CHAPTER 12

$$x(t) = 10 + v(t)$$
 $x_v(\tau) = 2 \delta(\tau)$ $x_v(\tau) = 0$ $x_v(\tau) = 10$ $x_v(\tau) = 2 \delta(\tau)$ $x_v(\tau) = 2 \delta(\tau)$

From (12-5)

$$\sigma_{n_{T}}^{2} = \frac{1}{2T} \int_{-T}^{T} C_{x}(\tau) \left(1 - \frac{|\tau|}{2T}\right) d\tau = \frac{1}{2T} \int_{-T}^{T} 2\delta(\tau) \left(1 - \frac{|\tau|}{2T}\right) d\tau = \frac{1}{T}$$

12-2 The process x(t) is normal (note correction) and such that

$$F(x,x;\tau) \longrightarrow F^{2}(x)$$
 as $\tau \to \infty$ (1)

We shall show that it is mean-ergodic. It suffices to show that [see (12-10)]

$$C(\tau) \longrightarrow 0$$
 as $\tau \rightarrow \infty$

<u>Proof.</u> We can assume (scaling and centering) that n=0 C(0) = 1. With this assumption, the RVs $x(t+\tau)$ and x(t) are N(0,0;1,1;r) where $r = r(\tau) = C(\tau)$ is the autocovariance of x(t). Hence,

$$f(x_1, x_2; \tau) = \frac{1}{2\pi\sqrt{1-r^2}} \exp\left\{-\frac{1}{2(1-r^2)}(x_1^2 - 2rx_1x_2 + x_2^2)\right\}$$
$$= \frac{1}{2\pi\sqrt{1-r^2}} \exp\left\{-\frac{1}{2(1-r^2)}(x_1 - rx_2)^2\right\} e^{-x_2^2/2}$$

Clearly, f(x,y) = f(y,x), hence, (see figure)

$$F(x + dx, x + dx; \tau) - F(x, x, \tau) = 2 \int_{-\infty}^{x} f(\xi, x) d\xi dx$$

$$= \frac{1}{\pi \sqrt{1 - r^2}} \int_{0}^{x} \exp \left\{ -\frac{1}{2(1 - r^2)} (\xi - xr)^2 \right\} d\xi e^{-x^2/2} dx$$

Furthermore,

$$F^{2}(x+dx) - F^{2}(x) = 2 F(x)f(x)dx$$

From the above and (i) it follows that

$$G\left(\frac{x-rx}{\sqrt{1-r^2}}\right) \xrightarrow[\tau \to \infty]{} G(x)$$

Hence, $r(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$

12-3 If x(t) is normal, then [see (12-27)]

$$C_{zz}(\tau) = R(\lambda + \tau)R(\lambda - \tau) + R^{2}(\tau)$$
 $z(t) = x(t + \lambda)x(t)$

If, therefore, $R_{\mathbf{x}}(\tau) = 0$ for $|\tau| > a$, then $C_{\mathbf{z}\mathbf{z}}(\tau) = 0$ for $|\tau| > \lambda + a$.

12-4 If $x(t) = a e^{j(\omega t + \phi)}$ then the time-average

$$\frac{1}{2T} \int_{-T}^{T} x(t+\tau) x^{*}(t) dt = e^{j\omega\tau} |a|^{2}$$

12-5 If $z(t) = x(t+\lambda)y(t)$, then

$$C_{zz}(\tau) = E\{\underline{x}(t+\lambda+\tau)\underline{y}(t+\tau)\underline{x}(t+\lambda)\underline{y}(t)\} - R_{xy}^{2}(\lambda)$$

and the result follows from (12-5).

The process $\bar{x}(t) = x(t - \theta)$ is stationary with mean $\bar{\eta}$ and covariance $\bar{C}(\tau)$ given by [see (10-176) and (10-177)]

$$\bar{\eta} = \frac{1}{T} \int_{0}^{T} \eta(t) dt \qquad \bar{C}(\tau) = \frac{1}{T} \int_{0}^{T} C(t + \tau, t) dt$$

If $R(t+\tau,t) \to \eta^2(t)$ as $\tau \to \infty$ (note correction), then

$$C(t+\tau,t) \xrightarrow{\tau \to \infty} 0$$
 hence $\overline{C}(\tau) \xrightarrow{\tau \to \infty} 0$

This shows that [see (12-10)], $\bar{x}(t)$ is ergodic, therefore,

$$\frac{1}{2c} \int_{-c}^{c} \overline{x}(t) dt = \frac{1}{2c} \int_{-c+\theta}^{c+\theta} \underline{x}(t) dt \longrightarrow \overline{\eta}$$

This yields the desired result because for a specific outcome, $\theta(\zeta) = \theta$ is a constant and

$$\lim_{c \to \infty} \frac{1}{2c} \int_{-c+\theta}^{c+\theta} \underline{x}(t) dt = \lim_{c \to \infty} \frac{1}{2c} \int_{-c}^{c} \underline{x}(t) dt$$

12-7 From (9-38) it follows that

$$4T^{2}\sigma_{T}^{2} = \int_{-T}^{T} \int_{-T}^{T} C(t_{1}, t_{2}) dt_{1}, dt_{2} = \int_{D} C(t + \tau, t) d\tau dt$$

where D is the parallelogram in the figure. Given $\epsilon > 0$, we can find a constant τ_0 such that

 $|C(t+\tau,t)| < \epsilon$ for $|\tau| > \tau_0$ (uniform continuity). Furthermore, if C(t,t) < P then

$$c^{2}(t_{1},t_{2}) \leq C(t_{1},t_{1})C(t_{2},t_{2}) < p^{2}$$

Thus,

 $|C| < \varepsilon$ in D_1 and |C| < P in D_2

The area of D_1 is less than $4T^2$; the area of D_2 is less than $4\tau_0T$. Hence

$$\sigma_{T}^{2} < \varepsilon + \frac{\tau_{o}}{T} \xrightarrow{T + \infty} \varepsilon$$

And since ε is arbitrary, we conclude that $\sigma_T \to \mathcal{O}$.

12-8 It follows from (6-234) with x(t) = x, $x(t+\lambda) = y$

$$\eta_1 = \eta_2 = 0$$
 $\sigma_1^2 = \sigma_2^2 = R(0)$ $r\sigma_1, \sigma_2 = R(\lambda)$

(b) The proof is based on the identity

$$E(y|M) = E \{E(y|x)|M\} \qquad M = \{x(t) \in D\}$$
 (i)

<u>Proof</u> Suppose first that D consists of the union of open intervals. In this case, if $x \in D$, then for small δ the interval $(x,x+\delta)$ is a subset of D, hence

$$\{x \le x < x + dx, M\} = \{x \le x < x + dx\}$$

for x∈D and {Ø} otherwise. This yields

$$f(x|M) dx = \frac{P\{x \le x < x + dx\}}{P(M)} = \frac{1}{p} f(x)dx \qquad p = P(M)$$

for $x \in D$ and 0 otherwise. Similarly, f(x,y|M) = f(x,y)/p for $x \in D$ and 0 otherwise. From the above it follows that

$$E\{E\{\underbrace{y|x|M}\}\} = \int_{D} \left(\int_{-\infty}^{\infty} yf(y|x)dy \right) f_{x}(x|M)dx$$

$$= \int_{D} \int_{-\infty}^{\infty} \frac{yf(x,y)f(x)}{f(x)p} dydx = \int_{D} \int_{-\infty}^{\infty} yf(x,y|M)dydx = E\{y|M\}$$

If D has isolated points, we replace each $x \in D$ by an open interval $(x-\varepsilon, x+\varepsilon)$ forming an open set D_{ε} . Clearly, $D_{\varepsilon} \to D$ as $\varepsilon \to 0$ and (i) follows if at the isolated points x_i of D, $E\{y|x_i\}$ is interpreted as a limit.

Since $E\{x(t+\lambda)|x(t)\} = R(\lambda)x(t)/R(0)$, (i) yields

$$E\{x(t+\lambda)|M\} = E\{E\{x(t+\lambda)|x(t)\}|M\} = E\left\{\frac{R(\lambda)}{R(0)}x(t)|M\right\} = \frac{R(\lambda)}{R(0)}x$$

(c) We select for D the interval (a,b) and we form the samples x(nT), $x(nT+\lambda)$ of a single realization of x(t) retaining only the pairs x(t), x(t), x(t) such that x and x (t) Using (5-51), we obtain

$$E\{x(t+\lambda)| \ a < x(t) < b\} = \frac{R(\lambda)}{R(0)} - \frac{1}{x} = \frac{1}{N} \sum_{i=1}^{N} x(t_i + \lambda)$$

where $\bar{x} = E(x(t)|a< x(t)< b)$. This approximation is satisfactory if N is large and $R(\tau) \simeq 0$ for $\tau > T$.

12-9 (a) From (7-61) with $E(w(t)) = C_{xy}(\lambda)$:

$$R_{ww}(\tau) = C_{xy}(\lambda + \tau)C_{xy}(\lambda - \tau) + C_{xx}(\tau)C_{yy}(\tau) + C_{xy}^{2}(\lambda) = C_{ww}(\tau) + C_{xy}^{2}(\lambda)$$

(b) It follows from (a) that if

$$C_{xx}(\tau) \to 0$$
 $C_{yy}(\tau) \to 0$ $C_{xy}(\sigma) \to 0$

then $C_{ww}(r) \to 0$ as $|r| \to \infty$; hence [see (12-10)] the process x(t) and y(t) are covariance ergodic.

12-10 From (10B-1) with g(x) = 1:

$$\left| \int_{a}^{b} f(x) dx \right|^{2} \le \int_{a}^{b} |f(x)|^{2} dt \int_{a}^{b} 1^{2} \times dx = (b-a) \int_{a}^{b} |f(x)|^{2} dx$$

12-11 We use as estimate of η the time average η_T in (12-1): As we know (see Example 12-4)

$$E(\eta_T) = \eta \qquad \sigma_T^2 = \frac{5}{2T}$$

We wish to find ϵ such that

$$P\{\eta - \varepsilon < \eta_T < \eta + \varepsilon\} = 0.95$$

(a) From (5-88):

$$0.95 = P\{|\underline{\eta}_T - \eta| \le \varepsilon\} \le 1 - \frac{\sigma_T^2}{\varepsilon^2} \qquad \varepsilon = \varepsilon_a \le \frac{\sigma_T}{\sqrt{0.05}} = \frac{50}{T}$$

(b) If $\nu(t)$ is normal, then η_T is normal; hence,

$$0.95 = 2G \left(\frac{\varepsilon}{\sigma_{\rm T}}\right) - 1$$
 $G \left(\frac{\varepsilon}{\sigma_{\rm T}}\right) = 0.975$ $\frac{\varepsilon}{\sigma_{\rm T}} = z_{0.975}$

$$G\left(\frac{\varepsilon}{\sigma_T}\right) = 0.975$$

$$\frac{\varepsilon}{\sigma_{\rm T}} = z_{0.975}$$

This yields $\varepsilon = \varepsilon_{\rm b} \simeq \sqrt{10/5} = \varepsilon_{\rm a} \sqrt{5}$

It follows from the convolution theorem for Fourier series 12-12

With p_n as above, $w_n = \frac{1}{11} p_n p_n$

$$P(\omega) = \sum_{n=-5}^{5} e^{-jnT\omega} = \frac{\sin 5.5\omega T}{\sin 0.5\omega T}$$
 $W(\omega) = \frac{1}{11} P^{2}(\omega)$

12-13

$$X_{T}(\omega) = \frac{1}{\sqrt{2T}} \int_{-T}^{T} x(t)e^{-j\omega t} dt$$
 $S_{T}(\omega) = |X_{T}(\omega)|^{2}$

and

$$\Gamma(u,v) = \frac{1}{2T} \int_{-T}^{T} \int_{-T}^{T} R(t_1 - t_2) e^{-j(u t_1 + \forall t_2)} dt_1 dt_2$$
 (i)

as in (9-173) and (9-174) yield

$$E\{S_{T}(\omega)\} = \Gamma(\omega, -\omega)$$

$$Var S_{T}(\omega) = |\Gamma(\omega, -\omega)|^{2} + |\Gamma(\omega, \omega)|^{2} \ge E^{2}\{S_{T}(\omega)\}$$

$$Var S_{T}(0) = 2|\Gamma(0, 0)|^{2} = 2\{E^{2}\{S_{T}(0)\}\}$$

The remaining part of the problem is more difficult. We outline the proof (For details see Papoulis, Signal Analysis). From (i) and the convolution theorem it follows that

$$\Gamma(u,v) = \int_{-\infty}^{\infty} \frac{\sin T(u+v-\alpha)}{\pi T(u+v-\alpha)} \frac{\sin T\alpha}{\alpha} S(v-\alpha) d\alpha$$

If $S(\omega)$ is nearly constant in an interval of length 1/T, then it can be taken outside the integral sign. Hence,

$$\Gamma(u,v) \simeq S(v) \int_{-\infty}^{\infty} \frac{\sin T(u+v-\alpha)}{\pi T(u+v-\alpha)} \frac{\sin T\alpha}{\alpha} d\alpha = S(v) \frac{\sin T(u+v)}{T(u+v)}$$

This yields

$$\Gamma(\omega,-\omega) \simeq S(\omega) < \Gamma(\omega,\omega) \simeq S(\omega) \xrightarrow{\sin 2 T\omega} \longrightarrow 0$$

$$\operatorname{Var} \ \underline{S}_{\mathbf{T}}(\omega) \le 2 \ \underline{E}^{2} \{\underline{S}_{\mathbf{T}}(\omega)\} \xrightarrow{\omega \mathbf{T} \to \infty} \underline{E}^{2} \{\underline{S}_{\mathbf{T}}(\omega)\}$$

12-14 The function

$$X_{c}(\omega) = \int_{-T}^{T} c(t)x(t)e^{-j\omega t}dt$$

is the Fourier transform of the product

$$c(t)x_{T}(t) \qquad x_{T}(t) = \begin{cases} 1 & |t| < T \\ 0 & |t| > T \end{cases}$$

Hence, the function

$$2 T S_{T}(\omega) = |X_{C}(\omega)|^{2}$$

is the Fourier transform of

$$\mathbf{c}(t)\mathbf{x}_{\mathrm{T}}(t) \star \mathbf{c}(-t)\mathbf{x}_{\mathrm{T}}(-t)$$

$$= \int_{-T+|\tau|/2}^{T-|\tau|/2} c(t+\frac{\tau}{2})x_{T}(t+\frac{\tau}{2})c(t-\frac{\tau}{2})x(t-\frac{\tau}{2})dt$$

$$-T+|\tau|/2$$

12-15 Since $C(-\tau) = C(\tau)$, it follows from (12-28) that for large T,

$$\operatorname{Var} \ \underset{\sim}{\mathbb{R}_{\mathrm{T}}}(\lambda) \simeq \frac{1}{2\mathrm{T}} \int_{-\infty}^{\infty} \left[C(\lambda + \tau)C(\lambda - \tau) + C^{2}(\tau) \right] d\tau$$

Since $S(\omega)$ is real, it follows from Parseval's formula and the pairs

$$C(\lambda+\tau) \leftrightarrow e^{j\lambda\omega}S(\omega)$$
 $C(\lambda-\tau) \leftrightarrow e^{-j\lambda\omega}S(\omega)$

that the above integral equals

$$\int_{-\infty}^{\infty} \left[e^{j\lambda\omega} S(\omega) e^{j\lambda\omega} S(\omega) + S^{2}(\omega) \right] d\omega$$

12-16 With
$$c = T - |\tau|/2$$

$$z(t) = x(t + \frac{\tau}{2})x(t - \frac{\tau}{2}) \qquad E\{R_T(\tau)\} = R(\tau)(1 - \frac{|\tau|}{T})$$

$$(7-37) \text{ yields}$$

$$E\{z(t_1)z(t_2)\} - E\{z(t_1)\}E\{z(t_2)\}$$

$$= R^2(t_1 - t_2) + R(t_1 - t_2 + \tau)R(t_1 - t_2 - \tau)$$

$$4 T^2 \text{ Var } R_T(\tau) = \int_{-c}^{c} \int_{-c}^{c} [R^2(t_1 - t_2) + R(t_1 - t_2 + \tau)R(t_1 - t_2 - \tau)]dt_1dt_2$$

$$= \int_{-2c}^{2c} [R^2(\alpha) + R(\alpha + \tau)R(\alpha - \tau)](2T - |\tau| - |\alpha|)d\alpha$$

12-17 Equating coefficients of zk in (12-98), we obtain

$$(1-K_N^2) \alpha_k^{N-1} = \alpha_k^N + K_N \alpha_{N-k}^N$$

12-18 R[0] = 8 R[1] = 4

From (13-67)

$$P_0 = 8$$
 $a_1^1 = K_1 = 0.5$ $P_1 = (1 - K_1^2)P_0 = 6$

$$E_1(z) = 1 - 0.5z^{-1}$$
 $S(\omega) = \frac{6}{|E_1(e^{j\omega})|^2}$

12-19 From page (13-67)

$$P_{0} = 13 \qquad a_{1}^{4} = K_{1} = \frac{5}{13} \qquad P_{1} = \frac{144}{13}$$

$$P_{1}K_{2} = R[2] - a_{1}^{4}R[1] \qquad K_{2} = \frac{1}{144}$$

$$a_{1}^{2} = \frac{55}{144} \qquad a_{2}^{2} = \frac{1}{144} \qquad P_{2} = \frac{1595}{144}$$

$$S_{MEM}(\omega) = \frac{1595 \times 144}{144 - 55e^{-j\omega T} - e^{-j2\omega T}|^{2}}$$

From (12-119)

$$\begin{vmatrix} 13-q & 5 & 2 \\ 5 & 13-q & 5 \\ 2 & 5 & 13-q \end{vmatrix} = 0 \qquad q = 14-\sqrt{51} \approx 6.86$$

Inserting the modified data 6.14, 5, 2 into the Yule-Walker equations (12-82), we obtain

$$a_1^2 = 4.07$$
 $a_2^2 = -1$ $E_2(z) = 1 - 4.07z^{-1} + z^{-2}$ $E_2(z) = 1 - 4.07z^{-1} + z^{-2}$ $E_2(z) = 1 - 4.07z^{-1} + z^{-2}$

Solving (12-91) we obtain

$$R_{L}[m] = 6.86 \delta[m] + 3.07 \cos 0.62m$$

 $S_{L}(\omega) = 6.86 + \frac{2\pi}{T} \times 3.07 [\delta(\omega - 0.62) + \delta(\omega + 0.62)]$

12.20 (a) Let $z = e^{j\theta_1}$ represent one of the roots of the Levinsion Polynomial $P_n(z)$ that lie on the unit circle. In that case

$$P_n\left(e^{j\theta_1}\right) = 0$$

and substituting this into the recursion equation (12-177) we get

$$|s_n| = \left| \frac{P_{n-1} \left(e^{j\theta_1} \right)}{\tilde{P}_{n-1} \left(e^{j\theta_1} \right)} \right| = 1$$

so that

$$s_n = e^{j\alpha}$$
.

Let

$$P_{n-1}\left(e^{j\theta}\right) = R(\theta) e^{j\psi(\theta)}$$

and since $P_{n-1}(z)$ is free of zeros in $|z| \le 1$, we have $R(\theta) > 0, 0 < \theta < 2\pi$, and once again substituting these into (12-177) we obtain

$$\begin{split} \sqrt{1-s_n^2} \, P_n \, \left(e^{j\theta}\right) &= R(\theta) \, e^{j\psi(\theta)} - e^{j(\theta+\alpha)} \, e^{j(n-1)\theta} \, R(\theta) \, e^{-j\psi(\theta)} \\ &= R(\theta) \, \left[e^{j\psi(\theta)} - e^{j(n\theta+\alpha)} \, e^{-j\psi(\theta)}\right] \\ &= 2j \, R(\theta) \, e^{j(n\theta+\alpha)/2} \sin\left(\psi(\theta) - \frac{n\theta}{2} - \frac{\alpha}{2}\right). \end{split}$$

Due to the strict Hurwitz nature of $P_{n-1}(z)$, as θ varies from 0 to 2π , there is no net increment in the phase term $\psi(\theta)$, and the entire argument of the sine term above increases by $n\pi$. Consequently $P_n(e^{j\theta})$ equals zero atleast at n distinct points $\theta_1, \theta_2, \dots \theta_n$, $0 < \theta_i < 2\pi$. However $P_n(z)$ is a polynomial od degree n in z and can have atmost n zeros. Thus all the above zeros are simple and they all lie on the unit circle.

(b) Suppose $P_n(z)$ and $P_{n-1}(z)$ has a common zero at $z=z_0$. Then $|z_0|>1$ and from (12-137), we get

$$z_0 \, s_n \, \tilde{P}_{n-1}(z_0) = 0$$

which gives $s_n = 0$, since $\tilde{P}_{n-1}(z_0) \neq 0$, $(\tilde{P}_{n-1}(z))$ has all its zeros in |z| < 1. Hence $s_n \neq 0$ implies $P_n(z)$ and $P_{n-1}(z)$ do not have a common zero.

12.21 Substituting $s_n = \rho^n$, $|\rho| < 1$ in (12-177) we get

$$\sqrt{1 - \rho^{2n}} P_n(z) = P_{n-1}(z) - (z\rho)^n P_{n-1}^*(1/z^*)$$

Let $x = z\rho$ and

$$P_n(z) = P_n(x/\rho) \stackrel{\triangle}{=} A_n(x)$$

so that the above iteration reduces to

$$\sqrt{1 - \rho^{2n}} A_n(x) = A_{n-1}(x) - x^n A_{n-1}^*(1/x^*)$$
$$= A_{n-1}(x) - x \tilde{A}_{n-1}(x)$$

From problem (12-20), the polynomial $A_n(x)$ has all its zeros on the unit circle (since $s_n = 1$). i.e.,

$$x_k = e^{j\theta_k} = z_k \, \rho.$$

Hence the zeros $z_k = (1/\rho)e^{j\theta_k}$ or $|z_k| = 1/\rho$. (The zeros of $P_n(z)$ lie on a circle of radius $1/\rho$).

12.22 The Levinson Polynomials $P_n(z)$ satisfy the recusion in (12-177). Define $s'_n = \lambda^n s_n$, $|\lambda| = 1$, and replacing s_n by s'_n and $P_n(z)$ by $P'_n(z)$ in (12-177) we get

$$P'_{n}(z) = P'_{n-1}(z) - zs'_{n} \tilde{P}'_{n-1}(z)$$

= $P'_{n-1}(z) - (z\lambda)^{n} s_{n} P'^{*}_{n-1}(z) (1/z^{*})$

Let $y = z\lambda$ and define $P'_n(y/\lambda) = A_n(y)$ so that the above recursion simplifies to

$$A_n(y) = A_{n-1}(y) - y^n s_n A_{n-1}^*(1/y^*)$$

= $A_{n-1}(y) - y s_n A_{n-1}^*(y)$

and on comparing with (12-177), we notice that $A_n(y) = P_n(y) = P_n(\lambda z)$. Thus $P_n(\lambda z)$ represents the new set of Levinsion Polynomials.

12.23 (a) In this case

$$S(\theta) = |H(e^{j\theta})|^2 = |1 - e^{j\theta}|^2 = 2 - e^{j\theta} - e^{-j\theta} = 2(1 - \cos\theta)$$

so that $r_0 = 2, r_1 = -1, r_k = 0, |k| \ge 2$. Substituing these values into (9-196) and taking the determinant of the tridiagonal matrix \mathbf{T}_n we obtain the recursion

$$|\mathbf{T}_n| = \Delta_n = 2\Delta_{n-1} - \Delta_{n-2}$$

where $\Delta_0 = 2, \Delta_1 = 3$. Let $D(z) = \sum_{n=0}^{\infty} \Delta_n z^n$ so that the above recursion gives

$$D(z) = \frac{2-z}{(1-z)^2} = \frac{1}{1-z} + \frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+2) z^n$$

and hence we get

$$\Delta_n = n + 2, \qquad n \ge 0.$$

Using (12-192) and (9-196) we get

$$s_n = (-1)^{n-1} \frac{\Delta_n^{(1)}}{\Delta_{n-1}} = \frac{(-1)^{n-1}(-1)^n}{n+1} = -\frac{1}{n+1}, \quad k \ge 1.$$

(b) The new set of reflection coefficient $s'_k = -s_k$ switches around the Levinson Polynomials $P_n(z)$ and Q(z), and hence it follows that they correspond to the positive-real function

$$Z'(z) = \frac{2}{1-z}$$

which gives $r'_0 = 2, r'_k = 1, k \ge 1$.