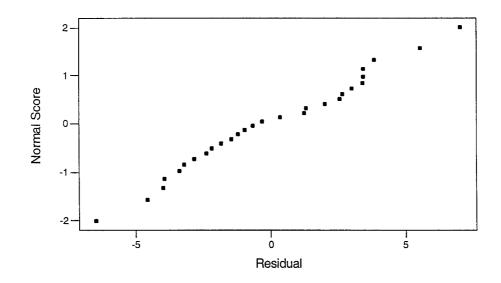
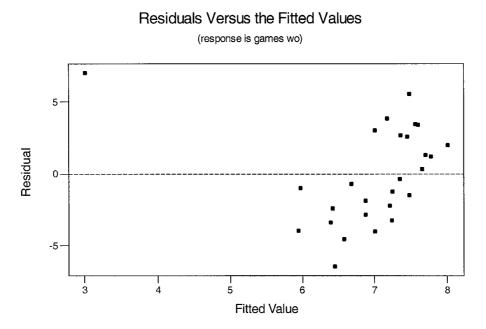
Chapter 14

14–1. (a) $\hat{y} = 10.5 - 0.00156$ yards

(b)	Predictor Constant yards	Coef 10.451 -0.001565	2.514	4.16	P 0.000 0.163			
	S = 3.414	R-Sq	= 7.3%	R-Sq(adj)	= 3.8%			
	Analysis o							
	Source	DF	SS	MS	F	Р		
	Regression	. 1	23.99	23.99	2.06	0.163		
	Residual E	rror 26	302.97	11.65				
	Total	27	326.96					
(c) $-0.00380 \le \beta_1 \le 0.00068$								
(d)	$R^2=7.3\%$							

Normal Probability Plot of the Residuals





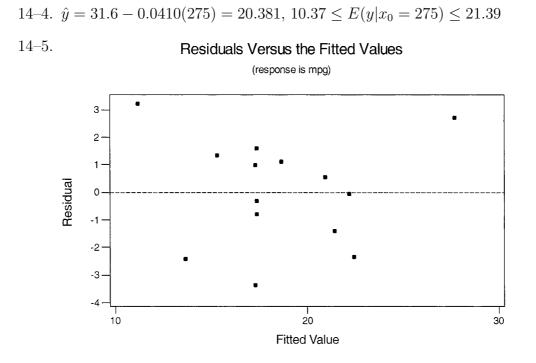
Based on the residual plots there appears to be a severe outlier. This point should be investigated and if necessary, the point removed and the analysis rerun.

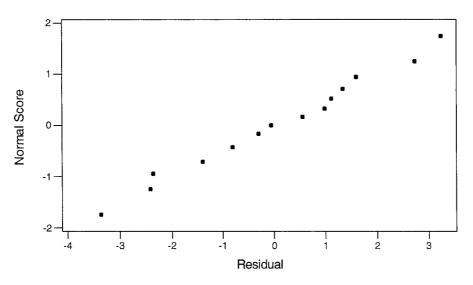
14–2. $\hat{y} = 10.5 - 0.00156(1800) = 7.63$ or approximately 8. $6 \le E(y|x_0 = 1800) \le 9.27$

14–3. (a) $\hat{y} = 31.6 - 0.0410$ displacement

SE Coef (b) Predictor Coef Ρ Т Constant 31.648 1.812 17.46 0.000 displace -0.040975 0.005406 -7.580.000 S = 1.976R-Sq = 81.5%R-Sq(adj) = 80.1%Analysis of Variance Source DF SS MS F Ρ Regression 1 224.43 224.43 57.45 0.000 Residual Error 13 50.79 3.91 Total 14 275.21 (c) $R^2 = 81.5\%$

(d) $\hat{y} = 20.381, 19.374 \le E(y|x_0 = 275) \le 21.388$

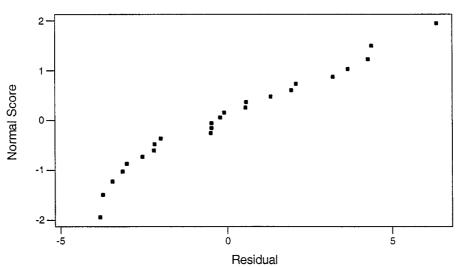


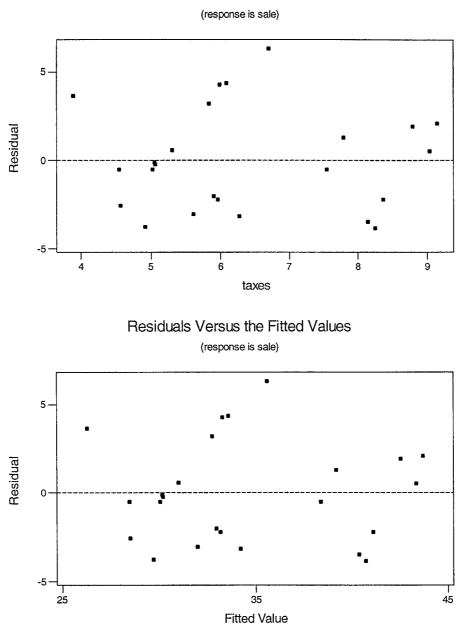


14–6. (a) $\hat{y} = 13.3 + 3.32$ taxes

(b)	Predictor	Coef	SE Coef	Т	Р	
	Constant	13.320	2.572	5.18	0.000	
	taxes	3.3244	0.3903	8.52	0.000	
	S = 2.961	R-Sq =	76.7% R	R-Sq(adj) =	75.7%	
	Analysis of	Variance				
	Source	DF	SS	MS	F	Р
	Regression	1	636.16	636.16	72.56	0.000
	Residual Err	ror 22	192.89	8.77		
	Total	23	829.05			

(c) 76.7%(d)





Residuals Versus taxes

14–7. (a) $\hat{y} = 93.3 + 15.6x$

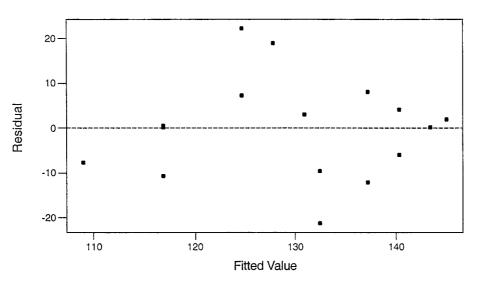
(b)	Predictor	Coef	SE Coef		Р	
	Constant	93.34	10.51	L 8.88	0.000	
	х	15.649	4.345	5 3.60	0.003	
	S = 11.63	R-Sq =	48.1%	R-Sq(adj) =	44.4%	
	Analysis of Var	riance				
	Source	DF	SS	MS	F	Р
	Regression	1	1755.8	1755.8	12.97	0.003
	Residual Error	14	1895.0	135.4		
	Lack of Fit	8	1378.6	172.3	2.00	0.207
	Pure Error	6	516.4	86.1		
	Total	15	3650.8			

(c)
$$7.997 \le \beta_1 \le 23.299$$

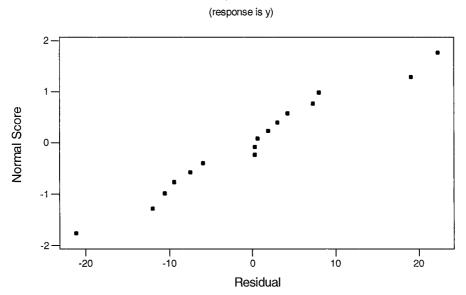
(d) $74.828 \le \beta_0 \le 111.852$

(e) (126.012, 138.910)

Residuals Versus the Fitted Values



Normal Probability Plot of the Residuals



14–9. (a)
$$\hat{y} = -6.34 + 9.21$$
 temp

(b)	Predictor	Coef	SE Coef	Т	Р	
	Constant	-6.336	1.668	-3.80	0.003	
	temp 9	9.20836	0.03377	272.64	0.000	
	S = 1.943	R-Sq =	100.0%	R-Sq(adj) =	= 100.0%	
	Analysis of Var	riance				
	Source	DF	SS	MS	F	Р
	Regression	1	280583	280583	74334.36	0.000
	Residual Error	10	38	4		
	Total	11	280621			

(c)
$$t_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{MS_E}{S_{XX}}}} = \frac{9.20836 - 10}{\sqrt{\frac{4}{3309}}} = -23.41; t_{0.025,10} = 2.228; \text{ Reject } \beta_1 = 0$$

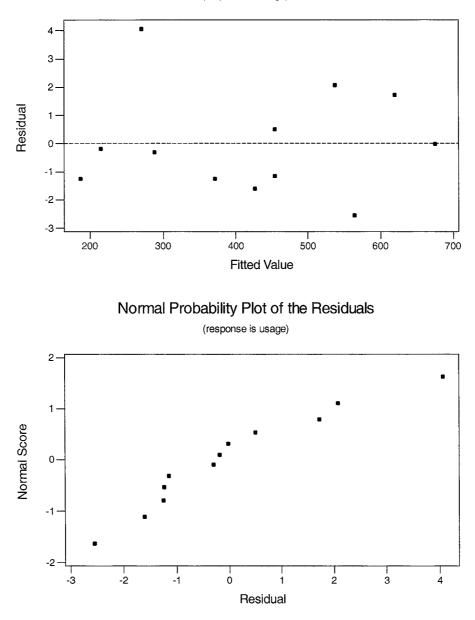
(d)
$$525.58 \le E(y|X=50) \le 529.91$$

(e) $521.22 \le y_{x=58} \le 534.28$

14-10.

Residuals Versus the Fitted Values

(response is usage)



14–11. (a) $\hat{y} = 77.7895 + 11.8634x$

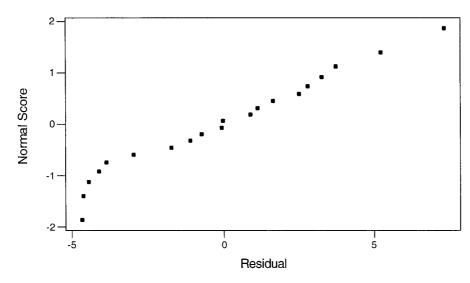
(b) Predictor	Coef	SE Coef	Т	Р	
Constant	77.863	4.199	18.54	0.000	
hydrocar	11.801	3.485	3.39	0.003	
S = 3.597	R-Sq = 3	38 9% B-9	Sq(adj) = 35	5 5%	
5 0.001	n by c	JO. J% IC .	9(20)	5.0%	
Analysis of V	ariance				
Source	DF	SS	MS	F	Р
Regression	1	148.31	148.31	11.47	0.003
Residual Erro	r 18	232.83	12.94		

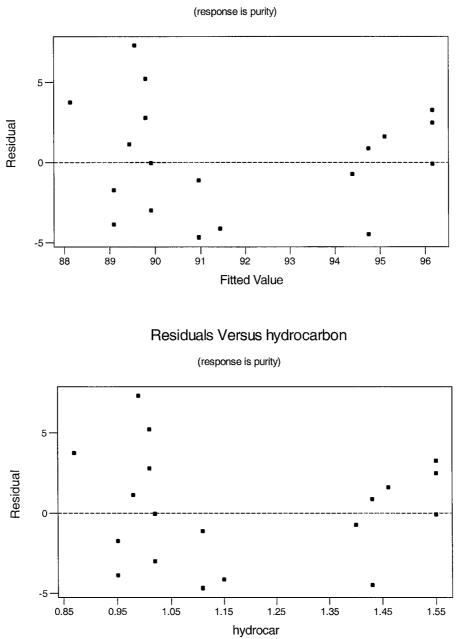
- (c) 38.9%
- (d) $4.5661 \le \beta \le 19.1607$

14–12. (a)

Normal Probability Plot of the Residuals

(response is purity)





Residuals Versus the Fitted Values

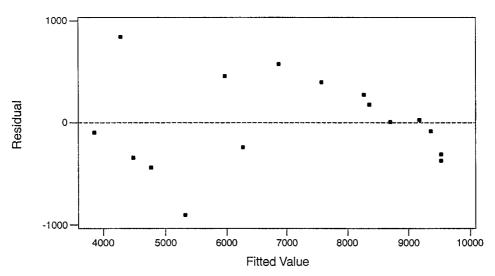
14–13. (a) AvgSize = -1922.7 + 564.54 Level

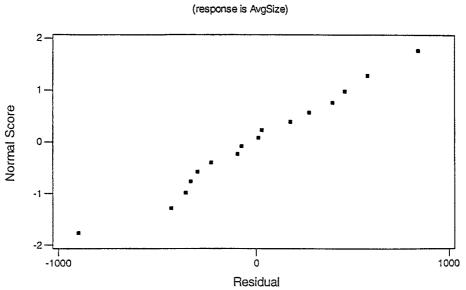
(b)	Predictor	Coef	SE Coef	Т	Р	
	Constant	-1922.7	530.9	-3.62	0.003	
	Level	564.54	32.74	17.24	0.000	
	S = 459.0	R-Sq =	95.5% H	R-Sq(adj) =	95.2%	
	Analysis of Va	ariance				
	Source	DF	SS	MS	F	Р
	Regression	1	62660784	62660784	297.38	0.000
	Residual Error	r 14	2949914	210708		
	Total	15	65610698			

- (c) (0.0015, 0.0019)
- (d) 95.5%

Residuals Versus the Fitted Values

(response is AvgSize)





Normal Probability Plot of the Residuals

14–14. x = OR Grade, y = Statistics Grade

- (a) $\hat{y} = -0.0280 + 0.9910x$
- (b) r = 0.9033

(c)
$$t_0 = \frac{r\sqrt{n-2}}{r\sqrt{1-r^2}} = \frac{0.9033\sqrt{18}}{\sqrt{1-0.8160}} = 8.93$$
, reject H_0 .

- (d) $Z_0 = (\operatorname{arctanh}(0.9033) \operatorname{arctanh}(0.5))\sqrt{17} = 3.88$, reject H_0 .
- (e) $0.7676 \le \rho \le 0.9615$

14–15. x =weight, y = BP

(a)
$$\hat{y} = 69.1044 + 0.4194x$$

(b)
$$r = 0.7735$$

(c)
$$t_0 = \frac{r\sqrt{n-3}}{\sqrt{1-r^2}} = \frac{0.7735\sqrt{23}}{\sqrt{1-0.5983}} = 5.85$$
, reject H_0 .

- (d) $Z_0 = (\operatorname{arctanh}(0.7735) \operatorname{arctanh}(0.6))\sqrt{23} = 1.61$, do not reject
- (e) $0.5513 \le \rho \le 0.8932$

14–16. Note that $SS_R = \hat{\beta}_1 S_{xy} = \hat{\beta}_1^2 S_{xx}$, and

$$V(\hat{\beta}_{1}) = E(\hat{\beta}_{1}^{2}) - [E(\hat{\beta}_{1})]^{2} = \frac{\sigma^{2}}{S_{xx}}$$
$$E(\hat{\beta}_{1}^{2}) = \beta_{1}^{2} + \frac{\sigma^{2}}{S_{xx}}$$

Therefore

$$E(SS_R) = E(\hat{\beta}_1^2)S_{xx} = \sigma^2 + \beta_1^2 S_{xx}$$
$$E(MS_R) = E\left(\frac{SS_R}{1}\right) = \sigma^2 + \beta_1^2 S_{xx}$$

14-17.
$$E(\hat{\beta}_1) = E\left(\frac{S_{xy}}{S_{xx}}\right) = \frac{1}{S_{xx}}E(S_{xy})$$

 $= \frac{1}{S_{xx}}E\sum_{i=1}^n (x_{i1} - \overline{x}_1)y_i$
 $= \frac{1}{S_{xx}}\sum_{i=1}^n (x_{i1} - \overline{x}_1)E(y_i)$
 $= \frac{1}{S_{xx}}\sum_{i=1}^n (x_{i1} - \overline{x}_1)(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2})$
 $= \beta_1 + \beta_2 \frac{\sum_{i=1}^n x_{i2}(x_{i1} - \overline{x}_1)}{S_{xx}}$

In general, $\hat{\beta}_1$ is a biased estimator of β_1 .

14–18. $V(\hat{\beta}_1) = \sigma^2 / S_{xx}$, which is minimized if we can make S_{xx} is as large as possible. Since $\sum_{i=1}^n (x_i - \overline{x})^2 = S_{xx}$, place the x's as far from \overline{x} as possible. If n is even, put n/2 trials at each end of the region of interest. If n is odd, put 1 trial at the center and (n-1)/2 trials at each end. These designs should be used only when you are positive that the relationship between y and x is linear.

14-19.
$$L = \sum_{i=1}^{n} w_i (y_i - \beta_0 - \beta_1 x_i)^2$$
$$\frac{\partial L}{\partial \beta_0} = -2 \sum_{i=1}^{n} w_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0.$$
$$\frac{\partial L}{\partial \beta_1} = -2 \sum_{i=1}^{n} w_i x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0.$$

Simplification of these two equations gives the normal equations for weighted least squares.

14–20. If $y = (\beta_0 + \beta_1 x + \epsilon)^{-1}$, then $1/y = \beta_0 + \beta_1 x + \epsilon$ is a straight-line regression model. The scatter diagram of $y^* = 1/y$ versus x is linear.

x	10	15	18	12	9	8	11	6
y^*	5.88	7.69	11.11	6.67	5.00	4.76	5.56	4.17

14-21. The no-intercept model would be the form $y = \beta_1 x + \epsilon$. This model is likely not a good one for this problem, because there is no data near the point x = 0, y = 0, and it is probably unwise to extrapolate the linear relationship back to the origin. The intercept is often just a parameter that improves the fit of the model to the data in the region where the data were collected.

14-22.
$$b = 14$$
 $\Sigma x_i = 65.262$ $\Sigma x_i^2 = 385.194$ $\overline{x} = 4.662$
 $\Sigma y_i = 208$ $\Sigma y_i^2 = 3490$ $\overline{y} = 14.857$ $\Sigma x_i y_i = 1148.08$
 $S_{xx} = 80.989$ $S_{xy} = 178.473$ $S_{yy} = 599.714$
 $\hat{\beta}_1 = 2.204$
 $\hat{\beta}_0 = 4.582$
 $\hat{y} = 4.582 + 2.204x$
 $r = \frac{S_{xy}}{(S_{xx}S_{yy})^{1/2}} = 0.9919, \quad R^2 = 0.9839$
 $H_0: \ \rho = 0$ $t_0 = 27.08 > t_{0.05,12} = 1.782.$ \therefore reject H_0
 $H_1: \ \rho \neq 0$

A strong correlation does not imply a cause and effect relationship.