CHAPTER 7

0<Plx <x<Xy, ¥) <Y <¥ps 2 <252} =

P{§$x2, YTy 21 €

N

szz} - P{x SX5p ySYys zl<§.<_zz}

[
N

P(:_Ef_xl, Y<Yy :zz} + P{’ffxl' Y<Yps 20 ffzz} =

L]
1N
1A

Pix<xy, y<¥p 252} - Plxcxy, y2yy, z27))

N
1A

- P{:::xz, Y <Yy zz} + P{§§x2, Y <y 557.1}

P{)ffxl, Y<Ype ffzz} + P{ffxl’ Y <Yy fle}

+ P{§§x1, YSYy z:zz} - P{J_gf_xl, VAT fle}

P{:EA- 1, X, = 1, x. = 1} = P(ABC ) = 1/4
P{gA =1} = P(A) = 1/2 P{3:B = 1} = P(B) = 1/2
P{zcc = 1} = P(C) = 1/2 hence

P{xA =1, xg =1, X, = 1} 4 P{)_CA = 1}1’{35B = 1}P{§C =1}

B

hence x x . are not independent. But

A’ X %c

P{’fA =1, = 1} = P(AB) = 1/4 = P{§A = l}P{a-cB =1}

B

Similarly for any other combinatiom, e.g.,

gince P(A) = P(AB) + P(AB), we conclude that

P(AB) = 1/2 - 1/4 = 1/4 P(B) = 1 - P(B) = 1/2
P{’-EA =1, Xg = 0} = P(AB) = 1/4

Pix, = 0} = P(8) = 1/2 hence

P{;.(A =1, x; = 0} = P{:fA = 1}1?{15B = 0}

ijfxz, Y1<sz2: zl<!§z2} - P{§:xl, y1<25y2, 21<E§22} =
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7-4

1f XY 2 evt independent in pairs, then

r = r = r = 0
Xy X2z yz

and (7-60) yields (we assume n, = ny
l 722 2
Q(wl,mz,m3) exp s - -é-(ulwl + 0,

f(xl »Xy ,x3) - f (xl) f (xz) f (x3)

Inz-0)

wg-i-o

x=x, +x, +x To determine

-~ ~1 ~2 3'

E{:‘SA} we shall use char. functions

1/2
§1 (W) = eijdx_z sin (w/2)
w

-1/2

2 sin (w/2) 3 wz w
i(m) - —-——‘-;-—— ® (] = v

The coefficient of w4 in this expansion equals

4
13 1 d*§0) _ 13
1920 Pence 7 ot 1920
U]
and [see (5-103)]1]
4 13x4! 13
Elx} =m, = 3555 = 8%

hfi(x)

7% t 1920

1/2

0

1/2 x
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7-5 (a) The joeint density f(x,y) has circular symmetry because

f(x,y) = J £(/xs + y2 + z¢) dz

depends only on x2 + y2. The same holds for f(x,z) and f(y,z).

And since the RVs x,y, and z are independent, they must be normal
[see(6-29)].

(b) From (a) it follows that the RVs Yx’gy’zz are N(0; vkT/m).

With 02 = kT/m and n = 3 it follows from (7-62)-(7-63) and (5-25) that

’_ 3 2
fv(v)- -21'33-—3 \r2 e 'Pv /2kT U(v)
k™ T™

2kT 2n kTP
E{v} = 2\/:_; E(v7""} = 1x3- .- (2n+1) ()

7-6 From Prob.6-52: y = ax+b, z = cy+d, hence,
§=A5+B nz=Anx+B o=on

E{(z- nz) (x - nx} = E{A(x - nx) (x - nx)} = Ao: =09,

7-7 1t follows from (6-241) with gl(x) = X, gz(y) = y if we replace all
densities with conditional densities assuming 53.
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7-8 Reasoning as in (7-82), we conclude that

E{ [Z - (al;gl + azgl) ]2} is minimum if

E{[Z—(a1§1+32§2)]31} = 0 i=1,2

With Roi - E{Zl‘i} ’ Rij = E{fixj} » the above yields

Rop = 318y + 2,Ry, Roz = 3Ry, + 8.k,

But  Elyix;} = Ax) A= Ry /Ryp = &) + &R /R

E{E{z|§1,x2}|§1} - E{alz_(l + azafz[:_cl}

. R
] -—12- -
ey +aklxly) - (s, +a, L R
As in Probl, 6-51
2 2 2 2
Exyx,} < E%x, )E {x,} = IE{J_cigj}l <M

2 g0 2
E{s"ln=n}=E{] ] :_zi:.tjz: Mn
i=] =]

Hence [see (6-240)]

E{s_sz} - E{E{gz In}} < E{ng}
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As we know,

l+x+cc.+xn+-.ol 1

1 - x Ixf <1
Differentiating, we obtain
1 v o, k-1 1
14 2x+ ceo+nx" + e0e =) kx -— 1)
k=1 (1-x)
The RV 5 equals the number of tosses until heads shows for the first

time, Hence, % takes the values 1,2,... with P{§1-k} = qu-l. Hence,
[see (3-12) and (1)]

-k}s{kqu-ls—z-—z

E{x,} =] k P{x
1 k=1 (].-q)z

= T

O

the
Starting the count after the first head shows, we conclude t:hatARV

Xy =Xy has the same statistics as the RV X3 Hence,
2
E{’Sz - §1} E{’fl} E{’fz} ZE{§1} ?

Reasoning similarly, we conclude that

E{gn - l‘n-l} - E{ggl}_. Hence (induction)
n-1 l1 n
E{gn} E{n_gn_l} + E{gl} > + e

If n accidents occur in a day, the probability thatan of them will be

fatal equals (:) ﬁ"qn-" for m<n and zero for m>n. Hence,

0 m>n
P{m=m‘n=n} =
~ P n, m n-m
(xP 4 mzn
This yields
jum 9 jom ,n, m n-m jw n
E{e -|n-n}=20e (P pra  =(e " +q)
- m=
But -a a®
P{n = n} = e o n=0,1,...
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7-12

Hence,

E(ed®} = E(E(e)“B | n}} = E((ped¥+ T

T 3 . (
w n -aa _ a(pe
nzo (pe” +q) e T~ e

jm+ q)e—a - 2P (ejw— 1)

This shows that the RV m is Poisson distributed with parameter ap
[see (5-119)1].

We shall determine first the conditional distribution

P{g<s, n = n}
P{n = u}

Fs(slg =q) =

The event {g<s, n = n} consists of all outcomes such that n = n and
n

Z z_nk:s. Since the RV n is independent of the RVs X this yields
k=1 :

n
F (sln=n) =p{ ] <s}P{n = n}/P{n = n}
S - k=1 ,-Sk ~ ~

From the above and the independence of the RVs X it follows that
[see (7-51)1

£ (sln =n) = £,(s) * £,(s) * -+ % £ (s)

Setting Ak = {n = k} in (4-74), we obtain

£ (s) = E P (£ (8) % er % (a)]
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7-13 From the independence of the RVs n and X it follows that

s(x, + 00 +x)
£e|n = k} = Ele Ky

8X ’ Sxk

=Ele '} «es Ele ¥} = El;(s)
Hence,
§ (s) = E{e®} - E(E{e’I[n}} = E{¢2(s))
= I‘n[«bx(s)] because E{zZ%} = I‘n(z)

Special case., If n is Poisson with parameter a, then [see (5-119)]
a¢x(s) - a

az-a ,
I‘n(z) = e §y(s) = e

7-14
A Fx‘, (x) 9 F.j (3)
1+ — 41+
Y = max X,
b = Y™
A —p —a >
1] i X 0 i y

lysyl = {x) 2y, X, 25 o0y X <V}
From the independence of x, and the abcve it follows that
Fy(y) = P{y<yl = P{i_glf_y}"'P{)_:nf_y}

- Fl(y) Fn(y)

where Fi(y) =y for 0<y<l1,
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7-15 The RV X is defined in the space S. The set
C={z <Esz+dz,w<2/5w+dz} Z> W
is an event in the space S, of repeated trials and its probability equals
P(C) = f,,(z,w)dzdw
We introduce the events

D, ={x < w) Dy ={(w<x<w+dw) Dy =({w+dw<x <z}

Dy={z<x <z+dz) Dg = {z + dz < x)

These events form a partition of S and their probabilities p; = P(D;) equal
F,(w) f(w)dw F,(z)-F (w+dw) f(z)dz 1-F(z+dz)

respectively. The event C occurs iff the smallest of the RVs x; is in the interval (w,

w+dw), the largest is in the interval (z, z+dz), and, consequently, all others are between
w+dw and z. This is the case iff D, does not occur at all, D, occurs once, Dg occurs n-2

times, D4 occurs once, and Dg does not occur at all. With
k,=0 ky=1 ka=n-2 k=1 kg=0
it follows from (4-102) that
PC) = (?-BZ!TD’ Ps~2 pg = n(n-1)f(W)dw [£,(2)-F (w+dw)]P- 1 (z)dz

for z > w, and 0 otherwise.

7-16 1If z is N(n,1) then

E(e*?) = Tlr{ % e lem2g,
-00
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Since

1 o° 2 1
- (”‘b) =
—Jm _”e 8 dz 7

the above yields

'lz -— l
M) = T

n
X:

T
i
5| -
4
-]

1
—

i=1 i=1
are independent. Since s2 is a function of the n RVs x;-x, it suffices to show that each
of these RVs is independent of x. We assume for simplicity that E{x;}=0. Clearly,

o

1 2 02 . 1 n ,
Bxd) = B =5 EXO=gr X xies

i=1

because E(x;x;}=0 for i#i. Hence,
E{(x;-x)x} = 0

Thus, the RVs xi—i and x are orthogonal; and since they are jointly normal, they are

independent.

- - ——— - - - W = ———— - = - " A - " - - = = = m = S WS 4R S = A WS W -

104



7-18 Since ng=a +a [see (7-87)], the mean of the error

ot T,
ems-(aptayy +ayxy) = (g-n) - o) (x) =ny) +a,(x; = ny))

1s zero. Furthermore, ¢ 1s orthogonal to x , hence, it is also orthogonal

i’
to Xy =Ny
7-19 From the orthogonality principle:
Elylx oz, = ay% tak, y - lagxg +a,x,b [ 200
E{y|x,} = Ax
1 1 y Augtlgl
Hence

y-(a;x, +a,x)) - (y-Ax)) =ax+a, x, -4 nlx

From this it follows that
E{alx

Lragla) =Axy

E(E{Zlgl.ggz} In_(l} = E{Zl’fl}
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7-20 The event {x<x} occurs if there is at least one point in the interval

(0,x); the event {y :y} occurs if all the points are in the interval
0,y):

A= {at least ome point in (0,x)} = [x<x}
By = {no points in (y,1)}
= {all points in (0,y)} = {y <y}
Hence, for 0<x<1l, 0<y<1l
- n
Fx(x) P(Ax) =1 - P(Ax) =1-(1~-1x)
n
F = P(B )=
y(y) ( y) y
Furthermore,
{x<x, y<yl = AxBy AxBy + AxBy = By
If x <y then
IxBy = {all points in (x,y)}
- n
P(AxBy) (y - x)

If x>y, then —AxBy = {#}. Hence

y - (y-x)" x<y
ny(xs}') = P(Axny) =

L

J x>y

" ]
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2
Suppose that E{gi} =0, E{E;} = 02, E{gi} =)

4
T2 2
If A=) x, then E{A} = no
a2 i e
i=1
2 ° 2.2 2 4
E{é } = 2 E{§i§j} = ny, + (n° - n)o
(j=1
because "4 i=3
Eﬁfixj} = .
o 143
Furthermore

%) - Lk J =L+ - 104
~3 n? 121 - a2 4

E{Zzé} = %-[ua + (n - 1)04]
- n 4
E{l“.} = 'lT E{( ) ’.‘1) }' —1,7 [nu,‘ + 3n(n - 1)04]
n i=1 n

because

H, 1= j=k=r¢r [n such terms]

E(gigjgkgr} = a“ i=3j¢kmr [3n(n-1) such terms]

0 otherwise

n
Clearly, (n - 1) E =) (§i-§)2 = Q-—ngz, E{V} = o2, Hence
i=1 & 7

(@ - D’E(Y’) = E(a%) - 20E(5%A) + n’Elg")

=, + @ - 0)o® - 20, + (@ - 1%+ L+ 3@ - 1)o)
4 4 n 4

This yields

H 2
) E{vz} --;4 +P__'...2_t2.§. 0'43 04+03

Note If the RvVs 3, are N(O,az), then M, < 304
2 1 4 n-3 4 < 2 4
Gv‘n.OU n-lo) n-lo
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7-22

From Prob. 6-49:

20 2 2
E{lxy; - %oyt = = El[xyy = %p5 41"} = 20
Hence,
202 i=]
ECxyy = %pq | %y = %py, 10 =
402w 143
/r o2
Bz} =57 ===
2 . 2 4o’ 2
E{z"} = — [2n” + — (n" =-n)]
-~ ki
4n
2 n 2 1.2 2 w2 2
cz--z-go +(1-n)o -0 = n (o]
all [ ] aln
-1
7-23 If R == then § ainji =
anl L3N N ] ann
Hence,
-1t ‘Z' ‘z‘
E{XR X} = E{ x.a,.x,}
-7 1=1 3=1 ~1 133
) b
= a..R.. = 1l=n
1=1 j=1 31 44

with variance 02+ +cn > @ ag n+> (we assume O

fz(z) tends to a constant in any

The density fz(z) of the sum z = x

2 1

1

follows as in (5-37) and Prob. 5-20.

interval of length 2w,

+ o +:5n tends to a normal curve

>¢c >0), Hence,

i
The result
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7-25 Since a - a~+0, we conclude that
E{(x -a)z} = E{[(x -a ) + (a -a)]z}
=n ~n n n
= E{(x_-a )2} + 2(a_-a)E{x -a } + (a -a)2=0
~Vn on n “n ‘n n

as n >,

7-26 1If E{ggnz_cm} + a as n,m + », then, given € >0, we can find a number n,
such that

E{gn:.cn} = a +6(n,m) le] <e if n,m>0
Hence,
E((x_-x )%} = E{x%} + E{x’} - 2E{x x_}
“n m -n ~m *n*m

-a+61+a+62-2(a+63)-61+6 —263

and since |61 +62- 263| <4 ¢ for any ¢, it follows that
E{ (gn-ggm)z} +0, hence (Cauchy) x tends to a limit.

Conversely 1If :Sn-r}f in the MS sense, then
E{ (xn - x)z} +0. Furthermore,
E{x_ti} - E{:sz} E{x x } -~ E{)_:z}

because (see Prob. 6-51)

Ez{xz - x2
~n -~

)= B2y - m) (x40}
< E{(x -x)Z}E{(x +x)2}->0
x X x +x

E2(x(x, -0} < EBxIEL(x_ -0} + 0
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Similarly, E{ (’fn -x)(x ey 5)}-»0. Hence,
E{:_:n:_:m} + E{:_tz} - E{x :_tn} - E{x :_tm} +0

Combining, we conclude that E{xn J + E{xz}.

2 2
E{’fk} =0 E{ﬁ‘} - o
n n
2 2 2
B I x)1-1 Ex)
k-nl k-nl
[ 2 n+nm
If ) O < ® then given € >0, we can find n_ such that } o, <€
k=1 ° k=ntl
for any m and n >n°. Thus
+m n+m
2 r 2 2
E{(y -y)}-E; ) i-z o, < ¢
Yotm ~ Tn K otk iy

This shows that (Cauchy), ¥y comverges in the MS sense. The proof of

the converse is similar.

If £, (x) = ce “*yu(x) then ® (s) =

c-s
0(s) = 8, () +++ 0 _(8) = —=
s = e =
1 n (c - s)n
n-t
Hence (see Example 5-29) f(x) = Gs_t-l—l{)—! e < ux)

From Prob. 7-28 it follows that f(x) is the density of the sum

‘; =% LEEEE § X Furthermore,

n 2 n
E{z} = o, 2

From the central limit theorem it follows, therefore, that for large
n, the Erlang density is nearly equal to a normal curve with mean n/c

and variance n/ c2.
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7-30 Er,} = 500 of = 50°/3

2 4
r=r b, vt E{El = 2,000 o_ =10 /3

-

Thus, r is approximately N(2000'102/v’§)

10073,

P{1900 < r <2100} = 2 G (== 100 )

1= 0.9169.

7-31 The RVs X, are independent with (see Prob. 5-37)

c -c, |w|
£ (x) = ——.—i—.—— .3 (w) = @ i
i 2. 2 i
u(ci+x)

In that case, (7-104) does not hold because

© ’ ©

€4
Ix f(x)dx-T 2 2 dx = @ a>2
-wcj_

In fact, the density of x = g_:l+ A -3 is Cauchy with parameter

c= c1+---+<:n because

!(m) = e-CI|w|-oo e-cnlwl = e-(‘:l+...+cn)|m|

7-32  In this problem, 0,2 = E{|z|?) = E{x? + y?} = 20?

fo(x) = f(0f,(y) = 2%, e-(2+y?)/202 _ __‘_Te-lzlzla,2

2%0,
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