CHAPTER 12

12-1  x(t) = 10 + v(t) R, (1) =2 §(7) E{v(t)} =0
E{n,} = E{x(t)} = 10 Cc (1) = 28(1)
From (12-5)
' Ll ' I8}
2 1 T 1l T 1
0“'1" -EJ Cx(-r)(l - 57 Ydt = T J 26(t) (1 - 2,r)ch' =7
-T -T

12-2 The process x(t) is normal (note correction) and such that-

F(x,x;1)—* Fz(x) as T+ @ (1)

We shall show that it is mean-ergodic. It suffices to show that
[see (12-10)]

C{(t)— 0 as T >

Proof. We can assume (scaling and centering) that n= 0 C(0) = 1.
With this assumption, the RVs x(t +t) and x(t) are N(0,0;1,1;r) where

r = r(1) = C(1) is the autocovariance of x(t). Hence,

2 2
f(xl,xz;T) = 1. exp, - 1 (x, - 2rx1x2+x2)

2n/1-2 71-r5 !
2
1 1 2| "%pl2
= — exp{ - (xl - rxz) e
2n/1-¢2 2 (1-r2)

Clearly, f(x,y) = f£(y,x), hence, (see figure)

X
F(x+dx, x+dx;t) - F(x,x,7) = 2 [ f(g,%) dgd)‘

L r g 1 2 i -le 2
- exp { - (E-xr) dg d
) _ 2(1—r2) ¢ *
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Furthermore,

I"z(x*dx) - Fz(x) = 2 F(x)f(x)dx " __._:c___—

Fro= the above and (i) it follows that / l
dx >k

c / X=X > G(x) :

( /l-rz) T I

0 x

Hence, r(t)—0 as t + =
12-3 If x(t) is normal, then [see (12-27)]
2
c,, (1) = ROMDRO-1+ RAT)  z(r) = x(t+N)x(t)

If, therefore,Rx(t) =0 for |t|>a, then sz(T) =0

for |t| > 1 +a.

T T T R e e e e e e e e - = o e e ot e e e = o o e e e o e = - — — =

12-4 If x(t) = a ej (mt+$) then the time-average
T *
L [ x(t+1)x (t)dt = ejmr |a
2T ~ ~ ~
-T

2
|

12-5 If z(t) = g(t-l-k)z(t), then

sz(r) = E{§(t+k+r)z(t+r)§(t +))}.'(t)} - Riy(k)

and the result follows from (12-5).

T T i o 0 = ot o e s o e o o e e e - - - —— -~ ———— = = -

174



The process 1:((t) = v(t -0) is stationary with mean n and covariance
' E(‘t) given by [see (10-176) and (10-177)]

T T
n= % J n(t)dt E(r) = J c(t+1,t)dt
0 0

L

2
If R(t+1,t) +n (t) as T+~ (note correction), then

C(t+t,t)—0 hence C(t)—=0
T 9o T+

This shows that [see (12-10)], g(t) is ergodic, therefore,

c c+8
1 - 1 -
-iz J }f(t)dt i‘c‘ I E(t)dt""—" n
-C -c+8

This yields the desired result because for a specific outcome,
0(z) = 6 is a constant and
c+o c
.1 1
Lim 5= x(t)dt = 2im 5~ | x(t)dt

2c
=3 o0 ~-c+6 C~poso -c

From (9-38) it follows that
T T
2 2
4T Op = I I C(tl,tz)dtl,dtz = J J C(t+t,t)drdt
-T -T

where D is the parallelogram in the figure. Given € >0, we can find

a constant ‘to such that
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12-8

lc(e+7,t)| <e for |z| >t (uniform continuity), Furthermore, if
C(t,t) < P then

2 2
C (tl,cz) _<_C(t1.tl)C(t2,t2) <P
Thus,
Ic] <€ 1n D, and |C| <P 1n D,
The area of Dl is less than lo'l‘z; the area of D2 is less than
41'0'1’. Hence
2 T
0'1‘ < e+—° —_— e
T+o

And since ¢ is arbitrary, we conclude that o * ()

T T = o o o o o 1 5 e o o o o e 0 o o o o o b " e - - - - - - - — - - - - - - - - - - -

It follows from (6-234) with x(t) = x, x(t+)) = y

']1 =g = 0 012 = (722 = R(O) 10,,09 = R(A)
(b) The proof is based on the identity

E(yM) = E (EgIIM) M = (x(t)eD) )

Proof Suppose first that D consists of the union of open intervals. In this case, if xeD,

then for small § the interval (x,x+6) is a subset of D, hence

{(x<x <x+dx, M) ={x <x <x+dx)

for x€D and {@) otherwise. This yields

_ P{x<x<x+dx) _ 1 o
f(XlM) dx = ——m—— = -F f(x)dx p= P(M)

for x€éD and 0 otherwise. Similarly, f(x,y]M) = f(x,y)/p for x€D and 0 otherwise. From

the above it follows that

EEM) = [ (7 vty | roamax

-00
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 yf(x,y)f(x) _ o N
- [ [T TRy avax= [ | sfcivdyax = Eqiv

If D has isolated points, we replace each x€D by an open interval (x-¢, x+¢)
forming an open set D,. Clearly, D, -+ D as ¢ — 0 and (i) follows if at the isolated
points x; of D, E{ylx;} is interpreted as a limit.

Since E{x(t+)ix(t)} = R(A)x(t)/R(0), (i) yields

R(A) —
R(0) X ("M}_ RO

(c) We select for D the interval (a,b) and we form the samples x(nT), x(nT+)) of a

E{x(t+A)|M} = E{E{x(t+)«)|x(t)}|M} =E {

single realization of x(t) retaining only the pairs x(t;), x(t;+}) such that a< x(t;)<b. Using

(5-51), we obtain

4

R(A) — _l_

E{i(tw\)l a< .’.‘.(t) <b}= ﬁfé—) X o

)X x(t;+2)

where x = E{x(t)la<x(t)<b). This approximation is satisfactory if N is large and R(r)~0

12-9 (a) From (7-61) with E{(w(t)} = C,,(A):
Ryu(7) = Cy41)Cry (A1) + CoICyy (1) + Cry%(A) = Copnlr) + Coy*(N)
(b) It follows from (a) that if
Cy(r) = 0 Cyy(r) = 0 Cpy(0) = 0

then C,,(r) — 0 as |f| — oo; hence [see (12-10)] the process x(t) and y(t) are covariance

ergodic.

12-10 From (10B-1) with g(x) = I:

b 2 b b b
I f(x)dx sj' lf(x)lzdtI 12 x dx = (b-a) J' IF(x)i2dx
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12-11 We use as estimate of n the time average ;7'1‘ in (12-1): As we know (see Example 12-4)

E(ng) =1 op? = 5=
We wish to find e such that
Pln-e<npr<n+e)=095

(a) From (5-88):

UTz Op 50
095 = P(IZT"I'SE) <1- 2 €=6 < 70705 =
(b) If v(t) is normal, then nr is normal; hence,
€ € €
0.95 = 2G [v_f] -1 G [;;] = 0.975 o= Zoors
This yields & = ¢, ~ /10/3 = ¢,
12-12 (a) It follows from the convolution theorem for Fourier series
(v) "M
A fed . v_‘-
0 10 0 5 ~
1
With pn as above, wn = i1 pn pu
- f edoTe _sin S.ST L1 2
¥ sin 0.5uT “rEm et e



12-13 T

1 -Vt - '2
(w) = — Jx(t)e dt § (w) |X (w)
15’1’ /3T K T T
and T T
- i)
T(u,v) = -21—T I JR(::1 - t2)e I(u 1 +Vt2) dtldtz (
-T -T

as in (9-173) and (9-174) yield
E($, (@)} = Tu, )

Var §T(w) = |T'(w, -m)l2 + |I'(w,w) 2 132{5,1,0»)}

Var §,(0) = 2|1(0,0|? = 2(E*{5,(0))

The remaining part of the problem is more difficult. We outline the
proof (For details see Papoulis, Signal Analysis). From (i) and the convolu-
tion theorem it follows that

F(u,v) = I S?T'iéu_._*'vv_-a;) si: To S(v - a)da

w00

1f S(w) is nearly constant in an interval of length 1/T, then it can be
taken outside the integral sign. Hence,

T'(u,v) = S(v) I sin T(u +v-a) sin Ta

sin T(u +vVv)
7 T(u + v-a) a

T(u +v)

da= S(v)

00

This yields

I'(w,-w) = S(w) < T(w,w) = S(w) -s-i;—z—'f-"l—.o
w wT>e

Var §.(w) < 2 EX{S ()} =>E*{5, (w))
- - wTse 7
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12-14 The function
T
X () = I c(c)a_:(:)e'j‘“tdc
-T

is the Fourier transform of the product

1 le] <T
e (€)%, (t) xp(®) = ’ 0 |t >T

Hence, the function
275, () = |X (w)]?
~T ~c

is the Fourier transform of

e(®)x, () % c(=t)%. (~t)

T-|t}/2
I c(t+ Dx (E+3 el = Dx(t - Hat

-T+|t|/2

T o o o (o o = o o e o e e e e = " - . " e - " = - = - - - - - - e o= = - -

12-15 Since C(-1) = C(7), it follows from (12-28) that for large T,

| o]

" Var Ry()) = 7
~ -00

[CO+T)C(A-1) + C2(1)] dr

Since S(w) is real, it follows from Parseval's formula and the pairs
C(O+1)  elA§(1) C(A~7) «» e"idwg(y,))

that the above integral equals

J : [ej'\‘" S(w)e S(w) + Sz(w)] dw

S e o e o e o e e o o e e e e o o o e e e o e o S o s e e et = e et e - - " - —— - — = - -~ —
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12-16 Withc=T - |1]/2
T x i, 1=l
z(t) = x(t +x(t - 3) E(R (D)} = R(DA - )
(7-37) yields

E{z(t,)z(t))} - E{z(t;)}E{z(t,)}

= R - - - -
= R (::l tz) + R(t1 t, + t)R(tl t, 1)
2 2
4 T Var Br(") = J J [R (tl - cz) + R(t;1 -t + 'l:)R(tl - t2 - ‘t)]dtldtz
-Cc ~C
2c
- J[Rz(u) + R(a + TR - 1)]2T - |1| - |a])da
-2c
12-17 Equating coefficients of zX in (12-98), we obtain
(1-Kp?) N1 = N + Ky an N
12-18 "R[0] = 8 R[1] = &
From (13-67)
=8 ay =K, = 0.5 P, = (1 -K)P, =6
£, (7|
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12-19 From page (13-67)

= 1 - = i - _1_4_&
Po 13 a; = K, 13 Pl 3
P.K, = R[2] - atR[1] K =Ll

12 1 2 144

2 _ 55 2 1 1595

3 " 1w 3 " T4 Py = Tan
S 1595 X 144

(w) = —
MEM 14b - 55e-3uT _ -32uT[2

From (12-119)

13-¢ 5 2
5 13-q 5| =0 q = 14-/51 = 6.86
2 5 13-9

Inserting the modified data 6.14, 5, 2 into the Yule-Walker equations
(12-82), we obtain ’

al = 4.07 al = -1 E,(z) =1 - 4.0727" 4+ 772

=1 - -1, =2 . +j0.62
Ez(z) 1-4.072 " + 2 21’2 = e~
Solving (12-91) we obtain
RL[m] = 6,86 §[m] + 3.07 cos 0.62m

5 (w) = 6.86 + Z—T"-.x:a.m [6(w - 0.62) + &(w + 0.62)]

¢ SMM(w) $ S W)
11

w,T=0.62




12.20 (a) Let z = 7% represent one of the roots of the Levinsion Poly-
nomial P,(z) that lie on the unit circle. In that case

P, (ej91> =0

and substituting this into the recursion equation (12-177) we get

P, , (ejol)
S = i | 2
|80 By (@)
so that ‘
Sp = €%,
Let

Py (670) — R(§) &*©

and since P,_1(z) is free of zeros in |z| < 1, we have R(0) > 0,0 < § <
27, and once again substituting these into (12-177) we obtain

= R(6) [ej«ﬁ(@) — pi(nb+a) ewjzp(@)jl

= 25 R(6) /m0+a)/2 g, (w(ﬁ) — %Q — %) .

Due to the strict Hurwitz nature of P,_;(2), as @ varies from 0 to
27, there is no net increment in the phase term (), and the entire
argument of the sine term above increases by nw. Consequently P, (e/?)
equals zero atleast at n distinct points #y,6,,---6,, 0 < 6; < 2.
However P,(z) is a polynomial od degree n in z and can have atmost n
zeros. Thus all the above zeros are simple and they all lie on the unit
circle.

(b) Suppose P,(z) and P,_1(z) has a common zero at z = z5. Then
|20| > 1 and from (12-137), we get

20 Sp, Pn—l(z()) = ()

which gives s, = 0, since ﬁn_l(zo) £ 0, (f’n_l(z) has all its zeros in
|z| < 1). Hence s, # 0 implies P,(z) and P, 1(z) do not have a
cOmmon Zzero.
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12.21 Substituting s, = p", |p| < 1 in (12-177) we get

V 1—pn Pn(z) = Pn—l<z) - (Z/))n P:;—l(l/z*)
Let x = zp and
A
Po(2) = Pu(z/p) = An(2)
so that the above iteration reduces to
VI= P A(2) = Apoy(a) — 2" Ay (1/2)
= Ap1(z) — 2 Ay ()

From problem (12-20), the polynomial A,(z) has all its zeros on the
unit circle (since s, = 1). i.e.,

z = % = 2. p.
Hence the zeros z, = (1/p)e?% or |z| = 1/p. (The zeros of P,(z) lie

on a circle of radius 1/p).

12.22 The Levinson Polynomials P, (z) satisfy the recusion in (12-177).
Define s, = A"s,, |A| = 1, and replacing s, by s, and P,(z) by P.(z)
in (12-177) we get
Pi(2) =Py y(2) = zs), Plua(2)
= Fh1(2) = (2A)" 50 P24 (2) (1/27)

Let y = z\ and define P/(y/)\) = A,(y) so that the above recursion
simplifies to

An(y)

Ana(y) =y sn A1 (1/y7)
An~l. (y> — YSn Azml (y)

and on comparing with (12-177), we notice that A,(y) = P.(y) =
P,(Az). Thus P,(Az) represents the new set of Levinsion Polynomials.
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12.23 (a) In this case
S0) = [H(E)| = [L = P = 2= &’ — 3 = 2(1 - cost)

so that ro = 2,73 = —1,r, = 0, |k| > 2. Substituing these values into
(9-196) and taking the determinant of the tridiagonal matrix T, we
obtain the recursion

lTnl - An - 2An~1 - An~2

where Ag = 2,A; = 3. Let D(z) = Y02, A, 2" so that the above
recursion gives
2—z 1 1 >

D(z) = =2 = 1—z+(1—z)2 ZT;)(n—FQ)z"

and hence we get
A, =n+2, n > 0.

Using (12-192) and (9-196) we get

A(l) (_1)n~1(_1)n 1
"= _1 n—1 n — _ ’ k > 1
§ (=1) AN n-4+1 n+1 -

(b) The new set of reflection coefficient s), = —s;, switches around the
Levinson Polynomials P,(z) and @Q(z), and hence it follows that they
correspond to the positive-real function

which gives rf, =2,7, =1, k > L
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