is  constant. 

Problem 5.10.6 (Sp94) Let u be a real valued harmonic function in the 
complex plane such that 

.(.) 5 a llog 121 I + b 

fo r  all 2, where a and b are positive constants. Prove that u i s  constant. 

5.11 Residue Theory 

Problem 5.11.1 (Fa83) Let r1, r z , ,  . . , r,  be distinct complex numbers. 
Show that a rational function of the form 

bo + b i z  +.  . . + bn-2Zn-2 + bn-lzn-' 
( z  - r I ) ( z  - r2). . . ( z  - r,) f (z)  = 

can be written as a sum 

for  suitable constants A1, . . . , A, 
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Problem 5.11.2 (Fa82) Let 
M 

cot(7rz) = c a,zn 
n=--00 

be the Laurent expansion fo r  cot(7rz) on the annulus 1 < IzI < 2. Compute 
the a ,  for n < 0 .  
Hint: Recall that cot(7rz) has simple poles at all integers z, with residues 
T-’ ,  and no other singularities. 

Problem 5.11.3 (Sp78) Show that there is  a complex analytic function 
defined on the set U = { z  E C 1 ( z (  > 4) whose derivative is 

z 
( 2  - 1)(z - 2) (2  - 3) 

Is there a complex analytic function on  U whose derivative is 

2 2  

( z  - l)(z - 2) (2  - 3) 
? 

Problem 5.11.4 (Fa88) Let n be a positive integer. Prove that the poly- 

in W[x] has n distinct complex zeros, z1,z2,. . . , z,, and that they satisfy 
n 

i=l 

Problem 5.11.5 (Sp79, Sp83) Let P and Q be complexpolynomials with 
the degree of Q at least two more than the degree of P. Prove there is  an 
r > 0 such that af C is  a closed curve outside IzI = r ,  then 

Problem 5.11.6 (Sp80) Let a > 0 be a constant # 2 .  Let C ,  denote the 
circle of radius a centered at the origin. Evaluate 

1 z 2 + e z  d z .  

Problem 5.11.7 (Su80) Let C denote the circle IzI = 2,  z E CC . Evaluate 

c, z2 ( .  - 2) 

the integral 

where the branch of the square root is  chosen SO that d m  > 0. 



80 5. Complex Analysis 

Problem 5.11.8 (Su81) Compute 

1 dz 

where C is  the circle 1x1 = 1/5, positively oriented. 

Problem 5.11.9 (Su84) 1. Show that there is a unique analytic branch 
outside the unit circle of the function f ( z )  = d m  such that 
f ( t )  is  positive when t > 1. 

2. Using the branch determined in Part 1, calculate the integral 

d z  

where C, is  the circle IzI = r and r > 1. 

Problem 5.11.10 (Sp86) Let C be a simple closed contour enclosing the 
points 0,1,2,  . . . , k in the complex plane. Evaluate the integrals 

dz 
k = 0,1, . . . , 

I k = L  Z ( Z -  l ) . . . ( z - k ) ’  

Problem 5.11.11 (Sp86) Evaluate 

where the integral is  taken in counterclockwise direction. 

Problem 5.11.12 (Fa86) Evaluate 

where the direction of integration is  counterclockwise. 

Problem 5.11.13 (Sp89) Evaluate 

k ( 2 z  - l)e”/(”-l) d z  

where C is  the circle IzI = 2 with counterclockwise orientation. 
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Problem 5.11.14 (Fa90) Evaluate the integral 

d z  
( z  - 2)(1 + 22)2(1 - 32)3 

where C is the circle IzI = 1 with counterclockwise orientation. 

Problem 5.11.15 (Fa91) Evaluate the integral 

where n is a positive integer, and C i s  the circle IzI = 1, with counterclock- 
wise orientation. 

Problem 5.11.16 (Fa92) Evaluate 

where C is the unit circle with counterclockwise Orientation. 

Problem 5.11.17 (Fa93) Evaluate 
f(z) = xP2(1 - z2)-'e* and the curve y depicted by. 

& J7 f (x)  d z  for the function 

Problem 5.11.18 (Sp81) Evaluate 

where C is the closed curve shown below: 
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Problem 5.11.19 (Sp95) Let n be a positive integer and 0 < 0 < 71. 
Prove that 

1 Zn sin(n0) 
d z  = ~ 271-i Jz,=2 1 - 2zcos0 + 22 sin 0 

where the circle 121 = 2 is oriented counterclockwise. 

Problem 5.11.20 (Su77, Fa84, Sp94, Sp96) Use the Residue Theorem 
to evaluate the integral 

do 
a + cos0 

[ ( a )  = 

where a is  real and a > 1. Explain why the formula obtained for I(a) is  also 
valid for certain complex (nonreal) values of a .  

Problem 5.11.21 (Fa78) Evaluate 

dB 2x 1 1 - 2 r c o s d + r 2  

where r2 # 1. 

Problem 5.11.22 (Sp87) Evaluate 

Problem 5.11.23 (Fa87) Evaluate the integral 

Problem 5.11.24 (Sp95) Let n be a positive integer. Compute 

do. 
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Problem 5.11.25 (Fa94) Evaluate the integrals 

sinn6 
do, n = 1 , 2  ,.... 

Problem 5.11.26 (Sp88) For a > 1 and n = 0,1,2, .  . ., evaluate the 
integrals 

5.12 Integrals Along the Real Axis 

Problem 5.12.1 (Sp86) Let the complex valued functions fn, n E Z, be 
defined on R by 

f n ( x )  = * - q x  - i ) " / ( x  + i)"+l. 

Prove that these functions are orthonormal; that is, 

Problem 5.12.2 (Fa85) Evaluate the integral 

1 - cos(ax) dx 

for  a E B. 
Problem 5.12.3 (Sp78, Sp83, Sp97) Evaluate 

dx . 

Problem 5.12.4 (Fa82, Sp92) Evaluate 

sin3 x I=Lm7- dx . 

Problem 5.12.5 (Sp93) Evaluate 

O3 x3sinx s_, (1 +x2)2 dx* 

Problem 5.12.6 (Sp81) Evaluate 

x sin x 00 
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Problem 5.12.7 (Sp90, Fa92) Let a be a positive real number. Evaluate 
the improper integral 

sin x M 

dx . S, x(x2+a2) 

Problem 5.12.8 (Sp91) Prove that 

exists and find its value. 

Problem 5.12.9 (Sp83) Evaluate 

sin x 
dx . 1: x(x - 7r) 

Problem 5.12.10 (Fa97) Evaluate the integral 

O0 coskx 
dx 

1 + x + x 2  

where k 2 0.  

Problem 5.12.11 (Fa82) Evaluate 

O0 cos(7fx) 
dx . 

Problem 5.12.12 (Sp77, Fa81, Sp82) Evaluate 

cos nx dx . 

Problem 5.12.13 (Sp79) Evaluate 

1" *dx. 2 4  + 1 

Problem 5.12.14 (Su84) Evaluate 

x sinx 
dx . 

Problem 5.12.15 (Fa84) Evaluate 

x - sinx 
dx . 
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Problem 5.12.16 (Fa84) Evaluate 

dx Ja_ (I +x+x2)2 . 

Problem 5.12.17 (Fa79, Fa80, Sp85, Su85) Prove that 

00 xa-l 7r 
& = -* I T G  sin(7rcr) 

What restrictions must be placed on a? 

Problem 5.12.18 (Fa96) Evaluate the integral 

Problem 5.12.19 (Fa77, Su82, Fa97) Evaluate 

dx 1, KF 
where n is a positive integer. 

Problem 5.12.20 (Fa88) Prove that 

Problem 5.12.21 (Fa93) Evaluate 
00 e - i x  

dx . L, x 2 - 2 x f 4  

Problem 5.12.22 (Fa86) Evaluate 

log x 00 I (.2 + 1)(x2 -t 4) d x .  

Problem 5.12.23 (Fa94) Evaluate 

Problem 5.12.24 (Fa83) Evaluate 

la (sech x ) ~  cos Ax dx 

where X is a real constant and 
2 

sechx = 
ez + e c Z  



86 5.  Complex Analysis 

Problem 5.12.25 (Sp85) Prove that 

What restrictions, if any, need be placed on b? 

Problem 5.12.26 (Sp97) Prove that 

dt 

is  independent of the real parameter y. 
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Algebra 

6.1 Examples of Groups and General Theory 

Problem 6.1.1 (Sp77) Let G be the collection of 2x2 real matrices with 
nonzero determinant. Define the product of two elements in G as the usual 
matrix product. group,jcenter 

1. Show that G i s  a group. 

2. Find the center Z of G; that is, the set of all elements z of G such 
that a z  == za  for all a E G. 

3. Show that the set 0 of real orthogonal matrices is  a subgroup of G (a 
matrix is  orthogonal i f  AAt = I ,  where At denotes the transpose of 
A).  Show by  example that 0 is  not a normal subgroup. 

4. Find a nontrivial homomorphism from G onto an abelian group. 

Problem 6.1.2 (Fa77) Let G be the set of 3x3 real matrices with zeros 
below the diagonal and ones on  the diagonal. 

1 .  Prove G is  a group under matrix multiplication. 

2. Determine the center of G.  

Problem 6.1.3 (Su78) For each of the following either give an example 
or else prove that no such example is possible. 

1. A nonabelian group. 
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2. A finite abelian group that is  not cyclic. 

3. An infinite group with a subgroup of index 5. 

4. Two finite groups that have the same order but are not isomorphic. 

5. A group G with a subgroup 11 that is  not normal. 

6. A nonabelian group with no n,ormal subgroups except the whole group 
and the unit element. 

7. A group G with a normal subgroup H such that the factor group G / H  
is  not isomorphic to any subgroup of G. 

8. A group G with a subgroup H which has index 2 but i s  not normal. 

Problem 6.1.4 (Fa80) Let R be a ring with multiplicative identity 1. Call 
x E R a unit i f  x y  = 1 for  some y E R. Let G(R)  denote the set of units. 

1. Prove G(R)  is  a multiplicative group. 

2. Let R be the ring of complex numbers a + bi, where a and b are inte- 
gers. Prove G(R)  is  isomorphic to Z4 (the additive group of integers 
modulo 4). 

Problem 6.1.5 (Sp83) I n  the triangular network in R2 which is  depicted 
below, the points PO, PI ,  Pz, and P3 are respectively (O,O),  (1,0), (0, l), and 
(1,l). Describe the structure of the group of all Euclidean transformations 
of R2 which leave this network invariant. 

Problem 6.1.6 (Fa90) Does the set G = { a  E R 1 a > 0 , a  # 1) f o r m  a 
group with the operation a * b = alogb? 
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Problem 6.1.7 (Sp81) Let G be a finite group. A conjugacy class is  a 
set of the form 

C ( a )  = {bab-' I b E G }  

for some a E G. 

1. Prove that the number of elements in a conjugacy class divides the 
order of G. 

2. Do all conjugacy classes have the same number of elements? 

3. If G has only two conjugacy classes, prove G has order 2. 

Problem 6.1.8 (Sp91) Let G be a finite nontrivial group with the prop- 
erty that for  any two elements a and b in G different f rom the identity, 
there is  an element c in G such that b = c-lac. Prove that G has order 2. 

Problem 6.1.9 (Sp84) For a p-group of order p", assume the center of 
G has orderp'. Determine the number of conjugacy classes of G.  

Problem 6.1.10 (Sp85) In a commutative group G,  let the element a 
have order r ,  let b have order s (r ,  s < CQ), and assume that the greatest 
common divisor of r and s is  1. Show that ab has order rs. 

Problem 6.1.11 (Fa85) Let G be a group. For any subset X of G,  define 
i ts  centralizer C ( X )  to be { y  E G I x y  = y x , V x  E X } .  Prove the following: 

1. I f X  c Y ,  then C(Y) c C ( X ) .  

2. x c C ( C ( X ) ) .  

3. C ( X )  = c ( C ( C ( X ) ) ) .  

Problem 6.1.12 (Sp88) Let D be a group of order 2n, where n is  odd, 
with a subgroup H of order n satisfying xhx-' = h-l for all h in H and all 
x in D \ H .  Prove that H is  commutative and that every element of D \ H 
is  of order 2. 

6.2 Homomorphisms and Subgroups 

Problem 6.2.1 (Fa78) How many homomorphisms are there f r o m  the 
group 2 2  x 2 2  to the symmetric group on three letters? 

Problem 6.2.2 (Sp90) Let C * be the multiplicative group of nonzero com- 
plex numbers. Suppose that H is a subgroup of finite index of C *. Prove 
that H = C * .  

Problem 6.2.3 (Su80) Let G be a finite group and H c G a subgroup. 
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1. Show that the number of subgroups of G of the f o r m  XHX- '  for some 
x E G is  5 the index of H in G.  

2. Prove that some element of G is  not in any subgroup of the f o r m  
xHx- ' ,  x E G. 

Problem 6.2.4 (Su79) Prove that the group of automorphisms of a cyclic 
group of prime order p is cyclic and find its order. 

Problem 6.2.5 (Su81) Let G be a finite group, and let cp be a n  automor- 
phism of G which leaves fixed only the identity element of G. 

1. Show that every element of G may be written in the f o r m  g-'cp(g). 

2. If cp has order 2 (i.e., cp. cp = id)  show that cp is  given by the formula 
g H 9-l and that G is an abelian group whose order is  odd. 

Problem 6.2.6 (Fa79, Sp88, Fa91) Prove that every finite group of or- 
der > 2 has a nontrivial automorphism. 

Problem 6.2.7 (Su81) Let G be an additive group, and u ,v  : G -+ G 
homomorphisms. Show that the map f : G + G, f ( x )  = x - v ( u ( x ) )  is 
surjective i f  the map h : G -+ G ,  h(x)  = x - u ( v ( x ) )  is  surjective. 

Problem 6.2.8 (Sp83) Let H be the group of integers modp ,  under ad- 
dition, where p is a prime number. Suppose that n is  a n  integer satisfying 
1 5 n 5 p ,  and let G be the group 11 x H x . ' .  x H (n factors). Show that 
G has no automorphism of order p 2 .  

Problem 6.2.9 (Fa84) Let G be a group and H a subgroup of index 
n < 00. Prove or disprove the following statements: 

, 

1. If a E G, then an E H .  

2. If a E G, then for some k, 0 < k 5 n, we have ak E H .  I 
Problem 6.2.10 (Fa78) Find all automorphisms of the additive group of 
rational numbers. 

Problem 6.2.11 (Fa87, Fa93) Let A be the group of rational numbers 
under addition, and let M be the group of positive rational numbers under 
multiplication. Determine all homomorphisms 'p : A + M .  

Problem 6.2.12 (Fa90) Let A be an additively written abelian group, and 
f ,  9 : A -+ A two group homomorphisms. Define the group homomorphisms 
i , j  : A -+ A b y  

I 

i 
i ( a )  = a - 9 (f ( a ) )  1 j ( a )  = a - f ( d a ) )  ( a  E A ) .  

I Prove that the kernel of i is  isomorphic to the kernel of j .  
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Problem 6.2.13 (Fa92) Let G be a group and H and K subgroups such 
that H has a finite index in G. Prove that K n H has a finite index in K .  

Problem 6.2.14 (Fa94) Suppose the group G has a nontrivial subgroup 
H which i s  contained in every nontrivial subgroup of G. Prove that H is 
contained in the center of G. 

Problem 6.2.15 (Fa95) Let G be a group generated by n elements. Find 
an  upper bound N ( n ,  k) for the number of subgroups H of G with the index 
[G : H ]  = k. 

6.3 Cyclic Groups 

Problem 6.3.1 (Su77, Sp92) 1.  Prove that every finitely generated 
subgroup of Q , the additive group of rational numbers, i s  cyclic. 

2. Does the same conclusion hold for finitely generated subgroups of 
Q /Z, where Z i s  the group of integers? 

Note: See also Problems 6.6.2 and 6.7.2. 

Problem 6.3.2 (Sp98) Let G be the group Q/Z.  Show that for every 
positive integer t ,  G has a unique cyclic subgroup of order t .  

Problem 6.3.3 (Su85) 1. Let G be a cyclic group, and let a ,  b E G be 
elements which are not squares. Prove that ab i s  a square. 

2. Give an  example to  show that this result i s  false i f  the group i s  not 
cyclic. 

Problem 6.3.4 (Sp82) Prove that any group of order 77 i s  cyclic. 

Problem 6.3.5 (Fa91) Let G be a group of order 2p, where p i s  a n  odd 
prime. Assume that G has a normal subgroup of order 2. Prove that G is  
cyclic. 

Problem 6.3.6 (Fa97) A finite abelian group G has the property that for 
each positive integer n the set { x  E G I xn = 1) has at most n elements. 
Prove that G is  cyclic, and deduce that every finite field has cyclic multi- 
plicative group. 

6.4 Normality, Quotients, and Homomorphisms 

Problem 6.4.1 (Fa78) Let H be a subgroup of a finite group G. 

1. Show that H has the same number of left cosets as right cosets. 
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2. Let G be the group of symmetries of the square. Find a subgroup H 
such that xH # Hx for some x. 

Problem 6.4.2 (Fa80) Let G be the group of orthogonal transformations 
of R3 to R3 with determinant 1. Let v E R3, IvI = 1, and let H,  = {T E 
G I TV = v}. 

1. Show that H,  is  a subgroup of G. 

2. Let S, = {T E G I T is  a rotation through 180" about a line orthogo- 

Problem 6.4.3 (Su84) Show that i f  a subgroup H of a group G has just  
one left coset different from itself, then it is  a normal subgroup of G. 

Problem 6.4.4 (Su85) Let G be a group of order 120, let H be a subgroup 
of order 24, and assume that there is  at least one left coset of H (other than 
H itself) which is equal to some right coset of H .  Prove that H i s  a normal 
subgroup of G. 

Problem 6.4.5 (Sp89) For G a group and H a subgroup, let C(G,  H )  
denote the collection of left cosets of H in G. Prove that if H and K are 
two subgroups of G of infinite index, then G i s  not a finite union of cosets 
f rom C(G, H )  U C(G, K ) .  

Problem 6.4.6 (Fa82, Fa92) Let 

nal to v}. Show that S, is  a coset of H ,  in G.  

G = { (  a 
0 .-I ) ) a , b E R , a > O  

1. Show that N i s  a normal subgroup of G and prove that GIN is  iso- 
morphic to R. 

2. Find a normal subgroup N' of G satisfying N c N' c G (where the 
inclusions are proper), or prove that there i s  no such subgroup. 

Problem 6.4.7 (Sp86) Let Z 2  be the group of lattice points in the plane 
(ordered pairs of integers, with coordinatewise addition as the group oper- 
ation). Let H I  be the subgroup generated b y  the two elements ( l , 2 )  and 
(4, l ) ,  and H2 the subgroup generated by the two elements (3,2) and (1,3). 
Are the quotient groups GI = Z 2 / H 1  and G2 = Z 2 / H 2  isomorphic? 

Problem 6.4.8 (Sp78, Fa81) Let G be a group of order 10 which has a 
normal subgroup of order 2. Prove that G is  abelian. 

Problem 6.4.9 (Sp79, Fa81) Let G be a group with three normal sub- 
groups N1 , N2, and N3. Suppose N ,  n NJ = { e} and N, N3 = G for all ( i ,  j )  
with i # j .  Show that G is  abelian and N, is  isomorphic to N3 for all i ,  j .  

I 



Problem 6.4.10 (Fa97) Suppose Hi i s  a normal subgroup of a group G 
for 1 5 i 5 k, such that Hi n Hj = (1) for i # j .  Prove that G contains a 
subgroup isomorphic to  H I  x H2 x " .  x HI, i f  k = 2, but not necessarily i f  
k 2 3. 

Problem 6.4.11 (Sp80) G is  a group of order n, H a proper subgroup of 
order m, and (nlm)! < 2 n .  Prove G has a proper normal subgroup different 
f rom the identity. 

Problem 6.4.12 (Sp82, Sp93) Prove that i f  G i s  a group containing no  
subgroup of index 2 ,  then any subgroup of index 3 in G is  a normal subgroup. 

Problem 6.4.13 (Sp89) Let G be a group whose order i s  twice an  odd 
number. For g in G,  let A, denote the permutation of G given b y  A, (x) = gx 
f o r  x E G. 

1. Let g be in G. Prove that the permutation A, i s  even i f  and only i f  
the order of g i s  odd. 

2. Let N = ( g  E G 1 order(g) i s  odd}. Prove that N i s  a normal subgroup 

Problem 6.4.14 (Fa89) Let G be a group, G' i t s  commutator subgroup, 
and N a normal subgroup of G. Suppose that N i s  cyclic. Prove that 
g n  = ng for  all g E G' and all n E N .  

Problem 6.4.15 (Fa90) Let G be a group and N be a normal subgroup 
of G with N # G. Suppose that there does not exist a subgroup H of G 
satisfying N c €I c G and N # H # G. Prove that the index of N in G i s  
finite and equal to a prime number. 

Problem 6.4.16 (Sp94) Let G be a group having a subgroup A of finite 
index. Prove that there i s  a normal subgroup N of G contained in A such 
that N i s  of finite index in G. 

Problem 6.4.17 (Sp97) Let H be the quotient of a n  abelian group G by 
a subgroup K .  Prove or disprove each of the following statements: 

1. If H is  finite cyclic then G is isomorphic to  the direct product of H 

of G of index 2. 

and K. 

2. If H i s  a direct product of infinite cyclic groups then G is  isomorphic 
to  the direct product of H and K. 

Problem 6.5.1 (Fa80) Let Fz = (0 , l )  be the field with two elements. 
Let G be the group of invertible 2x2 matrices with entries in Fz. Show that 
G is  isomorphic to  5'3, the group of permutations of three objects. 
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Problem 6.5.2 (Su84) Let Sn denote the group of permutations of n let- 
ters. Find four  diflerent subgroups of S, isomorphic to  S, and nine iso- 
morphic to  5’2. 

Problem 6.5.3 (Fa86) Let G be a subgroup of S5, the group of all per- 
mutations on  the set { 1 , 2 , 3 , 4 , 5 } .  Prove that i f  G contains a 5-cycle and 
a 2-cycle, then G = S5. 
Hint: Recall that if (il i 2  . ’ .  in) is a cycle and u i s  any permutation, then 

a(i1 i 2  . . . in)u-’ = (u(i1) a(i2) . . . u(in)) . 

Problem 6.5.4 (Fa85) Let G be a subgroup of the symmetric group on  
six letters, SS. Assume that G has an  element of order 6 .  Prove that G has 
a normal subgroup H of index 2. 

Problem 6.5.5 (Sp79) Let S7 be the group of permutations of a set of 
seven elements. Find all n such that some element of S7 has order n. 

Problem 6.5.6 (Sp80) S g  i s  the group of permutations of the set of in- 
tegers f rom 1 to  9. 

1. Exhibit a n  element of Sg of order 20. 

2. Prove that no element of S g  has order 18. 

Problem 6.5.7 (Sp88) Let S g  denote the group of permutations of 
{ 1 , 2 , .  . . ,9} and let A 9  be the subgroup consisting of all even permuta- 
tions. Denote b y  1 E S g  the identity permutation. Determine the minimum 
of all positive integers m such that every u E S g  satisfies urn = 1.  Deter- 
mine  also the minimum of all positive integers m such that every u E A 9  

satisfies urn = 1. 

Problem 6.5.8 (Sp92) Let 5’999 denote the group of all permutations of 
{ 1 , .  . . ,999}, and let G c S999 be an  abelian subgroup of order 1111. Prove 
that there exists i E ( 1 , .  . . ,999) such that for all a E G, one has a( i )  = i. 

Problem 6.5.9 (Fa81, Sp95) Let S, be the group of all permutations of 
n objects and let G be a subgroup of S, of order p k ,  where p i s  a pr ime not 
dividing n. Show that G has a fixed point; that is, one of the objects i s  left 
f i e d  by every element of G. 

Problem 6.5.10 (Sp80) Let G be a group of permutations of a set S of 
n elements. Assume G is transitive; that is, f o r  any x and y in S ,  there is 
some u E G with u ( x )  = y .  

1. Prove that n divides the order of G. 

2. Suppose n = 4 .  For which integers k 2 1 can such a G have order 4lcP 
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Problem 6.5.11 (Su83) Let G be a transitive subgroup of the group S, 
of permutations of the set { 1, . . . , n } .  Suppose that G i s  a simple group and 
that - i s  a n  equivalence relation on  (1, . . . , n }  such that i - j implies that 
u(i) - a ( j )  f o r  all u E G. What can you conclude about the relationship - ?  

Problem 6.5.12 (Sp89) Let D, be the dihedral group, the group of rigid 
motions of a regular n-gon (n 2 3). (It  i s  a noncommutative group of 
order 2n . )  Determine i t s  center C = { c  E D, I c x  = x c  for all x E Dn}. 

Problem 6.5.13 (Fa92) How many  Sylow 2-subgroups does the dihedral 
group D, of order 2 n  have, when n is  odd? 

6.6 Direct Products 

Problem 6.6.1 (Fa83) Let G be a finite group and G1 = G x G. Suppose 
that G1 has exactly four  normal subgroups. Show that G i s  simple and 
nonabelian. 

Problem 6.6.2 (Sp91) Prove that Q , the additive group of rational num- 
bers, cannot be written as the direct sum of two nontrivial subgroups. 
Note: See also Problems 6.3.1 and 6.7.2. 

Problem 6.6.3 (Su79, Fa93) Let A,  B, and C be finite abelian groups 
such that A x  B and A x  C are isomorphic. Prove that 13 and C are isomor- 
phic. 

Problem 6.6.4 (Su83) Let GI, G2, and G3 be finite groups, each of which 
i s  generated by  i ts  commutators (elements of the f o r m  ~ y x - ~ y - ~ ) .  Let A 
be a subgroup of GI x G2 x G3, which maps surjectively, by the natural 
projection map, to  the partial products GI x G2, GI x G3 and G2 x GJ. 
Show that A i s  equal to  G1 x G2 x G3. 

Problem 6.6.5 (Fa82) Let A be a subgroup of an  abelian group B. As- 
sume that A i s  a direct summand of B, i.e., there exists a subgroup X of 
B such that A n X = 0 and such that B = X + A.  Suppose that C is a 
subgroup of B satisfying A c C c B. Is  A necessarily a direct summand 
of C? 

Problem 6.6.6 (Fa87, Sp96) Let G and I I  be finite groups of relatively 
prime order. Show that Aut(G x H ) ,  the group of automorphisms of G x H ,  
i s  isomorphic to  the direct product of Aut(G) and Aut(l1). 
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6.7 Free Groups, Products, Generators, and 
Relations 

Problem 6.7.1 (Sp77) Let Q + be the multiplicative group of positive ra- 
tional numbers. 

1 .  Is Q+ torsion free? 

2. Is Q +  free? 

Problem 6.7.2 (Sp86) Prove that the additive group of Q , the rational 
number field, is  not finitely generated. 
Note: See also Problems 6.3.1 and 6.6.2. 

Problem 6.7.3 (Fa79, Fa82) Let G be the abelian group defined by gen- 
erators x ,  y ,  and z ,  and relations 

1 5 ~  + 3y  = 0 
32  + 7 y  + 42 = 0 

1 8 ~  + 14y + 82 = 0. 

1 .  Express G as a direct product of two cyclic groups. 

2. Express G as a direct product of cyclic groups of prime power order. 

3. How many elements of G have order 22 

Problem 6.7.4 (Sp82, Sp93) Suppose that the group G i s  generated by 
elements x and y that satisfy x5y3 = xsy5 = 1. Is G the trivial group? 

Problem 6.7.5 (Su82) Let G be a group with generators a and b satisfy- 
ing 

- a 'b2a = b3, b-la'b = a3. 

Is G trivial? 

Problem 6.7.6 (Fa88, Fa97) Let the group G be generated by two ele- 
ments, a and b, both of order 2 .  Prove that G has a subgroup of index 2 .  

Problem 6.7.7 (Fa89) Let G ,  be the free group o n  n generators. Show 
that G2 and G3 are not isomorphic. 

Problem 6.7.8 (Sp83) Let G be an abelian group which i s  generated by, 
at most, n elements. Show that each subgroup of G is  again generated by, 
at most, n elements. 

Problem 6.7.9 (Sp84) Determine all finitely generated abelian groups G 
which have only finitely many automorphisms. 
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Problem 6.7.10 (Fa89) Let A be a finite abelian group, and m the max- 
imum of the orders of the elements of A.  Put S = { a  E A I (a1 = m}. Prove 
that A i s  generated by  S .  

6.8 Finite Groups 

Problem 6.8.1 (Sp91) List, to  within isomorphism, all the finite groups 
whose orders do not exceed 5. Explain why your list i s  complete and why 
no two groups on  the list are isomorphic. 

Problem 6.8.2 (Fa84) Show that all groups of order 5 5 are commuta- 
tive. Give an  example of a noncommutative group of order 6. 

Problem 6.8.3 (Fa80) Prove that any group of order 6 i s  isomorphic to  
either &3 or 5’3 (the group of permutations of three objects). 

Problem 6.8.4 (Sp87) 1. Show that, to  within isomorphism, there i s  
just  one noncyclic group G of order 4. 

2. Show that the group of automorphisms of G i s  isomorphic to  the 
permutation group 5’3. 

Problem 6.8.5 (Fa88) Find all abelian groups of order 8 ,  up to  isomor- 
phism. Then  identify which type occurs in each of 

2 .  (&,>*, 

2. (W* /(*I), 

4. F8+1 

3. the roots of z8 - 1 in C , 

5. (z16>** 

F8 i s  the field of eight elements, and F8+ i s  i ts  underlying additive group; 
R* is  the group of invertible elements in the ring R, under multiplication. 

Problem 6.8.6 (Sp90, Fa93, Sp94) Show that there are at least two non- 
isomorphic nonabelian groups of order 24, of order 30 and order 40. 

Problem 6.8.7 (Fa97) Prove that i f  p i s  prime then every group of order 
p 2  is abelian. 

Problem 6.8.8 (Sp93) Classify up to  isomorphism all groups of order45. 

Problem 6.8.9 (Sp97) Classify abelian groups of order 80 up to  isomor- 
phism. 



98 6. Algebra 

Problem 6.8.10 (Sp79) Let S be a collection of abelian groups, each of 
order 720, no two of which are isomorphic. What is  the maximum cardi- 
nality S can have? 

Problem 6.8.11 (Fa88) Find (up to isomorphism) all groups of order 2p, 
where p is  a prime (p 2 2).  

Problem 6.8.12 (Sp87) Prove that any finite group of order n i s  isomor- 
phic to a subgroup of O(n),  the group of n x n orthogonal real matrices. 

Problem 6.8.13 (Su80, Fa96) Prove that every finite group i s  isomor- 
phic to 

1. A group of permutations; 

2. A group of even permutations. 

6.9 Rings and Their Homomorphisms 

Problem 6.9.1 (Fa80) Let M be the ring of real 2x2 matrices and 
S c M the subring of matrices of the form 

1. Exhibit (without proof) an isomorphism between S and C . 

2. Prove that 
A = (  -4 ' )  1 

lies in a subring isomorphic to S.  

3. Prove that there is  an X E M such that X4 -t 13X = A. 

Problem 6.9.2 (Sp86) Prove that there exists only one automorphism of 
the field of real numbers; namely the identity automorphism. 

Problem 6.9.3 (Sp86) Suppose addition and multiplication are defined 
on C n ,  complex n-space, coordinatewise, making C into a ring. Find all 
ring homomorphisms of C" onto C . 
Problem 6.9.4 (Fa88) Let R be a finite ring. Prove that there are positive 
integers m and n with m > n such that xm = xn for every x in R. 

Problem 6.9.5 (Sp89) Let R be a ring with at least two elements. Sup- 
pose that f o r  each nonzero a in R there is  a unique b in R (depending on  
a )  with aba = a.  Show that R is  a division ring. 
Hint: Show first that R has no zero divisors, then find a multiplicative 
indentity in R, then prove the existence of inverses. 
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Problem 6.9.6 (Sp91) Let p be a prime number and R a ring with iden- 
tity containing p2 elements. Prove that R i s  commutative. 

Problem 6.9.7 (Fa93) Let R be a commutative ring with identity. Let G 
be a finite subgroup of R', the group of units of R. Prove that i f  R i s  a n  
integral domain, then G is cyclic. 

Problem 6.9.8 (Fa94) Let R be a ring with an identity, and let u be an 
element of R with a right inverse. Prove that the following conditions on  u 
are equivalent: 

1. u has more than one right inverse; 

2. u is  a zero divisor; 

3. u is not a unit. 

Problem 6.9.9 (Su81, Sp93) Show that no commutative ring with iden- 
tity has additive group isomorphic to Q /Z. 

Problem 6.9.10 (Sp81) Let D be an ordered integral domain and u E D. 
Prove that 

a2 - a + 1 > 0. 

Problem 6.9.11 (Fa95) Prove that Q [x ,  y]/(z2 + y2 - 1) is  an integral 
domain and that its field of fractions is  isomorphic to the field of rational 
functions Q ( t ) .  

6.10 Ideals 

Problem 6.10.1 (Sp98) Let A be the ring of real 2 x 2  matrices of the 
form (0" 8 ) .  What are the %sided ideals in A? Justify your answer. 

Problem 6.10.2 (Fa79, Fa87) Let Mnxn(F) be the ring of n x n matri- 
ces over a field F. Prove that i t  has no 2-sided ideals except Mnxn(F) and 

Problem 6.10.3 (Fa83, Su85) Let Mnxn(F) denote the ring of nxn  ma- 
trices over a field F. For n > 1 does there exist a ring homomorphism f rom 

(0). 

qn+l)x(n+l)(F) onto MTLxn(F)? 

Problem 6.10.4 (Sp84) Let F be a field and let X be a finite set. Let 
R ( X ,  F) be the ring of all functions f rom X to F, endowed with the point- 
wise operations. What are the maximal ideals of R ( X ,  F) ? 

Problem 6.10.5 (Sp88) Let R be a commutative ring with unit element 
and a E R. Let n and m be positive integers, and write d = gcd{n,m}.  
Prove that the ideal of R generated by an - 1 and urn - 1 is  the same as 
the ideal generated by ud - 1. 



100 6. Algebra 

Problem 6.10.6 (Sp89) 1. Let R be a commutative ring with 1 con- 
taining an element a with a3 = a + 1. Further, let 3 be an ideal of R 
of index < 5 in R. Prove that 3 = R. 

2. Show that there exists a cornmutative ring with 1 that has a n  element 

Note: The term index is  used here exactly as in group theory; namely the 
index of 3 in R means the order of RI3. 

Problem 6.10.7 (Sp90) Let R be a commutative ring with 1, and R* be 
i ts  group of units. Suppose that the additive group of R is  generated by 
(u2 I u E R*}. Prove that R has, at most, one ideal 3 for which RI3 has 
cardinality 3. 

Problem 6.10.8 (Fa90) Let R be a ring with 1, and let 3 be the left ideal 
of R generated by {ab - ba I a ,  b E R}. Prove that J is  a two-sided ideal. 

Problem 6.10.9 (Sp95) Suppose that R is  a subring of a commutative 
ring S and that R is of finite index n in S .  Let m be an integer that is 
relatively prime to n. Prove that the natural map RlmR -+ S/mS i s  a ring 
isomorphism. 

Problem 6.10.10 (Sp81) Let M be one o f the  followingfields: R, C , Q , 
and Fg (the field with nine elements). Let J c M [ x ]  be the ideal generated 
by x4 + 22 - 2. For which choices of M is the ring M [ x ] / 3  a field? 

Problem 6.10.11 (Sp84) Let R be a principal ideal domain and let 3 and 
3 be nonzero ideals in R. Show that 33 = J n 3 i f  and only i f  3 + 3 = R. 

a with a3 = a + 1 and that contains an ideal of index 5. 

6.11 Polynomials 

Problem 6.11.1 (Su85) B y  the Fundamental Theorem of Algebra, the 
polynomial x 3  + 2x2 + 7x + 1 has three complex roots, al, a2, and ag. 

Compute a; + a: + a:, 

Problem 6.11.2 (Fa77) Suppose the complex number a is  a root of a 
polynomial of degree n with rational coeficients. Prove that l / a  i s  also a 
root of a polynomial of degree n with rational coeficients. 

Problem 6.11.3 (Sp85) Let C = e v  be a primitive 7th root of unity. 
Find a cubic polynomial with integer coeficients having a = + <-' as a 
root. 

Problem 6.11.4 (Sp92, Su77, Fa81) 1. Prove that a = &+ f i  is  
algebraic over Q , by explicitly finding a polynomial f ( x )  in Q [ X I  of 
degree 4 having a as a root. 
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2. Prove that f ( x )  is  irreducible over Q . 

Problem 6.11.5 ( F a 9 0 )  Prove that fi + $6 i s  irrational. 

Problem 6.11.6 (Su85) Let P ( z )  be a polynomial of degree < k with 
complex coefficients. Let w1,. . . , W k  be the kth roots of unity in c . Prove 
that 

* k  
1 
- c P ( W i )  = P(0). 

i=l 
k 

Problem 6.11.7 ( F a 9 5 )  Let f ( x )  E Q [ X I  be a polynomial with rational 
coeficients. Show that there is  a g ( x )  E Q [ X I ,  g # 0,  such that 
f ( x ) g ( z )  = a2x2 + a3x3 + u5x5 + . . - + apxP is  a polynomial in which only 
prime exponents appear. 

Problem 6.11.8 ( F a 9 1 )  Let 3 be the ideal in the ring Z [ x ]  generated by 
x - 7 and 15. Prove that the quotient ring Z [ x ] / J  i s  isomorphic to Z15. 

Problem 6.11.9 ( F a 9 2 )  Let J denote the ideal in Z [ x ] ,  the ring of poly- 
nomials with coefficients in Z, generated by x3 + x + 1 and 5.  Is J a prime 
ideal ? 

Problem 6.11.10 ( S u 7 7 )  I n  the ring Z [ x ]  of polynomials in one variable 
over the integers, show that the ideal J generated by 5 and x2 3- 2 is  a 
maximal ideal. 

Problem 6.11.11 ( S p 7 8 )  let Z, denote the ring of integers modulo n. 
Let Z,[x] be the ring of polynomials with coeficients in Z,. Let 3 denote 
the ideal in Z,[x] generated by x2 + x + 1. 

1. For which values of n, 1 5 n 5 10, is  the quotient ring Z,[x]/J  a 
field? 

2. Give the multiplication table f o r  Z2/3. 

Problem 6.11.12 ( S p 8 6 )  Let Z be the ring of integers, p a prime, and 
F ,  = Z / p Z  the field of p elements. Let x be a n  indeterminate, and set 
R1 = F p [ x ] / ( x 2  - 2), R2 = F p [ x ] / ( x 2  - 3).  Determine whether the rings 
R1 and R2 are isomorphic in each of the cases p = 2,5,11. 

Problem 6.11.13 (Fa79 ,  S u 8 0 ,  Fa82)  Consider the polynomial ring Z [ x ]  
and the ideal 3 generated by 7 and x - 3. 

1. Show that for  each r E Z [ x ] ,  there i s  an integer a satisfying 0 5 a 5 6 
such that r - a E 3. 

2. Find a an the special case r = x250 + 1 5 ~ ' ~  + x2  + 5. 
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Problem 6.11.14 (Fa96) Let Z[x] be the ring of polynomials in the inde- 
terminate x with coefficients in the ring Z of integers. Let J c Z[x] be the 
ideal generated by 13 and x - 4. Find an  integer m such that 0 5 m 5 12 
and 

(xZ6 + x + 1)73 - m E J . 

Problem 6.11.15 (Sp77) 1. I n  R[xC], consider the set of polynomials 
f(x) f o r  which f(2) = f’(2) = f”(2) = 0. Prove that this set forms 
an  ideal and find i ts  monic generator. 

2. Do the polynomials such that f(2) = 0 and f’(3) = 0 form a n  ideal? 

Problem 6.11.16 (Sp94) Find all automorphisms of Z[x], the ring of 
polynomials over Z. 

Problem 6.11.17 (Su78) Let R denote the rang of polynomials over a 
field F. Let p l ,  . . . ,pn  be elements of R. Prove that the greatest common 
divisor of p l ,  . . . , p ,  i s  1 if and only i f  there i s  a n  n x n matrix over R of 
determinant 1 whose first row i s  ( P I , .  . . ,pn) .  

Problem 6.11.18 (Sp79) Let f(x) be a polynomial over Z,, the field of 
integers mod p .  Let g(x) = xp - x. Show that the greatest common divisor 
of f(x) and g(x) i s  the product of the distinct linear factors of f(x). 

Problem 6.11.19 (Su79) Let F be a subfield of a field K .  Let p and q 
be polynomials over F. Prove that their gcd (greatest common divisor) in 
the ring of polynomials over F i s  the same as their gcd in the ring of 
polynomials over K .  

Problem 6.11.20 (Su81, Su82) Show that x*O + x9 + x8 +. . . + x + 1 i s  
irreducible over Q . Horn about xl1 + x10 + . . . + x + I? 
Problem 6.11.21 (Su84) Let Z be the ring of integers and Z[x] the poly- 
nomial ring over Z. Show that 

x6 + 5 3 9 ~ ~  - 511s -t 847 

i s  irreducible in Z [XI.  
Problem 6.11.22 (Sp82) Prove that the polynomial x4 + x + 1 i s  irre- 
ducible over Q . 

Problem 6.11.23 (Fa83, Fa86) Prove that i f  p i s  a pr ime number, then 
the polynomial 

i s  irreducible in Q[x]. 

Problem 6.11.24 (Sp96) Prove that f(x) = x4 + x3 + x2 + 6x + 1 is 
irreducible over Q . 

f (x) = xp-1 + xp-2 + . . . + 1 
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Problem 6.11.25 (Su84) Let Z3  be thefield of integers mod3 and&[x]  
the corresponding polynomial ring. Decompose x3 + x + 2 into irreducible 
factors in Z3 1x1. 

Problem 6.11.26 (Sp85) Factor x4 + x3 + x + 3 completely in Z S [ X ] .  

Problem 6.11.27 (Fa85) 1. How many different monic irreducible poly- 
nomials of degree 2 are there over the field ZS? 

2. How man9 different monic irreducible polynomials of degree 3 are 
there over the field ZS ? 

Problem 6.11.28 (Sp78) Is x4 + 1 irreducible over the field of real num- 
bers? The  field of rational numbers? A field with 16 elements? 

Problem 6.11.29 (Sp81) Decompose x4 - 4 and x3 - 2 into irreducibles 
over R, over Z, and over Z3 (the integers modulo 3). 

Problem 6.11.30 ( F a 8 4 )  Let a be an element in afield F and let p be a 
prime. Assume a is  not a pttL power. Show that the polynomial xp - a is 
irreducible in F I X ] .  

Problem 6.11.31 (Sp92) L e t p  be a prime integer, p = 3 (mod 4), and 
let F ,  = Z / p Z .  If x4 + 1 factors into a product g ( x ) h ( x )  of two quadratic 
polynomials in F p [ x ] ,  prove that g ( x )  and h(s) are both irreducible over F,. 

Problem 6.11.32 ( F a 8 8 )  Let n be a positive integer and let f be a poly- 
nomial in R[x]  of degree n. Prove that there are real numbers ao, a1 , . . . , a,, 
not all equal to zero, such that the polynomial 

n 

i=O 

is  divisible by  f. 

Problem 6.11.33 (Fa89) Let F be afield, F [ x ]  the polynomial ring in one 
variable over F, and R a subring of F [ x ]  with F c R. Prove that there exists 
a finite set {fi, f z , . .  ., f,} of elements of F [ x ]  such that 
R = F [ f l ,  f 2 , .  . . I fn l .  

Problem 6.11.34 (Sp87) Let F be a finite field with q elements and let 
x be an indeterminate. For f a polynomial in F [ x ] ,  let c p f  denote the cor- 
responding function of F into F ,  defined by cpf(a) = f (a), ( a  E F). Prove 
that i f  cp is any function of F into F ,  then there i s  a n  f in F [ x ]  such that 
cp = c p f .  Prove that f is uniquely determined by p to within addition of a 
multiple of xq - x .  
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6.12 Fields and Their Extensions 

Problem 6.12.1 (Su78, Fa87, Sp93) Let R be the set of 2x2 matrices 
of the form 

(: ib) 
where a, b are elements of a given field F. Show that with the usual ma- 
trix operations, R is  a commutative ring with identity. For which of the 
following fields F i s  R a field: F = Q , CC , Zg ,  ;Z7 ? 

Problem 6.12.2 (Fa83) Prove that every finite integral domain i s  a field. 

Problem 6.12.3 (Sp77, Sp78) Let F C K be fields, and a and b ele- 
ments of K which are algebraic over F. Show that a + b is  algebraic over 
F. 

Problem 6.12.4 (Fa78, Fa85) Prove that every finite multiplicative group 
of complex numbers is cyclic. 

Problem 6.12.5 (Sp87, Fa95) Let F be a field. Prove that every finite 
subgroup of the multiplicative group of nonzero elements of F is  cyclic. 

Problem 6.12.6 (Sp85) Let F = { a +  b f i  + c f i  1 a , b , c  E Q } .  Prove 
that F is  a field and each element in F has a unique representation as 
a + b f i  + c f i  with a ,  b, c E Q . Find (1 - @)-' in F. 

Problem 6.12.7 (Sp85) Let F be a finite field. Give a complete proof of 
the fact that the number of elements of F is  of the form p r ,  where p 2 2 i s  
a prime number and r is an integer 2 1. 

Problem 6.12.8 (Su85) Let F be a field of characteristic p > 0,  p # 3. 
If a is a zero of the polynomial f ( x )  = x p  - x + 3 in an extension field of 
F, show that f ( x )  has p distinct zeros in the field F(a). 

Problem 6.12.9 (Fa85) Let f ( x )  = x5 - 8x3 + 9 x  - 3 and 
g ( x )  = x4 - Fix2 - 6x + 3. Prove that there is  an integer d such that the 
polynomials f (x) and g ( x )  have a common root in the field Q (&). What 
is  d ?  

Problem 6.12.10 (Fa86) Let F be a field containing Q such that 
[F : Q ]  = 2 .  Prove that there exists a unique integer m such that m has no 
multiple prime factors and F is isomorphic to Q (fi). 
Problem 6.12.11 (Sp96) Exhibit infinitely many pairwise nonisomorphic 
quadratic extensions of Q and show they are pairwise nonisomorphic. 

Problem 6.12.12 (Fa94) Let Q be the field of rational numbers. For 6 
a real number, let Fo = Q(sin 0) and EQ = Q (sin $) . Show that Eo is an 
extension field of Fo, and determine all possibilities for dimp,Eo. 
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Problem 6.12.13 (Sp95) Let F be a finite field of cardinality pn ,  with p 
prime and n > 0, and let G be the group of invertible 2x2 matrices with 
coeficients in F. 

I. Prove that G has order (p2" - 1)(p2, - p") . 

2. Show that any p-Sylow subgroup of G i s  isomorphic to the additive 

Problem 6.12.14 (Fa94) Let p be an odd prime and F, the field o f p  
elements. How many elements of F, have square roots in F, ? How many 
have cube roots in F, ? 

Problem 6.12.15 (Sp94) Let F be a finite field with q elements. Say 
that a function f : F -+ F is a polynomial function if there are elements 
ao, a l ,  . . . , a,  of F such that f ( x )  = a0 + a1x + . . . -t a,xn for all x E F. 
How many polynomial functions are there? 

Problem 6.12.16 (Sp95) Let F be a finite field, and suppose that the 
subfield of F generated by {z3 1 x E F} is different f rom F. Show that F 
has cardinality 4. 

Problem 6.12.17 (Sp97) Suppose that A is a commutative algebra with 
identity over C (i.e., A is  a commutative ring containing C as a subring 
with identity). Suppose further that a2 # 0 for all nonzero elements a E A.  
Show that if the dimension of A as a vector space over C is  finite and at 
least two, then the equations a2 = a is  satisfied by at least three distinct 
elements a E A.  

group of F. 

6.13 Elementary Number Theory 

Problem 6.13.1 (Fa86) Prove that if six people are riding together in a n  
Evans Hall elevator, there is  either a three-person subset of mutual friends 
(each knows the other two) or a three-person subset of mutual strangers 
(each knows neither of the other two). 

Problem 6.13.2 (Sp98) Let m 2 0 be an integer. Let a l ,  a2, .  . . , a ,  be 
integers and let 

Show that i f  d 2 0 i s  an integer then f ( x ) d / d !  can be expressed in the fo rm 

where the bi are integers. 
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Problem 6.13.3 (Sp77) Let p be an odd prime. Let Q ( p )  be the set of 
integers a ,  0 5 a 5 p - 1, for which the congruence 

z 2 r a  ( m o d p )  

has a solution. Show that Q(p )  has cardinality ( p  + 1 ) / 2 .  

Problem 6.13.4 (Su77) Let p be an odd prime. If the congruence 
x2 = -1 

Problem 6.13.5 (Sp80) Let n >_ 2 be a n  integer such that 2n + n2 is  
prime. Prove that 

n - 3  ( m o d 6 ) .  

(mod  p )  has a solution, show that p = 1 (mod  4). 

Problem 6.13.6 (F'a77) 1. Show that the set of all units in a ring 
form a group under multiplication. (A  unit i s  an element having a 
multiplicative inverse.) 

2. In the ring Z, of integers m o d n ,  show that k is  a unit i f  and only i f  
k and n are relatively prime. 

3. Suppose n = p q ,  where p and q are primes. Prove that the number of 
units in Z, is ( p  - l ) ( q  - 1).  

Problem 6.13.7 (Su79) Which rational numbers t are such that 

3t3 + lot2 - 3t 

is  an integer? 

Problem 6.13.8 (Fa96) Show the denominator of ( ' f )  i s  a power of 

2 for  all integers n. 

Problem 6.13.9 (Su82) Let n be a positive integer. 

1. Show that the binomial coeficient 

is  even. 

2. Prove that c ,  is divisible by 4 i f  and only i f  n is  not a power of 2. 

Problem 6.13.10 (Sp83) Suppose that n > 1 is  an integer. Prove that 
the sum 

is  not an integer. 
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Problem 6.13.11 (Fa84, Fa96) Let gcd abbreviate greatest common di- 
visor and l cm abbreviate least common multiple. For three nonzero integers 
a, b, c, show that 

gcd {a,  lcm{b, c } }  = lcm {gcd{a, b}, gcdja,  c}} .  

Problem 6.13.12 (Sp92) Let a l ,  az,  . . . , a10 be integers with 1 1. ai 5 
25, for 1 5 i 5 10. Prove that there exist integers nl, 722, .  . . , n10,  not all 
zero, such that 

10 

i= l  

Problem 6.13.13 (Su83) The number 21982145917308330487013369 i s  
the thirteenth power of a positive integer. Which positive integer? 

Problem 6.13.14 (Sp96) 

Problem 6.13.15 (Sp88) 

in the decimal system. 

Problem 6.13.16 (Sp88) 

Determine the rightmost decimal digit of 

A = 171717. 

Determine the last digit of 

23232323 

Show that you can represent the set of non- 
negative integers, Z+, as the union of two disjoint subsets N1 and N2 

(N1 n N2 = 0, N1 U N2 = Z+) such that neither N1 nor NZ contains 
an infinite arithmetic progression. 

Problem 6.13.17 (Fa89) Let cp be Euler’s totient function; so i f  n is  a 
positive integer, then p ( n )  is  the number of integers m for which 1 1. m 5 n 
and gcd{n, m} = 1. Let a and Ic be two integers, with a > 1, k > 0. Prove 
that k divides p(ak - 1). 

Problem 6.13.18 (Sp90) Determine the greatest common divisor of the 
elements of the set {n I3  - n I n E Z}. 

Problem 6.13.19 (Sp91) For n a positive integer, let d ( n )  denote the 
number of positive integers that divide n. Prove ihat d ( n )  is  odd i f  and only 
if n is  a perfect square. 
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Linear Algebra 

7.1 Vector Spaces 

Problem 7.1.1 (Su79, Sp82, Sp83, Su84, Fa91) Let F be afinitefield 
with q elements and let V be an n-dimensional vector space over F .  

1. Determine the number of elements in V .  

2. Let G L T L ( F )  denote the group of all n x n nonsingular matrices over 
F .  Determine the order ofGL,(F) .  

3. Let SL , (F)  denote the subgroup of GL,(F)  consisting of matrices 
with determinant one. Find the order of S L , ( F ) .  

Problem 7.1.2 (Sp97) Let GL2(Z,) denote the multiplicative group of 
invertible 2 x 2 matrices over the ring of integers modulo m. Find the order 
of GL2(Zpn) for each prime p and positive integer n. 

Problem 7.1.3 (Sp96) Let G be the group of 2x2 matrices with deter- 
minant 1 over the four-element field F. Let S be the set of lines through 
the origin in F2. Show that G acts faithfully on  S .  (The  action is  faithful 
i f  the only element of G which @es every element of S is  the identity.) 

Problem 7.1.4 (Su77) Prove the following statements about the polyno- 
mial ring F[z], where F i s  any field. 

1. F [ z ]  is a vector space over F .  
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2. The subset F,[z] of polynomials of degree 5 n is  a subspace of di- 
mension n + 1 in F[x]. 

3. The polynomials 1, z - a , .  . . , ( x  - a)" fo rm a basis of F,[z] for any 
a E F. 

Problem 7.1.5 (Su84) Suppose V is  a n  n-dimensional vector space over 
the field F. Let W c V be a subspace of dimension r < n. Show that 

W = { U I U i s  a n  (n - 1) - dimensional subspace of V and W c U} . 

Problem 7.1.6 (Sp80, Fa89) Show that a vector space over an infinite 
field cannot be the union of a finite number of proper subspaces. 

Problem 7.1.7 (Fa88) Let A be a complex n x n matrix, and let C(A) 
be the commutant of A; that is, the set of complex n x n matrices B such 
that AB = BA. (It is obviously a subspace of M,,,, the vector space of all 
complex n x n matrices.) Prove that dimC(A) 2 n. 

Problem 7.1.8 (Sp89, Fa97) Let S be the subspace of M,,, (the vector 
space of all real n x n matrices) generated by all matrices of the form 
AB - BA with A and B in M,,,. Prove that dim(S) = n2 - 1. 

Problem 7.1.9 (Sp90) Let A and B be subspaces of a finite-dimensional 
vector space V such that A + B = V .  Write n = dimV, a = dim A, and 
b = dimB. Let S be the set of those endomorphisms f of V for which 
f (A) c A and f (B) c B .  Prove that S is  a subspace of the set of all endo- 
morphisms of V ,  and express the dimension of S in terms of n, a ,  and b. 

Problem 7.1.10 (Sp81) Let T be a linear transformation of a vector 
space V into itself. Suppose x E V is  such that Trnx  = 0 ,  TVL-'x # 0 
for some positive integer m. Show that x ,  T x ,  . . . , T"-' x are linearly in- 
dependent. 

Problem 7.1.11 (Fa97) Let a1, a2,. . . , a, be distinct real numbers. Show 
that the n exponential functions eal t ,  eaz t ,  . . . , earit are linearly independent 
over the real numbers. 

Problem 7.1.12 (Su83) Let V be a real vector space of dimension n with 
a positive definite inner product. W e  say that two bases ( a i )  and (bi)  have 
the same orientation i f  the matrix of the change of basis f rom (a i )  to (bi)  
has a positive determinant. Suppose now that (a i )  and (bi)  are orthonormal 
bases with the same orientation. Show that (ai  + 2bi) is  again a basis of V 
with the same orientation as ( a i ) .  
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7.2 Rank and Determinants 

Problem 7.2.1 (Sp78, Fa82, Fa86) Let M be a matrix with entries in 
a field F. The row rank of M over F is  the maximal number of rows which 
are linearly independent (as vectors) over F. The column rank is  similarly 
defined using columns instead of rows. 

1. Prove row rank = column rank. 

2. Find a maximal linearly independent set of columns of 

1 0  3 -2 [;; 4 i )  
1 0  1 

taking F = R. 

3. If F is  a subfield of K, and M has entries in F, how is  the row rank 
of M over F related to the row rank of A4 over K ?  

Problem 7.2.2 (Su85, Fa89) Let A be an n x n real matrix and At its 
transpose. Show that AtA and At have the same range. 

Problem 7.2.3 (Sp97) Suppose that P and Q are n x n matrices such 
that P2 = P,  Q2 = Q,  and 1 - ( P  + Q )  is  invertible. Show that P and Q 
have the same rank. 

Problem 7.2.4 (Sp91) Let T be a real, symmetric, n x n, tridiagonal 
matrix: 

T =  

(All entries not o n  the main diagonal or the diagonals just  above and below 
the main one are zero.) Assume bj # 0 for all j .  

Prove: 

1. rankT 2 n - 1. 

2. T has n distinct eigenvalues. 

Problem 7.2.5 (Sp83) Let A = ( a i j )  be an nxn  real matrix satisfying 
the conditions: 

aii > 0 (1 5 i 5 n),  
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aij 5 0  (i # j ,  15 i , j  5 n),  

i=l 

Show that det(A) > 0.  

Problem 7.2.6 (Sp91) Let A = (aij);,j=l be a square matrix with integer 
entries. 

1. Prove that i f  an integer n i s  an eigenvalue of A,  then n is  a divisor 
of det A ,  the determinant of A. 

2. Suppose that n is  an integer and that each row of A has sum n: 

r 

C aij = n, 1 5 i 5 r. 
j=1 

Prove that n is a divisor of det A .  

Problem 7.2.7 (Fa84) Let R [ x l , .  . . ,2,] be the polynomial ring over the 
real field W in the n variables 2 1 , .  . . , 2,. Let the matrix A be the n x n 
matrix whose ith row is  (1, x z ,  x:, . . . , x Y - ~ ) ,  i = 1,. . . , n. Show that 

det A = n ( x i  - x j ) .  
i > j  

Problem 7.2.8 (Sp77) A matrix of the fo rm 

1 a0 a; . . . a$ 

. .  . .  
1 a, a:L ... a: 

where the ai are complex numbers, is  called a Vandermonde matrix. 

1. Prove that the Vandermonde matrix is invertible i f  ao, a l ,  . . . , a, are 
all different. 

2. If ao, a l ,  . . . ,a, are all different, and bo, bl ,  . . . , b, are complex num- 
bers, prove that there is  a unique polynomial f of degree n with com- 
plex coefficients such that f ( a 0 )  = bo, f ( a 1 )  = bl, .  . . , f(a,) = b,. 

Problem 7.2.9 (Sp90) Give an example of a continuous function 
v : R + W3 with the property that v ( t l ) ,  v(t2), and v(t3) fo rm a basis 
for W3 whenever t l ,  t 2 ,  and t 3  are distinct points of W. 
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Problem 7.2.10 (Fa95) Let fl, fi, . . . , fn be continuous real valued func- 
tions on  [a, b].  Show that the set { fi ,  . . . , f,} is  linearly dependent on [a ,  b] 
i f  and only if 

Problem 7.2.11 (Fa81) Let MzXz be the vector space of all real 2x2 ma- 
trices. Let 

A = (  -1 ” )  3 B = ( i  :) 
and define a linear transformation L : M2x2 -+ M z X 2  by L ( X )  = AXB. 
Compute the trace and the determinant of L. 

Problem 7.2.12 (Su82) Let V be the vector space of all real 3x3 mat+ 
ces and let A be the diagonal matrix (H i ;), 
Calculate the determinant of the linear transformation T on V defined b y  
T ( X )  = $ ( A X  + X A ) .  

Problem 7.2.13 (Sp80) Let MSx3 denote the vector space of real 3x3 
matrices. For any matrix A E M3x3, define the linear operator 
LA : M3,3 -+ MsX3, LA(B)  = AB. Suppose that the determinant of A 
is  32 and the minimal polynomial is  ( t  - 4 ) ( t  - 2). What is  the trace of LA ? 

Problem 7.2.14 (Su81) Let S denote the vector space of real n x n skew- 
symmetric matrices. For a nonsingular matrix A,  compute the determinant 
of the linear map TA : S -+ S, T A ( X )  = AXA-l ,  
Hint: First consider the special cases where ( i )  A is  orthogonal and (i i)  A 
is  symmetric. 

Problem 7.2.15 (Fa94) Let M7x7 denote the vector space of real 7x7 
matrices. Let A be a diagonal matrix in M7x7 that has +1 in four diagonal 
positions and -1 in three diagonal positions. Define the linear transforma- 
t ion T on  M7x7 by T ( X )  = A X  - X A .  What is the dimension of the range 
of T ?  

Problem 7.2.16 (Fa93) Let F be a field. For rn and n positive integers, 
let M,,, be the vector space of ni x n matrices over F. Fix m and n, and 
fi. matrices A and B in Mmxn.  Define the linear transformation T f rom 

T ( X )  = A X B .  
M n x m  to Mmxn by 

Prove that i f  m # n, then T is  not invertible. 
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7.3 Systems of Equations 

Problem 7.3.1 (Su77) Determine all solutions to  the following infinite 
system of linear equations in the infinitely many unknowns X I ,  2 2 , .  . .: 

How many free parameters are required? 

Problem 7.3.2 (Fa77, Su78) 1. Using only the axioms for a field F, 
prove that a system of m homogeneous linear equations in n unknowns 
with m < n and coeficients in F has a nonzero solution. 

2. Use Part 1 to show that ifV is  a vector space over F which is  spanned 
by a finite number of elements, then every maximal linearly indepen- 
dent subset of V has the same number of elements. 

Problem 7.3.3 (Sp88, Sp96) If a finite homogeneous system of linear 
equations with rational coeficients has a nontrivial complex solution, need 
i t  have a nontrivial rational solution? Give a proof or a counterexample. 

Problem 7.3.4 (Sp84, Sp87) Let A be a real m x n matrix with ratio- 
nal entries and let b be a n  m-tuple of rational numbers. Assume that the 
system of equations A x  = b has a solution x in complex n-space CC n .  Show 
that the equation has a solution vector with rational components, or give a 
counterexample. 

7.4 Linear Transformations 

Problem 7.4.1 (Fa77) Let E and F be vector spaces (not assumed to  be 
finite-dimensional). Let S : E --+ F be a linear transformation. 

I .  Prove S (E)  i s  a vector space. 

2. Show S has a kernel ( 0 )  i f  and only i f  S is  injective (i.e., one-to-one). 

3. Assume S is injective; prove S-I : S(E)  -+ E i s  linear 

Problem 7.4.2 (Sp82) Let T : V + W be a linear transformation be- 
tween finite-dimensional vector spaces. Prove that 

dim( ker T )  + dim(range T )  = dim V 
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Problem 7.4.3 (Sp95) Suppose that W c V are finite-dimensional vec- 
tor spaces over a field, and let L: V 3 V be a linear transformation with 
L(V)  C W .  Denote the restriction of L to W b y  Lw. Prove that 
det(1- t L )  = det(1 - tLw) .  

Problem 7.4.4 (Sp95) Let V be a finite-dimensional vector space over a 
field F, and let L : V -+ V be a linear transformation. Suppose that the 
characteristic polynomial x of L i s  written as x = ~ 1 x 2 ,  where x1 and 
x 2  are two relatively prime polynomials with coefficients in F. Show that 
V can be written as the direct sum of two subspaces V1 and V2 with the 
property that x i ( L ) V ,  = 0 (for i = 1 and 2). 

Problem 7.4.5 (Su79) Let E be a three-dimensional vector space over 
Q . Suppose T : E -+ E is  a linear transformation and T x  = y, T y  = z ,  
T z  = x + y, for certain x ,  y, z E E,  x # 0. Prove that x ,  y, and z are 
linearly independent. 

Problem 7.4.6 (Su80) Let T : V -+ V be an invertible linear transfor- 
mation of a vector space V .  Denote by G the group of all maps f k , a  : V --f V 
where k E Z, a E V ,  and for x E V ,  

f r ~ , ~ ( x )  = T k x  + a  ( x  E V ) .  

Prove that the commutator subgroup GI of G is  isomorphic to the additive 
group of the vector space (T - I ) V ,  the image of T - I .  (G’ is  generated by 
all ghg-lh- l ,  g and h in G.) 

Problem 7.4.7 (Sp86) Let V be a jinite-dimensional vector space and A 
and B two linear transformations of V into itself such that A2 = B2 = 0 
and AB -t BA = I .  

1. Prove that i f  NA and NB are the respective null spaces of A and B,  
then N A  = ANB, NB = BNA,  and V = NA @ N B .  

2. Prove that the dimension of V is  even. 

3. Prove that if the dimension of V is  2, then V has a basis with respect 
to which A and B are represented by the matrices 

Problem 7.4.8 (Su84) Let f : Rm --f Bn, n 2 2, be a linear transfor- 
mation of rank n - 1. Let f(v) = (fi(v), fz(v),. .  . , fn(v)) for v E Bm. 
Show that a necessary and suficient condition for the system of inequal- 
ities fi(v) > 0, i = 1,. . . , n, to have no solution is  that there exist real 
numbers X i  2 0 ,  not all zero, such that 

n 

p a  f i  = 0. 
i=l 
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Problem 7.4.9 (Sp95) Let n be a positive integer, and let S c R" a 
finite subset with 0 E S. Suppose that cp : S ---t S i s  a map satisfying 

cp(0) = 0, 
d(cp(s), cp(t)) = d ( s ,  t )  for all s, t E S, 

where d( , ) denotes Euclidean distance. Prove that there is  a linear map 
f : Bn -+ R" whose restriction to S is  cp. 

Problem 7.4.10 (Sp86) Consider R2 be equipped with the Euclidean met- 
ric d ( x ,  y )  = (12 - yII. Let T be an isometry of W2 into itself. Prove that T 
can be represented as T ( x )  = a + U ( x ) ,  where a is  a vector in R2 and U is  
a n  orthogonal linear transformation. 

Problem 7.4.11 (Sp88) Let X be a set and V a real vector space of real 
valued functions on  X of dimension n, 0 < n < 00. Prove that there are 
n points x1,x2,. . . , zn in X such that the map f -+ ( f ( x l ) ,  . . . , f ( x , ) )  of 
V to Wn is  an isomorphism (i.e., one-to-one and onto). (The operations 
of addition and scalar multiplication in V are assumed to be the natural 
ones.) 

Problem 7.4.12 (Sp97) Suppose that X is  a topological space and V i s  
a finite-dimensional subspace of the vector space of continuous real valued 
functions on X .  Prove that there exist a basis ( f 1 ,  . . . , fn)  for V and points 
X I ,  . . . , x ,  in X such that fi (zj) = S i j  . 
Problem 7.4.13 (Fa90) Let n be a positive integer and let Pzn+1 be the 
vector space of real polynomials whose degrees are, at most, 2 n  + 1. Prove 
that there exist unique real numbers c1, . . . , c,  such that 

n 

p ( x )  d x  2p(o) + ck(P(k) + P(-k)  - 2P(o)) s: k=l 

for all p E P2n+l. 

Problem 7.4.14 (Sp94) Let T : W" --t R" be a diagonalizable linear 
transformation. Prove that there is  a n  orthonormal basis for R" with respect 
to which T has an upper-triangular matrix. 

Problem 7.4.15 (Fa77) Let P be a linear operator o n  afinite-dimensional 
vector space over a finite field. Show that i f  P is  invertible, then P" = I 
for some positive integer n. 

Problem 7.4.16 (Fa82) Let A be an n x n complex matrix, and let B 
be the Hermitian transpose of A (a.e., bij = Eji). Suppose that A and B 
commute with each other. Consider the linear transformations a! and /3 o n  
C" defined by A and B. Prove that (Y and /3 have the same image and the 
same kernel. 
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Problem 7.4.17 (Su79, Fa96) Prove that a linear transformation 
T : R3 -+ W3 has 

1. a one-dimensional invariant subspace, and 

2. a two-dimensional invariant subspace. 

Problem 7.4.18 (Fa83) Let A be a linear transformution o n  R3 whose 
matrix (relative to the usual basis for R3) is both symmetric and orthogonal. 
Prove that A is  either plus or minus the identity, or a rotation by 180" about 
some axis in R3, or a reflection about some two-dimensional subspace of 
R3. 

Problem 7.4.19 (Fa84) Let 9 and cp be fixed, 0 6 9 5 27~, 0 5 cp 5 27r 
and let R be the linear transformation from R3 to W3 whose matrix in the 
standard basis 2; 3 and L is 

0 C O S B  sin8 
0 -sin8 cos9 " 1  1 0  

( 
Let S be the linear transformation of R3 to R3 whose matrix in the basis 

1 1 -+ 

-(i++L), 5 -($- k) Jz Jz 
i s  

0 1  

Prove that T = R o S leaves a line invariant. 

Problem 7.4.20 (Sp86) Let e = ( a ,  b, c )  be a unit vector in R3 and let 
T be the linear transformation on W3 of rotation by 180" about e. Find the 
matrix for T with respect to the standard basis e l  = (1,0,0), e2 = (0, l,O), 
and e3 = ( O , O ,  1) .  

Problem 7.4.21 (Su80) Exhibit a real 3x3 matrix having minimal poly- 
nomial (t' +l)( t  - l o ) ,  which, as a linear linear transformation 0fR3, leaves 
invariant the line L through (O,O,  0 )  and (1 ,1 ,1)  and the plane through 
(0, 0,O) perpendicular to L. 

Problem 7.4.22 (Su77) Show that every rotation of lR3 has a n  axis; that 
is, given a 3x3 real matrix A such that At = A-' and det A > 0 ,  prove 
that there is  a nonzero vector v such that Av = v. 

Problem 7.4.23 (Sp93) Let P be the vector space of polynomials over B. 
Let the linear transformation E : P + P be defined by E f  = f + f', where 
f' is the derivative of f .  Prove that E is  invertible. 
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Problem 7.4.24 (Fa84) Let P, be the vector space of all real polynomi- 
als with degrees at most n. Let D : P, --f P, be given by differentiation: 
D ( p )  = p‘. Let T be a real polynomial. What is  the minimal polynomial of 
the transformation n ( D )  ? 

Problem 7.4.25 (Su77) Let V be the vector space of all polynomials of 
degree _< 10, and let D be the diflerentiation operator on  V 
(i.e., D p ( x )  = p’(x)).  

1. Show that t r  D = 0.  

2. Find all eigenvectors of D and e D .  

7.5 Eigenvalues and Eigenvectors 

Problem 7.5.1 (Fa77) Let M be a real 3x3 matrix such that M 3  = I ,  
M # I .  

I. What are the eigenvalues of M ?  

2. Give an example of such a matrix. 

Problem 7.5.2 (Fa79) Let N be a linear operator on  a n  n-dimensional 
vector space, n > 1, such that N n  = 0 ,  N”-‘ # 0. Prove there is  no 
operator X with X 2  = N .  

Problem 7.5.3 (Sp89) Let F be a field, n and m positive integers, and 
A an n x n matrix with entries in F such that A” = 0.  Prove that A” = 0. 

Problem 7.5.4 (Su81, Su82) Let V be a finite-dimensional vector space 
over the rationals Q and let M be a n  automorphism of V such that M j ixes 
no nonzero vector in V .  Suppose that Mp is  the identity map on  V ,  where 
p is  a prime number. Show that the dimension of V is  divisible by p - 1. 

Problem 7.5.5 (Fa92) Let F be a field, V a finite-dimensional vector 
space over F, and T a linear transformation of V into V whose minimum 
polynomial, p,  is  irreducible over F. 

1. Let v be a nonzero vector in V and let Vl be the subspace spanned by  v 
and its  images under the positive powers of T.  Prove that 
dim V1 = deg p.  

2. Prove that deg p divides dim V .  

Problem 7.5.6 (Su79, Fa93) Prove that the matrix 

0 0 5 0  
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has two positive and two negative eigenvalues (counting multiplicities). 

Problem 7.5.7 (Fa94) Prove that the matrix 

1.00001 
l )  ( 1 1.00001 1 

( i  ; !). 

1 1.00001 
1.00001 1 

has one positive eigenvalue and one negative eigenvalue. 

Problem 7.5.8 (Sp85) For arbitrary elements a ,  b, and c in a field F, 
compute the minimal polynomial of the matrix 

Problem 7.5.9 (Fa85, Sp97) Suppose that A and B are endomorphisms 
of a finite-dimensional vector space V over a field F. Prove or disprove the 
following statements: 

1. E,uery eigenvector of AB is  also an eigenvector of BA. 

2. Every eigenvalue of AB is  also an eigenvalue of BA. 

Problem 7.5.10 (Sp78, Sp98) Let A and B denote real n x n  symmet- 
ric matrices such that AB = BA. Prove that A and B have a common 
eigenvector in R" . 

Problem 7.5.11 (Sp86) Let S be a nonempty commuting set of n x n 
complex matrices (n 2 1). Prove that the members of S have a common 
eigenvector. 

Problem 7.5.12 (Sp84) Let A and B be complex n x n matrices such 
that AB = BA2, and assume A has no eigenvalues of absolute value 1. 
Prove that A and B have a common (nonzero) eigenvector. 

Problem 7.5.13 (Su78) Let V be a finite-dimensional vector space over 
a n  algebraically closed field. A linear operator T : V -+ V i s  called com- 
pletely reducible i f  whenever a linear subspace E c V is invariant under 
T (i.e., T ( E )  c E),  there is  a linear subspace F c V which i s  invariant 
under T and such that V = E @ F .  Prove that T is completely reducible if 
and only i f  V has a basis of eigenvectors. 

Problem 7.5.14 (Fa79, Su81) Let V be the vector space of sequences 
(a,) of complex numbers. The shift operator S : V ---f V is defined by 

S ( ( a 1 , a z , a s , * . . ) )  = (a2,a3,a4,...). 

I. Find the eigenvectors of S .  
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2. Show that the subspace W consisting of the sequences (2,) with 
~ n + 2  = xn+l + x n  is  a two-dimensional, S-invariant subspace of V 
and exhibit a n  explicit basis for W .  

3. Find a n  explicit formula f o r  the nth Fibonacci number fn, where 
f 2  = f i  = 1, fn+2 = fn+i  + f n  for n 2 1. 

Note: See also Problem 1.3.10. 

Problem 7.5.15 (Fa82) Let T be a linear transformation on  a finite- 
dimensional C -vector space V, and let f be a polynomial with coeficients 
in C . I f  X is  an eigenvalue of T ,  show that f ( X )  is  a n  eigenvalue of f(T). 
Is every eigenvalue of f(T) necessarily obtained in this way? 

Problem 7.5.16 (Fa83, Sp96) Let A be the n x n  matrix which has zeros 
on the ma in  diagonal and ones everywhere else. Find the eigenvalues and 
eigenspaces of A and compute det(A). 

Problem 7.5.17 (Sp85) Let A and B be two n x n self-adjoint (i.e., Her- 
mitian) matrices over C and assume A is positive definite. Prove that all 
eigenvalues of A B  are real. 

Problem 7.5.18 (Fa84) Let a ,  b, c,  and d be real numbers, not all zero. 
Find the eigenvalues of the following 4x4 matrix and describe the eigenspace 
decomposition of R4 : 

aa ab ac ad 
ba bb bc bd ( ca 

cb cc cd ) ' 
da db dc dd 

Problem 7.5.19 (Sp81) Show that the following three conditions are all 
equivalent for a real 3x 3 symmetric matrix A, whose eigenvalues are a ,  b, 
and c: 

1. trA is  not an eigenvalue of A .  

2. ( a  + b)(b + .)(a + c )  # 0.  

3. The map L : S 4 S is  an isomorphism, where S is  the space of 3 x 3  
real skew-symmetric matrices and L(W) = AW + WA. 

Problem 7.5.20 (Su84) Let 

be a real matrix with a ,  b, c,  d > 0.  Show that A has a n  eigenvector 

with x ,  y > 0 .  
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A =  

-1 2 -1 0 . . -  0 0 0  
0 -1 2 -1 ... 0 0 0  
0 0 -1 2 * . .  0 0 0  

0 0 0 0 * . .  2 -1 0 
0 0 0 0 * . .  -1 2 -1 

. , .  

n 

j=1 

Prove that no eigenvalue of A has an absolute value greater than 1. 

Problem 7.5.24 (Sp85, Fa88) Let A and B be two n x n self-adjoint 
(i.e., Hermitian) matrices over C such that all eigenvalues of A lie in 
[a, a’] and all eigenvalues of B lie in [b, b’]. Show that all eigenvalues of 
A + B  l ie in[a+b,a’+b’] .  

Problem 7.5.25 (Fa85) Let k be real, n an integer 2 2,  and let A = (ai j )  
be the n x n matrix such that all diagonal entries aii = k,  all entries a i i f l  
immediately above or below the diagonal equal 1, and all other entries equal 
0. For example, i f  n = 5, 

A = [  i) 
Let Amin and Amax denote the smallest and largest eigenvalues of A,  re- 
spectively. Show that Amin 5 k - 1 and Amax 2 k + 1. 

Problem 7.5.26 (Fa87) Let A and B be real n x n  symmetric matrices 
with B positive definite. Consider the function defined fo r  x # 0 by  

k 1 0 0 0  

O O O l k  
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1. Show that G attains its maximum value. 

2. Show that any maximum point U for G is an eigenvector for  a certain 
matrix related to A and B and show which matrix. 

Problem 7.5.27 (Fa90) Let A be a real symmetric n x n matrix that is  
positive definite. Let y E B", y # 0.  Prove that the limit 

exists and is  a n  eigenvalue of A. 

7.6 Canonical Forms 

Problem 7.6.1 (Sp90, Fa93) Let A be a complex n x n matrix that has 
finite order; that is, Ak = I for some positive integer lc. Prove that A is  
diagonalizable. 

Problem 7.6.2 (Sp84) Prove, or supply a counterexample: If A i s  an 
invertible n x n complex matrix and some power of A i s  diagonal, then A 
can be diagonalized. 

Problem 7.6.3 (Fa96) Let 

A = (  -1 2 -1 2 -4). 
0 -1 

Show that every real matrix B such that AB = BA has the form 

B = aI + b A  + c A 2  

for some real numbers a ,  b, and c. 

Problem 7.6.4 (Fa78) Let 

1 2  
A = (  I - 1 ) .  

Express A-' as a polynomial in A with real coefficients. 

Problem 7.6.5 (Sp81) For 2 E B, let 

1 1 1  

A T = (  1 1 x 1 .  ' )  
l l l x  
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1. Prove that det(A,) = ( x  - l ) ' (x  + 3 ) .  

2. Prove that ifz # 1, -3 ,  then A;' = -(z - 1)-'(x + ~ ) - ' A - , - z .  

Problem 7.6.6 (Sp88) Compute AIO for the matrix 

A =  
-1 -1 1 

Problem 7.6.7 (Fa87) Calculate Aloe and A-7, where 

Problem 7.6.8 (Sp96) Prove or disprove: For any 2x2 matrix A over 
C , there is a 2x2 matrix B such that A = B2.  

Problem 7.6.9 (Su85) 1 .  Show that a real 2x2 matrix A satisfies 
A2 = -I if and only if 

.tm -P 
'F- 

A =  ( 
9 

where p and q are real numbers such that pq >_ 1 and both upper or 
both lower signs should be chosen in the double signs. 

2. Show that there is no real 2x2 matrix A such that 

with E > 0.  

Problem 7.6.10 (Fa96) Is there a real 2x2 matrix A such that 

A 2 0 =  ( -l 0 -1-& O ) ?  

Exhibit such an A or prove there is none. 

Problem 7.6.11 (Sp88) For which positive integers n is there a 2x 2 ma- 
trix 

with integer entries and order n; that is, A" = I but A' # I for  0 < k < n? 

See also Problem 7.7.9. 
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Problem 7.6.12 (Sp92) Find a square root of the matrix 

( 1  H T). 
How many square roots does this matrix have? 

Problem 7.6.13 (Sp92) Let A denote the matrix (; 0 0 0 0 .  i ;  i )  
For which positive integers n is  there a complex 4 x 4  matrix X such that 
X'L = A? 

Problem 7.6.14 (Sp88) Prove or disprove: There is  a real n x n matrix 
A such that 

A2 + 2A+ 5I = 0 

if and only i f  n is  even. 

Problem 7.6.15 (Su83) Let A be an n x n EIermitian matrix satisfying 
the condition 

A5 + A 3  + A  = 3I 

Show that A = I .  

Problem 7.6.16 (Su80) Which of the following matrix equations have a 
real matrix solution X ?  (It is  not necessary to exhibit solutions.) 

I .  

0 0 0  

2 3 0  
x3=( 1 0  0 ) .  

2. 

3 5 0  
2 X 5 + X = (  0 9 0  5 1 9 ) ,  

3. 

x6 + 2x4 + lox = (! 3 7  
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x 4 = ( 0  3 4  3 0 0 ) .  

0 0 -3 

Problem 7.6.17 (Sp80) Find a real matrix B such that 

2 0 0  
B * = (  0 0 -1 2 0 ) .  1 

Problem 7.6.18 (Fa87) Let V be a finite-dimensional vector space and 
T : V --j V a diagonalizable linear transformation. Let W c V be a linear 
subspace which is  mapped into itself by T .  Show that the restriction of T to  
W is  diagonalizable. 

Problem 7.6.19 (Fa89) Let A and B be diagonalizable linear transfor- 
mations of R" into itself such that AB = BA. Let E be an eigenspace of 
A. Prove that the restriction of B to  E i s  diagonalizable. 

Problem 7.6.20 (Fa83, Sp87) Let V be a finite-dimensional complex vec- 
tor space and let A and B be linear operators on  V such that AB = BA. 
Prove that if A and B can each be diagonalized, then there is  a basis for V 
which simultaneously diagonalizes A and B. 

Problem 7.6.21 (Sp80) Let A and B be n x n complex matrices. Prove 
or dispro*ue each of the following statements: 

1. If A and B are diagonalizable, so is  A + B. 

2. If A and B are diagonalizable, so is  AB. 

3. If A2 = A, then A is diagonalizable. 

4. If A is  invertible and A2 is  diagonalizable, then A i s  diagonalizable. 

Problem 7.6.22 (Fa77) Let 

A = (  -2 -4 1 5 )  . 

Find a real matrix B such that B-IAB is  diagonal. 

Problem 7.6.23 (Su77) Let A : R6 -+ R6 be a linear transformation 
such that = I .  Show that R6 = VI @ VZ @ V3, where Vl, V2, and V3 are 
two-dimensional invariant subspaces for A. 
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Problem 7.6.24 (Sp78, Sp82, Su82, Fa90) Determine the Jordan Canon- 
ical Form of the matrix 

A = ( :  1 2 3  E i ) .  

A = ( l  2 1 1  2 1). 
Problem 7.6.25 (Su83) Find the eigenvalues, eigenvectors, and the Jor- 
dan Canonical Form of 

1 1 2  

considered as a matrix with entries in F3 = 2/32. 

Problem 7.6.26 (Su83) Let A be a n  n x n complex matrix, and let x and 
p be the characteristic and minimal polynomials of A. Suppose that 

x ( x )  = P ( X ) ( X  - 4 7  
p ( x ) 2  = X ( X ) ( X 2  + 1). 

Determine the Jordan Canonical Form of A. 

Problem 7.6.27 (Fa78, Fa84) Let M be the n x n matrix over a field F, 
all of whose entries are equal to 1. 

I .  Find the characteristic polynomial of M .  

2. Is M diagonalizable? 

3. Find the Jordan Canonical Form of M and discuss the extent to which 
the Jordan form depends on  the characteristic of the field F. 

Problem 7.6.28 (Fa86) Let M z X 2  denote the vector space of complex 
2x 2 matrices. Let 

and let the linear transformation T : M2x2 -+ M2x2 be defined by 
T ( X )  = X A  - A X .  Find the Jordan Canonical Form for T .  

Problem 7.6.29 (Fa88) Find the Jordan Canonical Form of the matrix 

‘ 1  0 0 0 0 0 
1 1 0 0 0 0  
1 0 1 0 0 0  
1 0 0 1 0 0  
1 0 0 0 1 0  

, 1 1 1 1 1 1  
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Problem 7.6.30 (Fa89) Let A be a real, upper-triangular, n x n matrix 
that commutes with its transpose. Prove that A is diagonal. 

Problem 7.6.31 (Su78) 1. Prove that a linear operator T : C " 3 C 
is  diagonalizable i f  for  all X E C , ker(T - Af)" = ker(T - XI), where 
I is  the n x n identity matrix. 

2. Show that T i s  diagonalizable i f  T commutes with i ts  conjugate trans- 
pose T* (i.e., ( T * ) j k  = %). 

Problem 7.6.32 (Fa79) Let A be a n  n x n complex matrix. Prove there 
is  a unitary matrix U such that B = UAi7-l i s  upper triangular: B j k  = 0 
f o r  j > k. 
Problem 7.6.33 (Sp81) Let b be a real nonzero n x 1 matrix (a column 
vector). Set hl = bbt (an n x n matrix) where bt denotes the transpose of b. 

1. Prove that there is  an orthogonal matrix Q such that QMQ-I = D 
is  diagonal, and find D .  

2. Describe geometrically the linear transformation M : RrL -+ R". 
Problem 7.6.34 (Sp83) Let M be a n  invertible real n x n matrix. Show 
that there is a decomposition M = U T  in which U is  a n  n x n  real orthogonal 
matrix and T is  upper triangular with positive diagonal entries. Is this 
decomposition unique? 

Problem 7.6.35 (Su85) Let A be a nonsingular real n x n matrix. Prove 
that there exists a unique orthogonal matrix Q and a unique positive definite 
symmetric matrix B such that A = QB. 

Problem 7.6.36 (Sp95) Let A be the 3x3 matrix 

(;l ; 5). 
Determine all real numbers a for which the limit limn-,m anAn exists and 
i s  nonzero (as a matrix). 

Problem 7.6.37 (Fa96) Suppose p is  a prime. Show that every element 
of GLz(F,) has order dividing either p2 - 1 or p(p - 1). 

7.7 Similarity 

Problem 7.7.1 (Fa80, Fa92) Let 

1 0 0  
A = (  1: i ) .  
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Is A similar to 
B = ( :  1 1 0  : :)I 

Problem 7.7.2 (Fa78) Which pairs of the following matrices are similar? 

(: P ) ]  ( P  : ) I  ( ;  P ) '  ( P  i 1 ) 1  

( ;  : l ) '  (: :1)1 (: :>- 
Problem 7.7.3 (Sp79) Which of the following matrices are similar as 
matrices over Iw ? 

( a ) (  : ! "); ( b ) ( :  ! 

( d )  ( 0  1 1 1 0 1 )  ( . ) ( :  : P ) '  (f(P : : ) .  
Problem 7.7.4 (Sp79) Let M be an n x n complex matrix. Let GII .~  be 
the set of complex numbers X such that the matrix AM i s  similar to M .  

( c ) (  0 0 1  ; ! 0 0 1  1 0 0  

1 0 0  1 1 0  0 1 1  

1. What is  GM i f  
M = ( i  0 0 4  : :)7 

2. Assume M is  not nilpotent. Prove Gill is  finite. 

Problem 7.7.5 (Su80, Fa96) Let A and B be real 2x2 matrices with 
A2 = B2 = I ,  AB + B A  = 0. Prove there exists a real nonsingular matrix 

Problem 7.7.6 (Su79, Fa82) Let A and B be n x n matrices over a field 
F such that A2 = A and B2 = B .  Suppose that A and B have the same 
rank. Prove that A and B are similar. 

Problem 7.7.7 (Fa97) Prove that i f  A is  a 2x2 matrix over the integers 
such that A" = I for some strictly positive integer n, then 

Problem 7.7.8 (Fa80) Exhibit a set of 2x2 real matrices with the follow- 
ing property: A matrix A is  similar to exactly one matrix an S provided A 
is  a 2x2 invertible matrix of integers with all the roots of its characteristic 
polynomial on  the unit circle. 

= I .  
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Problem 7.7.9 (Su78) Let G be a finite multiplicative group of 2x2 in- 
teger matrices. 

1. Let A E G. What can you prove about 

(a) det A ?  
(ii) the (real or complex) eigenvalues of A ?  

(iii) the Jordan or Rational Canonical Form of A ?  
(iv) the order of A ?  

2. Find all such groups up to isomorphism. 

See also Problem 7.6.11. 

Problem 7.7.10 (Fa81, Su81, Sp84, Fa87, Fa95) Let A and B be two 
real n x n matrices. Suppose there is  a complex invertible n x n matrix U 
such that A = UBU-I .  Show that there i s  a real invertible n x n matrix 
V such that A = VBV-' . ( In  other words, if two real matrices are similar 
over C , then they are similar over R.) 

Problem 7.7.11 (Sp91) Let A be a linear transformation on  an n-di- 
mensional vector space over C such that d e t ( x 1 -  A) = ( x  - 1)". Prove 
that A is  similar to A-'. 

Problem 7.7.12 (Sp94) Prove or disprove: A square complex matrix, A ,  
is  similar to its transpose, At .  

Problem 7.7.13 (Sp79) Let &I be a real nonsingular 3x3 matrix. Prove 
there are real matrices S and U such that M = SU = U S ,  all the eigen- 
values of U equal 1, and S is  diagonalizable over C . 

Problem 7.7.14 (Sp77, Sp93, Fa94) Find a list of real matrices, as long 
as possible, such that 

the characteristic polynomial of each matrix i s  ( x  - l)"x + l ) ,  

0 the minimal polynomial of each matrix is  ( x  - l ) 2 ( x  + I), 
no two matrices in the list are similar to each other 

Problem 7.7.15 (Fa95) Let A and B be nonsimilar n x n complex ma- 
trices with the same minimal and the same characteristic polynomial. Show 
that n 2 4 and the minimal polynomial is  not equal to the characteristic 
polynomial. 

Problem 7.7.16 (Sp98) Let A be an n x n complex matrix with 
trace(A)  = 0.  Show that A is similar to a matrix with all 0's along the 
main diagonal. 



130 7. Linear Algebra 

7.8 Bilinear, Quadratic Forms, and Inner Product 
Spaces 

Problem 7.8.1 (Sp98) Let A,  B,  . . . , F be real coeficients. Show that the 
quadratic f o rm 

Ax2 + 2 B x y  + C y 2  + 2 0 x 2  + 2 E y z  + F z 2  

is  positive definite i f  and only if 

Problem 7.8.2 (Fa90) Let W3 be 3-space with the usual inner product, 
and (a ,b , c )  E W3 a vector of length 1. Let W be the plane defined by 
a x  + by + cz = 0.  Find, in the standard basis, the matrix representing the 
orthogonal projection of EX3 onto W .  

Problem 7.8.3 (Fa93) Let w be a positive continuous function on  [0,1], 
n a positive integer, and P,, the vector space of real polynomials whose 
degrees are at most n, equipped with the inner product 

1 

(PI 4 )  = 1 P ( t ) d t M t )  d t .  
0 

1. Prove that P, has an orthonormal basis PO,  P I , .  . . , p a  
(i. e., ( p j ,  P A )  = 1 for j = k and 0 for j # k) such that degpk = k for 
each k. 

2. Prove that (pk,p;) = 0 for each k. 

Problem 7.8.4 (Sp98) For continuous real valued functions f ,  g on  the 
interval [-I, 11 define the inner product (f , g )  = f l  f ( x ) g ( x ) d x .  Find that 
polynomial of the form p ( x )  = a + bx2 - x4 which is orthogonal on  [-1,1] 
to all lower order polynomials. 

Problem 7.8.5 (Su80, Fa92) Let E be a finite-dimensional vector space 
over a field F. Suppose B : E x E d  F is  a bilinear map (not necessarily 
symmetric). Define subspaces 

El = {x E E I B(x ,  y )  = 0 f o r  all y E E } ,  

E2 = { y E E I B( x ,  y )  = 0 for all x E E }  

Prove that d i m  El = d i m  Ez. 

Problem 7.8.6 (Su82) Let A be a real n x n matrix such that (Ax,  x )  2 0 
for every real n-vector x .  Show that Au = 0 if and only i f  Atu = 0.  



7.8 Bilinear, Quadratic Forms, and Inner Product Spaces 131 

Problem 7.8.7 (Fa85) An n x  n real matrix T is  positive definite if T is  
symmetric and ( T x ,  x )  > 0 for  all nonzero vectors x E R", where (u, v )  is 
the standard inner product. Suppose that A and B are two positive definite 
real matrices. 

1. Show that there is  a basis { v l ,  v2,. . . , v,} of R" and real numbers 
XI, X 2 ,  . . . , A, such that, f o r  1 5 i ,  j 5 n: 

and 

2. Deduce f rom Part 1 that there is  an invertible real matrix U such that 
UtAU is  the identity matrix and UtBU i s  diagonal. 

Problem 7.8.8 (Sp83) Let V be a real vector space of dimension n, and 
let S : V x V -+ R be a nondegenerate bilinear form. Suppose that W i s  a 
linear subspace o f V  such that the restriction of S to W x W is  identically 
0 .  Show that we have dim W 6 n/2. 

Problem 7.8.9 (Fa85) Let A be the symmetric matrix 

-2 -2 10 

Let x denote the column vector 

xi E R, and let xt denote i ts  transpose ( x l , x2 ,  x3). Let 1x1 denote the length 
of the vector x .  As x ranges over the set of vectors fo r  which xtAx = 1, 
show that 1x1 is  bounded, and determine i ts  least upper bound. 

Problem 7.8.10 (Fa97) Define the index of a real symmetric matrix A 
to be the number of strictly positive eigenvalues of A minus the number of 
strictly negative eigenvalues. Suppose A, and B are real symmetric n x n 
matrices such that xtAx 5 x tBx  for  all n x 1 matrices x .  Prove the the 
index of A is  less than or equal to the index of B.  

Problem 7.8.11 (Fa78) For x ,  y E C", let ( x ,  y )  be the Hermitian inner 
product Cj x j g j .  Let T be a linear operator on  C such that ( T x ,  T y )  = 0 
i f  ( x ,  y )  = 0.  Prove that T = kS f o r  some scalar k and some operator S 
which is  unitary: (Sx ,  S y )  = ( x ,  y) f o r  all x and y .  
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Problem 7.8.12 (Sp79) Let E denote a finite-dimensional complex vec- 
tor space with a Hermitian inner product ( x ,  y )  . 

1 .  Prove that E has an orthonormal basis. 

2. Let f : E -+ C be such that f (2 ,  y) is  linear in x and conjugate linear 
in y .  Show there is  a linear map A : E 3 E such that 
f (2 ,  Y )  = (Ax,  9). 

Problem 7.8.13 (Fa86) Let a and b be real numbers. Prove that there are 
mutually orthogonal unit vectors u and v in R3 such that u = ( u l 1 u 2 , a )  
a n d v = ( v l , v 2 , b )  i f a n d o n l y i f a 2 + b 2 1 1 .  

7.9 General Theory of Matrices 

Problem 7.9.1 (Fa81) Prove the following three statements about real 
n x n matrices. 

1. If A is  an orthogonal matrix whose eigenvalues are all diflerent f r o m  
-1, then In + A  is  nonsingular and S = (In - A)(In + A)-l  is  skew- 
symmetric. 

2. If S is  a skew-symmetric matrix, then A = (ITb - S ) ( I n  + S)-' is  an 
orthogonal matrix with no eigenvalue equal t o  -1. 

3. The correspondence A c-) S f r o m  Parts 1 and 2 is  one-to-one. 

Problem 7.9.2 (Fa79) Let B denote the matrix 

(;: o o c  " )  
where a ,  b, and c are real and laJ ,  Jbl, and 1c1 are distinct. Show that there 
are exactly four symmetric matrices of the f o r m  BQ, where Q is  a real 
orthogonal matrix of determinant 1. 

Problem 7.9.3 (Sp79) Let P be a 9 x 9  real matrix such that 
x t P y  = ytPx for  all column vectors x ,  y in Rg. Prove that P is  singu- 
lar. 

Problem 7.9.4 (Fa79) Let A be a real skew-symmetric matrix 
(Aij = -Aji). Prove that A has even rank. 

Problem 7.9.5 (Fa80, Sp96) Suppose that A and B are real matrices 
such that At = A, 

vtAv 2 0 



7.9 General Theory of Matrices 133 

for all v E Rn and 
AB+BA=O.  

Show that AB = BA = 0 and give an example where neither A nor B is  
zero. 

Problem 7.9.6 (Sp78) Suppose A is  a real n x n matrix. 

1. Is it true that A must commute with its transpose? 

2. Suppose the columns of A (considered as vectors) f o r m  an orthonor- 
ma1 set; is  i t  true that the rows of A must also f o r m  an orthonomnal 
set? 

5 6.9 Problem 7.9.7 (Sp98) Let M I  = (; z), M2 = ( 23 J4), M3 = ( -3 -*). 
For which (if any) a,  1 5 a 5 3, is  the sequence (M,") bounded away from 
00 ? For which i is  the sequence bounded away f rom 0 ? 

Problem 7.9.8 (Su83) Let A be an n x n  complex matrix, all of whose 
eigenvalues are equal to 1. Suppose that the set {A" I n = 1 ,2 ,  . . .} is  
bounded. Show that A is  the identity matrix. 

Problem 7.9.9 (Fa81) Consider the complex 3x 3 matrix 

a0 a1 a2 

where ao, a l ,  a2 E C . 

1. Show that A = aoI3 + alE + a2E2, where 

0 1 0  

E = ( Y  :). 
2. Use Part 1 to find the complex eigenvalues of A. 

3. Generalize Parts 1 and 2 to n x n  matrices. 

Problem 7.9.10 (Su78) Let A be a n x n real matrix. 

1. If the sum of each column element of A is  1 prove that there is  a 
nonzero column vector x such that Ax = x. 

2. Suppose that n = 2 and all entries in A are positive. Prove there is a 
nonzero column vector y and a number X > 0 such that Ay = Xy. 
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Problem 7.9.11 (Sp89) Let the real 2n  x 2 n  matrix X have the form 

( a  z) 
where A, B, C ,  and D are n x n matrices that commute with one another. 
Prove that X is  invertible i f  and only i f  A D  - BC is  invertible. 

Problem 7.9.12 (Sp89) Let B = (bij):,;=l be a real 20 x 20 matrix such 
that 

bii = 0 for 15 i 5 20, 

bij E {l,-1} for 1 2 i , j  5 20, i # j .  

Prove that B is nonsingular. 

Problem 7.9.13 (Sp80) Let 

Show that every real matrix B such that AB = BA has the form sI + tA, 
where s, t E R. 

Problem 7.9.14 (Su84) Let A be a 2x2 matrix over C which i s  not a 
scalar multiple of the identity matrix I. Show that any 2x2 matrix X over 
C commuting with A has the fo rm X = aI + PA, where a ,  P E C . 

Problem 7.9.15 (Sp77, Su82) A square-matrix A i s  nilpotent i f  Ak = 0 
for some positive integer k. 

1. If A and B are nilpotent, is  A + B nilpotent? 

2. Prove: If A and B are nilpotent matrices and AB = BA, then A- t  B 
is  nilpotent. 

3. Prove: If A is  nilpotent then I + A and I - A are invertible. 

Problem 7.9.16 (Sp77) Consider the family of square matrices A(O) de- 
fined by the solution of the matrix differential equation 

with the initial condition A ( 0 )  = I, where B i s  a constant square matrix. 

1. Find a property of B which is  necessary and suficient for A(@) to be 
orthogonal for all 0; that is, A(0) t  = A(O)-', where 
A ( 0 ) t  = transpose of A ( 0 ) .  
Hint: What is  &A-l(O)? 
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2. Find the matrices A(8) corresponding to 

B = (  -1 0 ' )  
and give a geometric interpretation. 

Problem 7.9.17 (Su77) Let A be a n  r x r matrix of real numbers. Prove 
that the infinite sum 

of matrices converges (i.e., for each i , j ,  the sum of ( i l j ) t h  entries con- 
verges), and hence that eA is  a well-defined matrix. 

Problem 7.9.18 (Sp97) Show that 

det(exp(M)) = etr(M) 

for any complex n x n matrix M ,  where exp(M) is defined as in Prob- 
lem 7.9.17. 

Problem 7.9.19 (Fa77) Let T be an n x n complex matrix. Show that 

lim T'" = 0 
k-+m 

if and only i f  all the eigenvalues of T have absolute value less than 1. 

Problem 7.9.20 (Sp82) Let A and B be n x n  complex matrices. Prove 
that 

Itr(AB*)I2 5 tr(AA*)tr(BB*). 

Problem 7.9.21 (Fa83) Let F ( t )  = ( f i j ( t ) )  be a n  n x n  matrix of contin- 
uously diflerentiable functions fij : R + R, and let 

u( t )  = tr ( ~ ( t ) ~ )  . 

Show that u is  diflerentiable and 

u'(t) = 3 t r  ( F ( t ) 2 F ' ( t ) )  . 

Problem 7.9.22 (Fa84) Let A and B be n x n  real matrices, and k a pos- 
itive integer. Find 

1. 

1 
lim - ((A + tB)'" - A'") 
t h o  t 
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2. 

d 
-tr ( A  + tB)kl . 
dt t =o 

Problem 7.9.23 (Fa91) 1. Prove that any real nxn  matrix M can be 
written as M = A+S+cI, where A i s  antisymmetric, S i s  symmetric, 
c is  a scalar, I is  the identity matrix, and tr S = 0. 

2. Prove that with the above notation, 

1 
n 

tr(M2) = tr(A2) + tr(S2) + -(trM)’. 

Problem 7.9.24 (Sp98) Let N be a nilpotent complex matrix. Let r be a 
positive integer. Show that there is  a n x n complex matrix A with 

A ‘ = I + N .  

Problem 7.9.25 (Fa94) Let A = (a , J )~ ,= l  be a real n x n matrix such 
that a,, 2 1 f o r  all i, and xa;J < 1. 

Z#J 

Prove that A i s  invertible. 

Problem 7.9.26 (Fa95) Show that an n x n matrzx of complex numbers 
A satisfying 

for 1 5 i 5 n must be invertible. 

Problem 7.9.27 (Sp93) Let A = ( a i j )  be an n x n matrix such that 
Cj”=, laijl < 1 f o r  each i. Prove that I - A is  invertible. 

Problem 7.9.28 (Sp94) Let A be a real n x n matrix. Let M denote the 
maximum of the absolute values of the eigenvalues of A .  

I. Prove that if A is symmetric, then JIAxJJ 4 M J J x J J  fo r  all x in R”. 
(Here, 1 1  . 1 1  denotes the Euclidean norm.) 

2. Prove that the preceding inequality can fail i f  A is  not symmetric. 

Problem 7.9.29 (Sp97) Let R be the ring of n x n matrices over a field. 
Suppose S is  a ring and h : R + S is a homomorphism. Show that h i s  
either injective or zero. 
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Solutions 



Real Analysis 

1.1 Elementary Calculus 

Solution to 1.1.1: Let f(8) = cosp13 - (cos8)P. We have f(0) = 0 and, 
for 0 < 8 < ~ / 2 ,  

f’(0) = -psinpO + pcosp-l8sin8 
sin 8 -sinPo+------- 

cosl-p e 
> O  

since sin is an increasing function on [0,71/2] and cosl-PO E (0, l ) .  We con- 
clude that f(8) > 0 for 0 < 8 5 7r/2, which is equivalent to the inequality 
we wanted to establish. 

Solution to 1.1.2: Let IC E [0,1]. Using the fact that f(0) = 0 and the 
Cauchy-Schwarz Inequality [MH93, pag. 691 we have, 
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and the conclusion follows. 

Solution to 1.1.3: As f' is positivc, f is an increasing function, so we 
have, fort  > 1, f ( t )  > f(1) = 1. Therefore, for t > 1, 

so 
P X  

7r 
=1+-- ;  

4 

hence, limx+OO f(z) exists and is, at most, 1 + 2. The strict inequality 
holds because 

Solution to 1.1.4: Denote the common supremum of f  and g by M .  Since 
f and g are continuous and [0,1] is compact, there exist a,  /3 E [0,11 with 
f(a) = g ( p )  = M .  The function h defined by h(z )  = f(z) - g(z) satisfies 
h(a)  = M - g ( a )  2 0 ,  h(P) = f(P) - M 5 0. Since h is continuous, it has 
a zero t E [a, PI. We have f(t)  = g ( t ) ,  so f(t)2 + 3 f ( t )  = g ( t ) 2  + 3g(t) .  

Solution to 1.1.5: Call a function of the desired form a periodic polyno- 
mial, and call its degree the largest k such that x' occurs with a nonzero 
coefficient. 

If a is 1-periodic, then A(af) = aAf for any function f, so, by the 
Induction Principle [MII93, pag. 71, A"(uf) = aA" f  for all n. 

We will use Complete Induction [MH93, pag. 321. For n = 1, the result 
holds: Af = 0 if and only if f is 1-periodic. Assume it is true for 1, . . . , n- 1. 
If 

is a periodic polynomial of degree, at most, n - 1, then 

f = a0 + a1z + . . . + an-lzn-l 

A"f = a l A n x  + . . . + a,-lAz"-l 

and the induction hypothesis implies that all the terms vanish except, 
maybe, the last. We have A"(zn-') = An-'A(zn-'), a polynomial of 
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degree n - 2 by the Binomial Theorem [BML97, pag. 151. So the induction 
hypothcsis also implies An(xnP1) = 0 and the first half of the statement 
is established. 

For the other half, assume An f = 0. By the induction hypothesis, A f 
is a periodic polynomial of degree, at most, n - 2. Suppose we can find 
a periodic polynomial 9, of degree, at most, n - 1, such that Ag = A f .  
Then, as A(f - 9) = 0, the function f - g will be 1-periodic, implying that 
f is a periodic polynomial of degree, at most, n - 1, as desired. Thus, it is 
enough to prove the following claim: If h is a periodic polynomial of degree 
n (n = 0,1, . . .), then there is a periodic polynomial g of degree n + 1 such 
that Ag = h. 

If n = 0, we can take g = hx. Assume h has degree n > 0 and, as an 
induction hypothesis, that the claim is true for lower degrees than n. We 
can then, without loss of generality, assume h = axn, where a is 1-periodic. 
By the Binomial Theorem, 

is a periodic polynomial of degree n - 1, so it equals Ag,, for some periodic 
polynomial g1 of degree n, and we have h = Ag, where 

a x r ~ + l  

g = -  + 91 n + l  

as desired. 

Solution to 1.1.6: 
1. For 

0 for t # 0 
1 for 1 = 0 

wc have limt+Og(t) = limt-,Of(t) = 0 but limt,o f (g(t)) = 1. 
2. f ( t )  = t2 maps the open interval (-1,l) onto [O, l), which is not open. 
3. Let X , Z O  E (-1,l). By Taylor’s Theorem [Rud87, pag. 1101, there is 

E (-1,l) such that 

.”. 
k=O 

so 
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ab - 1 acos t2 bsintz = - 
1 acostl bsintl 

1 acostg bsint3 

for any xo E (-1,l) and f is real analytic. 

Solution to 1.1.8: 1. Suppose f : [0,1] + ( 0 , l )  is a continuous surjection. 
Consider the sequence (2,) such that x, E f-' ((0, lln)). By the Bolzano-- 
Weierstrass Theorem [Rud87, pag. 401, [MH93, pag. 1531, we may assume 
that ( x T L )  converges, to z E [0,1], say. By continuity, we have f(z) = 0, 
which is absurd. Therefore, no such a function can exist. 
2. Isin2nxI. 
3. Suppose g : (0 , l )  + [0,1] is a continuous bijection. Let 20 = g-'(O) 
and 2 1  = g-l( l ) .  Without loss of generality, assume $0 < x1 (otherwise 
consider 1 - 9). By the Intermediate Value Theorem [Rud87, pag. 931, 
we have g([xo, xl])  = [0,1]. As 20~x1 E (0, l),  g is not an injection, which 
contradicts our assumption. 

1 cost1 sintl 
1 cost2 sirit2 
1 cost3 sintg 

Solution to 1.1.9: Using the parameterization 

x = acost, y = bsint, 

a triple of points on the ellipse is given by 

(acost,,bsint,), i = 1,2 ,3 .  

, 2n 27r 
tz = t l + -  and t3 = t2+ - 

3 3 

that is, when the corresponding triangle inscribed in the unit circle is reg- 
ular. 

Solution to 1.1.10: Assume that a and b are in A and that a < b. Suppose 
a < c < b. Let (2,) and (y,) be sequences in [0, m) tending to +a such that 
a = limn-+m f(x,) and b = limb-,m f(yn) .  Deleting finitely many terms 
from each sequence, if necessary, we can assume f(z,,) < c and f(yn)  > c 
for every n. Then, by the Intermediate Value Theorem [Rud87, pag. 931, 
there is for each n a point z, between x, and yn such that f(z,) = c. Since 
obviously limn+oo z,  = +a, it follows that c is in A, as desired. 

Solution to 1.1.12: Let g be a polynomial, 

g(x) = a0 + q ( 2  - a )  + a2(x - a)2 + . . . + an(x - a)". 
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If we take 

a calculation shows that the requirements on g are met. 

Solution to 1.1.13: Suppose that all the roots of p are real and let 
degp = n. We have p ( z )  = ( z  - T I ) ~ ~ ( X  - ~ 2 ) ~ ~  . . . (  x -  TIC)?^^, where 
7-1 < 7-2 < ... < T ~ C  and En, = n. By differentiating this expression, 
we see that the rL7s are roots of p’ of order n, - 1 when nL > 1. Sum- 
ming these orders, we see that we have accounted for n - k of the possible 
n - 1 roots of p’. Now by Rolle’s Theorem [MH93, pag. 2001, for each i, 
1 5 i 5 k - 1, there is a point sz, rZ < s, < 7-,+1, such that p’(s,) = 0. 
Thus, we have found the remaining Ic - 1 roots of p‘, and they are distinct. 
Now we know that a is a root of p’ but not of p ,  so a # T, for all i. But a is 
a root of p”, so a is a multiple root of p’; hence, a # sl for all i. Therefore, 
a is not a root of p’, a contradiction. 

Solution to 1.1.14: Let II: E R and h > 0. By the Taylor’s Formula 
[Itud87, pag. 1101, there is a w E ( x , ~  + 2h) such that 

f(. + 2h) = f(x) -t 2hf’(z) + 2h2f”(w),  

f’(z) = (f(. + h) - f (.)) /2h - h f”(W).  

or rewriting 

Taking absolute values and applying our hypotheses, we get 

Using elementary calculus, we see that the right-hand side is, at most, 
2 m .  

Solution to 1.1.15: Consider the function f(.) = logx/x. We havc 
ab = b“ iff f ( a )  = f(b). Now f’(z) = (1 - logx)/x2, so f is increasing 
for 5 < e and decreasing for J: > e. For the above equality to hold, we must 
have 0 < a < e ,  so a is either 1 or 2, and b > e. For a = 1, clearly there 
are no solutions, and for a = 2 and b = 4 works; since f is decreasing, this 
is the only solution. 

Solution 2. Clearly, a and b have the same prime factors. As b > a ,  we 
must have b = ka,  with k > 1. Now b” = (Ica)“ = ab implies that Ic is a 
power of a,  so b = am for some m > 1. Now b” = ama = a“ exactly when 
m a  = aTn, which can easily be seen to have the unique solution a = m = 2. 
So a = 2 and b = 2’ = 4. 
Solution 3. Let b = a ( l  + t), for some positive t. Then the equation ab = b” 
is equivalent to any of the following 

m 

( 4 1  + t))“ aa(’+t) = 
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(a")l+t = a a ( l +  t)" 
( a y  = (1 + t)" 

at = 1 + t. 
We have, by the power series expansion of the exponential function, that 

et > 1 + t for positive t ,  so a < e. As a = 1 is impossible, we conclude 
a = 2. The original equation now becomes 

2b = b2 

which, considering the prime decomposition of b, clearly implies b = 4. 

Solution to 1.1.16: The equation can be rewritten as arb = x ,  or 

log x 
X b  
- = loga. 

There is thus a solution for x if and only if loga is in the range of 
x H (logx)/xb. Using elementary calculus, we get that the range of this 
function is (-00, llbe]. We conclude then that the original equation has a 
positive solution for x if and only if loga 5 l / b e ,  that is, if and only if 
1 < a < 

Solution to 1.1.17: Let f(x) = 3zxp3 for x > 0. We have 

3"(x log 3 - 3)  3 
> O  for x > - .  

2 4  log 3 f '(4 = 

As 3/log3 < 3 < 7r ,  we have f ( 3 )  = 1 < f ( 7 r )  = 3T/7r3, that is, 7r3 < 3". 

Solution to 1.1.18: Fix a in ( l , ~ ) ,  and consider the function 
f ( x )  = axx:-a on (l,co), which wc try to minimize. Sincc logf(x) = 
x log a - a log x, we have 

f ' ( X )  a 
- = loga - - , f ( X I  X 

showing that f ' ( x )  is negative on (1,e) and positive on (6 ,co). 
Hence, f attains its minimum on ( 1 , ~ )  at the point x ,  = &, and 

log f ( x a )  = a - a l o g  - =a log  - (&) 
The number a thus has thc required property if and only if 2 1. 
To see which numbers a in (1 , co )  satisfy this condition, we consider the 
function g(y) = % on (1, co). We have 

1 -logy 
d ( Y )  = y2 , 
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from which we conclude that g attains its maximum on (1,co) at y = e, the 
maximum value being g(e) = $. Since g(y) < $ on (1, oo) \ {e} ,  we conclude 
that < 1 for a in (1, a), except for a = e. The number a = e is thus 
the only number in (1, co) with the required property. 

Solution to 1.1.19: Let g(z) = e“/zt for z > 0. Since g(z) -+ co as 
z t 0 and as x -+ 00, there must be a minimum value in between. At the 
minimum, 

g’(z) = exz-t(l - t / z )  = 0, 

so the minimum must occur at IC = t ,  where 

g(z) = g ( t )  = et / t t  = 

Thus, 

and the right-hand side is strictly larger than zt if and only if t < e. 

Solution to 1.1.20: 
polynomial [PMJ85, pag. 1271 on this interval: 

f can be written as its second degree Maclaurin 

where (‘ is between 0 and x. Letting x = &l/n  in this formula and combin- 
ing the results, we get, for n 2 1, 

for some a,, 0, E [- 1,1]. As f”’ is continuous, there is some M > 0 such 
that If”’(z)l < M for all z E [-1,1]. Hence, 

Solution to 1.1.21: Using Taylor’s Theorem [Rud87, pag. 1101, 

f(. + h) - f(z) = f’(z)h + 2 f”(z) h2 for some z E (z, z + h)  

and similarly 

f ( ~  - h) - f(z) = -f’(z)h + 7 f”(w) h2 for some w E (z - h, z) . 
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The result follows by adding the two expressions, dividing by h2, and taking 
the limit when h -+ 0. 

Solution to 1.1.23: 1. The geometric construction 

A 
1 " 

- - 
T I 2  0 

shows that 
2 7r s i n 0 2  -0 for 0 5  0 5 -. 
7r 2 

An analytic proof can be written down from the fact that the sin function 
is concave down (second derivative negative) in the interval 0 5 8 5 f. 

It can also be seen from the following geometric construction due to Feng 
Yuefeng [YueSG]: , 

OB = OM + IMP 2 OA==+ PZQ 2 P'ZQ 
3 Tsin0 2 20 

20 
==+ sin0 2 -. 

T 
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2. The integral inequality 

J o  

is called Jordan’s Lemma [MH87, pag. 3011. Our limit is then 

R d9 e- R sin 0 d O =  lim RX-’ e- R sin 0 
R-+W 

Solution 2. We have 

As cos9 2 112 for 0 5 9 <: r / 3 ,  and sine is an increasing function on 
[0,7r/2], we haw 

Solution to 1.1.24: Let T = R\S, T is dense in W because each rionempty 
interval contains uncountably many numbers. 

Fix p E T and define F : R --+ R by 

F ( z )  = LZ j ( t )dt .  

F vanishes on T, so, as it is continuous, F vanishes on R. Therefore, we 
have F’ = f f 0. 

Solution to 1.1.25: f‘(c) = 0 for some c E (0, l), by Rolle’s Theorem 
[MH93, pag. 2001. The concavity of f shows that f is increasing on (0,c) 
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and decreasing on (c, 1). The arc length of the graph of f on [0, c] is 

where & E (kc/n, ( I c  + l)c/n). By the Mean Value Theorem [Rud87, pag. 
1081 we can assume the &’s satisfy 

We get 

n-I 

= c + f ( c )  

so L[O,l] I c + f(c) + 1 - c + f(c) 5 3. 
since f is increasing. A similar reasoning shows that L(,,1) _< 1 - c + f(c). 

Solution to 1.1.26: The convergence of JT If’(z)ldz implies the conver- 
gence of ST f’(z)dz, which implies that limz.+m f(z) exists. If that limit 
is not 0, then Cr=, f(n) and J y  f(z)dz both diverge. We may therefore, 
assume that limz-m f(z) = 0. Then &, f(z)dz -+ 0 as r -+ 00 (where 
17-1 is the greatest integer 5 T ) ,  implying that ST f(z)dz converges if and 
only if limn--tm J: f(z)dz exists (where n here tends to 00 through integer 
values). In other words, the convergence of J y  f(z)dz is equivalent to the 
convergence of C,”==, A” f (z)dz .  It will therefore, suffice to prove that 
C,”=l I J:+’ f (z)dz - f(n)l < 00. We have 

n+l 

= Ln+’ 1 f‘(t)ldt . 

Hence, x,”=l Is,”” f(z)dz - f(n)l 5 

Solution to 1.1.27: We have 

If’(t)ldt < 00, as desired. 

I+)I = 14.) - 401 5 1x1 
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so 
5 
6 

Equality can be achieved if Iu(x)I = x and I.(.) - 11 = 5 + 1. This is the 
case for ~ ( x )  = -x which is in E. 

Solution to 1.1.29: Let 

t 
u( t )  = 1 + 2 1 f ( s ) d s .  

We have 
.’(t) = 1 + 2 f ( t )  5 2m, 

so 

therefore, 
f ( t )  i &@ i 1 -t t .  

Solution to 1.1.30: We will show b must be zero. By subtracting and 
multiplying by constants, we can assume a = 0 5 b. Given E > 0, choose 
R > 1 such that 

Iv(xc)l 5 E 

cp’(z> 2 b / 2  2 0 

and 

for all z 2 R. By the Fundamental Theorem of Calculus [MH93, pag. 2091, 

so 

For x = 5Rl we get 
b I EIR 5 E. 

Since E > 0 was arbitrary, we must have b = 0. 
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Solution to 1.1.31: Let 0 5 kl < k2 < 1, then for all x E ( 0 , ~ / 2 ) ,  

-kl C O S ~  x > -kz C O S ~  x 
dl - k1 cos2 x > J1 - k2 cos2 x 

1 1 < dl - k l  cos2 x d1- k2 cos2 x 
T/2 1 TI2 1 dx . 1 dl - klcos2x dx < 1 dl - k2 cos2 x 

Solution to 1.1.32: With the change of variables y = x h ,  we have 

so 

Solution to 1.1.33: Let 

G(u, U ,  X) = et2+xt dt. 

1 
tet d t  = - ( e  - 3 ) .  F’(0) = -1 + I” 2 

Solution to 1.1.34: 1. Let f(z) # 0. Then 

so f(x) = f(-x) and f is even. 

2. We will show now that j ( f i x )  = (f(x))” for real x and natural n, 
using the Induction Principle [MH93, pag. 71. The result is clear for n = 1. 

Also, f ( O ) f ( ~ )  = f ( ~ ) ,  SO f(0) = 1. 
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Assume it holds for n = k. We have 

f ( m x )  = f  (/W) 

If p, q E W, then 
f(P) = f (P2 = (f(l))” 

and 

from which follows 

0 If f(1) > 0, we have 

SO, by continuity on R,  

If f (1) = 0, then f vanishes on a dense set, so it vanishes everywhcre, 
contradicting the hypothesis. 

0 To see that f(1) < 0 cannot happen, consider p even and g odd. We 
get f ( p / q )  > 0, so f is positive on a dcnsc set, and f(1) >_ 0. 

Note that we used only the continuity of f and its functional equation. 
Differentiating, we easily check that f satisfies the differential equation. 

The most general function satisfying all the conditions is then 

with 0 < c < 1. 

Solution 2. 1. Let 3: = y = 0. Then f ( 0 ) 2  = f ( O ) ,  so f(0) = 0 or 1. If 
f(0) = 0, then 0 = f(@) for any z, so, in fact, f(x) = 0 for all x > 0. 
If f(y) # 0 for any y, then f(x)f(y) = 0 implies f(z) = 0 for all 2, so 
f(x) = 0 for all z if f(0) = 0. Since we assumc f is nonzero, we must havc 
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f(0) = 1. Then evaluating at y = 0 gives f(x) = f ( a )  = f(-x), so f is 
an even function. 
2. Differentiate with respect to y to get 

f(df’(Y) = f’(%/ 
where r = d m  and rV denotes the partial derivative of r with respect 
to y. Differentiate again to get 

f(4f”(Y) = f l l ( r ) r ;  + fW%/ . 

f ’ (4  = f” (0)2f (4  

f(.) = , f”(O)z2/2 

Since ry = y / r  and rVy = x 2 / r 3 ,  we get 

for y = 0. The solution of this differential equation is 

and since f vanishes at infinity, we must have f”(0)/2 = -7 < 0. Thus, 
f(x) = e - 7 ~ ~  for some positive constant y. 

1.2 Limits and Continuity 

Solution to 1.2.1: Consider f(x) = sinx. The Mean Value Theorem 
[Rud87, pag. 1081 implies that 

f(.) - f(Y) = f’(W - Y) = ( c o s m  - Y) for some I E (01 1 ) 1  

and since I cost1 < 1, this implies 

If(.) - f ( Y ) l  < 111: - YI whenever x # y. 

However, if M < 1 were such that 

If(.) - f(Y)I < Mia: - YI for all Zl Y E I ,  

then, putting x = 0 and letting y -+ 0, we would get If’(0)l 5 M < 1, 
which contradicts the fact that f ’ (0 )  = 1. 

Solution to 1.2.2: Suppose f is not continuous at E [0,1]. Then, for 
some E > 0, there is a sequence (x,) converging to E with lf(x,) - f ( E ) I  > E 

for all n. By the first condition, there is a sequence (y,) such that y, lies 
between [ and x, and If(9,) - f(c)l = E. Then 

Yn E f-l ( f ( ~ )  + &)u.I-’ (.I(<) - E )  6 6 f-l (.I(t) + E)u.I-~ ( f ( ~ )  - E )  7 
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which contradicts the second condition. 

Solution to 1.2.3: 1. Let f1 be the restriction off  to [0,2]. The ranges of 
f and f1 are the same, by periodicity, so f attains its extrema. 
2. Let 6 > 0. fl is uniformly continuous, being a continuous function defined 
on a compact set, so there is E > 0 such that 

Ifl(a) - f l ( b ) J  < 6 for a , b ~  [0,2], la- bJ < E .  

Let z,y E lR with Iz - yl < E .  Then, there are $1, z 2  = z1 + 1, y1, 
~2 = 91 + 1 E [O, 21 with f(.i) = f(z2) = f(z), f ( ~ i )  = f ( ~ 2 )  = f(y), and 
15% - yj l  < E for some choice of i , j  E {1,2}, and the conclusion follows. 
3. Let f attain its maximum and minimum at el and &,  respectively. Then 

and 

as f is continuous, the conclusion follows from the Intermediate Value T h e  
orem [Rud87, pag. 931. 

Solution to 1.2.4: Let (z,) be a sequence of numbers in [ O ,  1) converging 
to zero. As h is uniformly continuous, given 6 > 0 we can find E > 0 such 
that Ih(z) - h(y)l < 6 if Iz - yI < E ;  therefore, we have 

f ( G  + r) - f ( E 1 )  5 0 f ( l 2  + r) - f ( l n )  L 0; 

Ih(zn) - h(Gn)l < 6 

for n and m large enough. (f(z,)) is a Cauchy sequence then, so it con- 
verges, to <, say. If (y,) is another sequence with limit zero, a similar ar- 
gument applied to t ( % ~ ) ,  f (y l ) ,  . . . shows that limf(9,) = c. The function 
g : [0,1] -+ R given by 

is clearly the unique extension of h to [0,1]. 

Solution to 1.2.5: Let E be the set of discontinuities of f .  We have 
E = El U E2 U ES U Eq, where 

Ei = {z E E 1 f(z-) = f(z+) < f(z)) E 2  = {z E E I f(z-) > f(z+)) 

E3 = {Z E E I f ( ~ - )  = f(z+) > f(~)} E4 = {X E E I f(x-) < f(z+)}. 
For z E El, let a, E Q be such that f(z-) < a, < f(z+). Now take 
b,, c, E Q in such a way that b, < x < c, and 

b, < t < cz , z # t implies f ( t )  < a,. 

This map cp : El 3 Q 3  given by z H (a, ,b, ,c,)  is injective since 
(a,,b,,c,) = ( a y , b y , c y )  implies f(y) < a, < f (y)  for z # y. So El is, 
at  most, countable. 
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For z E Ez,  take a, E Q with f(z-) > a, > f(z+) and choose b,,c, E 
Q such that b, < z < c, and 

b, < t < z implies f ( t )  > a,  

and 

this map is an injection E2 -+ Q 3 ,  so Ez is, at most, countable. 

of countable sets is countable, the result follows. 
Solution 2. Define the function o : R -+ W by 

t < c, implies f ( t )  < a,; 

Similar methods lead to analogous results for E3 and E4. As the union 

4.1 = max{lf(z) - f(z+)I , If(.) - f(z->l}; 
observe that o(z) > 0 if and only if z is a discontinuity of f .  

For each n E N, let the set D, be given by 

D,, = {z E R I o(z) 2 l/n}. 

It is clear that the set of discontinuities off is D = u;?, Drh. We shall prove 
that each D, has no accumulation points, so, it is countable. If a E D,, 
using the fact that f(a+) = lim,,,+ f(z), we can find S > 0 such that, for 
all z, a < z < a + 6, we have 

that is, for every point in this interval, ~ ( z )  5 1/2n. In the same fashion, 
we can find an open set a - 6 < z < a such that no point is in D,, showing 
that D, is made up of isolated points so it is countable, and so is D. 

Solution to 1.2.6: By Problem 1.2.5, it is enough to show that f has 
lateral limits at all points. We have, for any z E R,  

since f is an increasing function. 

Solution to 1.2.7: Fix E > 0. For each z E [0,1], let 6, be as in the 
hypothesis and I ,  = (z - S,, z + 6,). The open intervals {I,} cover [0,1] 
so, by compactness and the HeineBorel Theorem [Rud87, pag. 301, we can 
choose a finite subcover 

[O, 11 c u IZZ u . . . u I,= . 

Let M = max{f(zi) + E } .  If z E [0,1] then f(z) < M and f is bounded 
from above. 



1.2 Limits and Continuity 155 

Let N be the least upper bound of f on [0,1]. Then there is a sequence 
of points (2,) such that (f(z,)) tends to N from below. Since [0,1] is 
compact, by the Bolzano-Weierstrass Theorem [Rud87, pag. $01 , [MH93, 
pag. 1531, (2,) has a convergent subsequence, so (by passing to a subse- 
quence) we may assume that ( zn)  converges to some p E [0,1]. By the 
upper semicontinuity of f and the convergence of (f(z,)), we have, for n 
sufficiently large, f(z,) < f(p) + E and N < f(z,) + E. Combining these, 
we get f(p) 5 N < f(p) + 2 ~ .  Since this holds for all E > 0, f(p) = N .  

Solution to 1.2.8: Suppose f : ILB --f IW is continuous, maps open sets to 
open sets but is not monotonic. Without loss of generality assume therc are 
three real numbers a < b < c such that f ( a )  < f ( b )  > f(c). By Weierstrass 
Theorem [MH93, pag. 1891, f has a maximum, M ,  in [a,c] ,  which cannot 
occur at a or b. Then f((a,c)) cannot be open, since it contains M but 
does not contain M f E for any positive E. We conclude then that f must 
be monotonic. 

Solution to 1.2.9: The inequality given implies that f is one-to-one, so f 
is strictly monotone and maps open intervals onto open intervals, so f(R) 
is open. 

Let z,  = f ( zTL)  be a sequence in f(R) converging to z E R. Then z, 
is Cauchy, and, by the stated inequality, so is z,. Let z = limz,. By 
continuity we have f(z) = f(limz,) = limf(zn) = z so f(R) is also 
closed. Thus, f(R) = R. 

Solution to 1.2.10: 1. For E > 0 let 

L = max (If(.)/ + 1) and 0 < S < min { &, l}. 
XEIO,11 

and 

so 

2. Wc will show that 
1 

lim n z:"(f(z) - f ( 1 ) ) d x  = 0. I 
For E > 0 let 6 be such that If(.) - f(l)l < ~ / 2  if z E [l - 6,1]. We have 
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and the result follows. 
Now it suffices to notice that 

Solution to 1.2.11: Suppose that f is not continuous. Then there exist E > 
0, z E [O, 11, and a sequence (2,) tending to z such that 
If(z)-f(z,)l 2 E for all n. Consider the sequence ((tc,, f(z,))) in G f .  Since 
the unit square is compact, by Bolzano-Weierstrass Theorem [Rud87, pag. 
401, [MH93, pag. 1531, this sequence has a convergent subsequence; using 
this subsequence, we may assume that ((zn, f(z,))) converges to some 
point (y, z). Then we must have the sequence (5,) converging to y; so, by 
the uniqueness of limits, z = y. Since Gf is closed, we must have z = f(z). 
Hence, (f(z,)) converges to f(z), contradicting our assumption. 

Solution to 1.2.12: For each y 6 [0,1], consider the function 
gy(x) = f (z ,y) .  Then g(z) = supg,(z). The family {gy} is equicontin- 
uous because f is uniformly continuous. It suffices then to show that the 
pointwise supremum of an equicontinuous family of functions is continuous. 
Let E > 0, xo E [0,1]. There is yo such that 

Let 6 be such that if I T  - sI < 6, then lgv(r) - gv(s)I < E for all y, and 
1x0 - 211 < 6. For some y1, we have that 

gyl(z1) I g(z1> < gy1(21) + E -  

Further, by equicontinuity of {gy}, we have the two inequalities 
lgg,(zo> - gyo(m)l < E and lgY,(zn) - gyl(xi)l < E. By combining them 
we get 

gyo(z0) < g y o ( 4  $- E < g(z1) + E < gyl(zl) + 2.5 

QYl(21) < gyl(E0) + E < dzo) + E < gyobo) + 2. 
and 

These two inequalities imply lgyl(zl) - gyo(zg)( < 2 ~ .  This, combined with 
the first two inequalities, shows that Ig(z0) - g ( q ) I  < 3e. Since this holds 
for all E and zo and all 2 1  close to zo, g is continuous. 
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1.3 Sequences, Series, and Products 

showing that the limit equals Al .  

Solution to 1.3.2: Let p l  = 1, pz  = (2/1)2, p3 = (3/2)3, ..., 
p ,  = (n/(n - l)),. Then 

PlP2. . .Pn - nrL _ -  
n n! ' 

and since p ,  + e ,  we have lim(nn/n!)lln = e as well (using the fact that 

Solution 2. As the exponential is a continuous function, L = exp(lim,,, L,) 
where 

= I). 

1 
n 

L, = l o g n -  -( l og1+ log2+ . . .+ logn)  . 

Since 

log 1 + log 2 +. . . + log(n - 1) 2 logz dz = nlogn - n + 1, 

we have 

L,  2 ( l - l / n ) logn- logn+l - l /n  = 1-(l+logn)/n + 1 as n+ co. 

On the other hand, 
r 7 ~  

log 1 + log 2 + . . . + log 71.2 logzdz = n logn - n + 1, 
Jl 

so 
L, < l o g n - ( n l o g n - n + l ) / n = l - l / n .  

Hence, 

so L,  -+ 1 and L = exp( 1) = e. 

Solution to 1.3.3: Obviously, z, 2 1 for all n; so, if the limit exists, it is 
2 1, and we can pass to the limit in the recurrence relation to get 

1 - (1 + logn)/n 5 L, 5 1 - l / n ,  

3+2zma 
3 + 2 ,  ' 

zoo = 

in other words, zk + z, - 3 = 0. So z, is the positive solution of this 
quadratic equation, that is, zm = ;(-1 + a). 
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To prove that the limit exists, we use the recurrence relation to get 
3 + 22, 3 + 2zn-1 
3+z,  3+zn-1 

z,+1 - 2, = ~ - 

Hence, Izn+l - z,1 5 512, - ~ ~ ~ - 1 1 .  Iteration gives 

1 
3'1 . 4  

lzn+l - 2,1 5 3-7L1z1 - 201 = -. 

The series E,"=,(zn+l - z,), of positive tcrms, is dominated by the con- 
vergent series Cr=l 3-" and so converges. We have E~o=l(z,L+l - 2,) = 
limn.+m z, - z1 and we are done. 
Solution 2. To prove the existence of the limit it is enough to notice that 
if g is defined by 

3 
we have 

lg'(z)l 5 Is I 1 for z 2 1 

and apply the Fixed Point Theorem [Rud87, pag. 2201. 

Solution to 1.3.5: By the given relation z, - zn-l = (a  - l)(zn - z,-1). 
Therefore, by the Induction Principle [MH93, pag. 71, we have 5 ,  -z,-1 = 
(a  - l)n-l(zl - 20). Hence, 

2, - zo = c ( z k  - Z k - 1 )  = ( 5 1  - 20) C(a - 1)k--1. 
k l  t=1 

Taking limits, wc get 

(1 - a)zo + z1 lim z, = 
n-cc 2 - a  

Solution 2. The recurrence relation can be cxpressed in matrix form as 

1-a ( x'L+l ) = A  ( 27L ) , where A =  ( ) XTl Xn-1 

Thus. 

( zlI1 ) = A" ( :: ) . 
A calculation shows that the eigenvalues of A are 1 and a - 1, with corre- 
sponding eigenvectors '111 = (1, l ) t  and '112 = (a  - 1,l)" A further calculation 
shows that 

2 - a  
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Hence, 

Since la - 11 < 1 we have lim-.,m(a - 1)'' = 0, and we can conclude that 

(1 - Q)Zo + 21 lim z, = 
n+w 2 - a  

Solution to 1.3.6: The given relation can be written in matrix form as (z;zl) = where A = (2[%1). The required periodicity holds 
if and only if Ak = (A y ) .  The characteristic polynomial of A is X2 - 
2X + 1, so the cigenvalues of A are c f d n .  A nccessary condition for 
Ak = (A ;) is that the eigenvalucs of A be k t h  roots of unity, which implies 
that c = cos (y), j = 0 , 1 , .  . ., [el. If c has the preceding form and 
0 < j < 5 (i.e., -1 < c < l),  then the eigenvalues of A are distinct (i.e., A 
is diagonalizable), and the equality Ak = (i ;) holds. If c = 1 or -1, then 
the eigenvalues of A are not distinct, and A has the Jordan Canonical Form 
[HK61, pag. 2471 (i :) or ( i1 21), respectively, in which case Ak # (A y ) .  
Hence, the desired periodicity holds if and only if c = cos (7) , where j is 
an integer, and 0 < j < k / 2 .  

Solution to 1.3.7: If limz,, = z E R ,  we have z = a + z2; so 

and we must have a 5 1/4. 

by the 
nondecreasing. Also, 

2 2  Conversely, assume 0 < a 5 1/4. As %,+I -x,, = ~,--z,-~, we conclude, 
Induction Principle [R/I€I93, pag. 71, that the given sequence is 

, 1 1 1  
- a + z, i - i- - = - 

4 4 2  Xn+1 - 

if z, < 1/2, which shows that the sequence is bounded. It follows that the 
sequence converges when 0 < a 5 1/4. 

Solution to 1.3.8: Clcarly, 0 5 zn+l = z,(l - z:) 5 2, 5 ... 5 z1 for 
all n. Thus, 

and therefore 

2 ,+1  = Z n ( l  - XX) 2 X,(1- z;) , 
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Since log(1- zt) = O(xf) as k --+ 00, the sum converges to a finite value 
L as n + 00 and we get 

liminf z, 2 z1 exp(L) > 0 . 
n-cc 

Solution to 1.3.9: 1. We have 

f(x) = - - z -  - 
2 ( :)” 

so z, is bounded by 1 /2  and, by the Induction Principle [MH93, pag. 71, 
nondecreasing. Let X be its limit. Then 

and, as the sequence takes only positive values, 

2. It is clear, from the expression for f above, that 

1 
2 

1 3 
f(x) 1 -- for z >  - 2 2 

f(z) 5 2 for 21 -- 

and 

therefore, the sequence diverges for such initial values. 
On the other hand, if 111: - 1/21 < 1, we get 

so, for these initial values, we get 

Solution to 1.3.10: Suppose that lim f n + l / f n  = a < 00. a 2 1 since the 
the sequence f n  is increasing. We have 

Taking the limit as n tends to infinity, we get (since a # 0) 
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1 
a = l + -  

a 
or 

a2 - a - 1 = 0. 

This quadratic equation has one positive root, 

l + &  c p =  -. 
2 

We show now that the sequence ( fTL+l/fn)  is a Cauchy sequence. Apply- 
ing the definition of the fn's, we get 

Since fn is an increasing sequence, 

fn-l(fn-1 - f n - 2 )  2 0 

or 
f,",-I + fn-lfn-2 2 2fn-lfn-2.  

fn-1 

By substituting this in and simplifying, we get 

By the Induction Principle [M€I93, pag. 71, we get 

fni-1 fn 

Therefore, by the Triangle Inequality [MH87, pag. 201, for all m > n, 

Since the series C Yn converges, the right-hand sidc tends to  0 as m and 
n tend to infinity. Hence, the sequence (fn+l/fn) is a Cauchy sequence, 
and we are done. 

Solution to 1.3.11: We have 

1 

k = l  
n + l  2n 
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which is a Riemann sum for Ji(l+ x)-’dx corresponding to the partition 
of the interval [0,1] in n subintervals of equal length. Therefore, we get 

Solution 2. Using the inequalities 

we get 

2n 2n 

k = n + l  k=n+l  
I c -  

> c 2n r c >  1 c 2n zlog 1 ( “ I ) *  ~ = log ( fi - k i l )  

k=nfl k=n+l k=,n -t 1 

therefore, we have 

2n . 

k=n+l  

and the result follows. 
Solution 3. We have 

-4 . . . .+- = I +  1 1 
n + l  2n n 

1 + - - 2  (; - + . . .  +’) 
= + 5 + . - .  2n 2n 

1 1 - I - - + . . .  - 1 +--- 
2 2 n - 1  2n 

and the result now follows from the Maclaurin expansion [PMJ85, pag. 
1271 of log(1 + x). 
Solution to 1.3.12: Let n > 0. For m 2 n, we have 

k=n  
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where 

k=n 

Taking the limsup, with respect to m, we have 

x, 2 limsupx,, - [,. 

Thc series C kKz convergcs, so lia,,, [, = 0. Considering the liminf 
with respect to n, we get 

m+cm 

lim inf z, 2 lim sup zm - lim inf tn 2 lim sup xm. 
rn-cc n-cc m+m 71+00 

The reverse inequality also holds, so limx, exists. 

Solution to 1.3.13: Fix S > 0, and choose no such that E, < S for all 
n 2 no. Then 

and, by the Induction Principle [MH93, pag. 71, 

6 
l - k  ano+m < kmano + (1 + k +.  . . + km-')6 < kmano + ~. 

Letting m --+ 00, we find that 

6 
limsupa, 5 -. 

n-oo l-lC 

Since 6 is arbitrary, we have limsup,,, a, 5 0, and thus (since a,  > 0 
for all n) limn,m a, = 0. 

Solution to 1.3.14: If (z,) is unbounded, then, without loss of generality, 
it has no finite upper bound. Take xnl = XI and, for each k E N, x,, such 
that x,, > max{k, x,,-~}. This is clearly an increasing subsequence of x,. 

If x, is bounded, it has a convergent subsequence: limy,, = t, say. y, 
contains a subsequence converging to <+ or one converging to E - .  Suppose 
(z,) is a subsequence of (y,) converging to e+. Let z,, = z1 and, for k 2 1, 
let < 5 z,, < znk-l. This is a monotone subsequence of (x,). 

Solution to 1.3.15: Suppose that there are x > 1, E > 0 such that 
Ibm/b, - X I  2 E for all 1 5 n < m. Since lim(b,/b,+l) = 1, for all k 
sufficiently large there exists an integer nk > k such that b,/bk < x if 
m < nk and bm/bk > x if m > nk. In particular, for each k ,  
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h k + l  

b k  b k  

bk  2& -- bns+l 1 2  2&- > - > 0. 
bn k bTLk 

. 

or 

As n k  tends to infinity as k does, the left hand side should tend to 0 as k 
tends to infinity, a contradiction. 

Solution to 1.3.16: 1. Using the Ratio Test [Rud87, pag. 661, we have 

12n)!(3n)! 
n!(4n)! 

(2n+2)!(3n+3)! 
- n!(4n)!(2n + 2)(2n + 1)(2n)!(3n + 3)(3n + 2)(3n + 1)(3n)! 

(2n)!(3n)!(n + l)n!(4n 4- 4)(4n t 3)(4n + 2)(4n + 1)(4n)! 

- (2n + 2) (2n  + 1)(3n + 3)(3n + 2)(3n + 1) 
(n + 1)(4n + 4)(4n -t 3)(4n + 2)(4n + 1) 

27 
+ - < 1  

64 
so the series converges. 

2. Comparing with the series C l /(n logn), which can be seen to diverge 
using the Integral Test [Rud87, pag. 1391, 

- 

(n+1)!(4n+4)! 

- 

we conclude that the given series diverges. 

Solution to 1.3.17: 1. Assume that x u r L  < 00. As (G - 6)' = 
a,+l+ an - 2,/-, wc have 

m 00 

2. Since c (alL + a n + l )  = 2 c d-+~  (fi - & ) 2 1  we require a 
sequence a,  = b i ,  b,  > 0, such that C bnbn+l < 00 but C (b,+l - bn) = 
00. One such example is 

2 

if n isodd 
if n is even. 

b n = {  n 

Solution to 1.3.18: As 

an+l nb(log n)c 
lim 1 

(n + l)b(logn + 1)" an 

the series converges absolutely for la1 < 1 and diverges for la1 > 1. 
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0 a = l .  

(i) b > 1. Let b = 1 + 2 ~ ;  we have 

and, as the series C n--(l+') converges, the given series converges 
absolutely for b > 1. 

(ii) b = 1. The series converges (absolutely) only if c > 1 and di- 
verges if c I 1, by the Integral Test [Rud87, pag. 1391. 

(iii) b < 1. Comparing with the harmonic series, we conclude that 
the series diverges. 

0 a = -1. By Leibniz Criterion [Rud87, pag. 711, the series converges 

1 
lim = O  

which is equivalent to  b > 0 or b = 0 ,  c > 0. 

exactly when 

nb(1og n ) c  

Solution to 1.3.19: Note that 

that is, 

so the given series and 

converge or diverge together. They converge when z > 1/2. 

Solution to 1.3.20: If a 5 0 ,  the general term does not go to zero, so the 
series diverges. If a > 0, we have, using the Maclaurin series [PMJ85, pag. 
1271 for s inz,  

1 . 1  1 
n n 6n3 
- sin - = ~ + ~ ( n - ~ )  (n -+ ..I - 

and, therefore, 

Thus, the series converges if and only if 3a > 1, that is, a > 1/3. 
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Solution to 1.3.21: For n = 1 , 2 , .  . . the number of terms in A that are 
less than 10" is 9" - 1, so we have 

=lox (i), 
7121 

< 00. 

Solution to 1.3.22: Let S be the sum of the given series. Let No = 0. By 
convergence, for each k > 0 there exists an N k  > N k - 1  such that 

For N k  -t 1 I n 5 N k + 1  let cn = 2". We have limc, = 00. As the terms are 
all positive, we may rearrange the sum and get 

00 00 Nk+i 

C cnan = C C cnan 
n=l k=O Nk+l 

00 00 

k=O Nk+l 
M 

= 2 - k s  
k=O 

= 2s.  

Solution 2. The convergence of the given series shows that there is an 
increasing sequence of positive integers (Nk)  with C,"==,, a,  < for 
each k. Let 

1 if n < ZV1 
k if Nk I: n < N k + 1 .  

c71 = 

Then c,, -+ 00, and 
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Solution to 1.3.23: Using the formula sin2x = 2sinxcosz and the 
Induction Principle [MH93, pag. 71, starting with sin f = 1, we see that 

IT IT IT 1 
2 23 271 2n-I sin $ cos cos - . * .cos - = 

since sin x N x (x --f 0). 

1.4 Differential Calculus 

Solution to 1.4.1: Lemma 1: If (xn) is a n  infinite sequence in the Jinite 
interval [a,  b],  then it has a convergent subsequence. 

Consider the sequence yk = sup{z, I n 2 k}. By the least upper bound 
property, we know that yk exists and is in [a ,  b] for all k .  By the definition of 
supremum, it is clear that the yk's form a nonincreasing sequence. Let y be 
the infimum of this sequence. From the definition of infimum, we know that 
the yk's converge to y. Again, by the definition of supremum, we know that 
we can find 2,'s arbitrarily close to each y k ,  so we can choose a subsequence 
of the original sequence which converges to y. 

Lemma 2: A continuous function f on  [a,  b] is bounded. 
Suppose f is not bounded. Then, for each n, there is a point x, E [a,  b] 

such that l f (x7L)1  > n. By passing to a subsequence, we may assume that 
the xTl's converge to a point z E [a ,  b] .  (This is possible by Lemma 1.) Then, 
by the continuity of f at x, we must have that If(.) - f(z,)l < 1 for n 
sufficiently large, or I f  (x,)l < 1 f (.)I + 1, contradicting our choice of the 
xn's. 

Lemma 3: A continuous function f on [a ,  b] achieves its extrema. 
It will suffice t o  show that f attains its maximum, the other case is 

proved in exactly the same way. Let M = supf and suppose f never 
attains this value. Define g(x )  = M - f(x). Then g(z) > 0 on [a,  b],  so l/g 
is continuous. Therefore, by Lemma 2, l/g is bounded by, say, N. Hence, 
M - f(x) > l/N, or f (z) < M - 1/N, contradicting the definition of M .  
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Lemma 4: If a differentiable function f on (a ,  b)  has a relative extremum 

Define the function g by 
at a point c E (a ,  b ) ,  then f’(c) = 0.  

fo-f(.) for z # c 
for x = c 

and suppose g(c)  > 0. By continuity, we can find an interval J around 
c such that g(z)  > 0 if z E J .  Therefore, f(z) - f(c) and 2 - c always 
have the same sign in J ,  so f(z) < c if z < c and f(x) > f ( c )  if z > c. 
This contradicts the fact that f has a relative extremum at c. A similar 
argument shows that thc assumption that g ( c )  < 0 yields a contradiction, 
so we must have that g(c)  = 0. 

Lemma 5 (Rolle’s Theorem [MH93, pag. 2001): Let f be continuous 
on  [a,b] and diflerentiable on  ( a , b )  with f ( a )  = f ( b ) .  There is a point 
c E (a ,  b)  such that f ’ (c)  = 0.  

Suppose f ’ ( c )  # 0 for all c E (a ,  b) .  By Lemma 3, f attains its extrema 
on [a,  b ] ,  but by Lcmma 4 it cannot do so in the interior since otherwise the 
derivative at that point would be zero. Hence, it attains its maximum and 
minimum at the endpoints. Since f ( a )  = f ( b ) ,  it follows that f is constant, 
and so f ’ ( c )  = 0 for all c E ( a ,  b ) ,  a contradiction. 

Lemma 6 (Mean Value Theorem [Rud87, pag. 1081): I f f  is a 
continuous function on [a,  b ] ,  differentiable on  (a ,  b) ,  then there is c E (a ,  b) 

Define the function h(z )  = f ( x ) ( b  - a )  - x ( f ( b )  - f ( a ) ) .  h is continuous 
on [a ,b] ,  differentiable on (a ,b ) ,  and h(a )  = h(b). By Lemma 5, there is 
c E ( a , b )  such that h’(c) = 0. Differentiating the expression for h yields 
the desired result. 

There is a point c such that f ( b ) - f ( a )  = f ’ (c)(b-a) ,  but, by assumption, 
the right-hand side is 0 for all c. Hence, f ( b )  = f ( a ) .  

Solution to 1.4.2: 1. We have exp(f(z)) = (1 + l/x)”, which is an in- 
creasing function. As the exponential is also increasing, so is f .  
2. We have 

such that f ( b )  - f ( ~ )  = f ’ ( c ) (b  - a) .  

= 0. log(z 3- 1) - logz l /(x + 1) - 1/x 
lim f(x) = lim = lim 
2-0 2-0 11. 2-0 -1/x2 

On the other hand, 

lim (1 + :)x = e 
r-cc 

so limz-+m f ( z )  = 1. 

Solution to 1.4.4: Suppose y assumes a positive maximum at [. Then 
y(J) > 0, y’([) = 0, and y”(J) 5 0, contradicting the differential equa- 
tion. Hence, the maximum of y is 0. Similarly, y cannot assume a negative 
minimum, so y is identically 0. 
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Solution to 1.4.5: 1. Suppose u has a local maximum at 20 with u(z0) > 0. 
Then u”(z0) 5 0, but u”(z0) = ezou(zo) > 0 and we havc a contradiction. 
So u cannot have a positive local maximum. Similarly, if u has a local 
minimum at 50, then u”(z0) 2 0, so we must have ~ ( 5 0 )  2 0 and u cannot 
have a negative local minimum. 
2. Suppose u(0) = u(1) = 0. If u(z0) # 0 for some z o  E ( O , l ) ,  then, as 
u is continuous, u attains a positive local maximum or a negative local 
minimum, which contradicts Part 1. 

Solution to 1.4.7: By Rollc’s Theorem [MIi93, pag. 2001, f’(z1) = 0 for 
some 21 E (0 , l ) .  Then, since f’(0) = 0, f”(z2) = 0 for some z2 E (0,zl). 
Repeated applications of Rolle’s Theorem give f(“)(z,) = 0 for some z, E 
(O,z,-l), and therefore, f(”+’)(z) = 0 for some z E ( 0 , ~ ” )  c (0 , l ) .  

Solution to 1.4.9: Lct z > 0 and 6 > 0. Since f is positive and log is 
continuous, 

z (log f(. + 62) - log f(x)) 
= lim 

6-0 62  
= 2 (log f ( z ) ) ’  
- .f’(x) 

f (XI 
-- 

and the result follows, by exponentiating both sides. 

Solution to 1.4.10: It is enough to show that 

both exist and arc equal. By L’HBpital’s Rule [Rud87, pag. 1091 

Thc other lateral limit can be treated similarly. 

Solution to 1.4.11: Wc have 

p t ( z )  = (1 + t 9 2 3  - 3 t 3 z  + t 4  

p : ( x )  = 3(1 + t 2 ) x 2  ~ 3t3 
p ; ( z )  = 6(1 + t 2 ) x  
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0 t < 0. In this case, pi  > 0 and pt(x) < 0 for x sufficiently negative, and 
p t ( x )  > 0 for x sufficiently positive. Hence, by the Intermediate Value 
Theorem [Rud87, pag. 931, pt has exactly one root, of multiplicity 1, 
since the derivative is positive. 

0 t = 0. Now p t ( x )  = x3, which has a single zero of multiplicity 3. 

and p’,’(x) < 0 for negative x; p’,’(x) > 0 for positive x. So 

is a local minimum, and 

Pt (-4”) 1 + t 2  

is a local maximum of p t .  

We will study the values of pt  at these critical points. As p t ( 0 )  > 0 
and p i ( 0 )  < 0, the relative maximum must be positive. 

We have 

pt (/s) = t4 (1 - /x) 1 + t 2  = At 

say. We get 

(i) 0 < t < 2 -&I. In this case, we have At > i), so p t  has one single 

(ii) 2 - fi < t < 2 + d. Now At < 0 and p t  has three roots. 

(iii) t > 2 + &I. We have At > 0 and pt  has one root. 

root. 

Solution to 1.4.12: Let 

so that limz--ra h(z)  = 0 and f(x) = f(a) + (f’(a) + h(x)) (x - a). Then 
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so that 

Solution to 1.4.13: By changing variables, it is enough to show that 
f(1) 2 f(0). Without loss of generality assume f(O) = 0. Consider the 
function g defined by 

As g is continuous, it attains a maximum at some point t E: [ O ,  11. We can 
assume < < 1, because g(1) = g(0) = 0. As g(<) 2 g(x) for < < x < 1, we 

d x )  = f(x) - fPh .  

As the rightmost term is nonnegative, we have f(1) 2 0, as desired. 

Solution to 1.4.15: We have 

Multiplying this out, we get = 1 and 
n 

t n - k  
- 0. 

k=O 

From this, it can easily be seen by the Induction Principle [MH93, pag. 71 
that all the t i ' s  are rational. 

Solution to 1.4.16: The function f given by 

for 
(-1/3)e3-1/"+2/(2"-3) for 0 < z < 3/2 

x 5 Oorx 2 3/2 

is such a function. 
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This is based on the example of a nonconstant function having derivatives 
of all orders, vanishing for negative x: 

e-l/x for x > o 
for x 5 0. 

Solution to 1.4.18: Let f(x) = x3/2 sin(l/x) and g(z) = x. Then we have 
limz,o f(x) = limz,o g(x) = 0 and 

As g’(z) = 1 and f’(z) = (3/2)z1/’sin(1/x) - x-1/2cos(l/x), we have 

and the right-hand side has no limit when x goes to zero. 

Solution to 1.4.19: Without loss of generality assume zo = 0. As f is 
continuous and f(0) = 0, we have f’(z) > f(x) > 0 in some interval 
[ O , E ) .  Suppose that f(x) is not positive for all positive values of x. Let 
c = inf{x > 0 I f(z) 5 0). Since J is continuous and positive in a neigh- 
borhood of the origin, we have c > 0 and f(c) = 0. By Rolle’s Theorem, 
[MH93, pag. 2001 there is a point d with 0 < d < c and f’(d) = 0. However, 
by the definition of c, we have f’(d) > f(d) > 0, a contradiction. 

Solution 2. Let g(x) = e-zf(x). Then g’(x) = e-2(f’(z) - f(x)) > 0. As g 
is an increasing function, we have g(x) = e-2f(z) > g(x0) = 0 for x > xo, 
and the conclusion follows. 

Solution to 1.4.20: Let f : W ---f W be defined by f(z) = aez-1-z-x2/2. 
We have 

lim f(x) = -cc and lim f(z) =ca 
z---m 2’00 

so f has at least one real root, zo, say. We have 

2 f’(x) = uex - 1 - z > uex - 1 - x - x /2 = f(x) Vx E W; 

therefore, by Problem 1.4.19, f has no other root. 

Solution to 1.4.21: As (PI and 9 2  satisfy the given differential equations, 
we have cp:(t) = ~1 ( ~ ( t ) )  and (PX~) = 212 ( c p z ( t ) ) .  Since cpl(t0) = cp2(t0), 
it follows from our hypotheses that +((to) < cpL(t0). Hence, there exists a 
point SO > t o  such that cpl(t) 5 cp2(t) for t o  5 t 5 SO. Suppose there existed 
a point SO < t < b such that cpl(t) > cpz(t). Let tl 2 SO be the infimum of 
all such points t .  By continuity, we must have that cpl(t1) = cpz(t1). Hence, 
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repeating the above argument, we see that there must be a point s1 > tl 
such that cpl(t) 5 p a ( t )  if tl < t < s1, contradicting our definition of t l .  

Solution to 1.4.22: Lct g : [0,1] -+ R be defined by g(z) = e-”.f(z). 
We have 

g’(z) = e-”z(f’(z> - M S ( Z ) )  5 o 
so g is a decreasing function. As g(0) = 0 and g is nonnegative, we get 
g = 0, so the same is true for f .  

Solution to 1.4.23: 1. The function f(z) given by 

1 
f(z) = z2 sin - 

X 

has a derivative that is not continuous at zero: 
2zsin; - cos 5 for z # o 

for z = 0 

2. Consider the function g given by g(z) = f(z) - 22. We then have 
g’(0) < 0 < g’(1). Therefore, g(z) < g(0) for z close to 0, and g(z) < g(l)  
for z close to 1. Then the minimum of g in [0,1] occurs at an interior point 
c E (0, l), at  which we must have g’(c) = 0, which gives f ’ ( c )  = 2. 

Solution to 1.4.24: We claim there is an E > 0 such that f( t)  # 0 for all 
t E ( 0 , ~ ) .  Suppose, on the contrary, that thcre is a sequence xll + 0 such 
that f(z,) = 0. Considering the real function Xf(z),  to each subinterval 
[z,,+1, z,,], we find a sequence t ,  + 0, t ,  E [z,,+l, z,,], such that sRf’(t,) = 0 
for all n, but since limt-o+f’(t) = C ,  this would imply 8 C = 0. In the 
same fashion, using the imaginary part of f(z), we see that 3 C = 0, which 
is a contradiction. 

Since f ( t )  is non-zero on a m a l l  interval starting at  0, the composition 
with the COO-function absolute value 

I I :@\{O)- -+Rt  
will give a C’-function g( t )  = If(t)l,  on a small neighborhood of zero. 

Solution to 1.4.25: Consider the function g defined on [0,1] by 
g(z) = czf(z). We havc 

g”(z) = ez ( f ” ( z )  + 2f’(z) + f ( z ) )  2 O 

so g is concavc upward; that is, the point (5, g(z)) must lie below the chord 
joining (0, g(0)) and (1, g(1)) = ( 1 , O )  for J: E (0 , l ) .  Then g(z) 5 0 and the 
conclusion follows. 

Solution to 1.4.26: By Taylor’s Theorem [Rud87, pag. 1101, there is a 
constant C such that 

If(z) - f(0) - f’(0)zl i cz2 



L 

174 1. Real Analysis 

when 1x1 < 1. Since f ’ (0)  = 0, we actually have If(.) - f ( O )  - f’(0)l 5 C x 2  
and, consequently, by the triangle inequality, J(x) 5 f ( 0 )  + Cx2 when 
1x1 < 1. We conclude: 

If (z,y) lies on or below the graph of f and 1x1 < 1, then 
y F f ( 0 )  + c x 2 .  

Now consider the disc D centered at  (0, f ( 0 )  + b)  with radius b, where 
0 < b < 1 will be chosen at the end. Clearly, ( O , f ( O ) )  is on the boundary 
of D. On the other hand, if (x,y) E D, then 121 < b < 1 and 

z2 + (y - f(0) - 

Iy - f(0) - b( < d K - 2  
y > f ( O ) + b - d G  = f ( O ) + b - b J W  2 f(O)+b-b(l-x2/2bZ) 

< b2 

since I 1 - x /2  when 0 5 x 5 1. Thus, 

y > f ( 0 )  + x2/2b. 

If 1/2b 2 c,  then it follows that (z, y) must be above the graph o f f .  So we 
are done if we take b = min{l/2,1/2c}. 

1.5 Integral Calculus 

Solution to 1.5.2: Since f is continuous, it attains its minimum and 
maximum at z o  and yo, respectively, in [0,1]. So we have 

or 
1 

f ( X 0 )  F 3 / x 2 f ( 4  dz 5 f(90). 
0 

Therefore, by the Intermediate Value Theorem [Rud87, pag. 931, there is a 
point < E [0,1] with 

P l  

Solution to 1.5.3: Since the discontinuities are only of the first type 
(the limit exists), they do not have any accumulation point (for a detailed 
proof of this, see the Solution to Problem 1.2.5), and form a finite set. Let 
dl < d2 < . . . < d ,  be the set of discontinuities of f. Then f is continuous 
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in every interval [xly] with d, < x < y < d,+l; using the Solution to 
Problem 1.5.4 (on both endpoints of the interval), f is integrable on each 
interval of the type [d,, d,+l], so f is integrable on [a, b]. 

Solution to 1.5.4: 1. Let If(z)l 5 M for 2 E [0,1]. If (b , )  is a decreasing 
vanishing sequence, then sb, If1 5 M is a bounded, increasing sequence, so 
it must converge. We conclude that If1 is Riemann integrable over [0,1], 
and so is f .  
2. The function f ( z )  = 1/z is integrable over any interval [b, 11 for positive 
b, but is not integrable over [0,1]. 

1 

Solution to 1.5.6: 1. Letting t = x + s, we get 

Since s > 0, e - s 2 / 2  < 1, so e - s x - s 2 / 2  < e-sz for all positive z; then 

0 < f(x) < l*’ e-sx ds = 1/x. 

2. Let 0 < x1 < x2. For s > 0, e - s r1 - s2 /2  > e- -sxz-s2 /2  7 0  s 

and f ( n )  > f ( 5 2 ) .  

Solution to 1.5.7: Integrating by parts and noting that cp vanishes at 1 
and 2, we get 

applying integration by parts a second time and using the fact that (PI also 
vanishes at the endpoints, we get 

e iXx I’ 
Taking absolute values gives 

Sincc cp 6 C2, the integral on the right-hand side is finite, and we are done. 
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Solution to 1.5.8: Suppose that f is such a function. Cauchy-Schwarz 
Inequality [MH93, pag. 691 gives 

1 
a = zf(z) d z  

So we must have a chain of equalities. For equality to hold in the Cauchy- 
Schwarz Inequality [MH93, pag. 691, we must have x m  = k m  for 
some constant k so m = 0, which contradicts 

f ( z ) d z  = 1. 

Thus, no such function f can exist. 

Solution 2. Multiplying the given identities by a’, -2a, and 1, respectivcly, 
we get 

f(x)(. - z)%z = 0 

but the integral above is clearly positive for every positive continuous func- 
tion, so no such function can cxist. 

Solution to 1.5.9: Dividing the integral in n pieces, we have 

For every z E ( j / n ,  ( j  + l) /n),  applying thc Mean Value Theorem [Rud87, 
pag. 1081, there is c E ( j / n ,  z) with 

As the derivative of f is uniformly bounded by M ,  this gives us the in- 
equality 
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Therefore, 

1 n-1 

j=O 

M 
2n 
-. - - 

Solution to 1.5.10: Suppose not. Then, for some 6 > 0, there is a sequcnce 
of real numbers, (zn), such that zn -+ 00 and If(zCn)l 2 6. Without loss of 
generality, we can assume f(z,,) 2 6. 

Let E > 0 verify 

6 
If(.) - fb)l < 2 for 15 - YI < E 7 

then 

contradicting the convergence of f(z)dz. 

Solution to 1.5.11: Let 

The result follows from the following claims. 

If not, there are E ,  20 > 0 such that f(z) > E for z > ZO. Then, we have 
Claim 1: liminf,,, f(z) 5 0. 

9(z) = f(.) + 1," f ( W  + /, f(W 

2 E + 1 f ( t ) d t  + E(. - Z O ) .  

Xn 

50 

This is a contradiction since the right side tends to 00 with 2. 
Claim 2: limsup,-,, f(z) 2 0. 

Claim 3: limsup,,, f(z) I 0. 
This follows from Claim 1 applied to -f. 
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Assume not. Then, for some E > 0 there is a sequence $ 1 ,  z2,. . . tending 
to 00 such that f(zn) > E for all n. By Claim 1, the function f assumes 
values 5 ~ / 2  for arbitrarily large values of its argument. Thus, after possibly 
deleting finitely many of the xn7s,  we can find another sequence yl ,  9 2 , .  . . 
tending to 00 such that y, < z, for all n and f (yn)  5 ~ / 2  for all n. Let z, 
be the largest number in [ y n , z T L ]  where f takes the value ~ / 2  (it exists by 
the Intermediate Value Theorem [Rud87, pag. 931). Then 

> E - - +  2 I:" i d t  

which contradicts the existence of limx-,oo g(z). 
Claim 4: liminf,,, f(z) 2 0. 

Apply Claim 3 to -f. 

Solution to 1.5.12: Suppose that for some E > 0, there is a sequence 
z, -+ 00 with z,f(z,) 2 E. Then, as f is monotone decreasing, we 
have f(z) 2 E / X  for z large enough, which contradicts the convergence 
of 

Solution to 1.5.13: Let 0 < E < 1. As 

f(z)dz, and the result follows. 

1, f ( x )  dz < 00, 

s," f ( x )  dx < E .  

(z/n)f(z) = L n E ( x / n ) f ( X )  dx + J,, ( . /n)f(x) dx I" 
< E I"' f(z) dx + l; fb) dz 

there is an N > 0 such that for n > N ,  

Therefore, for n large enough, that is, such that nE > N ,  we have 
n 

< s l n E f ( z ) d x + E  

Since this inequality holds for all E > 0 and for all n sufficiently large, it 
follows that 

lim 1 ln xf(x) d z  = 0. 
71+00 n 
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sin x k x2n+l 

- - c(-l)" (2n + l)! 

Solution to 1.5.14: Using the Maclaurin expansion [PMJ85, pag. 1271 of 
sin x ,  we get 

sin x X 2 f l  

- = n - 1 ) "  pn + 1).  
0 X 

The series above is alternating for every value of z, so we have 

x2k+2 ' (2k  + 3)! ' 

Taking k = 2, we have 

which gives an approximate value of 71/144 with an error bounded by 
0.00013. 

Solution to 1.5.15: Let 

dx + log t .  J I @ )  = 
0 (x4 + t4))'/4 

It suffices to show that for t > 0, the function I ( t )  is bounded below and 
monotonically increasing. For x ,  t 2 0,  we have ( x  -t t)4 2. x4 -t t4i so 

- + log t = log(1 + t )  2 0. ll+t I ( t )  11' 2.5 +logt=  
x + t  

We now show that I ' ( t )  2 0 for t > 0. We have 

dx +/' + logt, 
dx I ( t )  = 1' t ( ( ~ / t ) ~  + . t t ( ( ~ / t ) ~  + 

letting y = z / t ,  we get 

d y  + Ji.l't d y  + logt I' (y" + 1) (y4 + 1)1/4 
I ( t )  = 

so 
-1 1 

I+) = + - > o .  
t 2  ( l i t4  + 1)1/4 t - 

Solution to 1.5.16: Integrate by parts to get 
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The boundary terms vanish because x f ( ~ ) ~  = 0 a t  x = 0 and 00. By the 
Cauchy-Schwarz Inequality [MH93, pag. 691, 

Solution to 1.5.17: Consider the figure 

t 

The left side of the desired inequality is the sum of the areas of the two 
shaded regions. Those regions together contain a rectangle of sides a,  and 
b, from which the inequality follows. The condition for equality is b = f ( a ) ,  
the condition that the two regions fill the rectangle. 
Solution 2. Without loss of generality, assume f ( a )  5 b. We have 

The second integral is 

n-oo n 
k=O 

F o r 0 5  k s n - 1 ,  

a (k+ 1). ka (k + 1)a 
n n n 
_ -  - 
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Substituting in the limit above, 

Multiplying out each term in the sum and rearranging them, and noting 
that f(0) = g(0) = 0, we get 

n-1 

n-00 
k=O 

Since g is continuous, this equals 

f (a) 1 
a ( b  - f(a))  5 s,, S(Y) dy* 

dY) dY + a ( b  - f (4)  . 

As g(y) 2 a for y E (f(a), b ) ,  we have 

b 

a )  

This gives the desired inequality. Also, we see that equality holds iff f ( a )  = b. 

Solution to 1.5.18: Given E > 0, choose R so that &.,2n (f(x)ldz < ~ / 4 .  
Then If(.) cos(xy)(dx < ~ / 4  for all y. So 

f ( ~ )  (COS(ZZ) - COS(ZY)) dx + 1 4 t R  
I f ( ~ ) ( l  COS(ZZ) - cOs(xy)ldx . 

E / 2  + 

The latter integral approaches 0 as z -+ y by uniform convergence of 
cos(zz) to cos(xy) on the compact interval -R 5 x _< R. Hence, for Iz - yl 
sufficiently small, 

19(z) - 9(Y)l < 4 2  + E / 2  = E 

and g is continuous. 

Solution to 1.5.19: We will do the proof of the sine integral only. For 
n 2 0, let 

sin(z2) dx. 
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We show that the series c S n  converges and use this to show that the 
integral converges. 

By the choice of the domains of integration, the Sn's alternate in sign. 
Also, setting u = z2, we get 

Finally, the STl's tend to 0: 

and the right-hand sidc gets arbitrarily small as n tends to infinity. There- 
fore, by Leibniz Criterion [Rud87, pag. 71 , the series C Sn converges. Let 
a > 0 and n be such that t/n;. 5 a < d h .  Then 

The second term tends to zero as n tends to infinity. By estimates almost 
identical to those above, 

l(n + 1)n - a21 ?r 

- 2 f i '  
<- 

so the first term does as well. Therefore, we have 

00 I" sin(z2) dz = S, < 00. 

n=O 

Solution to 1.5.20: Let p ( x )  = C," ajz j  be a polynomial. We have 

k 

aj = p ( l ) .  n + l  1 

lim (n  + 1) znp(z) dx = lim 
n--m 

j = O  
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So the result holds for polynomials. Now let f be a continuous function 
and E > 0. By the Stone-Weierstrass Approximation Theorem [MH93, 
pag. 2841, there is a polynomial p with I l f  - pllm < E. So 

Since E is arbitrary, the desired limit holds. 

Solution to  1.5.21: logz is integrable near zero, and near infinity it is 
dominated by fi) so the given integral exists finitcly. Making the change 
of variables x = a/t, it becomes 

- - 
a 

7r log a 
2a 

J. -- - - 

If we treat J in a similar way, we get J = - J ,  so J = 0 and the given 
integral equals 

7r loga 
2a 

Solution 2. We split the integral in two and use the substitution x = a2/y. 

log 2 a logx OC) logx 
dx 

a 2loga - logy 

a 2loga 

log a = 2 -  
a 
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7T log a 
2a . 

-- - 

Solution to 1.5.22: As sinx 5 1, to show that 1 converges, it is enough 
to show that I > -m. By the symmetry of sinx around 7~12, we have 

The first inequality holds since on [0, 7~121, sinx 2 2x17~; see Problem 1.1.23. 
Letting x = 2'u, we get 

T f 2  
I = 2 log(sin2u) du 

= 2 ( 1T'2 log 2 du + ) 
T I 2  T I 2  

log(sin u) d u  + 1 log(cos u) d u  . 

The first integral equals (7r/2)log2. As cosu = sin(7~/2 - u), the last 
integral is 

log(sin u) du = log(sin u) du. r2 L2 JdT'2 log (sin(n/2 - u)) du = 

The above equation becomes I = 7~ log 2 -t 21, so I = - 7 ~  log 2. 

1.6 Sequences of Functions 

Solution to 1.6.1: Let B be the set of function that are the pointwise 
limit of continuous functions defined on [0,1]. The characteristic functions 
of intervals, X I ,  are in B. Notice also that as f is monotone, the inverse 
image of an interval is an interval, and that linear combinations of elements 
of B arc in B. Without loss of generality, assume f(0) = 0 and f(1) = 1. 
For n E N, let the functions gn be defined by 
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We have 
1 

19n(z> - f(.)I L ;' 
XEIO,11 

We now use the following result: - 
Lemma: Let {h,} C B with rnaxzE[~,1] Ihn(z)l 5 A, and C,"==, A, < 

03. Then cr=, h, E B. 
As 

1 
Ig2k+l - 924 I lg2b+' - fl + lg2k - fl 5 2'c-l 

c (92"' - g2k) = f - gz E B 

and C2-"' < 03, we get 

Dc) 

k=l 

SO f - g2 +g2 = f  E B. 
Proof of the Lemma: For each n let h, be the pointwise limit of (9;) c B 

Given E > 0, take m such that  an < ~ / 3 .  Then the sum 
such that Ihn(z)l 5 A,  on [0,1]. Consider the functions @k = k n  pk. 

cz-,+, Ihn(z>l < E / 3  and c,"==,+, lcp;(z)l < E / 3 .  
For z E [0,1], take K so that 

E 
Ihn(z) - &(s)I < - for n = 1,. . . , m. 3m 

For k > K we then have 

so C,"==, hn E B. 

Solution to 1.6.2: Let a < b be real numbers and E > 0. Takc n large 
enough so 

and 

Then, using the Mean Value Theorem [Rud87, pag. 1081, 
Ifn(a) - da) l  < E If,@) - g(b)l < E-  

ls(a>-g(b>l 5 Ig(a)-fn (a)l+lfn (.>-fn (b )  I +I fn (b)-g(b)l < 2E+lf:, (01 Ib-4 

Ida) - g@)l 5 lb - 4 
where a < < < b. As the inequality holds for any E > 0, 

and the continuity of g follows. 

Solution 2. Let N > 0. We will show that g is continuous in [-N, N ] .  We 
have, for any n E N, by the Mean Value Theorem, 

Ifn(z) - fn(Y)l = If:,(E)(. - Y)I 5 2N for z, Y E 1-N NI. 
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1 

_- 

(tl) fn (3:)1 =: 11. (C)  ,fn(.E) := En 
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lience, 



c- 

[t isl cwough to  sliovv that this series converges uniformly on k. Since 

for :tiny positive E .  As 

for a d  .2: in the given intarval. Fix 5 arid n :> IV. We liaave 
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u s i n g  iirdfcrrrt contiriiiil ,y, we gel; 

== linn ( f ( 3 :  -1 1 t- a)  -- J'I(.~: -- ( 2 ) )  

=z () 
0 1  -+oo 
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aincl the  fact, thi$t all tan  == 0, 



.-- 

cc 

We Ihanrc (30 == 0, i d ,  b y  Pa r sed ' : ;  ldcntity [RAH9:3, pag. 5'771, 
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Multivariable Calculus 

2.1 Limits and Continuity 

Solution to 2.1.1: Lct z E R”, E > 0, and lct B denote the open ball 
with ccntcr f(x) and radius E .  For n = 1 , 2 , .  . ., let K, be the closed ball 
with center z and radius l /n .  By (ii) we have nyf(K,,) = ( f ( z ) } .  By 
(i) the sets (R” - B)  fl f ( K n )  arc compact for ri = 1 , 2 , .  . .. They form 
a decreasing sequence, and their intersection is empty, by the preceding 
equality. Hencc, thcre is an no such that (R” - B )  n f ( K T L o )  = 0, which 
means that If(y) - f (z) l  < E whenevcr (y  - z(  < l/no. So f is continuous 
at x. 

Solution to 2.1.4: We show that f is continuous at, (0,O); for the general 
case, use a change of variables. By adding a constant, if necessary, we 
may assume f(0,O) = 0. Suppose f is not continuous at  the origin. Then, 
for any E > 0, there is a sequence ((x,, y,)) tending to the origin with 
If(z,, yrL)l 2 E for each n. Since f is continuous in the first variable, there 
exists a 6 > 0 such that if 1x1 < 6, then If(x, 0)l < ~ / 2 .  Applying this to our 
sequcnce, we see that there is an N > 0, such that if n 2 N then lzlLI < 6, 
so I f (xn,O)/  < ~ / 2 .  However, for each such n, f(x,,, IJ) is continuous in thc 
second variable, so by thc Intermediate Value Theorem [Rud87, pag. 931, 
there exists git ,  0 < y:, < g n ,  such that I f ( x T L ,  & ) I  = nc/(n + 1). Since the 
gn’s tend to 0 as n tends to infinity; the yi,’s do so as well. Hence, the set 
E = { ( z n ,  g:,) In 2 N }  U ((0,O)) is compact. Then by our hypothcsis, the 
set f(E) is compact. But f(E) = ( n ~ / ( n  + 1) I n 2 N }  u (O}, and E is a 
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limit point of this set which is not contained in it, a contradiction, Hence, 
f is continuous at the origin and we are done. 

Solution to 2.1.5: Continuity implies f(0) = 0, so if any xk is 0, then so 
are all subsequent ones, and the desired conclusion holds. Assume therefore, 
that zk  # 0 for all lc. The sequence (11zkll) is then a decreasing sequence of 
positive numbers, so it has a nonnegative limit, say c. Suppose c > 0. The 
sequence (xk), being bounded, has a convergent subsequence, say (xkj), 
with limit a. Then llall = limj-,m IIzlc, 1 1  = c. Hence, 1 1  f(a)II < c. But, by 
the continuity of f ,  

and llxkj+iII 2 c for all j ,  so we have a contradiction, and the desired 
conclusion follows. 

2.2 Differential Calculus 

Solution to 2.2.1: We maximize the function f(z,  y) = (z2 + y2)e-"-y 
in the first quadrant, z 2 0 and y 2 0. The function attains a maximum 
there because it is nonnegative and tends to 0 as either variable tends to 
00. We have 

The critical points of f are thus the points (x, y) that satisfy 

2 2 - z  2 - y 2 = 0 = 2 y - x  2 - y 2 .  

2x2 - 22 = 0 , 2y2 - 2y = 0 . 

These equalities imply x = y and 

Hence, the critical points are (1,l) and (0,O). Obviously, f does not attain 
its maximum at the latter point. The only candidate in the open quadrant 
for a point at which f attains its maximum is (1,l). 

On the z-axis, we have f(x,O) = x2e-" and = (z2 - 2 ~ ) e - ~ ,  
so 9 = 0 only for z = 0 and z = 2. The point (2,O) is thus another 
candidate for the point at which f attains its maximum. By the same 
reasoning, the point (0,2) is anothcr such candidate. The points (2,O) and 
(0,2) are the only candidates on the boundary of the quadrant. 

l l f  0 x 

We have 

f(1,l)  = 2eP2 , f (2 ,0)  = 4ep2 = f (0 ,2)  . 
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Hence, the maximum value of f in the quadrant is 4ec2, that is, 

(z2 -t- y")e-,-Y 5 4e-2 

x 2  + Y2 < ex+y-2 
4 -  

for x 2 0, y 2 0. 

Solution to 2.2.2: The function f is differentiable at  the point 
z = (20 ,  yo) E U if there is a linear transformation f'(z) E L (R2,1W1) 
such that 

Continuity of the partial derivatives is a sufficient condition for differentia- 
bility. A calculation gives 

af 
aY 

{ x * / ~ c o s ( ~ / z )  if x # o 
if z = O  -(z,y) = 0 

which are continuous on R2 \ { (0, y) 1 y E R). Thus, f is differentiable there. 
At any point (0, y), we have 

so f is differentiable at these points also. 

Solution to 2.2.3: Since f is continuous and Rn is connected, f(Rn) is 
connected. We will prove that f(R") is both open and closed in R". This 
will imply that f(R") = R", because f(Rn) # 0. 

Let y = f(x) E f (Rn) .  As the rank of (af,/az:,) is n, by the Inverse 
Function Theorem [Rud87, pag. 2211, there are open neighborhoods V, and 
llJ of z and y such that flv, : Vx --+ V, is a diffeomorphism; therefore, llJ 
is an open neighborhood of y, and f(R") is open. 

Let (9,) be a sequence in f(R") converging to y E R", f(z,) = yn, 
say. The set K = {yn I n E N} U {y} is compact; therefore, f-'(K) is also 
compact. But {zn I n E N} c f-l(K); therefore, it contains a convergent 
subsequence, say (zn3) with xn3 -+ x E Rn. Since f is continuous, f(zn3) -+ 

f(z). But lim,,,yn3 = y; therefore, f(z) = y, and f(RrL) is closed. 

Solution to 2.2.4: We have R2 = f ( S )  U (R2 \ f(S)) where S is the set 
of singularities of f .  It suffices to show that f maps R = R2 \ f-' ( f ( S ) )  
onto R2 \ f(S). f(S) is finite, so R2 \ f(S) is connected. As f(S) is closed, 
R is open. It suffices to show that f ( R )  is open and closed in R2 \ f(S). 
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As R n S = 0, by the Inverse Function Theorem [Rud87, pag. 2211, 
f is invertible in a neighborhood of each point of R. Hence, locally, f is an 
open map, and as the union of open sets is open, f ( R )  is open. 

Let 5 be a limit point of f ( R )  in R2 \ f ( S ) ,  and (5") be a sequence in 
f ( R )  converging to E .  The set ( E n )  is bounded, therefore, by hypothesis, 
(f-'(tn)) is bounded. Let (x,) be a sequence such that f(xn) = &. This 
sequence is bounded, so it must have a limit point, x, say. As f is continu- 
ous, we have f(x) = E -  Since 5 # f(S), IC # f-'(f(S)), so x E R. Therefore, 
E E f ( R ) ,  so f ( R )  is closed in R2 \ f(S). 

Solution to 2.2.5: Consider the scalar field G : R" + B given by G(y) = 
llVf(Y)1I2. w e  have 

By the hypothesis, we have G ( x )  = 0, G is C1, and G'(x) # 0. Therefore, 
by the Inverse Function Theorem [Rud87, pag. 2211, G is locally a diffeo- 
morphism onto a neighborhood of 0 in R. In particular, it is injective in 
some neighborhood of x, so it has no other zeros there. 

Solution to 2.2.6: 1. Since f is C2, we can expand f in a Taylor series 
[MH93, psg. 3591 around a and obtain 

1 
2 f(a + I L )  = f ( a )  -t f'(a) . h + -f''(a) . h2 + O(lh13) ( h  + 0) 

where f " ( n )  . h2 = htHh = ( h , H h r ) ,  H = (&), and the big Oh 
notation means that for h in some neighborhood of 0, h E VO, we have 
10(lh13))l < KlhI3 for some I( > 0. 

The hypothesis that a is a critical point implies that f'(a) . h = 0 
for all h E R", and the hypothesis that H is positive definite implies 
that (h ,Hh) 2 0 for all h E R" and zero only at  h = 0. Therefore, all 
the eigenvalues of H are positive and there exists some c > 0 such that 
(h,  H h )  2 clhI2 (namely c is the minimum of all the eigenvalues, which are 
all real because H is symmetric, by the Schwarz Theorem [HK61, pag. 
3401). Let W, = { a  + h I h E &, Jhl < c/lc}. We have 

f ( a  + h) - f(.) = (h, m) + o(ih13) 2 C ~ h ~ 2  + o(lh13) 
2 clhI2 - KlhI3 = lhI2(c - K(hl)  > 0 

which shows that f(a + h)  > f(a) for h # 0 and h E W,, and, therefore, a 
is a local minimum. 
2. Assume f has two critical points, p l  and p z .  Since the Hessian matrix 
is positive definite, p l  and p2 are local minima. Let tp1 + (1 - t )p z ,  t E R, 
be the line containing p l  and p2 .  Consider the real function g given by 
g ( t )  = f ( t p 1  + (1 - t )p2) .  g has local minima at  t = 0 and at t = 1. 
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Therefore, 9 has a local maximum at some to  E (0,l). We have g’l( t0) 5 0, 
but 

II II 
9 ( t o )  = f (tPl + (1 - tO)P2)(Pl - P 2 I 2  = (Pl - P2,H(Pl  - P 2 ) )  

and our assumptions on H imply (PI -p2,  H(pl  - p z ) )  > 0, a contradiction. 

Solution to 2.2.7: As the Laplacian of f  is positive, the Hessian o f f  has 
positive trace everywhere. However, since f E C3, for f to have a relative 
maximum its Hessian must have negative eigenvalues and so its trace must 
be negative. 

Solution to 2.2.9: The derivative of T is given by 

1 2u 
D T = ( 1  2v) 

which is always nonsingular since det(DT) = 2 w  - 2u is never 0. By the 
Inverse Function Theorem [Rud87, pag. 2211, this means that T is locally 
one-to-one. 
2. Considering the function f(u, w) = u + v restricted to u2 + v2 = y, we 
conclude that -fi 5 u + v 5 a; therefore, the range of T is 

Let (z, y) E range(T). u+v = z is the equation of a straight line with slope 
-1 in the u, v-plane which intersects the circle u2 4- u2 = y centered a t  the 
origin with radius &. These two lines intersect exactly at one point in U ,  
so T is globally injective. 
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Solution to 2.2.10: Letting fl and f2  be the components o f f ,  we have 

d 
d t  

rewrite the right side as 

-llf(t)Il2 = 2flf:W + 2 f 2 f W .  

Assume t > 0 and use the Mean Value Theorem [Rud87, pag. 1081 to 

2t (f: (rdf: ( t )  + fh(6)f:: ( t ) )  

f;(Jl)f;(t) -t f2tZ)fW - Ilf’(0)1I2 > 0. 

where 0 < (1 = c l ( t )  < t and 0 < J2 = &(t )  < t .  As t \ 0, the continuity 
of f’ gives 

Hence, there is an E > 0 such that $llf’(t)1I2 > 0 for 0 < t < E ,  and thc 
desired conclusion follows. 

Solution to 2.2.11: For X E C, we have 

IIA - X1I2 = (1 - z ) ~  + y2 + z2 + (2 - t )2 

= y2 + z2 + 1 - 22 + x2 + (2 - t )2  

2 f 2 y z  + 1 - 22 + 21x1(2 - t) 
= 4121 - 22 + 2 ( f p  - 1~ l t )  + 1 

We can choosc the sign, so fyz- lzlt = 0 because det X = 0. As 41x1 -2x 2 
0, we have [ \A  - XI\ 2 1 with equality when 4\21 - 22  = 0, 1x1 = 2 - t ,  
y = fz, and det X = zt - yz = 0, which give S = (: ) . 
Solution to 2.2.13: Each element of P2 has the form ax2 + bz + c for 
(a,  b, c) E R3, so we can identify P2 with R3 and J becomes a scalar field 
on R3: 

a2 ab 2ac b2 
5 2 3 3  

+ ba: + c ) ~  dz = - + - + - + - + bc + c2. 

To Q corresponds the set {(a, b, c) I a +  b+c = 1). If J achieves a minimum 
value on Q, then, by the Method of Lagrange Multipliers [MH93, pag. 4141, 
we know that there is a constant X with V J  = XVg, where g(a ,  b, c) = 
a + b + c - 1. We have 

2a 
- + + + + c  3 

and Vg = (1 ,1 ,1) .  These and thc constraint equation g(a,  b, c) = 0 form 
the system 

215 112 213 -1 
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which has the unique solution X = 2/9, (a, b,  c)  = (10/3, -8/3,1/3). There- 
fore, if J attains a minimum, it must do so at this point. To see that J 
does attain a minimum, parameterize the plane Q with the xy coordi- 
nates and consider the quadratic surfacc with a linear z term defined by 
z = J ( z ,  y, 1 -2-y) in R3. The surface is the graph of the map J : P2 -t R. 
Rotating around the z-axis will eliminate the zy cross-terms in the equa- 
tion, reducing it to the standard equation of either an elliptic paraboloid or 
a hyperbolic paraboloid. However, J is always nonnegative, so the surface 
must be an elliptic paraboloid and, as such, has a minimum. 

Solution to 2.2.17: Let (2, t )  E R2. By the Mean Value Theorem, [Rud87, 
pag. 1081 and the hypothesis, we have, for some ( c , ~ )  in the segment con- 
necting (z, y) to (. + y, 0), 

f (2, t )  - f(.: + t ,  0) = of (5,771 . ((., t )  - (. + t ,  0)) 

= O  

so f(z, t )  = f (z + t ,  0) > 0. 

Solution to 2.2.18: Given two points z and y E R" one can build a polyg- 
onal path from z to y with n segments all parallel to the axis (adjusting 
one coordinate at a time). Applying the Mean Value Thcorem [Rud87, 
pag. 1081 to each of the segments of the path, we have 



L 
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n 

i=l 

Now applying the Cauchy-Schwarz 
vectors (1,1,. . ., 1) and 2 - y, we get 

921. 

Inequality [MH93, pag. 691 to the 

Solution to 2.2.19: Let ((XI,. . . , z n ) ) k  be a sequence in Rn converging 
to (0,. . . ,0). This sequence is Cauchy, so there is an N > 0 such that if 
k,l > N ,  then for each of the coordinates we have I z i k  - zill < ~ / 2 n M .  
Then we draw a polygonal path, as in the Solution to Problem 2.2.18, from 
( z l k , .  . . , z , k )  to (zll,. . . ,znl) ,  parallel to the axes. 

If this path does not goes through the origin, then as before 

n 

I f ( X l k ,  - .  ., Z n k )  - f ( X l l , .  . - , 2 n l ) l  < M E  1% - 2ill  < E 
i=l 

and if the origin is in one of the segments of the polygonal path, we can 
perturb it a bit, by traversing in the same direction but &/4M away from 
the origin. On this altered path 

in both case the sequence ( f ( ~ 1 ,  . . . , x ~ ~ ) ) ~  is Cauchy and, thus, it converges. 
Given any other sequence ((XI, . . . , xn));, an identical argument shows that 
If(zin, . . . , zin) -f(z:,, . . . , xin)\ tends to 0, so all sequences must converge 
to the same value, which can be defined as the continuous extension off to 
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the origin. For n = 1, consider the function f(x) = 1 if x < 0 and f(x) = 0 
if x > 0. 

Solution to 2.2.20: 1. The answer is no, and a counterexample is the 
function 

for (2, Y) # (070) 
XY 

f ( X ?  Y) = 7 

f is differentiable everywhere, but cannot be extended continuously to the 
origin, because it is constant equal to k / (  1 + k 2 )  on each line y = kx passing 
through the origin. 
2. The answer is again no, with the counterexample a variant of the previous 
one, the function 

and g(0,O) = 0 XY2 
9 ( X , Y )  = 

g is now continuous everywhere, but not differentiable because the direc- 
tional derivative does not depend linearly on the vector. Let (u, v) # (0,O). 
We have 

So the directional derivatives at the origin exist in all directions. If g were 
differentiable at  (0, 0), as all the directional derivatives vanish there, we 
would have Dg(0,O) = 0 (the zero linear map). Then, by dcfinition of 
differentiability, we would have 

s(x7 Y> = 4 I ( X ?  Y>ll) ((x, Y) + (0, 0)) 
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which is absurd, since 

Both examples arc from [Lim82]. 

Solution to 2.2.21: A simple counterexample is 

IC if y = O  
0 if y # O  

and not even continuity at the origin and C1 on the rest of the plane is 
enough to guarantee differentiability, as shown in the counterexample of 
Problem 2.2.20, Part 2. 

Solution to 2.2.22: Let E > 0. By the hypothesis, there is S such that 
IIDf(w)ll < E if llwll < S. For 11x11 < 6, by the Mean Value Theorem [Rud87, 
pag. 1081, applied to the line segment joining 0 and z, we have 

which implies differentiability at the origin. 

Solution to 2.2.25: The answer is no; to see it, consider ~ ( x I , I c ~ , z ~ )  = 
1 - $2 - 22 - 5 2  

Solution to 2.2.26: Fix a point IC E W". By the Chain Rule [Rud87, pag. 

1 2 3' 

2141, 
D(g 0 f > ( 4  = ((Dd (f(.))> ((of>(.)> = 0. 
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The transformation (Dg) (f(x)) : R" -+ R is nonzero because g has no 
critical points. The preceding equality therefore implies that the transfor- 
mation (of)(.) : R" -+ R" is noninvertible, so its determinant vanishes. 
That determinant is the Jacobian determinant of f at  x. 

Solution to 2.2.27: 1. Let F : R2 -+ R be defined by F(x,t) = f(x) - 
tg(x). Then F is a smooth scalar field with F(0,O) = 0 and 

dF 
dX 
- ( O ,  0 )  = f'(0) - Og'(0) # 0. 

Therefore, by the Implicit Function Theorem [Rud87, pag. 2241, there 
exists a positive 6 such that, for It( < 6, 11: is a smooth function o f t ,  with 

2. Differentiating both sides of f(x(t)) = tg(z(t)) with respect to t ,  we 
have, for (tl < 6, 

x(0)  = 0. 

As x(0) = 0, the desired expansion of x( t )  is 

Solution to 2.2.30: Consider the function G : R2 --f R2 given by 

Since Vu and Vv are linearly dependent and V u  is never 0, G' has rank 
1 everywhere. Therefore, by the Rank Theorem [Bar76, pag. 3911, given 
a point po E R2, there is a neighborhood V of PO,  an open set W C R2, 
a diffeomorphism h : W -+ V, and a C1-function g = (g1,gz) : R + R2 
such that G (h(z ,  y)) = g(z) on W. So gi(z) is never 0. Therefore, by the 
Inverse Function Theorem [Rud87, pag. 2211, g1 is locally invertible. By 
shrinking the set W (and so the set V ) ,  we may assume that it is invertible. 
Therefore, gT1 (u (h(x, y))) = 11: or 92 ogy1 (u (h(x, y))) = v (h(z ,  y)) for all 
(x,g) E W .  Since h is a diffeomorphism of W onto V ,  it follows that 
g2 o gT1 (u(x, 9)) = v(x, y) for all (2, y) E V. F = 92 o gT1 satisfies the 
required condition. 

Solution to 2.2.31: The conclusion is trivial iff is constant, so we assume 
f is not a constant. There is (x0,yo) E R2 such that D f ( ~ ~ , y o )  # 0. 
After performing a rotation of the coordinates, if necessary, we assume 
fz(zo, yo) # 0. Let a = f(xo, go), and consider the function F : R2 -+ R2 
given by 

F ( T  Y) = (fb, Y), Y) . 
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The Jacobian of F is nonzero at (ZO, yo), so, by the Inverse Function The- 
orem [Rud87, pag. 2211, the function F has a local inverse, G, defined in a 
neighborhood of (a ,  yo). Thus, F (G(a, yo)) = ( a ,  y) for all y in some closed 
interval I containing yo. Let y be any one-to-one map of [0,1] onto I .  The 
function 

S ( t )  = G (a,  y(t)) ( t  E 10, 11) 
has the desired properties. 

Solution to 2.2.32: Consider F : W2 ---f R2 given by 

F ( z ,  9) = (A47 -Y + .f(4 . 

A calculation gives that the Jacobian of F at (z0,yo) is -f'(xo) # 0. So, 
by the Inverse &'unction Theorem [Rud87, pag. 2211, F is invertible in a 
neighborhood of (z0,yo). Similarly, f has a local inverse, g, close to 20.  

In a sufficiently small neighborhood of (20, yo) we can then solve for each 
component of F-' explicitly and get 

and 
y = -2J + zf(z) = -2J + g(u) f (g(u) )  = -2J + 'LLg(u). 

Solution to 2.2.35: 1. Let F : R4 + R4 be defined by 

F ( z ,  y, z ,  w) = (2 + yz, y(z + w), z ( z  + m) ,  zy + w2) . 

This map is associated with the given map because 

z ( z + w )  z y + w 2  + w, 1 * (; ; ) 2 = (  X 2 + Y Z  

The Jacobian of F at (1,0,0,1) is 2'; therefore, F is locally invertible near 
that point. 
2. We have F ( l , & , & , - l )  = (l ,O,O,l)  for any E ,  so F is not invertible near 
(1,070, -1). 

Solution to 2.2.36: Identify the matrix X = (: L) with the element of 
(2, y, z ,  w) E W4 in the usual way. Let F be defined by F ( X )  = X 2  + X'. 
We have 

y 2 w + 1  

2 2 + 1  z Y 
y z + w  1 
z 1 z + w  z 
0 z 

D F ( X ) ( X ,  Y, z ,  w) = 
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so 

is invertible; therefore, by the Inverse Function Theorem [Rud87, pag. 2211, 
there is such an E. 

Global unicity fails for X = ( i1 :) since X 2  + X t  = 0 = O2 + O t .  

Solution to 2.2.37: Since F(0)  = 0 and F is clearly a C"-function, the 
Inverse Function Theorem [Rud87, pag. 2211 will yield the result if we can 
prove that DF(0)  is invertible. We have 

F ( X + h Y ) - F ( X )  =X+hY+(X+hY)2-X-X2 = hY+hXY+hYX+h2Y2 

therefore, 

In particular, DF(0)  is the identity operator which is invertible. 

Solution to 2.2.39: 

D F ( X ) Y  = Y + X Y  + Y X .  

1. Using the method of Laplace Expansions [EIK61, pag. 1791 we can see 
that finding the determinant involves only sums and multiplications 
of the entries of a matrix, therefore, it is a. C"-function. 

2. For i , j  = 1, .  . . , n, let xZ3 denote the ( i , j ) t h  entry of X ,  and let X,, 
denote the cofactor of xZJ,  so that 

n 

F(X)=&,,X, ,  (i=1, . . .  ,?I). 

J=1 

= 0 for each i ,  j, k, it follows from the preceding expres- Since - axi k 

axi 
sion that 

Thus, X is a critical point of F if and only if X,j = 0 for every i and 
j or, what is equivalent, if and only if the rank of X does not exceed 
n - 2. 

Solution to 2.2.40: Let A3 be the 1-column matrix 

A, = 
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so A is the matrix whose column j is Aj ,  that is, A = ( A l ,  . . . , A,). Since 
dct is an n-linear function of (Rn), into R ,  the derivative is given by 

d n d 
dt 
- det(A) = det A1,. . . , z A j , .  . . ,An 

j = l  

Let A(i , j )  denote the cofactor of aij, that is, 

Using Laplace's Expansion Method to evaluate the determinant [HK61, 
pag. 1791 

of each component of the derivative, by developing the j t h  column we get 

" d  

i=l 

d 
A1,.  . . , zAj , .  . . , A, = -p jA( i , j )  

and 
d rind rind 
- det(A) = -a%,A(Z,j) = --az3 det(A)b,, 

dt dt 
,=I z=l dt 

3 = 1 2 = 1  

where the last equality follows from the fact that the inverse matrix is given 
by bij = & -A(j , i ) .  Therefore, we have 

1 d  
- det(A) 

d - log(det(A)) = ___ . 
dt det(A) dt 
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2.3 Integral Calculus 

Solution to 2.3.1: Let f : R3 -+ R, f ( x ,  y ,  z)  = (ax,  by, cz). The volume 
given is the image, under f ,  of the unit ball of R3, 8. As the Jacobian of f 
is abc everywhere, we have 

4 vol ( f ( f 3 ) )  = 1 d x d y d z  = 1 a b c d x d y d z  = -nabc. 
f (a) 3 

Solution to 2.3.2: Using polar coordinates, we have 

2T 1 

e -xa-y2  d x d y  = 1 pe-P2dpd6 

= - l'" I' -2pe-Pz dpd6 

=-ii (e-1-11 
2T 

Solution to 2.3.4: Using the parameterization 

x = sincpcose 0 < 6 < 2n 
y = sinpsino 0 < cp < K 

z = cosp 

d A  = sincp d6 dp 
we have 

and 

L ( x 2  f y + z)dA = iTl" (sin2 c p  cos2 6 + sin 'p sin 0 + cos 'p) sin cp d6 dcp. 

Breaking the integral in three terms, we get 

sincpcoscp d0 dcp = 27r. - sin2cp d p  = 0 6ri2r a I" 
sin2 cp sin 8 dO d p  = (1' sin2 p d v )  i2r sin 6 d6 = 0 

sin3 c p  cos2 I9 d6 dcp = (JOT sin3 cp d'p) ( L2" cos2 6 d o )  
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2n 
(3 sin cp - sin3 cp)+ 1 cos2 0 d0 

= (;(-3COSp+ 

= - 1 (-3(-2) + j(-2)) 1 7r 
4 

4 
= 1 (6 - :) = -n. 

4 3 

Therefore, 
4 
3 

L ( x 2  + y + z )dA  = -7r. 

Solution to 2.3.5: 1. We have 

2. Let 7-l = ((2, y, z )  E W3 1 x2 + yy2 + z2 = 16, z 2 0}, and consider the set 
D given by D = {(x, y, 0) E B3 I x 2  + y2 I 16). 7-l and 2, have the same 
boundary, so, by Stokes’ Theorem [Rud87, pag. 2531 

+ 
k ( V  x F )  . d 3  = iN F -  dl = 1, F . di 

= L D ( V F  x F )  . dS = (-2zj++ (39 - 1);). idxdy 

= L ( 3 y  - 1)dzdy = -167r. 

Solution to 2.3.6: Let f ( s , y )  = x3 - 3 x 2 ~ ~ .  Derivating twice (see Prob- 
lem 5.10.1), we can see that A f = 0, so f is harmonic. Let ,131 = ((2, y) I (x+ 
1)2 + y2 _< 9) and t32 = {(x, y) 1 (x - 1)2 + y2 I 1). We have 

and 

where E = ( -1 ,O)  is the center of t31. As f is harmonic, the inner integral 
is equal to 2 r f ( < )  = -2n and the integral off  over B1 is -97r. An identical 
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calculation shows that the integral over Bz is T ,  so the integral of f over 
R is - 1 0 ~ .  

Solution to 2.3.7: Let C be a smooth closed path in W3 which does not 
contain the origin, and let L be any polygonal line from the origin to infinity 
that does not intersect C. V = B3 \ L is simply connected; so to show that 

F . ds = 0 

it suffices to show that V x F = 0. Let T = (z, y, z )  and F = (P, Q, R). We 
have 

By the Chain Rule [Rud87, pag. 2141, 
F(.) = (9 (11.11) 2, 9 (11.11> Y, 9 (11.11) 2) . 

= 0. 

Similarly, 

= O  
dP dR - 3Q dP 
dz dz ax dy 

and we are clone. 

Solution to 2.3.8: 1. From the identity 

~.(fj)=(Qf)-I+fd.I=Qf.J 
and Gauss Theorem [Rud87, pag. 2721, we obtain 

2. Apply Part 1 with f(x, y, z )  = z. 

Solution to 2.3.9: By Gauss Theorem [Rud87, pag. 2721, 

JL div (ugradu)dxdy = (ugradu) . n'ds,  s,, 
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where 6 is the unit outward normal, and ds is the differential of arc length. 
The right-hand side vanishes becausc u = 0 on dV. The left side equals the 
left side of (*) because 

div (u  grad u )  = 

lgraduI2 + Xu2. 

Solution to 2.3.10: 
integrals [MH93, pag. 5051, 

By the Change of Variable Formula for multiple 

volf (Q,(zo)) = s,v,Zo, I J(x)I dx. 

Hence, if M, is the maximum and m, the minimumof IJ(x)I for IL: E Q,(IL:o), 
we have 

mr I r - 3 ~ ~ l f ( Q r ( ~ ~ ) )  I Mr. 
By the continuity of J ,  we have m, -+ ~J(ZO)( and M, + IJ(z0)l as r -+ 0 ,  
from which the desired equality follows. 

To establish the inequality, we note that the same reasoning gives 

where B,(zo) denotes the ball of radius T and center ZO. Let 

llf(.> - f(zo)ll. K = limsup 
Z'ZO 112 - ZO11 

Then, given E > 0, there is an T,  > 0 such that Ilf(z) - f(z~)ll 5 ( K  + 
E ) I I z  - zoll for llz - zoll 5 rE .  The latter means that, for T 5 T,,  

f ( B T ( I L : O ) )  c B(K+E)T (f(IL:o)) 
so that 

= ( K  + &)3. 
v o l j  (BT(Z")) $ ( K  + &I3T3 

4nr3 I $ ~ r 3  

In view of (*), this gives ( J ( z o ) ~  I ( K  + E ) ~ .  Since E is arbitrary, wc get 
IJ(z0)l 5 K 3 ,  the desired inequality. 



3 
Differential Equations 

3.1 First Order Equations 

Solution to 3.1.1: Suppose y is such a function. Then 

Y W  = ?/(XI" > 

or 

(1 - n)x  + c . y-n+l = 

Moreover, c = l/y(0)n-l > 0. We thus have 
1 

1) YY(XC) = 
(c - (n - 1)x) 

This function solves the initial value problem y' = yn, y(0) = C - I / ( ~ - ' )  in 
the interval [0, &), and, by the Picard's Theorem [San79, pag. 81, it is 
the only solution. Since the function tends to 0;) as x -+ 5, there is no 
function meeting the original requirements. 

Solution to 3.1.5: We have g'(z)/g(z) = 2, so g(z) = Ke2x where K 
is a constant, The initial condition g(0) = a gives K = a; therefore, 
g(z) = ue2=. 
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Solution to 3.1.7: Suppose y(t) > 0 for t E ( t o ,  t l ) ,  y( t0 )  = 0. Integrating 
the equation 

-=I Y‘ 
f i  

we get the solution y(t) = (t  + ~ ) ~ / 4  where c is a constant. Each such 
solution can be extended to a differentiable function on W: 

We must have t o  2 0 for y to satisfy the given initial condition. y = 0 is 
also a solution. 

Solution to 3.1.8: From the equation, we get x’ = 0 iff x3 - x = 0, so the 
constant solutions are x = -1, x = 0, and x = 1. 
2. Considering the sign of x’, we get the phase portrait 

So 0 is a stable singularity, and 1 a unstable one. There arc no other 
singularities in [0,1], so the limit of the orbit of the solution z ( t )  that 
verifies z(0) = 1/2 is 0. 

Solution to 3.1.9: The given equation satisfies the hypotheses of Picard’s 
Theorem [San79, pag. 81, so a solution z(t) exists in a neighborhood of the 
origin. Since ~’(0) = 231 + 85 cos 85 # 0, by the Inverse Function Theorem 
[Rud87, pag. 2211, x is locally invertible. Its inverse satisfies the initial value 
problem: 

1 
- t(77) = 0. dt 

dx 32 +85cosx’ 
_ -  

so 
4- 1 1; 3J+85cosJ 

t(x) = 

in some neighborhood of 77. There are numbers a1 and a2 such that a1 < 
77 < a2, 3ai + 85 cosai = 0, and 3ai + 85 C O S Q ~  > 0 in (a1, az). So t(x) is 
increasing. The function 3J + 85 cost behaves like I< - ail as < 3 ai, so 

lim t(x) = -m and lim t (x )  = 00. 

We may take the inverse o f t  : (a1,aZ) --t W and get a function x(t) that 
solves our initial value problem and is defined in all of R. 

x-011 x-012 
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Solution to 3.1.16: 1. Let u be defined by u(x) = exp(-3x2/2)y(x). The 
given equation becomes 

- 4.) 

= f(x, .>. 

- 
1 + e3z2u(x)2 

f is clearly C1, so it satisfies the Lipschitz condition on any compact 
convex domain. The initial value problem 

U 1 du 
dx 1+e3z2u’ n 

- u(0) = - _ -  

then has a unique solution for any n E M. 
2. f = 0 is the unique solution of the initial value problem associated with 
the condition u(0) = 0. Therefore, fn cannot have any zero, so f n ( x )  > 0 
for x E [0,1]. For u(x) = exp(-3x2/2)fn(x), we have 

so 

< 1  
U’ ‘ 1 + e 3 z 2 u 2  - 

1 1 
n n 

u(0) = - 5 u(x) 5 -ex 

therefore, 
1 2  1 5  -e2 5 f n ( 0 )  5 - e z  
n n 

and fn(0) 4 0 when n -+ GO. 

Solution to 3.1.17: If y ( t )  5 0 for some t ,  then y’(t) 2 1, so y(t) is 
growing faster than z ( t )  = t for all t where y(t) 5 0. Hence, there is a t o  
with y ( t0 )  > 0. For y > 0, y’ > 0, so for t 2 t o ,  y is positive. Further, for 
y > 0, e-Y > e-3Y, so y’ > em51J. Now consider the equation z’ = eT5’. 
Solving this by separation of variables, we get ~ ( t )  = log(t/5 + C)/5 ,  and 
for some choice of C, we have z( t0)  = ?/ ( to) .  For all t 2 t o ,  y’ > z’, so 
z ( t )  5 y(t) for t > t o .  Since z ( t )  tends to infinity as t does, so does y. 

Solution to 3.1.18: Multiplying the first equation by the integrating fac- 
tor exp (6 q(t)dt),  we get 

The general solution is therefore, 
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where C is a constant. The hypothesis is that limz--tw s: q ( t ) d t  = +GO. 

Even if ( p (  2 141, the corresponding property may fail for p .  For example, for 
p = -1 and q = 1, the general solutions are respectively f(z) = Cexp(-z) 
and f(z) = Cexp(z). 

Solution to 3.1.19: Consider the equation 

o = ~ ( z ,  y, z )  = (ex siny)z3 + (e5 cosy)z + eY tanz.  

F(O,O, 0) = 0,  and all the partial derivatives of F are continuous, with 

By the Implicit F’unction Theorem [Rud87, pag. 2241, there is a real valued 
function f with continuous partial derivatives, such that, 
F ( s l y ,  f(s, y)) = 0 in a neighborhood of (O ,O,  0). Locally, then, the given 
differential equation is equivalent to y’ = f(z, y). Since f satisfies the hy- 
potheses of Picard’s Theorem [San79, pag. 81, there is a unique solution y 
in a neighborhood of 0 with y(0) = 0. 

Solution to 3.1.20: Since f and g are positive, the solutions of both 
problems are monotonically increasing. The first differential equation can 
be rewritten as dz/f(z) = d t ,  so its solution is given by z = h-’(t), where 
the function h is defined by 

Because the solution is defined for all t ,  we must have 

l ” g j = G O ,  i-w - - -m. 

Since g 5 f, it follows that 

Using a similar reasoning we can see that the solution of the second equation 
is given by z = H-’( t ) ,  where 

O0 -3- = a, and J,-” A!L = -GO guarantee that H maps The conditions SO g ( E )  

R onto R, hence that H-’ is defined on all of R. Thus, the solution of the 
second equation is defined on R. 

d E )  
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Solution to 3.1.21: Picard’s Theorem [San79, pag. 81 applies because the 
function z2 - z6 is Lipschitzian on finite subintervals of the z-axis. Thus, 
two distinct solution curves are non intersecting. The constant functions 
z( t )  z 0 and z ( t )  = 1 are solutions. Hence, if the solution x ( t )  satisfies 
z(0) > 1, then z( t )  > 1 for all t ,  and if it satisfies 0 < ~ ( 0 )  < 1, then 
0 < z ( t )  < 1 for all t .  

Since 

4 z2 - z6 = 2(1 -  z ) = (1 - z)z2(1 + 5 + z2 + z3) , 
we have 

d 
dt (*) -(z - 1) = -(z - l)z2(1+ z +z2 +z3) . 

We see from this (or directly from the original equation) that if z(0) > 1, 
then z - 1 decreases as t increases, and if 0 < z(0) < 1, then 1 - z decreases 
as z increases. 

Case 1: z(0) > 1. In this case, (*) implies 

d 
dt -(z - 1) 5 -(z - I) 

(since z ( t )  > 1 for all t ) ,  so that 

d 
-.(et(z - 1)) 5 o . 
d t  

Hence, e‘(z(t) - 1) 5 z(0) - 1, that is, z ( t )  - I. 5 e-t(z(0) - l), from which 
the desired conclusion follows. 

Case 2: 0 < z(0) < 1. In this case, (*) implies 

d 
dt -(1- z) 5 -z(0)2(1- z) 

(since z ( t )  2 z(0) for all t ) ,  so that 

Therefore, e”(o)2t(l-z(t)) 5 l-z(O), that is, 1 - z ( t )  6 e-z(0)2t(l-z(0)), 
and the desired conclusion follows. 

Solution to 3.1.22: Let y be a solution of the given differential equation. 
If y’ never vanishes, then y’ has constant sign, so y is monotone. 

Suppose that y’(z1) = 0 for some 51. Then the constant function yl(z) = 
y(z1) is a solution of f(y1) = 0. Consider the function z ,  z(x) = y1 for all 2. 
Then the differential equation y’ = f (y)  with initial condition y(z1) = y1 
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is satisfied by y and by z. f is continuously differentiable and by Picard’s 
Theorem [San79, pag. 81, y = z,  so y is constant. 

Solution to 3.1.23: For (20, yo) to be the midpoint of L(z0, yo), the y 
intercept of L must be 2y0 and the x intercept must be 220 .  Hence, the slope 
of the tangent line is - ~ o / x o .  Let the curve have the equation y = f(~). 
We get the differential equation 

f (4 f‘(z) = --, 
X 

or 

By separation of variables, we get 

logy = - logx + c. 
Hence, 

D f(x) = y = - 
X 

for some constant D. Solving for the initial condition f(3) = 2, we get 
f(s) = 6 / x .  

3.2 Second Order Equations 

Solution to 3.2.1: By Picard’s Theorem [San79, pag. 81 there is, at most, 
one real valued function f on [ O , c o )  such that f(0) = 1, f’(0) = 0 and 
f ” ( ~ )  = (z2 - l ) f ( ~ ) .  Since the function ePz2l2 satisfies these conditions, 
we must have f (x) = e p X 2 l 2 .  We then have 

Solution to 3.2.2: The characteristic polynomial of the given diffcrential 
equation is (T - 1)2 so the general solution is 

cuet + ,Btet. 

The initial conditions give a = 1, and ,B = 0, so the solution is y ( t )  = e t .  

Solution to 3.2.3: The characteristic polynomial of the associated homo- 
geneous equation is 

2 
T 2  - 27- + 1 = (T - 1) 
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so the general solution of the homogeneous equation 

d2x dx -- 2-++Z=o 
dt2 d t  

is 

(cos t)/2 is easily found to be a particular solution of the original equation, 
so the general solution is 

Aet + Btet (A ,  B E EX). 

cos t 
2 

Aet + Btet + -. 
The initial conditions give A = -f and B = 1 2 ’  

1 
-(et - tet +cost). 
2 

so the solution is 

Solution to 3.2.4: The characteristic polynomial of the given equation is 

5r2 + 10r + 6 

which has roots -1 -I i/&, so the general solution is given by 

x(t) = cle-t cos (3 -t c2e-t sin (A) 
where c1 and c2 are constants. We can assume c1 # 0 or cp # 0. Using 
calculus, we can sec that u2(1 + u4)-l 5 1/2 with equality when ‘LI = H. 
Then f attains a maximum of 1/2 iff x attains one of the values fl .  We 
have limt,, x(t) = 0. Suppose c1 # 0. Then, if k is a large enough integer, 
we have 

so, by the Intermediate Value Theorem [Rud87, pag. 931, 2 attains one of 
the values f l .  If c2 # 0, a similar argument gives the same conclusion. 

Solution to 3.2.5: We first solve the homogeneous equation s”+8x’+25 = 
0. The general solution is xo(t) = cleZTlt + c2eZTzt,  where c1 and c2 are 
constants and r k  = -4 f 32, k = 1 ,2 ,  are the roots of the characteristic 
equation r2 + 8r + 25 = 0. 

All thc solutions of the differcntial equation x” + 82’ + 252 = 2 cost are 
of the form x(t) = xo(t) + s ( t ) ,  where s ( t )  is any particular solution. We 
solve for an s ( t )  by the Method of Undetermined Coefficients [BD65, pag. 
1151. Consider s ( t )  = A cos t + B sin t. Differentiating this expression twice, 
we get 

2 cost = s’’ + 8s’ + 25s = (24A + 8B) cost + (24B - 8 A )  sint. 
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Solving the two linear equations gives A = 3/40 and B = 1/40. There- 
fore, the desired solution z( t )  is given by zo(t) + s ( t ) ,  where c1 and c2 

are chosen to give the correct initial conditions. zo(t) tends to 0 as t 
tends to infinity; therefore, to finish the problem, we need to find con- 
stants a and6  withacos(t-6) = Acost+Bsint.  We haveacos(t-6) = 
a cos t cos 6 + a sin t sin 6, so the problem reduces to solving cr cos 6 = 3/40 
and asin6 = 1/40. These equations imply tan6 = 1/3 or 6 = arctan(l/3). 
Hence, by elementary trigonometry, cos 6 = 3 / m ,  so a = a / 4 0 .  

Solution to 3.2.6: 1. The differential equation is equivalent to y’ = z and 
z’ = -1yI. We have 

so the Lipschitz condition is verified and our initial value problem has, 
by Picard’s Theorem [San79, pag. 81, a unique solution. If y is such a 
solution, define the function z by z ( z )  = y(-z). We have z” (z )  = y”(-z) = 
-Iy(-z)1 = - [z (z ) l ,  z (0)  = y(0) = 1 and z’(0) = -y’(O) = 0, so z = y and 
y is even. 
2 .  We have 

y’(2) = 1’ y”(t)dt = - I’ ly(t)ldt < 0 

so y is a dccreasing function; therefore, it has, at  most, one positive zero. 
If y is positive on R+, by continuity, y is positive in some interval of the 
form ( - E , W )  for some E > 0. Together with y(0) = 1, y’(0) = 0 gives 
y(z) = cosz, which is absurd. We conclude then that y has exactly one 
positive zero. 

Solution to 3.2.7: 1. Let the function g be defined by g ( t )  = f(x(t), ~ ’ ( t ) ) .  
We have 

(*) g’( t )  = - 2 ( 2 ’ ( t ) 2  + 2(q4) 
so g is a decreasing function. 
2. It is enough to show that limb,, g ( t )  = 0. 

Since g is a positive decreasirig function, the limit exists and satisfies 
limt.+mg(t) = c 2 0. If c > 0, then, for some E > 0, T E R we have 
~ ’ ( t ) ~  + x4(t) > E for t 2 T.  Then, by (*), we have 

(z’(t)2 + z(t)4)dt > Edt = 00 
g(T)  2 - = Lm r 

which is absurd. We must then have c = 0, as desired. 
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Solution to 3.2.8: Substituting y(x) = xa gives the quadratic equation 
a(a - 1) + 1 = 0. The two roots are 

1 a2 -f-, 
2 2  

so the general solution is 

The boundary condition y(1) = 0 implies A = 0 and then the boundary 
condition y(L) = 0 can be satisfied for nonzero B only if 

sin -1ogL = 0 (7 1 
Equivalently, 

2n7r f d3 L = e  

where n is any positive integer. 

Solution to 3.2.10: Multiplying the first equation by a ( t ) / p ( t )  where a is 
a differentiable function, we get 

Expanding the second given equation, we get 

a(t)z”( t )  + a’(t)s’(t)  + b(t)z(t)  = 0. 

For the two equations to be equivalent, we must have a’(t) = a ( t ) q ( t ) / p ( t ) .  
Solving this by separation of variables, we get 

Letting b ( t )  = a ( t ) r ( t ) / p ( t ) ,  we are done. 

Solution to 3.2.11: The function z’(l)z(t) - x’(O)z(t + 1) satisfies the 
differential equation and vanishes along with its first derivative at t = 0. 
By Picard’s Theorem [San79, pag. 81 this function vanishes identically. 
Assuming IC is not the zero function, we have x’(0) # 0 (again, by Picard’s 
Theorem), so z ( t  + 1) = c x ( t ) ,  where c = x’(l)/d(O). It follows that the 
zero set of J: is invariant under translation by one unit, which implies the 
desired conclusion. 
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Solution to 3.2.12: The characteristic polynomial of the equation is l 2  - 
2cl+ 1 = 0, which has the roots c f d n .  
Case 1: IcI > 1. Let w = d m .  Then the general solution is 

x ( t )  = eCt(Acoshwt + B sinhwt) . 

The condition z(0) = 0 implies A = 0, and then the condition z(27rk) = 0 
implies B = 0, that is, x ( t )  = 0. There are no nontrivial solutions in this 
case. 
Case 2:  c = 1. The general solution is 

x ( t )  = Aet + Btet . 

The condition x (0 )  = 0 implies A = 0, and then the condition x(27rk) = 0 
implies B = 0. There are no nontrivial solutions in this case. 
Case 3: c = -1. Similar reasoning shows that there are no nontrivial 
solutions in this case. 
Case 4: -1 < c < 1. Let w = d m .  The general solution is then 

z ( t )  = eCt(A cos wt  + B sinwt) . 

The condition z(0) = 0 implies A = 0. If B # 0, the condition x(27rk) = 0 
then implies 27rkw = 7rn (n  E Z), that is, w = n/2k,  and 

n 

The right side is nonnegative and less than 1 only for 0 < In1 5 2 k .  The 
required values of c are thus 

c = f  1 - - ,  n = 1 , 2  ,..., 2 k .  .J 2 2  

3.3 Higher Order Equations 

Solution to 3.3.3: 

1. The characteristic polynomial of the equation is 

7 28 - 1 
x + . . . + x + l = -  x - 1  

which has roots -1, *z, and flfi. For each such root zk = uk + 
ivk (k = 1, . . . , 7 ) ,  we have the corresponding solution 

Jz 

ezkt = eUkt(cos ukt + i sinukt) 
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and these form a basis for the space of complex solutions. To get a 
basis for the real solutions, wc take the real and imaginary parts, 
getting the basis 

2. A solution tends to 0 at 00 iff it is a linear combination of solutions 
in the basis with the same property. Hence, the functions 21, X6, arid 
x7 form a basis for the space of solutions tending to 0 at 00. 

Solution to 3.3.4: The set of complex solutions of the equation forms a 
complex vector space which is invariant under differentiation. Hence, the 
functions cos t and cos 2t are also solutions, and, therefore, so arc efZt = 
cost f i sin t and ef2Zt = cos 2t f i sin 2t. It follows that the characteristic 
polynomial of the equation has at least the four roots f i , f 2 i ,  so it is 
divisible by the polynomial (A2 + 1)(A2 + 4). The differential equation is 
therefore, at least of order 4. The smallcst possible order is, in fact, 4, 
because the given functions arc both solutions of the equation 

(g.1) (g.4) = 0 ,  

that is, 
d4x d2x 
dt4 dt2 
- - - + 5 - + 4 ~ = 0 .  

The preceding reasoning applies for both real and complex coefficients. 

Solution to 3.3.5: Solving the characteristic equation r3 - 1 = 0, we find 
that the general solution to y”’ - y = 0 is given by 

with c1, c2, and c g  E R. lim,,,y(x) = 0 when c1 = 0. But (*), with 
c1 = 0, is the general solution of the differential equation with characteristic 
polynomial (r3 - l)/(r - 1) = r2 + T + 1, that is, 

y” + y’ + y = 0. 

So y”(0) + y’(0) + y(0) = 0, and we can take a = b = c = 1 and d = 0. 
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3.4 Systems of Differential Equations 

Solution to 3.4.3: Solving the first equation for y and differentiating gives 

3 

Substituting this into the second equation and simplifying yields 

X" - 52' + 62 = 0. 

Factoring the characteristic polynomial, we get 

r2 - 5r + 6 = (T - 2)(r - 3), 

so the general solution to this differential equation is given by 

z(t)  = ~~2~ + c2?, 

where C1 and Cz are constants. Substituting this in the above, we gct 

Solution to 3.4.4: We have 

d dx dy 
dt d t  dt - ( 5 2  + 92)  = 2x- -i- 2y- 

= 2x(-2 + y) + 2y(log(20 + 2)) 
= -2x2 + 2zy - 2y2 + 2ylog(20 + x). 

As, for any positive E ,  

log(20 + .) = 0(xE) (. --t +Go) 

and 

-2x2 + 2xy - 2y2 F -2(x2 + y2 - IXYI) 
5 -2(x - y)2 

5 0  

we conclude that 
d 
dt 
- (2 4- y2) 5 0 
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for (1 (zl y )  ( 1  large enough so the distance of ( 2 ,  y )  to the origin is bounded. 

Solution to 3.4.5: 1. Using polar coordinates, x = r cos 8 and y = T sin 8, 
we get - 

d r  x d x  y d y  
d t  r d t  r d t  

+ -- = r (1 -  r 2 )  - - - _ _  

dB - x dY Y d x  - __- - -  - 
d t  r2 d t  r2 d i  

solving these, wc get 

where c1, c2 are constants. 

(20 ,  yo) # (0,O) let 20 = ro cos Oo and yo = ro sin&. We have 
For (zo1yo) = (O,O) ,  we have = 2 = 0; thcrefore, z = y = 0. For 

so 

2. We have 
c1 et lim r = lim = 1. 

t-oo t - - t o o d m  

Solution to 3.4.9: We have 

so it suffices to prove that A + A* is positive definite. We have 

A + A * = (  2 2 8 2 -2 2 )  

-2 2 16 

and it is enough to check that the determinant of the principal minors are 
positive, which is a simple calculation. 
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Solution to 3.4.10: We have 

dx 
d t  
-(O) = 1, 

so, for small positive t ,  ( x ( t ) ,  y ( t ) )  lies in the right half-plane. For 0 < x < 1, 
we have 

1 1 dx 
- = 1 + -x  siny 2 1 - -x2 2 -. dt 2 2 2 

1 2  

Thus, the function z ( t )  is increasing with slope at least 1/2. Therefore, by 
the time t = 2, the curve ( x ( t ) ,  y ( t ) )  will cross the line z = 1. 

Solution to 3.4.11: 1. We have 
dF d F d x  d F d y  

- + -- = y(xZ3 -t x5) - y ( a y  + 2 3  + .5) = - q / 2  at ax at ay at 

Thus, dF/% 5 0, which implies that F decreases along any solution 
( x ( t ) ,  y ( t ) )  of the differential equation. 
2. Let E > 0. Since F is continuous, there exists a 6 > 0 such that F ( x ,  y) < 
~ ~ / 2  if 1 1  ( x ,  y)ll < 6.  Further, by letting (2,  y) vary over all points such that 
ll(x, y)ll = E ,  elementary calculus shows that F ( x ,  y )  2 ~ ~ / 2 .  

Let the initial conditions x (0 )  and y(0) be such that ~ ~ ( ~ ( 0 ) ~  y(0))ll < 6.  
By Picard's Theorem [San79, pag. SJ, there exist unique solutions x ( t )  and 
g ( t )  to the differential equation satisfying these initial conditions. Since 
F ( z ,  y) decreases along solutions, we must have that F ( x ( t ) ,  y ( t ) )  < c 2 / 2  
for all 1 > 0 in the domain of the solution. Now suppose that for some t > 0 
in this domain, ll(z(t), y( t ) ) l l  = E .  We would have F ( x ( t ) ,  y ( t ) )  2 ~ ~ / 2 ,  a 
contradiction. Therefore, Il(x(t), y(t))ll < E for all t > 0 in the domain of 
the solution. But this bound is independent o f t ,  so the Extension Theorem 
[San79, pag. 1311 shows that this solution exists on all positive t. 

Solution to 3.4.13: Let f i ,  . . . , fn be a basis for V .  Since V is closed 
under differentiation, we have the system of equations 

n 

f,' = C aaJ j ,  1 5 i I n. 
3'1 

Let A=(u,,). This system has solutions of the form f i ( x )  = C,eX~" ,  where 
the Ca7s are constants and the X,'s are the (complex) eigcnvalues of the 
matrix A.  By the properties of the exponential function, we immediately 
have that f a  ( x  +a)  = C f i ( x )  for some constant C depending on a ,  so fa  ( x  + 
a )  E V .  Since the f%'s form a basis of V ,  V is closed under translation. 

Solution to 3.4.14: We will show that for 1 5 k 5 n + 1, 

11 t l  
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where the <j’s are constants depending on k. From this, it follows that each 
f k ( t )  approaches 0 as t tends to infinity. 

Solving the second equation, we get 

fn+l( t )  = Sn+le-(n+l)t 

for some tn+l E R, which has the desired form. Assume that, for some k ,  
the formula holds for f k + l .  Differentiating it and substituting it into the 
first equation gives 

n-t 1 
- 

f; = (k++l+, j )J je  j t  - k f k .  
j=k+l 

This is a first order linear differential equation which we can solve. Letting 
pj = (k + 1 + j & ,  we get 

where C is a constant. Changing the order of summation and evaluating, 
we get 

where the &’s are some real constants, and we are done. 

Solution to 3.4.15: We solve the case n = 1 in two different ways. First 
method. Let B be the indefinite integral of A vanishing at 0. One can then 
integrate the equation = A x  with the help of the integrating factor e-”, 
namely 

giving x ( t )  = eB( t ) z (0) .  Since A(t) 5 p, we have B(t) 5 Pt for t > 0, so 

lx(t)l = lz(0)le”(t)  5 Ix(0)le-bt, 

as desired. 
n = 1, Second method. Consider the derivative of e-@z: 

By Picard’s Theorem [San79, pag. 81, x either has a constant sign or is 
identically 0. Hence, e-Otx is nonincreasing when x is positive and nonde- 
creasing when x is negative, which gives the desired conclusion. 
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n > 1. We have for a solution s ( t ) ,  

=  AX, x )  
I 2PIlx112 

which reduces the case n > 1 to the case n = 1. 

Solution to 3.4.16: 1. We have 

d d d X ( t )  - IlX(t)l12 = & ( X ( t )  . X ( t ) )  = 2 X ( t )  . - dt d t  
= 2 X ( t )  . W X ( t )  = 2 W X ( t )  . X ( t )  
= - 2 W X ( t )  . X ( t )  = -2X( t )  f W X ( t )  

d 
dt = -- lIX(t)II2 7 

from which it follows that -$ llX(t)112 = 0, hence that IlX(t)II is constant. 
2. We have 

d X ( t )  21 = W X ( t )  . v d 
d t  d t  
- ( X ( t )  . v) = - . 

= X ( t )  . Wtv = - X ( t )  . W v  = 0. 

3. It will suffice to show that the null space of W is nontrivial. For if II is 
a nonzero vector in that null space, then 

IlX(t) - v1I2 = Ilx(t>I12 + 1 1 ~ 1 1 2  - 2 X @ )  .v 7 

which is constant by Part 1 and Part 2, implying that X ( t )  lies on the 
intersection of two spheres, one with center 0 and one with center v. 

The nontriviality of the null space of W follows from the antisymmetry 
of w: 

det W = det W t  = det(-W) 
= (-1)3det W = -detW . 

Hence, det W = 0, so W is singular. 

Solution to 3.4.17: Consider the function u defined by u(t)  = llx(t)112. 
We have, using Rayleigh’s Theorem [ND88, pag. 4181, 

u’(t) = 2(x ( t ) ,  x’(t)) 
= 2(x ( t ) ,  P ( t ) x ( t ) )  
5 -%4t), d t > >  
= -2u(t) 
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which implies that u(t) 5 u(O)exp(-2t) for t > 0, so limt-+mu(C) = 0, 
and the result follows. 

Solution to 3.4.18: Expanding the matrix differential equation, we get 
the family of differential cquations 

= f. 

where fij = 0 if i or j equals 0. Solving these, we get 

15 i , j  5 n, 
dfij 

dt 2 - 1 3 - 1 1  

tl1 t 1 2  t 1 3  

(21 c 1 1 t + e 2 2  t 1 2 t  + c23 

E31 b l t  -k 532 ' t1 l t2  -k t 2 2 t  -k E33 

(13t + c24 

t12t2  -k E23t + E34 
1 

1 3  1 ( '$41 e31t  + t 4 2  3E21t2 + t 3 2 t  + '$43 gE11t + $(22t2 + 533t  + 544 

X( t)= 

where the &j 's  are constants. 

Solution 2. We will use a power series. Assume X ( t )  = c;=,tnCn. The 
given equation gives 

m m c ntn-lCn = c AtnCnB 
n=1 n = O  

which can bc written as 
00 C tn ((n + 1 ) C n + 1 -  ACnB) = 0 
n=O 

giving the recurrence relation 

so we have 
1 
n! 

Cn = - A n C o B n .  

Since A4 = B4 = 0, the solution reduces to a polynomial of degree at most 
3: 

t 2  t 3  

6 
X ( t )  = Co -t tACoB + 2A2CoB2 I- -A3CoB3 

where CO = X ( 0 )  is the initial value of X .  
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4.1 Topology of Rn 

Solution to 4.1.1: Suppose there is no such E .  Then there exists a sequence 
(xn) in K such that none of the balls B I , ~ ( ~ , )  is contained in any of the 
balls B3. Since K is compact, this sequence has a limit point, by the 
Bolzano-Weierstrass Theorem [Rud87, pag. 401, [MH93, pag. 1531, x E K .  
Then, since the BJ’s are an open cover of K ,  there is a j and an E > 0 
such that &(z) c BJ.  Let 1/N < ~ / 2 ,  and choose > N such that 
Ix - x,1 < ~ / 2 .  Then Bl/,(xn) C BE(x )  c B3, contradicting our choice of 
2,’s. Hence, the desired E must exist. 

Solution 2. Suppose the conclusion is false. Then, for each positive intc  
ger n, there are two points xn and yn in K such that (x, - ynl < l/n, 
yet no B3 contains both x, and yn. Since K is compact, the sequence 
(2,) has a convergent subsequence, (z,,) say, with limit p E K .  Then, 
obviously, ylLk -+ p. There is a BJ that contains p. Since B3 is open and 
p = limx,, = limy,,, both x,, and yn, must be in B3 for k sufficiently 
large, in contradiction to the way the points x, and y, were chosen. 

Solution 3. By compactness, we can choose a finite subcover {Bj}Y!l  of K ,  
[Rud87, pag. 301. For x E K ,  define 

f (x) = max{dist(z, Rn \ B J )  I x E B j } .  

Then f(x) > 0 for each x E K ,  because each B3 is open and there are only 
finitely many of them. Since K is compact and f is continuous and strictly 
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positive on K ,  f has a positive minimum E > 0. By definition of f, every 
&-ball centered at a point of K is contained in some B3. 

Solution to 4.1.2: Suppose U, is an open set of real numbers for n E N, 
such that Q = nu,,. Then each set R \ U, is nowhere dense, since it is a 
closed set which contains only irrational numbers. We then have 

R = u Un u {Q} 
n€N q€Q 

but R is not a countable union of nowhere dense sets, by Baire’s Category 
Theorem [MH93, pag. 1751. So Q cannot be a countable intersection of 
open sets. 

Solution to 4.1.3: Suppose z, y E X .  Without loss of generality, assume 
z < y. Let z be such that 2 < z < y (for instancc, z irrational verifying 
the double inequality). Then 

(--oo,z) n x, ( 2 , ~ )  n x 
is a disconnection of X .  We conclude then that X can have only one e l e  
ment . 

Solution to 4.1.4: The Cantor set [Rud87, pag. 411 is an example of a 
closed set having uncountably many connected components. 

Let A be an open set and suppose C, , Q E r are its connected compo- 
nents. Each C, is an open set, so it contains a rational number. As the 
components are disjoint, we have an injection of‘ in Q , so r is, at most, 
countable. 

Solution to 4.1.5: Supposc we have 

[O, 11 = u [a,, bzl 
Z€N 

where the [a,, b,]’s are non empty pairwise disjoint intervals. Let X be the 
set of the corresponding endpoints: 

x = {Ul, u2,.  . .} u { b l ,  b 2 , .  . .}. 
We will show that X is a perfect set, so it cannot bc countablc. 

The complement of X in [0,1] is a union of open intervals, so it is open, 
and X is closed. By the assumption, there must be elements of X in 
(a, - €,a,) for each E > 0, and each i E N, and similarly for the b,’s. 
Each element of X is then an accumulation point, and X is perfect. 

Solution to 4.1.6: 1. Let X = {x} and (y,) be a sequence in Y such that 
( 2  - ynl < d ( X , Y )  + l /n.  As (y,) is bounded, passing to a subsequence, 
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we may assume that it converges, to y, say. As Y is closed, y E Y and, by 
the continuity of the norm, Iz - yI = d ( X ,  Y ) .  
2. Let (z,) be a sequence in X such that d( (z,), Y )  < d ( X ,  Y )  + l / n .  As X 
is compact, by the Bolzano-Weierstrass Theorem [Rud87, pag. 401, [MH93, 
pag. 1531, we may assume, passing to a subsequence, that (2,) converges, 
to 2, say. We then have d ( X , Y )  = d({z} ,Y)  and the result follows from 
Part 1. 
3. Take X = { (z , l /x )  I z > 0) and Y = { (z, 0) I z > 0) in Rz. 

Solution to 4.1.7: Suppose that S contains no limit points. Then, for 
each z E S ,  there is a 6, > 0 such that 8 6 ,  n S = (z). Let E~ = S, /2 .  The 
balls BEz(z) are disjoint, so we can choose a distinct point from each one 
with rational coordinates. Since the collection of points in R" with rational 
coordinates is Countable, the set S must be countable, a contradiction. 
Hence, S must contain one of its limit points. 

Solution to 4.1.8: Let y be a limit point of Y and (yn) a sequence in Y 
converging to y. Without loss of generality, we may suppose that Iyn - yI < 
T .  By the definition of Y ,  there is a sequence (2,) in X with Ix, -ynI = T .  

Therefore, lxn - yJ 5 12, - y,l + Iy, - yJ < 2r, so the sequence (zn) is 
bounded. Hence, it has a limit point x E X. By passing to subsequences of 
(5,) and (y l , ) ,  if necessary, we may assume that limz,, = z. Let E > 0. For 
n large, we have 

lz - YI L 12 - zn1 + 1x72 - yn( + Iyn - y( I r + 2.5 

and 

7- = lzn - ynl L I& - XI + Iz - Yl + Jy - Ynl 5 ( 2  - Yl + 2 E .  

Since E is arbitrary, )z - yI = T .  Hence, y E Y and Y is closed. 

Solution to 4.1.9: For k = 1,. . ., let Bk be the family of open balls in 
W" whose centers have rational coordinates and whose radii are l / k .  Each 
family Bk is countable. For each ball B E Bk such that B n A # 0, choose 
a point in B n A, and let AI, be the set of choscn points. Each Ak is a 
countable subset of A, so the set A, = UAk is a countable subset of A. 
Since A is closed, the inclusion A, c A is obvious. Suppose a E A and 
fix a positive integer k .  Then a lies in some ball B E Bk, and this ball B 
must then contain a point of Ak, hence of A,. Thus, some point of A,* 
within a distance of 2 / k  of a. Since k is arbitrary, it follows that a E A, 
and, thus, that A c A,. 
Solution to 4.1.10: For k = 1 , 2 , .  . ., let Bk be the closed ball in R" 
with center at 0 and radius k .  Each compact of Rn is contained in some 
Bk. As each BI, is compact, it is covered by finitely many Uj's, by the 
Heine-Bore1 Theorem, [Rud87, pag. 301. Let j k  be the smallest index such 
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that BI, is covered by U,, . . . , U,, . Define V, by setting V, = Uj \ Bk for 
j ~ ,  + 1 5 J’ 5 j k + l  (if the indices j ~ ,  arc all equal from some point on, set 
V, = 0 for j larger than their ultimate value.) The sets Vl, &, . . . have the 
required property. 

Solution to 4.1.11: If K is not bounded, then the function 2 H llzll is not 
bounded on K .  If K is bounded but not compact, then it is not closed, by 
the Heine-Bore1 Theorem, [Rud87, pag. 401, [MH93, pag. 155); therefore, 
there exists < E f7 \ K .  In this case, the function 2 H llz - < [ I p 1  is not 
bounded on K .  

Solution to 4.1.12: 1. Suppose not. Then there is a positive number 6 
and a subsequence of (xi), ( yn ) ,  such that 

As A is compact, by the Bolzano-Weierstrass Theorem [Rud87, pag. 401, 
[MH93, pag. 1531, (yn) has a convergent subsequence, which, by hypothesis, 
converges to z, contradicting the inequality. 
2. Let A = W and consider 

i if i isodd L 1 if i iseven. xi = 

All the convergent subsequences converge to zero, but ( X ~ )  diverges. 

Solution to 4.1.13: Let E > 0. As f is uniformly continuous on X, there 
is a 6 > 0 such that 

for Iz - yI < 6 and any MI 2 0. 
Assume 12 -- 31 2 6. As f is bounded, there is an MZ > 0 with 

If(.) - f(y)I 1. Mz for all z and y. Let M I  = Mz/6. We have 

for all IC, y E X. 

Solution to 4.1.14: Let 

S = U S, = A U B 
a 

where A and B are open. The origin belongs to A or to B. Without loss of 
generality, assume 0 E A. For every a,  we have 

S, = (S, n A )  u (S ,  n B )  
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so, as S, is connected and 0 E S, n A, we get S, n B = 0. Therefore, 

s n B = U(S. n B )  = 8 
n 

and S is connected. 

Solution to 4.1.16: The assertion is true. Let S be such a set and a a point 
in S. Define the set S, = { b  E S 1 a and b are connected by a path in S}. S, 
is open (because S is locally path connected) as well as its complement in 
S, so these two sets make up a partition of S, which is connected, therefore, 
the partition is trivial and S, is the whole S. 

Solution to 4.1.19: 1. P 2  is the quotient of the sphere S2 by the equiva- 
lence relation that identifies two antipode points x and -x. If rr : S2 -+ P 2  
is the natural projection which associates each point 2 E S2 to its equiv- 
alence class ~ ( x )  = { x , - x }  E P 2 ,  the natural topology is the quotient 
topology; that is, A c P 2  is open if and only if v l ( A )  C S2 is open. With 
this topology, the projection 7r is a continuous function and P2 = r ( S 2 )  is 
compact, being the image of a compact by a continuous function. 

Another topology frequently referred to as the usual topology of P2 is 
the one defined by the metric 

d(z, 9) = min{ Iz - y1, 12 t ?/I}. 
It is a straightforward verification that the function d above satisfies all 
axioms of a metric. We will show now that it defines the same topology as 
the one above, on the space that we will call ( P 2 ,  d )  . 

The application IT : S2 4 P2 with the metric as above satisfies the 
inequality 

so d is continuous. This defines a function 7i on the quotient which is 
d ( 4 2 ) ,  7r(Y)) 5 15 - YI 

P2 
the identity and then continuous. Since P2 is compact and (P2,  d )  Haus- 
dorff, % is a homeomorphism and the two topologies in P 2  are equivalent. 

Now SO(3) is the group of orthogonal transformations of EX3 with deter- 
minant 1, so every matrix in this set of satisfies 

1 0 0  

0 0 1  
x . x t =  ( 0  1 o )  
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therefore, c%=, X,"l, = 1, for i = 1,2 ,3 ,  implying that SO(3) is bounded. 
Consider now the transformation 

f :  M3,3MR9 + M3x3 xR 
X --+ (XtX,detX).  

f is continuous and SO(3) = f-' ( I ,  l), that is, the inverse image of a closed 
set, then itself a closed set, showing that SO(3) is compact. Another way 
to see this is to observe that the function 

X + J t r o  

is a norm on the space of matrices M",, Rnz and that for matrices in 
the orthogonal group t r  ( X t X )  = n, so O(n) and, consequentially, SO(n) 
are compact. 
2. To see the homeomorphism between P2 and Q, first define the application 
cp : P2 --+ Q given by the following construction: For each line 2 through 
the origin, take cpz : W3 -+ W3 as the rotation of 180" around the axis 2. 
This is well defined and continuous. To see that it is surjective, notice that 
every orthogonal matrix in dim3 is equivalent to one of the form 

0 C O S ~  sine 
0 -sin8 COSO O )  

1 0  i 
and with the additional condition of symmetry 0 = T ,  which is a rota- 
tion of 180' around an axis. For more details see the Solution to Prob- 
lem 7.4.18. Since cp is continuous and injective on a compact, it is an home- 
omorphism. 

Solution to 4.1.21: Convergence in M,,, is entrywise convergence. In 
other words, the sequence (Ak) in M,,, converges to the matrix A if and 
only if, for each i and j ,  the (i, j ) t h  entry of AI, converges to the (i, j ) t h  entry 
of A. It follows that the operator of multiplication in M,,, is continuous; 
in other words, if Ak --+ A and Bk t B, then AkBk --+ AB. Now suppose 
(Ak)  is a sequence of nilpotent matrices in M,,, and assume AI, + A. 
Then A; --+ A" by the continuity of multiplication. But A; = 0 for each k 
since Ak is nilpotent. Hence, A" = 0, that is, A is nilpotent. As a subset 
of a metric space is closed exactly when it contains all its limit points, the 
conclusion follows. 

4.2 General Theory 

Solution to 4.2.1: Let U be an open cover of C. Then there is a set UO in 
U that contains 20. Since limn+m xn = 20,  there is an no such that 2, is in 
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Uo for all n > no. For each n 5 no there is a set U, in U that contains 2,. 

The subfamily {Uo, U l , . .  . , U,,} is then a finite subcover of C ,  proving, by 
the HeineBorel Theorem [Rud87, pag. 301, that C is compact. 

Solution to 4.2.2: Let X be a compact metric space. For each n E N, con- 
sider a cover of X by balls with radius l /n ,  B(l/n) = {Ba(s,, l /n )  / 2, E 
X } .  As X is compact, a finite subcollection of B(l/n), B'(l/n), covers X ,  
by the Heine-Bore1 Theorem (Rud87, pag. 301. Let A be the set consisting 
of the centers of the balls in B'(l/n), n E N. A is a countable union of 
finite sets, so it is countable. It is also clearly dense in X .  

Solution to 4.2.3: Suppose z @ f ( X ) .  As f(X) is closed, there exists a 
positive number < such that d(z, f ( X ) )  2 E.  

As X is compact, using the Bolzano-Weierstrass Theorem [Rud87, pag. 
401, [MH93, pag. 1531, the sequence of iterates ( f " ( x ) )  has a convergent 
subsequence, (fni(z)), say. For i < j ,  we have 

d (f,' (z), f"j (.I) = d (2, f n 3  (4) 2 E 

which contradicts the fact that every convergent sequence in X is a Cauchy 
sequence, and the conclusion follows. 

Solution to 4.2.4: For z E C we clearly have f(z) = 0. Conversely, if 
f(z) = 0, then there is a sequence (y,) in C with d(x,y,) -+ 0. As C is 
closed, we have x E C. 

Given z, z E M and y E C ,  we have, by the Triangle Inequality [MH87, 
P%. 201, 

4x7 Y) I 4x7 2) 4- 4 2 ,  Y). 
Taking the infimum of both sides over y E C ,  we get 

or 
f ( x )  - f(2) I d(z ,z ) ,  

f(2) - f(.) 5 d(x,  2). 

If(.) - f ( Z ) I  5 +, 2) 

and, by symmetry, 

Therefore, 

and f is continuous. 

Solution to 4.2.5: l l f l l  2 0 for all f in C1I3 is clear. I f f  = 0, it is obvious 
that = 0. Conversely, suppose that l l f l l  = 0. Then, for all x # 0, we 
have 
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Since f(0) = 0, this implies f(x) = 0 for all x. Let f,g E C1f3 and E > 0. 
There exists IC # y such that 

Since E was arbitrary, the Triangle Inequality holds. 
The property llcfll = lclllfll for f E C1f3 and c E R is clear. 
Let {fn} be a Cauchy sequence in C1l3. By the definition of the norm, 

for all x E [0,1] and any E > 0 there is an N > 0 such that if n, m > N ,  
we have iun - fm)(x) - (fn - fm)(o)i I i X  - 0 1 1 / ~ E  

or 

Hence, the sequence {fn} is uniformly Cauchy. A similar calculation shows 
that functions in C‘l3 arc continuous. Since the space of continuous func- 
tions on [0,1] is complete with respect to uniform convergence, there exists 
a continuous function f such that the fn’s converge to f uniformly. Suppose 
f $ C1f3. Then, for any M > 0, there exist x # y such that 

lfn(x) - fm(x)I I &- 

Since the fn’s converge to f uniformly, for fixed x and y we can make the 
first and third terms as small as desired. Hence, I [ f n l l  > M for all M and 
n sufficiently large, contradicting the fact that fn E C1f3 and that, since 
the fn’s are Cauchy, their norms are uniformly bounded. 

Suppose now that the sequence {fn} does not converge to f in C’f3. 
Then there is an E > 0 such that ] I f n  - f l l  > E for infinitely many n’s. But 
then there exist x # y with 

I f n ( 4  - f (4 l  + M Y )  - f(Y)I > t: 
111: - y1’/3 l X  - yp/3 

for those n’s. But, as we have uniform convergence, we can make the left 
hand side as small as desired for fixed x and y, a contradiction. 

Solution to 4.2.7: Since f ( K )  c f ( K n )  for all n, the inclusion f ( K )  c 
nFf(K,) is clear. Let y be a point in npUf(Kn). Then, for each n, the set 
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f-’ ({y}) n K, is nonempty and compact (the latter because it is a closed 
subset of the compact set K,). Also, f-’({y}) n Kn+l C f-’({y}) n Kn. 
Hence, by the Nested Set Property [MH93, pag. 1571, the set 

is nonempty; that is, y E f ( K ) .  

Solution to 4.2.8: 1. The completeness of X I  implies the completeness 
of X z .  In fact, assume X I  is complete, and let (y,) be a Cauchy sequence 
in X z .  The conditions on f imply that it is one-to-one, so each y, can be 
written uniquely as f(z,) with z, in X I .  Then dl(z,,z,) 5 dz(ynl,yn), 
implying that (2,) is a Cauchy sequence, hence convergent, say to z. Since 
f is continuous, we then have lim yn = f(z), proving that Xz is complete. 
2. The completeness of X z  does not imply the completeness of X I .  For an 
example, take XI = (-$,$), X, = R, and f(z) = tanx. Since f’(x) = 
sec2z 2 1 on X I ,  the condition (z - yI 5 If(.) - f(;v)l holds. 

4.3 Fixed Point Theorem 

Solution to 4.3.1: The map is the image, by a contraction, of a complete 
metric space (California!). The result is a consequence of the Fixed Point 
Theorem [Rud87, pag. 2201. 

Solution to 4.3.2: Let g(z) = (1 + z)-’. We have 

therefore, 

Then, by the Fixed Point Theorem [Rud87, pag. 2201, the sequence given 
bY 

20 > 0 7 &+1 = d z n )  
converges to the unique fixed point of g in [TO,  m). Solving g(z) = z in 
that domain gives us the limit 

- l + &  
2 
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Solution to 4.3.3: Let S = (2 E [0, m) I IC -f(x) 5 0) .  S is not empty be- 
cause 0 t S; also, every element of S is less than 100, so S has a supremum, 
20, say. For any E > 0, there exists an element of S ,  z, with 

2 5 20 < 2 + & 

so 
xo - f(x0) I 2 0  - f(x) < z + E - f(x) L: E 

and we conclude, since E is arbitrary, that xo 5 f(xo). 

zo + 6; therefore, 
Suppose f(xo) - xo = S > 0. Then, for some x E S, we have x 5 xo < 

2 L 20 < f(x0) - 20 + 2 + S 

z L 20 < f (2o )  - 20 + z 
and we get 

from which follows, since f is an increasing function, 

but then xo < f(x0) - xo + x E S ,  which contradicts the definition of zo. 
We must then havc f(xo) = zo. 

Solution to 4.3.4: Consider F : K --f W defined by F ( x )  = d(x,cp(z)). 
cp, being a contraction, is continuous, and so is F .  Since K is compact and 
nonempty, F attains its minimum E at a point m E K ,  d(m,cp(m)) = E .  

From thc minimality of E ,  it follows that d (cp(m), cp (cp(m))) = F (cp(m)) 2 
E = d (m, cp(m)). The contractiveness assumption implies that m = cp(m). 

Suppose n E K also satisfies n = cp(n). Then d (cp(n), cp(m)) = d ( n ,  m), 
which, by the contractiveness assumption, implies n = rn. 

Solution to 4.3.5: As the unit square is compact, max lK(z, y)I = M < 1. 
Consider the map T : C([O, 11) 3 C([O, 11) defined by 

We have 



4.3 Fixed Point Theorem 247 

By the Contraction Mapping Principle [MH93, pag. 2751, T has a unique 
fixed point, h E C([O, 11). We have 

h(z)  + .I' K ( z ,  y)h(y)dy = ez* I 

Any such a solution is a fixed point of T ,  so it must equal h. 

Solution to 4.3.6: Consider the map T : C ([0,1]) -+ C ([0, I]) defined by 

T ( f )  = g(x) + .Iz f(x - t)eCt2 dt. 

Given f ,  h E C ([0, l]), we have 

llT(f) - T ( h ) ( ( ,  5 sup Iz If(. - t )  - h(z - t ) ( e - t2  dt  
sE[O,l]  0 

F I l f  - hl(, sup Iz e-t2 dt  
ZE[O,l]  0 

1 

= Ilf - hllclo 1 ctz dt < I l f  - hlloo 
0 

so T is a contraction. Since C ([0,1]) is a complete metric space, by the 
Contraction Mapping Principle [MH93, pag. 2751 there is f E C ([0,1]) such 
that T ( f )  = f ,  as desired. 

Solution to 4.3.7: Define the operator T on C ([0,1]) by 

T ( f ) ( x )  = sinz + 

Let f, g E C ([0,1]). We have 

4 Ilf - 911 (: - $) 
5 4l.f - 911, 

where 0 < X < 1 is a constant. Hence, T is a strict contraction. Therefore, 
by the Contraction Mapping Principle [MEI93, pag. 2751, there is a unique 
f E C([O, 11) with T(f) = f .  

Solution to 4.3.8: Since M is a complete metric space and S2 is a strict 
contraction, by the Contraction Mapping Principle [M€I93, pag. 2751 there 
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is a unique point z E A4 such that S2(z) = z. Let S(z) = y. Then S2(y) = 
S3(z) = S(z) = y. Hence, y is a fixed point of S2, so 2 = 1 ~ .  Any fixed 
point of S is a fixed point S2, so S has a unique fixed point. 
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Complex Analysis 

5.1 Complex Numbers 

Solution to 5.1.1: We have 

1 = e 2 k r i  for k E Z; 

therefore, 
l++ i  = e( h + i )  log 1 = e( i + i ) Z k r i  

- - e - 2 k r + i y  

Solution to 5.1.2: We have ia = e i l 0 g i  and logi = logJil + iargi  = 
i(n/2 + 2 h ) ,  k E Z. So the values of iz are {e--(T/2+2kr) I k E Z}. 

Solution to 5.1.4: Multiplying by a unimodular constant, if necessary, 
we can assume c = 1. Then S a  + 3 b  = 0. So a = 6. Their real part must 
be negative, since otherwise the real parts of a,  b, and c would sum to 
a positive number. Therefore, there is 8 such that a = cos 8 + i sin 0 and 
b = cos0 - isin6, cos0 = -1/2. Then 0 = 2 ~ 1 3  and we are done. 

Solution to 5.1.5: 1. We have 
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n 

a k e i k x )  dx 5 l' 11 - c a k :  eikx 
k = l  

for x # 1, so Pn-l(l) = n. 
2. Let 

pk = e =+=Q for k = 1, . . . , n 

be the nth roots of 1. As p l  = 1, we have 

dx . 

Letting z = 1, and using Part 1,  we get the desired result. 

Solution to 5.1.6: Consider the complex plane divided into four quadrants 
by the lines %z = f S z ,  and let Ai be the set of indices j such that zj lies 
in the i th quadrant. The union of the four sets Ai is { 1,2 , .  . . , n}, so there 
is an i such that A = Ai satisfies 

Since multiplying all of the zJ by a unimodular constant will not affect this 
sum, we may assume that A is the quadrant in the right half-plane, where 
%zj > 0 and I zJ I 5 &JTz,. So we have 

Combining this with the previous inequality, we get the desired result. 

Solution to 5.1.7: The functions 1, e l r r ix , .  . . , e2Tinx are orthonormal on 
[0,1]. Hence, 

Since the integrand is continuous and nonnegative, it must be 2 1 at some 
point. 

Solution 2. Since 5: e2nikxdx = 0 for k # 0, we have 

Now argue as above. 
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Solution to 5.1.8: We have 
b 

eb - ea = Jr[ e” dz 

for all complex numbers a and b, where the integral is taken over any path 
connecting them. Suppose that a and b lie in the left half-plane. Then we 
can take a path also in the same half-plane, and for any z on this line, 
leZl 5 1. Therefore, integrating along this line, we get 

leb - e a l i  1 let1 l d x l i  ~b - al. 
6 

Solution to 5.1.9: Thc boundary of N ( A , r )  consists of a finite set of 
circular arcs C,, each centered at a point ai in A. The sectors S, with base 
C, and vertex a, are disjoint, and their total area is Lr/2, where L is the 
length of the boundary. Since everything lies in a disc of radius 2 ,  the total 
area is at  most 47r, so L 5 8rIr. 

Solution to 5.1.10: Without loss of generality, suppose that 

la11 5 la21 5 . . * <  la11 < IQ1+11 l a k l  

that is, exactly k - I of the a’s with maximum modulus ( 1  may be zero.) 
We will first show that ( a k l  = supj Iajl is an upper bound for the ex- 

pression, and then prove that a subsequence gets arbitrarily close to this 
value. We have 

the limit on the right exists and is JakJ  = sup Jajl, so 
.I 

Now dividing the whole expression by a; we get 

since the last k - I terms all have absolute value 1. 
I suffices to show that 
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(*) is a consequence of the the fact that orbits of irrational rotation on 
the circle are dense in the unit circle. To see that, discard the first term 
c f = l  (2) because its limit exists and equals zero, being a finite sum of 
terms that converge to zero, and distribute the rest in two sums, one con- 
taining all rational angles (pi lqi) ,  and another one containing all irrational 
angles ( s i ) .  Without loss of generality we are left to prove that 

n 

If the sequence contains only rational angles choose P = 2 nj qj,  twice the 
product of the denominators of the rational angles. Then the sequence nP 
where n E N will land all angles at zero and the summation is equal to 

Now if there is at least one irrational angle among them the set of points 
k - 1. 

in the tori S1 x S’ x . . .  x S’ is infinite (the last coordinates will never 
repeat) and so has an accumulation point, that is, for any E > 0 there are 
two iterates m > n such that 

and then 

is &-close to (1,. . . , l), and we are done. 
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5.2 Series and Sequences of Functions 

Solution to 5.2.1: Multiplying the first N + 1 factors we get 

so the product converges to 1/(1 - z )  as N + 00. 

Solution to 5.2.2: From the recurrence relation, we see that the coeffi- 
cients a, grow, at most, at  an exponential rate, so the series has a positive 
radius of convergence. Let f be the function it represents in its disc of 
convergence, and consider the polynomial p ( z )  = 3 + 42 - z2.  We have 

00 

p ( z ) f ( z )  = (3 + 42 - 2) c a d  

so  

The radius of convergence of the series is the distance from 0 to the closest 
singularity of f, which is the closest root of p .  The roots of p are 2 f fi. 
Hence, the radius of convergence is &' - 2. 

Solution to 5.2.3: Let f ( z )  = exp (A). The series can then be rewritten 
as C,"==, 3 ( f ( z ) ) " ,  so, by the standard theory of power series, it converges 
if and only if If(%)[ 5 1. The preceding inequality holds when !J?& 5 0, 
so the problem reduces to that of finding the region sent into the closed 
left half-plane by the linear fractional map z H 5. The inverse of the 
preceding map is the map g defined by g(z) = 3. Since g(0) = 0 and 
g(00) = 2, the image of the imaginary axis under g is a circle passing 
through the points 0 and 2. As g sends the real axis onto itself, that circle 
must be orthogonal to the real axis, so it is the circle Iz - 11 = 1. Thus, 
g sends the open left half-plane either to the interior or to the exterior of 
that circle. Since g(-1) = 1, the first possibility occurs. We can conclude 
that If(z)l 5 1 if and only if Iz - 11 _< 1 and z # 2, which is the region of 
convergence of the original series. 



254 5. Complex Analysis 

Solution to 5.2.4: The radius of convergence, R, of this power series is 
given by 

1 
R n+m 
- = limsup lanllln 

For IzI < 1, we have 

1 00 

n=l  n=O 

By the Identity Theorem [MH87, pag. 3971, 

where the right-hand side is analytic. Since this happens everywhere except 
at -z = 1, the power series expansion off  centered at -2 will have a radius 
of convergence equal to the distance between -2 and 1. Hence, R = 3. 

Solution to 5.2.5: As 

which has singularities at f i ,  the radius of convergence of 

m 

n-0 

is the distance from 3 to fi, 13 F il = a. We then have 

Solution to 5.2.6: As lim,,,, @ = 1, we have 

= limsup = limsup qm 1 - 
R 7k-CC n-m 
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so c anzn and c n2anzn have the same radius of convergence, and the 
conclusion follows. 

Solution to 5.2.9: Let R denote the radius of convergence of this power 
series. 

R = limsupInlOg"Il/n = limsupe(lOgn)*/n - - e  0 - -1. 
n n 

The series and all term by term derivatives converge absolutely on JzJ < 1 
and diverge for IzI > 1. Let Iz( = 1. For k 2 0 the kth derivative of the 
power series is 

m y - k  c n(n - 1). . .(n - I c +  1)-. nlog n 
n=k 

To see that this converges absolutely, note that 
m 00 

.. 
n=k  n=k 

Since, for n sufficiently large, logn - k > 2, and C l / n2  converges, by the 
Comparison Test (Rud87, pag. 601 it follows that the power series converges 
absolutely on the circle IzI = 1. 

Solution to 5.2.10: We have 

= o  
so h is entire. 

Let 0 < r < R. Then 1/R < l / r ,  so there is an N > 0 such that 
)a,l 5 2/rn for n > N .  Further, there exists a constant M > 2 such that 
lan/ 5 M / r n  for 1 5 n 6 N .  Therefore, for all z, 

Solution to 5.2.11: Let the residue of f  at 1 be K .  We have 
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Therefore, 
m m C anzn = C ( K  + bn)zn 

n=O n=O 

and a, = K + b,. As Cbn < 00, we have limb, = 0 and lima, = K .  

Solution to 5.2.12: The rational function 

has poles at all nonreal twelfth roots of unity (the singularities at z2 = 1 
are removable). Thus, the radius of convergence is the distance from 1 to 
the nearest singularity: 

R = I exp(nil6) - 11 = J(cos(n/6) - 1)2 + sin2(n/6) = Jz . 

Solution to 5.2.14: By the Hurwitz Theorem [MH87, pag. 4231, each 
zero of g is the limit of a sequence of zeros of the g,’s, which are all real, 
so the limit will be real as well. 

Solution to 5.2.15: Let &k = 1iwhm g i k ’ ( o ) .  Then, clearly, lEkl 5 lf(k)(o)l 
for all I c .  Since f is an entire function, its Maclaurin series [MH87, pag. 2341 
converges absolutely for all z. Therefore, by thc Comparison Test [Rud87, 
pag. 601, the series 

w 

k=O 

converges for all z and defines an entire function g(z).  Let R > 0 and E > 0. 
For IzI 5 R, we have 

N 

Ign(z> -g(z>I 5 C Ig?’(O> - & ~ I R ‘  
k=O 

N 

k=O k = N + l  

taking N sufficiently large, the second term is less than ~ / 2  (since the 
power series for f converges absolutely and uniformly on the disc IzI 5 R). 
Let n be so large that lgkk’(0) - &kl < &/2M for 1 5 Ic 5 N ,  where 

N 

k=O 

Thus, for such n, we have Ig,(z)-g(z)I < E .  Since this bound is independent 
of z ,  the convergence is uniform. 
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5.3 Conformal Mappings 

Solution to 5.3.1: We will show that the given transformations also map 
straight lines into circles or straight lines. 

z I-+ z -t- b and z H kz clearly map circles and straight lines into circles 
and straight lines. 

Let S = { z  I Iz - a1 = r } ,  a = 50 + iyo, and f(z) = 1/z = w = u + iv. 
Thc equation for S is 

( z  - a)@ - E )  = r2 

or 

0 If r = lal, that is, when S contains the origin, we get 

1 - a w - m =  0 

or 
1 
2 

X(aw) = -. 

This is equivalent to 
1 I 

u50 - vyo = - 
2 

which represents a straight line. 

0 If T # IaI, we obtain 

Letting 

we get 

and 

which represents the circle centered at /3 with radius r/(laI2 - r2) .  

If S is a straight line, then, for some real constants a,  b, and c, we have, 
for z = 2 + iy E S, 

a5 + by = c. 
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Letting a = a - ib, we get 
sR(az) = c 

or 
QZ + (yz = 2c 

and it follows, as above, that f(S) is a straight line or a circle. 
Finally, let 

az  + b 
cz + d 

f ( z )  = -. 

If c = 0 f is linear, so it is the sum of two functions that map circles and 
lines into circles and lines, so f itself has that mapping property. If c # 0, 
we have 

E C ! ~  = 1 (a - ------> ad -- bc 
c z + d  c cz + d 

1 a ad-bc 
fl(2) = cz + d ,  f z ( z )  = ;, f3(z) = - - ~ 2, 

C C 

each of which has the desired property, and so does f .  

Solution to 5.3.3: Let A = { z  I IzJ < 1,  Iz - 1/41 > 1/4) and B = { z  I T < 
I z I  < 1). Let f(z) = ( Z  - a)/(a!z - 1) be a linear fractional transformation 
mapping A onto B, where -1 < a! < 1. We have 

f (1. I 12 - 1/41 = 1/41) = I IZI = T )  

and 
1/2  - a! 0 = T - T = f(0) + f ( l / 2 )  = a + ___ 
a/2 - 1 

which implies a = 2 - &. Therefore, T = I f (O)(  = 2 - &. 
Suppose now that g is a linear fractional transformation mapping C = 

{ z  I s < 1.1 < 1) onto A. Then g-l(R) is a straight line through the ori- 
gin, because the real line is orthogonal to the circles { z  1 ) z  - 1/41 = 1/4} 
and { z  I IzI = 1). Multiplying by a unimodular constant, we may assume 
9-l (R) = R. Then f o g(C) = A and f o g(R) = R. Replacing, if necessary, 
g(z> by g ( s / z ) ,  we may suppose f O g ( { z  I IzI 5 1)) = 1. I 1.4 L 11, so 

Using the relation 0 = f(s) + f ( - s ) ,  we get a = 0, so f 0 g(z)  = Pz and 
s = r = 2 - &. 
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Solution to 5.3.4: Suppose f is such a function. Let g : A -+ B be defined 
by g(z )  = f ( ~ ) ~ / z .  Then, as on GI U Cq, the absolute value of g is 1, then 
g is a constant, c, say. Therefore, f(z) = f i  which is not continuous on 
A.  We conclude that no such function can exist. 

Solution to 5.3.5: The map z ++ iz maps the given region conformally 
onto A = D n { z  I Sz > 0). The map 

l + w  
1 - w  

W H -  

maps A onto the first quadrant, Q. The square function takes Q onto 
{ z 1 Sz > 0). Finally, 

t - i  
EM- 

[ + Z  

takes { E  I 3 E  > 0) onto D. Combining these, we get for the requested map: 

(1 + iz)2 - i(l - iz)2 
(1 + i 2 ) 2  -t i( 1 - iz)2 * 

Z H  

Solution to 5.3.6: The map cpl(z) = 22- 1 maps conformally the scmidisc 

{ z  1 %  > 0, Iz - 1/21 < 1/2} 

onto the upper half of the unit disc. Thc map 

maps the unit disc conformally onto the right half-plane. Lctting z = reie, 
it becomes 

1 +reie - 1 - r2  + 2irsine 
1 - reiO ll+re2@12 ' 

Since sin0 > 0 for 0 < 0 < T ,  cpz maps the upper half of D onto the 
upper-right quadrant. The map ( P ~ ( z )  = z2 maps the upper-right quadrant 
conformally onto the upper half-plane. The composition of cp1,  9 2 ,  and ( ~ 3  

is the desired map, namely the function z H -. 

Solution to 5.3.8: Suppose f is such a map. f is bounded, so the singu- 
larity at the origin is removable, p = lim,,o f(z). Since f is continuous, p 
is in the closure of A. 

Suppose that p is on the boundary of A. Then f (G) = A U { p ) ,  which is 
not an opcn sct, contradicting the Open Mapping Theorern, [MH87, pag. 
4361. 

Let p E A and a E G be such that f(a) = p .  Take disjoint open neigh- 
borhoods U of 0 and V of a. By the Open Mapping Theorem, f ( U )  and 

- 
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f (V) are open sets containing p.  Then f ( U )  n f ( V )  is a nonempty open 
set. Take z E f ( U )  n f (V),  5 # p .  Then z = f(z) for some nonzero z E U 
and z = f (w) for some w E V .  Then z and w are distinct elements of G 
with f(z) = f(w),  contradicting the injectivity of f .  

5.4 Integral Representation of Analytic Functions 

Solution to  5.4.1: By the Cauchy-Riemann equations [MH87, pag. 721, 

u, = v, and uy = -vx. 

Thus, au + bv = c implies 

au, + bv, = 0 = au, + bv, 
and, therefore, 

In matrix form, this reads 

au, - buy = 0 = au, + bu,. 

Since the matrix has nonzero determinant a2 f b 2 ,  the homogeneous system 
has only the zero solution. Hence, u, = uy = 0. By the Cauchy-Riemann 
equations, v2 = vy = 0. Since D is connected, f is constant. 

(- 1)nzZn 
Solution to 5.4.2: 1. The Maclaurin series for cosz is xr 
and it converges uniformly on compact sets. Hence, for fixed z,  

( 2 n ) !  ' 

O0 ( - l ) n f ( t ) t W n  

( 2 n ) !  f(t)  cos(zt) = c 
0 

with the series converging uniformly on [0,1]. We can therefore, interchange 
the order of integration and summation to get 

00 

h(z)  = (-l)n ( 2 n ) !  (1' t 2 n f ( t ) d t )  zn 
n=O 

in other words, h has the power series representation 
m 

with ~2~ = - 2n h(z)  = C ~ 2 n ~  
0 

Since h is given by a convergent power series, it is analytic. 
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2. Suppose h is the zero function. Then, by Part 1, J t t z 7 ' f ( t ) d t  = 0 for 

the Stone-Weierstrass Approximation Theorem [MH93, pag. 2841, there is 
a sequence { p k }  of polynomials such that & ( t )  -+ f (fi) uniformly on 
[0,1]. Then p k ( t 2 )  -+ f ( t )  uniformly on [0,1], so 

n = 0,1,2, .  . .. Hence, if p is any polynomial, then So 1 p ( t 2 ) f ( t ) d t  = 0. By 

implying that f 5 0. 

Solution to 5.4.3: Let z E CC . We have 

Since f is bounded, this series converges uniformly in t ,  so we can change 
the order of summation and get 

where 

We have 

so the radius of convergence of the series of g is 00. 

Solution 2. Let zo E C. We have 

00 t z-20 From thc power series expansion et(z-20) = v, one gets 

,tz - etzo  
= tetzo + O ( z  - zo) 

z - 20 

uniformly on 0 5 t 5 1, when z -+ 20. Thus, as z + 20, the integrand in 
the integral above converges uniformly on [0,1] to t f ( t ) e tZ0 ,  and one can 
pass to the limit under the integral sign to get 

lim 
2-20 z - 20 
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proving that g is differentiable at 20. 

Solution 3. The intcgrand in the integral defining g is a continuous function 
of the pair of variables ( t ,  z )  E [0, 11 x @, implying that g is continuous. If 
R c C is a rectangle, then by Fubini's Theorem [MH93, pag. 5001 and the 
analyticity of etz with respect to z ,  

By Morera's Theorem [MH87, pag. 1731, g is analytic. 

Solution to 5.4.4: 1. Let f and g have the Maclaurin expansions [MH87, 
pag. 2341 

m m 

k=O k=O 

By Cauchy's Integral Formula [M€I87, pag. 1671 and the uniform conver- 
gence of the series for g, we have 

M 

= anbnzn. 
k=O 

As 
lim sup lim sup 2 lim sup qm 

n+m n+m n+m 

the radius of convergence of h is at leest 1. 
2. If we take f(z) = sinz and g ( z )  = cosz, we have azn = bzn--l = 0 for 
n = 1 ,2 ,  ..., so h 3 0. 

5.5 Functions on the Unit Disc 

Solution to 5.5.1: Let b/a = reap and consider the function g defined by 
g ( z )  = f(z)a-1e-ifi/2. We have 

(,iO) = ,i(Q-8/2) + ,,m/z-O) 

= (1 + r )  cos(0 - p/2) + i(1 - r )  sin(8 - p/2) 

so the image of the unit circle under g is the ellipse in standard position 
with axes 1 + T and 11 - T I .  As f(z) = aexp(iP/2)g(z), f maps the unit 
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circle onto thc ellipse of axes lal(1 + r )  and la(1 - r)l ,  rotated from the 
standard position arg a + p / 2 .  

Solution to 5.5.2: We have 

by the Mean Value Property [MH87, pag. 1851. 

Solution to 5.5.3: As the Jacobian of the transformation is lf’(z)I2, we 
have 

A = 1 f ’ ( ~ ) 1 ~  dzdv. 

f ’ ( z )  can be found by tcrm by tcrm differentiation: 

so 
00 

j , k = 1  

We then have 

A = J J jkc,EkZj-lZk-ldzdy. 
j , k = l  

Letting z = rezo, we get 

Since 

for n # 0, we have 



264 5. Complex Analysis 

5 max 

Solution to 5.5.4: We have, for z ,  w E D, 

I z -  z0I (winthesegment [z,zo]) 
d 
- C a n z n  

t=W 
d z  n22 

f(w) = f ( z )  iff (w-z)  ( 1 +  - w,,) = o  

so f in injective. Then the area of its image is given by 

Solution to 5.5.5: Assume f is not constant. Fix zo E D and let h be 
defined by h(z)  = f ( z )  - f(z0). As h has only isolated zeros in D, we can 
find an increasing sequence pi -+ 1 with h ( z )  # 0 for IzI = pi , i = 1 , .  . .. 
Let g be the function given by g(z)  = a l ( z  - 20) .  For IzI = pi ,  we have 

I c n a n p y l l z  - zol 
n22 

I laillz - znl 

= 19(2)1. 

By RouchcYs Theorem [MH87, pag. 4211, h has a unique zero in the disc 
{ z  I ( z (  < pi } ,  so f assumes the value f ( zo )  only once there. Letting pi -+ 1, 
we get that f is injective in D. 

Solution to 5.5.6: Let f E X k ,  z E D, and y be the circle around z with 
radius T = (1 - 1 4 ) / 2 .  y lies inside the unit disc, so, by Cauchy’s Integral 
Formula for derivatives [MH87, pag. 1691, we have 

where C is a constant, so f‘ E Xk+l.  
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Let f’ E X k + l  with f(0) = 0 (the general case follows easily from this). 
Letting z = rei0, we have 

kC 
(1 - r)‘“ 

- --. 

Hence, f E x k .  

Solution to 5.5.7: Let f(z) = Cn20anzn for z E D = {Z 1 ( z (  < 1). 

have, for real z E D, 

- 
As f(z) is analytic, so is g : D -+ C defined by g(z)  = f ( z )  - f(Z). We 

therefore, g(z) = 0 on D, so the coefficients a,  are all real. 

We have 
Put zo = e i r f i ,  and let a k  be the nonzero coefficient of smallest index. 

= z o + -  n o  
f ( t z O ) - a o  k 1 a p t n - k + l  

n>k+l 
a k t k  

tzo E D for t E [0, 1) and the left hand side expression is a real number for 
all t ,  so 

= z ; E B  f (tzo) - a0 lim 
t-0 a k t k  

which implies k = 0, by the irrationality of 4, thus f is a constant. 

Solution to 5.5.8: Let C;cnzn be the Maclaurin series for f .  Then 
f ’ ( z )  = cy ~ L C , Z ~ - ~ .  The Cauchy Inequalities [MH87, pag. 1701 give 
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Letting T -+ 1, we get Ic,I 5 M / n  (n = 1 , 2 , .  . .). Hence, 

- (I  - $)log- 1 - 2  

Solution to 5.5.9: As Ih(0)l = 5, by the Maximum Modulus Principle 
[MH87, pag. 1851, h is constant in the unit disc. Therefore, h'(0) = 0. 

Solution to 5.5.10: 

If O cp(z)l 
Letting f 

Solution 

maps the 
fore, the 
Schwarz 

maps the unit disc to the upper half-plane with cp(0) = i. Thus, f o cp maps 
the unit disc into itself fixing 0. By the Schwarz Lemma [MH87, pag. 1901, 

5 Iz(.  Solving cp(z) = 22, we get z = 1/3. Hence, If(2i)l 5 1/3. 
= cp-', we see that this bound is sharp. 

to 5.5.11: The function 

unit disc, D, onto the right half-plane, with cp(0) = 1. There- 
function f o cp maps D into itself, with f o ~ ( 0 )  = 0. By the 

Lemma [MH87, pag. 1901, we have I(f o cp)' (0)l 5 1, which gives 
Jf'(cp(O))p'(O)) 5 1 and If'(1)l 5 1/2. A calculation shows that equality 
happens for f = p-'. 

Solution to 5.5.12: Suppose f has infinitely many zeros in D. If they have 
a cluster point in D, then f EZ 0 and the result is trivial. Otherwise, since 
{ z  E C 1 ( z (  5 1) is compact, there is a sequence of zeros converging to a 
point in the boundary of D, and the conclusion follows. 

Assume now that f has only finitely many zeros in D, w1,. . . , wm. Then 
f can be written as 

f ( z )  = ( z  - w p  . . . ( z  - wnL)"mg(z) 
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where g is analytic and never zero on D. Applying the Maximum Modulus 
Principle [MH87, pag. 1851, we get that l /g  attains a maximum in the 
disc ( z (  5 (1 - l/n) at a point z, with ( zn(  = 1 - 1/n (n 2 2). Then 
Ig(z2)l 2 Ig(z3)l 2 3 .  - -  The product ( z  -- ~ 1 ) ~ ~  . . . ( z  - w,)~" is clearly 
bounded, and so is f(zn). 

Solution to 5.5.13: 1. We can assume f has only finitely many zeros. 
(Otherwise, assuming f $ 0, its zero sequence has the required property, 
since the zeros of a nonconstant analytic function in an open connected 
set can cluster only on the boundary of the set.) That done, we can, after 
replacing f by its quotient with a suitable polynomial, assume f has no 
zeros. Then l/f is analytic in the disc. For n = 1,2 , .  . ., let M, be the 
maximum of ll/f(z)I for 1x1 = 1 - $- By the Maximum Modulus Principle 
[MH87, pag. 1851, M, 2 MI for all n. Hence, for each n, there is a point 
a, such that (a,! = 1 - $ and If(a,)l = l/Mn 5 1/M1 = I f (O)( .  Then 
( f ( a , ) )  is a bounded sequence of complex numbers and so has a convergent 
subsequence, which gives the desired conclusion. 
2. Let ( z n )  be a sequence with the properties given in Part 1. Subtracting a 
constant from f, if needed, we can assume limf(z,) = 0. We can suppose 
also that Izn+lI > Izn( > 0 for all n. For each n, let M, be the maximum of 
1 f (2) I for I z 1 = 1 zn I. The numbers M ,  are positive (since f is nonconstant) 
and increase with n (by the Maximum Modulus Principle [MH87, pag. 
1851). Since f(zn) --f 0, there is an n o  such that If(zn)l < M I  for n 2 n o .  
For such n, the restriction of I f 1  to the circle Iz) = 1 . ~ ~ 1  is a continuous 
function that takes values both larger than MI and smaller than M I .  By 
the Intermediate Value Theorem [Rud87, pag. 931, there is for each n 2 
no, a point b, such that Ib,l = 1 ~ ~ ~ 1  and If(bn)l = M I .  Then, for the 
desired sequence (w,), we can take any subsequence of (b,) along which 
f converges. (There will be such a subsequence by the boundedness of the 
sequence ( f ( b n  1) .I 
Solution to 5.5.14: Suppose f ( a )  = a E D, f ( b )  = b E D, and a # b. 
Let cp : D -+ D be the automorphism of the unit disc that maps 0 to a 
(cp(z) = (a - z)/(l - Zz)). Then the function g = cp-' o f o cp maps D into 
itself with g(0) = 0 and g(cp-l(b)) = cp-'(b). Since cp is one-to-one and 
a # b, cp-'(b) # 0. Hence, by the Schwarz Lemma [MH87, pag. 1901, there 
exists a unimodular constant X such that g(z )  = Xz, and letting z = cp-'(b), 
we see that X = 1; that is, g is the identity map and SO is f .  

Solution to 5.5.15: Let cpzo be the automorphism of the unit disc given 
bY 

we have 
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Now consider the composition 

g(2)  = cpfo$9p,o ( 0 )  0 f 0 cpzo ( 2 )  = cp f ( - zo )  0 f 0 cpzo (.I 
then g(0) = 0 and as composition of maps of the unit disc into itself, we 
can apply the Schwarz Lemma [MH87, pag. 1901 to obtain Ig’(0)l 5 1. 
Computing g’(0) using the chain rule, we have 

so we can conclude that 

The first inequality is known as Picks’ Lemma and is the main ingredient 
in the proof that an analytic map of the disc into itself that preserves the 
hyperbolic distance between any two points, preserves all distances, for 
more detail see [CarGO, Vol. 2, $2901 or [KraSO, pag. 161. 
Solution 2. Using the same notation as above, 

which holds for any lzol < r = 1w) < 1, so the conclusion follows. 

Solution to 5.5.16: Let 6 E D and cp : D -+ D be the automorphism of D 
that maps E to 0, 

2 - E  
cp(2) = -. 

1 - ( 2  

Cauchy’s Integral Formula for derivatives [MH87, pag. 1691 gives, for 
It1 < 7- < 1, 

c 
r(1 - r )  

- --. 
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In the last inequality, we used the Schwarz Lemma, [MH87, pag. 1901, 
Jcp(w)J 5 JwI. Elementary calculus shows that 

<4c 
T(1-T)) - 

so we have 
J(focp)’(O)J 14c 

and since ~ ’ ( 0 )  = 1/(1- It\’), 

Solution to 5.5.17: Using Cauchy’s Integral Formula [MH87, pag. 1691, 
for 0 < T < 1, we have 

Letting T = n/(n+l) ,  weget If(n)(0)/n!l 5 ( n + l ) ( l + l / r ~ ) ~  < (n+l)e. 

Solution to 5.5.18: By the Schwarz Lemma [MH87, pag. 1901, 

If(z)l 514. 

If f(z) = a12 + a2z’ + ., let g be defined by 

g is analytic in D, and since 

g maps D into D. Hence, by the Schwarz Lemma, 

ld2)l I 1.4 
or 

If(.) + f(-z>I I w2. 

g ( 2 )  = xz 

Now suppose equality held for zo E IID. We would have lg(zo)l  = lzol so, by 
the Schwarz Lemma, 
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for some unimodular A, or 

f(z) + f(-2) = 2Az2. 

Plugging this back into the power serics for g(z),  we get a2 = X and 
a4 = a6 = . . . = 0. Hence, 

f(z) = Az2 + h ( z )  

1 2 If(z)l = p z 2  + +)I 

1 2 If(-.)\ = 1x22 + h(-z)l = 1x22 - h(z)l. 

( A 2 +  h(z))(Q+h(z)) 5 1 
( A 2  - h(z))(Az2 - h(z) )  5 1. 

where h(z)  is odd. We have 

and 

Therefore, 

- -  

Expanding and adding, we get 

1 4 4 +  lh(z)I2 I 1 
ih(z)i2 5 1 - 1 x 1 ~  

which, by the Maximum Modulus Principle [MEI87, pag. 1851, implies 
h ( z )  = 0. 

Solution to 5.5.19: Schwarz’s Lemma [MII87, pag. 1901 implies that the 
function fl(z) = f(z)/z satisfies If~(z)l 5 1. The linear fractional map 
z H E  sends the unit disc onto itself. Applying Schwarz’s Lemma to 

the function f2(z) = fi (-), we conclude that the function f3(z) = 

fi(z)/ (E) satisfies Ifs(z)I 5 1. Similarly, the map z M sends 
the unit disc onto itself, and Schwarz’s Lemma applied to the function 
f4(z) = f3(z)/ (s) implies that the function fs(z) = f3 (-) satisfies 
lfs(z)I 5 1. All together, then, 

1 - T Z  

which is the desired inequality. 

5.6 Growth Conditions 

Solution to 5.6.1: Let g(z )  = f(z) - f(0). Then g(0) = 0 ,  so g ( z ) / z  has a 
removable singularity at 0 and extends to an entire function. g ( z ) / z  tends 



5.6 Growth Conditions 271 

to 0 as JzJ tends to infinity since f ( z ) / z  does. Let E > 0. There is an R > 0 
such that lg(z) /z l  < E for IzI 2 R. By the Maximum Modulus Principle 
[MH87, pag. 1851, \g(z) /z \  < E for all z .  Since E is arbitrary, g ( z ) / z  is 
identically 0. Hence, g(z)  = 0 for all z and f is constant. 

Solution to 5.6.3: If g f 0, the result is trivially true. Otherwise, the zeros 
of g are isolated points. (f/gl is bounded by 1 in C , so all the singularities 
of f/g are removable, and f/g can be extended to an entire function. 
Liouville's Theorem [M€187, pag. 1701 now guarantees that f/g must be a 
constant. 

Solution to 5.6.4: Let h(z)  = f(z) - kg(z). Then h is entire and Xh(z)  5 
0. We then have 

l eh ( l )  1 5 1 for all z E c 

therefore, by Liouville's Theorem [MH87, pag. 1701, eh is constant, and so 
is h. 

Solution to 5.6.5: 1. Using Cauchy's Integral Formula for derivatives 
[MH87, pag. 1691, we get 

I 

k! (am + 6 )  

so f('")(O) = 0 for k 2 1, and f reduces to a constant, f(0). 
2. Using the same method as above for k 2 3, we get 

so f('")(O) = 0 for k 2 3 and f reduces to a polynomial of degree, at most, 
2, f(0) + f'(0)z + f"(0)22/2. 
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Solution to 5.6.6: For T > 0, let z = reie in Cauchy's Integral Formula 
for derivatives [MH87, pag. 1691 to get 

Combining this with the inequality given yields 

For n > 5, letting T tend to infinity, we get f(")(O) = 0. If n 5 5, letting 
T tend to 0 gives the same result. Hence, the coefficients of the Maclaurin 
series [MH87, pag. 2341 of f  are all 0, so f = 0. 

Solution to 5.6.7: If such a function f exists then g = l/f is also analytic 
on C \ {0}, and satisfies 1g(z)1 5 a. Since g is bounded on { z  : 0 < IzI < 
l}, g has a removable singularity at 0, and extends as an analytic function 
over the complex plane. Fix z ,  choose R > 121, and let Cn be the circle 
with center 0 and radius R. 
Then 

so 

Thus, g' = 0 everywhere, so g (and, hence, f )  is constant. But this contra- 
dicts the hypothesis If(z)l > 1 for small z ,  so no such function exists. 

Solution to 5.6.8: By Liouville's Theorem [MI-I87, pag. 1701, it will be 
enough to prove that f is bounded. For I%zl 2 1/2, we have lf(z)I 5 a. 
Let zo be a point such that I%zol < 1 /2 .  Let S be the square with vertices 
iSz0 f 1 f i, oriented counterclockwise. 

f i  
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s 

Then zo is in the interior of S ,  so Cauchy’s Integral Formula [MII87, pag. 
1671 gives 

f(z0) = & fo dz. 
2 - 20 

The absolute value of the integrand is, at most, ~ ( ! R z ( - ~ / ~ .  The contribution 
to the integral from each vertical edge is thus, at most, 4 in absolute value. 
The contribution from each horizontal edge is, at most, 2 fl 1x1-1/2dx = 8 
in absolute value. Hence, 

proving that f is bounded. 

5.7 Analytic and Meromorphic Functions 

Solution to 5.7.1: f (z)  = f i  is a counterexample. Define it by making 
a cut on the negative real axis and choosing an associated branch of the 
logarithm: 

f is analytic in the right half-plane and so on the disc ) z  - 11 < 1. Since fi 
tends to 0 as z tends to 0, f is continuous on the disc Iz - 11 I: 1. However, 
j cannot be analytic on any open disc of radius larger than 1. For if it were, 
f would be analytic at 0, so 

f ( z> f’(O) = lim - 
z-0 2 
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would exist and be finite, which is absurd. 

Solution to 5.7.2: 1. f(z) = z2 is entire and satisfies 

f( l /n) = f(-l/n) = l / n  2 . 

2. By the Identity Theorem [MH87, pag. 3971, in a disc centered at  the 
origin, g would have to be z3 and -z3,  which is not possible; therefore, no 
such function g can exist. 

Solution to 5.7.4: Suppose f ( C )  is not dense. Then, for some w E C 
and E > 0, we have If(.) - w( 2 E for all z E C . The function l/(f(z) - w) 
is then entire and bounded in modulus by 1 / ~ ,  so, by Liouville’s Theorem 
[MH87, pag. 1701, is a constant, and so is f. 

Solution to 5.7.5: Let f(z+iy) = u(z,  y)+iv(z, y), where u(z, y) = e2s(y) 
and v(z,y)  = e”t(y) .  From the Cauchy-Riemann equations [MH87, pag. 
721, we get e”s(y) = e”t’(y), so s(y) = t ’ (y) .  Similarly, s’(y) = -t(y). 
This equation has the unique solution s(y) = cosy satisfying the initial 
conditions s(0) = 1 and s’(0) = - t ( O )  = 0, which, in turn, implies that 
t(y) = -s’(y) = siny. 

Solution to 5.7.6: f” + f is analytic on D and vanishes on 
X = {l/n I n 2 O}, so it vanishes identically. Using the Maclaurin cx- 
pansion [MH87, pag. 2341 o f f ,  we get 

So we have 
f(0) = - f ” ( O )  =.  . . = (-1)kf‘2”(0) = . . . 

f’(0) = -f”’(O) = . . . = (-l)””“’”(o) = . . .. 
and 

Therefore, 

= f(0) cos z + f’(0) sin z .  

Conversely, any linear combination of cosz and sinz satisfies the given 
equation, so these arc all such functions. 

Solution to 5.7.7: It is enough to show that for any z E R, the derivative 
in the sense of R2 has an associated matrix 
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satisfying a = d and c = 4. As Df(z)(l,O) I Df(z)(O,l), we have 
c = -kb and d = ka for some k. As f preserves orientation, det D f ( z )  > 0, 
so k > 0. 

If u2 + b2 = 0, then D f ( z )  = 0 and there is nothing to show. 
Assume a2 + b2 # 0. As, for (z,g) # 0, Df(z)(~c,y) I D f ( z ) ( - g , z ) ,  we 

have 0 = ( k 2  - l)(a2 + b2)zy. Therefore, k = 1 and the result follows. 

Solution to  5.7.8: Let g = f2 and let the common domain of f and g 
be G. We will show that g(G) contains no path with winding number 1 
about 0. Suppose that for some path y : [0,1] -+ G, g(y) had winding 
number 1 about 0. Since g(y) is compact, there is a finite cover of it by n 
open, overlapping balls, none of which contain 0. In the first ball, define 
the function hl (z )  = m, where the branch of the square root is cho- 
sen so that hl(y(0))  = f(y(0)). In each successive ball, define the function 
hk(z)  = m, with the branch chosen so that hk is an analytic continu- 
ation of hk-1. This implies that if y(t) is in the domain h k ,  we must have 
h k ( Y ( t ) )  = f(r(t)). However, since these analytic extensions wrap around 
the origin, h n ( y ( l ) )  = hn(y(0))  # hl(y(O)), which contradicts the continu- 
ity o f f .  

Therefore, since g(G) contains no path with winding number 1 about the 
origin, there exists a branch of the square root on it which is analytic and 
such that f(z) = 

Solution to 5.7.9: We have f = f 3 / f 2  = g / h .  It is clear that f 3  and f 2  
have the same zero set. If zo is a common zero, there are analytic functions 
g1 and hl which are not zero at zo such that f 3 ( z )  = ( Z  - zo)'hl(z) and 
f 2 ( z )  = (Z - zo)Jgi(z) .  But (f3)' = f6 = ( f2)  , SO ( z  - zO)2'hl(z)2 = 
(2 - z ~ ) ~ J ~ ~  ( z ) ~ .  Rearranging, we get h ~ ( z ) ' / g ~ ( z ) ~  = ( z -  Z ~ ) ~ J - ~ ' .  Neither 
hl nor 91 are zero at zo, so the left side is analytic and nonzero at zo. Hence, 
we must have 3j - 2k = 0, so k > j. Therefore, zo has a higher multiplicity 
as a zero of f 3  than it does as a zero of f2. Thus, the function f3 / f2  has a 
removable singularity at ZO. Since this holds for every zero, f = f 3 / f 2  can 
be extended to an analytic function on D. 

Solution to 5.7.10: 1. Let w be an nth primitive root of unity. Then the 
function wkg, 0 5 k 5 n - 1 are all nth roots of f ,  analytic and distinct. 

Let h be any analytic nth root off.  Fix zo E G, E > 0 such that f ( z )  # 0 
for Jz-zo I < E. h/g is continuous in Jz-zo 1 < E and since hn/gn = 1, h/g has 
its range among the n points 1, w, . . . , wn-' . Since it is continuous, it must 
be constant. Therefore, h = wkg for some k in this little neighborhood, so 
h - w  g, 
2. The function f : [0,1] --f R defined by f(z) = (z - 1/2)' has four 
continuous square roots, f 1 ,  f2 ,  f3, and f4 ,  given by 

for all z in G. Thus, f is an analytic function. 

3 

k 
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- 
Solution to 5.7.11: The function g(z)  = f(2) is analytic in the same 
region as f, and f - g = 0 on ( 1 , ~ ) .  Since the zero set of f - g has 
limit points in the region 1x1 > 1, the - Identity Theorem [MH87, pag. 3971 
implies that f-g = 0. Hence, f(z) = f (Z) .  In particular, for z in (--00, -l), 

Solution 2. Let CTmcnzn be the Laurent expansion [MH87, pag. 2461 
of f about 00. It will suffice to show that Cn is real for all n. The se- 
ries CYm (%cn)zn converges everywhere the original series does (since its 
terms are dominated in absolute value by those of the original series); let 
g(z)  = Cym(Rcn)zn. For z in (1, m), 

f(.) = fb ) .  

As above, the Identity Theorem [MH87, pag. 3971 implies g = f, so cach 
cn is real, as desired. 

Solution to 5.7.12: The function g(z) = f(Z) is analytic and coincides 
with f on the real axis; therefore, it equals f .  The line in question is its 
own reflection with respect to the real axis. Since it also passes through 
the origin, it must be one of the axes. 

Solution to 5.7.13: By thc Schwarz Reflection Principle for circles [BN82, 

~ 

pag. 851, we have 

_ _ _ -  For 2 real, we get 
f(.) = f ( l / x )  = f ( 4  

so f(z) is real. 

Solution to 5.7.14: 1. Let 21, z2,. . . , zn be the zeros of p ,  ennumerated 
with multiplicities, so that 

p ( z )  = c(z - z1)(2 - z2) . . . (2 - zn) 

where c is a constant. Then 

and, for z real, 
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Part 1 is now obvious. 
2. Write zj = x j  + yj, so that 

= [I & (arctan 5 )  dx 

Hence, 

Solution to 5.7.15: Let D be an open disc with a c G. It will suffice to 
show that there is an n such that f ( 7 L )  has infinitely many zeros in D. For 
then, the zeros of f(") will have a limit point in G, forcing f(") to vanish 
identically in G by the Identity Theorem [MH87, pag. 3971, and it follows 
that f is a polynomial of degree, at most, n - 1. 

By hypothesis, D is the union of the sets 2, = { z  E D 1 f(")(z) = 0) for 
n = 1,2, .  . .. Since D is uncountable, at least one 2, is, in fact, uncountable 
(because a countable union of finite sets is, at most, countable). 

Solution to 5.7.16: We have 

z(2 - z )  - = log(2 - z )  +log 1 
log( 1 - z  ) (3 

2 1 
= log 2 + log (1 - 2 )  + rz + log (-+ 1 - -  * 

In the unit disc, the principal branch of log (&) is represented by the se- 
ries cy 2 , which one can obtain by termwise integration of the geometric 
scrics & = Er z". Hence, 

and 



278 5. Complex Analysis 

Solution to 5.7.17: Let u = Rf and v = 3f. For IC real, we have 

dU dV 
f'(x) = -(IC,O) = - ( X , O ) ,  

dX dY 

where the first equality holds because v = 0 on the real axis and the second 
one follows from the Cauchy-Riemann equations [MH87, pag. 721. Since v 
is positive in the upper half-plane, 2 0 on the real axis. It remains to 
show that f' does not vanish on the real axis. 

It suffices to show that f'(0) # 0. In the contrary case, since f is non- 
constant, we have 

f(z) = czk (1 + O(z)) (2  4 0) 

where c # 0 is real and k 2 2. For small z ,  the argument of the factor 
l+O(z) lies between -2 and 2, say, whereas on any half-circle in the upper 
half-plane centered at 0, the factor cz' assumes all possible arguments. 
On a sufficiently small such half-circle, therefore, the product will assume 
arguments between 7r and 27r, contrary to the assumption that S f (2) > 0 
for Sz > 0. This proves f'(0) # 0. 

Solution to 5.7.18: Letting z = 8, we have 

cosB= i ( z + z - ' )  

and do = dz / i z ,  so that 

where y is the unit circle. Next, 

Now, 
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Thus, the residue at zero is <“/n! and 

hence 

and the result follows. 

Solution to 5.7.19: 1. The function f is not constant, because i f f  took 
the constant value c, then f-’({c}) would equal U, a noncompact set. Since 
f is holomorphic and nonconstant, it is an open map, and f(U) is open. 
Since V is connected, - it only remains to show that f ( U )  is closed relative 
to V .  Let a E V n f ( U ) .  There is a sequence (w,) in f ( U )  such that 
a = limw,. For each n, there is a point z, in U with w, = f(z,).  The set 
K = {a, w1, w2,. . .} is a compact subset of V ,  so fP1(K) is also compact. 
Since the sequence (2,) lies in a compact subset of U ,  it has a subsequence, 
(z,,), converging to a point b of U. Then f (b )  = limf(z,,,) = 1’ imw,, = a, 
proving that a is in f ( U )  and hence that f ( U )  is closed relative to V .  
2. Take U = V = C and f ( z )  = 1 . ~ 1 .  
Solution to 5.7.20: By the Inverse Function Theorem [Rud87, pag. 2211, 
it will suffice to prove that Jh(0)  # 0, where J h  denotes the Jacobian of h: 

1 .  ( -% a9 + P )  G ( V  - 9) 

a &(u +P> z ( v  - 9) 

a 
J h  = det 

By the Cauchy-Riemann equations [MH87, pag. 721, 

a9 _ -  ap - _-. au av  
ax ay a y  ax  ax a y  a y  a x  

_ -  aP 9 - au av - - _- - - - - -  

Hence, 

ax ax \ 
J h  = det 

-- If’]’ - 19’12 . 
Since lq’(0)l < lf’(O)l, it follows that (Jh)(O) # 0, as desired. 

Solution to 5.7.21: f does not have a removable singularity at 00. If f 
had an essential singularity at infinity, for any w E C there would exist a 
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sequence zn --+ co with limf(z,) = w. Therefore, f has a pole at infinity 
and is a polynomial. 

Solution to 5.7.22: Clearly, entire functions of the form f (2) = az + b, 
a, b E C a # 0, are one-to-one maps of C onto C . We will show that these 
are all such maps by considering the kind of singularity such a map f has 
at co. If it has a removable singularity, then it is a bounded entire function, 
and, by Liouville's Theorem [MH87, pag. 1701, a constant. 

If it has an essential singularity, then, by the Casorati-Weierstrass The- 
orem [MH87, pag. 2561, it gets arbitrarily close to any complex number in 
any neighborhood of 00. But if we look at, say, f (0), we know that for some 
E and 6, the disc IzI < 6 is mapped onto If(0) - zI < E by f .  Hence, f is 
not inject ive . 

Therefore, f has a pole at 00, so is a polynomial. But all polynomials of 
degree 2 or more have more than one root, so are not injective. 

Solution to 5.7.23: 1. If w is a period o f f ,  an easy induction argument 
shows that all integer multiples of w are periods of f .  It is also clear that 
any linear combination of periods of f, with integer coefficients, is a period 

2. If f had infinitely many periods in a bounded region, by the Identity 
Theorem [MH87, pag. 3971, f would be constant. 

Solution to 5.7.24: For 0 < T < TO,  by the formula for Laurent coefficients 
[MH87, pag. 2461, we have 

o f f .  

If n < -2, as T gets arbitrarily close to zero, this upper bound gets 
arbitrarily small. Hence, for n < -2, c, = 0. 

5.8 Cauchy's Theorem 

Solution to 5.8.1: By Cauchy's Integral Formula [MH87, pag. 1671, we 
have 
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therefore, 

ee d e =  21r. I"" ie 

Solution to 5.8.2: By Cauchy's Integral Formula for derivatives [MH87, 
pag. 1691, we have 

therefore, 

Solution to 5.8.4: Let p ( z )  = anzn + * * + ao. If p has no zeros then l/p 
is entire. As liml,l+oop(z) = 00, l/p is bounded. By Liouville's Theorem 
[MH87, pag. 1701 l /p is constant, and so is p .  

Solution 2. Let p ( z )  = anzn + . . . + ao, n 2 1. If p has no zeros, then l /p 
is entire. As limlzI-)m p ( z )  = 00, the Maximum Modulus Principle [MH87, 
pag. 1851 gives 

which is a contradiction. 

Solution 3. For p ( z )  = anzn +. . . + a0 with n 2 1 let the functions f and g 
be given by f ( z )  = anzn, g(z) = p ( z )  - f(z). For R > 1 consider the circle 
centered at the origin with radius R, CR. For z E CR we have 

If(.)\ = IanIR" and 19(2)1 I (la01 + . * .  + Ian-11) IT'. 

Therefore, on CR, 

191 < If I if 

so, by RouchG's Theorem [MH87, pag. 4211, f + g = p has n zeros in 

Solution 4. Let P ( z )  be a nonconstant polynomial. We may assume P ( z )  
is real for real z,  otherwise we consider P(z)p(z ) .  Suppose that P is never 
zero. Since P(z )  does not either vanish or change sign for real z ,  we have 

(2 E c I J Z I  < R}. 



282 5. Complex Analysis 

But 

where Q ( z )  = zP(z  + z- ' )  is a polynomial. For z # 0, Q ( z )  # 0; in 
addition, if a, is the leading coefficient of P,  we have Q(0) = a,, # 0. Since 
Q ( z )  is never zero, the last integrand is analytic and, hence, the integral is 
zero, by Cauchy's Theorem [MH87, pag. 1521, contradicting (*). 
This solution is an adaptation of [Boa64]. 
Solution 5. Let p ( z )  = a,z"+. . -+ao, n 2 1. We know that limlz~--roo Ip(z)I = 
00, thus the preimage, by p ,  of any bounded set is bounded. Let w be in the 
closure of p(C). There exists a sequence {w,} C p(C)  with limn w, = w. 
The set {w, I n E N} is bounded so, by the previous observation, so is 
its preimage, p-l({wT,  I n E N}) = X .  X contains a convergcnt sequence, 
z,  --+ zo, say. By continuity we have p(z0)  = w, so w E p ( @ ) .  We proved 
then that p(C)  is closed. As any analytic function is open we have that 
p(C)  is closed and open. As only the empty set and C itself are closed and 
open we get that p(C) = C and p is onto. In fact, all we need here, in order 
to show that p is open, is that p : R2 --+ R2 has isolated singularities, which 
guides us into another proof. 

Solution 6. By the Solution to Problem 2.2.4 the map p : lR2 -+ R2 is onto 
guaranteeing a point where p ( z ,  y) = (0,O). 

Solution 7. Let p ( z )  = a,z" + . . . + ao, n 2 1. Consider the polynomial q 
given by q(z) = G z "  + . . . + %. Assume p has no zeros. As the conjugate 
of any root of q is a root of p ,  q is also zero free. Then the function l / p q  is 
entire. By Cauchy's Theorem [MH87, pag. 1521, we have 

where r is the segment from -R to R in the horizontal axis together with 
the half circle C = { z  E C I IzI = R, S ( z )  > 0). But we havc 
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which is absurd since the integrand is a continuous positive function. 

Solution 8. Let p ( z )  = a,zn + + ao, n 2 1. For R large enough, as 
limlZI+,p(z) = 00, ( p (  has a minimum in { z  6 C ( ( z (  < R}, at ZO, say. 
Suppose p ( z 0 )  # 0. Expanding p around zo we get 

n 

p ( z )  p (Z0)  + c b j ( z  - z0)’ bk # 0. 
j=k 

Let w be a k-root of - p ( Z o ) / b k .  We get, for E > 0, 

n 

p ( ~ o  + W E )  = p ( ~ 0 )  + b k w k e k  + C b j w j E i  
j=k+l 
n 

= p(~o)(l- c k )  + C bjwjd 
j = k + l  

therefore, for E small enough, we have JZO + W E \  < R and 

n 

IP(Z0 + W E ) /  i IP(Zo)ll1 - E k l  - c I b j W j l E j  
j = k + l  

< IP(ZO>l 

which contradicts the definition of ZO. We conclude then that p(z0)  = 0. 

Solution 9. Let p ( z )  = anzn + .  . . + ao, n 2 1. We have 

As the singularities of p ’ / p  occur at the zeros of its denominator, the con- 
clusion follows. 

Solution to 5.8.5: By Morera’s Theorem [MH87, pag. 1731, it suffices to 
show that 

f (2) dz = 0 

for all rectangles y in C . Since f is analytic on { z  ( 3.z # 0}, which is simply 
connected, it is enough to consider rectangles which contain part of the real 
axis in their interiors. 

Let y be such a rectangle and 1 be the segment of R in its interior. For 
E > 0 small enough, draw line segments 11 and 12 parallel to the real axis 
at distance E above and below it, forming contours y1 and 7 2 .  
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& 

-& 

Since f is continuous, its integral depends continuously on the path. So, 
as E tends to 0 ,  

since the integrals along Z1 and 12 have opposite orientation, in the limit, 
they cancel each other. By Cauchy's Theorem [MH87, pag. 1521, the left 
side of (*) is always 0 ,  so 

[ f(z) d z  = 0. 

Solution to 5.8.6: We have, using the fact that the exponential is 27r- 
periodic, 
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Solution to 5.8.7: By Cauchy's Theorem [M€I87, pag. 1521, 

1 f(z)2 = f(0)' 2.lri z 

for r > 1. Parameterizing the domain of integration by z reiQ, we find 

Simplifying and taking real parts gives 

(u(Tei8)' - v(reie)2) do  = 27r (~(0) '  - ~ ( 0 ) ~ )  = 0 Jd'" 
Solution to 5.8.8: We have 

for all z. Dividing both sides by lzlk and taking the limit as IzI tends to 
infinity, we see that d" f /dz" has a pole at infinity of degree at most, k so 
d71Lf /dzm is a polynomial of degree, at most, k. Letting n = m + lc + 1, we 
must have that d" f / d z "  = 0 and that n is the best possible such bound. 

Solution to 5.8.9: 1. We have 

f ( ~ )  = (Z - z ~ ) ~ ~  . . . (Z - 

where g is an analytic function with no zeros in R. So 

n k  g 'k )  
f(Z) z - Z1 Z -Zk g(Z )  

+-+--. - f'(z) - - -+... n1 

Since g is never 0 in R, g' /g  is analytic there, and, by Cauchy's Theorem 
[MH87, pag. 1521, its integral around y is 0. Therefore, 

k 
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Solution to 5.8.10: Suppose f ( x l )  = f ( z 2 )  and let y be 
connecting these two points. We have 0 = J, f’(z)dz. Hence, 

l ( f ’ ( z )  - f’(zo))dz = -f’(z0)(~2 - xi ) .  

Taking absolute values, we get 

the segment 

If’(zo>l Iz2-z1I I If’(x)-f’(xo)l Id4 < If’(zo)l ldzl = If’(zo)l Iz2-~11, 1 1 
an absurd. We conclude, then, that f is injective. 

Solution to 5.8.11: It suffices to show that there exists an integer n such 
that the image of 52 under h(z )  = f ( z ) / z ”  contains no curves with positive 
winding number about 0; because it implies the existence of an analytic 
branch of the logarithm in h(C2). Each closed curve in h(R) is the image 
of a closed curve in 0, so it is enough to show that the images of simple 
closed curves in 52 have winding number 0 about the origin. 

Consider two classes of simple closed curves in R 

0 rl, the curves with 0 in their interiors, and 

0 rz, the curves with 0 in their exteriors. 

Since f has no zeros in R, it is clear that if y E rz, then Indf(,)(O) = 0. 
From the shape of R, it follows that all the curves in rl are homotopic. Let 
n be the winding number about 0 of f(y) for y E rl. Since h has no zeros 
in R, we must have Indh(,)(O) = 0 for y E rz. Fix y E rl; then 

1 
Indh(,)(O) = dz = & I (  - f) dz = Indf(,)(O)-n = 0 

and we are done. 

Solution to 5.8.12: Let c > 0. It suffices to show that there is a constant 
M such that 

I f (z1)  - f(zz)l I Mlzl - z2( for all 21, zz E { z  I Xz > c,  Izi - z2l < c}. 
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Fix two such points and let y be the circle of radius c whose center is the 
midpoint of the segment joining them. y lies in the right half-plane, so, by 
Cauchy’s Integral Formula [MH87, pag. 1671, we have 

where N is the supremum of I f 1  in the right half-plane. On y, 
for i = 1 ,2 ,  so 

4N 
IS(z1) - f(z2)l 5 - p l  - z21. 

5.9 Zeros and Singularities 

Solution to 5.9.1: F is a map from c C 3  to the space of monic polyno- 
mials of degree 3, that takes the roots of a monic cubic polynomial to its 
coefficients, because if a,  0, and y arc the zeros of z3 - Az2 + Bz - C, we 
have 

Thus, by the Fundamental Theorem of Algebra (for several different proofs 
see the Solution to Problem 5.8.4), it is clear that F is onto. F ( 1 ,  1 , O )  = 
F ( l , O ,  l), so F is not injective, in fact, F ( u ,  w, w) = F(w, 20, u) = F ( w ,  u, w). 

A = a + P  + y, a@+ a y  +Pr = B, aP7 = c. 

Solution to 5.9.2: Using Rouch6’s Theorem [MH87, pag. 4211, it is easy 
to conclude that p ( z )  has two zeros inside the circle (zI = 3/4. 

Solution 2. The constant term of p is 1, so thc product of its roots is 1, in 
absolute value. They either all have absolute value 1, or at least one lies 
inside 1z) < 1. The former is not possible, since the degree of p is odd, it 
has at least one real root, and a calculation shows that neither 1 nor -1 is 
a root. So p has a root in the unit disc. 

Solution to 5.9.3: For IzI = 1, we have 

1 - ~ 3 1 =  1 > I ~ ) I  
so, by Rouchir’s Theorem [MH87, pag. 4211, f ( z )  - z3 and z3 have the same 
number of zeros in the unit disc. 

Solution to 5.9.4: Let fl and f2 be defined by f ~ ( z )  = 3 ~ ’ ~ ~  and 
f 2 ( z )  = -ez.  On thc unit circle, we have 

Ifl(2)l = 3 > 1 = If2(z)I. 
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By Rouchd’s Theorem [MH87, pag. 4211, we know that f and fi have the 
same number of zeros in the unit disc, namely 100. 

Let be a zero of f .  Then 

f’(c) = 3OO<” - eE = 3OO<” - 3t1O0 = 31’’ (100 - 31) # 0 

so all the zeros o f f  arc simple. 

Solution to 5.9.5: 1. Let f(z) = 42’ and g(z)  = 2z5 + 1. For IzI = 1, we 
have 

I f (z) l  = 4 > 3 2 Ig(2)l * 

By Rouchd’s Theorem [MH87, pag. 4211, f and p = f + g have the same 
number of roots in 1zI < 1. Since f has two roots in IzI < 1, so does p.  
2. There is at least one real root, since p has odd degree. We have p’(z) = 
10z4 +8z, so p’ has two real zeros, namely at 0 and -(4/5)+. Moreover, on 
the real axis, p’ is positive on (--00, -(4/5)+) and (0, co), and negative on 
(-(4/5) 8 , O ) .  Thus, p is increasing on the first two intervals and decreasing 
on the last one. Since p ( 0 )  = 1 > 0, also p(-(4/5)4) > 0, so p has no 
root in [ - (4/5)9,m) and exactly one in (-m, -(4/5)+). (The real root is 
actually in (-2, -l), since p(-1) > 0 and p( -2 )  < 0.) 

Solution to 5.9.6: Let p ( z )  = 32’ + 8z6 + z5 + 2z3 + 1. For IzI = 2, we 
have 

Ip(z) - 32’1 = 18z6 + z5 + 2z3 + 11 
I 8 1 ~ 1 ~  + )215 + 2 1 4 ~  + 1 
= 561 < 1536 = 1 3 ~ ~ 1  

so, by RouchB’s Theorem [MH87, pag. 4211, p has ninc roots in IzI < 9. 
For IzI = 1, we have 

Ip(z) - 8z61 = 132’ + z5 + 2z3 + 11 
I 31~1’  + 1215 + 2 1 ~ 1 ~  + 1 
= 7 < 8 = 18.~~1 

and we conclude that p has six roots in 1x1 < 1. Combining these results, 
we get that p has three roots in 1 < IzI < 2. 

Solution to 5.9.7: For z in the unit circle, we have 

15z21 = 5 > 4 2  1z5+z3+21 

so, by Rouchd’s Theorem [MH87, pag. 4211, p ( z )  has two zeros in the unit 
disc. For Iz( = 2, 

1z5 I = 32 > 30 2 1z3 + 52’ + 21 
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so p ( z )  has five zeros in { z  I IzI < 2). We conclude then that p ( z )  has three 
zeros in 1 < IzI < 2. 

Solution to 5.9.8: Let p ( z )  = z7 - 4z3 - 11. For z in the unit circle, we 
have 

Ip(z) - 111 = 1z7 - 4z3) 5 5 < 11 

so, by Rouchk's Theorem [MH87, pag. 4211, the given polynomial has no 
zeros in the unit disc. For 1x1 = 2, 

I ~ ( ~ )  - z71 = 14z3 + 111 I 43 < 128 = 1 ~ 7 1  

so there are seven zeros inside the disc { z  1 1x1 < 2) and they are all between 
the two given circles. 

Solution to 5.9.9: Rescale by setting z = &-ll5w. Then we need to show 
that exactly five roots of the rescaled polynomial 

PE(W) = w7 + w2 + 6, 
with S = E ~ / ~  -+ 0 as E --t 0, converge to the unit circle as E -+ 0. We have 
po(w) = w2(w7 + 1). Since two roots of po are at w = 0 and the other five 
are on the unit circle, the result follows from the continuity of the roots of 
a polynomial as functions of the coefficients, see 5.9.27. 

Solution 2. Let q(z )  = z2 + 1, so 

~ p ( z )  - q(z)1 = ~ 1 2 1 ~  = r 7 ~ - 2 / 5  

on the circle IzI = r ~ - ' / ~ .  Also, 

1q(z)1 = 1z2 + 11 > r 2 ~ - 2 / 5  - 1 

on 12.1 = ~ E C ' / ~ .  Since r < 1, r7 < r2,  and r 7 ~ - 2 / 5  < r 2 ~ - 2 / 5  - 1 for 
E sufficiently small. Then Ip(z) - q(z)l < 1q(z)1 on IzI = r ~ - l / ~ ,  and by 
Rouchk's Theorem [MH87, pag. 4211, p and q have the same number of 
zeros inside IzI = T E - ~ / ~ ,  namely two. By the Fundamental Theorem of 
Algebra (for several different proofs see the Solution to Problem 5.8.4), the 
other five roots must lie in IzI > T - E - ' ~ ~ .  

Now take q(z)  = &z7, so 

I P ( z )  - q(z)l = 1z2 + 11 5 R 2 ~ - 2 / 5  + 1 

on JzJ  =  RE-^/^, where 

Since R > 1, we have R7 > R2 and 

Iq(.z)/ = R'E-'/~. 



290 5. Complex Analysis 

for E sufficiently small. Thus, Ip(z) - q(z)1 < Iq(z)l on 1x1 =  RE-^/^, so p 
and q have the same number of zeros inside IzI =  RE-^/^, namely seven. 
This leaves precisely five roots between the two circles. 

Solution to 5.9.10: The dcterminant of A(z)  is 8z4 + 6z2 + 1. For z in 
the unit circle, we have 

)8z4) = 8 > 7 2 )6z2 + 1) 

so, by Rouchd’s Theorem [MH87, pag. 4211, det A(z)  has four zeros in the 
unit disc. Also, 

d 
- (det A(z) )  = z(32z3 + 12) 
dz 

with roots 

0 ,  * i f i  

which are not zcros of det A(z).  Thus, all the four zeros are simple, so thcy 
are distinct. 

Solution to 5.9.12: Let z1,. . . , zn be the zeros of p, and z a zero of p’, 
z # zi, i = 1,. . . , n. We have 

P‘ 7L 1 0 = - ( z )  = c-- 
z - za 

i=l P 

Using the fact that 1/a = ~ / ( C I ( ~  and conjugating wc get 

n z - z; 
= 0  

i = l  

which is clearly impossible if Rz 5 0. 
This result can be generalized to give the Gauss-Lucas Theorem [LR70, 

pag. 941: The zeros of p’ lie in the convex hull of the zeros ojp. If z1 , .  . . , z, 
are the zeros of p, and z is a zero of p’, z # zi ,  i = 1,. . . , n. Wc have, 
similar to the abovc. 

71 z - zi 
= 0  

i= 1 

which is impossible if z is not in the convcx hull of 21,. . . , z,. 

Solution to 5.9.13: We may assume r # 0. Let n = degp and x1 < 2 2  < 
. . . < Xk be the roots of p ,  with multiplicities ml , m2,. . . , m k ,  respectively. 
If any mJ exceeds 1, then p - rp’ has a root at xj of multiplicity mJ - 1 
(giving a total of n - Ic roots all together). We have 

p(x) = c(x - x p  . . . (. - Zt)mn. 
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The logarithmic derivative p’/p is given by 

Its range on the interval ( z j ,  zJ+l) ( j  = 1, . . . , k - 1) is all of R, since it is 
continuous there and 

P‘(4 - lim = +m , lim __ --m. 

Hence, there is a point x E (xJ,xj+l) where p’(s)/p(x) = l / ~ ;  in other 
words, where p - TP’ has a root. Thus, p - TP’ has at least k - 1 real roots 
other than the n- k that are roots of p. Hence, p-rp’ has at least n- 1 real 
roots all together, and the nonreal ones come in conjugate pairs. Hence, it 
has only real roots. 

Solution to 5.9.14: Let R > X + 1 and consider the contour 
Cn = r R  U [-Rz, Ri], where r n  = { z  1 ( z (  = R ,  %z 5 0) and [-Rz, Ri] = 

x - t x , +  p ( x )  2 - 2 3 -  P(Z> 

{ z I % z = O ,  - R ~ ~ . z < R } .  

Let the functions f and 9 bc defined by f(z) = z i- A, g(z) = -e”.  On 
rR, we have 

If(4l 2 I4 - > 1 2  Ig(z)l 

lf(4I 2 > 1 = 1d41. 
and on [-Ri, Ri], 

By Rouch6’s Theorem [MH87, pag. 4211, f~ and f have the same number 
of zeros inside the contour CR, so fx has exactly one zero there. As this 
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conclusion is valid for every R > X + 1, we conclude that f x  has one zero 
in the left half-plane. As f is real on the real axis and f(x) f (0) < 0 for x 
small enough, we get that the zero of fx  is real. 

Solution 2. We find the number of zeros of f x  in the left half-plane by 
considering a Nyquist diagram [Boa87, pag. 1061 rclative to the rectangle 
with corners iy, -x -t iy, -x - iy, and -iy, z, y > A. This will give thc 
change in (1/27r) arg fx(z). Then we let z, y -+ 00. 

On the right side of the rectangle, as t ranges from -y to y, f x ( i t )  = 
it + X - cos t - i sin t has a positive real part, and its imaginary part changes 
sign from negative to positive. On the top of the rectangle, as s ranges from 
0 to -5, fx (s + i y )  = s + iy + X - es cosy - ie“ sin y has positive imaginary 
part, and its real part changes sign from positive to negative. 

Similar reasoning shows that on the left side of the rectangle, Rfx < 0 
and 9 f x  changes sign from positive to negative. On the bottom of the 
rectangle, 3 fx  < 0 and Xfx changes sign from negative to positive. Hence, 
f x  is never 0 on this rectangle and the image of the rectangle winds around 
the origin exactly once. By the Argument Principle [MH87, pag. 4191, f x  
has exactly one zero in the interior of this rectangle. Letting x and y tend 
to infinity, we see that f x  has exactly one zero in the left half-plane. As fx  
is real on the real axis and fx(x)fx(O) < 0 for x small enough, we get that 
the zero of f x  is real. 

Solution to 5.9.15: For Iz( = 1, we have 

so, by Rouchk’s Theorem [MH87, pag. 4211, the given equation has one 
solution in the unit disc. Let f ( z )  = zexPr. As, for z real, f increases 
from f(0) = o to f(1) = ex-’ > 1, by the Intermediate Value Theorem 
[Rud87, pag. 931, f(5) = 1 for some 6 E ( 0 , l ) .  

Solution to 5.9.16: By the Gauss-Lucas Theorem [LR70, pag. 941 (see 
Solution to 5.9.12), if p ( z )  is a polynomial, then all of the roots of p’(z) lie 
in the convex hull of the roots of p ( z ) .  Let z = l /w.  The given equation 
becomes, after multiplying by w”, wn + wn-’ + u = 0. The derivative 
of the right-hand side is nwn-’ + (n  - 1 ) ~ ~ - ~ ,  which has roots 0 and 
-(n - l) /n 2 1/2. For these two roots to lie in the convex hull of the roots 
of wn + wn-’ +a,  the latter must have at least one root in IwI 2 1/2, which 
implies that uzn + z + 1 has at  least one root in ( z (  5 2. 

Solution 2. The product of the roots of p ( z )  = uzn + z + 1 is its constant 
term, namely 1, so all p’s roots are unimodular or at least onc is in JzJ  < 
1. 
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Solution to 5.9.19: Let p ( z )  denote the polynomial and suppose p(z0 )  = 0 
for some zo E D. Then zo is also a root of ( z  - l)p(z).  We then have 

n-tl  0 = aozo + (a1 - u0)zo” + . . . + (a, - a,-l)zo - a,. 

Since all the ai’s are positive and lzol < 1, we have, by the Triangle 
Inequality [MH87, pag. 201, 

an = laozo”+l + (a1 - a(+; + . . . + (a, - a,-l)zol 
< a0 + (a1 - ao) + . . . + (a, - % - I )  

= a7k, 

a contradiction. 

Solution to 5.9.20: By Descartes’ Rule of Signs [Caj69, pag. 71, [Coh95, 
vol. 1, pag. 1721, thc polynomial p ( z )  has zero or two positive real roots. As 
p ( 0 )  = 3 and p (  1) = -2, by the Intermediate Value Theorem [Rud87, pag. 
931, p ( z )  has one and so, two, positive real roots. Replacing z by - z ,  and 
again applying Descartes’ Rule of Signs, we see that p ( - z )  has one positive 
real root, so p ( z )  has one negative real root. Applying Rouch6’s Theorem 
[MH87, pag. 4211 to the functions f = p and g = 6z on the unit circle, 
we see that p has exactly one zero in the unit disc, which is positive as 
seen above. Hence, the real roots arc distinct. (The same conclusion would 
follow from noticing that p and p’ have no common roots.) The imaginary 
roots are conjugate, so they arc distinct as well. 

Solution 2. Graphing the polynomial y = z5 - 6z + 3 (for real z), we can 
see the result easily. First, y’ = 5x4 - 6 and the only two real roots are 
z = f and none of them arc multiple. Now looking at the limits when 
z --+ -00 and z t 00, we can conclude that the graph looks like 

Y 
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So there are three distinct real roots. There cannot be a forth, otherwise 
y' would have a third root. The other two roots are then complex and not 
real; since they are conjugate, they are distinct, making for five distinct 
roots, three of them real. 

Solution to 5.9.21: Let z be a zero of the given polynomial with IzI = T .  

If T 5 1, then z lies in the given disc. For T > 1, we have 

n-1 

T 2 n  = I - Zn12 = c czzz . 
l i = o  .I 

By the Cauchy-Schwarz Inequality [MII93, pag. 691, we get 

n-1 n-1 

i=O i=O 

The second sum is a finite geometric series which sums to -- Combining 
these, we have 

Multiplying both sides by 3, we get the result wanted. 

Solution to 5.9.22: The product of all zeros of P ( z )  (with multiplicities) 
equals fl, so, if there are no roots inside the unit circle, then there are no 
roots outside the unit circle either. Hence, all roots are on the unit circle. 
From P(0) = -1 < 0 and limz+m P ( x )  = +co, it follows that P ( z )  has a 
real zero in the interval (0,co). Since it lies on the unit circle, it must be 
1, so P(1) = 0. 

Solution to 5.9.23: Let R > 0. Consider the semicircle with diameter 
[-Ri, Ri] containing R and its diameter. We will apply the Argument Prin- 
ciple [MH87, pag. 4191 to the given function on this curve. 

Suppose n is even. Then 

( z y ) 2 n  + a2( iy)2n--1 + p 2  = y2" + p 2  - i a 2 p - - 1  

is always in the first quadrant for y < 0, so the change in the argument 
when we move from 0 to - Ri is close to zero, for R large. On the semicircle, 

which is close to z2n for R large. So the argument changes by 27rn when 
we go from -Ri to Ri. From Ri to 0, 

y 2 ~ ~  + p 2  - ia2y2n-1 
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is always in the fourth quadrant, so the change in the argument is close to 
zero, for R large. The total change is then 2x12, so there are n roots with 
positive real part. 

Now, suppose that n is odd. We have 

so when we go from the origin to -Ri, for R large, the argument change 
is close to -7r. The variation on the semicircle is again about 27rn. The 
change when y goes from R to 0 in the argument of 

-y'n + p' + i a 2 p - 1  

is about -T. Therefore, the number of zeros with, positive real part is now 
(-T + 27r - 7r)/27r = n - 1. 

Solution to 5.9.24: Let p > 0 and consider the functions 

2' zn 
gn(z) = fn(l/z) = 1 + z + - + . . . + -. 

2! n! 

Since gn(0) # 0 for all n, gn(z) has a zero in Iz( 5 p if and only if f n ( z )  
has a zero in (21 2 p .  gn(z) is a partial sum of the power series for e'. Since 
this series converges locally uniformly and { z  I ( z I  5 p }  is compact, for any 
E > 0 there is N > 0 such that if n 2 N ,  then lgn(z) - e'I < E for all z in 
this disc. ez attains its minimum m > 0 in this disc. Taking NO such that if 
n 2 No, lgn(z) - ezI < m/2 for all z in the disc, we get that gn(z) is never 
zero for Iz( 5 p.  Therefore, fvL(z) has no zeros outside this disc. 

Solution to  5.9.26: The function sin z satisfies the identity sin(z + T )  = 
- sin z ,  and vanishes at the points n ~ ,  n E Z, and only at those points. 
For m a positive integer, let R, denote the closed rectangle with vertices 
(m - ;)7r + i E  and (m + ;)7r f i ~ .  The function sinz has no zeros on 
the boundary of R,, so its absolute value has a positive lower bound, 
say 6, there. (The number S is independent of m because of the identity 
sin(z + T )  = -sin z.) Suppose (m - ;)7r - la( > i. Then, for z in R,, we 
have 

1 1 1 
I- I < s  

Iz - a1 JzI - a (m - f ) ~  - (a1 
implying that 1 < I sin z (  on the boundary of R,. By Rouchb's Theorem 
[MH87, pag. 4211 then, the functions sin z and f(z) = sin z + have the 
same number of zeros in the interior of Rrn. Since sinz has one zero there, 
so does f(z). As the condition on m holds for all sufficiently large m, the 
desired conclusion follows. 

1'-4 

Solution to 5.9.27: We will prove that the simple zeros of a polynomial 
depend continuously on the coefficients of the polynomial, around a simple 
root. 
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Consider 

For ( t o ,  . . . , &-I) E C n ,  let F be the polynomial given by 

F ( z )  = G O < O  + (a, + 51)z + . . . + ( L l  + & P l ) Z n - - l  + a,,zn 

and, for each 1 5 k 5 s, let 0 < T k  < minkfj lzk - z,? I. 

that F has rn3 zeros inside the circle Ck centered at  zk with radius 7-k. 

We will show that for some E > 0, lSZl < E for i = 0, .  . , , n - 1 implies 

Let 5 be the polynomial given by 

On Ck, we have 

and 
k 

lp(z)l 2 lii7Llrrk I1 (1z3 - Z ~ I -  r k l r n J  = s,, > 0. 
3 = 1  

3#k  

Taking E < S k / M k ,  we get 1 < ( ~ ) 1  < Ip(z)l on Ck; therefore, by Rouchd's 
Theorem [MH87, pag. 4211, F has the same number of zeros in ck as p .  As 
in this domain p has a single zero with multiplicity m,, we are done. 

Solution to 5.9.28: From 

f'"i(Z) = c n(n - 1). . . (n  - k + l ) a n Z n - k ,  

n r k  

we conclude that 
jf(k)(re'o)j 5 l.Fk)(r)1 

for 0 < T < 1, and 0 < 0 5 21r. Suppose f can be analytically continued in 
a neighborhood of z = 1; then its power series expansion around z = 1/2, 

w 

n=O 

has a radius of convergence R > 1/2. Let (m) be the Taylor coefficients 
[MH87, pag. 2331 of the power series expansion of f around the point 
(1/2)eTe. By the above inequality, JyIL) 5 I & \ .  Therefore, the power series 
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around the point (l/2)ei0 has a radius of convergence of at least R. So f 
can be analytically continued in a neighborhood of every point of the unit 
circle. However, the Maclaurin series [MH87, pag. 2341 of f has radius of 
convergence 1, which implies that at least one point on the unit circle is a 
singularity o f f ,  and get a contradiction. 

Solution to 5.9.29: Without loss of generality, assume T = 1. 
Suppose f is analytic at z = 1. Then f has a power expansion centered 

at 1 with positive radius of convergence. Therefore, f has a power series 
expansion centered at z = 1/2 with radius 1/2 -t- E for some positive E. 

As 

we have, for 1 < x < 1 + E ,  

which is absurd because we assumed the radius of convergence of C a,zn 
to be 1. This contradiction shows that f cannot be analytic at z = 1. 
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Solution to 5.9.30: 1. As 

z2 - (tan.z)2 
z2 (tan z)2 

(tanz)-2 - zp2 - - 

the Maclaurin expansion [MH87, pag. 2341 of the numerator has no terms 
of degree up to 3, whereas the expansion of the denominator starts with 
z4, therefore, the limit is finite. 
2. As 

1 
3 

tanz = z + -z3 + 0(z4) ( z  3 0) 

we have 

z2 - z2 - $z4 -t 0(z4) 
z4 + 0(z4) 

(tanz)-’ - z-2 = (2 + 0) 

so the limit at  0 is -2/3. 

Solution to 5.9.31: If g has a removable singularity at infinity, it is a 
bounded entire function, and so, by Liouville’s Theorem [MH87, pag. 1701, 
it is constant, which contradicts our hypothesis. If g has an essential singu- 
larity at infinity, by, the Casorati-Weierstrass Theorem [MH87, pag. 2561, 
there is an unbounded sequence (z,) such that g(zn) tends to 0. Hence, 
h(z,) tends to f ( O ) ,  contradicting the fact that h is a polynomial and, 
thus, has a pole at infinity. Therefore, g must have a pole at  infinity and 
be a polynomial. 

Let (cn) be any unbounded sequence. Since g is a polynomial, it is surjec- 
tive and maps bounded sets to bounded sets. Hence, there is an unbounded 
sequence (En) with g(&) = Cn for all n. Therefore, f(Cn) = h(&) tends to 
infinity as n tends to infinity, since h has a pole at infinity. Since this holds 
for all unbounded sequences, we see that f has a pole at infinity as well, so 
it is also a polynomial. 

5.10 Harmonic Functions 

Solution to 5.10.1: Derivating twice, we can see that 

d2U d2U 

d X 2  ay2 ’ - = 6~ = -- 

so Au = 0. The function f is then given by (see [Car63b, pages 126-1271) 
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Solution to 5.10.2: Since u is the real part of an analytic function, it is 
harmonic in the unit disc D. By Green's Theorem [Rud87, pag. 2531, 

Solution to 5.10.3: 1. Let f = u + iv. Then is identically 0 on the unit 
circle. By the Maximum Modulus Principle [MH87, pag. 1851 for harmonic 
functions, w is identically zero on ED. By the Cauchy-Riemann equations 
[MH87, pag. 721, the partial derivatives of u vanish; hence, u is constant 
also and so is f.  
2. Consider 

z t l  
2 - 1  

f(z) =i-. 

f is analytic everywhere in @. except at 1. We have 

Solution to 5.10.4: We have u = Xz', zs 5 eS1Ogz, and logz = principal 
branch of log with -7r < arg x < T.  x s  is analytic in the slit plane C\(-oo, 01 
and d e s l o g z  = szS-'. Hence, u = Xzs is harmonic in the same domain. 

Solution to 5.10.5: Let w be the harmonic conjugate of u. Then, f = u+iv 
is an entire function. Consider h = e-f. Since u 2 0, Ihl 5 1, h is a bounded 
entire function and, by Liouville's Theorem [MH87, pag. 1701, a constant. 
Therefore, u is constant as well. 

Solution to 5.10.6: Let v be a harmonic conjugate of u, and let f = eu+Zv. 
Then f is an entire function and, for IzJ > 1, we have 

dz 

~f (z ) l  = e u ( z )  5 e a l o g J z J + b  = e b l z l a  . 
Let n be a positive integer such that n 2 a. Then the function z - ~  f (2) has 
an isolated singularity at 00 and, by the preceding inequality, is bounded 
in a neighborhood of 00. Hence, 00 is a removable singularity of z-"f(z) 
and, thus, is, at worst, a pole of f .  That means f is an entire function 
with, at worst, a pole at 00, and so f is a polynomial. Since nonconstant 
polynomials are surjective and f omits the value 0, f must be constant, 
and so is u, as desired. 

5.11 Residue Theory 

Solution to 5.11.1: Since the T ~ ' S  are distinct, f has a simple pole at 
each of these points. If Al, A2, . . . , A, are the residues of f at each of these 
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points, then 

A1 A2 An 
g(z)  = f(z) - - - - . . . - - 

z - 7-2 z - r, 

is entire. Clearly, g tends to zero as z tends to infinity, so, by the Maximum 
Modulus Principle [MH87, pag. 1851, g must be identically zero and we are 
done. 

Solution to 5.11.2: We have 
3 

a-1 = Res (cot TZ, -1) + Res (cot m, 0) + Res (cot nz,  1) = - 
lr 

For n < -1, the coefficients are given by 

cot lrz 
dz 

1 

cot TZ cot nz 
= lim (z+ 1)- + lim(z - 1)- 

t+-1 zn+l z-1 zn+l 
1 

= ((-1)-n-1+ 1) -. 
n 

Solution to 5.11.4: If the roots off are not distinct, then some zo satisfies 
$7-1 

~ ( z o )  = ~'(zo) = 0. But f ' ( ~ )  = 1 + z + . . . + m, SO 

and zo = 0. However, 0 is clearly not a root of f .  Hence, the roots off  are 
distinct and nonzero. 

For 0 5 k 5 n - 2, consider the integral 

where C, is a circle of radius r centered at the origin such that all the roots 
o f f  lie inside it. By Cauchy's Theorem [MH87, pag. 1521, Ik is independent 
of r ,  and as r --+ 00, the integral tends to 0. Hencc, I k  = 0. By the Residue 
Theorem [MH87, pag. 2801, 

Since 2 5 m - k 5 n, we get the desired result. 
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Solution to 5.11.5: Let the disc centered at the origin with radius r 
contain all the zeros of Q. Let CR be a circle centered at the origin with 
radius R > T .  Then, by the Deformation Theorem [MH87, pag. 1481, 

where C is any closed curve outside 121 = T .  As 

we have 
‘(’I dz = 0 ( ~ Z I - ~ )  27rR = o(1) ( R  -+ co) 

and the result follows. 

Solution to 5.11.6: We have 

We will USC the Residue Theorem [MH87, pag. 2801. 

Res (L-, 2 - 2  2) = 1. 

Let f(z) = e z / z 2 ( z  - 2) .  The following expansions hold: 

1 -- 1 - 2 (1+?-+22+2+... 
2 - 2  2 2 4 8  

e” 

2 2 ( 2  - 2) 
1 3 5  

2z2 42 8 
-- -- - - - - - . . . - 

thus 
3 

Res(f(z),O) = --. 4 
Also, 

Res (f(z), 2 )  = -- = 0. 
dz z2 2=2 

Therefore, we have, for a > 2, 

2 2 + e z  7ri 
2 ,  2) + Res (f, 0) + Res (f, 2) = - - 

2 
dz = 2niRes - ( 
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and for a < 2, 

z2 + ez 3ni dz = 2ni Res (f(z), 0) = ---. 
2 

Solution to 5.11.7: Let f ( z )  = d n  = cy=o ( ‘i2 ) z2‘. f is ana- 

lytic for 1x1 > l; therefore, 

J G - d z  = -21ri Res(f(z), m). 

We have 

so 

We then obtain 

Solution to 5.11.8: Using the change of variables z = l /w,  we obtain 

1 dz -dW 

where the contour is oriented clockwise. By the Residue Theorem [MH87, 
pag. 2801, we have 

-dw = Res (---,n) 1 + Res (-, 1 -T) 

w2 sin w w 2  sin w 
1 

+Res (___ w 2  sin w ’ 0) 

We have 

1 
w2 sin w ’ w++.rr w2 sin w n2 

_ _  - Res (- 1 *n) = lim ____ W T . . n  - 
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- -8n3 + O(z  - i / 2 )  - 

and 
1 

w2 (w - w3/3! + w5/5! + . -) 
-- - 

1 
w2sin w 

1 1 - - - 
w3 1 - (w2/3! - w4/5! + ' * .) 
1 

w3 
= - (1 + (w2/3! - w4/5! + . * 

+ (w2/3! - w4/5! + . . .)2 + * .  * )  
= 1 / 3 ! ~  +.  . . 

Then, 
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dtl 
12 - ijR-3e-3Ze + 2R-6e-6a6 - 4R-ge-9a@ + R-12 

which has the limit 1/12 as R --+ 00. The valuc of the given integral is 
therefore, 1/12. 

Solution to 5.11.13: We make the change of variables u = z - 1. The 
integral becomes 

(2u -t l)e'+l/" du. 
l u + 1 , = 2  

Using the power series for the exponential function, we get 

The residue of this function at zero, which lies inside 1u + 11 = 2, is 2e, so 
the integral is 4eni. 

Solution to 5.11.14: Denote the integrand by f .  By the Residue Theorem 
[MH87, pag. 2801, I is equal to the sum of the residues of f at -1/2 and 
1/3, which lie in the interior of C. I is also the negative of the sum of the 
residues in the exterior of C, namely at 2 and oc). We have 

Res (f, 2) = lim(z - 2)f(z) = -1/s5. 
z-2 

As limz-m f(z) = 0, 

Res(f ,m) = - lim z f ( z )  = 0. 
z+cc 

SO I = 1/55. 

Solution to 5.11.15: The numerator in the integrand is & times the 
derivative of the denominator. Hence, I equals & times the number of 
zeros of the denominator inside C; that is, I = $. 
Solution 2. For r > 1, let C, be the circle ( z (  = T ,  oriented counterclockwise. 
By Cauchy's Theorem [M€I87, pag. 1521, and using the parameterization 
z = rez6, 

1 p - 1  
I = z i i z s c . 3 2 " - 1  dz 

= 5 1 3rnetn6 - 1 

1 2% rnezn6 
do. 

As r --+ 00, the integrand converges uniformly to 5 ,  giving I = 5- 1 

Solution to 5.11.16: The integrand has two singularities inside C ,  a pole 
of order 1 at the origin and a pole of order 2 at -1/2. Hence, 

ez s, 4 2 2  + 1)2 
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The residues can be evaluated by standard methods: 

Hence, 

Solution to 5.11.17: The function f has poles of order 1 at z = f l  and a 
pole of order 2 at z = 0. These are the only singularities o f f .  The winding 
numbers of y around -1, 0, 1 are 1, 2, -1, respectively. By the Residue 
Theorem [MH87, pag. 2801, 

1 
f ( z ) d z  = Res (f, -1) + 2Res (f, 0) - Res (f, 1) . 

Since 1 and -1 are simple poles, we have 

-e 
Res (f, 1) = lim(z - l)f(z) = 

2-1 

Res(f, -1) = lim ( z  + l ) f (z )  = 
z+-I 

To find the residue at 0, we use power series: 

ez = - ( l + z + T  1 z2 
22(1- 9) 2 2  

1 
22 

= - (  l + z + . . . )  

It follows that Res(f, 0) = 1. Hence, 

+...) ( 1 + z 2 + z 4 + . - )  

1 1  
22 z 

- - -+-+ . . .  

e-' e 
2 2 

f ( z ) d z  = - + 2 + - = 2 +cash 1. 
1 

Solution to 5.11.19: The roots of 1 - 2zcosO + z2 = 0 are z = cose f 
id- = efie. Using the Residue Theorem, [MH87, pag. 2801, we 



306 5.  Complex Analysis 

Solution to 5.11.20: Substituting z = eiO, we have 

=y  dz 
i zl=l 22 + 2az + 1 

The roots of the polynomial in the denominator are -a + d m  and 
-a - d m ,  of which only the former is within the unit circle. By the 
Residue Theorem [MH87, pag. 2801, 

1 
22 + 2az + 1 

, -a + &q . I ( a )  = 4n Res 

Since the function in question has a single pole at z = -a + Jm, the 
residue equals 

1 1  1 

giving ~ ( a )  = *. 
Consider the function F defined for 6 $?! [ -1 ,1]  by 
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As F’(<) exists, F is analytic on its domain. Combining with the previous 
results, we have that the function 

is analytic and vanishes for [ > 1; therefore, it must be identically zero. 
From this, we obtain that 

2T - - de 
l T t + c o s 6  @=i 

in the domain of F .  

Solution to 5.11.21: Let f be the function defined by 

i 
f(z) = ( z  - T ) ( T Z  - 1). 

We have 
dO 

1 - 2rcos6 + T 2 ’  
f ( z ) d z  = /c’” 

For JrJ < 1, 
i 

Res(f(z),r) = - 
r2 - 1 

and 

and 
27T -. - - d9 27r 
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Algebra 

6.1 Examples of Groups and General Theory 

Solution to 6.1.6: If a,b  E G, then a > 0 and b # 1, so alogb E G. 
Therefore, the operation * is well defined. 

Identity. The constant e is the identity since a * e = aloge = a1 = a and 

Associativity. We have 
e * a  = eloga = a. 

) = a * ( b  * c).  ) = clog a log b log c - alog(e'ug log log a log b 
( a  * b)  * c = - 

Inwertibility. Since a # 1, ,'/loga exists and is an element of G. A calcu- 
lation shows that a * el/loga = & / l o g a  * a = e. 

Solution 2. The map log : G -+ R \ {0} is a bijection that transforms the 
operation * into multiplication; that is, log(a * b)  = (loga)(logb). Since 
R \ (0) forms a group with respect to multiplication, G is a group with 
respect to *. 
Solution to 6.1.8: Fix an element a E G different from the identity, and 
consider the map cp : G \ {e} -+ G \ {e} defined by cp(c) = c-lac. The map 
is onto, so, since G is finite, it is one-to-one. As cp(a) = a and a-2aa2 = a,  
it must be that a2 = e. Thus, all elements of G, other than the identity, 
have order 2. Then, if a and b are in G, we have 

ab = a(ab)2b = a2(ba)b2 = ba 
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in other words, G is commutative, and it follows that G has order 2. 

Solution 2. Since G is finite, it has an element of prime order p .  Hence, every 
element of G, other than the identity, has order p .  Since G is a p-group, 
it has a nontrivial central element. Therefore, all elements are central; in 
other words, G is abelian. Hence, G has order 2. 

Solution 3. By our hypothesis, any two nonidentity elements are conjugate. 
Hence, there are two conjugacy classes: The class containing the identity 
and the class containing all the other elements of G. Letting n be the order 
of G, we see that the second conjugacy class must contain n - 1 elements. 
But, by the class equation, we know that the order of any conjugacy class 
divides the order of the group, so (n  - 1)ln. Solving for n > 0, we see that 
the only possible solution is n = 2. 

Solution to 6.1.10: Consider the group G' = {anbnL 10 5 n 5 T - 1, 0 5 
m 5 s - 1). As the order of any element of GI divides the order of GI, we 
have (GI1 = rs. This shows that (ab)k is never the identity for 0 < Ic < rs. 
Clearly we have (ab)'" = arbs = e, so the order of ab is rs. 

Solution to 6.1.12: Let 9, h E H and let x E D \ H .  Then 

and we can conclude immediately from this that H is abelian. 
Let x E D \ H. We have [D:H]=2, so x 2  E H .  By hypothesis, 

= x P 2  or z4 = 1. Therefore, z has order 1, 2, or 4. But n is odd, so 
4 does not divide the order of D, so, by Lagrange's Theorem [Her75, pag. 
411, z cannot have order 4. By our choice of z, x # 1, so x cannot have 
order 1. Hence. z has order 2. 

6.2 Homomorphisms and Subgroups 

Solution to 6.2.2: Let n = [C* : HI. By Lagrange's Theorem [Her75, 
pag. 411, the order of any elcment of C*/H divides n. So x" E H for all 
z E C*. Therefore, (C")" = C c II .  

Solution to 6.2.3: 1. The number of conjugates of H in G is IG : N ( H ;  G)l 
where N ( H ; G )  = (9  E G)g-'Hg = H }  is the normalizer of H. As 
H c N ( H ;  G) ,  we have IG : HI 2 IG : N ( H ;  G)I. 
2. By Problem 6.4.16, there is a normal subgroup of G, N ,  contained in 
H ,  such that GIN is finite. By Part 1 we can find a coset Ng E GIN such 
that N g  is not contained in any conjugate y-l  Hy/N of H/N in GIN. Then 
g @ y-lHy for any y E G. 
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Solution to 6.2.4: We will prove a more general result. Let G = ( g ) ,  
[GI = n, and a E Aut G. As a ( g )  also generates G, we have a ( g )  = g k  for 
some 1 5 k < n, (k, n) = 1. Conversely, 2 H zk is an automorphism of G 
for (k, 1) = 1. Let Z, be the multiplicative group of residue classes modulo 
n relatively prime to n. If denotes the residue class containing k, we can 
define ip : Aut G -+ Z, by 

@(a) =ii iff a ( g )  = g k ,  

It is clear that is an isomorphism. As Z, is an abelian group of order 
'p(n) ('p is Euler's totient function [Sta89, pag. 771, [Her75, pag. 43]), so is 
Aut G. When n is prime, these groups are also cyclic. 

Solution to 6.2.5: 1. If g - " p ( g )  = h-"p(h)  for some g , h  E G, then 
'p(g)'p(h)-' = g h - l ,  so, by hypothesis, gh-' = 1 and g = h. Thus, there 
are IGI elements of that form, so they must constitute all of G. 
2. Using Part 1, we have, for z = g - " p ( g )  E G, 

-1 
'p(z) = (P(s-1) 'p2(g) = ' p (g- l )g  = z 

so g H 9-l is an automorphism of G, which implies that G is abelian. For 
any z E G, z # 1, we have zP1 = cp(z) # z,  so G has no element of order 
2, and IG( is odd. 

Solution to 6.2.6: Let G be the group. If G is not abelian and a is 
an element not in the center, then the map z H a-lza is the desired 
automorphism. If G is cyclic, say of order m, and n is an integer larger 
than 1 and relatively prime to m, then the map 2 - zn is the desired 
automorphism. If G is any finite abelian group, then, by the Structure 
Theorem [Her75, pag. 1091, it is a direct product of cyclic groups. If one of 
the factors has order at least 3, we get the desired automorphism by using 
the preceding one in that factor and the identity in the other factors. If 
every factor has order 2, we get the desired automorphism by permuting 
any two of the factors. 

Solution to 6.2.11: The only homomorphism is the trivial one. Suppose 
cp is a nontrivial homomorphism. Then ' p ( a )  = m # 1 for some a,  m E Q . 

a a a a a  We have 

2 2 3 3 3  
but m is not the nth power of a rational number for every positive n. For 
example 3/5 = 1/5 + 1/5 + 1/5 but fi $ Q+. 

Solution to 6.2.12: We show that f is an isomorphism from keri onto 
ker j .  Let y E ker i. We have 

a =  - + -  = - + - + - + . . .  

j ( f ( Y ) )  = f ( Y )  - f ( d f ( Y ) ) )  = f ( Y  - S ( f ( Y ) ) )  = f ( i ( Y ) )  = f(0) = 0. 



338 6. Algebra 

Hence, f maps keri into kerj. Let y E ker i with f(y) = 0; then 

Thus, f is injective. Let z E kerj. Then O = j(z) = z - f(g(z)), so 
f(g(z)) = z. Therefore, f is onto if g(z) E keri. However, an argument 
identical to the first one shows that this is the case, so we are done. 

Solution to 6.2.13: By assumption, H has only finitely many right cosets, 
say H , z l H  ,..., x,H,  whose union is G. Hence, K is the union of the 
sets K n H ,  K n z l H , .  . . , K n x,H, some of which may be empty, say 
K = (KnH)U(KnzlH)U...U(Knz,H) (the notation being so chosen 
that K n z j  H = 0 if and only if j > m). If K n z j  H # 0 ,  then we may assume 
z3 is in K (since y is in zH if and only if yH = z H ) .  After making this 
assumption, we have K = z j K ,  so that K n z , H  = z , K n z j H  = z j ( K n H ) ,  
whence 

K = ( K  n H )  U $1 ( K  n H )  U * .  . U zm(K n H )  . 

This shows K n H has only finitely many right cosets in K ,  the desired 
conclusion. 

Solution to 6.2.14: For each g E G, let S, = { a  E G I ag = ga}. Each S, 
is a nontrivial subgroup of G, because g E S, and S, = G. The intersection 
of all S,, g E G, is the center of G. So H is a subset of the center of G. 

Solution to 6.2.15: Since G is finitely generated, Hom(G,Sk) is finite 
(bounded by ( I c ! ) ~ ) ,  where s k  denotes the symmetric group on k numbers 
1,2, .  . . , k .  For any subgroup H of index k in G, we can identify G I H  with 
this set of symbols, sending the coset H to 1. Then the left action of C on 
G I H  determines an element of Hom(G, s k )  such that H is the stabilizer of 
1. Thus, the number of such H's  is, at most, ( k ! ) , .  

6.3 Cyclic Groups 

Solution to 6.3.1: 1. Let G be the subgroup of Q generated by the nonzero 
numbers a l ,  . . . , a,, and let q be a common multiple of the denominators of 
a l ,  . . . , a,. Then each ai has the form p 3 / q  with p j  E Z, and, accordingly, 
G = 'Go, where Go is the subgroup of Z generated by p l ,  . . . , p , .  Since 
all subgroups of Z are cyclic, it follows that G is cyclic, that is, G = fZ, 
where p is a generator of Go. 
2. Let r : Q -+ Q/Z be the quotient map. Suppose G is a finitely generated 
subgroup of Q/Z, say with generators bl ,  . . . , b,. Let GI be the subgroup of 
Q generated by 1, r- ' (bl) ,  . . . , ~ ' ( b , ) .  Then r(G1) = G, and GI is cyclic 
by Part 1. Hence, G is cyclic. 

4 
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Solution to 6.3.3: 1. Let G = (c). We have a = c' and b = cs for some 
positive odd integers r and s, so ab = cT+' with T + s even, and ab is a 
square. 
2. Let G = Q*, the multiplicative group of the rational numbers, a = 2, 
and b = 3. Then ab = 6, and none of these is a square in G. 

Solution to 6.3.5: Let e be the identity in G, and let N = {e ,a}  be the 
normal subgroup of order 2. If x E G ,  then x-'ax E N and certainly does 
not equal e, so it equals a. Thus, xa  = ax  for all x E G. The quotient group 
GIN has order p and so is cyclic. Let x be any element not in N .  Then the 
coset of x in GIN has order p ,  so, in particular, the order of x itself is not 
2. But the order of x divides 2p, so it must be p or 2p. In the latter case, 
G is the cyclic group generated by x.  In the former case, since xa  = ax ,  
we have (xa)" = xPaP = a ,  so (xu) '~  = a2 = e, and xa  has order 2p, which 
means G is the cyclic group generated by xa. 

6.4 Normality, Quotients, and Homomorphisms 

Solution to 6.4.3: The subgroup H is normal only if aHa-l = H or 
aH = H a  for all a E G. Since H has only one left coset different from itself, 
it will suffice to show that this is true for a fixed a which is a representative 
element of this coset. Since H has the same number of right and left cosets, 
there exists a b such that H and bH form a partition of G. Since cosets are 
either disjoint or equal and H n aH = 0 ,  we must have that aH = Hb. But 
then a E Hb, so Hb = Ha.  

Solution to 6.4.5: Denote by hiH (and k,K) a coset of H (and K )  and 
suppose 

Since all of the coscts of K are equal or disjoint and since the index of K 
in G is infinite, there is a k E K such that 

G = h l H  U . . * U  h T H  U k l K  U . . .  U k,K. 

k K  c h l H  U . . . U hTH. 

Therefore, for 1 i: i 5 s, 

k i K  C k,k-'hlH U . . . U kik- lhTH. 

This implies that G can be written as the union of a finite number of cosets 
of H ,  contradicting the fact that the index of H in G is infinite. Hence, G 
cannot be written as the finite union of cosets of H and K .  

Solution to 6.4.6: 1. First, note that the multiplication rule in G reads 
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which gives (: ,bl ) - I  = ( O a  - b ) .  This makes it clear that N is a s u b  
group, and if (h f) is in N ,  then 

0 1  

proving that N is normal. 
By (6.1), the map from G onto R+ (the group of positive reals under 

multiplication) given by (: ,bl ) H a is a homomorphism whose kernel is 
N (which by itself proves that N is a normal subgroup). Hence, GIN is 
isomorphic to R+, which is isomorphic to the additive group R. 
2. To obtain the desired normal subgroup majorizing N ,  we can take the 
inverse image under the homomorphism above of any nontrivial proper 
subgroup of R+. If we take the inverse image of Q +, the group of positive 
rationals, we get the proper normal subgroup 

N l = { (  ; ) l a t Q + }  

of G, which contains N properly. 

Solution to 6.4.11: Let { a l H ,  a&, . . . , a Z H }  be the set of distinct cosets 
of H .  G acts on on this set by left multiplication and any g E G permutes 
these nlm cosets. This group action defines a map 

cp:G--+Sz 

from G to the permutation group on nlm objects. There are two cases to 
consider depending on cp being injective or not. 

If cp is not injective, then kercp is a normal subgroup K # {e}; and 
K # G, as well, because if g 6 H ,  gH # H ;  so g is not a trivial permutation. 

If cp is injective, then (cp(G)( = n, and cp(G) is a subgroup of S z .  But 
[S2  : cp(G)] = lS~l / lcp(G)l= (%)! In  < 2. So [ S z  : cp(G)] = 1, that is, G is 
isomorphic to Sz , and in that case, A 2  is a nontrivial normal subgroup. 

Solution to 6.4.12: 
Let H be a subgroup of G of index 3. G acts by left multiplication on 

the left cosets { g H }  of the subgroup H .  This gives a homomorphism of G 
into the symmetric group of degree 3, the group of permutations of these 
cosets. The subgroup H is the stabilizer of one element of this set of cosets, 
namely the coset 1H. This homomorphism cannot map onto the entire 
symmetric group, since this symmetric group has a subgroup of index 2, 
which would pull back to a subgroup of G of index 2. Thus, it must map 
onto the cyclic subgroup of order 3, and the group H is then the kernel of 
this homomorphism. 
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Solution to 6.4.13: 1. The cycles of A, are the right cosets (g)x of the 
subgroup (9) in G, so the lengths of each one is the order of g, and the 
number of cycles is [G : (g)]. 

If the order of g is odd, then each cycle has odd length, so each cycle is 
even, and so is A,. 

If the order of g is even, then each cycle is of even length and, therefore, 
odd. Also, 

[G : l(9) I = IGI 

is odd. As [G : (g)] is the number of cycles, A, is odd. 
2. Let cp : G --t {-1,1} be defined by g I-+ ~ ( g )  = sign of A,. cp is a 
morphism and, by Part 1, its kernel is N .  So N is a normal subgroup of G 
with index 1 or 2. By Cauchy's Theorem [Her75, pag. 611, G has an element 
of order 2, which is not in N ,  so N has order 2. 

Solution to 6.4.14: Let g = zyz-ly-l be a commutator. It suffices to 
show that conjugation by g fixes every element of N .  As N is cyclic, Aut(N) 
is abelian, and, because N is normal, conjugation by any element of G is an 
automorphism of N .  Let cpx be the automorphism of conjugation by x. We 
have cpx'py = cpy'px. Hence, for n E N ,  gng-' = 'pxo'pyocp;lo'p;l(n) = n. 

Solution to 6.4.15: We will show that if the index of N in G is not finite 
and equal to a prime number, then there is a subgroup H properly between 
N and G. Since any nontrivial proper subgroup of GIN is the image of such 
a subgroup, we need only look at subgroups of GIN. 

Suppose first that the index of N in G is infinite, and let g be an element 
of GIN.  If g is a generator of G I N ,  then GIN is isomorphic to Z, and the 
element g2 generates a proper nontrivial subgroup of GIN. Otherwise, g 
generates such a subgroup. 

Suppose that the index of N in G is finite but not a prime number. Let 
p be any prime divisor of the index. By Cauchy's Theorem [MH87, pag. 
1521, there is an element of order p in GIN.  This element cannot generate 
the whole group, so it generates a nontrivial proper subgroup of GIN.  

Solution to 6.4.16: Let the index of A in G be n. G acts by left multi- 
plication on the cosets gA, and this gives a homomorphism into the group 
of permutations of the cosets, which has order n!. The kernel, N ,  of this 
homomorphism is contained in A, so the index of N in G is, at most, n!. 

Solution to 6.5.2: Think of S4 as permuting the set {1,2,3,4} .  
For 1 1. i 5 4, let Gi c Sd be the set of all permutations which fix i. 
Clearly, Gi is a subgroup of 5'4; since the elements of Gi may freely per- 
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mute the three elenients of {1,2,3,4) \ {i}, it follows that G, is isomorphic 
to  5’3. Thus, the GL’s are the desired four subgroups isomorphic to 5’3. 

Similarly, for i, j E {1,2,3,4}, i # j ,  let HZ3 be the set of permutations 
which fix i and j .  Again H,j is a subgroup of S d ,  and since its elements 
can freely permute the other two elements, each must be isomorphic to Sz. 
Since for each pair i and j we must get a distinct subgroup, this gives us 
six such subgroups. 

Finally, note that SZ is of order 2 and so is isomorphic to ZZ. Therefore, 
any subgroup of S* which contains the identity and an element of order 2 
is isomorphic to  5’2. Consider the following three subgroups: (1, (1 2)(34)}, 
{1,(13)(24)}, and {1,(14)(23)}.Noneofthese threegroupsfixanyofthe 
elements of { 1,2,3,4}, so they are not isomorphic to any of the Ha3. Thus, 
we have found the final three desired subgroups. 

Solution to 6.5.3: Let ~7 be a 5-cycle and T a 2-cycle. By renaming the 
elements of the set, we may assume ~7 = (1 2 3 4 5) and T = (a  b) .  Letting ~7 

act repeatedly on T as in the hint, we get the five transpositions (a+i b+i), 
1 5 i 5 5, where we interpret a + i to be a + i - 5 if a + i > 5. Fixing i 
such that a + i - 5 = 1 and letting c = b + i, we see that G contains the 
five transpositions (1 c ) ,  (2 c + l), . . . , ( 5  c + 4). Since a # b, c # 1. 

Let d = c -  1. Since d does not equal 0 or 5, these five transpositions can 
be written as ( c  + nd c + (n  + l)d), 0 5 n 5 4. By the Induction Principle 
[MH93, pag. 71 the hint shows that G contains the four transpositions 

1 5 n 5 4. Since they are distinct, it follows that G contains the four 
transpositions (1 2), (1 3), (1 4), and (1 5). Applying the hint a third 
time, we see that (i j )  = (1 i ) ( l  j ) ( l  i) is an elemerit of G for all i and 
j ,  1 5 i , j  5 5. Hence, G contains all of the 2-cycles. Since every element 
in Sn can be written as the product of 2-cycles, we see that G is all of 
s n  * 

Solution to 6.5.7: The order of a k-cycle is k ,  so the smallest m which 
simultaneously annihilates all 9-cycles, 8-cycles, 7-cycles, and 5-cycles is 
23 .3’. 5 . 7  = 2520. Any n-cycle, n 5 9, raised to this power is annihilated, 
so n = 2520. 

To compute n for Ag, note that an 8-cycle is an odd permutation, so no 
8-cycles are in Ag. Therefore, n need only annihilate 4-cycles (since a 4- 
cycle timcs a transposition is in Ag), 9-cycles, 7-cycles, and 5-cycles. Thus, 
n = 252012 = 1260. 

Solution to 6.5.8: We have 1111 = 11 x 101, the product of two primes. So 
G is cyclic, say G = (a ) .  From 1111 > 999, it follows that a,  when written 
as a product of disjoint cycles, has no cycles of length 1111. Therefore, all 
cycles of a have lengths 1, 11, and 101. Let there be 2, y, and z cycles of 
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lengths, respectively, 1, 11, and 101. If z > 0, then a has a fixed point, and 
this is then the dcsired fixed point for all of G. So assume that 2 = 0. Then 
112 -+ 1012 = 999. It follows that 22 = 9 (mod l l ) ,  
and, therefore, z 2 10. But then 999 = l l y +  1012 2 1010, a contradiction. 

Solution to 6.5.9: Call i and j E {1,2 , .  . . , n} equivalent if there exists 
a E G with a(i) = j. (This is clearly an equivalence relation.) For each 
i, the set G, = {a  E Gla( i )  = i} is a subgroup of GI and the map 
G --f { 1,2, .  . . , n}, a H a(i) ,  induces a bijection from the coset space G/Gi 
to the equivalence class of i. Hence, for each i, the size of its equivalence 
class equals [G : Gi], which is a power of p .  Choosing one i from each 
equivalence class and summing over i, one finds that all these powers of p 
add up to n, since p does not divide n,  one of these powers have to be 
po = 1. This corresponds to an equivalence class that contains a single 
element i, and this i satisfies a(i)  = i for all 

Solution to 6.5.12: To determine thc center of 

(mod ll), so z = 10 

E G. 

1 D,, = (a ,  b I un = b2 = 1, ba = a- b)  

( a  is a rotation by 2n/n and b is a flip), it suffices to find those elements 
which commute with the generators a and b. Since n 2 3, a-l # a. There- 
fore, 

a'+lb = a(a'b) = (a'b)a = a'-'b 

so a2 = 1, a contradiction; thus, no element of the form a'b is in the 
center. Similarly, if for 1 5 s < n, asb = bas = a-.'b, then a2' = 1, which is 
possible only if 2s = n. Hence, as commutes with b if and only if n = 2s. 
So, if n = 2.9, the center of D, is (1, as};  if n is odd the center is (1). 

Solution to 6.5.13: The number of Sylow 2-subgroups of D, is odd and 
divides n. Each Sylow 2-subgroup is cyclic of order 2, since 2 l  is the largest 
power of 2 dividing the order of the group. By considering the elements of 
D, as symmetries of a regular n-gon, we see that therc are n reflections 
through axes dividing the n-gon in half, and each of these generates a 
different subgroup of order 2. Thus, the answer is that there are exactly n 
Sylow 2-subgroups in D, when n is odd. 

6.6 Direct Products 

Solution to 6.6.2: Suppose Q was the direct sum of two nontrivial sub- 
groups A and B. Fix a # 0 in A and b # 0 in B. We can write a = ao/al 
and b = bo/b l ,  where the ails and bi's are nonzero integers. Since A and 
B are subgroups, nu E A and nb E B for all integers n. In particular, 
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(a1bo)a E A and (b1ao)b E B. But 

(a1bo)a = (u1bo)ao/a1 = aobo = ( b l U O ) b O / b I  = (b1ao)b. 

Hence, A and B have a nontrivial intersection, a contradiction. 

Solution to 6.6.3: Let C, denote the cyclic group of order m for m E N. 
By the Structure Theorem for abelian groups [Her75, pag. 1091, if G is a 
finite abelian group, there exist unique nonnegative integers npT (G) for each 
prime number p and each nonnegative integer r such that G is isomorphic 
to 

If H is another abelian group, G x H is isomorphic to 

Hence, npr(G x H) = npP(G) -t npv(H). Now this and the fact that A x B 
is isomorphic to A x C yield the identities nPr(B) = np’.(C) for all primes 
p and all nonnegative integers r.  We conclude B and C are isomorphic. 

Solution to 6.6.4: Let n3 : A -+ GI x G2 be the natural projection 
map. We have kern3 = {(1,l,g3) E A}. Let N3 = (93 I(1, l,g3) E kerns}. 
Since ker.rr3 is a normal subgroup of A, N3 is normal in G3. Let A’ = 
GI x G2 x G3/N3. Since n3 is onto, for any (g1,g2) E G1 x G2, there exists 
g3 E G3 such that (91, 9 2 , ~ )  E A, and, thus, (g1,92, %) E A’. 

Define the map ‘p : GI x G2 -+ G3/N3 by ’p(g1,92) = E, where 93 is such 
that (g1,92,g3) E A. This is well defined, for if (gI,g2,g3) and (gl,g2,h3) 
are both in A, then (1,1, g3hY1) E A, so g&’ E N3, which, in turn, implies 
that 5 = G. The map cp is clearly a homomorphism. Furthermore, since 
711 : A -+ G2 x G3 is onto, if 93 E G3, there exist g1 E GI and 92 E G2 such 
that (g1,g2,g3) E A. Thus, ‘p(g1,92) = 5 so cp is onto. 

Therefore, cp(G1 x (1)) and ‘p((1) x G2) are subgroups of G3/N3 which 
commute with each other. If these two subgroups were equal to one an- 
other and to G3/N3, then G3/N3 would be abelian. As G3 is generated 
by its commutator subgroup, this would imply G3/N3 to be trivial or, 
equivalently, G3 = N3, which we assumed not to be the case. So we may 
assume that ’p({l) x G2) # G3/N3. Pick 5 E G3/N3 \ ‘p({l} x Gz). Since 
n2 : A --t G1 x G3 is onto, there exists a g2 E G2 such that (lrg2,g3) E A. 
Hence, cp(l,g2) = 93, contradicting our choice of 93. 

Therefore, we must have that N3 = G3, so { 1) x { 1) x G3 c A. Similar 
arguments show that { 1) x G2 x (1) and GI x { 1) x { 1) are contained in 
A and, thus, A = G. 
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Solution to 6.6.6: The obvious isomorphism F:Aut(G) x Aut(H) --+ 
Aut(G x H )  is defined by 

F ( a G ,  a H ) ( g ,  h)  = ( a G ( g ) ,  afI (h ) ) .  

Since (YG and a~ are automorphisms of G and H ,  it is clear that F ( ~ G ,  a ~ )  
is an  automorphism of G x H .  Let us prove now that F is an isomorphism. 

0 F is injective: Let F ( ~ G , ~ H )  = idGxH. Then a~ = idG and QH = 

0 F is surjective: Choose (Y E Aut(G x H ) .  Define (YG, ( Y H  by 

idH by definition of F .  Hence, ker F is trivial so F is injective. 

a G ( g )  = r G ( a ( g ,  idH)) and aH(h) = rH(a(idG9 h) )  

where TG and are the quotient maps. Thus, 

a ( g ,  h) = ( a G ( g ) ,  a f I ( h ) )  = F ( a G ,  a H ) ( g ,  h). 

Since the situation is symmetric between G and H ;  and G is finite, 
we need only show that a~ is injective. Let aG(g) = idG. Then 
a(g, idpf) = (idG, h) for some h E H .  Suppose n = \GI. Then 

(idc, h") = a(g,  idH)" = a(gn, idff) = (idG, idH). 

Hence, h" = idfI, so the order of h divides (GI. But, by Lagrange's 
Theorem [Her75, pag. 411, the order of h also divides IHI, which is 
relatively prime to IGl, so the order of h is one arid h = idH. 

6.7 Free Groups, Products, Generators, and 
Relations 

Solution to 6.7.2: Suppose Q is finitely generated, with generators 

f f l /p l , .  * .  9 a k / p k  pa E z- 
Then any element of Q can be written as Cn,aa/pz, where the 72,'s are 
integers. This sum can be written as a single fraction with denominator 
s = 01 . . . pk. Consider a prime p which does not divide s. Then we have 
l/p = r/s for some integer r, or pr = s, contradicting the fact that p does 
not divide s. Hence, Q cannot be finitely generated. 
Solution 2. Suppose Q is finitely generated, then using the solution to 
Part 1 of Problem 6.3.1, Q is cyclic, which is a contradiction. 

Solution to 6.7.4: x5y3 = x8y5 implies x3y2 = 1. Then x5y3 = x3y2 and 
x2y = 1. Hence, x3y2 = x2y, so xy = 1. But then xy = x2y, so we have 
that x = 1. This implies that y = 1 also, and G is trivial. 
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Solution to 6.7.5: We start with the given relations 

( 1 )  a-'b2a= b3 and ( 2 )  b- la2b=a 3 . 

From (l), we get a-'b4a = b6 and 

aP2b4a2 = a-lb6a = (a-'b2)b4a = b3((a-'b4a) = b3b6 = b9 

and we conclude that 

from which we obtain ab4 = b4a. This, combined with the square of relation 
( l ) (a- 'b4a = b6) ,  gives b2 = 1 and substitution back in ( 1 )  shows that 
b = 1; then, substituting that into relation (2), we see that a = 1, so the 
group is trivial. 

Solution to 6.7.6: Let G = ( a , b  I a' = b2 = 1 )  and H = (ab,ba). 
Since ab = (ba)-', it is clear that H is the subgroup of G which consists 
of all words of even length: abab . . -ab and baba . . ba. So H # G, but 
G = H U aH.  Hence, H has index 2 in G. 

Suppose now that G' is any such group. Then 

G' = G / R  

where R is the normal relation subgroup. Let HI = H / R .  We have 

Hence, H' is the desired subgroup. 

Solution to 6.7.8: We use the Induction Principle [MH93, pag. 71. For 
n = 1, the result is obvious. 

Suppose 91,. . . , gPL generate the group G and let H be a subgroup of G. 
If H c (92,. . . , gn), by the induction hypothesis, H is generated by n - 1 
elements or fewer. Otherwise let 

be such that Iml( is minimal but nonzero. We can assume, without loss of 
generality, that rnl > 0. For any z E H ,  
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there are integers q and r such that kl  = qml + r and 0 5 r < ml. Then 
the exponent of 91 in zy-9 is r ,  and, by the choice of ml,  we obtain r = 0. 
Hence, 

By the induction hypothesis, K is generated by, at most, n - 1 elements, 
and the result follows. 

H = (y, K )  where K = H n (g2 , .  . . , gn). 

Solution to 6.7.10: By the Structure Theorem for finite abelian groups 
[Her75, pag. 1091, there are integers ml,.  . . , m k ,  m3 (mj+l for 1 2 j 5 k-1 ,  
such that A is isomorphic to Z,, @ . . . @ Z,, . We identify A with this 
direct sum. Clearly m = m k .  Therefore, S must contain the elements of 
the form ( O , O ,  . . . , 1) and (0 , .  . . , 0 ,  1,0, . . . , l),  where the middle 1 is in the 
j t h  position, 1 5 j 2 Ic - 1. Hence, using elements in S,  we can generate 
all the elements of A which are zero everywhere except in the j t h  position. 
These, in turn, clearly generate A,  so S generates A as well. 

6.8 Finite Groups 

Solution to 6.8.1: Any group with one element must be the trivial group. 
By Lagrange’s Theorem [Her75, pag. 411, any group with prime order 

is cyclic and so abelian. Therefore, by the Structure Theorem for abelian 
groups [Her75, pag. 1091, every group of orders 2, 3, or 5 is isomorphic to 
Zz, Z3, or Zg ,  respectively. 

If a group G has order 4, it is either cyclic, and so abelian, or each of 
its elements has order 2. In this case, we must have 1 = ( ~ b ) ~  = abab or 
ba = ab, so the group is abelian. Then, again by the Structure Theorem 
for abelian groups, a group of order 4 must be isomorphic to Zq or Z2 @Z2. 
These two groups of order 4 are not isomorphic since only one of them has 
an element of order 4. 

Since groups of different orders can not be isomorphic, it follows that all 
of the groups on this list are distinct. 

Solution to 6.8.2: The trivial group is clearly abelian. Groups of prime 
order are cyclic, by Lagrange’s Theorem [Her75, pag. 411 and so must be 
abelian. Hence, groups of orders 2, 3, and 5 are abelian. This leaves only 
groups of order 4. Every group of order 4 can have nontrivial elements of 
orders 2 or 4. If such a group has an element of order 4, it is cyclic, and so 
abelian. If every element is of order 2, it is also abelian, since, given any 
two elements a and b, 

abab = (ab)2 = 1 = a2b2, 

and canceling yields ba = ab. The group of symmetries of the triangle, D3, 
has 6 elements and is nonabelian. 
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Solution to 6.8.5: By the Structure Theorem for finitely generated 
abelian groups [Her75, pag. 1091, there are three: Z8, Z 2  x Z4, and Z 2  x 
2 2  x Z2. 

1. (Z15)" = {1,2,4,7,8,11,13,14} . By inspection, we see that every 
element is of order 2 or 4. Hence, (Z,,)" 21 Z2 x Z4 

2. (Z17)* = {1,2,. . ., 16) = {fl, f 2 , .  . ., f8}, passing to the quotient 
(Zl,)*/{jd} = {1,2,. . . ,8} which is generated by 3, so (ZIT)' N Z8. 

3. The roots form a cyclic group of order 8 isomorphic to Z8. 

4. F8 is a field of characteristic 2, so every element added to itself is 0. 
Hence, 

FS+ 2 2  x Z2 x Z2. 

5. (2216). = {1,3,5,7,9,11,13,15} iZ2 x Z4. 

Solution to 6.8.6: Order 24: The groups 5'4 and 5'3 x Z4 are nonabelian 
of order 24. They are not isomorphic since 5'4 does not contain any element 
of order 24 but S3 x Z4 does. 

Order 30: The groups 0 3  x 2 5  and 0 5  x Z3 have different numbers of 
Sylow 2-subgroups, namely 3 and 5, respectively. 

Order 40: There are two examples where the Sylow 2-subgroup is normal: 
The direct product of 25 with a nonabelian group of order 8. Such order 8 
groups are the dihedral group of symmetries of the square (which has only 
two elements of order 4), and the group of the quaternions {fl,  f i ,  fj, flc} 
(which has six elements of order 4). There are also several other examples 
where the Sylow 2-subgroup is not normal. 

Solution to 6.8.8: The number of Sylow 3-subgroups is congruent to 1 
mod 3 and divides 5; hence, there is exactly one such subgroup, which is 
normal in the group. It is an abelian group of order 9. The abelian groups 
of this order are the cyclic group of order 9 and the direct product of two 
cyclic groups of order 3. 

The number of Sylow 5-subgroups is congruent to 1 mod 5 and divides 
9; hence, there is exactly one such subgroup, which is the (normal) cyclic 
group of order 5. The Sylow 3-subgroup and the Sylow 5-subgroup intersect 
trivially so their direct product is contained in the whole group, and a 
computation of the order shows that the whole group is exactly this direct 
product. Therefore, there are, up to isomorphism, two possibilities 

Zg x 2 5  , Z3 x 2 3  x 2 5  . 
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Solution to 6.8.11: I fp  = 2, then the group is either cyclic and so isomor- 
phic to Zq, or every element has order 2 and so is abelian and isomorphic 
to 2 2  @ z2. 

Now suppose p > 2 and let G have order 2p. By Sylow's Theorems 
[Her75, pag. 911, the p-Sylow subgroup of G must be normal, since the 
number of such subgroups must divide 2p and be congruent to 1 mod p. 
Since the pSylow subgroup has order p ,  it is cyclic; let it be generated by 
g. A similar argument shows that the number of 2-Sylow subgroups is odd 
and divides 2p; hence, there is a unique, normal 2-Sylow subgroup, or there 
are p conjugate 2-Sylow subgroups. Let one of the 2-Sylow subgroups be 
generated by h. 

In the first case, the element ghg-lh-' is in the intersection of the 
2-Sylow and the p-Sylow subgroups since they are both normal; these 
are cyclic groups of different orders, so it follows that ghg-'h-' = 1, or 
hg = gh. Since g and h must generate G, we see that G is abelian and 
isomorphic to Zz @ Z,. 

In the second case, a counting argument shows that all the elements of G 
can be written in the form g'hJ, 0 _< i < p, 0 5 j < 2. Since all the elements 
of the form gz have order p, it follows that all the 2-Sylow subgroups are 
generated by the elements gZh. Hence, all of these elements are of order 2; 
in particular, ghgh = 1, or hg = g-lh. Thus, G = (9, h 1 g" = h2 = 1, hg = 
g-lh) and so G is the dihedral group D,. 

Solution to 6.8.12: By Cayley's Theorem [Her75, pag. 711, every group 
of order n is isomorphic to a subgroup of S,, so it is enough to show that 
S, is isomorphic to a subgroup of O(n). For each o E S,, consider the 
matrix A, = (uzJ ) ,  where = 1 and all other entries are zero. Let 'p 

be defined by u H p(a) = A,. The matrix A,, has exactly one 1 in each 
row and column. Hence, both the rows and columns form an orthonormal 
basis of EXn, so A, is orthogonal. cp maps S, into O(n). Let A, = (atJ) and 
B, = ( b z J ) .  Then 

An element of this matrix is 1 if and only if i = o ( k )  and k = ~ ( j )  for some 
k; equivalently, if and only if i = o ( ~ ( j ) ) .  Hence, co(,(i))i = 1 and all the 
other entries are 0. Therefore, (c i j )  = A,.,, so 'p is a homomorphism. 

If A,, equals the identity matrix, then a(i)  = i for 1 _< i 5 n, so 0 is the 
identity permutation. Thus, cp has trivial kernel and is one-to-one hence an 
isomorphism. 

Solution to 6.8.13: 1. For any set X let Sx be the group of bijections 
u : X -+ X .  If X is a finite set with n elements then SX is isomorphic to 
S,, the group of all permutations of { 1 ,2 ,  . . . , n}. 
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For any group G and any element g E G, define a mapping cp, : G -+ G 
by cpg(z) = gz for all z E G. For any g,  h, z E G, (cp,yh)(z) = cp,(cph(z)) = 
cp,(hz) = g(hz) = (gh)z = cp,h(z). This shows that v g h  = 9,. cph. 

It follows that, for each g E G, 9, : G 4 G is a bijection, with inverse 
~ ~ - 1 .  In other words cpg E Sc for all g E G, defining a map cp : G -+ SG. 
Since (pgh = cpy . V h ,  cp : G -+ SG is a group homomorphism. If cp, = Vh 
for two elements g,  h E G then g = cpg(l)  = (&(I) = h, showing that 
cp : G -+ SG is injective. Therefore, G is isomorphic to the subgroup cp(G) 

2. Since any group of order n embeds in S,, it suffices to embed S,, into 
the group of even permutations of n + 2 objects. Let E : S, -+ Z2 be the 
homomorphism that maps cven permutations to 0 and odd permutations 
to 1. 

Define 8 : S, -+ S,+z by 8(u) = (T . (n + 1, n + 2)€("). Since the trans- 
position (n + 1, n + 2) commutes with each element (T E S,, 8 is a homo- 
morphism, clearly injective. Since (T and ( n  + 1, n + 2 ) E ( u )  have the same 
parity, their product 8(o) is even. 

of S G .  

6.9 Rings and Their Homomorphisms 

Solution to 6.9.3: Let cp : C n  -+ C be a ring homomorphism and 
el = ( l , O , O ,  ..., O),e2 = ( O , l , O  ,..., 0) , . . . , en  = ( O , O , O  ,..., l), then 
eze3 = 0 for all i # j and if cp(e1) = . . . = cp(en) = 0, 

~p(zl7.. . , zrl) = cp(zl,O,. . . , O)cp(el) +.  . . + c p ( O , O , .  . . , zn)cp(en) = 0 

that is, cp is identically zero. 
Suppose now that cp is a nontrivial homomorphism, then cp(e,) # 0 for 

some i and in this case cp(e,) = cp(e,e,) = cp(e,)cp(e,) and cp(el) = 1. At 
the same time 0 = cp(e,e,) = cp(e,)cp(e,) we conclude that cp(e,) = 0 for all 
j # i, and cp is determined by its value on the ith coordinate. 

cp(z1,. . . ,zZ,. . . , zrL) = ~ ( 0 , .  . . , z,, . . . ,O)cp(e,) 
= cp(0,. . . 1x1,. . . , O ) l  
= cp(0,. . . ,z,, . . . , O )  

So for every homomorphism (T : C -+ C we can create n such homo- 
morphisms from C , to C by composing cp(z1,. . . , 2,) = g ( ~ , ( z ~ , .  . . , zn)) 
where T,  is the projection on the ith coordinatc, and the argument above 
shows that all arise in this way. 

Solution to 6.9.4: Let R contain k elements (k < 00) and consider the 
ring 

S = R X  Rx... x R 
k copies 
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Let R = (7-1,. . . , r k }  and a = (TI,. . . , r k )  E S. Now considcr the collec- 
tion of elements a,  a2, a3, . . .. Since S is also a finite ring, by the Pigeon- 
hole Principle [Her75, pag. 1271, there exist n and m sufficiently large with 
an = a7n. Coordinatewise, this means that ra = ry  for 1 5 i 5 k ,  and we 
are done. 

Solution to 6.9.5: If ax = 0 (or xu = 0) with a # 0, then aza = Oa or 
a0 = 0. If b is as in the text, then a(b + x )a  = a, so, by uniqueness of b, 
b = b + x and x = 0. Thus, there are no zero divisors. 

Fix a and b such that aba = a. If x E R, then xaba = xa and, m there 
are no zero divisors, xab = x ,  so ab is a right identity. Similarly, abax = ax 
implies bax = x and ba is a left identity. Since any right identity is equal 
to any right identity, we get ab = ba = 1. Since b = a-l ,  R is a division 
ring. 

Solution to 6.9.6: Since (R ,  +) is a finite abelian group with p2 elements, 
by thc Structure Theorem for finite abelian groups [Her75, pag. 1091, it is 
isomorphic to either Z,Z or Z, @ Z,. In the first case, there is an element 
x E R such that every element of R can be written as n x ,  for 1 5 n 5 p 2 .  
Since all elements of this form commute, it follows that R is abelian. 

In the second case, every nonzero element must have additive order p .  
Let x E R bc any element not in the additive subgroup generated by 1. 
Then it too must have additive order p .  Thus, a counting argument shows 
that every element of R can be written in the form n + kx ,  1 5 n 5 p ,  
1 5 k 5 p .  Since all elements of this form commute, it follows that R is 
commutative. 

Solution to 6.9.7: One can embed R in the field of quotients of R; then the 
finite subgroup of R* is a finite subgroup of the multiplicative group of the 
field; it is a finite abclian group, and so can be written as a direct product of 
Zpn for various primes p .  If there are two such factors for thc same p ,  then 
there are at least p elements of the field satisfying the equation xp - 1 = 0. 
However, in a field, due to thc uniqueness of factorization in the polynomial 
ring, there are, at most, n solutions to any nth degree polynomial equation 
in one variable. Thus, in the factorization of our group, each prime p occurs 
at most once, thercforc, any such group is cyclic. 

Solution to 6.9.8: 1 + 2 : There exist v1 # v2 such that uwl = uv2 = 1; 
thus, u(v1 - v2) = 0 and u is a zero divisor. 

2 + 3 : Suppose that u is a unit with inverse v. If thc uv = 0 then 
w = ( w u ) ~  = v(uw) = v0 = 0 and, therefore, u is not a lcft zero divisor. 

3 + 1 : Let v be a right inverse for u, that is, uv = 1. Since u is not a unit 
vu # 1 implying wu - 1 # 0. Now consider the element v’ = v+(vu - 1) # v, 
and we have 

uv’ = uv + u(vu - 1) 
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= 1 - (uv)u - u 

= l + u - u = l  

showing that u has more than one right inverse. 

Solution to 6.9.9: The identity element of such a ring would belong to 
the additive group of the ring, which is a torsion group; thus there is some 
finite n such that if you add the identity element, 1, to itself n times, you 
get 0. In other words, the ring would have some finite characteristic n. But 
this implies that the additive order of every element of the ring divides n, 
and this is false, for example, for the element l /(n + 1). 

Solution to 6.9.11: The degree2 polynomial x2  + y2 - 1 does not factor 
into the product of two linear ones (since the circle x2 + y2 = 1 is not a 
union of two lines). This implies that the ideal ( x2  + y2 - 1) is prime and, 
thus, the ring R = Q [x, y]/(x2 + y2 - 1) is an integral domain. 

Consider now the stereographic projection (x,y) H ( l ,y / ( z  + 1)) (at 
half of the speed of the standard one, in order to make the expressions 
simpler) of the circle from the point (-1,O) to the line (I, t ) .  It provides a 
homomorphism t = y/(x + 1) of Q ( t )  to the field of fractions of R. The 
inverse homomorphism is given by the formulas x = (1 - t2)/(1 + t 2 )  and 
y = 2 t / ( l +  t 2 ) .  

6.10 Ideals 

Solution to 6.10.3: We will first show that for all n, M,,,(F) has no 
nontrivial proper ideals. This will show that any ring homomorphism from 
M(,+l)x(n+l)(F) onto M,,,(F) must be an isomorphism. We will then 
show that this is not possible. 

Assume that 3 is a nontrivial ideal. Let Mt3 be the n x n matrix with 
1 in the ( i , j ) ' h  position and zeros elsewhere. Choose A E 3 such that 
a = at3 # 0. Then, for 1 I k 5 n, Mk,AM,k is a matrix which has a in the 
(k, k) th  entry and 0 elsewhere. Since 3 is an ideal, Mk,AM,k E 3. The sum 
of these matrices is a 3  and so this matrix is also in 3. However, since F is 
a field, a is invertible, so 'J = M,(F). 

Mnxn(F)  is an F-vector field, and if we identify F with (a3 I a E F}, we 
see that any ring homomorphism induces a vector space homomorphism. 
Hence, if M,,,(F) and M(,+l).(,+l)(F) are isomorphic as rings, they are 
isomorphic as vector spaces. However, they have different dimensions (n2 
and (n + l)', respectively), so this is impossible. 

Solution to 6.10.4: Each element of F induces a constant function on 
X ,  and we identify the function with the element of F. In particular, the 
function 1 is the unit element in R ( X ,  F). 
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Let J be a proper ideal of R ( X ,  F ) .  We will prove that there is a nonempty 
subset Y of X such that 3 = {f E R ( X , F )  I f(x) = 0 Vx E Y }  = Jy. 
Suppose not. Then either J c 3y  for some set Y or, for every point x E X ,  
there is a function fz in J such that fz(x) = a # 0. In the latter case, since 
J is an ideal and F is a field, we can replace fz by the function a-1 fz, so 
we may assume that fz(x) = 1. Multiplying fz by the function gz, which 
maps x to 1 and all other points of X to 0 ,  we see that J contains gx for 
ail points x E X .  But then, since X is finite, J contains Cgz = 1, which 
implies that 3 is not a proper ideal. 

Hence, there is a nonempty set Y such that 3 c Jy. Let Y be the largest 
such set. As for every z # Y ,  there is an fz E J such that fx(x) # 0 
(otherwise we would have 3 c JY"{~)) by an argument similar to the 
above, J contains all the functions gz, x # Y .  Rut, from these, we can 
construct any function in Jy, so Jy c J. 

Let 3 and 3 be two ideals, and the associated sets be Y and 2. Then 
J c 3 if and only if 2 c Y .  Therefore, an ideal is maximal if and only 
if its associated set is as small as possible without being empty. Hence, 
the maximal ideals are precisely those ideals consisting of functions which 
vanish at one point of X .  

Solution to 6.10.5: Let 3 = (a" - 1, am - 1) and 3 = (ad - 1). For n = rd 
the polynomial x" - 1 factors into (xd - l ) ( ~ ~ ( ~ - ' )  + xr(d-2) +- . .+ zT + 1). 
Therefore, in R, an - 1 = (ad - 1) ( ar(d-l )  + ar(d--2) +. . . + ar + 1). A similar 
identity holds for am - 1. Hence, the two generators of J are in 3, so J c 3. 

Since d = gcd{n,m}, there exist positive integers x and y such that 
xn - ym = d. A calculation gives 

ad - 1 = a d - 1 - &+Ym + a"n 

= -ad(avm - 1) + ax" - 1 
- - - l ) ( a d m - l )  + . . . + a Y  + 1) 

+(an - 1)(a"("-') + * * .  +a" f 1). 

Hence, ad - 1 is in 3, so 3 c J and the two ideals are equal. 

Solution to 6.10.6: 1. If there is an ideal J # R of index, at most, 4, then 
there is also a maximal ideal of index, at most, 4, 332, say. Then R/m is a 
field of cardinality less than 5 containing an element a with a3 = a + 1, 
namely a = a + M. By direct inspection, we see that none of the fields 
F2, F3, F4 contains such an element. Therefore, 3 = R. 
2. Let R = Zg,  a = 2 (mod 5), and J = (0). 
Solution 2. Since RIJ has order less than 5, two of the elements 0,1, a,  a2, a3 
have the same image in R/J. Then 3 contains one of their differences, that 
is, one of 

1 ,  a ,  a 2 ,  a 3 ,  a - 1,  a2 - 1 ,  a3 - 1,  a(a - a )  , a(a2 - 1)  , a y a  - 1).  
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But all these elements are units, since 

a(a - l)(a + 1) = a(a2 - 1) = 1, a3 - 1 = a. 

Therefore, 3 contains a unit, so 3 = R. 

Solution to 6.10.7: Let 3 be such an ideal. Consider cp : R --t R/3, 
the quotient map. Since R/3 is a three element ring with 1, it must be 
isomorphic to Z3. If u E R* is a unit then so is cp(u). Hence, cp(u) = fl ,  
and cp(u2) = 1. As the squares of the units generate the additive group of 
R, this uniquely determines cp so there is, at most, one such 3. 

Solution to 6.10.8: It suffices to show that if ab - ba is any generator of 
3 and if c is any element of R, then abc - bac is in 3. By the definition of 3, 
a(bc) - (bc)a is an element of 3. Further, since 3 is a left ideal, b(ca - ac) = 
bca - bac is an element of 3. Therefore, abc - bac = abc - bca + bca - bac 
is in 3. and we are done. 

Solution to 6.10.9: The fact that this map is a ring homomorphism 
follows from the fact that the inclusion map R --+ S is a ring homomorphism 
mapping mR into mS. Let 1 = an + bm, with integers a,  b. Let r E R be in 
the kernel. Then r = ms for some s E S,  so r = (am+ bn)r = m(ar + bns). 
Since R has index n in S, we have ns E R and so r E mR. This shows 
that the map is an injection. Now suppose s E S. Then s = (am + bn)s = 
b(ns) mod mS. As ns E R, the map is a surjection. 

Solution to 6.10.11: We have 3 = (i) and 3 = (j), for some i , j  E R. 
Suppose first that 3 + 3 = R. Then 1 E 3 + 3, so 1 = ri + s j  for some 
r, s E R. Therefore, the greatest common divisor of i and j is 1. Now 33 
and 3n3 are both ideals and, clearly, have generators ij and k, respectively, 
where k is the least common multiple of i and j .  But the greatest common 
divisor of i and j is 1, so i j  = k, and 33 = 3 n 3. Since every implication 
in the previous argument can be reversed, if 33 = 3 n 3, then 3 + 3 = R 
and we are done. 

6.1 1 Polynomials 

Solution to 6.11.2: If P ( z )  is a polynomial of degree n with a as a root, 
then z n P ( l / z )  is a polynomial of degree n with l / a  as a root. 

Solution to 6.11.3: Since < is a primitive seventh root of unity, we have 

<6 + c5 + . . . + < + 1 = 0. 

(C3 + <-3) + (C2 + <-2) + (< + <-l) + 1 = 0. 

Dividing this by C3, we get 
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As (C + C-1)2 = (C2 + C2) + 2 and (< + C-1)3 = (C3 + CP3) + 3(< + C-l ) ,  
the above equation becomes, letting a = (C + C-l ) ,  

a +a -2a-1=0. 3 2  

Solution to 6.11.4: 1. Let x = fi + fi. Squaring and rearranging suc- 
cessively, we get 

x-&=& 

x 2 -2=2&x 
x2 - 2&x + 5 = 7 

x4 - 242' + 4 = 0 

This calculation shows that fi + fi is a root of f (x) = x4 - 242' + 4. 
2. If f had a linear factor, then it would have a rational root, but a calcu- 
lation shows that none of f.1, f 2  is such a root (if p / q  in lowest terms is 
a root of a,xn + . . . + a0 then, plao and qla,). Suppose now that for some 
a, b, c, d E Z, 

Since the coefficient of x3 in f is zero, c = -a, so we have 

f (x) = (x2 + ax + b)(x2 + cx + d) .  

f (x) = (x2 + ux + b)(x2 - ux + d). 
As the coefficient of x in f is zero, we get ad - ab = 0. If a = 0, then 
f(x) = (x2 + b)(x2 -t d) = x4 + ( b  + d)x2 + bd, but the equations bd = 4, 
b + d = -24 have no integer solutions. If b = d, then f(x) = (x2 + ax + 
b)(x2 -ax + b)  = x4 + (2b - a2)x2 + b2,  so b2 = 4 and 2b - a2 = -24, which 
also have no solutions in Z. 

Solution to 6.11.5: It is easy to see that a+ a is a zero of a monic 
polynomial p E Z[x] (use the process described on Problem 6.11.4.) If it 
were a rational number, it would have to be an integer, since its denomina- 
tor would divide the leading coefficient of p .  As A+ is strictly between 
2 and 3, it must be irrational. 
Solution 2. Suppose a+ E Q. Then Q (a) = Q (B). However, this 
contradicts the fact that the fields Q (a) and Q (fi) have degrees 2 and 
3 over Q, respectively, since by Eisenstein Criterion [€Ier75, pag. 1601, the 
polynomials x2 - 2 and x3 - 3 are irreducible over Q. 

Solution to 6.11.6: Suppose that w is a primitive Ic th  root of unity and 
that wz = wz for 1 5 i 5 k. Let P ( z )  = a0 + a l z  + .  . . + a3zJ ( j  < I c ) ;  we 
have 

k l 3  k 3  1 k 
- c P(w2) = UTWZT = - c a, C w Z T  

r=o 2=1 
Ic 

Z = l  z=1  T=o Ic 
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Since wk = 1, we have wrk - 1 = 0 for 1 5 r 5 j. Factoring and replacing 
1 by wrk ,  we get 

0 = (w' - l)(wrk + w'(k-1)  -t- . . . + W T ) .  

Since r < k and w is a primitive root of unity, w' # 1. Therefore, 

w'k + wr(k-1) + . . . + w' = 0. 

Substituting this into the above equality gives 

k 1 
k 

k 1 
k .  
- c P ( W 2 )  = - c a0woi = ao = P(0). 

a = 1  a=1  

Solution to 6.11.7: By the Euclidean Algorithm, the vector space 
V = Q [  x]/(f) has dimension d = deg(f). Therefore, the infinitely many 
equivalence classes 

-2 - 3  -5 z ,x ,x ,... 
are linearly dependent in V ,  so we can let qi be a finite collection of rational 
numbers not all zero and satisfying 

4 2 2 2  + 4323 + 4525 + * . . = 0. 

This means that 

q2x2 + 43x3 + 45x5 + . . . = f(x)g(x) 

for some nonzero g E &[XI. 
Solution to 6.11.8: First, note that each polynomial p(x) in Z[x] is con- 
gruent modulo x - 7 to a unique integer, namely the remainder one obtains 
by using the division algorithm to divide x - 7 into p ( z ) .  (Only integer 
coefficients arise in the process, because the coefficient of x in x - 7 is 1.) 
If p(x) lies in 3, then so does the preceding remainder. However, the only 
members of J n 2 are the integers that are divisible by 15. In fact, if k is in 
J n 2, say k = (x - 7)q(x) + 15r(x), then k = 15r(7). Hence, we get a well 
defined map from 2[x]/J into 2 1 5  by sending p(x) + J to k + 152, where k 
is the remainder one gets when dividing p(x) by x - 7. The map is clearly 
a homomorphism. If p(x) is not a unit in 3, then the remainder is clearly 
not divisible by 15, from which we conclude that the map is one-to-one. 
The map is obviously surjective. It is, thus, the required isomorphism. 
Solution 2. The map cp : Z[x] + Z[x] defined by cp ( p ( x ) )  = p(x + 7) is a 
ring automorphism and it maps J onto the ideal generated by x and 15. 
The quotient ring Z[x]/cp(J) is isomorphic to 2 1 5  under the map p ( x )  H 

p ( 0 )  + 152, implying the desired conclusion. 
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Solution to 6.11.9: J is prime. To show this we will prove that the quo- 
tient ring Z[z]/J is a field. Since 5 E 3, this quotient ring is isomorphic to 
Z5[z]/(z3+z + 1). So it suffices to show that z3 + z + 1 is irreducible (mod 
5). If it were reducible, it would have a linear factor, and, hence, a zero. 
But we can evaluate this polynomial for each z E 2 5  as follows: 

2 
3 1 
4 4 

Since there is no zero, the polynomial is irreducible, and the quotient ring 
Z5[z]/(z3 + z + 1) is a field. 

Solution to 6.11.12: Case 1: p = 2. In this case, define a map of F2[zl 
into itself by cp(1) = 1 and cp(z) = z + 1, and extend it in the obvious 
way. Since constants are fixed and (p(z + 1) = z, it is clear that this is a 
ring isomorphism. Further, (p(z2 - 2) = (z - 1)2 - 2 = z2 + 1 = x2 - 3; 
we see that cp maps the ideal (z2 - 2) onto the ideal (z2 - 3). It follows 
immediately from this that the two rings F2[z]/(z2 - 2) and F2[z]/(z2 - 3) 
are isomorphic. 
Case 2: p = 5. By checking all the elements of F5, we see that z2 - 2 
and x 2  - 3 are both irreducible polynomials in F ~ [ z ] .  Therefore, the ide- 
als they generate are maximal and the quotient rings F5[z]/(z2 - 2) and 
F5[z]/(z2 - 3) are fields. The Euclidean Algorithm [Her75, pag. 1551 shows 
that each is a finite field with 25 elements. Since finite fields of the same 
order are isomorphic, the quotient rings in this case are isomorphic. 
Case 3: p = 11. In this case, checking all the elements of F11 shows that 
z2 - 2 is irreducible, but x 2  - 3 = (z - 5)(z +5) is not. Hence, the quotient 
ring Fll[z]/(z2 - 2) is a field, whereas F11[z]/(z2 - 3) is not, so the two 
quotient rings are not isomorphic in this case. 

Solution to 6.11.13: Since z - 3 is a monic polynomial, given any poly- 
nomial r ( z )  in Z[z], there exist polynomials t ( z )  and s(z) such that r ( z )  = 
t (z) (z  - 3) + s(z) and degs(z) < deg(z - 3) = 1. Hence, s(z) is a con- 
stant, and so it is congruent modulo 7 to some a,  0 < a < 6. Hence, 
r ( z )  - a = t ( z ) ( z  - 3) + (s(z) - a) ,  and the right-hand term is clearly an 
element of 3. 

In the special case where r ( z )  = z250 + 15z14 + z2 + 5, we have, by 
the Euclidean Algorithm [Her75, pag. 1551, r ( z )  = t ( z ) ( z  - 3) + a. S u b  
stituting z = 3, we get r (3)  = a. Since we only need to know a modulo 
7, we reduce r (3)  mod 7 using the fact that n7 = n (mod 7), getting 
r (3)  = 34 + 32 + 32 + 5 = 6 (mod 7). Hence, a = 6 is the desired value. 



358 6 .  Algebra 

Solution to 6.11.14: Let cp : Z[x] -+ 213 be the unique ring homo- 
morphism such that p(x) = 4. A polynomial a(.) E Z[x] is in the ker- 
nel of cp if and only if 4 4 )  E 0 (mod 13). This occurs if and only if 
a(.) = (x - 4)p(z) (mod 13) for some p ( x )  E Z[x], i.e., exactly when 
Q(Z) = (x - 4)p(x) + 13y(z) for some y(z) E Z[x], in other words if and 
only if a(.) E 3. 

Set f(x) = (a:26 + x + 1)73 E Z[a:]; then f(a:) - m E 3 if and only if 
p(f(x) - m) = 0, which holds if and only if f(4) = m (mod 13). 

By Fermat’s Little Theorem [Sta89, pag. 801, [Her75, pag. 441, if a E Z is 
not divisible by the prime p then upp1 = 1 (mod p ) .  This gives (426+4+1) = 
(42+5) 3 8 (mod 13), and f(4) = 873 = 8 (mod 13). So m = 8 is the unique 
integer in the range 0 5 m 5 12 such that (xZ6 + x + 1)73 - m E 3. 

Solution to 6.11.16: Let cp : Z[x] -+ Z[x] be any automorphism. Since cp 
is determined by the value of x, every element of Z[z] must be a polynomial 
in cp(x). In order to get x in the image of cp, we see that cp(x) must be of 
the form fa: + a for some constant a. 

Solution to 6.11.20: If the fraction p / q  in lowest terms is a zero of 
do + xg + x8 + . . . + x + 1, then pll and qI 1, so the possible rational zeros 
are f l .  A calculation shows that neither of these is a zero, so the given 
polynomial is irreducible over Q . -1 is a zero of the second polynomial, so 
it is reducible over Q . 

Solution to 6.11.21: Note that 539 = 72.11, 511 = 7.23, and 847 = 7.112. 
Thus, all the coefficients except the leading one are divisible by 7, but the 
constant term is not divisible by 72. Since 7 is a prime, by Eisenstein 
Criterion [Her75, pag. 1601, the polynomial is irreducible in Z[x]. 

Solution to 6.11.22: By the Gauss Lemma [BML97, pag. 851, an integral 
polynomial that can be factored over rationals can be factored into poly- 
nomials of the same degree over the integers. Since f l  are not roots (and 
they are the only ones possible because a0 = a, = l) ,  there are no linear 
terms and the only possible factorizations are in polynomials of degree 2. 

(x2 +ax + 1 ) ( 2  + bx + 1) 

0 (2 + ax - 1 ) ( 2  + ba: - 1) 

In the first, case we get x4 + ( a  + b)x3 + (2 + ab)z2 + ( a  + b)x + 1, which 
implies that the coefficients of the terms of degree 1 and 3, are the same, a 
contradiction. The other case is analogous, showing that the polynomial is 
irreducible over Q . 
Solution to 6.11.23: We will use Eisenstein Criterion [Her75, pag. 1601. 
Let x = y + 1. We have 

xp-l + xp-2 + * .  . + 1 = (g  + 1)P-1 + (y + 1 y - 2  + . * * + 1 
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Y 

= f: ( ; ) y k - 1  

k=l 
= y P - l  + pyP-2  + . . . + P. 

Since the prime p divides all the coefficients except the first and p 2  does 
not divide the last, it follows that the polynomial is irreducible in Q[x] .  
Therefore, the given polynomial must also be irreducible, since if it were 
not, the same change of variables would give a factorization of the new 
polynomial. 

Solution to 6.11.24: Put x = y + 1 to get 

2 5 -  1 ( y  + 115 - 1 + 52 = +5y+5 .  
Y f ( X )  = 

The coefficients of y3,  y 2 ,  y ,  and 1 are integers divisible by p = 5 and 
the constant term is 10, which is not divisible by p2. Thus, by Eisenstein 
Criterion [Her75, pag. 1601, f is irreducible over Q . 

Solution to 6.11.25: Let f ( x )  = x3 + x + 2. A calculation shows that 2 is 
a zero of f(z) over Z3, but 0 and 1 are not. Hence, we get the factorization 
f ( x )  = ( x  - 2)(x2  + 2x + 2 )  = ( x  - 2)g(x) .  Clearly, 0 and 1 are not roots of 
g(x )  since they are not roots of f ( x ) ;  another calculation shows that 2 is 
not a root of g(x) .  Hence, g ( x )  is irreducible, and the above factorization 
is the desired one. 

Solution to 6.11.30: Suppose, to the contrary, that xp - a has nontrivial 
factors f ( x )  and g ( x )  in F [ x ] .  Let K be a splitting field of xp - a. Then, in 
K, there are elements a l ,  . . . , ap such that X P  - a = ( x  - a1).  . . ( x  - ap) .  
We may assume without loss of generality that f ( x )  = ( x  - a l )  . . . ( x  - ak) 
and g(x)  = ( x  - ak+l) .  . . ( x  - ap) .  Therefore, A = a l .  + . ak = & f ( O )  and 
B = ak+l . + ‘ a p  = f g ( 0 )  are both elements of F. Further, since the aj’s are 
zeros of xp-a, a; = a for all j .  Hence, A” = a‘ and BP = ap-‘. Since k and 
p are relatively prime, there exist integers x and y such that k x  + py = 1. 
Let r = -y and s = x + y.  Then A”/B‘ is an element of F and 

Hence, a is a pth power, contradicting our assumptions. Therefore, xp - a 
must be irreducible over F. 
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Solution to 6.11.31: Suppose g(z) (or h(z) )  is not irreducible. Then z4+l 
has a linear factor and, hence, a zero. In other words, there is an element 
a E Z, with a4 = -1. It follows that a8 = 1, and since a4 # 1 ( p  is odd), 
a has order 8 in the multiplicative group Z; of the field with p elements. 
But Z; is a group of order p - 1 E 2 (mod 4), so 8 cannot divide p - 1, 
and we have a contradiction. 

Solution to 6.11.32: Let deg f = n. Then the collection of all real poly- 
nomials of deg 5 n - 1 is an m-dimensional vector space. Hence, any 
collection of n + 1 polynomials of degree 5 n - 1 is linearly dependent. By 
the Euclidean Algorithm [Her75, pag. 1551, we have 

z20 = qo(z)f(z) + T O ( Z )  with degro < n 
z2' = ql(z)f(z) i- T ~ ( z )  with degrl < n 

x2n = q,(z)f(z) -t r,(z) with degr, < n. 
The polynomials TO,  . . . , T,  are linearly dependent, so, for some ai E R, we 
have 

Therefore, 
p ( z )  = c aG22 = f(.) c a,q,(z) 

and f(z)lp(z). 

Solution to 6.11.33: Fix f E R\ F of least degree n, say. Choose poly- 
nomials fi, fi, . . . , fn-l in R such that deg f, = j (mod n) and such that 
each fj is of least degree with this property, 1 5 j 5 n - 1, if such a 
polynomial exists, otherwise take f, = 0. Let f, = f. We will prove that 

least degree, and suppose degg = j (mod n). For some lc 2 0, degg = 
deg(ftf,). Hence, g - a f t f ,  is of lower degree than g for some a E F, and, 
by the minimality of g, must lie in F[fi, f 2 , .  . . , f,]. However, this implies 
that g E F[fi, f 2 , .  . . , fn] as well. 

R = F[f1, f2 , .  . . , f,]. Suppose not, and fix g E R \ F[fl,fi,. . . , f,] of 

6.12 Fields and Their Extensions 

Solution to 6.12.1: Since the 2 x 2 matrices over a field form a ring, 
to show that R is a commutative ring with 1 it suffices to show that it 
is closed under addition and multiplication, commutative with respect to 
multiplication, and contains I .  The first and the last are obvious, and the 
second follows almost as quickly from 

ac-bd - a d - b c ) = ( ;  -:)(; 4 )  ( 1  -:)(: -:)=( ad+bc ac-bd 
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The inverse of a nonzero element in R is given by 

which lies in R provided that a2 + b2 # 0. If F = Q ,  then a2 + b2 > 0 
for a and b not both equal to 0; hence, every nonzero element of R has an 
inverse, so R is a field. If F = C , then the matrix 

(; -:) 
has no inverse since i2 + l2 = 0. Therefore, in this case, R is not a field. 
Similarly, if F = Z5, we have that 22+12 = 0, so there exists a noninvertible 
matrix in R and so R is not a field. Finally, if F = Z7, the equation 
a2 + b2 = 0 has no nonzero solutions, so every nonzero element of R has an 
inverse and R is a field. 

Solution to 6.12.2: Let R be a finite integral domain. Let 0 # b E R and 
enumerate the elements of R by c1, c2. . . , cn. Since R, has no zero divisors, 
cancellation shows that the elements bci are distinct. Since there are n of 
them, it follows that there is an element ci0 such that bcio = 1. Hence, ci0 
is the inverse of b and we are done. 

Solution to 6.12.3: Since a and b are algebraic over F, there exist integers 
n and m such that [F(a) : F] = n and [F(b) : F] = m. Because b is algebraic 
over F, it must also be algebraic over T = F(a) of degree, at most, m. 
Hence, [T(b) : F(a)] 5 m, which implies 

[T(b) : F] = [T(b) : F(a)][F(a) : F] 5 nm. 

Therefore, T(b) is a finite extension of F. T(b) contains a+b and so contains 
F(a + b ) ;  the latter must, therefore, be a finite extension of F, so a + b is 
algebraic over F. 

Solution to 6.12.4: From the fact that the group is finite, we can see 
that all elements are in the unit circle, otherwise consecutive powers would 
make an infinite sequence. 

All elements of the group are roots of unity (maybe of different dcgrees), 
since a high enough power will end up in 1 (the order of an element always 
divides the order of the group). We will prove that they are all roots of unity 
of the same degree. Let a be the element with smallest positive argument 
(arg a E ( 0 , 2 ~ ) ) .  We will show that this element generates the whole group. 
Supposc that there is an element p that is not in the group generated by 
a. There is a p E N such that 

arg (YP < arg p < arg a p f 1  
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therefore, 
a r g ( P a 9 )  < arga 

which contradicts the minimality of arg a. We conclude then that the group 
is generated by a. See also the Solution to Problem 6.12.5. 

Solution to 6.12.5: Let G be a finite subgroup of F* of order n. By 
the Structure Theorem for finite abelian groups [Her75, pag. 1091, there 
are integers ml lm2l . . . lmk such that G is isomorphic to Z,, CB . . . @ Z,, . 
To show that G is cyclic, it suffices to show that m k  = n. Suppose that 
m k  < n. From the structure of G we know that grnk = 1 for every g E G. 
Hence, the polynomial zmh - 1 has n roots, contradicting the fact that a 
polynomial over a field has no more roots than its degree. Hence, mk = n 
and G is cyclic. 

Solution to 6.12.6: Since x3 - 2 is irreducible over Q [z], (z3 - 2) is a 
maximal ideal in Q [z], so F = Q [z]/(z3 - 2) is a field. Using the relation- 
ship x3 = 2, we get that every element of F can be written in the form 
a + be + cx2,  where a,  b, c E Q . Further, such a representation is unique, 
since otherwise we could find a,  b, c E Q , not all 0, with a+b%+cZ2 = 0. On 
pulling back to Q [z], we find that x3-2 divides a+bz+cz2, a contradiction. 

Consider the map cp : F -+ F given by cp(a) = a if a E Q , and cp( @) = 3. 
Since (fi)3 = 2 and x3 = 2 this extends to a ring epimorphism in the 
obvious way. It is also one-to-one, since if cp(a + b f i  + c f i )  = 0 then 
a + b x  + dz = 0, so a = b = c = 0. Hence, F is the isomorphic image of a 
field, and it is field. 

Further, by the isomorphism we see that every element can be expressed 
uniquely in the desired form. In particular, (1 - @)(-1- @-- fl) = 1. 

Solution to 6.12.7: Consider the ring homomorphism cp : Z --f F that 
satisfies p(1) = 1. Since F is finite, kercp # 0. Since F is a field, it has 
characteristic p ,  where p is a prime number. Hence, ker cp contains the ideal 
( p ) ,  which is maximal. Therefore, kercp = (p), and the image of Z is a 
subfield of F isomorphic to Z,. Identify Z, with this subfield. Then F is a 
vector space over Z,, and it must be of finite dimension since F is finite. 
Let dimF = T .  A counting argument shows that F has p‘ elements. 

Solution to 6.12.8: Since F has characteristic p ,  it contains a subfield 
isomorphic to Z,, which we identify with Z,. For j E Z,, a + j is an 
element of F(a).  Using the identity (a  + j ) ”  = a, + j p ,  we get 

f(a + j )  = - a + 3 + j p  - j = 0. 

Therefore, f has p roots in F ( a ) ,  which are clearly distinct. 

Solution to 6.12.9: Notice that Q [z] is an Euclidean domain, so the ideal 
(f, g) is generated by a single polynomial, h say. f and g have a common 
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root if and only if that root is also a root of h. We can use the Euclidean 
algorithm to find h = x 2  + 3z + 1, which has roots -3/2 f &/2. Therefore, 
f and g have exactly two common roots, both in Q (&). 

Solution to 6.12.10: Let x be an element of F that is not in Q . Then x 
satisfies an equation ax2 + b z  + c = 0 with a, b, and c E Q . Completing the 
square, we see that (z + 4 ) 2  E Q , whereas (x + 4 )  9 Q . Let < = (z + 4) .  
As t2 E Q , we can write it as $m, where c, d, m E Z and m is square 
free (i.e., m has no multiple prime factors). As F = Q ( E )  = Q ($E), we 
get an isomorphism F -+ Q (fi) by sending r + s ($$) to r + sfi. The 
uniqueness of m follows from the fact that the elements of F that are not 
in Q but whose squares are in Q are those of the form k< for some nonzero 
k E Q .  

Solution to 6.12.11: Let p l  = 2, p2 = 3, . . . , be the prime numbers and 
Fi = Q (&). Claim: The fields Fi are pairwise nonisomorphic. Indeed, if 
Fi were isomorphic to Fj, then there would exist r E Kj such that r2 = pi .  
Write such an r in the form 

r = a + b J P J  a , b E Q .  

Then 
r2 = a + b2pj + 2 a b 6  3 - -Pi  

if and only if ab = 0. Therefore, either pi = c2 or p3 = c2 for some c E Q , 
which contradicts the primality of pi  and p j .  

Solution to 6.12.12: 

2 

= cos8+isin8 

+- Eo 3 Fo 

All the possibilities can occur. For example 

n- 
dimF, Eo = 1 if 8 = - 

2 
dimF, Eo = 2 if 8 = IT 

dimF, Eo = 3 if 6 = - 
n- 

6 

In the last example, 4x3 - 3x + 1/2 or 8x3 - 6x + 1 is irreducible because 
f l ,  f1/2,  f1 /4 ,  and f1/8 are not roots of the above polynomial. 

Solution to 6.12.13: 1. A 2 x 2 matrix over F is invertible if and only if 
the first column is nonzero and the second is not a F-multiplc of the first. 
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This gives IFI2 - 1 = p2n - 1 possibilities for the first column of an invertible 
matrix, and, given the first column, IFI2 - IF1 = p2n - p n  for the second, 
hence the result. See also Problem 7.1.1 for a more general solution. 
2. The map F -+ G sending a to (i ;") is easily checked to be an injective 
group homomorphism. Its image is a subgroup S of G that is isomorphic 
to the additive group of F and that, consequently, has order pn. By l., this 
is the largest power of p dividing the order of G. Hence, S is, in fact, a 
pSylow subgroup of G. Since all pSylow subgroups of a finite group are 
conjugate (and hence isomorphic), this implies the result. 

Solution to 6.12.14: The zero element of F, obviously has a unique 
square root and a unique cube root. Let F6 denote the multiplicative group 
of nonzero elements of F,. It is a cyclic group of order p - 1. Since p - 1 is 
even, the homomorphism IC --+ x2 of F; into itself has a kernel of order 2, 
which means that its range has order (p-1)/2. There are, thus, l+(p-1)/2 
elements of F, with square roots. 

If p - 1 is not divisible by 3, the homomorphism x -+ x3 of F; into itself 
has a trivial kernel, and so every element of F, has a cube root. If 3 divides 
p - 1, then the preceding homomorphism has a kernel of order 3, so its 
range has order ( p  - 1)/3. In this case, there are 1 + ( p  - 1)/3 elements of 
F, with cube roots. 

Solution to 6.12.15: All functions are polynomials. A polynomial with 
the value 1 at 0 and 0 elsewhere is p(x) = 1 - x*-l; from this one, we can 
construct any function by considering sums C fi . p (x  -xi). Thus, there are 
qq such functions, and that many polynomials. Another way is to observe 
that all polynomials of degree, at most, q- 1 define nonzero functions unless 
the polynomial is the zero polynomial. 

Solution to 6.12.16: Let K be that subfield. The homomorphism of mul- 
tiplicative groups F* --+ K* sending IC to x3 has a kernel of order, at most, 
3, so IK*l 2 IF*1/3, that is, (IF1 - l)/(lKl - 1) 5 3. Also, if the exten- 
sion degree [F : K] equals n, then n 2 2, so IF1 = lKln 2 IKl2, and 
(IF1 - l)/(IKI - 1) 2 IKI + 1, with equality if and only if n = 2. Thus, 
3 2 JKI + 1, which gives IK( = 2, n = 2, and IF1 = 22 = 4. 

Solution to 6.12.17: As A has dimension at least 2 as a vector space over 
C , it contains an element a which is not in the subspace spanned by the 
identity element 1 E A. Since A has finite dimension over C , there exists 
a complex number X such that (a  - Xl)x = 0 for some nonzero IC E A. Let 
t be the ideal generated by b = a - X1,  and 5 = {x A I bx = 0) the 
annihilator of b. We have t n 5 = (0) since all the elements of t n 5 have 
zero square. As the dimensions of t and 5 add up to the dimension of A 
we must have A = t @ 5 as vector spaces over C . Since t and 5 are ideals 
in A,  A = t @ z  as rings. Let 1 = e + f  withe E t and f E 5. Then e2 = e ,  
f 2  = f and neither of them is zero or 1. 
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Solution to 6.13.1: Let the six people be Aline, Laura, Lucia, Manuel, 
Raquel, and Stephanie. Fix one of them, Manuel, say. The five girls form two 
sets: X (Manuel's friends) and Y (the others). By the Pigeonhole Principle 
[Her75, pag. 1271, one of these sets has cardinality at least 3 .  Suppose it is X 
that contains at least three elements, say {Aline, Laura, Stephanie} c X .  If 
Aline, Laura, and Stephanie are pairwise strangers, we are done. Otherwise, 
two of them are friends of each other, Stephanie and Aline, say. Then 
Manuel, Aline, and Stephanie are mutual friends. If the set with three or 
more elements is Y ,  a similar argument leads to the same conclusion. 

Solution to 6.13.3: If a = 0, the congruence has the trivial solution z = 0. 
For 1 5 a 5 p - 1, if z2 f a (mod p ) ,  we have 

( p  - z)2 = p 2  - 2zp + z2 = a (mod p )  

so, for a # 0, there are two solutions of the quadratic congruence in each 
complete set of residues mod p. We conclude, then, that the total number 
is 1 +- ( p  - 1)/2 = ( p  + 1)/2. 

Solution to 6.13.4: By Fermat's Little Theorem [Sta89, pag. 801, [Her75, 
pag. 441, we have, raising both sides of the congruence -1 = z2 (mod p )  
to the power ( p  - 1)/2, 

(-1)p+ = z P - - l  = - 1 (modp) 

which implies that ( p  - 1)/2 is even, and the result follows. 

Solution to 6.13.5: Let f(n) = 2" + n2. If f(n) is prime, then it is 
congruent with 1, or 5 (mod 6 ) .  Suppose f (n )  = 6k  + 1 for some integer 
k.  We have 

2f(n) + f (n)2 = 26k+1 + 36k2 + 12k + 1 = (22)3k 2 + 36k2 + 12k + 1 

which is a multiple of 3 .  If f(n) = 6k  + 5 ,  we have 

2f(n) + f (n)2 = (22)3k 222 + 36k2 + 60k i- 25 = 2 + 1 3 0 (mod 3 )  

so f (n )  is a composite as well. 

Solution to 6.13.6: 1. It is enough to show that the set of units is closed 
for multiplication. Let a and b be units with aa = 1 (mod n),  b/3 = 1 
(mod n). Then, clearly, a and /3 are also units, and we have 

(ab ) (Pa)  = 1 (mod n) 

so ab is also a unit. 
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2. The congruence ka = 1 (mod 7 ~ )  is equivalent to the equation 
ka = mn + 1 for some integer m. As all integer linear combinations of 
k and n are multiples of gcd{k, n}, the first congruence has a solution iff 
gcd{k,n} = 1. 
3.  Let 'p be Euler's totient function [Sta89, pag. 771, [Hcr75, pag. 431. As 'p 

is multiplicative, we have 

'p(n) = 'p(P)'p(d = (P - l ) ( q  - 1 ) .  

Solution to 6.13.7: Let p ( t )  = 3t3 + lot2 - 3t and n/m E Q ;  
gcd{n, m} = 1. We can assume m # f l .  If p ( n / m )  = k E Q , then m13 and 
nlk.  Therefore, we have m = f 3 .  

Suppose m = 3.  We have 

p (F) = n (; + 10; - 1). 

This expression represents an integer exactly when n2+10n = n(n+lO) = 0 
(mod 9). As gcd{n, 3 )  = 1, this means n+ 10 = 0 (mod 9), that is, n = 8 
(mod 9). 

A similar argument for the case 713 = -3 shows that the numbers 71/(-3) 
with n = 1 

Solution to 6.13.8: 

(mod 9) produce integer values in p .  

(+)(1. - 1 ) .  . .(' - ( n - 1)) - (-l),-' . 3  . 5 .  . . ( 2 n  - 1) 

(-1)n- l .  2 . 3 . 4 . 5 . .  .2n 

- 2 2  - 
n! 2"n! (?) - 

- - - - 
(2%!)2 

Solution to 6.13.9: A counting argument shows that the power of 2 which 
divides n! is given bv 

where 1x1 denotes the largest integer less than or equal to x. Since 
c, = ( 2 n ) ! / ( ~ ~ ! ) ~ ,  to show that c ,  is even it suffices to show that 

Suppose 2" 5 n < 2"+l. For k 5 r ,  there is an T k ,  0 5 Tk < 1, such that 

n 
2k - = I;] + r k  
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or 

so 

and equality holds if and only if n is a power of 2 .  For k = T + 1 ,  we have 
that Ln/2'+'] = 0 while 12n/2'+'l = 1 .  Finally, for k > T ,  the terms in 
both sums are 0. Hence, we see that the above inequality holds. Further, 
we see that the left side is 2 or more greater than the right side (i.e., c ,  is 
divisible by 4) if and only n is not a power of 2.  

Solution to 6.13.10: We may assume that n > 3. Converting the sum 
into a single fraction, we get 

n ! / l  + n!/2 + . . . + n! /n  
n! 

Let T be such that 2'ln! but 2T+1 does not divide n!, and s be such that 
2" is the largest power of 2 less than or equal to n. Since n > 3,  r > s > 0. 
The only integer in 1 , .  . . , n ,  divisible by 2" is 2". Hence, for 1 5 k 5 n, 
n!/k is divisible by 2'-', and every term except 1 is divisible by 2T-s+1 .  So 

n ! / l  + n!/2 +.  . . + n!/n  2'-"(2j + 1 )  - 2 j  + I - - - 
n! 2'k 25 ~c 

for some integers j and Ic. The numerator is odd and the denominator is 
even, so this fraction is never an integer. 

Solution to 6.13.11: Recall that if p l , p 2 , .  . . is the sequence of prime 
numbers and x = n p !  and y = n p : ,  we have 

Solution to 6.13.12: There are nine prime numbers 5 25: 

PI = 2 ,  P2  = 3 ,  p3 = 5 ,  p4 =7, p5 = 1 1 ,  
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p6 = 13, p7 = 17, pg = 19, pg = 23. 

By unique factorization, for each 1 5 a 5 25 there is an integer sequence 
The 10 sequences w(a,) E Q9 must .(a) = ( W ~ ( U ) ) ~ = ~  with a = n j = ,  p j  

be linearly dependent, so 

9 

10 

i=l 

for all j ,  for some rational numbers ni which are not all 0. Multiplying by 
a common multiple of the denominators, we can assume that the ni's are 
integers. So 

as required. 

Solution to 6.13.13: Denote the given number by n and let n = a13. By 
counting digits, we see that n < loz6, so a < 100. As 813 = 7934527488, we 
have 8013 < 7~ and a > 80. Note that n = 9 (mod 10). The integers c < 10 
such that ck = 9 (mod 10) for some Ic are 3 , 7  and 9. But 34 = 74 = g4 = 1 
(mod 10) and 13 = 3 . 4  + 1, so c13 = c3'4c 3 c E 9 (mod 10) so c = 9. 
Hence, a = 89 or a = 99. As 3 does not divide n, 3 does not divide a. 
Hence, a = 89. 

Solution to 6.13.14: Since 17 = 7 (mod lo), 

A E 71717 (mod 10). 

Since (7,lO) = 1, we can apply Euler's Theorem [Sta89, pag. 801, [€Ier75, 
pag. 431: 

741°) f 1 (mod 10). 

The numbers k such that 1 5 k 5 10 and ( I c ,  10) = 1 are precisely 1, 3, 7, 
and 9, so cp(10) = 4. Now 17 = 1 (mod 4), so 1717 = 1 

(mod 10) 

(mod 4). Thus, 

717" = 7l = 7 

and the rightmost decimal digit of A is 7. 

Solution to 6.13.15: As 23 = 3 
(mod 10). We have cp(10) = 4, where cp is Euler's totient function, and, by 
Euler's Theorem [Sta89, pag. 801, [Her75, pag. 43],3' E 3' (mod 10) when 
T z s (mod 4). So we will find 232323 (mod 4). We have 
23 E 3 (mod 4), 

= 3 

(mod 4), and 3232323 = 33 = 7 (mod 10). 

2323 
(mod lo), it suffices to find 323 

(mod 4), so 232323 G 32323 (mod 4). As -1 3 3 
32323 - = (-1)2323 = -1 (mod 4), because 2323 is odd. Hence, 
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Solution to 6.13.16: Let 

No = {0,1} U {4,5,6} U {11,12,13,14,15}U . . *  
N1 = {2,3} U {7,8,9,10} U { 16,17,18,19,20,21} U . . . 

We have 
No n Nl = 0, No u Nl = Z+ 

and, clearly, neither can contain an arithmetic progression. 

Solution to 6.13.17: Consider the ringZakPl. Since a > 1, (a, a’”-1) = 1, 
so u E Zzk-1. Further, it is clear that k is the least integer such that uk = 1 
(mod ak - 1), so k is the order of a in Z:k-l. Hence, by Lagrange’s Theorem 
[Her75, pag. 411, k divides the order of the group ZZ‘E-~, which is cp(ak-l). 

Solution to 6.13.18: Let N be the desired greatest common divisor. By 
Fermat’s Little Theorem [Sta89, pag. 801, [Her75, pag. 441, we have 

n13 5 (n6))”n = (n3)2n = n4 3 n2 = n (mod 2). 

Hence, 21(n13-n) for all n, so 21N. An identical calculation shows that plN 
for p E {3,5,7,13}. Since these are all prime, their product, 2730, divides 
N. However, 213 - 2 = 8190 = 3.2730, so N is either 2730 or 3.2730. As 
313 - 3 = 3(312 - 1) is not divisible by 9, N = 2730. 

Solution to 6.13.19: Let 

k1 .. .p2 n = p ,  P2 

be the factorization into a product of prime powers (PI < p2 < . . -  < pn) 
for n. The positive integer divisors of n are then the numbers 

pi’p”z”...p”,” 05j5kj. 

It follows that d ( n )  is the number of r-tuples (jl, j 2 ,  . . . , jT) satisfying the 
preceding conditions. In other words, 

d ( n )  = (kl + l)(k2 + 1) .  . * (kn + I), 

which is odd iff each k, is even; in other words, iff n is a perfect square. 
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7.1 Vector Spaces 

Solution to 7.1.1: 1. Every element of V can bc uniquely written in the 
form ulvl + . a  - + unvn, where the 21,'s form a basis of V and the a,'s are 
elements of F. Since F has q elements it follows that V has q" elements. 
2. A matrix A in GL,(F) is nonsingular if and only if its columns are 
linearly independent vectors in F". Therefore, the first column A1 can be 
any nonzero vector in F", so there are qn - 1 possibilities. Once the first 
column is chosen, the second column, A2, can be any vector which is not a 
multiple of the first, that is, A2 # C A I ,  where c E F, leaving qn - q choices 
for A2. In general, the i th column A, can be any vector which cannot be 
written in the form clA1 + c2A2 + .. .  + cZ--1A2--1 where cJ E F .  Hence, 
there are q" - q"l possibilities for A,. By multiplying these together we 
see that the order of GL,(F) is (qn - l)(q" - 4). . . (qn - q"-l). 
3 .  The determinant clearly induces a homomorphism from GL,(F) onto 
the multiplicative group F*, which has q - 1 elements. The kernel of the 
homomorphism is SL,(F), and the coscts with respect to this kernel are 
the elements of GL,(F) which have the same determinant. Since all cosets 
of a group must have thc same order, it follows that the order of SL,(F) 
is IGLn(F)J/(q- 1). 

Solution to 7.1.2: If p is prime then the order of GL2(Z,) is the number 
of ordered bases of a two-dimensional vector space over the field Z,, namely 
(p2 - l)(p2 - p ) ,  as in thc solution to Part 2 of Problcm 7.1.1 above. 
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A square matrix A over Zpn  is invertible when det(A) is invertible modulo 
p n ,  which happens exactly when det(A) is not a multiple of p .  Let p(A) 
denote the matrix over Z, obtained from A by reducing all its entries 
modulo p .  We have det(p(A)) = det(A) (mod p ) ,  thus 

A E GL2 (ZPn) iff p(A)  E GL2 (Z,) , 

giving a surjective homomorphism 

p : GL2 ( Z p )  -+ GL2 (Z,). 

The kernel of p is composed of the 2 x 2 matrices that reduce to the Identity 
modulopso the diagonalentries come from the set { l , p + l ,  2p+l, .  . . , p n -  
p + 1) and the off-diagonal are drawn from the set that reduce to 0 modulo 
p ,  that is, {O ,p ,  2p,. . - p } .  Both sets have cardinality pn-' ,  so the 
order of the kernel is ( ~ " - l ) ~ ,  and order of GL2 (Z,) is 

p4-"(p2 - l)(p2 - p )  = p4n-3(p - l)(p2 - 1). 

Solution to 7.1.3: Let F = {0,1, a, b}. The lines through the origin can 
have slopes 0, 1, a,  b, or 00, so S has cardinality 5. Let L, be the line 
through the origin with slope y. Suppose y E G fixes all these lines, to be 
specific say 

Then 
yL0 = Lo 

y(l,O)t = ( 2 , Z ) t  = ( C , O ) t  

implies that 

for some c # 0. Thus, z = 0. Similarly, the invariance of L, implies 
9 = 0 and of L1 implies z = w. Then det(y) = z2 = 1 and since F has 
characteristic 2, we must have z = 1 and y is the identity. 

Solution to 7.1.4: 1. F[s] is a ring under polynomial addition and multi- 
plication because F is a ring. The other three axioms of vector addition - 
associativity, uniqueness of the zero, and inverse - are trivial to verify; as 
for scalar multiplication, there is a unit (same as in F) and all four axioms 
are trivial to verify, making it a vector field. 
2. To see this, observe that the set { 1,x, x2,. . . , zn} form a basis for this 
space, because any linear combination will be zero, if and only if, all coef- 
ficients are zero, by looking at the degree on both sides. 
3. An argument as above shows that 

a01 + a l ( z  - a )  + . . . + an(Z - a)n  = 0 
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only if the coefficients are all zero. 

Solution to 7.1.5: Let Y denote the given intersection. Then Y is a sub- 
space of V and, clearly, W c Y .  Suppose that there exists a nonzero vector 
w E Y \ W .  Since w is not in W, a set consisting of v and a basis for 
W is linearly independent. Extend this to a basis of V, and let 2 be the 
n - 1-dimensional subspace obtained by omitting w from this basis. Then 
W c 2, so Z is a term in the intersection used to define Y .  However, v is 
not in 2, so w cannot be an element of Y, a contradiction. Hence, Y c W 
and we are done. 

Solution to 7.1.6: We use the Induction Principle [MH93, pag. 71 on the 
dimension of V. If dimV = 1, the only proper subspace is { 0 } ,  so V is 
clearly not the union of a finite number of proper subspaces. 

Now suppose the result is true for dimension n - 1 and that therc is a 
V, dimV = n, with 

k 

v = u w ‘ ,  
2 = 1  

where we may assume dim W2 = n - 1, 1 5 i 5 k. Suppose that there 
existed a subspace W of V of dimension n - 1 which was not equal to any 
of the Wz’s. We have 

n 

w = U ( W  n W2).  
2=1 

But dim(W n W2) 5 n - 2, and this contradicts our induction hypothesis. 
Therefore, to complete the proof, it remains to show that such a subspace 

W exists. Fix a basis 21,. . . , zn  of V. For each a E F, a # 0 ,  consider the 
n - 1-dimensional subspace given by 

W, = ( a 1 q  + . . . + an2, I a 1  + f * * + an-l 4- aan = 0) .  

Any two of these subspaces intersect in a subspace of dimension, at most, 
n - 2, so they are distinct. Since there arc infinitely many of these, because 
F is infinite, we can find W as desired. 
Solution 2. Suppose that V = u l < t < k V , .  _ -  Aftcr discarding superfluous K’s, 
we may assume that 

v # U V,  for all 1 I io I k. 
2#2o 

Then k 2 2, and there must be vectors 01,212 in V such that 

(1) w1 E V1 \ u V,  and (2) 212 E VZ \ u V,. 

Let (zs) be sequence of distinct, nonzero elements of the field. Then, for 
each s, the vector us = wl + 5,212 does not lie in Vl u Vz (if us E V1, 

i#1 i#2 
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then 212 = (us - wl)/xs E VI, contradicting (1); similarly, us $i h.) It 
follows that, for all s, us E U+1,zl/Z. Since the vectors us are all distinct, 
it follows that, for some s # s' and i # 1,2 ,  us and us/ lie in V,. But then 
212 = (us - u s j ) / ( x s  - x s j )  E K,  contradicting (2). Hence, v # u l < i < k l / .  

Solution to 7.1.7: Note first that if A and B are matrices and C is an 
invertible matrix, then 

AB = BA iff C - l A C C - l B C  = C-lBCC-'AC.  

Also, if D1, . . . , D, are linearly independent matrices, so are the matrices 
C-'D1C,. . . , C-'D,C. We may then assume that A is in Jordan Canonical 
Form [HK61, pag. 2471. 

bl b2 

Jordan block, then commutes with B = ( * a .  ... i;). 
B =  ( B1 ... - ) 

Therefore, by block multiplication, A commutes with any matrix of the 
form 

B7- 

where the BT's have the form of B and the same dimension as the Jordan 
blocks of A. Since there are n variables in B, dimC(A) 2 n. 

Solution to 7.1.8: tr(AB- BA) = 0, so S is contained in the kernel of the 
trace. Since the trace is a linear transformation from Mnxn(R) = Rn2 onto 
R,  its kernel must have dimension, at most, n2 - 1. Therefore, it suffices to 
show that S contains n2 - 1 linearly independent matrices. 

Let Mt3 denote the matrix with a 1 in the ( i l j ) t h  coordinate and 0's 
elsewhere. A calculation shows that for i # j, M,, = Mdkfk ,  - Mk3M2kl 
so Mz3 is in S .  Similarly, for 2 5 j 5 n, M I  1 - MJJ = M13 M3 1 - M,1M13. 
Together, these n2 - 1 matrices are clearly a linearly independent set. 

Solution to 7.1.9: Let f,g E S and let T and s be scalars. Then, for any 
21 E A, (rf  + sg)(v) = f(rw) + g(sv) E A, since A is a vector subspace and 
f and g fix A. Similarly rf + sg fixes B ,  so r f + sg E S and S is a vector 
space. 

To determine the dimension of S,  it suffices to determine the dimension 
of the space of matrices which fix A and B.  To choose a basis for V ,  let 
A' denote a complementary subspace of A n  B in A and let B' denote a 



7.2 Rank and Determinants 375 

complementary subspace of AnB in B. Then, since A+B = V ,  T = a+b-n 
is the dimension of A n B. Further, dim A' = a - T and dimB' = b - T .  

Take one basis in each of the spaces A', B', and A n B. The union of these 
bases form a basis for V .  Since any endomorphism which leaves A and B 
invariant must also fix A n B,  its matrix in this basis must have the form 

(; 0 0  1 i )  
which has, at most, a2 + b2 + n2 - an - bn nonzero entries, so the dimension 
of S is a2 + b2 + n2 - an - bn. 

Solution to 7.1.10: Suppose there are scalars such that 

aox + alTx  +. . . + akTkx  + . . . + am-1Tm-'x = 0 

applying Tm-' to both sides, we get, since TO = 0, 

aOTm-'x + alTmx + . . . + akTm-l+kX +. . . + U , , _ ~ T ' ~ - ~ + ~ - ~  x = o  

so 
a0Tm-'x = 0 

) we see that all ak = 0 and the set is linearly independent. 
and a0 = 0. By the Induction Principle [MH93, pag. 71 (multiplying by 
Tm-k-1 

Solution to 7.1.12: Let P be the change of basis matrix from (a,) to 
(b,). A straightforward calculation shows that I + 2P is the matrix taking 
(a,) to (a, + 2b,). Now ( I  + 2P)v = Xv implies that Pv = f(A - 1)v. So 
if X is an eigenvalue of I + 2P, then +(A - 1) is an eigenvalue of P ,  and 
they correspond to the same eigenvectors. The reverse also holds, so there 
is a one-to-one correspondence between the eigenvalues of P and those 
of I + 2P. As (a,) and (b,) are orthonormal bases, P is orthogonal and 
therefore, all the eigenvalues of P are fl. But this implies that the only 
possible eigenvalues of I + 2P are 3 and -1. Hence, 0 is not an eigenvalue 
of I + 2P, so it is an invertible matrix and, thus, (a, + 2b,) is a basis. 
Further, det P = (-l)alo, where a and ,8 are the algebraic multiplicities 
of -1 and 1 as eigenvalues of P.  Thus, det(I + 2P)  = (-1)"30. S' ince we 
are given that det P > 0, a is even and, thus, det(I + 2P)  is positive as 
well. Therefore, (a, + 2b,) has the same orientation as (a,). 

7.2 Rank and Determinants 

Solution to 7.2.1: 1. Let A = (aij) ,  and Ri denote the i th row of A. Let 
T ,  1 5 T 5 m, be the row rank of A, and Si = ( b i l , .  . ., bin), 1 5 i 5 T ,  be 
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a basis for the row space. The rows are linear combinations of the Si’s: 
T 

j = 1  

For 1 5 1 5 n, isolating the l t h  coordinate of each of these equations gives 

ami = kmibii + * .. + kmTbTl.  

Hence, for 1 5 1 5 n the Z t h  column of A, Cl, is given by the equation 
r 

j = 1  

where Kj is the column vector ( k l j ,  . . . , k m j ) t .  Hence, the space spanned 
by the columns of A is also spanned by the r vectors K j ,  so its dimension 
is less than or equal to r. Therefore, the column rank of A is less than or 
equal to its row rank. In exactly the same way, we can show the reverse 
inequality, so the two are equal. 
2. Using Gauss elimination we get the matrix 

1 0  3 -2 [;;; ;)  
so the four columns of M are linearly independent. 
3. If a set of rows of M is linearly independent over F, then clearly it is 
also independent over K, so the rank of A4 over F is, at most, the rank of 
M over K. 

Solution to 7.2.2: As AtAV c AtV, it suffices to prove that dimAtAV = 
dimAtV. We know that rankA = dim(1mA) and that 

dim(1m A) + dim(ker A) = n 

Similar formulas hold for AtA. Therefore, it is enough to show that kerA 
and kerAtA have the same dimension. In fact, they are equal. Clearly, 
ker A c ker AtA. Conversely, take any w E ker AtA. Then 

0 = (AtAv, w) = (Av,Av), 
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so 1 1  Awl1 = 0. Hence, w E ker A and we are done. 

Solution to 7.2.3: Since 1 - P - Q is invertible, P has the same rank as 

~ ( 1 -  P - Q )  = P -  p2 - PQ = -PQ. 

Similarly, Q has the same rank as 

(1 - P -  Q)Q= Q -  PQ-  Q~ = -PQ, 

so P and Q have the same rank. 

Solution to 7.2.4: 1. and 2. Since T is symmetric it is diagonalizable, so 
R" can be written as the direct sum of the eigenspaces of T. It suffices 
to show that any eigenspace has dimension, at  most, 1. For if this is the 
case, then the kernel has dimension, at most, 1,  and, by the Rank-Nullity 
Theorem [HK61, pag. 711, T has rank at least n - 1, and there must be 
n distinct eigenspaces, so there are n distinct eigenvalues associated with 
them. 

Let A E R, and consider the system of equations Tx = Ax. The first 
equation is ~ 1 x 1  + b l z 2  = Xxl. Since bl # 0, we can solve for 2 2  in terms of 
2 1 .  Suppose that we can solve the first i - 1 equations for 2 2 , .  . . , zz in terms 
of 2 1 .  Then, since b, # 0, we can solve the i th equation bz--lx,-l + uzz, + 
bzxZ+1 = Axz for zz+l in terms of 21. Therefore, by the Induction Principle 
[MH93, pag. 71, we can solve the first n- 1 equations for 2 2 , .  . . , xn in terms 
of 2 1 .  

The last equation, bTL-lxn-l +unzn = Axn, is either consistent with this 
or is not. If not, X is not an eigenvalue; if it is, then A is an eigenvalue 
and we have one degree of freedom in determining eigenvectors. Hence, in 
either case the associated eigenspace has dimension, at  most, 1 and we are 
done. 
Solution 2. 1. The submatrix one obtains by deleting the first row and 
the first column is upper triangular with nonzero diagonal entries, so its 
determinant is nonzero. Thus, the first n - 1 columns of T are linearly 
independent. 
2. By the Spectral Theorem [HK61, pag. 3351, [Str93, pag. 2351, R" has 
a basis consisting of eigenvectors of T. If X is an eigenvalue of T, then 
T - X I  has rank n - 1 by Part 1, so ker(T - X I )  has dimension 1. Since 
the eigenspaces span R" and each has dimension 1, there must be n of 
them. 

Solution to 7.2.6: 1. Write the characteristic polynomial of A, det(A-XI), 
as (-l)TXT+clAT-'+. . .+c,. Since the entries of A are integers, each ck is an 
integer, and cr = det A. If X is an integer eigenvalue, then det(A - nI)  = 0, 

detA = (-l)T-lnT +clnT-l + - . .+c, .- ln 
so 
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showing that n divides det A. 
2. Under the given hypotheses, n is an eigenvalue with eigenvector 
(1 ,1 ,  . . . , I)t,  so Part 1 applies. 

Solution to 7.2.7: We use the Induction Principle [MII93, pag. 321 in the 
order of the matrix. If n = 2, 

which has determinant (z2 - XI). 
Suppose the result holds for all lc < n, and let A be the n x n Vander- 

monde matrix [HK61, pag. 1251. Treating the indeterminates 2 1 , .  . . , z,-1 
as constants and expanding the determinant of A along the last row, we 
see that det A is an (n - l ) th  degree polynomial in xn, which can have, 
at most, n - 1 roots. If we let z, = zi for 1 5 i 5 n - 1, A would have 
two identical rows, so det A would equal 0. Hence, the xi's are the roots of 
det A as a polynomial in zTL. In other words, there exists a constant c > 0 
such that 

n- 1 

det A = c n (2, - xi). 
i=l 

c is the coefficient of the z;-' term, which, when we expand the determi- 
nant, is equal to the determinant of the (n - 1) x (n - 1) Vandermonde 
matrix. So, by the induction hypothesis, 

n-1 

det A = n (xi - zj) n (zrL - zi) = n ( z i  - zj). 
j < i < n - l  i= l  i>j 

Solution to 7.2.8: 1. As shown in the solution of Problem 7.2.7, the 
determinant of the matrix is 

%>3 

which is nonzero if the a, are all different. 
2. The function f given by 

n 
(z - ao) .  . . (z - az-1)ba(z - a, +I). . . (z - a,) 

~ ( ~ 1  = C (a,  - ao). . . (a ,  - a,-l)b,(a, - a,+l). . . (a,  - a,) 

has degree n and takes f (a,)  into b,.  Now, if @(x) is another such polynomial 
of degree n, the polynomial 

a=O 

f (.> - @(.I 
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has degree n with n + 1 different roots (the ai’s), so it has to be the zero 
polynomial and f is unique. 

Solution to 7.2.9: Consider the function v( t )  = (1, t , t2).  To show that 
v( t l ) ,  v(t2), and v(t3) form a basis for R3 whenever the ti’s are distinct, 
it will suffice to show that the matrix which has these vectors as rows has 
nonzero determinant. But this matrix is 

( ; :: :; ) 
1 t 3  t ;  

which is the 3 x 3 Vandermonde matrix [HKCil, pag. 1251. Its determinant 
is given by 

( t 3  - h ) ( t 3  - tl)(t2 - t l )  

which is nonzero whenever the t i ’ s  are distinct. 

Solution to 7.2.10: Let G be the matrix with entries 

b 

Gij = fi(z)fj(x)dx. 

If the determinant of G vanishes, then G is singular; let a be a nonzero 
n-vector with Ga = 0. Then 

so, since the fz’s are continuous functions, the linear combination x u ,  fi 
must vanish identically. Hence, the set { f a }  is linearly dependent on [a, b] .  
Conversely, if { f a }  is linearly dependent, some fz can be expressed as a 
linear combination of the rest, so some row of G is a linear combination of 
the rest and G is singular. 

Solution to 7.2.11: Identify M z X 2  with W4 via 

and dccompose L into the multiplication of two linear transformations, 

where L A ( X )  = AX and L B ( X )  = XB. 
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The matrices of these two linear transformations on the canonical basis 
of B~ is 

1 0 2 0  2 0 0 0  

L A = (  -: t )  and L B = ( :  :] 
0 - 1 0 3  0 0 1 4  

then det L = det LA . det LB = (9 + 6 + 2(2 + 3)) . ( 2 .  32) = 2 6 .  52, and 
to compute the trace of L, we only need the diagonal elements of LA . LB , 
that is, 

t r  L = 2 + 4 + 6 + 12 = 24. 

Solution to 7.2.12: Let X = (z,,) be any element of M3(W). A calculation 
gives 

) 
zll 3212/2 213 ( x31 3X32/2 233 

T ( X )  = 3X21/2 2x22 3X23/2 . 

It follows that the basis matrices Mz3 are eigenvectors of T.  Taking thc 
product of their associated eigenvalues, we get det T = 2(3/2)4 = 81/8. 

Solution to 7.2.13: Since the minimal polynomial of A splits into dis- 
tinct linear factors, B3 has a basis {q, 212,213) of eigenvectors of A. Since 
det A = 32, two of those, say 211 and 212, are associated with the eigen- 
value 4, and one, 213, is associated with the eigenvalue 2. Now consider the 
nine matrices Ez,, 1 5 i , j  5 3, whose i th column is the vector vj and 
whose other columns are zero. Since the v,’s are linearly independent, the 
matrices Ex, are linearly independent in M s X 3  and form a basis of M3x3. 
Further, a calculation shows that AE,, = X,E,,, where XI = X2 = 4 and 
X3 = 2. Hence, M s X 3  has a basis of eigenvectors of LA,  so it follows that 
tr LA =6.4+3*2=30. 

Solution to 7.2.15: We have 

dim range T = dim M7x 7 - dim ker T = 49 - dim ker T 

so it suffices to find the dimension of ker T;  in other words, the dimension of 
the subspace of matrices that commute with A.  Let E+ be the eigcnspace of 
A for the eigenvalue 1 and E- be the cigenspace of A for the eigenvalue -1. 
Then B7 = E+ @ E-. A matrix that commutes with A leaves E+ and E- 
invariant, so, as linear transformations on B7, can be expressed as the direct 
sum of a linear transformation on E+ with a linear transformation on E-. 
Moreover, any matrix that can be so expressed commutes with A. Hence, 
the space of matrices that commutc with A is isomorphic to M4x4 @ MsX3, 
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and so has dimension 16 + 9 = 25. It follows that dim range T = 49 - 25 = 
24. 

Solution to 7.2.16: m > n. We write T = TlTp, where T2 : M,,, -+ 
M,,, is defined by T2(X) = BX and TI : M,,, 4 Mmxn is defined by 
Tl(Y)  = AY. Since dim M,,, = nm > n2 = dim Mnxn,  the transforma- 
tion Tp has a nontrivial kernel, by the Rank-Nullity Theorem [HK61, pag. 
711. Hence, T also has a nontrivial kernel and is not invertible. 
m < n. We write T = T2T1, where TI : M,,, 4 M,,,, is defined by 
Tl(X)  = A X  and T2 : M,,, 4 M,,, is defined by T2(Y) = BY. Now 
we have dim M,,, = nm > m2 = dim M,,,, so TI has a nontrivial 
kernel, and we conclude as before that T is not invertible. 

7.3 Systems of Equations 

Solution to 7.3.2: 1. Through linear combinations of rows, reduce the 
system of equations to a row-reduced echelon form, that is, a system where: 

the first nonzero entry in each nonzero row is equal to 1; 

a each column which contains the leading nonzero entry of some row 
has all its other entries 0; 

a every row which has all entries 0 occurs below every row that has a 
nonzero entry; 

a if rows 1, . . . , r are the nonzero rows and if the leading nonzero entry 
of row i occurs in column k,, i = 1 , .  . . , r ,  then k, < kp < . . . < k,. 

This new system has a number of nonzero rows r 5 m < n and it is easy 
to see that it has nonzero solution. 

Since the original system is equivalent to the row-reduced one, they have 
exactly the same solutions. 
2. Let V be a vector space spanned by m vectors P I ,  . . . , /3,. We will show 
that every subset S = {al ,  . . . ,an} of V with n > m vectors is linear 
dependent. 

Since PI, .  . . , Pm span V ,  there are scalars A,, in the field F such that 

ni 

i=l 

For any set of scalar $ 1 ,  . . . , z, in F, we have 
n 
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Since n > m, the linear systems of equations 

has a nontrivial solution so the set is linear dependent, proving the asser- 
tion. 

Solution to 7.3.3: The answer is yes. Writing the system of linear equa- 
tions in matrix form, we have Ax = 0, where A is an m x n matrix with 
rational entries. Let the column vector x = (XI, . . . , x ~ ) ~  be a complex so- 
lution to this system, and let V be the Q -vector space spanned by the xi’s. 
Then dim V = p 5 n. If y1,. . . , yp E CC is a basis of V ,  then there is a ratio- 
nal n x p  matrix B with By = x (where y is the column vector (yl, . . . , yp)”. 
Substituting this into the original equation, we get ABg = 0. Since y is 
composed of basis vectors, this is possible only if A B  = 0. In particular, 
evcry column of B is a rational solution of the equation Ax = 0. 

7.4 Linear Transformations 

Solution to 7.4.1: 1. We need to show that vector addition and scalar 
multiplication are closed in S(E) ,  but this is a trivial verification because 
if Y = S(x) and w = S(y) are vectors in S(E) ,  then 

Y + UJ = S(x + y) and CY = S(cx) 

are also in S(E) .  
2. If S is not injective, then two different vectors x and y have the same 
image S ( x )  = S(y) = w, so 

S(x - y) = S(x) - S(y) = 2, - 21 = 0 

that is, x - y # 0 is a vector in the kernel of S. On the other hand, if S is 
injective, it only takes 0 E E into 0 E F ,  showing the result. 
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3. Assuming that S is injective, the application S-' : S ( E )  + E is well 
defined. Given av + bw E S(E)  with v = S(Z) and w = S(g), we have 

S-'(av + W )  = S-l(aS(z) + bS(9)) 
= S-'(S(az +by)) 
= uz + by 
= uS-'(v) + bS-'(w) 

therefore, S-' is linear. 

Solution to 7.4.2: Let ( ( ~ 1 , .  . . , a k }  be a basis for kerT and extend it to 
{a l , .  . . , ak, . . . ,an},  a basis of v. w e  will show that {Tak+l,. . . ,Tan} is 
a basis for the range of T .  It is obvious they span the range since Taj = 0 
for j 5 k .  Assume 

n 

i=k+l 

which is equivalent to 

that is, a = C!=,+, ciai is in the kernel of T. We can then write a as 
a = CiZ1 biai and have k 

k n 

2=1 z=k+l 

which implies all c, = 0, and the vectors Tak+l,. . . , Tan form a basis for 
the range of T.  

Solution to 7.4.3: Let v1, . . . , 21, be a basis for V such that v1, . . . , vk 

is a basis for W .  Then the matrix for L in terms of this basis has the form 
(y:),whereMisaIcxIcmatrixandNisIcx(n-k). It followsthat M i s  
the matrix of LW with respect to the basis vl ,  . . . , vk. As the matrix of 1-45 
is ( '-iM - i N ) ,  it follows that det(1- t L )  = det(1- t M )  = det(1- tLw).  

Solution to 7.4.4: Let V,  = {v E V I x z ( L ) ( v )  = O } ,  for i = 1, 2. Clearly, 
each V, is a subspace of V with x,(L)V, = 0. To show that V is the direct 
sum of V1 and V2, choose polynomials a and b over F for which ax1 + bxz = 
1. Then a(L)XI(L) + b(L)x2(L) = 1. If v E VI n VZ, then v = 1 .  = 

then by Cayley-Hamilton Theorem [HK61, pag. 1941, we have x(L)v  = 0. 
Hence, v1 = a(L)Xl(L)v is annihilated by x2(L) and, therefore, belongs to 
V2. Likewise, 212 = b(L)xz(L)v belongs to V1. Since = v1 +v2, this shows 
that V = VI + VZ. 

a (L)x l (L )  + b(L)xz(L)v = a(L)O + b(L)O = 0, SO Vl n fi = (0). If E V ,  
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Solution to 7.4.8: Since the linear transformation f has rank n - 1, we 
know that f(R") is an n - 1-dimensional subspace of R". Hence, there 
exist real constants A 1 , .  . . , A,, not all zero, such that 

i=l  

for all v E Rm. The Xi's are unique up to constant multiples. Further, this 
equation determines the subspace: If w E R" satisfies it, then w E f(Rm). 

Now suppose that the Xi's all have the same sign, or, without loss of 
generality, that they are all nonnegative. Then if there existed v E R" 
with fi(v) > 0 for all i, we would have CXJi(v) > 0 ,  a contradiction. 
Hence, there can be no such v. 

Conversely, suppose that two of the Xi's, say A1 and As, have different 
signs. Let 2 3  = 2 4  = ... = x, = 1, and choose 2 1  > 0 sufficiently large so 
that 

i # Z  

Then there is a real number 22 > 0 such that 
n 

But then we know that there exists v E f(Rm) such that f (v)  = ( 2 1 , .  . . , 2"). 
Since each of the xi's is positive, we have found the desired point v. 

Solution to 7.4.9: Let ( , ) denote the ordinary inner product. From 
d(s,  t )2 = d(s, 0)2  + d ( t ,  0)2  - 2(s,  t )  and the hypothesis, it follows that 

(cp(s), cp(t)) = (s, t )  for all s, t E S. 

Let V c W" denote the subspace spanned by S,  and choose a subset T c S 
that is a basis of V .  Clearly, there is a unique linear map f : V -+ V that 
agrees with cp on T.  Then one has (f(t), f(t')) = ( t ,  t') for all t and t' E T.  
By bilinearity, it follows that (f(v),f(v')) = (v,v') for all v and v' E V .  
Taking v = v', one finds that f(v) # 0 for v # 0 ,  so f is injective, and 
f (V)  = V .  Taking v = s E S and Y' = t E T ,  one finds that 

so f(s) - cp(s) is orthogonal to f ( t )  for all t E T ,  and hence to all of 
f (V)  = V .  That is, for all s E S, one has f(s) - cp(s) E VL; but also 
f(s) - cp(s) E V ,  so f(s) - cp(s) = 0. This shows that f agrees with cp on 
S. It now suffices to extend f to a linear map R" + R", which one can do 
by supplementing T to a basis for R" and defining f arbitrarily on the new 
basis vectors. 
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Solution to 7.4.11: We use Complete Induction [MH93, pag. 321 on the 
dimension of V. If dimV = 1, then V has a single basis vector f1 # 0, so 
there is $1 E X such that jl(x1) # 0. Hence, the map f ++ f(x1) is the 
desired isomorphism. 

Now suppose the result is true for dimensions less than n and let dim V = 
n. Fix a basis f1, f 2 , .  . . , f n  of V. Then, by the induction hypothesis, there 
are points xl,x2,.  . . , xn-l such that the map f H (!(XI), . . . , f(xn-1),0) 
is an isomorphism of the subspace of V spanned by f 1 , .  . . , fn-l  onto 
Rn-1 c R". In particular, the vector (fn(xl), . . . , fn(xn-l), 0) is a linear 
combination of the basis vectors {(fi(xl), . . . , fi(xn-1), 0), 1 5 i I n - l}, 
so there exists a unique set of Xi's, 1 5 i 5 n, such that 

c Aifi(Zj) = 0, 
i=l 

n 

1 5 j 5 72 - 1. 

Suppose there is no point x X such that the given map is an isomorphism 
from V onto Rn. This implies that the set {(fi(x1), . . . , fi(xn-1), f i ( ~ ) ) ,  

1 5 i 5 n )  is linearly dependent for all x. But because of the uniqueness 
of the Ai's, this, in turn, implies that for all x, 

n c Aifi(Z) = 0. 
i=l 

Hence, the fils arc linearly dependent in V, a contradiction. Therefore, 
such an x, exists and we are done. 

Solution to 7.4.13: Since the formula holds, irrespective of the values 
of ck,  for the polynomials z2n+1, it suffices, by linearity, to restrict to 
the vector space P2, of polynomials of degree, at most, 2n. This vector 
space has dimension 2n + 1 and the map P Z n  -+ RZn+' given by p H 
(p ( -n ) ,p ( -n  + l), . . . , p ( n ) )  is an isomorphism. As the integral is a linear 
function on there exist unique real numbers cPn ,  c-,+1,. . . , C n  such 
that 

71 C l  

We have 

so Ck = C - k  by uniqucness of the C k ,  and, therefore, 
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Setting p = 1, we find that 

so, upon eliminating q, 

Solution to 7.4.14: Let ~ 1 , 2 1 2 , .  . . , v, be a basis for Wn consisting of eigen- 
vectors of T ,  say Tun = Xnv,. Let 2 1 1 , 2 1 2 , .  . . , u, be the orthonormal basis 
one obtains from ~ 1 , 2 1 2 , .  . . , v, by the Gram-Schmidt Procedure [HK61, 
pag. 2801. Then, for each index k, the vector u k  is a linear combination of 
2)1,.--7vk7 say 

21k = C k l v l  + c k 2 v 2  + . . . + C k k v k  . 
Also, each V k  is a linear combination of u1, . . . , U k .  (This is guaranteed by 
the Gram-Schmidt Procedure; in fact, u 1 ,  . . . , u k  is an orthonormal basis 
for the subspace generated by v 1 , .  . . , V k . )  We have 

T U k  = C k l T V l  + C k 2 T V 2  + * * .  + C k k T V k  

= c k l x l v l  + c k 2 A 2 v 2  + . . . -k C k k X k V k  9 

In view of the preceding remark, it follows that T u k  is a linear combination 
of 211,. . . , u k ,  and, thus, T has an upper-triangular matrix in the basis 
2111 2127 .  . . 7 

Solution to 7.4.17: 1. The characteristic polynomial of T has degree 3 
so it has at least one real root. The space generated by the eigenvector 
associated with this eigenvalue is invariant under T .  
2. The linear transformation T - X I  has rank 0, 1, or 2. If the rank is 0 
then T = X I  and all subspaces are invariant, if it is 1 then ker(T - X I )  
will do and if it is 2 the image of (T - X I )  is the desired subspace. This 
is equivalent to the Jordan Canonical Form [HK61, pag. 2471 of T being 
either a diagonal matrix with three 1 x 1 blocks or with one 1 x 1 and one 
2 x 2 block, in both cases there is a 2-dimensional invariant subspace. 

Solution to 7.4.19: Clearly, both R and S are rotations and so have 
rank 3.  Therefore, T ,  their composition, is'a rank 3 operator. In particular, 
it must have trivial kernel. Since T is an operator on W3, its character- 
istic polynomial is of degree 3, and so it has a real root. This root is an 
eigenvalue, which must be nontrivial since T has trivial kernel. Hence, the 
associated eigenspace must contain a line which is fixed by T .  

Solution to 7.4.20: Let x = (x1,52, x3) in the standard basis of R3. The 
line joining the points x and Tx intersects the line containing e at the point 
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f = (e, z)e and is perpendicular to it. We then have Tz = 2( f - z) + z = 
2 f -z, or, in the standard basis, T x  = (2(e,z)a-z1,2(e, zjb-zz, 2(e,z)c- 
23). With respect to the standard basis for W3, the columns of the matrix of 
T are Te l ,  Te2, and Te3. Applying our formula and noting that (e, el)  = a, 
(e, e2) = b, and (e, e3) = c, we get that the matrix for T is 

2bc 2c2 - 1 

2a2 - 1 2ab ( iz,z 2b2 -1 

Solution to 7.4.21: Since the minimal polynomial divides the character- 
istic polynomial and this last one has degree 3, it follows that the char- 
acteristic polynomial of T is ( t2 + l ) ( t  - 10) and the eigenvalues fi and 
10. 

Now T(1,1,1) = X(1,1,1) implies that X = 10 because 10 is the unique 
real eigenvalue of T. 

The plane perpendicular to (1, 1 , l )  is generated by (1, - 1 , O )  and ( f , f , - 1) 
since these are perpendicular to each other and to (1,1,1).  

Let 
fl = (1,171) 
f2 = (1, -1,O)IJZ 
f3 = (f, f ,  -1) /4- = (+, f ,  -1) / p  2 

we have Tf1 = 10 f1 and, for fi to be the other eigenvalues of T, Tfz = f3, 

and Tf3 = -f2. 

The matrix of T in the basis { fi ,  f2, f3) = p is then 

[TIP = 
0 -1 0 

The matrix that transforms the coordinates relative to the basis p into the 
coordinates relative to the canonical basis is 

1 -1/Jz 46/4  
1 0 -&/2 

and a calculation gives 

'6 ) . 1/3 1/3 
Jzp - J z / 2  

2/3& 2/3& -4/3& 

N + L  '0+'3& y -  2 

3 8  3 36 

3 3 6  3 36 

p-1 = 

Therefore, the matrix of T in the canonical basis is 

[TI =p[T]pP-l = 4 - 1 '0+ & 
10 d3 l0-a 10 
T + 3 -  3 2 3 
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Solution to 7.4.23: For n = 1,2, .  . ., let P, be the space of polynomials 
whose degrees are, at most, n. The subspaces P, are invariant under E, they 
increase with n, and their union is P. To prove E is invertible (i.e., one-to- 
one and onto), it will suffice to prove that each restriction Elp, is invertible. 
The subspace P,, is of dimension n + l ,  it has the basis 1,z, x2, .  . . , P, with 
respect to which the matrix of Elp, is p; 1 1 0 0 ; ; :q  - . -  

. .  . .  . . . .  
0 0 0 0  1 n 
0 0 0  0 0 1 

In particular, the matrix is upper-triangular, with 1 at every diagonal entry, 
so its determinant is 1. Thus, Elp, is invertible, as desired. Alternatively, 
since deg Ef = deg f, the kernel of E is trivial, so its restriction to any 
finite dimensional invariant subspace is invertible. 
Solution 2. We can describe E to be I + D ,  where I is the identity operator 
and D is the derivative operator, on the vector space of all real polynomials 
P. For any element f of P ,  there exists n such that D " ( f )  = 0; namely 
n = degp+l. Thus, the inverse of E can be described as I-D+D2-D3+. . .. 

Specifically, writing elements of P as polynomials in z, we have 
E-'(l) = 1, E-'(z) = z - 1, E-'(z2) = z2 - 22 + 2, etc. 

Solution to 7.4.24: Given the polynomial ~ ( z ) ,  there are constants a and 
T > 0 and a polynomial cp(z) such that ~ ( z )  = zrcp(z) + a. If cp(z) = 0, 
then T ( D )  = aI ,  it follows that the minimal polynomial of the operator 
T ( D )  is z - a. If cp(z) is not zero, then for any polynomial f E P,, by the 
definition of D ,  ( T ( D )  - a I ) ( f ( z ) )  = g(z), where g(z) is some polynomial 
such that deg g = max(deg f - T ,  0). Hence, letting E = T ( D )  - aI ,  we 
have eLn/''+l(f) = 0 for all f E P,. (Ln/rJ denotes the greatest integer 
less than or equal to n/r.) The polynomial f(z) = zn shows that [n/rJ + 1 
is the minimal degree such that this is true. It follows from this that the 
minimal polynomial of T ( D )  is (z - U ) L ~ / ~ J + ~ .  

7.5 Eigenvalues and Eigenvectors 

Solution to 7.5.1: 1. The minimal polynomial of M divides z3 - 1 = 
(z- 1)(z2+z+1); since M # I ,  the minimal polynomial (and characteristic 
as well) is (z - 1)(z2 + z + 1) and the only possible real eigenvalue is 1. 
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2 .  

o c o s y  sin? 
o -sin% cos% 

Solution to 7.5.2: Suppose such X exists; then the characteristic polyno- 
mial for X is xx(t) = t", but this is a contradiction since X2n-1 # 0 and 
2n - 1 > n. 

Solution to 7.5.3: Since A" = 0 for some m, A is a root of the polynomial 
p(x) = P. By the definition of the minimal polynomial, pA( t ) lp ( t ) ,  so 
p A ( t )  = tk  for some k 5 n, then A" = Ak = 0. 

Solution to 7.5.4: As MP = I, the minima1 polynomial of M divides 
t p  - 1 = ( t  - l)(tp-l + t p - 2  + . . . + t + 1). Since M fixes no nontrivial 
vector, 1 is not an eigenvalue of M ,  so it cannot bc a root of the minimal 
polynomial. Therefore, p ~ ( t ) l ( t p - l + t p - ~ + .  .-+t+l). Since p is prime, the 
polynomial on the right is irreducible, so p ~ ( t )  must equal it. The minimal 
and characteristic polynomials of M have the same irreducible factors, so 
X M ( t )  = p M ( t ) k  for some k 2 1. Therefore, 

dimV = degXn;r(t) = k ( p  - 1) 

and we are done. 

Solution to 7.5.5: 1. Let d = deg p. Since p(T)v = 0, the vector T% is 
linearly dependent on the vectors u, T u ,  . . . , Td-'u. Hence, Td% is linearly 
dependent on Tnu,  T7L+1u,. . . , Tn+d-lu and so, by the Induction Principle 
[MH93, pag. 71, on u ,Tv ,  . . . , Td-'v (n = 1 , 2 , .  . .). Thus, u, Tv, . . . ,Td-'u 
span VI, so dim V1 5 d. 

On the other hand, the minimum polynomial of Tlv, must divide p (since 
p(TIv,) = 0), so it equals p because p is irreducible. Thus, dim V1 2 d .  
Thc desired cquality, dim VI = d ,  now follows. 
2. In the case V1 # V, let TI be the linear transformation on the quotient 
space V/V1 induced by T.  (It is well defined because V1 is T-invariant.) 
Clearly, p(T1) = 0, so the minimum polynomial of TI divides p, hence 
equals p. Therefore, by Part 1, V/& has a TI-invariant subspace of di- 
mension d ,  whose inverse image under the quotient map is a T-invariant 
subspace V2 of V of dimension 2d. In the case V2 # V ,  we can repeat the 
argument to show that V has a T-invariant subspace of dimension 3d, and 
so on. After finitely many repetitions, we find dim V = kd for some integers 
k .  

Solution to 7.5.6: Since the matrix is real and symmetric, its eigenval- 
ues are real. As the trace of the matrix is 0, and equal to the sum of its 
eigcnvalues, it has at least one positive and one negative cigenvalue. 
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The matrix is invertible because the span of its columns has dimension 
4. In fact, the space of the first and last columns contains all columns of 
the form 

The span of all four columns thus contains 

which together span all columns of the form 

( i i )  
Since the matrix is invertible it does not have 0 as an eigenvalue. There arc 
now only three possibilities: 

0 three positive and one negative eigenvalues; 

two positive and two negative eigenvalues; 

one positive and three negative eigenvalues. 

A calculation shows that the determinant is positive. Since it equals 
the product of the eigenvalues, we can only have two positives and two 
negatives, completing the proof. 

Solution to 7.5.7: A calculation shows that the characteristic polynomial 
of the given matrix is 

- z ( 2  - 3s - 2(1.000012 - 1)) 

so one of the eigenvalues is 0 and the product of the other two is -2(1.000012- 
1)) < 0, so one is negative and the other is positive. 

Solution to 7.5.8: Denote the matrix by A. A calculation shows that 
A is a root of the polynomial p ( t )  = t3 - ct2 - bt - a. In fact, this is 
the minimal polynomial of A. To prove this, it suffices to find a vector 
z E F3 such that A2z ,  Ax, and z are linearly independent. Let z = (1,0,0). 
Then Ax = (0,1,0) and A2x = ( O , O ,  1); these three vectors arc linearly 
independent, so we are done. 

Solution to 7.5.9: 
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1. This is false. Consider A = ( i  i )  and B = (A :). AB = ( i i) and has 
( 1 , l )  as an eigenvector, which is clearly not an eigenvector of B A  = 
(; :). The condition that AB and BA have a common eigenvector 
is algebraic in the entries of A and B; therefore it is satisfied either 
by all of A and B or by a subset of codimension at least one, so in 
dimensions two and higher almost every pair of matrices would be a 
counterexample. 

2. This is true. Let x be an eigenvector associated with the eigenvalue 
X of AB. We have 

BA(Bx) = B(ABx) = B ( h )  = XBz 

so A is an eigenvalue of BA. 

Solution to 7.5.11: We use the Induction Principle [MH93, pag. 71. As 
the space M,(C ) is finite dimensional, we may assume that S is finite. If 
S has one element, the result is trivial. Now suppose any commuting set 
of n elements has a common eigenvector, and let S have n + 1 elements 
Al,  . . . , A,+1. By induction hypothesis, the matrices Al ,  . . . , A, have a 
common eigenvector w. Let E be the vector space spanned by the common 
eigenvectors of Al,  . . .,A,. If v E E ,  AzAn-+lw = An+lA,v = XzAn+lv for 
all i, so A,+,v E E.  Hence, A,+1 fixcs E. Let B be the restriction of A,+1 
to E. The minimal polynomial of B splits into linear factors (since we are 
dealing with complex matrices), so B has an eigenvector in E ,  which must 
be an eigenvector of A,+1 by the definition of B, and an eigenvector for 
each of the other A,'s by the definition of E. 

Solution to 7.5.14: 1. For ( a l ,  a2, a3, .  . .) to be an eigenvector associated 
with the eigenvalue A, we must have 

S((a1, a2, a3 , .  . .)) = q a 2 ,  a3, a4,. . .) 
which is equivalent to 

a2 = Xu1 , a3 = Xa2 , . . . , a ,  = Xa,-1 , . . . 
so the eigenvectors are of the form a l ( 1 ,  A, X2,. . .). 
2. Let x = ( 2 1 ,  x2,. . .) E W .  Then z is completely determined by the first 
two components 2 1  and x2. Therefore, the dimension of W is, at most, 
two. If an element of W is an eigenvector, it must be associated with an 
eigenvalue satisfying X2 = X + 1, which gives the two possible eigenvalues 

- 1 - f i  cp=-  ' + &  and -'p l=-. 
2 2 

A basis for W is then 
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which is clearly invariant under 5'. 
3. To express thc Fibonacci sequencc in the basis above, we have just to 
find the constants kl  and k2 that satisfy 

1 = k1p-kzp-1  { 1 = 

which give kl = l/& = -k2 .  We then have, for the Fibonacci numbers, 

f n  = ((1+2fi)n-(!+)n). 

Solution to 7.5.16: 

and I is the identity matrix. If Ax = Ax, where x # 0, then 

U U t 5  - x = (utz)u - z = Xz 

so x is either perpendicular or parallel to u. In the latter case, we can 
suppose without loss of generality that x = u, so utuu - u = Xu and 
X = n - 1. This gives a 1-dimensional eigenspace spanned by u with eigen- 
value n - 1. In the former case z lies in a n - 1-dimensional eigenspace 
which is the nullspace of the rank-1 matrix uut, so 

AX == (uut - I). = -la: = -X 

and the eigenvalue associated with this eigenspace is -1, with multiplicity 
n - 1. Since the determinant is the product of the eigenvalues, we have 
det(A) = (-1)"-'(n - 1). 

Solution to 7.5.17: Since A is positive definite, there is an invertible 
Hermitian matrix C such that C2 = A. Thus, we have C-'(AB)C = 
C-lC2BC = CBC. By taking adjoints, we see that CBC is Hermitian, so 
it has real eigenvalues. Since similar matrices have the same eigcnvalues, 
AB has real eigenvalues. 

Solution to 7.5.20: The characteristic polynomial of A is 

X A ( t )  = t2  - ( U  + d)t + (ad - b C ) .  

which has roots 

1 1 1 
2 2 

t = - (u + d )  f -J(a - d ) 2  + 4bc = 5 (a  + d f A) . 
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A is positive, so A has real eigenvalues. Let X = $ a + d + a) and let 
v = ( x ,  y )  be an eigenvector associated with this eigenvalue with x > 0. 
Expanding the first entry of Av, we get 

( 

1 
a x + b y = ; i ( a + d + & ) x  

or 
2by= ( d - a + & ) x .  

Since b > 0,  to see that y > 0 it suffices to show that d - a + 6 > 0 ,  or 
6 > a - d.  But this is immediate from the definition of 6 and we are 
done. 

Solution to 7.5.21: It suffices to show that A is positive definite. Let 
x = ( X I , .  . . , x,), we have 

2 2 (AX,  X )  = 2x1 - xlx2 - 21x2 + 22; - x2x3 - . . . - G - l X ,  + 22, 
- 2 - 2 1  + ( 2 1  - X 2 Y  + ( X Z  - x3)2 + * * .  + ( X n - 1  - x,)2 + x;. 

Thus, for all nonzero x ,    AX,^) 2 0. In fact, it is strictly positive, since 
one of the center terms is greater than 0 ,  or x1 = 2 2  = . . . = x ,  and all the 
x,’s are nonzero, so x: > 0. Hence, A is positive definite and we are done. 
Solution 2. Since A is symmetric, all eigenvalues are real. Let x = (xi)? be 
an eigenvector with eigenvaluc A. Since x # 0,  we have maxi / x i ]  > 0. Let 
lc be the least i with Ixi] maximum. Replacing x by -2, if necessary, we 
may assumc X k  > 0. We have 

where nonexistent terms are taken to be zero. By the choice of xk,  we have 
xk-1 < xk and xk+l 5 X k ,  so we get X X k  > 0 and > 0. 

Solution to 7.5.22: Let XO be the largest eigenvalue of A. We have 

XO = max { ( A x ,  x )  1 x E R, IIxlI = 1 )  , 

and the maximum it attained precisely when x is an eigenvector of A with 
eigenvalue XO. Suppose v is a unit vector for which the maximum is attained, 
and let u be the vector whose coordinates are the absolute values of the 
coordinates of v. Since the entries of A are nonnegative, we have 

implying that (Au,u} = XO and so that u is an eigcnvector of A for the 
eigenvalue XO . 



394 7. Linear Algebra 

Solution to 7.5.23: Let A be an eigenvalue of A and x = (XI,. . . , x , ) ~  a 
corresponding eigenvector. Let xi be the entry of x whose absolute value is 
greatest. We have 

n 

j = 1  

so 
n n 

Hence, 1x1 5 1. 

Solution to 7.5.24: Since A is Hermitian, by Rayleigh’s Theorem [ND88, 

for x E C m ,  x # 0 ,  where Amin and A,,, are its smallest and largest 
eigenvalues, respectively. Therefore, 

Similarly for B: 

Hence, 

However, A+B is Hermitian since A and B are, so the middle term above is 
bounded above and below by the largest and smallest eigenvalues of A f B. 
But, again by Rayleigh’s Theorem, we know these bounds are sharp, so all 
the eigenvalues of A + B must lie in [a + b, a’ + b’]. 

Solution to 7.5.25: Let w = (1,1,0,. . . , O ) .  A calculation shows that 
AV = ( k +  l , k +  1,1,O,. . . , O ) ,  SO 

Similarly, for u = (1, - l , O , .  . . , O ) ,  we have Au = (k - 1,l- k ,  - l , O ,  . . ., 0 )  
and so 

- = k - 1 .  (Au, 4 
(u, 4 

By Rayleigh’s Theorem [ND88, pag. 4181, we know that 



7.5 Eigenvalues and Eigenvectors 395 

for all nonzero vectors v, and the desired conclusion follows. 

Solution to 7.5.26: As B is positive definite, there is an invertible matrix 
C such that B = CtC, so 

Let Cx = y .  The right-hand side equals 

Since the matrix (C-')t AC-l is symmetric, by Rayleigh's Theorcm [ND88, 
pag. 4181, the right-hand side is bounded by A, where X is the largest eigcn- 
value of (C-l)t  AC-'. Further, the maximum is attained at the associated 
eigenvector. Let yo be such an cigenvector. Then G(z) attains its maximum 
at z = C-lyo, which is an eigenvcctor of the matrix (C-l)t  A. 

Solution to 7.5.27: Let y # 0 in Rn. A is real symmetric, so there is 
an orthogonal matrix, P,  such that B = PtAP is diagonal. Since P is 
invertible, there is a nonzero vector z such that y = Pz. Thereforc, 

(Am+ly, y )  - - (Amf 'Pz ,  Pz) - - (PtAm+lPz, z )  - - (BTn+' z ,  4 
(ATny, Y )  (AmPz, Pz)  (PtATnPz, z )  (Bmz, z )  ' 

Since A is positive definite, we may assume without loss of generality that 
B has the form 

. .  
0 0 ... A, 

where XI 2 X p  2 . . . 2 A,, > 0. Let z = ( ~ 1 , .  . . , zn) # 0, and i 5 n be such 
that zi is the first nonzero coordinate of z .  Then 
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de tA ,=(z -1 )  

7.6 Canonical Forms 

X 1 1 1 1  1 
1 -z  2 - 1  0 + ( z - 1 )  0 2 - 1  0 
1 -z  0 2 - 1  0 0 z - 1  

Solution to 7.6.1: The minimal polynomial of A divides zk - 1 so it has 
no multiple roots, which implies that A is diagonalizable. 

Solution to 7.6.2: Assume A" is diagonalizable. Then its minimal poly- 
nomial, PAm (z), has no repeated roots, that is, 

/.&Am (z) = (z - al) ' ' ' (z - ak) 

where ai # aj for a # j. 
The matrix A" satisfies the equation 

(A" -alI)**.(A" -akl) = O  

so A is a root of the polynomial (z" - a1) - . . (z" - a k ) ,  therefore, p ~ ( z )  
divides this polynomial. To show that A is diagonalizable, it is enough 
to show this polynomial has no repeated roots, which is clear, because the 
roots of the factors zm -ai are different, and different factors have different 
roots. 

This proves more than what was asked; it shows that if A is an invertible 
linear transformation on a finite dimensional vector space over a field F 
of characteristic not dividing n, the characteristic polynomial of A factors 
completely over F, and if A" is diagonalizable, then A is diagonalizable. 

On this footing, we can rewrite the above proof as follows: We may 
suppose that the vector space V has positive dimension m. Let X be an 
eigenvalue of A. Then X # 0. We may replace V by the largest subspace of 
V on which A - XI is nilpotent, so that we may suppose the characteristic 
polynomial of A is (z - A)". Since A" is diagonalizable, we must have 
A" = X"I since A" is the only eigenvalue of A". Thus, A satisfies the 
equation zn - A" = 0. Since the only common factor of 2" - An and 
(z - A)" is z - A, and as the characteristic of F does not divide n, A = XI 
and, hence, is diagonal. 

Solution to 7.6.4: The characteristic polynomial of A is X A ( Z )  = z2 - 3, 
so A2 = 31, and multiplying both sides by A-', we have 
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2 .  Suppose now that 2 # 1 and -3.  Then A, is invertible and the charac- 
teristic polynomial is given by: 

t - 2  -1 -1 -1 
-1 t - 2  -1 -1 
-1 -1 t - 2  -1 
-1 -1 -1 t - 2  

X A ,  ( t )  = 

2 - t  1 1 1 
- 1 2 4  1 1 
- 1  1 z - t  1 

1 1 1 z - t  

Now an easy substitution shows that the minimal polynomial is 

so substituting t by A,, we have 

((2 - 1 ) I d  - &)((a:  + 3)14 - A,) = 0 
(2 - 1)(2 + 3)14 - 2 ( 2  + 1)A, - A: = 0 

multiplying both sides by A;', 

(2 - I)($ + 3)A;' = 2 ( 2  + 1)14  - A, 
= -A-,-2 

Solution to 7.6.6: Thc charactcristic polynomial of A is x ~ ( t )  = t3-8t2- 
20t-16 = ( t -4) ( t -2)2  and the minimal polynomialis p ~ ( t )  = (t-2)(t-4).  
By the Euclidean Algorithm [Her75, pag. 1551, there is a polynomial p( t )  
and constants a and b such that 

t" = p(t)pA(t) + at + b. 

Substituting t = 2 and t = 4 and solving for a and b yields a = 2'(21° - 1) 
and b = -211(2'- 1). Therefore, sincc A is a root of its minimal polynomial, 

3a+b  a 
A ' ' = a A + b I =  2a 4 a + b  ( -a -a a - t b  

Solution to 7.6.7: The characteristic polynomial of A is x ~ ( t )  = t2 - 
2t + 1 = (t - 1)2. By the Euclidean Algorithm [Her75, pag. 1551, there is a 
polynomial q( t )  and constants a and b such that tlo0 = q( t ) ( t -  1)2 +at+b. 
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Differentiating both sides of this equation, we get lootg9 = q'(t)(t - 1)2 + 
2q( t ) ( t  - 1) +a. Substituting t = 1 into each equation and solving for a and 
b, we get a = 100 and b = -99. Therefore, since A satisfies its characteristic 
equation, substituting it into the first equation yields A"' = lOOA - 991, 
or 

A'''= ( :lo _5qOg ) 
An identical calculation shows that A7 = 7A - 61, so 

A 7 =  ( 
From this it follows immediately that 

A-7 -512 -712 

Solution to 7.6.8: Counterexample: Let 

ca+dc cb+d2 ) ' A = ( o  0 1  o ) = B 2 = ( z  :)(: :)=( a2 + bc ab+ bd 

Equating entries, we find that c(a + d )  = 0 and b(a + d )  = 1, so b # 0 and 
a + d # 0. Thus, c = 0. The vanishing of the diagonal entries of B2 then 
implies that a2 = d2 = 0 and, thus, a + d = 0. This contradiction proves 
that no such B can exist, so A has no square root. 
Solution 2. Let 

.=(: ;) 
Any square root B of A must have zero eigenvalues, and since it cannot 
be the zero matrix, it must have Jordan Canonical Form [HK61, pag. 2471 
JBJ-l = A. But then B2 = J-'A2J = 0 since A2 = 0, so no such B can 
exist. 

Solution to 7.6.9: 1. Let 

then 
a2+bc ( a + d ) b  

A 2 =  ( ( a + d ) c  bc+d2 

Therefore, A2 = -I is equivalent to the system 

a2+bc = -1 
( a + d ) b  = 0 
( a + d ) c  = 0 
bc+d2 = -1 
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if a + d # 0 ,  the second equation above gives b = 0, and from the fourth, 
we obtain d2 = -1, which is absurd. We must then have a = -d and the 
result follows. 
2. The system that we get in this case is 

a 2 + b c  = -1 
( a + d ) b  = 0 
( a + d ) c  = 0 i b c + d 2  = - l -& 

As above, we cannot have a # -d. But combining a = -d with the first and 
fourth equations of the system, we get E = 0, a contradiction. Therefore, 
no such matrix exists. 

Solution to 7.6.10: Suppose such a matrix A exists. One of the eingen- 
values of A would be w and the other (1 + E ) ' / ~ ' W  where w is a twentieth 
root of -1. From the fact that A is real we can see that both eigenvalues 
are real or form a complex conjugate pair, but neither can occur because 
none the twentieth root of -1 are real and the fact that 

JWJ = 1 # (1 + p o  

make it impossible for them to be a conjugate pair, so no such a matrix 
exist. 

Solution to 7.6.11: A" = I implies that the minimal polynomial of A, 
p(z)  E Z[z], satisfies p(z)I(z" - 1). Let < I , .  . . ,Cn be the distinct roots of 
xn - 1 in C . We will separate the two possible cases for the degree of p: 

0 degp = 1. We have p(z) = z - 1 and A = I ,  or p(z) = z + 1 and 

0 deg p = 2. Cz and <j are roots of p for some i # j, in which case C3 = 
<i = [ say, since p has real coefficients. Thus, p(z)  = (z-C) (2 - 0 = 
z2 - 2!R(<)z + 1. In particular, 2!R(<) E Z, so the possibilities are 
X(<) = 0, f 1 / 2 ,  and fl .  We cannot have X(C) = f l  because the 
corresponding polynomials, (z - 1)2 and (z+ l)', have repeated roots, 
so they are not divisors of zn - 1. 

A = - I , A 2 = I .  

- 

X(C) = 0. We have p(z) = z2 + 1 and A2 = - I ,  A4 = I .  
X(C) = 1/2. In this case p(z) = z2 - z + 1. C is a primitive sixth 
root of unity, so A6 = I .  
!R(C)  = -1/2. We have p(z) = z2 + z + 1. C is a primitive third 
root of unity, so A3 = I .  

From the above, we see that if A" = I for some n E Z+, then one of the 
following holds: 

A = I ,  A' = I ,  A3 = I ,  A4 = I ,  A6 = I .  
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Further, for each n = 2, 3, 4 ,  and 6 there is a matrix A such that A" = I 
but Ak # I for 0 < k < n: 

a n = 2 .  

a n = 3 .  

( -4 '1 ) 
a n = 4 .  

a n = 6 .  

Solution to 7.6.12: Since A is upper-triangular, its eigenvaiues are its 
diagonal entries, that is, 1, 4, and 9. It can, thus, be diagonalized, and in, 
fact, we will have 

S-'AS= ( 0 4 0 )  

where S is a matrix whose columns are eigenvectors of A for the respective 
eigenvalues 1, 4, and 9. The matrix 

1 0 0  

0 0 9  

B = S ( O  1 0 0  2 0)s- '  

0 0 3  

will then be a square root of A. 
Carrying out the computations, one obtains 

1 1 1  1 -1 0 

0 0 1  
S =  ( 0  1 1 )  and S-'= (: 

11) 

giving 
B = ( O  1 2 1 -1 1 ) .  

0 0  3 

The number of square roots of A is the same as the number of square 
roots of its diagonalization, D = S-'AS. Any matrix commuting with D 
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preserves its eigenspaces and so is diagonal. In particular, any square root 
of D is diagonal. Hence, D has exactly eight square roots, namely 

Solution to 7.6.13: n = 1. There is the solution X = A. 
n = 2. A is similar to the matrix ( g g  0 0 0 0  g )  

( i ; ;  i ) .  
( i ; ;  ;). 

under the transformation that interchanges the third and fourth basis vec- 
tors and leaves the first and second basis vectors fixed. The latter matrix 
is the square of 

Hence, A is the square of 

n = 3. The Jordan matrix [HK61, pag. 2471 

0 1 0 0  .=( 0 0 0 0  0" 0" ; :) 
is a solution. 
n 2 4. If X k  = A, then X is nilpotent since A is. Then the characteristic 
polynomial of X divides x4, so that X4 = 0,  and, a fortiori, X" = 0 for 
n 2 4. There is, thus, no solution for n 2 4. 

Solution to 7.6.14: Suppose such a matrix A exists. Its minimal polyno- 
mial must divide t2 + 2t + 5. However, this polynomial is irreducible over 
W, so p ~ ( t )  = t2 + 2t + 5 .  Since the characteristic and minimal polynomials 
have the same irreducible factors, X A ( t )  = p A ( t ) k .  Therefore, deg X A ( t )  = n 
must be even. 
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Conversely, a calculation shows that the 2 x 2 real matrix 

0 -5 
1 - 2 )  

is a root of this polynomial. Therefore, any 2n x 2 n  block diagonal matrix 
which has n copies of A0 on the diagonal will satisfy this equation as well. 

Solution to 7.6.15: Let p ( t )  = t5 + t3 + t - 3. As p(A)  = 0,  we have 
p ~ ( t ) ( p ( t ) .  However, since A is Hermitian, its minimal polynomial has only 
real roots. Taking the derivative ofp, we see that p’ ( t )  = 5t4+3t2+1 > 0 for 
all t ,  so p ( t )  has exactly one real root. A calculation shows that p (  1) = 0, but 
p’(1) # 0. Therefore, p ( t )  = (t- l)q(t), where q ( t )  has only nonreal complex 
roots. It follows that pA( t ) I ( t  - 1). Since t - 1 is irreducible, p ~ ( t )  = t - 1 
and A = I. 

Solution to 7.6.17: Note that 

2 0 0  
A = ( O  0 -1 2 0 )  1 

can be decomposed into the two blocks (2) and ( Il y )  , since the space 
spanned by (1 0 O ) t  is invariant. We will find a 2 x 2 matrix C such that 
c4 = ( 21 y )  = D ,  say. 

The eigenvalues of D are 2 and 1, and the corresponding Lagrange 
Polynomials [MH93, pag. 2861 are pl(z) = (x - 2)/(1 - 2) = 2 - II: and 
p2(11:) = (x - 1)/(2 - 1) = x - 1. Therefore, the spectral projection of D 
can be given by 

2 0  0 0  
PI=- (  -1 1 ) + 2 ( :  ; )= (  1 1 )  

2 0  1 0  .=-(:  :)+( -1 1 ) = (  -1 0 )  

We have 
D = ( Y  : ) + 2 (  -1 O ) .  0 

As PI + Pz = Pz. PI = 0 and Pf = PI, P: = P2, letting C = (: :)+ 
2114 ( O ) = ipl + 21/4p2, we get -1 0 

c4 = pf + G + ( 2 1 / 4 ~ 2 ) 4  = p1 + 2p2 = D. 
0 
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( 210/4 2P/4 : ) 
o 1 - 2lI4 1 

Solution to 7.6.18: It suffices to show that every element w E W is a 
sum of eigenvectors of T in W .  Let a l ,  . . . , a, be the distinct eigenvalues 
of T.  We may write 

w = 211 + . . .  + 21, 
where each vi is in V and is an eigenvector of T with eigenvalue ai. Then 

i#j i#j 

This element lies in W since W is T invariant. Hence, 'ui E W for all i and 
the result follows. 
Solution 2. To see this in a matrix form, take an ordered basis of W and 
extend it to a basis of V ;  on this basis, a matrix representing T will have 
the block form 

because of the invariance of the subspace W with respect to T.  
Using the block structure of T ,  we can see that the Characteristic and 

minimal polynomials of A divide the ones for T .  For the characteristic 
polynomial, it is immediate from the fact that 

det(z1- [T]B) = det(s1- A )  det(z1- B)  

For the minimal polynomial, observe that 

where Ck is some T x (n-T)  matrix. Therefore, any polynomial that annihi- 
lates [TI also annihilates A and B; so the minimal polynomial of A divides 
the one for [TI. 

Now, since T is diagonalizable, the minimal polynomial factors out in 
different linear terms and so does the one for A, proving the result. 

Solution to 7.6.20: Let X be an eigenvalue of A and v a vector in the 
associated eigenspace, Ax. Then A(Bv) = BAv = B(Xv) = A(&), so 
Bv E Ax. Now fix an eigenvalue X and let C be the linear transformation 
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obtained by restricting B to Ax. Take any w E Ax. Then, since C is the 
restriction of B, 

rnB(C)W = rno(B)w = 0, 

so C is a root of r n ~ ( t ) .  It follows from this that mc(t)Im~(t) .  But B 
was diagonalizable, so m~ ( t )  splits into distinct linear factors. Therefore, 
mc(t) must split into distinct linear factors as well and so Ax has a basis 
of eigenvectors of C. As A is diagonalizable, V can be written as the direct 
sum of the eigenspaces of A. However, each of these eigenspaces has a basis 
which consists of vectors which are simultaneously eigenvectors of A and of 
B. Therefore, V itself must have such a basis, and this is the basis which 
simultaneously diagonalizes A and B. 
Solution 2. (This one, in fact, shows much more; it proves that a set of n, x n 
diagonalizable matrices over a field F which commute with each other are 
all simultaneously diagonalizable.) Let S be a set of n x n diagonalizable 
matrices over a field F which commute with each other. Let V = F". 
Suppose T is a maximal subset of S such that there exists a decomposition 
of 

v = @ z V ,  

where V,  is a nonzero eigenspace for each element of T such that for i # j ,  
there exists an element of T with distinct eigenvalues on V,  and V, . We claim 
that T = S. If not, there exists an N E S - T.  Since N commutes with all 
the elements of T ,  NV, c V,. Indeed, there exists a function a, : T -+ F 
such that w E V,, if and only if Mw = a,(M)v for all M E T.  Now if w E V,  
and M E T ,  

M N v  = N M v  = Nu,(M)  = a,(M)Nw 

so Nw E V,. Since N is diagonalizable on V ,  it is diagonalizable on V,. (See 
Problem 7.6.18; it satisfies a polynomial with distinct roots in K.)  This 
means we can decompose each V,  into eigenspaces V,,J for N with distinct 
eigenvalues. Hence, we have a decomposition of the right sort for T U N ,  

v = @i @3j K,j. 

Hence, T = S. We may now make a basis for V by choosing a basis for V,  
and taking the union. Then A will be the change of basis matrix. 

Solution to 7.6.22: The characteristic polynomial of A is 

so A is diagonalizable and a short calculation shows that eigenvectors asso- 
ciated with the eigenvalues 1 and 2 are ( 5 ,  -2 ) t  and (3, -l)t, so the matrix 
B is ( T2 yl). Indeed, in this case, B-'AB = (i 2"). 
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Solution to 7.6.24: The characteristic polynomial of A is x ~ ( t )  = (t  - 
l ) ( t  - 4)2. Since the minimal polynomial and the characteristic polynomial 
share the same irreducible factors, another calculation shows that p ~ ( t )  = 
( t  - l)( t  - 4)'. Therefore, the Jordan Canonical Form [HK61, pag. 2471 of 
A must have one Jordan block of order 2 associated with 4 and one Jordan 
block of order 1 associated with 1. Hence, the Jordan form of A is 

Solution to 7.6.26: Combining the equations, we get p(z)' = p(z)(z - 
i)(z2 + I) and, thus, p ( z )  = (z - i)2(z + 2) .  So the Jordan blocks of the 
Jordan Canonical Form [HK61, pag. 2471 J A ,  correspond to the eigenvalues 
f-i. There is at least one block of size 2 corresponding to the eigenvalue 
i and no larger block corresponding to i. Similarly, there is at least one 
block of size 1 corresponding to -i. We have x(z) = (z - i)3(z + i), so 
n = degx = 4, and the remaining block is a block of size 1 corresponding 
to i, since the total dimension of the eigenspace is the degree with which 
the factor appears in the characteristic polynomial. Therefore, 

1 0  0 

J A = ( ~  0 9 
0 0 0 4  

Solution to 7.6.27: 1. As all the rows of M are equal, M must have rank 
1, so its nullity has dimension n - 1. It is easy to see that M 2  = n M ,  or 
M ( M  - n1) = 0 ,  so the characteristic polynomial is X M  = z(z - n). 
2. If char F = 0 or if char F = p and p does not divide n, then 0 and n are 
the two distinct eigenvalues, and since the minimal polynomial does not 
have repeated roots, M is diagonalizable. 

If char F = p ,  p i n ,  then n is identified with 0 in F. Therefore, the minimal 
polynomial of M is p ~ ( z )  = z' and M is not diagonalizable. 
3. In the first case, since the null space has dimension n - 1, the Jordan 
form [HK61, pag. 2471 is 
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If charF = p ,  pJn, then all the eigenvalues of M are 0, and there is one 
2-block and n - 1 1-blocks in the Jordan form: 

0 0 ... 

Solution to 7.6.28: A computation gives 

-x21 x l l - 2 2 2  

x21 
T ( z:: x12  ) = ( 

2 2 2  

In particular, for the basis elements 

E l = (  

we have 

:), E 2 = ( :  i ) ,  & = (  y :), E4=( : y )  
TE1 = ( : ) = E2, TE2 = 0 ,  

The matrix for T with respect to the basis { E l ,  E2, E3, E4) is then 

0 0 - 1  0 

0 0  0 
0 0  1 

A calculation shows that the characteristic polynomial of S is X4. Thus, S 
is nilpotent. Moreover, the index of nilpotency is 3, since we have 

T2E1 = T2E2 = T2E4 = 0 ,  T2E3 = -2E2. 

The only 4 x 4 nilpotent Jordan matrix [HK61, pag. 2471 with index of 
nilpotency 3 is 

0 0 0 0  

which is, therefore, the Jordan Canonical Form of T .  A basis in which T is 
represented by the preceding matrix is 
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Solution to 7.6.29: A direct calculation shows that (A-1 )3  = 0 and this 
is the least positive exponent for which this is true. Hence, the minimal 
polynomial of A is p ~ ( t )  = ( t  - l)3. Thus, its characteristic polynomial 
must be x ~ ( t )  = (t - l)6. Therefore, the Jordan Canonical Form [IIKGl, 
pag. 2471 of A must contain one 3 x 3 Jordan block associated with 1. 
The number of blocks is the dimension of the eigenspace associated with 
1. Letting 5c = ( 2 1 , .  . . , 5c6)t and solving Ax = 2, we get the two equations 
$ 1  = 0 and 2 2  + 2 3  + 2 4  + 2 5  = 0. Since Z6 is not determined, these give 
four degrees of frecdom, so the eigenspace has dimension 4. Therefore, the 
Jordan Canonical Form of A must contain four Jordan blocks and so it 
must be 

0 0 0 1 0 0 ~  

' 1 1 0 0 0 0  
0 1 1 0 0 0  
0 0 1 0 0 0  

0 0 0 0 1 0  I \ 0 0 0 0 0 1  

Solution to 7.6.35: Since A is nonsingular, AtA is positive definite. Let 
B = m. Consider P = BA-'. Then P A  = B,  so it suffices to show 
that P is orthogonal, for in that case, Q = P-' = P* will be orthogonal 
and A = QB. We have 

p t p  = ( A ~ ) - ~ B ~ B A - *  = ( ~ t ) - 1 ~ 2 ~ - l  = ( A ~ ) - ' A ~ A A - ~  = 1. 

Suppose that we had a second factorization A = Q1B1. Then 
2 B = AtA = BtQiQ1 Bi = B;. 

Since a positive matrix has a unique positive square root, it follows that 
B = B1. As A is invertible, B is invertible, and canceling gives Q = Q1. 

Solution to 7.6.36: An easy calculation shows that A has eigenvalues 0, 
1, and 3, so A is similar to the diagonal matrix with entries 0, 1, and 3. 
Since clearly the problem does not change when A is replaced by a similar 
matrix, we may replace A by that diagonal matrix. Then the condition on 
a is that each of the sequences (On), (a"), and ( (3~)")  has a limit, and that 
at least one of these limits is nonzero. This occurs if and only if a = 1/3. 

Solution to 7.6.37: Let g be an element of the group. Consider the Jor- 
dan Canonical Form [HK61, pag. 2471 of the matrix g in F;2 a quadratic 
extension of F,. The characteristic polynomial has degree 2 and is either 
irreducible in F, and the canonical form is diagonal with two conjugate en- 
tries in the extension or reducible with the Jordan Canonical Form having 
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the same diagonal elements tnd a 1 in the upper right-hand corner. In the 
first case, we can see that g p  - l  = I and in the second gP(p-l) = I. 

7.7 Similarity 

Solution to 7.7.1: A simple calculation shows that A and B have the 
same characteristic polynomial, namely (x - 1)2(z - 2). However, 

0 0 0  0 1 0  
A - I = (  -1 -1 0 0 1 1 )  , B - I = (  0 0 1  0 0 0 ) .  

Since A - I has rank 1 and B - I has rank 2, these two matrices are not 
similar, and therefore, neither are A and B. 

Solution to 7.7.5: The eigenvalues of A an B are either *l and neither 
is I or - I ,  since the equation AB + BA = 0 would force the other matrix 
to be zero. Therefore, A and B have distinct eigenvalues and are both 
diagonalizable. Let S be such that 5'AS-l = (A Tl). Multiplying on the left 
by S and on the right by S-' the relations above we see that C = 5'BS-l 
satisfies C2 = I and (SAS-l)(SBS-l) 4- (SBS-l)(SAS-l) = 0. We get 

c = (  0 1/c ) for c # o  

and taking D = (2 :) we can easily see that T = DS satisfies 

Solution to 7.7.9: 1. Let A be any element of the group: 

(9 

(ii) 

Every element in a finite group has finite order, so there is an n > 0 
such that A" = I .  Therefore, (det A)" = det(A") = 1. But A is an 
integer matrix, so det A must be fl. 

If X is an eigenvalue of A, then A" = 1, so each eigenvalue has modulo 
1, and at the same time, X is a root of a second degree monic charac- 
teristic polynomial x ~ ( z )  = x2 +ax + b for A. If 1x1 = 1 then b = f l  
and a = 0, f l ,  and f2 since all roots are in the unit circle. Writing 
out all 10 polynomials and eliminating the ones whose roots are not 
in the unit circle, we are left with x 2  f 1, x2 fz + 1, and x2 f 22 + 1, 

sixth roots of unity. 
and thc possible roots are X = f l ,  f i ,  and and q, the 
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(iii) The Jordan Canonical Form [HK61, pag. 2471 of A, JA,  must be 
diagonal, otherwise it would be of the form J A  = (E i), and the 
subsequent powers (JA)' = ($ 'Ck-'), which is never the identity 
matrix since ks'-' # 0 (remember 1x1 = 1). So the Jordan Canonical 
Form of A is diagonal, with the root above and the complex roots 
occurring in conjugate pairs only. 

The Rational Canonical Form [HK61, pag. 2381 can be read off from 
the possible polynomials. 

(iv) A can only have order 1, 2, 3, 4, or 6, depending on A. 

Solution to 7.7.10: Let RA and Rg be the Rational Canonical Forms 
[HK61, pag. 2381 of A and B ,  respectively, over R; that is, there are real 
invertible matrices K and L such that 

RA = K A K - ~  
RB = LBL-? 

Observe now that RA and Rg are also the Rational Canonical Forms 
over C as well, and by the uniqueness of the canonical form, they must 
be the same matrices. If KAK-' = LBL-l then A = K-lLB(K-lL)-l ,  
so K-lL is a real matrix defining the similarity over R. Observe that the 
proof works for any subfield; in particular, two rational matrices that are 
similar over R are similar over Q . 
Solution 2. Let U = K + iL where K and L are real and L # 0 (otherwise 
we are done). Take real and imaginary parts of 

A(K + iL) = AU = UB = ( K  + iL)B 

and add them together after multiplying the imaginary part by z to get 

A(K + zL) = ( K  + zL)B  

for any complex z .  Let p ( z )  = det(K + zL). Since p is a polynomial of 
degree n, not identically zero ( p ( i )  # 0), it has, at most, n roots. For 
real zo not one of the roots of p ,  V = K + z0L is real and invertible and 
A = VBV-' .  

Solution to 7.7.11: The minimal polynomial of A divides (x - l)", so 
I - A is nilpotent, say of order T .  Thus, A is invertible with 

T- 1 . -  
A-l = ( I  - ( I  - A))-' = ( I  - A)' 

j =O 
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Suppose first that A is just a single Jordan block [HK61, pag. 2471, say 
with matrix 

1 1 0 . . -  

(0 1 1  ::: i )  
0 0 0 - . -  

relative to the basis {~TI,  ~ 2 , .  . . , vn}. Then A-' has the same matrix relative 
to the basis {q, 211 + w2,.  . . ,211 + 212 +. . . + un}, so A'and A-l are similar. 

In the general case, by the theory of Jordan Canonical Form, the vector 
space can be written as a direct sum of A-invariant subspaces on each 
of which A acts as a single Jordan block. By the formula above for A-l, 
each subspace in the decomposition is A-l-invariant, so the direct sum 
decomposition of A is also one of A-l. The general case thus reduces to 
the case where A is a single Jordan block. 

Solution to 7.7.12: The statement is true. First of all, A is similar 
to a Jordan matrix [HK61, pag. 2471, A = S-lJS,  where S is invertible 
and J is a direct sum of Jordan blocks. Then At = S t J t ( 9 ) - '  (since 
(S-l)t = (St)- ' ) ;  that is, At is similar to J t .  Moreover, J t  is the direct 
sum of the transposes of the Jordan blocks whose direct sum is J .  It will, 
thus, suffice to prove that each of these Jordan blocks is similar to its 
transpose. In other words, it will suffice to  prove the statement for the case 
where A is a Jordan block. 

Let A be an n x n Jordan block: 

Let el, . . . , en be the standard basis vectors for CC n ,  so that Aej = Xe, -tej-1 
for j > 1 and Ael = Xel. Let the matrix S be defined by Se j  = en-j+l. 
Then S = S-l, and 

S-lASej = SAen-j 

which shows that S-'AS = At 

Solution to 7.7.14: Using the first condition the Jordan Canonical Form 
[HK61, pag. 2471 of this matrix is a 6 x 6 matrix with five 1's and one -1 



7.8 Bilinear, Quadratic Forms, and Inner Product Spaces 411 

on the diagonal. The blocks corresponding to the eigenvalue 1 are either 
1 x 1 or 2 x 2, by the second condition, with at least one of them having 
dimension 2. Thus, there could be three 1-blocks and one 2-block (for the 
eigenvalue l), or one 1-block and two 2-blocks. In this way, we get the 
following two possibilities for the Jordan Form of the matrix: 

' 1 0 0 0 0  0 
0 1 0 0 0  0 
0 0 1 0 0  0 
0 0 0 1 1  0 
0 0 0 0 1  0 

, o  0 0 0 0 -1 

' 1 0 0 0 0  0 
0 1 1 0 0  0 
0 0 1 0 0  0 
0 0 0 1 1  0 
0 0 0 0 1  0 

, o  0 0 0 0 -1 

Solution to 7.7.15: Since A and B have the same characteristic poly- 
nomial, they have the same n distinct eigenvalues 11,. . . , 1,. Let x ( x )  = 
(x - 11)'~ -..(x - ln)'n be the characteristic polynomial and let p(z) = 
(x - 1 1 ) ~ ~  . . . (x - ln)mn be the minimal polynomial. Since a nondiago- 
nal Jordan block [HK61, pag. 2471 must be at least 2 x 2, there can be, 
at most, one nondiagonal Jordan block for N 5 3. Hence, the Jordan 
Canonical Form is completely determined by p(z )  and x ( x )  for N 5 3. If 
p ( z )  = ~ ( x ) ,  then each distinct eigenvalue corresponds to a single Jordan 
block of size equal to the multiplicity of the eigenvalue as a root of ~ ( x ) ,  so 
the Jordan Canonical Form is completely determined by ~ ( x ) ,  and A and 
B must then be similar. 

7.8 Bilinear, Quadratic Forms, and Inner Product 
Spaces 

Solution to 7.8.2: Every vector in W is orthogonal to w = (a ,  b, c) .  Let Q 
be the orthogonal projection of R3 onto the space spanned by v, identified 
with its matrix. The columns of Q are Qej, 1 5 j 5 3, where the e,'s are 
the standard basis vectors in R3. But 

Qel = (v,el)v = ( a  2 ,ab,ac) 

2 Qep = (v, e2)v = (ab, b , bc) 

Qe3 = (v, e3)v = (ac,  bc, c ). 2 

Therefore, the orthogonal projection onto W is given by 
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Solution to 7.8.3: 1. The monomials 1, t ,  t 2 , .  . . , tn form a basis for P,. 
Applying the Gram-Schmidt Procedure [HK61, pag. 2801 to this basis gives 
us an orthonormal basis p o , p l , .  . . , pTL.  The ( k  + l) th vector in the latter 
basis, pk, is a linear combination of 1, t ,  . . . , t k ,  the first k + 1 vectors in the 
former basis, with tk having a nonzero coefficient. (This is built into the 
Gram-Schmidt Procedure.) Hence, deg pk = k .  
2. Since pk has degree k - 1, it is a linear combination of po, p l ,  . . . , pk-1 ,  for 
those functions form an orthonormal basis for Pk-1. Since p k  is orthogonal 
to po,  p l ,  . . . , pk-1, it is orthogonal to p:. 

Solution to 7.8.5: Let n = dim E ,  and choose a basis v1,. . . , v, for E. 
Define the n x n matrix A = ( a 3 k )  by a j k  = B(vk, u 3 ) .  The linear transfor- 
mation TA on E induced by A is determined by the relations 

implying that TAU = c, B(v ,v j )v j  (v E E) .  It follows that El = kerTA. 
By similar reasoning, Ez = ker T A t ,  where At is the transpose of A. By the 
Rank-Nullity Theorem [HK61, pag. 711, dim El equals n minus the dimen- 
sion of the column space of A, and dim Ez equals n minus the dimension of 
the row space of A. Since the row space and the column space of a matrix 
have the same dimension, the desired equality follows. 

Solution to 7.8.7: 1. Since A is positive definite, one can define a new 
inner product ( , ) A  on Rn by 

(z, ! l )A = (Ax, Y)* 

The linear operator A-lB is a symmetric with respect to this inner product, 
that is, 

So there is a basis {vl ,  ... vn} of R", orthonormal with respect to ( , ) A ,  in 
which the matrix for A-'B is diagonal. This is the basis we are looking 
for; in particular, vi is an eigenvector for A-'B, with eigenvalue X i  and 

(v i ,  v j ) A  = & j  

( ~ v i , v j )  = ( A - ~ B V ~ , V ~ ) A  = ( ~ i ~ i , v j ) A  = ~ i S i j .  

2. Let U be the matrix which takes the standard basis to {vl, ...vn} above, 
that is, Uei = vi. Since the ei form an orthonormal basis, for any matrix 
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M ,  

in particular 
n 

UtAUei = x ( U t A U e i ,  ej)ej  
j=1 
n 

j=1 
n 

n 

j=1 

showing that UtAU = I .  
Using the same decomposition for U t B U ,  we have 

n 

UtBUei = x ( U t B U e a , e j ) e j  
j = 1  

n 

j = 1  
n 

j=1 

so Ut  BU is diagonal. 

Solution to 7.8.13: Suppose we have such u and u. By Cauchy-Schwarz 
Inequality [MH93, pag. 691, we have 

(u1v1 + u2v2)2 I (u: + u;)(w: + 21;). 

Since u-u = 0 ,  ( z L ~ u ~ + u ~ v ~ ) ~  = (ab)’; since IIuJI = 1 1 ~ 1 1  = 1, 1-a2 = us+ui, 
and 1 - b2 = vf + ui. Combining these, we get 

(ab)2 5 ( 1  - u2)(1 - b2) = 1 - a2 - b2 + (ab)’, 

which implies a2 + b2 5 1. 
Conversely, suppose that a2 + b2 5 1. Let u = (0 ,  d m ,  a) .  llull = 1, 

and we now find u1 and up such that uf + ug + b2 = 1 and u2u2 + ab = 0. If 
a = 1, then b = 0 ,  so we can take u = (0, 1 , O ) .  If a # 1, solving the second 
equation for u2, we get 

-ab 
v2 = -. 

Jc-2 
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Using this to solve for 211, we get 

J1 - a2 - b2 
d F 2  211 = 

By our condition on a and b, both of these are real, so u and 21 = (211,212, b) 
are the desired vectors. 

7.9 General Theory of Matrices 

Solution to 7.9.4: We will use a powerful result on the structure of real 
normal operators, not commonly found in the literature. We provide also 
a second solution, not using the normal form, but which is inspired on it. 
Lemma (Structure of Real Normal Operators): Given a normal o p  
erator on an euclidean space W", A, there exists an orthonormal basis in 
which the matrix of A has the form 

A" 

where the numbers A, = c, -t ir,, j = 1,.  . . , k and &+l,.  . . , A, are the 
characteristic values of A. 

The proof is obtained by embedding each component of W" as thc real 
slice of each component of C ", extending A to a normal operator on C n ,  
and noticing that the new operator has the same real matrix (on the same 
basis) and over C" has basis of characteristic vectors. A change of basis, 
picking the new vectors as the real and imaginary parts of the eigerivectors 
associated with the imaginary eigenvalues, reduces it to the desired form. 
For details on the proof we refer the reader to [Shi77, pag. 265-2711 or 
[HS74, pag. 1171. 

The matrix of an anti-symmetric operator A has the property 

Sincc anti-symmetric operators are normal, they have a basis of character- 
istic values, these satisfy the above equality and are all pure imaginary. 
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Thus, in the standard decomposition described above all characteristic 
values are pure imaginary, i.e., 01 = . . . = Ok = &+I = . . . = A, = 0 and 
the decomposition in this case is 

which obviously has even rank. 
Solution 2. Consider A the compZe&ficationof A,  that is, the linear operator 
from @ "  to @ l a  with the same matrix as A with respect to the standard 
basis. Since A is skew-symmetric, all its eigenvalues arc pure imaginary and 
from the fact that the characteristic polynomial has real coefficients, the 
non-real eigenvalues show up in conjugate pairs, therefore, the polynomial 
has the form 

X A ( t )  = t'ppl(t)"' ' '  'pr(t)" '  

where the p ,  's arc real, irreducible quadratics. 

nomial has the factor in t with power 1, that is, of the form 
From the diagonal form of A over C we can see that the minimal poly- 

P A ( t )  = = tpl ( t )nL'  ' '  'pr(t)'"'. 

Now consider the Rational Canonical Form [HK61, pag. 2381 of A. It 
is a block diagonal matrix composed of blocks of even size and full rank, 
together with a block of a zero matrix corresponding to the zero cigenvalues, 
showing that A has even rank. 

Solution to 7.9.5: Since A is symmetric it can be diagonalized: Let 

A = QDQ-' 

where D = diag(d1,. . . , d,) and each di is nonnegative. Then 

0 = &-l(AB + BA)Q = DC + CD 

where C = Q-lBQ. Individual entries of this equation read 
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so for each i and j we must have either cij = 0 or di = d j  = 0. In either 
case, 

which is the same as 

d .  . . - d . c .  = 0 acaj - j 23 

DC = CD = 0. 

Hence, AB = B A  = 0. 

Solution 2. Since A is symmetric, it is diagonalizable. Let v be an eigen- 
vector of A with Av = Xu, then 

A(Bv) = -BAv = -ABv 

that is, Bv is an eigenvector of A with eigenvalue -A. 
Using one of the conditions we get ( A  Bv, Bv) 2 0 but on the other hand 

(ABv,  Bv) = -X(Bv, Bv) 5 0 ,  so either X = 0 or Bw = 0. Writing A and 
B on this basis, that diagonalizes A, ordered with the zero eigenvalues in 
a first block we have 

A =  E B =  II 0 

0 

which implies that AB = 0 and similarly that B A  = 0. 

Solution to 7.9.11: Let Y = AD - BC. We have 

A D - B C  - A B + B A  ( a  :)(-; -:)=( CD-DC -CB+DA 

If Y is invertible, then so are 

(AD - BC)v = 0. Then 

( ) a n d x .  

Assume now that X is invertible, and let w be vector in the kernel of Y : 

A B  A B  
( C  D ) (  - ? v ) = O = (  C D ) (  1:) 

implying that Dv = Cv = Bv = Av = 0. But then X ( ; ) = 0,  so, by 

the invertibility of X ,  v = 0, proving that Y is invertible. 
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Solution to 7.9.12: If det B = 0, then det B = 0 (mod 2). Hence, if we 
can show that d e t B  # 0 over the field Z2, we are done. In the field Z2, 
1 = -1, so B is equal to  the matrix with zeros along the diagonal and 
1’s everywhere else. Since adding one row of a matrix to another row does 
not change the determinant, we can replace B by the matrix obtained by 
adding the first nineteen rows of B to the last row. Since each column of 
B contains exactly nineteen l’s, B becomes 

0 1 1 . . .  1 1 

. . .  
1 1 1 . . .  0 1 
1 1 1 . . .  1 1  

By adding the last row of B to each of the other rows, B becomes 

1 0 0 ... 0 0 

. . .  
0 0 0 . . .  1 0  
1 1 1 ... 1 1  

This is a lower-triangular matrix, so its determinant is the product of its 
diagonal elements. Hence, the determinant of B is equal to 1 over Z2, and 
we are done. 
Solution 2. In the matrix modulo 2, the sum of all columns except column 
i is the ith standard basis vector, so the span of the columns has dimension 
20, and the matrix is nonsingular. 

Solution to 7.9.13: Let C be the set of real matrices that commute with A. 
It is clearly a vector space of dimension, a t  most, 4. The set {sI+tA I s, t E 
R} is a two-dimensional subspace of C, so it suffices to show that there 
are two linearly independent matrices which do not commute with A. A 
calculation show that the matrices (7 i) and ( 

Solution to 7.9.14: Let 

;) are such matrices. 

A = ( :  i) and X = ( :  L ) .  
If AX = X A ,  we have the three equations: bz = yc, ay + bw = xb + yd, 
and cx + dz = za + wc. 

b = c = 0. Since A is not a multiple of the identity, a # d. The above 
equations reduce to ay = dy and dz = az, which, in turn, imply that 
y = z = 0. Hence, 

a 
o w  a - d  



418 7. Linear Algebra 

b # 0 or c # 0. We can assume, without loss of generality, that b # 0, 
as the other case is identical. Then z = cy /b  and w = x - y ( a  - d) /b .  
Hence, 

by 
bx - ay + dz/ 

) = (,)I+fA. bx  - a y  
CY 

Solution to 7.9.17: Define the norm of a matrix X = (x i j )  by 
llXll = Ixijl. Notice that if B k  , k = 0,1, .  . ., are matrices such that 

((BI,(( < 00, then C BI, converges, because the convergence of the norms 
clearly implies the absolute entrywise convergence. 

In our case, we have BI, = A'". The desired result follows from the fact 
that C ((A(('/k! converges for any matrix A. 

Solution to 7.9.18: Note that, if A is an invertible matrix, we have 

so we may assume that M is upper triangular. Under this assumption eM 
is also upper triangular, and if a l ,  . . . , aTL are M's  diagonal entries, then 
the diagonal entries of eM are 

eal , . . . , ean 

and we get 
n 

Solution to 7.9.23: 1. Let a = i t r (M) ,  so that tr(M - a1) = 0. Let 

The desired conditions are then satisfied. 
2. We have 

The trace of M is the sum of the traces of the seven terms on the right. 
We have tr(A) = tr(B) = 0. Also, 

tr(AS) = t r  ((AS)t) = tr (StAt) = tr(-SA) = -tr(SA), 

so tr(AS + SA) = 0 (in fact, tr(AS) = 0 since tr(AS) = tr(SA)). The 
desired equality now follows. 
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Solution to 7.9.25: We will prove the equivalent result that the kernel of 
A is trivial. Let x = ( X I , .  . . , x , ) ~  be a nonzero vector in Rn. We have 

n 

n 

i=l j - 1  

2: 0. 

So ( A x ,  x )  # 0 and A x  # 0, therefore, the kernel of A is trivial. 

Solution to 7.9.26: Suppose 5 is in the kernel. Then 

a , . % .  - - a3 i - c aijxj 
j # i  

for each i. Let i be such that 1xi( = maxk 1x1~1 = M ,  say. Then 

so 

Since the therm inside the parenthesis is strictly positive by assumption, 
we must have M = 0, so x = 0 and A is invertible. 

Solution to 7.9.27: It will suffice to prove that ker(I - A) is trivial. Let 
z = ( x I , x ~ , .  . . , be a nonzero vector in R", and let y = (I - A)x .  Pick 
k such that 1xkl = max(lx11,. . . , Ixnl}. Then 

n 
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Hence, y # 0, as desired. 
Solution 2. Let a < 1 be a positive number such that, for all i, we have 
Cj”=, laaj) 5 a. Then, 

And so, inductively, the sum of the absolute values of the terms in one row 
of A” is bounded by an. Thus, the entries in the infinite sum 

I + A + A2 + A3 + * * .  

are all bounded by the geometric series 1 + cr + cx2 + . . . , and so are 
absolutely convergent; thus, this sum exists and the product 

( I  - A)(I  + A + A2 + * .  .) = I 

is valid, so that the inverse of I - A is this infinite sum. 

Solution to 7.9.28: 1. If A is symmetric then, by the Spectral T h e  
orem [HK61, pag. 3351, [Str93, pag. 2351, there is an orthonormal basis 
{ e l ,  e2,. . . , e n }  for R” with respect to which A is diagonal: Aej = X j e j ,  

j = 1, . . . , n. Let 2 be any vector in R“. We can write z = c l e l + .  . . + cnen 
for some scalars c1,. . . , cn, and have Az = X l c l e l + .  . .+Xncnen. Moreover, 

))1112 = c:: + . . * + c; 

] ) A ~ 1 1 ~  = + . * .  + XZ,CZ, 
5 max{X:, ..., XE)(c:+...+cZ,> = ~ ~ 1 1 z l 1 ~ ,  

which is the desired inequality. 

2. The matrix ( 
eigenvalue is 0, yet it is not the zero matrix. 

) gives a counterexample with n = 2. Its only 



Appendix A 
How to Get the Exams 

A.l  On-line 

Open a Web browser of your choice, on the URL 

http://math.berkeley.edu/ 

and choose Preliminary Exams on the main page. You can then proceed to 
explore the set of exams or download them in several of the formats avail- 
able. When this page changes, you can do a search on the words Berkeley 
Preliminary Exam and you should be guided to a possible new location 
by one of the net search engines. 

To suggest improvements, comments, or submit a solution, you can send 
omail to the authors. If you are submitting a new solution, make sure you 
include your full name, so we can cite you, if you so wish. 

A.2 Off-line, the Last Resort 

Even if you do not have access to the net, you can reconstruct each of the 
exams using the following tables. This method should be used only as a last 
resort, since some of the problems have been slightly altered to uniformize 
notation and/or correct some errors in the original text. 
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Spring 77 

1.4.19 
1.5.3 
5.1.5 
5.8.4 
6.12.3 
6.1.1 
7.2.8 
7.7.14 
3.2.2 
2.2.15 
5.2.5 

6.13.3 
7.9.16 
7.9.15 
5.7.23 
5.12.12 
6.7.1 

6.1 1.15 
2.2.16 
1.2.4 

Summer 77 

7.1.4 
5.8.5 

6.11.4 
7.9.17 
5.1.2 
1.1.31 
7.6.23 
3.1.9 
7.4.22 
1.1.20 
2.2.17 
7.4.25 
5.2.4 
6.3.1 
4.1.12 
5.11.20 
6.11.10 
5.9.27 
6.13.4 
7.3.1 

Fall 77 

7.6.22 
7.3.2 

7.9.19 
7.4.15 
6.13.6 
5.10.1 
5.12.19 
3.2.3 
1.1.2 
1.6.2 
3.1.2 
4.1.3 
5.3.1 
5.1.1 
2.2.18 
7.4.1 
6.1.2 
6.11.2 
7.5.1 
5.9.1 

Spring 78 

1.6.8 
2.1.2 
5.7.4 
5.12.3 

6.11.11 
6.12.3 
2.3.1 
3.1.3 
7.6.24 
7.9.6 
5.11.3 
5.2.13 
3.1.4 
6.4.8 

6.11.28 
7.5.10 
2.3.2 
7.2.1 
1.5.4 

2.2.28 

Summer 78 

6.1.3 
6.12.1 
7.9.10 
7.3.2 
5.8.2 
5.6.5 

2.2.34,3.1.5 
4.1.14 
4.1.6 

2.2.23 
5.2.6 
5.7.3 

6.11.17 
7.7.9 
7.5.13 
7.6.31 
3.3.1 
2.1.6 
1.1.24 
2.2.34 

Fall 78 

1.2.6 
1.6.21 
2.2.38 
5.11.21 
5.8.6 
3.1.6 
6.4.1 
7.6.27 
7.8.11 
6.2.1 
2.2.14 
2.2.22 
2.2.24 
5.3.2 
5.5.9 
7.7.2 

6.2.10 
6.12.4 
7.6.4 

4.1.18 

Spring 79 

2.2.20 
7.8.12 
6.5.5 
4.2.2 
3.1.7 
5.9.14 
5.12.13 
7.7.13 
7.7.4 

6.11.18 
6.8.10 
6.4.9 
3.4.1 
2.2.39 
7.7.3 
5.2.7 
5.11.5 
1.6.29 
7.9.3 
1.4.16 

Summer 79 

7.5.6 
6.11.19 
2.2.33 
6.2.4 
1.4.23 
5.8.6 
5.4.3 
2.1.3 
7.4.17 
3.4.2 
7.7.6 

6.13.7 
7.1.1 
6.6.3 
5.2.8 
5.2.14 
2.2.25 
7.4.5 
1.6.22 
3.2.4 

Fall 79 

5.9.2 
5.5.10 
6.2.6 

6.11.13 
7.9.4 
7.5.2 
7.5.14 
1.3.11 
1.1.3’2 
3.4.3 
4.3.1 
4.1.15 
1.6.4 
3.2.6 
5.6.3 

5.12.17 
7.6.32 
7.9.2 

6.10.2 
6.7.3 

Spring 80 

1.7.1 
1.6.2 

2.2.13 
5.11.6 
5.5.5 
6.4.11 
6.13.5 
7.6.21 
7.9.13 
3.1.8 
2.3.4 
7.2.13 
6.5.10 
7.6.17 
7.1.6 
2.2.3 
6.5.6 
3.4.17 
5.5.3 
5.3.4 

Summer 80 

7.4.21 
7.6.16 
7.4.6 
6.2.3 
3.4.4 

5.11.7 
5.3.5 
4.1.4 
1.3.18 
2.2.6 
6.8.13 
2.2.12 

6.11.13 
7.7.5 
7.8.5 
1.6.17 
4.3.3 
5.9.6 

5.9.29 
3.1.9 

Fall 80 

1.1.33 
7.7.1 
5.7.2 
6.4.2 

5.12.17 
6.9.1 
1.7.6 
6.5.1 
2.2.11 
2.2.36 
5.10.2 
6.8.3 
1.3.9 
7.7.8 
3.2.7 
7.9.5 
1.6.4 
5.9.3 
4.2.3 
6.1.4 
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Spring 81 

2.3.5 
7.1.10 
6.9.10 
3.4.5 

6.11.29 
5.9.27 
5.12.6 
1.6.11 
7.5.19 
1.6.3 

5.11.18 
7.6.5 
1.3.16 
4.1.17 
6.10.10 
1.1.3 

7.6.33 
2.2.29 
6.1.7 
1.8.1 

Summer 81 

1.1.7 
6.2.5 
4.1.2 
1.5.5 

7.2.14 
4.1.19 
5.11.8 

6.11.20 
1.7.2 

7.5.14 
1.1.11 
6.9.9 
6.2.7 
1.4.24 
7.5.4 
1.6.23 
5.6.3 
7.7.10 
5.9.23 
3.2.6 

Fall 81 

5.12.12 
3.4.6 
6.5.9 
7.9.1 
1.3.10 
1.7.8 

6.11.4 
5.9.4 

7.2.11 
2.2.40 
7.9.9 
5.10.1 
2.2.5 
3.4.7 
5.5.14 
6.4.9 
1.2.10 
7.7.10 
1.1.6 
6.4.8 

Spring 82 

5.8.4 
4.1.7 
7.9.20 
2.2.21 
1.6.18 
1.1.12 
6.7.4 

5.12.12 
7.6.24 
6.3.4 
5.9.30 
4.1.16 
7.4.2 
1.8.2 
7.1.1 
6.4.12 
1.6.19 
5.4.3 
3.1.9 

6.1 1.22 

Summer 82 

7.6.24 
5.12.19 
4.3.4 
6.7.5 
5.9.19 
1.4.19 
7.2.12 
6.13.9 
5.2.9 

5.1.10 
5.7.5 

6.11.20 
1.7.3 
7.8.6 

5.5.12 
7.9.15 
2.2.8 
1.1.27 
7.5.4 
2.2.35 

Fall 82 

3.1.10 
6.11.13 
5.11.2 
7.2.1 
1.6.24 
7.5.15 
5.12.11 
6.4.6 
1.1.29 
5.1.8 
1.1.8 
7.7.6 
1.6.7 

7.4.16 
6.6.5 
3.1.11 
5.12.4 
4.3.5 
5.5.1 
6.7.3 

Spring 83 

1.5.12 
7.2.5 
5.3.3 
6.1.5 
3.1.12 
1.2.3 
6.2.8 

6.13.10 
2.1.8 

5.12.3 
7.6.34 
5.7.6 
1.6.25 
6.7.8 
5.11.5 
7.8.8 

5.12.9 
7.1.1 
3.1.9 
4.1.5 

Summer 83 

6.13.13 
5.8.8 
7.6.26 
1.4.1 
1.3.15 
7.1.12 
1.5.21 
6.6.4 
5.8.9 
1.7.7 

7.6.25 
1.2.8 
7.9.8 

6.5.11 
5.5.2 
5.7.7 
7.6.15 
3.1.13 
5.5.4 
1.4.17 

Fall 83 

5.12.24 
6.10.3 
2.2.19 
1.3.14 
7.5.16 
5.9.7 
6.6.1 
7.4.18 
3.2.9 
1.5.10 
1.4.18 
5.11.1 
3.1.14 
7.6.20 
5.10.3 
7.9.21 
6.12.2 
2.2.27 
6.11.23 
4.1.20 

Spring 84 

1.5.21 
6.1.9 
1.4.25 
1.1.17 
7.5.12 
1.3.7 
5.9.8 
3.4.8 
7.3.4 

6.10.11 
7.7.10 
3.1.15 
1.4.14 
6.10.4 
5.4.5 
7.6.2 
1.4.15 
1.2.5 
1.4.2 
6.7.9 

Summer 84 

6.4.3 
6.11.21 
7.4.8 

7.5.20 
5.11.9 
5.9.24 
2.2.32 
1.5.7 

3.4.10 
4.2.5 
6.5.2 
7.1.1 
7.9.14 
7.1.5 

6.11.25 
1.1.13 
5.2.10 
4.3.7 
3.2.5 

5.12.14 

Fall 84 

6.2.9 
7.9.22 
1.6.1 

5.12.15 
3.1.16 
6.13.11 
7.2.7 

7.5.18 
5.4.4 
1.4.18 
6.8.2 
7.4.19 
1.6.5 

5.12.16,5.11.20 
3.4.11 

6.11.30 
7.6.27 
7.4.24 
5.7.8 
1.1.14 
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Spring 85 

1.4.3 
6.1.10 
5.1.3 
5.2.11 

6.11.26 
7.5.24 
5.12.25 
3.2.13 
1.6.26 
7.5.8 

6.12.6 
5.12.17 
5.9.16 
1.5.22 
6.11.3 
1.6.27 
1.4.21 
7.5.17 
6.12.7 
5.5.15 

Summer 85 

7.6.9 
1.1.23 
7.6.35 
6.4.4 
6.11.1 
5.12.17 

1.5.6 
1.6.12 
1.4.5 

5.9.14 
6.3.3 
7.2.2 
6.11.6 
6.10.3 
5.5.6 
1.2.7 

5.9.28 
3.4.3 
1.3.1 

6.12.8 

Fall 85 

5.12.2 
5.9.15 
6.1 1.27 
6.12.4 
5.9.11 
7.5.25 
3.1.17 
1.5.20 
7.8.9 
1.6.10 
6.5.4 
5.8.1 
5.5.11 
7.5.9 
1.5.8 

6.12.9 
4.3.8 
6.1.11 
7.8.7 
1.5.9 

Spring 86 

7.4.20 
1.7.4 

5.11.10 
1.4.9 
6.9.2 
7.4.7 

3.4.12 
5.9.10 
6.4.7 
6.9.3 

5.12.1 
1.8.3 

7.5.11 
4.1.1 
7.4.10 

6.11.12 
3.4.13 
5.2.15 
6.7.2 

5.11.11 

Fall 86 

1.6.14 
5.1.4 
2.3.6 
5.9.20 
7.6.28 
3.1.18 

6.12.10 
1.4.13 

5.12.22 
1.1.5 
7.2.1 

4.1.10 
2.2.2 
7.8.13 

6.11.23 
3.1.19 
6.5.3 

5.11.12 
6.13.1 
1.5.11 

Spring 87 

4.1.11 
2.2.9 
5.7.9 

6.11.34 
1.6.28 
5.5.16 
3.2.10 
5.9.12 
7.3.4 

6.8.12 
1.4.20 
1.5.14 
2.2.19 
6.8.4 

5.7.21 
4.2.6 
3.3.2 

7.6.20 
6.12.5 
5.11.22 

Fall 87 

1.1.1 
1.6.9 
1.5.15 
2.2.30 
7.6.7 
6.6.6 
7.5.26 
6.12.1 
5.11.23 
5.5.17 
7.6.18 
7.7.10 
6.2.11 
6.10.2 
5.7.13 
5.9.8 
5.10.5 
3.1.23 
4.3.2 
1.1.28 

Spring 88 

1.4.10 
6.13.15 

7.3.3 
5.7.1 
6.1.12 
7.6.14 
6.10.5 
5.11.26 
1.5.19 
5.7.10 
6.5.7 
1.4.11 
6.2.6 
5.5.7 
7.6.6 
7.4.11 
5.5.18 
7.6.11 

6.13.16 
1.7.5 

Fall 88 

6.9.4 
5.7.22 
3.4.14 
7.6.29 
1.5.17 
1.2.11 
6.8.5 
5.9.25 
7.5.24 
6.8.11 
5.8.10 

6.11.32 
7.1.7 
6.7.6 
2.2.7 
5.11.4 
5.12.20 
4.3.6 

Spring 89 

1.3.22 
7.5.3 
1.2.12 
5.9.14 
6.4.13 
7.1.8 

3.4.18 
5.5.14 
6.4.5 

7.9.11 
6.9.5 

5.11.13 
6.5.12 
2.2.4 

7.9.12 
5.9.31 
6.10.6 
2.1.4 

Fall 89 

6.7.10 
1.4.22 
7.6.30 
5.5.16 
6.4.14 
4.1.8 
7.6.19 
1.5.21 

6.11.33 
1.3.5 

6.13.17 
5.8.11 
7.2.2 

4.1.13 
6.7.7 
5.9.2 
7.1.6 
1.1.25 

Spring 90 

1.4.4 
7.6.1 
5.9.21 
6.10.7 
1.3.12 
7.2.9 
5.12.7 
6.2.2 
1.2.2 
6.8.6 
5.8.12 
7.5.21 
1.4.7 
7.1.9 
5.3.6 

6.13.18 
1.5.9 
5.1.6 
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Fall 90 

1.1.15 
5.11.14 
6.10.8 
1.5.2 
7.5.27 
5.6.1 
6.4.15 
1.5.13 
7.8.2 
7.6.24 
1.2.1 

6.2.12 
5.5.10 
6.11.5 
7.4.13 
1.3.23 
6.1.6 
5.6.6 

Spring 91 

6.8.1 
5.4.3 

6.13.19 
6.9.6 
7.2.6 
2.3.7 
5.5.19 
7.2.4 
2.1.5 
6.6.2 
1.3.19 
1.3.21 
5.12.8 
3.4.9 
6.1.8 
7.7.11 
5.7.24 
1.4.12 

Fall 91 

6.2.6 
1.2.9 

5.11.15 
7.9.23 
1.4.7 
5.5.8 
3.4.15 
1.3.17 
6.3.5 
7.1.1 
4.2.7 
5.7.14 
7.5.23 
2.3.8 

6.11.8 
4.1.21 
2.2.10 
5.6.8 

Spring 92 

6.3.1 
7.6.12 
5.7.15 
4.1.9 
2.2.26 

6.11.31 
6.13.12 
5.12.4 
5.9.13 
7.6.13 
5.7.16 
7.5.22 
2.3.10 
6.11.4 
6.5.8 
1.3.3 

1.1.16 
5.7.17 

Fall 92 

7.7.1 
6.11.9 
5.9.5 
3.2.6 

6.2.13 
4.2.8 

5.11.16 
7.5.5 

5.7.11 
6.5.13 
7.8.5 
1.6.15 
5.12.7 
3.1.20 
6.4.6 
2.2.3 

5.10.4 
1.3.6 

Spring 93 

1.3.13 
7.9.27 
5.12.5 
6.7.4 
3.2.12 
7.7.14 
1.6.18 
6.8.8 
5.9.26 
1.1.26 
7.4.23 
5.7.18 
6.9.9 
3.1.21 
6.12.1 
2.2.1 

6.4.12 
5.5.13 

Fall 93 

4.2.1 
6.2.11 
5.2.3 
7.2.16 
3.2.11 
6.6.3 
2.2.39 
7.6.1 

5.12.21 
1.1.10 
6.9.7 

5.11.17 
6.8.6 
3.1.1 
7.5.6 
1.6.20 
7.8.3 
5.4.2 

Spring 94 

4.1.1 
7.9.28 
5.11.20 
6.4.16 
3.3.4 
7.7.12 
5.1.7 

6.11.16 
5.7.19 
1.5.18 
7.4.14 
5.7.20 
6.12.15 
3.4.16 
1.3.5 

1.1.18 
6.8.6 
5.10.6 

Fall 94 

1.3.20 
7.5.7 

5.11.25 
6.2.14 
3.3.3 
7.9.25 
2.2.31 
6.12.12 
5.12.23 
2.1.1 
7.7.14 
5.2.2 

6.12.14 
1.1.9 

7.2.15 
2.3.9 
6.9.8 
5.7.12 

Spring 95 

1.6.13 
7.6.36 
5.11.19 
6.12.13 
3.1.22 
6.10.9 
1.1.4 
7.4.3 

5.9.22 
1.6.6 
7.4.9 

5.11.24 
6.5.9 
3.3.5 

6.12.16 
4.3.4 
7.4.4 
5.3.8 

Fall 95 

6.2.15 
5.1.9 
5.2.12 
7.7.10 
6.9.11 
3.2.8 
5.4.4 
7.9.26 
1.3.8 

6.12.5 
5.8.7 
1.5.16 
5.2.1 

6.11.7 
1.4.26 
7.7.15 
7.2.10 
1.1.34 

Spring 96 

1.3.2 
4.1.1 

5.11.20 
5.9.9 
7.6.8 
7.3.3 

6.11.24 
6.13.14 
6.12.11 
1.1.19 
1.1.30 
2.2.37 
5.4.1 
5.4.3 
7.9.5 

7.5.16 
7.1.3 
6.6.6 
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Fall 96 

1.6.16 
1.2.7 

5.12.18 
5.6.7 
7.4.17 
7.7.5 
7.6.37 
6.13.8 

6.13.11 
1.1.21 
1.1.29 
5.9.8 
5.9.1 
5.5.2 
7.6.10 
7.6.3 

6.11.14 
6.8.13 

Spring 97 

1.3.18 
4.2.4 
1.5.13 
5.6.4 

5.12.26 
7.4.12 
7.5.9 
6.8.9 
7.9.29 
1.2.11 
3.2.1 
5.12.3 
5.7.22 
7.9.18 
7.2.3 

6.12.17 
7.1.2 
6.4.17 

Fall 97 

1.3.4 
1.4.23 
5.6.2 

5.12.19 
5.5.14 
7.1.11 
7.8.10 
6.4.10 
6.8.7 
1.1.22 
1.4.8 
2.1.7 
5.3.7 

5.12.10 
7.1.8 
7.7.7 
6.7.6 
6.3.6 

Spring 98 

5.9.17 
5.9.18 
4.3.8 
1.5.1 

6.10.1 
6.3.2 
7.5.10 
6.13.2 
7.9.7 
1.1.9 
7.8.1 
2.3.3 
5.8.3 
1.4.6 
7.8.4 
5.7.25 
7.7.16 
7.9.24 



Appendix B 
Passing Scores 

The passing sc 
Examination, 

U [- 
I T  

Spring 

1- 
Fall 

Ires and data presented here go back to the first Preliminary 
vhich was held on January 1977. 

Minimum # of students # of students % passing 
passing score taking passing the exam 

711120 15 9 60.0% 
641 120 41 28 68.3% 
701 120 10 5 50.0% 

I 

8oji20 24 17 70.8% 
841 120 17 13 76.5% 
641120 41 19 46.3% 
651120 10 4 40.0% 
711120 28 16 57.1% 

791120 40 28 70.0% 

711120 53 34 64.2% 
581120 27 13 48.1% 
661 120 66 42 63.6% 

701 120 11 5 45.5% 

691 120 22 17 77.3% 
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Date 

Spring 91 

Minimum # of students # of students % passing 
passing score taking passing the exam 

60/120 43 21 48.8% 
Fall 90 
Spring 90 

71 j120 89 50 56.2% 
681120 47 24 51.0% 

89 711120 56 18 32.1% I- Spring 89 661120 31 16 51.6% 

1 Spring 77 I 901140 42 29 69.0% 

Fall 88 
Spring 88 
Fall 87 
Spring 87 
Fall 86 
Spring 86 
Fall 85 
Summer 85 
Spring 85 
Fall 84 
Summer 84 
Spring 84 
Fall 83 
Summer 83 
Spring 83 
Fall 82 
Summer 82 
Spring 82 
Fall 81 
Summer 81 
Spring 81 
Fall 80 
Summer 80 
Spring 80 
Fall 79 
Summer 79 
Spring 79 
Fall 78 
Summer 78 
Spring 78 
Fall 77 
Summer 77 

701120 44 22 50.0% 
741140 25 16 64.0% 
811140 29 21 72.4% 
731140 46 31 67.4% 
931140 24 13 54.2% 
751140 37 25 67.6% 
891140 23 16 69.6% 
90/140 16 11 68.8% 
971140 19 12 63.2% 
991140 26 18 69.2% 
821140 10 6 60.0% 
821140 35 24 69.0% 
921 140 16 11 68.8% 
861140 14 7 50.0% 
811140 26 17 65.4% 
841140 15 8 53.0% 

901140 15 12 80.0% 
821140 15 10 66.7% 
651140 21 14 67.0% 

1061140 32 24 75.0% 
991 140 23 17 74.0% 
821140 24 12 50.0% 
88/140 30 17 56.7% 
841 140 13 7 53.8% 

101/140 15 7 46.7% 
971140 23 18 78.3% 
901140 17 12 71.0% 
891140 21 12 57.1% 
951140 32 19 59.4% 
809140 13 12 92.0% 
901140 20 18 90.0% 

881140 23 17 73.9% 



Appendix C 
The Syllabus 

The syllabus is designed around a working knowledge and understanding 
of an honors undergraduate mathematics major. A student taking the 
examination should be familiar with the material outlined below. 

Calculus 

Basic first- and second-year calculus. Derivatives of maps from R" to Rn, 
gradient, chain rule; maxima and minima, Lagrange multipliers; line and 
surface integrals of scalar and vector functions; Gauss', Green's and Stokes' 
theorems. Ordinary differential equations; explicit solutions of simple equa- 
tions. 

Classical Analysis 

Point-set topology of W" and metric spaces; properties of continuous func- 
tions, compactness, connectedness, limit points; least upper bound p r o p  
crty of W. Sequences and series, Cauchy sequences, uniform convergence 
and its relation to derivatives and integrals; power series, radius of conver- 
gence, Weierstrass M-test; convergence of improper integrals. Compactness 
in function spaces. Inverse and Implicit Function Theorems and applica- 
tions; the derivative as a linear map; existence and uniqueness theorems 



432 Appendix C. The Syllabus 

for solutions of ordinary differential equations; elementary Fourier series. 
Texts: [Ros86], [MH93], [Bar76], [Rud87]. 

Abstract Algebra 

Elementary set theory, e.g., uncountability of I[$. Groups, subgroups, nor- 
mal subgroups, homomorphisms, quotient groups, automorphisms, groups 
acting on sets, Sylow theorems and applications, finitely generated abelian 
groups. Examples: permutation groups, cyclic groups, dihedral groups, ma- 
trix groups. Basic properties of rings, units, ideals, homomorphisms, quo- 
tient rings, prime and maximal ideals, fields of fractions, Euclidean do- 
mains, principal ideal domains and unique factorization domains, polyno- 
mial rings. Elementary properties of finite field extensions and roots of 
polynomials, finite fields. Texts: [Lan94], [Hun96], [Her75]. 

Linear Algebra 

Matrices, linear transformations, change of basis; nullity-rank theorem. 
Eigenvalues and eigenvectors; determinants, characteristic and minimal 
polynomials, Cayley-Hamilton Theorem; diagonalization and triangulariza- 
tion of operators; Jordan normal form, Rational Canonical Form; invariant 
subspaces and canonical forms; inner product spaces, hermitian and unitary 
operators, adjoints. Quadratic forms. Texts: [ND88], [HK61], [Str93]. 

Complex Analysis 

Basic properties of the complex number system. Analytic functions, con- 
formality, Cauchy-Riemann equations, elementary functions and their ba- 
sic properties (rational functions, exponential function, logarithm function, 
trigonometric functions, roots, e.g., &). Cauchy’s Theorem and Cauchy’s 
integral formula, power series and Laurent series, isolation of zeros, clas- 
sification of isolated singularities (including singularity at m), analyticity 
of limit functions. Maximum Principle, Schwarz’s Lemma, Liouvillc’s The- 
orem, Morera’s Theorem, Argument Principle, Rouchk’s Theorem. Basic 
properties of harmonic functions in the plane, connection with analytic 
functions, harmonic conjugates, Mean Value Property, Maximum Princi- 
ple. Residue Theorem, evaluation of definite integrals. Mapping properties 
of linear fractional transformations, conformal equivalences of the unit disc 
with itself and with the upper half-plane. Texts: [MH87], [Ah179], [Con78]. 
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