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Preface

The Bequest of the Greeks is a study of problems, principles
and procedures which modern mathematics has inherited

from Greek antiquity. Not all the ideas and issues which had

agitated the great Greek minds, from Thales to Pappus, were
destined to live. Some were still-born, others moribund, many
withered on the vine, many more perished in the storm which
all but obliterated the glory of Hellas. Much has been written

on these topics, and this writer recognizes how important such
studies in mathematical archaeology are to a comprehensive
history of the field. However, The Bequest of the Greeks is not

a history of Greek mathematics. It deals only with such issues

as have survived the Grand Catastrophe, survived the long
hibernation of the Dark Ages, survived even the growing
pains of the Era of Restoration, and are alive today.

This work grew out of the author's experience with another

book, Number^ the Language of Science. Like that earlier work,
the present volume is addressed to two categories of readers.

Typical of the first group is the individual who has neither

the preparation nor the taste for the technical aspects of

mathematics, but who, upon reaching intellectual maturity,
has come to realize its importance to contemporary thought
and life. The gap in the mathematical education of such

readers is more than offset by their eagerness to learn and
their capacity of appraising and absorbing ideas.

On the other hand, there is the ever-growing group of

people who have acquired a more professional attitude towards

mathematics. The typical individual in this category is,

temperamentally, interested more in the "how" than in the

"why" of things. Thus, the origin and the evolution of the

methods he uses in his daily work should be of real concern to

him, inasmuch as this will help him to appraise the validity

of these methods as well as their limitations. But this is not

all. Some of the practices of the Greek mathematicians have

passed into oblivion not so much because modern discoveries

have rendered them obsolete, but because they were lost in
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"the shuffle of history." Indeed, quite a few of these practices

excel, both in efficacy and elegance, the routines which the

individual has learned on the school bench.

This desire on the part of the writer to reach two groups of

readers, so dissimilar in attitude, taste and interest, accounts

for the dual structure of the present work. Part One, The Stage
and the Cast, is designed for the general reader, and no effort

has been spared to stay within his mathematical ken. It is the

author's belief that the average high school curriculum is

fully adequate for this part of the work. Part Two, Anthology

of the Bequest, is more technical in character. Indeed, most of

the problems treated in the Anthology have only in recent

times reached a stage of fruition, while some remain unsolved

today. The reader with a penchant for mathematics will

experience no difficulty with the principles implied; but a

deeper understanding of these problems can be attained only

through diligent exertion. In the words of Spinoza: "Omnia

praeclara tam difficula quam rara sunt." All that is excellent

is as difficult as it is rare.

The Bequest of the Greeks is the first of three volumes which
will appear under the collective title Mathematics in Retrospect.

The second volume, Centuries of Surge, will follow shortly: its

thesis is the rebirth of mathematics and its prodigious progress
in the seventeenth and eighteenth centuries. The concluding
volume of the trilogy, The Age of Discretion, which deals with

the development of mathematics in the nineteenth century,
is in preparation, but the writing has not yet reached a stage
when a definite date can be set.

The rest of this preface is the defence of a title. To describe

in a few words the contents of a work is a difficult task at best,

but when these words are to convey to the prospective reader

the aims of the writer and the scope of his undertaking, then

the task becomes formidable indeed. Yet, sooner or later, the

writer of any book must face the problem of naming it. He
passes in review a number of possible word-arrays, rejecting
some because they err by excess, others because they err by
default. In the end, he settles on a compromise, consoling
himself that the preface may clear up the ambiguities of the

chosen title.

8



PREFACE

The title Mathematics in Retrospect is not only ambiguous, it

is ambitious as well. Indeed, the term "mathematics" embraces
so vast a field of human knowledge that only the writers of an

encyclopaedia would be entitled to use it as a title of their

work, and the present work is not an encyclopaedia in any
sense of the word. To be sure, the centrifugal trend of the

author's mind did cause his interests to scatter in many direc-

tions; still, he found the more subtle aspects of modern mathe-
matics beyond his ken or reach, with the result that such

topics as topology, point sets, lattices, and many others too

numerous to mention, will not be even touched upon. If,

despite these gaps, the author resolved to use the title
*

'mathe-

matics" in all its bare audacity, it is because he could not

find a more proper term to qualify the variety of topics handled
in the book.

The phrase in retrospect is worse than ambiguous : it is suscep-
tible of at least three interpretations. While the words suggest an
historical approach, they could fittingly adorn the title page
of a curricular survey, and just as fittingly be used to describe

a book of reminiscences. Strangely enough, any of these seem-

ingly contradictory interpretations could aptly apply to the

present work.

For, though this work is not a history of mathematics, it

does aim at restoring the historical perspective which the

undergraduate curriculum has a tendency to distort. Thus, the

historical approach has been freely used throughout in tracing
mathematical ideas and processes to their sources and stressing,

at the same time, the methods used by the masters of the

past.

Again, while this book is not a review of an undergraduate
curriculum, it does aim at integrating the experience of an
individual who, after being exposed to these ideas and pro-
cesses during a protracted but rather immature period of

life, is about to plunge into the more advanced realms of

mathematics incident to graduate study.

Finally, while this book is not a collection of reminiscences,

the author has made no attempt to restrain the subjective
element. Indeed, in a certain sense, this is the record of a man
who for more than four decades has been studying mathe-
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matics, teaching it, writing it, and applying it. Rightly or

wrongly, the author cherishes the hope that this record will

prove to be of some value to those who aspire to cultivate

mathematics either as a vocation or as an avocation.

TOBIAS DANTZIG
Pacific Palisades

California

April, 1954
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Chapter One

ON GREEKS AND GRECIANS

A dazzling light, a fearful storm, then unpenetrable
darkness.

EVARISTE GALOIS

The stage on which were enacted the early episodes of the

drama which I am about to unfold was Ancient Greece; the

cast bore names unmistakably Greek; and the medium through
rhich they conveyed their thoughts and deeds to their peers in
iUure was Greek, even though some of the records of these

jghts and deeds have passed through Latin and Arabic

,nslations before reaching us. In these records we find the

;rms of theories and problems which have agitated the mathe-

iatical world ever since, and of which some remain unsolved

this day. We are told, indeed, that in mathematics most

ads lead back to Hellas, and thus a book which makes any
storical pretensions at all must needs begin with the question :

rho were these Ancient Greeks?

The term conjures up in our minds a group of Aryan tribes,

vvhich had originally settled on the southern part of the Balkan

Peninsula and adjacent islands of the Aegean Sea; then, spread-

ing out in all directions, eventually reached the shores of

Asia Minor, Lower Italy and the African littoral. The insular

character of the land and its maritime activities encouraged

independence and local rule; yet, dwelling as these people did

at the very gateway of Europe, and menaced as they continu-

ally were by Oriental encroachment, they were often driven to

"totalitarianism" as a means of self-preservation. Thus Ancient

Greece became the proving ground of that struggle between

oligarchy and democracy which has prevailed to this day; and

as such we know it best.
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But this is just one aspect of the complex pattern which the

term evokes in our minds. In Ancient Greece stood the cradle

of our culture: literature and philosophy, architecture and

sculpture, in the various forms in which these arts are cultivated

today, all had their origin in Greece. The songs of her poets,
the works of her sculptors and the tracts of her philosophers are

not mere monuments of a glory that was, but sources of study
and inspiration today and, probably, for many centuries to

come. Nor was the genius of these people limited to the arts

and letters; their penetrating insight into the mysteries of

number, form and extension had led them to develop to a

high degree of perfection a discipline which they named mathe-

matics, and which was destined to become both the model and
the foundation of all sciences called exact.

This pattern becomes even more amazing when we con-

template that all this magnificent culture was erected in a few

short centuries. We are told, indeed, that this great intellectua

upheaval had reached its peak in the fifth century B.C.; t"

soon afterwards a general and rapid decline had set in,

though a fatal blow had been struck at the very roots of t

mighty tree, a blow from which it never recovered; that aftt

lingering on for a few more centuries, vainly endeavouring t

live up to the grandeur of its past, it had finally succumbed
the coup de grace administered by rising Rome.

Such is the picture of Ancient Greece as we perceive it through
the thick historical fog of two thousand years. It is a perplexing

picture, to say the least, for, as far as we know, nothing that

ever happened before, or since, has even remotely resembled it.

It is a picture of a people numerically insignificant, even when
measured by standards of the Ancient World, which in the

course of a few centuries erected a civilization of unprecedented

magnitude, bequeathing to mankind for all time to come
immortal treasures of literature, philosophy and mathematics.

And the mystery becomes even more profound when we attempt
as is indeed our duty to appraise this past in the light of the

16
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present. For the modern representatives of this ethnic group,
far from exhibiting the acumen and finesse of their illustrious

forebears, have contributed so little to the intellectual and
artistic life of our time that it is difficult to conceive of any kin-

ship between this Balkan people and the intellectual giants to

whom our culture owes so much.

Is there anything wrong with this picture? Could it be that

it is but another cliche, one of the many synthetic products of

the diversified industry which passes today for liberal education?

Well, this much is certain: in so far as the history of mathematics

is concerned, this conception of Ancient Greece calls for a

wholesale and drastic revision.

To begin with, the mathematical activity of Ancient Greece

reached its peak during the glorious era of Euclid, Eratosthenes,
Arfchimedes and Apollonius, a time when Greek letters, art and

phjilosophy were already on the decline. There is a modern

counterpart to this singular phenomenon. It was in the sixteenth

ntury, the age of Cavalieri, Cardano, Galileo and Vieta, that

mthematics was reborn; and the resurgence took place when
he renaissance in arts and letters had already run its course,

and the very names of Dante and da Vinci had become
memories. Galileo was the central figure of that era, and the

fact that he died one week before Newton's birth has been the

subject ofmuch historical comment. It is as significant, perhaps,
that Galileo was born in 1564, within a few months of the

death of the last great representative of Italian renaissance,

Michelangelo.
In the second place, while Roman contributions to mathe-

matics were less than negligible, there is no evidence what-

soever that either the Republic or the early Empire had in any

way hampered its progress. The eclipse of mathematics began
with the Dark Ages, and the blackout did not end until the

last Schoolman was shorn of the power to sway the mind of

man.
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Lastly, it was not Greece proper but its outposts in Asia Minor,
in Lower Italy, in Africa that had contributed most to the

development of mathematics. Some of these outposts were
Greek conquests, others had come under Greek domination

through alliance or trade. Moreover, since the Greeks had no

Gestapo to protect their Aryan blood from pollution, racial

intermingling was widespread, and there is no evidence that

these misalliances were frowned upon by Greeks of pure strain

To be sure, the Greeks did divide mankind into barbarous

and Hellenes; yet, scions ofbarbarian families who had adtpted

Greek names and customs were viewed by Greeks as Helfnes.

Thales of Miletus is a case in point. From all accounts h6vas

of Phoenician origin, as was, indeed, Pythagoras; still, not oly

was Thales classed by his contemporaries as a Greek >ut

proudly hailed by them as among the seven wisest GreeksAs

to his own attitude, listen to the words which one biograper

puts in his mouth: "For these three blessings I am gratefuto
Fortune : that I was born human and not a brute, a man id

not a woman, a Greek and not a barbarian."

In the centuries of Euclid and Archimedes Greek was tlu

language of most educated men, whether they hailed from

Athens, Syracuse, Alexandria or Perga. The significance of

this will not escape the American observer familiar with the

many melting pots strewn over this wide land. Could one assert,

that a man was of Anglo-Saxon blood because he was named
Archibald or Percival and enjoyed a good command of English?
Is it not equally naive to contend that a man who lived in the

third century B.C. was racially a Greek because he called himself

Apollonius and wrote in Greek?

The shores of the Mediterranean harboured many a melting

pot into which Greeks and Etruscans, Phoenicians and

Assyrians, Jews and Arabs were promiscuously cast. Who can

tell today how the Aryans and Semites had been apportioned
within these seething brews, or the Hamites, or the Ethiopians,
for that matter? The motley mash passed into the sewers of

history without leaving a trace of its composition behind it. The

18
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distilled essence alone remains, bottled in vessels which bear

Greek inscriptions.

"A dazzling light, a fearful storm, then unpenetrable darkness."

So wrote Galois on the eve of his fatal duel; and if we did not

know that he intended these words as a summary of his own
short span of nineteen eventful years, we could take it as a

description of the era of Hellenic mathematics.

What brought about this brilliant progress, and what caused

the subsequent eclipse? I shall not add my own speculations to

those of Taine and Comte, and Spencer, and Spengler and
countless other historians of culture. This much isjclear: mathe-
matics flourished as long as freedom of thought prevailed; it

decayed when creative joy gave way to blind faith and fanatical

frenzy.



Chapter Two

THE FOUNDERS

To Thales . . . the primary question was not What

do we know, but How do we know it, what evidence can

we adduce in support of an explanation offered.

ARISTOTLE

Six centuries before the zero hour of history struck, there thrived

on an Aegean shore of Asia Minor, not far from what today
exists as Smyrna, a group ofGreek settlements which went under

the collective name of Ionia. It consisted of a dozen or so towns

on the mainland, of which Miletus was the most prosperous,
and of about as many islands, of which Samos and Chios were

the largest. When measured by present-day standards, the

territory was so small that if modern Smyrna were run by
American realtors all that was once Ionia would be reduced to

mere suburban "additions" to the "greater city."

Here, within the span of about fifty years, were born the twr

"Founders" of mathematics, Thales of Miletus and Pythagoras
of Samos. According to some of their biographers both were of

Phoenician descent, which seems plausible enough since most

of the coast of Asia Minor was at that time honeycombed with

hoenician colonies.

these Phoenicians? We remember them chiefly today
^ntors of the phonetic script which was so vast an

t over all the previous methods ofrecording experi-

orinciple at least, it has undergone no significant

wenty-five hundred years which followed. The
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Greek alpha, beta, gamma, as well as the Hebrew aleph, beth,

gimel are but adaptations of the Phoenician symbols for these

letters.

And yet, having bestowed upon mankind this marvellous

method of recording events, the Phoenicians left practically
no records of their own, and what little we know of them today
we owe to Greek or Hebrew sources. They were a Semitic tribe,

and their homeland was what we call today Syria. As Ganaanites,

Moabites, Sidonians, they fill many a page of the Bible.

Apparently, whenever they did not engage the Hebrews in

mortal combat they fought them with subtle propaganda,

inducing the fickle sons of Israel to abandon Jehovah for Baal

and other more tangible gods.
The Greeks knew the Phoenicians under a different guise.

They spoke of them as crafty merchants and skilled navigators,
and called them "Phoenixes," i.e., red, because of the ruddy

complexions which the Mediterranean sun and winds had

imparted to these ancient mariners. For, the Phoenicians roved

that "landlocked ocean of yore" from end to end, exchanging
wares and founding colonies, such as ill-fated Garthage, or

Syracuse, the birthplace of Archimedes, who, reputedly, was
also of Phoenician descent.

i said tnat Thales was classed by the Greeks as one of the Seven

Sages. Indeed, he was the only mathematician so honoured,
and it was his reputed political sagacity and not his mathe-

matical achievements that had earned him the title. Because of

this distinction, Thales was the subject of many historical

studies, with the result that much had been written on his life

and deeds. Of what value are these biographical accounts?

Here are some highlights from which you can draw your own
conclusion.

We are told by one of these commentators that Thales was

so keen an observer that nothing would escape his alert atten-

tion; yet, according to another, he was so absent-minded that

even as a grown-up man he had to be followed on his walks by

21
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his nurse lest he land in a ditch. We are informed by one that

he was a seasoned merchant in salts and oils, and that it was the

pursuit of this trade that had taken him to Egypt; but another

tells us that he had come to Egypt as a very young man, and

that, struck by the learning of the priests, he had tarried among
them for more than a quarter of a century, returning to

Miletus in advanced middle age. According to one account he
had learned all he knew of geometry from these very priests ;

according to another he was entrusted by the Pharaoh with

the task of determining the height of the Great Pyramid, a

problem which the priests had vainly tried to solve.

The accounts on his views, social, political or philosophical,
are just as confusing. Some tell us that he was a confirmed

bachelor, that he had found an outlet for his paternal instincts

in adopting his sister's family, that once when asked why he
did not marry and have children of his own since he loved

children so much, he replied: "Just because I love children so

much." Other biographers, however, assure us that Thales had
married and lived to be a patriarch, surrounded by children

and grandchildren. Plutarch holds that Thales had democratic

leanings, in support ofwhich he quotes his letter to Solon. There
Thales invites Solon to make his home in Miletus, apologizing,
at the same time, that his native city is under the rule of a

tyrant. Again, once when asked what was the strangest sight
his eyes had perceived, he allegedly replied: "A tyrant ripe in

years." But other sources have it that upon his return fron

Egypt Thales made his home with the Milesian tyrant, tha

for many years he acted as the latter's counsellor at large, am
that it was, indeed, on the advice of Thales that the dictato

had wisely declined a tempting alliance with Croesus.

The accounts on Pythagoras may be less at variance, but they
are bewildering enough in other respects, for, in addition to

the confusing versions of the chroniclers, we have to contend

here with disciples who would put into the mouth of their dead
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Master anything that fitted an occasion or proved a point.

Indeed, Pythagoras became the centre of a cult which persisted
for many centuries and exerted a tremendous influence on
scientific and religious thinking.

It is claimed that not only had he visited Egypt, but that his

travels had taken him much farther East; that, in fact, much
of the knowledge which he later conveyed to the Hellenes had
been imparted to him by Persian Magi and the priests of

Ghaldea. One is almost willing to believe this after examining
the medley of views and taboos ascribed to Pythagoras. Yes,
taboos since many of the rites of the sect later rationalized by
his followers into principles have all the earmarks of taboos.

A case in point is the alleged Pythagorean aversion to animal

flesh. I say alleged, for, on this score, too, there is no unanimity,
some biographers asserting that Pythagoras celebrated his

mathematical discoveries by sacrificing oxen to the gods, while

others go so far as to claim that he was the first to introduce

meat into the diet of Greek athletes who hitherto had been

training on figs and butter.

Some followers of Pythagoras traced the interdiction to his

doctrine of metempsychosis. According to them, the Master

taught that of the three attributes of the soul only reason was

exclusively human, while emotion and intelligence belonged to

animals as well; that upon man's death his soul migrated from

nimal to animal; and that, consequently, by killing an animal

ne might mutilate a soul. All this makes beautiful reading but

ails to explain why Pythagoras extended his dietetical pro-
hibitions to beans. Indeed, according to Diogenes Laertius, this

bean cult was the indirect cause of his death. Here is the story

, for what it is worth.

When Pythagoras returned from his Oriental travels, he

found his native Sainos under the rule of a tyrant. He then pro-
ceeded west and settled in Crotona, a prosperous city on the

heel of the Italian Boot. There he eventually established a

school and, incidentally, acquired great political power. Now,
those were the days when totalitarianism was making serious

inroads into Greek democracy, and so, as time went on, an

opposition party arose which accused Pythagoras of dictatorial

designs. A frenzied mob set fire to his mansion. The Master
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managed to escape, but having reached in the course of the

ensuing pursuit a field of beans, he chose to die at the hands

of his enemies rather than to trample down the sacred plants.

The reader will have realized by now what a formidable task

it would be to pick the few sound kernels from this biographical

chaff, let alone use the material to analyse the achievements of

the Founders. And yet, behind the hazy mist of these fanciful

tales and legends the portraits of the two men emerge, mere
silhouettes perhaps, but silhouettes that become much less elusive

and confusing when viewed as parts of the larger panorama of

classical mathematics.

Neither Thales nor Pythagoras left any writings behind. In

fact, the earliest mathematical work of any kind available to us

today is Euclid's Elements. This does not mean that the mathe-
maticians of the pre-Euclidean age had completely neglected
to put their thoughts on parchment. On the contrary, The
Mathematical Roster of Eudemus mentions two textbooks on
mathematics written within one hundred years of Thales'

death ; one of Anaximander of Miletus, a pupil of Thales, the

other by Hippocrates of Chios. However, these works, as man*n
others of that period, were lost in the course of the next two

thousand years. The same fate was shared by at least two works
of Euclid, and by many tracts and treatises of the post-
Euclidean period.

Now, most of these lost writings were still available in the

fourth century A.D., when Pappus of Alexandria wrote his

great book The Synagogs (Collection). What happened to this

sizable literature? A few of these found their way to Arabia and
were eventually restored to Europe, thanks to the enlightened
care of Moslem scholars

;
others were destroyed when the great

Alexandrian library was burned to the ground on the order of

Bishop Theophilus, Anno Domini 392; still others perished in

the darker ages which followed.

As a result, the only sources which could throw light on the
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pre-Euclidean period are some passages from the Dialogues of

Plato; some casual remarks found in the writings ofArchimedes,

Apollonius, Hero and others ;
the Collection of Pappus which

may be viewed as a sort of encyclopaedia of Greek mathe-

matics; and fragments of an already mentioned essay on the

history of mathematics written by a contemporary of Euclid,
one Eudemus of Rhodes, as quoted by the Platonist com-
mentator Proclus seven centuries later.

Unfortunately, Plato's opinions on matters mathematical were
vitiated by a number of factors. In the first place, he was a

Pythagorean par excellence. Try as he might, he could not free

himself of the tendency to attribute most achievements in philo-

sophy and in mathematics to either Pythagoras or his adherents.

What is more, there is little evidence that he tried to free himself

of that bias. Thus, we find Thales barely mentioned in the

Dialogues; as to Hippias, Hippocrates and Democritus, who had
either kept aloof from the School or had openly opposed it,

they were treated with contemptuous silence.

In the second place, despite the vociferous claims of the

^latonists and Neoplatonists, Plato was not a mathematician,

^o Plato and his followers mathematics was largely a means to

in end, the end being philosophy; they viewed the technical

Aspects of mathematics as a mere device for sharpening one's

wits, or at most as a course of training preparatory to handling
the larger issues of philosophy. This is reflected in the very
name "mathematics," a literal translation of which is a course

of studies or, as we would say today, a curriculum. It was in this

sense that the term was used in the Platonic Academy, and it

was not until later that mathematics became the name of the

science of number, form and extension.

What interested Plato most in mathematics were the meta-

physical issues which lay back of its concepts. The very topics

treated in the Dialogues give eloquent evidence to that effect.

Thus, the so-called Pythagorean proposition which binds the sides
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ofa right triangle received but casual treatment in the Dialogues,

and even then the emphasis was on the number-theoretical

aspects of the problem. On the other hand, such topics as

harmony, triangular numbers, figurate numbers, and many other

themes which we view today as more or less irrelevant, if not

trivial, were taken up at length. Indeed, the guiding motive

behind the mathematical predilections of the Pythagoreans
and Platonists was ofa type which the professional philosophers
call metaphysical but which for the nonprofessional have all the

earmarks of the occult.

The Dialogues were written more than one hundred years after

the death of Pythagoras. In the course of these one hundred
odd years the doctrines propounded by the Master had been

vigorously attacked, first by the Ionian philosophers who fol-

lowed in the footsteps of Thales, then by the Sophists who were
led by Parmenides of Elea. The critique of the opponents and
the defence of the proponents fill many an eloquent page of the

Dialogues, and these, vivid pages paint a far more convincing

portrait of Pythagoras than do the extravagant tributes of his

zealous followers.

These pages reveal a religious mystic who viewed number
as the key to the plan which the Supreme Architect had usec

in fashioning the universe. Be it the movement of heavenly
bodies or the composition of matter, the structure of thought or

the principles of human conduct, everything was expressible
in number because all was governed by number. It was the

philosopher's mission to interpret the work of the Creator by
deciphering, as it were, the intricate scroll of creation; but to

do this, he must needs first master the code in which this scroll

was written, and this code was mathematics.

"Number rules the universe." Did Pythagoras foreshadow

in this dictum the vast system of formulae and equations by
means ofwhich modern science links the phenomena of nature,
as Galileo foreshadowed it two thousand years later, when he

wrote: "The universe is the grand book of philosophy. The
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book lies continually open to man's gaze; yet, none can hope
to comprehend it who has not first mastered the language
and the characters in which it is written. This language is

mathematics; these characters are triangles, circles and other

geometrical figures."

Or did Pythagoras conceive the scheme of creation as a sort

of supernumerology which assigned to everything material or

spiritual an integer, and reduced the relations between things
to operations on these integers? Most of us today would view

these two attitudes as irreconcilable, extolling the first as

scientific and branding the second as occult. But to Pythagoras,
and to his followers for centuries to come, the line of demarca-
tion was by no means so sharp.

8

We find among the writings of the Pythagoreans such

undisguised numerology as this : two being the number of man
and three that of woman, Jive must of necessity be the number of

marriage) since marriage is the union of the two sexes
;
or that

perfect numbers are symbols of perfection, human or divine,

since such a number is the sum of its divisors, hence self-contained

ind complete, i.e,, perfect. In music, astronomy and geometry
his numerology assumed more subtle forms. For instance,

instead of representing a geometrical figure by a single number,
the Pythagoreans assigned to it a number type. This accounts

for their extraordinary interest in triangular, square and figurate

numbers which appear so utterly inconsequential today.
But we also discover in the Pythagorean speculations more

than a mere germ of what, for want of a better name, we call

today the scientific attitude. That this attitude remained in an

embryonic stage was due to the state of algebra at that time.

Today, the representation of a physical law by means of a

formula is so common that we accept it as though it were

granted to man by Providence. But far from it being a gift

from heaven, it was the culmination of a long and painful

evolution, since even the most simple formula implies ideas
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which in the days of Pythagoras were either in their infancy or

did not exist at all.

Indeed, in the first place, any formula postulates the existence

of the rational, if not of the real, domain ofnumbers, while in the

days of Pythagoras number meant positive integer and nothing else.

In the second place, the reason we view the formula as the

ultimate goal in the study of a phenomenon is because the

problem is then reduced to the routine operations of arithmetic and

algebra which most of us have learned on the school bench.

Remember, however, that when about the year 1600 Vieta

introduced literal notation, it struck even mathematicians as a

sensational innovation; also, that even the operations of ele-

mentary arithmetic are barely more than five hundred years
old

;
then transfer yourself in imagination to the sixth century

B.C. when rhetorical algebra was in its very infancy, and positional

numeration not even a dream. Again, before a formula linking
the various entities can even be as much as formulated, it is

necessary that these entities be measurable, or at least conceived

as numbers; but in the days of Pythagoras, and for many
centuries to come, such entities were hardly more than figures

of speech or qualitative attributes.

Geometry was the one field where the transition from the

qualitative to the quantitative stage was well advanced, and so it

is not surprising that geometry became the proving ground for

the Pythagorean number philosophy.

This brings us to the so-called Pythagorean theorem the relation

between the sides ofa right triangle which we express succinctly

today in the formula,

I shall deal with the mathematical facets of this important

proposition in subsequent chapters. Here, we are concerned

with the historical aspects of this relation. How much did
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Pythagoras contribute to the proposition which bears his name?
Was he the discoverer of this property of right triangles? Was
he the first to point out its far-reaching implications? Was he
the first to demonstrate the theorem by logical arguments
applied to the basic axioms of geometry? Well, such historical

evidence as is available to us today suggests that all these ques-
tions be answered in the negative.

Pythagoras could not have been the discoverer of the relation,

because, in one guise or another, this property of right triangles
was known and used by scholars and artisans of Oriental lands

thousands of years before Pythagoras was born. Indeed, we
must bear in mind that while deductive geometry is barely more
than twenty-five hundred years old, empirical geometry is

probably as old as civilization itself. Many geometrical rela-

tions which were eventually confirmed by deductive reasoning
had been known as experimental facts thousands of years before

the Greeks began to cultivate geometry as a science. This is

attested by much documentary evidence, such as the clay tablets

of the Babylonians and the Egyptian papyri. But even more con-

vincing is the mute testimony of the Pyramids and of the ruins

ofancient edifices uncovered by archaeological research. Indeed,
it is not conceivable that such structures could have been

designed or erected without a considerable knowledge of prac-
tical geometry.

Again, if by proof of a mathematical proposition we mean

establishing its logical validity on the basis of a set of assump-
tions accepted as self-evident, then Pythagoras did not possess
a proof of the theorem which bears his name; not because such

a proof was beyond the ken of his period, but because he was

temperamentally uninterested in proofs of this nature, as may
readily be gleaned from the methods which he used in his

numerological deductions.

10

I am about to venture a conjecture, and I want to take the

opportunity to emphasize that by advancing this and sundry
other opinions which will appear in this work / neither invoke
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authority nor claim originality. I do not invoke authority, because

in the absence ofauthentic documents opinion rests on imagina-
tion, and one imagination is as good or as bad as another. I do
not claim originality, because to be valid such a claim would

imply an exhaustive knowledge of the literature of the subject,
and this would smack of omniscience. My position in matters

of history is that one must either be prepared to substantiate

a statement by reference to written records or else honestly
admit that it is one's own conjecture and shoulder the

consequences.
With regard to the Pythagorean theorem my conjecture is

that at least in one of its several forms the proposition was known
before Pythagoras and that and this is the point on which I

depart from majority opinion it was known to Thales. I base

this conjecture on the fact that the hypotenuse theorem is a

direct consequence of the principle of similitude, and that,

according to the almost unanimous testimony of Greek his-

torians, Thales was fully conversant with the theory of similar

triangles.

I do not contend that Thales was aware of the vast implica-
tions ofthis proposition for geometry and mathematics generally.
These implications were not and could not have been fully

appreciated until the advent of analytic geometry. But since,

by the same token, Pythagoras could not have been aware of

the geometrical significance of this theorem, the question as to

whether he was the first to recognize the mathematical impli-
cations of the proposition which bears his name should also b
answered in the negative.
On the other hand, there is no doubt that Pythagoras full

appreciated the metaphysical implications of this relation. For,

the fact that the sides of a right triangle were connected by a

law expressible in numbers suggested that all geometrical
entities responded to such numerical laws, since, in the last

analysis, any such entity could be viewed as an element of a

rectilinear figure which, in turn, could be resolved into triangles,

and any triangle was made up of right triangles. Thus this

relation, which Euclid regarded as a mathematical theorem and
which we construe today either as a postulate of geometry or

as a ready consequence of other such postulates, was to
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Pythagoras and the Pythagoreans a basic law of nature, and,
at the same time, a brilliant confirmation of their number

philosophy.

ii

With the possible exception of Aristotle, no other philosopher
of antiquity received as much publicity as Pythagoras. The

spectacular character of the man, the fact that he was the

titular head of a semi-religious cult and the acknowledged
fountainhead of the Platonist School may explain his wide-

spread fame. I spoke before of the extravagant claims made for

him by his followers. These claims were not confined to the

realm of mathematics. Among other things, he was credited

with being the originator of the heliocentric hypothesis, in spite of

the undisputable evidence that this hypothesis had been first

propounded by Aristarchus, a contemporary of Archimedes.

The belief that Pythagoras had taught that the earth revolved

about the sun persisted even after the contributions of Coper-
"cus had been made public. In fact, in 1633, when Galileo

s tried for his heresies, the immortal document of the

}uisition, in listing his errors, called the heliocentric hypothesis

'ythagorean doctrine. This brilliant subterfuge spared the

ly Office the embarrassment of indicting Copernicus, an
.ained priest of the Church.

Today no one would think of associating Pythagoras with

^ Copernican theory; yet, although his discovery of the

ation in a right triangle had no stronger foundation in fact,

2 idea that he was the originator of the theorem stubbornly
;rsists. The result is that the name of Pythagoras is a house-

>ld word to most educated people, while the name of Thales

known to but a few specialists, and even these regard him as

. philosopher rather than a mathematician.

The Pythagorean theorem is by no means the only case when
.he honour for a capital achievement has been conferred on
he wrong man, nor is mathematics the only field where such

'miscarriages of justice" have occurred. The study of this

.phenomenon is a fascinating chapter in the history of thought
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but lies beyond the scope of this book. However, as we proceed,
we shall encounter other episodes of the kind which may cast

some light on the underlying causes.

I would not advocate that the Pythagorean theorem be

renamed Thalesian, even if I had sufficient documentary evi-

dence to support my conjecture. The term "
Pythagorean" has

by now become a part of mathematical nomenclature. That
this nomenclature is far from perfect, that, in fact, it bristles

with misnomers, is generally recognized. Still, nobody seems

to be able to do anything about it not that reforms have not

been proposed, but that almost invariably it was found that

the effort required to effect the change by far outweighed
the advantages gained.

12

The more one attempts to appraise the mathematical achieve-

ments of Pythagoras, the less impressive they appear. On the

contrary, the more one studies the period of Thales the more
one compares the knowledge he bequeathed to posterity wi*

1

the one he had found when he began his work the mo
does his mathematical stature grow, until one is impelled

range Thales with such figures as Archimedes, Fermat, Newtc
Gauss and Poincare.

But while we cannot place Pythagoras among the great
even near-great mathematicians, his position in the history
scientific thought remains unchallenged. To be sure the dictu

"Number rules the universe" might bring a condescendii

smile to the lips of a modern scientist : yet, forget the lofty for

in which these words were put; conceive numbers not as ju,

positive integers, as the Pythagoreans did, but in the broa

modern sense of the term : then is there anything in the dictun

to which a modern scientist could not or would not subscribe:

The theories of relativity and quanta have shaken the physical
sciences to their very foundation, forcing the physicist to cast

overboard such principles as conservation of energy or economy oj

action, and to revise the very concepts of space, time, matter

cause and effect. Still, number reigns as firmly in the new physics as
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it did in the old. The argument that the study of any phenomenon
has not been consummated until the phenomenon has been made mathe-

matically articulate is as convincing today as it was in the days
of Pythagoras whilst the conjecture that physical attributes may
exist that are beyond the power of number to express would be
as odious to the man of science today as it was to Pythagoras.
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Chapter Three

ON THE GENESIS OF GEOMETRY

Geometry in every proposition speaks a language
which experience never dares to utter and of which,

indeed, it but half comprehends the meaning.
WILLIAM WHEWELL

Let us first of all dispose of some chronological matters pertain-

ing to the era which, for want of a better name, we call classical

mathematics. Sharing the average reader's keen dislike for

dates, I shall confine myself to the "century posts" of that long
and tortuous trail.

The year 600 B.C. finds young Thales in Egypt eagerly

absorbing the knowledge of its priests : what appears to us as 9,

maze of rules, recipes and rites amassed without rhymef or

reason looms to the young Greek as a token of inestimable

promise; 500 B.C. Pythagoras is at the height of his glory at

his school in Crotona; 400 B.C. young Plato is fleeing Athens
lest the fate of his teacher, Socrates, overtake him; 300 B.,Q.

Euclid's Elements usher in the great century of classical ma ,the-

matics, the century of Archimedes and Eratosthenes; 200
B.C. Apollonius completes his monumental treatise on & onic

sections; 100 B.C. here, roughly, may be placed the birth of

Hero of Alexandria; A.D. 100 here, roughly, may be pla< :ed

the birth of Ptolemy; A.D. 200 darkness is already settl \ng
over the Hellenic world; Diophantus, then Pappus; last flicke rq

of a dying fire, a fire which is not to be rekindled for anothe

thousand years.

We are concerned here only with the first three centuries oi

this near-millennium; yet, this relatively short period is the
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most perplexing in the history of mathematics. Not that it is

so crowded with achievement or bristles with great names, as

does the century that follows Euclid. No, it is not wealth of

material but scarcity of information that forces a would-be

interpreter of that period to resort to conjecture and specula-
tion. The wisest course would be to dismiss the whole matter

with a few summary remarks. Unfortunately, one cannot thus

dismiss the fact that it was during these centuries that geometry
had come of age ; and so the story must be told, even if at the

risk ofsome speculation and conjecture, and I know ofno better

way of telling it than by reversing the chronological order of

events, proceeding in retrogress, as it were. Accordingly, I

begin with Euclid.

He lived in Alexandria. These four words sum up all we know
of the life of the man who was instrumental in shaping the

mathematical education of countless generations, and one of

whose works has had, next to the Bible, perhaps the largest

circulation ofany book ever written. No legends trail his name,
and even the anecdoters have spared him. He was a prolific

writer, yet only one of his works withstood the wear and tear

of the centuries that followed him. The Greeks rarely referred

to him by name: to them he was simply the author of the

Sro^e^, the work we call Elements, although Basic Principles

would have been a more fitting translation of the Greek title.

The book was primarily a treatise on geometry, even

though it did deal with other topics, such as perfect numbers,

primes and irrationals. As a treatise on geometry it was so

thorough that it serves to this day as the basis of most of our

elementary textbooks. Still, comprehensive though it was, the

Elements apparently did not express fully what Euclid knew on
the subject, since at least two of his lost books also dealt with

geometry. One of these, Conies, must have been an exhaustive

study indeed, because when about a century later Apollonius
came out with his own treatise on these curves, some of his

more determined antagonists accused him of having plagiarized
Euclid's work.
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The title of the other lost book was Porisms, and all we
really know about its contents comes from references to it by
Pappus. This passage inspired Fermat to undertake a restora-

tion of the lost work; unfortunately, the version of this great
master of the seventeenth century suffered the fate of the origi-

nal, as did several other attempted restorations, notably those of

Wallis and of Simson.

Thus the only thing certain about the Book of Porisms is its

title, and even here there is no general agreement as to the

sense in which Euclid used the term. The literal translation

of TTOpicrjuocr is method, means, implement, and it is quite con-

ceivable that Euclid meant just that, i.e., that the Book of
Porisms was intended as a sort of supplement to the Book of

Elements, that it implemented the fundamental principles

expounded in the treatise by practical methods of construc-

tion. This would not contradict the assertion of Pappus that

the book dealt with loci, inasmuch as the locus was the basic

device of all Greek construction.

On the other hand, it is just as possible that the Book of
Porisms was Euclid's contribution to those celebrated problems of

antiquity which agitated the minds of all mathematically inclined

individuals of his day. These problems were : squaring the circle,

doubling the cube, trisecting any given angle and cydotomy* i.e.,

dividing a circle in any given number of equal parts, the construction

in every case to be executed by the exclusive means of the straight-

edge and the compass, or what amounts to the same thing

by introducing no other auxiliary loci than straight lines and
circles. The fact that none of these problems was mentioned

by Euclid in the Elements would lead one to surmise that he

had intended to deal with them elsewhere.

All these problems have been solved in modern times, i.e.,

solved in the "negative" sense, by demonstrating that the

constructions cannot be executed within the restrictions

imposed. The proofs require resources of algebra and analysis
which the Greek mathematicians did not possess ; this, however,
could not have prevented a Euclid from surmising the truth,
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or from endeavouring to prove it by such methods as were at

his disposal. Now, in the absence of an articulate algebra, the

most natural approach to the question as to which construc-

tions could be executed by ruler and compass and which could
not was through a systematic study of geometrical procedures
and of the loci which they generate, and, for all we know, it

was just such a study that the author of the Book of Porisms

had in mind.

This much is certain: Euclid had at his disposal a vast store

of mathematical knowledge, particularly in the field of geo-

metry. How much of this was his own discovery, how much
the work of his contemporaries, or the bequest of an earlier

age? There is irrefutable evidence that a substantial portion
of the material recorded in the Elements was known before

Euclid, and there is nothing either in the style or in the plan
of the treatise to suggest that it was intended as a collection

of original contributions. Thus, on the whole, it is safe to

assume that the chief objective of the author of the Elements

was to put system and rigour into the work of his predecessors.
Who were these predecessors? Well, the roster of the fourth

century contains such names as Archytas, Eudoxus, Menaech-

mus, talented, even brilliant, men who undoubtedly had
exerted considerable influence on the mathematics of their

own period. It is unthinkable that their work had failed to

influence Euclid as well, more particularly in his treatment

of solid geometry. And yet, it would be equally erroneous to

attribute to these men the discovery of the basic propositions
of plane geometry which, after all, constitute the very lifeblood of

Euclid's Elements, because all indications are that they had
themselves inherited the rudiments of plane geometry from an
earlier age. Indeed, unless they had these rudiments at their

very finger-tips they could not have made the discoveries with

which they were credited by subsequent commentators.

Let us tarry for a while on these achievements. Archytas is

supposed to have been the first to study geometry on a circular

cylinder, discovering in the process some of the properties of
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its oblique section, the ellipse. Eudoxus was the first to study

geometry on a torus, i.e., the surface generated by the circum-

ference of a circle which revolves about an axis in its plane.
He discovered the sections of this surface by planes parallel to

the axis of revolution, quartic curves which today are called

Cassinian ovals, after the French-Italian astronomer, Giovanni

Cassini, who had advanced the theory that Kepler's ellipses

were mere approximations, while the true planetary orbits were

these very ovals. Finally, Menaechmus 5

claim to fame was the

discovery of the conies, i.e., the plane sections of a circular cone.

Observe that all these studies involved three-dimensional

considerations, despite that in each case the geometer had
the properties of a plane locus as his avowed objective. It is

as though he felt that the basic material of plane geometry
had been exhausted, and that further progress could be

achieved only by envisaging a plane locus as one embedded

in space. But why did these geometers single out these special
loci for their considerations? The answer takes us back to the

celebrated problems which I mentioned in the preceding
section, more particularly to that of doubling the cube which the

ancients called the Delian problem.

The Delian problem was described with eloquence and humour
in a letter which Eratosthenes addressed to King Ptolemy.
The purpose of the letter was to present his own solution of

the problem, a device which he called mesolabe. The following
is a free translation of the opening paragraph of the letter.

The complaint of Glaucos quoted by Eratosthenes comes
from Euripides' lost tragedy Poleidos.

"An ancient playwright, describing the tomb of one hundred

square feet which Minos had erected for Glaucos, put into the

mouth of the latter the words, 'Too small hast thou built my
royal tomb: double it but abide by the cube.

9 Geometers long sought
to determine how a given body may be doubled without

altering its form, and called this problem Doubling the Cube.
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There was much confusion for a while; at long last Hippocrates
of Chios showed that the problem could be solved if one but
knew how to insert two mean proportionals between a recti-

linear segment and its double, whereupon one perplexity gave
way to another no less perplexing.

"Then, the Delians, afflicted with a scourge, consulted an
oracle who ordered that the altar in one of their temples be
doubled. In their perplexity the Delians appealed to the

geometers trained in the Platonian Academy, who zealously

proceeded to solve the problem by seeking to insert two mean

proportionals between two given segments. Archytas of Taren-
tum achieved this by means of a cylinder, and Eudoxus of

Cnidus by means of the so-called oval curves. But while their

methods lack nothing in geometrical rigour, their designs are

not readily amenable to construction by hand . . . The design
of Menaechmus is more handy, but it, too, is quite laborious."

Our backward march takes us next to the fifth century. Is this

to be the end of our quest? Were the principles on which
Euclid later erected his Elements discovered by the mathe-

maticians of that period? No, the geometers of the fifth century
seem to have been even less preoccupied with the rudiments

than were those of the fourth. They, too, took the Elements

for granted; they, too, were irresistibly drawn by the mirage
of the unsolved problems. Indeed, if the fourth is to be called

the Delian century of mathematics, the fifth was the century
of the circle-squarer.

The lure of the quadrature problem was not confined to

professional mathematicians like Hippias or Hippocrates;
nor even to near-mathematicians, such as the philosopher

Anaxagoras, teacher of Pericles, who, according to legend, had
whiled away his time in prison by working on the problem.
It attracted scores of amateurs and notoriety seekers. From all

evidence, it was the fifth century that witnessed the emergence
of that strange species whom Augustus De Morgan nicknamed

pseudomath. This barnacle has clung to the hull of mathematics
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throughout its long and eventful voyage. It persists to this

day.

Today, we identify the problem of squaring the circle with

determining the mathematical character of the number n, on the

ground that the area of the square sought is equal to nR 2
.

This reduces the quadrature problem to the construction of

the segment nR, the segment R being given. Is the number
rational, i.e., is n a solution ofsome linear equation with integral
coefficients? If not, is it a solution of some quadratic equation,
or of a chain of such equations? If not "quadratic," is it at

least algebraic, i.e., is it a root of some irreducible equation of

higher degree? Any number which is not a solution ofan algebraic

equation with integral coefficients is said to be transcendental.

How difficult such questions might be, can be judged from the

fact that it took nearly twenty-four hundred years to establish

the transcendental character of the number n.

But what has the character of a number to do with the

construction of a figure? Reserving a more satisfactory answer
for a later chapter, let me say here that it may be shown that

if a number n is rational or quadratic, then the segment nR may be

derived from the segment R by ruler-compass operations. More

generally, if n is an algebraic number, then it is possible to

construct the segment nR by means of a more or less com-

plicated linkage, i.e., by some device made up of rigid bars and

pivots. However, no linkage exists which would permit one to

derive nR from R, if n is a transcendental number; the mechanism
would have to contain, in addition to bars and pivots, such

members as rollers, cams, gears, etc.

When applied to the celebrated problems, these considera-

tions permit us to conclude that since the number rr is transcen-

dental, the quadrature problem cannot be solved by straightedge and

compass, nor by any sort of linkwork, for that matter; on the other

hand, such problems as the duplication of the cube, the multisection

of a general angle, the division of a circle into any number of equal

parts are amenable to algebraic equations and can, therefore,

be solved by means of linkages.
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The major cause of the prevailing confusion in regard to such

questions as the trisection of an angle or the squaring of a

circle is failure to discriminate between the problem of determining

the character of a number and that of evaluating the number. This

confusion is by no means limited to laymen. Thus, writers who
certainly should know better have asserted that the origins
of the quadrature problem may be traced to China, Babylon
or Egypt, when all they mean is that architects and surveyors
of those ancient lands, confronted with the necessity of measur-

ing circular arcs and areas, were led to assign some rational

value to the number TT.

Now, granted that attempts to evaluate the ratio of the

circumference of a circle to its diameter are as old as empirical

geometry, and that the latter is, probably, as old as civilization

itself, such attempts have nothing to do with the problem of

determining the mathematical character of TT or with its geo-
metrical counterpart, the squaring of the circle problems
which acquired meaning only after geometry had emerged
from the empirical into the deductive stage. Even at that,

there is doubt that such questions were actually raised during
the earlier period of deductive geometry, since a precise
formulation of these problems implies a thorough knowledge
of the fundamental propositions of plane geometry, a mastery
of its basic constructions and, above all, a critical attitude

which comes only with advanced geometrical rigour.

We may be reasonably sure that the quadrature problem
was born on Greek soil, and while we shall probably never

know who first proposed it, it is certain that the event took

place not later than the middle of the fifth century. Indeed,
we know that the problem had inspired the efforts of the two
mathematicians who dominate the second half of the fifth

century, namely, Hippias of Elis and Hippocrates of Chios,

the same Hippocrates who was mentioned by Eratosthenes in

connection with the Delian problem. It was Hippocrates who
first brought out that squaring the circle and rectifying its

circumference were two horns of the same dilemma. Hippias
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went even further by devising a genuine "mechanical" quadra-
ture of the circle, the only one of its kind in classical times, and
one which for ingenuity, insight and rigour would do honour
to an Archimedes.*

8

These are the facts: Hippias was born about 425 B.C.; Thales

died about 550, after an active career which extended over

almost half a century; it is reasonably certain that deductive

geometry as such did not exist either in Greece or elsewhere

prior to the birth of the Founder. Thus in less than two hundred

years geometry had undergone a complete metamorphosis,

changing from an Egyptian hodgepodge of rules of thumb
to a full-fledged discipline.

This extraordinary progress becomes even more astounding
when we reflect that, in so far as propagation of ideas is con-

cerned, those two centuries were like two decades in our

own time. Remember, indeed, that the habit of putting down
one's thoughts in writing was practically nonexistent in those

days; that such manuscripts as did live to see the light of day
could be reproduced only by laborious copying; that mathe-
matical nomenclature was in its infancy, and symbolism did

not exist at all, since even the designation of vertices of figures

by letters of the alphabet was not known before Hippocrates;
that in the absence of a centre of mathematical activity such

as Alexandria in the post-Euclidean centuries, mathematics

was being cultivated in widely separated regions; that the

exchange of ideas among scholars was largely by personal

contact, and that a journey from Asia Minor to Lower Italy,

which today can be accomplished in less than three hours by
plane, required then many a month.
And this is not all. When these two centuries are viewed in

the light of actual achievement, they dwindle into at most

one, for the span of one hundred and twenty-five years which

separates Thales from Hippias was particularly barren of

mathematical progress. Indeed, it produced only one mathe-

matician of note, namely Pythagoras, and he and his disciples
* See Chapters 10 and n.
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had been too preoccupied with the occult and metaphysical

aspects of mathematics to contribute much of value to geo-
metrical technique.
Thus the conclusion is fairly forced upon us that this pro-

digious achievement was the work of one man: Thales of

Miletus. "He endowed geometry with rigour, and founded it

on congruence and similitude" such is the generous testimony
of one historian. But this appraisal is not generous enough,
for, he also implemented these principles with a rich tech-

nique, and taught how to apply this technique to construction

and proof. That it took the Greeks more than a century to

absorb the work of the Founder becomes less surprising when
we contemplate the grandeur and revolutionary character of

his achievement and remember that there were no geometers
when Thales began: Thales the teacher produced the first

geometers, even as Thales the thinker founded the first geometry
worthy of the name.

The alternative theory offered in explanation of the rapid

growth of Greek geometry is that much of the achievement

claimed for the Greeks was actually of foreign origin. This

theory is relatively new; as a matter of fact, any such conten-

tion would have found little support among the historians of

science of the nineteenth century. To be sure, classical com-
mentators on mathematics had been rather vociferous in

acknowledging the debt which Greek geometry owed to the

priests of Isis and Osiris. However, their effusive appraisal of

the Egyptian contribution has not been borne out by the

papyri deciphered in the course of the last century. Indeed,
these documents reveal that Egyptian geometry, even when
considered as an empirical effort, was so rudimentary, if not

crude, that the Greeks could not have conceivably derived

anything worth while from that source.

However, considerable progress has been recently made in

deciphering the cuneiform inscriptions on the clay tablets

discovered among the ruins of ancient Babylon. These studies
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have disclosed that the Babylonians possessed a much greater
store of scientific knowledge than has hitherto been suspected.
In arithmetic^ for instance, they had devised a positional numera-
tion and even a symbol equivalent to our decimal point;
in algebra^ they knew how to set up quadratic and cubic equa-
tions, and had even contrived to solve such equations by means
of elaborate numerical tables

; finally, in geometry, too, they had

by far excelled the Egyptians in measuring areas and volumes.

These archaeological studies have led some writers to conjecture
that Babylonian learning had in some way infiltrated into

Greece, say, during the sixth century or even before, which
could account for the extraordinary progress of Greek mathe-

matics in the ensuing centuries.

10

It is not my purpose here to examine this hypothesis in detail.

After all, it matters little where the Greeks obtained the geo-
metrical material on which they eventually erected their

geometry. The issue is where, when and how the method of
deductive reasoning emerged to turn geometry into a mathe-
matical discipline. The '

'Babel" theory would acquire signi-

ficance only if its proponents could establish that the Babyl-
onians had arrived at their geometrical rules by means of

deduction, and thus far the cuneiform inscriptions of the

Babylonians have yielded no greater evidence to that effect

than the hieroglyphics of the Egyptians.
There are several other questions which the supporters of

the Babel hypothesis will have to answer before they can
establish their theory on a sound footing. How is it that we
find no mention of Babylonian influence in any of the accounts

given by Greek commentators? If this was a deliberate and
concerted attempt to conceal the sources of Greek erudition,

why were the same men so generous in acknowledging their

debt to the Egyptians? If the influence existed, why did it

leave no trace in the field where the Chaldeans were most

proficient and the Greeks most deficient, namely, in algebra?

Certainly, in an age when the problems of doubling the cube
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and trisection were so much in vogue, the Babylonian methods
of handling cubic equations could have been used with success.

ii

I set out to trace the evolution of Greek geometry from its

inception to the days when it had grown to full stature in the

Elements of Euclid. This survey has revealed that the dominating
motif of the first and last phases of that era was geometry as a

discipline, while the stimulus of the intervening period was the

challenge of the unsolved problems. The history of that era is

like a symphony the finale of which is but a variation on the

introductory theme, while the intermediate movements are

built on quite a different motif, with the original theme as a

mere accompaniment.
In a certain sense this survey was the defence of a thesis, and

I fear that in spite of the arguments adduced in its support,
the thesis will strike most of my readers as indefensible. Indeed,
here is a comprehensive and well-integrated discipline which,

having survived without appreciable change for more than

two thousand years, remains today one of the bases of universal

education. The idea that this achievement was the work of a

single man, or even of a single generation, is so much at

variance with accepted ideas on the progress of knowledge
that it seems to border on the fantastic.

It does border on the fantastic, and in all fairness I must

warn the reader that such fantasies await him at every twist

and turn of mathematical history. I once attended a lecture of

Poincare during which he made the off-record remark that

the history of mathematics resembles an anthology of amazing
stories, and that geometry was the most amazing of the lot.

So, I shall not attempt to strengthen my thesis with further

argument, trusting that the reader who perseveres with me
on these exotic excursions into the shadowland of number,
form and extension will become immune to shocks and will

finish by realizing that his original reaction has largely been

due to preconceived notions on the progress of knowledge.
With this I rest my case.
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Chapter Four

PYRAMIDS

It is not that history repeats itself, but that historians

repeat each other.

D'ALEMBERT

We journey to the valley of Giza, one-time burial ground of the

ancient Pharaohs. The huge tombs of these long-forgotten

potentates still stand, enduring monuments to their colossal

vainglory and to the technical prowess of an age which ante-

dates Greek civilization by more than four thousand years.

Among these structures, sprawling over more than twenty
acres and rising to nearly five hundred feet above its base,

looms the Pyramid of Cheops, surnamed the Great.

In this grandiose setting was taught, according to Greek

legend, the first lesson in deductive geometry. The time : about

600 B.C. The pupils: the venerable priests of Isis and Osiris, a

cult so old as to appear rooted in eternity. The teacher: one

Thales, a Greek who had come to those shores with the express

purpose of wresting from these very priests the secrets of their

mystic knowledge. The problem: to determine the altitude of the

Great Pyramid.

Why did the priests put the problem to Thales? Was it a

challenge designed to put the upstart Greek in his place? Were

they unable to solve the problem by their own efforts? Is it

conceivable that a people who had displayed such skill in

planning and erecting these elaborate structures could not

handle a problem which would rate today as a routine

exercise for a high-school sophomore?
The chroniclers of the tale offered no answers to these and

similar questions. They confined themselves to the claim that

Thales had solved the problem in a brilliant and rigorous
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fashion, by measuring the shadow of the Pyramid at an hour when a

marfs shadow was equal to his height.

The etymology of the word "pyramid" lends some authenticity
to the preceding tale. The Greek pyramis was an adaptation of

the Egyptian pyremus which,, curiously enough, denoted neither

an imperial tomb nor a geometrical solid. Pyremus was Egyptian
for altitude. The word was probably frequently used in extolling
the loftiness of these monuments, and this might have led the

Greeks to identify the word with the edifice itself, and later

with any solid which resembled such an edifice in form. Be this

as it may, the term eventually acquired an even broader signi-

ficance. For, while all Egyptian Pyramids have square bases and

congruent faces, the term "pyramid," as defined by Euclid and
as accepted by us today, applies to any solid, symmetric or

otherwise, with a polygonal base and triangular faces converging to a

point.

Now, we are concerned here not with the authenticity of this

tale but rather with its plausibility, which is quite another

matter. Indeed, it would be idle to speculate whether the

Egyptians had actually propounded the problem to Thales, or

whether he had solved the problem proposed. On the other

hand, the answer to the following two questions would con-

tribute materially to an appraisal of the status of mathematics
of that period : First, was it within the ken of the Egyptian
scholars of the period to determine the altitude of a pyramid?
Second, could Thales have determined the altitude of the

Great Pyramid by the method attributed to him, utilizing only
such ideas as lay within his own ken?

Consider a symmetric pyramid with a square base, PQRS, such

as is shown in Figure i . Denote by a the side of the square ; by
b the slant height, i.e., the perpendicular dropped from the apex
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A onto any one of the sides; by h the altitude of the pyramid.
Both a and b can be measured directly, and will, therefore, be
assumed given; the problem is to calculate h. We consider a

vertical plane through the apex A of the pyramid and parallel

w

to one of the sides of the base; it cuts the pyramid along the

isosceles triangle ABC, the sides of which are <z, b and b respec-

tively, and the altitude of which, AH, is the quantity h sought.
The application of the hypotenuse theorem to the right triangle
AHB yields directly:

A -V* 1
-(frO

1
-

Still, however simple this approach may appear today, it

lay beyond the mathematical ken of the period under con-

sideration. To be sure, the Egyptians knew of isolated cases

where the hypotenuse relation held, such as the "triples"

(3, 4; 5) or (5, 12; 13), but there is no evidence whatever that

they were aware of the general validity of the Pythagorean
theorem. Furthermore, a practical application of the theorem
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involves rational approximations to quadratic surds, a technique
which, as far as we know, the Egyptians did not possess.

This does not mean that the Egyptians had no means at their

disposal for calculating the altitude of the Great Pyramid.
The form of a symmetric pyramid with square base depends
only on the ratio (k h/a) of altitude to the side of the base,

which, in turn, completely determines the dihedral angle
between the base and any one of the faces. Now, it so happens
that these data are sensibly the same for all the Pyramids of

Giza, the angle varying between 50 and 52, and the ratio

between 0*63 and 0-64, averaging about 7/11. In other words,
the Pyramids of Giza are very nearly similar solids, which
means that if the ratio k were known for any one of the Pyra-

mids, it could serve to calculate the altitude for any other.

One of the smaller Pyramids the altitude ofwhich was amenable
to direct measurement could have been used to determine the

ratio; or, and this is far more likely, a miniature model could

have been built for the purpose at hand. And we must remember
that the Egyptians were past masters of the miniature.

This near-similarity of Egyptian Pyramids has been the subject
of much speculation in recent times. One could explain this

uniformity by observing that the construction of this imposing

array of tombs was spread over more than a thousand years, so

that the builders of the later pyramids had before their eyes

magnificent models consecrated by tradition. But then why
was the first pyramid erected on such odd proportions? Why
these unorthodox angles and ratios?

One plausible conjecture is that the choice was dictated by
engineering considerations. The granite veneer of these tombs
was laid upon massive masonry; to haul the bricks, mortar

and stones up the steep slopes required the toil, tears, sweat

and blood of an army of slaves. There was a limiting angle

beyond which the expenditure in slave lives became uneco-

nomical, for even the life of a slave had a price. Thus, the ratio
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k might have been a sort of "coefficient of human endurance,"
and 7 /i i measured the limit of that endurance.

However, such a matter-of-fact account would hardly satisfy

those who have a penchant toward the occult. Indeed, nothing
short of a religious, or at least aesthetic, interpretation is

acceptable: the proportion must have been a sacrament, a

criterion of beauty, or both! But why should 7 and u be

singled out for this unique mission? Is it because of the singular
role these magic numbers play in the vicissitudes of a game of

dice? This is one occult argument that has not yet been advanced
to explain the peculiarities in the design of the Egyptian

Pyramids ;
I hasten to add that some of the theories advanced

are just about as reasonable.

Most popular among the aesthetes is the theory which
associates the design of the Egyptian Pyramids and every
other design, human or divine with the so-called golden section.

I shall deal in detail with these pretensions in the next chapter.
The propounders of another theory point out that 11/7 is an

approximation to %n, i.e., to the ratio of the semicircumference

of a circle to its diameter. They claim that the designers of the

Pyramids had chosen this proportion because they viewed the

semicircle as a figure unexcelled in beauty. However, studies

of the hieroglyphic papyri have failed to reveal any such

predilection.

"He determined the height of the Great Pyramid by measuring
the shadow it cast at an hour when a man's shadow was equal
to his height." In these words does the Greek historian

Hieronymus describe the feat of the Wizard of Miletus. Other

historians, classical and modern, too, reiterate this statement

with some variations, but without critical comment. One is

reminded of d'Alembert's bon mot: "It is not that history

repeats itself, but that historians repeat each other."

It would be simple enough to reconstruct the alleged solution

of Thales if the problem had been to determine the altitude of

an obelisk, or of any solid whose horizontal dimensions were
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negligible as compared with the vertical; for, at the time of the

day when the sunrays struck the ground at an angle of 45, the

shadow of the obelisk would be sensibly equal to the height,
and such inaccuracy as would be introduced by the horizontal

dimensions of the solid could be readily discounted. But the

object was not an obelisk; it was a massive pyramid, the hori-

zontal and vertical dimensions of which were of comparable
magnitude.
The shadow of a pyramid is a triangle, and the shape of the

triangle depends not only on the relative dimensions of the

FIGURE 2

solid and on the hour of observation but on the latitude of the

place and on the orientation of the sides. Now, the Egyptians
were sun worshippers, and it was the obvious intention of the

builders to orient the horizontal edges of these tombs East-West

and South-North. In this they succeeded admirably. The

angular deviation of the South-North edges from the true

meridian, the so-called azimuth, nowhere exceeds one fourth

of a degree; as a matter of fact, recent surveying has shown
that the azimuth of the Great Pyramid is less than 4 minutes.

Thus, for all intents and purposes, we may consider the edges
of the Great Pyramid as oriented along the cardinal directions

of the compass.
In Figure 2 the shadow triangle is PQT, and at the hour when
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the rays of the sun strike the ground at an angle of 45 the

altitude of the pyramid and the line 777 are equal. IfjPQjTwere
an isosceles triangle, then to determine TH it would be suffi-

cient to measure the perpendicular distance of the tip T to the

edge PQ and add to it \a. However, the vertical plane which

passes through the apex A perpendicular to the edge PQis not

parallel to the ecliptic, i.e., to the plane of the apparent path
of the sun but is inclined to it at a substantial angle. The effect

of this "obliquity" is that the triangle PQT is not isosceles,

and this materially complicates the computation of the line

TH which measures the altitude of the pyramid.

As a matter of fact, in order to determine the distance between
the tip T of the shadow and the centre H of the base of the

pyramid, it would be necessary not only to measure the sides

of the triangle PQT but also to carry out calculations involving

repeated application of the Pythagorean theorem, and cul-

minating in the extraction of a square root, calculations which

by far transcend the ken of the period under consideration.

On the other hand, we cannot rule out the possibility that

Thales turned the difficulty by some artifice based on the

principle of similitude.

One such artifice is shown in Figure 3. Let HA and ha indicate

two vertical posts, and HT and ht their shadows at some given

time; these shadows are proportional to the altitudes of the posts.

Suppose next that at another time of the day the respective
shadows of the two posts are HT' and ht'\ these, too, are pro-

portional to the altitudes. It follows that ft : th = T'T: TH.
In particular, if ft = th, then T'T = TH.

Returning now to the situation which allegedly confronted

Thales, let ha designate the position of the man whom he was

observing, and let ht be the shadow of the man at the time of

the afternoon when one's shadow equals one's height; finally,

let T be the tip of the shadow cast by the Pyramid at that

time. Thales marks the points T and t, and with t as centre.
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Q

FIGURE 3

draws the circle which passes through h. He then waits; as the

shadows lengthen, there comes a time when the tip of the man's

shadow strikes the circle drawn, say in t'. Simultaneously,
the tip of the Pyramid's shadow has moved from T to T', and
7T' = TH = HA

9
because tt' = th = ha. Thus the altitude

of the point A above the plane of the base is determined by
the horizontal line TT', which is fully accessible to direct

measurement.

This conjectured solution depends neither on the latitude of

the place, nor on the obliquity of the ecliptic, nor, for that

matter, on the form of the solid. It would obviously apply to

determining the altitude of any point A, provided two consecu-

tive positions of its shadow T and T' were known. Besides, it has
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the merit of presupposing only such ideas and methods as

existed at the time when the incident is alleged to have occurred.

In short, what the conjecture lacks in authenticity, it makes up
in historical plausibility.

Indeed, the conjecture would be plausible even if the epi-
sode had taken place at a much earlier age, since the conception

of similitude antedates deductive geometry by thousands of

years. For, not only is similitude a prerequisite to all geometrical

thinking, but it dominates the graphic arts as well, and the fact

that these arts have been cultivated since time immemorial
shows how deeply the conception is rooted in man's con-

sciousness.
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Chapter Five

PENTACLES

I shall indulge my sacred fury ....

JOHANNES KEPLER

In one of the Dialogues, Plato puts into the mouth of Timaeus,
a follower of Pythagoras, the following words : "It is impossible
to join two things in a beautiful manner without a third being

present, for a bond must exist to unite them, and this is best

achieved by a proportion. For, if of three magnitudes the mean
is to the least as the greatest to the mean, and, conversely,
the least is to the mean as the mean to the greatest then is

the last the first and the mean, and the mean the first and the

last. Thus are all by necessity the same, and since they are the

same, they are but one."

The problem to which this exotic verbiage alludes has come
to be known as golden section, or division of a magnitude into

extreme and mean reason, the word "reason" being used here in

the archaic sense of ratio. Translated into mathematical

language the problem is to divide a given magnitude, say a

rectilinear segment of length s, into two parts, such that the

greater, x, be to the whole as the lesser part is to the greater.

Hence the proportion:

x : s = (s x) :x. . . . (5.1)

This, in turn, leads to the quadratic equation,

x* + sx-s*=o, . . . (5.2)

the positive root of which is

* = MV5-0- (5-3)
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6
FIGURE 4

A simple straightedge-compass construction, based on a

direct interpretation of this last formula, is shown in Figure 4.

In the right triangle ABF we have by construction: AB = s,

SF = j = fiF and J^ = 45 1

. Hence :

i.e., the point

sought.

divides the given segment ;!# in the ratio

In the Dark and Middle Ages, the golden section became a

favourite topic of theological speculation. Many a Schoolman,

inspired by the arguments of the Pythagoreans and Platonists,

sought and found in the proportion a key to the mystery of

creation, declaring that extreme and mean reason was the very

principle which the Supreme Architect had adopted in cosmic

and global design: hence, the title "divine proportion" bestowed

upon the ratio. Nor were these mystic meditations the monopoly
of medieval monks. The virus affected quite a few poets and

painters of the Renaissance, including Leonardo da Vinci

himself. Of this, however, later.

The modern revival of the golden-section cult, like so many
other movements of the kind, is characterized by what may
be called

*

'rationalizing the occult." Its devotees, mostly
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artists, accentuate the aesthetic value of the proportion, its

prevalence in nature, the exhaustive role it plays in human
anatomy, its cosmic significance. They claim that the golden
section is the clue to the beauty of Greek sculpture, as well as

to the finest specimens of antique architecture such as the

Egyptian Pyramids.
One of these claims is illustrated in Figure 5. The sides of

the rectangle are in "divine proportion." The pattern will

FIGURE 5

strike the reader as quite familiar, since many objects in our

immediate environment have this particular design: windows,

tables, books, boxes, playing cards. We are assured by golden-
section enthusiasts that this pattern is the incarnation of

grace, and that it is recognized by most people as such. Are

these contentions supported by facts? Well, as far back as

1876, the German psychologist, Gustav Theodor Fechner,

spurred on perhaps by the golden sectionists of his day, con-

ducted a series of experiments on a large and heterogeneous

group of people. Ten rectangular patterns ranging in form

from 2 by 5 to i by i, and including the golden section, were

placed at random in a room, and the individuals were requested

57



BEQUEST OF THE GREEKS

to record as to which of these shapes appeared to them as the

most graceful. While the golden section received more votes

than any other, it appealed only to one third of those inter-

viewed. On the whole, the results were rather inconclusive.

Among the attempts at accounting for this alleged preference
on rational grounds is the contention that when the human
eye surveys a rectangular pattern, it instinctively separates
from it a square. (Figure 5.) Ostensibly, the closer the remain-

der resembles the whole, the more the pattern appeals to the

eye. The ideal, of course, is provided by the golden-section

rectangle, inasmuch as here the residual rectangle is similar to

the original. Such endeavours to trace one doubtful predilection
to another just as doubtful are characteristic of the specious

reasoning of the aesthete.

In appraising the validity of these claims, one should bear in

mind that the golden-section "ratio" is an irrational number.

Indeed, setting in equation (5.2) x/s
= Z), we find

D* + D-i=o, . . . (5.4)

the positive root of which is

=KV5-i)- (5-5)

The numerical value of D with five correct decimal places is

0-61803. To vindicate their claims that the golden section is

the motive of such and such a design, human or divine, the

golden sectionist will seek to prove that the measured value

agrees with the one calculated, within "reasonable limits,"

of course. Obviously, the success of his undertaking will depend
on the latitude allowed in interpreting the term "reasonable

limits."

A case in point is the allegation that the designers of the

Egyptian tombs had been guided by the golden-section rule. As
mentioned in the preceding chapter, the ratio of altitude to

side has an average value of 0-625, and never falls below
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o 63 for any of the Pyramids of Giza. The mean discrepancy
between this ratio and the extreme and mean reason is more
than 21 per cent., and such a difference could hardly be

ignored without stretching reason to the extreme.

Just as specious are the contentions that certain proportions
in human anatomy conform to the golden-section rule, as for

example that the navel divides the average man's height in

extreme and mean reason. Even if such biometrical data could

be established, how could one reconcile them with the aesthetic

claims mentioned above? For, surely, even the most ardent

golden sectionist would hardly contend that the average
human stature embodied his idea of grace.

Now, given the privilege of selecting the traits to be com-

pared, the freedom of choosing and grouping the specimens
which are to be measured for these traits and a latitude in the

degree ofprecision allowed in interpreting the data measured

with all these liberties at one's disposal, one should be able to

turn any recondite mystery into a mathematical law, and, as

a matter of fact, into a law assigned in advance. This sounds

like accentuating the obvious, and so it is. But, evidently, it is

not so obvious to the authors of some of the studies, biometric,

econometric, psychometric, which have come to my notice.

While on the subject of rational approximations to irrational

magnitudes, I must mention one striking property of the extreme

and mean reason which could have furnished much grist to

the occult mill of the golden sectionists, if the medium in

which this property is expressed lay within the ken of the

cult; I am speaking ofthe expansion of the irrational \(<J 5 1)

into a continued fraction.*

I shall have much to say about this important device later.

For the purpose at hand it is best to approach the matter from

the heuristic point of view. We have by definition

D : i = i : (i + D).
* See Chapter 12.
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Accordingly, we can write

from which we infer that the golden-section ratio is the limit

of the infinite continuedfraction

I + -

I+
7T7.. . (5 .6)

the most simple of its kind, since not only are all the denomi-

nators equal, but their common value is one.

To the mystic, the mere circumstance that an entity can be

expressed by a single symbol is portentous enough; but when
that one symbol is one, then the divine origin of the entity
transcends all doubt. For, one is the emblem of God; in the

words of the mystic Leibnitz: "One has sufficed to draw all

out of nought." That it would require an infinitude of steps to

attain the desired goal lends power to the interpretation, inas-

much as the infinite, too, is an attribute of the Deity. Finally,
there is an absolute quality to a continued fraction which no
other representation possesses : it is independent of the scale of
numeration. Thus, the "spectrum" would have been the same
had Providence chosen to equip man with 12, or 60, or any
number of fingers in lieu of the random 10. This disquisition
is offered here for what it is worth as this author's humble
contribution to the cult of the occult.

A favourite method of exhibiting the alleged role played by
the golden section in human anatomy is shown in Figure 6.

The picture is taken from a modern book on the subject, but

the scheme of presenting the posture of a man as a five-pointed

figure can be traced to Leonardo da Vinci and his mathe-
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FIGURE 6J

matical collaborator, the monk Luca Pacioli. The latter's

book, entitled Divine Proportion, contained a number of striking

drawings by da Vinci, two ofwhich are reproduced in Figure 9.
The tract was published in 1509, and many of the ideas pro-

pounded by the modern devotees of the cult hark back to that

period.
The point of departure of these occult speculations is an

isosceles triangle with angles 36, 72 and 72 (ABC in Figure
7). In such a '

'golden-section triangle," the angular bisector,

AD, determines two isosceles triangles., DAB and DAC, and the

latter is similar to the original triangle. From this follows : first,

that the point D divides the side EC in extreme and mean reason;

and second^ that the sides of a golden-section triangle are in divine

proportion.
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B
FIGURE 7

The configurations affected by these lemmas are:

(a) The regular pentagon. (Figure 8a.) Here, ACD is a golden-
section triangle ; hence, the side and diagonal of a regular pentagon
are in divine proportion.

(b) The regular pentagram. (Figure 8b.) Here ABC is a golden-
section triangle. It follows that the sides of a regular pentagram
divide one another in golden section.

(c) The regular decagon. (Figure 8c.) Here AOB is a golden-
section triangle; hence, the side of a regular decagon and the radius

of the circumscribed circle are in divine proportion.

A
FIGURE Qa

A
FIGURE 84
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While the origin of the golden-section idea is obscure, it is

quite probable that the Pythagoreans were led to endow the

ratio with occult significance because of the property of the

pentagram described above, namely, that ite sides divide one
another in extreme and mean reason. We know that the

pentagram had played an important role in the ritual of many
ancient people, that it was a sacred symbol of the Pythagorean
Order, and that to this day some "secret" societies which hail

Pythagoras as their spiritual forebear use this mystic figure as

talisman.

The effect of Christianity on popular fancy was to turn the

sacred into the occult. The pentagram of the Greeks became

pentacle9 indispensable item of the sorcerer's gear. In some

places the mark of the pentacle was a tiding of evil; in others,

on the contrary, it was viewed as a sure deterrent against
Satan's machinations. In some languages it was called deviVs

hoofy in others witcKes foot. In the course of time, the geo-
metrical origin of the term was all but forgotten, until pentacle

became a symbol of black magic and the conjuror's art.

Several theories have been advanced to explain this strange

predilection. One of these traces the preference to the five

fingers of the human hand, maintaining that the occult powers
ascribed to the pentagram did not derive from its geometrical

properties, but from its association with the number Jive. It

may be pointed out in this connection that the Platonists

attached as much importance to the pentagon as to the penta-

gram, and that the number five was an important adjunct to

their cosmic speculations.

This brings me to another corner of that occult fringe which

surrounds the early history of geometry.
Consider first a regular convex polygon of n sides. The n

vertices of the figure lie on a circle, and there exists another

63



BEQUEST OF THE GREEKS

circle which is tangent to all n sides. Thus the construction of

a regular n-gon is fully equivalent to the division of the circum-

ference of a circle into n equal arcs, a problem, known as

cydotomy. The problem admits of a solution for any value of

the integer n, and however involved may be the actual con-

struction of the corresponding n-gon, the difficulty is technical

in nature and not a matter of principle.
When we pass from the plane to space, we find the situation

quite different. In lieu of polygons we have here polyhedra, i.e.,

solids bounded by planes. The boundary planes of a poly-
hedron intersect in lines which are called edges \ the edges, in

turn, converge in the vertices of the solid and combine into

polygons which are called the faces of the polyhedron. Denote
the number of faces, edges and vertices of any given poly-
hedron by/, e and v respectively: these integers are connected

by certain relations known as Euler equations.

When we say that a polyhedron is convex we mean that the

solid lies on one side of any one of its faces; when we say that the

polyhedron is regular, we mean that its faces are congruent

regular polygons. When both of these conditions are met, then

the vertices of the solid lie on a sphere and there exists another

sphere which touches all the faces of the solid. Let n be the

number of sides in any face, and m the number of edges which

emerge from any vertex: then the Euler equations mentioned
above reduce to

(5-7)

Five solutions of these equations are given in the table below,
and it is not difficult to show that no others exist.
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FIGURE 9

Two of these polyhedra are shown in Figure 9. They are taken

from the Divine Proportion of Pacioli, who attributed the draw-

ings to Leonardo da Vinci. The choice was obviously motivated

by the fact that both solids contain regular pentagons, the dodeca-

hedron being distinguished by its pentagonal faces, while the

five triangles which emanate from a vertex of the icosahedron

form a pyramid with pentagonal base.

8

The discovery of the regular polyhedra has been ascribed to

Plato; hence the name of "Platonic solids" under which these

bodies are commonly known. That Plato was their discoverer

may be seriously doubted, but the knowledge that there were
five such solids, and only five, must have been very gratifying
to him and his disciples. However, this posed a new problem:
cosmic harmony demanded a one-to-one correspondence
between these perfect solids and the basic constituents of

matter, and Platonic cosmogony recognized only four such

primordial elements: earth, fire, water and air.

The vexing problem was eventually solved by invoking a

principle which has governed occult speculations since time

immemorial: "When in doubt, let the Deity have the hind-

most!" One of the perfect solids must be assigned to the

heavens! But which? The most perfect, of course : the dodeca-
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hedron, whose pentagonal faces bore the imprint of the perfect

proportion.
And so it was that having assigned the cube to the firm

earth, and having conferred a solid each on the more epheme-
rous fire, water and air, Plato dedicated the dodecahedron
with its sacred pentagonal faces to the heavens.

I shall now quote from a letter written two thousand odd years
later: ". . . Before the universe was created, there were no
numbers except the Trinity which is God himself . . . For, the

line and the plane imply no numbers: here infinitude itself

reigns. Let us consider, therefore, the solids. We must first

eliminate the irregular solids, because we are concerned here

only with orderly creation. There remain six bodies, the sphere
and the five regular polyhedra. To the sphere corresponds the

outer heaven. For, the universe is twofold: dynamic and static.

The static is the image of God-Essence, while the dynamic is

but the image of God-Creator, and is therefore of a lower

order. In its very nature, the round corresponds to God and
the flat to his creation. Indeed, the sphere is threefold : surface,

centre, volume; so is the static world: firmament, sun, ether;

and so is God: Son, Father, Spirit. On the other hand, the

dynamic world is represented by the flat-faced solids. Of these

there are five; when viewed as boundaries, however, these five

determine six distinct things ; hence, the six planets that revolve

about the sun. This is also the reason why there are but six

planets. And because the sun stands at the centre of creation,

and because it is at rest and yet the source of all motion, it is

the true image of God, the Father, the Creator. For, what
God is to creation, is motion to the sun ..."

". . . I have further shown that the regular solids fall into

two groups: three in one, and two in the other. To the larger

group belongs, first of all, the Cube, then the Pyramid, and

finally the Dodecahedron. To the second group belongs, first,

the Octahedron, and, second, the Icosahedron. That is why
the most important portion of the universe, the Earth
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where God's image is reflected in man separates the two

groups. For, as I have proved next, the solids of the first

group must lie beyond the earth's orbit, and those of the

second group within. . . . Thus was I led to assign the CUBE to

SATURN, the TETRAHEDRON tO JUPITER, the DODECAHEDRON tO

MARS, the ICOSAHEDRON tO VENUS, and the OCTAHEDRON tO

MERCURY. . . .

Does this sound to you like the raving of a maniac, or a

page out of Madame Blavatzky? Then be reassured
;
these are

excerpts from Johannes Kepler's own preview of a tract which
he published in 1596 under the title The Cosmic Mystery. And
such was the spirit of that period that when the essay reached

Galileo and Tycho Brahe, both astronomers responded with

flattering comments. As a matter of fact, the latter was so

impressed that he invited young Kepler to become his assistant,

urging him at the same time to apply his mystic methods to

the Tychonian cosmic system which was sort of a cross between
the Ptolemaic and the Copernican, the planets spinning
around the Sun, while the latter was executing an exotic

pirouette about the Earth.

10

Kepler called his correspondence between planets and poly-
hedra Mysterium Cosmographicum. That he regarded it not as

mere rhetorics but as a pictorial presentation of an actual

mathematical relation which governed the solar system is

attested by the sketch reproduced in Figure 10. To be sure, the

projected model never did get beyond the drawing stage;

not, however, because Kepler had lost faith in his youthful

conception, but because he could not raise the funds for its

construction.

Now, there is nothing loose or even indeterminate in the

mathematics of the scheme; if anything, it is too rigid. Indeed,
if we assume, as Kepler did, that the planetary orbits are con-

centric and coplanar circles with the sun in the centre of the system,
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FIGURE 10

then the first step is to determine the relative magnitudes of

the radii of these circles. Denote these radii by the initial

letters in the names of the six planets, s, 7, m, e, v and m'\
and let S, J, M, E, V, M' designate the six spheres which admit
these orbits for great circles. Then, according to Kepler, there

exists a cube the vertices of which rest on the sphere S, and
the faces ofwhich are tangent to the sphere J. Since the diagonal
of that cube is the diameter of S, and its side the diameter of

jf, it follows that s is to j as the diagonal of a cube is to its side,

i.e., s/j
= ^3. By similar geometrical considerations one can

derive the ratios m/j, e/m, etc., culminating in a set of propor-
tions: a complete arithmetic counterpart of the Mysterium
Cosmographicum .

The question is to what extent do these results agree with

the subsequent observations of Kepler and with the laws

which he deduced from these observations? Now, the first of

these laws declares that the planetary orbits are not circles but

ellipses with the sun as common focus ; well, the eccentricities of these

orbits are so small that they could readily be taken for circles

as a first approximation. The second law declares that the

motion of a planet is such that equal sectors are covered in equal
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intervals of time) while the third states that the square of the

period consumed in a complete revolution is proportional to

the cube of the major axis of the planet's orbit. Both the second
and the third law hold for circular orbits. Thus, with certain

reasonable reservations, the Mysterium could be accepted as

the model of the solar system, provided that the proportions of
which I spoke above were in agreement with astronomical data.

The puzzling fact, however, is that these proportions do
not even remotely agree with those derived from observations.

Thus we found s/j
= ^3 = 1*732, whereas the ratio of the

mean distances to the sun of Saturn and Jupiter is i 833 . . .

The error, of nearly 6 per cent., is of a size that cannot be

taken lightly, and the discrepancy between observed and
calculated values is even greater for the remaining propor-
tions. It has been argued that the Mysterium was designed
before Kepler got access to Tycho Brahe's observations, and
this is certainly true. Still, Kepler never did retract his early

work; on the contrary, a quarter of a century later, in a book
entitled De Harmonici Mundi, he amplified the Mysterium by
endowing it with sound: under the impact of the moving
orbs, the invisible spheres emitted tones of varying intensity
but of pitch so high that only the sentient soul of God, who
dwelt in the sun, could perceive this music of the spheres.

ii

There has been a tendency on the part of some of Kepler's

biographers to palliate his occult activities and to portray the

man as a detached observer bent on ascertaining the truth no

matter how sharply this truth contradicted his own precon-

ceptions. These interpreters point out that Kepler's title of

Imperial Astronomer carried more honour than honorarium;
that even this scant pay was perennially in arrear, so much so

that upon his death the exchequer still owed him 20,000

florins; that to supplement this meagre income Kepler had to

resort to reading horoscopes, which, allegedly, explains his

extensive excursions into astrology. As to his mystic specula-
tions on the nature of the cosmos, these interpreters hint that
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Kepler had uttered them with tongue in cheek, largely as a

concession to the spirit of his time, or, at worst, as a means
to impress the half-educated men on whom his advancement

depended.
Now, unlike the mystic philosophers of classical Greece,

Kepler left behind a wealth of autobiographical material.

This Kepleriana suggests to my mind not the portrait of a

learned opportunist but that of a mystic obsessed with the

conviction that he had been chosen by Providence to reveal

to man the essential unity between the motions of heavenly

bodies, the harmony of sound, the logic of number and the

beauty of geometrical form. It was this conviction, this "sacred

fury" as he called it, that impelled him, in my opinion, to

pursue, throughout life and to the end, the cosmic phantom
which he had conceived in his youth. He wrote: "Nothing
shall stop me. I shall indulge my sacred fury. I shall triumph
over mankind. I have stolen the golden vases of the Egyptians
to erect a tabernacle to my God. . . . The die is cast, the book
is written to be read now or later, I care not which. It may
well wait a century for a reader: has not God waited for an
observer these six thousand years?"

Was he referring to his laws of planetary motion or to his

Mysterium Cosmograpkicum? Well, as far as we know he made
no such distinction. Both were parts of the sacred tabernacle,

and I am quite sure that, faced with the choice, he would
have put the Mysterium first.

No, the arguments of the apologists notwithstanding, I, for

one, cannot escape the conclusion that it was while endeavour-

ing to substantiate his occult illusions that he had discovered

the laws without which Newton could not have, in turn,

discovered the principle of universal gravitation.

12

What could impel men of unquestioned scientific com-

petence and integrity to carry out protracted and painstaking

observations, subject these data to a keen and thorough
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mathematical treatment, and at the same time profess to see

in their work the confirmation of some phantastic code which

they have imposed on God or Nature? I have no answer to

this question, but I have lived long enough to know that this

schizophrenia, so manifest in Kepler, is far more prevalent

among men of science than is commonly believed.

The occult has had many facets, and not all of these were
of the naive variety described in this chapter. In mathematics,
the occult never outgrew these cruder forms, and that may be

the reason why here it remained on the fringes of the science.

In some fields contiguous to mathematics the occult has

assumed more subtle and hence less recognizable forms.

Indeed, listening to some modern physical theories one is

often at a loss to understand wherein these exotic speculations
differ from the mystic introspections of a Pythagoras or a

Kepler.
The occult was not born with Pythagoras, nor has it died

with Kepler. The historian looks back and beholds that much
of the sacred of a yesteryear is condemned today as occult,

and he wonders what will become of our discarded axioms.



Chapter

THE PSEUDOMATH

. . . such folly, unfortunately, is never confined to

one subject, since the habit offallacious thinking, even

as that ofcorrect reasoning, has a tendency to increase.

CONDORCET

Among the imposing array of problems which have graced
mathematics during its long and eventful history there is a

small group which has exerted a peculiar fascination on the

amateur. To this group belong the famous problems of con-

struction on which I touched in earlier chapters; here also

belongs the Euclidean postulate of parallels. Several other

problems may be listed under this head; of these, I shall

mention only the Fermat problem: to demonstrate that the

equation xn +yn = zn has no solutions in whole numbers as

long as n itself is an integer greater than 2.

While the difficulties inherent in these problems can only be
met by the resources of modern algebra and analysis, their

preliminary formulation requires neither the exotic symbolism
nor the weird terminology which obscure to the layman so

many mathematical questions. Thus, whether the issue is con-

struction or proof, the aims of these problems appear clear

cut and direct, even to those who possess little mathematical

training or insight. This tantalizing simplicity has deceived

many an amateur, with the result that no end of "solutions"

appeared, one as pretentious and as preposterous as the other.

While the amateur receives but little encouragement from
the orthodox mathematician a circumstance which he

promptly attributes to professional jealousy he finds the news-

paper editor quite receptive, as a rule. In fact, some papers have

regarded such achievements of sufficient importance as to be
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featured as front-page news; others even have gone so far as

to herald in glaring headlines that such or such an age-old

problem,, which has defied the efforts of countless generations
of professional mathematicians, has in this day and age been

completely solved by a nonprofessional. In this manner the

amateur may gain considerable notoriety; unfortunately, his

glory is soon eclipsed when a competing amateur with a con-

flicting solution of the same age-old problem manages to gain
the ear of another equally credulous editor. It is by dint of

such publicity that the "famous" problems are daily gaining
in fame to the amusement of the expert and the confusion of

the public.

These problems have played a considerable role in the history
of mathematics. Not that they were key problems, in the sense

that without their exhaustive solutions the disciplines in which

they had arisen could not have progressed. No, their role can
best be compared to that of a catalytic agent which precipitates
chemical action without participating in it. Thus, these prob-
lems have been responsible for the invention of many a new

method, and, more often than not, whole new disciplines have
followed in their wake. As in the parable of the vineyard, the

heirs had failed to unearth the gold after laboriously plowing

up the estate; yet, the loosened soil yielded a harvest which
exceeded in wealth the anticipated treasure.

The ancient problems of trisection of an angle and duplica-
tion of a cube have in modern times led to the theory of

equations and have been indirectly responsible for the intro-

duction of the exceedingly important concept of group. The

attempts to square the circle led to the discovery of transcen-

dentals; the efforts to prove Fermat's theorem resulted in the

theory of ideals; the failures to demonstrate the postulate of

parallels culminated in the discovery of the non-Euclidean geo-

metries, without which the theory of relativity would be

unthinkable.

Of all these developments the ambitious amateur is, of course,
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wholly unaware. Indeed, he is, as a rule, not interested in de-

velopments which require the study of the work of others.

Sufficient unto him is to knoV that the problem which he tackles

has not yet been solved, or that it has been declared impossible

by professional mathematicians. For the rest, he trusts in God
and in his own powers or prowess.

It has fallen to my lot to come in contact with many of these

individuals. I say this in no spirit of complaint, for whatever
inconvenience or irritation they may have caused me has been

amply rewarded by the experience which I gained while

studying their unusual turn of mind. Indeed, I hoped at one
time to use the accumulated material in an essay on the pathology

of human reasoning. As years go by, however, it is becoming
increasingly doubtful that I shall ever have the leisure to

engage in such a project. Accordingly, I decided to present
some of the material here.

While the mental kinks of these individuals are to mathe-
maticians little more than objects of passing curiosity, the same
should not be true of psychiatrists, more particularly of those

who specialize in the study of megalomania. Indeed, I cherish

the hope that among my readers there may be some such

specialist who, stimulated by these casual remarks, will under-

take a scientific investigation in this field which, to my knowl-

edge, has not even been touched by the alienist.

It will be convenient to designate this specimen of humanity
by a special name. The term "circle-squarer" is obviously

misleading, for rarely do these individuals confine their efforts

to this one classical problem. More often than not, they will

regard any mathematical problem or any problem, for that

matter as particularly adapted to their talents, provided the
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experts have failed to solve it or have reached negative results

in its regard.
I propose to call these persons pseudomaths, a term coined by

Augustus De Morgan. A substantial portion of his Budget of
Paradoxes was devoted to the study of these individuals and their

fallacies. Of the obsession with which the species is afflicted

De Morgan had this to say: "The pseudomath is a person who
handles mathematics as the monkey handled the razor. The
creature tried to shave himself, as he had seen his master do;
but not having any notion of the angle at which the razor was
to be held, he cut his own throat. He never tried again, poor
animal! But the pseudomath keeps to his work, proclaims him-

self cleanshaved, and all the rest of the world hairy. . . . The

feeling which tempts him to these problems is that which, in

romance, made it impossible for a knight to pass a castle which

belonged to a giant or an enchanter. This rinderpest of geo-

metry cannot be cured when once it has seated itself in the

system. All that can be done is to apply what the learned call

prophylactics to those who are yet sound. When once the virus

gets into the brain, the victim goes round the flame like a

moth first one way and then the other, beginning again where
he ended, and ending where he began."

They come from all strata of society and all walks of life. While

the male of the species predominates, ladies, too, have entered

the race. In fact, I have noticed of late that the number of

feminine pseudomaths is on the increase which, perhaps, is but a

symptom of the gradual emancipation of the fair sex. Most

countries, races, creeds, professions and crafts are represented;

my own list includes farmers and army officers; bankers,
brokers and merchants; realtors and prospectors; doctors,

dentists and lawyers; engineers, artists and artisans; teachers,

preachers and even a college president.
How large is their number is a question that cannot be

answered with any degree of accuracy. There are no societies

of pseudomaths, which is not surprising, since every pseudo-
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math, being in sole possession of the eternal truth, views every

other as an impostor and a fraud. In the absence of such rosters,

any estimate is but a guess; my own, based on personal con-

tacts and correspondence, is that in this country alone their

number must run into many thousands.

In spite of the fact that they are being recruited from so

many different occupations and classes, they exhibit a remark-

able similarity in their methods of approach to a problem as

well as in the strategy they use to obtain recognition. When

given an opportunity to defend their contentions, every one of

the pseudomaths who has come under my observation used the

same tactics, which may be best qualified as a policy of attrition.

With tiresome laboriousness and endless detail he would

demonstrate the obvious steps in his reasoning; but, arrived at

the critical point, he would pass over it with the utmost speed.

Indeed, I have found in my dealings with them that I can save

myself a great deal of ennui by just listening listlessly and with-

out the slightest interruption to their drone, patiently awaiting

the imminent slur.

The variety of their interests is unbelievably great. Thus, the

announcement in 1907 of the Wolfskehl prize for the first solu-

tion of the Fermat problem found such a tremendous response

from the pseudomaths of the world that the handling of the

correspondence became a gigantic task. The advent of the

theory of relativity has deviated the efforts of many into this

new channel, with the result that every so often we are graced

with a new refutation of Einstein. Quite often I receive letters

from some individual who has discovered a kinship between

phenomena which to the benighted scientist appear worlds apart,

while one possessed by a truly universal spirit has succeeded in

uniting into a single synthesis the Euclidean postulate of

parallels and the quadrature of the circle, the Fermat problem
and perpetual motion, the principle of relativity and the

existence of the Deity, the quantum theory of the atom, fore-

casts of the stock market, the abolition of wars, the solution

of the econonic depression and the liberation of mankind from

the Bolshevist scourge to mention but a few of the achieve-

ments he claims.
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Their dogged perseverance defies all description. They seem to

thrive on abuse, discouragement and ridicule. They speak of

their undying devotion to truth. It must be conceded that no

pseudomath has ever derived material benefit from his dis-

coveries, while most of them continually sacrifice wealth and

position in their efforts to gain recognition. I do not believe

that they are actuated by greed; in fact, I have a lurking

suspicion that even those pseudomaths who have tried for the

Wolfskehl prize of 100,000 marks were motivated more by the

desire to justify in the eyes of their kin and friends their fruitless

efforts of many years than by any hope of winning the prize.
To my mind the dominating motive which sustains them in

the face of all failures is an inordinate craving for publicity.
To attain this end they will stop before no humiliation. One
of the most remarkable instances of this kind is the case of one

James Smith, a merchant of Liverpool, who flourished in the

sixties of the last century. Smith spent half of his life and a con-

siderable fortune in defending his method of squaring the circle,

a method which, with all irrelevancies removed, amounted to

the declaration that the ratio of the circumference to the dia-

meter of a circle was equal to exactly 25/8. He engaged in a

voluminous correspondence with the leading British mathe-

maticians of his time, among whom were such outstanding men
as William Rowan Hamilton, Stokes, Clifford, and De Morgan.
They all began by trying to set him right; they all ended by
giving it up as a bad job. Some of the replies of these men were

so devastating that any sane man would have immediately

destroyed them for fear that they might see the light of day.
Not James Smith! At a price to himself that must have

amounted to a small fortune, he published the whole corre-

spondence and distributed the book free of charge to friend and
foe alike. This volume of five-hundred-odd pages is a human
document of inestimable value to a psychopathologist.
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There is a term used in physics to designate an effect which

persists after the generating cause has ceased to act, such, for

instance, as occurs in elastic or magnetic phenomena. Such a

residual after-effect is known as hysteresis and could be aptly

applied to many phenomena in the history of science, and of

culture more generally.
The pseudomath is a case in point. Far from being a pheno-

menon peculiar to our own times, he is as old as mathematics

and, in a certain sense, even older. Indeed, just as astronomy
was preceded by astrology, and chemistry by alchemy, so was
mathematics preceded by pseudomathematics. Thus, in the pre-

logical period of mathematics, all its adepts were pseudomaths,
more or less. The deductive method has put an end to the

usefulness of the pseudomath, yet he shall long persist as a sort

of hysteresis.

That this specimen was already a problem in ancient Greece,
even as far back as the days of Pericles, may be judged from a

scene which occurs in Aristophanes' comedy The Birds. Meton,
an Athenian surveyor and a pseudomath if there ever was
one demands admission to the Bird State. When requested
to give his qualifications, he offers to parcel off the atmosphere
into acres, and to square the circle by means of a straightedge.
He is refused admittance and asked to move on. He insists on

knowing why, whereupon the following conversation takes

place: ''What danger is there? Is discord raging here?" "No,
not at all !" "What is the matter then?" "In perfect concord are

we resolved to kick out every humbug." It is interesting to note

that twenty-four hundred years ago Aristophanes had a proper

appreciation of such amateurish efforts, whereas editors of

some of our modern dailies rarely miss a chance to blazon

forth to the world that on such and such a date such and such

a nonprofessional has at last solved a problem which has baffled

professional mathematicians for nearly three thousand years.
The Dark Ages may be viewed as a sort of resurrection of

the prelogical period. What little science was cultivated then

was so hopelessly mixed up with pseudoscientific ideas that the
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task of a modern historian who deals with that period may well

be compared with that of unscrambling an omelet. Mathe-

matics was no exception: the famous problems were approached
in the same spirit as the search for the philosopher's stone, or

for the elixir of life. In fact, it was held by many that the quad-
rature of the circle would open the door to many such mysteries.

Some of the most absurd solutions of the famous problems date

from that period; furthermore, most of the fallacies of the

modern pseudomath may be found in medieval literature.

That there is little new under the sun applies to fallacies even

more than it does to truth.

With the advent of modern times, there was an unprecedented
increase in pseudomathematical activity. During the eighteenth

century all scientific academies of Europe saw themselves

besieged by circle-squarers, trisectors, duplicators and per-

petuum mobile designers, loudly clamouring for recognition of

their epoch-making achievements. In the second half of that

century the nuisance had become so unbearable that, one by

one, the academies were forced to discontinue the examination

of the proposed solutions. The first to inaugurate this policy

was the French Academy. To its published resolution there was

attached an explanatory note written by the great Condorcet.

The following are excerpts from this interesting document:

"The Academy has resolved this year not to examine in the

future any solution of the problems of the doubling of the cube,

the trisection of the angle and the squaring of the circle, or

of any machine which lays claim to perpetual motion. . . . We
have thought it to be our duty to account for the reasons which

have led the Academy to adopt this decision. . . . An experience

extending over more than seventy years has demonstrated that

those who send in solutions of these problems understand

neither their nature nor their difficulties, that none of the

methods employed by them could ever lead to solutions of these

problems, even were such solutions attainable. This long experi-
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ence has convinced the Academy of the little value that would
accrue to science, were the examination of these pretended
solutions to be continued."

"There are still other considerations that have determined

this decision. A popular rumour has it that the Government has

promised considerable rewards to one who would first solve the

problem of squaring the circle. . . . On the strength of this

rumour, a multitude of people, much greater than is commonly
believed, have given up useful work to devote their time to this

problem which often they do not understand, and for which
none of them possess the requisite preparation. Nothing could,

therefore, serve better to discourage these people than this

declaration of the Academy. Some of these individuals, being
unfortunate enough to believe that they have been successful,

have refused to listen to the criticism of geometers, often

because they could not understand it, and have finished by
accusing the examiners of envy and bad faith. . . ."

"The folly of the Circle-Squarers would result in no greater
inconvenience than the loss of their own time at the expense of

their families, were it not that such folly is, unfortunately,
never confined to one subject, since the habit of fallacious

thinking, even as that of correct reasoning, has a tendency to

increase, as it has happened in more than one case. Moreover,
to account for the singular fact that without studying the

subject they have arrived at solutions which the most famous

scholars have vainly sought they persuade themselves that

they are under the special protection of Providence, and from

this there is but one step to the belief that any combination of

ideas, however strange, that may occur to them are so many
inspirations. Humane consideration therefore demanded that

the Academy, persuaded ofthe uselessness ofsuch examinations,
should seek to offset by public announcement a popular opinion
that has been detrimental to so many families. . . ."

"Such were the principal reasons that have determined the

Academy's decision. The declaration that it will not engage in

the future in this task is tantamount to a declaration that it

regards as futile the work of those who engage in it. It has been

often said that, while seeking chimerical solutions, one may
discover a useful truth. Such opinions might have been valid
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in days when the methods for discovering truth were equally
unknown in all fields of endeavour; today, when these methods
are known, it is more than probable that the surest way to find

truth is to seek it, ..."

This long-forgotten document reads as though it had been
written yesterday, and not 180 years ago. What effect did it

have? Well, if the aim of the academicians was to spare the

scientific societies the annoyance incident to the examination

of these solutions, then they have been more than successful.

Soon, other academies followed suit, until today it is impossible
for a pseudomath to get a hearing before any reputable
scientific organization. If, however, the French Academy had

hoped to free the world from the pseudomath, then it must be

admitted that the document was a miserable failure. For, I

dare say, there are more pseudomaths today than at any time

in history; besides, their numbers increase by leaps and bounds
from year to year, while the negative attitude of the scientific

world, far from dampening their ardour, only makes them
more militant.

All this in spite of the fact that in the course of the last

century all the problems reviewed by Condorcet were brought
to a successful conclusion. For the pseudomath, time has stood

still. The solutions of these problems may appear to the mathe-

matician ever so profound and far-reaching ;
to the pseudomath

they are but mockeries, delusions and snares, to use an expres-
sion of that king circle-squarer, James Smith.

And, strange as it may seem, these sentiments are shared by
the public at large. Indeed, the solutions which modern mathe-

matics has offered to thefamous problems are not solutions at all,

as the term is usually understood. They do not culminate in a

definite recipe prescribing certain traditional operations on
certain traditional ingredients ; they culminate in the declara-

tion that such a recipe is unattainable. Moreover, the reasoning
which leads to these negative conclusions involves considera-

tion of algebra and analysis which appear to the layman as
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irrelevant and, therefore, wholly unconvincing. The pseudo-
math brushes all such reasoning away with a contemptuous
smile, branding it professional subterfuge which aims at cover-

ing the orthodox mathematician's incompetence behind a

smoke screen of symbols and technicalities.

10

And so the merry-go-round spins on. Each year sees new solu-

tions of the ancient problems which the benighted mathe-

matician has long ago stricken off his list as solved. Our own

century has been particularly prolific : dozens of solutions have
been announced in our daily press. One of these received extra-

ordinary publicity. It concerned the trisection problem and
was the discovery of a president of an American Catholic

college. Substantially, the reverend father's solution consisted

in trebling an angle, and then exclaiming: "Behold the whole,
and then behold the part!" Judging from the numerous

inquiries I have received concerning it, the pater's fame must
have travelled very far. He was, in fact, so encouraged by the

reception accorded to his achievement that he decided to

continue his researches, and subsequently enriched the world

with a book in which he proved the Euclidean postulate of

parallels and, simultaneously, annihilated the impious Einstein.

I shall conclude this chapter by recording three conversations

which I had, all in connection with this ecclesiastic trisection.

My interlocutors were all college graduates. The first, a success-

ful engineer, after listening to my explanation with ill-concealed

irritation, interrupted me with a sneer: "The dogmatism of

you fellows makes me tired. It reminds me of those experts who

only twenty-odd years ago maintained that flying was impos-
sible. Granted that the priest's construction is wrong, as were the

other solutions before him
; what of it? To me, it only means

that the problem is a challenge to human ingenuity. I am
confident that some day solutions to these problems will be

found, and, that when they are found, it will not be along the

beaten paths which the professional mathematician is bound
to follow."
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The second, ,
a literary, man with philosophical aspirations,

said: "I cannot agree with your conclusions. It seems to me
that mathematicians lose sight of one incontrovertible truth,

namely, that if a problem can be formulated in certain terms, it can

be solved in the same terms. Now, you admit that all the problems
which you have mentioned can be formulated in terms of

straight lines and circles; by the same token, their solutions

should require no other lines."

The third, a realtor, listened to my comments with com-

placent mistrust. By way of changing the topic, or perhaps
with a more subtle intent, he remarked that the college which

the reverend father was heading possessed a first-class football

team.



Chapter Seven

THE INTERDICTION

Indeed, when in the course of a mathematical invest-

igation we encounter a problem or conjecture a

theorem, our minds will not rest until the problem is

exhaustively solved and the theorem rigorously proved;
or else, until we have found the reasons which made
success impossible and, hence, failure unavoidable.

Thus, the proofs ofthe impossibility ofcertain solutions

plays a predominant role in modern mathematics;
the search for an answer to such questions has often led

to the discovery of newer and more fruitful fields of

endeavour. DAVID HILBERT

One who contemplates the silhouetted skyline of a great city

is struck with the abundance of the straight and the round to

the practical exclusion of all other forms. In distant outline, the

city looms as a monotony of rectilinear segments, relieved by
an occasional arc of a circle.

This preponderance of the straight and the round is not

limited to the contours of the buildings where we dwell or

work; the intricate equipment designed to aid us in our

struggle for existence, the vehicles which transport us from

place to place, the roads we travel, the games we play, the very

shape of our rooms, and of the furniture, utensils and trinkets

which crowd them bespeak this predilection.
Even more amazing is the spectacle which awaits one behind

the walls of our mills and shops. Round and round and to and
fro whirl and swing the machines, lathes, drills, shapers,

presses, ceaselessly engaged in flattening, straightening and

turning the raw materials furnished by nature.

Indeed, to a thinking being from another planet, unaware
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of our human purposes, the complex activity which we call

civilization might appear as a concerted effort to force upon
Nature, irregular in her deeds and unruly in her moods, the

acceptance of these forms preferred by man.

Nor is this preference an outgrowth of modern life. The
machine age has only accentuated what has for millennia been

latent in the human spirit. It is detected in the crude patterns
of the savage, in the figures drawn on the walls of prehistoric
caves. The utensils of bygone ages spared by the ravages of time

bear mute testimony to this predilection. It is as though man
has ever striven toward these forms as ideals, and the extent to

which he has put them to use may be taken as indices of his

knowledge and skill at various stages of his progress.

Already in the naive endeavours of the primitive mind just
awakened to the consciousness of form, in these groping efforts

of an untutored imagination, we find, in germ, the elements

which were destined to become the foundation of a great
science. As time went on, these preferred forms came to be

viewed by man not merely as indispensable principles of design
and construction but as basic elements for an accurate descrip-
tion of nature. To these elements he endeavoured to reduce

the complex forms which he encountered in experience, and
out of these endeavours grew a science which, armed and

guided by number, eventually attained the highest levels of

abstraction.

It would be fitting to call this body of knowledge the science

ofform, but, because of long historical association, it has been

identified with one of its earliest applications, geometry, the

measurement of earth. Under this modest name, and with such

modest beginnings, it has gradually extended its influence over

the physical sciences until today it bids fair to dominate any
rational interpretation of nature.

Yet, throughout this long evolution and to this day, the

science has, in one respect at least, preserved its original

character: the flat, the straight and the round, in the new guises
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of spaces, their geodesies and their curvatures, are concepts as

basic in this cosmic geometry as they were in the rudimentary

stages of the science.

What has forced this choice upon man?
One turns his back on the skyline of the great city to view

the peaceful landscape beyond, the winding rivers, the rolling

hillsides, the patches of marshes and forests. One contemplates
the surrounding flora and fauna; the oddly shaped roots and
stems and leaves and blades

;
the limbs and wings and bodies of

beast and fowl and fish and of all that creepeth upon the earth.

No! It was not here that man has found models for the severe

line or the smoothly rolling circle, these preferred elements of

his manipulation and speculation.

Why then has this distinction fallen to the lot of these special

forms, so rarely encountered in man's natural environment?

What is the source of this predilection, so manifest in the things
which he has built for sustenance, comfort or defence? Why
have these forms been chosen by man as cornerstones of that

grandiose scheme of his own making which he seeks to identify
with the physical universe?

In Ancient Greece, where stood the cradle of science, the

preference for the straight and the round took the form of an
interdiction: the line and the circle alone could be used in

geometric construction; all other devices, regardless of their

effectiveness or scope, were condemned as mechanical and

unworthy of the philosopher.

According to Plutarch, we owe this proscription to Plato :

"Eudoxus and Archytas had recourse to mechanical arrange-

ments, adopting to their purpose certain curved lines and
sections. But Plato inveighed against them with great indigna-
tion and persistence, as destroyers and perverters of all that was
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good in geometry, which was thus lowered from the incorporeal
and intellectual to things material, and employed besides much
mean and vulgar labour. In this manner, mechanics was dis-

simulated and expelled from geometry, and, being for a long
time looked down upon by philosophers, it became one of the

arts of war."

Now, in appraising the historical value of these statements,
it should be remembered that in the course of the five hundred

years which separated Plutarch from Plato, the latter had
become somewhat of a legendary figure whose authority was
often invoked by contending philosophical schools in support
of views he had never uttered during his lifetime. Thus, we
find that other Greek historians were by no means so emphatic
in attributing to Plato the authorship of the interdiction.

Indeed, some go so far as to accuse the Athenian philosopher
of having himself at one time indulged in these mechanical

solutions so unbecoming to a geometer and gentleman.

Whoever might have been the author of this drastic decree,

there is ample evidence that, unlike most prohibitions, this one

was eminently successful. In fact, it is impossible to over-

estimate the influence which the interdiction exerted on the

subsequent course of geometry, and, strange as it may seem,
its effect on postclassical geometry was even greater than it

had been during the Hellenic period. Indeed, while the pro-

scription did succeed in drawing a very sharp demarcation

between what we now designate as elementary geometry,
where the line and the circle rule supreme, and the other

branches of the science a demarcation which remains nearly
intact today it did not prevent the Greek geometers from

mastering the forbidden curves of which Plutarch spoke.

Thus, as I already pointed out in a previous chapter, the

same Euclid, whose Elements served for two thousand years as

a model for textbooks in elementary geometry, wrote a treatise

8?



BEQUEST OF THE GREEKS

on the conic sections which, unfortunately, did not come down
to us. The great Apollonius of Perga turned the study of these

sections into a discipline as rigorous and fertile as the Euclidean

Elements. What is more, the Greek geometers were even familiar

with higher curves
;
the curved lines of which Plutarch spoke

are designated today as cubics, while the quadratrix of the Sophist

Hippias is of a type called today transcendental.

During the many centuries of decay which succeeded the

Greek period, the achievements just mentioned had been all

but forgotten, and when, with the revival of learning, the study
of mathematics was again taken up, the line of demaraction

between elementary geometry and the other branches of the

science became sharper than ever.

To this day we say that such and such a problem is susceptible
of a "geometrical" solution, when all we mean is that the

required construction can be executed by means of the two
traditional instruments the straightedge and the compass.
Another construction which may be effectively executed by
means of devices as simple as either the straightedge or the

compass we brand as impossible, only because the traditional

instruments do not suffice here.

This unhappy terminology contributes much to the confusion

which the general public entertains in matters mathematical.

The layman hears that certain problems bequeathed to us by
antiquity are spoken of by mathematicians as impossible: he

naturally concludes that these problems still remain unsolved.

The fact that the last of these questions, the squaring of the

circle, has been a closed issue for more than fifty years is rarely,
if ever, conveyed to him. The door is thus left wide open for

quacks to enter with their preposterous or fraudulent solutions

of problems which demonstrably admit of no solution in the

traditional sense of the word.

The mathematical curricula of our schools and colleges, far

from tending to dispel this confusion, indirectly add to it.

However defective may be our school curricula, geography is

88



THE INTERDICTION

not being taught out of Ptolemy, nor physics out of Aristotle;

yet, as far as geometry is concerned, we are still in the Scholastic

era. The textbooks used in our schools are but pale replicas of

Euclid's Elements compiled by schoolteachers, most of whom
are wholly unaware of the gigantic strides which geometry has

made in the last few hundred years. As a result, the average

layman leaves school under the impression that all that can be
done in geometry has already been done two thousand years

ago, with the exception of a few problems, such as the trisection

of the angle, which still await a solution; and that here, the

experts have admittedly failed, the mantle of glory is to fall on
the shoulders of some amateur unpolluted by the hackneyed
habits of the professional mathematician.

It is a striking phenomenon, to say the least : here is a discipline
which in modern times has so enormously increased its scope
as to cause a veritable revolution in the scientific outlook on
the universe, and yet, as far as its teaching is concerned, we

might as well be in the days of ancient Alexandria. To say that

the conservatism of our school authorities is responsible for this

state of affairs is but to christen the difficulty. A conservatism

so universal and so deep-seated as to withstand the onslaught
of progress for so many centuries must have its roots in some
inherent predilection of the human mind.

Thus arises the question: Is there any connection between
this deep-seated conservatism which has limited the general
instruction in geometry to the properties of the line and the

circle, this ancient interdiction which has proscribed the use of

all instruments and devices other than the straightedge and the

compass, and this inherent preference of man for the straight

and the round so manifest in his work and his thought?

8

At the risk of boring the more sophisticated reader by belabour-

ing the obvious, I must insist that the difficulties to which the
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celebrated problems of construction lead, far from being
inherent in the problems themselves, merely reflect the drastic

character of the restrictions imposed on classical construction;

that the terms possible and impossible possess no absolute signifi-

cance ; that it is essential, in formulating any individual problem,
to stipulate the equipment by means of which the construction is

to be executed; that with all restrictions removed, with any
device susceptible of mathematical definition admitted into

geometry on equal terms with the straightedge and compass,
and with any locus accepted on par with the line and the circle

regardless of the mechanical or graphical procedure used in

generating it, the terms possible or impossible lose all meaning,
and the field of soluble problems becomes coextensive with the

field of all problems.
These statements are truisms, I admit. And yet, there are

truisms which cannot be overemphasized or repeated too often.

To this class belong those verities which stipulate the relative

character of concepts. So intense, indeed, is man's craving for

the absolute that his intuition is ever ready to accept arguments
which his reason would unhesitatingly reject. The history of

such concepts as the relativity of space and time furnishes eloquent
evidence to this tendency of the human mind.

In the light of these general observations, we should first of all

examine the scopes of the traditional instruments with the view

of ascertaining the limitations which their exclusive use imposed
on geometrical activity. And since the restriction originated in

Greece, we should begin by consulting Greek sources. Strangely

enough, we find that, despite the exclusive roles which the

straightedge and the compass played in classical geometry,
classical treatises rarely, if ever, mentioned these instruments

by name. In Euclid's Elements the equipment was introduced in

the guise ofpostulates or common notions. The use of the straight-

cage was sanctioned in statements that any straight line could

be produced indefinitely, that through any two points a

straight line could be drawn, and that two straight lines would
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merge throughout if two points on one coincided with two

points on the other. The use of the compass was sanctioned in

the statements that it was possible to draw a circle which had
its centre in any point and which passed through any other

point, and that only one such circle existed.

As opposed to this classical tendency to keep the instruments

in the background, the modern approach to geometrical con-

struction puts the equipment prominently to the fore. In fact,

the whole question could be reduced to the classification of

problems according to the equipment they require. We could

begin by separating problems which are susceptible of straight-

edge-compass solutions from those which involve more intricate

apparatus. These "higher" problems could, in turn, be grouped
according to the character of the instruments which their

solutions demand. For example, while the general angle may
be trisected by a linkage, no circle can be squared by such

means
;
the latter problem may be solved, however, by means of

a rolling mechanism, while certain other constructions necessitate

the introduction of sliding devices. We would thus have linkage

problems, roller problems, slide problems and many others, their

variety limited only by human resourcefulness.

10

Now, any classification scheme, no matter how cleverly

contrived, is but an empty formality unless it is supported

by definite criteria, i.e., by a code of unequivocal rules which

any competent person may use to ascertain whether or not a

given object belongs to a given class. As applied to our own

programme, this means that we should begin by seeking
criteria of constmctibility by straightedge and compass. It is here that

we encounter our first difficulty.

There is nothing, indeed, in the formulation of a construc-

tion problem to indicate whether it can or cannot be solved by
means of the traditional instruments. The use of ruler and

compass enables one to trisect any rectilinear segment, but not

the general circular arc; to inscribe into a circle a regular

polygon of 3, 5 or 17 sides, but not one of 7, 9 or 1 1 sides; to
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square any parabolic arch, but not a circle. Such facts are not

of the sort that may be deduced from the statement of a

problem, nor from the casual inspection of a hypothetical

figure; they require, as a rule, a more or less intricate and

seemingly artificial reformulation of the problem in terms of algebra,

and sometimes in terms of analysis.

Is this devious approach unavoidable? The history of the

celebrated problems gives a pragmatic answer to this query.

For, in spite of the valiant attempts of Greek geometers, the

problems remained at a virtual standstill for nearly two
thousand years and were not completely solved until algebra
and analysis had sufficiently advanced to be enlisted as effective

allies.

As we proceed with this survey, we shall encounter many
problems which reveal the difficulties inherent in a strictly

geometrical approach to construction, and, incidentally, the

reasons why the geometers of antiquity failed to resolve these

difficulties. These problems will bring out in sharper relief the

intimate kinship between geometrical construction, on the one

hand, and the classification of numbers according to their

character, on the other. In the last analysis a geometrical instru-

ment can be identified with a category of numbers; thus, any
restriction imposed on equipment is a restriction on number.
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Chapter Eight

THE HYPOTENUSE THEOREM

The Elements: hardly another scientific work has so

long maintained so eminent a place in its field. Indeed,
even today every mathematician must in one way or

another come to terms with Euclid.

FELIX KLEIN

No other proposition of geometry has exerted so much influence

on so many branches of mathematics as has the simple quadr-
atic formula known as the Pythagorean theorem. Indeed, much
of the history of classical mathematics, and of modern mathe-

matics, too, for that matter, could be written around that

proposition.
To begin with, it is the point of departure of most metric

relations in geometry, i.e., of those properties of configurations
which are reducible to magnitude and measure. For such

figures as are at all amenable to study by classical methods
are either polygons or limits of polygons; and whether the

method be congruence, areal equivalence or similitude, it rests, in

the last analysis, on the possibility of resolving a figure into

triangles.

Next, the Pythagorean equation being non-linear, its numerical

applications lead to irrational numbers. In this way mathe-

matics, almost from its inception, was confronted with the

perplexing problem of incommensurable magnitudes, and this

exerted a profound, even if perturbing, influence on the evolu-

tion of the number concept.

Again, to determine all integral solutions of the equation

was one of the earliest problems in that branch of mathematics
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which came to be known as number theory. With the revival of

mathematics, it led to the more general problem of determining

integral solutions of the equation

=.Rn . . . (8-2)

for any integral value of the exponent n. The statement that no
such triples exist for exponents greater than 2 is known as

Fermafs theorem. It remains in the realm of conjecture to this

day.
With the advent of analytic geometry, the metric aspect of

the theorem was greatly enhanced. A direct application of the

theorem leads to the distance formula by means of which the

length of any segment can be calculated in terms of the coordi-

nates of its end points. Eventually, the equation has come to be
viewed as the analytical representative of the circles in the

plane, and this, in turn, has led to the fertile idea of describing
and classifying geometrical loci by means of algebraic equa-
tions. To the same order of ideas belongs the notion of absolute

value of a complex magnitude which plays such an important
role in the theory of functions.

The introduction of infinitesimal methods led to further

extensions of the formula's scope. In the guise of a differential

form, it became the measure of the length of the arc of a plane
curve. The idea was eventually extended to space curves, then

generalized to curved surfaces.

Last but not least was the influence of the Pythagorean
theorem on the so-called non-Euclidean geometries. When the

axioms of geometry began to be subjected to a critical analysis,

it was soon realized that the Pythagorean relation between

the sides of a right triangle was equivalent to the Euclidean

postulate of parallels. Thus, if one was to reject this postulate
but retain the other axioms, one would have to replace the

Pythagorean relation by another form. These considerations

had led Riemann to the epoch-making idea of defining space

structures by means of quadratic forms, an idea which, when
extended to space-time manifolds, became the foundation of

the mathematical theory of relativity.
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Let us examine the two proofs of the Pythagorean proposition
which have been attributed to Euclid. I use the word attributed

advisedly, because there are definite indications that the

proof at the end of Book One of the Elements was first advanced

by the brilliant geometer Eudoxus who antedates Euclid by
a generation at least, while the similitude proof of Book Six

bears the marks of the Founder, Thales.

The characteristic feature of the first proof is that it interprets
the Pythagorean theorem not as a metric relation between the

sides of a right triangle but as a property of the squares erected

on these sides. This literal interpretation of the theorem restricts

the proof to areal equivalence. Now, to prove that noncongruent

polygons contain the same area requires, as a rule, inter-

mediate steps and auxiliary lines, which complicate the argu-
ment and obscure the figure. This may explain why the proof
of Book One has been a source of despair to so many beginners,
and why even those who have grasped it can rarely throw off

the feeling that the proof is artificial and unnecessarily intri-

cate. Thus, the caustic German philosopher Schopenhauer
dismissed the demonstration with the contemptuous remark
that it was not an argument but a

'

'mousetrap."

Many a textbook on geometry has been written in the

twenty-two-hundred-odd years since Euclid's work appeared.
Some are mere facsimiles, others but blind adaptations of the

Elements. Still, there are quite a few among these that make
some pretence to originality. But even the latter present the

"mousetrap" as the proof of the Pythagorean theorem, while

the elegant demonstration of Book Six is rarely, if ever,

mentioned. And yet, not only is this alternate proof superbly

simple, but, by identifying the Pythagorean relation with

the existence of similar figures, it strikes at the very root of the

question. Paraphrased in modern terms, this means that in a

geometrical field where two figures cannot be similar without

being congruent at the same time, the relation between the

sides of a right triangle would not be of the Pythagorean form.
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The similitude proof, Proposition 31 ofBook Six of the Elements,

derives from a property which is characteristic of right

triangles. The principle is illustrated in Figure n. The perpen-
dicular dropped from the vertex C of the right angle onto the

c

FIGURE 1 1

hypotenuse partitions ABC into the two right triangles AHC
and BHC; either of these is equiangular with the original triangle

and, therefore, similar to it. Hence the two proportions,

u : a = a : c
y and v : b = b : c.

From these we draw

and, by addition,

=
cu, and i 2 =

cv,

a* + b 2 = c(u + v)
= c

2
.
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Figure 1 1 gives an interpretation of these relations in terms of

areas. The extended altitude of the triangle ABC partitions the

square erected on the hypotenuse into the two rectangles

(HA') and (HB')\ in virtue of the preceding relations, the

areas of these rectangles are a 2 and # 2
, respectively. This, as

we shall presently see, is the property which Euclid in his

earlier proof sought to establish, but without the benefit of

similar triangles.

FIGURE 12

As a matter of record, to Euclid the proposition of Book Six

was a generalization of the Pythagorean theorem rather than

an alternate proof. Here is his wording: "In right-angled

triangles, the rectilinear figure erected on the hypotenuse is

equal to the similar and similarly described figures upon the

sides containing the right angle." The drawing in the Elements

shows three similar rectangles (Figure 12). However, the

"described figures" could be equilateral triangles, or, for that

matter, three semicircles.
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The key to the areal proofof the Pythagorean theorem, Proposi-
tion 47 of Book One of the Elements, is a lemma which permits
one to transform any given triangle into another equal to it

in area but not necessarily congruent to it. The lemma is

exhibited in Figure 13, where MN is a fixed segment, xx an
indefinite line parallel to AfJV, and X any point on the line xx.

As the point X moves along the line, the triangle MXN is

deformed, but its area remains unaltered.

x, M'XS x4 xs x7

M N
FIGURE 13

Once this lemma is borne in mind, the stratagem of the

Euclidean proof becomes clear. The aim is to establish that the

triangles HBQ, and MEN in Figure 14 are equiareal. In virtue

of the preceding lemma, HBQ, can be replaced by the equi-
valent triangle CBQ, and MNB by the equivalent triangle

ANB. However, in the triangles CBQand ANB we have:

AB = QB, CB = BN, and angle QBC = angle ABN\

thus CBQ, and ANB are congruent and, therefore, equiareaL

Passing from triangles to rectangles, one finds BHKQ, equal
to BCMN, and, by analogous reasoning, AHKP equal to

ACUUV.
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M

Why did Euclid place the intricate areal proof in the fore-

ground, relegating the simple similitude proof to the very end
of his study on similar figures? The answer is that the author

of the Elements^ with his customary thoroughness, would not

deal with relations which depended on the principle of similitude

until he had made an exhaustive study of ratios and proportions.

Book Five of the Elements is just such a study.
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One who reads the Elements today is amazed at the pains-

taking care and tedious detail with which Euclid treats certain

notions, notions which modern curricula dismiss with a few

casual remarks. Particularly perplexing is the bewildering

variety of special cases handled, cases which we would regard
as but trivial variations of a general rule. One explanation of

this apparent verbosity is to be found in the rudimentary state

of Greek algebra. In the absence of an adequate symbolism,
Greek mathematicians resorted to verbal procedures; these

were eventually codified into a glossary of terms and rules

most of which strikes us today as utterly superfluous and hence

unintelligible.

FIGURE 15

A case in point is the theory ofproportions which constituted a

very important part of the rhetorical algebra used by Greek

geometers to express metric relations. It is here that the discrep-

ancy between classical and modern exposition appears most

striking. To illustrate, consider the proportion, a : b = a' : b
f

,

and its "counterpart," the equality, ab
r

a'b. Observe the

facility with which we pass from one of these expressions to

the other, then reflect that what we view today as a trivial

manipulation of algebra was to the Greeks a basic theorem of

geometry.
The theorem assigns to any pair of similar rectangles another

pair of rectangles, equal in area. Associated with this proposition
is a configuration which is shown in Figure 15. Let be any

point inside the parallelogram ABCD: the lines through
drawn parallel to the sides of the parallelogram partition the
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latter into four equiangular parallelograms (OA) 9 (05), (0(7)
and (OD) which I shall call cells for short. The theorem in

question is this: If the cells (OA) and (OC) are similar, then the

cells (OB) and (OD) are equiareal, and̂
conversely.

The similarity
condition is fulfilled if, and only if, the point O lies on one or

the other of the diagonals of ABCD. One thus arrives at the

geometrical counterpart of the relation:

a : b = a' : b' entails ab' = a'b,

and conversely.

It would be a mistake, however, to ascribe Euclid's meticulous

handling of proportions solely to the low state of Greek algebra.
The truth is that the Greeks were reluctant to identify ratios

with numbers, the compelling cause of this hesitancy being the

existence of incommensurable magnitudes.

How could one define the ratio of a circumference of a circle

to its diameter, or the ratio of the diagonal of a square to its

side, for that matter, without resorting to infinite processes and
their limits, with all the qualms that such notions are heir to?

Euclid was a Platonist, and the echoes of the controversy

engendered by the Zenonian paradoxes had not yet subsided

in his time. And lest we be tempted to treat this caution with

too much levity, let us recall the travails of the modern theory

of irrationals, the critical studies of Weierstrass, Cantor, Dede-

kind and Poincare, the antinomies and the bitter controversies

which are still fresh in the memories of the older mathe-

maticians of our generation.

Figure 16 is a schematic drawing of what may be called an

"articulated" ruler. The longest link AB is 5 units long; the

shorter links measure 3 and 4 units, respectively. If the outer

links be revolved about the pivots B and C until their end
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JS

FIGURE 16

points meet in A, the resulting triangle ABC would have a

right angle at C, in virtue of the identity,

3
2 + 4

2 = 5
2

-

This method of constructing right angles antedates Pytha-
goras by thousands of years. It was used by ancient Egyptian
surveyors in orientation problems; by the Chinese as a levelling

device in masonry work; in other Oriental lands as sort of

carpenter square. There is ample evidence that the ancients were
aware of the existence of other rational triangles, such as are

given by the triples (5, 12; 13) and (7, 24; 25), and it was,

undoubtedly, the search of these triples that had led the

early Greek mathematicians to the Pythagorean theorem.
The latter was a triumphant confirmation of the Pythagorean

number philosophy. However, the triumph was short-lived,

for, the very generality of the proposition revealed the existence

of irrational magnitudes. One effect of this perturbing discovery
was a revised outlook on matters of geometry. To the early

Pythagoreans every triangle was a rational triangle, because they
held that all things measurable were commensurate. This last dictum
seemed to them as incontrovertible as any axiom, and when
they proclaimed that number ruled the universe, they meant by
number integer, since the very conception that magnitudes
might exist which were not directly amenable to integers
was alien to their outlook as well as to their experience.
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8

Some modern interpreters of mathematical thought have been
inclined to dismiss such ideas as naive notions of a bygone
age. And yet in the eyes of the individual who uses mathe-
matical tools in his daily work and his name today is legion
but to whom mathematics is but a means to an end and never

an end in itself, these notions are neither obsolete nor naive.

For, such numbers as are of practical significance to him
result either from counting or from measuring and are, therefore,

either integers or rational fractions. To be sure, he may have
learned to use with comparative facility symbols and terms

which allude to the existence of nonrational entities, but this

phraseology is to him but a useful turn of speech. In the end
the rational number emerges as the only magnitude that can
be put to practical use.

Should this individual, piqued by the reproach that he was

naive, endeavour to penetrate behind the mysterious nomen-

clature, he would soon discover that the processes invoked to

vindicate these nonrational beings are wholly unattainable

and, therefore, to him gratuitous. And yet, should he persist in

his attempt to interpret such an entity in his own rational

terms, he would be sternly reminded that in matters irrational

one may at times evade the infinite but never avoid it. For,
inherent in the very nature of this imponderable magnitude is

the property that no matter how close any given rational

number may "resemble" it, other rational numbers exist

which "resemble" it even closer.

This individual would feel far more at home among the

Pythagoreans than among their rigorous successors. He would

willingly embrace their credo that all things measurable are

commensurate. Indeed, he would be at a loss to understand

why a principle so beautiful in its simplicity has been so

wantonly discarded. And, in the end, the mathematician

would be forced to concede that the principle was abandoned
not because it contradicted experience, but because it was
found to be incompatible with the axioms of geometry.

105



BEQUEST OF THE GREEKS

Indeed, if the axioms of geometry are valid, then the Pytha-

gorean theorem holds without exceptions. And if the theorem holds,
then the square erected on the diagonal of a square of side i

is equal to 2. If, on the other hand, the Pythagorean dictum

held, then 2 would be the square of some rational number, and
this contradicts the tenets of rational arithmetic. Why?
Because these tenets imply, among other things, that any

fraction can be reduced to lowest terms; that at least one of the

terms of such a reduced fraction is odd; that the square of an
odd integer is odd

;
and that the square of an even integer is

divisible by. 4. Suppose then that there existed two integers,
x and R, such that R 2

/x
2 = 2, i.e., that

It would follow that R was even, and, since the fraction is in

its lowest terms, that x was odd. One would thus be led to the

untenable conclusion that the left side of an equality was
divisible by 4, while the right was not.

The preceding argument is a modernized version of Euclid's

proof of the irrational character of ^ 2. Its very simplicity hints

that it was but an adaptation of an earlier proof, perhaps, of

the very one that had so profoundly perturbed the Pythagoreans
and eventually forced them to change their outlook on number
and measure.

Obviously, the reasoning is not limited to the case of an
isosceles right triangle. Consider any right triangle the sides of

which are integers, say x andjy, but such that x 2
+JV

2
is not a

perfect square: by an argument patterned on that of Euclid it

can be readily proved that such a triangle is not rational.

This clearly reveals the existence of an infinitude of non-

rational triangles. What is more, the preponderant majority of

construction problems of classical geometry depended on just
such nonrational triangles: it is sufficient to mention the

golden section., the regular polygons and bisection of standard angles.

As a matter of fact, the determination of rational triangles
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is not a problem of geometry, since geometrically there is no

way of distinguishing a rational triangle from any other.

Nor is it a problem which algebra could resolve, inasmuch as

the laws of formal algebra are obeyed by irrational numbers
as well as rational. In the last analysis the problem is a study
in integers.
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TRIPLES

We found a beautiful and most general proposition,

namely, that every integer is either a square, or the

sum of two, three or at most four squares. This

theorem depends on some of the most recondite

mysteries of numbers, and it is not possible to present
its proof on the margin of this page.

FERMAT

This chapter will deal with integers, more particularly
with positive integers, i.e., with the "natural" sequence,

i, 2, 3, 4, . . .
,
the starting point of all mathematics. The

branch of mathematics dedicated to the study of integers has

come to be known as theory of numbers. The origin of this rather

unhappy terminology is obscure, but one thing is certain : the

misnomer cannot be blamed on the Greeks.

Classical Greek had two distinct words for number : arithmos

for integer, logos for general number, and although in lay
literature the two terms were at times loosely used, the mathe-

matical writers were fairly consistent in distinguishing between

their meanings. Thus the theory of numbers was called arith-

metica, while what we today call arithmetic was then logistica.

This last word, which has survived as a military term, may be

traced to the Greek logisticos, calculator, more particularly a

calculator attached to an army, charged with the planning,

figuring and procuring supplies and equipment.
The misnomer harks back to an age when number meant

positive integer, and little else. We have travelled a long way
since; the evolution of the number concept has become one

of the most profound, fertile and far-reaching mathematical

studies, and it would be fitting indeed to call this larger study

theory of numbers. So it is rather regrettable that the title has
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been pre-empted by a study which deals with integers exclu-

sively. It may be argued that once this glaring misnomer has

been recognized for what it is, it could be readily corrected,

but one who harbours such thoughts underestimates the power
of tradition, even in matters mathematical.

It is true that any systematic study of the general number

concept must take the integer for point of departure, and so

it may seem that the theory of integers is a sort of introduction

to the science of number, and that as such it deserves the name
bestowed upon it. We find, however, on closer scrutiny, that

the chief preoccupation of the theory of numbers, as it is

cultivated today, is not with integers at large but with particular

types of integers, studied either individually or in sets. So

special, indeed, are some of the problems of the theory that

the keenest tools of analysis are often not keen enough to

pierce the difficulty, with the result that quite a few of these

problems remain unsolved to this day.
The challenge of these problems spurred the efforts of the

greatest mathematicians from Fermat to Hilbert. Special
methods of utmost ingenuity have been devised by these

masters, and these methods have, in turn, enriched other

branches of mathematics. With all that, the theory of numbers
remains a sort of sui generis of mathematics, the magnificent

pinnacle of an edifice rather than an integrated part of its

structure. Like virtue, number theory is its own reward.

Indeed, it is altogether possible to carry on studies in practically

any branch of modern mathematics without ever facing the

necessity of using number-theoretical tools. In this our age of

extreme specialization, most mathematicians may safely remain

ignorant of number theory, and most of them do. Gauss pro-
claimed the theory Regina Mathematica, but to the modern
mathematician the queen is largely a figurehead.

The so-called Pythagorean problem may be stated as follows:

to determine all integer sets which satisfy the equation
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I call such sets Pythagorean triples, or triples for short. The
terms x and y are the sides of the triple, R its hypotenuse. Any
triangle the sides of which can be represented by integers will

be called a rational triangle. This does not restrict the scope of

the term "rational" for if a triangle can be represented by
means of rational numbers

, i.e., integers and fractions, then it

can also, through a proper change of unit, be represented by
integers alone.

The branch of number theory which deals with integral
solutions of equations is called Diophantine analysis, named after

the Alexandrian mathematician of the fourth century A.D.

who, as far as we know, was the first to attack such problems
in a systematic manner.
The Diophantine equation (9.1) is of a special type called

homogeneous. The important feature of such equations is this :

if (x,y ; K) is a set of values which satisfy a homogeneous equa-
tion, then the proportional set (nx, ny ; nR) is also a solution of

the equation, whatever value be assigned to n. Because of the

homogeneous character of the Pythagorean relation, we can

classify triples into primitive and imprimitive. A triple is primitive
if its terms are relatively prime, i.e., have no divisors in common.
On the contrary, the terms of an imprimitive triple have some
divisors in common. Examples of primitive triples are (3, 4; 5),

(5, 12; 13), (8, 15; 17); examples of imprimitive : (9, 12; 15),

(10, 24; 26), (80, 150; 170).

Associated with every primitive triple (x,y\ R) is an infinitude

of imprimitive: (2*, 2?; zR), (3*, <$y, 3^), (4*, 47; 4^), .

(nx, ny, nR), .... On the other hand, if (x,y, R) is an imprimi-
tive triple, it is always possible to determine a primitive triple

the terms of which are proportional to x, y and R; and this by
the simple expedient of dividing every term of the triple by
its greatest common divisor. I shall call this operation contraction.

Thus, whether any given triple is primitive or imprimitive

depends on the value of its greatest common divisor. The labour

incident to calculating this divisor is greatly facilitated by the

following theorem, which is a direct consequence of the homo-

geneous form of the Pythagorean relation: any integer which

divides two terms of a Pythagorean triple also divides the third term.

This theorem has two practical corollaries:/^, to determine
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the greatest common divisor of a triple it is sufficient to calcu-

late the greatest common divisor of any two terms of the

triple ; and second, if any two terms of a triple are relatively prime
then the triple is primitive. As an example, consider the set

(140, 171; 221). Is it a triple, and if so, is the triple primitive?
The set is a triple, because :

22i 2
iyi

2 = (221 + iyi)(22i 171)
= 392-50 = 196-100 = no 2

;

and the triple is primitive, because 140 and 171 are coprime.

On the other hand, the set (36, 105; in) is not primitive; its

greatest common divisor is 3, and the contracted primitive triple

is(i2, 35; 37).

A comprehensive solution of the Pythagorean equation was
reserved for modern times. Though there are many allusions

to the question in Book Ten of Euclid's Elements, in the Arith-

metica of Diophantus and in several other mathematical tracts

of the classical period, no systematic approach to the problem
was even attempted. One reason for this was already brought
out: considerations of rationality played a rather minor role

in classical geometry, and geometry was the paramount
interest of Greek mathematicians.

This much can be affirmed with certainty. The Greeks

were fully aware of the importance of the concept ofprimitivity;

they knew that one of the sides of a primitive triple was even, the

other odd, and that the hypotenuse was always odd', they knew how
to generate certain types of triples in number indefinite, and
concluded from this that the aggregate of primitive triples was

infinite. I shall elaborate somewhat on their arguments and

methods, in modernized version, of course.

Let us take up the question of parity first. The case of three

odd terms is out, on the ground that the sum of two odd integers

is even; while the case of more than one even term is eliminated

on the grounds of primitivity. Thus, there is only one even

term, and it remains to show that it is not the hypotenuse.
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Assume the contrary, and set x = 2 + i, y 20 + i,

j? = 2W. Substituting, we obtain

which is untenable, since the right member is divisible by 4,

while the left member is not.

Now, it has been conjectured that the Pythagoreans knew
that any odd integer may serve as one side of a primitive triple, and
that they discovered this property while seeking to determine

triples two terms of which were consecutive integers. It is a

plausible conjecture, because the proof of the theorem is quite
within the ken of the period. Let us assume that y and R are

the consecutive terms, and set y = 2p, R = 2p + i. Then,

substituting and solving the Pythagorean equation for x, we
obtain x = ^ \p + i. Now, any odd square is of the form 4p + i,

and consequently we can choose for x any odd integer. As an

example, let us set x = 9: then x 2 = 81, and consequently

p = 20; thus, y = 40 and R = 41. Generally, by setting
x = 2s + i

,
we obtain the triple

X = 25 + I, y = 2S(S + i), /Z = 2S 2 + 2J + I. . (9.2)

These triples are primitive for all values of the parameter s,

since two consecutive integers are always relatively prime. By varying
s from i to oo, we obtain an infinite aggregate of distinct primitive

triples.

The Platonists, on the other hand, were more concerned

with generating triples two terms of which were consecutive

odd integers. Proceeding as before, we set

x 2p i, R = 2p + i,

and derive y 2 *J 2p- ^ follows that 2p must be an even

square. By putting zp = 4^2, we obtain the triple:

x =4s 2 - i,y =4*, R =4* 2 + i; . (9.3)

and the set is primitive for any value of the parameter s, because

two consecutive odd integers are always coprime. Thus there is a

triple associated with every term of the progression

4, 8, 12, 16, . . .
, 4s.....
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Fibonacci sought to extend the preceding results by determin-

ing primitive triples, given the difference between the hypo-
tenuse and the even side, and discovered that the problem
had no solution unless the stipulated difference was itself a perfect

square. This led him to the idea of representing Pythagorean
triples by means of two parameters, an idea which was a turning

point in the history of the problem.
The official name of this gifted Italian mathematician of the

early thirteenth century (perhaps the only European of the

Middle Ages worthy of the title) was Leonardo of Pisa. His
father was a lowly shipping clerk nicknamed Bonaccio, which,
in the idiom of the period, meant simpleton. Hence, Fibonacci,
son of a simpleton. Nor was this the only compliment paid to

Leonardo by his fellow citizens : he was also called Bigollone,

i.e., blockhead. In proud defiance of these indignities, Leonardo

adopted both nicknames as pen names. The title of the book
in which the ideas just mentioned were first introduced may
sound quite glamorous in Latin, but an unvarnished translation

would read : A Book on Quadratics, Written by Leonardo the Block-

head, Son of the Simpleton of Pisa.

Fibonacci was the first to combine Greek achievements in

geometry and number theory with the algebra of the Arabs
and the positional numeration of the Hindus. In fact, his

earlier work, Liber Abacus, should be viewed as an attempt at

vindicating the principle of position. The book extols the many
advantages of the new method over the traditional Roman
numeration which was still widely used at the time; this may
account for the abundance of examples drawn from the

flourishing commercial life of the period. He also wrote a

book on geometry, and while he added little to the store

bequeathed by the Greeks, he was a pioneer in the applications
of algebra to problems of geometry.

But his best contributions belong to number theory. It was
he who conceived the idea of generating arithmetical sequences

by means of algorithms. He knew many of the identities which
we associate today with the names of Vieta, Euler or Lagrange,
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and made skilful use of these. It is true that his reasoning was

occasionally tinged with error; still his demonstrations were, on
the whole, remarkably rigorous for his period.

Fibonacci's approach to the Pythagorean problem is sub-

stantially this : let y be the even side of a primitive triple of

hypotenuse R\ then the integers, R -\-y and R y are relatively

prime , for, if they had a common divisor, say Z), then D would
divide their sum and their difference, i.e., zR and 27, and this

is impossible, since R andjv are assumed coprime, and R +y
and R y are odd.

We next invoke a lemma which, in spite of its utmost

simplicity, plays a capital role in many number-theoretical

arguments: let ^4, B} C, . . . be any number of positive integers
with no divisors in common] if

ABC, ...=,. . . (9.4)

i.e., if the product of these integers is a perfect n th
power, then each of

thefactors is an nth
power "in its own right" and we may infer that

A = an
,
B == b n

,
C = c

n
, . . . . (9-4')

where a, b, c, . . . are also relatively prime integers.

As applied to the Pythagorean equation, we have

and we conclude of the existence of two integers u and v such

that

R+y=u*9 R-y=v*. . . (9.5)

Expressed in terms of these integers, the sides of the triple

are

x = uv, 2y = u 2 v 2
, zR = u 2 + v*. . (9.6)

Since u and v are odd, u + v and u v are even. This suggests
the substitution u + v 2p, u v = 2*7, which puts (9 . 6) in

the more convenient form

* =/>
2 -

?
2
, y = *pq, R=p+q*. . (9.7)
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A "random" choice of the integers p and q would yield a

Pythagorean triple, but the triple would not be primitive,
unless the parameters p and q were relatively prime and of opposite

parity. Indeed, if p and q had a common divisor, say Z>, then

D would also divide x,y and R; and ifp and q were both odd,
then p 2

q
2 and p 2 + q

2 would be even. Thus, a necessary

condition for the primitivity of the triple represented by equations

(9 7) ^ thrt one f the parameters be odd, the other even, and that

the parameters be relatively prime. These conditions are also

sufficient.

The real significance of the Fibonacci approach is that it

reduces the Pythagorean problem to "two degrees of freedom,"
and does it in an "exhaustive" manner. By this I mean that

any primitive solution of the equation

=R 2

can be expressed in terms of two integers p and
<?,

the latter

being coprime and of opposite parity.
The relation

R=p* + q* . . . (9.8)

suggests a systematic method of generating Pythagorean

triples, as shown in the table on the following page : any entry is

the sum of an even and an odd square and is, therefore, the hypo-
tenuse of some triple. The "blanks" result from adding squares
which are not coprime, and, therefore, correspond to irn-

primitive solutions.

To what extent does the knowledge of one term of a primitive

triple determine the remaining two? The fundamental formulae

of the preceding section answer this question as follows :

First: Any odd integer is a side of at least one primitive triple.

Indeed, any odd integer may be written in the form

x==ia l)fcY... = A-B-C . . . (9.9)
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Hypotenuses of Primitive Triples: R = p
2 +

where A, B, (7, . . . are odd integers, relatively prime in pairs.

There are, generally, several ways in which x may be resolved

into a product of two relatively prime integers, say M and N.
For each one of these combinations, we may set p + q = M
and p q = jV, and obtain a distinct triple. One particular

representation is x = x i and this leads to the triples con-

sidered in Section 3, in which the even side and the hypotenuse
are consecutive integers.

Second: If y is an even integer, but not a multiple of 4, then no

solution of the Pythagorean equation exists; on the other hand, any

multiple of 4 is a side of at least two primitive triples. Indeed, any
multiple of 4 may be written in the form

hence
y =

where k > 2, and A
9
B

9
C

9
. . . are odd and relatively prime

in pairs. Proceeding as before, we find that there are, generally,
a variety of ways to present \y as the product of two coprime
factors of which one is even and the other odd. Among these

there is always the choice p = \y, q = i, and this leads to the
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Platonist type discussed in Section 3, in which two terms

are consecutive odd numbers; but there is also the choice:

^ =2*-i, q=A-B*C, ....

Third: Under what conditions will a given integer R be the hypo-
tenuse of some primitive triple? One may say that R must be the

sum of two relatively prime squares of opposite parity, but

that, in a sense, is just begging the question. How, indeed, is

one to ascertain whether a given odd integer R is or is not

representable as a sum of two squares, particularly if R is

large?

8

A partial answer to this question was a theorem which Fermat
stated without proof in a letter to Father Mersenne, dated

1640. The proofwas given by Euler in 1754, and later simplified
and extended by Lagrange, Legendre and Gauss. It eventually
led to far-reaching investigations into the arithmetic properties

of quadraticforms . These, however, do not concern us here, and
so I shall confine myself to a statement of Fermat's theorem
and to an outline of its immediate applications to the Pytha-

gorean problem.
Let us observe, first of all, that any odd number is either of

the type 472 + i or of the type 472 + 3, which is but another

way of saying that if an odd number is divided by 4, the

remainder is either i or 3. In the second place, an odd square

is necessarily of the type 4/2 + i
,
because

(*p + i)
2 = tf(p + i) + i = 4* + I-

Next, let us agree to designate as 2-square any integer which
can be represented as the sum of two squares: then an odd

2-square is always of type 4n + i, since its components, p
2 and

q
2
,
are of opposite parity. It follows that any admissible hypo-

tenuse of a primitive triple is of type 4/z + i> i-e., a term of

the arithmetic progression

5> 9> 13> j7> 21, 25, 29, 33, 37, 4> 45> 49> 53, 57, 61, 65 ,
----

. (9- 1 1)
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The underlined numbers are 2-squares: observe that these

integers are either prime, such as 5, 13, 17, 29, . . .
, or products

ofprime 2-squares, such as 65, 85, 117, . . . , or powers ofprime

2-squares, such as 25, 125, 169, .... It must have been such

an empirical study that had led Fermat to his discovery.

Fermat's 2-squares theorem may be stated as follows: any

prime number of type 4n + l can oe partitioned into a sum of two

squares, and the partition is unique. Conversely, if the equation

has only one solution in x and y, then R is a prime. Further-

more, if the equation (9.12) has any solutions at all, then R
is either a prime 2-square or a product of prime 2-squares. The

bearing of these propositions on the Pythagorean problem is

this : a necessary condition for an odd integer R to be the hypotenuse

of a primitive triple is that every one of the prime divisors of R be of

type 4n + i. This condition is also sufficient.

Thus the hypotenuse of a primitive triple is not divisible

by 3, 7, 1 1, 19, or by any prime of type 4^ + 3- This restriction

does not apply to the sides, x andjy, of the triple. Indeed, one
or the other of the sides must be a multiple of 3. This is a

direct consequence of equations (9.7), according to which :

-q*). . . . (9.13)

For, if p is not a multiple of 3, then p* is of type 37* + i
;
if

neither p nor q is a multiple of 3, then both p
2 and g

2 are of

type 3/2+1, and, consequently, their difference is divisible

by 3. Thus xy is always divisible by 3, and, as a matter of

fact, by 12.

On the other hand, the hypotenuse R may be divisible by 5 ;

what is more, one of the three terms of a primitive triple

must be divisible by 5. Here is a simple "digital" proof of this:

the fourth power of any integer/? ends in o or 5, if/? is divisible

by 5; and ends in i or 6, ifp is not. It follows that if neither

p nor q is a multiple of 5 then p* q* is divisible by 5. Thus if
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the even side y is not a multiple of 5, then the product Rx
is divisible by 5. As a combination of these properties we infer

that the product of the three terms of a primitive triple is always
divisible by 60, a fact which was known to Fibonacci.

10

In its formal aspects, the Fermat theorem is but a paraphrase
of an algebraic identity which, in "rhetorical" form, was

already used by Fibonacci, namely:

(P
2 + q*)(P'* + <?'

2
)
=

(PP' + qq'}
z + (pq

1

-P'qV
=

(PP'
-

qq'Y + (pq' + P'q}*- (9-14)

In the special case when p' = p and q'
=

q, the second part
reduces to

The last was used by Fibonacci to establish the compatibility

of Equations (9.7). Yet, for all their importance, these iden-

tities are purely formal, by which I mean that they apply not

only to integers but to any entities which obey the laws offormal

algebra.

These identities show that the product of any number of

odd 2-square integers is itself a 2-square, and, therefore, of

type 4^ + i . On the other hand, not every integer of this type
is a 2-square. The crux of the difficulty lies in the circumstance

that the product of two integers of type 4/2 + 8 is of type

4?z + i . For an odd integer R to be the sum of two squares it

must be of the form 4^+1; but this is not sufficient. However,
it is sufficient in the case when R is a prime number, and this

is Fermat's theorem.

ii

Viewing the problem in retrospect, can one claim that after

engaging the efforts of first-rate mathematicians for twenty-five
hundred years the Pythagorean equation has finally been
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exhaustively solved? The answer will depend on what one is

willing to accept as solution. An odd integer R of type 4/2+1
being given, the problem is to ascertain whether a primitive

triple of hypotenuse R exists, and if it does exist, to determine

the sides of the triple. Fermat's theorems reduce the question
to determining the prime divisors of R, and this may at first

sound like a solution of the problem. Unfortunately, it is one

of those cases which were so aptly described by Eratosthenes

as "replacing one perplexity by another even more per-

plexing." Indeed, not only do we lack effective criteria for

testing the primality of integers, but the available practical
means are so limited as to render the task formidable beyond
imagination, when the integer exceeds 1,000,000.

To illustrate this last point, let us consider the integer

1,000,009. In a paper published in the year 1774, Euler listed

this integer as prime. In a subsequent paper Euler corrected

his error and gave the prime divisors of the integer, adding
that at one time he had been under the impression that the

integer in question admitted of the unique partition

(a) 1,000,009 i,ooo
2 + 3

2

but that he had since discovered a second partition, namely,

(b) 1,000,009 = 235
2 + 972

2
,

which revealed the composite character of the number.
Euler then proceeded to calculate the divisors of 1,000,009

by a method patterned along the proof of a Fermat theorem
which he gave in an earlier paper, and which stated that if
an odd integer R is susceptible of more than one partition into two

squares, then R is composite. The interesting thing about this

method is that it not only proves the existence of the divisors

but permits one to calculate them in terms of the elements of

the given partitions. Thus in the case under consideration,
Euler found

(c) 1,000,009 == 293 X 3,413.

Since both divisors are prime numbers, no third partition
exists.
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Chapter Ten

THE CRESCENTS OF HIPPOCRATES

Geometry may at times appear to take the lead

over analysis, but in fact precedes it only as a servant

who goes before his master to clear the path and

light him on the way.

JAMES SYLVESTER

He flourished in the middle of the fifth century B.C. as did that

other Hippocrates, whose pledge healers honour, even in the

breach. I doubt that the two had ever met or even heard of

one another. Indeed, the name was common among ancient

Greeks who, seemingly, held horse and horseman in much
esteem; hence, "hippo" in prefix, as in Hippocrates, Hippias,

Hipparchos; or in suffix, as in Philippos, Speusippos, Xant-

hippe.

Hippocrates, the geometer, haled from Chios, an island

which lies a hundred-odd miles from Miletus, the birthplace
of Thales. Indeed, the legend of his life resembles that of the

Founder in more than one way. He, too, began as a merchant

and ended up as a teacher; he, too, was initiated into the

mysteries of number and extension after reaching maturity.

However, his mentors were not priests but zealous followers

of the Pythagorean doctrine which by that time had grown
into a veritable cult. For, we are told that while on a visit to

Athens he came in contact with a group of Pythagoreans who

taught him what they knew of geometry and arithmetic
;
that

having subsequently lost his fortune, he was reduced to selling

these mathematical secrets to anyone who could and would

pay the price, thus betraying his mentors' trust; that this

sordid traffic had roused the righteous wrath of his erstwhile

teachers who henceforth countered his achievements with

contemptuous silence,
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And how did he lose his fortune? Well, one version was
that his ships had been plundered by pirates on the high seas;

but Aristotle, who never missed a chance to vent his spleen

against mathematicians, gave a less glamorous account of the

event. "It is well known," he wrote, "that persons brilliant in

one particular field may be quite stupid in most other respects.
Thus Hippocrates, though skilled in geometry, was so supine
and stupid that he let a customs collector of Byzantium swindle

him out of a fortune."

The scope of his contributions is a moot question, for, while

the Pythagoreans ignored his work, their opponents swung to

the other extreme. He, allegedly, wrote a treatise on geometry,
the first of its kind, where among many other innovations he
introduced the use of capital letters to designate points on a

figure. No trace of the textbook remains, but the technique
of describing a figure by means of letters placed at salient

points has since become universal.

He is credited by Eratosthenes with reducing the Delian

riddle to the insertion of two mean proportionals between a segment
and its double, thus paving the way to all subsequent solutions

of the problem. Some assert that he was the first to prove that

the area of a circle was equal to that of a triangle erected on
the semicircumference as base and radius as altitude, thus

reducing the problem of squaring a circle to the rectification of

its boundary. Others go so far as to claim that he was the

first to advance the epoch-making idea of viewing the area

within a closed curve as the limit of a variable polygon inscribed

in the boundary.
How much of this is fact and how much fancy we shall

probably never know. So let us pass to the one achievement
which both friend and foe associate with the name of the

man : the Hippocratean crescents.

Broadly speaking, a crescent or lune is a portion of the plane
bounded by two circular arcs. However, in what follows we
shall be concerned only with the case when both arcs lie on
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one side of their common chord, CD in Figure 1 7. The axis

of symmetry of the crescent, or meniscos, as the Greeks called

it, contains the centres A and B of the circles, as well as the

midpoints E and F of the arcs. In fact, the crescent is com-

pletely determined by the triangle ABC; and so the first step
in squaring the crescent should be to express the area in terms of

the elements of that triangle. Yet, Hippocrates did nothing of

the sort; for that matter, he couldn't if he would, and wouldn't

if he could.

FIGURE 17

In the first place, the connection between the area of the

crescent and the elements of the triangle involved concepts
which lay beyond the scope of classical geometry. Indeed,
denote by F the area of the crescent, by A the area of the

quadrilateral ACBD y by a and b the radii of the circles, and

by 2a and 2/? the central angles subtended by the two arcs;

then, a direct examination of the figure leads to the relation :

F + Sector CADEC = A + Sector CBDFC.
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From this we draw the formula

T = A + (0
2
/?
-

b*a) = ab sin (/?
-

a) + (a
2
/?

. (10. i)

a formula which involves the angles a and /? not only through
their trigonometric functions but explicitly. Such goniometric

considerations, however, were beyond the ken of the Hippo-
cratean period.

In the second place, Hippocrates was not concerned with the

general crescent but with a very special kind, known as

quadrable. Strictly speaking, a bounded region of the plane is

quadrable if a square of equal area can be constructed by straightedge

and compass. Any parallelogram is quadrable, because it can

be converted into a rectangle of equal area, which, in turn,

can be converted into a square, the side of the latter being
the mean proportional between the sides of the rectangle. The
same holds for any triangle, from which we conclude that

the area bounded by a general polygon is quadrable, provided that the

polygon itself can be generated by straightedge-compass operations.

Another example of a quadrable area is the general parabolic

segment, i.e., the region bounded by an arc of a parabola and
the line which joins its end points, for, according to a celebrated'

theorem of Archimedes, the area of a parabolic segment is equal
*

to two thirds of the area of the triangle bounded by the chord and the

tangents. Examples of nonquadrable areas are the circle itself, or

any sector or segment thereof constructible by straightedge
and compass.

Thus, the existence of quadrable crescents is anything but

evident. However, one such crescent is shown in Figure 18,

and its utmost simplicity suggests that it was known before

Hippocrates; for all we know, this crescent might have

served as the point of departure of his investigation. Here the

outer arc is a semicircumference, the inner a quadrant. A
direct inspection of the figure shows that the area of the

crescent is F = a 2
, where a denotes the radius of the outer arc.
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G C

Some historians maintain that Hippocrates believed that the

number of quadrable crescents was infinite. I find little evidence

to support this contention, and even less to justify the sarcastic

allegation of Aristotle that Hippocrates had invented his

crescents for the express purpose of squaring the circle. On the

other hand, it is quite possible that Hippocrates did not rule

out the feasibility of squaring the circle, and that he used the

crescents to demonstrate that circular and rectilinear figures

may possess the same area. This would explain why he limited

his study to a special variety of crescents which I shall call

in what follows Hippocratean.
These special crescents satisfy the following conditions:

First, the sectors which rest on the two arcs of the crescent,

AGED and BCFD in Figure 17, are equal in area; and second,

the central angles of these sectors are commensurable.
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The first of these conditions, with the notations of formula

(10. i), leads to

. . . (10.2)

from which we conclude that

i.e., that the area of a Hippocratean crescent is equal to the area of
the quadrilateral bounded by the four radii which pass through its

"horn-points" Thus, such a crescent is quadrable if, and only if,

the triangle ABC is constructible by straightedge and compass.

Applying the law of sines to the triangle ABC, we are led

to the equation
sin a

However, this interpretation does not solve the problem of

quadrability : on the contrary, it merely accentuates the

difficulty. The issue is this : is it possible to express sin a and sin /?

in terms of rational numbers and quadratic surds? This is not a

question of geometry or algebra, or even analysis; it is a

problem of transcendental arithmetic, a field of mathematics

replete with questions that have challenged the keenest minds
these last two centuries. Some few of these, such as the trans-

cendental character of the numbers e and TT, have been brought
to a successful conclusion. However, the solutions were not of

a type to suggest general methods for attacking kindred prob-
lems. Indeed, it may be stated without peradventure that

transcendental arithmetic has more unsolved problems and

unproved conjectures than any other branch of mathematics.

Assume next that the angles a and /? are commensurable. This

means that integers p and q exist such that

ajp = Pfq or a = poj, ft
=

qa). . (10.5)
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By substituting these values in (10.4) we put the latter in the

form

q sin 2
poj =p sin 2

qa). . . (10.6)

This last relation may be viewed as the defining equation
of all Hippocratean crescents, whether quadrable or nonquadrable.
The integers p and q may, without loss of generality, be

assumed relatively prime; i.e., angle a* may be viewed as the

greatest common measure of a and /?. The form of a Hippocratean
crescent depends only on p and q ; accordingly, I shall denote

the crescent by the symbol (q, p), where q is the greater of

the two numbers.

Equation (10.6) is transcendental in appearance only. We
shall see, indeed, that it may be transformed by rather simple

manipulations into an ordinary equation of degree q i.

If this latter admits of a rational root, or of a root which may
be expressed in terms of quadratic surds bearing on rational

numbers, then the crescent is quadrable. If no such "admis-

sible" root exists, then the crescent is nonquadrable.

How did Hippocrates cope with these difficulties? How did

he stumble on the problem in the first place? What prompted
him to pursue the quest? Was he aware that quadrable
crescents existed for q 5 but none for q = 4? Did he believe,

as some commentators insist, in the existence of an infinite

number of quadrable crescents? Did he restrict the problem to

what we may call "algebraic" crescents, because he sensed

that any other crescent is nonquadrable, or was he motivated

by mere expediency?
On some of these points we have no knowledge whatsoever ;

on others the information is most sketchy and often con-

flicting, which is not surprising, since even the earliest com-
mentaries on Hippocrates were written many centuries after

his death. Now, an honest restoration of any work must cling

tenaciously to the ken and spirit of the period which has given
rise to the work. In the case of Hippocrates, however, we
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know very little of the ken of the period, and what little we
do know is largely derived from speculations on his achieve-

ments. It is a vicious circle, indeed! And yet, so important
are the Hippocratean methods to the understanding of Greek
mathematics that I have resolved to risk here a partial
restoration of his contributions to the problem.

Hippocrates based his arguments and constructions on certain

theorems pertaining to similar segments. The term is rarely used

today, but it played quite an important role in Greek specula-
tions on squaring the circle. A circular segment is completely
determined by the radius of the circle and the angle at which
the chord is viewed from the centre of the circle. If two circular

segments have equal radii and equal central angles, they are

said to be congruent. If, on the other hand, they have equal
central angles but unequal radii, they are said to be similar.

These statements sound like mere definitions, and yet they
are more than that. Indeed, the extension of congruence and
similitude from rectilinear to curvilinear figures which, inci-

dentally, has been attributed to Hippocrates himself is

accomplished through an infinite process, the arc of the curve

being viewed as the limit of a variable polygonal contour.

By the same token, the metrical aspects of similarity, which grew
out of the theory of similar triangles and were eventually
extended to similar polygons, are assumed to retain their

validity for curvilinear configurations. The circular segment
is a case in point : the arcs of two similar segments are propor-
tional to their chords, while the areas of similar segments vary

as the squares erected on the chords.

Consider now a crescent of the commensurable type. Denote,
as before, by 2a and 2/3 the central angles, by 20) the common
measure of these angles, and set, as before, a = pa), /?

=
qo).

Hippocrates begins by dividing the inner arc into p equal

parts and joining the points of division by chords; in this

manner he forms a system of congruent segments, each of

radius a and central angle 20) (Figure 19). He proceeds in
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the same manner with the outer arc, generating a system of

q congruent segments each of radius b and central angle 2w.

It is obvious that the first system of segments lies outside the

crescent, and it is not difficult to prove that the second system
lies entirely within the crescent. Furthermore, any segment of

A/.

FIGURE 19

the first system is similar to any segment of the second, so

that if we denote by u and v the respective chords of the two

systems, and by a* and r the areas of the respective segments,

then, by the lemma mentioned above,

o- : r = u 2
: v 2

. . . . (
IO -7)
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8

The next step in the Hippocratean reasoning is this: there

exist, among the infinite variety of commensurable crescents,

some for which the two systems of segments possess the same

area, i.e.,

per = qr . . . (10.8)

Let F be a crescent which enjoys this property; then by deleting
from the crescent the second system of segments, and adjoining
to it the first, we form a dosed polygon of the same area as the

crescent F. The crescent is quadrable, if the polygon is, and the polygon
is quadrable, if its construction can be accomplished by means of the

straightedge and compass. (See Figure 19.)

This reduces the construction of crescent (q, p) to that of a

polygon of p -f q sides. The polygon has a rather special
contour. The outer branch is made up of q equal sides each of

length u and is inscribed in a circle of radius a; the inner

branch has equal sides of length u and is inscribed in a circle

of radius b. The sides u and v are connected by the relation

u :v =Jq : ^p . . . (10.9)

It is not difficult to show that such "Hippocratean" polygons
"exist" for any values of the integers p and q. But to state this

is just begging the question. The issue is: is the polygon associated

with the crescent (q, p} quadrable? i.e., can it be erected by straight-

edge and compass?
As a matter of fact, the area of the Hippocratean polygon

is equal to the area, A, of the quadrilateral ACBD considered

in Section 4 of this chapter. For, in virtue of the proportions,

a : ft p : q and u : v = a : b

condition (10.9) is equivalent to b 2
oc = a 2

fl, which, as we saw,
entails F = A. Thus the Hippocratean polygon is constructible by

straightedge and compass, if the quadrilateral is, and vice versa.

On the other hand, while the two criteria of quadrability
are theoretically equivalent, the construction techniques to

which they lead are far from identical. This may appear as
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of little consequence to one who has all the devices of formal

algebra at his fingertips and, hence, can pass from one

approach to the other by a twist of the wrist, as it were. But
to the classical geometer who had no other way of expressing
metric relations than in the cumbersome language of a graphical

algebra, the choice of method was not a mere matter of mathe-
matical elegance.

K

FIGURE 20

A case in point was the quadratic equation, or rather the

classical equivalent thereof: a system of simultaneous equations,
the prevailing types being

x +y = a, xy = c 2 ; and x y = b, xy c 2
(10. 10)

where, of course, a, b and c were viewed as given rectilinear

segments. The graphical solutions of these two basic problems
is shown in Figure 20. The mean proportional between two segments

is the key to both constructions. To us today this means a

simple arithmetic operation, but Greek mathematicians re-

garded it as an important geometrical problem, and devised a

variety of procedures to cope with it.

One such device, based on a theorem to which Greek
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geometers attached considerable importance, is used in

Figure 20 for the graphical solution of the simultaneous equations

x y =J~3> *y = 2 > (io.ii)

which, as we shall presently see, enter in the construction of

crescents of type (3.2). The theorem in question may be

stated as follows : the tangent drawn from a point to a circle is the

mean proportional between any transversal which passes through the

point and its external part. Thus in Figure 20: JVT2 NC.NE.
In the figure, CE is the side of an equilateral triangle

inscribed in a circle of radius i, i.e., CE =
</~%.

The larger
concentric circle is of radius ^"3, and the tangent to the smaller

circle issued from any point, A*, on the larger circle is of length

^ 2. It follows that the segments NC and NE give the graphical
solution to (10. n).

10

For crescent of type (3.1), the Hippocratean polygon is a

trapezoid with three sides of equal length. Denoting the latter

by w, and setting u = i, we find that the fourth side is v = ^3.
Or, as Hippocrates would have stated this: the greater side of
the trapezoid is to the lesser side as the side of an equilateral triangle

is to the radius of the circle into which it is inscribed.
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The construction of (3.1) is, therefore, direct and simple.

(Figure 21.) On the carrier xx erect MN == i and C'D' = ^ 3 ;

with M and JV as centres, draw the unit circles (M) and (JV).

The perpendiculars to xx erected at Cf and D' meet these

circles in the vertices C and D of the trapezoid sought. To
determine the centre B of the crescent, draw the bisector of

the angle at M
;
to locate the centre A, draw the perpendicular

CA to CM.
For crescent of type (3.2), the associated pentagon is a sort of

truncated trapezoid: CEDNMCin Figure 22. Indeed, by analysing
the angles of the configuration, we find that the sides of the

inner branch, CE and DE continued, pass through the vertices

JV and M of the outer branch. The same analysis shows that

the sides CM and DJV of the outer branch are tangent to the

inner arc of the crescent. On the other hand, we have in

virtue of (10.9), u : v = J~z : ^"3. If then we set u ^~2,

v = 4/3, we find

-EN=-CE = V3> CN . JV = JVZ> 2 =

We are thus led to the simultaneous equations discussed in

the preceding section and the graphical solution given in

Figure 20.
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In Figure 22, the order of procedure is: (i) locate the points

C, E and jV; (2) determine the remaining vertices, M and
D

; (3) the centre, /?, of the outer arc is the intersection of the

perpendicular bisectors to the diagonals CJV and DM of the

trapezoid; (4) the centre, A, of the inner arc of the crescent

is obtained by erecting perpendiculars to CM and Z)jV.

The restorations exhibited in Figures 20, 21 and 22 are

offered here for what they are worth. They are not based on

any authentic information as to the actual methods used by
Hippocrates, any more than are the sundry other restorations

which have been proposed during the twenty-two centuries

which separate the two periods. All I claim for my own con-

jectures is that they do not transcend the ken of the period

during which the problems were solved, as I envisage that ken.

n

Returning to the algebraic analysis of the Hippocratean

problem, I take as defining equation the relation (10.4)

sin a _ la

sin/?

~
V /?

established in Section 4.

Type (2.1): Here /? 2a. Hence sin 2a = ^2 sin a.

Eliminating the "trivial" solution sin a o, we arrive at

cos a = il^~2. Thus a = 45, fi
= 90. This is the crescent

discussed in Section 3 and shown in Figure 18.

Type (3.1): Here /?
= 3 a, and sin 3a = ^/lj sin a. Replacing

sin 3<x by 3 sin a 4 sin 3
a, and "shedding," as before, the

trivial solution, we arrive at sin a = ^3 ^3. The crescent

is shown in Figure 21 : the angle 7 at C is 2 a. The area of the

quadrilateral ACBD being ab sin 2 a, the crescent is quadrable.

We find, indeed :

T =<z 2
3*2~*.

Type (3.2): Here a> = 7, a = 27, fl
= 37. The equation,
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*J~2 sin 37 = ^3" sin 27, leads to a quadratic in cos 7 = #,

namely, 4#
2 # ^ 6 i = o. The result is

cos 7 == (/22 + V6)/8.

(see Figure 22)

The crescent is quadrable with

(4. i) : Here ft
=

4<x, and sin 40;
= 2 sin a. This leads

to 4 cos 3 a 2 cos a i = o. If we set sec a = x, we arrive

at the cubic x 3
-f- 2# 2

4 = o. Any rational root of this

cubic would have to be an integer and, as a matter of fact, a

divisor of 4. We find by direct substitution that none of these

divisors satisfy the equation; thus the cubic has no rational roots,

and, by the same token, has no quadratic roots. Hence, the

crescent (4. i) is nonquadrable.

Type (4.3): Here 7 = o>, a = 30^, /?
= 4^. The defining

equation is ^3 sin 472 sin 37. Proceeding as before, we
arrive at an irreducible cubic, and conclude that the crescent

(4.3) is nonquadrable.

Type (5.1): Here

sin 5<% = ^/5 sin a 5 sin a - 20 sin3 a + 16 sin5 a.

We are thus led to the biquadratic

i6#4 20# 2 + (5 Vs) -

We find

= ^ /V

Thus the crescent (5. i) is quadrable.

Type (5.3): Here a = 36), ft 5^, 7 20). The defining

equation is: ^3 sin 5^ == Vs sm 3W * Like type (5.1), the

latter leads to a quadratic in sin 2
a). The crescent (5 . 3) is,

therefore, quadrable.

Types (5.2) and (5.4) lead to irreducible quartzes and are,

therefore, nonquadrable.
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The preceding discussion follows the lines of an essay published
in 1840 by the German mathematician, Theodore Claussen,

who, as far as I know, was the first to subject the Hippocratean

problem to an algebraic analysis. His analysis, as we just saw,

yielded not only the three quadrable crescents, (2.1), (3.1),

(3.2), discovered by Hippocrates, but also the two crescents of

"order" 5, namely, (5.1) and (5.3); it proved, moreover, that

the remaining crescents of order 5 were nonquadrable, and
that the same held for the crescents of orders 4 and 6. Claussen

conjectured that the Hippocratean problem had no other quadrable
solutions than the Jive crescents just mentioned; but that if any other

crescents did exist, they would have to be ofprime order.

This last hypothesis was vindicated when sixty-odd years
later Edmund Landau proved that not only is the order of a

quadrable crescent a prime number, but it must be a Fermat

prime., i.e., of the form 2 n + i. Now, these primes play a very

important part in cydotomy, i.e., the division of a circle into

equal parts. In more familiar terms, if it is possible to construct

by straightedge and compass a regular polygon of an odd
number of sides, say q, then q is either a Fermat prime, such

aS3 3 5>i7>257,..,,ora square-free product of such primes.

Could it be that there was some recondite kinship between

quadrable crescents and the regular polygons amenable to

straightedge-compass constructions?

Well, long before speculations on this theme could gain

momentum, it was found that none of the 16 crescents of order 17
was quadrable. The Claussen forecast was further strengthened
when in 1 934 the Russian mathematician Tchebotarev proved
that the crescent (q, p) is nonquadrable, if p is odd and q greater

than 5. Finally, in 1947, the Russian Dorodnov extended

Tchebotarev 's results to even values of p, thus confirming the

remarkable conjecture which Claussen had made more than
a hundred years earlier that the only quadrable Hippocratean
crescents were

(2.1), (3.1), (3.2), (5.1) and (5.3). . (10.12)
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13

Such is the history of a problem which ranks among the earliest

in the annals of mathematics. Formulated within one hundred
and fifty years of the Founder's death and which is even

more significant one hundred and fifty years before Euclid's

Elements saw the light ofday, it remained in a state ofsuspended
animation for nearly twenty-four hundred years, and was only

partly resolved after the combined resources ofmodern analysis
and number theory were enlisted in its behalf.

I say partly, because the Claussen-Landau-Dorodnov theo-

rems deal with the algebraic aspect of the problem only. There
is still the question : Are the restrictions imposed by Hippocrates

necessary conditions of quadrability? Specifically, the problem
consists of determining values of a and ft for which all three

functions

sin a, sin ft, and H =
ft sin 2 a a sin 2

ft . (10. 13)

can be simultaneously expressed in terms of rational numbers
and quadratic surds bearing on rational numbers; or of

proving that no such values exist, unless H = o. And this problem
of transcendental arithmetic has, as far as I know, not even been

tapped.
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Chapter Eleven

THE QUADRATRIX OF HIPPIAS

It is one thing to execute a construction by tongue
as it were, quite another to carry it out with

instruments in hand.

JACOB STEINER

The Sophist, Hippias of Elis, a near-contemporary of Hippo-
crates of Chios, invented the curve for the express purpose of

squaring the circle. A century or so later, the Hippian solution

was restored and amplified by Dinostratus, a member of

Plato's Academy and a brother of Menaechmus of conic

sections fame. No written records of either the original or the

restoration exist today. Pappus and other commentators have

given a good description of the curve itself, but their explana-
tions as to how the quadratrix was applied by Hippias and
Dinostratus to the quadrature problem are far from satisfactory.

Some historians, misled by the term '

'mechanical" which
earlier geometers used in describing the quadratrix, insinuate

that Hippias relied on some sort of "mechanism" to generate
the curve, forgetting that Greek mathematicians were wont to

brand as mechanical any construction that implied loci other

than lines and circles. Other historians, while recognizing the

geometrical character of the approach, misinterpret the

motivation, leaving the reader under the impression that

Hippias and Dinostratus were merely begging the question.

The problem was to construct a triangle the area of which was

equal to that of a given circular sector, specifically, a quadrant of a
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circle. In Figure 23 the sector is BOM = %Rs, where R is the

radius and s the length of the arc. Assume OP equal to s: then

the triangle BOP is equiareal with the sector. Next, suppose
that the perpendicular to OP meets the radius OM continued

in Q: then, as M sweeps the circumference, the point Q
generates the Hippian quadratrix. If the latter were fully traced,
it could serve as a templet not only for squaring any circular

B

FIGURE 23

sector, but for rectifying any circular arc. In particular, the triangle

HOB would be equiareal with the quadrant OAMB, and the

rhombus HBH'B' equiareal with the circle, and since the

conversion of a rhombus into an equiareal square is a straight-

edge-compass operation, the squaring of the circle would be

effectively accomplished.
If the Hippian analysis ended here, the Sophist could be

justly accused of begging the question. For, unless he knew

how to rectify a circular arc, i.e., to erect a linear segment of

equal length, he could not generate the quadratrix; and if

he knew how to rectify a circular arc, then he would not need

the quadratrix in the first place. However, it is a far more

reasonable conjecture that, arrived at this point, Hippias
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inverted the problem, i.e., instead of seeking a rectilinear

segment of length equal to a quadrant of a given circum-

ference, he sought to determine a circle, one quadrant of which was

equal to a given rectilinear segment. This meant to construct a

quadratrix of given base, a task which could be effected

point by point without stepping out of the traditional domain.

Q 15 )4 13 12 )! 10 9 8 7 <5

FIGURE 24

4 3

The procedure is shown in Figure 24. A set of equally

spaced rays divide the right angle XOT into n equal angles;
the given segment OH is divided in the same number, n, of

equal parts. The perpendiculars to OX at the points of division

meet the corresponding rays in points which lie on the quadra-
trix sought. By carrying the dichotomy far enough, the set of

points may be rendered as compact as one wishes. As to the

vertex, B, of the quadratrix, the goal of the Hippian problem,
it cannot be reached directly by the operation at hand: it

should be viewed as the limit of an infinite dichotomy, and this, I

conjecture, was what Hippias actually had in mind.
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According to this interpretation, the Hippian quadrature was
an attempt to define the ratio of a circumference of a circle

to its diameter as a limit of an infinite process. The analytical

counterpart to this graphical procedure is the formula

Limit n tan =- . . (n.i)
2rt 2

v '

This, incidentally, was one of the formulae which Archimedes,
two centuries later, used in determining rational approxima-
tions to 77. In the Archimedean approach, the circle was
viewed as the common limit of two series of regular polygons
of which one was inscribed and the other circumscribed to the

circle, the number of sides growing indefinitely. When applied
to a quadrant of a circle, this approach leads to the inequality,

7T 77 ^ 77 ,
,

n sin < - < n tan . . (11.2)
2H 2 2/2

To appraise the ideas of Hippias one should remember that

his quadrature was the first recorded venture into the field of

infinite processes; that this venture took place about 450 E.G.,

at a time when mathematics was barely more than a century
and a half old

;
that the Hippian quadratrix was the first curve

(other than the circle, of course) ofwhich we have any historical

record; that this occurred at least a century before the dis-

covery of conic sections; and that in his treatment of the curve

Hippias employed devices which two thousand years later

were turned by Fermat and Descartes into the basic imple-
ments of analytic geometry.

At this juncture I must give a brief outline of an issue which

is a settled matter today, but had quite an eventful history in

the past three centuries; namely, the classification of plane
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curves. Greek efforts in this direction, based on strictly geo-
metrical considerations, were rather superficial and, in a

sense, sterile. With the advent of analytic geometry, the

question entered a new phase.
Descartes was the first to propose that curves be classified

according to the character of their equations, i.e., of the

functional relations which represented them in a system of

rectilinear coordinates. He was particularly interested in loci the

equations of which could be put in the form of a polynomial
in two variables. Today, we call such loci algebraic, and define

as order of the curve the degree, n, of the representative poly-
nomial. Descartes, however, had different ideas on this sub-

ject: he defined the order of a locus by the integers \n or

\(n + i), depending on whether n was even or odd. Thus, what
we designate today as cubics and quartics were to Descartes

curves of the second order, while straight lines and conies were
defined as loci of the first order.

Newton did identify the order of a locus with the degree of

its equation, but not without reservations. His reluctance to

class straight lines among curves led him to define the integer
n i as the genus of the locus. Thus the straight line was

catalogued as locus of order i and genus o. In spite of Newton's

prestige, the idea did not take root, and today the term genus
is used in an entirely different sense.

As to such curves as cycloids, spirals and sinusoids, which we

catalogue today as transcendental, there is no record that Newton
had a collective name for this non-algebraic variety. He did

state, however, that the order of such loci should be viewed as

infinity, inasmuch as a straight line may intersect such a curve

in an infinite number of points.

The term transcendental was coined by Leibnitz. This mystic

philosopher-mathematician was endowed with an extra-

ordinary intuition and foresight. He anticipated many a

mathematical trend, sometimes as much as a century before

it reached the stage of fruition. The division of numbers and
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functions into algebraic, or, as Leibnitz called them, analytic

and transcendental, is a case in point. As though foreshadowing
the course of modern algebra, Leibnitz stated, in so many
words, that to every algebraic number there may be assigned
one and only one algebraic equation with rational coefficients.

The degree of this equation he calls the order of the algebraic
number. Recognizing, however, that magnitudes exist to

which no polynomial can be assigned, he proposed to call

these transcendental because, as he put it, they transcend algebraic

analysis.

In a similar manner, functions exist which cannot be trans-

formed into polynomial relations no matter how many rational

manipulations may be undertaken to that end. These functions

Leibnitz defined as transcendental. He was frankly puzzled by
the fact that a transcendental equation may admit of an

algebraic and even of a rational solution, as, for example, the

equation xx + x = 30, which is satisfied by the integer x 3.

However, he viewed such "phenomena" as exceptions, main-

taining that, "on the whole," transcendental equations are satisfied

by transcendental numbers only.

The subsequent course of events has justified Leibnitz'

perplexity, and has strengthened, at the same time, the plausi-

bility of his conjecture. The relation between transcendental

numbers on the one hand and transcendental functions on the

other persists as an unsolved problem to this day. The histories

of the Hippocratean crescents, of the transcendence of the

numbers e and TT, and the many pending questions of trans-

cendental arithmetic foreshadow that the Leibnitz problem will

remain on mathematical agenda for some time to come.

Our textbooks on analytic geometry follow methodically
the classification just outlined. After disposing of the straight

line and the circle, they take up the conic sections, or curves

of the second order. This is followed by cubics and quartics,

and algebraic curves generally. The study of transcendental

curves is relegated to the end of the course, and, in some
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curricula, postponed until the student has acquired some
rudiments of the calculus.

Now, all this is as it should be. Having put algebra into the

foreground of mathematical instruction, we must needs begin
with rational and finite operations; and this predicates the

order of exposition, whether the subject be number, function

or graph. And yet, in all fairness to the more sophisticated

student, we should inform him that historical sequence has

not always agreed with the order of exposition of a textbook.

The Hippian quadratrix is a case in point. Choose the base

of the curve and its axis of symmetry for reference frame, and
the radius of the generating circle for unit of length. Then, by
definition, arc BM = OP = x

; again, if we agree to measure

angles in radians, then agle BOQ is also equal to x, and the

right triangle POQ, yields the relation:

y = X COtX . . . (ll.3)

This is the equation of the curve in rectangular coordinates,
and inasmuch as cot x cannot be represented as a polynomial in x,

the quadratrix is a transcendental curve.

Thus, after the straight line and the circle, the first locus

studied by mathematicians was a transcendental curve, while even

such simple algebraic curves as the conic sections did not

emerge on the mathematical scene until a century and a half

later. Truly, history is no respecter of systems.
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Chapter Twelve

THE ALGORITHM OF EUCLID

Magnitudes are said to have a ratio to one another

when the lesser can be multiplied so as to exceed

the greater.

EUCLID, Book V

Book Seven of the Elements contains the description of a

numerical device which has come to be known as Euclidean

algorithm, although it probably antedates Euclid by at least

one hundred years. Euclid applies the algorithm to deter-

mining the greatest divisor common to two integers. To illustrate,

take the numbers 2,601 and 1,088; a chain of successive

divisions leads to the identities:

2,601 = 2 X 1,088 + 425
i,088 = 2 X 425 + 238

425 = i x 238 + 187

238 = i x 187 + 5 1

187 =3 X 51 + 34

51 = i x 34+17
34 =2 X 17

The last residue, 17, is the greatest common divisor sought,
because any divisor common to 2,601 and 1,088 must also

divide the remainder 425, and, by the same token, must
divide 238, 187, 51, 34 and 17.

When the same algorithm is applied to two relatively prime

integers, A and B, it results in the expansion of A/B into a

regular continued fraction. I shall illustrate this in the case of

41/16:

41 = 16 x 2 + 9 or 41/16 = 2 + 9/16
16 = 9x1+7 or 1 6/9 =1+7/9
9 == 7 x i + 2 or 9/7=1+2/7
7 = 2 x 3 + i or 7/2=3 + 1/2
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Hence the expansion:

41 ,
i

-_ = 24-
16 i +

1 +1
3 + 1

2

Observe that the quotients generated by the algorithm become
the terms of the expansion. Since the continued fraction is

completely determined by these quotients, we may write

without ambiguity: 41/16 = (2; i, i, 3, 2).

It is obvious enough that the procedure exhibited on this

example applies to any two integers. Thus any rational number

may be expanded into a terminating continued fraction, and
the expansion is unique. By the same token, any rational number
can be represented by a finite array of positive integers.

In what follows I shall call that array the spectrum of the

number.

The expansion into continued fraction, the Euclidean algo-
rithm and the spectrum to which it gives rise are susceptible

of a striking graphical representation which is exhibited in

Figure 25 in the case of 41/16, the example treated above.

In the graph, the numerator and denominator of the fraction

are interpreted as sides of a rectangle. From this rectangle
we remove as many squares as possible, leaving a residual

rectangle to which the algorithm is applied anew, and the

process is continued until no residual rectangle remains. The
number of squares in each "tier" gives the corresponding
element of the spectrum, i.e., a term of the continued fraction.

I said that to any rational number corresponds a unique spectrum.

Conversely, any ordered array of positive integers may be construed

as the spectrum of some rational number. To calculate the latter,

one could express the spectrum as a continued fraction and
then reverse the Euclidean algorithm. A far more effective

method was discovered by John Wallis. The Wallis algorithm

is exhibited in the following table for the spectrum (2 ; i, i, 3, 2).
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The successive conver'gents are the values of the "curtailed"

spectra, the last convergent being the value of the continued

fraction. Thus, the Convergents of 41/16 are

2 3 5 l8
and t1

_, _, _,
_ and

i6
.

16-

41

FIGURE 25
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The theoretical importance of the Wallis algorithm is that

it opens the way to a rigorous treatment of infinite continued

fractions. To be sure, such infinite processes were used long
before Wallis: explicitly, by the Italian mathematicians of

the sixteenth century; implicitly, by Fibonacci, Hero and
Archimedes. However, Wallis, and later Huygens, put the

theory on a solid basis by establishing that the process was con-

vergentfor any infinite spectrum, i.e., that the sequence of convergents

always approached a limit. This limit is necessarily irrational, since

the spectrum of any rational number is necessarily finite.

We conclude that any array of positive integers, finite or

infinite, may be interpreted as the spectrum of some real

number F : if the spectrum is finite, F is rational; if the spectrum

is infinite, F is irrational. Conversely, any positive number F,

rational or irrational, may be expanded into a continued frac-

tion : the expansion isfinite, if F is rational; infinite, if F is irrational.

Furthermore, the individual steps in the expansion of an
irrational number into a continued fraction follow the pattern
ofthe Euclidean algorithm, and the infinite algorithm may, accord-

ingly, be viewed as a direct generalization of the finite.

The generic operation of this extended algorithm can be expressed
in very simple terms, by introducing the symbol [F] to denote

the greatest integer contained in the positive number F. Discard the

trivial case when F is an integer; then, the difference F [F]

is contained between o and i, which means that there always
exists a number X greater than i such that

F=[F] + ~. . . . (12. i)

If F is a rational number, say A\B, then [F] is the quotient
in the division ofA by B, and the operation is but a paraphrase
of a step in Euclid's algorithm. If, however, F is irrational,

148



THE ALGORITHM OF EUCLID

then X, too, is irrational. Operating on X as we did on F,
we obtain X = [X] -\- i/T, where T, too, is an irrational

number greater than i. The process will, therefore, continue

indefinitely, generating an infinite sequence ofpositive integers

L m, [.a, ..... (12.2)

These are the denominators of the infinite continued fraction which

tends to the irrational F as limit.

The Dutch mathematician Huygens is credited with being the

first to use continued fractions as a means of deriving rational

approximations. The effectiveness of the method rests on two

properties of the Euclidean algorithm which may be formulated

as follows :

I. If A/B and A'/B' are two consecutive convergents in the

expansion of the number F, then F is contained between A/B
and A'/B'. Thus, we shall see in the sequel, that 265/153 and

362/209 are the ninth and tenth convergents respectively in

the expansion of -^3, which means that

153
^

209

II. If A/B is a convergent in the expansion of F, then the

error committed in writing A/B for F is less than i/B
2

. Thus,

by taking 362/209 for ^3; we are approximating the latter

within an error less than 1/40,000. As a matter of fact, com-

paring the fraction with the tabular value of ^3, we find:

A/3
= i-TS^S 1 - -

> 362/209 = 1-732052 . . .

Unfortunately, the effectiveness of the method is largely
vitiated by the tedious work involved in determining the

spectrum of the irrational. In this respect, the irrationals of

the type M + ^ JV", where M and JV are rational numbers,
are in a class by themselves, in that the pattern of the spectrum
can to some extent be predicted beforehand, as may be seen

from the following examples.
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First example; the golden section ratio. The reciprocal of the

"divine proportion" is F = (V~5 + i). (See Chapter Five.)
We find [F] = i and T [F] = |(V5 0- The reciprocal
of this is X = J(/5 + i) ; thus Jif == F and [-Y] = i. Hence

KVs + *)
=

(*; 1, i, i, - - -
)

-
(
I2 -3)

The Wallis algorithm yields here a so-called Fibonacci sequence :

i, 2, 3, 5, 8, 13, 21, 34, . . .
,

. (12.4)

where any term beginning with the third is the sum of the two terms

which precede it.

Second example. Let us seek the expansion of the quadratic
surd F = ^3, which will play an important part in the dis-

cussion of the Archimedean approximation. We find here

r [F] = V3 i, the reciprocal ofwhich is X == J(V3 + 0-

Hence, X - (X) = (Vs
-

i), T = Vs + i. Thus,

The reciprocal of the latter is 4(\/3 + !)> i-c., ^, and we
conclude that

V3~
=

(i : 1,2, 1,2, 1,2, . . . ). . (12,5)

TAzrrf example. Set F = ^/I9- The procedure is the same as

in the preceding examples. I leave the details to the reader.

The result is :

i9
= (4; 2,1,3,1,2,8, 2,1,3,1,2,8, 2,1,3,1,2,8, . . .

)
. (12.6)

The expansions in the preceding examples have one feature

in common : each contains an infinite number of identical blocks

of terms. Such continued fractions are known as periodic; the

recurrent block is called the cycle, and the number of terms in

a cycle the period of the expansion. Thus, for example, in the
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expansion of ^Ing the cycle is 2,1,3,1,258 and the period
is 6.

The very procedure used in deriving these expansions

suggests that, when applied to irrationals of type M + *fN,
the Euclidean algorithm will invariably generate a periodic

spectrum, and such is indeed the case: the spectrum of any irrational

of the form M + V~N* where M and N are rational numbers, is

necessarily periodic; conversely, the limit of any periodic continued

fraction is a root of some quadratic equation with rational coefficients,

i.e., an irrational of the binomial type M + V"N-
There is a remarkable analogy between periodic continued

fractions and periodic decimalfractions. If T is a positive rational

number, i.e., the root of a linear equation with rational coeffi-

cients, then the decimal fraction which represents F is either

terminating or periodic. Similarly if F is a positive root of a

quadratic equation with rational coefficients, then the continued

fraction which represents F is either terminating or periodic.

In the linear case the generating process is long division, in

the quadratic it is Euclid's algorithm.

These periodic properties of quadratic irrationals were

known to Huygens, Wallis and even to Bombelli, the Italian

mathematician of the sixteenth century who was the first to

use continued fractions explicitly. Euler and Lagrange not

only provided these theorems with rigorous proofs, but showed
how periodic continued fractions may be used to attack

some difficult number-theoretical questions. The field was

vastly extended by Legendre, Gauss, Jacobi, Galois and

Liouville, among many others, until today a comprehensive

exposition of the theory would require many a volume. With
all that, quite a few questions propounded by these masters

remain unanswered. Chief among these is the relation between

the character ofan integerN and the period and cycle of the spectrum



Chapter Thirteen

AN ARCHIMEDEAN APPROXIMATION

Indeed, even more important than safeguarding
truth is the preservation of the methods which have

led to its discovery.
PONGELET

In a tract entitled Cydometry, Archimedes made use of the

inequality

Both fractions are excellent approximations to ^3, and it was

this precision that had enabled the master-calculator to

evaluate the ratio, n, of the circumference of a circle to its

diameter within the narrow limits :

310
^ 10 , ^<7T < 4 . . . (13.2)

71 ^70
Archimedes described in detail the successive steps in his

evaluation, but gave no inkling as to how he had arrived at

the approximations to ^3 which had served as his point of

departure. Could it be that these values were such common
knowledge among the geometers to whom the tract was
addressed that he viewed such elaborations as redundant?

Perhaps! Still, speculations have been rife ever since as to

the motives which had governed the Archimedean choice.

Both approximations are convergents into a continued frac-

tion for ^3, and so it is natural to suspect that it was the

Euclidean algorithm that had led to these values. However,
this conjecture has been contested by historians on the ground
that continued fractions were not introduced until the sixteenth

century, that the theory did not come to full fruition until the
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eighteenth, and that it was, therefore, entirely outside the

ken of Greek mathematics. This last statement deserves closer

scrutiny.

We know that the Euclidean algorithm was born on Greek

soil, that there is nothing in its definition or execution which
would restrict it to rational numbers, and that men like

Eudoxus, Euclid and Archimedes could not have failed to

recognize in it an ideal criterion of commensurability of two

magnitudes. I would not go so far as to assert that the algo-
rithm was invented for the express purpose of defining irra-

tionals, but it is not unlikely that whoever discovered the

process was at the time in quest of such criteria of com-

mensurability. To be sure, no documentary evidence exists to

substantiate this conjecture; but then one should remember
that Greek geometers studiously avoided the use of such terms

as infinite or limit.

A case in point is the Archimedean theorem on the area of
a parabolic segment, the proof of which depends on the summa-
tion of the infinite geometric progression

At no time did Archimedes state that the sum of the progres-
sion approached 4/3 as a limit, or words to that effect; he

merely maintained that no matter how many terms were

taken, their sum would never exceed 4/3.

It has also been contended by some historians that even if

some Greek mathematician had envisaged the possibility of

applying the Euclidean algorithm to quadratic surds, he

would have lacked the requisite technique to implement it.

This argument, too, is unfounded. Indeed, Book Ten of

Euclid's Elements presents a comprehensive theory of binomials

of type A + \A> including all the operations necessary for the

expansion of such irrationals into continued fractions.
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However, there is one aspect of the Archimedean approxima-
tion that casts reasonable doubt on the continued fraction

conjecture. We saw in the preceding chapter that the expansion
of ^3 leads to the periodic spectrum (i; 1,2, 1,2, . . . ). The
The first twelve convergents of this expansion are :

^ l

4l

o= 2

_5 FK =

19
ii

26

'-

= -5

153

= 362

2og

989

571

= L.35
1

780

Observe that while the two fractions which enter in inequality

(13.1) are among these convergents, they are not consecutive

convergents. To determine F12 by the Euclidean algorithm one
would have to calculate Fn first. But if Archimedes had Fi:

at hand, why did he not use it to obtain the "sharper" inequal-

ity:

571
i* < M5E?V3 <

780"

A passage from Hero's book Metrica offers a clue to this riddle.

This work contains, among other valuable historical material,
the celebrated area formula., which is the theme of the next

chapter. The application of this formula requires, generally, the

approximate evaluation of a square rooty and so Hero takes time

out to instruct his readers how to perform such an operation
"with accuracy and dispatch." The Heronian algorithm is a

precedure which one would class today as successive linear

interpolations. While Hero used it for the extraction of square and
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cube roots, the method is far more general, and, as a matter of

fact, can be successfully applied to the solution of the equation
F (x)

= 0, where F (x) is any single-valued rational function.

In Figure 26, the curve (F) is the graph of the function

y = F (x). The abscissa a of the "pole" A is some rational

number "reasonably" close to the true value of the root x] b is

FIGURE 25

another such rational number, and B the corresponding point
on the curve (F) . The line A B meets the #-axis in a point of

abscissa c : the crux of the principle is that c is a better rational

approximation to x than either a or b. By performing the same

operation on C, we generate a rational number d which

approximates the irrational x even better than c. It follows

that by repeated application of the algorithm we may approach
the root x with any desired precision, the rapidity of the conver-

gence depending largely on the choice of the pole A.
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For the evaluation of JR, the algorithm leads to the iteration

formula

As an illustration, consider the example treated in the Metrica;

^720 = 1
2^/5". Set a 2 : then

+ 2

With the initial value u:
= a = 2, we arrive at the set

q 38 161
1
= 2,,=-,3=-,4= ,

and the last term yields for ^"720 the approximation 161/6,
which is the result given by Hero.

The extraction of 3 R leads to the iteration formula

As an example, let us evaluate 3
*fio. Here J? = 10, and we take

for a the greatest integer contained in %/io Thus

10

Set Wj = a = 2 : then M2
= 13/6 and u3 1010/469, which

deviates from the tabular value of V 1^ 2.1536, by less than

.0001.

Let us now return to the Heronian technique for the extrac-

tion of square roots and examine how it works out in the case

of ^3. To this end, set in formula (13.5) R 3 and denote

by un and wrt+1 any two consecutive terms in the iteration

process ;
the result is the relation :
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**>-? -
<- 8>

As I said before, the sequence will converge to ^3 for any
reasonable choice of the initial value, G. It is obvious, however,
that the choice of the operator G will have a decided influence

on the rapidity of the convergence. For reasons, on which I

shall not speculate here, Hero chose a = 5/3. This leads to

the formula,

and to a sequence, the first four terms of which are the

fractions

5 26 2615 1,3*)! / \a 2 _po
. . (13.10)

3' 15' 153' 780
^ J

Now, the last two are precisely those which enter in the

Archimedean inequality for ^3. Was this coincidence accidental?

Hardly! To be sure, in describing his procedure, Hero makes
no reference to Archimedes or to any earlier sources for that

matter. And yet, it is utterly inconceivable that a brilliant

scholar who had full access to the Alexandrian Library would
be unfamiliar with such an important work as Cyclometry. It

is far more probable that the technique described in Metrica

was not a Heronian discovery, but was known to Archimedes
and even to his predecessors.

Indeed, the ideas back of the procedure are fully within the

ken of classical mathematics. Thus, the individual steps in the

process are based on linear interpolation, which, after all, is the

most natural approach to the technique of approximation.
As to the process itself, one makes a "reasonably good guess"
and iterates the guess on the theory that the result is closer to

the true solution than the original value. The scheme was

widely practised in classical days, and was described in Latin

textbooks on mathematics as regulafalsi.

157



BEQUEST OF THE GREEKS

The four Heronian approximates to ^3 listed in (13.10) are

all convergents in the expansion of ^3 into a continued fraction.

What is more, it can be shown that the infinite sequence generated

by the iteration (13.9) is made up entirely of such convergents. In

fact, if we denote, as before, by Fn the convergent of rank n,

the terms of the infinite sequence can be expressed as

When viewed in this light, the Heronian algorithm appears
as a sort of a "hop-skip" scheme, the net effect of which is

the speeding up of the Euclidean algorithm. And this is not

all : the iteration used by Hero is but a special application of a

general property contained in the relation

F } = ,l = p
9
r n) _ 7-

* m+n

To illustrate, consider F12 . In virtue of (13.12) we can

evaluate this convergent in several ways. Thus

(A) F12
= -_.

19 X 41 + II X 71 1,560

780

/T>\ i? uf c1 i? \
^ ^ ^

i 3 ^ ^5 ^ ^5 ^?35^
(r>) r I* =Jn.[r^rQ) = -

^ = ^~
2 X 15 X 2O 780

Furthermore, we can derive the 24th convergent from the

1 2th without intermediate steps, since

2.F12 2.1,351.780

The denominator of this convergent is of the order of io6
;

it

follows that the fraction approximates ^"3 within an error

less than io-12 .
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8

The remarkable kinship between the Euclidean and Heronian

algorithms is a consequence of a theorem on periodic continued

fractions due to Lagrange. The proof of this fundamental

proposition is beyond the scope of this volume. I shall add,

however, for the sake of completeness, that the Lagrangian
theory covers the most general surd of type *JR 9

where R is a

positive integer. As a result, the relationship between the two

algorithms can also be extended to the most general surd of

that type. Indeed, even the outward form of this kinship is

retained. For, within some reservations on which I shall not

insist here, the formula

H(Fm)Fn)
=?^*

R
- - Fm+n . (13.13)

^m + *n

remains valid for the cornergents of the general surd *JTl.

The Lagrangian memoir on the subject appeared about

1775. Thus more than two thousand years separate the two

episodes of the story I have told here. The arguments and

technique used by Lagrange in establishing his theory, and the

consequent kinship between the two procedures, involve con-

siderations of algebra and number theory which were alto-

gether outside the ken of Greek mathematicians. Granted that

the alleged calculating technique which had led to the inequality
did not transcend their mathematical knowledge, there still

remains the perplexing question as to what governed their

choice of the initial value, 5/3.
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Chapter Fourteen

THE FORMULA OF HERO

The mathematician is like a Frenchman : you tell him

something, he translates it into his own language,
and at once it becomes something altogether different.

GOETHE

We know as little about the life of Hero as we do of Euclid's

life; in fact, less. For, while we can definitely place the

Elements about 300 B.C., all we can say about Hero is that he

flourished in Alexandria during the first century. Unfortunately,
there were two first centuries, and the question whether his

activities belong to B.C. or A.D. has not been settled to date.

Of one thing we are certain : Hero's Metrica and Dioptra ante-

date the Almagest of Ptolemy, who flourished about A.D. 150.

The celebrated Heronian formula is usually presented in

the form

T = V^^X^Afr""') ('4-

where a, b, c are the sides, T is the area of the triangle and
s = %(a + b + c) the semiperimeter. To prove his theorem Hero
takes the triangle a = 7, b = 8, c = 9. Here, s = 12,

55=5, s b = 4, s c = 3. Hence T = V?2O, which

Hero evaluates by the method described in the preceding

chapter.
The most natural approach to establishing the formula is

to start with the theorem that the area of a triangle is one

half of the product of base and altitude, and this is how most text-

books proceed. To calculate the altitude, the Pythagorean
theorem is applied, which brings in the segments of the base,

and these are later eliminated by rather complicated algebraic

manipulations. Such a proof is usually accompanied by the

apology that it is not difficult, just involved. But elementary
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as this approach may appear to us today, it was entirely

beyond the ken of the Heronian period.

In the Heronian proof, the auxiliary element is not an altitude

of the triangle but the radius of the inscribed circle. In Figure 27
the centre J of the inscribed circle is joined to the vertices

A, B, C. The three triangles BJC, CJA, AJB have areas
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|ra, \rb, \rc> respectively, where r is the radius of the inscribed

circle. Hence
T = %r(a + b + c)

= rs. . . (14.2)

Thus, the problem is reduced to expressing r in terms of a, b, .

To this end, Hero introduces an escribed circle, which touches

the sides CA and CB on the outside, and the side AB between

A and B. He then proceeds to evaluate and this is the crux

of his proof the tangential segments, in terms of the sides. It is

easily shown that

= CV = s-c, AV =s-b, CV = s.

Once this is established, the rest is a matter of similar triangles.

The centres J and E being on the bisector of the angle C, the

triangles JVC and EV'C are similar : hence, if we denote the

radius of the escribed circle by /?, we have

p : r = (s c} : s.

On the other hand, JAE is a right angle, and, consequently, the

right triangles JVA and EVA are also similar, i.e.,

r : (s a]
=

(s b) : p.

Eliminating p between these two relations, we arrive at

and combining this with (14.2), we obtain the Heronian

formula.

Hero illustrates the method on a score of examples. In each

case the sides of the triangle are integers. He is fully aware
that the area of such a rational triangle is generally an irrational

number. However, he states without proof the existence of an
infinitude of triangles with rational areas as well as sides.

Today we call such triangles Heronian triples. Any Pythagorean

triple is obviously Heronian, since T = \ab. We shall presently
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see that by a proper combination of two Pythagorean triples

one can generate at least one Heronian triple.

The construction is shown in Figure 28, where ABC and
A'B'C' are two Pythagorean triangles, and %X and %Y are

parallel to AB and A'B', respectively. Let us take for h =

X 8*8 64 5*7*35

-64 + 35-99-
FlGURE 28

Y

the least common multiple of the integers b and b' : we can then

write h Jib N'b', where JV and JV' are relatively prime.
From similar triangles we deduce the sides ofXY as

y = = Na + N'a'. (14.4)

The triangle is Heronian, because its area T = \hz is a rational

number. In Figure 31 the Pythagorean triples are (8, 15; 17)

and (7, 24; 25) and the reader will verify that the resulting
Heronian triple is (125, 136, 99).
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A far more elegant solution to the Heronian problem was

given by Brahmagupta, a Hindu mathematician of the seventh

century A.D. He takes for parameters the ratios, a, /?, 7, defined

by

a = = cot $A, /?
= = cot \B,

j = i^f
= cot \C.

(H-5)

Assuming that A and B are the acute angles of the triangle,

the parameters a and fl are greater than i
; as to 7, it is greater,

equal or less than i, depending on whether C is acute, right
or obtuse. On the other hand, a, /?, 7 are not independent of

each other. They are connected by the relation:

afly = a + ft + y or y = -^-,
. (14.6)

which reduces the problem to two degrees offreedom.

These considerations are valid for any triangle; but in the

case of a Heronian triple, the radius r is rational, and, conse-

quently, the parameters a, /?, 7 are rational numbers. Conversely,
if the sum of three rational numbers is equal to their product, and two
of these numbers are greater than i

,
then they can be taken

as Brahmagupta parameters of a Heronian triple. As a matter of

fact, in so far as form alone is concerned, the triple is completely
defined by the proportion

To illustrate, take a = 2, /?
= 7/4. We find 7 = 3/2.

Bringing these to a common denominator and dropping the
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latter, we are led to the integers 8, 7, 6. Hence the triple

(7 + 6> 6 + 8, 8 + 7), i.e., (13, 14, 15). As another example
take a = 3, /?

= 7; then y = ,
which means that the angle

C is obtuse; proceeding as before, we find the integers 6, 14, i

which lead to the triple (15, 7, 20).

The elegance of the Brahmagupta approach is further

accentuated by the fact that the aggregate of Pythagorean

triples is included under y = i . Indeed, if we set a = p/q, then

ft has the value (p + q)l(p <?); and equations (14.7) lead to

It follows that p and q are the Fibonacci parameters of the

Pythagorean triple. (See formula (9 . 7) of Chapter Nine.)

Among the Heronian triples treated in Metrica was the set

of consecutive integers (13, 14, 15). Hero found other such

"consecutive" triples, and, probably, surmised that their

number was infinite. However, he failed to devise a systematic

procedure for generating such triples. Nor did the Hindu and
Arabic mathematicians fare better in this respect. In modern

times, the quest resulted in an interesting and rather important

development in higher arithmetic. Like so many other chapters
in the history of number theory, this one, too, began with

Fermat.

Observe that the middle term of a consecutive Heronian

set must be even, for, otherwise, the semi-perimeter, s, of the

triple would not be an integer. Accordingly, we set b zx,

and deduce:

a = <2x i, b = 2#, c 2x + !) 2s = 6x

s a = x -}- i, s b = x, s c = x i, ^=

(14.9)
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The problem is, therefore, to choose x in such a way that

3 (#
2

i) be a perfect square; or which amounts to the same

thing such that x* i be of the form 3jy, where y, too, is an

integer. We are thus led to determine all integral solutions of

x* 3?
2 = i . . . (14. 10)

Equations of this type are known as Pell equations. Their

general form is

x 2
Ry 2 = i . . . (14.11)

where R is a non-square integer. The strange thing is that John
Pell, the obscure British mathematician after whom the equa-
tion was named, had nothing to do either with the formulation

or with the solution of the problem. It was proposed by Fermat

shortly before his death as a challenge to British mathemati-

cians. We have no record of Fermat's own solution, and the

one attributed to Wallis is far from satisfactory. As opposed to

this, the solution given by Lagrange a hundred-odd years
after the problem was proposed is a model of elegance, simpli-

city and rigour.

Lagrange derives the solution of the Pell-Fermat equation
from a few elementary properties of binomials of type
x +J>^R, where the

'

'modulus,
5 '

/?, is a non-square integer,

while x and y are any two rational numbers. In particular,
x and y may be whole numbers, and this is what we shall

assume in what follows. It is convenient to present these

properties in the form of lemmas :

LEMMA A. The product of two binomials ofmodulus R is a binomial

of the same modulus. In symbols

(A) (
X +y4R}(x' +/V*) =

(**' + Ryy'} + (*/ + * V*
LEMMA B. By repeated application of lemma A we find that

the power of a binomial of modulus R is a binomial of the same

modulus. In symbols, if n is any positive integer, then

(B) (x+^Ti)=X+rjR
where X and T are whole numbers, provided x and_j> are.
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LEMMA C. If two conjugate binomials be raised to the same

power, n, then the resulting binomials are also conjugate. In

symbols :

(C) (x + ^~R}
n = X + TjR entails (x -yjR) n = X - TjR

LEMMA D. By combining these properties, we conclude

that

(D) if (x + JS/7Z)" = X + YjR,

then (x
2 -

Ry*) = X2 - R T*

This last lemma permits one to derive an infinite number
of solutions to a Pell equation, if one solution is known.

Assume, indeed, that p and q are two integers which satisfy

the Pell equation of modulus R, i.e., that p
2 Rq 2 = i

; next

consider the infinite sequence of binomials

P2 + q*jR =(P + 9jR)*>P* + W* =(P + W*) 8
> etc - etc -

. (14-12)

Then, in virtue of Lemma D,

pa*-Rqt
* =

I, p* -Rq* z = I, pn * -RVn* = I, . . .

Thus, the sets p2 , q%\ p& q^ . . pn , qn \ are also solutions

of the Pell equation of modulus R.

To illustrate, the equation x 2
7j

2 = i is satisfied by
* z=8, _>> =3. We find (8 + 3V7)

2 = 127 + 48^/7. Thus
x = i27,jy = 48 is also a solution, as may be verified directly.

Thus, the equation x 2 Ry 2 = i admits of an infinity of
solutions if it admits of one. But with this the problem is by no
means settled. Two questions remain: First9 do solutions

always exist? Second, if they do exist, can the Lagrange algorithm)

(14.12) generate all solutions from a single basis? Through a

subtle reasoning, which has later been simplified somewhat

by Gauss and Dirichlet, Lagrange proved that a basic solution

always exists, and that it is unique, for any value of R.

To determine this basic, or minimal, solution for any given
R is quite another matter. Thus in the case of R = 13, the

minimal solution is x = 649,^ = 180, while for R = 94, x and

y contain 6 digits each. However, the quest can be greatly
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facilitated by the following fundamental theorem due to

Euler :

If X and y are solutions of the equation, x 2 Ry2 =
i, then x/y

is a convergent in the expansion of ^R into a continued fraction.

Let us now return to the problem of determining all con-

secutive Heronian sets. We saw in section 6 that the question leads

to the Pell equation

x = i

where 2x is the middle term of the triple. The minimal solution

of this equation is, obviously, # = 2 j>
= i. The Lagrange

algorithm yields the binomials

(
2 + ^3)2 = 7 + 4^ ? (

2

The table below gives the results for the first six triples.

It should be noted that the parameter y gives the radius of
the inscribed circle. The last column shows the connection

between these Heronian triples and the comergents to ^3, listed

in the preceding chapter.
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Chapter Fifteen

THE CHORDS OF HIPPARCHUS

Truth : a brief holiday between two long and dreary

seasons, during the first of which it was condemned
as sophistry and during the second ignored as

commonplace.
SCHOPENHAUER

To one unfamiliar with the idiosyncrasies of Greek mathe-
maticians the story which I am about to unfold will sound

quite unreal. Yet, it is just one more confirmation of the

proposition that history is no respecter of order.

In an earlier chapter I examined the conjecture that Baby-
lonian learning had in some way penetrated into Greece

during the formative stages of geometry, a hypothesis recently
advanced to explain its prodigious progress in the three pre-
Euclidean centuries. I rejected the conjecture on the ground
that the clay tablets thus far deciphered give no more evidence

of deductive reasoning than the Egyptian papyri did.

As a matter of fact, Babylonian learning eventually did

infiltrate Greek thinking, but by then classical geometry had
been all but consummated, even as the glory of Babylon.

Indeed, the Greek who sponsored this momentous event was
the astronomer Hipparchus who flourished about 150 B.C.,

that is, at a time when Apollonius was already a mere memory,
Archimedes a legend and Euclid ancient history. As to Babylon,
the one lasting monument of its glorious past was the collection

of star calendars compiled by Chaldean priests and extending
back to times immemorial.

Hipparchus took full advantage of these Babylonian records

when he wrote his treatise on astronomy. The book was

subsequently lost, as was a similar manual by his follower

Menelaus. It is believed, however, that the essential features
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of both treatises were incorporated in Ptolemy's Almagest
which appeared about A.D. 150. Unfortunately, the Greek

original of the Almagest has also been lost, and such parts of

the work as have reached us are in the form of Latin transla-

tions of Arabic versions; and there is no telling how much of

their own the zealous Arabic commentators had added to the

Greek text. That these suspicions are fully justified is suggested

by the very word Almagest, which is compounded of the Arabic
article al and an exotic syncopation of the Greek title of the

book Megale Syntaxis, i.e., Grand Compendium.
Under the circumstances, it is more than likely that many

of the innovations, whether mathematical or astronomical,
which have been attributed to Ptolemy were the achievements

of other men. Thus, there is no doubt that it was Hipparchus
who first adapted the Babylonian system to the measurement
of both time and angles. These sexagesimal units were later

latinized as gradi, partes minutae primae and paries minutae

secundae; these, in turn, became the degrees, minutes and seconds

which, for better or for worse, have survived to this day.

We are confronted here with the perplexing fact that Greek

geometry was a finished product when the first chapter of

trigonometry had not even been written. Nor, for that matter,
was this first chapter ever written in Greek. The Almagest
contained a comprehensive treatise on spherical trigonometry,

but neither Ptolemy nor his Hindu and Arabic successors ever

referred to any textbooks on plane trigonometry.

Now, Hipparchus, Menelaus and Ptolemy were astro-

nomers, and their interest in spherics is quite understandable.

What is bewildering is that these men had, apparently, plunged

headlong into spherical trigonometry without using plane

trigonometry as an intermediary. And yet, after all, whenever
three points on a sphere define a spherical triangle, they also

define a plane triangle, and it is the study of the relationship
between these two species the Greek tripleuron versus trigonon

that leads to the laws of spherical trigonometry.
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Upon closer scrutiny we find that Ptolemy did make use of

what we call today plane trigonometry, but failed to honour it

with a title. Indeed, he constantly invoked the theorems and
constructions of the classical geometry of triangles, as Euclid

had taught it; and, in the last analysis, the formal laws so

prominently displayed in our textbooks are but artful para-

phrases of these classical propositions in terms of trigonometric
ratios.

Thus, as I pointed out in the chapter dealing with the hypo-
tenuse theorem, the so-called law of cosines was but a form
of the extended Pythagorean proposition. The law of half-

B

FIGURE 290 FIGURE 296

angles is a sort of numerical counterpart of a property of the

inscribed circle, and was, as we saw, implicitly used by Hero
in deriving the formula which bears his name. As to the law of

sines, it calls for a more detailed discussion, because the sine was
a basic concept in the Ptolemaic approach to trigonometry.

Indeed, the sine was the only one of the six trigonometrical
ratios which the Greeks had honoured with a name. It was
called XopS 7!) i-G -> tne chord. Back of this designation was the

inscribed angle theorem which I have already mentioned on
several previous occasions. In Figure 290, UW is a fixed chord

of a circle of diameter D ; the vertex V of the inscribed angle
is free to move along the arc subtended by the chord, but the
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magnitude of the inscribed angle remains constant throughout
this motion.

It follows that this magnitude is fully determined by the

ratio of chord to diameter] and that, conversely, the ratio k is

uniquely determined by the angle 0. In short, using modern

terms, k is a function of 6. This function the Greeks called

Xopdy. Translated as chorda into Latin, it was used as a standard

term until superseded by the term sinus.

When viewed in this light, the law of sines is an immediate

corollary of the theorem that any three non-collinear points
determine a unique circle. Consequently, the angles A, B, G
of any triangle may be viewed as inscribed angles of some circle,

and the corresponding sides, a, b, c, as chords of the same circle.

If then we denote by D the diameter of that circle, we can

write

a = D sin A, b = D sin B, c = D sin C, . (15. i)

and this is the law of sines. (Figure 29$.)

This interpretation shows that the law of sines is not an
exclusive attribute of the triangle, and we shall presently see

that Ptolemy was fully aware of this. Indeed, the preceding

argument can be extended to any cyclic polygon, i.e., to any
polygon the vertices of which lie on one and the same circle.

A case in point is the cyclic quadrilateral which played quite an

important part in the Ptolemaic treatment.

We conclude that classical geometry contained all the elements

required for the "solution
5 '

of triangles and rectilinear con-

figurations generally. How about analytic trigonometry: the

trigonometric functions of the sum or difference of two angles,
of multiples and of half-angles! Well, not only were these pro-
cedures known to Ptolemy, but they were used by him with

telling effect. What is more, all these calculating media were
derived from a single proposition which we call today Ptolemy's

theorem, but which the Almagest modestly designated as the

Lemma.
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This is the theorem : if the four vertices of a quadrilateral are

concycliC) then the sum of the products of the opposite sides is equal to

the product of the diagonals of the quadrilateral. In Figure 30,

AC-BD + BC- AD = ~AB CD. . (15.2)

Even more remarkable than the consequences which Ptolemy
drew from this property of cyclic quadrilaterals is the proof of

the theorem. For here are displayed the same nimble virtu-

osity, the same apparent artfulness which we encountered in

FIGURE 30

Hero's proof of the formula for the area of a triangle, or in

Euclid's proof of the hypotenuse theorem. This virtuosity suggests
that the proposition did not spring from the brain of an

astronomer, but was the discovery of some brilliant geometer,
most likely Apollonius.
As in the theorems just mentioned, it is not the proof that

is hard to comprehend, but the "stratagem" behind the proof.

The stratagem in this case is to determine a secant CX which

partitions ABC into two triangles of which the first, ACX, is

similar to CDS, and the second, BCX, is similar to CDA. This is

accomplished by erecting an angle ACX equal to DCS. By the

same token, angle BOX becomes equal to ACD. The rest of

the proof is standard procedure : from the similitude of the
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two pairs of triangles we draw two proportions which, in turn,
lead to the two relations,

CD and CD - BX = BC AD.

Adding these and remembering that AX + BX AB, we
obtain the theorem sought.

FIGURE

In applying the lemma to the calculation of chords, Ptolemy
uses special quadrilaterals in which either a side or a diagonal
coincides with a diameter of the circumscribed circle. Thus, in

the case of the sum of two angles (Figure 310), the diameter

AB is a diagonal. In what follows we have replaced the Alma-

gest terms chord and complementary chord by sine and cosine. We
have also assumed the diameter of the circle to be equal to i .

Thus, one pair of opposite sides is made up of sin a and cos ft,

the other pair of sin ft and cos a, while the second diagonal is

sin (a -f- ft). A direct application of Ptolemy's theorem leads

to the additionformula:

sin (a + ft)
= sin a cos ft + sin ft cos a (15-3)

In Figure 31^, the diameter of the circle is taken for one of

the sides. Ptolemy's theorem then yields the difference formula

sin (a ft)
= sin a cos ft sin ft cos a . (15-4)
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Finally, Figure 32 shows how Ptolemy handled the dichot-

omy problem; the chord of an angle being given, calculate the chord

of the half-angle. Here the chords DB and 23C* are equal, their

D

FIGURE 32

common length being sin |#; the chord BC is sin 6, and the

diagonal AD is cos 6. Thus

sin %6 + sin \6 cos 6 = cos \B sin 6

This, in turn, leads to the dichotomyformula

tan %0 cosec 6 cot 6 . . (
1 5 . 5)

which, incidentally, was used by Archimedes four hundred

years earlier for the computation of n.

These principles were applied in the Almagest to the computa-
tion of a table of chords, which, from all accounts, was largely
a reproduction of the one appended to the lost treatise of

Hipparchus, a circumstance that casts added doubt on the

authorship of the theorem which bears Ptolemy's name. The
table is of great historical interest, not only because it was
the first of its kind, but because its very conception was a
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radical departure from classical tradition. Besides, it offers an

insight into the difficulties with which calculators of that

period were beset.

To bring these handicaps out in sharper relief I shall

present here in outline Ptolemy's calculation of the sine of
one degree. Step L The sine and cosine of 18 were taken directly
from the golden section triangle. (See Chapter Five and Figure

8.) Step II. The functions of 15 were derived from those of

30 by dichotomy. Step III. The functions of 3 were derived

from those of 18 and 15 by means of the difference formula

(15.4). Step IV. The functions of i and of | were obtained

from those of 3 by two consecutive dichotomies. Step V. Finally,

the sine of i was derived from the sines of i and | by
interpolation.

The latter was based on an inequality which had already
been used by the astronomer Aristarchus, a contemporary of

Archimedes. In fact, one commentator attributes it to Hippias
of Elis, which is not so far fetched as it may first appear,
inasmuch as it is, in a sense, suggested by the quadratrix.

Indeed, the quadratrix is represented by the function #/tan x

whereas the inequality back of Ptolemy's interpolation deals

with the related function sin x/x.

Figure 33 is the graph ofjy = sin x/x. Observe that the function

is steadily decreasing as x varies from o to n. This means that if

a, 8 and /? are three consecutive values of x, then

sin a sin 6 sin ft

from which we draw the inequality used by Ptolemy :

f) ft

-sin a > sin 6 > -3 sin /? . . (15*6)a ft

In the second place, the function attains a maximum for x = o,

which means that for small values of x, the curve is quite
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"flat." Thus, the interval between sin a/a and sin /?//? is small,

if a and /? are small, and this is what accounts for the extra-

ordinary precision of the method.

A'

We find, indeed, by applying the inequality to a = 90',

6 ='6o' and /?
=

45', that

i.e.,

- sin 90' > sin 60' > ^ sin 45',
3 3

O' oi 745 . . . > sin i > 0*01745

We are thus justified in taking sin i = 0-01745, which agrees
with the value drawn from a five place table. It also agrees

quite closely with the value given in the Almagest table:

sin i = i' 3".
Let me say here for the benefit of the puzzled reader that

along with the Babylonian measures of time and angles,

Hipparchus adopted the so-called sexigesimal fractions. Thus,
i' 3" meant 1/60 + 3/3600. Ptolemy followed suit, and, as a

matter of fact, this method of writing fractions was in common
use even in the days of Copernicus. However cumbersome this

notation may appear to us today, it was in keeping with the

spirit of the time, and may indeed be viewed as a precursor

of the decimal fraction which in its present form is barely three

hundred years old.*

And while on the subject of notation let me add that the

terminology and symbols used in trigonometry today are

largely those which Euler had introduced about two hundred

years ago. The earlier nomenclature and notation were in

* See this author's Number, the Language of Science, 4th edition, Allen & Unwin,
1954. Pages 257 and 258.
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many respects as inarticulate and as awkward as those used

by Ptolemy and his Arabic and Hindu successors.

8

The essential difference between the classical geometry of the

triangle, as Euclid taught it, and the trigonometry of Hip-
parchus can be summed up in a single word, goniometry. Without

goniometry, trigonometric ratios are but empty symbols and

trigonometric laws fruitless formalities. The ratios are raised

to the dignity of functions, and the laws acquire universal

significance through a principle which co-ordinates angular
measurement with the measurement of lengths. Such a principle, in

turn, rests on the assumption that it is possible to establish a

one-to-one correspondence between the arcs of a circle and the segments

of a line.

Classical geometry had no goniometry in this broad sense

of the term. The Elements of Euclid defined congruent angles ;

defined addition and subtraction of angles; the multiples of

an angle ; dichotomy. It taught how to divide a complete
revolution into 3, 5 and 15 parts, and how to subdivide any
angle into z n parts. Still, all these definitions and construc-

tions were strictly operational, and the operations were restricted

to manipulations by straightedge and compass. To solve a triangle
was a graphical problem which, generally, had no arithmetic

counterpart.

Classical geometry had an angular unit: the right angle or

quadrant. But only such fractions of the quadrant were recognized
as bonafide angles as could be reached by cyclotomy; any others,

such as 1/7, 1/9 or 1/90, were outside the "angular pale."
And such was the power of the interdiction imposed by the

"divine instruments" that even a Eudoxus or an Archimedes
could not shake off these inhibitions.

Then an astronomer rushed in where geometers had feared

to tread. Not content with foisting on classical geometry an
unwanted goniometry, he added insult to injury by defying
the sacred rules of cyclotomy. Any goniometry which accepted
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the general angle at par with the "cyclotomic" was a radical

departure from Greek tradition. Still, Hipparchus could have

preserved a modicum of classical decorum by adopting for

unit some angle within the scope of the divine instruments, such

as 1/60, 1/80 or 1/96 of a quadrant, in lieu of the Babylonian
1/90, which lay outside the "pale." It was a choice between a

Greek schism and a Babylonian heresy. Hipparchus chose

heresy.
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Not yet has man learned how to celebrate his highest
attainments.

NIETZSCHE

What is the scope of the Greek contribution? What place
should the historian assign to the Greeks in the evolution of

mathematical thought and technique? Is the statement "in

mathematics all roads lead back to Hellas" a just appraisal, or

just a specious metaphor? Was it devotion to Greek principles
that brought about the prodigious progress of the last few

centuries, or was it renunciation of Greek mathematical
taboos?

As I ponder over these questions, there come to my mind
the words of Poincare': "To doubt all or all believe are two

equally convenient solutions, in that both dispense with

thinking."

My account of the Greek Bequest touched on many problems
and issues, which had their reverberations in modern times;
and yet, it is not the whole story. A number of equally impor-
tant achievements had to be relegated to the next volume of

this trilogy. Lack of space was one reason for this deferment.

The other was my feeling that these issues could be presented
in sharper relief when etched against the background of the

time and the place where they had attained fruition.

Among these topics will be such significant achievements

as the quadratures of Archimedes which anticipated the integral
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calculus of Newton by two thousand years; the Conies of Apol-
lonius which foreshadowed the analytic geometry of Descartes;
the porisms of Euclid and Pappus which contained the germs
of the projective geometry of Desargues; the Arithmetica of Dio-

phantus which inspired the number-theoretical discoveries of

Fermat; the principle of exhaustion; the postulate of parallels; the

curves of Diocles and Nicomedes; Euclid's brilliant studies in

prime and perfect numbers.

An imposing array, yet all parts of the mathematical heritage

bequeathed to us by the Greeks. If these topics be ranged

alongside of those recorded in the present volume, the list

would read like a table of contents of an encyclopedia of

modern mathematics. By the same token, the words "all roads

lead back to Greece" would resound like an apt description
of the relation between classical and modern mathematics.

When, however, we examine closer the twelve odd centuries

which separate the end of the classical from the beginning of

the modern era, we find this metaphoric appraisal specious,
to say the least. The first eight centuries of that period are

known as the Dark Ages. There has been a tendency in recent

years to avoid this term, but I know of no more fitting epithet
unless it be interminable night. There were no roads leading to

Hellas in that barren wasteland. Just trails littered with the

ruins of Greek culture. Occasionally an errant monk would
stalk among the ruins in vain search of a Greek rationale

which would vindicate his wild obsession. And that was all.

When at long last the obsession had run its course, there

came to Western Europe a magnificent upsurge known as the

Renaissance. Pent-up energy released found creative outlets in

the arts, in letters, in music and philosophy. However, there was no

corresponding upsurge in mathematics at that time. Feeble

attempts were made to revive Greek classics through Latin

translations of their Arabic versions, but these efforts had no

lasting effect. Indeed, the only mathematician of the period

worthy of the name was Fibonacci, and he was more interested

181



BEQUEST OF THE GREEKS

in spreading Arabic ideas than in restoring the glory of

Greece.

Then came the seventeenth century and an upsurge which, for

intensity and extent, had no equal in the annals of mathe-

matics. Most of the subjects which grace the mathematical

curriculum of a modern college came into being during that

period. Geometry, analytical, projective, infinitesimal; theory of equa-

tions and number theory; the calculus, theory of functions, infinite

series, theory of curves; probabilities, theoretical and celestial mechanics.

Now, all this happened in less than one hundred years.

Indeed, while the Isagogs of Vieta, which ushered in the new
era, had appeared in 1592, the full significance of his symbolism
was not realized until after the author's mysterious death in

1603. On the other hand, in 1686, when Newton's Principia

Mathematica was published, the new mathematics was already
a fait accompli. Thus, measured by contemporary standards,
there was more ground covered in this, the first, century of

modern mathematics than during the nearly one thousand

years which separate Thales from Pappus. Why?
We certainly cannot ascribe this prodigious progress to the

superior ability of the mathematicians of the seventeenth

century, or to their deeper insight. The phenomenal virtuosity
of the Greek masters and their almost uncanny intuition

speak for themselves. Indeed, so circumscribed were the

methods of the classical era, that almost any new problem
called for a tour de force which only a virtuoso could perform.

Again, to say that Fermat, Descartes or Newton had tools

available which were not known to the Greeks is begging the

question, inasmuch as these tools were forged by the very
men who used them. What were the stimuli that urged these

men on, stimuli which, apparently, did not exist in the Greek
era?
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What classical mathematics needed to become an organized
whole, and to qualify, at the same time, as spokesman of the

sciences which lean on it for counsel and approval, was not

more or greater men of genius, and not new principles or

concepts: it needed a new language. Does this mean that the

Latin of Descartes and Newton was better adapted to express
mathematical thought than the Greek ofApollonius or Pappus?
No, indeed! The question as to which of the sundry languages
evolved by civilization could best serve the needs of mathe-
matics is of no historical significance, since the verdict of

history has been that no such language can ever fill the exacting
demands of mathematics.

As I write these lines, I think of the cynical phrase of

Talleyrand: "Speech has been given to man that he may
disguise his thoughts." A choleric historian might paraphrase
this into: "Speech has been inflicted on man to obscure thought,

paralyse action and impede progress" and could invoke the story
of classical mathematics to confirm his words. A more benign

interpreter of human history would counter: "Language is

not a gift of Providence. It grew out of the needs of a social

being to convey to other such beings his wishes, entreaties and
commands ;

to share with other such beings his hopes and

fears; to implore, placate, cajole and exorcise the mystic forces

which controlled his destiny. It antedates inference and deduc-

tion by countless eons
;

it bears the indelible imprints of the

chaotic mist through which human intuition was groping,

ages before the advent of reason."

Thales of Miletus armed intuition with a brain, and out of

the nebulous mist emerged mathematics. But neither Thales

nor his followers armed the thinker with an organ of speech
which would fittingly express his thoughts, subtle yet precise,

or describe the countless forms which his imagination could
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conjure up. Greek mathematics had to depend on common

speech, a medium replete with ambiguities, yet inflexible;

open to inconsistencies which it could not detect; where an

interchange of words could jeopardize meaning, and where

emphasis could be attained only through intonation. These

were the handicaps under which Greek mathematics laboured

throughout the thousand years of its existence.

And then, as though by magic, mathematics was freed from
the vagaries of human speech and presented with a language
all its own. I use the word magic advisedly, for, the most

striking feature of the event was the spontaneity and rapidity
of this transition from the old mathematics to the new. It

began at the threshold of the century, and by 1650 the new
medium had already infiltrated into practically every field of

mathematics, pure or applied.
Whenever I reflect on that epical transition, there comes

to my mind the legend of Hesiod, according to which Zeus

had swallowed his wife Metis when she was pregnant with

Athena, acting on a warning that his children by her might

prove stronger than himself and dethrone him. But Prometheus

split open the head of Zeus, and Athena sprang forth fully

armed and uttering a loud shout of victory. Prometheus was
not aware of the enormous potentialities of the liberated

goddess. And neither was Vieta, the Prometheus of Mathe-

matics, aware of the revolutionary outcome of his discovery.

Indeed, had he been so aware, he would have hailed the

discovery as lingua mathematica, instead of christening it with

the vapid name of logistica speciosa.

"Not yet has man learned how to celebrate his highest attain-

ments." How fittingly these words of Nietzsche apply to

the history of mathematics! The two epoch-making events in

that history were the principle of deductive reasoning inaugurated

by Thales and the symbolic algebra of Vieta. Yet, not only do
we not commemorate these events, and not only have the

men to whom we owe these achievements been all but for-
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gotten, but we even lack names to identify these achievements
for what they are.

Indeed, few of our textbooks mention the Vieta discovery
at all, and those that do, identify it as literal notation, a term
which is not only pointless, but actually deceptive, since the

use of the letters of an alphabet for symbols is wholly irrelevant,

and the idiom is certainly more than a mere notation. In

fact, even the term language does not adequately describe the

scope and power of the medium. For, while the idiom will

discharge the principal functions of any written language, it

will also perform feats which even the most eloquent orator

or the most inspired poet cannot hope to attain.

Thus, the change of structure in a sentence will, as a rule,

destroy the intended meaning, or, at best, produce a pun, even

if the rules of grammar have been strictly obeyed. On the other

hand, in a symbolic relation a transformation which conforms

to the laws of algebra reveals the equivalence of two forms,
and this means a theorem in the field which has marshalled

these symbols to its aid.

Again, when words in a sentence are given a new connota-

tion, the result is an ambiguity, or, at best, a metaphor. But if a

symbolic relation is valid in two distinct fields, then any
consequence of the relation in one of the fields has its counter-

part in the other. Such isomorphisms have led to many valuable

discoveries in applied mathematics.

Finally, if the words of a sentence are subject to certain

reservations, then to disregard these restrictions means to

risk grave consequences; indeed, we owe most of our errors

to just such abuse. On the other hand, a symbolic relation

in which the entities involved have originally been restricted

in type or range will often retain its meaning when the restriction is

removed and thus lead to fruitful generalizations. The evolution of

the number concept from integer to vector is a case in point.

This, then, is the historical significance of Vieta's discovery :

it not only endowed mathematics with a language, but armed
it with such powerful weapons as paraphrase, analogy, generaliza-

tion. Thus did Vieta turn a tongue-tied thinker into a fluent

and convincing speaker, and, at the same time, immensely
enriched the thinker's creative and critical faculties.
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8

The publication in 1630 of Galileo's Dialogues on the Two New
Sciences provided a second powerful stimulus to the mathe-

matics of the seventeenth century. In that work Galileo sought
to extend the notion of velocity to non-uniform motion. He
inquired : what would happen to the average speed of a moving
particle when the time-interval was gradually reduced? This

led him to the concept of instantaneous velocity. The latter he

defined as the limit towards which the average speed tends

when the time-interval diminished indefinitely,, which, of course,

was in all but name the derivative of space with respect to time.

It was another case of an astronomer rushing in where

geometers feared to tread. The spell was broken: Fermat was

quick to adopt the new ideas to geometry; a veritable orgy of

applications followed, and infinitesimal analysis was born.

Infinite processes, infinitesimals, limits concepts which Greek

geometers had shunned with a circumspection akin to awe
were henceforth to be used as legitimate instruments of mathe-

matical reasoning and technique. Thus did Galileo inadvert-

ently cut the Gordian knot of a taboo which had plagued
mathematics since its inception.

Still, the enormous success of infinitesimal analysis should

not blind the historian to the fact that the discipline owed its

existence not to a new conception, but to a bold overt break

with an age-old tradition. We should also remember that

Greek mathematical history is studded with attempts to shake

off the taboos imposed by that tradition ;
that these attempts,

timid and disguised at first, were becoming more resolute as

mathematics advanced; and that the Collection of Pappus is

interspersed with problems where the infinite with its sundry
ramifications was used directly, even if not explicitly.

The Greek title of the Pappus work was Synagogs, which stood

for collection or assembly. Quite a fitting title, too, for, here
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Pappus assembled a veritable pageant of classical problems,

ranging from the earliest days of Greek geometry to his own
times. Some were old questions in a new guise, others were,

undoubtedly, due to Pappus himself, but all bear the elegant
touch of a master mathematician and skilful teacher. Indeed,
the very style and arrangement of the material suggest that

he had been the head of a school of high standing.
The historical significance of the Synagogs is that it serves as

the best available source on the scope and ken of those mathe-

matical classics which had perished during the Dark "Ages,

and, at the same time, sheds light on the state of mathematics

at the eve of the blackout. But it does more than that. For, by
revealing the trends of mathematical thought and technique
at the close of the classical era, it brings out in true perspective
the transition from the old mathematics to the new.

The juxtaposition of the two works, the Synagogs of Pappus,
that swan song of classical mathematics, and the Isagogs of

Vieta, the first significant book of the modern era, would
disclose the origin of many current ideas, and would, at the

same time, clear up many perplexing historical questions.
This is the reason why I have deferred the study of the closing
era of Greek mathematics to the next volume of this trilogy.

Still, the era is a part of the classical panorama: hence, a

fitting climax to a story of the Greek Bequest. And so I shall

close my narrative with a retrospective glance at that crucial

era in the history of man, when the fate of thought was hanging
in the balance.

10

History may be likened to one of those tapestries of intricate

weave in which an eye can discern almost any design con-

ceived in advance, any one at variance with any other, yet
none conflicting with the whole.

One might picture the death scene of Hellenism as a host

of saints chanting Hosannas on the grave of a pagan who had
died in despair and decay from hypertrophy of the mind and

atrophy of the soul. Or, one might picture it as a horde of
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fanatics massed under the banner of ratio delenda est, glaring
with glee at a prostrate Prometheus, felled at the prime of life.

Between these extremes one might intercalate a variety of other

designs, no two agreeing with each other, yet, every one drawing
aid and comfort from the confusing accounts of an age of

much heat and no light.

A bewildering freedom of choice, but, actually, no freedom,
since one's choice is predicated by one's temperament, up-

bringing and entourage. Nor is the historian free from such

bias, and I, for one, have never concealed my own. Homo sum et

humanum nihil a me alienum puto.

Many centuries lie between us and those tragic days, but

the ideological conflict between the Hellenists and the apologists

has not abated. The one speaks of the event as of darkness

engulfing light and regards modern progress as the reincarna-

tion of Hellenism; the other describes the end of Greek culture

in terms of degeneracy, decadence, decline and decay.
I do not feel competent to weigh the merits of the contro-

versy in fields other than my own. However, I did make an
honest effort to appraise the mathematics of that era. I read

and re-read the Metrica of Hero, the Almagest of Ptolemy, the

Arithmetica of Diophantus, the Collection of Pappus, and sundry
other works which had escaped the vigilance of the saints.

I found there a growing understanding of the issues which had
stalled their mathematical predecessors, and a groping for

means to resolve these issues. I found pride of achievement,
and prouder yet visions of conquests to come. But nowhere
did I detect evidence of decay or traces of decline. Yes, I, too,

have scanned that intricate weave to discern the stage on which
had been enacted the last hours of classical mathematics, and
here is what I saw from where I stood:

A bright day was shining, lofty vistas were looming, fresh

breezes were scattering the cobwebs of ancient taboos, when
the lights went out, and the curtain of history dropped on the

Grand Drama of Hellas.
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