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Chapter 5

5–1. The probability mass function is

x p(x)
0 (1− p)4

1 4p(1− p)3

2 6p2(1− p)2

3 4p3(1− p)
4 p4

otherwise 0

5–2.

P (X ≥ 5) =
6∑

x=5

(
6
x

)
(0.95)x(0.05)6−x

= 6(0.95)5(0.05) + (0.95)6

= 0.9672

5–3. Assume independence and let W represent the number of orders received.

P (W ≥ 4) =
12∑

w=4

(
12
w

)
(0.5)w(0.5)12−w

= (0.5)12

12∑
w=4

(
12
w

)

= 1− (0.5)12

3∑
w=0

(
12
w

)
= 0.9270

5–4. Assume customer decisions are independent.

P (X ≥ 10) = 1− P (X ≤ 9) = 1−
9∑

x=0

(
20
x

)(
1

3

)x (
2

3

)20−x

= 0.0918

5–5.

P (X > 2) = 1− P (X ≤ 2) = 1−
2∑

x=0

(
50
x

)
(0.02)x(0.98)50−x = 0.0784.
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5–6.

MX(t) = E[etX ] =
n∑

x=0

etx

(
n
x

)
px(1− p)n−x

= (pet + q)n, where q = 1− p

E[X] = M
′
X(0) = [n(pet + q)n−1pet]t=0 = np

E[X2] = M
′′
X(0) = np[et(n− 1)(pet + q)n−2(pet) + (pet + q)n−1et]t=0

= (np)2 − np2 + np

V (X) = E[X2]− (E[X])2 = n2p2 − np2 + np− n2p2 = np(1− p) = npq

5–7.

P (p̂ ≤ 0.03) = P

(
X

100
≤ 0.03

)
= P (X ≤ 3)

=
3∑

x=0

(
100
3

)
(0.01)x(0.99)100−x = 0.9816

5–8.

P (p̂ > p +
√

pq/n) = P

(
p̂ > 0.07 +

√
(0.07)(0.93)/200

)

= P (X > 200(0.088))

= P (X > 17.6)

= 1− P (X ≤ 17.6)

= 1−
17∑

x=0

(
200
x

)
(0.07)x(0.93)200−x

= 0.1649
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By two standard deviations,

P (p̂ > p + 2
√

pq/n) = P (p̂ > 0.106)

= P (X > 21.2)

= 1− P (X ≤ 21)

= 1−
21∑

x=0

(
200
x

)
(0.07)x(0.93)200−x

= 0.0242

By three standard deviations,

P (p̂ > p + 3
√

pq/n) = P (X > 24.8)

= 1− P (X ≤ 24)

= 1−
24∑

x=0

(
200
x

)
(0.07)x(0.93)200−x

= 0.0036

5–9. P (X = 5) = (0.95)4(0.05) = 0.0407

5–10. A: Successful on first three calls, B: Unsuccessful on fourth call

P (B|A) = P (B) = 0.90 if A and B are independent

5–11.

P (X = 5) = p4(1− p) = f(p)

df(p)

dp
= 5p4 − 4p3 = 0 ⇒ p =

4
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5–12. (a) X = trials required up to and including the first sale

C(X) = 1000X + 3000(X − 1)

= 4000X − 3000

E[C(X)] = 4000E[X]− 3000 = 4000

(
1

0.1

)
− 3000 = 37000

(b) Since $37000 > $15000, the trips should not be undertaken.

(c)

P (C(X) > 100000) = P (4000X − 3000 > 100000)

= P

(
X >

103000

4000

)
.
= P (X > 25.75)

= 1− P (X ≤ 25)

= 1−
25∑

x=1

(0.90)x−1(0.10)

5–13.

MX(t) =
pet

1− qet
, where q = 1− p

E[X] = M
′
X(0) =

[
(1− qet)(pet) + (pet)(qet)

(1− qet)2

]

t=0

=
(1− q)p + pq

(1− q)2
=

p

p2
=

1

p

E[X2] = M
′′
X(0) =

[
(1− qet)2(pet) + 2pet(1− qet)(qet)

(1− qet)4

]

t=0

=
(1 + q)p

(1− q)3
=

1 + q

p2

V (X) =
q

p2
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5–14.

P (X ≤ 2) = P (X = 1) + P (X = 2) = 0.8 + (0.2)(0.8) = 0.96

P (X ≤ 3) =
3∑

x=1

(0.2)x−1(0.8) = 0.992

5–15.

P (X = 36) = (0.95)35(0.05) = 0.0083

5–16. (a)

P (X = 8) =

(
7
2

)
(0.1)2(0.9)5 = 0.0124

(b)

P (X > 8) =
∞∑

x=9

(
x− 1

2

)
(0.1)2(0.9)x−3

5–17.

P (X = 4) =

(
3
1

)
(0.8)2(0.2)2 = 0.0768

P (X < 4) = P (X = 2) + P (X = 3) = (0.8)2 +

(
2
1

)
(0.8)2(0.2) = 0.896

5–18. Suppose X1, X2, . . . , Xr are independent geometric random variables, each with
parameter p. X1 is the number of trials to first success, X2 the number of trials
from first to the second, etc. Let

X = X1 + X2 + . . . + Xr

The moment generating function for the geometric is pet

1−qet , so

MX(f) =
r∏

i=1

MXi
(t) =

[
pet

1− qet

]r

E[X] = M
′
X(t)|t=0 =

r

p
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We could also have obtained this result as follows.

E[X] =
r∑

i=1

E[Xi] = r

(
1

p

)
=

r

p

Continuing,

V (X) =
[
M

′′
X(t)|t=0

]
−

(
r

p

)2

=
rq

p2

We could also have obtained this result as follows.

V (X) =
r∑

i=1

V (Xi) =
rq

p2

5–19.

E[X] =
r

p
=

5

0.8
= 6.25, V (X) =

rq

p2
=

(5)(0.2)

(0.8)2
= 1.5625

5–20. X = Mission number on which 4th hit occurs.

p(x) =





(
x− 1

3

)
(0.8)4(0.2)x−4 x = 4, 5, 6, . . .

0 otherwise

P (X ≤ 7) =
7∑

x=4

(
x− 1

3

)
(0.8)4(0.2)x−4

5–21. (X, Y, Z) ∼ multinomial (n = 3, p1 = 0.4, p2 = 0.3, p3 = 0.3). The probability that
one company receives all orders is

P (3, 0, 0) + P (0, 3, 0) + P (0, 0, 3)

=
3!

3!0!0!
(0.4)3(0.3)0(0.3)0 +

3!

0!3!0!
(0.4)0(0.3)3(0.3)0 +

3!

0!0!3!
(0.4)0(0.3)0(0.3)3

= 0.43 + 0.33 + 0.33 .
= 0.118
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5–22. (a) (X1, X2, X3, X4) ∼ multinomial (n = 5, p1 = p2 = p3 = p4 = 1
4
). Therefore,

P (5, 0, 0, 0) + P (0, 5, 0, 0) + P (0, 0, 5, 0) + P (0, 0, 0, 5) is the probability that
one company gets all five. That is,

4

[
5!

5!0!0!0!

](
1

4

)5 (
1

4

)0 (
1

4

)0 (
1

4

)0

=
1

256

(b)

1−
[
4(60)

(
1

4

)5
]

.
= 0.7656

5–23.

P (Y1 = 4, Y2 = 1, Y3 = 3, Y4 = 2) =
10!

4!1!3!2!
(0.2)4(0.2)1(0.2)3(0.4)2 .

= 0.005

5–24.

P (Y1 = 0, Y2 = 0, Y3 = 0, Y4 = 10) =
10!

0!0!0!10!
(0.2)0(0.2)0(0.2)0(0.4)10

P (Y1 = 5, Y2 = 0, Y3 = 0, Y4 = 5) =
10!

5!0!0!5!
(0.2)5(0.2)0(0.2)0(0.4)5

5–25. (a)

P (X ≤ 2) =
2∑

x=0

(
4
x

)(
21

5− x

)

(
24
5

) .
= 0.98

(b)

P (X ≤ 2) =
2∑

x=0

(
5
x

)(
4

25

)x (
21

25

)5−x
.
= 0.97

5–26. The approximation improves as n
N

decreases. n = 5, N = 100 is a better condition
than n = 5, N = 25.
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5–27. we want the smallest n such that

P (X ≥ 1) = 1−

(
7
0

)(
18
n

)

(
25
n

) ≥ 0.95 ⇔

(
18
n

)

(
25
n

) ≤ 0.05.

By trial and error, we find that n = 8 does the job.

We could instead use the binomial approximation; now we want n such that

0.05 ≥
(

n
0

)(
7

25

)0 (
18

25

)n

=

(
18

25

)n

.

We find that n
.
= 9.

5–28.

MX(t) = E[etX ] =
∞∑

x=0

etx e−ccx

x!
= e−c

∞∑
x=0

(cet)x

x!
= e−cecet

= ec(et−1)

5–29.

P (X < 10) = P (X ≤ 9) =
9∑

x=0

e−25(25)x

x!
.
= 0.0002

5–30.

P (X > 20) = P (X ≥ 21) =
∞∑

x=21

e−10(10)x

x!

= 1− P (X ≤ 20) = 1−
20∑

x=0

e−10(10)x

x!

= 0.002

5–31.

P (X > 5) = P (X ≥ 6)

= 1− P (X ≤ 5) = 1−
5∑

x=0

e−44x

x!
.
= 0.2149
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5–32. Mean count rate = (1− p)c. Therefore,

P (Yt = y) =
e−[(1−p)c]t[(1− p)ct]y

y!
y = 0, 1, 2, . . .

5–33. Using a Poisson model,

P (X ≤ 3) =
3∑

x=0

e−λλx

x!
λ = 15000(0.002) = 30

P (X ≥ 5) =
∞∑

x=5

e−30(30)x

x!
= 1−

4∑
x=0

e−30(30)x

x!

5–34. Y = Number of requests.

(a)
P (Y > 3) = 1− P (Y ≤ 3) = 1−

3∑
y=0

e−22y

y!

(b)
E[Y ] = c = 2

(c)

P (Y ≤ y) ≥ 0.9 so y = 4 and P (Y ≤ 4) = 0.9473

(d) X = Number serviced.

y x p(x) xp(x)
0 0 e−2 0
1 1 2e−2 2e−2

2 2 2e−2 4e−2

3 or more 3 1− 5e−2 3− 15e−2

E[X] = 1.78

(e) Let M = number of crews going to central stores. Then M = Y −X

E[M ] = E[Y ]− E[X] = 2− 1.78 = 0.22

5–35. Using a Poisson model,

P (X < 3) = P (X ≤ 2) =
2∑

x=0

e−2.5(2.5)x

x!
.
= 0.544
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5–36. Let Y = No. Boarding
Let X = No. Recorded

Y 0 1 2 3 4 5 6 7 8 9 ≥ 10
X 0 1 2 3 4 5 6 7 8 9 10

pX(x) =
e−ccx

x!
, x = 0, 1, 2, . . . , 9

=
∞∑

i=10

e−cci

i!
= 1−

9∑
i=0

e−cci

i!
, x = 10

5–37. (a) Let X denote the number of errors on 50 pages. Then

X ∼ Binomial(5,
50

200
) = Binomial(5, 1/4).

This implies that

P (X ≥ 1) = 1− P (X = 0) = 1−
(

5
0

)
(1/4)0(3/4)5 = 0.763.

(b) Now X ∼ Binomial(5, n
200

), where n is the number of pages sampled.

We want the smallest n such that
5∑

i=3

(
5
i

)(
n

200

)i(
200− n

200

)5−i

≥ 0.90

By trial and error, we find that n = 151 does the trick.

We could also have done this problem using a Poisson approximation. For (a),
we would use λ = 0.025 errors / page with 50 pages. Then c = 50(0.025) =

1.25, and we would eventually obtain P (X ≥ 1) = 1 − e−1.25(1.25)0

0!

.
= 0.7135,

which is a bit off of our exact answer. For (b), we would take c = n(0.025),
eventually yielding n = 160 after trial and error.

5–38.

P (X = 0) =
e−cc0

0!
with c = 10000(0.0001) = 1,

P (X = 0) = e−1 = 0.3679

and

P (X ≥ 2) = 1− P (X ≤ 1) = 0.265
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5–39. X ∼ Poisson with α = 10(0.1) = 0.10

P (X ≥ 2) = 1− P (X ≤ 1) = 0.0047

5–40. Kendall and Stuart state: “the liability of individuals to accident varies.” That
is, the individuals who compose a population have different degrees of accident
proneness.

5–41. Use Table XV and scaling by 10−5.

(a) From Col. 3 of Table XV,

Realization 1 Realization 2
u1 = 0.01536 < 0.5 ⇒ x1 = 1 u1 = 0.63661 > 0.5 ⇒ x1 = 0
u2 = 0.25595 < 0.5 ⇒ x2 = 1 u2 = 0.53342 > 0.5 ⇒ x2 = 0
u3 = 0.22527 < 0.5 ⇒ x3 = 1 u3 = 0.88231 > 0.5 ⇒ x3 = 0
u4 = 0.06243 < 0.5 ⇒ x4 = 1 u4 = 0.48235 < 0.5 ⇒ x4 = 1
u5 = 0.81837 > 0.5 ⇒ x5 = 0 u5 = 0.52636 > 0.5 ⇒ x5 = 0
u6 = 0.11008 < 0.5 ⇒ x6 = 1 u6 = 0.87529 > 0.5 ⇒ x6 = 0
u7 = 0.56420 > 0.5 ⇒ x7 = 0 u7 = 0.71048 > 0.5 ⇒ x7 = 0
u8 = 0.05463 < 0.5 ⇒ x8 = 1 u8 = 0.51821 > 0.5 ⇒ x8 = 0

x = 6 x = 1

Continue to get three more realizations.

(b) Use Col. 4 of Table XV (p = 0.4).

Realization 1

u1 = 0.02011 ≤ 0.4 ⇒ x = 1

Realization 2

u1 = 0.85393 > 0.4

u2 = 0.97265 > 0.4

u3 = 0.61680 > 0.4

u4 = 0.16656 < 0.4 ⇒ x = 4

Realization 3

u1 = 0.42751 > 0.4

u2 = 0.69994 > 0.4

u3 = 0.07972 < 0.4 ⇒ x = 3

Continue to get seven more realizations of X.
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(c) λt = c = 0.15, e−0.15 = 0.8607. Using Col. 6 of Table XV,

Realization ui product < e−0.15? x
#1 u1 = 0.91646 0.91646 No

u2 = 0.89198 0.81746 Yes x = 1
#2 u1 = 0.64809 0.64809 Yes x = 0
#3 u1 = 0.16376 0.16376 Yes x = 0
#4 u1 = 0.91782 0.91782 No

u2 = 0.53498 0.49102 Yes x = 1
#5 u1 = 0.31016 0.31016 Yes x = 0

5–42. X ∼ Geometric with p = 1/6.

y = x1/3

Using Col. 5 of Table XV, we obtain the following realizations.

# 1

u1 = 0.81647 > 1/6

u2 = 0.30995 > 1/6

u3 = 0.76393 > 1/6

u4 = 0.07856 < 1/6 ⇒ x = 4, y = 1.587

# 2

u1 = 0.06121 < 1/6 ⇒ x = 4, y = 1

Continue to get additional realizations.


