Chapter 19

- 19–1. Let n denote the number of coin flips. Then the number of heads observed is $X \sim \text{Bin}(n, 0.5)$. Therefore, we can expect to see about n/2 heads over the long term.
- 19–2. If $\hat{\pi}_n$ denotes the estimator for π after n darts have been thrown, then it is easy to see that $\hat{\pi}_n \sim (4/n) \operatorname{Bin}(n, \pi/4)$. Then $E(\hat{\pi}_n) = \pi$, and we can expect to see the estimator converge towards π as n becomes large.
- 19–3. By the Law of the Unconscious Statistician,

$$E(\hat{I}_n) = \frac{b-a}{n} E\left(\sum_{i=1}^n f(a+(b-a)U_i)\right) \\ = (b-a)E[f(a+(b-a)U_i)] \\ = (b-a)\int_0^1 f(a+(b-a)u) \cdot 1 \, du \\ = I$$

- 19–4. (a) The exact answer is $\Phi(2) \Phi(0) = 0.4772$. The n = 1000 result will tend to be closer than the n = 10.
 - (b) We can instead integrate over \int_0^4 , say, since $\int_4^{10} \approx 0$. This strategy will prevent the "waste" of observations on the trivial tail region.
 - (c) The exact answer is 0.

1	9-	-5.	((a)

customer	arrival time	begin service	service time	depart time	wait
1	3	3.0	6.0	9.0	0.0
2	4	9.0	5.5	14.5	5.0
3	6	14.5	4.0	18.5	8.5
4	7	18.5	1.0	19.5	11.5
5	13	19.5	2.5	22.0	6.5
6	14	22.0	2.0	24.0	8.0
7	20	24.0	2.0	26.0	4.0
8	25	26.0	2.5	28.5	1.0
9	28	28.5	4.0	32.5	0.5
10	30	32.5	2.5	35.0	2.5

Time	Event	Customers in System
3	Cust 1 arrival	1
4	Cust 2 arrival	1 2
6	Cust 3 arrival	1 2 3
7	Cust 4 arrival	$1\ 2\ 3\ 4$
9	Cust 1 depart	$2 \ 3 \ 4$
13	Cust 5 arrival	$2\ 3\ 4\ 5$
14	Cust 6 arrival	$2\ 3\ 4\ 5\ 6$
14.5	Cust 2 depart	$3\ 4\ 5\ 6$
18.5	Cust 3 depart	$4\ 5\ 6$
19.5	Cust 4 depart	56
20	Cust 7 arrival	$5\ 6\ 7$
22	Cust 5 depart	67
24	Cust 6 depart	7
25	Cust 8 arrival	78
26	Cust 7 depart	8
28	Cust 9 arrival	8 9
28.5	Cust 8 depart	9
30	Cust 10 arrival	9 10
32.5	Cust 9 depart	10
35	Cust 10 depart	

Thus, the last customer leaves at time 35.

- (b) The average waiting time for the 10 customers is 4.75.
- (c) The maximum number of customers in the system is 5 (between times 14 and 14.5).
- (d) The average number of customers over the first 30 minutes is calculated by adding up all of the customer minutes from the second table one customer from times 3 to 4, two customers from times 4 to 6, etc.

$$\frac{1}{30} \int_0^{30} L(t) \, dt = \frac{79.5}{30} = 2.65$$

day	initial stock	customer order	end stock	reorder?	lost orders
1	20	10	10	no	0
2	10	6	4	yes	0
3	20	11	9	no	0
4	9	3	6	yes	0
5	20	20	0	yes	0
6	20	6	14	no	0
7	14	8	6	no	0

19–6. The following table gives a history for this (S, s) inventory system.

By using s = 6, we had no lost orders.

19–7. (a) Here is the complete table for the generator.

i	0		1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16
X_i	0		1	16	15	12	13	2	11	8	9	14	7	4	5	10	3	0
Thus, $U_1 = 1/16$, $U_2 = 6/16$.																		

(b) Yes (see the table).

- (c) Since the generator cycles, we have $X_0 = X_{16} = \cdots = X_{144} = 0$. Then $X_{145} = 1, X_{146} = 6, \dots, X_{150} = 2.$
- 19–8. (a) Using the algorithm given in Example 19–8 of the text, we find that $X_1 = 1422014746$ and $X_2 = 456328559$. Since $U_i = X_i/(2^{31} 1)$, we have $U_1 = 1422014746$ and $X_2 = 456328559$. $0.6622, U_2 = 0.2125.$
- 19–9. (a) $X = -(1/2)\ell n(1-U).$ (b) $X = -(1/2)\ell n(0.025) = 0.693.$
- 19–10. (a) $Z = \Phi^{-1}(0.25) = -0.6745.$ (b) $X = \mu + \sigma Z = 1 + 3Z = -1.0235.$

19–11. f(x) = |x/4|, -2 < x < 2.

(a) If
$$-2 < x < 0$$
, then $F(x) = \int_{-2}^{x} -\frac{t}{4} dt = \frac{1}{2} - \frac{x^{2}}{8}$.
If $0 < x < 2$, then $F(x) = \frac{1}{2} + \int_{0}^{x} \frac{t}{4} dt = \frac{1}{2} + \frac{x^{2}}{8}$.

Thus, for 0 < U < 1/2, we set $F(X) = \frac{1}{2} - \frac{X^2}{8} = U$. Solving, we get $X = -\sqrt{4 - 8U}$.

For
$$1/2 < U < 1$$
, we set $F(X) = \frac{1}{2} + \frac{X^2}{8} = U$.

Solving this time, we get $X = \sqrt{8U - 4}$.

Recap:

$$X \; = \; \left\{ \begin{array}{rr} -\sqrt{4-8U}, & 0 < U < 1/2 \\ \sqrt{8U-4} & 1/2 < U < 1 \end{array} \right.$$

(b)
$$X = \sqrt{8(0.6) - 4} = 0.894.$$

19–12. (a)

(b) U = 0.86 yields X = 10.5.

19–13. (a)
$$F(X) = 1 - e^{-(X/\alpha)^{\beta}} = U.$$

Solving for X, we obtain $X = \alpha [-\ell n(1-U)]^{1/\beta}$.

(b)
$$X = (1.5)[-\ell n(0.34)]^{1/2} = 1.558.$$

19–14. We have

$$Z_1 = \sqrt{-2\ell n(0.45)} \cos(2\pi (0.12)) = 0.921$$

and

$$Z_2 = \sqrt{-2\ell n(0.45)} \sin(2\pi (0.12)) = 0.865.$$

19–15.
$$\sum_{i=1}^{12} U_i - 6 = 1.07.$$

19–16. Since the X_i 's are IID exponential(λ) random variables, we know that their m.g.f. is

$$M_{X_i}(t) = \frac{\lambda}{\lambda - t}, \quad t < \lambda, \quad i = 1, 2..., n.$$

Then the m.g.f. of $Y = \sum_{i=1}^{n} X_i$ is

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(t) = \left(\frac{\lambda}{\lambda - t}\right)^n.$$

We will be done as soon as we can show that this m.g.f. matches that corresponding to the p.d.f. from Equation (19–4), namely,

$$M_Y(t) = \int_0^\infty e^{ty} \lambda^n e^{-\lambda y} y^{n-1} / (n-1)! \, dy$$

$$= \frac{\lambda^n}{(n-1)!} \int_0^\infty e^{-(\lambda-t)y} y^{n-1} \, dy$$

$$= \frac{\lambda^n}{(n-1)!} \int_0^\infty e^{-u} \left(\frac{u}{\lambda-t}\right)^{n-1} \frac{du}{\lambda-t}$$

$$= \frac{\lambda^n}{(\lambda-t)^n (n-1)!} \int_0^\infty e^{-u} u^{n-1} \, du$$

$$= \frac{\lambda^n}{(\lambda-t)^n (n-1)!} \Gamma(n)$$

$$= \left(\frac{\lambda}{\lambda-t}\right)^n.$$

Since both versions of $M_Y(t)$ match, that means that the two versions of Y must come from the same distribution — and we are done.

19–17.
$$X = -\frac{1}{\lambda} \ln \left(\prod_{i=1}^{n} U_i \right) = -\frac{1}{3} \ln ((0.73)(0.11)) = 0.841.$$

19–18. (a) To get a Bernoulli(p) random variable X_i , simply set

$$X_i = \begin{cases} 1, & \text{if } U_i \le p \\ 0, & \text{if } U_i > p \end{cases}$$

(Note that there are other allocations of the uniforms that will do the trick just as well.)

- (b) Suppose $X_1, X_2, ..., X_n$ are IID Bernoulli's, generated according to (a). To get a Binomial(n, p), let $Y = \sum_{i=1}^n X_i$.
- 19–19. Suppose success (S) on trial *i* corresponds to $U_i \leq 0.25$, and failure (F) corresponds to $U_i > 0.25$. Then, from the sequence of uniforms in Problem 19–15, we have FFFFS, i.e., we require X = 5 trials before observing the first success.
- 19–20. The grand sample mean is

$$\bar{Z}_b = \frac{1}{b} \sum_{i=1}^b Z_i = 4,$$

while

$$\hat{V}_B = \frac{1}{b-1} \sum_{i=1}^{b} (Z_i - \bar{Z}_b)^2 = 1.$$

So the 90% batch means CI for μ is

$$\mu \in \bar{Z}_b \pm t_{\alpha/2,b-1} \sqrt{\hat{V}_B/b}$$

= $4 \pm t_{0.05,2} \sqrt{1/3}$
= $4 \pm 2.92 \sqrt{1/3}$
= 4 ± 1.686

19–21. The 90% confidence interval is of the form

$$[-2.5, 3.5] = \bar{X} \pm t_{\alpha/2,b-1} y$$
$$= 0.5 \pm t_{0.05,4} y$$
$$= 0.5 \pm 2.132 y$$

Since the half-length of the CI is 3, we must have that y = 3/2.132 = 1.407. The 95% CI will therefore be of the form

$$\bar{X} \pm t_{0.025,4} y = 0.5 \pm (2.776)(1.407) = 0.5 \pm 3.91 = [-3.41, 4.41].$$

19–23. The 95% batch means CI for μ is

$$\mu \in \bar{Z}_b \pm t_{\alpha/2,b-1} \sqrt{\hat{V}_B/b}$$

= 100 \pm t_{0.025,4} \sqrt{250/5}
= 100 \pm 2.776 \sqrt{50}
= 100 \pm 19.63

- 19–25. (a) (i) Both exponential(1). (ii) $Cov(U_i, 1 - U_i) = -V(U_i) = -1/12.$ (iii) Yes.
 - (b) After a little algebra,

$$V((\bar{X}_{n} + \bar{Y}_{n})/2) = \frac{1}{4} \left[V(\bar{X}_{n}) + V(\bar{Y}_{n}) + 2Cov(\bar{X}_{n}, \bar{Y}_{n}) \right]$$

$$= \frac{1}{2} \left[V(\bar{X}_{n}) + Cov(\bar{X}_{n}, \bar{Y}_{n}) \right]$$

$$= \frac{1}{2n} \left[V(X_{i}) + Cov(X_{i}, Y_{i}) \right]$$

$$\leq \frac{1}{2n} V(X_{i})$$

$$= V(\bar{X}_{2n}).$$

So the variance decreases compared to $V(\bar{X}_{2n})$.

(c) You get zero, which is the correct answer.

19–26. (a) $E(C) = E(\bar{X}) - E[k(Y - E(Y))] = \mu - [k(E(Y) - E(Y))] = \mu$. (b) $V(C) = V(\bar{X}) + k^2 V(Y) - 2k Cov(\bar{X}, Y)$. Comment: It would be nice, in

- (b) $V(C) = V(X) + k^2 V(Y) 2k Cov(X, Y)$. Comment: It would be nice, in terms of minimizing variance, if $k Cov(\bar{X}, Y) > 0$.
- (c)

$$\frac{d}{dk}V(C) = 2kV(Y) - 2Cov(\bar{X},Y) = 0.$$

This implies that the critical (minimizing) point is

$$k = \frac{Cov(\bar{X}, Y)}{V(Y)}$$

Thus, the optimal variance is

$$\begin{split} V(C) &= V(\bar{X}) + \left(\frac{Cov(\bar{X},Y)}{V(Y)}\right)^2 V(Y) - 2\left(\frac{Cov(\bar{X},Y)}{V(Y)}\right) Cov(\bar{X},Y) \\ &= V(\bar{X}) - \frac{Cov^2(\bar{X},Y)}{V(Y)}. \end{split}$$

- 19–27. They are exponential (1).
- 19–28. They should look normal.
- 19–29. You should have a bivariate normal distribution (with correlation 0), centered at zero with symmetric tails in all directions.