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Chapter 17

17–1. (a) X-bar Chart: UCL = 34.32 + 0.577(5.65) = 37.58
LCL = 34.32− 0.577(5.65) = 31.06

R chart: UCL = 2.115(5.65) = 12
LCL = 0

There is one observation beyond the upper control limit. Removal of this point
results in the following control charts:
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The process now appears to be in control.

(b) σ̂ =
R

d2

=
5.74

2.326
= 2.468, PCR =

USL− LSL

6σ
=

20

6(2.468)
= 1.35

PCRK = min

[
45− 34.09

3(2.468)
,
34.09− 25

3(2.468)

]
= min[1.474, 1.2277] = 1.2277

(c) 0.205%
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17–2. P (X < µ + 3σ/
√

n|µX = µ + 1.5σ)

= P (Z <
µ + 3σ/

√
n− (µ + 1.5σ)

σ/
√

n

= P (Z < 3− 1.5
√

n)
= probability of failing to detect shift on 1st sample following the shift.

[P (Z < 3− 1.5
√

n)]3 = prob of failing to detect shift for 3 consecutive samples
following the shift.

For n = 4, [P (Z < 0)]3 = (0.5)3 = 0.125

For n = 4 with 2-sigma limits,

[P (Z < 2− 3)]3 = [P (Z < −1)]3 = (0.1587)3 = 0.003997

17–3. (a) ARL = 1/α

(b) ARL = 1/(1− β)

(c) If k changes from 3 to 2, the in-control ARL will get much shorter (from about
370 to 20). This is not desirable.

(d) For a 1-sigma shift, β ' 0.8, so the ARL is approximately ARL =
1/(1− 0.8) = 5.

17–4. X =
362.75

25
= 14.51, R =

8.60

25
= 0.34

(a) X Chart: UCL = 14.706, CL = 14.31, LCL = 14.314

R Chart: UCL = 0.719, CL = 0.34, LCL = 0

(b) σ̂ = R/d2 = 0.34/2.326 = 0.14617, µ̂ = 14.51

6σ natural tolerance limits = 14.51± 3(0.14617) = 14.51± 0.4385

P (X > 14.90) = 0.00379, P (X < 14.10) = 0.00252

Fraction defective = 0.00631

(c) PCR =
15− 14

6(0.146)
= 1.141 PCRK = min[1.119, 1.164] = 1.119
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17–5. D/2

17–6. (a) X =
214.25

20
= 10.7125 R =

133

20
= 6.65

X Chart: UCL = 10.7125 + 0.729(6.65) = 15.56

LCL = 5.86

R Chart: UCL = 2.282(6.65) = 15.175, LCL = 0; process in control

(b) σ̂ = Rd2 = 6.65/2.059 = 3.23

PCR =
15− 5

6(3.23)
= 0.516

17–7. (a) Normal probability plot

The normality assumption appears to be satisfied.
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(b)

The process appears to be in control.

17–8. (a) Normal probability plot

The normality assumption appears to be satisfied.
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(b)

The process appears to be in control.

17–9.

The process is out of control.
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17–10. p = 0.05 UCL = 0.05 + 3(0.0218) = 0.115

P (X < 0.115|µ = 0.08) = 1− P

(
Z <

0.115− 0.08

0.0654

)
= 1− P (Z < 0.535)

= 1− 0.7036 = 0.2964 Probability of detecting shift
on first sample following shift

P (detecting before 3rd sample) = 1− (0.7036)2 = 0.5049

17–11. For the detection probability to equal 0.5, the magnitude of the shift must
bring the fraction nonconforming exactly to the upper control limit. That is,
δ = k

√
p(1− p)/n, where δ is the magnitude of the shift. Solving for n gives

n = (k/δ)2p(1 − p). For example, if k = 3, p = 0.01 (the in-control fraction
nonconforming), and δ = 0.04, then n = (3/0.04)2(0.01)(0.99) = 56.

17–12. (a) PCR = 1.5

(b) About 7 defective parts per million.

(c) PCRk = 1 PCR unchanged.

(d) About 0.135 percent defective.

17–13. Center the process at µ = 100. The probability that a shift to µ = 105 will be
detected on the first sample following the shift is about 0.15. A p-chart with n = 7
would perform about as well.
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17–14.

The process appears to be in control.

17–15.

The process is out of control. Removing two out-of-control points and revising the
limits results in:
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The process is now in control.

17–16.

The process appears to be out of control.

17–17. UCL = 16.485; detection probability = 0.434

17–18. UCL = 19.487, CL = 10, LCL = 0.513
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17–19.

Since the sample sizes are equal, the c and u charts are equivalent.

17–20.
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17–21.

17–22.



12

17–23.

17–24. (a)

R(t) =

∫ ∞

t

f(x) dx =





1 if t < α
β−t
β−α

if α ≤ t ≤ β

0 if t > β

(b)

∫ ∞

0

R(t) dt =
α + β

2

(c) h(t) =
f(t)

R(t)
=

1

β − t
, α ≤ t ≤ β.

(d) H(t) =

∫ t

0

h(t) dt = −`n

(
β − t

β − α

)

e−H(t) =
β − t

β − α
= R(t).

17–25. RS(t) = e−λst, λs = λ1 + λ2 + λ3 = 7.6× 10−2

(a) RS(60) = e−7.6×10−2×60 = 0.0105

(b) MTTF = 1/λs = 1
7.6×10−2 = 13.16 hours
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17–26. λ1 = λ2 = λ3 = λ4 = λ5 = 0.002

(a) R(1000) =
5∑

k=2

(
5
k

)
(0.367)k(0.633)5−k = 0.6056

(b) R(1000) = 1− (0.633)5 = 0.8984

17–27. R(1000) =
3∑

k=0

e−1(1)k

k!
= 0.98104

17–28. λ = 1/160 = 6.25× 10−3

17–29. 0.84, 0.85

17–30. If θ̂ is the maximum likelihood estimator of θ and φ = g(θ) is a single-valued
function of θ, then φ̂ = g(θ̂) is the MLE of φ. To prove this, note that L(θ),
the likelihood function, has a maximum at θ = θ̂. Furthermore, θ = g−1(φ), so
the likelihood function is L[g−1(φ)], which has a maximum at θ̂ = g−1(φ) or at
φ = g(θ̂). In the problem stated, R is of the form g(θ) = e−t/θ, so the problem is
solved.

17–31. (a) 3842

(b) [913.63,∞)

17–32. (a) R̂(300) = e−300/θ̂ = e−300/3842 = 0.9249

R̂L(300) = e−300/θ̂L = e−300/913.63 = 0.72

(b) L̂0.9 = 3842 `n(1/0.9) = 404.795


