Solutions for Problems in Chapter 15

15.1 The chain represented by

0 1/2 1/2
p_| 12 0 12
1/2 1/2 0

is irreducible and aperiodic.
The second chain is also irreducible and aperiodic.

The third chain has two aperiodic closed sets {e1,e2} and {es, ¢4}

and a transient state es.



15.2 Note that both the row sums and column sums are unity in this
case. Hence P represents a doubly stochastic matrix here, and

1 -+ 11
. 1 -+ 11
P ——
m + 1
1 -+ 11
! 1
lim P{x,=¢}=—— k=0,1,2,---m.

n— 00 m—l—l’



15.3 This is the “success runs” problem discussed in Example 15-11
and 15-23. From Example 15-23, we get

1 U,

so that from (15-206)
o0 o0 1
Zuk:UOZ y:e-uozl
k=1 k=1 "
gives ug = 1/e and the steady state probabilities are given by

1/e
Uk:ﬂ7 k:1,2,



15.4 1f the zeroth generation has size m, then the overall process may
be considered as the sum of m independent and identically distributed
branching processes x(¥), k = 1,2,---m, each corresponding to unity
size at the zeroth generation. Hence if 7y represents the probability of
extinction for any one of these individual processes, then the overall
probability of extinction is given by

n—0o0

= PHxW=0x" = 1}n{x@ =0x? =1} {x™ = 0]x{™ = 1

= T, PP = 0pxy” = 1]

— m



15.5 From (15—288)—(15—289),
P(Z) =po+p12 -I-p222, since pr =0, k> 3.

Also po + p1 + p2 = 1, and from (15-307) the extinction probability is
given by sloving the equation

P(z) =z

Notice that
P(z)—z =po—(1 —p1)2+p222

=po — (po + p2)z + p22°
= (2 = 1)(p22 — po)
and hence the two roots of the equation P(z) = z are given by

_ P
pz'

21 = 1, Z9

Thus if py; < pg, then z3 > 1 and hence the smallest positive root of
P(z) = zis 1, and it represents the probability of extinction. It follows
that such a tribe which does not produce offspring in abundence is
bound to extinct.
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15.6 Define the branching process {x,}
Xn

Xn—l—l — Z Yk
k=1

where y;. are i.i.d random variables with common moment generating

function P(z) so that (see (15-287)-(15-289))

P(1) = E{yx} = p.

Thus
E{xpp|x} = E{Z0 yrlx, = m}
= E{XIZ1 yrlx, = m}
= E{5 yey = mE{yr} =% p
Similarly

E{xunalx,} = E{E{% 02 %0r1. %, }}
= B{E{xu2 P } %)

= E{an+1|xn} = qu Xn
and in general we obtain
B %} = 5 X (i)

Also from (15-310)-(15-311)

E{x,} =u". (22)
Define <
w, = —. e
o (¢27)
This gives
E{w,} =1.

Dividing both sider of (i) with x"*" we get

(i, =y =y o = 2
Iun—l—r o _’u Iun—l—r - Iun - n




or

which gives

the desired result.



15.7

S, =X +X2+ -+ X,

where x,, are 1.1.d. random variables. We have
Snt+1 = Sp + Xpt1
so that
E{s,i1lsn} = E{s, + xuq1l8n} =sn + E{Xu11} = s,.

Hence {s,} represents a Martingale.



15.8 (a) From Bayes’ theorem

P{Xn-l-l :i|Xn:j}P{Xn :]}

P{xy = j|xpnt1 =1} = P{Xp41 =1}

_ 4P«
= Tq = P

where we have assumed the chain to be in steady state.
(b) Notice that time-reversibility is equivalent to

pfj = Pij
and using (i) this gives

« _ 9P

Y q; — Py

or, for a time-reversible chain we get
45 Pji = qi Py -
Thus using (ii) we obtain by direct substitution
4; i
Pij Pjk Pki = (q_z pji) (% pkj) (g—k pik)
= Pik Pkj Pjis

the desired result.

(#4)

(iii)
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15.9 (a) Tt is given that A = AT (a;; = a;;) and a;; > 0. Define the '

row sum
TZ:E a;p >0, 1 =1,2,---
k
and let
R L2
pl] - - .
ok Gk T
Then
- _ Gy Qi
Jeo -, Tr;
E Cl]m j j
_ ﬂ Cl” _ rz
r;or; r; Dij
or
riPij = T Pji-
Hence
D TP =) TP =i ) Pii =T
since

ijz—zaﬂzﬁzl-

r; rj

Notice that (ii) satisfies the steady state probability distribution equa-

tion (15-167) with
q; = cry, r=1,2,---

where ¢ is given by

1 1
CZTZ':Z%:1:>C: s = S a0
7 7 [ ? )
Thus 5
9 = AR i >0

> T B > Z]‘ agj

represents the stationary probability distribution of the chain.

With (iii) in (i) we get

Pji = — Pij
J

(iii)



or
Pi
! q;

and hence the chain is time-reversible.

_ Libii

*
g

11
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15.10 (a) M = (m,;) is given by

M=(-W)"!
or
(I-W)M=1
M=I+WM
which gives
My = 0 + 2op Wik My, €6, €T

= 0ij + >n pik Mmij, €,¢; €T

(b) The general case is solved in pages 743-744. From page 744,
with N =6 (2 absorbing states; 5 transcient states), and with r = p/q
we obtain (v

_1)(’“662_)1) j<i

- (p—aq)
B I [ (it )
(p—a("=1)

7

J =z



13

15.11 If a stochastic matrix A = (a;;),a;; > 0 corresponds to the two-
step transition matrix of a Markov chain, then there must exist another
stochastic matrix P such that

A=P P =(py)
where

pi; >0, > py=1,
;

and this may not be always possible. For example in a two state chain,
let

so that

@ H(l-a)l-p) (a+B)(l-a)

A=P =l ip1-p) BE+(l-a)(1-8)

This gives the sum of this its diagonal entries to be

ann +az =a?+2(1 —a)(l - 3)+
=(a+3)*—2(a+p)+2 (i)
=l+(a+p-1)72 >1.
Hence condition (i) necessary. Since 0 < o < 1,0 < § < 1, we also

get 1 < ayq + azx < 2. Futher, the condition (i) is also sufficient in the
2 X 2 case, since ayq + ag9 > 1, gives

(oz—|—ﬂ—1)2:a11—|—a22—1>0

and hence
a+pB=1xEvan +axp—1

and this equation may be solved for all admissible set of values 0 <
a<land 0 < g <1.
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15.12 In this case the chain is irreducible and aperiodic and there are
no absorption states. The steady state distribution {u} satisfies (15-
167),and hence we get

N
— e, — . N k N-—k
uk—zufpyk—zuy )P
J J=0

Then if @ > 0 and 3 > 0 then “fixation to pure genes” does not occur.
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15.13 The transition probabilities in all these cases are given by (page
765) (15A-7) for specific values of A(z) = B(z) as shown in Exam-
ples 15A-1, 15A-2 and 15A-3. The eigenvalues in general satisfy the
equation

Zpljxﬁk):)‘kxgk)v k:071727N
J

and trivially >~; p;; = 1 for all 2 implies Ay = 1 is an eigenvalue in all
cases.

However to determine the remaining eigenvalues we can exploit the
relation in (15A-7). From there the corresponding conditional moment
generating function in (15-291) is given by

G(s) = Z_;) pij & (2)

where from (15A-T7)

b = {A' ()} {B (=)} N
A )
coeflicient of sj ANin {Ai(sz) BN—i(Z)} (47)
{A'() BY ' (2)}w

Substituting (ii) in (i) we get the compact expression

_ {Ai(sz) BN_'Z'(Z)}N
{A'(z) BN (2)}n

G(s) (i41)

Differentiating G/(s) with respect to s we obtain
N .
G/(S) = Z PijjS]_l
7=0
_ {iA™ (s2) A'(s2)2 BN (2)}w

(A1) B )] .

[ (52) A'(s2) BY=(2) )y
(A B ()
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Letting s = 1 in the above expression we get

G'(1) = ]Z:;)pijj =1 (A~ {(jg(f;(gzvlfl(;;éij}N—1 (v)

In the special case when A(z) = B(z), Eq.(v) reduces to
N
Zpijj = )\1 Z (vz)
7=0

where
A A
{AN(2)}n

Notice that (vé) can be written as

Pl'l:)\ll’l, $1:[0,1,2,"'N]T

A (vir)

and by direct computation with A(z) = B(2) = (¢ + pz)? (Example
15A-1) we obtain

A = gt p) 0 op(g + p2) by

{(¢+p2)""In
a2 )i
_2pllg 4 p) M _ W)
{(g+p=)*"}n (QN) N N '
N q p

Thus Zé\fzo pijJ =t and from (15-224) these chains represent Martin-
gales. (Similarly for Examples 15A-2 and 15A-3 as well).

To determine the remaining eigenvalues we differentiate GG'(s) once
more. This gives

G'(s) =2 piyili—1)s
{i(i — 1) A" (s2)[A(52)]* = BN_i(Z) + IAT (s2) A" (s2)2 BN 7(2) vy
{A'(z) BY 7' (2)}w

_ (AT (s2) BN — 1) (A'(52))° 4 A(s2) A"(s2)]Ixv—s
{A'(=) B (=)}
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With s = 1, and A(z) = B(z), the above expression simplifies to

Z: piiJ(3 —1) = Api(i — 1) +ipy (viee)
where
v AP (AP v
: {AN()}w
and

o A A
: WO

Eq. (viit) can be rewritten as

N
> pijj? = Azi* + (polynomial in 7 of degree < 1)
7=0
and in general repeating this procedure it follows that (show this)
N
> pij 77 = Api* + (polynomial in 7 of degree <k —1) (ix)
7=0

where

O e, .
A = ey o hEeh .

Equations (viii)—(a) motivate to consider the identities

Pag. = i qx (z2)

where g are polynomials in ¢ of degree < k, and by proper choice of
constants they can be chosen in that form. It follows that Ay, k& =
1,2,--- N given by (ix) represent the desired eigenvalues.

(a) The transition probabilities in this case follow from Example 15A-1
(page 765-766) with A(z) = B(z) = (¢ + pz)?. Thus using (iz) we
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obtain the desired eigenvalues to be

A = Uatp2) Y O0p(q + p2)]hy
{(g+p2)"V}x

_ ok k{(Q+p2)2N_k}N—k
= T )

(QN — k)
N —k
_ ok — o
=2 SRR k=1,2---N.
N
(b) The transition probabilities in this case follows from Example 15A-2
(page 766) with

Alz)=B(z) = M=)
and hence
P NRGD \k MR-y
= (AN
_ AN v AT QN (N — k)
o {eM (AN)Y /N

W:(l—%) (1—%)“'(1—%)7 k=12---N

N—k

Ak

(c) The transition probabilities in this case follow from Example 15A-3
(page 766-767) with

_ 4

1l —pz

A(z) = B(z)

Thus

PR 171¢ — ) vy
{1/(1 = p=)"}n

B i B G A

) OV
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15.14 From (15-240), the mean time to absorption vector is given by
m=1-W)'E, E=[1,---1]",

where

I/Vik:pjkv jvk:1727"'N_17
with pjr as given in (15-30) and (15-31) respectively.
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15.15 The mean time to absorption satisfies (15-240). From there
m; =1+ Z Pik My = 1 4 piiv1 Mig1 + piic1 miz

keT

=14 pmip1 +qgmi_,

or
mE =14+ pmppr + ¢mp-_1.
This gives
p(mk+1 - mk) = Q(mk - mk—l) —1
Let

Myt = mpp1 — my,

so that the above iteration gives

My _% —l
S AL
Ml——{l (DF}, p#4q
N 1—}—77 pP=4q
This gives
m; :iMk-H
i—1
(s ) B (B v
zM—i(i;U, p=q
(M1 + 52=) 11__(%//];) — 5t p#a
M, — i(@é; L P=q
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where we have used m, = 0. Similarly m,, = 0 gives

1 a-+b 1L—gq/p

"Tp—qa p—q 1—(q/p)*
Thus (/)
at+b _1—1(q/p) i
_ . _ at+b — p%q
m. =4 P 1=(a/p) P
ila+b—1), p=gq
which gives for : = a
atb 1—(q¢/p)° a
p—q _ a+b_p_q7 p%q
S 1= (q/p)
ab, pP=q
b a+b 1—(p/q)
2p_1_2p_1'1_(p/q)a+bv p%q
ab, pP=q
by writing

1—(q/p)**" L—(a/p)™ 1= (p/)*

(see also problem 3-10).

L=(g/p)" _, _(a/p)'=(a/p)"" _ _ 1-(p/a)



