CHAPTER 10

(a) 1If x(t) is a Poisson process as in Fig. 9-3a, then for a fixed
t, x(t) is a Poisson RV with parameter At. Hence [see (5-119)]
its characteristic function equals exp{.‘&t(ejm-l}}.

(b) If x(t) is a Wiener process then f(x,t) is N(0,Yat). Hence
[see (5-100)] its first order characteristic function equals
exp{uathIZ}.
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For large t, x(t) and y(t) can be approximated by two independent

Wiener processes as in (10-52):

2 2
1 -x"/2at 1 -~y /2at
f (x,t) = —=—— e f (yyt) = =s=e e
x ¥y2nat y > 2nat

Hence, z(t) has a Rayleigh density [see (6-70)]. [Note. Exactly,
z(t) is a discrete-type RV taking the values s/mZ +n2 where m _
and n are integers]. The product fz(z,t}dz equals approximately
the probability that z(t) is between z and z +dz provided that
dz >> T,
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10-3 The voltage y(t) is the output of a system with input ge(t) and system
function

H (s) = —
LCs +RCs +1

Hence,

2kTR
2.2 2

2
S (w) =S, (w)|H (Ju)|® =
v %o 1 @ ~wiLe)? + R%c%

Furthermore,

R+Ls
LCs2 +RCs +1

Zep(®) = Re Z,,(Ju) =

R
(1- mZI.C)2 + chzwz

in agreement with (10-75).
The current i(t) is the output of a system with input ne(t) and

system function

1

HZ(S) = R+Ls

Hence,

2 2kTR
S, (w) = Sy (W) |H), (Jw)|° = ==
1 € 2 R2+m2L2

Furthermore (short circuit admittance)

1 2kTR
Y (s) M ——— R_eY (jw) 2 cesmm—————————
ab R+LS ab R2 + L2(»2

in agreement with (10-78).

10-4 The equation mx"(t) + fx'(t) = F(t) specifies a system with

H(s) = — h(e) = 2(1 - F /My
ms + fs
and (9-100) yields
t 2
E{§2(t)} = Kgi J (1-e'2‘") dt o= -
f Zm



10-5 As in Examplel2-2, a and b are such that
x(c) - a x(0) - by(0) | x(0), v(0)
This yields

Rxxft) = aRxx(O)-+b ny(O)

(1)
va(t) = ava(O)-+b va(O)
where [see (10-163)]
_ -at o
Rxx(r) = A e (cos BT + 8 sin BT) 1>0
L 1
- T o +G

' = e sin BT ) =t
va(t):—Rxx(T) A

L 4,1
o« ¥ /3

Rw(t) = R}'w(-r) = A e-at(cos Bt - %— sin B1) {3

Inserting into (i) and solving, we obtain

a=e 2T(cos BT + % sin B7)

T .
b = e sin Bt

|-

Finally,

P = E{lf(t) -~ a 5(0) -b Y(o)]f(t)} = Rxx(O) -a Rxx(t)-b va(t)

2
- 2k'§f[1 _ e-Zat(l + Z%— sinzﬁt + % sinZBt)]
m

10-6  If x(t) = w(t?) then [see (10-70)]
R,(ty,t5) = E(W (t,2)w (1)) = at,?
If y(t) = w(t) then [see (6-197)]
R, (t1,ty) = E(w(t)w*(t,))

= Ew %(t;)E(w 3(ty) + 2 EXw (t;)w (1)) = o’tyt; + 2a’t,2



10-7 From (10-112) :

10 10
W=3J 2 dt = 60 q2=3I adt = 120 E(s?) = 3720
0 0 ~

s(7) = 0 if there are no points in the interval (7-10, 7). The number of points in this

interval is a Poission RV with parameter 10X = 30. Hence, P(s(7) = 0} = 30,

H(u):‘, B(w) 4 _
| W) ; %
X (4] Y ¥

From the assumption: Sxx(w) = Syy(w) Sxy(-w) = - Sxy(w)

2 *

From (9-148) :Syy(m) = Sxx(m)|H(w)| Sx:(w) =5 __ (H ()

Combining, we obtain

iH(m)[z =1 H(-w) =~ H(w)

Since h(t) is real, the second equation yields H(w) = jB(w) and from the
first it follows that

|B(w)|= 1
as in the figure.

S T T T e e e e e e o e o e o o e o o o o o o o o e o o e e -~ = = — - —_—— — — -
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10-9 with i(t) = a(e), q(t) = b(t), (11-63) yields
§, () = Sq(w) Siq(m) = - Sqi(w) = Sqi(-w)
Hence [see (11-75) and (11-82)],
Sw(w) = 2 Si(m) + 2§ Sqi(w)'
Sw(-w) = 2 Si(w) - 2j Sqi(w)

Adding and subtracting, we obtain

4 Si(m) = Sw(w) + Sw(-m) 43 Siq(w) = Sw(-w) - Sw(m)

10-10 From (10-133)

x(t) = Re [w(t)e "~ ]
jmot jwo(t -1)
x(t-1) = Relw (t)e ] = Re[w(t=1)e ]
—jmor

w (t) = w(t-1e

2
"
10-11 Rx('r) > -y Sx(w)

-]

51;'- J mzsx(w)dm - - RO

and with ®y the optimum carrier frequenly,(10-150)yields

EC(Ju' (0) %} = 5% = - 2R"(0) - 2ueR (0)
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10-12

10-13

From the stationarity of the process x(t) coswt + y(t)sinwt it follows that [see (10-130)]

Cxxl1) = Cy(7) Cxy = - Cyd7) (1)
Using these identities, we shall express the joint density f(X,Y) of the 2n RVs
§= [f(t1)9 LY f(tn)] Xg [Z(tl)s o o ey Z(tn)]

in terms of the covariance matrix Czz of the complex vector Z = X+ jY. From (i) it

follows that
E{x(t;)x(t;)} = E{y(t;))y(t;)} E{(x(t)y(t;)) = - E{y(t)x(t;)

This yields

Cxx = Cyy, and Cxy = - Cyy; hence, f(X,Y) is given by (8-62).

v e - 3 A - - - - - - -~ - - - - - - - -~ — - - - -

The signal c¢(t) = f(t) is an extreme case of a cyclostationary process

as in (10-178) with

f£(t) 0<t<T rT -3t
h(t) = <> He) - | f£(t)e I g
0 otherwise 0

and qm-l, R[m] =1, Hence [see (10A-2)]
I Ry ed™Ta ] oWy § oS- 2w
From the above and (10-180) it follows that the process x(t) = f(t -9

is stationary with power spectrum

Z 6(m-—%§rm)

2
S(w) = ' J £(t)e d9tye
0

156



10-14
The process

N
- _ sino(1-nT)
yu(t) = x(t+7) nzmxu+ T) = Ty

is the output of a system with input x(t) and system function

sino(1-nT) JnTw
o(t=-nT)

N
By = &% -

n=-N

Furthermore, EN(T) = ZN(O)’ hence [see (9-153)]

E{e (1)} = E{y 0)} = ——-J S(w)IHN(m)l dw 1)

The function HN(w) is the truncation error in the Fourier series

expansion of eJwT in the interval (-o,0). Hence, for N:>N0

|HN(N)| <e lw] <o

From this and (i) it follows that, if S(w) = 0 for |uw| <o, then
[}

E{s (0} = —— I S(w)IHN(w)I dw < € R(0) N>N,
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10-15 [see after (10-195)]
o
R(0) - R(7) = -—l— J S(w) (1 -~ coswt)du

-3

f _ 2
-}-— J w S(w)dm = -—;—- R"(0)
~g A
24
Furthermore, since T
5|'v\Lf
sin ¢ > %;Q- 0<¢< 12'- ‘l
-
¢ ™
T ¢
we obtain
o
R(0) - R(1) = —1- I S(w) & Sim -él dw
-g
2 g 2
> —232— 2%[ w?S (W) do = ‘2; R"(0)
1 T
10-16 With T = 7n/o
I m=0
R(mT) = E{a_c(n'r +mT)x(nT)} = ’
- 2
n m# 0

Hence [see (10-196)]

R(t) = z R(mT) s_iﬂ"_(_"_ﬂ - n + (I-n ) sinot

o{1-mT)
m:—@

S(w) = 2mn28(w) + ZW(I—nz)po(m)

T

]

-

Ey
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10-17 Given E(i(n+m)§(n)} = Né[m]

This is a special case of Prob. 10-16 withn =0, I =N.

10-18 1f |t| <n/20, then A (orTT
cos wt > cos 0T MR Corw T
o
R() = & | S(wecosurd
1) = o w) coswtdw -
27 J o w (")
- zr
o
> 29-25—%1 J S(w)dw = R(0)cosot
-0
10-19 From (10-133) with c = ¢
Pl(w,T) + jw Pz(w,T) =1
P (6, 7) + (TP, (0,T) = ed9T
Hence,
_ _w Jot_ S jcxr_1
Pl(w,T) =1- (e 1) Pz(m,r) 3o (e )
Inserting into (11-141), we obtain
. 4 sin2 (at/2) 4 si,n2 (0t/2)
pl(r) = 73 p, (1) = 7
3T o't

and with t = 0, the desired result follows from (10-206) because
T=2T and '

sinz o(t-2nT)

2 ot - 2 ot
3 = sin (z-mr) sin 3
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10-20 As in (10-213)

P(w) = % coswt z(t) cos wct dt
-~ J -~

E{P(w)} = cosuwt cos v t dt
- J
-a

>

2 2
= dt
B (w) J cos’w tycos wt,dt,

-a

T T T T o e e e o e e e e e o o o - o o = o o ot o o o o e i s o s 2 e et o o = o = = - ——— o —

10-21 We shall show that if

Xe(w) = —;— h i(ti)e'iwgi = .i_ ja i(t)'{(t)e’j“"dt

Itil<e
where z(t) = ). §(t-t;) is a Poisson impulse train, then
z. 2c
E“§ c(w)l } = zcsx(w) + 7 Rx(o)

Proof

Since R (1) = A% + )\§(r), it follows that
1 pe e .
E {IXc(w)lz} = Xz‘J‘ J- R,(t1-tp)e-iv(t1-t2)dt dt,
~ -¢c J-¢c
c c N 1 <
- I eiuty J' R, (t;-t)e 9t1dt,dt, + — j R (0)dt,
-c -c A

o
If J IR (7)l < co then for sufficient large c, the inner integral on the right is nearly
-00

equal to S,(w) 3“2 and (i) follows.

__—-__-—_—_--___---.._---..—_-_..__.—-_—--_—_-___-__-_.---..___-—.-_—--_-..___-__-_

160



10-22

10-23

E(z(0)} = () E(w(t)} = g(t) - g(De/T = g(e)
t T
w(t) = (1 -3 J x(a)do - j x(a)da
0 t

1 ad

The above two integrals are uncorrelated because n(t) is white

noise. Hence, as in Example 9-5
2 2 2
o, = a- %9 Nt + ii N(T - t) = Nt(1 --%)
Note The above shows that the information that g(T) = 0 can be
used to improve the estimate of g(t). Indeed, if we use w(t) in-
stead of z(t) for the estimate of g(t) in terms of the data’g(t), the
variance is reduced from Nt to Nt(1l-t/T).

- - - - = = o - -~ - — - - - - - -~ - "> " = > - > - - - -

(a) - Since |} aibil < Z|a1||bi|, it suffices to assume that the numbers
i

a, and bi are real, The quadratic

i

i i i

is nonnegative for every real z, hence, its discriminant cannot be
positive. This yields (i).

2 2 2 2
I(z) = Y(a,-2b,)" =2° Y bl -22]ab +]a
§ i i Z ii i i

(b) With f[n] and Rv[m] = SOG[m] as in Prob, 10-24a (white noise)

y¢lngl = Jhin)f(ny-n) 1,[n] = Jhinlyin]
E(y2la]} = 5 plo] = s I|nlal|®
[see (9-213)] And (i) yields
yilagl  |Inialtlng-al|?

1 2
- < g lnid|
E{Zi[n]} So ) hzln] So

*
with equality iff hn] = kf [no—n].
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10-24 (a) Given F(z) and Sv(w) = S0 = constant . The z transform of yf[n]
equals F(z)H(z). Hence, [see (9-109)]
m
yelnl = == | Fee
f 27

-

JuT ij)ejan

YH(e dw

|
1 F(ejmT)H(eij)dm
il

2
dw

yi[n]
2 - b
E{y [n]} s, J

-7

3Ty

H(e” )

2
jwT dw

F(e” )

m
<§1_J
0 g

The last inequality follows from Schwarz's inequality
with equality iff

ejmT

13T = kF"(e3%T) = kr(e 4Ty, 1.e., 1£f H(z) = kF(z"D)

(b) Given arbitrary Rx'm], F(z), and the form of H(z) (FIR); to find the
coefficients a of H(.). In this case
yf[n] = aof[n] + alf[n-ll + see 4 aNf[n-N]

zv[n] = aoy[n] + al\_)[n-ll + oo 4 aNy[n-N]

To maximize the signal-to-noise ratio it suffices to minimize
N

E(zi[n]} = )
k,r =0

akaer[k-r]
subject to the constraint that the sum
yf[0] = aof[O] + alf[—ll + oo ¢ aNf[-N]

is constant. With A a constant (Lagrange multiplier), we minimize
the sum
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N

N
1= ) aaR [k-r] - x[ Y a fl-k] - yf[O]]

k,r=0 k=0

this yields the system

oI N
'a'a';" 0 -rzo aer[k-r] - Af[~k] k= 0,.., N

whose solution yields a, .

10-25
B = A|lH(w,) | = - Sy (w) =
o ATFR LM
N -a|t] 2 . U
ls,n(‘r) =35 © E{Zn(t)} R-yn(o 72
Bz - 2A2 a Max. if a = mo

2 N 2 2
E{).'n(t)} a” +uw,

163



10-26 Since H(w) is determined within a constant factor, we can sssume that the response

ye(t,) of the optimum H(w) due to f(t) is constant:

yelty) = Y & f(t,-iT) = ¢ )
i=0

Our problem is to minimize the variance

V=Ey )= ¥ a, 3 a R@T-iT) (ii)
n=0 i=0

of y,(t) subject to the constraint (i'). This yields the system

= Y a R(NT-iT) - kf(t,-nT) = 0

i=0

v
aan

where k is a constant (lagrange multiplier). With a, so determined, we conclude from
(ii) that

= -nT) = 2 _ (o)
V=3 ka, f(t,-nT) = ky(t,) " ket

n=0

10-27 Ry, (pv) = E(ﬁ(t+u)+c[ [5(t+v)+c] [f(t)+c]) = R(p,v) + cR(p) + cR(V) + cR(u-v) +c3
because E(.’.‘.(t)} = 0. Furthermore,

R(p) «27S(u)s(v) R(v) = 2x6(u)S(v) cd & 4x%5(u)s(v)

J'co J-oo R(p-v)e-ilus+v)qudy = on R(r)e"iv7dr J'oo e iu+vIvgy = 2xS(u)s(u+v)
-00 -00 -00 -00

D 5 0 o - - = = A - - - T = = - " - = - - - —
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10-28 We shall use the equations E{x(t)} = 0, E{x%(t)} = At. Suppose that t; < t, < tg.

Clearly,
E(tz) = :{(H) + [3(‘3)’3&1)]
(ts) = X(ty) + [X(tp) - K(t)] + [K(t9)-X(tp) 0

Inserting into the product X(t;)x(ty)x(tg) and using the identity E{i(ti)-g(tj)} = 0 and

the independence of the three terms on the right of (i), we obtain
E{f(tﬂi(tz)f(ts)} = E(is(tﬂ} = Aty = A min (ty, t, t3)

Since z(t) = X(t), we conclude from (9-120)-(9-122) that

askm(tl,tz,t;;)- A Bsmin(tl,tz,ts)
3oLt at,at,ot,

Rizs(ty,ty,tg) =

It suffices therefore to show that the right side equals A8(t;-t,)8(t;-ty). This is a

consequence of the following:

amin(tl,tz,ta)
Bty

= t;U(ty-t1)8(t3~ty) + t3 U (t)-tp) § (ts-1p)
+ U(tl"t3)U(tz't3)"t35(t1't3)U(tz"t3)~t3U(t1"t3)8(tz't3)
= U(tl-t3)U(tz-t3)

because t;5(t;-t;) = t;5(t;-t). Hence,

| 20 2mi

| Fmin(titats) | e 4 96(t-te) Fmin(ttals) | st -t)6(t,-t

i 3t,at, (t1-t3)é(ta-ts) 3t 51,3ty (t1-62)6(t1-ts)
10-29 See outline given in text.
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