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Chapter 19

19–1. Let n denote the number of coin flips. Then the number of heads observed is
X ∼ Bin(n, 0.5). Therefore, we can expect to see about n/2 heads over the long
term.

19–2. If π̂n denotes the estimator for π after n darts have been thrown, then it is easy
to see that π̂n ∼ (4/n)Bin(n, π/4). Then E(π̂n) = π, and we can expect to see the
estimator converge towards π as n becomes large.

19–3. By the Law of the Unconscious Statistician,

E(În) =
b− a

n
E

( n∑
i=1

f(a + (b− a)Ui)

)

= (b− a)E[f(a + (b− a)Ui)]

= (b− a)

∫ 1

0

f(a + (b− a)u) · 1 du

= I

19–4. (a) The exact answer is Φ(2) − Φ(0) = 0.4772. The n = 1000 result will tend to
be closer than the n = 10.

(b) We can instead integrate over
∫ 4

0
, say, since

∫ 10

4
≈ 0. This strategy will prevent

the “waste” of observations on the trivial tail region.

(c) The exact answer is 0.

19–5. (a)

customer arrival time begin service service time depart time wait
1 3 3.0 6.0 9.0 0.0
2 4 9.0 5.5 14.5 5.0
3 6 14.5 4.0 18.5 8.5
4 7 18.5 1.0 19.5 11.5
5 13 19.5 2.5 22.0 6.5
6 14 22.0 2.0 24.0 8.0
7 20 24.0 2.0 26.0 4.0
8 25 26.0 2.5 28.5 1.0
9 28 28.5 4.0 32.5 0.5
10 30 32.5 2.5 35.0 2.5
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Time Event Customers in System
3 Cust 1 arrival 1
4 Cust 2 arrival 1 2
6 Cust 3 arrival 1 2 3
7 Cust 4 arrival 1 2 3 4
9 Cust 1 depart 2 3 4
13 Cust 5 arrival 2 3 4 5
14 Cust 6 arrival 2 3 4 5 6

14.5 Cust 2 depart 3 4 5 6
18.5 Cust 3 depart 4 5 6
19.5 Cust 4 depart 5 6
20 Cust 7 arrival 5 6 7
22 Cust 5 depart 6 7
24 Cust 6 depart 7
25 Cust 8 arrival 7 8
26 Cust 7 depart 8
28 Cust 9 arrival 8 9

28.5 Cust 8 depart 9
30 Cust 10 arrival 9 10

32.5 Cust 9 depart 10
35 Cust 10 depart

Thus, the last customer leaves at time 35.

(b) The average waiting time for the 10 customers is 4.75.

(c) The maximum number of customers in the system is 5 (between times 14 and
14.5).

(d) The average number of customers over the first 30 minutes is calculated by
adding up all of the customer minutes from the second table — one customer
from times 3 to 4, two customers from times 4 to 6, etc.

1

30

∫ 30

0

L(t) dt =
79.5

30
= 2.65
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19–6. The following table gives a history for this (S, s) inventory system.

day initial stock customer order end stock reorder? lost orders
1 20 10 10 no 0
2 10 6 4 yes 0
3 20 11 9 no 0
4 9 3 6 yes 0
5 20 20 0 yes 0
6 20 6 14 no 0
7 14 8 6 no 0

By using s = 6, we had no lost orders.

19–7. (a) Here is the complete table for the generator.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Xi 0 1 16 15 12 13 2 11 8 9 14 7 4 5 10 3 0

Thus, U1 = 1/16, U2 = 6/16.

(b) Yes (see the table).

(c) Since the generator cycles, we have X0 = X16 = · · · = X144 = 0. Then
X145 = 1, X146 = 6, . . . , X150 = 2.

19–8. (a) Using the algorithm given in Example 19–8 of the text, we find that X1 =
1422014746 and X2 = 456328559. Since Ui = Xi/(2

31 − 1), we have U1 =
0.6622, U2 = 0.2125.

19–9. (a) X = −(1/2)`n(1− U).

(b) X = −(1/2)`n(0.025) = 0.693.

19–10. (a) Z = Φ−1(0.25) = −0.6745.

(b) X = µ + σZ = 1 + 3Z = −1.0235.

19–11. f(x) = |x/4|, −2 < x < 2.

(a) If −2 < x < 0, then F (x) =

∫ x

−2

− t

4
dt =

1

2
− x2

8
.

If 0 < x < 2, then F (x) =
1

2
+

∫ x

0

t

4
dt =

1

2
+

x2

8
.
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Thus, for 0 < U < 1/2, we set F (X) =
1

2
− X2

8
= U .

Solving, we get X = −
√

4− 8U .

For 1/2 < U < 1, we set F (X) =
1

2
+

X2

8
= U .

Solving this time, we get X =
√

8U − 4.

Recap:

X =

{ −√4− 8U, 0 < U < 1/2√
8U − 4 1/2 < U < 1

(b) X =
√

8(0.6)− 4 = 0.894.

19–12. (a)

x p(x) F (x) U
−2.5 0.35 0.35 [0,0.35)
1.0 0.25 0.60 [0.35,0.60)
10.5 0.40 1.0 [0.60,1.0)

(b) U = 0.86 yields X = 10.5.

19–13. (a) F (X) = 1− e−(X/α)β

= U .

Solving for X, we obtain X = α[−`n(1− U)]1/β.

(b) X = (1.5)[−`n(0.34)]1/2 = 1.558.

19–14. We have

Z1 =
√
−2`n(0.45) cos(2π(0.12)) = 0.921

and

Z2 =
√
−2`n(0.45) sin(2π(0.12)) = 0.865.
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19–15.
12∑
i=1

Ui − 6 = 1.07.

19–16. Since the Xi’s are IID exponential(λ) random variables, we know that their m.g.f.
is

MXi
(t) =

λ

λ− t
, t < λ, i = 1, 2 . . . , n.

Then the m.g.f. of Y =
∑n

i=1 Xi is

MY (t) =
n∏

i=1

MXi
(t) =

(
λ

λ− t

)n

.

We will be done as soon as we can show that this m.g.f. matches that corresponding
to the p.d.f. from Equation (19–4), namely,

MY (t) =

∫ ∞

0

etyλne−λyyn−1/(n− 1)! dy

=
λn

(n− 1)!

∫ ∞

0

e−(λ−t)y yn−1 dy

=
λn

(n− 1)!

∫ ∞

0

e−u

(
u

λ− t

)n−1
du

λ− t

=
λn

(λ− t)n(n− 1)!

∫ ∞

0

e−u un−1 du

=
λn

(λ− t)n(n− 1)!
Γ(n)

=

(
λ

λ− t

)n

.

Since both versions of MY (t) match, that means that the two versions of Y must
come from the same distribution — and we are done.

19–17. X = −1

λ
`n

( n∏
i=1

Ui

)
= −1

3
`n((0.73)(0.11)) = 0.841.

19–18. (a) To get a Bernoulli(p) random variable Xi, simply set

Xi =

{
1, if Ui ≤ p
0, if Ui > p
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(Note that there are other allocations of the uniforms that will do the trick
just as well.)

(b) Suppose X1, X2, . . . , Xn are IID Bernoulli’s, generated according to (a). To
get a Binomial(n, p), let Y =

∑n
i=1 Xi.

19–19. Suppose success (S) on trial i corresponds to Ui ≤ 0.25, and failure (F ) corresponds
to Ui > 0.25. Then, from the sequence of uniforms in Problem 19–15, we have
FFFFS, i.e., we require X = 5 trials before observing the first success.

19–20. The grand sample mean is

Z̄b =
1

b

b∑
i=1

Zi = 4,

while

V̂B =
1

b− 1

b∑
i=1

(Zi − Z̄b)
2 = 1.

So the 90% batch means CI for µ is

µ ∈ Z̄b ± tα/2,b−1

√
V̂B/b

= 4± t0.05,2

√
1/3

= 4± 2.92
√

1/3

= 4± 1.686

19–21. The 90% confidence interval is of the form

[−2.5, 3.5] = X̄ ± tα/2,b−1 y

= 0.5± t0.05,4 y

= 0.5± 2.132 y

Since the half-length of the CI is 3, we must have that y = 3/2.132 = 1.407.

The 95% CI will therefore be of the form

X̄ ± t0.025,4 y = 0.5± (2.776)(1.407) = 0.5± 3.91 = [−3.41, 4.41].
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19–23. The 95% batch means CI for µ is

µ ∈ Z̄b ± tα/2,b−1

√
V̂B/b

= 100± t0.025,4

√
250/5

= 100± 2.776
√

50

= 100± 19.63

19–25. (a) (i) Both exponential(1).

(ii) Cov(Ui, 1− Ui) = −V (Ui) = −1/12.

(iii) Yes.

(b) After a little algebra,

V ((X̄n + Ȳn)/2) =
1

4

[
V (X̄n) + V (Ȳn) + 2Cov(X̄n, Ȳn)

]

=
1

2

[
V (X̄n) + Cov(X̄n, Ȳn)

]

=
1

2n
[V (Xi) + Cov(Xi, Yi)]

≤ 1

2n
V (Xi)

= V (X̄2n).

So the variance decreases compared to V (X̄2n).

(c) You get zero, which is the correct answer.

19–26. (a) E(C) = E(X̄)− E[k(Y − E(Y ))] = µ− [k(E(Y )− E(Y ))] = µ.

(b) V (C) = V (X̄) + k2V (Y ) − 2k Cov(X̄, Y ). Comment: It would be nice, in
terms of minimizing variance, if k Cov(X̄, Y ) > 0.

(c)

d

dk
V (C) = 2kV (Y )− 2 Cov(X̄, Y ) = 0.

This implies that the critical (minimizing) point is

k =
Cov(X̄, Y )

V (Y )
.
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Thus, the optimal variance is

V (C) = V (X̄) +

(
Cov(X̄, Y )

V (Y )

)2

V (Y )− 2

(
Cov(X̄, Y )

V (Y )

)
Cov(X̄, Y )

= V (X̄)− Cov2(X̄, Y )

V (Y )
.

19–27. They are exponential(1).

19–28. They should look normal.

19–29. You should have a bivariate normal distribution (with correlation 0), centered at
zero with symmetric tails in all directions.


