CHAPTER 8

8-1 (a) From (8-11) with γ =.95, u=.975, z_{.975} \approx 2, σ =0.1, and n=9 we obtain

$$c = \frac{z_u^{\sigma}}{\sqrt{n}} = 0.066$$

(b) From (8-11) with c=91.01-91=0.05mm:

$$z_u = \frac{c\sqrt{n}}{\sigma} = 1.5$$
 $u = .933$ $\gamma = .866$

- 8-2 (a) From (8-11) with $\sigma=1$ and n=4: $\bar{x} \pm \sigma z_u/\sqrt{\bar{n}} \simeq 203 \pm 1$ mm
 - (b) From (8-12) with δ =.05: $c = \sigma/\sqrt{n\delta} = 2.236$ mm

8-3 From (8-4) with $\gamma=.9$, u=.95: $\bar{x} \pm z_u \sigma / \sqrt{n} = 25,000 \pm 1,028$ miles

8-4 We wish to find n such that $P(|\bar{x}-a|<0.2) = 0.95$ where $a=E(\bar{x})$. From (8-4) it follows with u=.975 and $\sigma=0$. Imm that

$$\frac{z_u \sigma}{\sqrt{n}} \le 0.2$$
, hence, n=1

In this problem, x is uniform with $E(x)=\theta$ and $\sigma^2=4/3$. We can use, however, the normal approximation for \bar{x} because n=100. With $\gamma=.95$, (8-11) yields the interval

$$\bar{x} \pm z_{.975} \sigma \sqrt{n} = 30 \pm 0.227$$

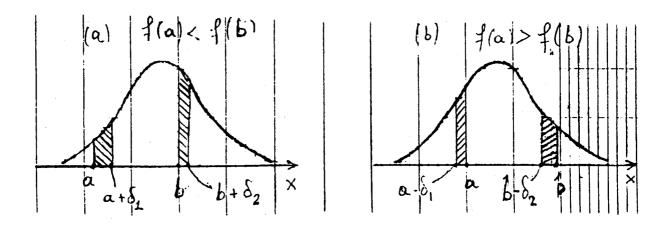
We shall show that if f(x) is a density with a single maximum and $P\{a < x < b\} = \gamma$, then b-a is minimum if f(a) = f(b). The density $xe^{-x}U(x)$ is a special case. It suffices to show that b-a is not minimum if f(a) < f(b) or f(a) > f(b).

Suppose first that f(a) < f(b) as in figure (a). Clearly, f'(a) > 0 and f'(b) < 0, hence, we can find two constants $\delta_1 > 0$ and $\delta_2 > 0$ such that $P\{a+\delta_1 < x < b+\delta_2\} = \gamma$ and

$$f(a) < f(a+\delta_1) < f(b+\delta_2) < f(b)$$

From this it follows that $\delta_1 > \delta_2$, hence, the length of thenew interval $(a+\delta_1, b+\delta_2)$ is smaller than b-a.

If f(a) > f(b), we form the interval $(a-\delta_1, b-\delta_2)$ (Fig. 8-6b) and proceed similarly.



Special case. If $f(x)=xe^{-x}$ then (see Problem 4-9) $F(x)=1-e^{-x}-xe^{-x}$, hence,

$$P{a < x < b} = e^{-a} + ae^{-a} - e^{-b} - be^{-b} = .95$$

And since f(a) = f(b), the system

$$ae^{-a} = be^{-b} e^{-a} - e^{-b} = .95$$

results. Solving, we obtain a 20.04 b 25.75.

A numerically simpler solution results if we set

$$0.025 = P\{x \le a\} = F(a)$$
 $0.025 = P\{x > b\} = 1 - F(b)$

as in (9-5). This yields the system

$$0.025 = 1 - e^{-a} - ae^{-a}$$
 $0.025 = e^{-b} + be^{-b}$

Solving, we obtain a=0.242, b=5.572. However, the length 5.572-0.242=5.33 of the resulting interval is larger than the length 4.75-0.04=4.71 of the optimum interval.

We start with the general problem: We observe the n samples x_i of an N(η ,10) RV x and we wish to predict the value x of x at a future trial in terms of the average \bar{x} of the observations. If η is known, we have an ordinary prediction problem. If it is unknown, we must first estimate it. To do so, we form the RV $w=x-\bar{x}$. This RV is

N(0, $\sigma_{\rm w}$) where $\sigma_{\rm w}^2 = \sigma_{\rm x}^2 + \sigma_{\bar{\rm x}}^2 = \sigma^2 + \sigma^2/n$. With $c = z_{.975}\sigma_{\rm w}$ \$ it follows that P(|w| < c)=.95. Hence

$$P(\bar{x} - c < x < \bar{x} + c) = 0.95$$

For n=20 and σ =10 the above yields $\sigma_{\rm w}$ =10.25 and c \simeq 20.5. Thus, we can expect with .95 confidence coefficient that our bulb will last at least 80-20.5=59.5 and at most 80+20=100.5 hours.

8-8 The time of arrival of the 40th patient is the sum $x_1 + \cdots + x_n$ of n=39 RVs with exponential distribution. We shall estimate the mean $\eta=1/\theta$ of x in terms of its sample mean $\bar{x}=240/39=6.15$ minutes using two methods. The first is approximate (large n) and is based on (8-11).

Normal approximation. With $\lambda=\eta$ and $z_{.975}/\sqrt{39}=0.315$:

$$P\left\{\frac{\bar{x}}{1.315} < \eta < \frac{\bar{x}}{0.685}\right\} = .95$$
 4.68 < η < 8.98 minutes

Exact solution. The RVs x_i are i.i.d. with exponential distribution.

From this and (7-52) it follows that their sum $y = x_1 + \cdots + x_n = nx$ has an Erlang distribution:

$$\Phi_{y}(s) = \frac{\theta^{n}}{(\theta - s)^{n}}$$
 $f_{y}(y) = \frac{\theta^{n}}{(n-1)!} y^{n-1} e^{-\theta y} U(y)$

and the RV $z=2\theta \bar{y}=2n\theta \bar{x}$ has a $\chi^2(2n)$ distribution:

$$f_{z}(z) = \frac{1}{2\theta} f_{y}(\frac{z}{2\theta}) U(z) = \frac{z^{n-1}}{2^{n}(n-1)!} e^{-z/2} U(z)$$

Hence,

$$P\left\{\chi^{2}_{\delta/2}(2n) < \frac{2n\bar{x}}{\bar{\eta}} < \chi^{2}_{1-\delta/2}(2n)\right\} = \gamma = 1-\delta$$

Since $\chi^2_{.025}(78) = 54.6$, $\chi^2_{.975}(78) = 104.4$, and $2n\bar{x} = 480$, this yields the interval

$$4.60 < \eta < 8.79$$
 minutes

8-9 From (8-19) with $\bar{x}=2,550/200=12.75$ n=200 and $z_n \approx 2$

$$\lambda^2 - 25.52 \ \lambda + 12.75^2 = 0$$
 $\lambda_1 = 12.255 < \lambda < 13.265 = \lambda_2$

8-10 From (8-21) with $\bar{x}=2,080/4000=0.52$, n=4,000 and z_u 2.326.

$$p_{1.2} \approx \bar{x} \pm z_u \sqrt{\frac{\bar{x}(1-\bar{x})}{n}} = .52 \pm .018$$

Hence, .502 .

8-11 (a) In this problem, $\bar{x}=0.40$, n=900 and $z_u \sim 2$. From (8-21): Margin of error

$$\pm 100 \ z_u \sqrt{\frac{\bar{x}(1-\bar{x})}{\bar{n}}} = \pm 3.27\%$$

(b) We wish to find z_u . From (9-21) and Table 1a:

$$100z_{u}\sqrt{\frac{\bar{x}(1-\bar{x})}{n}} = 2$$
 $z_{u} = 1.225$ $u = .89$

This yields the confidence coefficient $\gamma = 2u - 1 = .78$

8-12 From (8-21) with $\bar{x}=0.29$ and $z_u=2$:

$$z_{\rm u} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}} = 0.04$$

$$n > \frac{\bar{x}(1-\bar{x})}{.04^2} z_u^2 = 515$$

8-13 The problem is to find n such that [see (8-20)] $z_u \sqrt{\frac{p(1-p)}{n}} \le .02$ for every p. Since $z_u \ge 2$ and $p(1-p) \le 1/4$, this is the case if

$$z_u \sqrt{1/4n} \le .02 \quad n \ge 2,500$$

8-14 From (8-36) with k=1

$$f(p) = \begin{cases} 5 & .4$$

$$f_p(p|1) = \begin{cases} 10p & .4$$

8-15 From Prob. 8-8:
$$f_{\bar{x}}(\bar{x}|\theta) = \frac{(\theta n)^n}{(n-1)!} \bar{x}^{n-1} e^{-n\theta \bar{x}}$$

From (8-32):
$$f_{\theta}(\theta \mid \bar{x}) = \frac{(c+n\bar{x})^{n+1}}{n!} \theta^{n} e^{-(c+n\bar{x})\theta}$$

From (8-31):
$$\hat{\theta} = \frac{(c+n\bar{x})^{n+1}}{n!} \int_{0}^{\infty} \theta^{n+1} e^{-(c+n\bar{x})\theta} d\theta = \frac{n+1}{c+n\bar{x}}$$

8-16 The sum $n\bar{x}$ is a Poisson RV with mean $n\theta$ (see Prob.8-8). In the context of Bayesian estimation, this means that

$$f_{\bar{x}}(\bar{x}|\theta) = e^{-n\theta} \frac{(n\theta)^k}{k!} \quad k = n\bar{x} = 0,1,...$$

Inserting into (8-32), we obtain [see (4-76)]

$$f_{\theta}(\theta(\bar{x}) = \frac{(n+c)^{n\bar{x}+b+1}}{\Gamma(n\bar{x}+b+a)} \theta^{n\bar{x}+b} e^{-(n+c)\theta}$$

and (8-31) yields

$$\hat{\theta} = \frac{(n+c)^{n\bar{x}+b+1}}{\Gamma(n\bar{x}+b+1)} \frac{\Gamma(n\bar{x}+b+2)}{(n+c)^{n\bar{x}+b+2}} = \frac{n\bar{x}+b+1}{n+c} \xrightarrow[n\to\infty]{} \bar{x}$$

8-17 From (8-17) with $t_{.95}(9) = 2.26$

$$\bar{x} \pm \frac{t_u s}{\sqrt{n}} = 90 \pm 3.57$$
 86.43 < $\eta \cdot 93.57$

From (8-24) with $\chi^2_{.975}(9)=19.02$, $\chi^2_{.025}(9)=2.70$.

 $\frac{9 \times 5^2}{19.02} = 11.83 < \sigma^2 < \frac{9 \times 5^2}{2.70} = 83.33$

 $3.44 < \sigma < 9.13$

8-18 The RVs x_i/σ are N(0,1), hence, the sum $z=(x_1^2 + \cdots + x_{10}^2)/\sigma^2$ has a $\chi^2(10)$ distribution. This yields

$$P\{\chi^2_{.025}(10) < z < \chi^2_{.975}(10)\} = .95$$

$$\chi^{2}_{.025}(10) = 3.25 < \frac{4}{\sigma^{2}} < \chi^{2}_{.975}(10) = 20.48$$

$$0.442 < \sigma < 1.109$$

8-19 From (8-23) with n=4, $\chi^2_{.025}(4)=0.48$, $\chi^2_{.975}(4)=11.14$

$$\hat{n}v = .1^2 + .15^2 + .05^2 + .04^2 = .0366$$

$$\frac{.0366}{.048} > \sigma^2 > \frac{.0366}{11.14}$$
 $0.276 > \sigma > 0.057$

8-20 In this problem n=3, $x_1+x_2+x_3=9.8$

$$f(x,c) \sim c^4 x^3 e^{-cx}$$
 $f(X,c) = c^{4n} (x_1...x_n)^{3n} e^{-cn\bar{x}}$

$$\frac{\partial f(X,c)}{\partial c} = \left(\frac{4n}{c} - n\bar{x}\right) f(X,\theta) = 0 \qquad \hat{c} = \frac{4}{\bar{x}} = 1.224$$

8-21 The joint density

$$f(X,c) = c^n e^{-cn(\bar{x}-x_0)}$$
 $x_i > x_0$

has an interior maximum if

$$\frac{\partial f(X,c)}{\partial c} = 0 \qquad \hat{c} = \frac{1}{\bar{x} - x_0}$$

8-22 The probability

$$p = 1 - F_x(200) = e^{-200c}$$

of the event $\{x > 200\}$ is a monoton decreasing function of c. To find the ML estimate \hat{c} of c it suffices to find the ML estimate \hat{p} of p. From Example 8-28 it follows with k=62 and n=80 that

$$\hat{p} = \frac{62}{80} = .775 \text{ hence}$$

$$\hat{c} = -\frac{1}{200} ln \hat{p} = 0.0013$$

8-23 The samples of x are the integers x_i and the joint density of the RVs x_i equals

$$f(X,\theta) = e^{-n\theta} \prod \frac{\theta^{X_i}}{X_i!} = e^{-n\theta} \frac{\theta^{n\bar{X}_i}}{\prod X_i!}$$

Hence, $f(X,\theta)$ is maximum if $-n + n\bar{x}/\theta = 0$. This yields $\hat{\theta} = \bar{x}$

8-24 If $L = ln f(x,\theta)$ then

$$\frac{\partial L}{\partial \theta} = \frac{1}{f} \frac{\partial f}{\partial \theta} \qquad \qquad \frac{\partial^2 L}{\partial \theta^2} = \frac{1}{f} \frac{\partial^2 f}{\partial \theta^2} - \frac{1}{f^2} \left(\frac{\partial f}{\partial \theta} \right)^2 \qquad \qquad \frac{\partial^2 L}{\partial \theta^2} + \left(\frac{\partial L}{\partial \theta} \right)^2 = \frac{1}{f} \frac{\partial^2 f}{\partial \theta^2}$$

But

$$E\left\{\frac{1}{f}\frac{\partial^2 f}{\partial \theta^2}\right\} = \int_{R} \frac{1}{f}\frac{\partial^2 f}{\partial \theta^2} f dX = 0 \text{ hence } E\left\{\frac{\partial^2 L}{\partial \theta^2} + \left(\frac{\partial L}{\partial \theta}\right)^2\right\} = 0$$

8-25 (a) From (8-307): Critical region

$$\bar{x} > c = \eta_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} = 8+2.326 \times \frac{2}{8} = 8.58$$

If η =8.7, then $\eta_q = \frac{8.7-8}{218} = 2.8$

$$\beta$$
 (η) = G(2.36 - 2.8) = .32

(b) We assume that $\alpha = .01$, β (8.7) = .05 and wish to find n and c.

$$G(z_{1-\alpha} - \eta_q) = \beta \qquad z_{1-\alpha} - \eta_q = z_{\beta}$$

$$\eta_q = z_{.99} - z_{.05} = 4.97 = \frac{8.7 - 8}{2/\sqrt{n}}$$

$$n = 129 \quad c = 8 + \frac{2}{\sqrt{129}} z_{.99} = 8.41$$

Our objective is to test the composite null hypothesis $\eta > \eta_0 = 28$ against the hypothesis $\eta < \eta_0$. Consider first the simple null hypothesis $\eta = \eta_0 = 28$. In this case, we can use (8-301) with

$$q = \frac{\bar{x} - \eta_0}{s / \sqrt{n}}$$
 $\bar{x} = \frac{1}{17} \sum x_i = 27.67$ $s^2 = \frac{1}{16} \sum (x_i - \bar{x}) = 17.6$

This yields s=4.2 and q=-0.33. Since

$$q_u = t_u (n-1) = t_{0.05}(16) = -1.95 < -0.33$$

we conclude that the evidence does not support the rejection of the hypothesis $\eta=28$. The resulting OC function $\beta_0(\eta)$ is determined from (9-60c).

If $\eta_0>28$, then the corresponding value of q is larger than -0.33. From this it follows that the evidence does not support the

hypothesis η_0 for any $\eta_0>28$. We note, however, that the corresponding OC function $\beta(\eta)$ is smaller than the function $\beta_0(\eta)$ obtained from (8-301) with $\eta_0=28$.

8-27 From (8-297) with
$$q_{1}=t_{1}(n-1)$$
: Critical region $|\bar{x}-\eta_{0}| > t_{1-\alpha/2}(n-1)s/\sqrt{n}$

1.
$$\alpha = .1$$
 $t_{.95}(63) = 1.67$ $|\bar{x}-8| > 1.67 \times 1.5/8 = 0.313$

Since $\bar{x}=7.7$ is in the interval 8 ± 0.317, we accept H_0

2.
$$\alpha = .01$$
 $t_{.995}(63) = 2.62$ $|\bar{x}-8| > 2.62 \times 1.5/8 = 0.49$

Since $\bar{x}=7.7$ is outside the interval 8 ± 0.49, we reject H_0 .

8-28 We assume that the RVs \bar{x} and \bar{y} are normal and independent. We form the difference $\bar{w}=\bar{x}-\bar{y}$ of their sample means

$$\bar{x} = \frac{1}{16} \sum_{i=1}^{16} x_i$$
 $\bar{y} = \frac{1}{26} \sum_{i=1}^{26} y_i$

and use as test statistic the ratio

$$q = \frac{w}{\sigma_w} \qquad \sigma_w^2 = \frac{\sigma_x^2}{16} + \frac{\sigma_y^2}{26}$$

The RV $\stackrel{q}{\sim}$ is normal with $\sigma_q=1$ and under hypothesis H_0 , $E\{\stackrel{q}{\sim}\}=0$. We can,

therefore, use (8-307) because $q_u = z_u$. To find q, we must determine σ_w . Since σ_x and σ_y are not specified, we shall use the approximations $\sigma_x \simeq s_x = 1.1$ and $\sigma_y \simeq s_y = 0.9$. This yields

$$\sigma_{\mathbf{w}}^2 \simeq \frac{1.1^2}{16} + \frac{0.9^2}{26} = 0.107$$
 $q = \frac{\bar{x} - \bar{y}}{\sigma_{\mathbf{w}}} = \frac{0.4}{0.327} = 1.223$

Since $z_{0.95}=1.645 > 1.223$, we accept H_0 .

8-29 (a) In this problem, n=64, k=22, $p_0=q_0=0.5$

$$q = \frac{k - np_0}{\sqrt{np_0 q_0}} = 2.5$$
 $z_{\alpha/2} = -z_{1-\alpha/2} \approx -2$

Since 2.5 is outside the interval (2, -2), we reject the fair coin hypothesis [see (8-313)].

(b) From (8-313) with n=16, $p_0 = q_0 = 0.5$:

$$\frac{k_1 - np_0}{\sqrt{np_0 q_0}} = z_{\alpha/2} \qquad \frac{k_2 - np_0}{\sqrt{np_0 q_0}} = -z_{\alpha/2}$$

This yields $k_1=8-2\times 2=4$, $k_2=8+2\times 2=12$

8-30 We shall use as test statistic the sum

The critical region of the test is $q < q_{\alpha}$ where $q = x_1 + \cdots + x_n = 90$ [see (8-301)]. The RV q is Poisson distributed with parameter $n\lambda$. Under hypothesis H_0 , $\lambda = \lambda_0 = 5$; hence, $\eta_q = n\lambda_0 = 110 = \sigma_q^2$. To find q_{α} we shall use the normal approximation. With $\alpha = 0.05$ this yields

$$q_{\alpha} = n\lambda_0 + z_{\alpha} \sqrt{n\lambda_0} = 90-17.25 = 72.75$$

Since 90 > 72.75, we accapt the hypothesis that λ =5.

8-31 From (9-75) with n=102 and $p_{0i}=1/6$

$$q = \sum_{i=1}^{6} \frac{(k_i - 17)^2}{17} = 2$$
 $\chi^2_{.95}(5) \approx 11$

Since 2<11, we accept the fair die hypothesis.

Uniformly distributed integers from 0 to 9 means that they have the same probability of appearing. With m=10, $p_{01}=.1$, and n=1,000, it follows from (8-325) that

$$q = \sum_{j=0}^{9} \frac{(n_j - 100)^2}{100} = 17.76$$
 $\chi^2_{.95}(9) = 16.92$

Since 17.76 > 16.92, we reject the uniformity hypothesis.

8-33 In this problem

$$f(x,\theta) = e^{-\theta} \frac{\theta^x}{x!}$$
 $f(X,\theta) = \frac{e^{-n\theta} \theta^{n\bar{x}}}{x_1! \cdot \cdot \cdot x_n!}$

 $f(X,\theta)$ is maximum for $\theta=\theta_m=\bar{x}$. And since $\theta_{m0}=\theta_0$ we conclude that

$$\lambda(X) = \frac{e^{-n\theta_0}\theta_0^{n\bar{x}}}{e^{-n\bar{x}}\bar{x}^{n\bar{x}}} \qquad w = -2 \ln \lambda = 2n(\theta_0 - \bar{x}) + \bar{x} \ln(\bar{x}/\theta_0)$$

With n=50, θ_0 =20, \bar{x} =1,058/50=21.16, this yields w=3. Since m_0 =1, m=1, and $\chi^2_{.95}(1)$ =3.84>3, we accept H_0 .

8-34 We form the RVs

$$z = \sum_{i=1}^{m} \left(\frac{x_i - \eta_x}{\sigma_x} \right)^2 \qquad w = \sum_{i=1}^{n} \left(\frac{y_i - \eta_y}{\sigma_y} \right)^2$$

These RVs are $\chi^2(m)$ and $\chi^2(n)$ respectively. If $\sigma_x = \sigma_y$, then

$$\frac{q}{\sim} = \frac{z/m}{w/n}$$

Hence (see Prob. 6-23), $\frac{q}{2}$ has a Snedecor distribution. To test the hypothesis $\sigma_x = \sigma_y$, we use (8-297) where $q_u = F_u(m,n)$ is the tabulated u percentile of the Snedecor distribution. This yields the following test:

Accept H_0 iff $F_{\alpha/2}(m,n) < q < F_{1-\alpha/2}(m,n)$.

8-35 If x has a student-t distribution, then f(-x)=f(x), hence (see Prob. 6-75)

$$E\{x\} = 0$$
 $\sigma_{x}^{2} = E\{x^{2}\} = \frac{n}{n-2}$

8-36 (a) Suppose that the probability P(A) that player A wins a set equals p=1-q. He wins the match in five sets if he wins two of the first four sets and the fifth set. Hence, the probability $p_5(A)$ that he wins in five equals $6p^3q^2$. Similarly, the probability $p_5(B)$ that player B wins in five equals $6p^2q^3$. Hence,

$$p_5 = p_5(A) + p_5(B) = 6p^3q^2 + 6p^2q^3 = 6p^2q^2$$

is the probability that the match lasts five sets. If p=q=1/2, then $p_5=3/8$.

(b) Suppose now that P(A) = p is an RV with density f(p). In this case,

$$p_5 = 6p^2(1-p^2)$$

is an RV. We wish to find its best bayesian estimate. Using the MS criterion, we obtain

$$\hat{p}_5 = E\{p_5\} = \int_0^1 6p^2(1-p^2)f(p)dp$$

If f(p)=1, then $\hat{p}_5 = 1/5$.

8-37 Given

$$f_{\mathbf{v}}(\mathbf{v}) \sim e^{-\mathbf{v}^2/2\sigma^2}$$
 $f_{\theta}(\theta) \sim e^{-(\theta-\theta_0)^2/2\sigma_0^2}$

To show that

$$f_{\theta}(\theta|x) \sim e^{-(\theta-\theta_1)^2/2\sigma_1^2}$$

where

$$\frac{1}{\sigma_1^2} \equiv \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \qquad \theta_1 \equiv \frac{\sigma_1^2}{\sigma_0^2} \theta_0 + \frac{n\sigma_1^2}{\sigma^2} \bar{x}$$

Proof

$$f_x(x|\theta) = f_y(x-\theta) \sim \exp\left\{-\frac{(x-\theta)^2}{2\sigma^2}\right\}$$

$$f(X)|\theta \sim \exp\left\{-\frac{1}{2\sigma^2}\sum_{i}(x_i-\theta)^2\right\}$$

Since $\sum (x_i - \theta)^2 = \sum (x_i - \bar{x})^2 + n (\bar{x} - \theta)^2$, we conclude from (8-32) omitting factors that do not depend on θ that

$$f(\theta|X) \sim \exp\left\{-\frac{1}{2}\left[\frac{(\theta-\theta_0)^2}{\sigma_0^2} + \frac{n(\bar{x}-\theta)^2}{\sigma^2}\right]\right\}$$

The above bracket equals

$$\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)\theta^2 - 2\left(\frac{\theta_0}{\sigma_0^2} + \frac{n\bar{x}}{\sigma^2}\right)\theta + \cdots = \frac{1}{\sigma_1^2}\left(\theta^2 - 2\theta\theta_1\right) + \cdots$$

and (i) follows.

8-38 The likelihood function of X equals

$$f(X,\theta) = \frac{1}{(\sqrt{2\pi\theta})^n} \exp \left\{-\frac{1}{2\theta}\sum_{i=1}^n (x_i - \eta)^2\right\}$$

where $\theta = \sigma^2$ is the unknown parameter. Hence

$$L(X,\theta) = -\frac{n}{2} \ln (2\pi\theta) - \frac{1}{2\theta} \sum (x_i - \eta)^2$$

$$\frac{\partial L(X,\theta)}{\partial \theta} = -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum (x_i - \theta)^2 = 0 \qquad \qquad \hat{\theta} = \frac{1}{n} \sum (x_i - \eta)^2$$

8-39 The estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ have the same variance because otherwise one or the other would not be best. Thus

$$E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta$$
 $var \hat{\theta}_1 = var \hat{\theta}_2 = \sigma^2$

If $\hat{\theta} = \frac{1}{2} (\hat{\theta}_1 + \hat{\theta}_2)$, then

$$\mathbf{E}\{\hat{\boldsymbol{\theta}}\} = \boldsymbol{\theta} \qquad \qquad \sigma_{\hat{\boldsymbol{\theta}}}^2 = \frac{1}{2} \left(\sigma^2 + \sigma^2 + 2r\sigma^2\right) = \frac{1}{2} \left(1 + r\right)\sigma^2$$

where σ is the correlation coefficient of $\hat{\theta}_1$ and $\hat{\theta}_2$. If r<1 then $\sigma_{\hat{\theta}} < \sigma$ which is impossible. Hence, r=1 and $\hat{\theta}_1 = \hat{\theta}_2$ (see Prob. 6-53).

8-40 $k_1+k_2-np_1-np_2 = n-n(p_1+p_2) = 0$; Hence, $|k_1-np_1| = |k_2-np_2|$

$$\frac{(k_1 - np_1)^2}{np_1} + \frac{(k_2 - np_2)^2}{np_2} = (k_1 - np_1)^2 \left(\frac{1}{np_1} + \frac{1}{np_2}\right) = \frac{(k_1 - np_1)^2}{np_1p_2}$$

8.41 It is given that

$$E\{T(X)\} = \int_{-\infty}^{\infty} T(X) f(X; \theta) dx = \psi(\theta),$$

so that after differentiating and making use of (8-81) we get

$$\int_{-\infty}^{\infty} T(X) \frac{\partial f(X; \theta)}{\partial \theta} dx = \psi'(\theta)$$
 (8.41 – 1)

Also using (8-80)

$$\int_{-\infty}^{\infty} \psi(\theta) \frac{\partial f(X;\theta)}{\partial \theta} dx = 0, \qquad (8.41 - 2)$$

and the above two expressions give

$$\int_{-\infty}^{\infty} \left[T(X) - \psi(\theta) \right] \frac{\partial f(X; \theta)}{\partial \theta} dx = \psi'(\theta)$$
 (8.41 – 3)

But

$$\frac{\partial f(X;\theta)}{\partial \theta} = \frac{1}{f(X;\theta)} \frac{\partial \log f(X;\theta)}{\partial \theta}$$

so that (8.41-3) simplifies to

$$\int_{-\infty}^{\infty} \left[\left\{ T(X) - \psi(\theta) \right\} \sqrt{f(X;\theta)} \right] \left[\sqrt{f(X;\theta)} \ \frac{\partial \log f(X;\theta)}{\partial \theta} \right] dx = \psi'(\theta)$$

and application of Cauchy-Schwarz inequality as in (8-89)-(8-92), Text gives

$$E\left[\left\{T(X) - \psi(\theta)\right\}^{2}\right] \ge \frac{\left[\psi'(\theta)\right]^{2}}{E\left\{\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^{2}\right\}}$$