CHAPTER 4

From the evenness of f(x): 1 - F(x) = F(-x). 4-1

From the definition of x_u : $u = F(x_u)$, $1 - u = F(x_{1-u})$. Hence

$$1 - u = 1 - F(x_u) = F(-x_u) = F(x_{1-u})$$
 $- x_u = x_{1-u}$

From the symmetry of f(x): $1 - F(\eta+a) = F(\eta-a)$. Hence [see (4-8)] 4-2

$$P{\eta-a < x < \eta+a} = F(\eta+a) - F(\eta-a) = 2F(\eta+a) - 1$$

This yields

$$1-\alpha = 2F(\eta+a) - 1$$
 $F(\eta+a) = 1 - \alpha/2$ $\eta+a = x_{1-\alpha/2}$

$$F(\eta + a) = 1 - \alpha/2$$

$$\eta + a = x_{1-\alpha/2}$$

$$F(a-\eta) = \alpha/2 \qquad a-\eta = x_{\alpha/2}$$

$$a-\eta = x_{\alpha/2}$$

4-3 (a) In a linear interpolation:

$$x_u \simeq x_a + \frac{x_b - x_a}{u_b - u_a} (u - u_a)$$
 for $x_a < x_u < x_b$

From Table 4-1 page 106

$$z_{0.9} \simeq 1.25 + \frac{0.00565}{0.00885} \times 0.05 = 1.2819$$

Proceeding simiplarly, we obtain

u =	0.9	0.925	0.95	0.975	0.99
z _u =	1.282	1.440	1.645	1.960	2.327

(b) If z is such that $x = \eta + \sigma z$ then z is N(0,1) and $G(z) = F_x(\eta + \sigma z)$. Hence,

$$u = G(z_u) = F_x(\eta + \sigma z_u) = F_x(x_u)$$
 $x_u = \eta + \sigma z_u$

4-4
$$p_k - 2G(k) = 1 = 2 \text{ erf } k$$

(a) From Table 4-1

k =	1	2	3		
p _k =	0.6827	0.9545	0.9973		

(b) From Table 3-1 with linear interpolation:

p _k =	0.9	0.99	0.999		
k =	1.282	2.32	3.090		

(c)
$$P{\eta-z_u\sigma < x < \eta + z_u\sigma} = 2G(z_u) - 1 = \gamma$$

Hence,

$$G(z_{\rm u}) = (1+\gamma)/2$$

$$\mathbf{u} = (1+\gamma)/2$$

4-5 (a)
$$F(x) = x$$
 for $0 \le x \le 1$; hence, $u = F(x_u) = x_u$

(b)
$$F(x) = 1 - e^{-2x}$$
 for $x \ge 0$; hence, $u = 1 - e^{-2x}u$

$$x_u = -\frac{1}{2} \ln(1-u)$$

u =	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
x _u =	0.0527	0.1116	0.1783	0.2554	0.3466	0.4581	0.6020	0.847	1.1513

- 4-6 Percentage of units between 96 and 104 ohms equals 100p where $p = P{96 < R < 104} = F{104} F{96}$
 - (a) F(R) = 0.1(R-95) for $95 \le R \le 105$. Hence, p = 0.1(104-95) - 0.1(96-95) = 0.8
 - (b) p = G(2.5) G(-2.5) = 0.9876

4-7 From (4-34), with $\alpha = 2$ and $\beta = 1/\lambda$ we get $f(x) = c^2 xe^{-cx}U(x)$

$$F(x) = c^2 \int_0^x ye^{-cy} dy = 1 - e^{-cx} - cxe^{-cx}$$

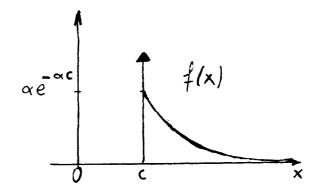
.....

$$\{(x - 10)^2 < 4\} = \{8 < x < 12\}$$

$$P\{(x - 10)^2 < 4\} = G(12 - 10) - G(8 - 10) = 0.954$$

$$f(x | (x - 10)^2 < 4) = \frac{f(x)}{P\{8 < x < 12\}} = \frac{1}{0.954\sqrt{2\pi}} e^{-\frac{(x-10)^2}{2}}$$

for 8 < x < 12 and zero otherwise



$$F(x) = (1 - e^{-\alpha x})y(x-c)$$

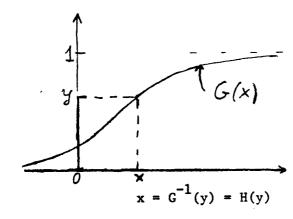
$$F(x) = (1 - e^{-\alpha x})U(x-c)$$
 $f(x) = (1 - e^{-\alpha c})\delta(x-c) + e^{-\alpha x}U(x-c)$

(a)
$$P\{1 \le x \le 2\} = G(\frac{2}{2}) - G(\frac{1}{2}) = 0.1499$$

(b)
$$P\{1 \le x \le 2 \mid x \ge 1\} = \frac{G(1) - G(0.5)}{1 - G(0.5)} = \frac{0.1499}{0.3085} = 0.4857$$

because $\{1 \le x \le 2, x \ge 1\} = \{1 \le x \le 2\}$

4-11



If
$$x(t_1) \leq x$$

$$t_i \le y = G(x)$$

Hence,

$$P\{x \le x\} = P\{t_1 \le y\} = y = G(x)$$

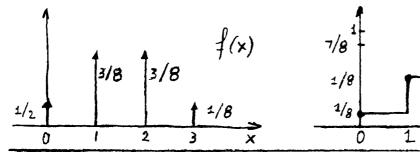
4-12 (a)
$$P\{x < 1024\} = G(\frac{1024 - 1000}{20}) = G(1.2) = 0.8849$$

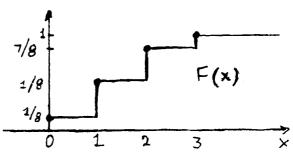
(b)
$$P\{x < 1024 | x > 961\} = \frac{P\{961 < x < 1024\}}{P\{x > 961\}}$$

= $\frac{G(1.2) - G(1.95)}{1 - G(1.95)} = 0.8819$

(c)
$$P{31 < \sqrt{x} \le 32} = P{961 < x \le 1024} = 0.8593$$

4-13
$$P\{x = 0\} = \frac{1}{8}$$
 $P\{x = 1\} = \frac{3}{8}$ $P\{x = 2\} = \frac{3}{8}$ $P\{x = 3\} = \frac{1}{8}$





4-14 (a) 1.
$$f_x(x) = \frac{1}{2^{900}} \sum_{k=0}^{900} {900 \choose k} \delta(x-k)$$

2.
$$f_x(x) = \frac{1}{15\sqrt{2\pi}} \sum_{k=0}^{900} e^{-(k-450)^2/450} \delta(x-k)$$

(b)
$$P{435 \le x \le 460} = G(\frac{10}{15}) - G(-\frac{15}{15}) = 0.5888$$

4-15 If
$$x > b$$
 then $\{\underline{x} \le x\} = S$ $F(x) = 1$
If $x < a$ then $\{\underline{x} \le x\} = \{\emptyset\}$ $F(x) = 0$

4-16 If
$$y(\zeta_i) \leq w$$
, then $x(\zeta_i) \leq w$ because $x(\zeta_i) \leq y(\zeta_i)$.

Hence,

$$\{y \leq w\} \subset \{x \leq w\}$$
 $P\{y \leq w\} \leq P\{x \leq w\}$

Therefore $F_v(w) \leq F_x(w)$

4-17 From (4-80) x
$$- \int_{0}^{k} kt dt$$

$$f(x) = kx e^{-kx^{2}/2}$$

4-18 It follows from (2-41) with

$$A_1 = \{x \le x\} \qquad A_2 = \{x > x\}$$

4-19 It follows from

$$F_{\mathbf{x}}(\mathbf{x}|\mathbf{A}) = \frac{P\{\underline{\mathbf{x}} \leq \mathbf{x}, \mathbf{A}\}}{P(\mathbf{A})} \qquad P\{\mathbf{A}|\underline{\mathbf{x}} \leq \mathbf{x}\} = \frac{P\{\underline{\mathbf{x}} \leq \mathbf{x}, \mathbf{A}\}}{P\{\underline{\mathbf{x}} \leq \mathbf{x}\}}$$

4-20 We replace in (4-80) all probabilities with conditional probabilities assuming $\{x \le x_0\}$. This yields

$$\int_{-\infty}^{\infty} P(A|x = x, x \le x_0) f(x|x \le x_0) dx = P(A|x \le x_0)$$

But
$$f(x|x \le x_0) = 0$$
 for $x > x_0$ and $\{x = x, x \le x_0\} = \{x = x\}$ for $x \le x_0$. Hence,
$$\int_0^x P(A|x = x)f(x|x \le x_0)dx = P(A|x \le x_0)$$

Writing a similar equation for $P(B|x \le x_c)$ we conclude that, if P(A|x = x) = P(B|x = x) for $x \le x_c$, then $P(A|x \le x_c) = P(B|x \le x_c)$

4-21 (a) Clearly, f(p) = 1 for $0 \le p \le 1$ and 0 otherwise; hence

$$P \{0.3 \le p \le 0.7\} = \int_{0.3}^{0.7} dp = 0.4$$

(b) We wish to find the conditional probability $P\{0.3 \le p \le 0.7|A\}$ where $A = \{6 \text{ heads in } 10 \text{ tosses}\}$. Clearly $P\{A|p=p\} = p^6(1-p)^4$. Hence, [see (4-81)]

$$f(p|A) = \frac{p^6(1-p)^4}{\int_0^1 p^6(1-p)^4 dp} = \frac{p^6(1-p)^4}{4329 \times 10^{-7}}$$

This yields

$$P\{0.3 \le p \le 0.7 | A\} = \int_{0.3}^{0.7} f(p|A) dp = \frac{10^7}{4329} \int_{0.3}^{0.7} p^6 (1-p)^4 dp = 0.768$$

4-22 (a) In this problem, f(p) = 5 for $0.4 \le p \le 0.6$ and zero otherwise; hence [see(4-82)]

$$P(H) = 5 \int_{0.4}^{0.6} pdp = 0.5$$

(b) With $A = \{60 \text{ heads in } 100 \text{ tosses}\}$ it follows from (4-82) that

$$f(p|A) = p^{60}(1-p)^{40} / \int_{0.4}^{0.6} p^{60}(1-p)^{40} dp$$

for $0.4 \le p \le 0.6$ and 0 otherwise. Replacing f(p) by f(p|A) in (4-82), we obtain

$$P(H|A) = \int_{0.4}^{0.6} pf(p|A)dp = 0.56$$

4-23
$$n = 900$$
 $p = q = 0.5$ $np = 450$ $\sqrt{npq} = 15$

$$k_1 = 420 \qquad k_2 = 465 \qquad \frac{k_2 - np}{\sqrt{npq}} = 1 \qquad \frac{k_1 - np}{\sqrt{npq}} = -2$$

$$P\{420 \le k \le 465\} = G(1) - [1 - G(-2)] = G(1) + G(2) - 1 = 0.819$$

4-24 For a fair coin
$$\sqrt{npq} = \sqrt{n}/2$$
. If
$$k_1 = 0.49n \text{ and } k_2 = 0.52n \text{ then}$$

$$\frac{k_2 - np}{\sqrt{npq}} = \frac{0.52n - n/2}{\sqrt{n}/2} = 0.04\sqrt{n} \qquad \frac{k_1 - np}{\sqrt{npq}} = -0.02\sqrt{n}$$

$$P\{k_1 \le k \le k_2\} = G(0.04\sqrt{n}) + G(0.02\sqrt{n}) - 1 \ge 0.9$$
 From Table 4-1 (page 106) it follows that
$$0.02\sqrt{n} > 1.3 \qquad n > 65^2$$

4-25

(a) Assume n = 1,000 (Note correction to the problem)

$$P(A) = 0.6$$
 $np = 600$ $npq = 240$ $k_2 = 650$ $k_1 = 550$

$$\frac{k_2 - np}{\sqrt{npq}} = \frac{50}{\sqrt{240}} = 3.23 \qquad \frac{k_1 - np}{\sqrt{npq}} = -3.23$$

$$P{550 < k < 650} = 2G(3.23) - 1 = 0.999$$

(b)
$$P{0.59n \le k \le 0.61n} = 2G(\frac{0.01n}{\sqrt{0.24n}}) - 1$$

$$= 2G(\sqrt{\frac{n}{2400}}) - 1 = 0.476$$

Hence, (Table 3-1) $n \approx 9220$

4-26 With a = 0, b = T/4 it follows that

$$p = 1 - e^{-1/4} = 0.22$$
 $np = 220$ $npq = 171.6$ $k_2 = 100$

$$\frac{k_2 - np}{\sqrt{npq}} = -9.16 \text{ and } (4-100) \text{ yields}$$

$$P{0 < k < 100} \simeq G(-9.16) \simeq 0.$$

4-27 The event

A = {k heads show at the first n tossings but not earlier} occurs iff the following two events occur

 $B = \{k-1 \text{ heads show at the first n-1 tossing}\}$

C = {heads show at the nth tossing}

And since these two events are independent and

$$P(B) = {n-1 \choose k-1} p^{k-1} q^{n-1-(k-1)}$$
 $P(C) = p$

we conclude that

$$P(A) = P(B)P(C) = {n-1 \choose k-1}p^kq^{n-k}$$

4-28
$$-\frac{d}{dx}(\frac{1}{x}e^{-x^2/2}) = (1 + \frac{1}{x^2})e^{-x^2/2} > e^{-x^2/2}$$

Multiplying by $1/\sqrt{2\pi}$ and integrating from x to ∞ , we obtain

$$\frac{1}{x\sqrt{2\pi}} e^{-x^2/2} > \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\zeta^2/2} d\zeta = 1 - G(x)$$

because

$$\frac{1}{x} e^{-x^{2}/2} \longrightarrow 0$$

The first inequality follows similarly because

$$-\frac{d}{dx}\left[\left(\frac{1}{x}-\frac{1}{x^3}\right)e^{-x^2/2}\right] = \left(1-\frac{3}{x^4}\right)e^{-x^2/2} < e^{-x^2/2}$$

- 4-29 If P(A) = p then $P(\overline{A}) = 1-p$. Clearly $P_1 = 1-Q_1$ where Q_1 equals the probability that A does not occur at all. If pn << 1, then $Q_1 == (1-p)^n = 1 np$ $P_1 = p$
- 4-30 With p = 0.02, n = 100, k = 3, it follows from (4-107) that the unknown probability equals

$$\binom{100}{3}(0.02)^3(0.98)^{97} \approx \frac{2^3}{3!} e^{-2} = \frac{4}{3} e^{-2}$$

4-31 With n = 3, r = 3, k_1 = 2, k_2 = 2, k_3 = 1, p_1 = p_2 = p_3 = 1/6, it follows from (4-102) that the unknown probability equals

$$\frac{5!}{1!2!2!} \frac{1}{6^6} = 0.00386$$

4-32 With
$$\dot{r} = 2$$
, $k_1 = k$, $k_2 = n-k$, $p_1 = p$, $p_2 = 1-p = q$, we obtain $k_1 - np_1 = k - np$ $k_2 - np_2 = n-k-nq = np - k$

Hence, the bracket in (4-103) equals

$$\frac{(k_1^{-np_1})^2}{np_1} + \frac{(k_2^{-np_2})^2}{np_2} = \frac{(k-np)^2}{n} \left(\frac{1}{p} + \frac{1}{q}\right) = \frac{(k-np)^2}{npq}$$

as in (4-90).

4-33 P(M) = 2/36 $P(\overline{M}) = 34/36$. The events M and M form a partition, hence, [see (2-41)]

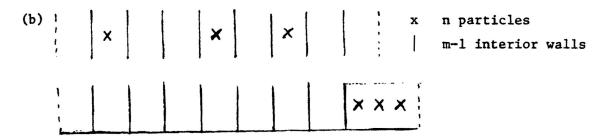
$$P(A) = P(A|M)P(M) + P(A|\overline{M})P(\overline{M})$$
 (i)

Clearly, P(A|M) = 1 because, if M occurs at first try, X wins. The probability that X wins after the first try equals $P(A|\overline{M})$. But in the experiment that starts at the second rolling, the first player is Y and the probability that he wins equals $P(\overline{A}) = 1-p$. Hence, $P(A|\overline{M}) = P(\overline{A}) = 1-p$. And since P(M) = 1/18 $P(\overline{M}) = 17/18$ (i) yields

$$p = \frac{1}{18} + (1-p) \frac{17}{18}$$
 $p = \frac{18}{35}$

4 - 34

(a) Each of the n particles can be placed in any one of the m boxes. There are n particles, hence, the number of possibilities equals $N - m^n$. In the m preselected boxes, the particles can be placed in $N_A = n!$ ways (all permutations of n objects). Hence $p = n!/m^n$.



All possibilities are obtained by permuting the m+m-1 objects consisting of the m-1 interior walls with and n particles. The (m-1)! permutations of the walls and the n! permutations of the particles must count as one. Hence

$$N = \frac{(m+m-1)!}{m! (m-1)!} \qquad N_A = 1$$

(c) Suppose that S is a set consisting of the m boxes. Each placing of the particles specifies a subset of S consisting of n elements (box). The number of such subsets equals $\binom{m}{n}$ (see Prob. 2-26). Hence,

$$N = {m \choose n} \qquad \qquad N_A = 1$$

4-35 If $k_1 + k_2 \ll n$, then $k_3 \approx n$ and

$$k_{3}(p_{1} + p_{2}) = [n - (k_{1} + k_{2})](p_{1} + p_{2}) \approx n(p_{1} + p_{2})$$

$$p_{3} = 1 - (p_{1} + p_{2}) \approx e^{-(p_{1} + p_{2})}$$

$$p_{3} \approx e^{-n(p_{1} + p_{2})}$$

$$p_{3} \approx e^{-n(p_{1} + p_{2})}$$

$$\frac{n!}{k_{1}!k_{2}!k_{3}!} = \frac{n(n-1) \cdots (n-k_{3}+1)}{k_{1}!k_{2}!} \approx \frac{n}{k_{1}!k_{2}!}$$

Hence,

$$\frac{n!}{k_1!k_2!k_3!} p_1^{k_1} p_2^{k_2} p_3^{k_3} = e^{-np_1} \frac{(np_1)^1}{k_1!} e^{-np_2} \frac{(np_2)^2}{k_2!}$$

4-36 The probability p that a particular point is in the interval (0,2) equals 2/100. (a) From (3-13) it follows that the probability p₁ that only one out of the 200 points is in the interval (0,2) equals

$$p_1 = \begin{pmatrix} 200 \\ 1 \end{pmatrix} \times 0.02 \times 0.09^{199}$$

(b) With np = $200 \times 0.02 = 4$ and k = 1, (3-41) yields $p_1 \simeq e^{-4} \times 4 = 0.073$