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CHAPTER 1

The Basis for, and Advantages
of, Bayesian Model Estimation
via Repeated Sampling BAYESIAN MODEL ESTIMATION VIA REPEATED SAMPLING

1.1 INTRODUCTION

Bayesian analysis of data in the health, social and physical sciences has been greatly

facilitated in the last decade by advances in computing power and improved scope for

estimation via iterative sampling methods. Yet the Bayesian perspective, which stresses

the accumulation of knowledge about parameters in a synthesis of prior knowledge with

the data at hand, has a longer history. Bayesian methods in econometrics, including

applications to linear regression, serial correlation in time series, and simultaneous

equations, have been developed since the 1960s with the seminal work of Box and

Tiao (1973) and Zellner (1971). Early Bayesian applications in physics are exemplified

by the work of Jaynes (e.g. Jaynes, 1976) and are discussed, along with recent applica-

tions, by D'Agostini (1999). Rao (1975) in the context of smoothing exchangeable

parameters and Berry (1980) in relation to clinical trials exemplify Bayes reasoning in

biostatistics and biometrics, and it is here that many recent advances have occurred.

Among the benefits of the Bayesian approach and of recent sampling methods of

Bayesian estimation (Gelfand and Smith, 1990) are a more natural interpretation of

parameter intervals, whether called credible or confidence intervals, and the ease with

which the true parameter density (possibly skew or even multi-modal) may be obtained.

By contrast, maximum likelihood estimates rely on Normality approximations based on

large sample asymptotics. The flexibility of Bayesian sampling estimation extends to

derived or `structural' parameters1 combining model parameters and possibly data, and

with substantive meaning in application areas (Jackman, 2000), which under classical

methods might require the delta technique.

New estimation methods also assist in the application of Bayesian random effects

models for pooling strength across sets of related units; these have played a major role in

applications such as analysing spatial disease patterns, small domain estimation for

survey outcomes (Ghosh and Rao, 1994), and meta-analysis across several studies

(Smith et al., 1995). Unlike classical techniques, the Bayesian method allows model

comparison across non-nested alternatives, and again the recent sampling estimation

1 See, for instance, Example 2.8 on geriatric patient length of stay.
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developments have facilitated new methods of model choice (e.g. Gelfand and Ghosh,

1998; Chib, 1995). The MCMC methodology may be used to augment the data and this

provides an analogue to the classical EM method ± examples of such data augmentation

are latent continuous data underlying binary outcomes (Albert and Chib, 1993) and the

multinomial group membership indicators (equalling 1 if subject i belongs to group j )

that underlie parametric mixtures. In fact, a sampling-based analysis may be made

easier by introducing this extra data ± an example is the item analysis model involving

`guessing parameters' (Sahu, 2001).

1.1.1 Priors for parameters

In classical inference the sample data y are taken as random while population param-

eters u, of dimension p, are taken as fixed. In Bayesian analysis, parameters themselves

follow a probability distribution, knowledge about which (before considering the data

at hand) is summarised in a prior distribution p(u). In many situations, it might be

beneficial to include in this prior density the available cumulative evidence about a

parameter from previous scientific studies (e.g. an odds ratio relating the effect of

smoking over five cigarettes daily through pregnancy on infant birthweight below

2500 g). This might be obtained by a formal or informal meta-analysis of existing

studies. A range of other methods exist to determine or elicit subjective priors (Berger,

1985, Chapter 3; O'Hagan, 1994, Chapter 6). For example, the histogram method

divides the range of u into a set of intervals (or `bins') and uses the subjective probability

of u lying in each interval; from this set of probabilities, p(u) may then be represented as

a discrete prior or converted to a smooth density. Another technique uses prior esti-

mates of moments, for instance in a Normal N(m, V ) density2 with prior estimates m

and V of the mean and variance.

Often, a prior amounts to a form of modelling assumption or hypothesis about the

nature of parameters, for example, in random effects models. Thus, small area death

rate models may include spatially correlated random effects, exchangeable random

effects with no spatial pattern, or both. A prior specifying the errors as spatially

correlated is likely to be a working model assumption, rather than a true cumulation

of knowledge.

In many situations, existing knowledge may be difficult to summarise or elicit in the

form of an `informative prior' and to reflect such essentially prior ignorance, resort is

made to non-informative priors. Examples are flat priors (e.g. that a parameter is

uniformly distributed between ÿ1 and �1) and Jeffreys prior

p(u) / det{I(u)}0:5

where I(u) is the expected information3 matrix. It is possible that a prior is improper

(doesn't integrate to 1 over its range). Such priors may add to identifiability problems

(Gelfand and Sahu, 1999), and so many studies prefer to adopt minimally informative

priors which are `just proper'. This strategy is considered below in terms of possible

prior densities to adopt for the variance or its inverse. An example for a parameter

2 In fact, when u is univariate over the entire real line then the Normal density is the maximum entropy prior
according to Jaynes (1968); the Normal density has maximum entropy among the class of densities identified
by a summary consisting of mean and variance.

3 If `(u) � log (L(u)) then I(u) � ÿE
d2`(u)

d`(ui)d`(uj)

� �
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distributed over all real values might be a Normal with mean zero and large variance.

To adequately reflect prior ignorance while avoiding impropriety, Spiegelhalter et al.

(1996) suggesting a prior standard deviation at least an order of magnitude greater than

the posterior standard deviation.

1.1.2 Posterior density vs. likelihood

In classical approaches such as maximum likelihood, inference is based on the

likelihood of the data alone. In Bayesian models, the likelihood of the observed data

y given parameters u, denoted f ( yju) or equivalently L(ujy), is used to modify the

prior beliefs p(u), with the updated knowledge summarised in a posterior density,

p(ujy). The relationship between these densities follows from standard probability

equations. Thus

f ( y, u) � f ( yju)p(u) � p(ujy)m( y)

and therefore the posterior density can be written

p(ujy) � f ( yju)p(u)=m( y)

The denominator m( y) is known as the marginal likelihood of the data and found by

integrating (or `marginalising') the likelihood over the prior densities

m( y) �
�

f ( yju)p(u)du

This quantity plays a central role in some approaches to Bayesian model choice, but for

the present purpose can be seen as a proportionality factor, so that

p(ujy) / f ( yju)p(u) (1:1)

Thus, updated beliefs are a function of prior knowledge and the sample data evidence.

From the Bayesian perspective the likelihood is viewed as a function of u given fixed

data y, and so elements in the likelihood that are not functions of u become part of the

proportionality in Equation (1.1).

1.1.3 Predictions

The principle of updating extends to future values or predictions of `new data'.

Before the study a prediction would be based on random draws from the prior

density of parameters and is likely to have little precision. Part of the goal of the a

new study is to use the data as a basis for making improved predictions `out of

sample'. Thus, in a meta-analysis of mortality odds ratios (for a new as against

conventional therapy) it may be useful to assess the likely odds ratio z in a

hypothetical future study on the basis of the observed study findings. Such a

prediction is based is based on the likelihood of z averaged over the posterior density

based on y:

f (zjy) �
�

f (zju)p(ujy)du

where the likelihood of z, namely f (zju) usually takes the same form as adopted for the

observations themselves.

INTRODUCTION 3



One may also take predictive samples order to assess the model performance. A

particular instance of this, useful in model assessment (see Chapters 2 and 3), is in

cross-validation based on omitting a single case. Data for case i is observed, but a

prediction of yi is nevertheless made on the basis of the remaining data

y[i] � {y1, y2, : : yiÿ1, yi�1, : : yn}. Thus in a regression example with covariates xi, the

prediction zi would be made based on a model fitted to y[i]; a typical example might

be a time series model for t � 1, : : n, including covariates that are functions of time,

where the model is fitted only up to i � nÿ 1 (the likelihood is defined only for

i � 1, : : nÿ 1), and the prediction for i � n is based on the updated time functions.

The success of a model is then based on the match between the replicate and actual data.

One may also derive

f ( yijy[i]) �
�

f ( yiju)p(ujy[i])du

namely the probability of yi given a model based on the data excluding it (Gelfand et al.,

1992). This is known as the Conditional Predictive Ordinate (CPO) and has a role in

model diagnostics (see Section 1.5). For example, a set of count data (without covari-

ates) could be modelled as Poisson (with case i excluded) leading to a mean u[i]. The

Poisson probability of case i could then be evaluated in terms of that parameter.

This type of approach (n-fold cross-validation) may be computationally expensive

except in small samples. Another option is for a large dataset to be randomly divided

into a small number k of groups; then cross-validation may be applied to each partition

of the data, with kÿ 1 groups as `training' sample and the remaining group as the

validation sample (Alqalaff and Gustafson, 2001). For large datasets, one might take

50% of the data as the training sample and the remainder as the validation sample (i.e.

k � 2).

One may also sample new or replicate data based on a model fitted to all observed

cases. For instance, in a regression application with predictors xi for case i, a prediction

zi would make use of the estimated regression parameters b and the predictors as they

are incorporated in the regression means, for example mi � xib for a linear regression

These predictions may be used in model choice criteria such as those of Gelfand and

Ghosh (1998) and the expected predictive deviance of Carlin and Louis (1996).

1.1.4 Sampling parameters

To update knowledge about the parameters requires that one can sample from the

posterior density. From the viewpoint of sampling from the density of a particular

parameter uk, it follows from Equation (1.1) that aspects of the likelihood which are not

functions of u may be omitted. Thus, consider a binomial example with r successes from

n trials, and with unknown parameter p representing the binomial probability, with a

beta prior B(a, b), where the beta density is

G(a� b)

G(a)G(b)
paÿ1(1ÿ p)bÿ1

The likelihood is then, viewed as a function of p, proportional to a beta density, namely

f (p) / pr(1ÿ p)nÿr

and the posterior density for p is then a beta density with parameters r� a and

n� bÿ r:

4 BAYESIAN MODEL ESTIMATION VIA REPEATED SAMPLING



p � B(r� a, n� bÿ r) (1:2)

Therefore, the parameter's posterior density may be obtained by sampling from the

relevant beta density, as discussed below. Incidentally, this example shows how the prior

may in effect be seen to provide a prior sample, here of size a� bÿ 2, the size of which

increases with the confidence attached to the prior belief. For instance, if a � b � 2,

then the prior is equivalent to a prior sample of 1 success and 1 failure.

In Equation (1.2), a simple analytic result provides a method for sampling of

the unknown parameter. This is an example where the prior and the likelihood

are conjugate since both the prior and posterior density are of the same type. In

more general situations, with many parameters in u and with possibly non-

conjugate priors, the goal is to summarise the marginal posterior of a particular

parameter uk given the data. This involves integrating out all the parameters but

this one

P(ukjy) �
�

P(u1, . . . , ukÿ1, uk�1, : : upjy)du1 . . . dukÿ1duk�1 . . . dup

Such integrations in the past involved demanding methods such as numerical quadra-

ture.

Monte Carlo Markov Chain (MCMC) methods, by contrast, use various techniques

which ultimately amount to simulating repeatedly from the joint posterior of all the

parameters

P(u1, u2, . . . upjy)

without undertaking such integrations. However, inferences about the form of the

parameter densities are complicated by the fact that the samples are correlated. Suppose

S samples are taken from the joint posterior via MCMC sampling, then marginal

posteriors for, say, uk may be estimated by averaging over the S samples

uk1, uk2 . . . : ukS. For example, the mean of the posterior density may be taken as the

average of the samples, and the quantiles of the posterior density are given by the

relevant points from the ranked sample values.

1.2 GIBBS SAMPLING

One MCMC algorithm is known as Gibbs sampling4, and involves successive sampling

from the complete conditional densities

P(ukjy, u1, . . . ukÿ1, uk�1, . . . : up)

which condition on both the data and the other parameters. Such successive samples

may involve simple sampling from standard densities (gamma, Normal, Student t, etc.)

or sampling from non-standard densities. If the full conditionals are non-standard but

of a certain mathematical form (log-concave), then adaptive rejection sampling (Gilks

and Wild, 1992) may be used within the Gibbs sampling for those parameters. In other

cases, alternative schemes based on the Metropolis±Hastings algorithm, may be used to

sample from non-standard densities (Morgan, 2000). The program WINBUGS may be

applied with some or all parameters sampled from formally coded conditional densities;

4 This is the default algorithm in BUGS.
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however, provided with prior and likelihood WINBUGS will infer the correct condi-

tional densities using directed acyclic graphs5.

In some instances, the full conditionals may be converted to simpler forms by

introducing latent data wi, either continuous or discrete (this is known as `data aug-

mentation'). An example is the approach of Albert and Chib (1993) to the probit model

for binary data, where continuous latent variables wi underlie the observed binary

outcome yi. Thus the formulation

wi � bxi � ui with ui � N(0, 1)

yi � I(wi > 0)

is equivalent to the probit model6. Latent data are also useful for simplifying survival

models where the missing failure times of censored cases are latent variables (see Example

1.2 and Chapter 9), and in discrete mixture regressions, where the latent categorical

variable for each case is the group indicator specifying to which that case belongs.

1.2.1 Multiparameter model for Poisson data

As an example of a multi-parameter problem, consider Poisson data yi with means li,

which are themselves drawn from a higher stage density. This is an example of a mixture

of densities which might be used if the data were overdispersed in relation to Poisson

assumptions. For instance, if the li are gamma then the yi follow a marginal density

which is negative binomial. Suppose the li are drawn from a Gamma density with

parameters a and b, which are themselves unknown parameters (known as hyperpara-

meters). So

yi � Poi(li)

f (lija, b) � laÿ1
i eÿbli ba=G(a)

Suppose the prior densities assumed for a and b are, respectively, an exponential7 with

parameter a and a gamma with parameters {b, c}, so that

5 Estimation via BUGS involves checking the syntax of the program code (which is enclosed in a model file),
reading in the data, and then compiling. Each statement involves either a relation � (meaning distributed as)
which corresponds to solid arrows in a directed acyclic graph, or a deterministic relation<- which corresponds
to a hollow arrow in the DAG. Model checking, data input and compilation involve the model menu in
WINBUGS- though models may also be constructed directly by graphical means. The number of chains (if in
excess of one) needs to be specified before compilation. If the compilation is successful the initial parameter
value file or files (`inits files') are read in. If, say, three parallel chains are being run three inits files are needed.
Syntax checking involves highlighting the entire model code, or just the first few letters of the word model, and
then choosing the sequence model/specification/check model. To load a data file either the whole file is
highlighted or just the first few letters of the word `list'. For ascii data files the first few letters of the first
vector name need to be highlighted. Several separate data files may be read in if needed. After compilation the
inits file (or files) need not necessarily contain initial values for all the parameters and some may be randomly
generated from the priors using `gen inits'. Sometimes doing this may produce aberrant values which lead to
numerical overflow, and generating inits is generally excluded for precision parameters. An expert system
chooses the sampling method, opting for standard Gibbs sampling if conjugacy is identified, and for adaptive
rejection sampling (Gilks and Wild, 1992) for non-conjugate problems with log-concave sampling densities.
For non-conjugate problems without log-concavity, Metropolis±Hastings updating is used, either slice sam-
pling (Neal, 1997) or adaptive sampling (Gilks et al., 1998). To monitor parameters (i.e. obtain estimates from
averaging over sampled values) go inference/samples and enter the relevant parameter name. For parameters
which would require extensive storage to be monitored fully an abbreviated summary (for say the model means
of all observations in large samples, as required for subsequent calculation of model fit formulas) is obtained
by inference/summary and then entering the relevant parameter name.
6 I(u) is 1 if u holds and zero otherwise.
7 The exponential density with parameter u is equivalent to the gamma density G(u, 1).
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a � E(a)

b � G(b, c)

where a, b and c are taken as constants with known values (or briefly `taken as known').

Then the posterior density of u � (l1: : ln, a, b) is

f (l1, . . . : ln, a, bjy1, . . . yn) /

eÿaabbÿ1eÿcb [ba=G(a)]n
Yn
i�1

eÿli lyi
i

Yn
i�1

laÿ1
i eÿbli (1:3)

If elements of this density which do not involve the li are regarded as constants, it

can be seen that the conditional density of the li is a gamma with parameters yi � a
and b� 1. Similarly, disregarding elements not functions of b, the conditional

density of b is gamma with parameters b� na and c� Sli. The full conditional density

of a is

f (ajy, b,
~
l) / eÿaa[ba=G(a)]n

Yn
i�1

li

 !aÿ1

This density is non-standard but log-concave (see George et al., 1993). Adaptive rejec-

tion sampling might then be used, and this is the default in BUGS, for example. Another

option is to establish a grid of probability values according to possible values

aj( j � 1, . . . J ) of a; this is described as `griddy Gibbs' by Tanner (1993). At each

iteration the densities at each value of a are calculated, namely

Gj � eÿaaj [baj=G(aj)]
n
Yn
i�1

li

 !ajÿ1

and then scaled to sum to 1, with the choice among possible values aj decided by a

categorical indicator. In practice, a preliminary run might be used to ascertain the

support for a, namely the range of values across which its density is significant, and

so define a reasonable grid aj, j � 1, : : J.

If the Poisson counts (e.g. deaths, component failures) are based on different expos-

ures Ei (populations, operating time), then

yi � Poi(Eili)

and the posterior density in Equation (1.3) is revised to

f (l1, . . . : ln, a, bjy1, . . . yn) /

eÿaabbÿ1eÿcb[ba=G(a)]n
Yn
i�1

eÿEili lyi
i

Yn
i�1

laÿ1
i eÿbli

(Note that Ei raised to the power yi drops out as a constant.) Then the conditional

density of the li is a gamma with parameters a� yi and b� Ei. The conditional

densities of a and b are as above.

Example 1.1 Consider the power pumps failure data of Gaver and O'Muircheartaigh

(1987), where failures yi of the ith pump, operating for time Ei are Poisson with

yi � Poi(ki)
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where ki � Eili. The data are as follows:

Pump Ei Yi

1 94.5 5

2 15.7 1

3 62.9 5

4 126 14

5 5.24 3

6 31.4 19

7 1.05 1

8 1.05 1

9 2.1 4

10 10.5 22

The BUGS coding for direct sampling from the full conditionals including the grid prior

on a is as follows:

model {for (i in 1 : n) { lambda[i] � dgamma(A[i],B[i])

A[i] <- alpha�y[i]; B[i] <- beta�E[i]
log.lam[i] <- log(lambda[i])}

# product lambda[1]*lambda[2] . . . *lambda[N] obtained by exponentiating sum

# of log lambda's

Prod.lam <- exp(sum(log.lam[]))

for (j in 1:50) {alph[j] <- j*0.05;

# grid based on conditional posterior of alpha; prior of alpha an E(1)

G[j] <- exp(-alph[j])*pow(pow(beta,alph[j])/exp(loggam(alph[j])),N)

* pow(Prod.lam,alph[j]ÿ1)
# scale grid probabilities to sum to 1

G.Pr[j] <- G[j]/sum(G[])}

# sample from grid (discrete prior)

k.alph � dcat(G.Pr[])

alpha <- alph[k.alph]

C <- n*alpha�0.1
D <- 1�sum(lambda[])
beta � dgamma(C,D)}

The grid for a ranges between 0.05 and 2.5. This coding adopts the priors used by

George et al. (1993), namely, an exponential density with known parameter 1 for a, and

a Gamma(0.1, 1) prior for b. The inits file just contains initial values for a and b, while

those of li may be generated using `gen inits'. Then the posterior means and standard

deviations of a and b, from a single long chain of 50 000 iterations with 5000 burn in,

are 0.70 (0.27) and 0.94 (0.54).

However, this coding may be avoided by specifying just the priors and likelihood, as

follows:

model {for (i in 1 : n) {

lambda[i] � dgamma(alpha, beta)

kappa[i] <- lambda[i]* E[i]
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y[i] � dpois(kappa[i])}

alpha � dexp(1)

beta � dgamma(0.1, 1.0)}

1.2.2 Survival data with latent observations

As a second example, consider survival data assumed to follow a Normal density ± note

that usually survival data are non-Normal. Survival data, and more generally event

history data, provide the most familiar examples of censoring. This occurs if at the

termination of observation, certain subjects are (right) censored in that they have yet to

undergo the event (e.g. a clinical end-point), and their unknown duration or survival

time t is therefore not observed. Instead, the observation is the time t* at which

observation of the process ceased, and for censored cases, it must be the case that

t � t*. The unknown survival times for censored subjects provide additional unknowns

(as augmented or latent data) to be estimated.

For the Normal density, the unknown distributional parameters are the mean and

variance {m, s2}. In Bayesian modelling there are potential simplifications in consider-

ing the specification of the prior, and updating to the posterior, in terms of the inverse

of the variance, or precision, t � sÿ2. Since both the variance and precision are

necessarily positive, an appropriate prior density is constrained to positive values.

Though improper reference priors for the variance or precision are often used,

consider prior densities P(t), which are proper in the sense that the integral

over possible values is defined. These include the uniform density over a finite range,

such as

t � U(0, 1000)

or a gamma density which allows for various types of skewness. This has the form

t � G( f, g)

so that

P(t) / t fÿ1 exp (ÿ gt) (1:4)

where f and g are taken as known constants, and where the prior mean of t is then f=g
with variance f =g2. For instance, taking f � 1, g � 0:001 gives a prior on t which still

integrates to 1 (is proper) but is quite diffuse in the sense of not favouring any value. A

similar diffuse prior takes f � g � 0:001 or some other common small value8. Substi-

tuting f � 1 and g � 0:001 in Equation (1.4) shows that for these values of f and g the

prior in (1.4) is approximately (but not quite)

P(t) / 1 (1:5)

Setting g � 0 is an example of an improper prior, since then P(t) / 1, and�
P(t)dt � 1

So taking f � 1, g � 0:001 in Equation (1.4) represents a `just proper' prior.

In fact, improper priors are not necessarily inadmissible for drawing valid inferences

providing the posterior density, given by the product of prior and likelihood, as in

8 In this case, the prior on t is approximately P(t) / 1=t.
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Equation (1.1), remains proper (Fraser et al., 1997). Certain improper priors may

qualify as reference priors, in that they provide minimal information (for example,

that the variance or precision is positive), still lead to proper posterior densities, and

also have valuable analytic properties, such as invariance under transformation. An

example is the Jeffreys prior for s � tÿ0:5, namely

P(s) � 1=s

In BUGS, priors in this form may be implemented over a finite range using a discrete

grid method and then scaling the probabilities to sum to 1. This preserves the shape

implications of the prior, though obviously they are no longer improper.

1.2.3 Natural conjugate prior

In a model with constant mean m over all cases, a joint prior for {m, t}, known as the

`natural conjugate' prior, may be specified for Normally or Student t distributed data

which assumes a Gamma form for t, and a conditional prior distribution for m given t
which is Normal. Thus, the prior takes the form

P(m, t) � P(t)P(mjt)
One way to specify the prior for the precision t is in terms of a prior `guess' at the

variance V0 and a prior sample size n (possibly non-integer) which represents the

strength of belief (usually slight) in this guess. Typical values are n � 2 or lower.

Then the prior for t takes the form

t � G(n=2, nV0=2) (1:6)

and taking V0 � 0:001 and n � 2, gives a `just proper' prior

t � G(1, 0:001)

as discussed earlier. Given the values of t drawn from this prior, the prior for m takes the

form

m � N(M0, (n0t)ÿ1)

where M0 is a prior guess at the unknown mean of the Normal density. Since higher

values of the precision n0t mean lower variances, it can be seen that higher values of n0

imply greater confidence in this guess. Usually, n0 is taken small (1 or less, as for n). So

the entire prior has the form

P(m, t) / t0:5 exp {ÿ 0:5n0t(mÿM0)
2} exp (ÿ 0:5nV0t)t0:5nÿ1

1.2.4 Posterior density with Normal survival data

In the survival example, suppose initially there is only one group of survival times, and

that all times are known (i.e. there is no censoring). Let the observed mean survival

time be

M � nÿ1�iti

and observed variance be
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V � S(ti ÿM)2=(nÿ 1)

Then one may show that the posterior density of {m, t} given data {t1, t2, . . . : tn} is

proportional to the product of

1. A Normal density for m with precision n1t, where n1 � n0 � n, and with mean M1,

which is a weighted average of data and prior means, namely M1 � w0M0 � w1M,

with weights w0 � n0=n1 and w1 � n=n1; and

2. A Gamma density for t of the form in Equation (1.6) which has `sample size'

n1 � n� n and variance

V1 � (n� n)ÿ1[V0n� n0M
2
0 � (nÿ 1)V � nM2 ÿ n1M

2
1 ]

Thus

P(t, mjy) / t0:5 exp [ÿ 0:5tn1(mÿM1)
2] t0:5n1ÿ1 exp (ÿ 0:5tn1V1)

The Gibbs sampling approach considers the distributions for t and m conditional on

the data and the just sampled value of the other. The full conditional for m (regarding t
as a constant) can be seen to be a Normal with mean M1 and precision tn1. Then just

having drawn m at iteration t, the next iteration samples from the full conditional

density for t which is a gamma density with shape (first parameter) 0:5n1 � 0:5 and

scale 0:5[n1V1 � n1(mÿM1)
2].

If some event times were in fact censored when observation ceased, then these are

extra parameters drawn from the Normal density with mean m and precision t subject to

being at least t*. That is, constrained sampling from the Normal above (with mean m(t)

and precision t(t) at the tth iteration) is used, disregarding sampled values which are

lower than t*. The subsequently updated values of M and V include these imputations

as well as the uncensored ti.

It can be seen that even for a relatively standard problem, namely updating the

parameters of a Normal density, the direct coding in terms of full conditional densities

becomes quite complex. The advantage with BUGS is that it is only necessary to specify

the priors

t � G(n=2, V0n=2)

m � N(M0, (n0t)ÿ1)

and the form of the likelihood for the data, namely

ti � N(m, tÿ1) (t uncensored)

ti � N(m, tÿ1) I(ti*, ) (censoring at t*)

and the full conditionals are inferred. The I(a, b) symbol denotes a range within which

sampling is confined. For uncensored data the ti are observed, but for the censored

data the observations are ti* and the true ti are latent (or `augmented', or `missing')

data.

Example 1.2 Leukaemia remission times Consider the frequently analysed data of

Gehan (1965) on leukaemia remission times under two therapies, the latter denoted Tr[ ]

in the code below with Tr[i] � 1 for the new treatment. Here delayed remission (longer
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survival) indicates a better clinical outcome. There is extensive censoring of times under

the new therapy, with censored times coded as NA, and sampled to have minimum

defined by the censored remission time.

Assume independent Normal densities differing in mean and variance according to

treatment, and priors

mj � N(0, tÿ1
j ) with n0 � 1

tj � G(1, 0:001)

in treatment groups j. Then the code for BUGS (which parameterises the Normal with

the inverse variance) and with the data from Gehan, is as follows:

model { for (i in 1:42) { t[i] � dnorm(mu[Tr[i]], tau[Tr[i]]) I(min[i],)}

for (j in 1:2) {mu[j] � dnorm(0,tau[j])

# inverse variances

tau[j] � dgamma(1,0.001)}}

with data file

list(t�c(NA,6,6,6,7,NA, NA,10,NA,13,16,NA,NA,NA,22,23,NA,NA,NA,

NA,NA,1,1, 2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23),

min�c(6,0,0,0,0,9,10,0,11,0,0,17,19,20,0,0,25,32,32,34,35,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),Tr�c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2))

The inits file

list(mu�c(10,10),tau�c(1,1))

specifies the initial Normal parameters only, and the missing survival times (the

remaining unknowns) may be sampled from the prior (using `gen inits'). The average

remission times under new and old therapies are 24.8 and 8.3 months. An example of a

skew posterior density is provided by the imputed survival times for censored subjects.

While an unspecified upper sampling limit for censored times is one option, there may

be subject matter considerations ruling out unusually high values (e.g. survival

exceeding five years). Since setting n0 � 1 (or any other value) may appear arbitrary,

one may also assume independent priors for mj and tj (Gelman et al., 1995, Chapter 3),

such as mj � N(0, Kj), with Kj typically large, and tj � G(1, 0:001) as before. With

Kj � 1000, the average remission times become 25.4 and 8.6.

1.3 SIMULATING RANDOM VARIABLES FROM STANDARD DENSITIES

Parameter estimation by MCMC methods and other sampling-based techniques re-

quires simulated values of random variables from a range of densities. As pointed out by

Morgan (2000), sampling from the uniform density U(0, 1) is the building block for

sampling the more complex densities; in BUGS 0, 1 this involves the code

U � dunif(0, 1)

Thus, the Normal univariate density9 is characterised by a mean m and variance f, with

9 BUGS parameterises the Normal in terms of the inverse variance, so priors are specified on P � fÿ1 and m,
and samples of f may be obtained by specifying f � Pÿ1. With typical priors on m and P, this involves the
coding
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X � N(m, f)

A sample from Normal density with mean 0 and variance 1 may be obtained by

considering two independent draws U1 and U2 from a U(0, 1) density. Then with

p � 3:1416, the pair

Z1 � [ÿ 2 ln (U1)]
0:5 sin (2pU2)

Z2 � [ÿ 2 ln (U1)]
0:5 cos (2pU2)

are independent draws from an N(0,1) density. Then using either of these draws (say

Z � Z1), a sample from N(m, f) is obtained via

X � m� Z
p

f

An approximately Normal N(0, 1) variable may also be obtained using central limit

theorem ideas: take n draws U1, U2, : :Un from a U(0, 1) then

X �
X

i

Ui ÿ 0:5n

 !
12

n

� �0:5

is approximately N(0, 1) for large n. In fact n � 12 is often large enough and simplifies

the form of X.

1.3.1 Binomial and negative binomial

Another simple application of sampling from the uniform U(0, 1) is if a sample of an

outcome Yi (either 0 or 1) from a Bernoulli density with probability r is required. Thus,

if Ui is a sample from U(0, 1) and Ui � r then Yi is taken as 1, whereas Ui > r leads to

Yi � 0. So the unit interval is in effect split into sections of length r and 1ÿ r. This

principle can be extending to simulating `success' counts r from a binomial with n

subjects at risk of an event with probability r. The sampling from U(0, 1) is repeated

n times and the number of times for which Ui � r is the simulated success count.

Similarly, consider the negative binomial density, with

Pr(x) � xÿ 1

rÿ 1

� �
pr(1ÿ p)xÿr x � r, r� 1, r� 2, : :

In this case a sequence U1,U2, . . . may be drawn from the U(0,1) density until r of them

are less than or equal to p, with x given by the number of draws Ui needed to reach this

threshold.

1.3.2 Inversion method

A further fundamental building block based on the uniform density follows from the

fact that if Ui is a draw from U(0, 1) then

Xi � ÿ1=m ln (Ui)

is a draw from an exponential10 with mean m. The exponential density is defined by

phi <- 1/P
X � dnorm(mu,P)
mu � dnorm(0,0.001)
P � dgamma(0.001,0.001).

10 In BUGS the appropriate code is x �dexp(mu).

SIMULATING RANDOM VARIABLES FROM STANDARD DENSITIES 13



f (x) � m exp (ÿ mx)

with mean 1=m and variance 1=m2, and is often a baseline model for waiting or inter-

event times.

This way of sampling the exponential is an example of the inversion method for

simulation of a continuous variable with distribution function F, the inverse of which is

readily available. If u � U (0, 1) then

Pr[Fÿ1(u) � x] � Pr[u � F (x)] � F (x)

and the quantities x � Fÿ1(u) are then draws from a random variable with cumulative

density F(x). The same principle may be used to obtain draws from a logistic distribu-

tion x � Logistic(m, t), a heavy tailed density (as compared to the Normal) with cdf

F (x) � 1={1� eÿt(xÿm)}

and pdf

f (x) � teÿt(xÿm)=[1� eÿt(xÿm)]2

This distribution has mean m, variance p2=(3t2), and a draw may be obtained by the

transformation

x � loge (U=[1ÿU ])=tÿ m:

The Pareto, with density

f (x) � aba=[xa�1] x � b > 0

may be obtained as

x � b=(1ÿU)1=a

or equivalently,

x � b=U1=a:

1.3.3 Further uses of exponential samples

Simulating a draw x from a Poisson with mean m can be achieved by sampling

Ui � U(0, 1) and taking x as the maximum n for which the cumulative sum of

Li � ÿ ln (Ui),

Si � L1 � L2 � : :Li

remains below m. From above, the Li are exponential with rate 1, and so viewed as inter-

event times of a Poisson process with rate 1, N � N(m) equals the number of events

which have occurred by time m. Equivalently, x is given by n, where n� 1 draws from an

exponential density with parameter m are required for the sum of the draws to first

exceed 1.

The Weibull density is a generalisation of the exponential also useful in event history

analysis. Thus, if t �Weib(a, l), then

f (t) � altaÿ1 exp (ÿ lta), t > 0

If x is exponential with rate l, then t � x1=a is Weib(a, l). Thus in BUGS the codings
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t[i] � dweib(alpha,lambda)

and

x[i] � dexp(lambda)

t[i] <- pow(x[i],1/alpha)

generate the same density.

1.3.4 Gamma, chi-square and beta densities

The gamma density is central to the modelling of variances in Bayesian analysis, and as

a prior for the Poisson mean. It has the form

f (x) � [ba=G(a)]xaÿ1 exp (ÿ bx), x > 0

with mean a=b and variance a=b2. Several schemes are available for generating

a gamma variate. For a � K an integer, drawing a sample x1, x2, : : xK from an

exponential with mean b and then taking the sum y � �i�1
K xi generates a draw

from a Gamma density. Note also that if x � G(a, 1), then y � x=b is a G(a, b)

variable.

Since a G(a, b) density is often used as a prior for a precision parameter, it is also

worth noting that it follows that the variance then follows an inverse gamma density,

with the same parameters. The inverse gamma has the form

f (x) � [ba=G(a)]xÿaÿ1 exp (ÿ b=x), x > 0

with mean b=(aÿ 1) and variance b2=[(aÿ 1)2(aÿ 2)]. One possibility (for x approxi-

mately Normal) for setting a prior on the variance is to take the prior mean of s2 to be

the square of one sixth of the anticipated range of x (since the range is approximately 6s
for a Normal variable). Then for a � 2 (or just exceeding 2 to ensure finite variance),

one might set b � (range=6)2.

From the gamma density may be derived a number of other densities, and hence

ways of sampling from them. The chi-square is also used as a prior for the variance,

and is the same as a gamma density with a � n=2, b � 0:5. Its expectation is then

n, usually interpreted as a degrees of freedom parameter. The density (1.6) above

is sometimes known as a scaled chi-square. The chi-square may also be obtained for

n an integer, by taking n draws x1, x2, . . . xn from an N(0,1) density and taking the sum of

x2
1, x2

2, : : x
2
n. This sum is chi-square with n degrees of freedom.

The beta density is used as a prior for the probability p in the binomial density, and

can accommodate various degrees of left and right skewness. It has the form

f ( p) � G(a� b)=[G(a)G(b)] paÿ1(1ÿ p)bÿ1 a, b > 0; 0 < p < 1

with mean a=(a� b). Setting a � b implies a symmetrical density with mean 0.5,

whereas a > b implies positive skewness and a < b implies negative skewness. The

total a� bÿ 2 defines a prior sample size as in Equation (1.2).

If y and x are gamma densities with equal scale parameters (say v � 1), and if

y � G(a, v) and x � G(b, v), then

x � y=( y� x)

is a B(a, b) density. The beta has mean a=(a� b) and variance ab=[(a� b)2

(a� b� 1)].
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1.3.5 Univariate and Multivariate t

For continuous data, the Student t density is a heavy tailed alternative to the Normal,

though still symmetric, and is more robust to outlier points. The heaviness of the tails is

governed by an additional degrees of freedom parameter n as compared to the Normal

density. It has the form

f (x) � G(0:5n� 0:5)=[G(0:5n)(s2np)0:5] [1� (xÿ m)2=(ns2)]ÿ0:5(n�1)

with mean m and variance ns2=(nÿ 2). If z is a draw from a standard Normal, N(0, 1),

and y is a draw from the Gamma G(0.5n, 0.5) density, then x � m� sz
p

n=
p

y is a draw

form a Student tn(m, s2). Equivalently, let y be a draw from a Gamma density,

G(0.5n,0.5n), then the Student t is obtained by sampling from N(m, s2=y). The latter

scheme is the best form for generating the scale mixture version of the Student t density

(see Chapter 2).

A similar relationship holds between the multivariate Normal and multivariate t

densities. Let x be a d-dimensional continuous outcome. Suppose x is multivariate

Normal with mean m � (m1, m2, : :md ) and d � d dispersion matrix V. This is denoted

x �MVN(m, V ) or x � Nd(m, V ), and

f (x) � (2p)ÿd=2jV jÿ0:5
exp [ÿ 0:5(X ÿ m)Vÿ1(X ÿ m)]

Sampling from this density involves the Cholesky decomposition11 of V, namely

V � AAT, where A is also d � d. Then if z1, z2, : : zd are independent univariate draws

from a standard Normal,

x � m� Az

is a draw from the multivariate Normal. The multivariate Student t with n degrees of

freedom, mean m � (m1, m2, : :md ) and dispersion matrix V is defined by

f (x) � KjV jÿ0:5
{1� (1=n)(xÿ m)Vÿ1(xÿ m)}ÿ0:5(n�d)

where K is a constant ensuring the integrated density sums to unity. This density is

useful for multivariate data with outliers or other sources of heavy tails, and may be

sampled from by taking a single draw Y from a Gamma density, l � G(0:5n, 0:5n) and

then sampling the vector

x � Nd(m, V=l)

The Wishart density, the multivariate generalisation12 of the gamma or of the chi-square

density, is the most common prior structure assumed for the inverse of the dispersion

11 This matrix may be obtained (following an initialisation of A) as:
for i � 1 to d
for j � 1 to i ÿ 1

Aij � Vij ÿ
Xjÿ1

k�1

AikAjk

 !
=Ajj

Aji � 0

Aii � Vii ÿ
Xiÿ1

k�1

A2
ik

 !0:5

12 Different parameterisations are possible. The form in WINBUGS generalises the chi-square.

16 BAYESIAN MODEL ESTIMATION VIA REPEATED SAMPLING



matrix V, namely the precision matrix T � Vÿ1. One form for this density, for a degrees

of freedom n � d, and a scale matrix S

T / jSjn=2jT j0:5(nÿdÿ1)
exp (ÿ 0:5tr[ST ])

The matrix S=n is a prior guess at the dispersion matrix, since E(T) � nSÿ1.

1.3.6 Densities relevant to multinomial data

The multivariate generalisation of the Bernoulli and binomial densities allows for

a choice among C > 2 categories, with probabilities p1, p2, : :pC summing to 1.

In BUGS the multivariate generalisation of the Bernoulli may be sampled from in

two ways:

Y [i] � dcat(pi[1: C])

which generates a choice j between 1 and C, or

Z[i] � dmulti(pi[1: C], 1)

This generates a choice indicator, Zij � 1 if the jth category is chosen, and Zij � 0

otherwise.

For example, the code

{for (i in 1:100) {Y[i] � dcat(pi[1:3])}}

with data in the list file

list( pi�c(0.8,0.1,0.1)}

would on average generate 80 one's, 10 two's and 10 three's. The coding

{for (i in 1:100) {Y[i,1:3] � dmulti(pi[1:3],1)}}

with data as above would generate a 100� 3 matrix, with each row containing a one

and two zeroes, and the first column of each row being 1 for 8 out of 10 times on

average.

A commonly used prior for the probability vector
Q � (p1, : :pC) is provided by the

Dirichlet density. This is a multivariate generalisation of the beta density, as can be seen

from its density

f (p1, : : , pC) � G(a1 � a2 � . . .� aC)=[G(a1)G(a2) . . . G(aC)]

pa1ÿ1
1 pa2ÿ1

2 . . . paCÿ1
C

where the parameters a1, a2, : :aC are positive. The Dirichlet may be drawn from

directly in WINBUGS and a common default option sets a1 � a2 � . . . aC � 1. How-

ever, an alternative way of generation is sometimes useful. Thus, if Z1, Z2, : :ZC are

gamma densities with equal scale parameters (say v � 1), and if

Z1 � G(a1, v), Z2 � G(a2, v), : :ZC � G(aC , v)

then the quantities

Zj � aj=
X

k

ak j � 1, : :C

are draws from the Dirichlet with prior weights vector (a1, : :aC).
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1.4 MONITORING MCMC CHAINS AND ASSESSING CONVERGENCE

An important practical issue involves assessment of convergence of the sampling

process used to estimate parameters, or more precisely update their densities. In con-

trast to convergence of optimising algorithms (maximum likelihood or minimum least

squares, say), convergence here is used in the sense of convergence to a density rather

than single point. The limiting or equilibrium distribution P(ujY ) is known as the target

density. The sample space is then the multidimensional density in p-space; for instance,

if p � 2 this density may be approximately an ellipse in shape.

The above two worked examples involved single chains, but it is preferable in

achieving convergence to use two or more parallel chains13 to ensure a complete

coverage of this sample space, and lessen the chance that the sampling will become

trapped in a relatively small region. Single long runs may, however, often be adequate

for relatively straightforward problems, or as a preliminary to obtain inputs to multiple

chains.

A run with multiple chains requires overdispersed starting values, and these might be

obtained from a preliminary single chain run; for example, one might take the 1st and

99th percentiles of parameters from a trial run as initial values in a two chain run (Bray,

2002), or the posterior means from a trial run combined with null starting values.

Another option might combine parameters obtained as a random draw14 from a trial

run with null parameters. Null starting values might be zeroes for regression param-

eters, one for precisions, and identity matrices for precision matrices. Note that not all

parameters need necessarily be initialised, and parameters may instead be initialised by

generating15 from their priors.

A technique often useful to aid convergence, is the over-relaxation method of Neal

(1998). This involves generates multiple samples of each parameter at the next iteration

and then choosing the one that is least correlated with the current value, so potentially

reducing the tendency for sampling to become trapped in a highly correlated random

walk.

1.4.1 Convergence diagnostics

Convergence for multiple chains may be assessed using the Gelman-Rubin scale reduc-

tion factors, which are included in WINBUGS, whereas single chain diagnostics require

use of the CODA or BOA packages16 in Splus or R. The scale reduction factors

compare variation in the sampled parameter values within and between chains. If

parameter samples are taken from a complex or poorly identified model then a wide

divergence in the sample paths between different chains will be apparent (e.g. Gelman,

1996, Figure 8.1) and variability of sampled parameter values between chains will

considerably exceed the variability within any one chain. Therefore, define

Vj �
XT�s

t�s

u(t)
j ÿ �uj

� �2

=(T ÿ 1)

13 In WINBUGS this involves having separate inits files for each chain and changing the number of chains
from the default value of 1 before compiling.
14 For example, by using the state space command in WINBUGS.
15 This involves `gen ints' in WINBUGS.
16 Details of these options and relevant internet sites are available on the main BUGS site.
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as the variability of the samples u(t)
j within the jth chain (j � 1, . . . J). This is assessed

over T iterations after a burn in of s iterations. An overall estimate of variability within

chains is the average VW of the Vj. Let the average of the chain means �uj be denoted �u�.
Then the between chain variance is

VB � T

J ÿ 1

XJ

j�1

(�uj ÿ �u�)2

The Scale Reduction Factor (SRF) compares a pooled estimator of var(u), given by

VP � VB=T � TVW=(T ÿ 1)

with the within sample estimate VW . Specifically, the SRF is

(VP=VW )0:5

and values of the SRF, or `Gelman-Rubin statistic', under 1.2 indicate approximate

convergence.

The analysis of sampled values from a single MCMC chain or parallel chains may

be seen as an application of time series methods (see Chapter 5) in regard to problems

such as assessing stationarity in an autocorrelated sequence. Thus, the autocorrelation

at lags 1, 2, and so on, may be assessed from the original series of sampled values u(t),

u(t�1), u(t�2)::, or from more widely spaced sub-samples K steps apart u(t), u(t�K), u(t�2K).

Geweke (1992) developed a t-test applicable to assessing convergence in runs of sampled

parameter values, both in single and multiple chain situations. Let �ua be the posterior

mean of scalar parameter u from the first na iterations in a chain (after burn-in), and �ub

be the mean from the last nb draws. If there is a substantial run of intervening iterations,

then the two samples should be independent. Let Va and Vb be the variances of these

averages17. Then the statistic

Z � (�ua ÿ �ub)=(Va � Vb)
0:5

should be approximately N(0, 1). This test may be obtained in CODA or the BOA

package.

1.4.2 Model identifiability

Problems of convergence of MCMC sampling procedures may reflect problems in

model identifiability due to over-fitting or redundant parameters. Use of diffuse priors

increases the chances of a poorly identified model, especially in complex hierarchical

models (Gelfand and Sahu, 1999), and elicitation of more informative priors may assist

identification and convergence. Slow convergence will show in poor `mixing' with high

autocorrelation in the successive sampled values of parameters, apparent graphically in

trace plots that wander rather than rapidly fluctuating around a stable mean.

17 If by chance the successive samples u(t)
a , t � 1, : : na and u(t)

b , t � 1, : : nb were independent, then Va and Vb

would be obtained as the population variance of the u(t), namely V (u), divided by na and nb. In practice,
dependence in the sampled values is likely, and Va and Vb must be estimated by allowing for the autocorrela-
tion. Thus

Va � (1=na) g0 �
Xnaÿ1

j�1

gj

na ÿ j

na

� �" #
where gj is the autocovariance at lag j. In practice, only a few lags may be needed.
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Conversely, running multiple chains often assists in diagnosing poor identifiability of

models. Examples might include random effects in nested models, for instance

yij � m� Zi � uij i � 1, : : n; j � 1, : :m (1:7)

where Zi � N(0, s2
Z), uij � N(0, s2

u). Poor mixing may occur because the mean of the Zi

and the global mean m are confounded: a constant may be added to the Zi and

subtracted from m without altering the likelihood (Gilks and Roberts, 1996). Vines,

Gilks and Wild (1996) suggest the transformation (or reparameterisation) in Equation

(1.7),

n � m� �Z; ai � Zi ÿ �Z

leading to the model

yij � n� ai � uij

a1 � N(0, (mÿ 1)s2
Z=m)

aj � N ÿ
Xjÿ1

k�1

ak,
mÿ j

mÿ j � 1
s2
Z

 !

am � ÿ
Xmÿ1

k�1

ak

More complex examples occur in a spatial disease model with unstructured and spatially

structured errors (Gelfand et al., 1998), sometimes known as a spatial convolution

model and considered in Example 1.3 below, and in a particular kind of multiple

random effects model, the age-period-cohort model (Knorr-Held and Rainer, 2001).

Identifiability issues also occur in discrete mixture regressions (Chapter 3) and struc-

tural equation models (Chapter 8) due to label switching during the MCMC sampling.

Such instances of non-identifiability will show as essentially nonconvergent parameter

series between chains, whereas simple constraints on parameters will typically achieve

identifiability. For example, if a structural equation model involved a latent construct

such as alienation and loadings on this construct were not suitably constrained, then

one chain might fluctuate around a loading of ÿ0.8 on social integration (the obverse of

alienation) and another chain fluctuate around a loading of 0.8 on alienation.

Correlation between parameters within the parameter set
~
u � (u1, u2, . . . up), such as

between u1 and u2, also tends to delay convergence and to increase the dependence

between successive iterations. Re-parameterisation to reduce correlation ± such as

centring predictor variables in regression ± may improve convergence (Gelfand et al.,

1995; Zuur et al., 2002). In nonlinear regressions, a log transform of a parameter may be

better identified than its original form (see Chapter 10 for examples in dose-response

modelling).

1.5 MODEL ASSESSMENT AND SENSITIVITY

Having achieved convergence with a suitably identified model a number of processes

may be required to firmly establish the models credibility. These include model choice

(or possibly model averaging), model checks (e.g. with regard to possible outliers) and,

in a Bayesian analysis, an assessment of the relation of posterior inferences to prior
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assumptions. For example, with small samples of data or with models where the random

effects are to some extent identified by the prior on them, there is likely to be sensitivity

in posterior estimates and inferences to the prior assumed for parameters. There may

also be sensitivity if an informative prior based on accumulated knowledge is adopted.

1.5.1 Sensitivity on priors

One strategy is to consider a limited range of alternative priors and assess changes in

inferences; this is known as `informal' sensitivity analysis (Gustafson, 1996). One might

also consider more formal approaches to robustness based perhaps on non-parametric

priors (such as the Dirichlet process prior) or on mixture (`contamination') priors. For

instance, one might assume a two group mixture with larger probability 1ÿ p on the

`main' prior p1(u), and a smaller probability such as p � 0:2 on a contaminating density

p2(u), which may be any density (Gustafson, 1996; Berger, 1990). One might consider

the contaminating prior to be a flat reference prior, or one allowing for shifts in the

main prior's assumed parameter values (Berger, 1990). For instance, if p1(u) is N(0, 1),

one might take p2(u) � N(m2, v2), where higher stage priors set m2 � U(ÿ 0:5, 0:5) and

v2 � U(0.7, 1.3).

In large datasets, regression parameters may be robust to changes in prior unless

priors are heavily informative. However, robustness may depend on the type of param-

eter and variance parameters in random effects models may be more problematic,

especially in hierarchical models, where different types of random effect coexist in a

model (Daniels, 1999; Gelfand et al., 1998). While a strategy of adopting just proper

priors on variances (or precisions) is often advocated in terms of letting the data speak

for themselves (e.g. gamma(a, a) priors on precisions with a � 0:001 or a � 0:0001), this

may cause slow convergence and relatively weak identifiability, and there may be

sensitivity in inferences between analyses using different supposedly vague priors (Kel-

sall and Wakefield, 1999). One might introduce stronger priors favouring particular

values more than others (e.g. a gamma(5, 1) prior on a precision), or even data based

priors loosely based on the observed variability. MollieÂ (1996) suggests such a strategy

for the spatial convolution model. Alternatively the model might specify that random

effects and/or their variances interact with each other; this is a form of extra infor-

mation.

1.5.2 Model choice and model checks

Additional forms of model assessment common to both classical and Bayesian methods

involve measuring the overall fit of the model to the dataset as a basis for model choice,

and assessing the impact of particular observations on model estimates and/or fit

measures. Model choice is considered in Chapter 2 and certain further aspects which

are particularly relevant in regression modelling are discussed in Chapter 3. While

marginal likelihood, and the Bayes factor based on comparing such likelihoods, defines

the canonical model choice, in practice (e.g. for complex random effects models or

models with diffuse priors) this method may be relatively difficult to implement.

Relatively tractable approaches based on the marginal likelihood principle include

those of Newton and Raftery (1994) based on the harmonic average of likelihoods,

the importance sampling method of Gelfand and Dey (1994), as exemplified by Lenk

and Desarbo (2000), and the method of Chib (1995) based on the marginal likelihood

identity (Equation (2.4) in Chapter 2).
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Methods such as cross-validation by single case omission lead to a form of pseudo

Bayes factor based on multiplying the CPO for model 1 over all cases and comparing

the result with the same quantity under model 2 (Gelfand, 1996, p. 150). This approach

when based on actual omission of each case in turn may (with current computing

technology) be only practical with relatively small samples. Other sorts of partitioning

of the data into training samples and hold-out (or validation) samples may be applied,

and are less computationally intensive.

In subsequent chapters, the main methods of model choice are (a) those based on

predictive criteria, comparing model predictions z with actual observations18, as advo-

cated by Gelfand and Ghosh (1998) and others, and (b) modifications of classical

deviance tests to reflect the effective model dimension, as in the DIC criterion discussed

in Chapter 2 (Spiegelhalter et al., 2002). These are admittedly not formal Bayesian

choice criteria, but are relatively easy to apply over a wide range of models including

non-conjugate and heavily parameterised models.

The marginal likelihood approach leads to posterior probabilities or weights on

different models, which in turn are the basis for parameter estimates derived by model

averaging (Wasserman, 2000). Model averaging has particular relevance for regression

models, especially for smaller datasets where competing specifications provide closely

comparable explanations for the data, and so there is a basis for weighted averages of

parameters over different models; in larger datasets by contrast, most model choice

diagnostics tend to overwhelmingly support one model. A form of model averaging also

occurs under predictor selection methods, such as those of George and McCulloch

(1993) and Kuo and Mallick (1998), as discussed in Chapter 3.

1.5.3 Outlier and influence checks

Outlier and influence analysis in Bayesian modelling may draw in a straightforward

fashion from classical methods. Thus in a linear regression model with Normal errors

yi � b1 � b2x1i � . . . bp�1xpi � ei

the posterior mean of êi � yi ÿ b̂xi compared to its posterior standard deviation pro-

vides an indication of outlier status (Pettitt and Smith, 1985; Chaloner, 1998) ± see

Example 3.12. In frequentist applications of this regression model, the influence of a

particular case is apparent in the ratio of Var(êi) � s2(1ÿ ni) to the overall residual

variance s2, where ni � x0i[X
0X ]ÿ1xi, with X the n� (p� 1) covariate matrix for all

cases; a similar procedure may be used in Bayesian analysis.

Alternatively, the CPO predictive quantity f ( yijy[ÿi]) may be used as an outlier

diagnostic and as the basis for influence measures. Weiss and Cho (1998) consider

possible divergence criteria in terms of the ratios ai � [CPOi=f ( yiju)], such as the

L1 norm, with the influence of case i on the totality of model parameters then repre-

18 A simple approach to predictive fit generalises the method of Laud and Ibrahim (1995) ± see Example 3.2 ±
and is mentioned by Gelfand and Ghosh (1998), Sahu et al. (1997) and Ibrahim et al. (2001). Let yi be the
observed data, f be the parameters, and zi be `new' data sampled from f (zjf). Suppose ni and Bi are the
posterior mean and variance of zi, then one possible criterion for any w > 0 is

C �
Xn

i�1

Bi � [w=(w� 1)]
Xn

i�1

(ni ÿ yi)
2

Typical values of w at which to compare models might be w � 1, w � 10 and w � 100, 000. Larger values of w
put more stress on the match between ni and yi and so downweight precision of predictions. Gelfand and
Ghosh (1998) develop deviance-based criteria specific for non-Normal outcomes (see Chapter 3), though these
assume no missingness on the response.
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sented by d(ai) � 0:5jai ÿ 1j ± see Example 1.4. Specific models, such as those introdu-

cing latent data, lead to particular types of Bayesian residual (Jackman, 2000). Thus, in

a binary probit or logit model, underlying the observed binary y are latent continuous

variables z, confined to negative or positive values according as y is 0 or 1. The

estimated residual is then zÿ b̂xi analogously to a Normal errors model.

Example 1.3 Lung cancer in London small areas As an example of the possible

influence of prior specification on regression coefficients and random effects, consider

a small area health outcome: female lung cancer deaths yi in the three year period

1990±92 in 758 London small areas19 (electoral wards). If we focus first on regression

effects, there is overwhelming accumulated evidence that ill health and mortality (espe-

cially lung cancer deaths) are higher in more deprived, lower income areas. Having

allowed for the impact of age differences via indirect standardisation (to provide

expected deaths Ei) variations in this type of mortality are expected to be positively

related to a deprivation score xi, which is in standard form (zero mean, variance 1). The

following model is assumed

yi � Poi(mi)

mi � Eiri

log (ri) � b1 � b2xi

The only parameters, b1 and b2, are assigned diffuse but proper N(0,1000) priors. Since

the sum of observed and expected deaths is the same and x is standardised, one might

expect b1 to be near zero. Two sets initial values of adopted b � (0, 0) and b � (0, 0:2)

with the latter the mean of a trial (single chain) run. A two chain run then shows early

convergence via Gelman-Rubin criteria (at under 250 iterations) and from iterations

250±2500 pooled over the chains a 95% credible interval for b2 of (0.18,0.24) is

obtained.

However, there may well be information which would provide more informative

priors. Relative risks ri between areas for major causes of death (from chronic disease)

reflect, albeit imperfectly, gradients in risk for individuals over attributes such as

income, occupation, health behaviours, household tenure, ethnicity, etc. These gradi-

ents typically show at most five fold variation between social categories except perhaps

for risk behaviours directly implicated in causing a disease. Though area contrasts may

also be related to environmental influences (usually less strongly) accumulated evidence,

including evidence for London wards, suggests that extreme relative contrasts in stand-

ard mortality ratios (100� ri) between areas are unlikely to exceed 10 or 20 (i.e. SMRs

ranging from 30 to 300, or 20 to 400 at the outside). Simulating with the known

covariate xi and expectancies Ei it is possible to obtain or `elicit' priors consistent

with these prior beliefs. For instance one might consider taking a N(0,1) prior on b1

and a N(0.5,1) prior on b2. The latter favours positive values, but still has a large part of

its density over negative values.

Values of yi are simulated (see Model 2 in Program 1.3) with these priors; note that

initial values are by definition generated from the priors, and since this is pure simula-

tion there is no notion of convergence. Because relative risks tend to be skewed, the

median relative risks (i.e. yi=Ei) from a run of 1000 iterations are considered as

19 The first is the City of London (1 ward), then wards are alphabetic within boroughs arranged alphabetically
(Barking, Barnet, . . . . ,Westminster). All wards have five near neighbours as defined by the nearest wards in
terms of crow-fly distance.
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summaries of contrasts between areas under the above priors. The extreme relative risks

are found to be 0 and 6 (SMRs of 0 and 600) and the 2.5% and 97.5% percentiles of

relative risk are 0.37 and 2.99. So this informative prior specification appears broadly in

line with accumulated evidence.

One might then see how far inference about b2 is affected by adopting the N(0.5, 1)

prior instead of the N(0, 1000) diffuse prior20 when the observations are restored. In

fact, the 95% credible interval from a two chain run (with initial values as before and run

length of 2500 iterations) is found to be the same as under the diffuse prior.

A different example of sensitivity analysis involves using a contamination prior on b2.

Thus, suppose p1(b2) is N(0.5, 1) as above, but that for p2(b2) a Student t with 2 degrees

of freedom but same mean zero and variance is adopted, and p � 0:1. Again, the same

credible interval for b2 is obtained as before (Model 3 in Program 1.3). One might take

the contaminating prior to be completely flat (dflat( ) in BUGS), and this is suggested as

an exercise. In the current example, inferences on b2 appear robust here to alternative

priors, and this is frequently the case with regression parameters in large samples ±

though with small datasets there may well be sensitivity.

An example where sensitivity in inferences concerning random effects may occur is

when the goal in a small area mortality analysis is not the analysis of regressor effects

but the smoothing of unreliable rates based on small event counts or populations at risk

(Manton et al., 1987). Such smoothing or `pooling strength' uses random effects over a

set of areas to smooth the rate for any one area towards the average implied under the

density of the effects. Two types of random effect have been suggested, one known as

unstructured or `white noise' variation, whereby smoothing is towards a global average,

and spatially structured variation whereby smoothing is towards the average in the

`neighbourhood' of adjacent wards. Then the total area effect ai consists of an unstruc-

tured or `pure heterogeneity' effect yi and a spatial effect fi. While the data holds

information about which type of effect is more predominant, the prior on the variances

s2
y and s2

f may also be important in identifying the relative roles of the two error

components.

A popular prior used for specifying spatial effects, the CAR(1) prior of Besag et al.

(1991), introduces an extra identifiability issue in that specifies differences in risk

between areas i and j, fi ÿ fj, but not the average level (i.e. the location) of the spatial

risk (see Chapter 7). This prior can be specified in a conditional form, in which

fi � N(
X
j2Ai

ej , s2
f=Mi)

where Mi is the number of areas adjacent to area i, and j 2 Ai denotes that set of areas.

To resolve the identifiability problem one may centre the sampled fi at each MCMC

iteration and so provide a location, i.e. actually use in the model to predict log (ri) the

shifted effects f0i � fi ÿ �f. In fact, following Sun et al. (1999), identifiability can also be

gained by introducing a correlation parameter g

fi � N(g
X
j2Ai

fj, s2
f=Mi) (1:8)

which is here taken to have prior g � U(0, 1). Issues still remain in specifying priors on

s2
y and s2

f (or their inverses) and in identifying both these variances and the separate

risks yi and fi in each area in the model

20 The prior on the intercept is changed to N(0, 1) also.
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log (ri) � b1 � yi � fi

where the prior for fi is taken to be as in Equation (1.8) and where yi � N(0, s2
y). A

`diffuse prior' strategy might be to adopt gamma priors G(a1, a2) on the precisions 1=s2
y

and 1=s2
f, where a1 � a2 � a and a is a small constant such as a � 0:001, but possible

problems in doing this are noted above. One might, however, set priors on a1 and a2

themselves rather than presetting them (Daniels and Kass, 1999), somewhat analogous

to contamination priors in allowing for higher level uncertainty.

Identifiability might also be improved by instead linking the specification of yi and fi

in some way (see Model 4 in Program 1.3). For example, one might adopt a bivariate

prior on these random effects as in Langford et al. (1998) and discussed in Chapter 7. Or

one might still keep yi and fi as univariate errors, but recognise that the variances are

interdependent, for instance taking s2
y � cs2

f so that one variance is conditional on the

other and a pre-selected value of c. Bernardinelli et al. (1995) recommend c � 0:7. A

prior on c might also be used, e.g. a gamma prior with mean 0.7. One might alternatively

take a bivariate prior (e.g. bivariate Normal) on log (s2
y) and log (s2

f). Daniels (1999)

suggests uniform priors of the ratio of one variance to the sum of the variances, for

instance a U(0, 1) prior on s2
y=[s

2
y � s2

f], though the usual application of this approach

is to other forms of hierarchical model.

Here we first consider independent G(0.5, 0.0005) priors on 1=s2
y and 1=s2

f in a two

chain run. One set of initial values is provided by `default' values, and the other by

setting the model's central parameters to their mean values under an initial single chain

run. The problems possible with independent diffuse priors show in the relatively slow

convergence of sf; not until 4500 iterations does the Gelman-Rubin statistic fall below

1.1. As an example of inferences on relative mortality risks, the posterior mean for the

first area, where there are three deaths and 2.7 expected (a crude relative risk of 1.11), is

1.28, with 95% interval from 0.96 to 1.71. The risk for this area is smoothed upwards to

the average of its five neighbours, all of which have relatively high mortality. This

estimate is obtained from iterations 4500±9000 of the two chain run. The standard

deviations sy and sf of the random effects have posterior medians 0.041 and 0.24.

In a second analysis the variances21 are interrelated with s2
y � cs2

f and c taken as

G(0.7, 1). This is relatively informative prior structure, and reflects the expectation that

any small area health outcome will probably show both types of variability. Further, the

prior on 1=s2
f allows for uncertainty in the parameters, i.e. instead of a default prior

such as 1=s2
f �G(1, 0.001), it is assumed that

1=s2
f � G(a1, a2)

with

a1 � Exp(1)

a2 � G(1, 0:001)

The priors for a1 and a2 reflect the option sometimes used for a diffuse prior on

precisions such as 1=s2
f, namely a G(1, v) prior on precisions (with v preset at a small

constant, such as v � 0:001).

This model achieves convergence in a two chain run of 10 000 iterations at around

3000 iterations, and yields a median for c of 0.12, and for sy and sf of 0.084 and 0.24.

The posterior medians of a1 and a2 are 1.7 and 0.14. Despite the greater element of pure

21 In BUGS this inter-relationship involves precisions.
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heterogeneity the inference on the first relative risk is little affected, with mean 1.27 and

95% credible interval (0.91, 1.72).

So some sensitivity is apparent regarding variances of random effects in this example

despite the relatively large sample, though substantive inferences may be more robust. A

suggested exercise is to experiment with other priors allowing interdependent variances

or errors, e.g. a U(0, 1) prior on s2
y=[s

2
y � s2

f]. A further exercise might involve

summarising sensitivity on the inferences about relative risk, e.g. how many of the 758

mean relative risks shift upward or downward by more than 2.5%, and how many by

more than 5%, in moving from one random effects prior to another.

Example 1.4 Gessel score To illustrate possible outlier analysis, we follow Pettitt and

Smith (1985) and Weiss and Cho (1998), and consider data for n � 21 children on

Gessel adaptive score ( y) in relation to age at first word (x in months). Adopting a

Normal errors model with parameters b � (b1, b2), estimates of the CPOi may be

obtained by single case omission, but an approximation based on a single posterior

sample avoids this. Thus for T samples (Weiss, 1994),

CPOÿ1
i � Tÿ1

XT
t�1

[ f ( yijb(t), xi)]
ÿ1

or the harmonic mean of the likelihoods of case i. Here an initial run is used to estimate

the CPOs in this way, and a subsequent run produces influence diagnostics, as in Weiss

and Cho (1998). It is apparent (Table 1.1) that child 19 is both a possible outlier and

influential on the model parameters, but child 18 is influential without being an outlier.

Table 1.1 Diagnostics for Gessel score

Child CPO Influence (Kullback K1) Influence (L1 norm) Influence (chi square)

1 0.035 0.014 0.066 0.029

2 0.021 0.093 0.161 0.249

3 0.011 0.119 0.182 0.341

4 0.025 0.032 0.096 0.071

5 0.024 0.022 0.081 0.047

6 0.035 0.015 0.068 0.031

7 0.034 0.015 0.068 0.031

8 0.035 0.014 0.067 0.029

9 0.034 0.016 0.071 0.035

10 0.029 0.023 0.083 0.051

11 0.019 0.067 0.137 0.166

12 0.033 0.017 0.072 0.035

13 0.011 0.119 0.182 0.341

14 0.015 0.066 0.137 0.163

15 0.032 0.015 0.068 0.032

16 0.035 0.014 0.067 0.030

17 0.025 0.022 0.081 0.047

18 0.015 1.052 0.387 75.0

19 0.000138 2.025 0.641 56.2

20 0.019 0.042 0.111 0.098

21 0.035 0.014 0.067 0.030
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As Pettitt and Smith (1985) note, this is because child 18 is outlying in the covariate

space, with age at first word (x) much later than other children, whereas child 19 is

outlying in the response ( y) space.

1.6 REVIEW

The above worked examples are inevitably selective, but start to illustrate some of

the potentials of Bayesian methods but also some of the pitfalls in terms of the

need for `cautious inference'. The following chapters consider similar modelling

questions to those introduced here, and include a range of worked examples. The

extent of possible model checking in these examples is effectively unlimited, and a

Bayesian approach raises additional questions such as sensitivity of inferences to

assumed priors.

The development in each chapter draws on contemporary discussion in the statistical

literature, and is not confined to reviewing Bayesian work. However, the worked

examples seek to illustrate Bayesian modelling procedures, and to avoid unduly lengthy

discussion of each, the treatments will leave scope for further analysis by the reader

employing different likelihoods, prior assumptions, initial values, etc.

Chapter 2 considers the potential for pooling information across similar units

(hospitals, geographic areas, etc.) to make more precise statements about parameters

in each unit. This is sometimes known as `hierarchical modelling', because higher

level priors are specified on the parameters of the population of units. Chapter 3

considers model choice and checking in linear and general linear regressions. Chapter

4 extends regression to clustered data, where regression parameters may vary randomly

over the classifiers (e.g. schools) by which the lowest observation level (e.g. pupils) are

classified.

Chapters 5 and 6 consider time series and panel models, respectively. Bayesian

specifications may be relevant to assessing some of the standard assumptions

of time series models (e.g. stationarity in ARIMA models), give a Bayesian interpret-

ation to models commonly fitted by maximum likelihood such as the basic structural

model of Harvey (1989), and facilitate analysis in more complex problems, for example,

shifts in means and/or variances of series. Chapter 6 considers Bayesian treatments of

the growth curve model for continuous outcomes, as well as models for longitudinal

discrete outcomes, and panel data subject to attrition. Chapter 7 considers observations

correlated over space rather than through time, and models for discrete

and continuous outcomes, including instances where regression effects may

vary through space, and where spatially correlated outcomes are considered through

time.

An alternative to expressing correlation through multivariate models is to introduce

latent traits or classes to model the interdependence. Chapter 8 considers a variety of

what may be termed structural equation models, the unity of which with the main body

of statistical models is now being recognised (Bollen, 2001).

The final two chapters consider techniques frequently applied in biostatistics and

epidemiology, but certainly not limited to those application areas. Chapter 9 considers

Bayesian perspectives on survival analysis and chapter 10 considers ways of using data

to develop support for causal mechanisms, as in meta-analysis and dose-response

modelling.
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CHAPTER 2 Hierarchical Mixture Models

Hierarchical Mixture Models

2.1 INTRODUCTION: SMOOTHING TO THE POPULATION

A relatively simple Bayesian problem, but one which has motivated much research, is

that of ensemble estimation, namely estimating the parameters of a common distribu-

tion thought to underlay a collection of outcomes for similar types of units. Among

possible examples are medical, sports, or educational: death rates for geographical

areas, batting averages for baseball players, Caesarian rates in maternity units, and

exam success rates for schools. Given the parameters of the common density, one seeks

to make conditional estimates of the true outcome rate in each unit of observation.

Because of this conditioning on the higher stage densities, such estimation for sets of

similar units is also known as `hierarchical modelling' (Kass and Steffey, 1989; Lee,

1997, Chapter 8). For instance, in the first stage of the Poisson-gamma model con-

sidered below, the observed counts are conditionally independent given the unknown

means that are taken to have generated them. At the second stage, these means are

themselves determined by the gamma density parameters, while the density for the

gamma parameters forms the third stage.

These procedures, whether from a full or empirical Bayes perspective, usually result in

a smoothing of estimates for each unit towards the average outcome rate, and have

generally been shown to have greater precision and better out of sample predictive

performance. Specifically, Rao (1975) shows that with respect to a quadratic loss

function, empirical Bayes estimators outperform classical estimators in problems of

simultaneous inference regarding a set of related parameters. These procedures may,

however, imply a risk of bias as against unadjusted maximum likelihood estimates ± this

dilemma is known as the bias-variance trade-off.

Such procedures for `pooling strength' rest on implicit assumptions: that the units are

exchangeable (similar enough to justify an assumption of a common density), and that

the smoothing model chosen is an appropriate one. It may be that units are better

considered exchangeable within sub-groups of the data (e.g. outcomes for randomised

trials in one sub-group vs. outcomes for observational studies in another). Model choice

is an additional uncertainty (e.g. does one take parametric or non-parametric approach

to smoothing, and if a non-parametric discrete mixture, how many components?).

Therefore, this chapter includes some guidelines as to model comparison and choice,

which will be applicable to this and later chapters. There are no set `gold standard'

model choice criteria, though some arguably come closer to embodying true Bayesian
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principles than others. Often one may compare `classical' fit measures such as deviance

or the Akaike Information Criterion (Bozdogan, 2000), either averages over an MCMC

chain (e.g. averages of deviances D(t) attaching to parameters u(t) at each iteration), or in

terms of the deviance at the posterior mean. These lead to a preliminary sifting of

models and more comprehensive model assessment, and selection is reserved to a final

stage of the analysis involving a few closely competing models.

2.2 GENERAL ISSUES OF MODEL ASSESSMENT: MARGINAL

LIKELIHOOD AND OTHER APPROACHES

There is usually uncertainty about appropriate error structures and predictor variables

to include in models. Adding more parameters may improve fit, but maybe at the

expense of identifiability and generalisability. Model selection criteria assess whether

improvements in fit measures such as likelihoods, deviances or error sum of squares

justify the inclusion of extra parameters in a model. Classical and Bayesian model

choice methods may both involve comparison either of measures of fit to the current

data or cross validatory fit to out of sample data. For example, the deviance statistics of

general linear models (with Poisson, normal, binomial or other exponential family

outcomes) follow standard densities for comparisons of models nested within one

another, at least approximately in large samples (McCullagh and Nelder, 1989). Penal-

ised measures of fit (Bozdogan, 2000; Aikake, 1973) may be used, involving an adjust-

ment to the model log-likelihood or deviance to reflect the number of parameters in the

model.

Thus, suppose L denotes the likelihood and D the deviance of a model involving p

parameters. The deviance may be simply defined as minus twice the log likelihood,

D � ÿ2 log L, or as a scaled deviance:

D0 � ÿ2 log (L=Ls),

where Ls is the saturated likelihood obtained by an exact fit of predicted to observed

data. Then to allow for the number of parameters (or `dimension' of the model), one

may use criteria such as the Akaike Information Criterion (or AIC), expressed either as1

D� 2p

or

D0 � 2p

So when the AIC is used to compare models, an increase in likelihood and reduction

in deviance is offset by a greater penalty for more complex models.

Another criterion used generally as a penalised fit measure, though also justified as an

asymptotic approximation to the Bayesian posterior probability of a model, is the

Schwarz Information Criterion (Schwarz, 1978). This is also often called the Bayes

Information Criterion. Depending on the simplifying assumptions made, it may take

different forms, but the most common version is, for sample of size n,

BIC � D� p loge (n)

1 So a model is selected if it has lowest AIC. Sometimes the AIC is obtained as Lÿ p with model selection
based on maximising the AIC.
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Under this criterion models with lower BIC are chosen, and larger models (with more

parameters) are more heavily penalised than under the AIC. The BIC approximation

for model j is derived by considering the posterior probability for the model Mj as in

Equation (2.1) below, and by expanding minus twice the log of that quantity around the

maximum likelihood estimate (or maybe some other central estimate).

In Bayesian modelling, prior information is introduced on the parameters, and the fit

of the model to the data at hand and the resulting posterior parameter estimates are

constrained to some degree by adherence also to this prior `data'. One option is to

simply compare averages of standard fit measures such as the deviance or BIC over an

MCMC run, e.g. consider model choice in terms of a model which has minimum

average AIC or BIC. Approaches similar in some ways to classical model validation

procedures are often required because the canonical Bayesian model choice methods

(via Bayes factors) are infeasible or difficult to apply in complex models or large samples

(Gelfand and Ghosh, 1998; Carlin and Louis, 2000, p. 220). The Bayes factor may be

sensitive to the information contained in diffuse priors, and is not defined for improper

priors.

Monitoring fit measures such as the deviance over an MCMC run has utility if

one seeks penalised fit measures taking account of model dimension. A complication

is that the number of parameters in complex random effects models is not actually

defined. Here work by Spiegelhalter et al. (2002) may be used to estimate the effective

number of parameters, denoted pe. Specifically, for data y and parameters u, pe is

approximated by the difference between the expected deviance E(Djy, u), as measured

by the posterior mean of sampled deviances D(t) � D(u(t)) at iterations t � 1, : : , T in a

long MCMC run, and the deviance D(�ujy), evaluated at the posterior mean �u of the

parameters. Then one may define a penalised fit measure analogous to the Akaike

information criterion as

D(�ujy)� 2pe

and this has been termed the Deviance Information Criterion. Alternatively a modified

Bayesian Information Criterion BIC � D(�u j y)� pe log (n) may be used, as this takes

account of both sample size and complexity (Upton, 1991; Raftery, 1995). Note that pe

might also be obtained by comparing an average likelihood with the likelihood at the

posterior mean and then multiplying by 2. Related work on effective parameters when

the average likelihoods of two models are compared appears in Aitkin (1991).

The Bayesian approach to model choice and its implementation via MCMC sampling

methods has benefits in comparisons of non-nested models ± for instance, in comparing

two nonlinear regressions or comparing a beta-binomial model as against a discrete

mixture of binomials (Morgan, 2000). A well known problem in classical statistics is

in likelihood comparisons of discrete mixture models involving different numbers of

components, and here the process involved in Bayesian model choice is simpler.

2.2.1 Bayes model selection using marginal likelihoods

The formal Bayesian model assessment scheme involves marginal likelihoods, and while

it follows a theoretically clear procedure may in practice be difficult to implement.

Suppose K models, denoted Mk, k � 1, : :K , have prior probabilities fk � P(Mk)

assigned to them of being true, with �k�1, Kfk � 1. Let uk be the parameter set in

model k, with prior p(uk). Then the posterior probabilities attaching to each model after

observing data y are
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P(Mkjy) � P(Mk)

�
f ( yjuk)p(uk)duk=

XK
j�1

{P(Mj)

�
f ( yjuj)p(uj)duj} (2:1)

where f ( yjuk) � L(ukjy) is the likelihood of the data under model k. The integrals in

both the denominator and numerator of Equation (2.1) are known as prior predictive

densities or marginal likelihoods (Gelfand and Dey, 1994). They give the probability of

the data conditional on a model as

P( yjMk) � mk( y) �
�

f ( yjuk)p(uk)duk (2:2)

The marginal density also occurs in Bayes Formula for updating the parameters uk of

model k, namely

p(ukjy) � f ( yjuk)p(uk)=mk( y) (2:3)

where p(ukjy) denotes the posterior density of the parameters. This is also expressible as

the `marginal likelihood identity' (Chib, 1995; Besag, 1989):

mk( y) � f ( yjuk)p(uk)=p(ukjy) (2:4)

Model assessment can often be reduced to a sequential set of choices between two

competing models ± though an increased emphasis is now being placed on averaging

inferences over models. It is in such comparisons that marginal likelihoods play a role.

The formal method for comparing two competing models in a Bayesian framework

involves deriving posterior odds after estimating the models separately. For equal prior

odds on two models M1 and M2, with parameters u1 and u2 of dimension p1 and p2, this

is equivalent to examining the Bayes factor on model 2 versus model 1. The Bayes factor

is obtained as the ratio of marginal likelihoods m1( y) and m2( y), such that

P(M1jy)

P(M2jy)
� P( yjM1)

P( yjM2)

P(M1)

P(M2)
(2:5)

PosteriorOdds Bayesfactor PriorOdds

( � [m1( y)=m2( y)] [f1=f2])

The integral in Equation (2.2) can in principle be evaluated by sampling from the prior

and calculating the resulting likelihood, and is sometimes available analytically. How-

ever, more complex methods are usually needed, and in highly parameterised or non-

conjugate models a fully satisfactory procedure has yet to be developed. Several ap-

proximations have been suggested, some of which are described below. Another issue

concerns Bayes factor stability when flat or just proper non-informative priors are used

on parameters. It can be demonstrated that such priors lead (when models are nested

within each other) to simple models being preferred over more complex models ± this is

Lindley's paradox (Lindley, 1957), with more recent discussions in Gelfand and Dey

(1994) and DeSantis and Spezzaferri (1997). By contrast, likelihood ratios used in

classical testing tend to favour more complex models by default (Gelfand and Dey,

1994). Even under proper priors, with sufficiently large sample sizes the Bayes factor

tends to attach too little weight to the correct model and too much to a less complex or

null model. Hence, some advocate a less formal view to Bayesian model selection based

on predictive criteria other than the Bayes factor (see Section 2.2.4). These may lead to

model checks analogous to classical p tests or to pseudo-Bayes factors of various kinds.
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2.2.2 Obtaining marginal likelihoods in practice

MCMC simulation methods are typically applied to deriving posterior densities f (ujy)

or sampling predictions ynew in models considered singly. However, they have extended

to include parameter estimation and model choice in the joint parameter and model

space {uk, Mk} for k � 1, : : , K (Carlin and Chib, 1995). Thus, at iteration t there might

be a switch between models (e.g. from Mj to Mk) and updating only on the parameters

in model k. For equal prior model probabilities, the best model is the one chosen most

frequently, and the posterior odds follow from Equation (2.5). The reversible jump

algorithm of Green (1995) also provides a joint space estimation method.

However, following a number of studies such as Chib (1995), Lenk and Desarbo

(2000) and Gelfand and Dey (1994), the marginal likelihood of a single model may be

approximated from the output of MCMC chains. The most simple apparent estimator

of the marginal likelihood would apply the usual Monte Carlo methods for estimating

integrals in Equation (2.2). Thus for each of a large number of draws, t � 1, : : , T from

the prior density of u, one may evaluate the likelihood L(t) � L(u(t)jy) at each draw, and

calculate the average. Subject to possible numerical problems, this may be feasible with

a moderately informative prior, but would require a considerable number of draws (T

perhaps in the millions).

Since Equation (2.4) is true for any point, this suggests another estimator for m( y)

based on an approximation for the posterior density p̂(ujy), perhaps at a high density

point such as the mean �u. So taking logs throughout,

log (m( y)) � log ( f ( yj�u)� log p(�u)ÿ log p̂(�ujy) (2:6)

Alternatively, following DiCiccio et al. (1997), Gelfand and Dey (1994, p. 511), and

others, importance sampling may be used. In general, the integral of a function h(u) may

be written as

H �
�

h(u)du �
�

{h(u)=g(u)}g(u)du

where g(u) is the importance function. Suppose u(1), u(2), : : , u(T) are a series of draws

from this function g which approximates h, whereas h itself which is difficult to sample

from. An estimate of H is then

Tÿ1
XT
t�1

h(u(t))=g(u(t))

As a particular example, the marginal likelihood might be expressed as

m( y) �
�

f ( yju) p(u) du �
�

[f ( yju)p(u)=g(u)] g(u)du

where g is a normalised importance function for f ( yju)p(u). The sampling estimate of is

then

m̂( y) � Tÿ1
XT
t�1

L(u(t))p(u(t))=g(u(t))

where u(1), u(2), : : , u(T) are draws from the importance function g. In practice, only an

unnormalised density g* may be known, and the normalisation constant is estimated as

Tÿ1�T
t�1 p(u(t))=g*(u(t)), with corresponding sampling estimate
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m̂( y) �
XT
t�1

L(u(t))w(u(t))
XT
t�1

w(u(t)) (2:7)

where w(u(t)) � p(u(t))=g*(u(t)). Following Geweke (1989), it is desirable that the tails

of the importance function g decay slower than those of the posterior density that

the importance function is approximating. So if the posterior density is multivariate

Normal (for analytic reasons or by inspection of MCMC samples), then a multivari-

ate Student t with low degrees of freedom is most appropriate as an importance

density.

A special case occurs if g* � Lp, leading to cancellation in Equation (2.7) and to the

harmonic mean of the likelihoods as an estimator for m( y), namely

m̂( y) � T=[
X

t

{1=L(t)}] (2:8)

For small samples this estimator may, however, be subject to instability (Chib,

1995). For an illustration of this criterion in disease mapping, see Hsiao et al.

(2000).

Another estimator for the marginal likelihood based on importance sampling ideas is

obtainable from the relation2

[m( y)]ÿ1 �
�

g(u)

L(ujy)p(u)
p(ujy) du

so that

m( y) �
�

L(ujy)p(u)du

� 1=E[g(u)={L(ujy) p(u)}]

where the latter expectation is with respect to the posterior distribution of u.

The marginal likelihood may then be approximated by

m̂( y) � 1=[Tÿ1
X

t
g (t)={L(t)p(t)}] � T=[

X
t
g(t)={L(t) p(t)}] (2:9)

Evidence on the best form of g() to use in Equation (2.9) is still under debate, but it is

generally recommended to be a function (or product of separate functions) that ap-

proximates p(ujy). So in fact two phases of sampling are typically involved: an initial

MCMC analysis to provide approximations g to f (ujy) or its components; and a second

run recording g(t), L(t) and p(t) at iterations t � 1, : : , T , namely the values of the

importance density, the likelihood and the prior as evaluated at the sampled values

u(t), which are either from the posterior (after convergence), or from g itself. The

importance density and prior value calculations, g(t) and p(t), may well involve a product

over relevant components for individual parameters.

2 For a normalised density 1 � R g(u)du � R g(u)[m( y)p(ujy)={L(ujy)p(u)}]du, where the term enclosed in
square brackets follows from Equation (2.3).
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For numeric reasons (i.e. underflow of likelihoods L(t) in larger samples), it may be

more feasible to obtain estimates of log [m̂( y)] in Equation (2.9), and then take expo-

nentials to provide a Bayes factor. This involves monitoring

d(t) � log [g(t)={L(t)p(t)] � log (g(t))ÿ [ log (L(t))� log (p(t))]

for T iterations. Then a spreadsheet3 might be used to obtain

D(t) � exp [d(t)] (2:10)

and then minus the log of the average of the D(t) calculated, so that

log [m̂( y)] � ÿ log (�D)

If exponentiation in Equation (2.10) leads to numeric overflow, a suitable constant

(such as the average of the d(t) can be subtracted from the d(t) before they are exponen-

tiated, and then also subtracted from ÿ log (�D).

2.2.3 Approximating the posterior

In Equations (2.6) and (2.9), an estimate of the marginal likelihood involves a function g

that approximates the posterior p(ujy) using MCMC output. One possible approxima-

tion entails taking moment estimates of the joint posterior density of all parameters, or a

product of moment estimate approximations of posterior densities of individual param-

eters or subsets of parameters. Suppose u is of dimension q and the sample size is n.

Then, as Gelfand and Dey (1994) state, a possible choice for g to approximate the

posterior would be a multivariate normal or Student t with mean of length q and

covariance matrices of dimension q� q that are computed from the sampled

u(t)
j , t � 1, : : , T ; j � 1, : : q. The formal basis for this assumption of multivariate nor-

mality of the posterior density, possibly after selective parameter transformation, rests

with the Bayesian version of the central limit theorem (Kim and Ibrahim, 2000).

In practice, for complex models with large numbers of parameters, one might split the

parameters into sets (Lenk and Desarbo, 2000), such as regression parameters, vari-

ances, dispersion matrices, mixture proportions, and so on. Suppose the first subset of

parameters in a particular problem consists of regression parameters with sampled

values b(t)
j , t � 1, : : , T ; j � 1, : : , q1. For these the posterior density might be approxi-

mated by taking g(b) to be multivariate normal or multivariate t, with the mean and

dispersion matrices defined by the posterior means and the q1 � q1 dispersion matrix

taken from a long MCMC run of T iterations on the q1 parameters. Geweke (1989)

considers more refined methods such as split Normal or t densities for approximating

skew posterior densities, as might occur in nonlinear regression.

The next set, indexed j � q1 � 1, . . . , q2, might be the parameters of a precision

matrix

T �
Xÿ1

for interdependent errors. For a precision matrix T of order r � q2 ÿ q1, with Wishart

prior W(Q0, r0), the importance density g(T) may be provided by a Wishart with n� r0

degrees of freedom and scale matrix Q � Ŝ(n� r0), where Ŝ is the posterior mean of

Tÿ1. The set indexed by j � q2 � 1, : : , q3 might be variance parameters fj for independ-

3 A spreadsheet is most suitable for very large or small numbers that often occur in this type of calculation.
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ent errors. Since variances themselves are often skewed, the posterior of xj � log (fj)

may better approximate normality. The parameters indexed j � q3 � 1, : : , q4 might be

components c � (c1, c2, : : , cJ) of a Dirichlet density4 of dimension J � q4 ÿ q3. Sup-

pose J � 2, as in Example 2.2 below, then there is one free parameter c to consider with

prior beta density. If the posterior mean and variance of c from a long MCMC run are

kc and Vc, then these may be equated to the theoretical mean and variance, as in

Mc � ap=H and Vc � apbp=H
2[H � 1], where H � (ap � bp). Solving gives an approxi-

mation to the posterior density of c as a beta density with sample size

H � [kc(1ÿ kc)ÿ Vc]=Vc

and success probability kc.

So for the MCMC samples u(t) � {b(t), T (t), x(t), c(t), : : }, the values taken by the

approximate posterior densities, namely g(t)(b), g(t)(T), g(t)(c) and g(t)(x) and other

stochastic quantities, are evaluated. Let the values taken by the product of these

densities be denoted g(t). This provides the values of each parameter sample in the

approximation to the posterior density p(ujy) (Lenk and Desarbo, 2000, p. 117), and

these are used to make the estimate m̂( y) in Equations (2.6) or (2.9). An example of how

one might obtain the components of g using this approach, a beta-binomial mixture is

considered in Example 2.2.

Chib (1995) proposes a method for approximating the posterior in analyses when

integrating constants of all full conditional densities are known as they are in standard

conjugate models. Suppose the parameters fall into B blocks (e.g. B � 2 in

linear univariate regression, with one block being regression parameters and the other

being the variance). Consider the posterior density as a series of conditional densities,

with

p(ujy) � p(u1jy) p(u2ju1, y) p(u3ju1, u2, y) . . . : :p(uBjuBÿ1, uBÿ2, . . . u1, y)

In particular,

p(u*jy) � p(u1*jy) p(u2*ju1*, y) p(u3*ju1*, u2*, y) . . . : :

p(uB*juBÿ1*, uBÿ2*, . . . u1*, y)
(2:11)

where u* is a high density point, such as the posterior mean �u, where the posterior

density in the marginal likelihood identity (2.4) may be estimated.

Suppose a first run is used to provide u*. Then the value of the first of these densities,

namely p(u1*jy) is analytically

p(u1*jy) �
�

p(u1*jy, u2, u3, : : uB) p(u2, u3, : : uBjy) du2, du3, : : duB

and may be estimated in a subsequent MCMC run with all parameters free. If this run is

of length T, then the average of the full conditional density of u1 evaluated at the

samples of the other parameters provides

4 In a model involving a discrete mixture with J classes, define membership indicators Gi falling into one of J
possible categories, so that Gi � j if individual subject i is assigned to class j. The assignment will be
determined by a latent class probability vector c � (c1, c2, : :cJ ), usually taken to have a Dirichlet prior.
The MCMC estimates E(cj) and var(cj) then provide moment estimates of the total sample size n in the
posterior Dirichlet and the posterior `sample' sizes nj of each component. n is estimated as
[1ÿPj E(cj)

2 ÿPj var(cj)]=
P

j var(cj), and nj as E(cj)n. More (less) precise estimates of cj imply a better
(worse) identified discrete mixture and hence a higher (lower) posterior total `sample' size n in the Dirichlet.
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p̂(u1*jy) � Tÿ1
X

t

p(u1*ju(t)
2 , u(t)

3 , . . . u(t)
B )

However, the second density on the right side of (2.11) conditions on u1 fixed at u1*,

and requires a secondary run in which only parameters in the Bÿ 1 blocks apart from u1

are free to vary (u1 is fixed at u1* and is not updated). The value of the full conditional

p(u2*jy, u1, u3, : : uB) is taken at that fixed value of u1, but at the sampled values of

other parameters, u
(t)
k , k > 2, i.e. p(u2*jy, u1*, u

(t)
3 , . . . u

(t)
B ). So

p̂(u2*ju1*, y) � Tÿ1
X

t

p(u2*ju1*, u
(t)
3 , u

(t)
4 , . . . u

(t)
B )

In the third density on the right-hand side of (2.11), both u1 and u2 are known and

another secondary run is required where all parameter blocks except u1 and u2 vary

freely, and so on. One may then substitute the logs of the likelihood, prior and estimated

posterior at u* in Equation (2.6). Chib (1995) considers the case where latent data z are

also part of the model, as with latent Normal outcomes in a probit regression; see

Example 3.1 for a worked illustration.

2.2.4 Predictive criteria for model checking and selection

Another approach to model choice and checking is based on the principle of predictive

cross-validation. In Bayesian applications, this may take several forms, and may lead to

alternative pseudo Bayes factor measures of model choice.

Thus, predictions might be made by sampling `new data' from model means for case i

at each iteration t in an MCMC chain. The sampled replicates Z
(t)
i for each observation

are then compared with the observed data, yi. For a normal model with mean m(t)
i for

case i at iteration t, and variance V (t), such a sample would be obtained by taking the

simulations

Z
(t)
i � N m(t)

i , V (t)
� �

Such sampling is the basis of the expected predictive approaches of Carlin and Louis

(2000), Chen et al. (2000) and Laud and Ibrahim (1995).

Predictions of a subset yr of the data may also be made from a posterior updated only

using the complement of yr, denoted y[r]; see also Section 2.2.5. A common choice

involves jack-knife type cross-validation, where one case (say case i) is omitted at a

time, with estimation of the model based only on y[i], namely the remaining nÿ 1 cases

excluding yi. Under this approach an important feature is that even if the prior p, and

hence possibly p(ujy) is improper, the predictive density

p(yrjy[r]) � m( y)=m(y[r]) �
�

f (yrju, y[r])p(ujy[r])du

is proper because the posterior based on using only y[r] in estimating u, namely p(ujy[r]),

is proper. Geisser and Eddy (1979) suggest the product

m̂( y) �
Yn
i�1

p(yijy[i]) (2:12)

of the predictive densities derived by omitting one case at a time (known as Conditional

Predictive Ordinates, CPOs) as an estimate for the overall marginal likelihood. The
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ratio of two such quantities under models M1 and M2 provides a pseudo Bayes Factor

(sometimes abbreviated as PsBF):

PsBF �
Yn
i�1

{p(yijy[i], M1)=p(yijy[i], M2)}

Another estimator of the marginal likelihood extends the harmonic mean principle to

the likelihoods of individual cases: thus the inverse likelihoods for each subject are

monitored, and their posterior averages obtained from an MCMC run. Then the

product over subjects of the inverses of these posterior averages, which (see Chapter

1) are estimates of the conditional predictive ordinates for case i, produces another

estimator of m( y). The latter may be called the CPO harmonic mean estimator

m̂( y) �
Y

i

p̂(yijy[i]) (2:13a)

where

p̂(yijy[i]) � Tÿ1
XT
t�1

1

Li(u
(t))

" #ÿ1

(2:13b)

A method supplying an Intrinsic Bayes factor is proposed by Berger and Perrichi (1996),

and involves defining a small subset of the observed data, yT as a training sample. For

instance, with a logit regression with p predictors, these samples are of size p� 1. The

posterior for u derived from such a training sample supplies a proper prior for analysing

the remaining data y[T ]. The canonical form of this method stipulates completely flat

priors for u in the analysis on the training samples, but one might envisage just proper

priors being updated by training samples to provide more useful priors for the data

remainders y[T ]. In practice, we may need a large number of training samples, since for

large sample sizes there are many such possible subsets.

2.2.5 Replicate sampling

Predictive checks based on replicate sampling ± without omitting cases ± are discussed in

Laud and Ibrahim (1995). They argue that model selection criteria such as the Akaike

Information Criterion and Bayes Information Criterion rely on asymptotic consider-

ations, whereas the predictive density for a hypothetical replication Z of the trial or

observation process leads to a criterion free of asymptotic definitions. As they say, `the

replicate experiment is an imaginary device that puts the predictive density to inferential

use'.

For a given model k from K possible models, with associated parameter set uk, the

predictive density is

p(Zjy) �
�

p(Zjuk)p(ukjy)duk

Laud and Ibrahim consider the measure

C2 �
Xn

i�1

[{E(Zi)ÿ yi}
2 � var(Zi)] (2:14a)

involving the match of predictions (replications) to actual data, E(Zi)ÿ yi, and the

variability, var(Z) of the predictions. Better models will have smaller values of C2 or its
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square root, C. In fact, Laud and Ibrahim define a `calibration number' for model k as

the standard deviation of C, and base model choice on them. If different models k and m

provide predictive replicates Zik and Zim, one might consider other forms of distance or

separation measure between them, such as Kullback±Leibler divergence.

Gelfand and Ghosh (1998) generalise this procedure to a deviance form appropriate

to discrete outcomes, and allow for various weights on the matching component

�n
i�1 {E(Zi)ÿ yi}

2. Thus, for continuous data and for any w > 0,

C2 �
Xn

i�1

var(Zi)� [w=(w� 1)]
Xn

i�1

{E(Zi)ÿ yi}
2 �2:14b�

This criterion may also be used for discrete data, possibly with transformation of both yi

and zi (Chen and Ibrahim, 2000).

Typical values of w at which to compare models might be w � 1, w � 10 and

w � 100 000. Larger values of w put more stress on the match between ni and yi, and

so downweight precision of predictions.

Gelman et al. (1995) provide an outline of another posterior predictive checking

(rather than model choice) procedure. Suppose the actual data is denoted yobs and

that D(yobs;u) is the observed criterion (e.g. a chi-square statistic); similarly, let the

replicate data and the criterion based on them be denoted ynew and D(ynew;u). Then a

reference distribution PR for the chosen criterion can be obtained from the joint

distribution of ynew and u, namely

PR(ynew, u) � P(ynewju) p(ujyobs)

and the actual value set against this reference distribution. Thus a tail probability,

analogous to a classical significance test, is obtained as

pb(yobs) � PR[D(ynew;u) > D(yobs;u)jyobs] (2:15)

In practice, D(y(t)
new, u(t)) and D(yobs, u(t)) are obtained at each iteration in an MCMC

run, and the proportion of iterations where D(y(t)
new, u(t)) exceeds D(yobs, u(t)) calculated

(see Example 2.2). Values near 0 or 1 indicate lack of fit, while mid-range values

(between 0.2 and 0.8) indicate a satisfactory model. A predictive check procedure is

also described by Gelfand (1996, p. 153), and involves obtaining 50%, 95% (etc.)

intervals of the ynew, i and then counting how many of the actual data points are located

in these intervals.

2.3 ENSEMBLE ESTIMATES: POOLING OVER SIMILAR UNITS

We now return to the modelling theme of this chapter, in terms of models for smoothing

a set of parameters for similar units or groups in a situation which does not involve

regression for groups or members within groups. Much of the initial impetus to

development of Bayesian and Empirical Bayesian methods came from this problem,

namely simultaneous inference about a set of parameters for similar units of observation

(schools, clinical trials, etc.) (Rao, 1975). We expect the outcomes (e.g. average exam

grades, mortality rates) over similar units (schools, hospitals) to be related to each other

and drawn from a common density. In some cases, the notion of exchangeability may be

modified: we might consider hospital mortality rates to be exchangeable within one

group of teaching hospitals and within another group of non-teaching hospitals, but not

across all hospitals in both groups combined. Another example draws on recent experi-
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ence in UK investigations into cardiac surgery deaths: the performance of 12 centres is

more comparable within two broad operative procedure types, `closed' procedures

involving no use of heart bypass during anaesthesia, and `open' procedures where the

heart is stopped and heart bypass needed (Spiegelhalter, 1999)

The data may take the form of aggregate observations yj from the units, e.g. means for

a metric variable or numbers of successes for a binomial variable, or be disaggregated to

observations yij for subjects i within each group or unit of observation j. The data are seen

as generated by a compound or hierarchical process, where the parameter lj relevant to

the jth unit is sampled from a prior density at stage 2, and then at stage 1 the observations

are sampled from a conditional distribution given the unit parameters.

A related theme but with a different emphasis has been in generalising the standard

densities to allow for heterogeneity between sample units. Thus the standard densities

(e.g. binomial, Poisson, normal) are modified to take account of heterogeneity in

outcomes between units which is greater than postulated under that density. This

heterogeneity is variously known as over-dispersion, extra-variation or (in the case of

symmetric data on continuous scales) as heavy tailed data. Williams (1982) discusses the

example of toxicological studies where proportions of induced abnormality between

litters of experimental animals vary because of unknown genetic or environmental

factors. Similarly in studies of illness, there is likely to be variation in frailty or

proneness l.

Under either perspective consider the first stage sampling density f ( yjl), for a set of n

observations, yi, i � 1, : : , n, continuous or discrete, conditional on the parameter

vector L � {l1, . . . : , ln). Often a single population wide value of l (i.e. lj � l for all

j ) will be inappropriate, and we seek to model population heterogeneity. This typically

involves either (a) distinct parameters l1, : : , ln for each subject i � 1, : : , n in the

sample, or (b) parameters l1, : : , lJ constant within J sub-populations. The latter

approach implies discrete mixtures (e.g. Richardson and Green, 1997; Stephens,

2000), while the first approach most commonly involves a parametric model, drawing

the random effects li from a hyperdensity, with form

l � p(lju)

In this density the u are sometimes called hyperparameters (i.e. parameters at the second

or higher stages of the hierarchy, as distinct from the parameters of the first stage

sampling density). They will be assigned their own prior p(u), which may well (but not

necessarily always) involve further unknowns. If there are no higher stages, the marginal

density of y is then

m( y) �
� �

f ( yjl)p(lju)p(u)dldu (2:16)

For example, consider a Poisson model y � Poi(l), where y is the number of nonfatal

illnesses or accidents in a fixed period (e.g. a year), and l is a measure of illness or

accident proneness. Instead of assuming all individuals have the same proneness, we

might well consider allowing l to vary over individuals according to a density p(lju),

for instance a gamma or log-normal density to reflect the positive skewness in prone-

ness. Since l is necessarily positive, we then obtain the distribution of the number of

illnesses or accidents (i.e. the marginal density as in Equation (2.16) above) as

Pr( y � k) �
� �

[lk exp (ÿ l)=k!]p(lju)p(u)dldu
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where the range of the integration over l is restricted to positive values, and that for u
depends upon the form of the parameters u. In this case

E( y) � E(l)

and

Var( y) � E(l)� Var(l) (2:17)

so that Var(l) � 0 corresponds to the simple Poisson. It is apparent from Equation

(2.17) that the mixed Poisson will always show greater variability than the

simple Poisson. This formulation generalises to the Poisson process, where counts

occur in a given time t or over a given population exposure E. Thus, now y � Poi(lt)

over time of observation period t, or y � Poi(lE), where y might be deaths in areas

and E the populations living in them. The classic model for a mixed Poisson

process (Newbold, 1926) assumes that l for a given individual is fixed over time,

and that there is no contagion (i.e. influence of past illnesses or accidents on future

occurrences).

The model choice questions include assessing whether heterogeneity exists and if so,

establishing the best approach to modelling it. Thus, under a discrete mixture approach,

a major question is choosing the number of sub-populations, including whether one

sub-population only (i.e. homogeneity) is the best option. Under a parametric approach

we may test whether there is in fact heterogeneity, i.e. whether a model with var(l)

exceeding zero improves on a model with constant l over all subjects, and if so, what

density might be adopted to describe it.

2.3.1 Mixtures for Poisson and binomial data

Consider, for example, the question of possible Poisson heterogeneity or extravariation

in counts Oi for units i with varying exposed to risk totals such that Ei events are

expected. An example of this is in small area mortality and disease studies, where Oi

deaths are observed as against Ei deaths expected on the basis of the global death rate

average or more complex methods of demographic standardisation. Then a homoge-

neous model would assume

Oi � Poi(LEi)

with L a constant relative risk across all areas, while a heterogeneous model would take

Oi � Poi(liEi)

li � p(lju)

with p(lju) a hyperdensity. For instance, if a gamma prior G(a,b) is adopted for the

varying relative risks li's, then E(l) � a=b and var(l) � a=b2 � E(l)=b. The third stage

might then be specified as

a � E(1)

b � G(1, 0:001)

that is in terms of relatively flat prior densities consistent with a and b being positive

parameters.

Whatever mixing density is adopted for l, an empirical moment estimator (Bohning,

2000) for t2 � var(l), is provided by
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t̂2 � 1=n[
X

i

{(Oi ÿ EiL̂)2=E2
i }ÿ L̂

X
i

{1=Ei}] (2:18)

and indeed, might be used in setting up the priors for a and b.

Heterogeneity may also be modelled in a transform of li such as log (li). This

transformation extends over the real line, so we might add a normal or student t error ui

log (li) � k� ui

This approach is especially chosen when l is being modelled via a regression or in a

multi-level situation, since one can include the fixed effects and several sources of extra-

variability on the log scale (see Chapters 3 and 4).

For binomial data, suppose the observations consist of counts yi where an event

occurred in populations at risk ni, with

yi � Bin(pi, ni)

Rather than assume pi � p, suppose the parameters for groups or subjects i are drawn

from a beta density

pi � Beta(a, b)

The hyperparameters {a, b} may themselves be assigned a prior, p(a, b), at the second

stage, though sometimes a and or b are assumed to be known. For instance, taking

known hyperparameter values a � b � 1 is the same as taking the pi's to be uniform

over (0, 1). If a and b are taken to be unknowns, then the joint posterior density of

{a, b, pi} is proportional to

p(a, b)G(a� b)={G(a)G(b)}
Yn
j�1

paÿ1
i (1ÿ pi)

bÿ1
Yn
i�1

p
yi

i (1ÿ pi)
niÿyi

The full conditional density of the pi parameters can be seen from above to consist of

beta densities with parameters a� yi and b� ni ÿ yi.

An alternative approach to binomial heterogeneity is to include a random effect in the

model for logit(pi). This is sometimes known as the logistic-normal mixture (Aitchison

and Shen, 1980); see Example 2.3.

Example 2.1 Hepatitis B in Berlin regions As an illustration of Poisson outcomes

subject to possible overdispersion, consider the data presented by Bohning (2000) on

observed and expected cases of Hepatitis B in 23 Berlin city regions, denoted

{Oi, Ei} i � 1, : : , 23. Note that the standard is not internal5, and so �iEi � 361:2
differs slightly from �iOi � 368. We first test for heterogeneity by considering a single

parameter model

Oi � Poi(LEi)

and evaluating the resulting chi-square statistic,

5 An internal standardisation to correct for the impact of age structure differences between areas (on an
outcome such as deaths by area) produces expected deaths or incidence by using age-specific rates defined for
the entire region under consideration (e.g. Carlin and Louis, 2000, p. 307). Hence, the standard mortality ratio
or standard incidence ratio for the entire region would be 100. An external standard means using a national or
some other reference set of age-specific rates to produce expected rates for the region and areas within it.
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X
i

{(Oi ÿ L̂Ei)
2=L̂Ei}

The overall mean relative risk in this case is expected to be approximately 368/361.2,

and a posterior mean L̂ � 1:019 is accordingly obtained. The chi square statistic

averages 195, with median 193.8, and shows clear excess dispersion. The above moment

estimator (2.18) for regional variability in hepatitis rates, t̂2, has mean 0.594.

A fixed effects model might be adopted to allow for such variations. Here the

parameters li are drawn independently of each other (typically from flat gamma priors)

without reference to an overall density. In practice, this leads to posterior estimates very

close to the corresponding maximum likelihood estimate of the relative incidence rate

for the ith region. These are obtained simply as

Ri � Oi=Ei

Alternatively, a hierarchical model may be adopted involving a Gamma prior G(a,b) for

heterogeneous relative risks li, with the parameters a and b themselves assigned flat

prior densities confined to positive values (e.g. Gamma, exponential). So with

li � G(a, b) and

a � G(J1, J2), b � G(K1, K2)

where J1, J2, K1 and K2 are known, then

Oi � Poi(liEi)

Here take Ji � Ki � 0:001 for i � 1, 2. Running three chains for 20 000 iterations,

convergence is apparent early (at under 1000 iterations) in terms of Gelman±Rubin

statistics (Brooks and Gelman, 1998). While there is a some sampling autocorrelation in

the parameters a and b (around 0.20 at lag 10 for both), the posterior summaries on

these parameters are altered little by sub-sampling every tenth iterate, or by extending

the sampling a further 10 000 iterations.

In terms of fit and estimates with this model, the posterior mean of the chi square

statistic comparing Oi and mi � liEi is now 23, so extra-variation in relation to avail-

able degrees of freedom is accounted for. Given that the li's are smoothed incidence

ratios centred around 1, it would be anticipated that E(l) � 1. Accordingly, posterior

estimates of a and b are found that are approximately equal, with a � 2:06 and b � 2:1;

hence the variance of the li's is estimated at 0.574 (posterior mean of var(l)) and 0.494

(posterior median). Comparison (Table 2.1) of the unsmoothed incidence ratios, Ri, and

the li, shows smoothing up towards the mean greatest for regions 16, 17 and 19, each

having the smallest total ( just two) of observed cases. Smoothing is slightly less for area

23, also with two cases, but higher expected cases (based on a larger population at risk

than in areas 16, 17 and 19), and so more evidence for a low `true' incidence rate.

Suppose we wish to assess whether the hierarchical model improves over the

homogenous Poisson model. On fitting the latter an average deviance of 178.2 is

obtained or a DIC of 179.2; following Spiegelhalter et al. (2002) the AIC is obtained

as either (a) the deviance at the posterior mean D(�u) plus 2p, or (b) the mean deviance

plus p. Comparing �D and D(�u) under the hierarchical model suggests an effective

number of parameters of 18.6, since the average deviance is 119.7, but the deviance at

the posterior mean (defined in this case by the posterior averages of the li's) is 101.1.

The DIC under the gamma mixture model is 138.3, a clear gain in fit over the

homogenous Poisson model.
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Table 2.1 Regional relative risks: simple maximum likelihood fixed effects and Poisson±Gamma

mixture models

Unsmoothed

incidence ratios

Incidence ratios

from hierarchical

smoothing

2.5% Median 97.5%

Region 1 2.66 2.42 1.62 2.39 3.34

Region 2 1.42 1.39 0.93 1.37 1.95

Region 3 2.92 2.77 2.07 2.75 3.59

Region 4 1.53 1.51 1.03 1.49 2.08

Region 5 0.71 0.75 0.44 0.74 1.15

Region 6 1.01 1.02 0.60 1.00 1.54

Region 7 0.61 0.69 0.30 0.66 1.23

Region 8 1.99 1.92 1.34 1.90 2.59

Region 9 0.89 0.91 0.55 0.90 1.35

Region 10 0.38 0.45 0.21 0.43 0.79

Region 11 1.31 1.31 0.95 1.30 1.72

Region 12 0.68 0.71 0.43 0.70 1.07

Region 13 1.75 1.62 0.95 1.59 2.52

Region 14 0.69 0.73 0.39 0.71 1.18

Region 15 0.91 0.94 0.49 0.91 1.53

Region 16 0.20 0.34 0.09 0.31 0.74

Region 17 0.18 0.32 0.08 0.29 0.70

Region 18 0.48 0.54 0.27 0.53 0.91

Region 19 0.38 0.55 0.14 0.51 1.17

Region 20 0.27 0.38 0.12 0.36 0.79

Region 21 0.54 0.59 0.31 0.58 0.95

Region 22 0.35 0.44 0.18 0.42 0.82

Region 23 0.15 0.28 0.07 0.25 0.62

Example 2.2 Hot hand in baseball This example considers data on shooting percent-

ages in baseball, as obtained by Vinnie Jones over the 1985±89 seasons, and used by

Kass and Raftery (1995) to illustrate different approximations for Bayes factors. The

question of interest is whether the probability of successfully shooting goals p is

constant over games, as in simple binomial sampling (model M1), so that

yi � Bin(p, ni),

where ni are attempts. Alternatively, under M2 the hypothesis is that Vinnie Jones has

a `hot hand' ± that is, he is significantly better in some games than would be apparent

from his overall average. The latter pattern implies that p is not constant over

games, and instead there might be extra-binomial variation, with successful shots yi

binomial with varying probabilities pi in relation to all attempts, ni (successful or

otherwise):

yi � Bin(pi, ni)

pi � Beta(a, b)
(2:19)

Here the models (2�Beta-Binomial vs. 1�Binomial) are compared via marginal likeli-

hood approximations based on importance sampling.
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There are other substantive features of Jones' play that might be consistent with a hot

hand, such as runs of several games with success rates yi=ni larger than expected under

the simple binomial. Here, rather than global model hypothesis tests, a posterior

predictive check approach might be used under the simple binomial sampling model.

This entails using different test statistics applied to the observed and replicate data, y

and ynew, and preferably statistics that are sensible in the context of application. In

particular, Berkhof et al. (2000) test whether the maximum success rate maxi{yi:new=ni}

in the replicate data samples exceeds the observed maximum.

In the binomial model, the prior p � B(1, 1) is adopted, and one may estimate the

beta posterior density B(ap, bp) of p using moment estimates of the parameters. Thus, if

kp is the posterior mean of p and Vp its posterior variance, then H � ap � bp is estimated

as [kp(1ÿ kp)ÿ Vp]=Vp. Thus with kp � 0:457 and V 0:5
p � 0:007136, a posterior beta

density with `sample size' H � 4872 is obtained.

In the beta-binomial, Kass and Raftery (1995, p. 786) suggest reparameterising the

beta mixture parameters in Equation (2.19). Thus a � n=v, b � (1ÿ n)=v, where both

v and n are assigned B(1, 1) priors ± equivalent to uniform priors on (0, 1). The

posterior beta densities of the pi's in Equation (2.19) are approximated using the

moment estimation procedure, and similarly for the posterior beta densities of v and n.

It may be noted that the beta-binomial model is not especially well identified, and

other possible priors such as vague gamma priors on the beta mixture parameters

themselves, e.g.

a � G(0:001, 0:001), b � G(0:001, 0:001)

have identifiability problems. With the reparameterised version of the model conver-

gence for v is obtained from the second half of a three chain run with 10 000 iterations,

with posterior mean of v at 0.0024 and posterior standard deviation 0.002.

In a second run, iterations subsequent to convergence (i.e. after iteration 10 000)

record the prior, likelihood and (approximate) posterior density values as in Equation

(2.9), corresponding to the sampled parameters of the binomial and beta-binomial

models, namely {p} and {pi, v, n}. Then with 1000 sampled parameter values and

corresponding values of d(t) � log (g(t))ÿ [ log (L(t))� log (p(t))], the approximate mar-

ginal likelihoods under models 2 and 1 are ÿ732.7 and ÿ729.1, respectively. This leads

to a Bayes factor in favour of the simple binomial of around 35.

Table 2.2, by contrast, shows that the beta-binomial has a slightly higher likelihood

than the binomial. The worse marginal likelihood says in simple terms that the im-

proved sampling likelihood obtained by the beta-binomial is not sufficient to offset the

extra parameters it involves. Kass and Raftery (1995, p. 786) cite Bayes factors on M1

between 19 and 62, depending on the approximation employed.

Features of the game pattern such as highest and lowest success rates, or runs of `cold'

or `hot' games (runs of games with consistent below or above average scoring)may ormay

not be consistent with the global model test based on the marginal likelihood. Thus,

consider a predictive check for the maximum shooting success rate under the simple

binomial, remembering that the observed maximum among the yi=ni is 0.9. The criterion

Pr( max {ynew=n} > max {y=n})

is found to be about 0.90 ± this compares to 0.89 cited by Berkhof et al. (2000, p. 345).

This `significance rate' is approaching the thresholds which might throw doubt on the

simple binomial, but Berkhof et al. conclude that is still such as to indicate that the

observed maximum is not unusual or outlying.
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Table 2.2 Posterior summary, baseball goals, binomial and beta-binomial parameters

Beta-binomial Mean St. devn. 2.50% Median 97.50%

v 0.00241 0.00205 0.00009 0.00193 0.00773

a 683.5 1599 58.49 236.6 5159

b 808.1 1878 70.61 282.7 6004

Log likelihood ÿ721.3 4.416 ÿ727.5 ÿ722.1 ÿ711.4

SD(p) in beta-binomial 0.013

Binomial

p 0.457 0.007 0.441 0.457 0.474

Log likelihood ÿ725.6 0.7 ÿ728.3 ÿ725.3 ÿ725.1

Example 2.3 Cycles to conception Weinberg and Gladen (1986) consider differences

in the number of fertility cycles to conception according to whether the woman in each

couple smoked or not. For i � 1, : : , 100 women smokers, 29 conceived in the first

cycle, but from 486 non-smokers, 198 (or over 40%) conceived in this cycle. The full

data, given in Table 2.3, consist of the number y of cycles required according to smoking

status, with the last row relating to couples needing over 12 cycles.

Such an outcome is a form of waiting time till a single event, but in discrete time units

only, and can be modelled as a geometric density. This is a variant of the negative

binomial (see Chapter 1) which counts time intervals y until r events occur, when the

success rate for an event is p. The negative binomial has the form

Pr( y) � yÿ 1

rÿ 1

� �
pr(1ÿ p)yÿr (2:20)

and it follows that the number of intervals until r � 1 (e.g. cycles to the single event,

conception) is

Table 2.3 Cycles to conception

Cycle Non-smokers Cumulative

proportion

conceiving

Smokers Cumulative

proportion

conceiving

1 198 0.41 29 0.29

2 107 0.63 16 0.45

3 55 0.74 17 0.62

4 38 0.82 4 0.66

5 18 0.86 3 0.69

6 22 0.90 9 0.78

7 7 0.92 4 0.82

8 9 0.93 5 0.87

9 5 0.94 1 0.88

10 3 0.95 1 0.89

11 6 0.96 1 0.9

12 6 0.98 3 0.93

Over 12 12 1.00 7 1

Total 486 100
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Pr( y) � (1ÿ p)yÿ1 p

So p is equivalently the chance of conception at the first cycle (when y � 0).

Consider first a constant probability model (Model 1) for couples within the smoking

group and within the non-smoking group, so that there are just two probabilities to

estimate, p1 for smokers and p2 for non-smokers. Under this density, the probability of

more than N cycles being required is

Pr( y > N) � p
X1

i�N�1

(1ÿ p)iÿ1 � (1ÿ p)N (2:21)

In the present example, N � 12. Note that this is an example of censoring (non-

observation) of the actual cycles to conception; only the minimum possible cycle

number for such couples is known.

The likelihood (2.20) and (2.21) may be modelled via the non-standard density option

available in BUGS (the dnegbin option in BUGS might also be used but is complicated by

the censoring).Thus, for adensity not available to sample from inBUGS, anartificial data

seriesZi of the same lengthN as the actual data is created,withZi � 1 for all cases. Then, if

Ci are the number of conceptions at cycle i, i � 1, : : , N, and if there are no groups to

consider (such as the smoking and non-smoking groups here), the density for Z is

Zi � Bern(Li)

where Li is the likelihood defined by

Li � [(1ÿ p)iÿ1 p]Ci

where Bern() denotes Bernoulli sampling. The corresponding coding in BUGS (with

N � 12 and a B(1, 1) prior for p) is

{for (i in 1:N) {Z[i] <- 1

Z[i] � dbern(L[i])

L[i] <- pow(r[i],C[i])

r[i] <- pow (1-p,i-1)*p}

p � dbeta(1, 1)}.

In the example here, this approach is extended so that at each cycle i there are J groups

of cases (here J � 2 for smoking and non-smoking women), so that

Zij � Bern(Lij) i � 1, : : , N; j � 1, : : , J

Lij � [(1ÿ pj)
iÿ1 pj]

Cij

Alternatively (Model 2), one might allow for extra-variability in conception chances

with a beta mixture at the couple level. This is known as a beta-geometric mixture, and

is analogous to the more commonly encountered beta-binomial. There are now distinct

probabilities pik for couples k � 1, . . . Ci taking i cycles to conceive (with i � 1, : :N).

Disregarding possible grouping, and continuing the artificial data device, the coding

corresponds to the model

Zik � 1

Zik � Bern(Lik)

Lik � (1ÿ pik)
iÿ1pik

pik � B(a, b) i � 1, : : , N; k � 1, : : , Ci

(2:22)
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with the total likelihood for subjects taking i cycles being

Li �
YCi

k�1

Lik

Program 2.3 includes this approach with the data arranged as a single string of length

�Ci.

Under the constant probability model (within the two groups), the posterior means

for the conception probabilities are p1 � 0:23 and p2 � 0:33, with 95% credible intervals

(0.19, 0.27) and (0.31, 0.36). The predicted cycle distribution under this model, denoted

nhat[,] in Program 2.3, under-predicts both short and long cycles to conception frequen-

cies (1 cycle and over 12 cycles) ± see Table 2.4. This brings into doubt the constant

probability model.

For the heterogeneous case, with a mixture of conception probabilities over couples,

attention is confined to couples where the female partner smokes. The data are then

defined as a vector of 100 couple level observations of cycles required, with 29 observa-

tions requiring one cycle, 16 requiring two and so on, with the couples needing over 12

cycles coded to 13. As well as the artificial data device, a reparameterisation as in

Example 2.2 is employed for the beta mixture parameters.

A three chain run taken to 10 000 iterations shows apparent convergence from 1000

iterations (the beta mixture parameters are relatively slow to converge according to

Gelman±Rubin criteria). The average conception probability from the beta parameters,

namely

P � a=(a� b)

is 0.29 with 95% credible interval from 0.22 to 0.37. Short and long cycles to conception

frequencies are much more closely reproduced under this model (Table 2.5). The

credible interval for these frequencies includes the actual frequencies of 29 and 7,

respectively. The benefits from allowing conception chances to vary over couples are

evident.

Table 2.4 Cycles to conception, predictions under constant probability model

Smokers Non-Smokers

Cycle Mean 2.5% 97.5% Mean 2.5% 97.5%

1 22.6 18.7 26.7 161.3 149.8 172.9

2 17.4 15.2 19.6 107.7 103.6 111.4

3 13.5 12.4 14.4 71.9 71.6 72.0

4 10.4 10.0 10.6 48.1 46.2 49.6

5 8.1 7.7 8.2 32.1 29.8 34.3

6 6.3 5.6 6.6 21.5 19.2 23.7

7 4.8 4.1 5.4 14.4 12.4 16.4

8 3.8 3.0 4.4 9.6 8.0 11.4

9 2.9 2.2 3.6 6.4 5.1 7.9

10 2.3 1.6 2.9 4.3 3.3 5.4

11 1.8 1.2 2.4 2.9 2.1 3.8

12 1.4 0.9 1.9 1.9 1.4 2.6

Over 12 4.9 2.4 8.4 3.9 2.5 5.8
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Table 2.5 Couples with female partner as smokers: predicted cycle

distribution under mixture model

Mean St. devn. 2.50% 97.50%

P 0.29 0.04 0.22 0.37

a 3.36 3.75 1.16 11.61

b 9.23 13.33 2.25 36.77

Cycle

1 28.9 3.4 22.5 35.6

2 18.2 0.9 16.4 19.8

3 12.2 0.8 10.6 13.6

4 8.6 0.8 7.1 10.1

5 6.3 0.7 5.0 7.7

6 4.7 0.6 3.7 5.9

7 3.6 0.5 2.8 4.6

8 2.8 0.4 2.1 3.6

9 2.2 0.3 1.7 2.9

10 1.8 0.2 1.4 2.3

11 1.4 0.2 1.1 1.9

12 1.2 0.2 0.9 1.5

Over 12 8.2 2.2 4.2 12.9

In practice, couple characteristics (e.g. the woman's age) might be expected to affect

the chance of conception, and one might then link the pik's in Equation (2.22) to

predictors via a logit regression. Remaining variability between couples might then be

modelled via a Normal error in the logit link. In fact, this approach might be adopted

for all 586 couples using the female smoking status Sik (�1 for smokers, 0 otherwise) as

a predictor, so that

logit(pik) � g0 � g1Sik � uik

with uik Normal.

2.3.2 Smoothing methods for continuous data

For metric data, assumed initially at least to be approximately Normal, a typical

problem involves two way data with i � 1, : : , nj replicated observations yij within

groups j � 1, : : , K . Sometimes the observed data may be provided only as group

averages �yj aggregating over individual observations, though with details on the vari-

ability within groups (or on 95% intervals for the mean). Assuming the observed means

are derived from similar observation settings or similar types of unit, they may be

regarded as draws from an underlying common density for the unknown true means

mj. This assumption leads to a hierarchical model, with the first stage specifying the

density of the observations, and the second (and maybe higher) stages specifying

hyperparameters which underlie the observations. Typically, the underlying cell means

mj are taken to differ by group but the variance s2 (and so also the precision t � sÿ2) is

assumed constant over groups. In analysis of variance situations, the goal may be to

assess additionally whether the underlying group means are equal. For data in a one

group yi, i � 1, : : , n, the higher stage density involves a single mean and variance.
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While a symmetric, unimodal density such as the Normal is often appropriate, some

work has focused on skewed options to the Normal (Leonard, 1980; Fernandez and

Steel, 1998), which may involve a different variance according to whether the observa-

tion is located above or below the mean. Other options model skewness via latent `factor

scores' introduced into the prediction of the regression mean (Branco and Dey, 2001).

Other departures from symmetry or unimodality may be modelled by discrete mixtures

(see Section 2.4).

Even if the assumption of symmetry is accepted, other features of the Normal density

may be inappropriate. There are issues of robustness to outlier observations or param-

eters. The exceptional observation(s) may indicate a robust (heavy-tailed) alternative to

the Normal so that estimates of summary parameters at the second stage are not

distorted, while an exceptional parameter (e.g. one of the means mj) will indicate an

alternative second stage prior to the Normal (Gelman et al., 1995, Chapter 12).

However, suppose initially the observations are assumed to be Normally distributed

such that

yij j mj � N(mj , s2)

Equivalently, the likelihood can be specified in terms of the means of the observations

within group j, namely �yj, also with means mj but with variances s2=nj (and precisions

njt, where t � 1=s2), so that

�yjjmj � N(mj , s2=nj) (2:23)

Often ± for example in meta analyses ± the observed data will be available in the form of

summary statistics yj such as odds ratios, with sample sizes and sampling variances Vj

for the summary statistics also provided. It may be noted that a Normal approximation

to the distribution of the means or other summary measures may remain appropriate,

even if the original data are non-Normal. Thus the yj might be the logged odds ratios

resulting from 2� 2 tables of case versus exposure status, and the variances Vj would

have been obtained by the usual formula in such applications (Woodward, 1999).

Suppose the second stage prior for the mj's is also assumed as Normal with mean

M and variance f2. At the highest stage a gamma prior for the inverse variance 1=f2

might be adopted, and a flat (though proper) prior for the mean. Inferences about the mj

are likely to be sensitive to the prior on the higher level variance or precision: to avoid

over-smoothing, the prior for 1=f2 may be specified to avoid high precision (see

Example 2.6).

Inferences for data assumed Normal, for instance regarding cell means in one or two-

way analysis of variance situations, may be influenced by discordant observations. In

these cases the heavier tailed alternatives to the univariate and multivariate Normal,

such as the Student t in its univariate and multivariate forms (with additional degrees of

freedom parameter, n) may provide more robust inferences with regard to the location

of the overall mean. Small values of n (under 10) indicate that Normality of the data is

doubtful, while values in excess of 50 are essentially equivalent to Normality. It may

also be necessary (see Example 2.5) to account for outlier parameters at the second or

higher stages of a hierarchical model, such as a discrepant mj. Heavy tailed departures

from non-Normality may also be modelled by exponential power distributions, of which

the double exponential is an example (Box and Tiao, 1973, Chapter 3).

As noted in Chapter 1, the Student t density is obtainable as a scale mixture of the

Normal. Thus
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yi � N(m2=li) i � 1, : : , n

with the variance scaling parameters or weights li being drawn from a G(n=2, n=2)

density. If additionally n is treated as an unknown parameter, then a flat prior is not

appropriate (Geweke, 1993), and an exponential prior is one option; also for the

posterior mean of m to exist, values of n 2 [0, 2] are not admissible. The scaling

parameters are lowest for observations which are discrepant (i.e are potential outliers)

from the main set; the scale mixture approach to outlier detection is exemplified by

authors such as West (1984) and DeFinetti (1961).

In fact, specifying the li's in this form is one option in a broader class of scale mixture

models in which the prior for the weights does not necessarily refer to the degrees of

freedom parameter (Geweke, 1993, p. S23). In general,

yi � N(m, s2=wi) (2:24)

where wi are positive random variables with average 1 representing variance heterogen-

eity. Markedly lower values of wi correspond to suspect values of y, only included in the

density in Equation (2.24) by inflating the variance to accommodate them.

Example 2.4 Univariate Scale Mixture: the Darwin data An often cited example of

distortion in the univariate Normal parameters caused by potentially outlying points is

the data obtained by Darwin relating to the benefits of cross-fertilisation in plants.

Specifically, he noted differences in heights (in eighths of an inch) within pairs of corn

plants, one cross-fertilised and the other self-fertilised. Here variations on the first stage

density are introduced, and their impact assessed on the summary measures (hyper-

parameters) of location and variability.

The data yi are differences from 15 plant pairs, as follows:

49, ÿ67, 8, 16, 6, 23, 28, 41, 14, 29, 56, 24, 75, 60, ÿ48

Suppose the first stage density for these data is taken as Normal. A run of 10 000

iterations with 1000 burn in provides a posterior mean (95% credible interval) for the

Normal mean m of 20.9 (1.6, 40.1) and a posterior median on s2 of 1300. The mean is

thus imprecisely estimated, though its 95% credible interval is confined to positive

values.

An alternative sampling density is a univariate6 Student t, yi � tn(m, s2), without an

explicit scale mixture (Model 2 in Program 2.4), one aspect of which is to assess the

density of the degrees of freedom parameter n. Here an exponential prior for n is

assumed, n � E(k), with k itself assigned a uniform prior U(0.01, 0.5). This is approxi-

mately equivalent to assuming the degrees of freedom lies within the range 2±100.

Assigning a preset value such as k � 0:1 would be a more informative option. There

is also a formal constraint on n excluding the range n 2 [0, 2]. A flat gamma prior for

t � 1=s2 is adopted, namely t � G(0.0001, 0.0001), and an N(0, 107) prior on m. One

set of initial values for a three chain run is based on null start values, the others on the

mean and 97.5% point of a trial run.

Early convergence of k is apparent, but n itself only converges after about 150 000

iterations. Table 2.6 is based on iterations 150 000±200 000. A median value of 10 for the

6 In BUGS this involves the code

y[i] � dt(mu, tau, nu)

with tau as precision, and nu as degrees of freedom.
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Table 2.6 Student t parameters for fertilisation data, degrees of freedom unknown

Parameter Mean St. devn. 2.5% Median 97.5%

k 0.11 0.12 0.01 0.06 0.47

Mean 23.90 9.84 ÿ1.06 24.17 46.72

n 29.57 52.66 2.07 10.17 289.30

Variance 1225.00 709.20 237.10 1088.00 3655.00

degrees of freedom is obtained (though the posterior mean for n is 30). The posterior

median of s2 is lower than in the Normal analysis, namely 1090, and the Normal mean

is higher ± though not more precisely identified ± with an average of 24.

This analysis illustrates how inferences about the second stage parameters may be

distorted by incorrectly assuming a Normal first stage density, but does not indicate

which observations are the source of the heavy tails. In a third analysis (Model 3 in

Program 2.4), the scale mixture version of the Normal is applied, with n still an

unknown. Taking the prior on the degrees of freedom as above we obtain ± from

iterations 50 000±100 000 of a three chain run ± factors li for each sample member

that provide a measure of outlier status. It may be noted that sampling convergence is

improved by this approach as compared to the standard Student t form above. The

lowest li (i.e. most suspect points) are for corn plant pairs 2 and 15, the observations for

which are both highly negative (Table 2.7). The high positive value for pair 13 is also

suspect. The Normal mean parameter m is again estimated to have posterior mean 24,

and the median variance is around 1050.

Table 2.7 Parameters for scale mixture density of fertilisation data

Mean St. devn. 2.5% Median 97.5%

Mean 24.1 9.8 3.9 24.4 42.8

Degr. Freedom 23.7 40.8 2.2 8.7 140.8

Variance 1199 706 304 1058 2950

Weights for Individual Cases

Mean St. devn. 2.5% Median 97.5%

l1 1.03 0.53 0.22 0.97 2.37

l2 0.59 0.36 0.05 0.57 1.29

l3 1.06 0.56 0.24 0.99 2.47

l4 1.11 0.60 0.26 1.01 2.68

l5 1.05 0.55 0.23 0.98 2.43

l6 1.14 0.63 0.27 1.02 2.78

l7 1.14 0.62 0.28 1.02 2.78

l8 1.09 0.58 0.24 1.00 2.57

l9 1.10 0.60 0.25 1.01 2.64

l10 1.14 0.63 0.27 1.02 2.78

l11 0.97 0.49 0.19 0.93 2.17

l12 1.14 0.62 0.27 1.03 2.78

l13 0.82 0.42 0.12 0.83 1.74

l14 0.94 0.47 0.17 0.91 2.07

l15 0.68 0.38 0.07 0.68 1.45
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Example 2.5 Labour market rateable values As an example of the impact of adopting

a multivariate t density at the first or higher stage, consider data on four types

of Rateable Value (RV) change in four groups of Labour Market Area in England

and Wales over 1966±71 (Kennett, 1983, Table 9.4). The n � 4 Labour Market

groups in this example are either cores, rings, outer rings, or unclassified, with the

p � 4 variables being the change in per cent in total RV, in domestic RV, in commercial

RV and in industrial RV. These data contain extreme values on industrial RV change,

which cast doubt on Normality and raise problems in estimating the mean for this

variable.

It may be noted that in BUGS, the direct form of the multivariate t (i.e. not based on

scale mixing) for a p-dimensional outcome yi involves the command

y[i, 1: p] � dmt(mu[1: p], P[, ], nu),

where nu (the degrees of freedom) is usually7 preset (Model A in Program 2.5). A profile

of the log-likelihood or some predictive measure like the expected predictive deviance

over different values of the degrees of freedom is then one approach to assessing both

the extent of departures from multivariate normality and the most appropriate degrees

of freedom. For illustration, a multivariate t likelihood at the first stage is compared

between two options for the degrees of freedom, n � 20 and n � 100 (the latter effect-

ively equivalent to multivariate normality). There is, in fact, very little to choose

between these models in terms of likelihood. With runs of 50 000 iterations, median

log-likelihoods are ÿ53.7 for n � 100 and ÿ53.9 for n � 20. The posterior for industrial

RV change when n � 20 has 95% credible interval from ÿ29 to 78, with mean 25.

One may obtain outlier indicators li by specifying a univariate Normal measurement

error model at the first stage, and a multivariate t (via scale mixing) in the second stage

model for the means (Model 2 in Program 2.5):

Yi, j � N(mij , tj) i � 1, : : , n; j � 1, : : , p

mij � gj � eij

eij � Zij= li

p

li � G(n=2, n=2)

Zi, 1:p � Np(0, S)

where gj are assigned a just proper Normal prior. The variances tj specify the expected

level of measurement error, and one might assume relatively informative priors

favouring lower error variances. The mij are then the underlying multivariate form of

the data. Conclusions about S and the outlier indicators may be sensitive to the

assumed tj, especially for small samples as here. As above the degrees of freedom is

assigned an exponential prior E(k), excluding values under 2, and with k itself a free

parameter with prior k � U(0.01, 0.5).

It may be noted that this approach might be used with joint discrete outcomes subject

to extra-variation, where such extra-variation was suspected to be located in relatively

few observations. For example, if Yij were pairs of Poisson outcomes such as deaths

from cause A and from cause B, with expectations (in the demographic sense) Eij, then

one might assume

7 Though a discrete prior on different values of d.f. is possible.
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Yij � Poi(mijEij)

log (mij) � gj � eij

with the eij's specified as above.

In the rateable values example, three chains are run for 10 000 iterations from over-

dispersed initial values (two sets of which are based on a trial run, the other being a

`null' start point) with convergence after 2500 iterations. Informative priors on the

inverse variances of the measurement error are based on such error accounting for

approximately 10% of the total variance8 of each variable. The outlier indicators show

in fact that the core areas have lowest weight (around 0.55), though the posterior

distributions of all the li's have substantial spread. The degrees of freedom has median

4. Industrial RV change is more precisely identified under this mixture model approach,

with 95% interval 2 to 52, and mean 28. Of course, other priors on the measurement

error variances might well be applied to assess sensitivity.

Example 2.6 Coaching programs In this example we consider a cell means analysis of

a metric outcome, defined by the effects yj of coaching programs for the Scholastic

Aptitude Test-Verbal in K � 8 US high schools. The data are available as the estimated

coaching effects and their standard errors sj after an analysis of covariance using scores

from an earlier test administration. The goal is to estimate underlying means mj, the

prior for which expresses a belief that such means are drawn from a common distribu-

tion. Assume the effects yj are draws from a hierarchical model with the first stage

sampling variances Vj provided by the squared standard errors s2
j , so that

yj � N(mj , Vj)

with the second stage prior specifying a common Normal distribution

mj � N(M, f2):

As one route to establish a prior on f2 that avoids over-smoothing of the mj consider the

harmonic mean of the observed Vj, given by

N=
XK
j�1

1=Vj

" #
which is s2

0 � 139, with square root s0 � 11:8. This mean is the basis for a Pareto prior

density for f, as proposed by DuMouchel (1990), involving s0 as a guide quantity in the

prior. Specifically, the prior

p(f) � s0=(s0 � f)2 (2:25)

is still relatively vague but has median s0.

Alternatively, a prior may be set on f2 or its inverse fÿ2, which incorporates (though

downweights) the guide value s2
0 or its inverse sÿ2

0 . Suppose a prior is set as follows:

fÿ2 � G(a, b)

where a � 1=k and b � s2
0=k, where k is a downweighting constant in excess of 1. Large

values of k (e.g. k � 1000) correspond to just proper priors.

8 The moment variances Vj are 11,22,6 and 800, and G(10, Vj) priors on the inverse variances of the
measurement errors are adopted.
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With an arbitrary value of k � 10, a three chain run (Model A in Program 2.6) shows

early convergence and summaries are based on the last 24 500 iterations from 25 000.

This leads to a posterior mean value for f2 of 62.5, and to smoothed program effects mj

ranging from 5.3 to 11.7, as represented in terms of posterior means (see Table 2.8).

Then (Model B) uncertainty in k is introduced via an exponential prior,

k � E(0:01)

Table 2.8 Program effects: observed and smoothed

School Effectiveness Data

School Y s s2 1=s2

A 28.39 14.9 222 0.0045

B 7.94 10.2 104 0.0096

C ÿ2.75 16.3 265.7 0.0038

D 6.82 11 121 0.0083

E ÿ0.64 9.4 88.4 0.0113

F 0.63 11.4 130 0.0077

G 18.01 10.4 108.2 0.0092

H 12.16 17.6 309.8 0.0032

Sum of 1=s2 0.0576

Harmonic Mean 138.81 � (8/0.0576)

for Variance

Smoothed Effects Model A Model B

Mean 2.5% 97.5% Mean 2.5% 97.5%

m1 11.7 ÿ5.3 34.8 m1 11.4 ÿ4.8 34.8

m2 8.0 ÿ7.7 23.8 m2 8.0 ÿ7.5 23.5

m3 6.4 ÿ14.6 24.4 m3 6.5 ÿ14.2 24.0

m4 7.7 ÿ8.4 23.8 m4 7.7 ÿ8.5 23.5

m5 5.3 ÿ11.4 19.5 m5 5.5 ÿ11.3 19.5

m6 6.2 ÿ11.5 21.8 m6 6.3 ÿ11.8 21.8

m7 11.0 ÿ3.9 29.3 m7 10.6 ÿ3.9 28.9

m8 8.7 ÿ10.4 29.1 m8 8.5 ÿ10.3 29.0

f2 62.6 4.3 412.9 f2 58.5 0.9 423.0

M 8.1 ÿ3.7 20.2 M 8.1 ÿ3.8 20.3

k 47.3 0.2 304.8

Model C

Mean 2.50% 97.50%

m1 10.19 ÿ1.11 26.00

m2 8.15 ÿ2.73 19.68

m3 7.20 ÿ6.90 19.65

m4 8.05 ÿ3.44 19.85

m5 6.61 ÿ5.88 17.48

m6 7.20 ÿ5.11 18.74

m7 9.72 ÿ0.64 22.44

m8 8.60 ÿ4.06 22.52

f2 4.23 0.06 14.15
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A three chain run shows convergence for this parameter at around 2500 iterations, and

from iterations 2500±25 000 a median k of 24 and mean 47 are obtained, with the

posterior mean for f2 now 58.5. The posterior density for k has most mass on low

values but has a positive skew. The smoothed effects are slightly more pulled to the

grand mean than under Model A, and range from 5.5 to 11.4. Finally, Model C is

defined via the Pareto prior in Equation (2.25). Note that initial values in three chains

for the Pareto variable (in its BUGS parameterisation and denoted tau0 in Program 2.6)

are randomly sampled from the prior. This model, after a run of 25 000 iterations, leads

to greater smoothing with a posterior mean for f2 now 32 and the program effects

ranging from 6.4 to 10.0.

Gelman et al. (1995, p. 147) cite a range in posterior median effects from 5±10 for

these data. They conclude that one program effect, namely the first program with mean

28.4 and empirical standard error 14.9, is unlikely in terms of the smoothing density

mj � N(M, f2). Thus, in Model A one may compare yj with mj using the standard

normal cumulative distribution function F, and find that the median chance of a mj

smaller than 28.4 is 0.998.

2.4 DISCRETE MIXTURES AND DIRICHLET PROCESSES

The priors considered above for the underlying population mixing density have

a specific parametric form. However, to avoid being tied to particular parametric

forms of prior, non-parametric options have been proposed, such as discrete mixtures

of parametric densities (Laird, 1982) or Dirichlet process priors. The goal in choosing

parametric or non-parametric mixing may be to improve fit and robustness of inferences

by approximating more closely the true density of the sample (Robert, 1996; West,

1992). This is especially so for observations that are multimodal or asymmetric in form.

Here a parametric model assuming a single component population is likely to

be implausible.

For instance, in smoothing health outcomes over sets of small areas, especially when

there may be different modes in subsets of areas, discrete mixtures may be used (Clayton

and Kaldor, 1987). The mixture will generally involve a small but unknown number of

sub-populations, as determined by an underlying latent set of group membership

variables for each observation. There are then likely to be issues of discrimination

between models involving different numbers of sub-populations, especially in smaller

samples or if data likelihoods are relatively flat (see BoÈhning, 2000).

2.4.1 Discrete parametric mixtures

Discrete mixture models have wide flexibility in representing heterogeneous data,

when a choice of parametric form for the heterogeneity is unclear or when inferences

are sensitive to particular choices of parametric mixture. Assume a mixture of J sub-

populations or groups, and let Li denote a latent group membership indicator for

sample member i; Li can take any value between 1 and J. The latent data may also be

expressed by multinomial indicators Zij � 1 if Li � j and Zij � 0 otherwise. If

the missing data Li were actually known, the density of the data Y � (y1, : : , yn)

could be written

yijLi � j � f (yijuj)
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The densities conditional on L are generally taken to have the same form, e.g. all normal

or all Poisson, with the parameters of groups j being denoted uj. For a Poisson the uj's

would be means and for a Normal mixture the uj's could be group specific means and

variances {mj, fj}, varying means and a common variance {mj, f} or a common mean

but differing variances {m, fj}. The marginal density of y is then

f (yi) �
XJ

j�1

f (yijuj)pj (2:26)

where pj is the probability of belonging to sub-population j, and

XJ

j�1

pj � 1

In practice the Li are unknown and the estimation problem relates to the mixing propor-

tions pj , the parameters of the separate sub-populations, and the posterior estimates of

group membership Li given the data and parameters. Typically, the vector p is assigned a

Dirichlet prior with elements {a1, . . . , aj} with a typical choice being such as

a1 � : : � aJ � 1; the posterior for p is then provided by a Dirichlet with elements

Kj � aj, where Kj is the number of sample members assigned to the jth group. The

probabilities governing the assignment of subjects i to groups j are specified by

Pij � Pr(Zij � 1) � pj f (yijuj)=f (yi) (2:27)

where f (yi) is as in Equation (2.26). If means differ by sub-population, then the

smoothed mean ri for the ith subject is the sum over j of the population means mj

times the assignment probabilities

ri �
X

j

Pijmj (2:28)

These means for subjects will often show shrinkage towards the global mean

~m � p1m1 � p2m2 � : :pJmJ (e.g. in disease mapping applications), even if the subjects

have high posterior probabilities of belonging to groups with means much above or

below the global mean.

The major issues in identifying mixture models using parametric densities f ( yjuj) are

the general question of identifiability in the face of possibly flat likelihoods (Bohning,

2000), and the specification of appropriate priors that are objective, but also effective in

estimation. Thus, Wasserman (2000) cites the hindrance in mixture modelling arising

from the fact that improper priors yield improper posteriors. More generally, vague

priors even if proper, may lead to poorly identified posterior solutions, especially for

small samples. Various approaches to prior specification in mixture modelling have

been proposed and often mildly informative proper priors based on subject matter

knowledge may be employed.

There are also issues of `label switching' in MCMC estimation of mixture models. If

sampling takes place from an unconstrained prior with J groups then the parameter

space has J! subspaces corresponding to different ways of labelling the states. In an

MCMC run on an unconstrained prior there may be jumps between these subspaces.

Constraints may be imposed to ensure that components do not `flip over' during

estimation. One may specify that one mixture probability is always greater than an-

other, or that means are ordered, m1 > m2 > . . . > mJ , or that variances are ordered. It
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remains problematic whether such constraints distort the final estimate. Depending on

the problem, one sort of constraint may be more appropriate to a particular data set:

constraining means may not be effective if subgroups with different means are not well

identified, but groups with different variances are (Fruhwirth±Schattner, 2001). A

sophisticated constraint scheme is proposed by Robert (1996) which for continuous

Normal or Student data encompasses both mean and variance: for a two group model,

this takes the form

Y � pN(m, s2)� (1ÿ p)N(m� su, t2s2)

There is also the possibility of empty groups (e.g. only J ÿ 1 groups of cases are chosen

at a particular MCMC iteration when a J group model is being fitted); to avoid this,

Wasserman (2000) proposes a data dependent prior that avoids a null group occurring.

Chen et al. (2001) seek to overcome boundary and identifiability problems by introdu-

cing an extra penalty component to the likelihood that amounts to introducing JC extra

`observations', C with mean m1, C with mean m2, and so on. As an example, let there be

J � 2 sub-groups with probabilities p and (1ÿ p), differing only in their means m1 and

m2, with m1 < m2. The number 2C of extra observations is related to the precision on the

prior for the mj's. Thus if m1, m2 are uniform with priors U(ÿR, R) then Chen et al.

take C � log (R). For a normal prior on the mj , one might take C � log (3s), where s2 is

the prior variance of the mj . The likelihood9 for J � 2 is penalised as follows:

Si log [(1ÿ p) f (yijm2)� pf (yijm1)]� C log [4p(1ÿ p)]

This approach generalises to J > 2 sub-groups, with the same inequality constraint on

the mj's, and with a penalty C�J
j�1 log (2pj).

2.4.2 DPP priors

Dirichlet Process Priors (abbreviated as DPP priors) offer another approach avoiding

parametric assumptions and, unlike a mixture of parametric densities, are less impeded

by uncertainty about the appropriate number of sub-groups (see Dey et al., 1999). The

DPP method deals with possible clustering in the data without trying to specify the

number of clusters, except perhaps a maximum conceivable number. Let yi, i � 1, : : , n,

be drawn from a distribution with unknown parameters ni, wi,

f (yijni, wi)

where a Dirichlet process prior is adopted for the ni's but a conventional parametric

prior for the wi's. The Dirichlet process specifies a baseline prior G0 from which

candidate values for ni are drawn. For instance, in Example 2.1 most of the incidence

ratios li are likely to be between 0.25 and 4 in a hierarchical model, so a suitable

baseline prior G0 on the ni � log (li) might be a N(0, 0.5) density.

Suppose the ni's are unknown means or log means for each case, and that clustering in

these values is expected. Then for similar groups of cases within a cluster, the same value

u of ni would be appropriate for them. Theoretically, the maximum number M of

clusters could be n, but it will usually be much less. So a set of M potential values of

u, denoted um, m � 1, : : , M, is drawn from G0. The most appropriate value um for case

9 In BUGS, for J � 2 components in a normal mixture with equal variance across groups, and C rounded to
an integer, the prior for the additional points might be specified with the coding:

for (i in 1:C) {y.aux[i] � dnorm(mu[1],tau); y.aux[i�C] � dnorm(mu[2],tau)}
for (i in 1:n) {y[i] � dnorm(mu[L[i]],tau); L[i] � dcat(pi[1:2])}
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i is selected using multinomial sampling with M groups, and the Dirichlet prior on the

group probabilities has a precision parameter a. So the cluster indicator for case i is

chosen according to

Li � Categorical(p)

where p is of length M, and has uniform elements determined by a precision parameter

a. Then case i is assigned the parameter uLi
. The parameter a may be preset (typical

values are a � 1 or a � 5), or itself assigned a prior. Following Sethuraman (1994) and

Ishwaran and James (2001), one may generate the mixture parameters by considering

the ni's as iid with density function q, where

q() �
X1
j�1

pj h(juj) (2:29)

where h is the density of the uj under G0. In practice, the mixture may be truncated at

M � n components with �M
j�1 pj � 1.

The random mixture weights pj at any iteration may be constructed by defining a

sequence r1, r2, : : , rMÿ1 of Beta(1, a) random variables, with rM � 1. Thus, sample

rj � B(1, a) j � 1, : : , M (2:30)

and set

p1 � r1

p2 � r2(1ÿ r1)

p3 � r3(1ÿ r2)(1ÿ r1)

and so on. This is known as a stick-breaking prior, since at each stage what is left of a stick

of unit length is broken and the length of the broken portion assigned to the current value

pj. At any iteration it is likely that some of the M potential clusters will be empty and one

may monitor the actual number J of non-empty, though differing, clusters. Other

sampling strategies for the rj are discussed by Ishwaran and James (2001); one option

takes the random weights as rj � B(aj , bj), where aj � 1ÿ a, bj � ja and 0 < a < 1.

Example 2.7 SIDS deaths Consider the well known data on SIDS deaths Si among

births Bi in 100 counties of South Carolina during 1974±78. The statewide SIDS death

rate per 1000 births is 2 per 1000 (667 deaths in 329 962 births), but some counties have

(unsmoothed) rates approaching 10 per 1000. Symonds et al. (1983) consider a two

group Poisson mixture for these events, such that

Si � Poi(RiBi)

Li � Categorical(p1:2)

where

Ri � mLi

is the Poisson mean in the group with index Li. It is common practice to treat rare vital

events as Poisson in this way, though strictly they are binomial; in more complex models

adopting Poisson sampling, occasional inadmissible values may be generated for death

rates Ri unless a constraint in the prior is included. An option is to reframe the problem
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in terms of expected deaths Ei, where Ei � RBi, and R is here the statewide rate. Then

Si � Poi(niEi), where the ni's are relative risks with average close to 1 (and exactly

equalling 1 if the sum of Ei equals the sum of the Si).

The smoothed mean for the ith county is drawn from a mixture with two components,

and will be determined by the average of formula (2.28) over a large number of

iterations: the mean for county i will be smoothed towards the sub-population mean,

depending on its highest assignment probabilities. In `disease mapping' applications

such as these, a primary object is the identification of counties with genuinely high risk.

In this regard, simple maximum likelihood estimates (or `crude' rates) 1000Si=Bi may

distort true high risks (e.g. giving spurious impressions of clustering), especially if the

most extreme rates are based on small birth totals or small death totals.

For the two group parametric mixture model, G(0.0, 0.01) priors on mj, j � 1, 2 are

adopted and a Dirichlet D(1, 1) prior on the mixing probabilities pj. An initial uncon-

strained run (with a single chain) suggested two well-separated means; a subsequent

three chain run was therefore undertaken with a constraint on the means. Note that for

county memberships Li arbitrary initialising may be used, though preferably not all set

to one subgroup. A run of 10 000 iterations identified a minority of areas with high

SIDS death rates (mortality at around 3.8 per 1000 births, with a summary in Table 2.9

based on the second half of the run). In terms of the resulting estimates of SIDS rates at

county level, broadly similar results to Symonds et al. are obtained though with

different rankings within the high risk counties. The estimates of county rates are

based on a further 1000 iterations subsequent to the first 10 000.

The shrinkage obtained under this model is exemplified by county 87 (Swain county)

with a crude SIDS rate of 4.4 per 1000, but based on three deaths among only 675 births

over five years. Despite its crude rate exceeding the higher subpopulation mean of 3.8

per 1000, it has a posterior probability of 0.24 of belonging to the low risk group, and a

Table 2.9 Mixture parameters (two groups) and highest posterior SIDS rates

Mean St. devn. 2.50% Median 97.50%

SIDS Rates per 1000 Births

Anson 3.70 0.52 2.71 3.64 5.02

Robeson 3.69 0.53 2.70 3.64 5.01

Halifax 3.69 0.53 2.67 3.64 5.02

Columbus 3.64 0.61 1.69 3.62 5.00

Northampton 3.57 0.69 1.62 3.59 5.00

Rutherford 3.42 0.77 1.62 3.51 4.86

Rockingham 3.42 0.80 1.58 3.52 4.89

Bladen 3.26 0.91 1.55 3.43 4.87

Hertford 3.21 0.93 1.52 3.40 4.89

Hoke 3.18 0.95 1.52 3.38 4.89

Washington 3.02 0.99 1.47 3.28 4.81

Bertie 2.98 1.02 1.46 3.25 4.87

Means of components

m1 0.0017 0.0001 0.0014 0.0017 0.0019

m2 0.0038 0.0005 0.0028 0.0037 0.0049

Probabilities of components

p1 0.765 0.098 0.538 0.780 0.912

p2 0.235 0.098 0.088 0.220 0.462
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smoothed rate of 2.5 per 1000. It may be noted from Table 2.9 that this model provides

essentially no discrimination between the counties with the three highest rates (counties

4, 42 and 78): they have a virtual unity probability of belonging to the higher risk group

and identical median SIDS rates of 3.64.

One advantage of discrete parametric mixtures is that the number of model param-

eters is usually well defined, and so penalised fit measures such as the AIC or BIC

present no problem in definition. Note that this is not the case for random effects

mixtures, which is why the DIC approximation discussed above has been developed. In

particular, one might base choice between a model with J � 1 components (Model 2)

against one with J components (Model 1) in terms of that model with minimum AIC or

BIC. There is a case for using the BIC here since the `sample size' might be defined not

by the number of counties, but by the number of births in them (Upton, 1991), and also

because the BIC approximation becomes more reliable for large samples.

For closely competing models, one might want to assess the probability that the AIC

or BIC for Model 2 exceeds that for Model 1. If a Poisson mixture with three compon-

ents is compared against one with two components, there are p1 � 3 parameters in the

simpler model and p2 � 5 in the more complex one (three means, and two free mixture

probabilities). If the models are run in parallel and at each iteration D
(t)
2 � 2p2 is

compared with D
(t)
1 � 2p1 (where D � ÿ2 log L), then accumulating over iterations

gives the probability that model j has the minimum AIC (Model B in Program 2.7).

In this application, the priors on the means for both models are constrained, and an

upper limit for the highest smoothed mean is set by the maximum crude rate of 9.6 per

1000. Without this limit there is a tendency for impossible means (mortality exceeding

100%) to be generated.

A three chain run of 25 000 iterations (and burn-in of 5000) with initial values for two

chains provided by a trial run, shows some support for a three group solution. In

approximate terms, a quarter of counties belong to a low risk sub-group, 50% to a

medium risk group, and a quarter to a high risk group (Table 2.10). Comparison of the

AICs at each iteration between the models shows the three group mixture to have a

lower AIC with a probability of 60%.

Finally, a Dirichlet process prior approach is applied, with the goal of assessing the

relative SIDS risks in Anson, Robeson and Halifax counties under a semi-parametric

approach, and also whether the relative risk in Swain county is clearly above 1 or

Table 2.10 Comparison of two and three group models

Mean St. devn. 1% Median 99%

2 sub-populations AIC 10030 150 9669 10030 10360

Group Means m1 0.0016 0.0001 0.0013 0.0017 0.0019

m2 0.0037 0.0005 0.0026 0.0036 0.0050

Group Probabilities p1 0.745 0.105 0.429 0.759 0.923

p2 0.255 0.105 0.077 0.241 0.571

3 sub-populations AIC 9968 198 9262 9989 10330

Group Means m1 0.0008 0.0007 0.0000 0.0011 0.0018

m2 0.0020 0.0005 0.0014 0.0018 0.0036

m3 0.0040 0.0009 0.0027 0.0039 0.0080

Group Probabilities p1 0.243 0.244 0.000 0.184 0.818

p2 0.556 0.221 0.043 0.597 0.896

p3 0.202 0.104 0.013 0.189 0.507
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whether alternatively it straddles 1 (and so is not definitively high risk). The reframed

format describe above is adopted, with expected SIDS deaths defined as Ei � RBi, and

taking Si � Poi(niEi). The relative risks ni � exp (fi) are modelled via a DPP with a

ceiling of M � 10 clusters, and with an N(0, 1) baseline prior on fi. The prior on rj is as

in (30) with a � 1 preset.

A three chain run (with initial values randomly generated from the priors) shows

convergence of the non-empty cluster total J at around iteration 1000 and the summary

is based on iterations 1000±5000. This shows the relative risk clearly highest in Anson

county, and with the Swain county risk straddling 1 (Table 2.11). The distribution of

non-empty clusters shows six clusters as the most frequent (Figure 2.1). One may wish

to assess sensitivity of inferences to different baseline densities (e.g. Student t with mean

0, variance 1 and low degrees of freedom) or to alternative values of a.

Example 2.8 Exponential mixtures for patient length of stay distributions The work of

Harrison and Millard (1991) and McClean and Millard (1993) relates to lengths of stay

of patients in hospital, with a particular focus on patient lengths of stay in geriatric

departments. Lengths of stay of other classes of patients have also attracted discrete

mixture analysis (especially psychiatric patients), as well as other patient characteristics

such as age at admission (Welham et al., 2000). Lengths of stay in geriatric departments

exhibit pronounced skewness, but exponential mixture models with relatively few com-

ponents have been found effective in modelling them. The analysis here shows the utility

of Bayesian sampling estimation in deriving densities for structural or system parameters.

Table 2.11 DPP prior on SIDS deaths; selected parameters

Non-empty clusters Mean St. devn. 1% Median 99%

J 5.99 1.55 3 6 9

Relative Risks

Anson (county 4) 3.07 1.26 1.44 2.68 6.76

Halifax (county 42) 1.94 0.48 1.03 1.89 3.48

Robeson (county 78) 1.80 0.35 1.07 1.78 2.65

Swain (county 87) 1.27 0.54 0.55 1.09 3.01

1 5 10

0.0

0.1

0.2

0.3

Figure 2.1 Number of DPP clusters in SIDS deaths analysis
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Thus, let x denote length of stay for a patient in days, and suppose a two component

exponential mixture, EM(2), is fitted

f (x) � p exp (ÿ Bx)� (1ÿ p) exp (ÿDx) (2:31)

where the identifiability constraint is that the average length of stay 1=B in group 1 is

lower than that in group 2. Harrison and Millard (1991) draw on continuous time

models for drug flow in pharmacokinetics to derive interpretations for the EM(2)

parameters. Envisage two classes of patients, a standard stay group, of size A(t) at

calendar time t, and a long stay group of size L(t) at t (these are distinct from the two

groups in Equation (2.31)). The long stay group (were it possible to identify them on

admission to hospital) form an unknown fraction k of patients admitted to the geriatric

unit, but no one is formally admitted as a long stay patient. Instead, they are notionally

converted to such a status at some time during their hospital stay. The standard group

account for the remaining 1ÿ k share of the patient population.

Harrison and Millard (1991) assume a steady state system operating at full capacity,

with A(t) � A and L(t) � L constant and in equilibrium. The stock A in the standard

group is kept constant by (a) patient discharges from hospital at a rate r, by (b)

conversion from standard to long stay status at rate v, and by (c) a constant number

of new patients per day A0. Finally, long stay patients themselves have a low chance d of

discharge (including mortality). Under the steady state assumption, it can be shown that

k � v=(v� rÿ d)

Under the exponential model for stay lengths, the rate of loss through discharges,

deaths, and so on, is the inverse of the expected length of stay in days. So the expected

length of stay for standard patients is

S1 � 1=(v� r)

while that for long stay patients is

S2 � 1=d (2:32)

The expected length of stay at admission under the steady state model is therefore

S � (1ÿ k)S1 � kS2

Let T be the total number of patients, or equivalently under equilibrium, the number of

occupied beds in the hospital. Then, from Equation (2.31), the total of patients who

have been in hospital for at least x days is given by

t(x) � Tp exp (ÿ Bx)� T(1ÿ p) exp (ÿDx)

while from the steady state model assumptions, it can be shown to be

t(x) � (1ÿ k)A0 S1(1ÿ vÿ r)x � k A0 S2(1ÿ d)x (2:33)

Under the steady state model, admissions equal exits so that A0 is (Harrison and

Millard, 1991, Eq. (17)) given by

(v� r)Tp� dT(1ÿ p)

Also, equating parameters in Equation (2.33), the proportion k of long stay patients

may be derived from

kA0S2 � T(1ÿ p)
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Using Equation (2.32) gives

k � dT(1ÿ p)=A0

So the parameters of the EM(2) model may be used to estimate system parameters,

resulting, say, from better discharge arrangements to non-hospital care for long stay

patients. For example, if the daily discharge rate d for such patients is increased by 1/

(365L), then (r� v)=(v� d) more patients per year can be admitted.

To illustrate the practical working of this approach, and the derivation of system

parameters from basic model parameters such as those in Equation (2.31), consider

length of stay observations for T � 469 patients in a psychiatric hospital in North East

London in January 1991. These are incomplete lengths of stay, but following the work

discussed above, there is no need to model the censoring mechanism to obtain the

structural parameters. Following the steady state model of Harrison and Millard as

discussed above, we consider a two group mixture. One may, however, generalise these

concepts for, say, J � 3 group mixtures and higher by invoking conversions from a

short stay group to a standard group at rate v1, from a standard group to long stay at

rate v2, etc.

The exponential mixture model (2.31) in Program 2.8A is parameterised so that B

is larger than D, i.e. so that lengths of stay in group 1 (with prior probability p) are

shorter than those in group 2. From a three chain run of 25 000 iterations, with

convergence after a 500 iteration burn-in, a median estimate for p of 0.565 is obtained

(Table 2.12). This larger group has an exponential parameter of 0.0016 and average

length of stay of 620 days, compared to over 7500 days in the smaller group. To

informally assess model fit, one may monitor the `complete data' likelihood, taking

the latent group membership indices (L[i] in the coding in Program 2.8A) at each

iteration as known. (Note that Example 2.7 used the `incomplete data' likelihood.)

This likelihood has a posterior median of ÿ3999. So there is a clear gain in fit over a

single group exponential model, which has median likelihood ÿ4324 and estimates an

average length of stay of 3700 days.

The proportion k of long stay patients under the steady state model is just under 6%,

and the median number of such patients is then L � 27. Increasing the discharge rate

Table 2.12 Structural length of stay parameters: steady state patient flow model

Parameter Mean St. devn. 2.5% 97.5%

A0 Admission Rate (New patients per day) 0.457 0.041 0.383 0.547

Complete Data Log-likelihood ÿ3999 11.5 ÿ4023 ÿ3977

Expected LOS, Mixture Group 1 620.9 74.1 478.2 769.7

Expected LOS, Mixture Group 2 7810 720 6543 9336

L Number of long stay patients 27.23 4.41 19.58 36.94

S Expected LOS on admission, all patients 1034 92.5 857.4 1225

Benefit from higher discharge rate of

long stay patients

7.596 0.813 6.105 9.298

p Mixture Probability 0.565 0.040 0.487 0.642

K Proportion long stay 0.058 0.009 0.042 0.079

B Exponential Mean, Group 1 0.0016 0.0002 0.0013 0.0021

D Exponential Mean, Group 2 0.00013 0.000012 0.00011 0.00015

R Standard group discharge rate 0.0015 0.00019 0.0012 0.0020

v Conversion rate, standard to long stay 0.000088 0.000019 0.000056 0.00013
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among long stay patients by 1/(365L), or by one patient a year, means that on averaged

7.6 more patients per year can be admitted; this is the posterior mean of (r� v)=(v� d).

The uncertainty attaching to some of the structural parameters, such as the length of

stay in group 2 (95% interval from 6500 to 9300 days) feeds through to the structural

parameters. Thus, the number of new patients per day, A0, is estimated with 95%

interval {0.38, 0.55}, and the number of long stay patients has a 95% interval between

20 and 37.

We consider next mixtures with more groups (though without estimating the struc-

tural parameters). Thus for J � 3, and running three chains for 25 000 iterations yields

convergence after 2500 iterations. The two extra parameters produce a further gain in fit

(Model C in Program 2.8A). The median complete data likelihood is ÿ3916, and a short

stay group with average LOS around 54 days, exponential mean 0.0203, and relative

probability of 12%, is identified.

A DPP version of this mixture analysis for the patient lengths of stay (Program 2.8B)

is also applied. A maximum possible M � 5 alternative exponential means is set, i.e. up

to five potential clusters in which the 469 lengths of stay can be arranged. Trial analysis

suggested that most of the mass was concentrated on 3±5 clusters, even for larger a (the

average number of non-empty clusters J is expected to be increase with the Dirichlet

precision parameter). As well as monitoring the number of non-empty clusters and the

complete data likelihood, one may track the largest cluster mean (th.R[M] or th.R[5]

in the code), corresponding to the shortest stay patients. Monitoring convergence

is complicated by the fact that parameters may have different meanings according

to whether the number of non-empty clusters at a particular iteration is

J � 3, J � 4, J � 5, etc.

A three chain run with a � 1 is run for 5000 iterations, with the second half giving an

average for non-empty clusters J of 3.1, and complete likelihood averaging ÿ3918. The

two cluster solution was not selected in any iteration. The exponential parameter

corresponding to the short stay group has an average value 0.37 when five clusters are

chosen (in 27 of 7500 iterations), 0.085 when four clusters are selected (which occurs in

about 12.5% of iterations) and an average value 0.0213 at iterations when three clusters

are chosen. To assess this patterning, it is necessary to use the CODA facility in BUGS

and sort iterations according to the number of clusters selected. Increasing the Dirichlet

parameter (e.g. to a � 5) does raise the proportion of iterations when four or five

clusters are selected, but there is no overwhelming evidence to suggest the existence of

four or more clusters in the data.

2.5 GENERAL ADDITIVE AND HISTOGRAM SMOOTHING PRIORS

Many types of smoothing problems involve a series of observations y1, . . . , yn at

equally spaced observation or design points (e.g. consecutive ages, income groups,

etc.). While often considered as time series methods, it is worth emphasising the scope

for more general applications. Among the approaches which have figured in the

Bayesian literature, we consider here two relatively simple methodologies which are

suitable for a wide range of problems. One is based on smoothness priors derived from

differencing an underlying series of true values (Kitagawa and Gersch, 1996). The other,

histogram smoothing, is applicable to frequency plots, including those deriving from

originally metric data aggregated to equal length intervals ± an example involving

weight gains in pigs is considered by Leonard and Hsu (1999).
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2.5.1 Smoothness priors

For the smoothness prior approach, it is assumed initially that the yt are metric with

normal errors. Extensions to discrete outcomes and unequally spaced observation

intervals are also considered below, as are extensions to grouped observations ± multiple

observations at a single design point t.

The model for metric observations is then yt � ft � et, where et � N(0, s2), and where

the ft's may be taken as an underlying series, free of the measurement error in the

observed series. The measurement error assumption leading to an underlying series

which is the object of smoothing is especially frequent for continuous data. For discrete

outcomes, the focus of smoothing is typically on the mean count, risk or probability.

Thus, if the yt were Poisson, then one might have

yt � Poi(mt)

log (mt) � ft � ftÿ1 � ut

while if they were binomial with populations nt, then the model might be

yt � Bin(pt, nt)

logit(pt) � ft � ftÿ1 � ut

A widely used smoothing model assumes Normal or Student distributed random

walks in the first, second or higher differences of the ft's. For example, a Normal

Random Walk (RW) in the first difference Dft is equivalent to the smoothness prior

ft � N( ftÿ1, t2) (2:34)

and a random walk in the second difference D2ft leads to the prior

ft � N(2ftÿ1 ÿ ftÿ2, t2) (2:35)

These two priors can be expressed in the alternative forms

ft � ftÿ1 � ut

and

ft � 2ftÿ1 ÿ ftÿ2 � ut

respectively. These models have to be set in motion by assumptions about the

initial parameter(s): this involves separate priors on the initial parameters, such as f1
in the case of a first difference RW, f1 and f2 in the case of a second order RW, and so

on. A common practice is to ascribe vague priors with large variances to these param-

eters.

A rationale for this is provided by the measurement error model for continuous

Normal data. Here the ratio l � s2=t2 is a smoothing parameter, which for a second

order random walk, RW(2), appears in the penalised least squares criterion

St e2
t � l

Xn

t�3

D2ft

With flat initial priors on the initial ft's in the series the posterior modes for ft are

equivalently those that minimise this criterion. Thus, one might set initialising priors

fj � Nr(0, kI), j � 1, : : , r

68 HIERARCHICAL MIXTURE MODELS



where r is the order of differencing in the smoothness prior and k is large.

It may be noted that one is not confined to asymmetric priors like (2.34) and (2.35),

which make most sense if t does denote time; if the index t were something like income

group, then it might make sense for ft to depend upon adjacent points at either side.

Thus, a generalisation of the first order prior might involve dependence on both ftÿ1 and

ft�1. For example,

ft � 0:5ftÿ1 � 0:5ft�1 � ut 2 � t � nÿ 1

f1 � f2 � u1

fn � fnÿ1 � un

Further issues concern specialised priors in the event of unequal spacing or tied

observations. For unequal spacing, it is necessary to weight each preceding point

differently, and to change the precision such that wider spaced points are less tied to

their predecessor than closer spaced points. Thus, suppose the observations were at

points t1, t2, . . . , tn with d1 � t2 ÿ t1, d2 � t3 ÿ t2, . . . , dnÿ1 � tn ÿ tnÿ1. The smooth-

ness prior (2.34) would become

ft � N( ftÿ1, dtt
2)

so that wider gaps dt translates into larger variances. Similarly, the prior (2.35) would

become

ft � N(nt, dtt
2)

where nt � ftÿ1(1� dt=dtÿ1)ÿ ftÿ2(dt=dtÿ1). nt reduces to the standard form if dt � dtÿ1.

For multiple observations at one point in the series, we have one model for the n

observations and a prior for the G distinct values of the series index. For instance,

suppose the observations yt were 1, 3, 4, 7, 11, 15 (n � 6) at observation points 1, 1, 2, 2,

3, 4 (i.e. G � 4). Then if gt denotes the grouping index to which observation t belongs,

and a first order random walk in the underlying series is assumed, we would have

yt � N( f [gt], s2), t � 1, : : , n

fk � N( fkÿ1, t2), k � 2, : : , G

2.5.2 Histogram smoothing

Suppose observations of an originally continuous variable y are grouped into frequency

counts, with fj being the number of observations between cut points Kjÿ1 and Kj .

For example, Leonard and Hsu (1999) discuss the pig weight gain data of Snedecor

and Cochran (1989), where weight gains of 522 pigs are aggregated into 21 intervals of

equal width. One may also consider counts fj of events (e.g. migrations, deaths)

arranged in terms of a monotonic classifier, at levels j � 1, : : , J, such as age band

or income level. Often, sampling variability will mean the observed frequencies fj in the

jth interval will be ragged in form when substantive considerations would imply

smoothness.

Let prior beliefs about such smoothness be represented by an underlying density h( y),

and let pj be the probability that an observation is in the jth interval

pj �
�Kj

Kjÿ1

h(u)du
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The observed frequencies are assumed to be multinomial with parameters

{p1, p2, : : , pJ}, and to imperfectly reflect the underlying smooth density. A prior

structure on the pj 's that includes smoothness considerations is appropriate. Specific-

ally, express pj via a multiple logit model

pj � exp (fj)=
X

k

exp (fk)

where the fk are taken to be multivariate normal with means a1, a2, : : , aJ and J � J

covariance matrix V. A noninformative prior on the pj's would take them to be equal in

size, i.e.

pj � 1=J

which is equivalent to

aj � ÿ log (J)

In the case of frequencies arranged by age, income, etc., there are likely to be total

population or exposure totals Ej, and the appropriate prior on the pj's then would

involve taking

pj � Ej=
X

k

Ek (2:36a)

or

aj � log (Ej=
X

k

Ek) (2:36b)

The covariance matrix V is structured to reflect dependence between frequencies neigh-

bouring on the histogram classifier. Thus, one option is a first order dependence of

order 1 with correlation r, as discussed in Chapter 5. Thus

Vij � rjiÿjjs2 (2:37)

Then r � 0 leads to exchangeability in the histogram probabilities, that is to a joint

distribution that is unaffected by permutation of the suffixes 1, 2, . . , J. This is contrary

to expectation in many situations where greater similarity is anticipated between pj and

pj�1 than between pj and pj�2. Note that defining k � 1=(s2 ÿ s2r2), the elements of

T � Vÿ1 in the case of the prior (2.37) are given by

T11 � TJJ � k,

Tjj � k(1� r2) j � 2, : : , J ÿ 1

Tj, j�1 � Tj�1, j � ÿkr j � 1, : : , J ÿ 1

Tjk � 0 elsewhere

Example 2.10 Hemorrhagic Conjunctivitis As an example of the smoothness prior

approach, though from a maximum likelihood perspective, Kashigawi and Yanagimoto

(1992) consider smoothing of serial count data through a state-space model, specifically

weekly data yi on new cases of acute hemorrhagic conjunctivitis in the Chiba-prefecture

of Japan in 1987.
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Thus, if yt � Poi(lt), t � 1, : : n, with the data sequenced in time, they assume that the

lt's change gradually through time. They therefore impose a difference prior of order r

on the log link vt � log lt, with

Drvi � N(0, s2) (2:38)

The case r � 1 with s2 � 0 leads to a trendless model with constant incidence of new

cases, l1 � l2 � : : � ln. This leads on to a test for homogeneity of the means through

time (with r � 1 in Equation (2.38)), namely s2 � 0 vs. s2 > 0. While these data are

time series, the approach is applicable to any series arranged against a monotonic index

(e.g. age, income, weight). Kashigawi and Yanagimoto detected a significant departure

from a stable mean weekly incidence in these series with an increased level apparent

between about the 28th and 38th weeks.

Here a flat N(0, 1000) prior on f1 is assumed with an RW(1) smoothness prior,

and initially a G(1, 0.001) prior on 1=s2. The findings of Kashigawi and Yanagimoto

are replicated, and Figure 2.2 shows the underlying series of mean incidence. The

mean number of new cases peaks at around 1.21 in the weeks 35±38, then falls back

to around 0.7 at the end of the year. This smooth gives an appearance of over-

smoothing, and Figure 1 of Kashigawi and Yanagimoto in fact shows a smooth

where there is a more pronounced variation in mean incidence than in Figure 2.2.

Their smoothed series can be replicated more closely with a G(1, 1) prior on sÿ2,

since this places lower weight on high precisions (lower variances s2 which produce

less smoothing). The means vary now from 0.25±2.4. To resolve the problem of the most

appropriate smoothing variance, several alternative priors might be adopted and their

appropriateness compared with simple fit measures (e.g. log-likelihoods) or formal

Bayes choice methods. With the G(1, 1) prior on the precision, the log-likelihood of

a trend model (with non-zero variance s2) averages ÿ56, as against ÿ69 for a constant

mean model.

To estimate the effective number of parameters in the model with a G(1, 1) prior on

the precision, the DIC procedure suggests six effective parameters based on comparing

the mean deviance of 33.6 with the deviance at the posterior mean of 27.8. Note that

deriving this (in a non-iterative program) involves the posterior estimates of li as these
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Figure 2.2 Smoothed plots of mean conjunctivitis incidence
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alone define the likelihood. On this basis, the reduction in average deviance of around

26 is offset by five extra parameters.

Another option is to set a higher stage prior on the gamma parameters a1, b1 in

1=s2 � G(a1, b1). For example, the choice

a1 � exp (1) and

b1 � G(0:001, 0:001) I(0:001; )

is satisfactory in terms of identifiability, and yields a smooth series intermediate between

the two in Figure 2.2. The DIC is worse than under the preset G(1, 1) prior on 1=s2.

Fidelity to the original data is not the only criterion governing choice of a smoothing

model, and genuine cross-validation (involving omission of cases and prediction by the

remaining data) might also be investigated.

Example 2.11 Mental illness hospitalisations As an example comparing histogram

and state space smoothing, consider hospitalisations fj for mental illness at age j

over two London boroughs in the year 1st April 1998 to 31st March 1999. These

are classified by single year of age from ages 15±84, and may be seen as binomial

outcomes in relation to age-specific population estimates Pj at mid-1999.

Fitting a histogram smoothing model entails setting (see Equation (2.36))

aj � log (Pj=
X

k

Pk)

where Pj is the population at risk at age j. A U(0, 1) prior on the correlation parameter r
is assumed, and a gamma G(1, 0.001) prior on 1=s2; this defines the covariance matrix V

as in Section 2.5.2. A three chain run shows convergence of Gelman±Rubin criteria for

these two parameters at around iteration 1500, and the remaining iterations of a run of

5000 provide the summary.

Table 2.13 shows the smoothing of ragged frequencies to reflect the operation of

the prior in adjacent categories of the histogram. Thus, the observed schedule shows

19 hospital cases at age 21, six at age 22 and 25 at age 23. The smoothed version

shows much less discontinuity with 16.5, 13.6, and 19 as the estimated frequencies

of hospitalisation at these ages. Taking account of exposures to risk as in the

prior parameterisation (2.36b) in fact makes little difference to the degree of

smoothing obtained in this example. The posterior for r is concentrated above 0.9.

A posterior mean estimate of r � 0:97 is obtained with 95% interval from 0.92 to

0.995.

A first order random walk state space model with binomial sampling at the first stage

is then applied, with a G(1, 0.001) prior on the smoothing precision and an N(0, 1000)

prior on the initial value f1. From a three chain run (5000 iterations with 500 burn-in) a

posterior precision averaging 22 is obtained, with f1 averaging ÿ6.4. This compares to

the logit of the first observed rate, logit(5/4236) � ÿ6:74, so the first underlying

probability has been smoothed towards the average. Values for remaining smoothed

frequencies are close to those obtained under the histogram smoothing approach. The

random walk and histogram smooth model are expected to be broadly similar for values

of r in Equation (2.37) close to 1.
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Table 2.13 Smooth histogram for mental illness hospital cases

Age Popn. Actual

Hospitalisations

Obs.

Rate �
Histogram smoothing Random Walk

1000 Mean 2.5% 97.5% Mean 2.5% 97.5%

15 4236 5 1.2 7.4 4.3 11.5 7.1 4.2 10.9

16 4293 7 1.6 8.2 5.3 11.9 7.9 5.1 11.6

17 4378 8 1.8 9.6 6.4 13.5 9.3 6.2 13.1

18 4760 13 2.7 12.9 8.9 17.6 12.5 8.7 17.0

19 4940 17 3.4 16.1 11.6 21.9 15.8 11.2 21.4

20 4907 21 4.3 18.2 13.1 24.5 17.9 13.0 24.2

21 4603 19 4.1 16.6 12.0 22.4 16.4 11.8 21.8

22 4596 6 1.3 13.9 9.7 18.8 14.0 9.9 18.8

23 4861 25 5.1 19.0 13.6 25.0 18.9 13.7 24.9

24 5116 11 2.2 18.3 13.0 24.1 18.4 13.3 24.1

25 5375 32 6.0 26.2 19.5 34.2 25.9 19.4 33.5

26 5709 29 5.1 27.5 20.9 35.7 27.5 21.0 35.5

27 5932 24 4.0 26.3 19.6 34.1 26.7 20.1 34.2

28 5942 27 4.5 28.3 21.3 36.3 28.5 21.6 36.4

29 5705 30 5.3 31.0 23.7 39.5 31.0 23.8 39.4

30 5678 42 7.4 37.1 29.3 46.5 36.8 28.5 46.8

31 5583 34 6.1 33.6 26.1 42.9 33.7 26.0 42.7

32 5617 31 5.5 31.1 24.0 39.4 31.3 23.9 39.8

33 5569 32 5.7 29.0 22.0 37.4 28.8 21.8 37.1

34 5610 19 3.4 23.4 17.5 30.6 23.2 17.1 29.9

35 5932 25 4.2 24.0 17.9 31.2 24.0 17.7 31.0

36 5758 19 3.3 21.6 15.7 28.3 21.9 16.1 28.5

37 5600 24 4.3 22.7 16.8 29.6 23.0 17.0 30.1

38 5414 23 4.2 22.6 17.0 29.6 22.7 16.8 29.9

39 5176 22 4.3 21.6 16.1 28.1 22.0 16.3 28.5

40 5099 21 4.1 21.2 15.8 28.4 21.6 16.1 28.0

41 4950 23 4.6 21.2 15.7 27.8 21.5 15.9 28.0

42 4782 14 2.9 19.0 13.9 25.4 19.4 14.2 25.6

43 4646 25 5.4 22.7 16.9 30.2 22.8 16.9 29.6

44 4491 26 5.8 24.0 17.7 31.6 23.9 17.8 31.2

45 4626 24 5.2 24.2 17.8 31.3 24.1 18.2 31.3

46 4591 27 5.9 23.7 17.4 31.0 23.6 17.6 30.9

47 4502 16 3.6 19.1 14.0 25.0 19.3 14.0 25.3

48 4565 20 4.4 19.1 13.9 25.3 19.1 13.9 25.3

49 4689 19 4.1 18.4 13.0 24.5 18.5 13.4 24.5

50 4856 18 3.7 17.5 12.5 23.8 17.5 12.6 23.3

51 5188 15 2.9 16.5 11.7 22.4 16.6 11.8 22.2

52 5662 15 2.6 17.2 12.4 23.1 17.4 12.6 23.3

53 4426 20 4.5 14.6 10.6 19.9 14.7 10.7 19.9

54 4339 4 0.9 11.6 7.9 15.7 11.8 8.1 16.1

55 4329 16 3.7 14.3 10.2 19.5 14.3 10.2 19.5

56 4098 19 4.6 15.4 11.1 21.0 15.2 10.9 20.6

57 3711 13 3.5 13.0 9.0 17.9 13.0 9.1 17.7

(continues)
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Table 2.13 (continued )

Age Popn. Actual

Hospitalisations

Obs.

Rate �
Histogram smoothing Random Walk

1000 Mean 2.5% 97.5% Mean 2.5% 97.5%

58 3411 9 2.6 11.3 7.7 15.5 11.3 7.9 15.7

59 3605 15 4.2 12.7 8.6 17.5 12.5 8.8 17.2

60 3731 7 1.9 12.0 8.2 16.4 12.1 8.3 16.6

61 3680 19 5.2 14.4 10.1 19.7 14.2 10.1 19.4

62 3580 12 3.4 13.0 9.1 18.3 13.0 9.1 17.8

63 3480 9 2.6 12.3 8.6 16.6 12.4 8.5 16.9

64 3355 13 3.9 13.8 9.8 18.5 13.7 9.7 18.6

65 3330 23 6.9 16.3 11.6 22.1 16.1 11.5 21.9

66 3259 10 3.1 13.4 9.4 18.1 13.3 9.5 18.0

67 3291 11 3.3 13.5 9.5 18.2 13.5 9.6 18.3

68 3277 16 4.9 15.3 11.0 20.9 15.3 10.9 20.7

69 3209 12 3.7 16.1 11.3 21.7 16.4 11.7 21.7

70 3144 24 7.6 21.7 16.0 28.4 21.5 16.0 28.3

71 3033 25 8.2 25.0 18.7 32.2 24.7 18.6 32.2

72 2985 30 10.1 29.0 22.3 36.9 28.7 21.9 36.9

73 2929 24 8.2 30.4 23.1 38.4 30.8 23.4 39.1

74 2831 47 16.6 45.1 35.6 56.7 45.2 35.8 56.1

75 2753 71 25.8 61.9 50.0 75.4 61.2 49.1 74.8

76 2688 49 18.2 53.2 42.8 65.7 53.4 42.6 65.2

77 2718 59 21.7 59.4 48.1 71.7 59.5 48.2 72.2

78 2738 69 25.2 67.5 56.1 80.9 67.5 55.2 81.5

79 2710 63 23.2 69.8 56.8 83.5 69.9 56.7 84.6

80 1626 64 39.4 61.1 49.7 74.9 60.9 49.5 73.9

81 1446 69 47.7 68.7 56.4 82.4 68.3 56.0 82.3

82 1502 90 59.9 86.7 72.2 101.9 86.8 72.2 102.5

83 1489 86 57.8 89.5 74.5 106.4 90.2 75.7 106.2

84 1444 115 79.6 109.2 91.5 128.5 110.0 92.7 129.5

2.6 REVIEW

The above discussion and examples have emphasised parametric smoothing methods

based on exchangeable sample members. The fully Bayes approach to combining infor-

mation over exchangeable units using exponential family densities is exemplified by

George et al. (1994), and stresses the benefits (e.g. in fully expressing uncertainty) as

compared to parametric empirical Bayes smoothing (see, for example, Morris 1983).

The fully Bayes method implemented through repeated sampling allows the derivation

of complex inferences concerning the relationships among the units, such as the density

of the maximum or the density of the rank attached to each sample unit (Marshall and

Spiegelhalter, 1998, p. 237).

If the simplest model based on exchangeable units assumes smoothing to a common

global mean and a unique variance readily made modifications may be more realistic,

for example allowing asymmetric skewed densities (Branco and Dey, 2001) or allowing

the data to be distributed as a mixture of two or three distributions with different means

and/or variances. Adopting discrete mixtures of parametric densities leads into semi and
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non-parametric Bayesian methods. Further flexibility is provided by the range of

approaches based on the Dirichlet process priors (illustrated in Examples 2.7 and 2.8),

and discussed by authors such as Dey et al. (1999) and Walker et al. (1999). These are

more natural approaches if clustering of sub-groups within the sample is expected, or as

providing a sensitivity analysis against baseline unimodal smoothing model. Sometimes

the latter may suffice: for example, Marshall and Spiegelhalters analysis of 33 transplant

centres failed to confirm a two cluster division of the centres. More specialised depart-

ures from exchangeability occur in the analysis of spatially correlated data where the

clustering is based on spatial contiguity (Chapter 7).

Whether a unimodal symmetric density is appropriate or not as a basis for combining

information, a further major element to the process of joint inferences about sample

units is the presence of further relevant information, possibly over different levels of

data hierarchies (pupils, schools, etc.). Hence inferences about means or ranks for

sample units may need to take account of covariates: for instance, severity or casemix

indices may be relevant to rankings of medical institutions (see Example 4.6). The next

two chapters accordingly consider the modelling of covariate effects in single and multi-

level data.
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EXERCISES

1. Using the data in Example 2.1, consider comparing model fit (e.g. via the DIC

approach) between the fixed effects and gamma-Poisson mixture models. The fixed

effects model allows the underlying relative risks li to be different, but does not

relate them to an overall hyperdensity. Identify the largest rate under each approach

and the probability that it exceeds the average rate (by using the sample to assess this

probability).

2. Also in Example 2.1, again try to analyse via random effects, but using Normal and

Student t mixtures applied in the log scale for li. How far does the robust Student t

alternative (with degrees of freedom an unknown parameter) make a difference to

the smoothed relative risks?

3. In Example 2.2, apply the DIC procedure to discriminate between binomial and

beta-binomial models.

4. Repeat the beta-geometric mixture analysis of Example 2.3 for couples with non-

smoking female partners. Calculate the chi square statistic for comparing actual and

predicted cycles to conception counts (as in Table 2.4). Also, consider how to use this

statistic in a predictive check fashion (see Equation (2.15)).

5. In Example 2.8, try the DPP analysis with a Dirichlet precision parameter a of 5.

How does this compare with the results when taking a � 1, and what are the

implications for the number of sub-groups apparent in the data. Also, try to identify

a four group mixture by `conventional' discrete mixture methods and consider how

identifiability is compromised.

6. In Example 2.11, program the sampling of replicate frequencies Zi for ages 15±84,

and so compare the predictive criterion G2 in Equation (2.14) between the two

models.
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CHAPTER 3 Regression Models

Regression Models

3.1 INTRODUCTION: BAYESIAN REGRESSION

Methods for Bayesian estimation of the Normal linear regression model, whether

with univariate or multivariate outcome, are well established. Assuming the predictors

are exogenous and measured without error (i.e. not random), they may be conditioned

on as fixed constants. For a univariate outcome the parameters are then the regression

coefficients, linking the mean outcome for case i to predictors xi1, xi2, : : xip for

that case, and the conditional or residual variance. With an inverse gamma prior on

the variance, and conjugate Normal prior on the regression coefficients, conditional

on the sampled variance, analytic formulae for the posterior densities of these coeffi-

cients and other relevant quantities (e.g. predictions for new explanatory variable

values) are available. These permit direct estimation with no need for repeated sam-

pling.

However, generalisations which include discrete outcomes, non-linear or varying

coefficient relationships, non-conjugate priors (Carlin and Polson, 1991), or priors

constraining coefficients to substantively expected ranges, may all be facilitated by a

sampling-based approach to estimation. Similar advantages apply in assessing the

density of structural quantities defined by functions of parameters and data. The

Bayesian approach may also be used to benefit with regression model selection, in

terms of priors adapted to screening out marginally important predictors, or in com-

parisons between non-nested models (see Example 3.3). Recent methods tackle some of

the identification problems (such as label-switching) in discrete mixture regression

(FruÈhwirth-Schnatter, 2001). Bayesian methods have also been proposed (see the

book by Dey et al., 1999) for discrete outcome data which are over-dispersed in relation

to standard densities such as the Poisson.

The development below is selective among the wide range of modelling issues which

have been explored from a Bayes perspective, but intended to illustrate some potential

benefits of the Bayes approach. The first case studies of Bayesian regression techniques

include questions of predictor and model choice, for instance comparing marginal

likelihood approximations with approaches with methods based on external validation

(Section 3.2). Outcomes are binary, counts or univariate continuous. The focus is

then on models for multiple category outcomes, which includes ordinal data, and

discrete mixture regressions (Sections 3.3 and 3.4). These models illustrate the central

role of prior parameter specification to reflect the form of the data. As one possible
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methodology for nonlinear regression, Section 3.5 discusses random walk and state

space priors. A final theme (Section 3.6) is possible approaches to robust estimation in

the event of departures from standard densities, and the related problem of outlier or

influential observations. First, though, we consider questions around the specification

of priors on regression model parameters. Among the aspects to consider are that priors

express accumulated knowledge or subject matter constraints, may be defined by the

form of outcome (e.g. in ordinal regression), and may be central to identification (e.g. in

discrete mixture regressions).

3.1.1 Specifying priors: constraints on parameters

Thus, prior constraints on parameters may be defined by subject matter as in certain

econometric models. As a subject matter example, Griffith et al. (1993) discuss the

aggregate consumption function in economics (with C�consumption, and

Y�disposable income),

C � b1 � b2Y

where b1 is autonomous consumption (consumption when there is no disposable

income), and b2 is the marginal propensity to consume. Economic principles suggest

that of every dollar earned as disposable, some will be consumed (spent) and some will

be saved. Hence, b2 should lie between 0 and 1. Similarly, baseline consumption is

expected to be positive, so that b1 > 0.

Constraints on parameters can usually be dealt with in the prior for those parameters.

Formally, let V be the unconstrained parameter space of b and let R be a constraint,

expressed as

R: b 2 VR

where VR is a subspace of V. The posterior density of b given the constraint, outcomes y

and regressors X is then, assuming P(Rjy) 6� 0,

P(bjR, y, X ) � P(bjy, X )P(Rjb, y)=P(Rjy)

This is the posterior density that would have been obtained in the absence of a

constraint, namely P(bjy, X ), multiplied by a factor proportional to the conditional

probability of the constraint given b. Such constraints on parameters imply that

MCMC parameter samples b(t)
j at iteration t may be generated from non-truncated

densities, but if they violate the constraint they are rejected with probability 1.

This principle also finds expression in applications where the constraint reflects

the form of the outcome. Thus for ordinal outcomes, an underlying continuous scale

may be postulated on which cutpoints ± which are constrained to be increasing ±

correspond to increasingly ranked categories. Specifically, the cumulative odds model

(McCullagh, 1980) is framed in terms of the cumulative probability gij of subject i being

located in the first j categories of a ranked outcome. Then logit(gij) ± or maybe some

other link function of gij ± is related to a series of cutpoint parameters uj on

the underlying scale. The utility of Bayesian approaches to ordinal outcomes is illus-

trated below in terms of applications to diagnostic tests (Example 3.9).
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3.1.2 Prior specification: adopting robust or informative priors

Specification of the prior may be less clearly defined in certain applications by the subject

matter or outcome form than in Section 3.1.1, but is still often central to model identifia-

bility, fidelity to the observed data, and robustness in inference. Often, the structure of

residuals suggests alternatives to standard density assumptions, in terms of heavier tails

than under the Normal, as well as outlier and influential observations. To model heavy

tails Dickey (1976), Chib et al. (1990) and Geweke (1993) are among those adopting

univariate or multivariate Student t densities as sampling densities for the data, or as

priors for linear regression parameters. A contaminated Normal or Student t model,

in which outliers have shifted location and or variances, provides one Bayesian approach

to outliers (e.g. Verdinelli and Wasserman, 1991). For instance, assuming a small

probability such as e � 0:05 that an outlier occurs, the density of a metric yi may take

the form

f ( yijm, s2, e) � (1ÿ e)f( yijm, s2)� ef( yijm�Di, s2)

where Di is the shift in location for case i if it is selected as an outlier. One may adopt

similar methods for shifts in regression coefficients.

Other options to protect against the influence of outliers or influential cases may be

particular to the form of outcome. With a binary outcome, for instance, a prior may

be set on a `transposition', namely when yi � 1 is the actual observation but the regression

model provides much higher support for Pr(yi � 0) than for Pr(yi � 1). In terms of

the contaminated data approach of Copas (1988, p. 243) this would be a measure of `the

evidence that each individual observation has been misrecorded' (see Example 3.14).

Discrete mixture regressions also intend to improve robustness (to assumptions of a

single homogenous density across all data points), as well as providing for substantively

based differences in the regression coefficients between sub-populations (Wedel et al.,

1993).

Model identifiability, and credibility in terms of existing knowledge, may be improved

by adopting an informative prior for one or more regression coefficients. Such a

prior might refer to results from similar studies. For instance, if the estimate of a

regression parameter b from previous study had mean b0 and covariance S0, we might

inflate S0 by a factor a > 1 (e.g. a � 5) to provide a prior covariance on b in the current

study (Birkes and Dodge, 1993, p. 156; Dellaportas and Smith, 1993, p. 444). More

formal procedures for reflecting historical data may actually include such data in

the likelihood, though down-weighted relative to the current data (Ibrahim and Chen,

2000).

One might also consider some summary statistic from the observed data to inform

the specification of the prior, though with suitable down-weighting, so that priors

become `gently data determined' (Browne and Draper, 2000). Note, however, that

strictly this is departing from fully Bayes principles. Sometimes it is preferable to

avoid completely flat priors, especially if flat priors lead to effectively improper posterior

densities or poor identifiability. Thus, Fernandez and Steel (1999) show how choosing a

proper Wishart prior for the conditional precision matrix Sÿ1
improves identifiability of

multivariate Student t errors regression. In mixture regressions (Section 3.5), some

degree of prior information may be essential to identifiability.
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3.1.3 Regression models for overdispersed discrete outcomes

Below we consider regression applications both for metric and discrete outcomes.

General Linear Models (GLMs) have been proposed as a unified structure for both

types of outcomes. As elaborated by McCullagh and Nelder (1989, p. 28) several

discrete densities (together with the Normal and Student t densities) can be encom-

passed within the exponential family. The exponential family density (Gelfand and

Ghosh, 2000) has the form

f ( yijui) � exp {wÿ1
i [yiui ÿ b(ui)]� c( yi, wi)} (3:1)

where wi are scale parameters, and the means are obtained as

E( yi) � mi � b0(ui)

and variances as

V ( yi) � wib
00(ui) � wiV (mi)

Poisson and binomial densities have a fixed scale factors wi � w � 1. So for the Poisson,

with b(ui) � exp (ui), the mean and variance are both mi.

Often, though, as also noted in Chapter 2, residual variability under these densities

exceeds that expected under the postulated variance-mean relationship. The

variance function remains as above, but now w > 1 for all subjects, or possibly disper-

sion factors vary by subject with wi > 1, and are themselves modelled as functions of

covariates.

One approach to handling such heterogeneity in general linear models involves

random effects modelling in the model for the mean response. Thus for a Poisson

outcome, yi � Poi(mi) we might stipulate a model for the mean mi containing both

fixed and random effects:

log (mi) � bXi � ei

where the ei are parametric (e.g. Normal) or possibly semi-parametric (e.g. where a

DPP prior for the ei is used with a Normal baseline density). This effectively means

adding a set of parameters which increase in number with the sample size, technically

making the likelihood nonregular and raising the question about how many parameters

are actually in the model (see Chapter 2 on assessing the number of effective param-

eters).

Alternative approaches to overdispersion include reparameterisations of the variance

function, and generalised density and likelihood forms such as the double exponential

that model both mean and variance functions (Carroll and Ruppert, 1988; Efron, 1986).

Nelder and Pregibon (1987) propose a `quasi-likelihood', which in logged form for one

observation is

ÿ0:5D( yi, mi)=wi ÿ 0:5 log [2pwi V (mi)]
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where D(,) is the deviance function1. These are quasi-likelihoods because they do not

correspond to any complete likelihood2 within the exponential family (Albert and

Pepple, 1989). West (1985) has, however, proposed a Bayesian approach involving a

scaled, and hence complete, likelihood

f ( yijmi, fi) � g0:5
i exp [ÿ giD( yi, mi)] (3:2)

where gi � l=(l� fi), and l reflects the level of over-dispersion. As l tends to infinity,

and gi approaches 1, the scaled likelihood approaches the baseline exponential density.

Various parameterisations of the variance function are possible: for instance, Engel

(1992) has suggested

V ( yi) � wiV (mi) � wim
k
i (3:3)

where

log (wi) � ZWi

and Wi contains covariates relevant to explaining extra-variability.

Breslow (1984) and others have proposed a related approach where a pseudo-likelihood

for each observation has the logged form

ÿ0:5( yi ÿ mi)
2=[wiV (mi)]ÿ 0:5 log [2pwi V (mi)] (3:4)

The pseudo-likelihood approach is thus equivalent to assuming a Normal outcome but

with modified variance function. Ganio and Schafer (1992) and Dey et al. (1997) are

among those adopting these forms or extensions of them, and relating the variance

inflators fi to predictors; Nelder and Lee (1991) term such models joint GLMs.

Another methodology in instances of over-dispersion involves generalising the stand-

ard variance function for particular densities. Thus, for a count regression with mean

mi � exp (bxi), Winkelmann and Zimmerman (1991) propose a variance function

V ( yi) � (vÿ 1)mk�1
i � mi (3:5)

where v > 0 and k � ÿ1. Then v � 1 corresponds to the Poisson, and v > 1 to over-

dispersion. It can be seen that the particular value k � 0 means the Poisson variance mi

is inflated by the factor v. This type of `linear' adjustment has been proposed by

McCullagh and Nelder (1989) as a correction procedure for over-dispersion.

At its simplest, a correction for linear over-dispersion involves dividing the fitted

deviance or chi-square for a Poisson regression by the degrees of freedom and deriving a

1 For example, in the Poisson the deviance for case i is

2{yi log (yi=mi)ÿ (yi ÿ mi)}

while in the binomial, with yi � Bin(pi, Ti) and mi � piTi, it is

2{yi log (yi=mi)� (Ti ÿ yi) log ([Ti ÿ yi]=[Ti ÿ mi])

2 It may be noted that in BUGS introducing synthetic data Z to represent densities not included does not
necessarily require a complete likelihood. For instance, a quasi likelihood, with variance as in (3.3) and
covariate W[i], could be coded as

for ( i in 1:N) {Z[i] <- 1; Z[i] � dbern(q[i])
q[i] <- exp(Q[i])

Q[i] <- ÿ0.5*log(6.28*phi[i]*pow(mu[i],kappa) ) ÿ 0.5*D[i]/phi[i]
log(phi[i]) <- eta[1] � eta[2]*W[i]}

with D[i] being the relevant deviance.
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scaling factor (i.e. estimating v when k � 0) to adjust the standard errors of the bj for

over-dispersion. The scaling factor v can also be obtained by a pseudo-likelihood model

assuming Normal errors, with means mi, and variances vmi. Another variance function

with k � 1 occurs in the event of a specific type of gamma-Poisson mixture (as con-

sidered in Chapter 2), when yi is marginally a negative binomial (see McCullagh and

Nelder, 1989, Chapter 11). In fact, both the linear and quadratic variance forms (with

k � 0 and k � 1, respectively) can be derived from mixing a gamma with the Poisson,

but differ in the way the gamma is parameterised.

3.2 CHOICE BETWEEN REGRESSION MODELS AND SETS OF

PREDICTORS IN REGRESSION

Many methods have been discussed for comparing the structural form and specification

of regression models, including Bayesian methods, likelihood based methods, penalised

likelihoods (Akaike, 1978), supermodel methods (Atkinson, 1969), bootstrap methods

and cross-validation techniques (Browne, 2000). Very often, model selection schemes

combine elements of different basic approaches.

Model uncertainty in regression analysis may involve different aspects of model

specification:

(a) the error structure of the residuals (e.g. Normal vs. Student t);

(b) whether or not transformations are applied to predictors and outcome, which may

be appropriate, for example, if metric data are skewed before transformation or to

induce approximate Normality in a count outcome;

(c) which link to adopt for discrete outcomes in general linear modelling, since the

standard links are not necessarily always appropriate;

(d) whether a general additive or non-linear regression term be used or just a simple

linear expression;

(e) which is the best subset of predictors in the regression term, regardless of its form;

(f) for discrete mixture regressions, there is an issue of optimal choice of the number of

components in the mixture.

Many of these questions can be addressed by the model choice techniques considered in

Chapter 2, for example using approximations to the marginal likelihood, using joint

model-parameter space methods, using penalised measures of fit such as the BIC or DIC

or using predictive (cross-validatory) criteria.

In addition to the marginal likelihood approximations discussed in Chapter 2 may be

mentioned the Laplace approximation. This is useful for standard regressions, such as

Poisson, logistic or Normal linear models, since it requires differentiation of the log-

likelihood with regard to all model parameters, and so may be difficult for complex

nonlinear or random effect models. The Laplace approximation is based on the Taylor

series expansion for a q-dimensional function g(x1, x2, : : xq), such that�
exp [ g(x)]dx � (2p)q=2jSj0:5 exp [g(x̂)] (3:6)

where x̂ is the value of x at which g is maximised, and S is minus the inverse Hessian of

g(x) at the point x̂. The Hessian is the matrix of double differentials @2g=@xi@xj. For a

model with parameters f, the marginal likelihood has the form
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m( y) �
�

f ( yjf)p(f)df

�
�

exp [ log f ( yjf)� log p(f)]df

and in this case, the Laplace approximation may be obtained at the posterior mode �f
(though it may also be defined at the maximum likelihood point f̂). For a univariate

regression, with f � (s2, b), and q � p� 2, where p is the number of regressors (ex-

cluding the constant), the approximation is therefore

m( y) � (2p)q=2jSj0:5f ( yj�f)p(�f)

In this approximation, p(�f) is the probability of the values in �f evaluated in terms of

the assumed prior densities p(f), and S is minus the inverse Hessian of

g(f) � log f ( yjf)� log p(f)

evaluated at the posterior mean �f of the conditional variance and regression coeffi-

cients. Then the log of the marginal likelihood is approximated as

log [m( y)] � 0:5q log (2p)� 0:5 log jSj � log f ( yj�f)� log p(�f)

In practice (see Raftery, 1996), S may be estimated by minus the inverse Hessian of the

log-likelihood at the mode, L(�fjy) � log f ( yj�f), rather than that of g(f). An approxi-

mation might also be based on the variance-covariance matrix of f based on a long

MCMC run, though this may be less valid for if regression parameters have non-

Normal posterior densities (Diciccio et al., 1997); other options include multivariate

interpolation (Chib, 2000).

3.2.1 Predictor selection

While approaches based on the marginal likelihood have been successfully applied

to regression model selection, the structure of regression models is such that distinctive

methods have been proposed for some of the particular model choice questions occur-

ring in regression. One of the major motivations for seeking optimal or parsimonious

models occurs if there is near collinearity between predictors, X1, X2, . . . , Xp. Taken as a

single predictor, the coefficient bj for predictor Xj may have a clearly defined posterior

density in line with subject matter knowledge (i.e. a 95% credible interval confined to

positive values, assuming Xj was expected to have a positive effect on y). However, with

several predictors operating together coefficients on particular Xj may be reduced to

`insignificance' (in terms of a 95% interval neither clearly positive nor negative), or even

taking signs opposite to expectation.

Choice among p predictors to reduce such parameter instability can be seen as a

question of including or excluding each predictor, giving rise to choice schemes specify-

ing priors on binary indicators gj relating to the probabilities of inclusion Pr(gj � 1) or

exclusion Pr(gj � 0) � 1ÿ Pr(gj � 1) of the jth predictor. Note that exclusion may be

defined as `exclusion for all practical purposes'.

Suppose a Poisson density with mean mi is assumed for count outcome yi, so that if all

predictors are included in a log link

log (mi) � b0 � b1Xi1 � b2Xi2 � . . .� bpXip
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Then in a predictor selection model, we introduce between 1 and p binary variables gj

relating to predictors about which inclusion is uncertain (the intercept is presumed

always necessary). If uncertainty is applied to all predictors, the model becomes

log (mi) � b0 � g1b1Xi1 � g2b2Xi2 � . . .� gpbpXip (3:7)

George and McCullough (1993) propose a stochastic Search Variable Selection Scheme

(SVSS), whereby bj has a vague prior centred at zero (or some other value) when gj � 1,

but when gj � 0 is selected the prior is centred at zero with high precision (i.e. bj is zero

for all practical purposes). When gj � 0 one might make3 the variance t2
j small, but

multiply this by a large constant c2
j when gj � 1. Typically, Bernoulli priors with

probability 0.5 are assigned to the probability of each selection index gj being 1. An

MCMC analysis would then be carried out and the frequency of different combinations

of retained predictors enumerated; there are 2p possible combinations in Equation (3.7).

Another scheme which takes the priors for binary indicators gj and coefficients bj as

independent is presented by Kuo and Mallick (1998). Thus in Equation (3.7) one option

is that the bj are assigned conventional priors, such as

bj � N(0, Vj)

with Vj large, rather than mixture priors as in the SVSS approach. This independent

priors approach allows the possibility of more particular model elements than

just whether predictors should be included or not. Thus for a log-linear regression of

counts yij on factors Ai, Bj and their interaction Cij, one would not generally include Cij

unless both Ai and Bj were included. So coding the gj to reflect this, with yij � Poi(mij),

leads to

log (mij) � a�max (g1, g3) b1[Ai]�max (g2, g3) b2[Bj ]� g3b3[Cij]

so that g3 � 1 corresponds to including Ai, Bj and Cij. Kuo and Mallick (1998, p. 72)

also suggest a dependent priors scheme, whereby bj � N(0, Vj) when gj � 1, but

bj � N(0, kjVj) when gj � 0, such that kjVj is close to zero.

3.2.2 Cross-validation regression model assessment

In general, cross-validation methods involve predictions of a subset yr of cases when

only the complement of yr, denoted y[r] (i.e. the remaining observations) is used to

update the prior on parameters f. Here f for a linear regression might consist of

regression parameters and a variance term. Suppose an n� p matrix X of predictors is

also partitioned into Xr and X[r]. A discussion of cross-validation principles in Bayes

regression model selection is provided by Geisser and Eddy (1979). These authors

suggested a marginal likelihood approximation based on leaving one observation out

at a time. The links (in terms of asymptotic equivalence) between this single-case

omission strategy and penalised fit measures such as the AIC ± where such measures

are based on fitting to the complete sample ± are discussed in earlier work by Stone

(1974, 1977).

Consider a procedure where cases are omitted singly, and let y(r) denote the data

excluding a single case r. Then the cross-validatory predictions have the form

3 George and McCulloch suggest cj between 10 and 100 and tj � dj=(2 log cj)
0:5, where dj is the largest value

for jbj j that would be considered unimportant. One might take dj � Dy=DXj , where Dy is say under 0.5 of
s.d.( y) but DXj is the range of Xj .
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p( yrjy(r)) �
�

f ( yrjf, y(r), X(r))p(fjy(r))df

with p( yrjy(r)) often known as the Conditional Predictive Ordinate (CPO). A proxy for

the marginal likelihood m( y) is defined by the product of these terms

m( y) �
Yn
r�1

p( yrjy(r))

The ratio of m1( y) and m2( y) for two models M1 and M2 is then a surrogate for the

Bayes factor B12. Cross-validation methods also play a major role in regression model

checking in identifying influential cases and other model discrepancies (see Example

3.15). Gelfand et al. (1992) propose several checking functions involving comparison of

the actual observations with predictions from p( yrjy(r)).

Rust and Schmittlein (1985) and Fornell and Rust (1989) propose a cross-validatory

scheme for regression analysis including Bayesian model selection criteria, but drawing

on split-half and other sample splitting methods also used in frequentist inference. Rust

and Schmittlein emphasize that the choice of validation function may be based on

subject matter choices (e.g. predicted vs. actual marketing share in the sales applications

they consider). They consider cross-validation to compare models j � 1, : : J via random

splitting of datasets. Let D1 and D2 be such a split, with D1 being the pre-sample on

which parameter estimation and D2 is the post or validation sample, used to assess the

model. Let fj denote the parameter estimate under model j and f̂j1 the estimate of fj

using just the data in D1. Then Rust and Schmittlein propose that the posterior

probabilities of each model be approximated as

P(MjjD2) � P(D2jMj) p(Mj)=P(D2)

� p(Mj)

�
p(fj) f (D2jfj)dfj=XJ

k�1

p(Mk)

�
p(fk) f (D2jfk)dfk

( )

� f (D2jf̂j1) p(Mj)=
XJ

k�1

p(Mk) f (D2jf̂k1)

( )
(3:8)

Rust and Schmittlein take f̂j1 to be the maximum likelihood estimator, but one might also

take the posterior average of the parameters under model j, �fj1. Another option, given

equal prior model probabilities, would involve comparing the average log-likelihoods of

the validation data (evaluated over a long run of T iterations) under model j

�fj � Tÿ1
XT
t�1

f (D2jf(t)
j1 )

Fornell and Rust consider the measure (3.8) for a single random split of the original

data into sets {D1, D2}, but one might consider a large number r � 1, : :R of such splits

and carry out such comparisons by averaging over the sets {D1r, D2r}. Thus, Alqallaf

and Gustafson (2001) consider cross-validatory checks based on repeated two

fold data splits into training and validation samples. Another option is k fold validation,

where the data is split into a small number of groups (e.g. k � 5) of roughly equal size,

and cross-validation is applied to each of the k partitions obtained by leaving each

CHOICE BETWEEN REGRESSION MODELS 87



group out at a time. Kuo and Peng (1999) use such an approach to obtain the predictive

likelihood for the gth omitted group (the validation group), and suggest a product of

these likelihoods over the k partitions as a marginal likelihood approximation.

Example 3.1 Nodal involvement To illustrate model choice under marginal likelihood

and cross-validation approaches, consider binary outcomes on prostatic cancer nodal

involvement and four possible predictors (Collett, 1992). These data illustrate a frequent

problem in model fitting: simple unpenalised fit measures such as the deviance may

show a slight gain in fit as extra predictors (or other parameter sets) are added but

penalised fit measures, or marginal likelihood type measures, show that any improve-

ment is offset by extra complexity. Cross-validation approaches may also favour the less

complex model in such situations.

In the nodal involvement example, the predictors are x1 � log(serum acid phos-

phate), x2 � result of X-ray (1 � �ve, 0 � ÿve), x3 � size of tumour (1 � large,

0 � small) and x4 � pathological grade of tumour (1 � more serious, 0 � less serious).

A probit regression model including all predictors is then

yi � Bern(pi)

probit(pi) � b0 � b1x1i � . . .� b4x4i

The model may be fitted directly or by introducing latent continuous and Normally

distributed responses4 as in Albert and Chib (1993). Using the latter method, Chib

(1995) shows that a model with x1ÿx3 only included has a worse log likelihood than a

model including all four predictors (ÿ24.43 as against ÿ23.77) but a better marginal

likelihood (ÿ34.55 vs. ÿ36.23). Letting M2 denote the full model (four predictors) and

M1 the reduced model, then the approximate Bayes factor B12 obtained by Chib is

exp (1:68) � 5:37. By conventional criteria on interpreting Bayes factors (Kass and

Raftery, 1996), this counts as `positive evidence' for the reduced model, though far

from conclusive.

Here alternative approaches to marginal likelihood approximation and model choice,

as discussed above and in Chapter 2, are considered. As noted in Chapter 2 the marginal

likelihood identity

m( yjMj) � p( yjb, Mj)p(bjMj)=p(bjy, Mj)

applies at any value of b, and in particular at points such as the posterior mean �b. So

(omitting Mj), one may estimate log [m( y)] as

log {m[ y]} � log{p( yjb)� log{p(b)}ÿ log{p(bjy)} (3:9)

4 Thus, suppose Xi denotes a set of predictors, with regression parameter b. If yi is 1 then the latent response zi

is constrained to be positive and sampled from a Normal with mean bXi and variance 1. This is equivalent to
assuming a probit link for the probability that yi � 1. For the observed outcome yi � 0, zi is sampled in the
same way, but constrained to be negative (with 0 as a ceiling value). The latent variable approach is especially
advantageous for the probit link, and has benefits (e.g. for residual analysis). In BUGS, the following code (for
observations y[] and one covariate x[]) might be used

for (i in 1:n) {z[i] � dnorm(mu[i],1) I(low[y[i] � 1],high[y[i] � 1]);
mu[i] <- b[1] � b[2]*�[i]}

# sampling bounds
low[1] <- ÿ 20; low[2] <- 0; high[1] <- 0; high[2] <- 20;

A logit link is approximated by sampling z from a Student t with 8 degrees of freedom; this is equivalent to
Normal sampling, as in the above code, but with the precision of 1 replaced by case-specific precisions sampled
from a Gamma density with shape and index both equal to 4.
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The main issue is then how p(�bjy) is approximated. If augmented data z is part of the

model definition, and there is just one other parameter block (e.g. as here where there

are latent Normal responses underlying an observed binary response, and the only other

parameters are regression coefficients), then one may estimate p(�bjy) using draws z(t)

from a sampling run where all parameters are updated, and the probability of the fixed

value �b (obtained from an earlier run) is evaluated against the full conditional density

for b given z(t). The latter density is derived essentially by considering z as dependent

variable in a Normal errors model (Chib, 1995, 2000). If the prior for b � (b0, b1, : : , b4)

is denoted b � Np(c0, Cÿ1
0 ), then the relevant full conditional is

Np(b̂, Cÿ1)

where C � C0 � X 0X , with X of dimension n� p, and

b̂ � Cÿ1[C0c0 � X 0z] (3:10)

with z being the vector of sampled zi. If C0 is diagonal, then the prior reduces to a set of

univariate Normals.

Multivariate Normal or Student approximations to the posteriors p(�bjy) may also be

adopted to estimate the posterior ordinate in Equation (3.9), with covariance matrix

based on correlations between the sampled b(t)
k , where k � 0, 1, : : , 4 for model 2 and

k � 0, : : , 3 for model 1. Then p(�bjy) is the value of the multivariate Normal or Student

density evaluated at its mean �b.

Harmonic mean and importance sample estimators of the marginal likelihood (see

Chapter 2) may also be considered. To examine stability in these estimators, the directly

estimated probit model (without augmented data z) is fitted, and seven batches of 2000

iterations are taken from a single run of 15 000 after excluding the first 1000 (see

Program 3.1(A), Model A). Priors are as in Chib (1995). The importance sample

estimate is as in (2.9)

m̂( y) � 1=[Tÿ1
X

t

g(t)={L(t)p(t)}]

� T=[
X

t

g(t)={L(t)p(t)}] (3:11)

where L(t) and p(t) are the likelihood and prior densities evaluated at iterations

t � 1, : : , T , and g(t) is the value of an importance function intended to approximate

the posterior density p(bjy). This function is provided by a multivariate Normal

approximation.

Table 3.1 accordingly shows the sort of fluctuations that occur in the harmonic mean

estimates (Equation (2.8) in Chapter 2) of the marginal likelihood. This involves

monitoring the total log likelihood (L in Program A, Model 3.1A), using the coda

facility to extract runs of 2000 values, exponentiating L(t) to give H (t), taking the average
�h of h(t) � 1=H (t), and then taking minus the log of �h. Comparison of the average

marginal likelihood estimates (averaging over batches) gives B12 � 1:81. The import-

ance sample estimates of the marginal likelihoods, as calculated in Equation (3.11),

are ÿ35.20 (Model 1), and ÿ36.89 (Model 2), and so B12 � 5:42. These estimates of the

log marginal likelihood are virtually identical to those obtained from the application

of the marginal likelihood identity (3.9) in Model C of Program 3.1(A) (at posterior

mean) using the MVN approximation to the posterior of b. At the posterior mean, the

estimates are ÿ35.19 and ÿ36.89 for Models 1 and 2.
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Table 3.1 Probit models for nodal involvement, regression coefficients

and marginal likelihood approximations

Model 1 with 3

predictors

Mean St. devn. 2.50% Median 97.50%

b0 ÿ0.74 0.40 ÿ1.50 ÿ0.74 0.07

b1 1.42 0.67 0.17 1.40 2.79

b2 1.30 0.48 0.40 1.29 2.22

b3 1.08 0.43 0.25 1.08 1.92

Model 2 with 4 predictors

b0 ÿ0.79 0.42 ÿ1.64 ÿ0.78 0.01

b1 1.63 0.70 0.30 1.63 3.07

b2 1.26 0.49 0.32 1.26 2.21

b3 0.96 0.45 0.10 0.96 1.84

b4 0.55 0.45 ÿ0.33 0.54 1.45

Marginal likelihood estimates by iteration batch

Harmonic Mean CPO Method

Iterations Model 1 Model 2 Model 1 Model 2

1001±3000 ÿ29.86 ÿ28.85 ÿ29.20 ÿ29.85

3001±5000 ÿ28.41 ÿ30.83 ÿ29.18 ÿ30.03

5001±7000 ÿ28.89 ÿ28.47 ÿ28.90 ÿ29.88

7001±9000 ÿ28.55 ÿ30.23 ÿ29.07 ÿ29.87

9001:11000 ÿ28.47 ÿ28.60 ÿ29.15 ÿ29.50

11000:13000 ÿ28.33 ÿ29.35 ÿ28.91 ÿ29.78

13000±15000 ÿ29.25 ÿ29.58 ÿ29.28 ÿ29.86

Program 3.1(B) follows Albert and Chib (1993), and takes the latent data z from the

distribution zjy. Then �b is evaluated against Np(b̂, Cÿ1) for the samples z(t) by substi-

tuting in Equation (3.10). This gives a marginal likelihood estimate ofÿ34.04 for Model

1 and ÿ35.28 for Model 2, a Bayes factor of 3.46; see Model B in Program 3.1(B).

Model A in Program 3.1(B) illustrates the basic truncated Normal sampling needed to

implement the Albert±Chib algorithm for probit regression.

The CPO estimate (Equation (2.13) in Chapter 2) is obtained by taking minus logs of

the posterior means of the inverse likelihoods (the quantities G[ ] in Program 3.1A,

Model A), and then totalling over all cases. This estimator leads to B12 � 2:06, and is

more stable over batches than the harmonic mean estimate.

A Pseudo Bayes Factor (PsBF) is also provided by the Geisser±Eddy cross-validation

method based on training samples of nÿ 1 cases and prediction of the remaining case.

Program 3.1(C) (Nodal Involvement, Cross-Validation) evaluates 53 predictive likelihoods

of cases 1, 2, 3, : : , 53 based on models evaluated on cases {2, : : , 53}, {1, 3, 4, : : , 53},

{1, 2, 4, : : , 53), . . . :{1, 2, . . . , 52}, respectively. Each omitted case yi provides a predict-

ive likelihood and Bayes factor under model j (where here j � 1, 2), based on the

components

fj( yijb), pj(bjy(ÿi))
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where y(i) denotes the sets of cases omitting the ith, namely

y1, y2, : : yiÿ1, yi�1, : : yn

The ratios of the predictive likelihoods for case i (when it is the omitted case) under

Models 1 and 2 may be denoted

b
[i]
12

and their product b12 is a form of Bayes factor. Since b12 is skew, one may sample

log (b12) in an MCMC run with validation models running in parallel, and then take

the exponential of the posterior mean of log (b12) as an estimate of the PsBF. Addition-

ally, if it is possible to run the n validation models in parallel and monitor log (b12) to

find it exceeds 0 with a high probability, then one may say Model 1 is preferred to Model

2. For numeric stability, a logit rather than probit link is used in Program 3.1C.

From iterations 500±2000 of a run of 200 iterations (pooling over three chains),

Pr( log (b12) > 0) converges to around 67%, while the posterior mean of log (b12) stabil-

ises at around 1.77 (i.e. PsBF12 � 5:87). One may also monitor the total predictive

likelihoods involved (TL[] in Program 3.1C), and compare their posterior averages or

medians to obtain an alternative estimate of B12. The mean values of these likelihoods

are ÿ32.33 and ÿ34.07, giving PsBF12 � 6:4. Overall, the cross-validation methods

provide slightly greater support for the reduced model than the approximate marginal

likelihood methods do5, but both approaches support a more parsimonious model,

whereas a simple deviance comparison might lead to adopting the complex model.

Example 3.2 Hald data A data set from Hald (1952) refers to the heat evolved in

calories per gram of cement, a metric outcome for n � 13 cases. The outcome is related

to four predictors describing the composition of the cement ingredients. These data may

be used to illustrate predictor selection in regression modelling. Options include

. the SSVS scheme of George and McCulloch (1993), and related approaches;

. true cross-validation methods based on omitting portions of the data as validation

samples; and
. predictive model assessment based on sampling `new data' Z from a model fitted to

all cases, and seeing how consistent the new data are with the observations.

Here we adopt the third approach, and undertake a simultaneous analysis of the eight

models by declaring repeat versions of the outcome, and evaluate them using a predict-

ive criterion derived from the work of Laud and Ibrahim (1995). As discussed in

Chapter 2, for model k and associated parameter set uk, the predictive density is

p(Zjy, M � k) �
�

f (Zjuk)p(ukjy)duk

The predictive criterion of Laud and Ibrahim is then

C2 �
Xn

i�1

[{E(Zi)ÿ yi}
2 � var(Zi)]

5 A test of the cross-validation approach with the probit link provided similar differentials between Models
1 and 2 (e.g. in terms of predictive likelihoods), but is subject to occasional numerical errors when the linear
regression term becomes too large.
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Better models will have smaller values of C2 or its square root, C. Table 3.2 compares

the eight (23) possible models in terms of C.

Laud and Ibrahim employ a specialised prior, namely a guess at the fitted regression

outcome for each case in terms of the available predictors; this is then translated into

priors on the regression coefficients. Here non-informative N(0, 105) priors are assumed

on the regression coefficients themselves, and a G (1, 0.001) prior for the conditional

variance. Despite this, similar C measures to those reported by Laud and Ibrahim (1995,

Table 1, p. 255) are obtained. Taking into account variability in the criterion C, there is

no overwhelming evidence against any model.

However, on the Occam's Razor principle that a Model 1 which is embedded

in Model 2 (i.e. is nested within it and less heavily parameterised) and also has a

better average C than Model 2, we can eliminate the models {x1, x2, x3, x4} and

{x2, x3, x4}.

Comparisons of the predictive criteria Ci and Cj between models i and j over repeated

samples is carried out in Program 3.2 via the step() command; thus Comp[i, j] is 1 if

model j has a worse criterion than model i in a particular iteration. On this basis, it can be

confirmed that there is essentially no clear advantage in fit for any model in Table 3.2.

For example, Comp[1, 2] averages 0.51 from the second half of a run of 20 000 iterations

over three chains, so that Model 2 has a worse fit than Model 1 in 51% of 30 000

iterations. Of the 28 � 8� 7=2 model comparisons, the highest (comparing models

1 and 7) is 0.70 and the lowest is 0.46.

Example 3.3 Ship damage Both Winkelmann and Zimmerman (1991) and Dey et al.

(1997) consider the ship damage data of McCullagh and Nelder (1989, p. 205). These

data illustrate approaches to overdispersion in discrete outcomes, and the questions of

model selection involved in introducing extra parameters to account for overdispersion.

While a gamma-Poisson mixture is a standard option, this is not the only choice, and the

goal is to use as parsimonious model as possible to ensure overdispersion is effectively

allowed for. Hence model choice is better based on penalised measures of fit than

unmodified likelihood and deviances.

Excluding null observations, the data consists of counts yi of wave damage to 34

cargo ships according to ship type ti (A±E), year of construction ci (1960±64, 1965±69,

1970±74, 1975±79), and period of observation oi (1960±74, 1975±79). Most analyses

Table 3.2 Predictive fit of models for Hald data (iterations 10 000±

20 000, three chains)

Model (included

predictors)

Mean C s.d. C Median C

1,2,4 11.40 2.73 11.04

1,2,3 11.45 2.71 11.09

1,3,4 11.79 2.82 11.41

1,2,3,4 11.85 2.89 11.45

1,2 11.98 2.72 11.65

1,4 13.60 3.07 13.22

2,3,4 14.11 3.33 13.68

3,4 13.57 3.08 13.20
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treat these as categorical factors, and take the months of service total si as an offset with

coefficient 1. Thus, the model for damage counts is

yi � Poi(mi)

log (mi) � log (si)� a� b(ti)� g(ci)� d(oi)

First, consider a standard Poisson regression, with N(0, 103) priors on the regression

coefficients f � {a, b, g, d}, and taking appropriate corner constraints on {b, g, d}.

Unpenalised fit measures are not ideal for model choice, but do indicate whether over-

dispersion is effectively corrected for. They include the mean Poisson deviance �D1, and a

chi-square measure based on standardised residuals,

D2 �
X

R( yi, mi) �
X

[( yi ÿ mi)
2=V ( yi)]

We can also calculate the deviance at �f and obtain the effective parameters pe, and so

obtain the DIC

D3 � D1(�f)� 2pe� �D1 � pe

Another penalised fit measure is provided by the deviance criterion (for Poisson data)

under minimum predictive loss (Gelfand and Ghosh, 1998), which, like the criterion

used in Example 3.2, involves6 sampling new data Zi from the model means mi.

The baseline Poisson regression model, with nine parameters (and 25 degrees of

freedom) is estimated using three chains7 taken to 100 000 iterations and with the

summary excluding 5000 burn-in iterations. This model suggests over-dispersion,

albeit not pronounced, with the mean value of D1 standing at 42 and that of D2 at

55. The deviances are highest for ships 19, 20, and 31 with 6, 2 and 7 damage incidents,

respectively; two of these ships (19, 31) have relatively short exposure periods.

The evaluation of the deviance at �f gives D1(�f) � 33:6, so pe � 8:4 and

D3 � 33:6� 2(8:4) � 50:4. The deviance criterion under minimum predictive loss is

55.4.

The Poisson regression (see Table 3.3) shows lower damage rates for ship types B and

C (type A is the first level in the categorical factor and has coefficient zero). Damage

rates are higher for later construction and observation periods.

McCullagh and Nelder (1989) suggest a variance inflator (based implicitly on a linear

variance model with k � 0 in (3.5)) of 1.69, namely v � 1:69. To formalise this, one

may adopt the Normal errors model of the pseudo-likelihood (3.4), as set out in Model

B in Program 3.3. Thus the damage counts are taken as Normal with mean mi and

variance

vmi

where v is assigned an E(1) prior. This formulation in fact allows for under-dispersion,

V ( yi) < mi

as well as for overdispersion. v then has a posterior mean of 1.73, a median of 1.59 and

95% interval 0.96 to 3.1, consistent with the analysis of McCullagh and Nelder. This

6 Let Mi denote the posterior average of Zi and Ti the posterior average of the Poisson deviance component
t(Zi) � Zi logZi ÿ Zi. Define Qi � (Mi � kyi)=(1� k), where k is positive; then the Gelfand±Ghosh measure
is 2Si[T ÿ t(Mi)]� 2(k� 1)Si [{t(Mi)� kyi}={1� k}ÿ t(Qi)].
7 Starting values are provided by null values, values based on the posterior mean of a trial run, and values
based on the upper 97.5% point of the trial run.
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model enhances the coefficients for year of construction, but diminishes the size and

`significance' of the coefficients for ship types B and C. The mean value of D1 is slightly

increased at 49, while the mean of D2 is now 36.

Then in Model C of Program 3.3 a general variance8 function (3.5) is assumed, in

conjunction with a Poisson-gamma mixture. Following Winkelmann and Zimmerman

(1991), this is achieved as

yi � Poi(mi)

mi � G(Z1i, Z2i)

Z1i � exp (bxi)
1ÿk=(vÿ 1)

Z2i � exp (bxi)
ÿk=(vÿ 1)

Three parallel chains are taken to 50 000 iterations, with different starting values for k
and v. An E(1) prior on k� 1 and a gamma prior, G (1, 0.01), on

t � vÿ 1

are adopted. Note that the latter prior amounts to `forcing' overdispersion. Conver-

gence is relatively slow in t, and hence v, and posterior summaries are based on

iterations 15 000±50 000.

This approach leads to a posterior means for the statistics D1 and D2 of around 26

and 19, respectively. Effective parameters are estimated as approximately 14, the devi-

ance at the posterior mean being 11.9, so D3 � 11:9� 28 � 39:9. This improves over the

simple Poisson regression. The deviance criterion under minimum predictive loss is

reduced to 49.8.

There is clear evidence of overdispersion in the sense that v averages 2.94, though in

this model the departure from the Poisson assumption is explicitly modelled. The

posterior median of the power parameter k is ÿ0.59, though with a long tail of values

that straddle the value of zero; this corresponds approximately to a square root

transform in Equation (3.5). Figure 3.1 shows how the posterior for this parameter
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Figure 3.1 Smooth for power parameter, k

8 Fitted in version 1.2 of WINBUGS.
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(based on iterations 20 000±50 000 over three chains, with sub-sampling every tenth-

iteration) focuses on negative values near the minimum threshold.

The credible intervals for the regression coefficients are little affected by this reformu-

lation as compared to the Poisson regression, despite the allowance for overdispersion

(Table 3.3). Note that Winkelmann and Zimmerman obtain a value for k of ÿ0.74 and

for v of 1.85.

Another possible modelling strategy, considered by Dey et al. (1997) and others,

introduces a dependence of the variance for case i on predictors Wi. These models

may be substantively of interest, but may pose identifiability and interpretation prob-

lems if, say, there are common predictors of both the mean and variance. Following

Dey et al., the variance is a function of the log of the months of observation (Model D

in Program 3.3). This variable is also in the model for the mean, and usually taken to

have coefficient of unity (this means it becomes an `offset', in line with a Poisson

process).

Here a gamma-Poisson mixture is again assumed with the inverse variances wi of the

gamma mixture linked to months of service. Thus, Model D involves the steps

yi � Poi(mi)

mi � nidi

di � G(wi, wi)

log fi � a0 � a1 log (months service)

log ni � log (months service)� effects of ship type, etc:

This is consistent with a quadratic variance function, with

V ( yi) � mi � m2
i =wi

In fitting this model, N(0, 1) priors are specified on a0 and a1 for numerical stability and

to improve convergence.

Table 3.3 Ship damage data models

Poisson (model A) General variance Function

(model C)

Variance regression

(model D)

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Regression parameters

Intercept ÿ6.424 ÿ6.863 ÿ6.013 ÿ6.367 ÿ6.732 ÿ5.920 ÿ6.43 ÿ7.16 ÿ5.72

Type B ÿ0.536 ÿ0.876 ÿ0.167 ÿ0.574 ÿ0.953 ÿ0.091 ÿ0.53 ÿ1.14 0.10

Type C ÿ0.714 ÿ1.398 ÿ0.080 ÿ0.751 ÿ1.601 0.042 ÿ0.65 ÿ1.60 0.31

Type D ÿ0.098 ÿ0.683 0.470 ÿ0.170 ÿ1.005 0.551 ÿ0.16 ÿ1.11 0.79

Type E 0.320 ÿ0.143 0.807 0.252 ÿ0.335 0.844 0.39 ÿ0.43 1.28

Built 1965±69 0.699 0.416 0.991 0.676 0.298 1.047 0.69 0.24 1.16

Built 1970±74 0.820 0.499 1.147 0.787 0.380 1.222 0.86 0.38 1.43

Built 1975±79 0.445 ÿ0.024 0.900 0.430 ÿ0.142 0.966 0.49 ÿ0.19 1.20

Period of obs'n 1975±79 0.388 0.150 0.624 0.387 0.119 0.683 0.39 0.01 0.76

Other parameters

k ÿ0.52 ÿ0.99 0.57

v 2.94 1.09 9.16

a0 1.25 0.27 2.35

a1 0.88 0.07 1.71
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The last 15 000 of a 20 000 iteration run with three chains show that there is a positive

(negative) effect a1 of months service on the precision (variance). The most marked over-

dispersion (as expressed also in the deviances at observation level in the simple Poisson

regression above) occurswhen damage incidents are relatively high in relation to exposure

periods. Posterior means on coefficients in the model for the means are similar to in the

baselinePoissonmodel, thoughwithwider credible intervals.TheaveragedevianceD1 and

chi-squared sum D2 are reduced to 25.5 and 18, and all damage counts are well predicted.

So in this example different model approaches with similar fit (in simple deviance

terms) have effectively accounted for, or modelled, the over-dispersion but have differ-

ent implications for the form of the variance function and the regression effects. A

suggested exercise is to assess, (a) the effective parameters for the DIC, and (b) the

deviance based criteria under minimum predictive loss, in Models C and D, and so

attempt to discriminate between them. It should also be noted that the Poisson regres-

sion analysis may be improved by allowing an interaction between ship type and year of

construction (Lawless, 1987).

Example 3.4 Sales territory While many goodness of fit criteria are `internal' ap-

proaches comparing predictions with actual data, cross-validation methods involve out-

of-sample predictions as a way of model assessment. Rust and Schmittlein (1985)

consider the application of the split sample Bayesian Cross Validation (BCV) method

to 40 observations relating to marketing territory data for sales of click ball point pens

( y, in $000s), advertising spots (X1), number of sales representatives (X2), and a

wholesale efficiency index (X3). Two fold cross-validation is one option; other options

are n-fold cross-validation, or k-fold cross-validation (k small but exceeding two).

Two alternative sales prediction models are to be assessed via the split sample or two

fold cross validation, namely linear and linear-in-logs forms:

Y � a0 � a1X1 � a2X2 � a3X3 � e1

Y � b0 � b1 log (X1)� b2 log (X2)� b3 log (X3)� e2

As Rust and Schmittlein note, these are non-nested models, the relative performance of

which may be difficult to assess with classical methods. Note that we take sales in

thousands of dollars divided by 100 provide a scaled outcome Y. This means likelihoods

will differ from those cited by Rust and Schmittlein.

Assuming Normal errors e, we compare penalised likelihood criteria for model choice

involving a model fitted to all observations with a BCV check based on a single random

split of the 40 observations into an estimation sample of 20 and a validation sample of

20. This split is provided by Rust and Schmittlein, though Program 3.4 includes code to

derive alternative random split halves of 40 observations.

The BCV approach yields results as in Table 3.4, based on a fit to the 20 training

cases and a log-likelihood comparing actual and predicted values of the outcome

for the remaining 20 validation cases. The latter suggests a small advantage to the

linear model: a posterior model probability of 2:46=(1� 2:46) � 0:71, where

2:46 � exp (ÿ 21:7� 22:6). A suggested exercise is to:

(a) estimate and validate in the `reverse' direction, noting that there is no reason in

particular to regard one sub-sample as the training sample and one the validation

sample; and
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(b) split the data randomly into four sub-samples and estimate the two models four

times over cases in three sub-samples, validating each time over cases in the

remaining sub-sample, and accumulating the predictive log-likelihoods.

To derive standard penalised fit measures, the log-likelihoods at the posterior

means of the parameters (i.e. the regression parameters and error variance) are calcu-

lated under the two models and penalised according to p � 5 parameters under the AIC

or 5p=2� log (40) � 9:22 under the BIC. The respective log-likelihoods, following

runs of 10 000 iterations under the linear and log-linear models, are ÿ22.2 and ÿ25.7,

so the linear model is also preferred on the basis of a full data set analysis. Since both

models have the same number of parameters, the use of AIC or BIC makes no difference

to this conclusion. Hence, there is unanimity between model choice methods in this

example. It is apparent from Table 3.4 that the inclusion of X3 is doubtful under either

model, and the approach illustrated in Example 3.2 might be used to compare reduced

models.

Example 3.5 Laplace approximation to marginal likelihood: counts of schizophre-

nia Example 3.3 considered simple and penalised deviance measures of fit for a

Poisson count outcome, analogous to classical approaches. Here we consider the

Laplace approximation as applied to model choice for Poisson regression, approximat-

ing formal Bayes model choice based on marginal likelihood. In this approximation, the

parameter dispersion matrix S in Equation (3.6) is estimated using the second order

differentials of the log-likelihood of the data.

Consider counts yi of inpatient hospitalisations of schizophrenic patients for 44 small

areas (electoral wards) in two London boroughs with expected cases denoted Ei (see

Congdon et al., 1998). These are to be `explained' in terms of measures of social

deprivation and community structure. Thus, Model 1 relates psychiatric morbidity to

a single predictor, the Townsend deprivation index (X1), and Model 2 combines the

Townsend and anomie indices (X1 and X2, respectively). Univariate Normal priors are

adopted for the regression coefficients, namely bj � N(0, 100).

Then yi � Poi(mi), where the Poisson means mi are related to predictors via a log-link:

log (mi) � log (Ei)� b0 � b1X1i � b2X2i � . . .

Table 3.4 Click ball points: BCV analysis

Linear Mean St. devn. 2.5% Median 97.5%

log-likelihood ÿ21.7 3.0 ÿ28.7 ÿ21.4 ÿ16.8

A0 0.18 0.98 ÿ1.81 0.19 2.10

A1 0.16 0.09 ÿ0.02 0.16 0.35

A2 0.35 0.26 ÿ0.16 0.35 0.87

A3 0.10 0.23 ÿ0.36 0.10 0.56

Linear-in-logs

log-likelihood ÿ22.6 3.1 ÿ29.8 ÿ22.2 ÿ17.6

B0 ÿ2.93 1.36 ÿ5.60 ÿ2.93 ÿ0.26

B1 1.87 0.97 ÿ0.01 1.86 3.75

B2 1.63 1.27 ÿ0.86 1.66 4.13

B3 0.06 0.55 ÿ1.04 0.06 1.16
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Omitting constants, the log likelihood for area i is

L(bjy) � ÿmi � yi log (mi)

and the second-order differentials of L with respect to bj and bk have the form

ÿXijXikmi

We fit Model 1 and obtain posterior means and standard deviations b0 � ÿ3:1 (0.35),

b1 � 1:27 (0.14). The total Poisson log-likelihood (F[1] in program 3.5, Model B) is

ÿ137.3, while the marginal likelihood is approximated via the Laplace method9 is

ÿ147.2.

Adding the predictor anomie produces a gain in likelihood which would be judged

significant by usual methods, with L now at ÿ133.8. The posterior means and standard

deviations are

b0 � ÿ3:24(0:33), b1 � 0:81(0:21) and b2 � 0:55(0:21)

The size of the Townsend score coefficient is much reduced and its precision lessened,

and the marginal likelihood suggests in fact no gain in fit, standing atÿ147.5. So there is

in effect nothing to choose between the models in Bayesian terms, with the (approxi-

mate) Bayes factor close to unity.

Support for a simple model including X1 only is provided by applying the Kuo±

Mallick dependent priors predictor selection method (Kuo and Mallick, 1998, p.72).

Here the model is extended to include a third index, the mental illness needs index or

mini[ ] in Program 3.5. Priors on the three regression coefficients are set so that a value

gj � 0 on the binary index for the jth coefficient results in an effectively zero coefficient.

With three chains, convergence on the coefficients is apparent from around iteration

9000. The second half of a run of 40 000 iterations shows g1 to have value 1 (X1 included

in every iteration), whereas g2 is 0.09 and g3 is only 0.006.

3.3 POLYTOMOUS AND ORDINAL REGRESSION

Many outcomes relating to political or religious affiliation, labour force or social status,

or choice (e.g. of travel mode to work) involve ordered or unordered polytomous

variables (Amemiya, 1981). The underlying model for such outcomes typically involves

a latent continuous variable, which may be conceptualised as an attitudinal, prestige

9 The BUGS coding for the Laplace approximation involves the inverse( ) and logdet( ) commands. For a
Poisson outcome y[], covariates X[,1:p], posterior mean parameter estimate b[1:p] from an earlier fit involving
N(0,100) priors, and expected counts E[], the coding for a non±iterative program could be:
for (i in 1:N) { # Poisson mean

log(mu[i]) <- log(E[i]) � sum(C[i,1:p])
# log-likelihood

L[i] <- ÿmu[i] � y[i]*log(mu[i]) ÿ logfact( y[i])
for ( j in 1:p) { C[i,j] <- b[ j]*X[i,j]
for (k in 1:p) { D[i,j,k] <- ÿX[i,j]*X[i,k]*mu[i]}}}

# inverse Hessian
for ( j in 1:p) { for (k in 1:p) { H[ j,k] <- ÿ sum(D[,j,k])

S[ j,k] <- inverse(H[,],j,k)}}
# log probs of posterior mean values under Normal prior densities
for ( j in 1:p) { tau.b[ j] <- 0.01; mu.b[ j] <- 0;
Pr[ j] <- 0.5*log(tau.b[ j]/6.28) ÿ 0.5*tau.b[ j]*pow(b[ j] ÿ mu.b[ j],2)}
# Laplace approxn
F <- 0.5*p*log(6.28) � 0.5*logdet(S[,]) � sum(L[]) � sum(Pr[])
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or utility scale, that determines the observed rating or category of belief, status or

choice.

The multinomial logit and multinomial probit models generalise their binomial

equivalents and are suitable ± perhaps with modifications ± to modelling multicategory

outcomes which do not involve ordered categories. So just as the logit model for

a binary outcome involves the log odds of a positive to a negative response, so a

multinomial logit involves stipulating a baseline category (say the first of K possible

outcomes) and comparing the probabilities of outcomes 2, 3, : : , K against that of

the first.

3.3.1 Multinomial logistic choice models

Covariates may be defined for individuals i, according to different choices j, or in terms

of particular features of choice j which are unique to individual i. Thus, in a travel mode

choice example, the first type of variable might be individual income, the second might

be the generic cost of alternative modes, and the third might be individual costs attached

to different modes. Consider a vector of covariates Xi specific to individuals i alone, and

let yij � 1 if option j is chosen. Then for K possible categories in the outcome, we may

specify a multiple logit model

Pr( yij � 1) � pij � exp (bj � gjXi)= 1�
XK
k�2

exp (bk � gkXi)

( )
j > 1

Pr( yi1 � 1) � pi1 � 1= 1�
XK
k�2

exp (bk � gkXi)

( ) (3:12)

or equivalently,

log {pij=pi1} � bj � gjXi

Also, for j and k both exceeding 1,

log {pij=pik} � (bj ÿ bk)� (gj ÿ gk)Xi

so that choice probabilities are governed by differences in coefficient values between

alternatives. Strictly, the above formulation (involving covariates constant across alter-

natives j ) is known as a `multinomial logit', and focuses on the individual as a unit of

analysis.

If instead we consider attributes Wij of the jth alternative specific for individual i, then

a conditional logit model is obtained with

pij � exp (dWij)=
XK
k�1

exp (dWik) (3:13)

Dividing through by exp (dWij) gives

pij � 1=
XK
k�1

exp (d[Wik ÿWij])

In the conditional logit model, the coefficients d are usually constant across alternatives,

and so choice probabilities are determined by differences in the values of characteristics

between alternatives. A mixed model, combining features of both Equations (3.12) and
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(3.13) would include both individual level attributes Xi and alternative specific charac-

teristics Wij . Thus

log (pij=pik) � (bj ÿ bk)� (gj ÿ gk)Xi � d(Wij ÿWik) (3:14)

Multiple logit models can be expressed in terms of a model for individual choice

behaviour. Thus, let zij be the unobserved value or utility of choice j to individual i, with

zij � U(Xi, Sj, Wij, eij)

where Sj are known predictors for choice j (e.g. climate in state j for potential migrants

to that state), and Xi and Wij are as above. The eij are random utility terms. Assuming

additivity and separability of stochastic and deterministic components leads to

zij � nij � eij (3:15)

with a regression function such as

nij � bj � gjXi � dWij � fSj

Then the choice of option j means

zij > zik k 6� j

and so

pij � Pr(zij > zik)

Equivalently

yij � 1 if zij � max (zi1, zi2, . . . : ziK )

Assume the eij follow a type I extreme value (double exponential) distribution with cdf:

F (ei:) �
Y

j
exp (ÿ exp (ÿ eij))

and if the assumption in (3.15) holds also,

Pr( yij � 1jXi, Wij , Sj) � exp (nij)=
X

k
exp (nik)

with b1 � g1 � 0 as in Equation (3.9) for identifiability.

3.3.2 Nested logit specification

A feature of the conditional model (3.10) is that the relative probability of choosing

the jth alternative as compared to the kth is independent of the presence or absence of

other alternatives (the so-called independence of irrelevant alternatives or IIA axiom).

In practice, the presence of other alternatives may be far from irrelevant, and there may

be similar alternatives (e.g. with similar utilities to the consumer) between which

substitution may be made ± see Congdon (2000) for an application involving patient

flows to hospitals. We may consider a simple form of nested logit model adapted to

account for real world departures from IIA (Poirier, 1996; Fischer and Aufhauser,

1988). Thus, suppose there is one nest of K ÿ 1 alternatives within which the simple

conditional form (3.10) holds, and a single alternative m from the original set of K which

is isolated from the nest. Let K [ÿm] denote the set of alternatives excluding the mth.

Then for choice by individuals and predictors Wij specific to i and j
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yi, 1:K �Mult(pi, 1:K , 1)

For the isolated alternative

pim � exp (dWim)={ exp (dWim)� exp (aIi)

where Ii is known as the inclusive value

Ii � log
X

jeK [ÿm]

exp (Wijd=a)

( )
Within the nest defined by K [ÿm], the second level choice probabilities are given by

pij � (1ÿ pim)qij

where

qij � exp (Wijd=a)=
X

keK [ÿm]

exp (Wikd=a)

is the standard conditional logit confined to alternatives in the set K [ÿm]. The

coefficient a has null value 1, in which case the model reduces to the standard condi-

tional logit over all K alternatives and with unrestricted IIA applying. If a is between

0 and 1 then substitution is greater within a nest than between nests. If substitution

among nests exceeds substitution within nests, then a exceeds 1. In the example below

we assume a is positive, though negative values of a are not invalid numerically. Poirier

(1996, p. 172) suggests the reparameterisation l � d=a, and so d � al, with priors taken

on l and a.

3.3.3 Ordinal outcomes

The multinomial and conditional logit models make no assumptions about the

ordering of a categorical outcome. However, ordinal response data are frequently

encountered in the social and health sciences. In opinion surveys, respondents are

often asked to grade their views on a statement on scales from `strongly agree' to

`strongly disagree'. Health status or diagnostic gradings of disease are often measured

on multicategory scales as `normal' to `definitely abnormal' (diagnosis) or as `good' to

`poor' (health).

Among statistical issues raised by such data are the modelling of ordinal regression

relationships (e.g. with predictors as well as outcome ordinal); whether an underlying

latent scale assumption need be invoked (Armstrong and Sloan, 1989); and whether or

not the ordering of responses is relevant to stratifying regression relationships, for

example with different slopes according to each ordinal response category (Anderson,

1984).

The cumulative odds model is often expressed in terms of an underlying continuous

response, though this is not strictly necessary. Thus McCullagh (1980) outlined the

regression model for an observed ordinal response variable Ti (with possible values

1, 2, . . K) taken to reflect an underlying continuous random variable. For i � 1, : :N
respondents this model has a systematic component in the form of a cumulative

probability

gij � Pr(Ti � j) � F (uj ÿ mi) j � 1, : :K ÿ 1
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or

Fÿ1(gij) � uj ÿ mi

Here mi � bXi is a regression term defined by covariates Xi, uj represents the cut point

corresponding to the jth rank, and F is a distribution function. If the X are all

categorical then i typically indexes subject groups defined by combinations of covari-

ates. Special cases of F include the logistic (leading to a proportional odds model) and

the extreme value distribution leading to a proportional hazards form.

So if pij is the probability of lying in the jth ranked group, then gij � pi1 � . . . :� pij .

Conversely, the probabilities of an observation lying in the jth rank are given by

differencing the cumulative probabilities:

pi1 � gi1

pij � gij ÿ gi, jÿ1

piK � 1ÿ gi, Kÿ1

If F is a logistic, with

Cij � logit(gij) � uj ÿ bXi (3:16)

and b is uniform across response categories j, then the uj are the logits of belonging to

categories up to and including 1, : : j (as against categories j � 1, : :K) for subjects with

X � 0. The difference in cumulative logits for different values of X, for example X1 and

X2, is independent of j. This is known as the `proportional odds' property10, with

C1j ÿ C2j � b(X2 ÿ X1)

3.3.4 Link functions

Several authors have considered the issue of more general link functions for binary or

ordinal outcomes than the logistic or probit links. Lang (1999) proposes a mixture of the

symmetric logistic form for F and two asymmetric forms. The latter are the Left Skewed

Extreme Value (LSEV) distribution

F1(t) � 1ÿ exp (ÿ exp (t)) (3:17)

and the Right Skewed Extreme Value (RSEV) distribution

F3(t) � exp (ÿ exp (ÿ t))

10 In BUGS the essential coding for the proportional odds model applied to individual choice (and for one
covariate X[i]) has the form, together with specimen priors:
model{ for (i in 1:N) { for ( j in 1:K-1) { # logit of cumulative probability of rank j or lower

logit(gamma[i,j]) <- theta[ j] ÿ mu[i] }
# probability of jth rank

p[i,1] <- gamma [i,1];
for ( j in 2:K-1) { p[i,j] <- gamma [i,j] - gamma [i,j-1] }
p[i,K] <- 1 ÿ gamma [i,K ÿ 1];
mu[i] <- b[1] � x[i]*b[2]
y[i] � dcat(p[i,1:K])}

b[1] � dnorm(0,0.001); b[2] � dnorm(0,0.001)
theta[1] � dnorm(0,1) I(0,theta[2])
for ( j in 2:K-1) {theta[ j] � dnorm(0,1) I(theta[ j-1],)}}
Note that sampling of y[] could also be represented, with input response data appropriately changed, as
y[i,1:K] � dmulti(p[i,1:K],1).
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with F2(t) being the logistic distribution

F2(t) � exp (t)=(1� exp (t))

The distribution in (3.17) corresponds to the complementary log- log form of link for

probability p:

Fÿ1(p) � log (ÿ log (1ÿ p))

The mixture has the form

Fl(t) � w1(l)F1(t)� w2(l)F2(t)� w3(l)F3(t) (3:18)

The mixture proportions on the LSEV and RSEV links in the model of Lang are given

by

w1(l) � exp (ÿ exp (3:5l� 2))

and

w3(l) � exp (ÿ exp (ÿ 3:5l� 2))

respectively. They depend upon an additional parameter l which has a Normal density

with mean zero and known variance s2
l. The mixture proportion on the straightforward

(i.e. conventional) logit link, intermediate between the asymmetric forms, is obtained as

w2(l) � 1ÿ w1(l)ÿ w3(l).

Lang outlines how the mixture proportions on the three possible links relate to the

value of l, and its variance. Negative values of l are obtained when the LSEV form is

preferred, and positive values when the RSEV is preferred; l � 0 corresponds to the

logit link. Most variation in the mixture proportions {w1(l), w2(l), w3(l)} occurs when

l is in the interval [ÿ3, 3], and this leads to a prior on l with variance 5 as being

essentially non-informative with regard to the appropriate link out of the three possible.

For an ordinal response as in Equation (3.16), we then have

pij � Fl(uj ÿ bXi)ÿ Fl(ujÿ1 ÿ bXi):

Other Bayesian approaches for general linear models with link functions taken as

unknown include Mallick and Gelfand (1994).

Example 3.6 Infection after caesarian birth We first consider a multinomial logistic

model applied to data from Fahrmeier and Tutz (1994). In this example the outcome is

multinomial but unordered and the predictors are categorical. Specifically, the outcome

is a three fold categorisation of infection in 251 births involving Caesarian section;

namely no infection, type I infection, and type II infection. The risk factors are defined

as NOPLAN � 1 (if the Caesarian is unplanned, 0 otherwise), FACTOR � 1 (if risk

factors were present, 0 otherwise), and ANTIB�1 if antibiotics were given as prophy-

laxis. Of the eight possible predictor combinations, seven were observed. The numbers

of maternities under the possible combinations range from 2 (for NOPLAN�0,

ANTIB�1, FACTOR�0) to 98 (NOPLAN�1, ANTIB�1, FACTOR�1). N(0, 10)

priors are assumed for the impacts of different levels of these categorical variables.

The estimates for this MNL model, following the structure of Equation (3.9), show

antibiotic prophylaxis as decreasing the relative risk of infection type I more than type II.

Hence g22 is more highly negative than g23. By contrast, the presence of risk factors in
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abirth increases the riskof type II infectionmore: theodds ratioof type IIvs type I infection

when a risk factor is present, measured by pi3=pi2 is exp (ÿ 2:54� 2:14)=
exp(ÿ 2:61� 1:78) or 1.54 (see Table 3.5).

In fact we can use sampling to provide a density for such structural parameters, rather

than obtaining `point estimates' based on the posterior means of constituent param-

eters. This involves defining new quantities s1 � exp (b3 � g33) and s2 � exp (b2 � g32)

and monitoring them in the same way as basic parameters. One might assess the

probability that s1 > s2 by repeated sampling also ± for example, by using the step()

function in BUGS.

If there were not strong evidence that s1 > s2, the coefficients on NOPLAN, ANTIB

and FACTOR might be equalised since Table 3.5 suggests homogeneity across the two

infection types. This would involve three fewer parameters, and may provide a better fit

after allowing for reduced parameterisation.

Example 3.7 Travel choice As an example of multicategory choice and possible

departures from the IIA axiom discussed in Section 3.3.2, consider the travel mode

choice data from Powers and Xie (2000). These relate to three choices (1�train, 2�bus,

3�car) among N � 152 respondents, with

yi, 1:3 �Multi( pi, 1:3, 1)

where, for example, yi1 � 1 if a subject chooses the train and zero otherwise. Choice is

modelled as a function of respondent income (an X variable, as in Section 3.3.1) and of

destination attributes which differ by respondent (W variables). The latter are terminal

Table 3.5 Risk factors for infection after Caesarian delivery

Mean St. devn. 2.5% Median 97.5%

b2 ÿ2.610 0.605 ÿ3.963 ÿ2.565 ÿ1.595

b3 ÿ2.537 0.519 ÿ3.627 ÿ2.507 ÿ1.638

NOPLAN

g12 1.075 0.492 0.112 1.085 2.066

g13 0.927 0.448 0.013 0.929 1.828

ANTIB

g22 ÿ3.410 0.650 ÿ4.722 ÿ3.398 ÿ2.208

g23 ÿ3.012 0.535 ÿ4.119 ÿ2.999 ÿ1.991

FACTOR

g32 1.775 0.658 0.596 1.746 3.227

g33 2.140 0.556 1.108 2.127 3.317

waiting time for bus and train (denoted TIME[] in Program 3.7, and zero by definition

for car users), in-vehicle time (IVT[]), and in-vehicle cost (IVC[]). Log transforms of the

four predictors are taken, though the analysis of PX was in their original scale. The log

transformed predictor model gives a better log-likelihood than the untransformed

predictor model.
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A model with common regression coefficients across choices as in the conditional

logit specification (3.13) is fitted first. This provides evidence that the probability of

choosing a particular mode decreases as in-vehicle costs and in-vehicle time increase.

Note that the effect of terminal waiting time is wrongly signed in substantive terms.

Thus the log-odds of bus (Model 2) against the baseline category train (mode 1) may be

obtained (see Table 3.6) as

log (pi2=pi1) � 0:31( log [(TIMEi2 � 1)=(TIMEi1 � 1)]

ÿ 13:3 log (IVCi2=IVCi1)ÿ 0:58 log (IVTi2=IVTi1)

where TIME2 is bus terminal time and TIME1 is train waiting time. The same coeffi-

cients apply for the log odds outcome log ( pi3=pi1).

Because of the unexpected direction of one coefficient, one might consider whether

prior constraints or specialised priors to tackle the collinearity in the predictors.

Constraining the coefficients to be negative while retaining all respondents results in a

worsening of fit, with the average log-likelihood falling from ÿ87 to ÿ92. The absolute

size of the coefficient on invehicle costs is reduced. While assessment of outlier

or influential observations, or perhaps variable selection, might seem natural steps

as well, it is necessary to consider whether specification might be improved (e.g.

to allow for interdependent destinations or the impact of omitted individual level

influences).

As an alternative specification option, nesting of choices might first be considered.

For illustration, the nested logit model with bus and train as alternatives within a nest

of K ÿ 1 � 2 choices, and with the car option taken as an isolated single alternative.

Unconstrained priors on TIME, IVC and IVT are assumed. This leads (with

5000 iterations over three chains and 1000 burn in) to a posterior mean on a around

0.38. The 95% credible interval is entirely below 1, suggesting substitution within the

nest.

Table 3.6 MNL model for travel choice (Non-nested (IIA) and

Nested (Non-IIA))

Mean 2.5% 97.5%

IIA

Log likelihood ÿ87.3 ÿ90.4 ÿ85.9

TIME d1 0.31 0.10 0.53

IVC d2 ÿ13.3 ÿ16.8 ÿ10.2

IVT d3 ÿ0.58 ÿ1.21 0.06

Non-IIA

Log Likelihood ÿ82.5 ÿ86.1 ÿ80.7

a 0.38 0.21 0.61

TIME d1 0.26 0.10 0.44

IVC d2 ÿ10.2 ÿ13.7 ÿ7.2

IVT d3 ÿ0.41 ÿ0.86 0.00
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The coefficients g are reduced (absolutely) as compared to the IIA alternative where

a � 1 by default. While there is a clear gain in fit as measured by log-likelihood, the

unexpected sign on TIME remains.

We then allow, in a mixed model approach of (3.14) and assuming IIA, for individual

specific characteristics Xi. This involves creating dummy variables for K ÿ 1 alternatives

with train as the base category and multiplying each individual covariate by the K ÿ 1

dummies. Here household income provides a single individual level covariate and this

involves four extra predictors, with dummies defined for the bus and car options. This

analysis is based on 5000 iterations over three chains, with 1500 burn-in, and is shown in

Table 3.7. It can be seen that while the attractiveness of bus and car as against train,

both increase with income, only the car vs. train choice (measured by g2) shows a clear

positive impact of income.

One may also at this stage assess whether certain observations are influential or

outlying, and distorting the model estimates for all observations combined. For assess-

ing outliers, a procedure suggested by Gelfand and Dey (1994), Weiss (1994) and others,

avoids the computing burden of single case omission by considering an estimate for the

CPO statistic using output from an MCMC run of length T. This is obtained as

CPOÿ1
i � Tÿ1

XT
t�1

[ f ( yiju(t)]ÿ1

where f ( yiju) is the total likelihood for each respondent, totalling over destinations.

Thus, we find in the mixed model that the CPO statistics to be especially low for respond-

ent numbers 5, 59, 61 and 80, and one might consider an analysis excluding them.

To assess the influence of an individual case i, one might compare regression param-

eter estimates or samples of new data Z based on (a) the posterior p(ujy(N)) using the full

data y(N), as against (b) the posterior p(ujy[i]) using all the data set except case i, y[i]. One

might, for example, compare a certain regression parameter b* by the discrepancy or

checking function (Weiss, 1994)

D
bi*
� E(b*jy[i])ÿ E(b*jy(N))

In the transport choice analysis, we might consider the two parameters g1 and g2

describing interaction between mode and income. Other types of discrepancy involve

predictions of replicate data Z, with distributions under options (a) and (b)

p(Zjy(N)) �
�

p(Zju)p(ujy(N))du

Table 3.7 Mixed MNL model, parameter summary

Mean 2.5% 97.5%

Log Likelihood ÿ58.9 ÿ63.5 ÿ56.2

d1 TIME ÿ3.2 ÿ4.8 ÿ1.9

d2 IVC ÿ11.0 ÿ14.7 ÿ7.7

d3 IVT ÿ0.88 ÿ1.86 0.11

b1 BUS ÿ3.32 ÿ6.97 ÿ0.09

g1 BUS � INCOME 0.75 ÿ0.29 1.90

b2 CAR ÿ19.2 ÿ27.0 ÿ12.6

g2 CAR � INCOME 1.80 0.69 3.06
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p(Zjy[i]) �
�

p(Zju)p(ujy[i])du

One might compare the predictions Zi and observations yi for the suspect case i. For

instance, in the multinomial example here, one might compare the relative distribution

of the Zi, 1:3 (i.e. proportions in the three travel modes) between the two sampling

options (a) and (b). One might also compare the likelihoods of Zi under the two options,

with a discordancy index, such as (Geisser, 1990)

DZi
� f (Zijy[i]) log { f (Zijy[i])=f (Zijy(N))}

Such comparisons may be computationally intensive, and here we consider the impacts

of omitting the cases with the lowest and highest CPO as defined above. These are,

respectively, case 80 and 63, with case 80 opting for car despite lower than average

income. Using single long runs of 20 000 iterations (see Model D in Program 3.7) we

find, as in Table 3.8, that case 80 has a discordancy index clearly higher than case 63.

There is also more difference in the relative proportions over the three modes (compar-

ing in Program 3.7 the samples y.new[80,] and y.new.d[80,] of new data when estimation

is based on all cases y(N) and on y[i], respectively). There seems less influence in terms of

the income by mode interaction parameters, though excluding case 80 tends to slightly

raise the income by car effect.

Example 3.8 O-ring failures The logit and probit links are the default options for

categorical choice models. To illustrate the potential impact of alternative links, the

model of Section 3.3.4 is applied to 23 observations relating to thermal problems on the

US Challenger missions in 1986. Let yi � 1 if a primary O-ring showed thermal distress,

and yi � 0 otherwise. The single covariate is the temperature S in Fahrenheit at launch.

Following Lang (1999), we take this covariate as uncentred, and with �i � Pr (yi � 1);
obtain a logistic model with posterior mean (and s.d.) parameter estimates

logit (pi) � 19:2
(9:3)
ÿ 0:29

(0:14)
S

Following Lang, a Normal prior with mean 0 and variance 5 on l is taken in the general

link model (3.18). Because of the relatively sparse data, a clear choice of link is unlikely,

Table 3.8 Checking functions under case omission, cases 63 and 80

Omitting Case 80 Omitting Case 63

Mean St. devn. Mean St. devn.

New Data Discrepancy Dzi
0.0433 0.1520 0.0000 0.0001

Difference in Bus by Income Dg1i
0.0237 0.7473 ÿ0.0330 0.7845

Difference in Car by Income Dg2i
0.1529 0.9156 0.0211 0.8809

Relative distribution between modes

Full data, Z � Train 0.6561 0.4750 0.9999 0.0079

Full data, Z � Bus 0.3330 0.4713 0.0000 0.0000

Full data, Z � Car 0.0109 0.1037 0.0001 0.0079

Data omitting case, Z � Train 0.6442 0.4788 0.9999 0.0079

Data omitting case, Z � Bus 0.3525 0.4778 0.0000 0.0000

Data omitting case, Z � Car 0.0033 0.0573 0.0001 0.0079
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but the analysis leans towards the complementary log-log link, corresponding to the left

skewed extreme value distribution.

Three chains are taken to 100 000 iterations (with convergence of l apparent at

around 7000 iterations). The weights on the three components are 0.53, 0.35 and 0.11,

and the average of l is close to ÿ1, with b0 � 16:5 and b1 � ÿ0:26 (Table 3.9). So there

is support for a non-logit form of link. Figure 3.2 shows the posterior density of l, based

on 9000 iterations (every tenth iterate over 30 000 iterations on three chains), with most

mass between ÿ2 and 0.

On this basis, we can summarise the relation as

Fl(b0 � b1S) � Fÿ1(16:5ÿ 0:26S)

By contrast, Lang obtains

Fl(b0 � b1S) � Fÿ1:43(14:7ÿ 0:23S)

As a check to model form, a Bayes predictive check (Gelman et al., 1995) is used, based

on comparing a chi-square measure for the observed data x2(Zi, pi) and for replicated

data, namely x2(Zi:rep, pi). This is estimated at 0.27, and shows no evidence of lack of fit.

Example 3.9 Ordinal ratings in diagnostic tests As an illustration of Bayesian ordinal

regression, we consider an issue in medical diagnosis. The performance of diagnostic

tests is measured by various probabilities: the probability of correctly assessing a

diseased individual is known as the sensitivity (i.e. true positive rate) of the test, and that

Table 3.9 Choice of link: O-ring data, parameter

summary

Mean St. devn. 2.5% 97.5%

b0 16.52 8.19 3.65 36.12

b1 ÿ0.26 0.12 ÿ0.55 ÿ0.06

l ÿ0.99 1.78 ÿ4.69 2.72
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Figure 3.2 Smooth of l
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of correctly classifying a healthy individual is the specificity. The false positive rate

(chance of classifying someone healthy as ill) is 1 minus the specificity.

Assume outcomes Ti on subjects are available as a rating scale with K levels, with

category 1 corresponding to the lowest indication of disease and category K to the

highest (e.g. for K � 3 we might have 1�normal, 2�equivocal, 3�abnormal). As in

Section 3.3.3, K ÿ 1 cut points uj are assumed so that an individual will fall in category

1 if the underlying scale value for that subject zi is less than u1, in category 2 if

u1 < zi � u2, and so on, and in category K if zi > uKÿ1.

The performance of a test depends upon the threshold chosen on the latent scale z.

Lowering the threshold will improve sensitivity, but at the expense of more false

positives. The relation between the true and false positive rate as the threshold varies

is known as the Receiver Operating Characteristic (ROC) curve. A parametric approach

to estimating this can be derived from signal detection theory, and leads to a smooth

ROC curve. However, this approach does not adapt to include covariates (e.g. age or

disease stage) which might affect the test accuracy.

Assume, therefore, that p covariates are available on each subject, and that the first

of these is a dummy index for true disease state (xi1 � 1 for diseased cases i), so that

there is no intercept. Then following Tosteson and Begg (1988), we may specify the

cumulative probability gj(xi) of response up to and including category j for a subject

with covariates xi.

Fÿ1{gj(xi)} � (uj ÿ bxi)= exp (dxi) (3:19)

Taking F as the Normal distribution function amounts to assuming the latent variable

z is Normal with mean bxi and standard deviation exp (dxi). Other links are possible,

such as the logit, but interpretation of the b parameters changes. When the first

covariate x1 is true disease status and x1 is set at 1, the true positive rate or sensitivity

for a subject with rating j is

1ÿ gj(x1i)

since gj(x1i) with x1i � 1 is the probability that a diseased subject is ranked in one of the

diagnostic groups 1, : : j.
The basis for making the variance of the latent scale depend upon covariates is

likely to be governed by the application area. Tosteson and Begg (1988) consider the

detection of hepatic metastases by ultrasonography, and cite evidence that the spread

of responses in radiological rating data is wider in diseased than non-diseased subjects.

This difference would be modelled by the parameter d1. Their analysis and a reanalysis

by Peng and Hall (1996) concern the accuracy of ultrasonography ratings on a five

point scale (see Appendix Table 1). These ratings are used in assessing the presence

or otherwise of metastases in patients. Ratings are related to true metatstasis x1,

and cancer site (either breast cancer, with x2 � 1, or colon cancer, with x2 � 0).

A third predictor is the interaction x3 � x1x2 between true metastasis status and cancer

type.

A `full model' includes all three covariates in both b and d in Equation (3.19). A logit

link is adopted for numerical stability ± a probit link would best be implemented with

the Albert±Chib (1993) sampling method. The priors on the cut points are constrained

to be increasing, with

uj � N( j, 10) I(ujÿ1, uj�1)
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The logit link full model is not well identified (cf. Tosteson and Begg), but suggests that

variability is greater for metastasis cases (for whom x1 � 1) and breast cancer cases for

whom x2 � 1 (see Table 3.10). These findings are in line with Tostesan and Begg (1988,

Table 2), though they report different signs on b2 and b3 than obtained here (though

neither effect is significant in their results). The sensitivity of the scale runs at 0.75 or

more across the possible ranks.

A reduced model, involving just x1, the true status, in defining b and d, shows a clear

association between true status and the diagnostic classification. With a run of 10 000

iterations from three chains (and 2500 burn-in), the parameter b1 averages 1.9 and has a

95% interval consisting only of positive values. However, the effect of metastasis on

variability in ultrasonography ratings (as measured by d1), is no longer present. As in

the full model, the latent scale cut points uj suggest that upper ranks on the scale could

be merged.

3.4 REGRESSIONS WITH LATENT MIXTURES

Chapter 2 considered finite mixtures to describe heterogeneity in which latent classes

j � 1, : : , J differ only in their means mj and other population parameters (e.g. variances

Table 3.10 Ultrasonography ratings parameters

Full model Mean St. devn. 2.5% Median 97.5%

Influences on diagnostic rank

b1 3.86 1.61 1.60 3.53 7.79

b2 ÿ0.62 1.55 ÿ4.34 ÿ0.23 1.48

b3 1.00 2.45 ÿ3.09 0.73 6.32

Influences on variability

d1 0.76 0.60 ÿ0.51 0.79 1.84

d2 1.30 1.25 ÿ0.52 1.15 4.52

d3 ÿ1.65 1.67 ÿ5.35 ÿ1.46 1.19

Cutpoints

u1 0.35 0.21 0.02 0.32 0.81

u2 0.99 0.17 0.65 0.99 1.33

u3 1.07 0.16 0.75 1.07 1.39

u4 1.11 0.16 0.79 1.10 1.43

Reduced Model

b1 1.88 0.44 1.18 1.82 2.88

d1 ÿ0.26 0.41 ÿ1.12 ÿ0.25 0.51

u1 0.31 0.19 0.02 0.29 0.71

u2 0.87 0.15 0.59 0.87 1.16

u3 0.94 0.14 0.68 0.94 1.23

u4 0.98 0.14 0.71 0.97 1.26
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in a Normal example). Finite mixture regressions introduce covariates into either the

determination of the latent class indicators or to describe the relation between the mean

of subject i on each latent class mij and that subject's attribute profile. Mixture regres-

sions have been applied to modelling the behaviour or attitudes of human subjects

so that each individual has their overall mean determined by their membership

probabilities (Wedel et al., 1993).

Thus, for univariate Normal observations yi, a p-dimensional vector of predictors Xi,

define latent indicators zi of class membership among possible classes j � 1, : : J. Were

the indicators known,

yijzi � j � N(bjXi, tj) (3:20)

where bj is a class specific regression vector of length p, and tj is the conditional

variance. If lij � Pr(zi � j) then the overall mean for subject i is

li1mi1 � li2mi2 . . . :� liJmiJ

where mij � bjXi. The indicators zi may be sampled from a multinomial without

additional covariates, so that the multinomial has parameters lij � lj. Alternatively,

an additional regression seeks to model the zi as functions of covariates Wi such that the

multinomial is defined by parameters

lij � exp (fjWi)=[1�
X
k�2

exp (fkWi)] j > 1

as in Section 3.3.1.

Several applications of regression mixtures have been reported in consumer choice

settings: Jones and McLachlan (1992) consider metric outcomes y, namely consumer

preference scales for different goods, which are related to product attributes (appear-

ance, texture, etc.). They find sub-populations of consumers differing in the weight they

attach to each attribute. Here the multinomial logit regressions for zi might involve

covariates W such as consumers' age, class, or type of area of residence, while the

modelling of the yi might involve covariates X describing the quality or price of goods.

Binomial, ordinal or multinomial mixture regressions have utility both in represent-

ing departures from the baseline model assumptions (e.g. overdispersion), as well as

differential regression slopes between sub-populations (Cameron and Trivedi, 1986).

For example, Wedel et al. (1993) argue for using a latent class mixture in an application

involving Poisson counts y, both because of its advantage in modelling differential

purchasing profiles among customers of a direct marketing company, and its potential

for modelling over-dispersion in relation to the Poisson assumption.

As mentioned in Chapter 2, there are the usual problems in Bayesian analysis (as in

frequentist analysis) concerning the appropriate number of components. Additionally,

Bayesian sampling estimation may face the problems of empty classes at one or more

iterations (e.g. no subjects are classified in the second of J � 3 groups) and the switching

of labels unless the priors are constrained. On the other hand, the introduction of

predictors provides additional information that may improve identifiability. To counter

label switching we might apply a constraint to one or more of the intercepts, regression

coefficients, variance parameters, or mixture proportions that ensures a consistent

labelling. In some situations one may be able to specify informative priors consistent

with widely separated, but internally homogenous groups (Nobile and Green, 2000).

These ensure (a) that different groups are widely separated, for instance a prior on

intercepts b0j when J � 2 might be b01 � N(ÿ 5, 2), b02 � N(0, 2), effectively ensuring

REGRESSIONS WITH LATENT MIXTURES 111



separation, and (b) that if cases do fall in the same group, they are expected to be

similar.

An alternative to constrained priors involves re-analysis of the posterior MCMC

sample, for example by random or constrained permutation sampling (Fruhwirtth-

Schattner, 2001). Suppose unconstrained priors in model (3.20) are adopted, and

parameter values u(t)
j � {b(t)

j , t(t)
j } are sampled for the nominal group j at iteration

t. We may investigate first whether ± after accounting for the label switching

problem ± there are patterns apparent on some of the parameter estimates which

support the presence of sub-populations in the data. Thus, if there is only p � 1

predictor and the model is

yi � SjN(mij , tj)

mij � b0j � bijxi

(3:21)

then a prior constraint which produces an identifiable mixture might be b01 > b02, or

b11 > b12 or t1 > t2. (Sometimes more than one constraint may be relevant, such as

b01 > b02, and b11 > b12). Fruhwirtth-Schattner proposes random permutations of the

nominal groups in the posterior sample from an unconstrained prior to assess whether

there are any parameter restrictions apparent empirically in the output that may be

associated with sub-populations in the observations.

From the output of an unconstrained prior run with J � 2 groups, random permuta-

tion of the original sample labels means that the parameters nominally labelled as 1 at

iteration t are relabelled as 2 with probability 0.5, and if this particular relabelling

occurs then the parameters at iteration t originally labelled as 2 are relabelled as 1.

Otherwise, the original labelling holds. If J � 3 then the nominal group samples

ordered {1, 2, 3} keep the same label with probability 1/6, change to {1, 3, 2} with

probability 1/6, etc.

Let ~ujk then denote the relabelled group j samples for parameters k � 1, : : , K . (A

suffix for iteration t is understood.) The parameters relabelled as 1 (or any other single

label among the j � 1, : : J) provide a complete exploration of the unconstrained par-

ameter space, and one may consider scatter plots involving ~u1k against ~u1m for all pairs

k and m. If some or all the plots involving ~u1k show separated clusters, then an

identifying constraint may be based on that parameter. To assess whether this is

an effective constraint, the permutation method is applied based not on random

reassignment, but on the basis of reassignment to ensure the constraint is satisfied at

all iterations.

Example 3.10 Viral infections in potato plants Turner (2000) considers experiments in

which viral infections in potato plants were assessed in relation to total aphid exposure

counts. The experiment was repeated 51 times. The data are in principle binomial,

recording numbers of infected plants in a 9� 9 grid with a single plant at each point.

However, for reasons of transparency, a Normal approximation involving linear regres-

sion was taken. The outcome is then just the totals of plants infected y, which vary from

0 to 24. A plot of the infected plant count against the number of aphids released (x)

shows a clear bifurcation, with one set of ( y, x) pairs illustrating a positive impact of

aphid count on infections, while another set of pairs shows no relation.

Here we consider two issues: the question of possible relabelling in the MCMC

sample, so that samples for the nominal group 1 (say) in fact are a mix of parameters
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from more than one of the underlying groups. Secondly, we consider possible assess-

ments of the number of groups.

A two group mixture, with means and conditional variances differing by group, was

accordingly well identified by Turner and his bootstrap analysis showed marked

improvement in fit over a single group model. As discussed in Chapter 2, the bootstrap

is often applied when the usual likelihood ratio tests do not follow standard asymptotic

densities. Suppose one wished to assess the gain in fit in a J � 1 vs. J component model,

with Q8 denoting the observed likelihood ratio comparing (say) a three group to two

group model, with parameters û(3) and û(2), respectively. Then one might sample S

repeated data sets from the parameters û(2) and derive the likelihood ratio statistic Qs

for each, and find the proportion of sets where Q8 exceeds Qs. This is the bootstrap test

criterion, as opposed to the nominal test based on asymptotic results.

First we run the model (3.21) for J � 2 and K � 3 (intercepts b0j, slopes b1j, and

variances tj). Using the output from 20 000 iterations with a single chain, 500 iteration

burn-in, and starting from null starting values, we apply (e.g. in a spreadsheet) the

random permutation sampler of Fruhwirtth-Schattner (2001). The relabelled group

1 parameters (every tenth sample) are then plotted against each other (Figures 3.3a±c).

Both plots involving the slope, namely Figures 3.3a and 3.3b, show well separated

clusters of points, suggesting an identifiability constraint on the b1j, such as b11 > b12.

Applying the constrained permutation sampler, again to the output from the uncon-

strained prior, shows that this is an effective way of identifying sub-populations, and

one can either use the output from the constrained permutation to derive parameter

estimates or formally apply the constraint in a new MCMC run. From the constrained

permutation sampler, the following characteristics of the two groups are obtained:

b01 b02 b11 b12 1=t1 1=t2

Mean 0.868 3.324 0.002 0.055 0.900 0.096

2.5% 0.115 1.047 ÿ0.003 0.040 0.361 0.043

97.5% 1.733 5.593 0.007 0.069 2.117 0.170
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Figure 3.3a Plot of intercept vs. slope for relabelled first group iterations
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Figure 3.3b Slope against precision for relabelled first group iterations
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Figure 3.3c Intercept against precision for relabelled group 1 iterations

In the present application, it was not possible to identify a stable solution with three

groups that provided an improvement in log-likelihood over the two group solution.

This was apparent both from MCMC sampling with a constraint on the slopes b1j and

using the permutation sampler on the output from a three group model without a prior

constraint. Plots of the intercepts on the slopes from the relabelled parameter iterates
~u1k(k � 1, 3) showed no distinct groups for J � 3, but instead just `scatter without

form'.
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It remains to demonstrate the gain in a two over a one group model. This might be

possible to demonstrate using penalised fit measures such as the AIC statistics. Thus,

parallel sampling of a one and two group model (the latter with constrained prior) could

be carried out, and the proportion of iterations assessed where the AIC for the two

group model improved over that for the one group model. Note that the number of

parameters are usually taken as p1 � 3 and p2 � 7 in the one and two group models,

respectively. Other options (see Raftery, 1995) might involve marginal likelihood

approximations leading to approximate Bayes factors. Another possibility is Bayes

sampling analogues of bootstrap and Monte Carlo test procedures (see Dey et al., 1998).

Here a marginal likelihood approximation is obtained by monitoring the inverse

likelihood g
(t)
i � 1=f ( yiju(t)) for each case. The inverse of the posterior mean of g

(t)
i is

an estimate of the CPO for case i, and the sum of the logarithms of these estimated

CPOi is an estimate of the log marginal likelihood of the model. Here this procedure

gives log marginal likelihood estimates of ÿ162.9 and ÿ140.5 under the one and two

group models, and a clear preference for the two group model.

3.5 GENERAL ADDITIVE MODELS FOR NONLINEAR REGRESSION

EFFECTS

A generalisation of the smoothing prior approach of Chapter 2 is to generalised additive

models in regression. Such models provide an approach to modelling possible

nonlinearity, but avoiding the need to specify complex algebraic forms. Thus for a

metric outcome y1, : : yn, assume there are corresponding values of a regressor variate

x1, . . . xn ordered such that

x1 < x2 < . . . : < xn

The model for the observations may then be

yt � b0 � f (xt)� et

where et � N(0, s2). Let gt � f (xt) be the smooth function representing the changing,

possibly nonlinear, impact of x on y as it varies over its range. As in Chapter 2, it is

common to assume Normal or Student random walks in the first, second or higher

differences of the gt. A variant on this is when the smooth in the variable x modifies the

effect of a predictor z, with

yt � b0 � zt f (xt)� et

If xt � t denotes time and yt is a time sequenced response, then a dynamic coefficient or

state space model is obtained, with

yt � b0 � ztb1t � et

It will commonly be the case that the xt are unequally spaced, and it is then necessary in

specifying the prior for gt (or b1t) to weight each preceding point differently. This means

adjusting the precision such that wider spaced points are less tied to their predecessor

than closer spaced points. Thus, suppose the xt were irregularly spaced and that the

spaces between points are d1 � x2 ÿ x1, d2 � x3 ÿ x2, . . . dnÿ1 � xn ÿ xnÿ1. A first

order random walk smoothness prior, with Normal errors, would then be specified as

gt � N(gtÿ1, dtt
2)
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and a second order one would be

gt � N(nt, dtt
2)

where nt � gtÿ1(1� dt=dtÿ1)ÿ gtÿ2(dt=dtÿ1) (see Fahrmeir and Lang, 2001). If there is

equal spacing then the first and second order random walk priors are just

gt � N(gtÿ1, t2)

gt � N(2gtÿ1 ÿ gtÿ2, t2)

With smooths on several regressors x1t, x2t, x3t : : it will be necessary to supply an

ordering index on each one at observation level O1t, O2t, O3t, etc. A frequent situation

is the semi-parametric additive form, with smooths on a subset of p regression variables,

with the remainder modelled conventionally. Quite often there would be just a single

regressor with a general additive form and the remainder included in a conventional

linear combination. It may be noted that results may be sensitive to the priors assumed

for the initial smoothing values (e.g. g1 in a first order random walk) and for the

evolution variance t2. This is especially so for sparse data, such as for binary outcomes

yt. In BUGS convergence may benefit from sampling t2 directly from its full conditional

density.

Other smoothness priors have been proposed. For example, Carter and Kohn (1994)

consider the signal plus noise model

yt � gt � et

where the gt are generated by a differential equation

d2gt

dt2
� t

dWt

dt

with Wt a Weiner process, and t2 the smoothing parameter. This leads to a bivariate

state vector st � (gt,
dgt

dt
) in which

st � Ftstÿ1 � ut (3:22)

where, with dt defined as above,

Ft � 1 dt

0 1

� �
Also, the ut are bivariate Normal with mean zero and covariance t2Ut, where

Ut � d3
t =3 d2

t =2
d2

t =2 dt

� �
Wood and Kohn (1998) discuss the application of this prior with binary outcomes,

which involves applying the latent variable model of Albert and Chib (1993).

Example 3.11 Kyphosis and age Consider the kyphosis data from Hastie and Tib-

shirani (1990) on 81 patients receiving spinal surgery (Appendix Table 2). The binary

outcome yt relates to the post-surgical presence or otherwise of forward flexion of the

spine from the vertical. As mentioned above, this is a sparse data form and so results of

additive smoothing may be sensitive to priors assumed.
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Risk factors taken to influence the outcome are x1t � the number of vertebrae level

involved, x2t � the starting vertebrae level of the surgery and x3t � age in months.

Initially, a probit model with linear effects in Xt � (x1t, x2t, x3t) is applied using the

latent dependent variable method. Thus

zt � N(mt, 1) I(0, ) if yt � 1

zt � N(mt, 1) I(, 0) if yt � 0

with mean

mt � b0 � b1x1t � b2x2t � b3x3t

N(0, 10) priors are set on b0, b1, and b2, but an N(0, 1) prior on b3 as it is applied to

ages which exceed 200, and too vague a prior may lead to numeric problems as a large

coefficient is applied to a large age value. This analysis shows clear positive effects for x1

and a negative effect for x2, but a less clear positive (linear) effect of age.

To clarify possible nonlinear effects, the impact of age is instead modelled via a

general additive form. Thus, sampling of the zt is defined as above, but with mean now

mt � b0 � b1x1t � b2x2t � b3x3t � f (x3t)

In defining the smoothness prior for f (), the age variable is grouped according to the

ng � 64 distinct values, as in Appendix Table 2, which includes both the original age and

the age group index. The differential equation prior (3.22) is used, sampling s2 � 1=t2

from the full conditional specified by Carter and Kohn (1994, p. 546). Prior values of

0.001 for are used for index and shape parameters in the gamma full conditional density

for s2. Using the initial parameter values as in Program 3.11 convergence in t2 is

apparent after 5000 iterations, and the posterior summary is based on iterations

5000±50 000.

The evidence from the smooth (Figure 3.4) is of a clear nonlinear effect in age,

reaching a maximum at ages between 90 and 100 months. The linear age effect is

eliminated, but the values of the regression coefficients on the other covariates are

somewhat enhanced in the general additive model.
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Figure 3.4 Smooth for age
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Table 3.14 Kyphosis outcome, standard Probit and general additive models

Probit regression Mean St. devn. 2.5% Median 97.5%

Deviance 64.9 2.7 61.6 64.3 71.8

Intercept ÿ1.130 0.744 ÿ2.615 ÿ1.102 0.277

Number 0.229 0.110 0.020 0.227 0.448

Start ÿ0.125 0.038 ÿ0.202 ÿ0.125 ÿ0.053

Age 0.006 0.004 ÿ0.001 0.006 0.013

Additive form on age

Deviance 59.4 4.1 52.1 58.8 70.8

Intercept ÿ1.337 1.206 ÿ4.301 ÿ1.295 1.270

Number 0.249 0.127 ÿ0.033 0.247 0.553

Start ÿ0.147 0.045 ÿ0.255 ÿ0.146 ÿ0.046

Age (Linear) 0.004 0.013 ÿ0.024 0.004 0.033

t2 0.0013 0.0011 0.0002 0.0009 0.0057

The deviance of the GAM model improves only slightly on the linear model, despite

being more heavily parameterised; the penalised fit (as may be verified) therefore

deteriorates. The plot of the smooth suggests a low order polynomial might be sufficient

to model the nonlinearity, and this would be less heavily parameterised than a GAM.

3.6 ROBUST REGRESSION METHODS

Statistical modelling based on the Normal distribution is often the default option in

regression with metric outcomes, or in models including hierarchical random effects,

when outcomes are discrete. One approach seeks to identify outliers in terms of poster-

ior probabilities that an absolute value of an estimated residual is surprisingly large (see

Chaloner, 1994 and Example 3.12). However, instead of adopting Normality and then

seeking possible outlier observations inconsistent with Normality, an alternative is to

embed the Normal in a broader model set. This larger set may be defined by an extra

parameter (or parameters) that afford resistance or robustness to non-Normality.

Alternatively, the Normal can be set within a range of alternative densities, allowing

heavier or (less commonly) lighter tails than the Normal. Thus Bayesian approaches to

robustness in metric outcomes include the t density, and contaminated Normal densities

that explicitly allow some observations to be outliers (Verdinelli and Wasserman, 1991).

Under the Student t density, resistance to outliers is accommodated by varying the

degrees of freedom parameter. As considered in Chapter 2, introducing this extra

parameter is in fact still equivalent to the Normal but with a variable scale parameter

for each observation. The associated weight that may be used to indicate outlier status

in relation to the overall assumed density or regression model.

Suppose the data consists of univariate metric outcomes y1, i � 1, : : , n and an n� p

matrix of predictors. Then consider a Student t regression model for the means mi � bxi

with variance s2 and known degrees of freedom n. Assuming the reference prior (Gel-

man et al., 1995)

p(b, s2) / sÿ1
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the posterior density is proportional to

sÿ(n�1)
Yn
i�1

[1� ( yi ÿ bxi)
2=ns2]ÿ(n�1)=2

Similarly, if the outcome y is multivariate Student t of dimension q with dispersion S,

and p(b, S) / jSjÿ1
, the posterior is proportional to

jSjÿ(n�1)
Yn
i�1

1� 1

n
( yi ÿ bxi)S

ÿ1
( yi ÿ bxi)

� �ÿ(n�q)=2

where S is a q� q dispersion matrix.

The equivalent scale mixture specification in either case involves unknown weight

parameters vi that scale the overall variance or dispersion parameter(s) of the Normal.

Thus, for a univariate outcome, the Student t model may be expressed as

yi � bxi � ei

ei � N(0, s2=vi)

vi � G(n=2, n=2)

(3:23)

The multivariate version of this takes again vi as G(n=2, n=2), and takes the ith vector

observation yi to be sampled from a multivariate Normal with dispersion matrix

Si � S=vi

Suspect observations (i.e. potential outliers) with small weights vi and large distances

yi ÿ bxi from the regression model have effects

( yi ÿ bxi)S
ÿ1
i ( yi ÿ bxi)

on the posterior density down-weighted, with the degree of down-weighting usually

being enhanced for smaller values of n.

Other densities with heavier (or possibly lighter) tails than the Normal are obtained

with alternative densities for the vi or other types of mixing of densities. For instance,

Smith (1981) considers a model for calculating marginal likelihoods, which involves

choosing between the Normal, Double Exponential or Uniform densities, with prior

probabilities of 1/3 on each density. The M-estimators of Huber (1981), which form the

base for much work on robust estimation, are based on densities

P( yjm, s, k) / exp [ÿU(d)]

where d � ( yÿ m)=s, and

U(d ) � 0:5d2 if jdj < k

U(d ) � kjdj ÿ 0:5k2 if jdj � k

As k tends to infinity, this form tends to the Normal while for k near zero it approxi-

mates the double exponential.

3.6.1 Binary selection models for robustness

A variant of the scale mixture approach for metric dependent variables takes v as

binary with probability l � Pr(v � 1) of selecting a Normal density with mean m and
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standard deviation s. On the other hand, if v � 0, then an overdispersed alternative is

selected with the same mean but standard deviation ks, where k considerably exceeds 1.

For example, taking l to be small, e.g. l � U(0, 0:1) and k � U(2, 3) allows protection

against a low level of contamination (of up to 10% of the observations) and variance

inflation in that contaminated component of between four and nine times the overall

level. Setting l to a very low level, e.g. l � 0:01, and k positive with unrestricted ceiling,

allows for a small number of extreme outliers.

Outlier resistant models may be seen as allowing for measurement error or (for

categorical outcomes) misclassification. Thus in regression for binary outcomes, an

outlier in the response y can be seen as possibly due to a transposition 0! 1 or

1! 0. These two cases occur when (a) the observed outcome yi � 1 despite a model

probability for y � 1 being close to zero, i.e.

Pr( yi � 1jxi) � pi � 0

and (b) when yi � 0 despite pi being close to 1. If residuals are defined as Zi � yi ÿ pi,

then an outlier is indicated if the absolute residual is close to 1. The sensitivity of a

binary regression to outliers in part depends on the assumed link (e.g. the logit and

complementary log-log links have heavier tails than the probit).

Regardless of link, a model for resistant binary regression may also be specified,

including a mechanism for transposition between 0 and 1. Let yi be the recorded

response, and also define ~pi � Pr(~yi � 1jxi), where ~yi is the true response. Following

Copas (1988), assume a transposition11 occurs with a small probability g such that the

probability of the actually recorded response being 1 is given by

pi � Pr( yi � 1jxi)

� Pr( yi � 1j~yi � 0)Pr(~yi � 0jxi)� Pr( yi � 1j~yi � 1)Pr(~yi � 1jxi)

� (1ÿ g)~pi � g(1ÿ ~pi) (3:24)

where (for example)

logit(~pi) � bxi

The likelihood ratio that y is an outlier (or more particularly, misrecorded as a result of

transcription) as against it belonging to the data (or being a genuine observation) is then

given by

Ri � yi(1ÿ ~pi)=~pi � (1ÿ yi)~pi=(1ÿ ~pi) (3:25)

3.6.2 Diagnostics for discordant observations

The search for robust or resistant fits in general linear models extends to consider

outlying points in the design space (of the X variables) as well as outlying responses ( y).

Logistic models, binary or multiple, may be especially sensitive to such outliers.

Adjusting for such outliers may help to avoid unjustified rejection of models in their

entirety, or of particular explanatory variates within models, because of distortions due

to a few unusual data points.

11 In BUGs this involves the coding, for a single predictor x[i]:
y[i] � dbern(pstar[i])
pstar[i] <- (1-gamma)*p[i] � gamma*(1-p[i])
logit(p[i]) <- beta[1] � x[i]*beta[2]
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Methods for outlier detection or for down-weighting influential observations may be

based on appropriately defined residual terms (Copas, 1988). For example, for a logit

regression for binary outcomes with probability pi, the components of deviance are

di �ÿ 2 log (1ÿ p̂i) when yi � 0

ÿ 2 log (p̂i) when yi � 1

and taking êi � yi ÿ E( yijxi) � yi ÿ p̂i in line with a general definition of residuals gives

di � ÿ2 log (1ÿ jêij) (3:26)

One may modify the usual likelihoods or deviances to downweight influential observa-

tions, via influence functions g(u) which penalise large values of u (Pregibon, 1982).

Whereas maximum likelihood estimation is equivalently minimisation of Sidi, where di

is the deviance component of the ith case, robust estimation instead minimises Sig(di),

where g(di) < di for large di, so lessening the influence of cases with large deviances. The

g(di) may be based on the estimated residuals, as in Equation (3.26).

Another approach to obtaining residuals from a binary regression involves the latent

variable method of Albert and Chib (1993), which is equivalent either to probit or logit

regression: for example, if cases have different and known weights under the probit

option, then a homogenous variance of 1 may be replaced by variances (inverse of the

weights) averaging 1.

One may also consider the effect of each observation on the fitted model; for example,

regression coefficients may be sensitive to particular points with unusual configurations

of design variables, xi1, xi2, : : xip. Thus estimates of a coefficient b when all cases are

included may be compared with the same coefficient estimate b[i] when case i is

excluded (Weiss, 1994; Geisser, 1990). The differences

Dbi � b[i]ÿ b

may then be plotted in order of the observations. A cross-validatory approach to model

assessment omitting a single case at a time therefore has the advantage not just of

providing a pseudo marginal likelihood and pseudo Bayes factor, but of providing a

measure of the sensitivity of the regression coefficients to exclusion of certain observa-

tions. One may obtain posterior summaries of the Dbi, ascertain which are most clearly

negative or positive, and so produce the most distortion of the all cases estimate b.

Example 3.12 Group means from contaminated sampling Chaloner (1994) and Chal-

oner and Brant (1988) discusses the identification of outliers at two levels within a one

way analysis of variance problem. Specifically, Chaloner (1994) considers an outlier as

an observation with residual ei exceeding a threshold k appropriately defined. For

Normal data with n observations, and setting

k � Fÿ1{0:5� 0:5(0:951=n)}

ensures that the prior probability of no outliers is 0.95. Chaloner then analyses data

from Sharples (1990) using both inflated variance and mean shift contaminated mixture

models for outliers (see Table 3.15 for the data concerned). For a one-way data set with

I � 5 groups (and ni � 6 observations within the ith group), within group errors were

sampled with probability 0.1 from a gamma distribution with mean 5.5. In addition the

group means used to generate the data were 25 for groups 1±4, but 50 for group 5.
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Table 3.15 Data generated with contamination process (Sharples, 1990) (Outliers starred)

Observations in Group

Group 1 2 3 4 5 6 Average

1 24.80 26.90 26.65 30.93 33.77 63.31* 28.61

2 23.96 28.92 28.19 26.16 21.34 29.46 26.34

3 18.30 23.67 14.47 24.45 24.89 28.95 22.46

4 51.42* 27.97 24.76 26.67 17.58 24.29 24.25

5 34.12 46.87 58.59* 38.11 47.59 44.67 42.27

Three of the 30 observations are identified as a priori outliers (known to be sampled

from the contamination gamma density). The question is then to identify the probability

of outliers among the data yij(i � 1,::, nj; j � 1,::, J) and among the group means.

Specifically, suppose

yij � N(uj , t2
w)

uj � N(m, t2
b)

Then the first and second stage residuals are defined as

eij � ( yij ÿ uj)=tw

and

ej � (uj ÿ m)=tb

and compared to k above. If Pr(eij > k) or Pr(ej > k) exceeds the prior probability of

0.05, then an outlier is indicated. Prior specification of t2
w and t2

b is important, as certain

priors may allow excessive shrinkage (t2
b too small). Note that the observed between

group variance is around 60.

Consider first a prior (prior A) for the overall variance t2 � t2
w � It2

b and then the

proportion assigned to within group variation decided by a ratio p with a flat beta prior.

Prior B is used by Chaloner, namely

Pr(t2
w, t2

b) / tÿ2
w (t2

w � It2
b)
ÿ1

which in BUGS involves a double grid prior scaled to ensure total mass of one. The grid

takes account of the actual value of the between group variance to the extent that small

overall variances (below 5) are excluded. Finally, prior C is a double grid prior with

equal probability over the pairs of values of t2
w and t2

b in the grid.

Whatever the prior, it is clear that the likelihood for t2
b is relatively flat, but prior C

results in a higher mean estimate for between group variance than the other two.

Despite this, probabilities of individual observation outliers are relatively similar

regardless of the prior adopted as are the estimates of the true group means u1, u2, : : , u5.

The probabilities that y1, 6 and y4, 1 are outliers are, respectively, {0.38, 0.028),

{0.42, 0.037} and {0.35, 0.031} under the three priors, whereas Chaloner, who uses a

Normal approximation in conjunction with a Laplace approximation, finds values of

0.44 and 0.05. Priors A and B give a posterior probability of group 5 being an outlier of

around 0.05 to 0.06; this compares to 0.019 cited by Chaloner.
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Example 3.13 Stack loss To illustrate the effect of robust alternatives to the Normal

for metric outcomes based on the Student t density, consider n � 21 points in the classic

data set for stack loss, y and predictors x1 � air flow, x2 � temperature and x3 � acid.

A simple Normal errors model gives an estimated equation, with posterior means and

standard deviations

y � ÿ43:6 � 0:72x1 � 1:28x2 ÿ 0:11x3

(10:5) (0:12) (0:32) (0:13)

Lange et al. (1989) show a small improvement in likelihood in moving from a Normal

(degrees of freedom n � 1) to a Cauchy density (n � 0:5), with the maximum likeli-

hood estimate of the degrees of freedom provided by n � 1:1. Here an exponential prior

for n is assumed with mean Z, which is itself assigned a uniform prior12 between 0.01

and 1. It may be noted that a proper prior is needed on n to avoid relapsing to the

Normal (see Geweke, 1993, p. S27).

Adopting this approach (Model B in Program 3.13) gives a median value of around

1.7 for n, with the credible interval ranging from 0.5±60. The estimated equation is now

y � ÿ39:4� 0:81x1 � 0:71x2 ÿ 0:09x3

(7:6) (0:12) (0:37) (0:11)

so that the coefficient on x2 is considerably reduced.

We then take the scale mixture approach to the Student t but with n known (as 1.7).

This shows the lowest weights (vi as in (3.23)), namely 0.78 and 0.67, for observations 4

and 21. Adopting the MLE value of 1.1 instead gives the lowest weights (all under 0.25)

on observations 3, 4 and 21 (cf. Lange et al., 1989, p. 883).

Finally Model D in13 Program 3.13 also uses a scale mixture approach, but with n
also unknown. The outcome of this model, from a run of 10 000 iterations, is a median

for n of 1.3, and weights of 0.14 and 0.10 on observations 4 and 21. The coefficient on x2

is further reduced to average 0.61 (compare Lange et al., 1989, Table 1).

Example 3.14 Leukaemia survival To illustrate the transposition model (3.24) for a

binary outcome, we consider the leukaemia data of Fiegl and Zelen (1965), but with

response for n � 33 subjects being defined according to whether they survived for a year

or more (y � 1 for deaths at more than a year). The two covariates are x1 � white blood

cell count and x2 � positive or negative AG (presence or absence of certain morphologic

characteristics in the white cells). A standard logistic regression shows both covariates

negatively related to extended survival (Table 3.20), with the WBC coefficient being

ÿ0.04.

In adopting the alternative model allowing for possible contamination, it is to be noted

thatCopas (1988, p. 245) foundbymaximum likelihoodmethods that a value of g � 0:003

in (3.21) leads to a large increase in the absolute size of the WBC coefficient. This means

the predicted longer term survival chances of patients with low WBC counts are

12 This is broadly equivalent to assuming the degrees of freedom is between 1 and 100.
13 Run in version 1.2.
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Table 3.20 Leukaemia data, logit model and logit under transposition,

parameter summary

Mean St. devn. 2.5% Median 97.5%

Standard Model

Intercept 1.073 0.708 ÿ0.231 1.049 2.538

WBC ÿ0.041 0.022 ÿ0.092 ÿ0.038 ÿ0.005

Negative AG ÿ2.49 1.036 ÿ4.688 ÿ2.432 ÿ0.601

Transposition Model

Intercept 3.68 2.04 0.32 3.39 11.07

WBC ÿ0.32 0.18 ÿ0.89 ÿ0.30 ÿ0.02

Negative AG ÿ3.38 1.89 ÿ10.47 ÿ3.12 ÿ0.30

g 0.0066 0.0049 0.0003 0.0055 0.0228

Likelihood Ratio (Misrecording vs. Genuine) (see equation (3.22) )

Mean Median Mean Median

D1 0.1268 0.0689 D18 53.7300 2.6940

D2 0.0969 0.0433 D19 48.4700 1.7380

D3 0.1906 0.1263 D20 0.6457 0.4211

D4 0.1342 0.0753 D21 1.8150 0.9181

D5 18.82 4.73 D22 0.1486 0.0917

D6 1.2400 0.7816 D23 0.4155 0.2796

D7 1.0180 0.6772 D24 0.1177 0.0680

D8 0.5933 0.1937 D25 0.0260 0.0047

D9 ÿ39.61 5.65 D26 0.0120 0.0005

D10 0.3770 0.2835 D27 0.0111 0.0004

D11 0.8145 0.5736 D28 0.0091 0.0002

D12 0.0970 0.0022 D29 0.0130 0.0007

D13 0.0809 0.0010 D30 0.0206 0.0026

D14 0.0114 0.0001 D31 0.0017 0.0001

D15 0.0114 0.0001 D32 0.0011 0.0001

D16 0.0383 0.0001 D33 0.0011 0.0001

D17 8966 9999

increased. However, further increases in g had a relatively small impact. Therefore, a

prior on g may be set drawing on this analysis, and specifically

g � E(300)

A three chain run of 25 000 iterations shows convergence from around 5000 iter-

ations, and the summary is based on iterations 5000±25 000. The posterior mean for the

WBC coefficient now stands at ÿ0.34, with a 95% interval confined to negative values.

The posterior mean for g itself is just under 0.007. The likelihood ratios (3.25) are

highest (hence chance of outlier status greatest) for observation 17, which has y � 1 (the

patient survived 65 weeks) but a WBC measure of 100. The coefficient on the dummy

index for AG status is also increased in absolute size, though like the WBC coefficient is

estimated less precisely (i.e. the posterior standard deviation is increased over the

standard logit).
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Example 3.15 Travel for shopping To illustrate alternative approaches to robustness

with binary outcomes to the contamination/misclassification model, consider data

from Guy et al. (1983) for a panel survey of shopping behaviour. This involved

84 family households in suburban Cardiff, approximately equidistant from the

city centre, with the response yi being whether or not the household used a city centre

store during a particular week. The predictors are income (Inc), household size

(Hsz, for number of children) and whether the wife was working (WW). The first

two covariates are respectively ordinal (with levels 1 for income under £1000 up to

8 for incomes over £15 000) and discrete ± but both are taken as continuous.

Wrigley and Dunn (1986) consider issues of resistant and robust logit regression

against a substantive background, whereby positive effects of income and working

wife on central city shopping are expected, but a negative effect of household size.

They argue that it is preferable to work with all the explanatory variables considered

relevant and that exclusion of predictors because of one or two outliers or influential

observations should be avoided. Let

pi � Pr( yi � 1)

Wrigley and Dunn cite estimates from a maximum likelihood fit as follows (with

standard errors in brackets)

logit(pi) � ÿ0:72� 0:14 Incÿ 0:56 Hsz� 0:83 WW (3:27)

(0:91) (0:23) (0:19) (0:54)

So the significance of the working wife variable is only marginal (i.e. income is signifi-

cant at 5% only if a one-tail test is used).

Here we adopt mildly informative priors (cf. Chib, 1995) in a logit link model:

N(0.75, 25) priors on bInc and bWW are taken in line with an expected positive

effect on central city shopping of income and female labour activity, while a

N(ÿ0.75, 25) prior on bHsz reflects the expected negative impact of household size.

From a 10 000 iteration three chain run a stronger effect of income is obtained than

in Equation (3.27). The analogous equation to that above, with posterior standard

deviations in brackets, is

logit(pi) � ÿ0:56� 0:39 Incÿ 0:61 Hsz� 1:07 WW

(0:97) (0:25) (0:20) (0:59)

The 90% credible intervals on both the income and working wife variables are entirely

confined to positive values, though this is not true for the 95% intervals. The highest

deviance components are obtained for observations 5, 55, 58, 71 and 83. These points

account for about 20% of the total deviance (minus twice the log likelihood, which

averages about ÿ50). The highest deviance is for case 55. The conditional predictive

ordinates are lowest for cases 55 and 71.

Similarly, case 55 is the highest average residual under the latent utility logit model of

Albert and Chib (1993) ± see Model (B) in Program 3.15. The logit is matched by a

latent utility following Student t errors with 8 degrees of freedom (logistic errors are

`heavy tailed' like the Student t density). Trying Student t sampling with smaller degrees

of freedom (e.g. t(2) errors) makes little difference to any conclusions about credible

intervals for income and working wife coefficients ± the 95% intervals still straddle zero.
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Note that either the Normal or Student t latent utility approach of Albert and Chib

allow different known weights for each point. This approach might therefore be used to

downweight certain observations using an influence function based on deviance or

leverage contributions (see the Exercises).

As an illustration of potential distortion from particular data points Model C in

Program 3.15 applies the full cross-validation methodology based on single case omis-

sion. The differences between bInc and bInc[i] for income (Del.beta.Inc[] in Model C)

show that major changes in this coefficient are caused by exclusion of particular points.

The average value of bInc from the standard logit link model is 0.39 with posterior

standard deviation of 0.25. Exclusion of case 71 raises this coefficient by over half this

standard deviation, to around 0.58, while exclusion of case 58 raises it to around 0.47.

By contrast excluding case 29 lowers the coefficient to around 0.26. There might

therefore be grounds for excluding case 71 at least, as it figures as an outlier and is

influential on the regression. As discussed above, other options to assess robustness of

inferences may be used, which retain the suspect case(s), but model them via contamin-

ated priors or discrete mixture regressions.

3.7 REVIEW

The Bayesian approach to linear regression with continuous outcomes, general linear

modelling (including discrete outcomes), and nonlinear regression offers several advan-

tages. These include the facility with which repeated sampling estimation may be used to

select the most appropriate subsets of regressors (and hence best regression model) in

situations where there is multicollinearity. Recent developments include modifications

of the univariate selection procedures (such as in Kuo and Mallick, 1998) to allow

multivariate responses, or to vary hyperparameters so that more or less parsimonious

models are chosen (Brown et al., 1998). The facility with which varying levels of

prior information regarding regression slopes is another advantage. Prior information,

such as from historical data or previous studies of similar data, may allow one to set

a prior expected value of b based on past information (Birkes and Dodge, 1993), or

to assign some weight to prior data D0 relative to that assigned to likelihood of the data

D of the current study (Chen et al., 2000). A range of non-parametric regression

methods ± though some are possible to fit without a full Bayesian methodology ± allows

flexible regression modelling where effects are non-constant and this may be combined

with predictor selection (Smith and Kohn, 1996). Both non-parametric regression

and other approaches to regression (e.g. determining outliers via scale mixture

Student t regression) allow for a range of sensitivity checks to standard modelling

assumptions of linear effects and constant variances. On the other hand regression

in certain settings, e.g. discrete mixture regression, is quite complex under

a Bayesian approach with repeated sampling estimation leading to problems of

identifiability. Issues such as prior specification and related questions of identifi-

cation, model choice and robust inference, recur in the following chapters which

consider more specialised data structures (multi-level data, time series data and panel

data).
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APPENDIX: DATA TABLES

Table 1 Ultrasonography ratings

Diagnostic ratings Predictors

Tumor Site Status (Metastasis) R1 R2 R3 R4 R5 X1 X2 X3

Colon N 27 17 2 0 0 0 0 0

Colon Y 4 1 2 2 13 1 0 0

Breast N 6 5 2 1 0 0 1 0

Breast Y 0 2 0 2 5 1 1 1

Table 2 Kyphosis data

Sequence No Kyphosis Age Number Start Age Group

1 absent 71 3 5 24

2 absent 158 3 14 57

3 present 128 4 5 47

4 absent 2 5 1 2

5 absent 1 4 15 1

6 absent 1 2 16 1

7 absent 61 2 17 22

8 absent 37 3 16 17

9 absent 113 2 16 40

10 present 59 6 12 21

11 present 82 5 14 30

12 absent 148 3 16 54

13 absent 18 5 2 9

14 absent 1 4 12 1

16 absent 168 3 18 59

17 absent 1 3 16 1

18 absent 78 6 15 27

19 absent 175 5 13 60

20 absent 80 5 16 28

21 absent 27 4 9 13

22 absent 22 2 16 11

23 present 105 6 5 38

24 present 96 3 12 34

25 absent 131 2 3 49

26 present 15 7 2 7

27 absent 9 5 13 5

29 absent 8 3 6 4

30 absent 100 3 14 36

31 absent 4 3 16 3

32 absent 151 2 16 55

33 absent 31 3 16 14

34 absent 125 2 11 45

(continues)
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Table 2 (continued )

Sequence No Kyphosis Age Number Start Age Group

35 absent 130 5 13 48

36 absent 112 3 16 39

37 absent 140 5 11 52

38 absent 93 3 16 33

39 absent 1 3 9 1

40 present 52 5 6 20

41 absent 20 6 9 10

42 present 91 5 12 32

43 present 73 5 1 26

44 absent 35 3 13 15

45 absent 143 9 3 53

46 absent 61 4 1 22

47 absent 97 3 16 35

48 present 139 3 10 51

49 absent 136 4 15 50

50 absent 131 5 13 49

51 present 121 3 3 44

52 absent 177 2 14 61

53 absent 68 5 10 23

54 absent 9 2 17 5

55 present 139 10 6 51

56 absent 2 2 17 2

57 absent 140 4 15 52

58 absent 72 5 15 25

59 absent 2 3 13 2

60 present 120 5 8 43

61 absent 51 7 9 19

62 absent 102 3 13 37

63 present 130 4 1 48

64 present 114 7 8 41

65 absent 81 4 1 29

66 absent 118 3 16 42

67 absent 118 4 16 42

68 absent 17 4 10 8

69 absent 195 2 17 63

70 absent 159 4 13 58

71 absent 18 4 11 9

72 absent 15 5 16 7

73 absent 158 5 14 57

74 absent 127 4 12 46

75 absent 87 4 16 31

76 absent 206 4 10 64

77 absent 11 3 15 6

78 absent 178 4 15 62

79 present 157 3 13 56

80 absent 26 7 13 12

81 absent 120 2 13 43

82 present 42 7 6 18

83 absent 36 4 13 16
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EXERCISES

1. For the ship damage data of Example 3.3, try allowing for extravariability by adding

a random effect in the log link for the regression mean. How do regressor effects then

compare with the Poisson model? How might robustness to outliers be gained under

this approach? Try assessing gain in fit by the effective parameter method using the

Poisson deviance (Chapter 2).

2. Also in Example 3.3, assess the expanded variance function (Model C) against the

regression variance function (Model D) via the effective parameters method and

predictive loss methods. Under the predictive loss approach try alternate values of k

such as k � 5, k � 10, and assess stability of inferences on model choice.

3. Following Example 3.5 compare models for schizophrenia cases in small areas

involving (a) the deprivation index as sole predictor and (b) the deprivation

and anomie indices. Evaluate model choice using classical fit measures (i.e.

deviances), the DIC method, and pseudo marginal likelihood based on single case

omission.

4. In Example 3.6 add code for the quantities s1 and s2 comparing risks of infection when

additional risks are present, and assess the probability that s1 exceeds s2.

5. Consider the influence discrepancy functions in Example 3.7 if the four cases 5, 59, 61

and 80 are excluded simultaneously.

6. Suggest how the binomial link mixture model (Section 3.3.4) could be adapted to

modelling an unknown extra-variation parameter k in the Poisson link as in Equa-

tion (3.5), with ÿ1 � k � 1. Try this approach with the ship damage data of Example

3.3.

7. In Example 3.9, try the probit model for the cumulative probability of diagnosis of

metastasis, using the Albert±Chib sampling method.

8. In Example 3.11 consider a logit link and direct Bernoulli sampling (i.e. without

referring to an underlying continuous variable) to reproduce the linear and GAM

models. Also, try a model with a random walk prior on the age effect, such that the

Bernoulli probability is

mt � b0 � b1x1t � b2x2t � b3tx3t

9. The prior on b3t will need to take account of the varying gaps between (grouped)

ages.
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9. In Example 3.15, the code for Model A includes the influence function of Bianco and

Yohai (1996), where

g(d) � d ÿ d2=c (d � c)

� c=2 (d > c)

di is the deviance contribution of case i, and c � ÿ log (k), and k is small (between

0.01 and 0.05). In Program 3.15, c is set to 3:6 � ÿ log (0:03). Try using the posterior

means on the weights g(di)=di, scaled to average 1, as alternative precisions in the

Albert±Chib method with Student t sampling via scale mixing. How does varying k
to 0.01 affect inferences?
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CHAPTER 4 Analysis of Multi-level Data

Analysis of Multi-Level Data

4.1 INTRODUCTION

The behaviour and experience of, and outcomes for, individual actors in society is

defined by the institutions or social groups to which they belong. Failing to take

account of such contextual effects on individual level outcomes may lead to what are

known as atomic or atomistic errors of inference (Courgeau and Baccaini, 1997).

However, analysis of aggregates of individual outcomes (e.g. studies linking area health

status to area income) may be subject to a so-called ecological fallacy by neglecting to

include the mode of operation of risk factors at the individual level. Hence, an analytic

approach simultaneously taking account of different levels of aggregation but consider-

ing the outcome at an individual level may be preferred and less subject to either fallacy.

The statistical task is then `to partition the variation in a response variable as a function

of levels in the hierarchy and relate this variability to descriptions of the data structure'

(Browne et al., 2000).

Examples where this type of approach is relevant include pupil attainment within

schools, psychopathological behaviour within families (Martinius, 1993), or illness or

mortality rates among residents classified by county or local authority (Brodsky et al.,

1999). In these cases, pupils, offspring and individual community residents define the

lower level, known as level 1, of the data hierarchy, and the groups they are members of

define the higher level or level 2. Further levels of aggregation are possible, with lower

level clusters or groups (e.g. classes of pupils) arranged within schools at level 3, which

are further arranged according to local education authority at level 4. Another multi-

level structure is defined by repeat observations on an individual subject (e.g. in growth

curve models), in which the observations on the same individual constitute the first or

most basic level of analysis and the subjects themselves are at level 2.

The model will need to reflect typical features of multi-level data. Thus, individuals

within groups tend to be more alike than individuals across groups. Similarities between

pupils taught in the same school, or between residents of the same neighbourhood, then

generate a correlation at group level. The schools or neighbourhoods constitute `clus-

ters' of the level 1 units and the correlation of responses within clusters is denoted intra-

cluster correlation (Goldstein, 1995; Humphrey and Carr-Hill, 1991). A multi-

level analysis may then seek to identify the effects of both cluster and individual level

variables on the individual level outcome.

Applied Bayesian Modelling. Peter Congdon
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-471-48695-7



Such an analysis will take account of the positive correlation within clusters which

otherwise will result in understating the standard deviation of the effects of cluster

variables. As well as introducing known influences at cluster level, we may introduce

shared unobserved variables within clusters which to some degree model the intra-

cluster correlation among the responses. We are obviously also interested in the impact

of individual attributes on the outcome, and whether they vary across clusters. A multi-

level model will provide estimates of cluster-specific regression estimates, namely vary-

ing intercepts and slopes, that use the information from subjects within each cluster but

also borrow strength from other clusters.

Consider the case of spatial epidemiology, where both individual and contextual

factors are relevant in explaining variations in individual health outcomes. The context

is provided by various levels of geographic aggregation, and effects of area variables

have been termed ecologic effects by Blakely and Woodward (2000), Morgenstern

(1998) and others. Health inequalities are associated with many individual risk factors

(e.g. marital status, ethnicity, social class), but are also known to show wide spatial

variation beyond that which can be attributed to differences in the social composition of

the population. An example is the North-South contrast in both mortality and illness

rates in Britain, which is not wholly explained by differences in social and demographic

structure (see Example 4.2).

At the cluster level therefore some contrasts in mean rates may be compositional ±

merely reflecting the aggregate effect of the socio-economic composition of each area's

or region's residents.1 However, there may additionally be genuine contextual effects:

for instance, if the health experience or behaviour of an individual of a given type (e.g.

as defined by age, class, etc.) varies across regions (Duncan et al., 1999). Morgenstern

(1998) gives some interesting examples of contextual effects: thus, residence in a mainly

Protestant area may raise the suicide risk among non-Protestants, so that there is an

interaction between individual religion and the religious composition of areas of resi-

dence. If, for instance, x denoted individual religion (Protestant or not), X the propor-

tion Protestant in areas of residence, then prediction of y (suicide risk) might involve a

model y � b0 � b1x� b2X � b3xX , where b2 reflects a direct contextual effect and b3 an

indirect one, through the interaction just mentioned.

One possible approach to such contrasts across contextual settings may be denoted

the tabulation method: this involves separate regression analyses for each cluster and

comparison of the resulting effect estimates across clusters. Separate analyses for each

cluster are, however, not the best way to study the interplay of contextual and compos-

itional effects, since they neglect within cluster dependence.

Multi-level analysis often raises further complex statistical issues. For instance,

cluster effects (such as the effect of school variables on pupil attainment) may involve

small sample sizes and possible clusters which are outliers. Hence, robust methods may

be needed to assess inferences and here Bayes methods (e.g. for heavy tailed alternatives

to say normally distributed cluster effects) come into play. There may be issues of

heteroscedasticity where for example the level one variance is not constant but depends

on explanatory variables ± an example might be a residual variance at level 1 differing

between boy and girl pupils. Multilevel outcomes may well also be multivariate (e.g. two

types of exam score for pupils), and the repeated observations of scores on the same

1 Note that this term does not refer to a decomposition of variance in the sense of spatial vs unstructured
errors in spatial outcomes as will be considered in Chapter 7. However, spatial correlation of cluster effects
(e.g. among varying intercepts and slopes) may be relevant when the clusters are geographic areas.
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subject constitute the first level in this instance. Further, while many multi-level appli-

cations consider only inference within the sample or survey, one may also use multi-level

approaches in making inferences beyond the survey, specifically for small domain

estimation. The goal may be to make inferences about the average outcome in a

domain (formed, say, by cross-classifying demographic attributes with relatively low

scale geographic level) where the survey data themselves contain only a few units,

perhaps none, from that domain. This may involve referring to other sources of data

on the domains (e.g. Census data as well as the survey results themselves).

A Bayesian estimation perspective, especially one based on MCMC methods, may

have advantages over maximum likelihood estimation based on (say) iterative general-

ised least squares. Thus, GLS estimates may understate random effect variances because

not all sources of sampling uncertainty in the relevant parameters are allowed for in

their derivation. This is particularly so for small numbers of clusters (e.g. the number of

classes or schools), small cluster sizes, and in unbalanced hierarchical data sets, where

cluster sizes differ between clusters. GLS methods may also suffer from convergence

problems in these situations. A Bayesian model based on iterative sampling may be

useful in providing simplified `significance tests' on parameters or derived quantities,

based on counting samples where the hypothesis holds. By contrast, a maximum

likelihood approach typically rests on asymptotic normality and relevant standard

errors for derived quantities (e.g. for a difference in level 1 variances if these are made

functions of regressors) may be difficult to derive. However, although the Bayesian

approach may be advantageous in some respects, there may be the sensitivity to prior

specifications, especially for small samples, or small numbers of clusters at higher levels.

This may be the case, for instance, regarding covariation of the random effects at

different levels (Daniels, 1999; Browne and Draper, 2000; Daniels and Kass, 1999).

This chapter adopts a Bayes perspective in terms of the application of multi-level

concepts to both continuous and discrete data (Section 4.2) Examples of different

outcome types are provided by two level models applied to continuous pupil attainment

and binary health outcome data. Then Section 4.3 considers multi-level models includ-

ing heteroscedasticity at one or more levels, with variances dependent on continuous or

categoric regressors. This is illustrated with the pupil attainment data set and with a

binary attitude outcome from a survey. Questions of robust inference are raised in

multi-level models, where multivariate normality of cluster and higher level effects is a

typical default, but may be problematic if cluster sample sizes are small (Seltzer, 1993).

This question is considered in Section 4.4. The chapter concludes in Sections 4.5 and 4.6

by considering multivariate outcomes within a multi-level context, and the application

of multi-level concepts to derive population wide predictions within domains defined by

survey variables.

4.2 MULTI-LEVEL MODELS: UNIVARIATE CONTINUOUS

AND DISCRETE OUTCOMES

The nesting of observations allows considerable scope for differentiating or indexing

regression and or error variance effects, guided both by subject matter indications and

by statistical criteria such as model parsimony and identifiability. For example, suppose

we have pupils arranged by class and school (levels 2 and 3, respectively); then the effect

of the level 2 variable, classroom size, on a continuous attainment score (the level

1 outcome) may be affected by school resources (at level 3). The effect on attainment
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of a level 1 variable, such as pupil ability, may be differentiated both by class and

school.

In terms of formal model specification, consider simply the nesting of pupils within

classes. Suppose we have a two level data set with continuous observations Yij in classes

j � 1, : : J at level 2, and pupils i � 1, : : nj within classes at the lowest level. Predictors

may be defined at each level, say Xhij(h � 1, : : p) at level 1 and Zhj(h � 1, : : q) at level 2;

an example of the first type of predictor might be pupil ability or gender, and of the

second, class size or teacher style. In a multi-level regression model, covariate effects and

errors may be specified at each level and are potential cumulative sources of explanation

or error in the outcome.

Thus, in predicting the outcome at level 1, one may define error terms vj at level 2, and

uij at level 1 (both with zero mean). Suppose p � 2 with X1ij � ability and X2ij � gender

(1 � girls, 0 � boys). Then a two-level model for continuous outcomes with fixed

impacts of the level 1 predictors might take the form

Yij � a� b1X1ij � b2X2ij � vj � uij

Combining the intercept and level 2 error gives

Yij � aj � b1X1ij � b2X2ij � uij (4:1)

so that the aj are varying regression intercepts over the level 2 units. The mean response

at level 1 would be conditional on the random intercept:

E(YijjX ij, aj) � b1X1ij � b2X2ij � aj

So the centred Normal version of this two level continuous data model, where

uij � N(0, s2) would be

Yij � N(b1X1ij � b2X2ij � aj, s2)

Note that this is the form for Gaussian or Student t data used in BUGS (remembering

of course that BUGS uses a different parameterisation of the Normal).

In this model the impact of level 1 predictors is constant across higher level contexts

and the effect of the cluster is reflected only in different intercepts. Typically, the cluster

effects (random intercepts) aj would be exchangeable errors with no correlation struc-

ture, that is unstructured `white noise'; however, if the clusters were geographic areas

one might envisage them being spatially correlated. One may well seek to explain

varying intercepts in terms of the characteristics of clusters (or characteristics of higher

level groupings of the clusters themselves).

The interpretation of the regression coefficient bh for the hth predictor Xhij in (4.1) is

then as a change in the expected response for a unit change in that predictor, with the

error term at level 2 held constant. By contrast, multi-level models commonly differen-

tiate the effects of the level 1 predictors according to clusters (here school classes)

j � 1, : : J. So the effect of pupil ability or gender may be differentiated as follows

Yij � (b1 � d1j)X1ij � (b2 � d2j)X2ij � aj � uij

where d1j and d2j express the differential effect (with mean zero) that a pupil's class has

on the impacts on attainment of pupil ability or gender. One might also, conflating the

fixed and zero-centred random effects dhj , write this model as

Yij � b1jX1ij � b2jX2ij � aj � uij (4:2)
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As noted by Clayton (1996), the Bayesian viewpoint means that there is no longer a need

to partition a parameter effect into fixed and random components. So we have a model

with varying intercepts and slopes. To enable pooling of strength typically involves

assuming these effects are random, namely drawn from a parametric population wide

distribution over school classes ± though fixed effects approaches may arguably have

more validity in certain circumstances (Rice et al., 2000).

A common assumption is for univariate or multivariate normal errors for the higher

level effects, namely aj in (4.1), and {aj, bhj} in (4.2). Thus, the priors for varying

intercepts and slope effects for schools might be taken as independent Normals

aj � N(A, ta)

bhj � N(Bh, tb�h) h � 1, : : p

where A and the Bh are known constants. Alternatively, a p� 1 multivariate normal

density could be used allowing for covariation between intercepts and slopes. As

mentioned above, more informative from a subject matter viewpoint may be to relate

variations in the parameters {aj, bhj} to cluster predictors Zj. As considered further

below, there may also be gains from modelling the variances as functions of predictors.

In applications where the clusters are geographic areas, the multivariate density for

{aj, bhj} might allow for spatial correlation (see, for example, Leyland et al., (2000), and

the discussion in Chapter 7).

While the above notation implies a nested arrangement of the data, it is often

convenient, especially with unequal nj in each cluster, to arrange the data in terms of

a single subject index, so that a univariate outcome y would be arranged in terms of

a vector of length Tn � �nj. A vector of cluster membership indices, with values

between 1 and J would also be of length N. This type of arrangement is also useful

for crossed rather than nested data structures, for example, pupil data by school and

area of residence.

4.2.1 Discrete outcomes

Multi-level analysis of discrete outcomes may be carried out in the appropriate linked

regression (e.g. via a log link for a Poisson dependent variable or logit link for a

binomial variable) (Goldstein, 1991). This may involve introducing into the regression

structure such forms of random variation that are needed both to describe the hierarch-

ical data structure and account for heterogeneity beyond that expected under the model

form. For example, consider a two level Poisson count Yij for i � 1, : : nj units within

j � 1, : : J groups, and with Tn � �nj. Denoting the Poisson means as mij and assuming a

single level 1 predictor Xij , a log-linear regression may be specified

log (mij) � aj � bjXij

or with a level 1 error term

log (mij) � aj � bjXij � uij (4:3)

The first form assumes heterogeneity will be largely accounted for by the group specific

intercepts and slopes, while the second allows an unstructured error with variance s2 to

account for residual heterogeneity beyond that associated with the Poisson regression

(Congdon, 1997, Ghosh et al., 1998).
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This sort of over-dispersion is apparent in deviances at the posterior mean exceeding

the available degrees of freedom (McCullagh and Nelder, 1989). For a binary or

binomial outcome, there is a similar choice. Thus, suppose Yij is binomial, with

Yij � B(pij , Rij), where Rij is the total number of events, and Yij is the number of

`successes'. Then a logit link model with cluster only intercepts

logit(pij) � bXij � aj

may need (if there is still over-dispersion) to be expanded to include level 1 variability,

so that

logit(pij) � bXij � aj � uij (4:4)

It may be noted though that a suitable prior for the level 1 variance in a Poisson or

binomial model, as in Equations (4.3) or (4.4) may require care to avoid large values of

s2 since otherwise the random effects tend to produce too close fit to the data (Johnson

and Albert, 1999, p. 113). Thus Johnson and Albert suggest for their application an

informative inverse gamma prior for the variance, with parameters 5 and 1.5, which

result in most of the mass for the variance being concentrated between values 0.1 and 1.5.

One advantage of simulation based Bayesian estimation and inference is the ease of

direct modelling of Poisson or binomial outcomes without resorting to weighted least

squares approximations. For example, over-dispersion may be modelled via Normal or

possibly Student t random errors in the log-link, as in Equation (4.3). One might also

adopt conjugate forms to model the level 1 variation, with a Poisson outcome for

instance being modelled as

Yij � Poi(mijgij)

where the gij are taken as gamma variables with mean 1. Alternatively, for suitably large

counts Normal approximations to the binomial or Poisson may be used. This implies

Normal sampling (or possibly Student t sampling) but with a variance function appro-

priate to the form of the data. Thus for a binomial outcome, with Yij events occurring in

Rij at risk

Yij � N(pijRij, Vij)

with

Vij � f2Rijpij(1ÿ pij) (4:5)

and with the regression for the pij involving a logit or probit link. In Equation (4.5)

f2 � 1 would be expected (approximately) if the level 1 variation were binomial,

whereas heterogeneity beyond that expected under the binomial yields f2 well above 1.

Example 4.1 Language scores in dutch schools As an example of the two level

situation for continuous data, consider data on language scores in 131 Dutch elemen-

tary schools for Tn � 2287 pupils in grades 7 and grade 8, and aged 10 and 11 (Snijders

and Bosker, 1999). In each school a single class is observed, and so the nesting structure

is of pupils within J � 131 classes. We are interested in the impact on language scores of

pupil level factors such as IQ, and pupils social status (SES). Also relevant to explaining

possible differences in intercepts and slopes (on IQ and SES) are class level variables:

these include the class size, the average IQ of all pupils in the class, and whether the class

is mixed over grades: thus COMB � 1 if the class includes both grade 7 and grade 8

pupils and COMB � 0 if the class contains only grade 8 pupils. These variables are
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denoted ClassSize[ ], IQ.class[ ]) and comb[ ] in Program 4.1. Following Snijders and

Bosker, the pupil variables and the class variables are centred, and this aids in achieving

earlier MCMC sampling convergence. Note that in Program 4.1 the data are arranged

by subject in a `single string' vector, with class memberships 1, 2 . . . 131 in a vector of

length 2287.

A model with random intercepts but fixed impacts of the two pupil level vari-

ables (Model A) is estimated first. The intercepts are explained by three class

level variables: average IQ, mixed grade class or not and class size. So Model A is

defined as

Yij � N(mij , fÿ1) i � 1, : : nj; j � 1, : : J

mij � aj � b1(X1ij ÿ �X1)� b2(X2ij ÿ �X2)

aj � N(nj , fÿ1
a )

nj � g1 � g2(Z1j ÿ �Z1)� g3(Z2j ÿ �Z2)� g4(Z3j ÿ �Z3)

where X1 and X2 are pupil IQ and SES and Z1, Z2 and Z3 are, respectively, class IQ,

class grade type, and class size. The assumed priors are f � G(0.001, 0.001),

fa � G(0.001, 0.001), bk � N(0, 107), k � 1, 2 and gk � N(0, 107), k � 1, 4.

Posterior estimates are based on the second half of a three chain run of 5000

iterations. Initial values for b and g in the three chains are provided by null start values

(chain 1), start values in chain 2 equal to the posterior means from the trial run, and

values in the third chain equal to the 97.5% point from the trual run. Starting values for

the inverse variances are also based on the test run. Convergence by the Brooks±Gel-

man criteria (Brooks and Gelman, 1998) is evident at well under 1000 iterations, with

mixing satisfactory in terms of rapid decline in the autocorrelations between parameter

iterates at successive lags.

The parameter estimates for model A (Table 4.1) show that pupil IQ and SES both

have clearly positive impacts on attainment. The intercepts vary between classes in such

a way that classes with higher average IQs and containing only grade 8 pupils have

higher attainments. There is also a weak negative impact g4 of class size, with 95%

interval (from ÿ0.14 to 0.06) biased towards negative values. One option here would be

to try a transform of the class size variable, since a negative value might be expected on

subject matter grounds.

A second model adopts random slopes on pupil IQ and SES; the same class

level predictors as in Model A are used to explain variations in the slopes on these

two pupil predictors. Thus in Model B

Yij � N(mij , fÿ1) i � 1, : : nj; j � 1, : : J

mij � b1j � b2j(X1ij ÿ �X1)� b3j(X2ij ÿ �X2)

bj � N3(nj, V � b) (4:6a)

nkj � g1k � g2k(Z1j ÿ �Z1)� g3k(Z2j ÿ �Z2)� g4k(Z3j ÿ �Z3) (4:6b)

The varying class level parameters bj � (b1j, b2j, b3j) are taken to be trivariate Normal

with means nj � (n1j , n2j, n3j). The initial values for the three chains are provided by the
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Table 4.1 Dutch language tests

Model A

Mean St. devn. 2.5% 50% 97.5%

Deviance Precisions 14930 16.98 14900 14930 14960

f 0.025 0.001 0.024 0.025 0.027

f:a 0.131 0.022 0.093 0.129 0.178

Level 1 Effects

Pupil IQ 2.21 0.07 2.06 2.21 2.35

Pupil SES 0.16 0.01 0.13 0.16 0.19

Level 2 Model for Level 1 Intercepts

Intercept 41.58 0.44 40.72 41.58 42.46

Class IQ 1.10 0.32 0.48 1.10 1.72

Combined Class ÿ2.10 0.82 ÿ3.75 ÿ2.10 ÿ0.50

Class Size ÿ0.038 0.053 ÿ0.142 ÿ0.037 0.065

Model B

Mean St. devn. 2.5% 50% 97.5%

Deviance 14860 24.26 14810 14860 14910

Level 2 Covariance Elements

V.b11 7.658 1.343 5.373 7.533 10.57

V.b12 ÿ0.537 0.295 ÿ1.145 ÿ0.528 0.023

V.b13 ÿ0.001 0.067 ÿ0.132 ÿ0.002 0.134

V.b22 0.251 0.087 0.121 0.238 0.449

V.b23 ÿ0.013 0.014 ÿ0.044 ÿ0.012 0.012

V.b33 0.030 0.005 0.021 0.029 0.042

Level 1 Precision

f 0.026 0.001 0.024 0.026 0.027

Level 2 Parameters (Equation (4.6))

g11 41.58 0.49 40.63 41.57 42.54

g12 2.13 0.15 1.84 2.14 2.43

g13 0.166 0.036 0.096 0.166 0.238

g21 0.896 0.361 0.171 0.902 1.586

g22 ÿ0.013 0.091 ÿ0.189 ÿ0.013 0.166

g23 ÿ0.012 0.026 ÿ0.064 ÿ0.012 0.040

g31 ÿ1.947 0.886 ÿ3.696 ÿ1.935 ÿ0.228

g32 0.380 0.282 ÿ0.139 0.374 0.915

g33 0.016 0.064 ÿ0.110 0.016 0.142

g41 ÿ0.044 0.055 ÿ0.154 ÿ0.044 0.062

g42 ÿ0.006 0.017 ÿ0.041 ÿ0.006 0.025

g43 ÿ0.002 0.004 ÿ0.010 ÿ0.002 0.006
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same procedure as in model A except that the starting values for the precision matrix on

the parameters {bj1, bj2, bj3} are obtained by random draws from the Wishart prior for

this matrix. This prior is taken to have three degrees of freedom and an identity scale

matrix.

A 5000 iteration run with three chains is used for estimation, with the summary based

the second half of the run. Note that Bayes estimation suggests that there does appear

to be variation in the impact of SES across the classes, and some suggestion of

covariation between SES and IQ: by contrast, Snijders and Bosker, using a weighted

least squares method, failed to gain convergence when this variation and covariation

was allowed for.

However, the extended model calls into question the relevance of the full set of cluster

variables Zj in predicting variability in slopes, and suggests over-parameterisation; the

exception is the parameter g32 which represents the additional impact of child IQ on

attainment in mixed classes where COMB � 1. Note that these findings point to

reformulation of the regression model (4.6b) to explain variable slopes, and not neces-

sarily to a drawback in the random intercepts and slopes assumption (4.6a). As Snijders

and Bosker (1999, p. 77) point out, it is not necessary to use all the cluster variables Zhj

in explaining variability in the coefficients bkj, k � 1, : :, p� 1.

Example 4.2 Long term illness As an example of binary outcome at individual level,

this example follow Shouls, Congdon and Curtis (1996) in considering variation in

individual level chances of the binary outcome, namely being long term ill. The data

used draw on a 2% sample of anonymised individual records (abbreviated as the SAR)

from the 1991 UK Census, and nested within 278 local authority areas. The full analysis

focused on the age group 15±64 and on a 10% sample of the SAR data itself, i.e. a 0.2%

sample of the full Census, amounting to around 90 thousand males and females in this

age group. We focus here on females aged 45±59, excluding cases with missing covari-

ates; the covariates are age, non-white ethnicity, being married and being in lower skill

manual occupations (social classes IV and V ). Additionally, an indicator of multiple

deprivation is included for each individual, and is a tally of yes/no responses according

to whether the individual is unemployed or the household of the individual does not

own their home, does not own their car, has no access to a separate bathroom, or lives

at over 1 person per room. This tally S appears as the variable sumdep[ ] in Program 4.2,

which is then transformed to the regressor X � log (1� S). A quadratic term in age is

used (see Program 4.2); other options might be linear or log-linear terms, though a

linear effect does not reflect the fact that the chance of long term illness increases steeply

towards the end of the 45±59 age band.

The study of Shouls et al. (1996) found that there were contextual impacts of

individual deprivation: its effect was greater in (more affluent) areas with lower average

illness levels. This conclusion was based on a bivariate normal model at local authority

area level for the intercepts and slopes on individual deprivation. Note that the analysis

of Shouls et al. was based on iterative weighted least squares. Here three models are

considered:

. one with intercept only variation (model A);

. one which replicates the Shouls et al. analysis, but with a Bayes specification of the

contextual effect just described (Model B); and
. Model C, in which area variability in the effect of social class is added.
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Further to the work of Shouls et al., a cluster level variable Z1 is introduced into Models

B and C: thus Z1j � 1 if local authority j is in the North of England. This variable may

assist in explaining intercept and slope variation.

It may be noted that varying effects across clusters implies two types of ecologic effect

on health status: thus define Yij � 1 if individual i in local authority j is long term ill

(and Yij � 0 otherwise). Then Model B states the following:

Yij � Bern(pij)

logit(pij) � b0j � b1jDepij � b2AgeSqij � b3LowSkillij

� b4NonWhiteij � b5Marriedij (4:7a)

where Dep is the transformed (and then centred) deprivation score, and the age squared

variable is also centred. Model A has varying intercepts as in Equation (4.7), but a fixed

effect of individual deprivation, b1j � b1.

The level 2 models for the variable intercepts and slopes in Model B are

b0j � g00 � g01Z1j � e0j (4:7b)

b1j � g10 � g11Z1j � e1j (4:7c)

where the ej � (e0j, e1j) are bivariate normal. (In model A, b0j is univariate Normal.)

Substituting (4.7b) and (4.7c) into (4.7a) then gives

logit(pij) � g00 � g01Z1j � g10Depij � g11Z1jDepij � b2AgeSqij

� b3LowSkillij � b4NonWhiteij � b5Marriedij � e0j � e1jDepij

Thus there is both a direct `cross-level effect' of Z1 on the individual outcome (with

coefficient g01) and an indirect cross-level effect with coefficient g11 produced by the

interaction of individual deprivation and the cluster variable (here the North-South

divide in England).

In both Models A and B, three chains2 are run for 2500 iterations, with convergence

in the fixed effects and elements of the cluster precision matrix (cluster variance in

Model A) apparent at under 500 iterations and with satisfactory mixing (fast decay

in lagged dependence in sampled parameter values); the posterior summaries are based

on iterations 500±2500.

Model A shows the anticipated positive impacts of age on the chance of illness and

a lower rate for married people. It is notable that social class effects on illness exist

even after allowing for individual deprivation. Model A shows significant variation

between local authorities in long term illness rates after accounting for these

observed characteristics. One advantage of sampling based estimation is the maximum

and minimum intercept may be monitored; these average ÿ1.33 and ÿ3.02.

This suggests we consider either (a) simply allowing for variable effects on illness

over area of the individual characteristics (age, etc.), and modelling covariation of the

variable slopes with the illness rate, or (b) additionally modelling the variability in local

authority intercepts and slopes in terms of area attributes, such as area deprivation,

2 Initial values are provided by a null (zero values) on the regression coefficients, by the posterior mean of a
test run, and by the upper 97.5% point of that test run.
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position in terms of the North-South divide in the UK, and so on. Only option (b)

allows for the cross-level effects just described.

Here Model B adopts a step along such a broader perspective in considering a

bivariate model for varying intercepts and varying effects of individual deprivation,

and in introducing a simple cluster variable. The results for Model B show a higher level

of illness in the North than the south of England (a clearly positive g01), but no effect of

this variable on the slope variation. There is only a weak negative correlation, averaging

ÿ0.13, between the illness level and the slope on individual deprivation. Model C shows

more evidence suggesting a contextual effect, with the varying slopes on social class IV

and V tending to be higher in low illness areas (Table 4.2).

4.3 MODELLING HETEROSCEDASTICITY

Regression models for continuous outcomes, whether single or multi-level, most fre-

quently assume that the error variance is constant. In a multi-level analysis, for instance,

this means that the level 1 variance is independent of explanatory variables at this level.

It is quite possible, however, that the variance (and so the precision also) are related

systematically to explanatory variables or other characteristics of the subjects. In

discrete data models (e.g. Poisson or binomial) random effects at level 1 may be

introduced if there is over-dispersion (see Equations (4.3) and (4.4)), and such errors

may have a variance which depends on the explanatory variates. Heteroscedasticity may

also be modelled at higher levels, as the abortion attitudes example below illustrates.

Recent work comparing marginal and conditional regression specifications in multi-

level modelling emphasises the need to model heteroscedasticity where it is present

(Heagerty and Zeger, 2000). Goldstein et al. (1991), and more recently Browne et al.

(2000), have argued that proper specification of the random part of a multi-level model

(i.e. allowing for possible non-homogenous variances at one or more levels) may be

important in inferences on the mean regression coefficients. Therefore, one way towards

more robust inference in multi-level, and potentially better fit also, is to model the

dependence of variation on relevant factors; these might well be, but are not necessarily,

among the main set of regressors.

If the differences in variance are specified according to a categorical variable Cij

observed at level 1, then one might simply take variances specific to the levels 1, : :K of

Cij. For instance, if fk denotes the inverse variance for the kth level of Cij, then one

might adopt a series of gamma priors

f1 � G(a1, b1), f2 � G(a2, b2), . . . fc � G(ak, bk) (4:8)

Equivalently, log (fij) can be regressed on a factor defined by the levels 1, : : , K of Cij .

One might also model the heterosecdasticity by relating log variances to a general

function of relevant factors or the entire regression term. An explicit random error

derivation can be illustrated by a two level model, with

Yij � b0 � b1X1ij � b2X2ij � : : � uij

Then the level 1 random effect is written as

uij � R0ij � R1ijWij
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Table 4.2 Risk factors for long term illness

Mean St. devn. 2.5% 97.5%

Model A

Log-Likelihood ÿ2710 12 ÿ2737 ÿ2689

Covariates modelled as random

Average Intercept ÿ2.18 0.09 ÿ2.38 ÿ2.03

Intercept variance 0.14 0.04 0.08 0.22

Fixed Effects of Individual (Level 1) Covariates

Age Squared 0.00059 0.00008 0.00043 0.00075

Social Classes IV,V 0.34 0.08 0.17 0.49

Non-White 0.19 0.18 ÿ0.15 0.56

Married ÿ0.17 0.09 ÿ0.34 0.02

Deprivation 0.68 0.09 0.50 0.86

Model B

Log-Likelihood ÿ2687 11 ÿ2707 ÿ2665

Covariates modelled as random

Average Intercept ÿ2.34 0.09 ÿ2.52 ÿ2.16

Average Effect of Individual Deprivation 0.64 0.13 0.40 0.89

Effect of N-S divide on Intercept 0.42 0.09 0.23 0.60

Interaction between N-S divide and Individual Deprivation ÿ0.01 0.20 ÿ0.42 0.37

Intercept variance 0.14 0.04 0.08 0.22

Slope Variance 0.22 0.09 0.09 0.45

Correlation between Intercepts and Deprivation Slopes ÿ0.13 0.22 ÿ0.55 0.31

Fixed Effects of Individual (Level 1) Covariates

Age Squared 0.00060 0.00008 0.00044 0.00075

Social Classes IV,V 0.34 0.08 0.17 0.50

Non-White 0.30 0.19 ÿ0.07 0.65

Married ÿ0.18 0.09 ÿ0.36 ÿ0.01

Model C

Log-Likelihood ÿ2673 13 ÿ2697 ÿ2648

Covariates modelled as random

Average Intercept ÿ2.32 0.10 ÿ2.52 ÿ2.14

Effect of N-S divide on Intercept 0.37 0.11 0.16 0.58

Average Effect of Individual Deprivation 0.66 0.13 0.42 0.90

Interaction between N-S divide and Individual Deprivation ÿ0.06 0.19 ÿ0.43 0.33

Average Effect of Individual Social Class 0.23 0.12 ÿ0.01 0.46

Interaction between N-S divide and Individual Social Class 0.19 0.19 ÿ0.19 0.57

Intercept variance 0.13 0.04 0.07 0.23

Deprivation Slope Variance 0.25 0.12 0.09 0.53

Social Class Slope Variance 0.25 0.11 0.09 0.52

Correlation between Intercepts and Deprivation Slopes 0.00 0.24 ÿ0.47 0.48

Correlation between Intercepts and Social Class Slopes ÿ0.32 0.22 ÿ0.68 0.15

Correlation between Class Slopes and Deprivation Slopes ÿ0.20 0.27 ÿ0.67 0.33

Fixed Effects of Individual (Level 1) Covariates

Age Squared 0.00060 0.00008 0.00044 0.00076

Non-White 0.31 0.19 ÿ0.07 0.66

Married ÿ0.19 0.09 ÿ0.37 ÿ0.01
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where Wij � Xijb is the total linear regression term3, and where

var(R0ij) � s2
0, var(R1ij) � s2

1

and cov(R0ij, R1ij) � s01. Hence,

Vij � var(uij) � s2
0 � 2s01Wij � s2

1W
2
ij

As Snijders and Bosker (1999, p. 114) note, such a formula can be used without the

interpretation that s2
0 and s2

1 are variances and s01 a covariance; the formula may

simply be used to imply that the level 1 variance is a quadratic function of Wij. Note that

in BUGS, one must transform back from precisions to variances to find how variances

differ between groups or subjects defined by different predictors.

Example 4.3 Language score variability by gender This example continues Example 4.1

in terms of language scores of Dutch school children. However, instead of assuming a

constant level 1 variance, we consider possible heteroscedasticity according to pupil

characteristics. As a simple illustration of heteroscedasticity, consider the pupils in

terms of grouped IQs, and the resulting averages and variances of the scores (Table 4.3).

It is apparent that at IQs above 12, there is a lesser variability in test scores (as well as

higher average attainment).

Snijders and Bosker (1999, p. 111) consider the same phenomenon, but by pupil

gender. We follow their analysis and include a `Bayesian significance test' to assess

whether in fact the gender specific variances do differ in terms of conventional signifi-

cance levels. Let Gij denote the gender of pupil i in class j (� 1 for girls, 0 for boys).

Variable regression slopes for child IQ are assumed, but a homogenous regression effect

of SES and gender. A single cluster attribute (Z1 � class IQ) is used to explain variation

in intercepts and the child IQ slopes. The model, coded in Program 4.3, may then be set

out as follows:

Yij � N mij , fÿ1
ij

� �
i � 1, : : nj; j � 1, : : J

mij � b1j � b2j(IQij ÿ �IQ)� b3(SESij ÿ S�ES)� b4Gij

bj � N2(nj, Vb)

nkj � g1k � g2k(Z1j ÿ �Z1) k � 1, 2

log fij � c1 � c2Gij

3 Alternatively, a single regressor might be used, with

uij � R0ij � R1ijXij

Hence,

Vij � var(uij) � s2
0 � 2s01Xij � s2

1X
2
ij :
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Table 4.3 Means and variances of scores by IQ group

IQ group Average language

score

St. devn. of

language score

4±5.99 28.3 8.1

6±7.99 28.8 8.5

8±9.99 32.3 7.7

10±11.99 37.7 8.1

12±13.99 43.9 6.8

14±15.99 48.5 5.5

16� 50.2 4.7

Priors with large variances are assumed for the b and g coefficients, but for numerical

stability c1 and c2 are assigned relatively informative N(0, 1) priors.

Analysis is based on three parallel chains and a 5000 iteration run with 500 burn-in.

Mixing and convergence are satisfactory. In Table 4.4, R.b[1, 2] denotes the correlation

between intercepts and IQ slopes, and shows a clear contextual effect: classes with lower

than average attainment have higher impacts of individual IQ. The coefficient c2 shows

that girls have higher precision (and hence lower variance) in their language scores, and

the posterior mean variances for boys and girls are, respectively, 38.6 and 36.2.

It may be noted that the coefficient c2 straddles zero throwing doubt on a clear

difference in variances. To assess whether the variance for boys exceeds that of girls, a

significance test based on the proportion of iterations where the condition holds, shows

a significance rate around 85%. Furthermore, a reduced model with equal gender

Table 4.4 Heteroscedasticity in Level 1 language score

variances

Mean St. devn. 2.5% 97.5%

Deviance 14780 20.64 14740 14820
R.b[1, 2] ÿ0.55 0.15 ÿ0.79 ÿ0.22

Gender specific level 1 variances

s2 (boys) 38.60 1.68 35.45 41.97

s2 (girls) 36.23 1.66 33.10 39.60

c1 ÿ3.65 0.04 ÿ3.74 ÿ3.57

c2 0.064 0.064 ÿ0.061 0.191

Fixed slopes

b3 0.15 0.01 0.12 0.18

b4 2.47 0.25 1.97 2.96

Cluster model for variable intercept and IQ slope

g11 39.57 0.32 38.94 40.19

g12 2.28 0.08 2.12 2.44

g21 1.07 0.32 0.42 1.70

g22 ÿ0.11 0.08 ÿ0.27 0.05
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variances provides no increase in average deviance, and so one may conclude that there

is in fact no pronounced evidence of different gender variances.

Example 4.4 Attitudes to abortion Heagerty and Zeger (2000) consider data from

four waves of the British Social Attitudes Survey (1983±86) on attitudes to abortion.

Level 1 is then the survey wave, level 2 is the survey respondent and level 3 is district of

residence. Of particular interest in their analysis are the modelling of heterogeneity at

levels 2 and 3 (subjects and clusters), and of heteroscedasticity at level 2, and resulting

impacts on fixed regression coefficients. The Tn � 1056 responses are classified by

district j (J � 54), subject i (with 264 subjects), and by year t within subject (t � 1, 4).

Heagerty and Zeger consider a dichotomisation of abortion attitudes, namely the

views encompassed under `no legal restriction' as against `possible legal restriction'.

Thus, Yijt � 1 if a person believes abortion should be permitted in a range of hypothet-

ical situations, while Yijt � 0 if a person believes abortion should not be allowed in one

or more of these circumstances. At subject level the covariates are year, social class (1 �
middle, 2 � upper working, 3 � lower working), sex (1�male, 2 � female), and religion

(Roman Catholic � 1; Protestant or Church of England � 2; other religion � 3; no

religion � 4). Because these covariates are fixed over time, they are denoted Xij . They

are modelled as categorical factors, with the first level in each having a null effect. Note

that, for a factor with F levels, if b1 � 0 and only b2, : :bF are free coefficients, the

profile of centred effects (averaging zero rather than with a corner constraint) can be

obtained by monitoring the transformed coefficients

kk � bk ÿ �b

At cluster level (i.e. district of residence), there are an intercept and an overall percent-

age Protestant (Zj): this variable measures the religious context or social environment

governing attitudes as opposed to the individual's creed.

Thus a three level model (times within respondents within districts) with a logit link

for the binary outcome, and with no random effects, may be specified as

Yijt � Bern(pijt)

logit(pijt) � w� Zt � bXij � gZj

This independence model (Model A) therefore includes effects for year, social class,

religion, gender and the district variable. w is the overall intercept and the Zt are year

effects with year 1 effect being zero. Early convergence in a three chain run is apparent

in terms of Gelman±Rubin summaries for {w, Z, b, g}, with fast decay in the auto-

correlations at successive lags in the MCMC iterations. The posterior summary in Table

4.5 is based on 5000 iterations with 500 burn in.

The parameter estimates for Model A show that working class respondents are less

likely to give the unrestricted view; and that women as compared to men, and Catholics

and `other religions' as compared to Protestants and non-believers are also less likely to

give the unrestricted view. Living in a `Protestant' area also boosts the chance of giving

a `no legal restriction' response.

A second model (Model B) introduces random variation at subject and district levels

(levels 2 and 3). So

Yijt � Bern(pijt)
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Table 4.5 British social attitudes

Mean St. devn. 2.50% 97.50%

Model A (independence model)

Log Likelihood ÿ628 2 ÿ633 ÿ624

Intercept ÿ0.79 0.28 ÿ1.34 ÿ0.24

Year 2 ÿ0.42 0.20 ÿ0.80 ÿ0.04

Year 3 0.04 0.19 ÿ0.33 0.41

Year 4 0.18 0.19 ÿ0.19 0.56

Subject Effects

Upper Working Class ÿ0.31 0.19 ÿ0.68 0.06

Lower Working Class ÿ0.42 0.16 ÿ0.74 ÿ0.09

Gender ÿ0.27 0.14 ÿ0.55 0.00

Protestant ÿ0.43 0.32 ÿ1.08 0.18

Other Religion ÿ0.60 0.24 ÿ1.09 ÿ0.13

No religion 0.70 0.18 0.36 1.05

Cluster (District) Effects

Protestant 0.80 0.29 0.25 1.37

Model B (Level 2 & 3 homogenous errors)

Log Likelihood ÿ388 12 ÿ412 ÿ365

Intercept ÿ1.28 0.55 ÿ2.39 ÿ0.20

Year 2 ÿ0.73 0.26 ÿ1.24 ÿ0.23

Year 3 0.07 0.24 ÿ0.41 0.54

Year 4 0.30 0.24 ÿ0.16 0.78

Subject Effects

Upper Working Class ÿ0.51 0.35 ÿ1.19 0.20

Lower Working Class ÿ0.38 0.34 ÿ1.05 0.29

Gender ÿ0.53 0.35 ÿ1.26 0.15

Protestant ÿ0.56 0.63 ÿ1.82 0.66

Other Religion ÿ0.94 0.50 ÿ1.93 0.02

No religion 1.07 0.40 0.30 1.86

Cluster (District) Effects

Protestant 0.95 0.61 ÿ0.27 2.11

Random Effects St devns

Level 2 2.28 0.25 1.82 2.81

Level 3 0.53 0.40 0.01 1.33

Model C (Level 2 heteroscedasticity)

Log Likelihood ÿ387 12 ÿ411 ÿ365

Intercept ÿ1.25 0.59 ÿ2.38 ÿ0.06

Year 2 ÿ0.74 0.25 ÿ1.23 ÿ0.24

Year 3 0.07 0.24 ÿ0.39 0.54

Year 4 0.31 0.24 ÿ0.15 0.78

Subject Effects

Upper Working Class ÿ0.48 0.39 ÿ1.25 0.30

Lower Working Class ÿ0.22 0.37 ÿ0.95 0.51

Gender ÿ0.65 0.35 ÿ1.33 0.02

Protestant ÿ0.55 0.59 ÿ1.72 0.61

Other Religion ÿ1.14 0.51 ÿ2.16 ÿ0.13
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Model C (Level 2 heteroscedasticity) (continued)

No religion 0.77 0.41 ÿ0.02 1.58

Cluster (District) Effects

Protestant 1.07 0.61 ÿ0.15 2.22

Level 2 St devns

Middle 2.95 0.61 1.91 4.29

Skilled Working 2.94 0.57 1.98 4.22

Unskilled 1.77 0.29 1.27 2.40

Level 3 (District) Standard devn 0.40 0.35 0.01 1.22

logit(pijt) � w� Zt � bXij � gZj � uij � aj

where uij and aj are normal random effects with homogenous variances tu and ta.

Following Heagerty and Zeger, none of the slopes b are taken to vary randomly. Initially,

G(0.0001, 0.0001) priors are assumed on 1=tu and 1=ta. N(0, 10) priors are taken on the

intercept and the effects b, g and Z relating to year, percents Protestant, class, etc. Three

parallel chains are run for 5000 iterations; convergence is apparent at under 500 iter-

ations, and the posterior summary in Table 4.5 is based on iterations 500±5000.

Under the prior assumptions just mentioned, there is a pronounced gain in likelihood

over Model A, though a full assessment would require penalising for the additional

random effects and variance parameters (see the Exercises). The absolute effects b,

in terms of posterior means, of most of the categorical variables (class, sex, religion) are

enhanced, though generally with lower precision (i.e. posterior standard deviations

are higher for the b coefficients in Model B than Model A). Little difference was

made running a more informative G(5, 1.5) prior for 1=tu following the example of

Johnson and Albert (1999). The posterior mean estimate for tu was reduced slightly

to 2.15.

A third model (Model C) allows for heteroscedasticity at respondent level such that

the uij have variances at level 2 which are specific for the social class Cij of the subjects.

Since Cij has three levels there are three possible values for s2
ij. So log (fij), namely the

logs of the level 1 precisions fij � sÿ2
ij , could depend upon social class via a regression

containing an intercept and effects for the second and third social class groups. Alter-

natively, we here adopt the strategy in Equation (4.8), with

f1 � G(a1, b1), f2 � G(a2, b2), f3 � G(a3, b3)

and ai � bi � 0:0001 for all i.

The analysis is based on three parallel chains over 5000 iterations, and shows that the

unskilled working class respondents as most homogenous (least variable) in their views

over districts. The direct regression effect of social class on attitudes loses further

definition as against Models A and B, with the posterior standard deviation for the

lower working class now 50% larger than the posterior mean of ÿ0.22.

4.4 ROBUSTNESS IN MULTI-LEVEL MODELLING

Issues of robustness in multi-level modelling occur especially in comparing results

of fully Bayesian estimation and ML estimation involving generalised least squares
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techniques (Langford and Lewis, 1998). The latter may condition on estimates of

variance components which are treated as known, so obscuring the potential impact

of outliers at different levels. Consider a standard two level hierarchical model with

j � 1, : : J clusters at level 2, and i � 1, : : nj cases within each cluster. Then for a

continuous outcome Y, consider a level 1 model with cluster specific regression effects

Yij � bjXij � uij (4:9)

where the uij have mean 0 and variance s2, and bj and Xij are of length p� 1, with

X1ij � 1. At level 2 each of the stochastic coefficients from level 1 are related to q cluster

level predictors Zj. For the hth such coefficient (h � 1, : : p� 1), we might have

bjh � Zjgh � ejh j � 1, : : J (4:10)

where gh is a vector of regression coefficients.

Under typical assumptions that uij and ejh are Normal, both the level 1 coefficients

and the regression coefficients at level 2 may be sensitive to outliers. Estimates and

inferences regarding the effects gh are especially subject to this if J is small. Thus,

consider the posterior for g, under these standard assumptions, conditional on the

variance s2 at level 1, and on the ( p� 1)� ( p� 1) dispersion matrix V for the errors

e at level 2, and assuming a uniform prior for g. Then the posterior is multivariate

normal of dimension q� ( p� 1)

gjy, V , s2 � N(G, D)

where

Dÿ1 �
XJ

j�1

Wj(Cj � V )ÿ1Wj

G � D
XJ

j�1

Wj(Cj � V )ÿ1b̂j

Cj � s2(X 0j Xj)
ÿ1

and where b̂j is the least squares estimate of bj, namely

b̂j � (X 0j Xj)
ÿ1Xjyj

Many multi-level procedures involve maximum likelihood or EM procedures for esti-

mating V and s2 which are then treated as known. The resulting estimates of G and D,

and hence g, will then not account for the uncertainty in estimating V and s2, so that the

intervals on the components of g will tend to be too narrow (Seltzer, 1993).

There may also be sensitivity regarding the assumed form of the cluster effect

covariation and the observational errors u, even if uncertainty in their estimation is

allowed for. Under the standard Normal assumptions regarding error terms at different

levels, outlying data points, especially at level 2 and above, may unduly influence model

parameter estimates and distort credible intervals tending to make them too wide.

Options for robust estimation, especially of cluster disturbances, include discrete mix-

tures (Rabe-Hesketh and Pickles, 1999) and Student t errors with unknown degrees of

freedom (Seltzer, 1993).

Browne and Draper (2000) consider alternatives to the standard non-informative

choices for the prior on the precision matrix of variable cluster effects (intercepts and
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p slopes varying at level 2 when the level 1 relates to subjects). Thus, for p� 1 effects

varying randomly at cluster level, a standard choice under multivariate Normal or

Student t sampling for such effects is that Vÿ1 is Wishart with p� 1 degrees of freedom

and an identity scale matrix. Browne and Draper consider an option whereby

the degrees of freedom are ( p� 1)� 2 and an estimated scale matrix (e.g. from an

iterative GLS procedure) replaces the default identity matrix. Daniels and Kass (1999)

consider further options, for instance where the degrees of freedom is an unknown

parameter, or the element on the diagonal of the prior scale matrix is allowed to be a

free parameter.

It may be noted that individual membership probabilities in the discrete mixture

model may be related to explanatory variates, in a way that parallels regressions of

(continuously varying) cluster slopes and intercepts on cluster variables. Thus Carlin

et al. (2000) consider robustness from a Bayes perspective in a multi-level model for

panel data on smoking in adolescent subjects: such subjects are then `clusters' at level 2.

With a binary outcome, Yit at time t for subject i, they contrast the `logistic-normal'

model, namely normal subject effects, with a two group mixture of subjects. Group

membership is related to a set of fixed subject level covariates Wi. In general, one might

specify

Yit � Bern(pit)

logit(pit) � bLi
xit

Li � Categorical(Pi)

logit(Pi1) � fWi

Here Li is the latent group membership aiming to distinguish between a high risk or

susceptible group (in terms of smoking level) and a low risk group so Pi is of dimension 2.

In fact, Carlin et al. take the probability of smoking in one `non-susceptible' group as

zero, and only apply a logit regression for pit for subjects falling in a susceptible group.

Example 4.5 JSP Project: Maths over time To illustrate sensitivity issues in the

specification of cluster effect covariation, consider the Joint Schools Project data, also

analysed by Mortimore et al. (1988), and more recently in an extensive sensitivity

analysis by Browne and Draper (2000). Here the pupils are level 1 and the clusters are

schools; the data include differential weights on pupils, which affect the specification of

the variance term. The model considers Maths attainment at year 5 in relation to such

attainment at year 3, with

MATH5ij � aj � bjMATH3ij � uij (4:11)

The attainment continuity effects bj and the intercepts are initially taken as bivariate

normal over the 48 schools (Model A), with dispersion matrix V, while the level 1 errors

uij are taken as normal with variance s2. To illustrate sensitivity with regard to prior

assumptions on random cluster effects, we consider two variations towards robust

inference. The first is a discrete mixture of intercept and attainment effects (Model B),

with the aj and bj in Equation (4.11) being determined by a latent categorisation of the

48 schools into M groups. Following Rabe-Hesketh and Pickles (1999), a discrete

mixture with M � 3 groups of schools is assumed. The second is nonparametric hier-

archical model using a truncted Dirichlet process prior (Ishwaran and Zarepour, 2000).
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Estimation in Model A is based on three parallel chains with the summaries based on

the last 24 000 from 25 000 iterations, since early convergence was apparent. In Model B

there is later convergence and the last 15 000 of 25 000 iterations (over three chains) are

used for the summary. In Model C the summary is based on the second half of a 10 000

iteration run with three chains.

The estimates for Model A show a negative correlation in the bivariate Normal for

the school effects, averaging ÿ0.46, between average school attainment and persistence

in attainment. The persistence effect itself (the impact of Maths 3 scores on Maths 5

scores) is demonstrated by an average coefficient �b of 0.62, with 95% credible interval

from 0.50 to 0.74. The school persistence effects, measured by posterior means, vary

between 0.24 (school 37) and 1.20 (school 43).

As to the discrete mixture model, this may be stated as

MATH5ij � aLi
� bLi

MATH3ij � uij (4:12)

where Li is the group membership of the school. Rabe-Hesketh and Pickles estimate

group specific persistence coefficients b1 � 0:68, b2 � 0:77 and b3 � 0:34. In their

analysis, these groups have respective probabilities 0.54, 0.19 and 0.28. Similar findings

are obtained here in the analysis of Model B, adopting a mildly informative Dirichlet

prior on the mixture proportions for M � 3, with prior weights of 2.5 on each compon-

ent. Also, the prior on the attainment effects bj in the three latent school groups is

constrained to be increasing to improve identifiability (so the groups are in ascending

order of persistence effect). With a relatively small number of schools at level 2, less

informative priors may lead to identifiability problems unless a data dependent prior

(see Chapter 2) is employed.

The largest of the M � 3 attainment coefficients stands at b3 � 0:80, and the smallest

at 0.35 (Table 4.6). In estimation there was some delay in the convergence of the

intercepts a in Equation (4.12). There were also high sampling autocorrelations for

the group intercept parameters, especially those for the second and third groups (those

with the larger persistence effects), suggesting the group intercepts are less well separ-

ated than the persistence effects. Subsampling (every fiftieth iteration) makes little

Table 4.6 Parameter summaries, Maths attainment

Mean St. devn. 2.5% Median 97.5%

Model A

Log Likelihood ÿ2603 6.6 ÿ2618 ÿ2603 ÿ2592

Corr(aj, bj) ÿ0.46 0.16 ÿ0.73 ÿ0.47 ÿ0.10

s2 28.1 1.4 25.4 28.0 31.0

Level 2 covariance

V11 4.45 1.40 2.28 4.25 7.72

V12 ÿ0.31 0.15 ÿ0.66 ÿ0.30 ÿ0.06

V22 0.10 0.03 0.06 0.10 0.17

Average effects

Intercept 30.59 0.37 29.86 30.60 31.31

Math3 0.62 0.06 0.50 0.62 0.74
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Table 4.6 (continued )

Mean St. devn. 2.5% Median 97.5%

Model B

Actual Log

Likelihood

ÿ2660 7 ÿ2673 ÿ2660 ÿ2648

Complete Log

Likelihood

ÿ2613 5 ÿ2625 ÿ2612 ÿ2604

Math3 effects

Group 1 0.35 0.09 0.22 0.35 0.47

Group 2 0.66 0.06 0.51 0.67 0.76

Group 3 0.80 0.11 0.66 0.78 1.05

Intercept

Group 1 33.4 6.2 32.4 33.5 34.6

Group 2 29.4 1.6 26.5 30.0 32.9

Group 3 28.6 1.6 26.0 28.3 30.9

Mixture Proportions

p1 0.30 0.08 0.16 0.30 0.47

p2 0.41 0.15 0.11 0.44 0.66

p3 0.29 0.15 0.08 0.25 0.61

Model C

Log Likelihood ÿ2609 7 ÿ2625 ÿ2609 ÿ2597

Corr(aj , bj) ÿ0.71 0.15 ÿ0.99 ÿ0.71 ÿ0.38

s2 28.43 1.44 25.70 28.39 31.37

Mixture Parameters

k (Dirichlet

precision) 3.16 3.22 0.29 2.00 12.03

Average Number

of Clusters 6.3 1.8 3 6 9

Average effects

Intercept 30.67 0.20 30.29 30.67 31.06

Math3 0.62 0.03 0.55 0.62 0.69

difference to the posterior means on the group intercepts, though the standard errors

are altered to some degree.

The likelihood under Model B deteriorates as compared to the bivariate Normal

random effects model, though it is likely to be less heavily parameterised. The `complete

data' likelihood (assuming group memberships known) is more comparable to the

bivariate Normal random effects model.

The DPP nonparametric model assumes a maximum 10 clusters for the intercepts and

slopes and adopts a baseline bivariate Normal prior for the covarying cluster intercepts

and slopes. The baseline dispersion matric has prior as in model A. The Dirichlet
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precision parameter k is updated as in Ishwaran and Zarepour (2000). Convergence is

obtained in a two chain run after 1250 iterations with the mean number of clusters in a

run of 5000 iterations being 6.3, and the Dirichlet parameter estimated at 3.16. The

smoothed school effects on continuity (Table 4.7) are intermediate between the bivariate

Normal parametric model and three-group discrete mixture.

4.5 MULTI-LEVEL DATA ON MULTIVARIATE INDICES

Frequently, profiling or performance rankings of public sector agencies (schools,

hospitals, etc.) will involve multiple indicators. Inferences about relevant summary

parameters such as comparative ranks, or the probability that a particular institution

exceeds the average, are readily obtained under the Bayes sampling perspective

(Deely and Smith, 1998). Such inferences will often be improved by allowing for the

interplay between the indicators themselves, and also for features of the institutions (e.g.

the case-mix of patients in health settings or intake ability of pupils in school compari-

sons) which influence performance on some or all of the indicators used. Similar gains

in precision may occur in small area health profiling, where multiple mortality or

morbidity outcomes provide a firmer basis for defining health problem areas than a

single outcome.

Suppose individual level data Yijh are available for variables h � 1, : :H, clusters

j � 1, . . . J and subjects i � 1, : : nj within each cluster. Then the measurements on the

different variables can be envisaged as the lowest level (level 1) of the data hierarchy,

in the same way as repeated measures on the same variable are treated. The subjects

are at level 2, and the clusters (agencies, areas, etc.) at level 3. Thus for a set of

H metric outcomes, taken to be multivariate Normal, and with M predictors

Xijm, m � 1, : :M(Xij1 � 1) at subject level, one might propose

Yij � NH mij, S
� �

mijh � bh1 � bh2Xij2 � bh3Xij3 � : :bhMXijM (4:13)

with Yij � (Yij1, Yij2, . . . , YijH ) and S an H �H dispersion matrix4.

In Equation (4.13) intercept and predictor effects are specific to dependent variable h,

and do not pool strength over clusters. Another option, therefore, allows random

variability over clusters, with

mijh � bjh1 � bjh2Xij2 � : :bjhMXijM

The random effects bjhm might then be related to cluster attributes within a multivariate

density of dimension H �M, or separate densities (for each outcome h) of dimension M.

In the same vein, multivariate data aggregated over individuals within clusters (i.e.

averaged over the nj subjects) constitute a form of multi-level data. The lowest level of

the analysis models the observed outcomes are vectors of length H for agencies, or more

generally clusters, j � 1, : : J
yj � (yj1, yj2, � � � yjH )

4 In BUGS this might be expressed in the code
for ( j in 1:J) {for (i in 1:n[ j]) {Y[i,j,1:H] � dmnorm(mu[i,j,1:H],T[1:H,1:H])}}
where T[1:H,1:H] is the inverse dispersion.
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Table 4.7 School effects on attainment continuity (b1, b2, . . . b48)

School no. Mean effect

Model A

2.5% 97.5% Mean effect

Model B

2.5% 97.5% Mean effect

Model C

2.5% 97.5%

S1 0.60 0.32 0.88 0.74 0.59 0.90 0.68 0.48 0.86

S2 0.45 0.06 0.80 0.59 0.28 0.78 0.56 0.25 0.80

S3 0.53 0.04 1.01 0.49 0.25 0.77 0.51 0.25 0.87

S4 0.89 0.54 1.26 0.77 0.62 0.98 0.77 0.56 1.24

S5 0.59 0.20 0.99 0.66 0.35 0.80 0.65 0.33 0.88

S6 0.50 0.12 0.89 0.56 0.27 0.76 0.54 0.26 0.82

S7 0.65 0.22 1.08 0.52 0.26 0.77 0.55 0.27 0.97

S8 0.70 0.40 1.00 0.67 0.52 0.79 0.68 0.44 0.92

S9 0.83 0.42 1.28 0.78 0.60 0.99 0.72 0.51 1.05

S10 0.71 0.32 1.10 0.65 0.35 0.79 0.66 0.35 0.99

S11 0.71 0.39 1.04 0.69 0.57 0.82 0.70 0.50 0.93

S12 0.36 0.03 0.69 0.65 0.34 0.77 0.56 0.18 0.78

S13 0.68 0.29 1.09 0.69 0.57 0.84 0.69 0.46 0.97

S14 0.48 ÿ0.03 0.98 0.50 0.25 0.80 0.50 0.23 0.84

S15 0.82 0.42 1.22 0.70 0.58 0.85 0.74 0.53 1.20

S16 0.77 0.29 1.25 0.65 0.32 0.87 0.70 0.32 1.27

S17 0.65 0.30 1.00 0.68 0.55 0.82 0.68 0.43 0.89

S18 0.44 0.06 0.83 0.45 0.24 0.74 0.44 0.23 0.75

S19 0.67 0.18 1.18 0.68 0.34 0.88 0.67 0.32 1.04

S20 0.67 0.33 1.01 0.79 0.61 0.99 0.70 0.48 0.95

S21 0.77 0.36 1.19 0.74 0.59 0.94 0.73 0.52 1.08

S22 0.98 0.67 1.31 0.72 0.60 0.91 0.86 0.61 1.38

S23 0.37 0.03 0.71 0.35 0.23 0.48 0.37 0.22 0.52

S24 0.30 0.00 0.59 0.36 0.23 0.50 0.36 0.21 0.53

S25 0.44 0.09 0.79 0.51 0.26 0.75 0.48 0.24 0.76

S26 0.75 0.34 1.19 0.67 0.40 0.80 0.70 0.38 1.10

S27 0.74 0.31 1.14 0.74 0.60 0.93 0.72 0.52 1.05

S28 0.73 0.30 1.17 0.78 0.60 0.99 0.71 0.46 1.00

S29 0.51 0.15 0.88 0.56 0.29 0.76 0.53 0.26 0.81

S30 0.47 0.19 0.75 0.35 0.23 0.48 0.37 0.23 0.54

S31 0.63 0.33 0.92 0.67 0.47 0.79 0.65 0.40 0.84

S32 0.60 0.36 0.83 0.69 0.57 0.81 0.66 0.48 0.82

S33 0.46 0.10 0.83 0.35 0.23 0.48 0.37 0.22 0.54

S34 1.00 0.55 1.44 0.73 0.59 0.95 0.91 0.57 1.64

S35 0.41 0.05 0.78 0.35 0.23 0.48 0.37 0.22 0.54

S36 0.49 0.11 0.88 0.58 0.28 0.77 0.55 0.26 0.82

S37 0.24 ÿ0.14 0.60 0.35 0.23 0.48 0.36 0.18 0.50

S38 0.60 0.12 1.11 0.71 0.52 0.90 0.68 0.37 0.97

S39 0.78 0.49 1.09 0.77 0.61 0.95 0.73 0.55 1.00

S40 0.37 0.00 0.74 0.37 0.23 0.65 0.38 0.22 0.64

S41 0.60 0.31 0.89 0.68 0.56 0.79 0.67 0.47 0.84

S42 0.70 0.23 1.19 0.67 0.32 0.89 0.67 0.32 1.07

S43 1.20 0.81 1.61 0.80 0.64 1.01 1.29 0.68 1.91

S44 0.56 0.09 1.03 0.58 0.26 0.81 0.57 0.26 0.91

S45 0.35 0.08 0.61 0.36 0.23 0.60 0.37 0.22 0.57

S46 0.77 0.56 0.97 0.69 0.58 0.81 0.72 0.57 0.93

S47 0.90 0.60 1.20 0.69 0.58 0.85 0.79 0.58 1.21

S48 0.26 ÿ0.16 0.64 0.38 0.23 0.68 0.38 0.19 0.68
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conditional on parameters of a hyperprior. For example, for continuous data one might

be able to assume multivariate normality

yj � NH (uj, Vj) (4:14)

where uj is a vector of true averages on the H outcomes. Often the measurement

dispersion matrices Vj will be known, and take account of varying sample sizes nj.

A random effects model might then be used to predict the `true' mean outcome ujh on

index h in agency j on the basis of a multivariate population hyperprior. This might

involve cluster level covariates

{zjk, k � 1, : :K , j � 1, : : J}

with zj1 � 1 for all j, to predict the means in this density. Suppose, following Everson

and Morris (2000), the ujh are assumed to be functions of covariates z in a two stage

multivariate model, with the Vj in Equation (4.14) known. Then at stage 2

uj � NH nj, S
ÿ �

(4:15)

and the regression means njh of the ujh are specified as

nj1 � g11 � g12zj2 � g13zj3 � : : g1KzjK

. . .

njH � gH1 � gH2zj2 � gH3zj3 � . . . gHKzjK

Example 4.6 Hospital profiling In the hospital profiling application of Everson and

Morris (2000), there are H � 2 percentage rates of patient-reported problems for J � 27

hospitals: one rate relates to surgical issues, the other to non-surgical issues. There is a

severity index zj2 for each hospital, with higher levels of the index denoting more

complex patient case-mix. Following Everson and Morris, a Normal approximation

to the binomial is assumed and the measurement dispersion matrices Vj are

known. Further it is assumed that measurement errors in Equation (4.14) are uncorrel-

ated (so that Vj is diagonal), so restricting the modelling of correlations to the latent

effects uj.

The variances, across hospitals and patients, for yj1 and yj2 are taken as supplied by

Everson and Morris (2000, p. 405), namely 148.9 and 490.6, so that the first stage model

is

yj1 � N(uj1, Vj1)

yj2 � N(uj2, Vj2)

where Vj1 � 149=nj, Vj2 � 491=nj. The latent means are modelled according to Equa-

tion (4.15).

Running three parallel chains for 50 000 iterations, early convergence is apparent (at

under 500 iterations) on the hyperdensity parameters and underlying means; however,

sampling autocorrelations are quite high on the g parameters in Equation (4.15).

However, comparing summaries based on 25 000 and 50 000 iterations shows little

difference on posterior summaries for these parameters. Table 4.8, based on 50 000

iterations, shows that the impact of the severity index on the surgical problem rate for

hospitals g22 is clearly positive, but that on the non-surgical rate g12 is less clear. There
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Table 4.8 Bivariate hospital outcomes analysis (h � 1, non-surgical; h � 2,

surgical)

Parameter

covariance matrix

Mean St. devn. 2.5% 97.5%

�11 3.78 1.79 1.21 8.29

�12 2.43 1.61 0.07 6.17

�22 2.84 2.31 0.34 9.05

Intercepts and Severity effects

g11 12.29 1.23 9.96 14.97

g21 12.68 1.47 9.52 15.46

g12 1.76 2.34 ÿ3.29 6.40

g22 5.68 2.80 0.24 11.46

Smoothed rates (posterior means and standard deviations)

Non-surgical Mean St. devn. Surgical Mean St. devn.

u1, 1 12.3 1.6 u1, 2 16.1 1.6

u2, 1 12.8 1.4 u2, 2 16.0 1.4

u3, 1 14.3 1.5 u3, 2 16.7 1.5

u4, 1 12.5 1.3 u4, 2 14.1 1.4

u5, 1 13.3 1.4 u5, 2 17.5 1.7

u6, 1 12.7 1.3 u6, 2 15.2 1.3

u7, 1 14.1 1.3 u7, 2 15.9 1.3

u8, 1 13.1 1.2 u8, 2 15.6 1.3

u9, 1 12.4 1.2 u9, 2 14.1 1.3

u10, 1 10.2 1.3 u10, 2 13.1 1.6

u11, 1 16.7 1.4 u11, 2 18.6 2.0

u12, 1 12.5 1.2 u12, 2 14.5 1.3

u13, 1 12.6 1.2 u13, 2 14.1 1.3

u14, 1 14.0 1.2 u14, 2 16.5 1.3

u15, 1 14.1 1.2 u15, 2 14.6 1.3

u16, 1 14.5 1.2 u16, 2 17.1 1.3

u17, 1 11.7 1.2 u17, 2 12.5 1.5

u18, 1 15.2 1.2 u18, 2 16.2 1.3

u19, 1 15.4 1.2 u19, 2 17.1 1.3

u20, 1 11.7 1.1 u20, 2 13.8 1.2

u21, 1 14.1 1.1 u21, 2 16.4 1.2

u22, 1 11.5 1.2 u22, 2 15.6 1.5

u23, 1 14.7 1.1 u23, 2 16.2 1.2

u24, 1 12.8 0.9 u24, 2 16.0 1.2

u25, 1 11.5 1.0 u25, 2 14.8 1.1

u26, 1 10.6 0.9 u26, 2 11.5 1.3

u27, 1 13.8 0.8 u27, 2 17.4 1.1

is a clear positive correlation between the two latent rates ujh and taking account of this

will improve precision in the estimated rates. Compared to the original surgical rate

data, which range from 9±27%, the smoothed surgical problem rates vary from

11.5±18.5%.
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Taking account of the uncertainty in estimating � may mean that Bayes estimates are

less precise than REML estimates that assume a known dispersion matrix. Everson and

Morris present evidence that the REML estimates of ujh show undercoverage in the

sense of being too precise, and that the Bayes estimates show better coverage of the true

distribution of these latent rates.

On the other hand, Bayes estimates are more precise than the classical intervals based

on no pooling, namely via fixed effects maximum likelihood: the classical intervals

for uj2 (surgical problem rates) are 51% wider than the Bayesian estimates obtained

by Everson and Morris. Here variances on uj2 are obtained which are intermediate

between the REML results and the estimates obtained by Everson and Morris (2000,

Figure 2).

Example 4.7 Lung cancer death trends: bivariate Poisson outcomes This example uses

data for 508 State Economic Areas in the US relating to male and female lung cancer

deaths in the periods 1950±69 and 1970±94. The SEAs are nested within 51 states

(including the District of Columbia) and eight regions. Of interest in explaining vari-

ability in the latter period are the persistence of area mortality differences from the

earlier period, the impact on cancer mortality of economic indicators, and mortality

differences by state and regional location of the SEAs. As economic indicators average

incomes per head in 1982 (relative to the US average) are used, and the possible lagged

impact of the same variable defined for 1960 may also be considered.

We define separate Poisson means for the two outcomes and relate them to state

varying intercepts. Extensions to this model allow for the influence of past mortality

rates and include regression slopes on the log(SMR) in 1950±69. The first model

(Model A) for the correlation between the two SEA mortality outcomes in the later

period is then (with h � 1, 2 for males and females)

Yih � Poi(mih)

log (mih) � log (Eih)� bSi, h

where Eih � expected deaths (from demographic standardisation) and Si � state to

which SEA i belongs. This is a two-level model for each mortality outcome with

intercepts varying according to the state that the SEA is located in. This arrangement

of the data involves a vector S[ ] of length Tn � 508 containing the state indicators for

the SEAs. A nested arrangement might also be used, but would entail a square array of

dimension [51, Q], where Q is the largest number of SEAs in a state. In a BUGS

program the data would have to be padded out by NA values for states containing

fewer than Q Economic Areas.

It is assumed that the pairs of intercepts bj1 and bj2, j � 1, : : 51, are bivariate Normal

with regression means njh determined by state incomes, RINCj expressed relative to the

US average. Then

nj1 � g11 � g12RINCj

nj2 � g21 � g22RINCj

Estimates for this model (Table 4.9) are based on three chains taken to 5000 iterations,

with 500 burn-in. They show a positive effect of income on male cancer levels ± this

might be seen as countering subject matter knowledge whereby relative economic
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Table 4.9 Lung cancer deaths in state economic areas

Model A Mean St. devn. 2.5% 097.5%

Correlation, male & female cancer rates 0.509 0.102 0.289 0.689

Likelihood (model for males) ÿ10910 5.058 ÿ10920 ÿ10900

Likelihood (model for females) ÿ8851 5.007 ÿ8862 ÿ8842

Intercept Males (g11) ÿ0.559 0.182 ÿ0.896 ÿ0.204

Income Effect Males (g12) 0.520 0.185 0.157 0.861

Intercept females (g21) 0.204 0.211 ÿ0.224 0.572

Income effect females (g22) ÿ0.247 0.214 ÿ0.624 0.191

Model B Mean St. devn. 2.5% 097.5%

Intercept Males ÿ0.078 0.165 ÿ0.377 0.233

Income Effect Males 0.095 0.170 ÿ0.223 0.400

Persistence Effect Males 0.618 0.058 0.506 0.726

Intercept females 0.449 0.154 0.156 0.748

Income effect females ÿ0.443 0.155 ÿ0.751 ÿ0.149

Persistence Effect females 0.360 0.045 0.270 0.450

Correlation, male & female levels 0.238 0.129 ÿ0.034 0.486

Correlation, male levels and persistence ÿ0.002 0.143 ÿ0.287 0.287

Correlation, female levels and persistence ÿ0.034 0.140 ÿ0.305 0.226

Likelihood (model for males) ÿ7481 6.135 ÿ7495 ÿ7470

Likelihood (model for females) ÿ5430 6.713 ÿ5444 ÿ5418

Model C Mean St. devn. 02.5% 097.5%

Region (Males)

East ÿ0.042 0.108 ÿ0.226 0.126

G. Lakes ÿ0.042 0.109 ÿ0.225 0.139

C. North ÿ0.064 0.119 ÿ0.264 0.127

S. East 0.036 0.100 ÿ0.126 0.199

S. West ÿ0.068 0.112 ÿ0.252 0.113

Rocky Mts ÿ0.143 0.114 ÿ0.329 0.044

Far West 0.072 0.110 ÿ0.118 0.246

Region (females)

East ÿ0.040 0.110 ÿ0.219 0.136

G. Lakes 0.004 0.115 ÿ0.185 0.191

C. North ÿ0.084 0.119 ÿ0.285 0.104

S. East 0.116 0.102 ÿ0.045 0.295

S. West ÿ0.035 0.119 ÿ0.228 0.155

Rocky Mts ÿ0.144 0.112 ÿ0.323 0.043

Far West ÿ0.049 0.112 ÿ0.234 0.130

Other parameters

Intercept Males ÿ0.162 0.242 ÿ0.538 0.250

Income Effect Males 0.203 0.233 ÿ0.186 0.575

Persistence Effect Males 0.612 0.060 0.517 0.710

(continues)
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Table 4.9 (continued)

Intercept females 0.216 0.249 ÿ0.239 0.580

Income effect females ÿ0.191 0.238 ÿ0.532 0.231

Persistence Effect females 0.357 0.047 0.278 0.436

Correlation, male & female levels 0.171 0.151 ÿ0.082 0.410

Correlation, male levels and persistence 0.065 0.182 ÿ0.240 0.362

Correlation, female levels and persistence 0.127 0.152 ÿ0.127 0.370

Likelihood (model for males) ÿ7481 6.995 ÿ7493 ÿ7470

Likelihood (model for females) ÿ5430 6.888 ÿ5442 ÿ5419

hardship is associated with worse health and mortality. The two outcomes have a

correlation of around 0.5 in this model.

Two extended models (Models B and C) allow for persistence of mortality differences.

Model B takes the form

Yih � Poi(mih)

log (mih) � log (Eih)� bSi, h, 1 � bSi, h, 2Mih

where Mih is the maximum likelihood SMR for male and female lung cancer (h � 1, 2)

in SEA i in 1950±69 in the earlier period. The parameters bj, h, 2 therefore express

continuity.

For simplicity of notation, this model is written as

log (mi1) � log (Ei1)� bSi, 1 � bSi, 2M1i

log (mi2) � log (Ei2)� bSi, 3 � bSi, 4M2i

(4:16)

The state-specific regression effects are modelled as multivariate Normal of order 4

(there are H � 2 outcomes and K � 2 predictors with cluster specific effects), in which

parameters bSi, 1 and bSi, 3 (the mortality level parameters) are related to state incomes

RINCSi
. So for states j � 1, 51, the regression means are modelled as

nj, 1 � g11 � g12RINCj

nj, 2 � g21

nj, 3 � g31 � g32RINCj

nj, 4 � g41

(4:17)

The coefficients g21 and g41 for bSi, 2 and bSi, 4 represent persistence effects. We evaluate

this model, where the intercepts bSi, 1 and bSi, 3 depend only upon state incomes RINCj

in 1970±94, against an alternative which adds region in Equation (4.17); these are

Models B and C, respectively. Note that examination of the three chain trace plots

and Gelman±Rubin statistics for the log-likelihood and parameters shows convergence

only after about 500±750 iterations for these models.

By contrast to Model A, Model B shows a significant effect, in the parameter g32 in

Equation (4.17), of state incomes on female but not male cancer. The highest female

rates at SEA level are in the lowest income states, more in line with subject matter
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knowledge. The average slopes g21 and g41 relating later to earlier SMRs in Equation

(4.16) are 0.62 for males and 0.36 for females, showing that male differences are more

enduring. The two outcomes themselves are moderately correlated in this model

(median 0.24 with credible interval from ÿ0.03 to 0.49), but there is no correlation

between the degree of cancer persistence and cancer levels.

Adding region to Model B to explain differences in SEA mortality (in Model C with

NewEnglandas base region) attenuates the income effects, expressed by g12 and g32, while

clear region effects are mostly absent. The average likelihoods show no improvement over

Model B and penalising for the extra 14 parameters would therefore show a clear deterior-

ation in fit. There is a slight effect for the Rocky Mountain region (lower rates for both

female and male mortality), but the credible interval is not confined to negative values. A

weakly positive effect for the South East region is apparent on female mortality.

4.6 SMALL DOMAIN ESTIMATION

Survey data are often cost effective ways of obtaining information on a wide variety of

topics and at frequent intervals in time. However, they may become sparse in terms

of deriving social or health indicators for sub-populations defined by combinations of

characteristics, generically termed `small areas' or `domains'. For example, a domain

might be defined by stratifying on demographic survey variables such as age, locality,

sex and ethnicity.

One may seek to make inferences about the average outcome in a domain based on a

survey or some other sample, where this survey includes few units, perhaps none, from

that domain itself. The direct survey estimates, even if design weighted, are likely to

have low precision because sample sizes are not large enough at the domain level. Small

area estimation describes a set of empirical and fully Bayes hierarchical regression

procedures to combine survey information over similar small areas and to make

inferences for the total domain populations (Ghosh and Rao, 1994). These methods

may include ancillary information on the small areas from other sources (e.g. Census

data) to improve the pooling.

Thus, Folsom et al. (2000) describe how small area estimation is used in designing

health promotion interventions by linking national and state survey outcome data (on

disease and health behaviours) with local area predictors, such as non-survey indicators

of social and age structure, in order to make local estimates of prevalence. Random

effect small area estimation models have also been applied to discrete outcomes from a

Bayesian pespective. For example, Nandram et al. (1999) report small area estimates of

mortality and Malec et al. (1997) consider estimation of the probability of visiting a

doctor in the last year, using data from the United States National Health Interview

Survey.

Let yijk be a univariate response for subject i in class or domain k and cluster j, where

j � 1, : : J, k � 1, : :K and i � 1, : : njk. The class might be defined by demographic attri-

butes (e.g. sex, age band, or ethnic group) while the cluster might be a geographic area.

Let xk denote a set of p categorical predictors assumed to be the same for all subjects in

class k, regardless of cluster. Thus, if p � 2 and x1 were sex (1�male, 0� female) and x2

ethnicity (1 � non-white, 0 � white), then a white male would have x1 � 1 and x2 � 0.

Also, let zj be q cluster level variables (e.g. average county or state incomes). Let

bj � {bj1, . . . bjp} denote varying slopes over clusters on the categoric variables. Then

for a Gaussian outcome with random intercepts and slopes over all predictors,
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yijk � aj � bjxk � uijk

where uijk � N(0, s2). Setting dj � {aj, bj}, then random variation in intercepts and

slopes may be related to cluster variables zj via a multivariate normal model

dj � gzj � ej ej � Np�1 0, S� �
or equivalently,

dj � Np�1 gzj, S
ÿ �

(4:18)

with g of dimension ( p� 1) by q.

Other possibilities include the random intercepts model (Moura and Holt, 1999;

Battese et al., 1988):

yijk � aj � bxk � uijk

and models where domain and cluster are conflated into a single index j, and each

survey unit is characterised by continuous predictors xij in a model such as (Hulting and

Harville, 1991)

yij � aj � bjxij � uij (4:19)

For a binary outcome (e.g. long term ill or not) defined by cluster and domain, we might

have

yijk � Bern(pijk) (4:20)

logit(pijk) � aj � bjxk (4:21)

with the same model as in Equation (4.18) for pooling strength over clusters. The

random intercepts model in this case (Farrell et al., 1997) is then

logit(pijk) � aj � bxk

The goal of small domain estimation is to make predictions of characteristics Y or

proportions P for the entire population of a domain, namely for populations generically

denoted Njk for the total population of cluster j and domain k (e.g. white females in

California). One might also wish to make predictions for aggregates of domains and/or

clusters. Thus, if the binary outcome yijk denoted long term ill status, the domains were

defined by age band, ethnicity and marital status, and the clusters were counties, one

might be interested in estimating the proportion of all males who were long term ill in a

particular set of counties. So if K 0 denotes relevant domains, J 0 denotes relevant

clusters, then the estimate of the numerator of P combines

(a) the known survey total in the relevant domains and clusters,X
jeJ 0

X
keK 0

Xnjk

i�1

yijk

(b) a regression prediction for the population parts Rjk � Njk ÿ njk not included in the

survey, obtained from a model such as Equations (4.20)±(4.21) with appropriately

defined predictors.

So if ŷijk denotes a prediction of the binary outcome for the non-surveyed unit, the

prediction of P is
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X
jeJ 0

X
keK 0

Xnjk

i�1

yijk=
X
jeJ 0

X
keK 0

njk �
X
jeJ 0

X
keK 0

XRjk

i�1

ŷijk

In practice, the prediction for the non-surveyed population is likely to be at an aggre-

gated level. An example of this approach, from a Bayesian prediction standpoint, is

provided by Malec et al. (1997), who consider a binary outcome based on recent medical

consultation or not.

As an example of appropriately defined predictors for the non-survey prediction,

suppose the survey model (4.19) involved a single continuous individual level regressor

xij such as income, and the goal was to predict the population wide cluster or domain

mean �Yj. Suppose �Xj were a cluster or domain wide average on the regression variable,

obtained probably from other sources. Then the non-survey population prediction

would be

�Yj � bj1 � bj2
�Xj

� gzj
�Xj � ej

�X

where

bj � gzj � ej ej � N2 0, S� �
as above. Domain wide predictions for univariate continuous outcomes (perhaps using

the simpler random intercepts model) are exemplified by small area models for per

capita income (Fay and Herriott, 1979), and for county crop areas (Battese et al., 1988).

Example 4.8 Economic participation This example takes a sub-sample of the data

presented by Farrell et al. (1997) relating to economic participation among working age

women. There were TN � 72521 women in the 1990 Census sample used by Farrell et

al., located in a set of J � 33 US states. A sub-sample of 10% of these data, amounting

to Tn � 7184 women, is taken. As in Farrell et al., a logit model for economic activity,

namely working or being available to work, is proposed. The first two categorical

predictors {x1, x2} in this model are marital status, namely married vs. otherwise, and

presence of children under 18 vs. otherwise. We allow for state varying impacts of these

factors and for homogenous effects of a third factor, x3, namely the woman's age group

(1 � 15ÿ24, 2 � 25ÿ34, 3 � 35ÿ44, 4 � 45ÿ54, 5 � 55� ). The three factors may be

taken to define classes, k � 1, : :K (where K � 20), as above. Thus, in a multilevel

pooling model (Model A in Program 4.7), the model for states j and classes k with the

form

yijk � Bern(pijk)

logit(pijk) � aj � bjxk � lwk

(4:22)

as in Equations (4.20)±(4.21) above, with bj of dimension 2, and allowing the age group

predictors to have constant effects l. Writing dj � {aj , bj} we then have dj � N3(D, V ).

The fixed effects D and l are assigned N(0, 1000) priors. (Note that in Program 4.8, a

single string vector is used for the sample subjects, so that the actual program does not

take this nested structure.)
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Using the estimated parameters {dj, l} from applying the pooling model to the

sub-sample, one may seek to predict the full population state economic activity rates

Pj ± here the `population' is all TN � 72 521 women. The population wide estimate

combines actual sample numbers active (among the 7184) with regression predictions

for the remaining 65 337 women. Specifically the model parameters {dj, l} are applied

to state wide proportions married, with dependent children and in the five age bands.

The predictions for the non-sampled population are combined with the actual sample

numbers active by state. The overall activity predictions for states may be compared

with estimates based on the same logit model but without any pooling of strength over

states. The latter option is a fixed effects or `no pooling' model, and coded as in model B

in Program 4.7. This keeps the state varying effects of marital and dependent children

status as in Equation (4.22) but as fixed effects with N(0, 1000) priors.

Convergence was rapid (under 500 iterations) for estimating Model A under three

parallel chains, and summaries are based on iterations 500±2500. Under this pooling

strength model the highest state level intercepts are in Maryland, Indiana and Massa-

chusetts, while the least deterrence of married status on activity is in South Carolina,

and the least deterrence of children in the household is in Florida and Washington State.

The correlations rab between the random effects show that deterrence from these two

factors tends to be lower where activity rates themselves are higher (Table 4.10).

Table 4.10 Random effect and parameter estimates (Model A)

State Intercepts Effects of being

married

Effects of children

Mean St. devn. Mean St. devn. Mean St. devn.

Alabama 0.52 0.28 ÿ1.33 0.29 ÿ0.90 0.23

Arkansas 0.67 0.33 ÿ1.48 0.33 ÿ1.20 0.29

California 0.64 0.19 ÿ1.52 0.19 ÿ1.02 0.19

Connecticut 1.17 0.32 ÿ1.83 0.32 ÿ1.00 0.26

Florida 0.29 0.34 ÿ1.32 0.31 ÿ0.63 0.28

Georgia 0.59 0.23 ÿ1.17 0.26 ÿ0.87 0.22

Illinois 0.77 0.20 ÿ1.53 0.20 ÿ1.14 0.20

Indiana 1.31 0.36 ÿ1.68 0.34 ÿ1.09 0.26

Iowa 0.47 0.32 ÿ1.55 0.30 ÿ0.73 0.27

Kansas 0.73 0.33 ÿ1.60 0.33 ÿ0.83 0.27

Kentucky 0.52 0.29 ÿ1.83 0.31 ÿ0.96 0.28

Louisiana 0.42 0.30 ÿ1.52 0.30 ÿ0.70 0.27

Maryland 1.41 0.32 ÿ1.67 0.30 ÿ1.27 0.27

Massachusetts 1.32 0.24 ÿ2.09 0.24 ÿ1.09 0.25

Michigan 0.69 0.29 ÿ1.62 0.27 ÿ1.03 0.23

Minnesota 1.02 0.29 ÿ1.92 0.31 ÿ0.88 0.26

Mississippi 0.41 0.34 ÿ1.37 0.30 ÿ0.82 0.28

Missouri 0.77 0.31 ÿ1.60 0.26 ÿ0.83 0.24

Nebraska 0.77 0.33 ÿ1.82 0.35 ÿ0.79 0.26

N. Jersey 1.20 0.24 ÿ2.03 0.25 ÿ0.94 0.23

N. York 1.06 0.18 ÿ1.88 0.17 ÿ1.20 0.16

N Carolina 0.90 0.24 ÿ1.43 0.26 ÿ0.81 0.22

Ohio 0.90 0.21 ÿ1.82 0.21 ÿ0.89 0.18

(continues)
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Table 4.10 (continued)

Oklahoma 0.92 0.29 ÿ1.63 0.28 ÿ0.80 0.25

Oregon 0.91 0.40 ÿ1.56 0.38 ÿ0.92 0.30

Pennsylvania 0.74 0.17 ÿ1.97 0.19 ÿ0.88 0.18

S Carolina 0.44 0.29 ÿ1.03 0.29 ÿ0.81 0.28

Tennessee 0.63 0.25 ÿ1.28 0.24 ÿ1.03 0.24

Texas 0.73 0.19 ÿ1.66 0.21 ÿ1.11 0.17

Virginia 0.82 0.26 ÿ1.55 0.28 ÿ1.16 0.23

Washington 0.43 0.35 ÿ1.54 0.31 ÿ0.62 0.29

West Virginia 0.31 0.32 ÿ1.80 0.33 ÿ1.02 0.29

Wisconsin 0.98 0.25 ÿ1.68 0.26 ÿ0.89 0.24

Mean St. devn. 2.5% 97.5%

Mean Effects

Intercept (1) 0.78 0.10 0.57 0.98

Married (2) ÿ1.63 0.10 ÿ1.84 ÿ1.43

Children (3) ÿ0.92 0.09 ÿ1.09 ÿ0.74

Correlations between Effects

r12 ÿ0.41 0.21 ÿ0.75 0.03

r13 ÿ0.34 0.23 ÿ0.74 0.17

r23 0.01 0.27 ÿ0.49 0.51

Let Pj denote the actual state wide activity rate among all TN � 72521 women and P̂j

the prediction. Then Model A has average likelihood ÿ3739 and sum �Dj of absolute

predicted relative deviations

Dj � j(Pi ÿ P̂j)=P̂jj
averaging 5.3. The effective parameter procedure (Chapter 2) shows there to be 64

estimated parameters in Model A. This estimate is obtained from comparing the mean

likelihood and the likelihood at the mean (the likelihood at the posterior mean isÿ3707).

By contrast, the no pooling model involves 103 fixed effects; it has likelihood averaging

ÿ3742 and �Dj averaging 7.2. So both in terms of predictive fit beyond the sample and

penalised fit to actual sample data, the pooling model appears to be preferred.

The prediction of full state population economic activity is only one of a wide range

of predictions that could be made. One could also make predictions over combinations

of the cluster categories and/or over combinations of the states (e.g. economic activity

rates among women with children aged 25±44 in states grouped by region).

4.7 REVIEW

The motivations for multi-level analysis often combine both the need (cf. Chapter 2) to

pool strength on estimates of unit level effects at level 2 or above (e.g. school exam

success rates) and an interest, as in Chapter 3, in regression slopes for predictors at

various levels. The most popularly used packages for multi-level analysis adopt an

empirical Bayes methodology which may lead to understatement of the uncertainty in

these various parameters. The fully Bayes approach has been succesfully applied to
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multilevel discrete outcomes (e.g. Carlin et al., 2001), to multivariate multilevel out-

comes (Thum, 1997) and to small area estimation (Ghosh and Rao, 1994). Other

applications of Bayesian modelling extend to multilevel survival data and to structural

equation models for multi-level data (Jedidi and Ansari, 2001). Whereas non-parametric

analysis has figured prominently in certain areas of Bayesian application, applications

of such approaches to multi-level data are less common. Another area for development

is in analysis of multi-level survey data where the sampling process is informative, for

example with inclusion probabilities proportional to the size of a school (Pfefferman et

al., 2002).
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EXERCISES

1. In Example 4.2, fit Model A (as described in the text), namely random intercepts at

area level but with Student t form. First try the direct Student t model with unknown

degrees of freedom (df ) using an appropriate prior (e.g. exponential) on df. Then try

the scale mixture approach to the Student t, and assess whether any districts are clear

`outliers' (if the degrees of freedom is unknown in the scale mixture method then a

discrete prior on it may be used in BUGS).

2. In Example 4.2, try a bivariate cluster effects model with random intercepts and

slopes on social class IV and V. Is the correlation between varying intercepts and

slopes clearly negative?
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3. In Example 4.3 consider assessing heteroscedasticity at level 1 in terms of (a) the IQ

categories of Table 4.3, and (b) both IQ category and gender. Is there a more

economical IQ categorisation (by which level 1 variances are differentiated) which

achieves comparable fit.

4. In Example 4.4, assess the improvement in fit from Model A to model B after

correcting for the extra parameters ± for example, via the harmonic mean of likeli-

hoods or via the DIC approach, after estimating the effective parameters in Model B.

Also try a model where the District percent Protestant acts as a potentially context-

ual variable, by making the impacts of individual Catholic or Protestant affiliation

variable over Districts and dependent on this District variable (this is probably more

simply done with homogenous level 2 variance).

5. In Example 4.6, use the full measurement error covariance at stage 1 as as supplied

by Everson and Morris, namely

V � 148:9 140:4
140:4 490:6

� �
5. and re-estimate the model parameters. Set up a procedure to test whether any

hospital has above average `true' problem rates ujh on both outcomes, relative to

the average true rates �uh.

6. In Example 4.7, try a bivariate Normal model for state intercepts (as in Model A) but

including region effects in the linear predictor. Similarly try adding the 1960 income

ratio to the contemporary income ratio. Are these models well identified, as assessed

from posterior summaries, from signs of coefficients, and from the effective param-

eters criterion (the DIC method discussed in Chapter 2)

7. In Example 4.8, try fitting a fixed effects model (as in Model B), but with constant

effects of marital and dependent children status, as opposed to state varying fixed

effects. How does this compare to Model A in predicting the population wide state

activity rates.
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CHAPTER 5 Models for Time Series

Models for Time Series

5.1 INTRODUCTION

In a variety of scientific disciplines we are faced with choosing appropriate models for

representing series of observations generated in time, and for predicting the future

evolution of the series. Often the series, although varying continuously in time, is

observed at discrete intervals, t � 1, : : , T . Many series are in fact averages over discrete

intervals, or assessed at one point during them; thus many econometric series are

monthly or quarterly, and stock price series are daily.

The goals of time series models include smoothing an irregular series, forecasting

series into the medium or long-term future, and causal modelling of variables moving in

parallel through time. Time series analysis exploits the temporal dependencies both in

the deterministic (regression) and stochastic (error) components of the model. In fact,

dynamic regression models are defined when model components are indexed by time,

and a lag appears on one or more of them in the model specification (Bauwens et al.,

1999). For instance, a dynamic structure on the exogenous variables leads to a distrib-

uted lag model, and a dynamic structure may also be specified for the endogenous

variables, the error terms, the variances of the error process, or the coefficients of the

exogenous variables.

While simple curve fitting (e.g. in terms of polynomials in time) may produce a good

fit it does not facilitate prediction outside the sample and may be relatively heavily

parameterised. By contrast, models accounting for the dependence of a quantity (or

error) on its previous values may be both parsimonious and effective in prediction. The

autoregressive models developed by Box and Jenkins (1976) and Zellner (1971) are often

effective for forecasting purposes (see Section 5.2), but dynamic linear and varying

coefficient models (Section 5.5) have perhaps greater flexibility in modelling non-sta-

tionary series.

Bayesian methods have been widely applied in time series contexts and have played a

significant role in recent developments in error correction and stochastic volatility

models (Sections 5.4 and 5.6). They have advantages in simplified estimation in situ-

ations where non-standard distributions or nonlinear regression are more realistic. For

example, in state space modelling the standard Kalman filtering methods rely on linear

state transitions and Gaussian errors, whereas Bayes methods provide a simple ap-

proach to include both continuous and discrete outcomes. In ARMA models a Bayesian

perspective may facilitate approaches not limited to stationarity, so that stationarity
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and non-stationarity are assessed as alternative models for the data series. A Bayes

approach may also assist in analysis of shifts in time series, where likelihood methods

may either be complex or inapplicable. Examples include the analysis of a permanent or

temporary break point in a series (see Section 5.7), where a prior for the break point or

points might be taken as uniform over a range (T1, T2) within (1,T).

5.2 AUTOREGRESSIVE AND MOVING AVERAGE MODELS UNDER

STATIONARITY AND NON-STATIONARITY

A starting point in dynamic regression models is often provided by considering dynamic

structures in the outcomes. Autoregressive process models describe data driven depend-

ence in an outcome over successive time points. For continuous data yt, observed at

times t � 1, : :T the simplest autoregressive dependence in the outcomes is of order 1,

meaning values of y at time t depend upon their immediate predecessor. Thus an, AR(1)

model typically has the form

yt � m� r1ytÿ1 � ut t � 2, : :T (5:1)

where m represents the level of the outcome, and r models the autocorrelation between

successive observations. After accounting for such observation driven serial depend-

ence, the errors may (at least initially) be taken as exchangeable white noise and to

follow, for example, a Normal density, ut � N(0, s2) with constant variance and preci-

sion t � 1=s2 across all time points t, and cov (us, ut) � 0.

If the data are centred, then a simpler model may be estimated

yt � rytÿ1 � ut (5:2)

Additional dependence on lagged observations ytÿ2, ytÿ3, : ytÿp leads to AR(2), AR(3),

. . AR( p) processes. It may be noted that (5.1), if taken to apply to t � 1 also, implies

reference to unobserved or latent data y0. If a prior on y0 is included in the model

specification, this leads to what is known as a full likelihood model. For an AR(p)

model with times t � 1, : : p included there are p implicit latent values, y0, yÿ1, : : y1ÿp in

the full likelihood model.

Classical estimation and forecasting with the AR( p) model rest on stationarity, which

essentially means that the process generating the series is the same whenever observation

starts: so the vectors (y1, : : yk) and (yt, . . . yt�k) have the same distribution for all t and k.

Specifically, the expectations E(yt) and covariances C(yt, yt�k) are independent of t. For

the stationary AR(p) model to be applicable, an observed data series may require initial

transformation and differencing to eliminate trend. Non-stationary time series can often

be transformed to stationarity by differencing of order d, typically first or second

differencing at most. This may be combined with a scale transformation, e.g.

Yt � log ( yt).

Using the B operator to denote a backward movement in time, a first difference

(d � 1) in yt

zt � yt ÿ ytÿ1

may equivalently be written

zt � yt ÿ Byt � (1ÿ B)yt

Then with zt now the outcome, the AR(1) model (5.2) becomes
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zt ÿ rztÿ1 � ut

or
zt(1ÿ rB) � ut

An AR( p) process in zt leads to a pth order polynomial in B, so that

zt(1ÿ r1Bÿ r2B
2 ÿ . . . rpB

p) � ut

for which an alternative notation is

r(B)zt � ut

The process is stationary if the roots of r(B) lie outside the unit circle. For instance if

p � 1, the series is stationary if jr1j < 1.

In the AR( p) model, an outcome depends upon its past values and a random error

or innovation term ut. If the impact of ut is in fact not fully absorbed in period t, there

may be moving average dependence in the error term also. Thus, for centred data, the

model

zt ÿ r1ztÿ1 � ut ÿ u1utÿ1 (5:3)

defines a first order moving average MA(1) process in ut combined with AR(1) depend-

ence in the data themselves. In BUGS, moving average effects in the ut for metric (e.g.

Normal or Student t) data may require an additional measurement error term to be

introduced, because the centred density adopted in BUGS for Normal and Student t data

assumes unstructured errors. In general an ARIMA( p, d, q) model is defined by depend-

ence up to lag p in the observations, by q lags in the error moving average, and by

differencing the original observation (yt) d times. An ARMA( p, q) model in yt, therefore,

retains the original data without differencing. In the general ARMA( p, q) representation,

r(B)yt � u(B)ut (5:4)

the process is stationary if the roots of r(B) lie outside the unit circle, and invertible if

the roots of u(B) lie outside the unit circle. For instance, if p � q � 1, the series is

stationary and invertible if jr1j < 1 and ju1j < 1.

In a distributed lag regression predictors xt, and their lagged values, are introduced in

addition to the lagged observations ytÿ1, ytÿ2, etc. A distributed lag model for centred

data has the form

yt �
X
m�0

bmxtÿm � ut (5:5)

while a model with lags in both y and x may be called an Autoregressive Distributed Lag

(ADL or ARDL) model (see Bauwens et al., 1999; Greene, 2000):

r(B)yt � b(B)xt � ut

The latter form leads into recent model developments in terms of error correction

models.

Dependent Errors

In the specifications above, the errors ut are assumed temporally uncorrelated

with diagonal covariance matrix and autocorrelation is confined to the observations
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themselves. However, if correlation exists between the errors then the covariance matrix

is no longer diagonal. Let et be correlated errors with

yt � a� bxt � et (5:6a)

and suppose that an AR( p) transformation of the et is required

g(B)et � ut

in order that ut is unstructured with constant variance, where

g(B) � 1ÿ g1Bÿ g2B
2 ÿ . . . gpB

p

A frequently occurring model is one with AR(1) errors et such as

yt � a� bxt � et

et � getÿ1 � ut

More generally, regression models may be defined with ARMA(p, q) errors

et ÿ g1etÿ1 ÿ g2etÿ2: : ÿ gpetÿp � ut ÿ u1utÿ1 ÿ u2utÿ2 . . . :ÿ uqutÿq (5:6b)

To facilitate estimation, the AR(1) error model may be re-expressed in non-linear

autoregressive form, for observations t > 1 subsequent to the first, and with homogen-

ous errors ut,

yt � gytÿ1 � aÿ ag� bxt ÿ gbxtÿ1 � ut

� g(ytÿ1 ÿ bxtÿ1)� a(1ÿ g)� bxt � ut

(5:7)

So the intercept in the original model is obtained by dividing the intercept in the

transformed data model by 1ÿ g.

Multivariate series

The above range of models may be extended to modelling multivariate dependence

through time, with each series depending both on its own past and the past values of

the other series. One advantage of simultaneously modelling several series is the possi-

bility of pooling information to improve precision and out-of-sample forecasts. Vector

autoregressive models have been used especially in economic forecasts for related units

of observation, for example of employment in industry sectors or across regions, and of

jointly dependent series (unemployment and production).

For example, a time series of K centred metrical variables Yt � (y1t, y2t, : : yKt)
0 is

a multivariate Normal autoregression of order p, denoted VAR(p), if it follows the

relations

Yt � Fp1Ytÿ1 � . . . :FppYtÿp �Ut

Ut � NK (0, V )
(5:8)

where the matrices Fp1, : :Fpp are each K � K , and the covariance matrix is for

exchangeable errors u1t, u2t, : : , uKt. Then if K � 2, Fp1 would consist of own-lag coeffi-

cients relating Y1t and Y2t to the lagged values Y1, tÿ1 and Y2, tÿ1 and cross-lag coeffi-

cients relating Y1t to Y2, tÿ1 and Y2t to Y1, tÿ1.

5.2.1 Specifying priors

Bayesian time series applications with autoregressive and moving average components

have included all the above modelling approaches, and have also been applied in models
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combining state-space and classical time series concepts (Huerta and West, 1999).

Among the questions that are involved in specifying priors for ARMA type model

parameters are whether stationarity and invertibility constraints are taken, whether a

full or conditional likelihood approach is used, and assumptions made about the

innovation errors. As discussed in Chapter 1, prior elicitation consists in incorporating

relevant background knowledge into the formulation of priors on parameters1. Often,

relevant knowledge is limited, and diffuse or `just proper' priors are called on. This

raises questions of sensitivity to prior specifications, for instance on variances (Daniels,

1999) or on time series assumptions (e.g. on stationarity or otherwise or on initial

conditions), and the reader is encouraged to experiment with alternative priors in the

worked examples of the chapter.

Autoregressive and ARMA models without stationarity

Consider first the autoregressive AR( p) model in the endogenous variable,

r(B)yt � ut

Unlike classical approaches, a Bayesian analysis of the AR( p) model is not confined

to stationary processes. As emphasized by Zellner (1971) a prior assumption of statio-

narity in the AR( p) process may be regarded as a modelling assumption to be assessed,

rather than a necessary restriction. Hence in an iterative sampling framework, an

autoregressive model may be applied to observations yt without pre-differencing to

eliminate trend, and the probability of stationarity assessed by the proportion

of iterations s � 1, : : , S where stationarity in the coefficients r(s) at iteration s actually

held in terms of roots located outside the unit circle. A significant probability of non-

stationarity would then imply the need for differencing, different error assumptions, or

model elaboration, for example, to a higher order AR model (Naylor and Marriott,

1996).

One approach of Zellner (1971) without a stationarity constraint is to use a non-

informative reference prior, such as Jeffrey's prior, with

p(r1, . . . rp, t) / tÿ1

where t � 1=s2. In BUGS implementation of this approach would require direct

sampling from the full conditionals. As with any non-informative prior, potential

problems of identifiability may be increased, whereas identifiability generally improves

as just proper or informative proper priors are adopted.

The reference prior approach may be generalised to include AR(p) processes with

normal-gamma conjugate priors (Broemeling and Cook, 1993). For example, with a

gamma G(a, b) prior for t, rjt is taken to be multivariate Normal N(r, t�0), where r is

the prior mean on the lag coefficients, and �0 is a p� p positive definite matrix. A

straightforward analysis is defined by conditioning the likelihood on the first p obser-

vations Y1 � {y1, y2, . . . , yp}, so avoiding the specification of a prior on the latent pre-

series value. The likelihood then only relates to observations Y2 � {yp�1, yp�2, . . . , yn}.

The conditional likelihood is then

1 In Bayesian econometrics, a distinction is sometimes made between two types of formal elicitation
procedures, structural or predictive ± structural methods involve assessment of the quantiles of the prior
distribution of parameters, drawing on theoretical models or past experience (Bauwens et al., 1999; Kadane,
1980).
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f (Y2jY1, r, t) / t0:5(nÿp) exp ÿ0:5t
Xn

t�p�1

[r(B)yt]
2

 !
(5:9)

The posterior is proportional to the product of the two priors and the conditional

likelihood.

Naylor and Marriott (1996) discuss a full likelihood analysis of the ARMA model

without stationarity constraints by using proper but relatively `weak' priors on the

latent pre-series values Y0 � (y0, yÿ1, : : , y1ÿp) and E0 � (u0, uÿ1, : : , u1ÿq). For instance,

if the observed series is assumed Normal with mean m and conditional variance s2,

Naylor and Marriott suggest the pre-series values Y0 be taken as Student t with low

degrees of freedom, having the same mean as the main series but a variance larger by a

factor k � 1, namely ks2. (This is equivalent to dividing the precision t by k.) If there

are several pre-series values (when p > 1), a multivariate Student t might be used. Note

that Zellner (1971, p. 87) suggests a prior for y0 that does not involve any of the

parameters of the main model.

Priors on error terms

The assumption of white noise errors in the AR(p) model may need to be assessed with

more general priors allowing for outlier measurements. However, interpretations of

outlying points in time series are made cautiously. Outliers at time t may be clearly

aberrant, and either excluded or replaced by interpolated values taking account of

surrounding values (Diggle, 1990). On the other hand, especially in economic time

series, they may reflect aspects of economic behaviour which should be included in

the specification (Thomas, 1997).

Some fairly conventional approaches are for a Normal mixture distribution or

Student t errors to replace the usual Normal error assumption (Hoek et al., 1995;

West, 1996). Thus, let D be the small probability of an outlier (e.g. D � 0:05), and let

the binary indicator

Jt � Bernoulli(D)

govern whether the observation t is an outlier. Then one alternative (West , 1996) to the

Normal errors AR(1) model in (5.1) is

yt � m� rytÿ1 � ut

where ut � N(0, Kts
2), and where random or fixed effect parameters Kt > 1 inflate the

variance when Jt � 1. This is known as an innovation outlier model and may be written

as

ut � (1ÿ D)N(0, s2)� DN(0, Ks2) (5:10)

If the Student t is used as an outlier model for the innovations then the most appropriate

option is the scale mixture form ± this includes weights wt averaging 1 which scale the

precision ± so low weights (e.g. under 0.5) indicate possible outliers. In models with

autocorrelated errors, such as

yt � a� bxt � et

et ÿ g1etÿ1 � ut

the innovation outlier model would apply to the ut.
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One may also define additive outliers corresponding to shifts in the observation series

that may not occur for all time points. So, following Barnett et al. (1996) one might

define a model

yt � a� bxt � ot � et

et ÿ g1etÿ1 � ut

with ot � N(0, K1ts
2), where K1t is either 0 or positive (corresponding to times when an

additive outlier does or does not occur), and ut � N(0, K2ts
2), where K2t is either 1 or

greater than 1. One might then model the two outliers jointly, for instance via a discrete

set of possible values for Kt � {K1t, K2t}. Barnett et al. illustrate this with a prior for Kt

consisting of (0, 1), (3, 1), (10, 1), (0, 3), (0, 10) with selection among them based on a

multinomial rather than binary indicator Jt, but with prior probabilities possibly biased

towards the null option (0, 1). For example, prior probabilities on the just named

options might be (0.9, 0.025, 0.025, 0.025, 0.025).

Another approach to additive outliers is developed by McCulloch and Tsay (1994).

They consider first a random level-shift autoregressive (RLAR) model

yt � mt � et

mt � mtÿ1 � dtZt

et � g1etÿ1 � g2etÿ2 � . . .� ut

where dt is Bernoulli with probability D and governs the chance of a level shift at time t,

the terms Zt � N(0, j2) describe the shifts, the et are autoregressive errors and the white

noise errors ut are N(0, s2). The shift variance j2 is taken as a large multiple (e.g. 10, or

100) times the white noise variance s2. The probability of a shift D is beta with

parameters favouring low probabilities, for instance D � Beta(5, 95). The above model

may be re-expressed as

yt � mt � g1(ytÿ1 ÿ mtÿ1)� g2(ytÿ2 ÿ mtÿ2)� : : � ut

mt � mtÿ1 � dtZt

McCulloch and Tsay also propose a specialised additive outlier model, namely

yt � ot � et

ot � dtZt

et � g1etÿ1 � g2etÿ2 � . . .� ut

which is the same as the RLAR model except that the level mt( � ot) no longer depends

upon its previous value. This model can be re-expressed as

yt � ot � g1(ytÿ1 ÿ otÿ1)� g2(ytÿ2 ÿ otÿ2)� : : � ut

ot � dtZt

Another version of this model (Martin and Yohai, 1986) has

yt � (1ÿ dt)et � dtZt

with et again autoregressive.

Priors consistent with stationarity and invertibility

Prior assumptions regarding stationarity or non-stationarity (and invertibility or non-

invertibility) may interrelate to other aspects of time series model specification. Thus,
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specifying priors for a full likelihood involving all observations may be more straight-

forward for a stationary model. Consider the AR(1) model

yt � m� rytÿ1 � ut

Then for a stationary process with r 2 [ÿ 1, 1], and with exchangeable errors ut with

mean 0 and variance s2, the first observation y1 has mean m and conditional variance

s2=(1ÿ r2) (5:11)

rather than s2. This analytic form corresponds to assuming an infinite history for the

process. For p > 2, a matrix generalisation of (5.11) is involved. For instance for p � 2

with lag coefficients {r1, r2}, the equivalent of (5.11) is a bivariate Normal for

Y1 � {y1, y2} with covariance matrix s2S, where

� � RSR0 � K1(2)K1(2)0

where K1(2) � (1, 0)0 is a (2� 1) vector, and

R � r1 r2

1 0

� �
A prior constrained to stationarity might alternatively involve ensuring lag parameters

in the acceptable region combined with a prior density on the pre-series values. Thus,

for p � 1 the prior for the AR(1) model (5.2), the prior would be p(y0, r, t), rather than

p(r, t), while for p > 1 it would be necessary to specify priors on y0, yÿ1, : : y1ÿp.

Specifying priors on the pre-series values under stationarity may be avoided by back-

casting (Ravinshanker and Pay, 1997, p. 182), a procedure which takes advantage of the

fact that the model for a stationary time series taken forward in time also applies with

time reversed (see Box and Jenkins, 1970).

Some authors suggest simple rejection sampling, with samples of ARMA coefficients r
or u accepted (as a block) if they lie in the acceptable region (Chib and Greenberg, 1994).

Another option on the priors on the AR coefficients P � {r1, : : rp} consistent with

stationarity, is reparameterisation of the rj in terms of the partial correlations rj of the

AR(p) process (Marriott and Smith, 1992; Marriott et al., 1996). In the AR( p) model let

r( p) � (r( p)
1 , r( p)

2 , : : r( p)
p )

with r(p)
j the jth coefficient. Then the stationarity condition is equivalent to restrictions

that jrkj < 1 for k � 1, 2, : : p. The transformations linking priors on rj to the implied rj

are for (k � 1, : : p and i � 1, : : kÿ 1)

r(k)
k � rk

r(k)
i � r(kÿ1)

i ÿ rkr(kÿ1)
kÿi

(5:12)

So for p � 3 the transformations would be

r(3)
3 � r3

r(3)
1 � r(2)

1 ÿ r3r(2)
2 � r(2)

1 ÿ r3r2 (for k � 3, i � 1)

r(3)
2 � r(2)

2 ÿ r3r(2)
1 � r2 ÿ r3r(2)

1 (for k � 3, i � 2)

r
(2)
1 � r

(1)
1 ÿ r2r

(1)
1 � r1 ÿ r2r1 (for k � 2, i � 1)

One may use U(ÿ 1, 1) priors on the rj but alternative transformations have be pro-

posed. Thus, let rj* be a normal or uniform draw on the real line, and then rj are given by
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solving rj
* � log ([1� rj ]=[1ÿ rj]). Jones (1987) proposes beta variables r1

*, r2
*, r3

*, : : rk
*,

and then transforming to the interval [ÿ1,1] via r1 � 2r1
*ÿ 1, r2 � 2r2

*ÿ 1, etc. Priors on

the u coefficients in Equation (5.4) consistent with invertibility may be obtained by a

parallel reparameterisation, for k � 1, : : q and i � 1, : : kÿ 1 (Monahan, 1984; Marriott

et al., 1996).

Chib and Greenberg (1994) discuss priors for the ARMA( p, q) errors model (5.6)

that are constrained to stationarity and invertibility. They emphasise that nonstatio-

narity in the data themselves may still be modelled by unrestricted coefficients r on

lagged yt.

Further aspects of priors on regression coefficients

If a stationarity constraint is not imposed then a flat prior may be chosen for the

P � {r1, : : rp} but proper priors, such as rj � N(0, 1), j � 1, : : , p provide a relatively

vague but proper alternative. To take priors on the rj that had larger variances would

neglect the typical pattern of autoregressive coefficients on the endogenous variable,

with values exceeding 1 being uncommon, except in short term explosive series. More

specialised priors on the coefficients on lagged endogenous or exogenous variables may

be applied in particular forms of model. In vector autoregressions, Litterman (1986)

specifies a prior mean of unity for the first own-lag coefficient (relating ykt to yk, tÿ1),

but zero prior means for subsequent own-lag coefficients, and for all cross variable lags.

The form of the own first lag prior follows the observed trend behaviour of many

undifferenced economic variables in approximating a random walk, namely

ykt � yk, tÿ1 � ukt k � 1, : :K ; t � 2, . . . , T

In distributed lag models, Akaike (1986) discusses smoothness priors, namely Normal

or Student t priors for differences of order d in the distributed lag coefficients bm. For

example, a first order smoothness prior would specify bm as N(bmÿ1, s2
b) or equivalently

Dm � bm ÿ bmÿ1 � N(0, s2
b).

However, the prior on autoregressive, moving average or regression parameters is

expressed, model selection may be developed by procedures such as those of George and

McCulloch (1993) or Kuo and Mallick (1994), and discussed in Chapter 3. In this way,

alternative models defined by inclusion or exclusion of coefficients may be evaluated.

For instance, if Jk � 1 or Jk � 0 according as the kth autoregressive coefficient rk is

included or excluded, then one might set prior probabilities that Jk � 1 which decline as

k increases (Barnett et al., 1996).

5.2.2 Further types of time dependence

Other forms of time dependence in the yt may be combined with autoregression of yt on

previous values of the series, while still assuming the errors are uncorrelated. This rather

catholic approach to time series modelling is more likely when there is no necessary

restriction to stationarity and the autoregressive dependence in the yt is just one among

several modelling options. Thus one might consider modelling trend without necessarily

differencing beforehand. However, as well as simple trends in t or log(t), there are often

periodic fluctuations in time series such that a series of length T contains K cycles (timed

from peak to peak or trough to trough). So the frequency or number of cycles per unit

of time, is

f � K=T
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An appropriate model for a series with a single cycle is then

yt � A cos (2pft� P)� ut

where A is the amplitude and P the phase of the cycle, and period 1/f, namely the

number of time units from peak to peak. To allow for several (r) frequencies operating

simultaneously in the same data, the preceding may be generalised to

yt �
Xr

j�1

Aj cos (2pfjt� Pj)� ut

For stationarity to apply, the Aj may be taken as uncorrelated with mean 0 and the Pj as

uniform on (0, 2p). Because

cos (2pfjt� Pj) � cos (2pfjt) cos (Pj)ÿ sin (2pfjt) sin (Pj)

the model is equivalently written

yt �
Xr

j�1

{aj cos (2pfjt)� bj sin (2pfjt)}� ut (5:13)

where aj � Aj cos Pj, bj � ÿAj sin Pj .

5.2.3 Formal tests of stationarity in the AR(1) model

There is a wide literature on the question of trend stationarity of the outcome yt in the

AR(1) model for, with non-correlated Normal errors ut:

yt � m� rytÿ1 � ut (5:14a)

where ut � N(0, s2). If jrj < 1 in this model, then the process is stationary with a

variance s2=(1ÿ r2) and long run mean

me � m=(1ÿ r) (5:14b)

as can be seen by taking expectations in Equation (5.14a). If jrj < 1 the series will tend

to revert to its mean level after undergoing a shock. If, however, r � 1, the process is a

nonstationary random walk with its mean and variance undefined by parameters in

Equation (5.14).

Tests for nonstationarity may therefore compare the simple null hypothesis H0: r � 1

with the composite alternative H1: jrj < 1 and classical tests of nonstationarity revolve

around this type of unit root test. If the hypothesis r � 1 is not rejected, then this implies

that the differences Dyt � yt ÿ ytÿ1 are stationary (this is known as difference statio-

narity as opposed to trend stationarity in the undifferenced outcome).

The simple model (5.14) may be extended (Schotman and van Dijk, 1991) to suit the

observed series being considered by adding trends in t (e.g. linear growth) and lags in

Dyt. These modifications are intended to improve specification and ensure that the

assumption that the errors ut are uncorrelated in fact pertains. As an example, Hoek

et al. (1995, Equation (16)) consider the series of Nelson and Plosser (1982) in terms of

an extended model

yt � m� rytÿ1 � lt� f1Dytÿ1 � f2Dytÿ2 � ut (5:15)
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where lt models a linear trend. Bauwens et al. (1999, p. 166) consider an alternative

non-linear form of the AR model, also involving a trend in time lt. For an AR(1) model

this is expressed as

(1ÿ rB)(yt ÿ mÿ lt) � ut

which can be rewritten as

yt � rytÿ1 � rl� (1ÿ r)(m� lt)� ut

When lags in Dyt are introduced, an extended version of the nonlinear form would be

specified by the model

yt � rytÿ1 � rl� (1ÿ r)(m� lt)� f1Dytÿ1 � f2Dytÿ2 � ut (5:16)

Bauwens et al. report differences in the behaviour of nonlinear and linear versions of the

AR model under nonstationarity or unit root situations.

Bayesian tests of nonstationarity in the original AR(1) model (5.14) or in these

extended versions may follow the classical procedure in testing explicitly for the simple

hypothesis H0: r � 1 versus the composite alternative jrj < 1. Thus Hoek et al. (1995)

considers a prior for r confined to non-explosive values, but putting a mass of 0.5 on the

unit root r � 1. Other values of r are uniformly distributed with mass 1/(2A) between

[1-A, 1) where 1 � A > 0. For instance, taking A � 1 gives the prior

p(r) � 0:5 r � 1

p(r) � 0:5 re[0, 1)

Bayesian tests of non-stationarity may also (Lubrano, 1995a) compare the composite

alternatives

H0: r � 1 as against H1: r < 1

If there is genuinely explosive behaviour in the series, then artificially constraining the

prior to exclude values of r over 1 may be inconsistent with other aspects of appropriate

specification. The posterior probability that r � 1 is then a test for nonstationarity.

In either approach, other considerations may be important. The first is the impact of

outliers or nonconstant variance. Hoek et al. (1995) demonstrate that assuming Student

t errors for the innovations provides robustness against outliers that cause a flatter

estimate of r than the true value, and so lead to over-frequent rejection of non-

stationarity. The second consideration is the impact of initial values ± for example,

the unobserved value y0 in the AR(1) model (1). If r � 1, then this particular model may

be expressed as

yt �
Xtÿ1

i�0

riutÿi � rty0

�
Xtÿ1

i�0

utÿi � y0

namely as an accumulation of innovations or shocks plus the initial value. Hence,

conditioning on initial values (e.g. taking y1 as fixed in the AR(1) model and so not

referring to the unknown y0) may distort tests of nonstationarity.
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5.2.4 Model assessment

Time series fit measures often adopt cross-validatory principles as well as standard

measures of fit to all the data points. Within sample fit measures include the DIC or BIC

criteria, marginal likelihood approximations (Gelfand and Dey, 1994), or the minimum

predictive loss criteria of Gelfand and Ghosh (1998) and Laud and Ibrahim (1995). Out-

of-sample cross validation is demonstrated by Nandram and Petrucelli (1997), who use

a predictive density f (yt�1jy1, y2, : : yt) for assessing one step ahead forecasts within the

span t � 1, : : , T ÿ 1 of the observed series.

If model comparisons involve selection of subsets of coefficients (e.g. by one or more

binary inclusion indicators), then posterior vs. prior probabilities of inclusion are

obtainable from standard MCMC output. As discussed above, model choice may be

influenced by (or be sensitive to) features of the data or model specification such as

outliers and assumptions about priors. Model checking (e.g. in assessing possible

outliers by CPO statistics) may interact with procedures assessing sensitivity to priors

± if for instance, robust error assumptions are adopted to lessen the effect of outliers.

Example 5.1 Oxygen inhalation The first example is of an AR(p) model for the

outcome yt without a prior stationary constraint, and with uncorrelated errors. Specif-

ically, we consider undifferenced data on a burns patient reported by Broemeling and

Cook (1993). The series consists of 30 readings yt of the volume of oxygen inhaled at

two minute intervals (Figure 5.1)2. Broemeling and Cook adopt the AR(1) model in

Equation (5.14) with the simplification provided by a conditional likelihood, taking the

first observation y1 as a known constant and avoiding reference to the initial condition,

or latent value y0. They investigate the question of stationarity of the process, by

sampling directly from the analytic form of the marginal posterior for r, and assessing

the proportion of samples where jrj < 1. If stationarity is confirmed then it makes sense

to derive the long run average me in the AR(1) model of Equation (5.14). Taking

t � 1=s2, Broemeling and Cook adopt a flat prior on u � (m, r, t), namely
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Figure 5.1 VO2 Readings

2 Data kindly provided by Peyton Cook.
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p(u, t) / tÿ1 (5:17)

Here two forms of just proper gamma prior for t are adopted, one t�G(0.001, 0.001)

which approximates Equation (5.17), whereas the prior t�G(1, 0.001) approximates a

uniform prior for the precision. The prior for m is taken as N(300, 108), weakly

reflecting the average level of the observations, and r is taken as N(0, 1), consistent

with a model not assuming a stationarity constraint. Finally, the fact that the outcome is

positive means the Normal sampling for y is truncated below at zero.

To implement this conditional likelihood method, three chains with dispersed3

starting values are run for 20 000 iterations, with convergence apparent from around

iteration 1000. With the prior t�G(0.001, 0.001), this gives posterior means for m and r
of 287 (standard deviation 79) and 0.30 (s.d. 0.19), similar to those obtained by

Broemeling and Cook. The probability of non-stationarity is negligible at 7E-4. With

the alternative prior t�G(1, 0.001), r is estimated at around 0.295 (s.d. 0.18) and

posterior summaries are very similar for other parameters.

The Durbin±Watson statistic (DW in Program 5.1) is used to assess auto-correlation

in the residuals of the fitted model and is approximately 2 when there is no correlation.

One might assess this (and hence the potential relevance of a model with correlated

errors) by a step function in BUGS comparing DW with 2. Here it is clear that a

conditional likelihood approach leaves no correlation in the errors, and the Durbin-

Watson statistic has posterior average of 2.07, very close to 2. Another option to assess

the validity of the white noise assumption for ut is an analysis of the posterior residual

estimates, ût � yt ÿ ŷt. For example, an effectively zero correlation parameter between

ût and ûtÿ1 would be consistent with white noise.

In terms of fit criteria to compare against succeeding models, the conditional likeli-

hood AR(1) approach yields, with t�G(1, 0.001), a CPO based marginal likelihood

estimate of ÿ155.8 (Gelfand and Dey, 1994), a Predictive Loss Criterion (PLC) of

134 200 (Gelfand and Ghosh, 1998), and a mean square prediction error (one step

ahead) of 4680. The individual CPOs, when scaled to have maximum 1, show the lowest

probability of belonging to the data for y19, with a scaled CPO of 0.027.

For a full likelihood approach without a stationary constraint (Model B in Program

5.1), it is necessary to specify priors on the latent pre-series data or errors. Thus, take

y0 � t(300, ks2, 2), where k is assigned a G(0.01, 0.01) prior, which has mean 1 but

allows values of k much in excess of 1. The posterior mean (and s.d.) of r is then 0.24

(0.19), and the posterior median of k around 10. The one step predictive error as

compared to the conditional likelihood model (and defined over the same times as in

that model) is worsened to 4785, and the predictive loss criterion is also higher at

137 100. On the other hand the marginal likelihood estimate (over cases 2±30) is

virtually unchanged at ÿ155.9. The pre-series value is estimated at 506 compared to

y1 � 485.

A further elaboration (Model C in Program 5.1) allows for outliers, with a Normal

mixture replacing the standard error assumption. Thus,

ut � (1ÿ D)N(0, s2)� DN(0, ks2)

where k > 1 inflates the variance for outliers. Here, D is set to 0.05, and a discrete prior

with five values {5, 10, 15, 20, 25} is set on k. This prior is to ensure an outlier mixture as

opposed to a more general mixture, where D might for instance be around 0.5, and k not

3 These are null start values, and the values provided by the 2.5th and 97.5th percentiles of a trial run.

AUTOREGRESSIVE AND MOVING AVERAGE MODELS 183



markedly greater than 1. The estimate of r is similar to Model B, with mean around 0.27

(and s.d. 0.20). The highest outlier probability, around 20%, is for observation 19 (501).

However, fit does not improve; for instance, the one step ahead predictive error is 5410.

In a final analysis, Model D, the full likelihood model (Model B) is modified to

include a coefficient selection indicator, consistent with the approach of Kuo and

Mallick (1994). Thus

yt � m� Jrytÿ1 � ut

where Jr is binary. The prior probability pJ that Jr � 1 is taken as 0.9, so posterior values

of pJ (based on counting samples where Jr � 1) clearly lower than 0.9 would tend to cast

doubt on the value of including an AR(1) coefficient. In fact, pJ is estimated around 0.85,

so there does not seem clear evidence for or against including this parameter.

Example 5.2 Nelson±Plosser series As an illustration of models for analysing trend as

in Section 5.2.3, one of the 14 Nelson±Plosser series on the US economy (Nelson and

Plosser, 1982) is considered. This is the real GNP series, taken up to 1988. Both linear

and nonlinear AR models, as in Equations (5.15) and (5.16) respectively, are considered,

and full likelihoods referring to latent pre-series values are assumed. The original series

is shifted by subtracting the first observation from all observations, i.e.

zt � yt ÿ y1

and this provides justification ± when combined with low precisions ± for assuming a

prior mean of zero for the pre-series values, which are here z0, zÿ1, zÿ2.

Student t innovation errors via a scale mixture with n degrees of freedom and weights

wt are adopted, since Hoek et al. (1995) report some of these series to be clearly heavy

tailed. A gamma prior for the degrees of freedom is taken with sampling constrained to

[1, 100], so encompassing both the Cauchy density (n � 1) and an effectively Normal

density (n � 100). Hoek et al. (1995, p. 43) suggest varying the upper limit for the

degrees of freedom as a sensitivity analysis. As in Example 5.1, a G(0.01, 0.01) prior is

taken for the factor k, which scales up the main data variance in a way appropriate for

the Student t distributed pre-series latent data.

Summaries are based on three chains with 20 000 iterations and 3000 burn-in (to

ensure convergence of n). The real GNP series is stationary according to the linear

model, with zero probability that r > 1 (Table 5.1). However, GNP is marginally non-

stationary (with the same probability standing at 0.09) under the nonlinear model

(5.16). By comparison, Bauwens et al. (1999, p. 189) find probabilities that r > 1 of

0.002 and 0.033 under the linear and nonlinear models. The linear model does, however,

have slightly better one step-ahead prediction error, error under predictive loss, and

marginal likelihood than the non-linear model. Figure 5.2 plots zt against the weights of

the scale mixture: lower weights apply to observations at odds with the remainder of the

data. The lowest weight is for the depression year 1932.

As a third modelling approach, an additive outlier model (Section 5.2.1) is applied.

This modifies the linear model in Equation (5.15) to the form

zt � m� g(ztÿ1 ÿ otÿ1)� lt� f1Dztÿ1 � f2Dztÿ2 � ut

ot � dtZt

Following McCulloch and Tsay (1994), ot for years preceding the series are taken as

zero. This model finds evidence of outliers in the years 1921, 1929, 1938 and, to a lesser
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Table 5.1 GNP series (second halves of runs of 25 000, iterations)

Mean St. devn. 2.5% Median 97.5%

Linear AR

Prob of Nonstationarity 0

m ÿ0.035 0.020 ÿ0.076 ÿ0.035 0.001

d 0.006 0.001 0.003 0.005 0.009

g 0.824 0.047 0.729 0.827 0.909

f1 0.374 0.106 0.163 0.375 0.579

f2 ÿ0.007 0.109 ÿ0.219 ÿ0.008 0.208

n 18.9 24.0 2.3 7.2 89.5

Non-Linear

Prob of Nonstationarity 0.029

m ÿ0.374 0.307 ÿ0.991 ÿ0.365 0.273

d 0.032 0.004 0.022 0.032 0.038

g 0.876 0.063 0.759 0.872 1.002

f1 0.370 0.104 0.162 0.372 0.570

f2 ÿ0.052 0.118 ÿ0.286 ÿ0.051 0.175

k 9.2 19.8 1.0 3.2 59.2

n 19.6 24.5 2.3 7.3 89.6

Linear AR, Additive Outlier Model

Prob of Nonstationarity 0.0

m ÿ0.031 0.020 ÿ0.076 ÿ0.029 0.004

d 0.005 0.002 0.002 0.005 0.009

g 0.838 0.053 0.721 0.842 0.925

f1 0.426 0.106 0.214 0.426 0.632

f2 ÿ0.046 0.110 ÿ0.254 ÿ0.048 0.178

n 13.6 19.2 2.0 5.6 77.1

degree, 1954. The outlier probability D is estimated at 0.051. The one step and predictive

loss prediction errors of this model are better than either the linear or non-linear AR(1)

models.

Example 5.3 US coal production Moving average modelling for innovations com-

bined with autoregression in a metric outcome, as in Equation (5.4), may be illustrated

with data from Christensen (1989). He considers a time series yt of US coal production

from 1920 to 1987 (T � 68), and its analysis for forecasting purposes by various

ARIMA models. Because a broadly upward trend is apparent in the observed series

he advocates first differencing, so that the analysis is of

zt � yt�1 ÿ yt t � 1, : : 67

It may be noted that a linear trend (e.g. the lt term in Equation (5.15)) corresponds to a

nonzero mean in the series of first differences. Figure 5.3 shows the original undiffer-

enced series and the steady growth in output after 1960. Christensen concludes that

(p, d, q)� (1, 1, 2) models with and without intercepts are the best fit, and that the version
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with an intercept is more plausible as it better reflects the actual upward trend in the

data when applied to making forecasts.

However, to allow for the possibility of a model with a zero intercept, the first model

adopted here uses a binary indicator Jl�Bern(0.5) to select a zero or non-zero intercept

across all periods. Hence, the model is

zt � Jll� rztÿ1 � ut ÿ u1utÿ1 ÿ u2utÿ2 (5:18)
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The second model here proposes a threshold t within the estimation period such that

I(t � t) � 1 and I(t < t) � 0. So after t there is a trend, but not before. Then

zt � I(t � t)l� rztÿ1 � ut ÿ u1utÿ1 ÿ u2utÿ2

Christensen undertakes estimation with the series up to 1980 (T1 � 61) and `extended'

forecasting beyond then, for the seven years up to 1987. Within the estimation series,

one step ahead forecasts are obtained as

ynew, t�1 � znew, t � yt

where znew, t is sampled from the model for the zt. Extended forecasts assume ut sampled

from the same density as the innovations during the estimation period. Both sets of

forecasts are compared with actual data via a squared error criterion.

Because BUGS uses the centred Normal form, it is necessary to assume an additional

measurement error et to model the moving average terms such that, for the first model,

zt � Jll� rztÿ1 � ut ÿ u1utÿ1 ÿ u2utÿ2 � et

The variance of et is taken to be less than that of the innovations ut and use beta prior is

adopted for l � var(et)=var(ut). An extra parameter B � U(1, 1000) is introduced to

guide the decomposition of variance so that

l � Beta(1, B)

On the AR and MA parameters, priors in line with stationarity and invertibility are

assumed. An unconditional estimation, including all observations in the likelihood, is

used, so that a latent (differenced) observation z0, and latent innovations u0 and uÿ1 are

referred to. The latent innovations are assumed a priori to follow a Student t density

with n � 2 degrees of freedom and with variance five times greater than the main

innovation series. z0 is taken as a distinct fixed effect.

Christensen obtains maximum likelihood estimates (with SEs) of

l � 6:3(7:6), r � ÿ0:42(0:23), u1 � ÿ0:47(0:22), u2 � 0:38(0:16)

and forecasts under ARIMA(2, 1, 2) intercept model as shown in Table 5.2. Forecasts

under the no-intercept model fluctuate between 780 and 785 million short tons right

through from 1981 to 1987.

For the first model in Equation (5.18) a three chain run of 50 000 iterations (5000

burn-in) gives an estimate for Jl around 0.0273. Hence the Bayes factor against an

intercept is approximately 35. This model yields similar forecasts to those cited by

Table 5.2 Threshold model forecasts, US coal production

Year Mean St. devn. 2.5% Median 97.5% Actual Christensen

(1989, p. 243) forecasts

1981 808 54 701 807 915 818 787

1982 827 80 671 827 986 834 796

1983 844 92 667 843 1029 778 798

1984 863 105 661 861 1078 892 804

1985 881 117 657 879 1122 879 808

1986 900 130 651 896 1170 886 812

1987 918 142 647 914 1216 913 817
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Christensen for the no intercept model. The prediction for 1987 is 778 with 95% credible

interval (560,1010).

The threshold model for the intercept (Model B in Program 5.3) has a considerably

better predictive loss error within the series, and improved out of sample forecasts. It

finds the threshold t to average 40, corresponding to the year 1959. The intercept l then

averages 22, which may be compared to the average increment zt from 1960±61 to 1979±

80 of around 20.5 million tons. Under this model the lag parameter r and first MA lag

u1 are smaller absolutely than obtained by Christensen, with posterior means and SDs

r � ÿ0:20(0:22), u1 � ÿ0:21(0:27), u2 � 0:45(0:21)

This model predicts the 1987 production to be 918 million short tons (with 95% interval

647 to 1216) against an actual 913. One might envisage other options for this series, such

as a dynamic intercept for this model (see Section 5.5).

Example 5.4 Investment levels by firms Maddala (1979) compares several procedures,

including maximum likelihood, in the estimation of investment levels by a set of US

firms. This analysis illustrates autocorrelated errors as in Equation (5.6). Maddala's

investigation derives from an earlier study by Grunfeld and Griliches (1960) on the

validity of using aggregate data to draw inferences about micro-level economic func-

tions (e.g. consumption and investment functions). The aggregate is defined by ten

firms, while the autoregressive errors model is applied to the yearly investment time

series (1935±54) of a particular firm, General Motors. The predictor series (Ct, Vt) is

available from 1934.

The model relates General Motors' gross investment yt in year t to lagged levels of the

firm's value Vtÿ1 and capital stock Ctÿ1; thus the generic xt in Equation (5.6a) is here

defined by xt � {Vtÿ1, Ctÿ1}. Maddala assumes AR(1) dependence in the errors leading

to a specification for years 1936±54:

yt � b0 � b1Vtÿ1 � b2Ctÿ1 � et

et ÿ getÿ1 � ut

with ut � N(0, tÿ1) being unstructured white noise. This model can be expressed in the

form of (5.7), giving the model

yt � gytÿ1 � b0(1ÿ g)� b1(Vtÿ1 ÿ gVtÿ2)� b2(Ctÿ1 ÿ gCtÿ2)� ut (5:19)

The first model (Model A) assumes stationary errors e, and a uniform prior on the AR

parameter is assumed, namely r � U(ÿ 1, 1). The model for the year 1935 (t � 1) can

then be written

y1 � b0 � b1Vtÿ1 � b2Ctÿ1 � e1

e1 � N(0, 1=t1)

t1 � (1ÿ g2)t

The prior for the intercept b0 is set to be appropriate for a series with values exceeding

1000. One step ahead forecasts in Equation (5.6a) require knowledge of xt�1, and use

current ( years t) values of y, V and C.

The posterior estimates of the parameters b1 and b2 (from a three chain run of 20 000

iterations with 1000 burn-in) are close to the maximum likelihood estimates cited by

Maddala. They show both coefficients to be above zero, with b1 and b2 having means
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and 95% credible interval 0.086 (0.045, 0.12) and 0.42 (0.28, 0.57), respectively. The

autoregressive coefficient g is estimated to have mean 0.74 with 95% credible interval

(0.34, 0.98).

A second model (Model B) avoids assuming stationarity in the error process at the

outset (Zellner and Tiao, 1964). Accordingly, the prior on g is not confined to absolute

values under 1, and a Normal density with mean 0 and variance 1 is adopted instead.

The model for the first observation (for the year 1935) now treats it as separate effect

y1 � N(m1, V1)

with V1 set large and mean, following Equation (5.19), of

m1 � b0(1ÿ g)� b1Vtÿ1 � b2Ctÿ1 �M

where M is a composite parameter represents the missing term g(y0 ÿ bx0). This shows

the posterior of b1 unchanged, but the mean effect of Ctÿ1 is reduced, with 95% interval

(ÿ0.11, 0.68) now straddling zero. There is a 35% chance of g exceeding 1, and its mean

is 0.93 with 97.5% point 1.28. The within series forecasts under this model are shown in

Figure 5.4, and trace the observed series reasonably well. The value for 1953 is under-

predicted and this feature is worse under the non-stationary model; the result is that the

marginal likelihood based on the CPO statistics is lower by ÿ1.7, and the pseudo Bayes

factor on Model A as against B is 5.3.

Example 5.5 Swedish unemployment and production: bivariate forecasts To illustrate

VAR models involving autoregression in the endogenous variables, consider the bivari-

ate series analysed by Kadiyala and Karlsson (1997). This consists of quarterly data on

unemployment and industrial production in Sweden between 1964.1 and 1992.4, with

the production index in logged form. The analysis follows Kadiyala and Karlsson in

only considering the latter part of the series (here from 1978.1 onwards). A lag four

model in each component of the bivariate outcome is adopted. It may be anticipated
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that some of the cross-variable lags are negative, because unemployment increases as

production falls. This model is in fact likely to be most effective in short term forecast-

ing of unemployment, since influences on production (e.g. measures of consumer

demand) are not included in the model. There are also seasonal influences on both

variables and seasonal dummies are therefore included as exogenous predictors. Here

the 52 quarters of the series from 1979.1 to 1991.4 are analysed (conditioning on 1978.1

to 1978.4) and then predictions made for the remaining year.

Kadiyala and Karlsson take the undifferenced series with N(1, 1) priors on the own

first lags, and N(0, 1) priors on the other own-lag coefficients, and for all the cross

variable lags. Experimentation here with an undifferenced series analysis showed poor

identifiability and convergence on the cross-variable lag effects. Identifiability was

improved by modelling aspects of trend, such as by polynomials in time to take account

of the upward shift in unemployment in the early 1990s (Figure 5.5), following a decline

during the 1980s. However, convergence was still problematic.

By contrast, analysis of differenced series was less subject to such problems. For this

analysis N(0, 1) priors are taken on all lags, including first own lags. There are no

stationarity constraints. Priors on seasonal effects take the first quarter as reference

(with coefficient zero).

In Model A, all cross-variable lags (unemployment on production and vice versa) are

included, and the ukt are taken as multivariate Normal. With a two chain run taken to

10 000 iterations (and burn-in of 1000), the clearest defined lags are for unemployment

on its own third and fourth lags, with posterior means (standard deviations) of 0.34

(0.15) and 0.28 (0.16). All cross lags of unemployment on production are negative, with

the mean of the second cross lag being around ÿ1.20 (s.d. �0.78). Lags of production

on unemployment are insignificant (close to zero). The cross-variable correlation in the

errors ukt is estimated at around ÿ0.15 (with 95% credible interval (ÿ0.44, 0.18).

Forecasts of unemployment in the short term match the rise during 1992 (Figure 5.6).
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Figure 5.5 Undifferenced unemployment series
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Figure 5.6 Unemployment in 1992

In a reduced model (Model B), the lags of production on unemployment are set to

zero. This produces an improvement in marginal likelihood (and in other fit criteria)

and no great change in the pattern of remaining coefficients or the forecasts for 1992.

In both models the clearest outlier is at 1982.4, with unemployment difference

3:1ÿ 3:6 � ÿ0:5.

5.3 DISCRETE OUTCOMES

For discrete outcomes, dependence on past observations and predictors may be handled

by adapting metric variable methods within the appropriate regression link. Thus for

Poisson outcomes

yt � Poi(mt)

an AR(1) dependence on previous values in the series could be specified

log (mt) � rytÿ1 � bxt (5:20)

Here, non-stationarity or `explosive' behaviour would be implied by r > 0 (Fahrmeir

and Tutz, 2001, p. 244), and in an MCMC framework stationarity would be assessed by

the proportion of iterations for which r was positive. Autoregressive errors lead to

specification such as

log (mt) � bxt � et

with

et � getÿ1 � ut

for t > 1, and ut being white noise.
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For binary data a similar framework would involve lags in the binary outcomes.

Thus, if yt � Bern(pt), then one might have a regression model with a single lag in yt

such as

logit(pt) � bxt � rytÿ1

For multi-category data with K categories there are K ÿ 1 free category probabilities,

and these might be related to lagged values on up to K ÿ 1 dummy variables. This leads

to models similar to VAR(p) models for multivariate metric outcomes, in that there are

`own' and `cross' lags. Thus, Pruscha (1993) outlines suggests the scheme

yt � Categorical(Pt)

where both yt and Pt are of dimension K, and the probability Ptk that the tth value of the

series is in category k(k > 1) is a function of dummy indicators Dtÿ1, k � 1 if Ytÿ1 � k.

The probabilities may be made functions of the previous response via a model

such as

Ptk � exp (bkxt � rk2Dtÿ1, 2 � . . . rkKDtÿ1, K )=

[1�
X

k

exp (bkxt � rk2Dtÿ1, 2 � . . . rk, KDtÿ1, K )]

and the lag coefficients model transitions between states.

While the canonical links (e.g. log for Poisson data and logit for binomial data) are

the most common choices, one may regard the link as a modelling area in its own right.

For binomial data, the modelling of a choice between skewed alternatives to the logistic

model, as in Lang (1999) was considered above (Section 3.3.4). Another methodology

(Mallick and Gelfand, 1994) is applicable to modelling all kinds of link; for a Poisson

with `base' log link, it involves a transformation from the R1 scale of Z � log (m) to a

(0, 1) scale in which beta mixture modelling can be carried out ± for instance,

J(Z) � exp (Z)=[1� exp (Z)].

Modelling the link for count data is also possible in models involving multiplicative

lags in a transformed version of yt, with mean specified as

mt � exp (xtb)(y0t)
r

with possible transformations being, as in Cameron and Trivedi (1999),

y0tÿ1 � ytÿ1 � c (c > 0) (5:21a)

or

y0tÿ1 � max (c, ytÿ1) (0 < c < 1) (5:21b)

Either c would be an additional parameter or taken as a default value such as c � 0:5 or

c � 1. A generalisation is to models such as

(mt)
k � exp (xtb)(y0t)

r

Another approach, especially for binary and categorical time series, invokes an under-

lying metric variable. This approach has been suggested for Poisson count data (van

Ophem, 1999), but the most frequent application is for binary data using the method of

Albert and Chib (1993) and Carlin and Polson (1992). Thus, for binary yt, a positive

value of the latent series Yt
* corresponds to yt � 1 and negative values of the latent
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series to yt � 0. One might then assume an underlying true series xt, largely free of

measurement error, such that

Yt
* � xt � vt

xt � rxtÿ1 � ut

with jrj < 1 corresponding to stationarity.

5.3.1 Autoregression on transformed outcome

For Poisson or binomial data, it might be sensible that the lagged value of the outcome

is in the same form as the transformed mean of the current outcome value. Thus a

symmetry with the log link for Poisson counts would involve a lag in the log of a

transformed version of ytÿ1,

log (mt) � bxt � r log (y0tÿ1)

where y0t is defined as above.

If one wished to consider extended lags or moving average effects for frequent

binomial events or counts, then unmodified ARMA methods ± applied as if the

outcomes were effectively metric, and using Normal approximations for the binomial

or Poisson ± may be appropriate. However, there are potential problems in applying

standard ARMA models to count data since the assumption of Normality (or of any

symmetric density) may not be appropriate, especially for rare events.

If the autocorrelation is postulated in the regression errors, then a full model might

take the form, for a Poisson outcome

yt � Poi(mt)

log (mt) � bxt � et

et � getÿ1 � ut

However, a reduced parameterisation, excluding errors u, may still reproduce the

essential aspects of the alternative form (5.7). Following Zeger and Qaqish (1988), one

might propose, for a Poisson outcome, the model

log (mt) � bxt � g( log y0tÿ1 ÿ bxtÿ1)

with y0tÿ1 as in Equations (5.21a)±(5.21b). A lag two model would then be

log (mt) � bxt � g1( log y0tÿ1 ÿ bxtÿ1)� g2( log y0tÿ2 ÿ bxtÿ2)

and `moving average' terms would compare log y0tÿj with log mtÿj so that an ARMA(1, 1)

type model would be

log (mt) � bxt � g( log y0tÿ1 ÿ bxtÿ1)� u( log y0tÿ2 ÿ log mtÿ2)

5.3.2 INAR models for counts

Integer valued autoregressive (INAR) schemes are oriented to discrete outcomes, and

have a close affinity with ARMA models for metric outcomes (McKenzie, 1986). In

particular, their specification often includes devices to ensure stationarity (e.g. of the

underlying mean count through time), though a Bayesian approach may make this
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constraint less necessary. INAR schemes introduce dependence of the current count yt

on previous counts ytÿ1, ytÿ2, : : , and also allow an integer valued innovation series wt (a

form of random shock). The autoregressive component of the model can be seen as a

survival model to time t for each particle in the previous overall counts ytÿ1, ytÿ2, etc.

Thus, for an INAR(1) model, one considers the chance r that each of the ytÿ1

particles survives through to the next period. If, say, ytÿ1 � 4, this amounts to conceiv-

ing a Bernoulli model Bern(r) for continuation of each of the four particles. The

autoregressive component of the INAR(1) model for yt is

Ct �
Xytÿ1

k�1

Bern(r)

Equivalently, Ct is binomial with ytÿ1 subjects, and r the probability of success. This

approach to autoregression for non-negative integers is known as a binomial thinning

operation, and is denoted as

r8ytÿ1

An INAR(2) process would refer to two preceding counts, ytÿ1 and ytÿ2, and involve

two survival probabilities, r1 and r2. Note that for an INAR(p) process, stationarity is

defined by Xp

k�1

rk < 1

(Cardinal et al., 1999). For overdispersed data, McKenzie (1986) suggested that the

`survival probabilities', such as r1t in an INAR(1) model, be time varying, and one

might then envisage autoregressive priors on these probabilities.

If ytÿ1 � 0 then there is no first order lag autoregressive component in the model for

yt. In BUGS the binomial can still be used when yt � 0, so one can code an INAR(1)

model using the binomial, rather than program the full thinning operation. Note that an

INAR model requires an initialising prior for the first value y1 of the series, and

McKenzie (1986) proposes

y1 � Poi(u)

As well as survival of existing particles (which might have time-varying covariates

attached to them so that r1t is modelled via logit regression), there is an `immigration'

process, analogous to the innovations of an ARMA model for a metric outcome. Thus,

new cases wt are added to the `surviving' cases from previous periods. McKenzie and

others have envisaged yt as then being the summation of two separate Poisson processes

with different means. Thus, McKenzie's INAR(1) model has

yt � r8ytÿ1 � wt (5:22)

where the mean of wt is Poisson with mean u(1ÿ r) to ensure stationarity in the mean

for y.

One might also consider unconstrained Poisson densities for wt (not tied to r in an

INAR(1) model), especially if there is overdispersion. Thus Franke and Seligmann

(1993) propose a mixed Poisson with two possible means l1 and l2 for wt in an analysis

of epileptic seizure counts. Switching in the innovation process at time t is determined

by binary variables Qt (which may in turn be drawn from an overall beta density).

Another option is to allow the mean of the wt to be time dependent.
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One might also envisage (in terms of its compatibility with the BUGS computing

environment) having a single mean mt for yt, but composed of the survival term r18ytÿ1,

and an additional series vt, that follows a positive density (e.g. a gamma). For a

stationary INAR(1) model, this leads to

yt � Poi(mt)

mt � r8Ytÿ1 � vt

vt � G(bu(1ÿ r), b)

(5:23)

5.3.3 Continuity parameter models

Harvey (1989) and Ord et al. (1993) also propose a model for count series combining

two sources of randomness. One concerns changes in the underlying level (as does the

survival term of an INAR model) and the other refers to the distribution of observa-

tions around that level. Thus, with Poisson sampling, the mean is itself gamma distrib-

uted with time evolving parameters (at, bt),

yt � Poi(mt)

mt � G(at, bt)
(5:24)

The gamma parameters are related to previous parameters (atÿ1, btÿ1) via a common

continuity parameter f. This takes values between 0 and 1 that applies to both scale and

index of the gamma. Thus

at � fatÿ1

bt � fbtÿ1

(5:25)

The initial values a0, b0 are assigned a prior ensuring positive values (e.g. log-normal or

gamma). To avoid improper priors for later time periods, one may modify Equation

(5.25) by adding a small constant ± indicating the minimum prior scale and index in the

prior for the mt. This might be taken as an extra parameter or preset. Thus

at � fatÿ1 � c

bt � fbtÿ1 � c

It is also possible to drop the constraint f < 1 and assess the probability that f is in fact

consistent with information loss (i.e. with accumulated discounting of past observations

as f < 1 implies).

5.3.4 Multiple discrete outcomes

The approach of Equations (5.24)±(5.25) may be extended to multivariate count series,

ykt, k � 1, : :K , t � 1, : :T

by modelling the total count at time t

Yt �
X

k

ykt

in the same way as a univariate count with parameter f1. The disaggregation to the

individual series is modelled via a multinomial-Dirichlet model, with the evolution of

the Dirichlet parameters governed by a second parameter f2.
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Jorgensen et al. (1999) also consider a method for multiple count series y1t, y2t, : : yKt

observed through time, but in terms of an underlying univariate latent factor ut that

accounts for much of their interdependency. The components of the multivariate series

are conditionally independent given ut. Thus

ykt � Poi(nktut) (5:26)

where nkt is a term dependent on regressors Xk relevant to the kth outcome. The

regression is typically applied via a log link:

log (nkt) � bkXk

and bk differs by outcome.

The series are envisaged as related (e.g. counts of diseases caused by similar risk

factors), and the latent process ut evolves as a gamma Markov process

ut � G(ct, dt) (5:27)

The gamma density has the benefit of conjugacy with the Poisson as in the contin-

uity parameter models above, and the evolution of {ct, dt} might follow the stationary

scheme of Section 5.3.3. However, Jorgensen et al. (1999) propose a nonsta-

tionary scheme, whereby

ct � utÿ1=s2 (5:28a)

dt � 1=[bts
2] (5:28b)

where s2 is a variance parameter, and the mean of ut given preceding values u0, : : utÿ1 is

btutÿ1. So, one may modify the impact of the preceding latent value by a regression of bt

on additional covariates zt. To ensure bt positive, one may take

log (bt) � azt (5:28c)

Jorgensen suggests zt be defined in terms of first order differences zt � DZt � Zt ÿ Ztÿ1,

where Zt are viewed as long term influences, and the Xt as short term.

Example 5.6 Meningococcal infection As an example of the INAR( p) process,

consider a series of 104 counts in 28 day periods of meningococcal infections in Quebec.

These span the period 1986 ±1993. The maximum observed count in any single period

is six. As Cardinal et al. (CRL, 1999) note, the autocorrelation and partial autocorrela-

tion functions of the (undifferenced) count series are virtually indistinguishable from

a series of random shocks, except for a slight lag at five months. Using the model

of Equation (5.22), but with wt as a general Poisson process (not linked to the r
coefficients), CRL confirm the significant effect at lag 5. They find a Ljung±Box

portmanteau statistic of fit with a non-significant vale ( p � 0:63 at the maximum

likelihood estimate).

Here the specification in Equation (5.23) is adopted, and following CLR an INAR(5)

model is estimated for the first seven years' data (n � 91). The `autoregressive coeffi-

cients' rk are assigned a beta, B(1, 1), prior. For additional flexibility (Model A), the

innovation error vt is modelled as an exponential density with changing parameter Lt,

where log Lt is modelled as a first order Normally distributed random walk. An

alternative assumption on the innovation errors is that they are independently gamma

with parameters a1 and a2 (Model B). Forecasts are made for the 13 periods of 1993 for
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each model, though the coding in BUGS is not very elegant because stochastic quan-

tities are not allowed as indices in sums or do-loops.

As one check on fit, the Ljung±Box criterion is derived for L � 1, 2, . . . 22 lags.

A posterior predictive check (Gelman et al., 1995) is incorporated based on

sampling new counts from the model mean and deriving a `new' data Ljung±

Box criterion. This is compared to the real data criterion, and the predictive check

is based on the proportion of iterations where the new criterion improves on the real

one.

Posterior summaries from the second half of a three chain run of 5000 iterations

show a similar impression of a lag at five months, but also more apparent lower

lag effects (i.e. with lower standard deviations) than in the analysis of CRL. The

posterior means (and s.d.) of the lag coefficients are r1 � 0:15(0:09), r2 � 0:09(0:07),

r3 � 0:12(0:09), r4 � 0:15(0:10), and r5 � 0:24(0:12). The minimum value of the Ljung±

Box statistic is 7.3, roughly approximating the maximum likelihood value. The Ljung±

Box statistic is approximately chi-square with Lÿ p( � 17) degrees of freedom if the

model is appropriate, so there is no evidence of lack of fit. The predictive criterion is

close to 0.5 (around 0.58), and indicates the same.

Model B produces similar estimates of the coefficients, and similar short term

forecasts (Figure 5.7). Its marginal likelihood, namely ÿ151.2, is slightly better

than Model A at ÿ152.4. The most suspect observation under both models is the

seventh, with five cases, compared to noughts and ones in adjacent periods.

Example 5.7 England vs. Scotland football series To illustrate the continuity param-

eter model, consider the goals scored by England in the England vs. Scotland inter-

national, which has been running since 1872. Excluding war years, there were a total of

T � 104 matches up to 1987. A subset of this series (England away games) is analysed

using the Poisson-gamma model of (24)±(25) in Harvey and Fernandes (1989). A

uniform prior on the continuity parameter f is assumed. Flat gamma priors are taken

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6
1 3 5 7

Period
9 11 13

F
o

re
ca

st

Model B Model A

Figure 5.7 Forecast cases in 1993
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on the initial conditions {a0, b0}. This defines Model A. As an alternative model for

these data, an INAR(1) model is also considered.

A three chain run of 5000 iterations on model A leads to a 95% interval for f from

0.91 to 0.99 with median 0.93. By contrast, Harvey and Fernandes obtain a value of

0.844 for the 53 matches played away by England at Hampden Park. The forecast value

for England's score in the next match following the observed series (for year

T � 1 � 105) is 1.73. The predictive probability distribution (obtained by extracting

the iterations of y.new in Program 5.7) has 36% of the distribution being for zero goals.

An illustration of the fit to the observed series is provide by matches 71±80, where 7

and 9 goals were scored in the 72nd and 78th matches. These are the two clearest

outliers using a CPO criterion. The 95% intervals do not include these exceptional

scores, though the raised means of 2.3 and 3.1 reflect them (Figure 5.8).

The INAR model has a slightly lower pseudo marginal likelihood for this example

(ÿ182.2 vs. ÿ180.9 under Model A), and provides a lower (posterior mean) forecast for

the next score, namely 1.56. The lag `coefficient' r is estimated at 0.097 (s.d. 0.057).

Example 5.8 Polio infections in the USA Fahrmeier and Tutz (1994) and others have

analysed all or part of a time series yt of new polio infections per month in the USA

between January 1970 and December 1987. A question often raised with these data is

the existence or otherwise of a linear trend in time, after accounting for seasonal

variations. These are represented by sine and cosine terms as in Equation (5.13), namely

(a) cosine of annual periodicity, beginning with 1 in January 1970 (i.e. frequency 1/12);

(b) sine of annual periodicity, beginning with 0 in January 1970;

(c) cosine of semi-annual periodicity, beginning with 1 January 1970 (frequency 1/6);

and

(d) sine of semi-annual periodicity, beginning with 0 in January 1970.
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We consider a linear trend model including these periodic impacts, and follow Fahr-

meier and Tutz in assuming lags up to order 5 in the count itself, as in Equation (5.20).

This model therefore has 11 parameters (intercept, trend, seasonals and lags) and 163

time points.

To illustrate forecasts with this approach, the model is fitted till the end of 1983 and

forecasts made beyond then. Estimation is conditional on the first five observations, so

that no model is required for the five latent data values (y0, yÿ1, : : yÿ4). From a two

chain run of 5000 iterations, with

yt � Poi(mt) t � 6, 168

the model coefficients (posterior means and standard deviations) are

log (mt) � ÿ0:14 ÿ 0:0032t ÿ 0:22 cos (2pt=12)ÿ 0:47 sin (2pt=12)

(0:19) (0:0015) (0:11) (0:11)

�0:13 cos (2pt=6)ÿ 0:37 sin (2pt=6)� 0:084ytÿ1 � 0:038ytÿ2

(0:11) (0:11) (0:03) (0:04)

ÿ0:044ytÿ3 � 0:028ytÿ4 � 0:079ytÿ5

(0:04) (0:04) (0:03)

The 95% credible interval for the time effect is confined to negative values, namely

(ÿ0.0062, ÿ0.0003), and so supports a downward trend. By contrast, Fahrmeier and

Tutz (2001, p. 254) find only a 9.5% probability that the maximum likelihood estimate

of this parameter is significant.

Some of the coefficients in the full model above are not well defined. A second option

in Model A allows for coefficient selection or exclusion using the Kuo±Mallick method.

Inclusion rates are found to be lowest for lags 3 and 4, though in fact are below 5% for

all coefficients except the time term, the sine effects and the first lag in y.

In the forecasting model (Model B in Program 5.8), the lag 3 and 4 coefficients are

accordingly set to zero, though further model reductions might be made. The actual

counts of cases beyond 1983 are generally 0 or 1, exceeding 1 in only 3 of the 48 months,

and the forecast counts are all between 0.3 and 1.5 in line with the trend to lower

incidence.

As an illustration of the latent variable approach of Section 5.3.4 to these data,

consider again the series from 1970 to 1983 (there is only one series so K � 1). Jorgensen

et al. take Zt � t to model the trend demonstrated by the above analysis so that the

`long term' model reduces to using a constant DZt � Zt�1 ÿ Zt � 1, the coefficient of

which, as in Equation (5.28c), represents the trend coefficient. The standard deviation s
in Equation (5.28a) is assigned a uniform (0.001, 100) prior ± see Model C in Program

5.8. The initial parameter u0 is assigned a diffuse gamma prior.

Convergence with a two chain run is achieved after 12 000 iterations and from the

subsequent 4000, the posterior mean of s averages around 0.25. The short-term effects

are modelled as the coefficients of cos (2pt=12), sin (2pt=12), cos (2pt=6) and

sin (2pt=6), and estimates for these are similar to those reported in another analysis of

these data by Chan and Ledolter (1995).

The trend coefficient does not appear significant under the Poisson-gamma model of

Section 5.3.4. Jorgensen et al. argue that lack of evidence for a trend is accounted for by

the nonstationary nature of the latent process ut, whereas Chan and Ledolter use a
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stationary AR(1) process for the latent series. Specifically, the model of Chan and

Ledolter (see Model D in Program 5.8) is

Yt � Poi(mt)

log (mt) � bXt � et

et � getÿ1 � ut

ut � N(0, s2
u)

In BUGS this alternative AR(1) model may be implemented using the centred Normal

form for et, namely et � N(getÿ1, s2
u), and we obtain an estimate for g around 0.72. The

trend coefficient, namely the coefficient on time within bXt, is mostly confined with this

model to negative values (consistent with a downward tend in polio cases), with 95%

interval {ÿ0.010, 0.002}. Comparison of Model D with Model C in terms of pseudo-

marginal likelihoods gives a Bayes factor in favour of D of around 5.

5.4 ERROR CORRECTION MODELS

Time series regressions in economics and elsewhere are defined in statistical terms

by questions of identifiability and parsimonious parameter choice, but also by their

being sensible in terms of the substantive application. It is in this sense that apparently

significant regression relationships involving non-stationary outcomes yt and predictors

x1t, x2t, : :may in reality be subject to a spurious correlation problem. If one or

more explanatory variable shows a distinct trend (i.e. is nonstationary), and so does

the outcome, then an apparently significant relationship may occur even if y

and the putative predictors are independent. Granger and Newbold (1974) considered

spurious regression relationships between two nonstationary series yt and xt, separately

generated by random walk processes with changing variances, while Nelson and

Plosser (1982) show that many economic time series do appear to follow random

walk error processes. If a series is a first order random walk (or effectively so

with autocorrelation r1 in Equation (5.1) of, say, 0.99) then its first difference is

stationary.

The analysis of Granger and Newbold was of `integrated' series, namely those not

differenced in an attempt to gain stationarity. Consider a regression for such series

yt � b0 � b1xt � ut (5:29)

where successive ut are taken to be non-correlated. Then taking first differences in yt or

Yt � log (yt), and in the predictors, may reduce the chance of spurious regression

findings, and is often the recommended method for modelling non-stationary variables.

Under differencing one obtains the model

Dyt � b1Dxt � ut ÿ utÿ1 (5:30)

which in fact defines a moving average error.

Suppose, however, that Equation (5.29) represents a long-term equilibrium relation-

ship (e.g. between consumption and income), with the errors representing temporary

disequilibria. In this case differencing on both sides will be considering only the short

run dynamics of the underlying relationship. If a long run association holds, then it is

likely that changes in y will depend not only on changes in x, as assumed in Equation

(5.30), but also on the long term relationship (5.29) between y and x, and on the
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disequilibrium between y and x at lags tÿ 1, tÿ 2, etc. Moreover, estimates of trans-

formed data models such as Equation (5.30) may in fact show significant intercept

terms, implying that y continues to change, even if Dxt � 0.

In practice, models such as Equation (5.29) may be inappropriate for representing

long-term relationships, because of delays in the adjustment of y to changes in x. A

model allowing lagged impacts of both y and x on the outcome is more likely to be

observed, with form such as

yt � m� b1xt � b2xtÿ1 � rytÿ1 � ut (5:31)

This is known as an Autoregressive Distributed Lag model, denoted ADL or ARDL, of

order (1, 1) (Bauwens et al., 1999, p 136; Greene, 2000, p. 724). To avoid problems

raised by yt and xt being non-stationary, Equation (5.31) may be rearranged by first

substracting ytÿ1 from both sides and then subtracting b1xtÿ1 (from b1xt and adding it

to b2xtÿ1) to yield

Dyt � m� b1Dxt � (b1 � b2)xtÿ1 ÿ (1ÿ r)ytÿ1 � ut

Setting d1 � (b1 � b2)=(1ÿ r), and d0 � m=(1ÿ r), then gives a further restatement of

Equation (5.31) as

Dyt � b1Dxt � (rÿ 1)(ytÿ1 ÿ d0 ÿ d1xtÿ1)� ut (5:32)

The term multiplied by a � rÿ 1 may be regarded as modelling the negative or

positive feedback of a disequilibrium error from the previous period, and so describes

an error correction mechanism. So Equation (5.32) may incorporate the underlying

long-term relationship more effectively than Equation (5.30), and may therefore per-

form better in long-term forecasting. One motivation for using an ECM version of

a model is to incorporate prior information, for example on economic multiplier effects

of x on y which appear explicitly in the ECM version of an ADL model, but not in its

original version as in Equation (5.31) (Bauwens et al., 1999).

These ideas can be extended to the case where the hypothesised equilibrium relation-

ship, analogous to Equation (5.29), involves two predictors:

yt � b0 � b1xt � b2zt � ut (5:33)

The typical observed short-run (disequilibrium) relationship, parallel to Equation

(5.31), might then be

yt � b0 � b1xt � b2xtÿ1 � c1zt � c2ztÿ1 � rytÿ1 � ut

Re-expressing in ECM form then leads to

Dyt � b1Dxt � c1Dzt � (rÿ 1)(ytÿ1 ÿ d0 ÿ d1xtÿ1 ÿ d2ztÿ1)� ut

Cointegrated series

One situation where error correction specifications are implied is when the outcome yt

and predictor(s) are co-integrated. Co-integration is the statistical expression of a stable

long run relationship between yt and a predictor xt, and may be defined in terms of the

stationarity or otherwise of y, x and the error in models such as Equation (5.29) and

(5.33). Thus, if a series yt follows a first order random walk, then its first difference is

stationary, and yt may be termed an integrated process of order 1, denoted I(1);

however, if yt is stationary without differencing, it is considered to be integrated of

order zero, I(0).
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Two nonstationary series yt and xt are cointegrated if they are both I(1) but the errors

ut, as in Equation (5.29),

ut � yt ÿ b0 ÿ b1xt

are stationary, that is I(0). This is because if y and x are governed by a long-term

relation then any disequilibrium error should hover around zero (Engle and Granger,

1987). If, by contrast, yt and xt are not cointegrated, then the ut are I(1), and non-

stationary. Whether or not the ut are stationary may be assessed by regressing ut on utÿ1:

ut � lutÿ1 � Zt

and if jlj < 1, then u is stationary.

Example 5.9 Voting intentions Although economic relations form the major applica-

tion for ECM models, they have also been applied to political affiliations and attitudes.

Clarke et al. (1998) investigate changes in voting intentions for a future General

Election in Britain, specifically the proportion intending to vote for the Labour Party

in the five years preceding the May 1997 election victory for Labour. Thus for 64

months from January 1992 to April 1997, the proportion intending to vote Labour

was related to factors such as:

(a) underlying Labour party identification (iden[ ] in Program 5.9);

(b) the proportion of respondents seeing the Labour leader as the best potential prime

minister (bpm[ ] in Program 5.9);

(c) expectations of personal economic welfare (the `feel good' factor denoted fg[ ]);

(d) economic indicators such as unemployment and interest rates (denoted intr[ ]);

(e) perceptions of the most important problem (inflation, unemployment, health, etc.).

The proportions seeing unemployment and inflation as most important are denoted

mipu[ ] and mipi[ ].

Also used to explain voter intentions are short-term temporary issues or `events', such as

political scandals and interest rate crises.

Clarke et al. argue that a long-term cointegrating relationship exists between Labour

voting intentions, and factors (a) and (b) above, namely Labour party identification and

seeing the Labour leader as best Prime Minister. Therefore it is necessary to introduce

an error correction

ECMt � LABt ÿ d1LBPMt ÿ d2LPIDt (5:34)

into the voting intentions model. Their preferred model (Clarke et al., Table 3, Personal

Prospective Model) selects from a fuller set of predictors and has the form (for two

temporary events)

DLABt � b0 � b1DLBPMt � b2LPIDtÿ2 � aECMtÿ1 � b3DFGt

� b4DINTRt � b5DMIPIt � b6DMIPUt

� b7EVENT1t � b8EVENT2t � ut

(5:35)

The events are handled as short-term effects, and since the model is for differenced

variables, a dummy is coded �1 in the month when the event occurs (or is assigned to

have occurred), ÿ1 in the next month, and 0 otherwise. Two events assumed likely to

boost Labour general election voting intentions are included, namely the Conservative
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election scandals of March 1997, and the European elections of June 1994 with a large

Labour victory. (The model of Clarke et al. included several other events of this type.)

The results obtained with this model (Table 5.3) are similar to those of Clarke et

al. (1998) in terms of the parameters in the ECM itself, namely d1 and d2 in Equation

(5.34), and the negative sign on the ECM coefficient a in the main model Equa-

tion (5.35).

The relatively small size of a (Clarke et al. obtain a � ÿ0:15) translates into a long

`half-life' for the delayed negative feedback of factors included in the generic term xtÿ1

in Equation (5.32). For example, a negative `event' which reduced the Labour voting

intention by three points in month t would be carried over to a reduction of

(3ÿ 3� 0:197) � 2:4 points in the next month, (2:4ÿ 0:197� 2:4) � 1:9 points the

next month, and so on.

5.5 DYNAMIC LINEAR MODELS AND TIME VARYING COEFFICIENTS

Classical time series methods assume fixed relationships between yt and xt and statio-

narity (absence of upward or downward trend) in yt, or a transformation of yt, so that

both intercepts and regression coefficients are fixed. In practice, relationships between

variables are likely to vary over time: for example, the response of the birth rate to

economic conditions in successive years, or of sales to advertising over successive weeks,

is unlikely to be constant whatever the level of birth rate or the economy. Autoregressive

moving average models with fixed regression effects are often of limited use in under-

standing the processes which generated such relationships, and may best be used as a

Table 5.3 Labour voting intentions, parameter summary

Variable Cointegrating Regression Clarke et al.

Mean St. devn. 2.5% 97.5% MLE s.e.

(MLE)

Labour Leader Best Prime

Minister

d1 0.637 0.074 0.493 0.777 0.635 0.083

Labour Party Identification d2 0.583 0.069 0.448 0.717 0.585 0.078

Error Correction Model

Intercept b0 0.264 0.285 ÿ0.298 0.833 0.47 0.24

Labour Leader Best Prime

Minister b1 0.463 0.074 0.318 0.613 0.27 0.08

Labour Party Identification b2 0.158 0.092 ÿ0.020 0.340 0.19 0.09

ECM a ÿ0.197 0.084 ÿ0.366 ÿ0.034 ÿ0.15 0.07

Feel Good Factor b3 ÿ0.047 0.049 ÿ0.142 0.054 ÿ0.08 0.04

Interest Rates b4 0.866 0.930 ÿ0.955 2.713 1.4 0.86

Inflation Most Important

Problem b5 0.343 0.150 0.044 0.629 0.55 0.14

Unemployment Most

Important Problem b6 0.071 0.054 ÿ0.040 0.175 0.15 0.05

Euro Election b7 3.416 1.400 0.712 6.099 4.73 1.33

Conservation campaign

scandals b8 3.551 1.342 0.846 6.238 5.2 1.31
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first approximation to summarise the data in a parsimonious way for forecasting

purposes (Diggle, 1990). They may also have limitations in forecasting itself: a model

with good fit in the sample period may perform poorly after that if the underlying

parameters are in fact evolving through time (West and Harrison, 1989).

To model stochastic shifts in regression parameters one may call upon random effects

models which specify time dependence between successive parameter values in the form

of smoothness priors. For example, whereas a fixed coefficient time series regression for

univariate y might be

yt � a� bxt � rytÿ1 � ut

a model with nonstationary levels and b coefficient might be specified as

yt � at � btxt � rtytÿ1 � ut

with the parameters evolving according to

at � atÿ1 � v1t (5:36a)

bt � btÿ1 � v2t (5:36b)

rt � rtÿ1 � v3t (5:36c)

with the `state' equations in at, bt and rt defined for t � 2, : :T . The most general

dynamic linear model has errors ut and vkt with time dependent variances Vt and

Wt � (W1t, W2t, W3t), respectively.

In practice, the variances Vt and Wkt may be taken to be constant over all time points

t � 1, : : , T , so that there is a single level of volatility describing evolution in levels or

regression effects. In this example, then one might take

v1t � N(0, W1)

v2t � N(0, W2)

v3t � N(0, W3)

where W1, W2 and W3 are hyperparameters to be estimated. It is also possible to

assume that the vkt follow a multivariate form, with a constant dispersion matrix.

The system is set in motion by vague priors on the levels, b coefficients, and the

autoregressive parameters r in the first period. For example, one might assume the first

period regression parameter has a prior

b1 � N(b1, C1)

where b1 and C1 are both known (typical values might be b1 � 0, C1 � 1000).

The priors on at and bt in Equations (5.36a) and (5.36b) are first-order random walk

priors and are equivalent to taking the differences at ÿ atÿ1 and bt ÿ btÿ1 to be random

with variances W1, W2 and W3. One might instead consider higher order differences to

be random, e.g. take D2at � D(at ÿ atÿ1) � at ÿ 2atÿ1 � atÿ2 as having zero mean and

variance W1. In this case, the prior on the levels is a second order random walk and can

be written (for t > 3) as

at � 2atÿ1 ÿ atÿ2 � v1t

To accommodate changing volatility without excess parameterisation, Ameen and

Harrison (1985) suggest a discounting prior for the variances, which specifies a prior

for the precisions at time 1, and then discounts later precisions to reflect a time decay
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factor. So for the observation error variance and the variance of the levels at time 1 one

might take

Vÿ1
1 � G(s1, t1), Wÿ1

11 � G(s2, t2)

Subsequent precisions are downweighted by a factor d, where 0 < d < 1, and for t > 1

Vÿ1
t � d1V

ÿ1
tÿ1

Wÿ1
1t � d2W

ÿ1
1tÿ1

Other approaches to stochastic variances involve ARCH-GARCH and structural shift

models, and are discussed below.

5.5.1 State space smoothing

A major use for state-space models is in semi-parametric additive regression, where the

object is to construct a smooth `signal' f (t) from noisy data y(t). In this case, there are

no covariates, and f (t) describes the smoothly changing level assumed to underlie the

observations on y(t) which are subject to measurement error. Another common model

task is to achieve a smooth representation of the changing nonlinear effect of a

covariate. There is a close link (e.g. Fahrmeir and Lang, 2000) between state space

models for dynamic general linear models and general additive models involving

smooth functions of metric predictors, as discussed in Section 3.6. The orientation in

this chapter is to smoothing of time series per se, together with non-linear regression

analysis achieved via time varying regression coefficients.

To illustrate techniques for smoothing time series, consider a univariate series y(t)

observed at equidistant points, t � 1, 2, 3, : :T . Then the model has the form

y(t) � f (t)� e(t)

The e(t) are typically taken as exchangeable errors such as e(t) � N(0, s2), but the true

series f (t) follows a random walk of order k. For example, if k � 2,

f (t) � 2f (tÿ 1)ÿ f (tÿ 2)� u(t) (5:37)

with u(t) � N(0, t2). One may expect the conditional variance t2 of the true series to be

less than that of the noisy series y(t), with the noise to signal ratio l2 � s2=t2 then being

greater than 1, and 1=l2 being under 1. So a prior (e.g. gamma) on 1=l2 might be taken

that favours small positive values. Alternatively, one might take a uniform U(0, 1) prior

on the ratio s2=[s2 � t2]. Higher values of l2 correspond to greater smoothing (as the

variance t2 of the smooth function becomes progressively smaller).

With k � 2 and diffuse priors on f (1) and f (2) in Equation (5.37), and with Normal

metrical data y(t), the posterior means f̂ (1), f̂ (2) . . . f̂ (T) provide values which minimise

the penalised fit functionXT
t�1

{y(t)ÿ f (t)}2 � l2
XT
t�3

{D2f(t)}2

�
XT
t�1

{y(t)ÿ f (t)}2 � l2
XT

t�3

{u(t)}2

�
XT
t�1

{y(t)ÿ f (t)}2 � l2
XT

t�3

{f(t)ÿ 2f(tÿ 1)ÿ f(tÿ 2)}2
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Higher order difference priors may be used for seasonal effects. For example, for

quarterly data, a possible smoothness prior is

h(t) � s(t)� s(tÿ 1)� s(tÿ 2)� s(tÿ 3) � N(0, t:s)

For monthly data, the analogous scheme is

h(t) � s(t)� s(tÿ 1)� s(tÿ 2)� . . . :� s(tÿ 11) � N(0, t:s)

Instead of simple random walk priors, autoregressive priors involving lag coefficients

f1, . . . , fk may be specified as smoothness priors. For example, an AR(2) prior in the

true series would be

f (t) � N(f1 f (tÿ 1)� f2 f (tÿ 2), t2)

Kitagawa and Gersch (1996) illustrate the use of such priors (with high order k) to

estimate the spectral distribution of a stationary time series.

Example 5.10 Asymmetric series This example illustrates the detection of a signal in

noisy data when the form of the signal is exactly known. Thus, Kitagawa and Gersch

(1996, Chapter 4) simulate a time series according to the truncated and asymmetric form

y(t) � f (t)� e(t) t � 1, 200

where the true series or signal is

f (t) � (12=p) exp (ÿ {tÿ 130}2=2000)

and e(t) � N(0, s2), where s2 � 1. The maximum value of the true series is just

under 4 at t � 130, with the true series being effectively zero for t < 50. Kitagawa and

Gersch (1996, p.109) contrast the AIC fit values obtained with different orders k in the

random walk smoothness prior, and select k � 2 on the basis of the AIC criterion, so

that

f (t) � 2f (tÿ 1)ÿ f (tÿ 2)� u(t)

with u(t) � N(0, t2). The k � 1 model is found by Kitagawa and Gersch to be too

ragged, while the smoothing obtained with values k � 2, 3, 4 is visually indistinguish-

able.

Here two alternative priors are set on the variance of t2 conditional on s2, one a

uniform prior U(0, 1) on s2=[s2 � t2], the other a G(0.1, 0.2) prior on t=s. The latter

prior favours values under 1 in line with variability about the signal being expected to be

less than that around the observations. A G(1, 0.001) prior on 1=s2 is adopted.

The median value of t2 obtained under the first prior, from the second half of a

two chain run to 20 000 iterations, stands at 1.03E-4, as compared to the value of 0.79E-

4 cited by Kitagawa and Gersch using a series generated by the same process. The

median observational variance is estimated at 1.11. The true series is reproduced

satisfactorily (Figure 5.9). This prior leads to convergence in under 5000 iterations.

Other priors, whether gamma or uniform on the ratios t2=s2 or t=s tend to converge

much slower. The U(0, 1) prior on t=s takes 100 000 iterations to obtain s2 around 1.1

and a median on t2 of 0.6E-4, and provides a slightly better fit to the high values of the

series.

Convergence may be facilitated by direct sampling from one or perhaps both the full

conditionals on P1 � 1=s2 and P2 � 1=t2, namely
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Figure 5.9 Actual and fitted smooth curve (asymmetric Gaussian)

P1 � G(a1 � 0:5T , b1 � 0:5
XT
t�1

e2(t))

P2 � G(a2 � 0:5(T ÿ k), b1 � 0:5
XT
t�k

u2(t))

where one might take aj � bj � 0:001, j � 1, 2. An exercise is to compare the fit of an

RW(3) model with the RW(2) model using the pseudo-marginal likelihood or other

model assessment approach.

Example 5.11 UK coal consumption As an illustration of a smoothing model for a

time series with seasonal effects, as well as a secular trend (decline) over time, we follow

Harvey (1989) and Fruhwirth-Schatner (1994) in considering a UK coal consumption

series Ct of 108 quarterly observations from 1960±1986. The Basic Structural Model

(BSM) of Harvey (1989) may then be applied, with a seasonal smoothing prior appro-

priate to quarterly data. The outcome yt is the log of the original consumption series

divided by 1000, namely

yt � log (Ct=1000)

Assuming Normality in this outcome, the model has the following components

yt � N(xt, u4) (Observation model)

xt � mt � st (Underlying trend after allowing for seasonal effect)

mt � N(mtÿ1 � atÿ1, u1) (Evolution in mean)

atÿ1 � N(atÿ2, u2) (Increments to mean)

st � N(ÿ stÿ1 ÿ stÿ2 ÿ stÿ3, u3) (Seasonality)
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Fruhwirth-Schatnor considers the series for 1960±1982 and the utility of Gibbs sam-

pling as against the Kalman forward filtering-backward sampling algorithm. Here, a

uniform prior U(0, 1) is set on the ratio u1=u4, and with the precisions

uÿ1
4 , uÿ1

2 , uÿ1
3

assigned the diffuse G(0.01, 0.00001) priors adopted by Fruhwirth-Schatner. As an

alternative model, consider a lag 1 autoregression in atÿ1, namely

atÿ1 � N(fatÿ2, u2)

To assess fit, the predictive loss criterion of Laud and Ibrahim (1995) is used. Two chain

runs of 75 000 iterations on both models (with summaries based on the last 50 000

iterations) show a lower predictive loss on the autoregressive model, with variance

component estimates as in Table 5.4. The density of f is concentrated on negative

values, with a posterior mean of ÿ0:29, but is right skewed with 97.5% point of 0.65.

Figure 5.10 shows the actual and fitted series with the basic structural model.

Example 5.12 Impact of TV advertising This example illustrates evolving regression

impacts as in Equation (5.36b), and also involves a binomial outcome. Thus, a study on

the impact TV advertising involved asking a set weekly total of 66 individuals a `yes or

no' question about an advert for a chocolate bar, and was continued over 171 weeks

(Migon and Harrison, 1985). The number of positive answers rt in week t is modelled as

binomial with logit link to a single covariate, xt � weekly expenditure on advertise-

ments. Thus

rt � Bin(66, pt)

logit(pt) � at � btxt

with the parameters evolving according to

at � atÿ1 � va

bt � btÿ1 � vb

RW(1) priors for at and bt are adopted with a diagonal dispersion matrix with variance

terms var (va) � s2
a and var (vb) � s2

b. Priors for the initial conditions a1 and b1 are

relatively diffuse, namely N(0, 1000).

Table 5.4 Components of variance, coal consumption

Basic Structural Model Mean St. devn. 2.5% Median 97.5%

Variance of smooth series 0.00156 0.00138 0.00005 0.00118 0.00528

Variance of trend 0.000018 0.000019 3E-6 0.000013 0.000070

Seasonal Variance 0.00009 0.00014 0.00000 0.00004 0.00045

Residual Variance 0.01544 0.00276 0.01049 0.01526 0.02135

Autoregressive Model

Variance of smooth series 0.00339 0.00191 0.00023 0.00316 0.00785

Variance of trend 0.00110 0.00204 0.00001 0.00030 0.00640

Seasonal Variance 0.00009 0.00016 0.00000 0.00004 0.00049

Residual Variance 0.01336 0.00280 0.00842 0.01321 0.01922
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Figure 5.10 Actual and predicted coal consumption

With three chain runs of 15 000 iterations, posterior mean estimates of s2
a and s2

b are

close to those cited by Fahrmeir and Tutz, though their variance for the slopes at 0.0002

is smaller than the estimate here of around 0.00045. The plot of the parameters

themselves (Figure 5.11) shows a decrease in the mean (i.e. awareness level) though

the positive impact of advertising is more or less stable. The parameters in Figure 5.11

are based on a run of 7500 iterations (2500 burn in) with every tenth iterate retained.

An alternative model (Model B) with a multivariate Normal prior on at and bt jointly

yields very similar estimates for s2
b, and on the two sets of evolving parameters

themselves.
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Figure 5.11 TV advertising, intercepts and slopes
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5.6 STOCHASTIC VARIANCES AND STOCHASTIC VOLATILITY

There are many instances, including the dynamic coefficient models just discussed,

where it may be necessary to model observed time series yt or make forecasts, when

the variance is not fixed, but itself stochastic over time. Such situations are exemplified

by stock price and exchange rate series where large forecast errors tend to occur in

clusters, when the series are unsettled or rapidly changing. This is known as volatility

clustering, and suggests dependence between successive values of the squared errors. In

many applications of such models, the series has effectively a zero mean; for example, in

many financial time series (e.g. exchange rates or price indices) the ratio of successive

values Et=Etÿ1 averages 1, and a series defined by the log of these ratios

yt � log (Et=Etÿ1) will then average zero.

5.6.1 ARCH and GARCH models

Following Engle (1982), consider a time series regression

yt � bxt � et

in which the error variances for subsets of the full period are different. One way to

accommodate heteroscedasticity through time (i.e. changes in scale) is to introduce an

exogenous variable z (or lagged values of the outcome), with the model now being

perhaps

yt � bxt � z
g
t et

Forecasts of y now depend upon zt, as well as the preceding values of the outcome itself.

Another option involves an autoregressive conditional heteroscedastic or ARCH model

(Greene, 2000), such that

yt � bxt � et � bxt � ut

p
ht (5:38)

where the ut have mean zero and variance 1, and the ht depend upon previous squared

errors

ht � a0 � a1e2
tÿ1 (5:39)

with both a0 and a1 positive. While the most usual assumption is ut � N(0, 1), Bauwens

and Lubrano (1998) consider ut � Student(0, 1, n).

Then E(etjetÿ1) � 0, and the conditional variance

Vt � var(etjetÿ1) � E(e2
t jetÿ1) � E(u2

t )[a0 � a1e2
tÿ1]

� a0 � a1e2
tÿ1

is heteroscedastic with respect to etÿ1. Specifically, Equation (5.39) defines an ARCH(1)

model, whereas an ARCH(2) model would involve dependence on e2
tÿ2. Thus

ht � a0 � a1e2
tÿ1 � a2e2

tÿ2

If ja1j < 1 in Equation (5.39), then the unconditional variance has mean zero and

variance a0=(1ÿ a1). The log likelihood for the tth observation under Equation (5.38) is

log Lt � ÿ0:5 log (2p)ÿ 0:5 log ht ÿ 0:5e2
t =ht (5:40)
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where et � yt ÿ bxt. If yt has an effectively zero mean and the regression model does not

involve predictors xt, then one may follow Engle (1982) and write

yt � ut

p
ht (5:41)

where for an ARCH(1) model

ht � a0 � a1y
2
tÿ1

The log likelihood for the tth observation is then

log Lt � ÿ0:5 log (2p)ÿ 0:5 log ht ÿ 0:5y2
t =ht (5:42)

In the GARCH model the conditional variance Vt depends upon previous values of Vt

(or of ht), as well as on lags in e2
t . Whereas lags in e2

t are analogous to moving average

errors in an ordinary ARMA time series, lags in Vt are parallel to the autoregressive

component (Greene, 2000). A GARCH( p, q) model involves a lag of order p in Vt and

one of order q in e2
t . Thus, a GARCH(1, 1) model would be either

ht � a0 � gVtÿ1 � a1e2
tÿ1

or

ht � a0 � ghtÿ1 � a1e2
tÿ1

where a0 > 0. The likelihood is as in Equation (5.40). The stationarity conditions here

are that a1 � g < 1, together with a1 � 0, g � 0. The specification in Equation (5.41)

leads to a GARCH(1, 1) model in which

ht � a0 � gVtÿ1 � a1y
2
tÿ1 (5:43)

with likelihood as in Equation (5.42).

5.6.2 Stochastic volatility models

Another option for modelling changing variances is known as stochastic volatility, and

includes models within the state-space framework (Kitagawa and Gersch, 1996). Thus

in

yt � bxt � et

with et � N(0, Vt), one may assume the evolution of Dk log Vt follows a random walk

process. For example, taking k � 1, and setting gt � log Vt, gives a first order random

walk which may follow a Normal or Student form:

gt � N(gtÿ1, s2
g)

An alternative stochastic volatility formulation (Pitt and Shepherd, 1998) involves

autoregressive dependence in latent variables kt, which represent the evolving log

variances. Thus for a series with zero mean and no regressors, one might specify first

order dependence in the latent log variances (Harvey et al., 1994), with

yt � ut exp (kt=2) (5:44)

and

kt � fktÿ1 � Zt
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where the ut are N(0, 1) and Zt � N(0, s2
Z). If jfj < 1, then the kt are stationary with

variance s2
Z=(1ÿ f2).

Another option is denoted the unobserved ARCH model (Shephard, 1996), in which

an ARCH model still holds but is observed with error. This is generally classified as a

stochastic volatility approach. For a zero mean observation series y and no covariates, a

measurement error model combined with an ARCH model leads to

yt � N(lt, s2)

lt � N(0, ht)

ht � a0 � a1l2
tÿ1

(5:45)

To ensure ht is positive, a0 and a1 are constrained to be positive, and the further

restriction 0 � a1 � 1 ensures that the ARCH series is covariance stationary. If there

were covariates or lags in the model for y, then the lt would be distributed as

lt � N(mt, ht)

where, for instance, mt � bxt.

For multivariate series (e.g. of several exchange rates) subject to volatility clustering,

factor analysis type models have been proposed to model the interrelated volatility (Pitt

and Shephard, 1999; Harvey et al., 1994). For instance, for two series ytk, k � 1, 2 and

one factor ft, one might have

yt1 � b1 ft � vt1

yt2 � b2 ft � vt2

with ft and the vtk evolving in line with stochastic volatility. Thus

ft � N(0, exp (k
f
t )), vt1 � N(0, exp (kv1

t )), vt2 � N(0, exp (kv2
t )). Then first order

autoregressive dependence in the latent log variances would imply

k f
t � r f k f

tÿ1 � Z f
t

kv1
t � rv1kv1

tÿ1 � Zv1
t

kv2
t � rv2kv2

tÿ1 � Zv2
t

Example 5.13 Spot market index To illustrate in a comparative fashion both ARCH

models and stochastic volatility models, consider the weekly spot market index series Et

of Bauwens and Lubrano (1998) relating to the shares of Belgian firms at the Brussels

stock exchange for 3-1-86 to 26-1-96, namely 508 observations. The transformed

outcome is the index return, given by the first difference of the logarithm of the index

(times 1000), namely yt � 1000[ log (Et)ÿ log (Etÿ1)].

We first consider a variant of the ARCH model, with

yt � m� et � m� ut

p
ht

where ut � N(0, 1) and

ht � a0 � a1e2
tÿ1 � a0 � a1(ytÿ1 ÿ m)2 (5:46)

The coefficient a1 is constrained to be between 0 and 1, and a0 to be positive. Fit is

assessed by the CPO estimate based on the average of the inverse likelihoods, and by the
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predictive loss criterion of Gelfand and Ghosh (1998). The initial variance h1 is taken as

a separate fixed effect. The transformed outcome used by BL leads to large variances,

and to accommodate this a uniform prior U(0, 1000) for a0 is adopted.

A two chain run to 5000 iterations (and 1000 burn-in) shows the lag coefficient a1 in

Equation (5.46) to have 95% interval (0.28, 0.66), and a0 one of (182, 261). The

predictive loss criterion is 380 200.

A second approach is provided by a GARCH(1, 1) model applied to the series

y0t � yt ÿ 2:246, where �y � 2:246. This avoids introducing a parameter for the mean of

yt, and ht is then as in Equation (5.43). The posterior means for a1 and g are,

respectively, 0.26 (s.e. 0.06) and 0.63 (s.e. 0.07). The predictive loss falls to 372 500. It

may be noted that initial iterations with this model are very slow.

A third model (Model C) for these data is provided by the unobserved ARCH model

of Equation (5.44), with a non-zero mean m assumed for the lt, so that

yt � N(lt, s2)

lt � N(m, ht)

et � lt ÿ m

ht � a0 � a1e2
tÿ1

This also yields an improvement in fit over the ARCH model of Equation (5.46), with

predictive error of 373 200. This is assessed from the second half of a two chain run over

6000 iterations. Convergence in the parameters a0 and a1 is only obtained after about

3000 iterations using the over-relaxation option. The lag coefficient a1 has a median of

0.33, but is not precisely identified, having 95% credible interval {0.02, 0.96}. The most

distinct outlier (with lowest CPO) is associated with the sharp drop between weeks 90

and 91 from 4516 to 3955.

The final model (Model D) is provided by a random walk model for the stochastic log

of the variance Vt, with

yt � m� et

where

et � N(0, Vt)

Because BUGS is parameterised in terms of precisions, one may set Pt � 1=Vt and then

take Ht � log (Pt) as an RW(1) process:

Ht � N(Htÿ1, s2
H )

It is worthwhile experimenting with alternative priors on the smoothing variance, since

this parameter is crucial to the performance of the model (see Exercises). Taking the

prior

1=s2
H � G(1, 0:0001)

leads to a predictive loss criterion of 365 900. The plot of the precisions Pt in

Figure 5.12 shows the highest volatility (i.e lowest precision) at weeks 90±100 and

225±235.

Example 5.14 Exchange rate Durbin and Koopman (2000) and Harvey et al. (1994)

consider stochastic volatility models of the form
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Figure 5.12 Spot market index volatility

yt � bxt � ut

p
ht

ut � N(0, 1)

ht � s2 exp (ut)

ut � futÿ1 � Zt

where the Zt are normal with variance s2
Z. Durbin and Koopman consider a series on

the pound-dollar exchange rate between October 1st 1981 and June 28th 1985, and

define a model with no predictor term bxt or constant b0. It is valid to assume that

b0 � 0, since the observations consist of differences in logged exchange rates Et, with

yt � D log (Et).

In BUGS, the time varying dispersions are parameterised via precisions

Pt � 1=ht

and the first model follows Durbin and Koopman in assuming stationarity in u, with

0 < f < 1

We find ± from the second half of a two chain run of 5000 iterations ± median estimates

for s and sZ of 0.50 and 0.16, whereas Durbin and Koopman cite values of 0.63 and

0.17. They estimate a lag coefficient f of 0.973, whereas the value obtained here, using a

U(0, 1) prior, has mean 0.982 and a 95% interval {0.959, 0.997}.The variances are below

0.5 for most of the period but increase to over 1 in the spring of 1985 (see Figure 5.13),

exceeding 2.5 for some days.

An alternative model drops the stationarity assumption, since f seems to approach

1 and hence non-stationarity might be implied. A strategy allowing non-stationarity was

proposed by Gamerman and Moreira (1999), though it is theoretically implausible in

the long run. Despite setting a prior f � N(0, 1), the posterior 95% interval is still

entirely below 1. The pseudo marginal likelihood is slightly lower (ÿ911.6) than the

stationary option (ÿ909.6).

214 MODELS FOR TIME SERIES



3.5

3

2.5

2

1.5

1

0.5

0
0 100 200 300 400 500

Day

600 700 800 900 1000

V
o

la
ti

lit
y 

o
f

E
xc

h
an

g
e 

R
at

e 
D

if
fe

re
n

ce

Figure 5.13 Volatility of exchange rate series

5.7 MODELLING STRUCTURAL SHIFTS

State space models are designed to accommodate gradual or smooth shifts in time series

parameters. Often, however, there are temporary or permanent shifts in time series

parameters that occur more abruptly, and a more appropriate model allows for changes

in regression regimes and other shifts in structure. Section 5.2 considered innovation

and additive outliers. Here we consider models that allow for repeated switching

between distinct regimes according to a latent Markov series, and models for shifts in

both the mean and variance of autoregressive series. A further category includes

switching regression models (Maddala and Kim, 1996).

5.7.1 Binary indicators for mean and variance shifts

McCulloch and Tsay (1994) consider autoregressive models allowing for shifts in mean

and/or variance. By allowing for variance shifts as well as changes in level, nonstation-

ary trends that might otherwise have been attributed to changes in level may more

appropriately be seen as due to heteroscedasticity. McCulloch and Tsay choose to focus

explicitly on autoregressive models, rather than introduce moving average effects be-

cause given a sufficiently large AR model, one may achieve similar results to a stipulated

ARMA model. Thus let

yt � mt � et

where a change in level is accommodated by letting

mt � mtÿ1 � d1tnt (5:47)

The d1t are binary variables for each time point which equal 1 if a shift in mean occurs

and nt models the shift that occurs, conditional on d1t � 1. The nt are usually modelled

as normal with mean zero and low precision tn. The autoregressive component of the

series is the p-lag model for et, namely
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et � g1etÿ1 � g2etÿ2 � : :� gtÿpetÿp � ut (5:48)

where shifts in the variance of ut are allowed. Thus, let ut � N(0, Vt), and let d2t be an

additional binary series such that

Vt � Vtÿ1 (d2t � 0)

� Vtÿ1vt (d2t � 1)
(5:49)

where vt models the proportional change in the variance. Alternatively

Vt � Vtÿ1(1� vtd2t)

The vt are positive variables with, for example, a gamma prior. The binary shift

indicators may be taken to be Bernoulli variables, where the probabilities that d2t and

d2t equal 1 are known and small (e.g. Z1 � Z2 � 0:05). Alternatively, these probabilities

may be assigned beta priors that favour low values. The relative importance of the

mean and variance shift components (as reflected in the sizes of Z1 and Z2 if they are

free parameters) will be affected by prior specifications on the vt and the variance of

the nt.

5.7.2 Markov mixtures

A different approach to changes in regime involves the Markov mixture model of Chib

(1996), Leroux and Puterman (1992), and others. Thus suppose for each time point the

process is in one of m states {st}(t > 1), as determined by an m�m stationary Markov

chain P � {pij}, where

pij � Pr[st � jjstÿ1 � i] (5:50)

The first state (namely s1) is determined by drawing from a multinomial with m

categories. Given the underlying state st � k, the observation itself has the kth of the

m possible components of the mixture, and these components might differ in means,

variances or other summary shape parameters.

A model with both mean-variance shifts and reference to a latent Markov series is

suggested by Albert and Chib (1993). Their model has m � 2 and values st � 0 or st � 1.

Thus, an order p autoregression in the regression errors allows for shifts in mean and

variance of yt within the specification

ytjst � bxt � cst � g1(ytÿ1 ÿ bxtÿ1 ÿ cstÿ1)� g2(ytÿ2 ÿ bxtÿ2 ÿ cstÿ2)�
. . . : : � gp(ytÿp ÿ bxtÿp ÿ cstÿp)� ut

(5:51)

where ut � N(0, Vt). The variance shifts are produced according to the model

Vt � s2(1� vst) (5:52)

where v is the proportionate shift in variance when st � 1. This model involves possible

correlations between b and the mean shift parameter c, especially if xt just consists of an

intercept. Improper or weakly informative priors may reduce identifiability.

5.7.3 Switching regressions

Switching regression models originate in classical statistics with Quandt (1958), and

have received attention in Bayesian terms in works by Geweke and Terui (1993),
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Lubrano (1995b), among others. In such models, the conditional expectation of the

endogenous variable may follow two or more regimes. Suppose, for example, that the

error variance does not also switch and that some regression effects (applying to

exogenous variables zt) are not included in the switching.

The choice between regimes is determined by a threshold function Kt that drives

either abrupt switching by a step function or a smooth transition function. The latter is

typically a cumulative distribution function between 0 and 1, such as the logit (Bauwens

et al., 1999).

For instance, a step function Dt might be defined as one if a trend in time exceeds a

threshold t, and zero otherwise. If the trend were simply measured by the linear term t,

then

Kt � tÿ t < 0) Dt � 0

Kt � tÿ t > 0) Dt � 1
(5:53)

The simplest model then allows for two regimes:

yt � gzt � (1ÿ Dt)b1xt � Dtb2xt � ut (5:54)

where, for example, ut � N(0, s2). The threshold function might also be defined by lags

on the outcome, such as in the step function scheme

Kt � ytÿ1 ÿ d < 0) Dt � 0

Kt � ytÿ1 ÿ d > 0) Dt � 1

More generally, the appropriate lag r in yt, such that

Dt � 1 if ytÿr > d

is an additional unknown. Geweke and Terui (1993) consider joint prior specification

for {r, d} in models where the alternative regimes are different order lags in y; such as an

AR( p1) model if Dt � 1, and an AR(p2) model (with different coefficients throughout) if

Dt � 0.

A smooth transition function in these cases might take the form

Dt � exp (w{ytÿ1 ÿ d})=[1� exp (w{ytÿ1 ÿ d})]

or

Dt � exp (w{tÿ t})=[1� exp (w{tÿ t})]

where w > 0 governs the smoothness of the transition.

Example 5.15 Fetal lamb movements An example of the Markov mixture model is

provide by a time series of lamb fetal movement counts yt from Leroux and Puterman

(1992), where the presence in the mixture of more than one component leads to Poisson

overdispersion. One might model such over dispersion by a gamma mixture (leading to

a marginal negative binomial model).

Alternatively, suppose, following Leroux and Puterman, that a two class Markov

mixture applies, with shifts between two Poisson means determined by a Markov chain

(i.e. m � 2). Relatively diffuse Dirichlet priors for each row of P are adopted, such that

for the elements in Equation (5.50) one has

pi, 1:m � D(1, 1, : : 1)

MODELLING STRUCTURAL SHIFTS 217



The same prior is used for the first period state choice model. For the two Poisson

means G(1, 1) priors are stipulated, with an identifiability constraint that one is larger ±

an initial run justified such a constraint, showing the means to be widely separated.

With this model, a two chain run of 5000 iterations (1000 burn-in) shows a state

occupied most of the periods (about 220 from 240), which has a low average fetal

movement rate, and a minority state with a much higher rate, around 2.2±2.3. The

majority state has a high retention rate (reflected in the transition parameter p22 around

0.96) while movement out of the minority state is much more frequent (Table 5.5).

The actual number of movements is predicted closely, though Leroux and Puterman

show that using m � 3 components leads to even more accurate prediction of actual

counts. The model with m � 2 shows relatively small CPOs for the movements at times

85 and 193 (counts of 7 and 4, respectively).

For comparison, and since the outcome is a count, Model B consists of an INAR(1)

model. The `innovation' process is governed by Bernoulli switching between means l1

and l2 (with l2 > l1 to guarantee identifiability). Thus,

Yt � Poi(mt)

mt � p8Ytÿ1 � l1dt � l2(1ÿ dt) t > 1

m1 � l1d1 � l2(1ÿ d1)

with dt � Bern(Z) and Z assigned a beta prior. This model also identifies a sub-popula-

tion of periods with a much higher movement rate, around 4.5, than the main set of

periods. It has a very similar pseudo-marginal likelihood to the two-state Markov

switching model (ÿ180 vs. ÿ179).

Example 5.16 US unemployment As an illustration of models allowing both mean

and variance shifts, consider the US unemployment time series analysed by Rosenberg

Table 5.5 Lamb movements, Markov mixture model parameters and predictions

Mean St. devn. 2.5% Median 97.5%

p1, 1 0.66 0.15 0.35 0.67 0.93

p1, 2 0.34 0.15 0.07 0.33 0.65

p2, 1 0.04 0.03 0.01 0.03 0.12

p2, 2 0.96 0.03 0.88 0.97 0.99

Periods with st � 1 17.8 9.4 6.0 17.0 40.0

Periods with st � 2 222.2 9.4 200.0 223.0 234.0

l1 2.28 0.74 1.22 2.15 4.01

l2 0.23 0.05 0.14 0.23 0.32

Number of movements, actual and predicted Actual Events Predicted Events

0 182 180.2

1 41 43.7

2 12 9.9

3 2 3.6

4 2 1.5

5 0 0.6

6 0 0.2

7 1 0.1
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and Young (1995) with the original six month average percent rates Ut transformed

according to

yt � 100� ln (1�Ut�1=100)ÿ 100� ln (1�Ut=100)

Here the full data set consists of monthly data from 1954±1992 inclusive, providing

78 six monthly averages. As in Section 5.7.1, assume the binary indicators d1t and d2t

for shifts in the means mt, and in the variances of the xt series are Bernoulli with

probabilities Z1 and Z2, respectively. These are taken as extra parameters, and the

priors for Z1 and Z2 determine the level of shifting and the results of the analysis may

depend on how they are set. The relative size of Z1 and Z2 is also affected by the

variances assumed for the variance of the nt and the informativeness of the prior

assumed for the vt.

Following Rosenberg and Young, a relatively low prior chance of shifts in either

mean or variance is assumed, with Z1 � B(1, 19) and Z2 � B(1, 19). The autoregressive

series is taken as order p � 1. Rosenberg and Young experimented with a lag 2 model,

but found it to produce no improvement in fit. The proportional shifts, as in Equation

(5.49), are taken to have a gamma prior favouring a concentration around an average of

1, namely

vt � G(5, 5)

One might experiment with different prior assumptions on the degree of concentration

around the average of 1, e.g. by alternatively taking G(1, 1) and G(10, 10) priors for the

vt. As to the variance of the nt, this can be preset, and Rosenberg and Young suggest

using a large multiple (e.g. 10 times) the residual variance from a standard ARMA

model. Fitting ARMA(1, 1), ARMA(2, 2) and similar models showed a residual variance

around 0.25, and so taking nt � N(0, 2: _5), is one option. It might be sensible to assess

alternatives involving other multiples, such as nt � N(0, 5) or nt � N(0, 1). One might

also take the variance of the nt as an additional parameter.

Here a two-chain run to 2500 iterations and with nt � N(0, 1) shows probabilities of

0.014 for level shift and 0.124 for variance shift. Identifiability is improved by directly

sampling the shift probabilities Z1 and Z2 from their full conditional densities. The lag

1 parameter g1 in the autoregressive series is estimated as 0.48. Rosenberg and Young,

in an analysis of quarterly rather than six monthly series, also found a higher probabil-

ity Z2 of a variance shift than a mean shift, but with the excess of Z2 over Z1 (0.086 vs

0.015) smaller than that estimated under the model here. A very close fit to the observed

differenced and transformed series is achieved, with no discrepant CPOs (the smallest,

around 2% of the maximum CPO, is for observation 35 in the series of 77).

For comparison, a relatively simple state space model in the undifferenced and

untransformed six-monthly unemployment rate is also fitted (Model B in Program

5.16). This involves a first order random walk model in the `true' series. The sum of

squared prediction errors of actual vs. predicted unemployment rates (E.s in Program

5.14), shows this relatively simple model to have broadly comparable fit to the mean and

variance shift model.

Example 5.17 Consumption function for France To illustrate regression switching, we

follow Bauwens, Lubrano and Richards (1999, p. 248) in considering a stochastic

consumption function for France. This is applied to logged consumption and income

for 116 quarterly points from 1963Q1 to 1991Q4. The outcome is the first difference

D log Ct in logged consumption, and is related to the comparable income variable
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D log Yt, and to the lag 4 difference in log consumption. Conditioning on the first five

observations gives for t � 6, 116

D log Ct � d� ZD:1969Q2� gD log Ctÿ4 � bD log Yt

� (rÿ 1)[ log Ctÿ1 ÿ n log Ytÿ1]� ut

(5:55)

where ut � N(0, s2). The term D.1969Q2 reflects a short-run distortion due to the wage

increases following the Matignon negotiations of 1969. As to the error correction term

in square brackets this reflects a long-term equilibrium between consumption and

income

log C* � log K � n log Y*

Providing n, the long run elasticity, is 1, then C* � KY* and the propensity to consume

K is constant. In a dynamic (first differences) framework, the long-term equilibrium is

expressed as

D log C* � nD log Y*

This implies that a shift in the propensity to consume (i.e. a change in K) only changes

the constant in Equation (5.55), with all other regression effects unaffected by the

switching.

The observed propensity to consume K in this period in France is distorted not just

by the 1969 negotiations, but by a longer run upward movement from around 0.77 in

1978 to 0.89 ten years later. The question is whether, despite this apparent trend,

an underlying constant propensity can be obtained by suitable parameterisation of

the consumption function (5.55), and by switching of the regression constant d in this

function.

Bauwens et al. first fit Equation (5.55) without any switching mechanism, and find that

no equilibrium is defined. They then allow a single permanent shift in the propensity to

consume via a step function as in Equation (5.53). They find this leads to n under 1, a

situation incompatible with a constant K. They then investigate whether a single, but non-

permanent, shift in the mean propensity to consume restores a stable consumption

function as defined by n � 1 (or by a 95% credible interval for n including 1). This implies

a return to a previous equilibrium after the temporary transition from equilibrium.

They therefore introduce a double parameter transition function such that

I(t1, t2) � 1 for quarters t between t1 and t2 (both set within the period spanned by

the observations) and I(t1, t2) � 0 otherwise, so that

D log Ct � d� kI(t1, t2)� ZD69:2� gD log Ctÿ4 � bD log Yt

� (rÿ 1)[ log Ctÿ1 ÿ n log Ytÿ1]� ut

(5:56)

The unit elasticity model with n � 1 is accepted with this transition function, and

Bauwens et al. obtain a final equation (where n is set to 1) as follows (posterior means

and SDs):

D log Ct �ÿ 0:0088ÿ 0:0071I(t1, t2)� 0:019D69:2ÿ 0:26D log Ctÿ4

[0:0041] [0:0017] [0:0067] [0:078]

� 0:23D log Yt ÿ 0:11[ log (Ctÿ1=Ytÿ1)]

[0:069] [0:022]
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with the mean of t1 estimated as 1973.3 and of t2 as 1984.1. The prior ranges (within

t � 6, : : 116) for these two threshold parameters t1 and t2 are U(29, 61) and U(62, 98).

These ranges are separated for identifiability and chosen by trial and error (Bauwens et

al., 1999, p. 250).

Estimates with this model may be sensitive to prior specifications on the single or

double break points, t1 and t2. Thus, uniform priors over the full range of times (6±116)

may well give different estimates to priors restricted to an interior subinterval (e.g. 20±

100). Similarly, a gamma prior such as G(0.6, 0.01) with average 60, approximately half

way through the periods, but with large variance ± and with sampling constrained to the

range (6, 116)±might be used, combined with a constraint t2 > t1. This may lead to

different results than a uniform prior.

There are also possible identification and convergence problems entailed in the non-

linear effects of r and n in Equation (5.56), when n is a free parameter. Here r is allowed

to be outside the interval [ÿ1, 1]. One way to deal with the identifiability problem is to

introduce a conditional prior for n given r, or vice versa (see Bauwens et al., 1999,

p.142), and so r is taken to be a linear function of n, namely a1 � a2n. Then N(0, 1)

priors are adopted on a1 and a2, and all regression coefficients with the exception of n,

which is assigned an N(1, 1) prior, are constrained to positive values.

We first fit Equation (5.56) with a single break point (i.e. a permanent shift in the

propensity to consume), n a free parameter, and a G(0.6, 0.01) prior on the breakpoint

t1. Convergence in all parameters in a three chain run occurs after 15 000 iterations and

from iterations 15 000±20 000, a 95% credible interval for r of {1.02, 1.19} is obtained,

and a pseudo-marginal likelihood of 390. The density for n is concentrated below unity,

with 95% interval {0.86, 0.95}. The density for t1 is negatively skewed and has some

minor modes; however, there is a major mode at around t � 85 to t � 90, with the

posterior median at 87 (i.e. 1984.3).

To fit Equation (5.56) with n still a free parameter, and two breakpoints (i.e. a

temporary shift in the propensity to consume), the intervals (29, 61) and (62, 98) of

Bauwens et al. are used in conjunction with gamma priors (Model C in Program 5.17).

Taking wider intervals within which sampled values may lie, such as (7, 61) for t1,

causes convergence problems. Even with the same intervals for the breakpoints as

adopted by Bauwens et al., convergence on n is slow. The Gelman±Rubin scale reduc-

tion factor on n remains at around 1.2 after iteration 8500 in a three chain run, and the

95% interval from 5000 iterations thereafter is {0.88, 1.02}, including the equilibrium

value of 1. On this basis the same model (5.56), but with n set to 1, may be fitted (see

exercises).

It may be noted that an alternative methodology uses a smooth rather than abrupt

transition function, such as

Dt � 1=[1� exp (ÿ w(tÿ t1)(tÿ t2))]

Other variations might include a stationarity constraint with jrj < 1.

5.8 REVIEW

Bayesian time series analysis offers flexibility in several areas, and is now a major theme

in new time series developments. Among major modelling areas illustrating the benefits

of a Bayesian approach may be mentioned:
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. the lesser restriction to stationarity in autoregressive time series as compared to

classical ARIMA analysis (e.g. Nandram et al., 1997);
. the representation of nonlinear time series and time-varying parameters through

dynamic linear models (West and Harrison, 1997); a recent survey of state-space

time series modelling (including non-Gaussian cases) is provided by Tanizaki and

Mariano (1998);
. the reduction of information in a large set of variables by using a factor structure in

stochastic volatility applications (Aguilar and West, 2000; Meyer and Yu, 2000);

time-varying volatility is also tackled by ARCH models with recent Bayesian studies

including Vrontos et al. (2000);
. the ability to model structural changes in different aspects of the time series such as

level trend and variance (see Section 5.7 and Wang and Zivot, 2000);
. recent developments in dynamic linear and semiparametric modelling of discrete

outcomes (Cargnoni et al., 1997; Fahrmeir and Lang, 2001).
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EXERCISES

1. In Example 5.1, assess the evidence for a non-zero r by applying the binary coeffi-

cient selection method to the outlier innovation model (Model C in Program 5.1). Is

this inference affected by taking a smaller value of D (e.g. 0.01)?

2. In Example 5.2, try the same modelling approach for the velocity series (1869±1988).

This series is identified as nonstationary (with significant probability that r > 1) by

Bauwens et al. (1999). The data for this series are included in Example 5.2.

3. In Example 5.2, assess the inferences regarding stationarity when the innovations are

assumed Normal rather than Student t.

4. In Example 5.10, fit a true series evolving according to an RW(3) model such that

f (t) � 3f (tÿ 1)ÿ 3f (tÿ 2)� f (tÿ 3)� u(t)

4. and assess its fit against the RW(2) model.

5. In Example 5.13, try the ARCH Model A but introduce a lag in ytÿ1 into the model

for the y series. Does this improve the predictive loss criterion?

6. In Example 5.13, try alternative priors on the random walk variance in Model D

(such as a uniform prior on V 0:5
H or alternative gamma priors on 1=VH ), and assess

effects on model fit.

7. In Example 5.15, fit a Markov switching model with a three state transition matrix,

and similarly the INAR(1) variant model with an innovation process mixing three

different means. How do these compare in terms of the DIC criterion and pseudo-

marginal likelihood?

8. Fit the French consumption model of Example 5.17, as in Equation (5.55), with two

breakpoints and n set to 1. Compare inferences obtained with gamma priors on t1

and t2 constrained to the intervals (29, 61) and (62, 98) with those obtained using

uniform priors on the same intervals. How does the fit obtained compare to a model

with one breakpoint only?
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chapter 6 Analysis of Panel Data

Analysis of Panel Data

6.1 INTRODUCTION

Panel or longitudinal data sets occur when the continuous or discrete response Yit of

each subject i(i � 1, : : , N) is observed on several occasions t � 1, : :Ti. Occasion totals

Ti may differ between subjects, as may times of observations vit, and so spacings

Dit � vit ÿ vi, tÿ1 between observations. Such a panel or serial data set may pertain to

individual patients in clinical trials or subjects of follow-up surveys, or to aggregated

units such as population age groups or geographical areas. The analysis of change in

serial measurements over individuals or groups plays a major role in social and bio-

medical research, and is fundamental in understanding causal mechanisms of disease or

social pathology, in assessing the impact of policy or treatment interventions, and in the

analysis of developmental and growth processes. For instance, in economic applica-

tions, the panel may be at individual, household or firm level and relate to questions

such as economic participation or consumption (for households or individuals) or

patent activity and investment levels at firm level.

Major methodological questions in panel data include the modelling, via random

effects, of permanent subject effects, of growth curve parameters, and autocorrelated

errors. Also important are the extension to categorical outcomes (binary, multinomial

or count data) of methods originally developed for continuous outcomes (Chib

and Carlin, 1999). Missing data often occur in panel studies (see Section 6.5), especially

permanent loss or `attrition' of subjects, where Ti is less than the maximum span of

the study in clinical trials or panel studies of economic interventions (Hausman and

Wiseman, 1979); Bayesian perspectives on this issue include those of Little and Rubin

(1987).

The accumulation of information over both times and subjects increases the power of

statistical methods to identify effects (e.g. treatment effects in medical applications), and

permits the estimation of parameters (e.g. permanent effects or `frailties' for subjects i)

that are not identifiable from cross-sectional analysis or from repeated cross-sections

on different subjects. While cross-section data can be used to estimate age or cohort

related change, these estimates rely on differences between groups rather than individual

change profiles (Ware, 1985). Diggle et al. (1994) provide an example of a cross-

sectional relation between reading ability Yi and age Xi

Yi � a� bXi � ei
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where b is the average difference in ability for groups differing by a single year of age.

With T repeated yearly observations on N individuals one may identify a more substan-

tively informative model

Yit � a� bXi1 � d(Xit ÿ Xi1)� eit (6:1)

where b is the same as in Equation (6.1), and d is the growth in ability for an extra year

of age. Growth curve models generalise Equation (6.1) by using random effects to

model variability in baseline ability or growth over subjects.

In economic applications, a cross-sectional model into, say, patent activity by firms is

limited to considering the impact of observed predictors on the outcome. A longitudinal

model gives better scope to assess the role of more or less constant unobserved hetero-

geneity between firms, in terms of entrepreneurial and technical skills which affect

patent applications, and may be difficult to capture with observable variables (Winkel-

mann, 2000).

Longitudinal designs provide information to describe patterns of change and devel-

opment, enabling predictions of individual growth or change beyond the observed path

that take account of not only the impact of age or time, but of additional subject

variables. For example, Lee and Hwang (2000) consider the best choice of prior for

the purposes of extended prediction, namely prediction beyond the observed time range

of the sample. Predictive applications also occur in demographic and actuarial contexts,

where observations of mortality or other vital events are recorded for several periods in

succession, and classified by age, sex or other demographic characteristics (Hickman

and Miller, 1981). Here one may be interested in forecasts of vital events in these

categories in future years.

6.1.1 Two stage models

The modelling of subject effects via univariate or multivariate random effects leads into

a wide class of two stage models for both growth data and other types of longitudinal

observations. Thus, in a simple linear growth curve

Yit � ai � dit� eit (6:2)

the random effects describe differences in baseline levels of the outcome (ai), such as the

underlying average attainment for subject i, or in the linear growth rates of subjects (di),

such as differences in attainment growth. In more general models of this type, also

including covariate effects varying over subjects, the distribution of the random effects,

whether parametric or non-parametric, and if parametric, whether Normal or otherwise

(Butler and Louis, 1992), constitutes the first stage of the prior density specification.

The hyperparameters on the density of ui � {ai, di . . . } form the second stage of the

prior specification.

In many studies, the interest may especially be in identifying subject level effects

from panel data with greater reliability than is possible with cross-sectional data

(Horrace and Schmidt, 2000), with a typical specification for continuous data taking

the form

Yit � ai � bXit � eit (6:3)

with a and e both Normal, and with the ai modelled as random effects independent of

other information. Heterogeneity between subjects i in their levels on ai may be

interpreted as unobserved differences that impact on the outcome, and reflect stable
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unmeasured characteristics of individuals. Control for unobserved heterogeneity is then

the basis for obtaining consistent estimates of the systematic (regression) part of the

model, involving observable predictors (Hamerle and Ronning, 1995). An alternative

`factor analytic' perspective on permanent effects is provided by Dagne (1999), in which

the ai may themselves be related to covariates; one might have loadings l on the ai

varying either by time

Yit � ltai � bXit � eit

or by subject

Yit � liai � bXit � eit

with the variance of the ai pre-defined (e.g. var (a) � 1) for identifiability. However, one

does not necessarily need to adopt this approach to relate the ai to fixed covariates Wi.

Certain prior specifications on the ai in the conventional random effects model (6.3)

may improve identifiability if the eit are autocorrelated. For continuous outcomes,

suppose the errors follow a first order autoregression

Yit � ai � bXit � eit

eit � gei, tÿ1 � uit t > 1

uit � N(0, s2
u)

ei1 � N(0, s2
1)

Then, following Chamberlain and Hirano (1999), rather than the prior

ai � N(0, s2
a)

for the permanent effects, one might link the initial conditions and the ai via the prior

ai � N(cei1, s2
a)

where c can be positive or negative. This amounts to assuming a bivariate density for ai

and ei1 with independence between them corresponding to c being effectively zero. Note

that if g is close to 1, it may be more difficult to identify ai and ei1 separately.

Enduring differences between individuals represented by fixed subject level errors

may be associated with a form of structural or spurious state dependence in panel data

(Heckman, 1981). This is particularly so in panel studies of binomial events (e.g.

unemployment, accidents, labour participation) or of multinomial choices (e.g. choices

between product brands). The individual effect ai here may be interpreted as a propen-

sity to experience the event, or as the utility of a certain choice, and such variation of

itself induces correlation over time. Thus, if subject level effects have variance s2
a and

the (uncorrelated) observation errors have variance s2
e , and denoting the combined

error

Zit � eit � ai (6:4a)

the correlation between Zit at periods s and t is

t � s2
a=(s

2
a � s2

e) (6:4b)

Unmeasured differences between individuals may also operate through an autocorre-

lated structure. Suppose that the observations Yit were binary such that on a continuous

latent scale Zit � 0 if and only if Yit � 1, and Yit � 0 otherwise. Then
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Zit � bXit � ait

ait � gai, tÿ1 � eit

(6:5)

so that a subject who has a high propensity ait at time t will have a higher propensity

than average at t� 1 if g is positive.

Autoregression in the observations By contrast, true state dependence in a model for a

binary panel outcome would mean model (6.5) would be extended to include autore-

gression on Yit itself, for instance as follows:

Zit � bXit � rYi, tÿ1 � ait

ait � gai, tÿ1 � eit

(6:6)

Here rYi, tÿ1 may be seen as measuring the association between the event in the

preceding period and the utility or propensity in the current period. With appropriate

parameterisation, a binary model involving a lag in observed outcome Yi, tÿ1 may be

cast as a Markov chain model (Hamerle and Ronning, 1995). In practice, models such

as Equation (6.6) may be difficult to identify for binary outcomes, but may be feasible

for count or continuous outcomes.

Autoregressive panel models for continuous outcomes may involve several lags, for

example in an AR(2) model

Yit � bXit � r1Yi, tÿ1 � r2Yi, tÿ2 � eit

and may be extended to included moving average terms in the eit. Although autoregressive

(or ARMA) models and growth curve models are often seen as competing alternatives,

there is scope for combining them. Curran and Bollen (2001) consider models such as

Yit � ai � dit� ryi, tÿ1 � eit

that they term Autoregressive Latent Trait (ALT) models.

6.1.2 Fixed vs. random effects

While random effects models of subject level variability are increasingly used as stand-

ard, there are possible caveats against random effects models in observational (non-

experimental) panel studies. Suppose a model for count outcomes Yit, with means mit

has a log link regression of form

log mit � ai � bXit � eit

Such a random effects model may assume subject effects ai to be independent of

observed characteristics, so that individuals with different levels of Wi or Xit have the

same expected value of ai. This assumption may be realised under randomisation (e.g. in

medical trials) but may be less likely in observational settings, where selectivity effects

operate. Allison (1994) cites the relation between depressive reaction to abortion Y and

religion W1i: Catholic women are much less likely to have abortions, and so unless

religion is included as a predictor, the effect of the event abortion (X2it � 1 or 0) on the

depressive reaction outcome will be confounded with differences in religion. Therefore,

fixed effects models may be less restrictive in terms of their underlying assumptions. As

well as the benefit of not assuming the independence of ai and fWi, Xitg, there is the

improvement in robustness in not needing to specify the density of the ai. On the other

hand, estimation and identifiability are problematic for large N and small T.
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In a Bayesian approach, there may be less of a problem when ai is correlated with Wi,

since that correlation may be modelled in the random effects distribution, by linking the

permanent effects to known covariates in a regression format ± as is commonly done in

multi-level growth curve models, but not confined to that setting. Thus, instead of

regarding individual effects as nuisance factors, the latent frailty, severity, or attitude

may be modelled as functions of covariates. Dagne (1999) contrasts random effects

models with a slope of unity on the terms ai, to latent variable models which include

both regression of the ai on covariates and allow a varying slope over subjects on the

latent variable.

6.1.3 Time dependent effects

As well as using panel data to sharpen inferences about individual differences, in some

circumstances a two stage model with random effects over time (rather than over

individuals) at the first stage may be relevant. As compared to time series data, fewer

points are needed to model evolving regression coefficients. Thus let counts of a health

event Yit be assumed Poisson

Yit � Poi(Eitmit)

where Eit are expected events using demographic standardisation. One may

be interested in the changing impacts of covariates, fixed Wi, or varying, Xit, as

follows:

log (mit) � b0t � b1tXit

where b0t and b1t are random over time. For example, in a study of changing levels of

suicide mortality over the N � 33 boroughs of London, Congdon (2001) discusses

models for the changing impact of socio-economic variables (area deprivation and

community stability) on the health outcome. A further modelling choice is thus between

a focus on variation in change between subjects or on temporal change in the impact of

fixed or fluctuating covariates defined for subjects.

One may also consider evolution in other parameters, such as lag coefficients on

previous values of the outcome. In a model for continuous Yit with lag on Yi, tÿ1, one

might specify, following Curran and Bollen, 2001), an ALT model with time varying

AR(1) parameter:

Yit � ai � dit� rtYi, tÿ1 � eit

6.2 NORMAL LINEAR PANEL MODELS AND GROWTH

CURVES FOR METRIC OUTCOMES

This section considers in more detail the specification of the linear regression model for

panel data on continuous outcomes, which sets the basis for panel models for discrete

outcomes. Suppose the observations
~
Yi � (Yi1, Yi2, : . . . YiT ) on subjects i � 1, : : , N are

of equal length T, and their means mit depend upon a vector (of length p) of fixed

covariates Xi. Then

Yit � Xib� eit (6:7)
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where ei, 1:T is multivariate normal with mean zero and T � T dispersion matrix S.

Extension to time varying covariates Xit is straightforward. Time varying predictors in

growth curve models might well functions of the times t � 1, : :T .

Assume c � �ÿ1 has a Wishart prior density with scale matrix R and degrees of

freedom r, and b has a multivariate normal prior with mean b0 and dispersion matrix

B0. Then the full conditional distribution of b given Sÿ1
is multivariate normal

Nq(b*, B*) (6:8a)

where

b* � B*(Bÿ1
0 b0 �

X
i�1, N

Xic
~
Yi) (6:8b)

and

(B*)ÿ1 � Bÿ1
0 �

X
i�1, N

XicXi (6:8c)

The full conditional of c is Wishart with r�N degrees of freedom and scale matrix R*,

where

(R*)ÿ1 � Rÿ1 �
X

i�1, N ~
ei

~
e0i (6:8d)

In a growth curve analysis, the design matrix Xit would typically be time specific, but

with equal values over subjects i. It might consist of an intercept Xit1 � 1 for all subjects

and times, with succeeding covariates being powers or other functions (e.g. orthogonal

polynomials) of time or age t. Thus for a linear growth model Xit2 � t, while a quadratic

growth model would involve a further column in X, namely Xit3 � t2. If common

coefficients b1, b2, b3, etc. are assumed across subjects, they represent the relationship

between the mean outcome and time or age t. For example, studies of mean marital

quality over time suggest a more or less homogenous linear decline over the course of

marriage (Karney and Bradbury, 1995).

6.2.1 Growth curve variability

However, average growth curves will often conceal substantial variability in develop-

ment that longitudinal research is designed to address. Such variability in growth (e.g. in

the linear growth effects of Xit2 � t) may be correlated with variability in the individual

levels on the outcome, leading to growth curves with multivariate random effects. For

instance, a commonly observed effect in panel and growth curve models is regression to

the mean, whereby higher growth occurs from lower base levels (so that growth and

level are inversely related). An alternative to the notation {ai, di} in Equation (6.2) is

the multivariate one bik, k � 1, 2. For a linear growth curve with random intercepts and

growth rates, a frequently used formulation is

Yit � bi1 � bi2t� eit (6:9a)

with

ei, 1:T � NT 0, S� �
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and the random effects bi, 1:2 following their own density, such as

bi, 1:2 � N2 mb, Sb� �
The mean values of the bik in this case would be the intercept mb1 and average linear

growth rate mb2.

Given the role of
~
bi in representing individual variations, including correlations

between the growth paths and the levels of each subject, it may become more reasonable

after introducing the
~
bi to assume that the eit are independent. Hence, a simplifying

assumption

eit � N(0, s2I) (6:9b)

may be made and assessed against other schemes involving a general unstructured

dispersion matrix S or some specified time dependence (e.g. AR(1) dependence).

Other questions of interest might include establishing whether variations in linear

growth rates bi2 could be explained by other fixed attributes Wi of individuals: for

example, whether differential declines in marital quality are related to initial spouse age,

or to spouse education.

If individuals i have different observation times, or are nested hierarchically within

groups j, then more complex growth curve models have been suggested. Diggle (1988)

proposes a model for panel data in which observation times vit may vary between

subjects. Then the series for individual i may be modelled as

Yi(vit) � mi(vit)�Wi(vit)� eit � ai (6:10)

This representation contains a simple measurement error or white noise term eit, as well

as autoregressive errors Wi(v). The prior for the latter would incorporate a model for

correlation r(D) between successive observations according to the time difference

Dt � vt�1 ÿ vt between readings. The error association typically decreases in D, since

measurements closer in time tend to be more strongly associated. The model includes

constant subject level errors ai which may depend upon covariates. These stable effects

may also pre-multiply covariates, including the times vit themselves, in which case they

become variable growth rates.

Suppose individuals i are classified by group j � 1, : : J, as well as by indi-

viduals i within groups. Assume for simplicity equally spaced observation times for

all subjects. Then the corresponding model to Equation (6.10) contains measurement

error, as well as autoregressive dependence, at observation level, constant effects aij

specific to subject i and group j, and growth curve parameters varying over group or

over individuals. For example, a group varying linear growth model might take the

form

Yijt � Aj � Bjt� aij � eijt � eijt (6:11)

where the eijt are autoregressive with

eijt � g1eij, tÿ1 � uijt

and both the eijt and uijt are exchangeable measurement errors. The group effects (varying

intercepts and linear growth rates) might be taken to have bivariate dependence.
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6.2.2 The linear mixed model

The growth curve with random variation in trajectory parameters over subjects, or

subjects within groups, is a special case of the linear normal mixed model for subjects

i � 1, : :N and times t � 1, : :T

Yit � Xib�Wibi � eit (6:12)

In this specification, the eit are commonly taken to be distributed according to the

homoscedastic assumption (6.9b), Wi is usually but not necessarily a q-dimensional

subset of regression vector Xi, and bi a q� 1 random effect with mean zero and

covariance matrix Sb. If the density of bi is multivariate normal, then the mean

and variance of
~
Yi unconditionally on bi, are respectively

E(
~
Yi) � Xib

and

V(
~
Yi) � s2IT �WiSbWi

There may be additional grouping variables in 6.12, e.g. exam results over time for

pupils i within schools j, or clinical measures over time for patients i within hospitals j.

In this case, the multi-level random effects bij may be assumed, or bi may be related to

fixed characteristics of the higher level grouping.

Suppose a Wishart prior is assumed on Sÿ1
b with degrees of freedom rb and scale

matrix Rb, and further that t � sÿ2 is Gamma with parameters n1 and n2 and that b has

a multivariate normal prior with mean b0 and dispersion matrix B0. Then the full

conditional densities of b, Sb and t can be obtained (see Chib, 1995) by rewriting

Equation (6.12) as in Equation (6.7):

Yit ÿWibi � Xib� eit

The conditional density of b then has the same form as Equations (6.8a)±(6.8c) with

dispersion matrix S � s2IT . The conditional density of t is Gamma with parameters

n1 �NT=2

and

n2 � 0:5
X

i�1, N

X
t�1, T

e2
it

while that of Sÿ1
b is Wishart with degrees of freedom rb �N, and scale matrix Rb* where

(Rb
*)ÿ1 � Rÿ1

b �
X

i�1, N

bib
0
i

analogous to Equation (6.8d). Similarly, the full conditional of the bi conditions on b,

and (6.12) can be rewritten as

Hit � Yit ÿ Xib �Wibi � eit

The bi then have variances Vi, given by

(Vi)
ÿ1 � Sÿ1

b � tWiW
0
i

and means

VitWiHi
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With suitable adaptations, the linear mixed model may be applied with discrete out-

comes. An alternative parameterisation in models such as (6.12) is considered by Chib et

al. (1998) in a discussion of Poisson outcomes. When Wi is a subset of Xi, e.g. Wi � Xik

in the case q � 1, it may be preferable to merge the `fixed effect' term Xikbk with the

random effect term Xikbi, such that bi has a non zero mean, for example bi � N(mb, s2
b),

where mb � bk. There is then no overlap between the fixed effect predictors X and the

random effects predictors W. This may provide improved identifiability in Markov

Chain Monte Carlo sampling

6.2.3 Variable autoregressive parameters

While random coefficients attached to powers of time may represent diversity in growth

curves, another option is to incorporate elements of an autoregressive approach. One

possibility is the autoregressive latent trait model mentioned above. Another is to allow

AR coefficients varying over subjects. Thus, for homogenous impacts of previous values

in a trajectory on current values, and with exogenous attributes Xi (e.g. treatments,

gender, etc.) as additional influences, a growth model in p lags might take the form

Yit � r0i � r1Yi, tÿ1 � r2Yi, tÿ2 � :: . . .� btXi � eit (6:13)

where r0i represent different levels of the outcome for individuals. To allow for differing

shapes in the growth trajectories of subjects, one or more of the lag coefficients

r1, r2, : :may be allowed to be random as well as the intercepts r0i. Then {r0i, r1i, : : rpi}

are taken to be multivariate Normal or Student t with means {r0, r1, : : rp}. This may

allow greater flexibility than differences in linear or polynomial growth rates, in time t

or log time. One may also introduce autoregressive variability in the model for the error

structure. For example, an AR(1) error structure in the errors of the means of a Poisson

outcome might be taken to vary over subjects:

log mit � bXit � ai � eit

eit � gieitÿ1 � eit

In a study of suicide trends, Congdon (2001) compares this `differential persistence'

model with a model allowing variable growth rates.

Example 6.1 Growth curve analysis: plasma citrate readings An example of growth

curve variability with continuous outcomes as in Equation (6.8a), and possibly auto-

correlated errors, is considered by Hand and Crowder (1996). The measurements at

t � 1, : : 5 equally spaced times and on i � 1, : : 10 subjects are of plasma citrate concen-

trations in micromoles per litre. Hand and Crowder assume a two stage growth model

with varying intercepts and growth rates, and also allow for AR(1) errors in the

observation errors eit, so that

Yit � bi1 � bi2t� eit (6:14a)

for t > 1, with

eit � g1ei, tÿ1 � uit (6:14b)

where the uit are exchangeable with mean 0 and variance s2
u. Instead of the direct form

(6.14), one may accommodate this form of structured errors by transforming the
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regression term for times t > 1. This entails subtracting g1Yi, tÿ1 � g1bi1

�g1bi2(tÿ 1)� g1ei, tÿ1 from Equation (6.14a), to give

Yit � g1Yi, tÿ1 � (1ÿ g1)bi1 � bi2(tÿ g1t� g1)� uit

For the first observation (t � 1), one option is to take ei1 � g1ei0 � ui1 as a distinct error

term, with its own variance s2
1.

Here the intercepts bi1 and growth rates bi2 are initially assumed to be drawn from a

bivariate Normal density, before considering whether extensions such as a mixture of

Normals for the bik are supported by the data. To assess fit and aid model choice we

consider, as earlier, a predictive loss criterion, and a pseudo marginal likelihood

measure1. In subsequent examples the DIC is also used. The mean intercept and slope

mb1 and mb2, are assigned N (0, 108) and N(0, 102) priors respectively. The correlation g1

is taken to be N(0, 1), and so is not constrained to stationarity. For the precision matrix

S
ÿ1
b of the bik, a Wishart prior with an identity scale matrix and 2 d.f. is assumed.

For the standard multivariate Normal, three chains are run for 20 000 iterations with

dispersed starting values2; convergence was obtained by around 1000 iterations. The

resulting estimates (from iterations 1000±20 000) show intercepts to be negatively

related to slopes, as can be seen from the correlation C12 in Table 6.1. The clearest

reductions over time in subject concentrations (i.e. the most negative bi2) are in those

subjects (4, 9, 10) with initially high readings, illustrating a regression to the mean.

However, the average coefficient for linear growth mb2 straddles zero, and there is only a

65% probability that mb2 is negative (see `test' in Program 6.1). There is a weakly

positive auto-correlation in the residuals eit; this might suggest that a simple uncorrel-

ated error structure be adopted instead, but there is a clear worsening of fit when this is

actually applied.

The second model involves a discrete mixture of two sub- groups of patients, since

some subjects have fairly clear evidence of decline, while others have static or even

slightly rising readings. An identifiability constraint is applied on the intercepts of the

two groups. Convergence with this model is much slower (only by 25 000 iterations in a

three chain run of 50 000 iterations). This analysis shows a low intercept group with

positive (but insignificant) trend in time, and a high intercept group with trend coeffi-

cient biased to negative values (95% interval from ÿ8.1 to 2.1). This model has a similar

pseudo-marginal likelihood to the one group multivariate Normal, but a clearly worse

predictive loss: the precision of samples of new data is worsened.

Example 6.2 Hypertension trial As an example of a hierarchical data set, Brown and

Prescott (1999) present data on i � 1, : : 288 patients randomised to receive one of three

1 For the predictive loss criterion (see Gelfand and Ghosh (1998), Sahu et al. (1997) and Ibrahim et al. (2001),
`new data' Zit are sampled from f (Zju), where f is the same density assumed for Yit and u are samples from the
posterior density p(ujY ). Let zit and wit be the posterior mean and variance of the Zit. Then for w positive, one
possible criterion has the form X

i

X
t

{wit �
w

w� 1

� �
(Yit ÿ zit)

2}

This criterion would be compared between models at selected values of w, typical values being w � 1, w � 10
and w � 10 000. If the Yit are missing or censored, then the second term in the criterion is omitted and only the
precision of prediction is relevant. Another useful diagnostic tool is the Monte Carlo estimate of the condi-
tional predictive ordinate, obtained as the harmonic mean of the likelihood for the {i, t}th observation
(Gelfand and Dey, 1994). The product of the CPOs yields a pseudo-marginal likelihood.
2 Null parameter values and the upper and lower 2.5th points of a trial run.
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Table 6.1 Plasma citrate, AR(1) model with variable patient effects

Mean St. devn. 2.50% Median 97.50%

Overall intercept and growth rate

mb1 118.8 8.3 102.3 118.7 135.5

mb2 ÿ0.56 1.74 ÿ4.07 ÿ0.54 2.94

Dispersion matrix for subject effects

�b11 698.6 408.3 264.6 592.8 1776.0

�b12 ÿ115.5 78.5 ÿ320.1 ÿ95.3 ÿ30.8

�b22 20.9 16.7 3.6 16.6 64.1

Correlation between intercepts and slopes

C12 ÿ0.97 0.06 ÿ1.00 ÿ0.99 ÿ0.85

Intercepts

Subject 1 88.2 1.9 84.5 88.2 91.9

Subject 2 115.9 1.4 113.1 116.0 118.5

Subject 3 127.2 1.5 124.4 127.2 130.1

Subject 4 149.4 1.8 145.7 149.4 153.0

Subject 5 102.7 1.5 99.6 102.7 105.6

Subject 6 108.3 1.6 105.3 108.3 111.6

Subject 7 83.9 2.0 80.0 84.0 87.8

Subject 8 116.1 1.4 113.4 116.1 118.7

Subject 9 157.7 2.1 153.5 157.8 161.8

Subject 10 141.6 1.7 138.2 141.6 144.9

Growth Rates

Subject 1 4.79 1.88 1.15 4.78 8.53

Subject 2 0.05 1.36 ÿ2.56 0.02 2.87

Subject 3 ÿ2.22 1.45 ÿ5.14 ÿ2.20 0.57

Subject 4 ÿ5.40 1.84 ÿ8.98 ÿ5.42 ÿ1.65

Subject 5 2.28 1.53 ÿ0.64 2.25 5.42

Subject 6 0.67 1.58 ÿ2.64 0.72 3.64

Subject 7 5.06 1.96 1.31 5.03 8.92

Subject 8 ÿ0.07 1.35 ÿ2.68 ÿ0.09 2.63

Subject 9 ÿ6.74 2.08 ÿ10.79 ÿ6.76 ÿ2.53

Subject 10 ÿ4.57 1.69 ÿ7.92 ÿ4.56 ÿ1.23

Correlation of residuals

g1 0.16 0.19 ÿ0.22 0.16 0.55

Residual variance

s2 219.8 54.5 136.2 212.1 348.8

drug treatments for hypertension (A�Carvedilol, B�Nifedipine, C�Atenolol), with

drug A being the new drug and the other two being existing standard treatments.

Patients are allocated to one of j � 1, : : 29 clinics. The analysis here considers a pre-

treatment (week 1) baseline reading Bi of Diastolic Blood Pressure (DBP), and four
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post-treatment readings Yit at two weekly intervals (weeks 3, 5, 7 and 9 after treatment).

Treatment success is judged in terms of reducing blood pressure.

A first analysis of these data (Model A) is a fixed effects model without random effects

over patients or patients� clinics. It involves just baseline b and treatment Z effects, with

the new treatment A as reference category

Yit � m� bBi � ZB � ZC � eit

Because a single baseline measure is missing, an imputation is made based on random

missingness (see Section 6.5) such that the response mechanism itself does not need to

be modelled. Convergence with three chains was achieved at under 500 iterations, and

the summary is based on iterations 500±5000. The results of this analysis (Table 6.2)

show the lowest DBP readings for drug C, once baseline morbidity is controlled for;

centred treatment effects may be obtained by subtracting ZA( � 0), ZB and ZC from

their mean. A low CPO is apparent for the third visit of patient 249, with DBP reading

of 140, compared to previous readings of 120 and 118. The predictive loss criterion,

the pseudo-marginal likelihood and DIC3 are, respectively, 126 353 (for w � 1), ÿ3925

and 9569.

Introducing a subject level random intercept leads to the model (Model B in Program

6.2A)

Yit � m� bi � bBi � ZB � ZC � eit

Define Zit � eit � bi as in Equation (6.4a). Then the variance of the constant subject

effects is determined by the correlation t as in Equation (6.4b), which is assigned a

Table 6.2 Hypertension trial, alternative models (without

clinic effects)

No random effects Mean St. devn. 2.5% 97.5%

Nifedipine (ZB) ÿ1.23 0.65 ÿ2.52 0.05

Atenolol (ZC) ÿ2.95 0.64 ÿ4.22 ÿ1.70

Baseline (b) 0.51 0.06 0.39 0.62

m 40.4 5.8 29.1 52.7

Normal subject random effect

Var(b) 39.9 4.4 32.0 48.9

Nifedipine (ZB) ÿ1.34 1.02 ÿ3.31 0.68

Atenolol (ZC) ÿ3.16 1.01 ÿ5.22 ÿ1.19

Baseline (b) 0.49 0.09 0.32 0.66

m 42.2 9.1 24.6 60.3

t 0.51 0.03 0.44 0.57

Dirichlet process

Nifedipine (ZB) ÿ1.03 1.01 ÿ2.97 0.98

Atenolol (ZC) ÿ2.73 1.04 ÿ4.72 ÿ0.66

Baseline (b) 0.44 0.09 0.27 0.61

m 46.6 9.4 28.0 65.1

3 This DIC is based on minus twice the likelihood.

238 ANALYSIS OF PANEL DATA



uniform prior over (0, 1). Estimates for this model show slightly enhanced treatment

effects in absolute terms, but also reduced precision, so that a more substantial portion

of the density of ZB is above zero. In particular, its effect is indistinguishable from that

of drug A. The model assessment criteria all agree on the gain in introducing permanent

patient random effects; their distribution is shown in Figure 6.1. The predictive loss

criterion falls to 67 400 (with w�1), the log pseudo-marginal likelihood improves from

ÿ3925 to ÿ3671, and the DIC falls to 9030.

Following Butler and Louis (1992), one possible model extension (Model C in

Program 6.2) is a non-parametric mixture of sub-populations on the effects bi. For

example, one option they suggest is sub-populations having different means and vari-

ances, but with the sub-population means summing to zero; they also apply the non-

parametric maximum likelihood model of Laird (1978). Parametric assumptions about

the permanent subject effects are also avoided by a Dirichlet process mixture (Escobar

and West, 1998). So it is assumed that

bi � N(ni, fi)

where

(ni, fi) � G

G � D(G0, a)

In practice, there will be clustering of the ni and fi values, and a maximum of J � 20

clusters is assumed for the 288 patients The baseline prior G0 has the form

nj � N(0, fjfj)

fj � G(1, 0:001); j � 1, : : , J
(6:15)
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Figure 6.1 Patient random effects (Model B)
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where the fj determine the relative spread of cluster means and patient specific random

effects, and are assigned a G(1, 1) prior. The category Ci to which patient i is assigned

has prior

Ci � Categorical(p1, p2, . . . pJ)

Only J* clusters (between 1 and J) are selected at any iteration as appropriate for one or

more observations. The mixture weights p1, p2, . . . pJ are determined by the stick-

breaking method (see Sethuraman 1994, and Sethuraman and Tiwari, 1981). Thus, let

r1, r2, : : rJÿ1 be a sequence of Beta (1, a) random variables (and rJ � 1) , and set

p1 � r1

p2 � r2(1ÿ r1)

p3 � r3(1ÿ r2)(1ÿ r1)

. . .

The precision parameter a is preset here to 1, though it may be updated using the

algorithm described by Escobar and West, 1998, p. 9). Sensitivity to alternative values

of a may be assessed by setting alternative values; larger values of a imply more clusters

J* and greater differentiation between the bi.

A two chain run shows convergence after 2500 iterations, and the summary is based

on iterations 2500±5000. The posterior averages of J* is 5.9, and Figure 6.2 shows most

of the density for J* is contained under 10 clusters. The predictive loss criterion falls to

67 140 (with w � 1), and the log pseudo-marginal likelihood and DIC also improve over

Model B (respectively, ÿ3648 and 9026). The treatment effects are absolutely smaller

than in Model B, but have similar precision, while the baseline effect is smaller than in

the first two models. Figure 6.3 shows a more peaked density of patient effects than

Figure 6.1.

To introduce the information on clinics into the analysis, one may adopt a form of the

multi-level growth curve model, as in Equation (6.11). See Program 6.2, Model D,

which has data input in a different form. Corresponding to the broad decline over time
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Figure 6.2 Number of clusters (two chains)
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Figure 6.3 Patient random effects, Model C

in DBP readings, this model introduces a linear growth effect at clinic level. Intercepts

and baseline effects also vary at clinic level, and there is an error term additionally at

patient-clinic level. Thus with j denoting clinic and patient indices i � 1, : : nj now

regarded as being nested within j (so Sjnj � 288), the model has the form

Yijt � b1j � b2j t� b3jBij � ZB � ZC � tij � eijt

with

eijt � geij, tÿ1 � uijt (6:16)

and with uijt an unstructured measurement error. The initial conditions eij1 have a

distinct variance term. The clinic effects bkj(k � 1, 3) have means and variances

{m:bk, f:bk}.

Convergence with three chains is achieved after 5000 iterations with the aid of the

over-relaxation option (there being a delayed convergence in m:b1 and m:b3). This model

confirms a significant linear decline in the blood pressure readings with 95% interval for

m:b2 between ÿ1.48 and ÿ0.62. This model confirms the apparently beneficial effect of

drug C (Table 6.3). The baseline parameter remains important (averaging 0.40 over

Table 6.3 Hypertension trial: multi-level model, parameter

Summaries (iterations 5000±7500)

Mean St. devn. 2.5% 97.5%

ZB ÿ1.32 0.98 ÿ3.33 0.68

ZC ÿ3.08 0.98 ÿ4.95 ÿ1.21

m:b1 54.9 5.9 45.7 66.5

m:b2 ÿ1.03 0.22 ÿ1.48 ÿ0.62

m:b3 0.40 0.06 0.29 0.50

g 0.89 0.05 0.79 0.98
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clinics), though smaller than in the first three models. This form of dependence on the

initial observation coexists with autoregressive dependence in the errors, with g in

Equation (6.16) averaging 0.89.

Example 6.3 Protein content in milk Rahiala (1999) analyses data on the percentage

protein content yit of cow milk according to diet regime ± see also Diggle et al. (1994). 52

cows were observed for a maximum of 19 weeks, though some were observed for less

than this ± the numbers of weeks vary from 14 ±19. There are a few missing cases in

intervening weeks, before the end of the observation period on particular cows; these are

assumed to be missing at random (Table 6.4).

One might transform the percentage variables to ensure they are in the appropriate

range when predictions are transformed back, but the analysis here follows Rahiala in

treating the data as metric. We also follow Rahiala in fitting a lag 5 model which

conditions on the first five observations ± with non-zero lags assumed at 1, 2, 3 and 5

weeks, but varying coefficients only at lag 2 and 5 and the mean lag at 5 taken as zero.

Then with notation as in Equation (6.13)

Yit � N(nit, s2
1)

nit � r0i � r1Yi, tÿ1 � r2iYi, tÿ2 � r3Yi, tÿ3 � r5iYi, tÿ5 � bXi

{r0i, r2i, r5i} � N3 c, Sr

� �
where c � (r0, r2, 0). The model also includes a single covariate Xi for diet type

(barley�1, 0�lupins) with its coefficient treated as a fixed effect. Note that in BUGS

the data is provided in a 52 � 19 format even though some cows are only observed for

14 weeks.

Because not all the first five values in each animal's series is observed (e.g. y20, 2 is

missing), the first five points must still be modelled in some way under the conditional

approach, even though they are not included in the differential autoregression scheme.

One might assume a random effects model for the first five periods, with the observations

Yit for animal i drawn from a Normal density with variance s2
2 and means m:yi,

and the means themselves drawn randomly from a normal density with mean M and

variance s2
3.

Table 6.4 Variable lag effects, growth curve model

Mean St. devn. 2.5% 97.5%

Correlations between random effects

Between Intercept and lag 2 ÿ0.03 0.62 ÿ0.96 0.97

Between Intercept and lag 5 ÿ0.18 0.60 ÿ0.98 0.92

Between Lag 2 and Lag 5 ÿ0.69 0.33 ÿ0.99 0.18

Coefficients (r0 and r2 are mean random effects, others are fixed effects)

Intercept (r0) 0.81 0.10 0.58 1.01

Lag 1 (r1) 0.48 0.04 0.41 0.57

Lag 2 (r2) 0.08 0.04 0.00 0.16

Lag 3 (r3) 0.19 0.04 0.12 0.27

Diet (b) 0.06 0.02 0.01 0.11
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With a three chain run, convergence is apparent from iteration 10 000 and the

summary is based on iterations 10 000±40 000. There are clear positive lags at 1 and 3

weeks, and also a negative correlation between lag 2 and lag 5 growth coefficients. The

effect of the lupin diet is positive.

A second model allows the mean coefficient r5 to be non-zero. This option shows a

clear improvement in the predictive loss criterion of footnote 1 (from 183 to 171 when

w � 1). This model raises r0 to around 1, while r5 has mean ÿ0.09 and 95% credible

interval (ÿ0.15, ÿ0.03).

6.3 LONGITUDINAL DISCRETE DATA: BINARY, ORDINAL AND

MULTINOMIAL AND POISSON PANEL DATA

As discussed in Chapter 3 and elsewhere, discrete outcomes may often be modelled

in terms of latent continuous variables. Thus, underlying a panel of binary observations

Yit, we may posit a continuous latent variable or underlying propensity Zit such

that Yit � 1 if Zit is positive, and Yit � 0 if Zit is negative. Following Heckman (1981),

one may formulate the model for Zit in terms of measured or endogenous effects Vit (for

example, Vit � bXit, where Xit are known predictors) and a stochastic error eit so that

Zit � Vit � eit (6:17)

Then Zit � 0 if and only if Yit � 1, while Zit < 0 if and only Yit � 0. In a frequently used

Bayesian approach developed by Albert and Chib (1993), the latent scale may be

sampled via truncated sampling, with the truncation ranges determined by the observed

Yit. It is assumed that the probability of success is expressed as pit � F ( ), where F (:) is a

distribution function, and so lies between 0 and 1. So a success occurs according to

Pr(Yit � 1) � Pr(Zit > 0) � Pr(eit > ÿVit) � 1ÿ F (ÿ Vit)

For forms of F that are symmetric about zero, such as the cumulative distribution

function of a standard normal variable, the last element of this expression equals F (Vit).

If the chosen distribution function is the cumulative Normal, then Z may be sampled

from a truncated normal: truncation is to the right (with ceiling zero) if the observation

is Yit � 0, and to the left by zero if Yit � 1. To approximate a logit link, Zit can be

sampled from a Student t density with eight degrees of freedom, since, following Albert

and Chib (1993), a t(8) variable is approximately 0.634 times a logistic variable. This

sampling based approach to the logit link additionally allows for outlier detection if the

scale mixture version of the Student t density is used, rather than the direct Student t

form. The scale mixture option retains truncated Normal sampling but adds a mixture

variables li, such that

Zit � N(bxi, lÿ1
i ) I(L, U)

with li sampled from a Gamma density G(4, 4). The resulting regression coefficients

need to be scaled from the t(8) to the logistic. L � 0 when Yit � 1 and U � 0 when

Yit � 0.

With Yit still a binary outcome, the Zit in Equation (6.17) may be expressed as

Zit � bXit � ai � kt � eit (6:18)

where the kt are interpreted as period effects invariant over individuals (e.g. reflec-

ting moves in national economic conditions on firm level outcomes), and the ai are
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permanent effects attached to the subjects. For binary outcomes, restrictions are needed

for identifiability. Thus, if a constant variance f of the eit is assumed, then it is necessary

that f � 1 (or possibly some other preset value). Note, however, that time varying

variances ft may be identifiable provided one of them (e.g. f1) is set to a pre-specified

value. Heckman extended this error structure to include coefficients on the ai. This is

known as the one factor model

Zit � bXit � ltai � kt � eit (6:19)

where, if the eit are taken as uncorrelated, the lt may be used to describe the correlation

between time points t and s (see Example 6.6). For count outcomes, Dagne (1999)

proposes a similar model with the loadings either over subjects or times. Thus,

Yit � Poi(mit), and for loadings varying by subject

mit � liai � bXit � eit

Ordinal panel data Models for ordinal responses over time are important because in

many settings involving human subjects, classifications are on a graded scale, with

precise quantification not being possible. Examples include pre- and post-treatment

observations on rankings of illness symptoms (e.g. no symptoms, mild, definite) or

changed illness states, as well as survey questions on changing views on controversial

topics. As discussed in Chapter 3, a continuous scale may often be envisaged to underlie

the grading, with a series of thresholds t1, t2, : : tCÿ1 defining which of C categories a

subject lies in. Then with Zit taking one of the forms as above, for example

Zit � b0 � bXit � eit

we have

Yit �

1 if Zit < t1

2 if t1 < Zit < t2

. . .
Cÿ 1 if tCÿ2 < Zit < tCÿ1

C if Zit > tCÿ1

8>>><>>>:
Alternative parameterisations are possible to ensure identifiability: either taking b0 � 0,

or t1 � 0, or tC � C ensure that the mean of the Z is identified (Long, 1997, p. 122). The

variance of Z may be identified by taking e to be N(0, 1). This leads to the ordinal probit

model, whereas taking e to be Student t(8) have variance 1 leads to the ordinal logit

model.

In panel setting one might consider shifts in the location of thresholds by making the

cut-points time specific ± for example, if the analysis was intended to assess whether

there had been a shift in attitudes. Random variations in intercepts between subjects or

variation in trends across time (random time slopes) may also be modelled in panel

settings because of the repetition of observations over subjects.

6.3.1 Beta-binomial mixture for panel data

Many repeated observations of social choice processes are available as binary series at

times 1, 2, . . . T and aggregate to binomial series for total subject populations or sub-

populations of subjects. For example, the events migration, job change or divorce

are binary though Yit � 1 may sometimes include more than one event. As Davies
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et al. (1982) point out, such time series may show three kinds of systematic variation:

heterogeneity in event probabilities across individuals or sub-populations, non-

stationarity in the event rates at individual or aggregate level or both, and event history

effects. The latter are exemplified by first order effects, when the state occupied at time

tÿ 1 influences the state occupied at time t. The factors underlying these choice

sequences may be heterogeneous over sub-populations, as well as varying over time.

Suppose the binary series are of length T, with 2T possible series being potentially

observable, For instance, if T � 3, one may observe the sequences {1,1,1}, {1,1,0},

{1,0,1}, {0,1,1}, {1,0,0}, {0,1,0}, {0,0,1}, {0,0,0}. One may observe population sub-

groups classified by demographic and social attributes which differ in terms of their

distribution over these patterns. For example, if the event were migration or purchasing

trips then groups with high event probabilities will be concentrated in sequences with

higher occurrences of ones, e.g. higher proportions of sequences such as {1,1,1} or

{1,0,1}. This is the heterogeneity issue. There may also be non-stationarity, if for

example the sequence {1,0,1} is more frequent than the sequence {1,1,0} because the

event rate is higher at time 3 than at time 2.

Let pkt denote the aggregate event rate at time t for subgroup k. Often heterogeneity is

modelled within a logit or other link, so that if ykt denotes the number undergoing the

event at time t from nkt at risk, then one might stipulate

ykt � Bin( pkt, nkt)

logit( pkt) � at � bk � ekt

where the ekt are Normal. However, heterogeneity in discrete outcomes over time might

also be modelled in terms of conjugate mixture densities. Thus, heterogeneity in event

probabilities p over individuals or sub-populations may be represented by a beta

mixture g(p). In the case of variations at individual level, the beta parameters may be

linked to selected characteristics of individuals.

Suppose we have a stationary series with the rates pt at different times t being

constant, pt � p. Then the probability of different sequences such as {1,1,0} or {1,1,1}

may be modelled in terms of the moments

m0j � E[ p j] �
�1

0

pjg( p)dp j � 1, 2, . . . (6:20)

For a series of length T , m0j is equivalent to the probability of exactly j events occurring ±

regardless of their sequencing within the T points. For example, if T � 3, the probabil-

ity of an event at every point in the series may be denoted

p111 �
�1

0

( p:p:p)g( p)dp � E[ p3] � m03

and the probability of the sequences {1,1,0}, {0,1,1}, and {1,0,1} are equal since

p110 �
�1

0

(p � p � (1ÿ p) )g(p)dp � E[p2 ÿ p3] � m02 ÿ m03

p011 �
�1

0

( (1ÿ p) � p � p)g(p)dp � E[p2 ÿ p3] � m02 ÿ m03

p101 �
�1

0

(p � (1ÿ p) � p)g(p)dp � E[p2 ÿ p3] � m02 ÿ m03
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If, however, the chance of the event is varying over time (i.e. there is non-stationarity),

with p1, p2, : : pT possibly different, this model has to be generalised. Suppose the form

of heterogeneity is fixed and, taking the first period as reference, may be denoted g(p1).

A simple option to account for non-stationarity is linear scaling of event probabilities

pt � dtp1

This `scaling' is somewhat analogous to using a piecewise exponential in hazard regres-

sion, with the dt modelling the fluctuations in the pt without necessarily presupposing a

parametric form. Then the chance of the series {1,1,1} would be

p111 �
�1

0

(p1 � d1p1 � d2p1)g(p1)dp

The likelihood for T � 3 consists of N111 persons with pattern {1,1,1}, N110 persons

with pattern {1,1,0}, etc. If the chance of the event is low, then linear scaling may be

appropriate even though in general linear scaling may lead to rates exceeding one ±

unless the maximum rate (rather than the first rate) is taken as a reference, and all dt are

then under one.

However, one may also specify logistic scaling such that there is appropriate {0,1}

bounding of probabilities. Thus, if successive odds ratios are linked according to

[ pt=(1ÿ pt)] � kt[ p1=(1ÿ p1)]

then successive logits are linked as

logit( pt) � log (kt)logit( p1)

Davies et al. adopt the parameterisation

pt=(1ÿ pt) � (1=kt)[ p1=(1ÿ p1)] (6:21)

so that

pt � utp1 t > 1

where

ut � 1=(kt ÿ ktp1 � p1) (6:22)

Similar models may be developed for Poisson series.

Example 6.4 Migration histories As an example of a conjugate mixture approach,

consider data from Crouchley et al. (1982) on ten year migration histories for 10 000

residents of Wisconsin, USA, disaggregated into k � 1, : : 4 sub-populations defined

by two age bands and two household tenures (Table 6.5). Sequences of urban migra-

tions are defined by five two year periods (T � 5), with MMMMM the same as

{1,1,1,1,1} above while MMMMS denotes four migrations followed by `staying' or

non-migration.

Considerations of the housing market and lifecycle migration processes indicate that

the parameters ukt in Equation (6.22) are likely to vary both over sub-populations (e.g.

younger people are more likely to migrate) and over time.

There are i � 1, : : , 32 possible migration sequences of five outcomes (migrate or stay),

so that the likelihood is defined over 32� 5� 4 points. Let dit � 1 if a migration occurs at

period t (e.g. di1 � 1, di2 � 1, di3 � 0, di4 � 1, di5 � 1 for the sequence MMSMM) and
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Table 6.5 Inter-urban moves over five two-year

periods in Milwaukee, Wisconsin, USA

Renters Owners Move Pattern

25±44 46±64 25±44 46±64

(M�Migrate,

S�Not Migrate)

511 573 739 2385 SSSSS

222 125 308 222 SSSSM

146 103 294 232 SSSMS

89 30 87 17 SSSMM

90 77 317 343 SSMSS

43 24 51 22 SSMSM

27 16 62 19 SSMMS

28 6 38 5 SSMMM

52 65 250 250 SMSSS

17 20 48 14 SMSSM

26 19 60 25 SMSMS

8 4 10 3 SMSMM

8 9 54 21 SMMSS

11 3 18 1 SMMSM

10 3 21 1 SMMMS

4 1 8 2 SMMMM

41 29 134 229 MSSSS

16 15 23 10 MSSSM

19 13 36 25 MSSMS

2 4 1 0 MSSMM

11 10 69 24 MSMSS

11 2 15 3 MSMSM

1 9 13 2 MSMMS

2 2 2 0 MSMMM

7 5 40 18 MMSSS

4 2 9 2 MMSSM

8 1 15 3 MMSMS

1 0 5 0 MMSMM

8 1 22 7 MMMSS

3 2 7 2 MMMSM

5 0 9 2 MMMMS

6 3 5 0 MMMMM

nik be the number of persons of type k undergoing that sequence. Then the likelihood for

sequence i, time t and sub-population k is defined as

yikt � ditnik

yikt � Bin(pkt, nik)

As Table 6.5 shows, the event rate is low. However, one may apply the odds ratio scaling

model in Equations (6.21)±(6.22), so that for the kth group the model for pkt combines

the updating parameters ukt(t > 1) with the initial period baseline migration rates pk1

which are assigned a mixing density g(pk1). Thus a beta prior might be assumed for pk1,

and then

logit(pkt) � logit(pk1)ÿ log (kt)
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where kt is as in Equation (6.21). Gamma G(1, 0.001) priors are adopted for the kt.

The estimates4 of ukt (for k � 1, 4 and t > 1) for the four sub-populations are as in

Table 6.6. These show greatest non-stationarity for the young renters sub-population.

The elements needed to obtain the variances of migration rates in the groups, namely

m2k and m1k may be monitored, as may the chances of different sequences (allowing for

non-stationarity). The variances are then obtained from the posterior means of m2k and

m1k as m2k ÿ (m1k)
2. The variances are higher in the renter groups, reflecting a well

known feature of migration behaviour. As an example of a sequence probability

Program 6.4 includes the probability of the sequence MMMMS by group.

Example 6.5 Ratings of schizophrenia To illustrate ordinal outcomes yit over time, we

follow Hedecker and Gibbons (1994) in considering data on the impacts of alternative

drug treatments on symptom severity rankings in 324 schizophrenic patients, collected

as part of the NIMH Schizophrenic Collaborative Study. There were originally four

Table 6.6 Panel migrations, parameter summary

uk, t Parameters

(by subpopulation & time)

Mean St. devn. 2.5% 97.5%

u12 1.18 0.13 0.96 1.44

u13 1.79 0.17 1.47 2.15

u14 2.54 0.23 2.12 3.03

u15 3.11 0.27 2.62 3.68

u22 1.34 0.17 1.04 1.72

u23 1.63 0.19 1.30 2.05

u24 2.08 0.24 1.67 2.61

u25 2.37 0.26 1.89 2.93

u32 1.42 0.08 1.26 1.59

u33 1.73 0.10 1.56 1.93

u34 1.62 0.09 1.46 1.82

u35 1.55 0.09 1.38 1.72

u42 1.06 0.08 0.91 1.22

u43 1.37 0.09 1.18 1.56

u44 1.01 0.07 0.87 1.16

u45 0.91 0.07 0.78 1.05

m1, k

m1:1 0.10480 0.00815 0.08928 0.12170

m1:2 0.08775 0.00813 0.07202 0.10390

m1:3 0.14820 0.00666 0.13530 0.16130

m1:4 0.08537 0.00457 0.07698 0.09466

m2:k

m2:1 0.01104 0.00173 0.00797 0.01480

m2:2 0.00777 0.00143 0.00519 0.01079

m2:3 0.02201 0.00198 0.01831 0.02602

m3:4 0.00731 0.00078 0.00593 0.00896

4 A two chain run shows convergence at under 500 iterations.
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treatments: chloropromazine, fluphenazine, thioridazine, and placebo. Since previous

analysis revealed similar effects of the three anti-psychotic drugs, the treatment is

reduced to a binary comparison of any drug vs. placebo. The severity score is derived

form item 79 of the Inpatient Multidimensional Psychiatric Scale.

Hedecker and Gibbons collapse the seven points of that item into four: (1) normal or

borderline mental illness; (2) mild illness; (3) marked illness; and (4) severely ill. Here we

retain the full scale with 1�normal, 2�borderline, 3�mildly ill, 4�moderately ill,

5�markedly ill, 6�severely ill and 7�extremely ill. More pronounced gaps might be

anticipated in thresholds between some of these categories (e.g. 5 vs. 4) than others.

There are three repetitions after the first (week 0) reading, which is coincident with

treatment, namely at weeks 1, 3 and 6.

The likelihood model is then, for subjects i � 1, : :N and times t � 1, . . . T and C � 7

levels on the outcome

yi,t � Categorical(pi,t, 1:C)

logitQi,t, j � tj ÿ mit

pi,t, 1 � Qi,t, 1

pi,t, j � Qi,t, j ÿQi,t, jÿ1 j � 2, : . . . C ÿ 1

pi,t, C � 1ÿQi,t, Cÿ1

mi,t � bXit

The predictors Xit, some time varying, include time itself (specifically square root of

weeks nit), the main treatment effect, a treatment by time interaction and the sex of the

patient. Two models are considered (Models A and B in Program 6.5), one with a fixed

intercept and impact of time; the other involves a bivariate model for varying intercepts

and slopes on time

mi, t � bi1 � bi2v
0:5
it � b1X1i � b2X2i � b3X1iv

0:5
it

where

bi � N2 mb, �b� �
the means of bik are the intercept and average growth rate, X1 is treatment and X2 is

gender. Identification of the C ÿ 1 � 6 thresholds involves setting the parameter t1

(governing the transition from normality to borderline illness) to zero and estimating

the remaining five threshold parameters subject to monotonicity constraints.

Table 6.7 shows for the fixed effects model5 a clear time effect, an inconclusive main

drug effect, but a greater improvement over time for the drug group. The same effects

show under random effects, but all coefficients are amplified. The DIC under the two

models are 4121 and 3444, so there is clear evidence of heterogeneity. Under both

models there seems to be a major change in threshold values for severely vs. extremely

ill, but the thresholds are larger under random effects ± the latter feature is also apparent

in Table 3 of Hedeker and Gibbons (1994).

As usual, one might assess sensitivity by assuming alternate forms of random effects,

as in Example 6.2. The Exercises include fitting a scale mixture version of the random

5 With three chains convergence is apparent at 500 and 1500 iterations under the fixed effects and random
effects models respectively; summaries are based on iterations 500±3000 and 1500±3000, respectively.
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Table 6.7 Schizophrenia severity ratings (posterior

summaries) intercept and time effects fixed

Mean St. devn. 2.5% 97.5%

Constant 4.69 0.24 4.21 5.16

Time ÿ0.54 0.12 ÿ0.77 ÿ0.31

Drug 0.175 0.207 ÿ0.216 0.582

Male 0.173 0.098 ÿ0.018 0.365

Drug by Time ÿ0.72 0.13 ÿ0.98 ÿ0.46

t2 1.27 0.12 1.06 1.51

t3 2.26 0.13 2.02 2.53

t4 3.40 0.14 3.13 3.69

t5 4.94 0.16 4.65 5.26

t6 7.52 0.22 7.10 7.97

Intercept and time effects random

Constant (Av.) 7.66 0.40 7.02 8.43

Time (Av.) ÿ0.85 0.16 ÿ1.20 ÿ0.56

Drug 0.35 0.31 ÿ0.33 0.93

Male 0.18 0.24 ÿ0.26 0.67

Drug by Time ÿ1.19 0.19 ÿ1.53 ÿ0.77

t2 2.05 0.18 1.70 2.40

t3 3.72 0.21 3.30 4.11

t4 5.64 0.24 5.12 6.07

t5 8.16 0.29 7.54 8.68

t6 11.90 0.41 11.04 12.65

Dispersion matrix

�b11 3.68 0.73 2.52 5.23

�b12 ÿ0.62 0.30 ÿ1.29 ÿ0.10

�b22 1.18 0.25 0.73 1.69

effects model (equivalent to a multivariate t, and with degrees of freedom an unknown);

the DIC suggests a slight gain in fit for this model compared to the simple multivariate

Normal.

Example 6.6 Rheumatoid arthritis Additional issues arising from unequal spacing

and missing data are illustrated by binary series Yit from Fitzmaurice and Lipsitz

(1995) following a randomised trial of therapies for i � 1, : : , 51 patients with classic

or definite rheumatoid arthritis. The treatments were auranofin and a placebo, and the

binary response measured at baseline (t � 1) and four times thereafter (t � 2, 3, 4, 5) is

a patient self-assessment of arthritis status (1�good, 0�poor). Some self-assessments

(17 from 255) are missing, and Fitzmaurice and Lipsitz adopt an MCAR assumption to

these missing responses (i.e missingness is unrelated both to any observed responses and

covariates or to the missing outcomes themselves). The gap between the baseline and

first post-treatment assessment is one week, with succeeding gaps being four weeks (i.e.

the five readings are at 0, 1, 5, 9 and 13 weeks). The predictors of status are time,

treatment, age at baseline and gender.
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Fitzmaurice and Lipsitz adopt a logit link

Yit � Bern(pit)

logit(pit) � uit

and consider models for the correlation between Yis and Yit (t 6� s), defined by

qist � (pist ÿ pispit)=[pis(1ÿ pis)pit(1ÿ pit) )0:5

where pist is the joint probability6 of a good status at times s and t. An exponential

model for the correlation takes the form

rist � qjtÿsj

where 0 < q < 1. They in fact adopt a reformulation in terms of the odds ratios of good

status at times s and t:

cist � pist(1ÿ pis ÿ pit � pist)=[(pis ÿ pist)(pit ÿ pist) ]

modelled as

cist � a1=jtÿsj

with 1 < a <1.

The first model adopted here allows for autocorrelation via lag one autoregressive

errors in the logit scale, with

Yit � Bern(pit) (6:23a)

logit(pit) � uit � bXit � eit (6:23b)

Allowing for the differential spacing (in terms of time in weeks) between observations

tÿ 1 and t gives

eit � gjvtÿvtÿ1jei, tÿ1 � uit t > 1 (6:23c)

where var(u) � s2. Since one may write

ei2 � gei1 � ui1

and var(ei2) � var(ei1), one may specify

ei1 � N(0, s2=(1ÿ g2)

Fitzmaurice and Lipsitz assume g is between 0 and 1, and an informative prior

constraining g to be positive is adopted here, namely a uniform prior

g � U(0, 1)

For identifiability, the variance of u is set at s2 � 1. The missing responses for certain

subjects are taken as missing at random, that is possibly depending on observed

responses and covariates for these subjects, but not on the missing responses themselves.

6 One might obtain an estimate of this correlation by defining a vector of length 4 for each of the Ti(Ti ÿ 1)=2
pairs of binary observations for the ith subject, with the first item of the vector being 1 if both yis and yit are 1,
the second being 1 if yis alone is 1, the third being 1 if yit alone is 1, and the fourth being 1 if yit and yis are both
0. Then multinomial sampling would be used, with N series of Ti observations being reformed as
NTi(Ti ÿ 1)=2 multinomial observations of length 4.
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We obtain7 the estimates shown in Table 6.8 for time, female gender, age and

the therapy. These compare to the Fitzmaurice and Lipsitz estimates for the effects of

these covariates of ÿ0.013 (s.e. 0.022), ÿ0.61 (0.42), ÿ0.015 (0.018) and 1.45 (0.45). The

predictive loss criterion (with w � 1) is 46. The high correlation replicates the work of

Fitzmaurice and Lipsitz, who found a strong odds ratio form of dependence between

successive patient self-ratings.

An alternative approach is provided by the `one factor model' of Heckman (1981,

p. 130) namely

uit � bXit � ltai � eit

where the eit are unstructured errors with variances ft, the ai are latent propensities

for good health status with variance s2
a, and the lt are time-varying loadings. For

identifiability, it is assumed that l1 � 1, and ft � f � 1. The variance s2
a is defined by a

U(0, 1) prior on

t � s2
a=[s

2
a � f]

Defining the ratios

Rt � l2
t s2

a=[l
2
t s2

a � ft]

of `permanent' to total variance8, the correlation between disturbances at times t and s is

then Cts � AtAs, where

At � R0:5
t

N(1, 1) priors are assumed on the lt(t > 1), and constrained to being positive.

Fitting this model9 enhances the mean therapy effect to 2.2, with 95% interval

{0.75, 4.1}, but shows weaker effects than in Table 6.8 for gender or age. The correl-

ations range between 0.47 (between times 3 and 4) and 0.74 (between times 1 and 2). The

individual propensities ai range from 3.3 for patient 4, who records good health status

at all time points, despite being on the placebo treatment, to patient 32 with a score of

ÿ3.8 and classed as poor status at all points. The predictive loss criterion stands at 45,

showing slight gain to using this model. Subject to identifiability more complex one

factor models might improve fit, for example taking ft variable by time.

Finally, the method of Albert and Chib (1993) offers a direct approach to sampl-

ing the underlying latent variables in Equation (6.17). It is applied to the model of

Table 6.8 Arthritis status, differential spacing model,

parameter summary

Mean St. devn. 2.50% 97.50%

Intercept 1.86 1.68 ÿ1.5 5.17

Time 0.022 0.05 ÿ0.075 0.12

Female ÿ1.14 0.84 ÿ2.82 0.49

Age ÿ0.017 0.034 ÿ0.085 0.052

Therapy 1.82 0.79 0.39 3.48

g 0.93 0.03 0.86 0.97

7 A three chain run shows convergence at 1000 iterations and summaries are based on iterations 1000±5000.
8 The composite error ltai multiplies the permanent subject error by a time varying factor.
9 A two chain run is taken to 5000 iterations with 1000 burn-in.
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Equation (6.23) but might equally be applied to the one factor model. In the presence of

missing observations, one option is to use imputations of the missing binary responses

Yit, so permitting one to define the sampling ranges for the latent continuous

indicators Zit. For illustration a single drawing of the missing Yit is used (at 5000

iterations in the run for Model A). A more complete multiple imputation procedure

would pool over several analyses with different imputations. An alternative approach if

there are missing data points is to use unconstrained sampling of the Z for those points.

One might then estimate probabilities such as Pr(Zit > 0) � Pr(Yit � 1) for the missing

observations.

Here the latent sampling approach is applied with Student t(8) errors, so approxi-

mating the logit link. This entails defining gamma variables wit with density G(4, 4) and

then sampling (within the relevant constraints) the Zit with means uit � bXit � eit and

precisions wit. One might also take the precisions at subject level wi, and not observation

level. Model fit may be assessed by sampling new Z values without upper and lower

constraints, and then classifying new Y values according to whether the new Z exceed 0;

on this basis, the predictive criteria of Gelfand and Ghosh (1998) and others may then

be derived, comparing actual and new Y.

Under the imputation approach10, the correlation under differential spacing is 0.91

(see Table 6.9). This approach shows a lower precision on the therapy effect (though it is

still judged beneficial), and the gender effect is amplified as compared with the usual

logit model in Equation (6.23). The predictive loss criterion under this model is 39.4.

Under unrestricted sampling11 of Zit when there are missing Yit (Model D in Program

6.6), the posterior mean for g is 0.89 and the treatment effect averages 2.1 with 95%

interval (0.4, 4). For predicting missing values under this approach the model for Zit

could well be improved, for instance using autoregression on previous values of Zit or of

Yit, particularly since the first occurrence of missing Y is at t � 3.

Example 6.7 Patent applications As an illustration of generalised Poisson regression

models for panel data on counts yit, we follow Hausman, Hall and Griliches (1984) and

Cameron and Trivedi (1999) in considering patent applications by technology firms.

Trends in patent activity may be partly explained in terms of levels of current and past

research inputs, type of firm, and time t itself. However, unobserved variation is likely

to remain between firms in terms of factors such as entrepreneurial and technical skills ±

suggesting the need for a permanent firm effect. Autocorrelation in residuals is reported

by Hausman et al. in a simpler model without such unobserved factors included, and by

Table 6.9 Latent student t model, posterior summary

Mean St. devn. 2.5% 97.5%

Intercept 3.61 2.15 ÿ0.17 8.00

Time ÿ0.013 0.059 ÿ0.126 0.104

Female ÿ1.48 1.12 ÿ4.00 0.58

Age ÿ0.04 0.04 ÿ0.12 0.03

Therapy 2.38 1.00 0.43 4.39

g 0.91 0.03 0.85 0.95

10 Convergence with three chains is apparent at 3000 iterations (with delay in the age effect converging);
summaries are based on iterations 3000±10 000.
11 The sampling intervals for Z are (ÿ20, 0) when Y is 0, (0, 20) when Y is 1, and (ÿ 20, 20) when Y is missing.
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modelling this type of heterogeneity the need for a serial correlation model for the errors

may be avoided.

Hausman et al. adopt a multiplicative conjugate gamma form for the heterogeneity,

such that

yit � Poi(nimit) (6:24a)

ni � G(d, d) (6:24b)

log (mit) � bxit (6:24c)

For this specification, the marginal means and variances are of negative binomial form

with E(yit) � mit and V (yit) � mit � Var(n)m2
it � mit � m2

it=d.

The analysis here follows Hausman et al. in adopting a random effects specification

for firms, in addition to a regression model including time t and logs of current and

lagged research expenditures R0, Rÿ1, . . . Rÿ5. Note that the original inputs have been

centred in Program 6.7 to improve convergence. As noted by Cameron and Trivedi

(1998, p. 286), the coefficients on log (Rÿj) are elasticities, so that the coefficients on

log R0, log Rÿ1, : : log Rÿ5, would sum to unity if a 50% increase in patents filed follows

a 50% increase in research spending (i.e. a proportional effect).

The first model used here has the form has an additive (log-normal) form for the

extra-variation between firms.

log (mit) � bxit � ai

yit � Poi(mit)

ai � N(0, t)

where ai are interpretable as permanent firm effects. The covariates are the research lags

and time itself. The estimated12 sum of the research elasticities (Table 6.10) comes close

to Table III of Hausman et al. The return to research spending in patent output is not

proportional, though higher than reported by Cameron and Trivedi (1998, p. 286).

The second model follows Hausman et al. in taking a conjugate gamma-Poisson

model (Model B in Program 6.7), as in Equation (6.24), with

ni � G(d, d)

d � G(1, 1)

where sensitivity to the prior for d might involve gamma priors G(g, g) with alternative

values g. The log (ni) are analogous to the ai of the Poisson log-normal model. Note that

a diffuse prior on d (e.g. with g � 0:001) may lead to numerical problems. This

approach gives broadly similar results to the preceding model, and also shows a less

than proportional research input gain. The DIC and predictive loss criterion are both

slightly improved under the gamma-Poisson model; the predictive loss (with w � 1) falls

from 204 500 to 202 400, and the DIC from 9760 to 9650.

To generalise to bivariate effects, at firm level the Poisson log-normal model may be

preferable. Following Chib et al. (1998), the slope on log R0 is taken to be variable over

firms, together with the intercept. Rather than assuming zero means for these param-

eters (denoted ai, 1::2), and retaining separate `fixed effects' for the intercept and the

12 In the first and second models, three chain runs show convergence at around 3000 iterations and summaries
are based on iterations 3000±5000.
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Table 6.10 Models for firm heterogeneity: regression parameters and estimated firm

effects (Firms 1±4)

Mean St. devn. 2.5% Median 97.5%

Log-Normal Heterogeneity

Intercept 1.02 0.07 0.89 1.02 1.16

Sum of Coefficients on R j 0.80 0.02 0.75 0.79 0.85

Coefficient on

R0 0.49 0.04 0.41 0.49 0.57

R 1 ÿ0.03 0.05 ÿ0.12 ÿ0.03 0.06

R 2 0.10 0.04 0.02 0.10 0.18

R 3 0.12 0.04 0.04 0.12 0.20

R 4 0.04 0.04 ÿ0.03 0.04 0.11

R 5 0.08 0.03 0.02 0.08 0.14

Time ÿ0.065 0.003 ÿ0.071 ÿ0.065 ÿ0.059

Effects for firms 1±4

a1 2.34 0.08 2.18 2.34 2.50

a2 0.17 0.35 ÿ0.55 0.19 0.81

a3 0.36 0.10 0.16 0.36 0.54

a4 ÿ1.86 0.53 ÿ2.96 ÿ1.82 ÿ0.91

Gamma-Poisson heterogeneity

d1 1.10 0.11 0.92 1.10 1.33

Sum of Coefficients on R j 0.76 0.06 0.67 0.75 0.84

Intercept 2.46 0.06 2.35 2.46 2.58

Coefficient on

R0 0.48 0.14 0.28 0.50 0.68

R 1 ÿ0.07 0.10 ÿ0.23 ÿ0.08 0.12

R 2 0.11 0.05 0.03 0.08 0.20

R 3 0.12 0.05 0.05 0.11 0.22

R 4 0.03 0.05 ÿ0.04 0.01 0.15

R 5 0.08 0.06 ÿ0.02 0.08 0.17

Time ÿ0.064 0.005 ÿ0.072 ÿ0.064 ÿ0.054

Effects for firms 1± 4 (logs of gamma effects)

log(n1) 1.90 0.07 1.77 1.90 2.04

log(n2) ÿ0.19 0.37 ÿ0.96 ÿ0.17 0.50

log(n3) ÿ0.03 0.13 ÿ0.25 ÿ0.04 0.22

log(n4) ÿ2.75 0.83 ÿ4.68 ÿ2.62 ÿ1.48

coefficient on log R0, it may be preferable for MCMC identifiability and convergence to

take ai, 1:2 to be bivariate with mean Z, where Z1 is equivalent to the fixed effect

intercept b0 and Z2 to the fixed effect b1. So

log (mit) � ai1 � ai2 log Ri, t � b2 log (Ri, tÿ1)� : :b6 log (Ri, tÿ5)
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To further improve identifiability an N(1, 1) prior on Z2 is adopted, and N(0, 1) priors

on b2, b3, b4, b5 and b6. This model yields13 an improved fit with DIC at 9105 and

predictive loss criterion at 147 000. Its improvement occurs especially for firms with

low (e.g. runs of zeroes) patent counts such as 13 and 21, and firms with high patent

activity, such as firms 45 and 242. Under this model, the coefficient on log R0 increases

to around 0.64, with the sum of elasticities around 0.89. It is interesting to note a

correlation of ÿ0.76 between the firm specific slopes and intercepts.

None of the above models directly approaches the issue of serial correlation in the

errors, though this is modest in the bivariate firm effects model14. A fourth model

(Model D in Program 6.7) therefore assesses autocorrelation under the Poisson log-

normal model, specifically a lag 1 dependence in the errors. There are various options

here, with a common choice being based on stationarity

log (mit) � bxit � ai � eit (6:25a)

eit � N(gei, tÿ1, s2) t > 1 (6:25b)

ei1 � N(0, s2=(1ÿ g2) (6:25c)

However, in the short runs (small T ) typical of panel data, a non-stationary model is

feasible, with the variance of the first error a separate parameter not linked to s2, and g
following a prior such as N(0, 1). A transformation within the link for mit can also be

made, so that for t > 1

log (mit) � bxit � ai � g[ log (mi, tÿ1)ÿ bxi, tÿ1 ÿ ai]� uit

where uit � N(0, s2). One might also assume a lag 1 correlation in an estimate of the

regression errors based on comparing actual and predicted counts. This approach uses

the transformation (Cameron and Trivedi, 1998)

yit* � yit � h, h > 0

so that

log (mit) � bxit � ai � g( log yi, tÿ1
* ÿ bxi, tÿ1 ÿ ai)

with h either set to a small constant or forming an extra parameter.

Another issue with including observation level heterogeneity is that the eit

may effectively model the observations, making the regression terms in effect redun-

dant. Unlike for binary panel data, it is not necessary to set s2 to 1. However, it may

be advisable to set a prior favouring relatively high precision in the eit (for a discus-

sion of similar questions in modelling binomial heterogeneity, see Valen and Albert,

1998). Also, a high lag 1 correlation may make separate identification of ei1 and ai

difficult. One may also adopt the strategy of linking these two effects, as discussed

above.

Exploratory analysis with model (6.25) suggested that there was a high lag coefficient

close to unity, whether non-stationary or stationary priors on g were used. To improve

identifiability, the permanent firm effects ai are therefore excluded. Also, a relatively

13 A two chain run shows convergence at around 5000 iterations and inferences are based on iterations 5000±
7500.
14 Defining errors by firm and period as (yit ÿ mit)=mit gives a correlation between errors at lag 1 and at lag 2 in
this model of 0.12, compared to 0.29 in the Poisson-gamma model.
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informative G(5, 1) prior on 1=s2 was taken together with N(1, 1) priors on b1 (the

coefficient on log R0) and N(0, 1) priors on b2, b3, b4, b5 and b6.

Under a stationary prior for g in the model (6.25), a two chain run (with convergence

from iteration 5000 in a total of 7500) shows a sum of elasticities more in line with

proportional returns, in contrast to the models without temporal error correlation

(Table 6.11). The posterior mean for the sum of elasticities is 0.9, though the 95%

upper point does not exceed 1. The posterior mean for 1=s2 is 21.5 compared to the

prior mean of 5 so that the prior does not seem incompatible with the data. The 95%

credible interval (0.97, 0.98) for g comes close to a random walk. The DIC and

predictive loss fit measures both show a gain from using this model; the DIC is 8590

compared to 9650 under the Poisson-gamma model for permanent firm effects.

A variety of other modelling approaches may be applied to these data, including

variable selection methods (e.g. Kuo and Mallick, 1998), since some of the lag coeffi-

cients may be unnecessary, or priors specifically adapted to distributed lags (Shiller,

1974).

6.4 PANELS FOR FORECASTING

Panel data in econometrics, demography and biometrics reinforce information on trend

by repetition over subjects. Such subjects vary by setting, and might be patients or

pupils (growth curves), regions or firms (differences in productivity growth), or age

groups (demographic schedules through time). While evaluation of time series models

usually involves cross-validatory assessment in time (e.g. via one step ahead forecasts), a

broader set of checks are possible in panel data analysis. Suppose there are N subjects

observed for T times. Granger and Huang (1997) consider out-of-sample prediction

in econometric panel models, and provide a useful framework distinguishing between

out-of-sample predictions (for subjects or firms N � 1, N � 2, : :N �M not in the

sample), post-sample predictions (for times T � 1, T � 2, . . . beyond the sample) and

predictions both post and out-of-sample (for both times t � 1, T � 1, : : and subjects

i � N � 1, N � 2, : :).

Table 6.11 Temporal correlation model, parameter summary

Mean St. devn. 2.5% 97.5%

Sum of Coefficients on R j 0.90 0.03 0.84 0.95

Coefficient on

R0 0.44 0.03 0.36 0.51

R 1 0.001 0.07 ÿ0.10 0.13

R 2 0.11 0.05 0.00 0.21

R 3 0.12 0.05 0.04 0.22

R 4 0.14 0.04 0.06 0.22

R 5 0.09 0.04 0.02 0.16

Time ÿ0.06 0.01 ÿ0.07 ÿ0.05

Error correlation

g 0.98 0.003 0.97 0.98
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As a particular frequent application, growth curves raise similar issues of prediction

both beyond the observed time points, and also in terms of incomplete trajectories for

subsets of subjects. We might also have observed cohort c for T time points and want to

use their growth profile parameters to predict the future growth of a younger cohort

c� 1 observed for fewer than T times. In the balanced growth curve case where equal

numbers of times are observed for each subject, there are observations for N subjects at

T times points v1, v2, v3, . . . vT , forming a T �N matrix Y. Let X be a T �m design

matrix, where m is the degree of the growth curve polynomial. Thus for linear growth,

m � 2, and

X �
1 v1

1 v2

� � � � � �
1 vT

2664
3775

In the random effects case,

Yit � bi1 � bi2vt � eit

the intercepts bi1 and linear growth terms bi2 vary over subjects i, for example via a

bivariate density, and the e may be unstructured or correlated.

Other common options involve the growth parameters b being taken as homogenous

over G subgroups of the subjects, for example defined by gender or assigned treatment.

Let A be an assignment matrix of order G�N, with Aji � 1 if subject i is in group j. For

instance, if there were gender subgroups of size N1 and N2, then A contains N1 columns

with entries

1

0

and N2 columns of entries

0

1.

Then b will be of dimension m� G, and for m � 2 would contain group specific

intercepts and linear growth parameters. The growth curve model in this case may then

be specified as

Y � XbA� Z (6:26)

where Z is a T �N error matrix.

The specification of Z may be important if the goal is extended prediction for all N

subjects to new times nT�1, nT�2, etc. outside the current growth curve. Other types of

prediction involve projecting incomplete trajectories for certain subjects observed only

for S < T time points.

Thus, an unstructured error matrix with

cov(Zi, 1:T ) �
X

might be adequate to describe a growth pattern (e.g. a clinical trial of known duration),

where extrapolation beyond the trial is not an issue. However, structured modelling of

the Zit may be required if post-sample prediction is the goal (or autoregression in the Y

themselves). Thus one might adopt an AR(1) structure with

Zit � gZi, tÿ1 � uit j > 1
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where uit are white noise errors with mean 0 and variance s2. For a growth curve with

m � 2 and homogenous effects within subgroups, the model for the first time point in

the AR(1) model has mean defined by the group index aie{1, : :G}

mi1 � b1[ai ]
� b2[ai ]

n1 � Zi1

where Zi1 has variance s2=(1ÿ g2).

The question of optimal prediction then occurs. Standard discrepancy measures

comparing predicted and actual trajectories may be used if actual values are known.

Thus, Lee and Geisser (1996) consider extending the sample re-use or predictive cross-

validation method which for cross-sectional data involves omitting each case at a time

and predicting it on the basis of the remaining N ÿ 1 cases. The `re-use' occurs because

each observation is used N ÿ 1 times in separate models. In the panel data context, with

T repeated observations for the N subjects, a sample re-use procedure might be used to

predict the final (i.e Tth) observation in the series for a single subject i on the basis of

that subject's prior series data, and the full series for the remaining N ÿ 1 subjects. This

procedure would be repeated N times.

Example 6.8 Dental development data We consider the dental data from Potthof

and Roy (1964) relating to 27 subjects, 11 girls (ai � 1) and 16 boys (ai � 2). In the

full data set there are T � 4 observations on each subject, these being distances in mm

from the centre of the pituitary to the pteryomaxillary fissure at two yearly intervals (so

that centred times are v1 � ÿ3, v2 � ÿ1, v3 � 1, v4 � 3). Following Lee and Geisser

(1996), observation 20 is omitted as an outlier. Further the original data are modified so

that the last female vector has its fourth observation, namely 28, missing: so T11 � 3,

and the first three observations for that subject are (24.5, 25, 28). Also the first male

vector (with first three observations 26, 25 and 29) is regarded as having the fourth

observation, namely 31, missing.

Prediction of the missing data is carried out under three models: first, a linear growth

curve model with gender specific intercepts and slopes (cf. Equation (6.26)) and uncor-

related errors. Thus,

Yit � b1, ai
� b2, ai

vt � eit

with e multivariate Normal with mean 0 and dispersion matrix S. The second is a

growth curve model with both unstructured univariate Normal errors e and autocorre-

lated errors eit (lag of order 1). Thus, for t > 1

Yit � b1, ai
� b2, ai

vt � eit � eit

where eit � gei, tÿ1 � uit, where the u are unstructured. An N(0,1) prior is assumed for g.

The third model involves a first order lag autoregression in the observations themselves.

The means for the third model are of the form (for t > 1)

mit � bai
� rai

yi, tÿ1

For the first period alternative means are assumed, with

mi1 � bai
*

Another model for t � 1 might retain the same intercept and model the latent yi0 in

mi1 � bai
� rai

yi0
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Table 6.12 Dental development data, alternative structures for data and

errors, model parameters and predictions of missing data points

1. Unstructured errors

Correlations for times

(t� 1, t)

Mean St. devn. 2.5% 97.5%

(2, 1) 0.61 0.12 0.33 0.81

(3, 1) 0.71 0.10 0.47 0.87

(3, 2) 0.83 0.06 0.68 0.92

(4, 1) 0.49 0.15 0.16 0.74

(4, 2) 0.71 0.10 0.47 0.87

(4, 3) 0.84 0.07 0.67 0.93

Intercepts

b11 22.69 0.53 21.65 23.75

b12 25.31 0.51 24.31 26.31

Growth Rates

b21 0.47 0.10 0.27 0.67

b22 0.78 0.10 0.60 0.97

Predictions

Predicted y11, 4 27.97 1.26 25.51 30.48

Predicted y12, 4 29.71 1.23 27.24 32.13

MAD 1.24 0.65 0.23 2.70

2. Structured & unstructured errors

Intercepts Mean St. devn. 2.5% 97.5%

b11 22.67 0.58 21.44 23.76

b12 25.27 0.51 24.32 26.39

Growth Rates

b21 0.46 0.12 0.19 0.68

b22 0.77 0.11 0.57 0.97

Predictions

Predicted y11, 4 27.77 1.43 24.78 30.44

Predicted y12, 4 29.91 1.41 27.09 32.69

MAD 1.29 0.69 0.29 2.97

Autocorrelation, g 0.77 0.07 0.63 0.91

3. Autoregression in observations (gender specific)

Intercepts Mean St. devn. 2.5% 97.5%

b1 2.96 1.65 0.93 7.18

b2 6.55 2.20 2.57 11.25

b1* 21.20 0.72 19.77 22.64

b2
* 22.87 0.61 21.69 24.10

(continues)
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Table 6.12 (continued)

Autoregressive parameters

r1 0.91 0.07 0.72 1.00

r2 0.80 0.09 0.60 0.97

Predictions

Predicted y11, 4 28.42 1.32 25.71 30.88

Predicted y12, 4 29.72 1.32 27.10 32.22

MAD 1.30 0.69 0.23 2.87

as being from a more robust density than the observed yit (e.g. multivariate t with low

degrees of freedom, but the same mean and dispersion as in the multivariate Normal for

the observed yit).

The mean absolute deviation is used as a discrepancy measure and obtained by

averaging over the two missing data points. There are relatively slight differences in

predictive success under these different models (Table 6.12). The growth curve with

unstructured errors15 gives a posterior mean of 28 for the fourth observation of the last

female and 29.7 for the fourth observation of the first male, with average MAD of 1.24.

Allowing autocorrelated errors changes forecasts little, namely 27.8 and 29.9 for the

missing female and male data points respectively. The growth rate b2k is higher for

males (k � 2) than females (k � 1) under both growth curve models, and the autore-

gressive parameter in the third model is correspondingly higher for males. The third

model yields a higher autoregressive parameter for females and slightly higher predic-

tion of y11;4.

6.4.1 Demographic data by age and time period

Profiles of demographic outcomes by age, marital status, ethnicity, etc. may be observed

repeatedly over time, and this forms the basis for projecting to future times. The analysis

of such data often also focuses on smoothing observed schedules of mortality, marriage

rates, fertility, over the demographic categories, for example to take account of regular-

ities in the relationship between adjacent rates, especially age specific rates. Hickman

and Miller (1981) consider in particular the projection of exit rates for populations of

insured lives or properties, and of annuitants and pensioners. The goal is estimation of

probabilities of remaining in or leaving these populations because of death, withdrawal,

migration, etc. These probabilities in turn figure in cash flow projections of insurance

companies. Similar issues arise in demographic projections, for example in projecting

population mortality rates.

Hickman and Miller consider models allowing both for correlations between mortal-

ity at different ages and for correlations over calendar time (i.e. the usual temporal

autocorrelation). They present totals of female annuitant deaths Dkt by ages k, namely

51±55, 56±60, . . 86±90, and 91±95 and for years t, namely 1953, 1958, 1963 and 1968

(where k � 1, : :K and t � 1, : :T , with K � 9 and T � 4). These deaths occur among

total exposures (total time exposed to risk in the relevant population) Ekt. They consider

a Normal likelihood approximation based on square root transforms of the observed

15 Convergence in model1 is obtained at under 500 iterations in two chain runs of 20 000, and summaries are
based on iterations 500±20 000.
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crude death rates mkt � Dkt=Ekt. The square root transforms vkt � (mkt)
0:5 are taken to

be normal around means vkt � (mkt)
0:5, with variances 1=(4Ekt).

The model means nkt are in turn16 assumed multinormal with means fkt, and with

covariation among errors determined by correlations across both ages and times. The

correlations between ages i, j � 1, : :K are described by a matrix

Aij � r
jiÿjj
1 =(4{Li Lj}

0:5)

where Li are prior exposures, in effect prior sample sizes based on accumulated actuarial

experience with such populations, and assumed known. The correlations between times

s, t � 1, : :T are described by a matrix

Cst � r
jsÿtj
2

Then the prior covariance matrix of the vector mkt (of length K :T � 36) is the Kro-

necker product G � C*A. Hickman and Miller assume both r1 and r2 to be known,

though they could be assigned priors, e.g. on the (0, 1) interval.

Example 6.9 Annuitant deaths A similar structure to that used by Hickman and

Miller is illustrated here except in assuming a Poisson likelihood with

Dkt � Poi(mktEkt)

log (mkt) � a� Zkt

where the Zkt have the above described multinormal structure. Autocorrelation in age

and time separately is also considered, in which

log (mkt) � a� e1k � e2t (6:27)

and both errors are governed by lag 1 dependence.

Hickman and Miller define a structured covariance for the Zkt determined by only

three parameters, the overall variance and the two correlations. To illustrate the fully

parameterised multinormal model, Model A includes a 36� 36 dispersion matrix for

the interdependence of age and time errors. This is assigned a Wishart prior with 36

degrees of freedom. This model has 24.5 effective parameters and a DIC of 58.5, and

closely reproduces the data with a deviance at the mode of 10. Model B follows Hick-

man and Miller (1981) in taking a reduced parameterisation for the multinormal with r1

and r2 assumed known (with values 0.9 and 0.5, respectively). These values are based on

extensive sensitivity analysis by them with the annuitant data. To allow for remaining

variation in this model a simple unstructured error ukt � N(0, s2) is included, so that

log (mkt) � a� Zkt � ukt

where 1=s2 � G(1, 0:001). This model gives a slightly improved fit compared to the

unstructured dispersion model, with DIC of 56. One may set priors for r1 and r2 (rather

than assuming them preset), but direct sampling in WINBUGS is very slow. One

possibility is to precalculate covariance matrices G over a grid of pairs of values of r1

and r2, input them as data, and then use a discrete prior to find the combination

supported by the data.

A conditional error model is easier to implement in WINBUGS, as in Equation

(6.27), with

16 Hickman and Miller actually consider the transformed outcome (1000mkt)
0:5.
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e1k � N(r1e1kÿ1, t2
1)

e2t � N(r2e2tÿ1, t2
2)

The posterior means of r1 and r2 (and 95% credible intervals) are, respectively, 0.88

(0.83, 0.93) and 0.77 (0.05, 0.99), with the density for r2 negatively skewed. The DIC of

46.5 (with 10.5 effective parameters) improves on the multinormal models. Table 6.14

presents posterior means of the square root of death rates in relation to populations in

thousands, namely

bkt � (mkt � 1000)0:5

Table 6.15 Posterior means for graduated value of square root of death rates per 1000

population (second half of run of 20 000 iterations over two chains), bkt for ages k and years t

Age Year Deaths Exposed lives Empirical rate Smoothed rate St. devn.

51±55 1953 0 171 0.00 2.11 0.29

1958 2 214 3.06 2.02 0.28

1963 3 328 3.02 2.08 0.28

1968 3 439 2.61 1.97 0.27

56±60 1953 15 1371 3.31 2.78 0.16

1958 8 1874 2.07 2.66 0.15

1963 20 2879 2.64 2.73 0.15

1968 28 3597 2.79 2.59 0.14

61±65 1953 63 4899 3.59 3.49 0.11

1958 87 7939 3.31 3.34 0.09

1963 132 11230 3.43 3.43 0.09

1968 174 16530 3.24 3.26 0.08

66±70 1953 111 6596 4.10 4.30 0.11

1958 235 14463 4.03 4.12 0.09

1963 430 22500 4.37 4.24 0.08

1968 529 33360 3.98 4.02 0.06

71±75 1953 69 2414 5.35 5.59 0.15

1958 180 6451 5.28 5.35 0.12

1963 407 13668 5.46 5.50 0.10

1968 611 22109 5.26 5.21 0.08

76±80 1953 69 925 8.64 7.89 0.22

1958 115 2029 7.53 7.56 0.17

1963 340 5387 7.94 7.76 0.14

1968 611 11689 7.23 7.36 0.12

81±85 1953 35 269 11.41 10.30 0.32

1958 59 631 9.67 9.87 0.26

1963 158 1448 10.45 10.14 0.24

1968 351 3941 9.44 9.62 0.20

86±90 1953 9 62 12.05 13.37 0.52

1958 23 130 13.30 12.81 0.45

1963 59 363 12.75 13.15 0.43

1968 130 802 12.73 12.48 0.39

91±95 1953 2 10 14.14 16.91 1.02

1958 7 24 17.08 16.20 0.95

1963 13 62 14.48 16.64 0.95

1968 48 149 17.95 15.79 0.88
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These are reasonably close to those cited by Hickman and Miller (1981, Table 11). Rates

under this model are smoothed towards the average for the age group, though trends are

still in line with those in the crude rates. For instance, for ages 76±80, the smoothed rates

(like the crude ratres) show a deterioration between 1958 and 1963, as compared to

improvement between the first two years.

The final model (Model D in Program 6.9) is as just described but estimated using

observations over three years, and a prediction made for 1968. For these data the

posterior means of r1 and r2 (and 95% credible intervals) are, respectively, 0.87

(0.82, 0.91) and 0.65 (0.04, 0.99). The credible intervals of the predictions for 1968

include the actual values, except for ages 91±95, which are under-predicted.

Various generalisations of these models can be developed, either for the multinormal

(simultaneous autocorrelation) or the conditional error model. For example, one might

make the age correlation specific to periods, so that

log (mkt) � a� e1kt � e2t

e1kt � N(r1te1, kÿ1, t, t2
1)

Random walk autoregressive priors of order 2 are investigated by Berzuini and Clayton

(1994), so that one might have

e1k � N(2e1, kÿ1 ÿ e1, kÿ2, t2
1)

6.5 MISSING DATA IN LONGITUDINAL STUDIES

A practical feature of many surveys or trials is nonresponse, either unit nonresponse

with failure to obtain any responses from certain members of the sampled population,

or item nonresponse to individual questions from unit-level respondents. This raises

implications of nonresponse bias, for example in connection with sub-populations with

known nonresponse problems in surveys (e.g. low income minorities). Such problems

occur in periodic longitudinal surveys where a separate sample of the population is

chosen each time the survey is carried out. Panel surveys (following up on a cohort of

subjects not open to recruitment) are additionally subject to an attrition effect as unit

non-response is cumulative (Winer, 1983). Similarly, in clinical trials or other studies

with a cohort design, following up treatment outcomes or quality of life measures,

patients may drop out of the study because of deteriorating health, poor quality of life,

or death. Such drop-out is `informative', inducing a dependence between the variable

being measured and the drop-out mechanism.

Among approaches to this problem are the development of sample weights and

adjustments for non-response and survey attrition, and the use of imputation methods.

Explicit models for non-response rely on observed responses: often non-response on one

or more items occurs for some subjects, but complete response on certain items or

survey design variables are available for all sample members. Suppose X1 is observed

for all units in a study, but X2 is not observed for everyone. Then models or imputation

methods proceed on assumptions about the mechanism relating X1 and X2. The

assumption of ignorability is that respondents and non-respondents (on X2) with

the same X1 differ only randomly on X2. A non-ignorable model by contrast allows

for the possibility of systematic differences in X2 for a responder and a non-responder

having the same value of X1.
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Let R � {Rijt} indicate whether response was made (Rijt � 0) or missing (Rijt � 1) for

subjects i � 1, : :N at times t � 1, : :T and items j � 1, : : k, and that X denotes covari-

ates fully measured for all respondents (e.g. survey design variables such as geographic

area of sampling). The most general form of joint distribution of the indicators R and

the outcomes, known and missing, Y � {Yobs, Ymis}, has the form

f (R, Y juR, uY , X ) � fy(Y jX , uY ) fr(RjY , X , uR)

where fy is the sampling density of the data and fr is density for the response mechanism.

This form allows the response mechanism to be influenced by the outcomes Y, whether

observed or missing.

A less general assumption is that of `missingness at random' if

fr(RjYobs, Ymis, X , uR) � fr(RjYobs, X , uR)

In this case, non-response can depend upon the observed outcomes on other items, or

on observed responses by other subjects, but given these, it will not depend upon

the missing item responses themselves. If the MAR assumption holds and models

for the outcome and response are separate (i.e. uY and uR are non-overlapping), then

the missingness pattern is called ignorable (Rubin, 1976). So missingness on an item is

non-ignorable if it depends upon the missing value of that outcome.

In panel studies, a particular definition of non-response occurs where drop-out

(without subsequent re-entry to observation) is selective. In the selection model (Diggle

and Kenward, 1994; Heckman, 1976), the joint density of Y and R is expressed as above

in terms of the marginal density of Y and the conditional density of R given Y. Drop-

outs at time t are then random if f (RtjY ) � f (RtjY1, . . . Ytÿ1), but if related to the

current outcome, known or otherwise, are informative. In practice, assuming random

drop-out means relating Pr(Rijt � 1) to previous binary outcomes Yij1, : :Yij, tÿ1, but not

to the current outcome itself. An alternative pattern mixture model, proposed by Little

(1993), involves expressing the joint density of Y and R as the marginal density of R and

the conditional density of Y given R, namely

f (R, Y j) � fr(R) fy(Y jR)

Example 6.10 Schizophrenia treatments To illustrate modelling informative as against

random drop-out, this example considers patient withdrawals in a longitudinal trial

comparing treatments for schizophrenia (Diggle, 1998), where the issue is permanent

attrition by a large number of patients (as against intermittent missing values). 517

patients were randomly allocated either to a control (placebo) group or to treatments

involving one of two drugs, with different dosages on one : haloperidol at 20mg and

risperidone at 2, 6, 10 and 16mg. There are therefore six possible regimes, including

the placebo. Measures were obtained at seven time points (at selection into trial, at

baseline, and at weeks 1, 2, 4, 6 and 8 thereafter). Let vt denote the number of weeks at

these time points, with the baseline defined by v2 � 0, and selection for the trial

happening at v1 � ÿ1. The outcome measure was the PANSS scale (Positive and Nega-

tive Symptom Scale), a continuous measure of psychiatric illness, with higher scores

denoting more severe illness. Let Gi denote the treatment group of patients i � 1, : :N. All

patients on risperidone are combined into one category, so the groups are then 1� halo-

peridol, 2 � placebo, and 3 � risperidone.

The cumulative level of attrition is only 0.6% at the second round of observation

(when v2 � 0), but reaches 1.7%, 13.5%, 23.6% and 39.7% in successive waves, and
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stands at 48.5% in the final wave. The drop out rate peaks therefore at the sixth week.

The question is whether attrition is related to health status: if there is a positive impact

of PANSS scores on the probability of drop out, then the observed time paths of

PANSS scores may be distorted. The observed means (not including the missing scores

due to drop out) are, respectively, 87.2, 92.5, 86.1, 80.9, 78.5, 76.1 and 73.2. It may be

of interest to estimate the wave means when the informative nature of the non-response

mechanism is allowed for, and wave means include estimates of the scores for the

drop outs.

Suppose the Rijt are defined as above, where there is just one item to consider,

so we can write this indicator as Rit. Response at time s will be ignorable if it

depends upon observed covariates or previous observed values of PANSS score Yit

(t � 1, : : sÿ 1), but not if it depends on the current, possibly missing, score Yis. There

are two options on the definition of the likelihood. One may either consider all missing

data points, so that for a drop out at the fourth wave, the response model likelihood

would include the data Rit � 1 for t � 4, : : , 7 and the outcome model would include the

missing data Yit, for t � 4. Alternatively, one might limit the analysis to the first

instance when Rit � 1, so the likelihood extends to Ti � 1 for subjects who drop out

at occasion Ti (when Ti < 7) and is Ti � 7 for subjects who stay under observation

throughout.

The data model for patient i is taken to be normal with

Yit � N(mit, 1=t1) t � 1, T (6:28)

with means defined by treatment specific linear terms in time (in weeks v), by treatment

effects dj and by random terms as follows:

mit �M � dGi
� uGi

vt � gGi
v2
t �Ui � eit (6:29)

with d1 � 0 for identifiability. The permanent subject effects Ui have mean zero and

variance 1=t2. A quadratic in weeks is included, since the PANSS readings tend to rise

between selection (week ÿ1) and baseline (week 0) before falling thereafter.

Apart from unstructured measurement errors, implicit in Equation (6.28), Diggle

assumes an autoregressive dependence in the errors eit, with covariance between eit and

eis specified as

Cov(e) � s2eÿfD2

where D � vs ÿ vt. Here an alternative form is adopted, though with similar allowance

for difference time spacings between readings. Thus, the eit in the first time period are

taken as Normal

ei1 � N(0, 1=t3)

while subsequent errors have the form

eit � N(Eit, 1=t4) t � 2, T

The means of the autoregressive errors for t > 1 are

Eit � r[vtÿvtÿ1]ei, tÿ1

The model for response indicators is

Rit � Bern(pit)
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with the dependence on the outcome Y in the model for p determining whether drop-out

is random or informative. For example, a non-informative model (when the likelihood

includes only the first non-response wave) is

logit(pi, t) � c1 � c2Yi, tÿ1 t > 1

logit(pi, 1) � c1 � c2Yi, 0

(6:30)

where the unknown Bernoulli outcomes Yi, 0 are modelled in terms of an extra un-

known `response rate' at time 0, p0. By contrast, an informative model is

logit(pi, t) � c1 � c2Yi, t (6:31)

since this may refer to missing scores Y. Either type of model might also include time

itself as a predictor of missingness, since there is clearly a trend to increased attrition at

later waves.

With the non-informative model for response (6.30), similar results to those cited by

Diggle (1998, p. 221) are obtained17 for the coefficients of the response model. Drop-out

increases with PANSS score so that those remaining are increasingly `healthier' than the

true average.

The linear time terms u1, u2 and u3 and the treatment effects both support the

effectiveness of the new drug, though its main effect d3 in Equation (6.29) is not as clearly

defined as the decline in PANSS scores under this treatment, shown by u3 (Table 6.16).

Table 6.16 PANSS scores over time, non-informative drop-out,

parameters for response and observation model

Mean St. devn. 2.5% 97.5%

Response model

C1 ÿ5.32 0.27 ÿ5.84 ÿ4.81

C2 0.034 0.003 0.028 0.039

Observation model

Treatment

d2 1.43 1.76 ÿ1.95 5.02

d3 ÿ1.72 1.40 ÿ4.29 1.49

Error correlation

r 0.938 0.015 0.908 0.967

Linear time

u1 0.04 0.73 ÿ1.29 1.48

u2 1.03 0.61 ÿ0.11 2.25

u3 ÿ1.86 0.33 ÿ2.40 ÿ1.16

Squared time

g1 ÿ0.066 0.099 ÿ0.258 0.117

g2 ÿ0.066 0.082 ÿ0.232 0.095

g3 0.104 0.041 0.023 0.175

17 A two chain run shows convergence at 1000 iterations and the summary is based on iterations 1000±5000.
For the informative response model convergence in a 5000 iteration run is obtained at 2500 iterations.
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The placebo group apparently experience a deterioration in outcome over time (u2 > 0).

A high correlation over time in errors of the regression model for the observed scores is

apparent with posterior mean for r of 0.94.

Fit may be assessed by the predictive criterion in footnote 1, where for missing Yit

only the precision of prediction is relevant; the criterion comparing actual and predicted

R is 328, and that comparing predicted and actual Y is 277 100.

Introducing the current PANSS score Yit into the model for response Rit makes

the drop-out model informative, as in Equation (6.31). This response model is applied

with the likelihood just including the first wave of non-response for those who drop

out18. The fit to the scores Yit improves slightly (predictive criterion 270 000), but the

response model fit is unchanged (Table 6.17). In terms of inferences on treatment

effectiveness, both the main treatment effect and the linear time effect for risperidone

treatment are now significantly negative, though the time slope is less acute than under

non-informative response.

6.6 REVIEW

The analysis of panel data by fully Bayesian techniques facilitates a more flexible and

robust approach, for example in terms of assumptions about:

Table 6.17 PANSS scores over time, informative drop-out,

parameters for response and observation model

Mean St. devn. 2.5% 97.5%

Response model

C1 ÿ5.58 0.38 ÿ6.28 ÿ4.80

C2 0.034 0.004 0.026 0.041

Observation model

Treatment

d2 3.25 2.38 ÿ1.16 8.07

d3 ÿ4.70 2.20 ÿ9.60 ÿ0.15

Correlation

r 0.960 0.015 0.930 0.988

Linear time

u1 0.06 0.33 ÿ0.61 0.68

u2 1.15 0.37 0.38 1.88

u3 ÿ0.81 0.19 ÿ1.16 ÿ0.42

Squared time

g1 ÿ0.017 0.087 ÿ0.186 0.158

g2 0.046 0.095 ÿ0.135 0.240

g3 0.108 0.045 0.023 0.199

18 One might define the likelihood over all seven waves, but this requires an informative prior on c2 as for
some subjects several waves of non-response are then involved.
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. the nature of autoregressive dependence in error terms, allowing for an assessment

of the stationarity assumption rather than necessarily assuming it;
. the parametric structure (or otherwise) of error terms, both time varying and fixed

subject errors (e.g. Hirano, 2002)
. data augmentation to sample initial pre-series values, such as in an AR(2) model in the

response referring implicitly to unobserved data at times 0 and ÿ1 (Karlsson, 2002);
. data augmentation to impute missing data values depending on an additional panel

type model for the missingness mechanism in case the latter is informative (see

Section 6.5).

There are a number of techniques so far generally tackled by maximum likelihood or

EM methods where the fully Bayesian method might be used to good effect: examples

are INAR models for Poisson and multinomial data (Bockenholt, 1999a, 1999b) or the

Poisson exponentially weighted moving average model (Brandt et al., 2000). Chapter 5

illustrated how INAR models might be implemented in Bayes terms and extension to

panel situations is relatively straightfoward.
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EXERCISES

1. In Example 6.1, try a bivariate Student t via a scale mixture (see Program C). How

does the predictive loss criterion change, and which patient has the lowest weight?

Try also setting the degrees of freedom (df ) in the Bivariate Student to be an extra

parameter.

2. In Example 6.2, apply the DPP model, where the baseline prior has a single variance

term, namely fj � f in Equation (6.15). How does fit compare with the model

assuming component specific variances?

3. In Example 6.3, investigate whether an improved fit results from making all the lag

coefficients random (with all mean lag coefficients also free parameters).

4. In Example 6.5, try replicating the model of Hedeker and Gibbons (1994) which

reduces the ordinal outcome to four categories: I (normal or borderline, combining

categories 1 and 2 of the 7 category outcome); II ( mildly or moderately ill, combin-

ing categories 3 and 4 of the 7 category outcome); III (markedly ill, category 5 of the

7 category outcome); IV (severely or extremely ill, combining categories 6 and 7 of

the 7 category outcome). How much does fit deteriorate through making this

simplification?

5. In Example 6.5, try a scale mixture version of the random effects model, with degrees

of freedom an unknown, and with the full ordinal scale. The analysis may be sensitive

to the prior adopted for the degrees of freedom (e.g. a uniform between 4 and 100, a

discrete prior with a grid of values over the same range). Are there any clear outliers

(scale factors clearly under one)?

6. In Example 6.6, try the Albert±Chib model with Normal sampling of the Zit, i.e.

equivalent to a probit link. Does this affect fit or other inferences as compared to the

Student t(8) model? Also, try both the Student t and Normal sampling models when
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the lag is in the Zit themselves rather than the error. How does this compare in fit to

the autocorrelated error model?

7. In Example 6.8, try prediction of the missing dental growth curve data using AR(1)

error autocorrelation parameters specific to gender. Does this improve predictive

accuracy?

8. In Example 6.8, try estimating the alternative autoregression model suggested above

involving a multivariate t to model the latent yi0.
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CHAPTER 7 MODELS FOR SPATIAL OUTCOMES

Models for Spatial Outcomes
and Geographical Association

7.1 INTRODUCTION

The analysis of spatial data has involved recent advances in several fields, to some

extent referring to a central core of knowledge, but showing many distinct features in

the specialisms involved. Thus, many Bayesian applications have occurred in spatial

epidemiology, with Lawson (2001), Lawson et al. (1999) and Elliott et al. (2000)

providing state-of-the-art discussion. One may say that here a major element is the

assessment of patterns of relative disease risk in terms of possible clustering, perhaps

around environmental point sources, but also in terms of ecological regression of

disease patterns in terms of known risk factors (Lawson, 2001, p. 5). A more long-

standing tradition of spatial modelling has occurred in spatial econometrics, with

Anselin (2001) and Anselin and Florax (2002) providing recent overviews, and

with Lesage (1999) providing a review of Bayesian principles in this area. Here the

major emphasis lies in describing behavioural relationships by regression models,

whether the data are defined over regions and areas, or at the level of individual actors

(house purchasers, firms, etc.) involved in spatially defined behaviours. A third major

specialism occurs in geostatistics, where a continuous spatial framework is adopted and

the goal is often to smooth or interpolate between observed readings (e.g. of mineral

concentrations) at sampled locations. Providing a common thread is a central core of

spatial statistics, exemplified by the works of Ripley (1981) and Cressie (1993).

One by-product of developments proceeding in sometimes disparate areas is that certain

terms (e.g. heterogeneity) may be defined differently according to field of application. On

the other hand, there is also often considerable benefit in applying concepts across these

areas, for example using geostatistical ideas in ecological regression or in examining

spatial disease patterns (Oliver et al., 1992). The present chapter seeks to provide a

selective introduction to some of the modelling issues involved in these diverse areas; it

is inevitably selective and partial, but hopes to identify some underlying common themes.

The contrasting concerns of the major specialisms may be illustrated by a distinction

sometimes drawn between models focused on spatial interactions, and those concerned

with spatial disturbances, meaning regression errors (Doreian, 1982). In spatial effect or

spatial interaction models, the spatial pattern or space-time pattern is the main focus of

the analysis, for instance when the realised patterns reflect causal processes. Thus
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investigations into `focused' clustering of excess mortality or illness around pollution

point sources typically involve a hypothesis that exposure increases nearer to the source

resulting in raised disease incidence (Section 7.6). Similarly, in spatial econometrics,

spatial autoregressive models in the observations themselves are commonplace (e.g. see

Anselin, 2001), for instance reflecting behavioural processes of spatial diffusion.

However, in many regression applications in spatial epidemiology involving aggre-

gate disease counts in areas, spatial interaction models are relevant only for certain

outcomes, such as infectious diseases (Cliff and Ord, 1981). In these applications spatial

dependence1 occurs because of omitted or unmeasured spatially correlated predictors,

and so is reflected in regression errors, causing departures from the independent errors

assumption of the conventional regression. In problems involving both space and time

dimensions (Section 7.7), errors may be correlated in both time and space simultan-

eously (Lagazio et al., 2001). An example of incorrect inferences when the outcomes or

errors in a regression are spatially correlated is that such correlation reduces the amount

of independent evidence available to model the process under investigation, and may, if

not allowed for, lead to over-estimation of the significance of regression relationships

(Richardson and Monfort, 2000, p. 211).

An additional issue raised clearly by writers such as Fotheringham et al. (2000) and

Lesage (1999) is that of spatial heterogeneity2, either in regression relationships (e.g. in

terms of regression coefficients varying over space) or in terms of heteroscedasticity in a

spatially unstructured error term. There may be identifiability problems in separating

spatial dependence (e.g. correlation) from spatial heterogeneity (de Graaff et al., 2001;

Anselin, 2001).

Consider how one might allow for spatial correlation in regression errors (though

heterogeneity is considered in Section 7.5). Whereas the standard linear model for

metric outcomes would assume independence in the errors of ei and ej, with i 6� j

being different areas, alternatively suppose the errors of area i are not necessarily

independent of the errors in other areas. Thus, let Y and e be n� 1, x be n� p and

assume a linear regression

Y � xb� e (7:1a)

with a joint prior specifying multivariate dependence between the errors, such as an

MVN model with

e � Nn(0, S) (7:1b)

where the off-diagonal elements in the n� n covariance matrix S reflect the spatial

patterns in the data. A range of techniques (e.g. variogram analysis) explore covariation

in the outcomes or in regression residuals, in relation to inter-area or inter-point

distances, so as to estimate parameters in the covariance matrix (see Section 7.4). For

example, Cook and Pocock (1983) use a form of variogram analysis to define the

covariance matrix S in terms of an overall prior variance s2, when dij � 0 and a

parameter g reflecting off-diagonal spatial dependence between areas:

1 Following Anselin (2001), spatial dependence may be considered as any departure from the independent
errors model or from models excluding spatial lags in outcomes; thus in spatially dependent models, one may
have cov(Yi, Yj) 6� 0 for i and j neighbours in some sense, and/or cov(ei , ej) 6� 0. The existing spatial literature
is dominated by linear models and linear spatial correlation, whereas the broader concept of dependence might
include non-linear spatial errors or interactions (de Graaff et al., 2001).
2 In disease mapping applications, the term excess heterogeneity is often applied to spatially unstructured
errors (for Poisson overdispersion) in the log link for count outcomes.

274 MODELS FOR SPATIAL OUTCOMES



Sij � s2rij

rij � s2 exp (ÿ gdij)
(7:2)

where R � [rij ] are correlations. The distance decay parameter g is expected to be

positive so that outcomes or errors in neighbouring areas are more similar. Such `direct

modelling' of the covariance structure is also relevant for spatial interpolation in fields

such as geostatistics, where readings of an outcome Y (si) may be obtained in two or

three dimensional space si � (s1i, s2i, : : ) and the model for covariation between loca-

tions si and sj is used to predict Y at an unobserved location.

Alternatively, one may seek a parameterisation of S in terms of a known interaction

scheme (Bailey and Gattrell, 1995), which may take account of contiguities between

areas or distances dij between them (Section 7.2). This approach results in simplified

identifiability of other aspects of the model (Anselin, 2001). The extent of spatial

dependence (typically of a linear nature) in the interactions between Y or in the

regression errors is modelled in terms of spatial autocorrelation between adjacent

areas, usually expected to be positive. Spatial autoregressive models then include one

or more unknown autocorrelation parameters r, applying either to spatial lags in the

outcomes themselves or to the regression errors. In mapping of disease counts

(Section 7.3), a particular modelling structure assumes a known interaction scheme,

and also that r � 1 in the errors, and focuses on the relative variability of spatial and

unstructured errors (e.g. Best et al., 1999; MollieÂ, 2000).

7.2 SPATIAL REGRESSIONS FOR CONTINUOUS DATA WITH FIXED

INTERACTION SCHEMES

Here we first consider regression models where the interaction between areas is taken as

known and the focus is on making correct inferences about regression impacts, on

estimating different forms of spatial correlation (e.g. in the data themselves or in the

regression errors), or on allowing for spatial heterogeneity. We first focus on

the observed continuous outcome case, though it may be noted that the ideas transfer

to latent continuous variable models (e.g. when outcomes are binary or ordinal), using,

for instance, the sampling methods of Albert and Chib (1993).

Thus, consider an n� n matrix C of contiguity dummies, with cij � 1 if areas i and j

are adjacent, and cij � 0 otherwise (with cii � 0). Alternatively, a distance based inter-

action scheme might involve elements such as cij � 1=dij(i 6� j) or cij � 1=d2
ij , but again

with cii � 0. Then scale the elements to sum to unity in rows, with W as the scaled

matrix,

W � [wij ] � �cij=
X

j

cij �

Given the known form of C and hence W, a model for spatial dependence in the errors

for a metric outcome Y might then take the form

Y � xb� e

e � rWe� u
(7:3a)

where r is an unknown correlation parameter, where Y, e and u are vectors of length n,

and x is of dimension n� p. Here the u denote spatially unstructured errors, which are
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frequently taken as homoscedastic ui � N(0, s2). If the interactions are scaled within

rows, then the permissible maximum of r is 1 (Anselin, 2001; Bailey and Gattrell, 1995,

Chapter 7), and the permissible minimum is the smallest eigenvalue of W, which is

greater than ÿ1 but less than 0. Since spatial correlation is positive in the great majority

of econometric or health applications, a prior on r constrained to [0, 1] is feasible in

many applications.

7.2.1 Joint vs. conditional priors

Letting Q � I ÿ rW , the precision matrix �ÿ1 of the errors e in Equation (7.3a) may be

derived as Xÿ1 � tQ0Q (7:3b)

where t � sÿ2 (Richardson et al., 1992). A full multinormal scheme for the e could be

used, with the errors sampled simultaneously from their joint prior

e � Nn(0, S) (7:3c)

However, a conditional scheme is possible, and may be simpler to sample from (e.g. in

WINBUGS). As mentioned by Wakefield et al. (2000), modelling of spatially correlated

errors may proceed by initially specifying either the joint multivariate distribution of the

vector e, or the univariate density of each areas error, ei, conditional on the current

estimate of errors in other areas (ej, j 6� i). Conditions that ensure the joint density is

proper (so that the ei are identifiable) when the model specification starts with a

conditional rather than the joint prior3 are discussed by Wakefield et al. (2000) and

Besag and Kooperberg (1995).

One possible conditional prior (the conditional autoregressive or CAR prior)

expresses ei in Equations (7.3) in the centred univariate Normal form

ei � N(Mi, s2) (7:4a)

where the mean of each area's error

Mi � r
X

j

cijej (7:4b)

is a weighted average of errors in contiguous areas, and r is bounded by the inverses of

the minimum and maximum eigenvalues of C. (Note that the interaction matrix for this

form of prior needs to be symmetric.) The covariance of the vector e in the correspond-

ing joint prior is then S � s2(I ÿ C)ÿ1 (Richardson, 1992; Wakefield et al., 2000).

One may also have a `spatial effects' or `spatial autoregression' model, with spatial

lags in the outcomes themselves (e.g. Ord, 1975; Anselin, 2001), with

Y � xb� rWY � u (7:5)

where u is white noise. Spatial dependence in both Y and e may occur in the same model,

for example:

Y � xb� r1WY � e

e � r2We� u

3 The identifiability issue with the ICAR(1) model is discussed in Section 7.2.1.
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where e is multinormal as in Equations (7.3). In some situations, a spatial lag in the

outcome might not be substantively sensible. If it were, then a sensitivity analysis might

consider both correlation in both spatial effects and spatial errors, and also consider

non-constant variances in the ui (Lesage, 2002); it might also encompass several forms

of spatial interaction matrix, even if these are taken as fixed within the modelling

(Richardson and Monfort, 2000; Anselin, 2001).

It may be noted that the multinormal spatial disturbances model (7.3a) may be

expressed as

Y ÿ rWy � xbÿ rWxb� u (7:6)

namely as a regression of the `filtered' outcome Y* � Y ÿ rWy on the filtered predict-

ors x* � xÿ rWx. So the pure spatial effects model (7.5) is in fact a particular case of

(7.6).

For continuous outcomes, it is in fact simpler in WINBUGS to use this filtered

outcome and predictor approach4. Thus, in Example 7.1, the means for a metric

outcome Yi are mi � rWy� xibÿ rWxb. With count or binomial outcomes, by con-

trast, one might have an error directly in the form (7.3) or (7.4) in the regression link.

Thus, if Yi � Poi(mi), one might take

log (mi) � xib� ei

ei � N(Mi, s2)

where Mi is as in (7.4b).Example 7.3 accordingly contains a CAR prior analysis of the

Scottish lip cancer data.

Whatever the form of distribution relevant to the outcome, there are possible issues of

identifiability involved5, since for instance clustering of regression errors may be pro-

duced by a form of spatial heterogeneity, in that error variances differ between subsets

of regions. Suppose, following Anselin (2001), spatial heterogeneity is taken to refer

either to non-constant error variances (heteroscedasticity) or to non-constant regression

coefficients across space, sometimes known as `spatial regimes' (Anselin, 1990). Then in

a single cross-section, spatial autocorrelation and spatial heteroscadisticity are observa-

tionally equivalent. Thus, a clumping of positive residuals in a set of neighbouring areas

might reflect either mechanism.

Spatial heteroscedasticity may be parameterised in various ways: either one may

suppose all areas to have distinct variances, or there may be groups of areas Sr with

s2
i � s2

r if i 2 Sr. Lesage (2000) proposes scale mixtures (with each area having its own

variance) to robustify inferences against outlier data points. This applies even after

4 This is because for continuous data following a Normal or Student t density, a centred form is adopted in
WINBUGS which assumes unstructured errors.
5 Highly parameterised but less well identified models (e.g. combining both spatial heterogeneity and cluster-
ing) can of course be rejected by model fit criteria which penalise complex models which do not add greatly to
accurate prediction. This will be illustrated by loss of precision in fitted means or predictions of new data. One
approach to such predictive fit is that of Gelfand and Ghosh (1998), Sahu et al. (1997) and Ibrahim et al.
(2001). Let fi be the observed frequencies, f be the parameters, and zi be `new' data sampled from f (zjf).
Suppose ni and Bi are the posterior mean and variance of zi, then one possible criterion for any w > 0 is

D:z �
Xn

i�1

Bi � [w=(w� 1)]
Xn

i�1

(ni ÿ fi)
2
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spatial autocorrelation is explicitly modelled, and so would relate to the density as-

sumed for the ui. Thus, a scale mixture on the s2 in (7.3) or (7.4) is equivalent to

assuming Student t rather than normal ui. Such a mixture is illustrated in Example 7.2

(involving the Columbus Crime dataset).

7.3 SPATIAL EFFECTS FOR DISCRETE OUTCOMES: ECOLOGICAL

ANALYSIS INVOLVING COUNT DATA

Within the last decade, models for spatial dependence in discrete data (e.g. count or

binary) have seen a major development. Spatial dependence figures strongly in the

analysis of disease maps, where event counts rather than metric outcomes are the

usual focus and where much recent conceptual and methodological development has a

Bayesian orientation (e.g. Besag et al., 1991). In spatial econometrics, by contrast, more

attention has focused on the spatial probit model for binary outcomes (e.g. Lesage,

2000).

In epidemiological analysis of small area disease data, the main object is often to

estimate the true pattern of relative risk in the face of overdispersion in the observed

event counts and spatially correlated errors due to omitted predictors. Estimation of

relative risks by conventional methods based on the Poisson density (e.g. by standard

mortality ratios defined as ratios of observed to expected events) assumes that the

disease or mortality risk is constant over areas and over individuals within areas. In

fact, individual risks may vary within areas, and risks vary between areas, so that

observed event counts show a greater variability than the Poisson stipulates. This

variation can be modelled by expressing area relative risks in terms of one or more

random effects.

Some such effects may be spatially unstructured (analogous to white noise in time

series), and these are sometimes denoted as `excess heterogeneity' (e.g. Best et al., 1999,

p. 132). However, overdispersion may also occur due to spatially correlated effects. As

mentioned above, spatial epidemiology often focuses on clustering of adverse health

events due to socio-economic or environmental factors; observations on the latter are

frequently not available or at least, not at sufficiently low spatial resolation. The prior

model for spatially clustered sources of overdispersion may be seen as proxying unob-

served risk factors (e.g. environmental or cultural) which are themselves spatially

correlated (Best, 1999).

For example, suppose a count of deaths Di from a certain cause is observed in

a set of small areas, and that expected deaths Ei (in the demographic sense) are

derived from some standard schedule of death rates from the cause concerned. The

outcomes may, subject to the necessity to take account of overdispersion, be taken as

Poisson,

Di � Poi(Eiui) (7:7)

where ui is the relative risk of mortality in area i. Poisson sampling may be justified by

considering binomial sampling of deaths by age Dij in relation to populations by age Pij

with death rates pij , and by assuming relative risks and age rates are proportional,

namely pij � uipj (Wakefield et al., 2000).

Consider the Poisson sampling model as it stands, with the ui initially taken as fixed

effects. Then with flat priors on them, the estimated ui will be equal to the maximum

likelihood estimates of SMRs, namely ûi � Di=Ei. However, these may be unreliable as
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estimates of relative risk (e.g. see Bernardinelli and Montomoli, 1992), since maps of

SMRs are subject to distortion through low event counts or populations at risk, and

small changes in event totals may produce major shifts in the SMRs. In devising models

to `pool strength' and reduce such anomalies, one may envisage the total variability in

the observed rates or SMRs having two components: within area sampling variation

around the true underlying rate, and between area variations in the true rates, which are

likely to show spatial correlation to some degree.

To allow for unstructured `white noise' variability about the true rates, one might

take the log of the risk ui to consist of an overall average and a white noise error ui. The

model is then

Di � Poi(Eiui) (7:8a)

log (ui) � g� ui (7:8b)

ui � N(0, s2
u) (7:8c)

where g is an intercept representing the log of the average relative risk in the areas

compared to the standard population. However, there may in addition to spatially

unstructured variability be spatially correlated errors ei, so that (7.8b) becomes

log (ui) � g� ui � ei (7:9)

This is sometimes known as the `convolution' model.

7.3.1 Alternative spatial priors in disease models

There are several alternative specifications for the ei. One option suggested for disease

mapping and ecological regression (Leyland et al., 2000) assumes6 that underlying the

spatial errors e are unstructured errors v. Under this approach joint densities may then

be readily specified for u and v. So

ei �
Xn

j�1

wijvj (7:10)

where the wij are row standardised interactions as above. If the wij are based on

contiguity, then wij � 1=Ni if areas i and j are adjacent, with Ni being the number of

neighbours of area i. In this case of contiguity interactions, ei � Nÿ1
i �jeLi

vj , with Li

denoting the neighbourhood of areas adjacent to i.

In the convolution model (7.9), one might take ui and vi to be bivariate Normal with

covariation suv, but this modelling approach extends readily to multivariate error

forms, for outcomes j � 1, : : J. For instance, an MVN prior of dimension 2J allows

correlation between outcome specific errors uij and vij, and so expresses interdependence

(in regression errors) between the outcomes (Congdon, 2002a). This is illustrated below

with data for Glasgow postcodes and counts from two causes of death.

As for continuous outcomes, full joint prior specifications for the spatial errors ei may

be proposed or conditional priors specified ab initio. One possible joint density specifi-

cation (Besag et al., 1991) often used in health applications is in terms of pairwise

differences in errors, so that

6 This type of error structure may also be adopted for continuous outcomes (e.g. Kelejian and Robinson,
1993), but a particular recent application is to disease counts.
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p(e) / exp ÿ0:5kÿ2
X
i<j

(ei ÿ ej)
2

" #
(7:11a)

The corresponding conditional form (Wakefield et al., 2000, Equation (7.15); Bernardi-

nelli et al., 1999, Equation (26.4)) is

P(eijej , j 6� i) � N(Mi, s2
i ) (7:11b)

with

Mi �
X
j 6�i

cijej=
X
j 6�i

cij �
X
j 6�i

wijej

and cij being spatial interactions as above. The variances differ by area with

s2
i � k2=

X
j 6�i

cij

This scheme, known as an intrinsic conditional autoregression or ICAR(1) prior (since

the correlation r is set by default to 1), is improper, since it specifies only differences in

log relative risks, not levels.

Suppose the cij form a contiguity matrix with cij � 1 if areas i and j are adjacent and

cij � 0 otherwise. In this case, the ICAR(1) model for the ei has parameters

Mi � �ei

s2
i � k2=Ni

(7:11c)

where �ei is the average of the ej in the locality Li of area i (with the average excluding ei

itself ), and Ni is the number of neighbouring areas in Li. Note that Student t errors ei

may be achieved by a scale mixture on k2 in Equation (7.11c), that is k2
i � lik

2, where

li � G(0:5n, 0:5n) and n is the degrees of freedom in the Student t density.

Other pairwise difference priors are possible. Besag et al. (1991) mention a double

exponential (Laplace) prior

p(e) / x exp ÿ0:5x
X
i<j

jei ÿ ejj2
" #

which, like the Student t, is more robust to outliers or discontinuities in the risk surface.

x is a scaling parameter, with smaller values implying smaller spatial variability.

The fact that Equation (7.11a) is improper may lead to problems in convergence and

identifiability in Bayesian estimation based on repeated sampling. One way of producing

identifiability is to omit the constant (such as g in Equation (7.9)) so that the average of

the ei defines the level. Another is to constrain the ei to sum to zero, which in practice

involves centreing at each iteration in an MCMC run (Ghosh et al., 1998). This identifia-

bility option for the ICAR(1) model with e normal (i.e. k2 constant over areas) is

implemented in WINBUGS13 (and subsequent versions) as the `carnormal' density.

The Laplace pairwise difference prior is available in WINBUGS as the `carl1' density.

Another strategy involves a model redefinition. Thus, following Sun et al. (1999,

2000), propriety of the posterior is obtained by explicitly introducing a spatial correl-

ation parameter r absolutely less than 1. So for contiguity interactions, Mi � r�ei and

P(eijej, j 6� i) � N(r�ei, k2=Ni) (7:12)
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(compare Sun et al., 2000, Equation (2)). Whereas prior (7.11) is then an ICAR(1), the

more general approach is denoted an ICAR(r) prior.

Consider the `convolution' model of Equation (7.9), where ei is based on the pairwise

differences prior (7.11a) and an ICAR(1) model is assumed. To assess the relative

strength of spatial and unstructured variation in this model requires estimates of

marginal rather than conditional variances, and so one may form `moment estimates'

of the marginal variances, such as

ŝ2 �
X

(ei ÿ �e)2=(nÿ 1)

This may be compared with the posterior estimate of the marginal variance of the ui, or

with a comparable moment estimator

ŝ2
u �

X
(ui ÿ �u)2=(nÿ 1)

There may be identifiability problems in the convolution model, especially if flat priors

are taken on the overall variances (precisions) of both the ui and ei. The posterior results

are dependent on the prior specifications regarding the balance of dispersions on the

two components, especially if, say, the precision of the unstructured errors was specified

to be relatively high. Based on a simulation analysis, Bernardinelli et al. (1995) recom-

mend that var(ui) � 0:7 var(ei), where var(ei) is the conditional variance k2; this is

known as the `balanced dispersion' prior. More generally, priors for the variances of

ei and ui might reflect their interdependence, e.g. by taking a prior on the ratio

var(e)=var(u) on the ratio var(e)=[var(e)�var(u)] (see Example 1.3).

7.3.2 Models recognising discontinuities

It may be noted that doubts remain about the ability of the convolution specification

to reproduce discontinuities in disease maps (e.g. a low mortality area surrounded

by high mortality areas will have a smoothed rate distorted by a spatially correlated

error model). Forms of discrete mixture have been proposed as more appropriate to

modelling discontinuities in high disease risk (Militino et al., 2001). For example,

Knorr-Held and Rasser (2000) propose a scheme whereby at each iteration of an

MCMC run, areas are allocated to clusters. These are defined by cluster centres and

surrounding contiguous areas, and have identical risk within each of them. Clusters may

be redefined at each iteration. The estimated relative risk for each area, averaged over

all iterations, is then a form of non-parametric estimator, and may better reflect

discontinuities.

Lawson and Clark (2002) propose a mixture of the ICAR(1) and Laplace priors, with

the mixture defined by a continuous (beta) density rather than a discrete mixture. So

Equation (7.9) becomes

log (ui) � g� ui � Ziei � (1ÿ Zi) fi

where fi follows the conditional Laplace form, and one might take the beta prior on

the Zi to have fixed parameters, for instance Zi � Beta(1, 1) or Zi � Beta(0.5, 0.5).

Options on such a scheme include setting priors on the hyperparameters {a, b} in

the beta mixture Zi � Beta(a, b), or simpler mixture forms, such as just putting

more emphasis on the unstructured component in some `discontinuous' areas:

log (ui) � g� Ziui � (1ÿ Zi)ei
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7.3.3 Binary outcomes

For binary data defined over areas i � 1, : : n

Yi � Bern(pi)

one might model spatial and nonspatial error effects via the logit or probit links on pi.

For binary data the variance is not identifiable, so it is preset, usually to 1. One might,

for instance, specify a model with a CAR prior on a spatial error, so that

logit(pi) � xib� ei

where

ei � N(Mi, 1)

and where the mean of each area's error is

Mi � r
X

j

cijej

An ICAR(1) or ICAR(r) model could also be specified for the ei in this model. If

both unstructured and structured errors (ui and ei) are envisaged, then their respec-

tive variances would be shares of an overall known quantity, for example

var(u)� var(e) � 1.

The majority of recent Bayesian development has been on the latent variable model

and on the multinormal spatial error model, as in Equation (7.3). Thus,

Yi � 1 if Yi* > 0

Yi � 0 if Yi* < 0

where

Yi* � xib� ei

ei � r
X

j

wijej � ui

ui � N(0, 1)

The vector of errors then has a multinormal form,

e �MVN(0, [(Iÿ rW )0(Iÿ rW )]ÿ1)

Lesage (2000) emphasises possible heteroscedasticity in binary data, so that

ui � N(0, ki), where the ki � G(n, n) average 1 and n is the Student degrees of

freedom.

Example 7.1 Agricultural subsistence and road access The first worked example con-

siders spatial dependence in the errors of a regression model for a continuous outcome,

using the alternative `filtered' form of the spatial errors model in Equation (7.6). Several

studies have considered a dataset for the i � 1, : : 26 Irish counties relating the proportion

Yi of the county's agricultural output consumed by itself (i.e. subsistence) to a measure of

its Arterial Road Accessibility (ARA); a normal approximation is generally adopted to

this binomial outcome. The data is discussed and analysed in Cliff and Ord (1981). A

linear model containing homoscedastic errors ui � N(0, s2
u) and with no allowance for

spatial dependence
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Yi � xib� ui (7:13)

(with x0i � 1) then serves as the baseline.

As one model diagnostic (though not a model choice criterion), measures of spatial

interaction such as Moran's I may be monitored. Here the intention is to assess in the

context of Bayesian sampling estimation how and whether such interaction measures

are affected by different model spefications. Note that these are derived statistics, and

there is no need to specify a prior on them; for example, in Equation (7.13) only priors

on b and the variance (or in BUGS the precision) of the ui are required. In their original

applications via classical (e.g. ML) procedures, estimates of such interaction measures

may have been based on regression residuals and their estimated standard error

obtained by assuming particular modes of data generation. The Bayesian sampling

perspective means one is not constrained in this way, and posterior standard errors

are obtained by repeated sampling.

Here such an approach is exemplified using regression residuals as monitored over

t � 1, : : , T iterations, for area i, denoted u
(t)
i . Then the sampling average of Morans I

statistic is obtained as

I � Tÿ1
X

t

X
i 6�j

wiju
(t)
i u

(t)
j =
X
i 6�j

[u
(t)
i ]2

where in the present application, two definitions of (row standardised) interactions

wij are considered. One is based on simple contiguities, the other on standardised

weights based on intercounty distances dij and length of shared boundary, so that

cij � Bij=dij , where Bij is the proportion of the boundary of county i in contact with

county j, and then wij � cij=�jcij. The latter interactions are supplied by Cliff and Ord

(1981, p. 229).

The Moran statistic typically has a small negative expectation, when applied to

regression residuals (Cliff and Ord, 1981). One may be confident, however, that lower

values of this statistic represent lesser autocorrelation, despite a caveat that the value of

I � 0 does not correspond to the lowest possible autocorrelation (see Haggett et al.,

1977, p. 357). Note that one might also apply such measures to the unstructured errors

for a discrete outcome, such as a disease count response where the model omitted spatial

effects as in Equation (7.8b).

With the baseline uncorrelated errors model, three chains are run for 15 000 iterations

and posterior summaries are based on the last 14 000 of these7. The monitoring includes

Moran statistics for the regression residuals as in Table 7.1. These are similar to those

cited by Cliff and Ord, for contiguity weights, namely 0.397 (s.e. � 0.12) and for

standardised weights, namely 0.436 (s.e. 0.14). Although the linear regression has high

predictive R2, there is under-estimation of subsistence in the remoter counties, and over-

estimation of subsistence in the less isolated eastern counties, with better road and rail

links. One option would be to include measures of such transport access, e.g. whether a

county is served by a direct freight link to the Irish capital, Dublin.

However, to make correct inferences about the regression estimate of subsistence on

ARA, it is probably necessary to explicitly model the spatial dependence in the regression

errors. Here contiguity weights are used in the spatial errors model of Equation (7.3)

7 As elsewhere, outlier status is assessed by the CPO statistics obtained by the method of Gelfand and Dey
(1994, Equation (26)); the product of these statistics (or the sum of their logged values) gives a marginal
likelihood measure, leading to a pseudo-Bayes factor (Gelfand, 1996). The CPOs may be scaled as proportions
of the maximum giving an impression of points with low probability of `belonging' to the main data set.
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Table 7.1 Models for subsistence rates

Mean St. devn. 2.5% 97.5%

Uncorrelated error model

Moran(Distance-Boundary Weights) 0.45 0.12 0.21 0.69

Moran(Contiguity) 0.35 0.14 0.09 0.63

b0 (Intercept) ÿ8.71 3.56 ÿ15.62 ÿ1.71

b1 (ARA) 0.0053 0.0008 0.0038 0.0069

Spatial errors model

Moran(Distance-Boundary Weights) 0.064 0.11 ÿ0.101 0.324

b00 (Intercept) 0.475 0.688 ÿ0.797 1.926

b1 (ARA) 0.0021 0.0007 0.0007 0.0036

r 0.914 0.08 0.703 0.997

and with the regression means based on the transformed model in Equation (7.6). For

improved identification, the intercept parameter8 is represented as b00 � b0 ÿ b0r.

A run of 20 000 iterations over three chains with 5000 burn-in ensures convergence in

r, with its posterior density as in Figure 7.1. The median of 0.936 compares to a Bayes

mode of 0.938 cited by Hepple (1995). The effect of ARA on subsistence is halved, and

the Moran statistic based on the alternative spatial interaction definition (distance

and common boundary) is clearly reduced in line with eliminating spatial dependence

in the regression residuals (see Table 7.1).

At individual area level, the CPO estimates do not show any clear outliers; the lowest

scaled CPO is 0.09 for county Mayo (area 16) which has its subsistence rate under-

predicted. The overall marginal likelihood based on these CPOs is ÿ62.7, a clear

reduction compared to that for the uncorrelated error model in Equation (7.13) (namely

ÿ72.8).

Example 7.2 Columbus neighbourhood crime Anselin (1988) considers data on crime

rates Yi (burglaries and vehicle thefts per 1000 households) in 49 neighbourhoods of

Columbus, Ohio, with predictors income (X1) and housing values (X2) in thousands

of dollars. He considers first an uncorrelated errors regression which gives, with stand-

ard errors in brackets,

Y � 68:6 ÿ 1:60X1 ÿ 0:27X2

(4:7) (0:33) (0:10)
(7:14a)

By contrast, two spatial models may be considered, namely a spatial autoregressive

model9 and a spatial disturbances model. Here the latter is estimated, according to

8 Sampled values of the true intercept b0 � b00=(1ÿ r) will be essentially undefined when sample values of r
are very nearly 1, and this will affect MCMC convergence. The true intercept may be estimated using posterior
means of b00 and r.
9 Thus,

Y � g0 � r2WY � g1X1 � g2X2 � u

where u might have constant or area specific variance but is spatially uncorrelated. This is estimated by Anselin
to have parameters r2 � 0:43(0.12), g1 � ÿ1:03(0.31) and g2 � ÿ0:27(0.09).
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Figure 7.1 Plot of r

Y � b0 � b1X1 � b2X2 � e

e � r1We� u
(7:14b)

where u is initially taken as homoscedastic, but then a heteroscedastic alternative to

account for outliers is considered. W is a row standardised weights matrix based on

contiguities cij. Anselin employs maximum likelihood estimation of the spatial error

model to give r1 � 0:56 (s.e.�0.13). The coefficient of income is much reduced as

compared to an uncorrelated error model (7.14a), namely to b1 � ÿ0:94 (s.e.�0.33),

but that of housing value is enhanced, with b2 � ÿ0:30(0:09).

Here the correlated error model is first estimated with u homoscedastic, and with a

uniform prior over (0, 1) for r1. N(0, 10) priors are adopted for b1 and b2 to avoid

numeric overflow. The model for the regression mean is re-expressed according to the

transformation (7.6), namely

Y � xb� rW (Y ÿ xb)� u (7:15)

with u � N(0, s2). Early convergence in a run of 20 000 iterations over three chains is

apparent, with iterations from 1001 giving posterior estimates as in Table 7.2.

These estimates are similar to those of Anselin (1988), and confirm the reduced

impact of income (as compared to an uncorrelated errors model) when spatial correl-

ation is modelled in conjunction with homogenous non-spatial errors ui. Examination

Table 7.2 Crime rates, spatial error model, homoscedastic u

Mean St. devn. 2.5% Median 97.5%

b00 31.3 13.0 9.3 29.7 60

b1 ÿ1.05 0.41 ÿ1.87 ÿ1.05 ÿ0.25

b2 ÿ0.26 0.10 ÿ0.47 ÿ0.26 ÿ0.06

r1 0.55 0.20 0.13 0.56 0.90

s2 124.4 27.6 82.1 120.3 190.2
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of the CPO statistics suggests area 4 is suspect; this area is aberrant in terms of having

the lowest crime rate but the sixth lowest income. (The two are usually inversely

associated.)

To allow for the possibility of non-constant variance over space (Lesage, 1999, 1997),

and ensure more robust inferences about regression effects in the face of possible

outliers, Student t disturbances ui are adopted in the SAR model. This involves taking

the precision of the ith observation

kit

where the multiplier

ki � G(n=2, n=2)

This scale mixture of Normals is equivalent to a Student t with n degrees of freedom.

The degrees of freedom is also taken as a parameter. Outliers are indicated by low

multipliers ki.

In addition to a scale mixture, an alternative prior structure on r1 is also proposed as

in Lesage (1997). This may be seen as achieving robustness on the spatial interaction

component of the model. Hence

p(r1) / (s� 1)rs
1 (7:16)

and for s > 1 values of r1 near zero are downweighted. Lesage tries pre-determined

values s � 0, 0:5, 1, 2 and 5, but here a discrete prior is adopted on these options, so

that there is a joint prior structure

p2(r1jS)p1(s)

The value s � 0 is equivalent to a uniform prior over (0, 1). The prior (7.16) is

implemented in BUGS via a discrete prior on the points r1 � 0, 0:01, 0:02, . . . 0:99, 1,

with original weights (s� 1)rs
1 scaled to sum to unity.

For the spatial errors model, this leads to a higher value of r1, and n approximately 27

± indicating some departure from normality in the crime rate outcome (see Table 7.3).

The mean value of s is 1.76. This model makes the impact of income more negative,

while the housing value coefficient now straddles zero. The choice between this model

and the homoscedastic errors model (7.15) is based partly on its better accommodation

of possible outliers, and also its better marginal likelihood (ÿ189.7) compared to that of

the homoscedastic model (ÿ193.9). The resulting pseudo-Bayes factor clearly favours

the more robust assumption on the ui. The Student t weights ki still show observation

4 as a possible outlier, with k4 � 0:48 compared to the remaining areas, where ki ranges

between 0.70 and 1.11.

A suggested exercise is to fit the spatial autoregression model (with a spatial lag in Y )

under alternative prior assumptions (homoscedastic vs hetersoscedastic) on the errors u.

Table 7.3 Spatial errors: non-constant variance

Mean St. devn. 2.5% Median 97.5%

b0 19.09 11.78 2.00 17.22 47.98

b1 ÿ1.11 0.38 ÿ1.86 ÿ1.11 ÿ0.35

b2 ÿ0.17 0.11 ÿ0.40 ÿ0.16 0.04

n 27.8 27.9 2.6 14.2 93.9

r 0.72 0.18 0.29 0.75 0.99
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Example 7.3 Poisson data: the lip cancers example Spatial models for a discrete

outcome are illustrated with the Scottish lips cancer data, included in the WINBUGS

examples and widely analysed elsewhere. These are often small event counts Yi for

i � 1, : : 56 counties, and for disease mapping purposes the goal of introducing random

effects (unstructured and=or spatially dependent) is to obtain smoothed estimates of the

Relative Risks (RRs) of cancer incidence by county. Inferences on regressors will be

improved by taking account of possible overdispersion in the count outcome.

A single regressor is provided in this example by 0.1 times the percent of labour force

in agriculture and related occupations (x1 � AFF=10), so the adjusted relative risks of

lip cancer will also reflect county occupational structure as well as smoothing towards

the local or global average. Interactions cij between counties are in terms of dummy

indicators for contiguity (cij � 1 if counties i and j are neighbours). Model fit and

regression inferences are assessed under different specifications for the prior on the

errors ei in Equation (7.9).

First, consider the CAR prior as in Equation (7.4), with a prior for r defined by the

eigenvalues10 of C. Then the model is

Yi � Poi(Eiui)

log (ui) � xib� ei � b0 � b1x1i � ei

ei � N(Mi, s2)

Mi � r
X

j

cijej

The posterior estimates from a three chain run of 10 000 iterations (with convergence

after 500) shows a mean correlation of around 0.16, and 95% credible interval (0.12,

0.17). The AFF variable has coefficient b averaging 0.46 and 95% credible interval

(0.21, 0.71). The lowest scaled CPOs are for counties 50 and 55, namely 0.03 and 0.025

(these are Dundee and Annandale). These results may be compared to those obtained

by Bell and Broemeling (2000), who cite an interval (0.131, 0.170) on r; the paper by

Stern and Cressie (1999) has a list of counties corresponding to the numbers used here.

If instead we use the ICAR framework with default correlation of r � 1 as in

Equation (7.11c), a lower estimate of the coefficient on AFF is obtained, with mean

0.39 and 95% interval (0.16, 0.60). Here the model for the mean relative risk omits for

the intercept for identifiability, and so is

log (ui) � b1x1i � ei

This model has an improved pseudo-marginal likelihood estimate compared to the

CAR model (ÿ156.2 vs. ÿ162.3) giving a pseudo-Bayes factor in its favour of around

400.

However, an alternative is a data driven choice of the ICAR correlation in the

ICAR(r) model, with the model for the means now having an intercept again. This

leads to an enhancement of the AFF effect compared to the ICAR(1) model, with

posterior mean 0.43 and 95% interval (0.09, 0.68). The ICAR correlation is estimated to

have mean 0.92 and median 0.94. This model has a worse pseudo-marginal likelihood

than the ICAR(1) model, around ÿ159.5.

10 The minimum and maximum eigenvalues of C for the Scottish county data are ÿ3.07 and 5.71, so the range
for r is between ÿ0.326 and 0.175.
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Finally, a robust mixture approach drawing on the Lawson and Clark (2002) method,

as in Section 7.3.2, is fitted. This is coded directly in Model D (Program 7.3) using the

double exponential density ddexp() in WINBUGS, and to produce identifiability

an additional autocorrelation parameter as in Equation (7.12) is introduced. A two

chain run of 5000 iterations shows convergence at around 500 iterations and gives a

higher coefficient on the AFF variable than the preceding methods, with mean (and

95% interval) of 0.49 (0.22, 0.76). The autocorrelation parameters on the Normal

and Laplace mixture elements have means 0.61 and 0.88. The lowest Zi (most outlying

case in terms of the Normal spatial structure) is for county 49, which has an unusually

low crude and smoothed relative risk compared to the surrounding counties (which

both abut it and are similar in terms of urban and occupational status). Despite extra

insights like this, the pseudo-marginal likelihood is worse than for the ICAR(1) model,

namelyÿ161.

Smoothed relative risk profiles are consistent across the four methods: the CAR

option shows 18 out of 56 counties with RRs clearly above 1 (95% credible interval

entirely above 1) and the ICAR methods both show 19 out of 56.

Example 7.4 Glasgow deaths The conditional autoregression approach has been a

popular way of tackling spatial dependence in discrete outcomes (e.g. in disease map-

ping). However, other techniques have been proposed and may have benefits in terms

of, say, allowing both multivariate outcomes and a mix of unstructured and structured

errors as in the convolution model (7.9). As a case study of an alternative methodology,

the analysis of this example follows Leyland et al. (2000) in considering a bivariate

mortality outcome for a set of 143 Glasgow postcode sectors, namely cancer and

circulatory deaths {Yi1, Yi2}. Thus defining the spatial error in terms of an underlying

unstructured error as in Equation (7.10), and with two outcomes in a convolution

model, there are four errors to consider. Without predictors, we might then have

Yi1 � Poi(Ei1ui1)

Yi2 � Poi(Ei2ui2

log (ui1) � b01 � ui1 � ei1 (7:17a)

log (ui2) � b02 � ui2 � ei2 (7:17b)

In the first model (Model A), four errors are distributed independently of each other,

and ui1 and ui2 denote independently distributed and spatially unstructured errors with

variances s2
1 and s2

2. The spatial errors under Model A in Equations (7.17) are obtained

as

ei1 � Nÿ1
i

X
jeLi

nj1

ei2 � Nÿ1
i

X
jeLi

nj2

with the n being taken as independently Normal with variances t2
1 and t2

2,

ni1 � N(0, t2
1)

ni2 � N(0, t2
2)
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A second option (Model B) takes the ei1 and ei2 in Equation (7.16) to be separately

CAR(1), as in Equation (7.11c). Here the `balanced dispersion prior' recommended by

Bernardinelli et al. (1995) is used.

However, an alternative model allowing correlated errors (i.e. multivariate error

dependence among all four errors) is straightforward. Denote the first two error terms

are Zi1 � ui1 and Zi2 � ui2, and the third and fourth as Zi3 � vi1 and Zi4 � vi2. The Zij

are then taken to be multivariate Normal with mean vector (0,0,0,0) and 4� 4 disper-

sion matrix �Z. A Wishart prior on �ÿ1
Z is assumed, with 4 degrees of freedom. The

standardised version of �Z provides correlations R � [rij] between the four underlying

errors.

Here interest will centre on whether the multivariate error model provides a better

description of the data, and how estimated relative risks on the two types of mortality

are affected by the model choice. Model summaries are based on three chain runs of

10 000 iterations with 1000 burn-in. Under model C, this leads (Table 7.4) to a correl-

ation of only 0.08 between the two unstructured errors, but a correlation of 0.28

between the two spatial errors, vi1 and vi2.

As noted above, spatially dependent errors may proxy unobserved covariates (or

covariates not included in a regression) which are themselves spatially associated; here

such variables might include area deprivation, for example. Evidence for missing

spatially correlated covariates will be strengthened by high correlations between the

vij . However, Table 7.4 shows that the correlations are not pronounced and none are

conclusively positive.

It may be that the simpler, less parameterised, model is adequate. Using the CPO

statistics for areas i and outcomes j based on monitoring the inverse Poisson likelihood

gives marginal likelihoods for the independent error Models A and B of ÿ904 and

ÿ913, compared to ÿ908 for Model C. So Model A appears to provide the best

explanation for the data. In terms of inferences about risk, Model C identifies more

extreme relative risks: for instance, 19 out of 286 � 143� 2 area-outcome relative risks

exceed 1.25 under Model C, but only 4 under Models A and B.

7.4 DIRECT MODELLING OF SPATIAL COVARIATION IN REGRESSION

AND INTERPOLATION APPLICATIONS

The preceding discussion and examples consider continuous and discrete outcomes for

zones. As described in the Introduction, one may consider outcomes for point based

data in broadly the same way. Instead of a fixed interaction matrix W, defined perhaps

by contiguity between areas i and j, for point data any predefined adjacency is unclear,

Table 7.4 Bivariate mortality outcome with correlated

errors

Correlation Mean St. devn. 2.50% 97.50%

R12 0.08 0.14 ÿ0.19 0.35

R13 0.25 0.15 ÿ0.06 0.53

R14 0.22 0.15 ÿ0.09 0.51

R23 0.17 0.16 ÿ0.15 0.46

R24 0.19 0.15 ÿ0.10 0.47

R34 0.28 0.19 ÿ0.12 0.61
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and the influence of proximity needs to be estimated. Consider observations yi i � 1, : : n

observed at points si � (s1i, s2i, . . . : : ), which are here taken to be in two dimensional

space. A starting point for estimating the effect of proximity is provided by the matrix of

interpoint distances, dij � jsi ÿ sjj.

7.4.1 Covariance modelling in regression

For instance, suppose the goal is, as before, to estimate a regression

Y � xb� e (7:18a)

where the joint dependence between errors might be described by a multivariate Normal

prior

e � Nn 0, S� � (7:18b)

such that the dispersion matrix S reflects the spatial interdependencies within the data.

Outcomes may also be discrete, and then one might have, for binomial data, say,

Yi � Bin(pi, Ni) i � 1, : : n

logit(pi) � xib� ei

where again, the errors may be spatially dependent. Let the n� n covariance matrix for

e be

S � s2R(d)

where s2 defines the overall variance (as defined along the diagonal when i � j and

dii � 0) and R(d) � [rij(dij)] models the correlations between the errors ei and ej in terms

of the distances between the points11. The function r is defined to ensure that

rii(dii) � rii(0) � 1 and that R is positive definite (Anselin, 2001; Fotheringham et al.,

2000).

Among the most commonly used functions meeting these requirements are the expo-

nential model

rij � exp (ÿ 3dij=h) (7:19a)

where h is the range, or inter-point distance at which spatial correlation ceases to be

important12. The Gaussian correlation function has

rij � exp (ÿ 3d2
ij=h

2) (7:19b)

and the spherical (Mardia and Marshall, 1984) has rij � 0 for dij > h and

rij � (1ÿ 3dij=2h� d3
ij=2h3) (7:19c)

for dij < h; see Example 7.5 for an illustration. In each of these functions, h is analogous

to the bandwidth of kernel smoothing models. If S � s2R(d), then the covariance tends

11 Although this approach is theoretically based on point data, it can be extended to aggregated data by
considering the centroid of an area to define its location in continuous space. Ideally, such centroids take
account of variations in population density within areas; for instance, centroids of electoral wards in the UK
may be based on aggregating over smaller sub-areas of wards (known as enumeration districts), with the ward
centroid being a population weighted average of sub-area centroids.
12 This interpretation of h is clearer in the variogram version of the exponential model, considered below.
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to s2 as dij tends to zero. In some cases, there will further baseline variability (e.g. due to

measurement error) and the covariance may be defined as

S � t2 � s2R(d)

with the limiting variance as dij tends to zero being t2 � s2 instead of s2. Another

formulation in this case involves a discontinuity when dii � 0, so that

Sij � s2rij(dij) i 6� j

Sii � t2

Whatever the model adopted for the correlation between errors, the problem reduces to

simultaneously estimating the regression coefficients and the parameters of the distance

decay function.

7.4.2 Spatial interpolation

In other situations, the emphasis may be on interpolation or prediction at locations

s.new, on the basis of the observations Yi, i � 1, : : , n made at points (taken to be in two

dimensions) si � (s1i, s2i). An example of spatial interpolation or `kriging' from a

Bayesian perspective is provided by Handcock and Stein (1993), who consider the

prediction of topological elevations Ynew at unobserved locations on a hillside

given an observed sample of 52 elevations at two dimensional grid locations. To

emphasize the definition in space, denote the observations at si as Yi � Y (si) and

assume that the model for Y (si) consists only of a mean m(si) which varies over space,

where space here means the two dimensional real space. The most general process is

then

Y (s) � m(s)� e(s)

where the error vector e(s) has mean zero and covariance s2(s)R, and the mean

m(s) � E[Y (s)] models the first order trend over space. Trend, sometimes known as

large scale variation, is exemplified by the North West to South East gradient in

cardiovascular disease in England (Richardson, 1992), while small scale (second

order) variation represents features such as spatial correlation in neighbouring areas.

Just as for time series models, prediction to new locations may be facilitated by

transformation of the data to remove trend and induce stationarity, meaning the

mean and variance are independent of location, and in particular that cov(e) � s2R.

Methods for spatial interpolation may, for instance, be based on analysing

transformed observations or residuals ei which are free of trend. An example of such

data transformation is the EDA method known as row and median polish, and illus-

trated by Cressie (1993) on percents coal ash. One may also use regression to account

for spatial trend: this is known as trend surface analysis, where the above model takes

the form

Y (s) � m(s)� e(s) � x(s)b� e(s)

and the x(s) are functions of the spatial coordinates (s1i, s2i). One might have a trend

regression model with x1 � s1 and x2 � s2 (linear terms in the grid references), x3 and x4

being squared terms in s1 and s2, respectively, and x5 being an interaction between s1

and s2. Simultaneously modelling spatial effects in the mean and variance structure
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may, however, be problematic (Ecker and Gelfand, 1997), and often a constant mean is

assumed (this is known as ordinary kriging), with

m(s) � m � b0

After trend or location is allowed for in the model for m(s), the covariation in the errors

may be modelled. Direct modelling of the covariance structure of the observations Y

may also be of interest provided stationarity is plausible.

7.4.3 Variogram methods

A technique often used to estimate the covariance structure focuses on functions of

dissimilarity between errors or observations. Let S(d ) denote the covariance matrix at

distance d between points. Whereas

S(d ) � s2R(d )

diminishes to zero for widely separated points and attains its maximum as dij tends to

zero, the variogram function

g(d ) � s2 ÿ S(d ) � s2(I ÿ R(d ))

has value zero when dij � 0, and reaches its maximum at s2 as spatial covariation in

S(d) disappears; hence s2 is known as the sill in geostatistics. For instance, the vario-

gram for the exponential model is

g(dij) � s2(1ÿ eÿ3dij=h) (7:20)

As above, an extra variance parameter to allow for measurement error at d � 0 (the

`nugget' error) may be added to give

g(d ) � n2 � s2[Iÿ R(d )]

and the sill is now n2 � s2. An alternative version of a nugget error model is

g(d) � n2 � (s2 ÿ n2)[I ÿ R(d)]

In fact, the expected value of the difference13 between observations Yi and Yj (or errors

ei and ej) at separation dij is 2g(dij). Estimation of the variogram is often carried out

within narrow distance bands, such that for the n(d) points within a band {d ÿ e, d � e}
the estimated variogram is

ĝ(d) � 0:5
1

n(d)

X
dij2{dÿe, d�e}

(Yi ÿ Yj)
2

13 For points y(s) and y(t) at separation d � sÿ t, the variogram is

g(s, t) � 0:5E[y(s)ÿ y(t)]2

� 0:5Var[y(s)ÿ y(t)]

For an isotropic process (where the covariation does not depend upon the direction between s and t),

g(s, t) � g(s� D, t� D)

and taking D � ÿt gives

g(s, t) � g(sÿ t, 0) � g(d)
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So estimation of the variogram typically considering distances between all n(nÿ 1)=2
pairs {i, j} of points and then grouping them into a relatively few (say 10 or 20) distance

bands. Then the relation between ĝ(d) and d is modelled over distance bands

d � 1, : : , D via nonlinear least squares in terms of parametric forms such as Equation

(7.20). If n(nÿ 1)=2 is not unduly large, one might fit a nonlinear curve such as

Equation (7.20) to all sets of paired differences (Yi ÿ Yj)
2 or (ei ÿ ej)

2.

However, recent Bayesian approaches have tended to focus on spatial interpolation

consequent on direct estimation of the covariance matrix from the likelihood for

Yi � Y (si). Thus, Diggle et al. (1998) consider adaptations for discrete outcomes of

the canononical model

Yi � m� e(si)� ui (7:21)

where the errors ui are independently N(0, �2), and accounts for the nugget variance,

and the vector e(s) � Nn(0, s2R) models the spatial structure in the errors. This can be

seen as a continuous version of the convolution model of Equation (7.9). Ecker and

Gelfand (1997) also adopt this likelihood approach, but consider generalisations of the

usual parametric covariance structures such as those of Equations (7.19a)±(7.19c).

Whatever the approach used to estimate S(d), prediction of Ynew at a new point

s.new then involves the n� 1 vector g of covariances gi � Cov(snew, si) between the new

point and the sample sites s1, s2 . . . sn. For instance, if S(d) � s2eÿ3d=r, then the covar-

iance vector is obtained by plugging in to this parametric form the distances

d1new � jsnew ÿ s1j, d2new � jsnew ÿ s2j, etc. The prediction Ynew is a weighted combin-

ation of the existing points with weights li, i � 1, : : n determined by

l � gSÿ1

For example, the prediction Ynew under Equation (7.21) is obtained (Diggle et al., 1998,

p. 303) as

Ynew � m� g(t2I � s2R)ÿ1(Y ÿ m)

7.4.4 Conditional specification of spatial error

While joint prior specifications are the norm in such applications, one might also

consider conditional specifications with the same goals (e.g. estimation of proximity

effects and interpolation) in mind. Defining weights aij in terms of the parametric forms

in Equation (7.19), and then defining wij � aij=
P

j 6�i aij, one might specify

Yi � N(mi, t2)

mi � m� ei

where ei follows a conditional prior

ei � N
X
j 6�i

wijej, f2=
X
j 6�i

aij

 !
This is the ICAR(1) model with non-binary weights, as in Equation (7.11b). For

instance under the exponential model, aij � exp (ÿ kdij), where k > 0. As above, iden-

tifiability may be established by introducing a correlation parameter r, which might, for

instance, be assigned a prior limited to the range [0, 1], so that
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ei � N r
X
j 6�i

wijej, f2=
X
j 6�i

aij

 !
(7:22)

Another option under an ICAR(1) prior is to centre the sampled ei at each iteration in

an MCMC run. For interpolation of Y at a new location snew under this prior, one

would evaluate the function aij in terms of distances between the observed locations

s1, s2, . . . sn and the new location snew. This gives a vector of weights anew � (anew, i) and

after scaling to give wnew, the estimate of enew � Ynew ÿ m at the new location is formed

as �ieiwnew, i.

Example 7.5 Nickel concentrations The principles involved in deriving a variogram

are illustrated using a set of geochemical readings (nickel in ppm) at 916 stream

locations in the northern part of Vancouver Island in Western Canada. The logged

nickel readings are taken to lessen skewness (cf. Ecker and Gelfand, 1997). The

(916)�(915)=2 pairs of readings are accumulated into distance bands at a `lag' 0.1 km

apart. Many pairs exceed 5 km in separation, and the estimation here only includes 55

bands at average distances 0.05, 0.15, 0.25, . . . up to 5.45 km.

The observations at separation d consist of averages Gd of the differences squared

Zdij �
X

dije(dÿ0:05, d�0:05)

(Yi ÿ Yj)
2

for the nd pairs of points separated by distances between d ÿ 0:05 and d � 0:05 km. As

well as the average of Z in each band, the variance Vd of the differences (Yi ÿ Yj)
2 in

each band is recorded. The means are then taken as normal with known precision

nd=Vd , with their regression means following a spherical model

Gd � N(g(d), Vd=nd)

g(d) � n2 � (s2 ÿ n2)[3d=(2h)ÿ d3=(2h3)] if d � h

g(d) � s2 if d > h

A uniform prior on the ratio n2=(s2 � n2) is adopted, with the range assigned a uniform

prior with minimum 0.05 and maximum 5.

A two chain run of 5000 iterations leads to a nugget variance n2 averaging about 0.31,

a sill variance s2 of 0.87 and a range averaging 1.61. The range is lower than the value of

2.13 reported by Bailey and Gattrell (1995), though these authors took wider bands (a

0.2 km lag separation) to derive the variogram.

A second model is provided by the Gaussian form with

g(d) � n2 � (s2 ÿ n2)[1ÿ exp (ÿ 3d2=r2)]

This provides a lower pseudo-marginal likelihood than the spherical model, where the

relevant CPO statistics are estimated using the average inverse likelihoods. The nugget

variance increases to around 0.4, while the range is estimated as 1.36 with 95% credible

interval (1.23, 1.50).

Example 7.6 Likelihood model for spatial covariation To illustrate the direct likeli-

hood approach to estimating spatial covariation as a function of distance, 20 points si

are randomly generated within the square region defined by extreme SW point (0, 0) and
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extreme NE point (100, 100). Distances between points are obtained as dij � jsi ÿ sjj.
The Yi are then sampled from a multinormal density with mean 160 and covariance

S(d) � t2 � s2R(d)

where R(d) � exp (ÿ 3d=h), the range h � 100, the measurement error variance 20, and

the scale variance s2 � 100. The points and their associated Y values are shown in

Figure 7.2.

To reflect the WINBUGS centred Normal structure, the likelihood for the data so

generated is then univariate Normal as in Equation (7.21), namely

Yi � N(m� ei, t2)

with var(ui) � t2. In the first joint prior approach for the spatially structured errors ei, it

is assumed that

e � Nn(0, s2R)

where rij � exp (ÿ 3dij=h). The maximum range for the region concerned is 141.4, and a

discrete prior with 10 values from 14 to 140 is adopted. For the two variances a prior

ideally expresses their interdependence, and here a prior on the sum w � 1=t2 � 1=s2 is

adopted with 1=t2 � Uw, where U � B (1, 1). Since the model includes only a mean, a

residual precision exceeding 1 (variance under 1) is unlikely for the sampled data, and

two priors may be considered: a G(0.1, 1) prior with mean 0.1 and a G(0.1, 0.1) prior

with mean 1. With the first prior, a two chain run of 2500 iterations (with convergence

after 500) is taken. This yields a reasonable estimate of the range and the variance

parameters and a prediction at (10, 10) of 172.4. It is left as an exercise to experiment

with different priors for w such as the G(0.1, 0.1), and assess how predictions to (10, 10)

or other points are affected.

For the conditional prior approach, the same method as for the joint prior model is

used to define the inverse variances 1=f2 and 1=t2 (see Section 7.4.4). A N(0, 1) prior,
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constrained to positive values, is adopted for k. With f � G(0.1, 1) a two chain run of

2500 iterations (with convergence at under 500 iterations) yields an estimate for t2 close

to the generating value (posterior median 20.3), with the median of f2 estimated at 11.4

(Table 7.5). The parameter k has a skew posterior with mean 0.12. The prediction at (10,

10) is higher than under the joint prior, namely 175.

The joint prior has a better fit than the conditional prior model according to the

predictive loss method of Gelfand and Ghosh (1998), but its prediction seems to tend to

`oversmooth', since the two closest points to (10, 10) have values 172 and 182. The

prediction of the conditional prior is more in line with the neighbouring observed

values.

Example 7.7 Attempted suicide in East London Spatial covariance modelling for

discrete outcomes is illustrated by data for attempted suicide (`parasuicide') in 66

electoral wards in East London (the East London and City Health Authority). The

records of this health event are based on hsopital admissions following deliberate self-

harm. Following work by Congdon (1996) and Hawton et al. (2001), one may relate

small area variations in parasuicide to both area deprivation and the strength of

community ties or their absence (`social fragmentation'). Both factors are represented

by composite scores. The analysis involves actual and expected attempted suicides (Yi

and Ei) over the period 1990±92, for all ages and males and females combined, with ward

locations defined by their centroids as supplied by the Office of Population Censuses

and Surveys in the 1991 UK Census ward profile (and derived by population weighted

averaging over the centroids of micro areas known as enumeration districts, nested

within wards).

A simple Poisson regression (without spatial or unstructured errors) shows both

factors apparently influencing variations in the outcome, with the coefficients on

deprivation and fragmentation having posterior averages (with 95% credible intervals)

of 0.047 (0.031, 0.062) and 0.049 (0.028, 0.069).

Table 7.5 Models for simulated data and prediction to new point

Mean St. devn. 2.5% Median 97.5%

Joint Prior

m 171.3 5.8 159.0 171.3 183.2

s2 80.6 42.6 25.3 71.9 183.4

t2 19.0 15.8 2.1 15.1 58.8

h 102.1 29.7 42.0 112.0 140.0

Y.new, at (10, 10) 172.4 6.2 158.9 172.6 184.6

Conditional Prior

m 169.7 3.1 163.2 170.0 175.1

k 0.12 0.05 0.02 0.12 0.23

f2 20.3 32.9 1.1 11.4 101.6

t2 32.1 33.6 1.0 20.3 119.9

r 0.81 0.20 0.18 0.88 0.99

Y.new, at (10, 10) 175.0 3.2 168.0 175.6 179.9
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However, there may be unobserved and spatially varying risk factors which produce

spatial dependence in the regression errors. The second coding in Program 7.7 applies

the direct estimation approach using the intrinsic conditional14 prior in Equation (7.22),

and weights aij as in Equation (7.19a), to investigate the spatial structure of the errors.

For identifiability, a spatial correlation parameter r is included so that

Yi � Poi(Eiui)

ui � bxi � ei

ei � N r
X
j 6�i

wijej , f2=
X
j 6�i

aij

 !
aij � exp (ÿ kdij)

wij � aij=
X
j 6�i

aij

A run of 2500 iterations (with convergence from 500) shows the distance decay param-

eter k to average just under 2, and the error autocorrelation to average 0.74. The mean

effect of fragmentation (though not deprivation) is reduced, and the credible intervals

for both factors are widened. In particular, the fragmentation effect is no longer clearly

positive (Table 7.6).

The third model assumes a fixed interaction matrix, defined as cij � 1 if ward j is

among the five nearest neighbours of ward i (in terms of Cartesian distance), and cij � 0

otherwise. Then the ICAR(r) prior for spatial errors ei is used. This model shows an

enhanced mean deprivation effect, while the fragmentation effect is essentially elimin-

ated (Table 7.6).

Table 7.6 Models for parasuicide

Distance decay model Mean St. devn. 2.5% 97.5%

b1 (Intercept) ÿ0.13 0.11 ÿ0.37 0.07

b2 (Deprivation) 0.048 0.021 0.009 0.089

b3 (Fragmentation) 0.033 0.029 ÿ0.026 0.089

k 1.84 0.54 0.87 3.00

r 0.74 0.22 0.18 0.99

ICAR (r)

b1 (Intercept) ÿ0.16 0.11 ÿ0.37 0.07

b2 (Deprivation) 0.056 0.020 0.016 0.096

b3 (Fragmentation) 0.017 0.028 ÿ0.036 0.074

r 0.75 0.18 0.32 0.99

14 One might also consider a joint prior as in Equation (7.18b). However, computation in joint prior models
involving a structured covariance matrix S is slowed considerably by the necessity to invert the covariance
matrix during MCMC iterations. This can be avoided by discretising the prior on the parameters (apart from
s2) in S(d). Thus, for a K point grid on h in Equation (7.19a), one might pre-calculate K matrix inverses Rÿ1,
where rij � exp (ÿ 3dij=h). Obtaining a suitable grid (one that encompasses the density of the parameter) may
require some preliminary exploration of the problem. The set of matrix inverses is then input as extra data to a
model where h is assigned a discrete prior with K bins. One may also sample directly from the relevant full
conditional densities, as in Diggle et al. (1998), and certain options for spatial covariance matrices are now
implemented in the GEOBUGS module of WINBUGS14.
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In terms of the Gelfand and Ghosh (1998) criterion of footnote 5, the ICAR(r) model

has a slight edge in fit, namely 5180 as against 5250 for the direct estimation approach

(the same criterion for the simple Poisson model is 11 200). However, much can be done

to improve the performance of the direct estimation method by varying the modelling of

distance decay, for example using weights aij such as those in Equations (7.19b) or

(7.19c) or taking a power rather than exponential decay system, with aij � dÿk
ij (k > 0).

7.5 SPATIAL HETEROGENEITY: SPATIAL EXPANSION,

GEOGRAPHICALLY WEIGHTED REGRESSION,

AND MULTIVARIATE ERRORS

With geographical data, the preceding sections have shown how regression errors may

well be spatially correlated, and have sought to model spatial dependencies in errors.

However, an alternative or at least complementary perspective on spatial outcomes is in

terms of spatial heterogeneity, meaning either heteroscedastic variances, spatially vary-

ing regression effects, or both. In the preceding worked examples, one might well allow

the unstructured error such as ui in Equation (7.9) to have a variance that differs

between individual areas, or perhaps be governed by a spatial regime, involving k < n

subsets of areas, within which the areas have the same variance (Anselin, 2001). For

instance, Example 7.2 exemplifies how the assumption of constant variance of the error

terms may well be questionable, but the same approach could be applied in the other

examples, and below the data in Example 7.3 is reanalysed from the heterogeneity

viewpoint.

While heteroscedasticity may well be relevant, an alternative perspective on spatial

heterogeneity focuses on the regression parameters themselves: linear and general linear

spatial models typically assume that the structure of the model remains homogenous

over the study region without any local variations in the parameter estimates. It is likely,

in fact, in many applications that regression effects are not constant over the region of

application (Casetti, 1992). In fact, varying regression effects over space are analogous

to the more familiar state space models in time series applications which involve time

varying regression coefficients.

Spatial heterogeneity in the impacts of regression predictors has been the subject of

two major recent advances, namely the spatial expansion model Casetti (1972) and

geographically weighted regression (LeSage, 2000). These have focused on the normal

linear model (with modifications for heavy tailed errors via Student t extensions),

though extension to general linear models is quite feasible. Congdon (1997) describes

an ICAR(1) model for spatially varying regression coefficients with a univariate Poisson

outcome, and below a variation on the prior of Leyland et al. (2000) is considered to the

same end.

7.5.1 Spatial expansion model

The spatial expansion model of Casetti (1972, 1997) assumes that the impacts of one or

more of p regressors, xji on a continuous outcome Yi vary according to the locations

(s1i, s2i) of the areas or points. These locations may be taken with reference to a central

point (0, 0), so that one or both elements in the grid reference may be negative. One may

allow for fixed (i.e. non-spatially varying) impacts c1, c2, : : cp of p regressors, as well as

spatially varying ones bji( j � 1, : : , p), though the constant c0 does not have a parallel
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spatially varying effect. (The latter choice is made by Lesage, 2001, on identifiability

grounds.) Then for a metric univariate outcome Y over areas i one might have

Yi � N(mi, f) (7:23a)

mi � c0 � c1x1i � c2x2i � . . .� cpxpi � b1ix1i � b2ix2i � . . .� bpixpi (7:23b)

with the spatially varying effect (or `base effect') modelled as

bji � s1ig1j � s2ig2j j � 1, : : p (7:23c)

There are 3p� 1 parameters to estimate: the constant c0, p fixed regression effects cj ,

and the 2p base effect parameters, g1j and g2j. The combined non-spatial and spatial

impact of xj then varies by area i, and is

bji � cj � bji (7:23d)

with average over all areas

bj � cj � �bj (7:23e)

This model may therefore capture variations in the regression relationships, especially if

clusters of adjacent observations have similar regression behaviours, or if economic

relationships vary according to distance from city centres.

One way of extending these models to allow for non-constant variance is to take area

specific variance parameters fi as functions of the locations (and maybe other factors),

with

fi � exp (g0 � g1s1i � g2s2i)

7.5.2 Geographically weighted regression

The method of Geographically Weighted Regression (GWR) also makes regressions

specific to the location of point or area i (Brunsdon et al., 1996, 1998). Somewhat like

cross-validation with single case omission, GWR essentially consists in re-using the data

n times, such that the ith regression regards the ith point as the origin. The coefficients

b1i, : : bpi for the ith regression entail distance based weightings of the ith and remaining

cases (with i as the centre). These weightings define the precision parameter for each

area in a Normal or Student t likelihood.

As in Equations (7.19a)±(7.19c), the weighting might be exponential, Gaussian, or

spherical, with the Gaussian form being

aik � exp (ÿ d2
ik=2h2) h > 0 (7:24)

This function means that for small distances aik is close to 1, with the decay effect

increasing as the bandwidth parameter h tends to zero. In all these functions, a prior

may be set on h, taking account of the maximum observed inter-point or inter-area

distance. Other options are profile type analyses to maximise a fit criterion. Alterna-

tively, one may combine GWR with formal cross-validation. This is based on omitting

the ith observation from the ith geographically weighted regression, and then predicting

it using the remaining nÿ 1 cases.

Suppose the outcome Yk is univariate and metric, with sample indices k � 1, : : , n and

regressors x1k, x2k, . . . xpk for area k. Conditioning on a choice of spatial weight function,
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for the ith regression, one might use the notation yik � Yk (providing n copies of the

data), and then take

yik � N(mik, tik) k � 1, : : n (7:25a)

tik � fi=aik (7:25b)

mik � b0i � b1ix1k � b2ix2k � . . .� bpixpk (7:25c)

where fi is an overall variance, homogenous across areas in the ith regression. Since the

aik decline with distance, nearer observations have lower variances (higher precisions).

This implies a greater weighting in the ith regression such that observations near the

area or point i have more influence on the parameter estimate bi � (b0i, b1i, . . . : bpi) than

observations further away.

As in the spatial expansion method, one might robustify against outlying areas (in

terms of the estimated relationships between yik and xjk) by taking a scale mixture

(heavy tailed) approach. This allows non-constant variances with scaling factors kik

drawn from a gamma mixture G(0:5n, 0:5n), where n is the degrees of freedom of the

Student density. Thus

yik � N(mik, tik) k � 1, : : n (7:26a)

tik � fik=aik (7:26b)

fik � fi=kik (7:26c)

Lesage (2001) considers several spatial applications in terms of a choice between n � 30

or 40 (essentially a fixed variance over all areas in the ith regression so that fik � fi)

and n varying between 2 and 9, leading to non-constant variances fik. Under the latter,

one may set a higher stage prior on n itself. For example, taking

n � G(8, 2)

would be an informative prior consistent with expected spatial heteroscedasticity, and

allow one to discriminate between non-constant variances over space as against non-

constant regression relationships. On the other hand, a model with the full GWR

parameterisation {namely the set of parameters h; n; bji, j � 0, : : p; i � 1, : : n; and

fik, i � 1, : : n; k � 1, : : n) may become subject to relatively weak identifiability.

Although not considered in the `classical' GWR literature there seems nothing against

random effects models for the bji (the coefficient on variable j in the ith regression) as a

way to pool strength and improve identifiability. Either unstructured effects could be

used, with the bji referred to an overall average m:bj or spatially structured as considered

by Lesage (2001).

7.5.3 Varying regressions effects via multivariate priors

A third approach to spatially varying regression coefficients, with particular relevance

to discrete outcomes, involves extending the prior of Leyland et al. (2000) and Langford

et al. (1999). Note that this is a single regression model, not involving n fold repetition

like the GWR method. Thus, consider a model for a count outcome Yi � Poi(Eiui) such

that the coefficients on two predictors xi and zi were spatially varying. The convolution

model is then

log (ui) � a� ui � ei � bixi � gizi (7:27)
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where underlying the spatially structured effects ei, bi, and gi are three unstructured

errors ni1, ni2, ni3 which are linked to the effects in Equation (7.27) via scaled weighting

systems which are here taken to be the same across the three effects:

ei �
Xn

j�1

wijnj1

bi �
Xn

j�1

wijnj2

gi �
Xn

j�1

wijnj3

If also ui � ni4 then one may set a multivariate prior of dimension 4 (e.g. MVN or MVt)

on the nij , with mean zero for ni1 and ni4 but means bm and gm on ni2 and ni3, where bm

and gm are themselves assigned priors. In the case of Equation (7.27), let

mn � (0, bm, gm, 0) be the mean vector and �n be the dispersion matrix of dimension

4� 4. In general, for the convolution model as above but with p covariates with

spatially varying effects, �n will be of dimension (2� p).

This model is relatively simple to extend to multivariate dependence ± as compared to

adapting, say, the ICAR model ± if allowing for interdependence of the nij improves

model fit. One might also envisage modifying the joint prior (7.18b) to allow several

spatial effects (such as ei, bi and gi in Equation (27)) to both interact and have a

different distance decay.

Coefficients are likely to vary when the regression association shows inconsistent

strength over the region of interest. Consider the coefficients on xi, and suppose mb

is clearly positive. If a set of neighbouring areas have high regression coefficients

(e.g. bi above the mean mb), this means that in this subregion high values of xi are

consistently associated with high relative risks, and low values of xi with low relative

risks. By contrast, a set of bi around zero in a particular subregion will reflect

an inconsistent pattern: high values of xi are sometimes associated with low relative

risk, sometimes with high relative risk. This perspective may provide additional

insight into the sometimes cited rationale for the spatial term ei in the fixed coefficient

model

log (ni) � a� bx� ui � ei

namely that ei proxies risk factors that are unobserved but smoothly varying in space. In

fact, the varying coefficient model may clarify where in the region such unobserved risk

factors are more relevant.

Example 7.8 Columbus crime: spatial expansion and GWR Here the spatial expansion

and GWR methods are considered in the context of the Columbus crime data set, as

analysed in Example 7.2. For the expansion method, one might take the geographically

varying coefficients bji in Equation (7.23c) to be functions of the distance di of {s1i, s2i}

from the Columbus centre. The centre may be taken as area 32 in terms of the order of

areas set out in Anselin (1988). This gives a base effect with just p parameters (rather

than the 2p parameters in Equation (23c)), namely

bji � digj j � 1, : : p
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However, suppose the original grid references, namely eastings-northings {s1, s2}, are

retained. This option involves 2p parameters in the base effect model, and coefficients

for area i as

bji � s1ig1j � s2ig2j j � 1, : : p

Note that s1 is lowest in the West and s2 is lowest in the South.

For illustration, the total effects on crime rates of income (x1) and house values (x2)

for the first five areas are monitored over the MCMC run. These total effects are related

both to the base effects operating via the locations {s1i, s2i}, as well as the overall non-

spatial effects, c0 (constant), c1 (income), c2 (house values) after allowing for the spatial

expansion. Note that a linear model with homogenous coefficients (and spatially

uncorrelated errors) gives parameters and t-ratios as follows:

c0 � 68:6(14:5), c1 � ÿ1:6(4:8), and c2 � ÿ0:27(2:7)

Relatively informative N(0, 1) priors are assumed for g1j and g2j. A full spatial

expansion model as in Equation (7.23b) shows no non-spatial effect c2 of house values,

though a negative non-spatial effect of income (c1) remains, and is more negative than

under the homogenous coefficients model. Table 7.6 shows the combined effects, as in

Equation (7.23d), for areas 1 to 5. The base effects may be interpreted as deviations

from the overall effect as one moves from west to east or from south to north. Thus, the

effect of income becomes less negative as one moves east, but more negative as one

moves north. The effects of income in areas 1±5 are less negative than the average of

ÿ1.95 given by b1 (see Equation (7.23e)), while those of house values are more negative

than the average.

For the GWR analysis, a Gaussian distance decay function is taken, with

aik � f(dik=[sdh])

where f is the standard normal density, sd is the standard deviation of all the inter-

neighbourhood distances and h � 1 is taken as known (as indicated by a preliminary

search over values between 1 and 10). As is usual in a GWR analysis, varying regression

intercepts between the n regressions are allowed, as well as varying predictor effects over

space (see Equation (7.25c)). The Bayesian sampling approach to estimation means one

can monitor statistics such as the minimum and maximum bji for predictor j over all

i � 1, : : , n regressions, and also the probability that the ith regression provides the

maximum or minimum coefficient.

From a single chain of 20 000 iterations (500 burn in), Table 7.7 shows that the

average income and house value effects, denoted bavg[ ] in Program 7.8, are similar to

those obtained from the homogenous coefficient model and cited above.

Example 7.9 Lip cancers; varying regression effects and heteroscedasticity This

example considers the Scottish lip cancer data of Example 7.3, but using the varying

coefficient model of Equation (7.27) as one alternative explanation of the observations.

The model adopted for varying coefficients is

log (ui) � a� ei � bixi

where xi is 0.1 times the percent of AFF workers. The other `spatial heterogeneity'

approach involves non-constant variances in the model
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Table 7.6 Spatial expansion model (three chain run of 10 000 iterations,

500 burn in)

Total effects for areas 1±5

Mean St. devn. 2.5% Median 97.5%

Income

1 ÿ0.70 0.56 ÿ1.74 ÿ0.71 0.44

2 ÿ0.93 0.50 ÿ1.88 ÿ0.95 0.09

3 ÿ1.13 0.46 ÿ2.00 ÿ1.14 ÿ0.21

4 ÿ0.98 0.47 ÿ1.88 ÿ0.99 ÿ0.03

5 ÿ0.73 0.60 ÿ1.83 ÿ0.75 0.52

House values

1 ÿ0.66 0.15 ÿ0.97 ÿ0.66 ÿ0.37

2 ÿ0.56 0.13 ÿ0.82 ÿ0.56 ÿ0.30

3 ÿ0.48 0.12 ÿ0.71 ÿ0.48 ÿ0.25

4 ÿ0.56 0.13 ÿ0.81 ÿ0.56 ÿ0.31

5 ÿ0.63 0.16 ÿ0.95 ÿ0.62 ÿ0.32

Base effects income (West to East then South to North effects)

g11 0.105 0.054 0.004 0.106 0.211

g21 ÿ0.047 0.034 ÿ0.112 ÿ0.048 0.018

Base effects house values (West to East then South to North effects)

g12 ÿ0.042 0.021 ÿ0.083 ÿ0.043 ÿ0.001

g22 0.027 0.013 0.001 0.028 0.052

Non-spatial effects

c0 69.6 4.8 60.1 69.6 79.1

c1 ÿ3.45 1.77 ÿ6.87 ÿ3.29 ÿ0.27

c2 0.16 0.66 ÿ1.05 0.11 1.39

Total effects

b1 ÿ1.95 0.38 ÿ2.68 ÿ1.94 ÿ1.18

b2 ÿ0.12 0.12 ÿ0.34 ÿ0.12 0.12

log (ui) � a� ui � bxi

such that ui � N(0, 1=fi) and fi � fki, where ki � G(0:5n, 0:5n).

A two chain run of 50 000 iterations for the varying coefficient models (with conver-

gence by 5000 iterations) shows a DIC of around 85.7 which is very close to that

(namely 85.6) of the ICAR(r) model of Example 7.3. The coefficients on the AFF

variable are highest in a belt of counties in the Highlands and on the Moray Firth, where

variations in lip cancer mortality seem to follow the percents AFF quite closely: these

are Nairn (county 13), Skye-Lochalsh (1), Inverness (19), Banff (2) and Ross and

Cromarty (5). The lowest coefficients are in a set of counties in east central Scotland

(just north or east of Edinburgh), namely Clackmannon (43), Falkirk (42), Kirkcaldy

(25), Dunfermline (26) and two counties in the far south west of Scotland, namely
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Table 7.7 GWR analysis: varying effects of income and house value

Mean St. devn. 2.5% Median 97.5%

Average Intercept 68.9 0.7 67.5 68.9 70.2

Income ÿ1.60 0.05 ÿ1.71 ÿ1.60 ÿ1.50

House Value ÿ0.24 0.02 ÿ0.28 ÿ0.24 ÿ0.21

Maximum Intercept 83.2 3.2 78.2 82.8 90.2

Income ÿ0.18 0.26 ÿ0.60 ÿ0.20 0.40

House Value 0.19 0.09 0.04 0.17 0.40

Minimum Intercept 49.1 4.6 39.3 49.4 56.8

Income ÿ2.78 0.24 ÿ3.34 ÿ2.75 ÿ2.39

House Value ÿ0.72 0.07 ÿ0.86 ÿ0.71 ÿ0.60

Annandale (55) and Stewartry (32). In these two subregions lip cancer mortality is low or

average, but the percent AFF varies widely, and Clackmannon has below average

mortality but a percent AFF of 16. The average coefficient on the AFF variable

is 0.51 with 95% interval (0.20, 0.87), higher than under the conditional autoregressive

priors.

The heteroscedastic approach employs a discrete prior with 28 bins on the value of

n. There are greater prior concentrations of the grid at lower values of n. The posterior

median for n is 18, suggesting heavier tails than in the Normal. Other aspects of

this model are that it also enhances the AFF coefficient, with a two chain run of

10 000 iterations (1000 burn in) showing a posterior mean and 95% interval of 0.68

(0.40, 0.96). There is a loss of fit (compared to the models in Example 7.3) with the DIC

standing at 93, but various model developments such as adding a spatially correlated

error may improve on this. The lowest ki are on Skye-Lochalsh, Annandale and

Falkirk.

7.6 CLUSTERING IN RELATION TO KNOWN CENTRES

The above modelling strategies have considered whether measures for aggregate

areas or individual outcomes exhibit a spatial structure without focusing on known

cluster centres or seeking to identify unknown cluster centres. In environmental epi-

demiology, it is frequently the goal to assess the degree of focused clustering in

relation to one or more hazard sites. For instance, the existence or otherwise of

clustering of child leukaemia cases near nuclear processing plants or hazardous

waste sites has generated a range of possible models (Cocco et al., 1995; Waller et al.,

1994). The analysis may focus on individual disease events and the pattern of their

spatial locations in relation to one or more hazard sites, or on aggregate disease counts

for small areas, again in relation to point sources. In the absence of individual or

aggregate measures of exposure, the distance from the source is often used as a proxy

for exposure.

For testing clustering of events around a specified point source (i.e. a putative hazard

site), a number of testing procedures have been suggested, but may have limited potential

to model simultaneously features such as the impact of covariates, the presence of

overdispersion, or generalised spatial dependence in the outcome beyond that associated

with exposure to the hazard source. The basis of a more general parametric modelling

304 MODELS FOR SPATIAL OUTCOMES



strategy in relation to environmental hazard sites builds on the approaches set out by

authors such as Diggle (1990), Diggle and Rowlingson (1994) and Morris and Wakefield

(2000). More general modelling approaches that offer a synthesis with the work of

Besag et al. (1991) and others in relation to unfocused clustering appear in Lawson

(1994), Lawson et al. (1999) and Wakefield and Morris (2001).

Diggle (1990) suggested that the relative risk for disease events at location s in relation

to a point source at s0 could be represented as

l(s) � rg(s)a(d)

where d � jsÿ s0j is the distance between the location and the point source, r is the

overall region-wide rate, g(s) is the population at risk at location s, and a(d ) is a distance

decay function expressing the postulated decline in exposure at greater distances from

the source, and preferably also the (possibly elevated) relative risk of disease at the

source as compared to the `background' level.

For instance, possible distance decay functions, expressing monotonic lessening in

risk as distance from the point source increases, involve the additive form

a(d ) � 1� Z f (d )

where f ( ) might be a simple exponential function

f (d ) � exp (ÿ ad )

or a squared exponential

f ( d) � exp (ÿ ad2 )

Taking a > 0, these functions have the property that a( ) tends to 1 (the background

risk) as d tends to infinity. Also, 1� Z can be interpreted as the relative risk at or close15

to the source itself (where d is near 0). If in fact Z � 0, or effectively so, there is no

association between risk and distance from the source. Another type of model is `hot

spot' clustering, when there is uniformly elevated risk in a neighbourhood around the

focus, but background risk elsewhere. Thus, for tracts at distances d < d from the focus,

the risk is 1� Z, but for d > d, the risk is either just set at 1, or maybe follows a distance

decay from the threshold distance:

a(d ) � 1� Z exp (ÿ a[d ÿ d]2)

Models where direction u, not just distance, from the point source to the case event or

tract is relevant (e.g. when prevailing winds influence the potential spread of pollution)

might include terms in sin u and cos u. If there is a peak risk away from the source, then

a term in log(d ) as well as d can be included. Lawson and Williams (1994) suggest the

additive form

a(d, u) � 1� Z f (d, u)=d

so that risk still tends to 1 as d !1, but f ( ) may include aspects of direction.

15 With certain decay functions f (d ) may not be defined at d � 0, and a minimum possible distance of
residence from source may be defined and used instead.
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7.6.1 Areas vs. case events as data

In area studies with observations consisting of disease counts Yi, the population risk in

area i might be approximated by the expected disease total Ei, based on the population

age structure in that area, and d might be the distance between the area centroid and the

point source. Additionally, to account for the more usual sources of overdispersion or

spatial correlation, the model for the Poisson mean mi might include unstructured

effects ui and spatial effects ei as in the preceding sections. If area characteristics xi

(such as deprivation) also influence the disease risk, one has a model such as

mi � rEi exp (bxi)[1� f(di)] exp (ui � ei)

or

log (mi) � log r� log (Ei)� bxi � log [1� f (di)]� ui � ei

Often, observations consist of a set of cases and their locations. On the assumption that

individuals are independent (in spatial terms) with regard to risk of disease, possibly

after allowing for relevant risk factors or confounders, one may, however, model the

likelihood of case events i � 1, : : n at locations (si) in relation to a point source at s0.

The population density may be modelled via kernel methods, typically using aggregated

administrative data for districts within the region. An alternative is to proxy the

population distribution using a control disease unrelated to the risk from the point

source (e.g. cardiovascular conditions may be assumed independent of residence near

high voltage electricity lines, but certain cancers may not be).

Let the n1 disease cases be `successes' in terms of a Bernoulli process, with yi � 1. So if

the n2 control disease cases (with yi � 0) have locations si, i � n1 � 1, : : n1 � n2, the

probability of caseness pi can be modelled in terms of the decay function, and possibly

individual risk factors xi (which are confounders in terms of the main interest in the

relation between risk and the pollution sources). Thus,

yi � Bernoulli(pi)

with

pi=(1ÿ pi) � r*[1� f (d )] exp (bxi)

This conditional approach (Diggle and Rowlingson, 1994; Lawson, 2001, p. 44) has the

advantage of not requiring an estimate of g(s). Note, however, that the interpretation of

r* depends upon the selection of cases and controls; specifically, r* � (a=b)r, where a is

the sampling proportion of cases (often 100%), b is the sampling proportion of controls,

and r the population odds of disease (Diggle et al., 2000).

7.6.2 Multiple sources

Often there are multiple sources of environmental pollution, and assuming each site

contributes to the risk independently of others one may take (Biggeri and Lagazio, 1999)

m(s) � rg(s)a(d, w) � rg(s) 1�
X

k

Zk f (d, ak)

" #
For instance, one option is

m(s) � rg(s)a(d, w) � rg(s) 1�
X

k

Zk exp (ÿ akd )

" #
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though often either or both of Zk and ak are taken equal. Morris and Wakefield (2000)

propose a slightly different formulation, with

m(s) � rg(s)a(d, w) � rg(s)
Y
k

[1� Zk exp (ÿ akd)]

Lawson (2001) discusses adaptation of the multiple source model to the case where both

the geographic location of the cluster centres and their number are unknown. Other

issues are relevant in multi-site analysis, for example, proximities between sites them-

selves: risk from two sources relatively close to one another may overlap.

Example 7.10 Leukaemia cases and hazardous waste sites A focused modelling

analysis for area disease counts is illustrated by cases of leukaemia during 1978±82 in

790 geographic tracts in upstate New York, as considered by Waller et al. (1994) in

relation to 11 hazardous waste sites. The observed data in fact contain decimal parts

because some cases could not be allocated with certainty to particular cells; the observed

Oi vary from 0 to 9.29. For illustration, the analysis is based on counts obtained as the

integer parts of Oi � 0:5, so Yi � Int [Oi � 0:5].

A model including a distance decay function is essentially a departure from random-

ness, where randomness implies that each person in the population has the same chance

of a disease regardless of their place of residence (Waller et al., 1994). Under random-

ness and without allowing for possible overdispersion, Yi � Poi(rPi), where Pi is the

population of the ith tract. Suppose, instead, the expected counts under randomness are

multiplied by an additive or multiplicative function for relative risk as a function of

distance from, or contiguity to, the focus.

For instance the so-called clinal clustering model assumes that

mi � rPi[1� Z f (di)] (7:28)

where a(di) is a distance decay function in terms of the distance of tract i from the

source. To allow a `test' of the null model

mi � rPi

against the full model in Equation (7.28), one may introduce a regression selection

indicator, H � Bern(0.5). Then, the likelihood involves the mean function

mi � rPi[1�HZ f (di)]

and the probability for the full model is the posterior probability that H � 1.

Here this approach is first carried out separately for each of the 11 sites, using the

function f (d) � exp (ÿ ad). Note that this involves possible issues of adjusting for

`multiple tests'. This analysis employs the device of replicating the data 11 times and

fitting a different Poisson model to each replicated data set, such that the mean for the

kth analysis is based on distances from the kth site (Model A in Program 7.10). Since the

sites are all waste disposal sites, and a single disease risk is under consideration, a single

parameter a seems plausible to model the distance decay effect over the 11 sites (taking

ak � a means that strictly the `tests' are not separate). The excess risk Zk is allowed to

vary by site, and eleven Bernoulli variables Hk model the chance that Zk is positive. So

the mean for the kth analysis is

mik � rPi[1�HkZk exp (ÿ adik)]
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Informative G(1, 1) priors placing low weight on large values are adopted for a and Zk.

A relatively diffuse G(1, 0.001) prior is taken for r. A two chain run of 2000 iterations

(with convergence at 250) yields probabilities on the full model in Equation (7.28)

similar to those implied by the classical hypothesis test procedure of Waller et al.

(1994, p.20). Specifically, the averages of the statistics 1ÿ Pr(H � 1) are intermediate

between the significance test probabilities cited in Table 4 of Waller et al. (1994) for

Stone's test and Rao's test (see also Lawson, 1993). The latter test is based on the sum of

the deviations of the observed disease incidence in each tract from its expectation rPi

under the null model, weighted by the exposure f (d ), where in Waller et al. (1994) and

Waller and Poquette (1999) the latter is set as f (d ) � 1=d.

Thus, the probability that Hk � 1 exceeds 0.995 for the first two sites (Monarch

Chemicals, IBM Endicott) and is around 0.98 for the third, fourth and seventh sites

(Singer, Nesco, Smith Corona). The parameter a is around 0.09 with 95% interval

{0:04, 0:14}. The results here are based on allowing a free parameter in the function

f (d ), and one could follow the Waller et al. approach more literally by setting f (d ) � 1=d,

though this would affect the estimates of the excess risk at the source (i.e. ofZ � RRÿ 1).

A global test of risk from one or more waste sites is implemented via the multi-site

model

mi � rPi 1�H
X

k

Zk exp (ÿ ad)

" #
with H � Beta(0.5). The probability that the Bernoulli indicator H is 1 is equivalent to

the probability that there is risk from one or more sites. In fact16, there is a negligible

probability that Pr(H � 0), and so clear evidence of risk from one or more sites. The

estimate of the distance decay parameter is higher under this model, at around 0.30, and

the Zk vary from 1.88 (site 7) to 0.27 (site 10). Some relative risks are clearly more

elevated than others, with 2.5% points for Zk away from zero in the first, fifth and

seventh sites (Table 7.7).

The Poisson mean might be altered to a form with site specific selection indicators Hk

mi � rPi 1�
X

k

HkZk exp (ÿ ad)

" #
to account for differential risks by site. Applying this approach17 in Model C in

Program 7.10, it appears that the probabilities Pr(Hk � 1) are highest for sites 1, 5

and 7 (the probabilities are between 0.95 and 0.97), though not for site 2 (IBM Endicott)

as in the `independent tests' model A. The close proximity of sites 1 and 2 may be noted,

and this may affect its estimated risk in a multi-site model.

Possible extensions of these forms of model are to add unstructured or spatially struc-

tured errors for the 790 tracts, or if theywere available, to add tract covariates (e.g. income).

Example 7.11 Larynx cancer in Lancashire An example of an individual level out-

come, we consider event case data consisting of 57 larynx cancer cases that occurred in a

part of Lancashire over 1974±83. The controls are provided by 917 lung cancer cases in

the same study region. The point source implicated in the disease is a waste incinerator

16 As judged from a two chain run of 2000 iterations, and convergence by 250 iterations.
17 Estimates of Zk in this model should only be based on the iterations where Gk � 1, since when Gk � 0 Zk is
just a sample from the prior.
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Table 7.7 Estimates of distance and site risk parameters;

Global risk model

Mean St. devn. 2.5% Median 97.5%

a 0.302 0.102 0.146 0.289 0.546

Z1 1.478 0.814 0.209 1.361 3.404

Z2 0.543 0.415 0.023 0.455 1.541

Z3 0.714 0.598 0.024 0.576 2.198

Z4 0.754 0.688 0.020 0.565 2.547

Z5 1.168 0.507 0.321 1.123 2.275

Z6 0.907 0.888 0.021 0.636 3.380

Z7 1.884 0.854 0.396 1.822 3.786

Z8 0.977 0.846 0.035 0.758 3.211

Z9 0.796 0.771 0.027 0.571 2.797

Z10 0.273 0.234 0.010 0.213 0.855

Z11 0.866 0.772 0.026 0.655 2.963

at location (355000, 414000). Although frequently analysed, this data set has a relatively

small case total, and firm identification of exposure effects in terms of (say) distance

decay may be difficult to obtain.

As above, the intensity model is

l(s, d) � r*g(s){1� f (d)}

or with individual confounders xi

l(s, d) � r* exp (bxi)g(s)[1� f (d)]

but in the conditional logistic model (Diggle and Rowlingson, 1994), the population

intensity is `conditioned out'. In the present example, there are no confounders. So if

Yi � 1 for larynx cancers and Yi � 0 for lung cancers, the simplest sampling model is

Bernoulli, with

Yi � Bernoulli(pi)

pi=(1ÿ pi) � r*[1� f (d)]

Here terms in d and log(d) are introduced in f ( ) to allow for peaked exposure and

incidence away from the source. Additionally, directional measures are introduced,

namely terms in cos (u) and sin (u), where u is the angle (in radians) between source

and case=control event. For instance an event due North of the source would have

angle 908 and radian value u � 1:57, while an event due South of the source would

have angle and radian of 2708 and 4.71, respectively.

An initial `variable selection' stage involves setting binary selection indices G1 to G4

on the coefficients a1 to a4 in the function

a(d, u) � [1� exp {ÿ a1d � a2 log (d)� a3 cos (u)� a4 sin (u)}=d]

where a1, a2 are both taken as positive (Lawson and Williams, 1994) and N(0, 1) priors

constrained to positivity are adopted. For a3 and a4 N(0, 10) priors are assumed.

A single chain of 10 000 iterations show selection rates slightly above 0.5 for a1 and

a3 by comparison to prior rates of 0.5 under the priors Gj � Bern(0.5), whereas a2

and a4 have selection rates below 0.5. So there is (rather weak) evidence that these are

potentially more important predictors of spatial variations in risk and incidence.
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Investigations show that fitting a model with both cos (u) and linear distance is not

well identified. Predictive methods (e.g. Gelfand and Ghosh, 1998) are then used to

assess the alternative single predictor models

a(d, u) � [1� Zb exp {b cos (u)}=d]

a(d, u) � [1� Za exp {ÿ ad)}=d]
(7:29)

Note that the first model has a (preset) distance decay effect by default. In fact, this

model identifies a reasonably well defined negative effect of b, or raised risk in the NW

and SW quadrants, after taking account of the preset inverse distance effect. The

parameter Zb is higher than Za, with posterior median of 0.56 as against 0.22 for Za.

However, the models are comparable in terms of predictive fit, both around 82.5.

Figure 7.3 is a kernel plot of the relative risk effect under Equation (7.29), namely

Zb � RRÿ 1, and shows it to be distinct from the zero null value, so apparently

identifying a real effect. Figure 7.4 shows the posterior density of the directional

parameter.

7.7 SPATIO-TEMPORAL MODELS

The above applications have considered spatial outcomes without reference to other

dimensions, but the evolution over time of dependent variables for spatial outcomes has

relevance in several contexts. For instance, tests for clustering may be extended to

include both time and space (e.g. Rogerson, 2001), and prediction from panel data of

area data may be extended to include spatial correlation (Baltagi and Dong, 2000). If

age and cohort are included with time, then a broad class of spatial Age-Period-Cohort

(APC) models may be used in modelling and forecasting mortality or disease incidence

by area (Schmid and Knorr-Held, 2001). The focus here only illustrates the potential for

Bayesian modelling, and considers especially ecological regression through time, and

spatio-temporal models for innovation.
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Figure 7.3 Plot of distance decay parameter
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Figure 7.4 Kernel plot of directional parameter

In terms of ecological regression, Carlin and Louis (1996) discuss analysis of counts

of deaths or new disease cases by area i and demographic subgroups j (age, sex,

ethnicity) which are recorded at regular intervals t. This would typically generate

binomial or Poisson outcomes in relation to populations at risk Pijt. Thus, possible

specifications are

Yijt � Bin(rijt, Pijt)

and

Yijt � Poi(Eijt fijt)

with the expected cases Eijt based on applying standard rates (e.g. national rates) to the

area populations Pijt. The model for the Binomial rates rijt or relative risks fijt, and

hence the priors on the parameters of that model, would be specified in terms of two

major criteria, namely the desire to stabilise rate estimates by smoothing the crude

estimates, and the need for the model to reflect both spatial and temporal dependence in

the observations or regression errors.

Consider a model with just areas and time, and with the impacts of different demo-

graphic structures controlled for by standardisation. Thus,

Yit � Poisson(Eitfit)

and a simple model for the log relative risk Zit � log (fit) would be as a sum of constant

`unstructured' effects ui, spatially dependent effects ei for instance with an ICAR(r)

form as in Equation (7.12), and time parameters dt.

For a short panel of observations with an ICAR(r) model for ei and with

Zit � m� ui � ei � dt

the dt may be best modelled as fixed effects, with d1 � 0 for identifiability. Alternatively,

the intercept m can be omitted, and the dt as free parameters will then detect any

trend.
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If an ICAR(1) form is used for the ei, then it will be necessary to assume both m � 0

and d1 � 0 unless the sampled values of ei are centred at each iteration; further

questions of identifiability are considered by Waller et al. (1997). To allow for unstruc-

tured space-time interactions cit, one might extend the relative risk model (assuming an

ICAR(r) model for ei,) to

Zit � m� ui � ei � cit

where the cit are distributed about time specific means dt.

7.7.1 Space-time interaction effects

In practice, more complex issues occur as discussed, for example, by Knorr-Held and

Besag (1998), Gelfand et al. (1998) and Sun et al. (2000). For example, it may be that the

relative balance of unstructured random variation as against spatial clustering is

changing over time. This might suggests a model with clustering differentiated by

time, such as

Zit � m� ui � Zit

where the spatially correlated risk Zit has a time specific variance k2
t (Carlin and

Louis, 1996). Modelling options for spatially structured area-time interactions Zit

are very wide, since autocorrelations over areas may be combined with those

over time. For example, defining Zt � (Zi1, Zi2, . . . :Znt) and a white noise errors

nt � (ni1, ni2, . . . :nnt), then instead of a simple cross-sectional spatial correlation

Zt � lWZt � nt

one may have one or more time lagged spatial correlation effects, such as

Zt � l1WZt � l2WZtÿ1 � nt

Lagazio et al. (2001) assume spatial effects are described by contiguity and describe a

`random walk' scheme in space and time, involving smoothing forward as well as back

in time, whereby

Zit � N(0:5[Zi, tÿ1 � Zi, t�1]�Nÿ1
i

X
j�i

Zjt ÿ
X
j�i

Zj, tÿ1 ÿ
X
j�i

Zj, t�1

" #
, k2=[2Ni])

where j � i denotes those Ni areas of i which are its first order neighbours.

7.7.2 Area level trends

Another issue centres on modeling trends in the outcome (e.g. mortality) relative, say, to

national levels. Such trends may be different between areas. A linear trend, uniform

across all areas, can be included in a model such as

Zit � m� gt� ui � ei

To allow for differentiated trends between areas with some falling more than the

national or regional trend, some much less, one might specify a random growth rate.

Thus following Bernardinelli et al. (1995),

Zit � m� git� ui � ei (7:30)
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where gi may be taken as unstructured growth rates with overall average growth rate g.

However, if trends are expected to be differentiated in a spatially distinct pattern (e.g. if

the largest relative falls in the outcome are spatially clustered), then the gi might be

assumed to be spatially dependent, for example with ICAR(r) or ICAR(1) form and

with variance s2
g (see also Sun et al., 2000).

Temporally persistent differences in the outcome may be important. For example,

persistent mortality differences across demographic, cultural, regional and groups have

been noted by authors such as Kerkhof and Kunst (1994). Even when there is some

shuffling of spatial relativities in the outcome over time, one may nevertheless ask how

persistent differentials across areas are, for example, via introducing a temporal auto-

correlation in the risks. This may be expressed in a panel model such as

Zit � m� cit � ui � ei

cit � rcitÿ1 � nit

for time periods t > 1, where the nit are white noise errors, and

Zi1 � m� ci1 � ui � ei

for the first period. For stationarity, the temporal correlation parameter r is constrained

to be between ÿ1 and �1. The cit for t > 1 have mean rcitÿ1 and precision tn. The ci1

are assumed to follow a distinct prior with mean 0 and precision t1.

Differences in persistence between areas under either model could be handled by

making persistence an area specific random effect ri, either spatially structured or

unstructured. Thus,

Zit � m� cit � ui � ei

cit � ricitÿ1 � nit

(7:31)

for time periods t > 1, and

Zi1 � m� ci1 � ui � ei

for t � 1. If the ri are assumed spatially uncorrelated, then their prior density could be

of the form ri � N(0, s2
r) where s2

r represents variations in persistence.

7.7.3 Predictor effects in spatio-temporal models

Finally, variability in relative risks over both space and time may be caused by changing

impacts of social and other risk variables. Trends in the impact of a time-specific

predictor Xit may be modelled via

Zit � btXit � m� ui � ei

with bt either fixed or random effect (e.g. modelled by a first order random walk).

A model with both area and time dimensions also allows one to model differences in the

importance of explanatory variates between areas, for instance via a model such as

(Hsiao and Tahmiscioglu, 1997)

Zit � biXit � dt � ui � ei

and this may be achieved without recourse to the special methods of Section 7.5.

However, models with regression coefficients which are both time and spatially varying

as in
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Zit � bitXit � dt � ui � ei

would suggest using GWR or multivariate prior methods, as discussed earlier in

Section 7.5.

7.7.4 Diffusion processes

Behavioural considerations may also influence the model form. In both medical geog-

raphy and regional economics, diffusion models have been developed to describe the

nature of spread of new cases of disease, or of new cultures or behaviours in terms of

proximity to existing disease cases or cultural patterns. Here the model seeks to describe

a process of contagion or imitation, namely of dependence among neighbouring values

of the outcome, and error terms may possibly be taken as independent, once the

autodependence in the outcomes is modelled satisfactorily. To cite Dubin (1995) in

the case of adoption of innovations by firms, `just as a disease spreads by contact with

infected individuals, an innovation becomes adopted as more firms become familiar

with it, by observing prior adopters'. If the outcome is absorbing, or at least considered

irreversible for modelling purposes, then the process of diffusion continues until all

potential subjects exhibit the behaviour concerned, and the process approximates

S-shaped or logistic diffusion.

Dubin considers a dynamic logit model of diffusion to describe the adoption of

innovations by firms or entrepreneurs. The observed outcome is binary Yit, equalling

1 if the innovation is adopted by firm i at time t, and Yit � 0 otherwise. Note that it is

not possible for Yi, t�k (k > 0) to be zero of Yit is 1. This outcome is generated by an

underlying utility or profit level Yit*, which is a function of the firm's characteristics and

its distance from earlier adopters:

Yit* � Xitb�
X

j

rijYj, tÿ1 � uit (7:32a)

where Yit* is the expected profit from the innovation and the uit are without spatial or

time dependence. The influence rij of prior adopters is a function of inter-firm distance

dij , such that

rij � a1 exp (ÿ a2dij) (7:32b)

with rii � 0. Here a1 expresses the impact on the chances of adopting an innovation of

the presence of adjacent or nearby adopters (with dij small), and a2 > 0 expresses the

attenuation of this impact with distance.

Example 7.12 Adoption of innovations In a similar way to Dubin (1995), we simulate

data over T � 5 periods for 50 firms using a grid of 100 � 100 km, so that the maximum

possible distance between firms is 140 km. The first period data are generated with

Yi1* � ÿ3� 2x1i ÿ 3x2i (7:33)

where x1 and x2 are standard normal. Grid references (s1i, s2i) are randomly selected

from the interval (0, 100). 15 out of the 50 firms are adopters at time 1 (i.e. have positive

Yi1*) using this method. At the second stage the observations Yit, at times t > 1, are

generated according to the `profits model' in Equation (7.32), taking a1 � 0:5 and

a2 � 0:02 and distances defined between pairs (s1i, s2i). In this example, if it is known
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that Y1 � 0 then Y0 � 0 necessarily, so there are partly observed `initial conditions'. For

firms with Yi1 � 1, one may simulate Yi0 using an additional parameter p0.

Then with the 50� 5 simulated data points, the goal is to re-estimate the generating

parameters. A beta prior B(1, 1) is adopted for p0, and N(0, 1) priors on the parameters

�j of the influence function rij (with only positive values allowed). Non-informative

priors are taken on the parameters of b. On this basis, a two chain run of 2500 iterations

(and convergence from 250) shows the b parameters are re-estimated in such a way as to

correspond to those in (7.33), and the distance decay parameter a2 is also closely

reproduced (Table 7.8).

Especially in processes where transitions from 1 to 0 as well as from 0 to 1 are

possible, one might also consider space and time decay dependence via functions such as

rijt � a1 exp (ÿ a2dij ÿ a3t)

with the sign and size of a3 reflecting the path of the process over time.

In the present application (despite knowing that the mode of data generation assumes

a2 fixed over time), one may more generally envisage distance decay varying over time,

since the balance between adopters and non-adopters, and hence the spatial distribution

of the two categories, changes through time. Therefore, an alternative model here takes

a2 to be time varying with

Yit* � Xitb�
X

j

rijtYj, tÿ1 � uit

rijt � a1 exp (ÿ a2tdij)

In fact the predictive loss criterion (footnote 5) with w � 1 shows the constant decay

effect model to be slightly preferred with D.z at 22.1 compared to 23.6 under time

varying decay. The coefficients a2t are much higher in the first two periods18, with

means 0.8 and 0.33 (though both parameters have skewed densities), as compared to

means for the last three periods of 0.041, 0.035 and 0.031, respectively. The a1 coeffi-

cient is elevated to 0.9. A suggested exercise is to fit the model with both distance

function parameters time varying:

rijt � a1t exp (ÿ a2tdij)

Example 7.13 Changing suicide patterns in the London boroughs This analysis con-

siders spatio-temporal models in a disease mapping application with event count data.

Specifically, the focus is on trends in period specific total suicide mortality (i.e. for all

Table 7.8 Profits model for spatially driven innovation

Mean St. devn. 2.50% Median 97.50%

a1 0.58 0.20 0.25 0.55 1.05

a2 0.019 0.009 0.003 0.019 0.037

b1 ÿ3.10 0.61 ÿ4.37 ÿ3.07 ÿ1.99

b2 1.94 0.35 1.30 1.93 2.65

b3 ÿ3.28 0.53 ÿ4.37 ÿ3.26 ÿ2.32

p0 0.032 0.030 0.002 0.026 0.103

18 Convergence occurs later in this model, at around 500 iterations in a two chain run of 2500 iterations.
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ages and for males and females combined) for the 33 boroughs in London and eight

periods of two years each between 1979 and 1994. Expected deaths are based on

national (England and Wales) age-sex specific death rates for each period. There is

evidence for changing suicide mortality in London over these periods relative to

national levels, and for shuffling of relativities within London. Thus, London's suicide

rate seemed to be falling against national levels with an especially sharp fall in central

London areas.

Here two models among those discussed by Congdon (2001) are considered, namely

model (7.30), allowing for differential trends to be spatially structured, and a differential

persistence model as in Equation (7.31) with unstructured borough persistence effects ri.

The latter model was estimated subject to the assumption of stationarity in the individ-

ual borough autocorrelations. Fit is assessed by the pseudo marginal likelihood and

via the Expected Predictive Deviance (EPD) criterion. This is based on `predicting' new

or replicate data from the posterior parameters. The better the new data match the

existing data, the better the fit is judged to be (Carlin and Louis, 1996, Section 6.4).

Specifically, Poisson counts Yit:new are sampled from the posterior distribution defined

by the predicted Poisson means and compared with the observed Yit via the usual

Poisson deviance measure. As for the usual deviance, the EPD is lower for better fitting

models.

Estimation of the differential growth model in (7.30) using a two chain run of 5000

iterations shows an average decline of 0.02 in the relative suicide risk in London

boroughs in each period (measured by G <- mean(s[ ]) in Model A in Program 7.13).

The steepest decline, at 0.054 per period, is in the central London borough of Westmin-

ster (area 33).

For the differential persistence model, the posterior estimate of sr at around 0.65

(with 95% interval from 0.5 to 0.85) suggests some variation in the extent to which

suicide risk within boroughs is temporally autocorrelated. The average correlation is

around 0.44, but it varies in individual boroughs from ÿ0.15 to 0.92. The highest

continuity was in low suicide suburban boroughs which tended to remain at low levels

throughout the span of the study, and in central London boroughs where suicide

remained consistently high, though the excess above the overall average was falling

through time.

In selecting between the linear growth model and the persistence models, there is

some conflict between the model choice measures. Simple fit (deviance and EPD)

unequivocally favours the latter, with the mean EPD at 525 compared to 584 for the

differential growth model. However, the marginal likelihood based on totaling the CPO

criterion over all periods and areas shows the differential growth model with a marginal

likelihood around ÿ946 as against ÿ963 for the spatial persistence model. A suggested

exercise is to assess the effective parameters in both models and use the DIC criterion as

a further method of selection. Further model options are to assume spatially correlated

persistence, and to relax the stationarity assumption on borough autocorrelations.

7.8 REVIEW

The chapter has sketched some of the major spatial applications where Bayesian ideas

and modelling principles have been important and beneficial, and the growing role of

Bayesian spatial modelling is closely linked to improved and simplified estimation via
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MCMC methods. It seems inevitable that Bayesian approaches will play a central role in

future developments, in areas such as

(a) direct modelling of spatial covariance matrices, drawing on geostatistical techniques

but applying them in new areas (e.g. disease mapping);

(b) spatial models that allow for discontinuities or outliers, developing on the work of

authors such as Lawson and Clark (2002) and Lesage (2000);

(c) models that allow for spatially varying impacts of covariates, including single

equation regression methods or extensions of multi-regression GWR approaches;

(d) spatial model assessment based on cross validatory principles (Congdon, 2002b);

(e) focused cluster models where the outcome is ordinal (e.g. severity of disease) or

multivariate;

(f) spatial and space-time models in multivariate outcomes.
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7.9 EXERCISES

1. In Example 7.1, fit the spatial errors model using the weights based on distan-

ce=shared boundary rather than contiguity. How does fit (e.g. via the pseudo

marginal likelihood based on CPOs) compare to that cited previously?

2. In Example 7.2, fit the spatial autoregression model (7.5) under both Student t and

homoscedastic Normal errors u, and assess inferences in terms of the impact of

outlier areas.

3. In Example 7.3, compare the fit of the four models considered using the deviance

information criterion of Spieglehalter et al. (1998).
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4. In Example 7.3, fit the ICAR(1) model including unstructured as well as spatial

errors and under the options with and without the AFF variable. How does the ratio

of marginal variances (spatial to unstructured variances) change?

5. Fit the Leyland et al. spatial model (see Example 7.4) to the lip cancer data of

Example 7.3. How does this affect the coefficient for the occupation variable?

6. The following are 400 microwave backscatter measures in a large field in East

Anglia, UK, on a 20 � 20 grid with 12 m intervals between points:

22 39 38 67 46 1 46 73 95 51 92 68 33 64 77 73 82 54 61 97

43 36 58 32 35 35 88 56 73 64 74 62 55 73 105 80 90 21 57 100

45 15 34 28 35 89 113 45 54 44 49 59 94 58 85 112 77 83 48 75

48 14 14 83 55 81 73 33 58 74 81 78 66 96 69 102 94 86 96 80

18 24 51 88 65 41 47 20 46 94 76 97 73 94 41 95 100 62 101 75

66 53 40 50 29 19 67 50 57 85 57 88 69 106 88 79 98 69 82 95

113 50 24 11 50 64 90 80 63 68 52 68 79 90 74 40 73 87 100 86

103 31 45 29 56 115 132 78 82 54 70 51 40 69 80 71 88 95 94 68

83 70 104 81 85 120 186 87 85 86 34 30 49 61 103 99 94 87 90 104

72 78 186 132 111 153 157 119 90 82 80 95 79 57 79 57 68 105 63 99

82 164 157 138 136 155 157 109 90 104 115 101 86 36 98 66 57 73 94 97

107 166 157 101 101 93 157 85 82 80 111 82 77 104 67 70 79 57 76 81

105 87 103 64 58 77 97 87 81 65 85 83 44 97 67 98 99 50 83 81

145 116 91 94 34 49 73 64 46 83 60 69 90 89 63 89 84 67 47 86

135 100 115 100 46 44 81 51 27 81 81 62 95 96 67 82 77 68 79 80

78 127 115 90 47 92 103 79 58 95 54 70 93 105 68 100 39 65 98 96

76 140 100 95 63 78 98 83 66 56 79 71 92 85 87 92 97 74 102 78

82 119 69 83 78 40 73 81 77 93 61 63 78 62 87 61 76 75 98 23

77 53 58 79 64 83 66 64 94 89 24 72 90 68 55 82 92 81 63 64

86 63 78 84 67 78 63 71 91 60 80 54 80 98 65 80 99 61 73 37

Group the 400.399=2 pairs of points into bands according to separations 0±12,12±24,

. . . etc. up to a maximum distance band, and derive the necessary statistics for a

variogram (this may be easier done outside BUGS). Then fit exponential and

spherical variograms to the series, as in Example 7.5.

6. In Example 7.7, compare the fit of the two models using the DIC criterion. How does

this compare to the Gelfand±Ghosh criterion? Employing both criteria, fit a model

where aij is a power function, namely aij � dÿk
ij .

7. In Example 7.8, add code to find which areas have the maximum coefficients under

the GWR model. How does this add to knowledge about possible outlier areas? Also,

consider the effect of taking Student t errors with known degrees of freedom (e.g.

n � 4).

8. In Example 7.9, combine the heteroscedastic error model with an ICAR(r) spatial

error. How does this affect the AFF coefficient and the fit via DIC?

9. In Example 7.11, fit the three parameter decay and direction function

f (d, u) � [1� Z exp {b cos (u)}=da]

with a positive.
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10. In Example 7.12, fit the time varying spatial effect

rijt � a1t exp (ÿ a2tdij)

and assess fit against the constant parameter model

rij � a1 exp (ÿ a2dij)

11. Fit the spatio-temporal model for London borough suicides of Example 7.13

assuming spatially correlated borough specific persistence (temporal correlation)

parameters.
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CHAPTER 8 STRUCTURAL EQUATION AND LATENT VARIABLE MODELS

Structural Equation and Latent
Variable Models

8.1 INTRODUCTION

Structural equation modelling describes multiple equation models that include latent or

unmeasured variables (`factors' or `constructs') for which multiple observed indicators,

continuous or discrete are available (Bollen, 1998), and that allow for measurement

error in the latent constructs. They have found a major application in areas such as

psychology, education, marketing and sociology where underlying constructs (depres-

sion, product appeal, teacher style, anomie, authoritarianism, etc.) are not possible to

measure directly.

Instead, the observed data on a large number of indicators are used to define (i.e.

serve as proxies for) the underlying constructs, which are required to be fewer in number

than the observed variables to ensure identifiability (Bartholomew, 1984). Depending

on the application the observed variables may be known as items (e.g. in psychometric

tests), as indicators or as manifest variables. One might assume that conditional on the

constructs, these observed indicators are independent ± so that the constructs account

for the observed correlations between the indicators (this is often called the `local

independence' property). However, as Bollen (2002) points out, this is not an intrinsic

feature of structural equation models.

Structural equation models include both measurement models, or confirmatory

factor analysis models, confined to representing the constructs as functions of the

indicators, and fully simultaneous models allowing interdependence between the con-

structs. The canonical structural equation model takes the LISREL form (Joreskog,

1973), with a model relating endogenous constructs c to each other and to exogenous

constructs j and a measurement error model linking observed indicators Y and X to the

latent variables. Thus for the ith subject, the structural model is

ci � A� Bci � Gji � wi (8:1a)

where ci is a p� 1 vector of endogenous constructs, ji is a q� 1 vector of exogenous

constructs, wi is a p� 1 vector of errors on the endogenous constructs, B is a p� p

parameter matrix describing interrelations between the endogenous constructs c, G is a

p� q parameter matrix describing the effect of exogenous on endogenous constructs,
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and A is a p� 1 intercept. In any particular model, there may be no j variables, and

some of the B and G coefficients are typically assigned zero or other default values. The

links between observed indicators and the constructs are defined by the measurement

model or models:

Yi � ky � Lyci � uY
i (8:1b)

Xi � kx � Lxji � uX
i (8:1c)

where Yi is an M � 1 vector of indicators describing the endogenous construct vector c,

and Xi is an L� 1 vector of indicators that proxy the exogenous construct vector j; ky

and kx are M � 1 and L� 1 intercepts; and Ly and Lx are M � p and L� q matrices of

loading coefficients describing how the indicators determine the scores of an individual

on the latent constructs. Typically, restrictions are applied on some loadings to ensure

identifiability. A particular analysis may involve just a measurement model, in which

case the distinction between different types of indicator is not relevant, and the meas-

urement model reduces to

Yi � k� Lci � ui (8:1d)

The focus in structural equation models is on confirming the nature of the underlying

constructs as postulated by substantive theory, or on testing causal hypotheses based on

theory, rather than on exploratory data analysis. Thus, confirmatory factor analysis, a

particular from of structural equation model, differs from exploratory factor analysis in

postulating a restricted loading structure in which only certain loadings are free to be

estimated (see Section 8.2). The nature of the linkages from the latent variables to the

observed indicators is often defined on a priori theoretical grounds, so the `prior' of a

Bayes model for a confirmatory factor analysis may have a large subject matter element

and is to that extent clearly `informative'.

As an example of this type of model and of the identifiability constraints on the

parameters, suppose five indicators Y1, : : , Y5 are taken to be measures of two con-

structs c1 and c2. Further, suppose indicators Y1, Y2, Y3 (e.g. measures of spatial

ability) have loadings l1, l2 and l3 on construct c1 while indicators Y4 and Y5 (e.g.

measures of linguistic skills) have loadings l4, l5 on c2. However, there are no loadings

of Y1, Y2 and Y3 on c2 or of Y4 and Y5 on c1. This is a hypothesized structure and one

open to assessment: it may be that some indicators in fact show significant `cross-

loading', with Y1 showing a non-zero link to c2 for example. It is also open to question

whether c1 and c2 (spatial and linguistic ability) are correlated or orthogonal.

Since c1 and c2 have arbitrary location and scale, one option to gain identifiability is

to define them to be in standard form, with zero means and variances of unity (Bentler

and Weeks, 1980). If correlation between the two constructs is allowed, then they might

be taken to be bivariate normal with variances 1 in the diagonal of the covariance

matrix, but with an off-diagonal correlation parameter. Note, though, that there is no

necessary restriction to assuming the constructs in a structural equation model to be

Normally distributed.

Under this predefined scale option the loadings l1, l2 and l3 relating Y1, Y2 and Y3

to c1, and l4 and l5 relating the verbal test scores to c2, are all then free parameters. So

letting ci � (ci1, ci2), one might have

ci � N2
0

0

� �
,

1 r
r 1

� �� �
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Y1i � k1 � l1c1i � u1i

Y2i � k2 � l2c1i � u2i

Y3i � k3 � l3c1i � u3i

Y4i � k4 � l4c2i � u4i

Y5i � k5 � l5c2i � u5i

Since the constructs are intended to summarise information in the indicators relatively

informative priors, e.g. N(1, 1) or N(0, 1), may be used for the loadings; for example, see

Johnson and Albert (1999) in the context of item analysis. Often a scaling of the

observed indicators (e.g. centred or standardised X and Y) is useful also in identifica-

tion. Note that r is identifiable in the above example, because all cross loadings have

been set at zero; for example, there are no loadings of Y1, Y2 and Y3 on c2.

In general, if the cmi are taken to be uncorrelated and to have variance 1, and all

M:p � 10 possible loadings are of interest, then p(pÿ 1)=2 � 1 restrictions are re-

quired for identifiability (e.g. Everitt, 1984). If lmj is the loading on the mth indicator

on the jth factor, then one might for example impose zero, unity or equality constraints

(for the above these might be l51 � 0 or l11 � l42). Note that a Bayesian approach may

circumvent the need for exact constraints (see below).

An alternative parameterisation fixes the scale of the constructs by selecting one

loading corresponding to each factor ± here one among the loadings {l1, l2, l3} and

one among {l4, l5} ± and setting them to a predetermined non-zero value, usually 1.

This is similar to the corner constraint used for categorical predictors in log-linear

regression, except that it takes a multiplicative rather than additive form. In the example

considered here, the variances of c1 and c2 are then free parameters related to those of

certain observed indicators. Suppose l1 � l4 � 1, so that

Y1i � k1 � c1i � u1i

Y2i � k2 � l2c1i � u2i

Y3i � k3 � l3c1i � u3i

Y4i � k4 � c2i � u4i

Y5i � k5 � l5c2i � u5i

with the c again being bivariate normal with zero means but all three parameters in the

dispersion matrix free.

It may be noted that fixing a loading l1 to, say, 1 has utility in preventing `relabelling'

of the construct scores c1 during MCMC sampling. Since Y1ÿY3 in this example are

positive measures of spatial ability setting l1 � 1 means the construct c1 will be a

positive measure of this ability. If, however, one adopted the predetermined variance

identifiability constraint such as c1 � N(0, 1) where all the lj are free, it may be

necessary, to prevent label switching, to set a prior on one or possibly more loadings

constrained to positivity, e.g.

l1 � N(1, 1) I(0, )

8.1.1 Extensions to other applications

This framework may be extended to panel data where multiple items Yimt are observed

for subjects, variables m � 1, : : , M and over times t � 1, : : , T ; here the constructs may
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also be modelled as time varying (Section 8.4). Repetitions may also occur over groups g

such that the data have the form Yimg, where g is the group, m the indicator, and i the

subject (Section 8.2). Latent construct models with cj continuous may equally be

applied to explain multiple discrete indicators, for example collections of binary tests

or items (Bartholomew and Knott, 1999). One may also consider latent constructs

which are discrete, and so connections to discrete mixtures (Chapter 2) and discrete

mixture regressions (Chapter 3) become apparent. Latent class analysis (Section 8.3) is

often applied in psychology and attitude research, and it may be that the latent

construct in a particular application can either be modelled as discrete or as a continu-

ous `trait', and the choice between these options is made on grounds of statistical fit

(Langeheine and Rost, 1988).

8.1.2 Benefits of Bayesian approach

Classical structural equation methods for continuous indicators Y that are based on

multivariate Normality of the indicators usually involve minimising a discrepancy

between the observed covariance and the predicted covariance under the model ±

since under multivariate Normality the covariance matrix is sufficient for the data,

and in particular the associations between indicators. This is the default approach

in computer packages such as LISREL or EQS, with the input consisting of M �M

covariance matrices rather than the full n�M array of observations Yim. Browne

(1984) generalises the multivariate Normal theory to any multivariate distribution

for continuous variables, so permitting analysis of covariance structures only, provid-

ing non-Normality (e.g. kurtosis) is not pronounced. It is, however, becoming

more common to analyse raw data so that appropriate techniques allowing for non-

Normality (e.g. excessive kurtosis) or potential outliers can be applied. This may also be

a more flexible option if the indicators contain a mix of discrete and continuous

measures.

Considerations of robustness, and other questions such as the ease with which

parameter restrictions may be imposed and predictions made for new cases, may

point to a Bayes approach which retains the full observation set as input ± this indeed

is easier to implement in WINBUGS. Comparisons between different models might

involve variations on the measurement model, the structural model, or both. A Bayesian

perspective may have advantages here if hypotheses are not be restricted to nested

alternatives (Fornell and Rust, 1989).

Scheines et al. (1999) discuss how a Bayes approach may assist in estimating what are

conventionally described as unidentifiable models, for instance regressions in which all

predictors are measured with error and the strategy of instrumental variable estimation

is not feasible. Lee (1992) describes methods to restate the usual classical identifiability

restrictions as stochastic. For instance, one might assume both a free dispersion matrix

for factors ci1 and ci2 and free loadings l1, . . . , l5, but informative priors on l1 and l4

would be taken based on the classical constraint; for instance, taking

l1 � N(1, 0:1)

l4 � N(1, 0:1)

allows limited movement around the usual constraints. If all ten loadings were of

interest and an identity dispersion matrix assumed for cij, j � 1, 2, then an identifia-

bility constraint such as l11 � l42 might be expressed as
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l11 � al42 � e

where a is a parameter centred at 1 and e is a low variance error.

More generally, the Bayes method has potential advantages over maximum likeli-

hood estimates for describing the densities of the parameters of structural equation

models. The sampling distribution of parameters in such models is only asymptotically

Normal (Bollen, 1989), so that maximum likelihood standard errors calculated assum-

ing the distribution of the estimator is Normal may be distorted for small sample sizes

(Boomsma, 1983). Bootstrap techniques are one option to overcome this problem

(Bollen, 1996). However, in the Bayesian approach MCMC samples are taken from

the true posterior regardless of sample size, and so standard errors calculated

from MCMC output are more reliable for small samples, or when there are other

sources of non-normality.

On the other hand, a maximum likelihood solution generally converges rapidly to a

solution with a clear labelling of constructs. As mentioned above, precautions (in the

form of constrained priors on loadings, say) may need to be taken in a Bayesian MCMC

sampling context to ensure unique labelling of constructs, and prevent label-switching

during sampling.

8.2 CONFIRMATORY FACTOR ANALYSIS WITH A SINGLE GROUP

The advantages of confirmatory models with prior information from a subject matter

base as compared to exploratory factor analysis (where all loadings are free to be

estimated) have been argued by Hertzog (1989), in terms of the interpretative ambiguity

of exploratory analysis. Thus, using an orthogonal rotation or oblique rotation in an

exploratory factor analysis will give different answers as to factor structures, and

various often arbitrary methodological choices in oblique rotation will lead to different

answers about the correlations between the latent constructs. As well as having a clear

and unambiguous factor structure, which permits evaluation of alternative hypotheses

(e.g. correlated or orthogonal factors), confirmatory factor analysis permits assessment

of the construct validity of measurement scales.

An important question in confirmatory factor analysis is the stability or `invariance'

of structural relationships and measurement models across groups or over time. As

Mutran (1989) points out, the availability of panel or group data allows a new set of

testable hypotheses; for example, should the effect of each indicator on the underly-

ing construct or constructs be allowed to change and, if so, is the same construct being

studied? If the measurement model is allowed to vary or change, one may assess whether

certain indicators of the latent construct c lose or gain reliability. Note that for many

groups, a multi-level factor analysis with appropriate random effects is more relevant

(Section 8.4.4).

Among the possible parameterisations for testing multi-group invariance (assuming a

few groups only) in latent structure, means and covariances is one adopted by Byrne et al.

(1989). They consider M � 11 indicators of adolescent self-concept in terms of p � 4

factors: General Self-Concept (GSC), Academic Self-Concept (ASC), Language Skills

(LSC), and Mathematics (MSC). Further, the relation between indicators and concepts

may differ by pupil group: there are G � 2 groups, namely n1 � 582 `high track'

students and n2 � 248 `low track' students. Byrne et al. assume that the measurement

model for the mth indicator in the gth group is parameterised as
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Yimg � km � lmcijg � uimg

where i � 1, : : ng, j � C[ j] is that single factor among p factors relevant to predicting the

mth indicator, and the uimg are independent distributed for variable m and group g.

Thus, only one factor is taken to explain any particular item, and the intercepts and

item-factor loadings in the measurement model do not differ by group. The factor

construct model for the reference group (e.g. g � 1) is

cij1 � dij

for the j � 1, : : p factors and the students i � 1, : : ng. The dij may be taken as independ-

ent with means zero and variance s2
j , or to follow a multivariate prior with covariance

matrix S. For the remaining groups, the factor model is

cijg � Agj � dij

where Agj is the intercept on the jth factor for the gth group.

Example 8.1 Confirmatory factor analysis of adolescent self-concept and extension to a

group factor model As in the above discussion, we follow Byrne et al. (1989) and

Byrne and Shavelson (1986) in taking 11 indicators from the Affective Percep-

tion Inventory (Soares and Soares, 1979) as representing four correlated ability

concepts. The first, fifth and sixth indicators load on the first general self-concept

factor, denoted c1. Indicators Y2 and Y7 load on the ASC factor c2, indicators

Y3, Y8 and Y9 on the LSC factor c3, and Y4, Y10 and Y11 on the remaining Mathemat-

ics Self-Concept (MSC) c4. There are thus no multiple loadings, e.g. of Y1 on both

c1 and c2.

As one device to gain identifiability, the loading l1 of Y1 on c1 is set to 1, the loading

(l2) of Y2 on c2 to 1, and those of Y3 on c3 and of Y4 on c4 (namely, l3 and l4) to 1 also.

Further, the observations (for n � 996 subjects) are centred, so eliminating intercepts.

Hence, the model is

Yi1 � ci1 � ui1

Yi2 � ci2 � ui2

Yi3 � ci3 � ui3

Yi4 � ci4 � ui4

Yi5 � l5ci1 � ui5

Yi6 � l6ci1 � ui6

Yi7 � l7ci2 � ui7

Yi8 � l8ci3 � ui8

Yi9 � l9ci3 � ui9

Yi, 10 � l10ci4 � ui, 10

Yi, 11 � l11ci4 � ui, 11

The factor scores cim, m � 1, : : , 4, i � 1, : , n, are taken to be multivariate Normal with

zero means and covariance matrix S, while the errors uij , j � 1, : : , M, i � 1, : : , n, are

taken to be independent Normal with zero means. The estimated loadings (Table 8.1) for
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this model, obtained from a two chain 5000 iteration run (and convergence from 250

iterations), are close to those reported by Byrne and Shavelson.

The covariances between the factors are all positive, and may be taken to broadly

support the idea of a unidimensional self-concept factor; the correlation between ASC

and LSC exceeds 0.7, and that between ASC and MSC exceeds 0.6. One might therefore

entertain a higher order factor model with a single factor underlying the four specialised

factors. So a particular form of Equation (8.1a) obtains

cij � aj � bjZi � wij

where Zi denotes the single second order factor scores, assumed to be N(0, 1). One

rationale for higher order factors is that they explain the associations between lower

order factors, and so eliminate the need for correlated measurement errors. Here

identifiability was improved by taking the bj to be confined to positive values, and

taking aj � 0, since initial analysis suggested none of the intercepts to be non-zero. With

these constraints, convergence was obtained at around 2000 iterations in a two chain

run of 5000 iterations.

The predictive loss criterion of Gelfand and Ghosh (1998) gives virtually identical

results for the double order model (around 5335) as for the single order model, though

the former has the advantage of providing extra substantive insight. The posterior

means of the bj are, respectively, 0.43, 0.58, 0.54 and 0.42, with b4 having the highest

Table 8.1 Self-concept: covariation between correlated

factors and loadings relating indicators (M � 11) to factors

(seven free loadings)

Variances of Factors (�jj) and Covariances between Factors

(Sjk, j 6� k)

Mean 2.5% Median 97.5%

S11 0.74 0.66 0.74 0.83

S12 0.24 0.19 0.24 0.29

S13 0.21 0.16 0.21 0.25

S14 0.21 0.16 0.21 0.27

S22 0.67 0.6 0.67 0.77

S23 0.42 0.37 0.41 0.48

S24 0.5 0.44 0.49 0.57

S33 0.5 0.51 0.58 0.66

S34 0.09 0.04 0.09 0.14

S44 0.87 0.78 0.87 0.96

Indicator-factor loadings

l5 0.82 0.76 0.82 0.88

l6 1.06 0.98 1.05 1.12

l7 1.03 0.96 1.03 1.1

l8 1.11 1.04 1.11 1.18

l9 1 0.92 1 1.1

l10 0.98 0.94 0.98 1.03

l11 0.95 0.91 0.95 0.99
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posterior variance ± suggesting that the mathematics self-concept is least aligned with a

putative single self-concept. The l coefficients in the higher order model are very similar

to those in Table 8.1.

Continuing the data and indicator format as above, Byrne et al. (1989) compare two

groups (denoted high and low track) with a low track group as reference. Then the mth

indicator for the ith subject in the gth group is modelled as

Yimg � km � lmcijg � uimg

where the errors u are independently Normal, the reference group scores are

cij2 � dij j � 1, 4; i � 1, : : 248

and the other group's scores are given by

cij1 � dij � Aj j � 1, 4; i � 1, : : 582

with the dij taken to be multivariate Normal. In line with factorial invariance, the

loadings are not group specific and as above loadings l1, . . . l4 are preset and so the

covariance matrix S for the dij may be estimated. Hence, there are 15 intercepts (11 for the

measurement model, and 4 for the factor model) together with seven loadings to estimate.

The differential intercepts Aj in the high track group are the major focus of interest.

A two chain run of 10 000 iterations (convergent from around 1000) accordingly

shows higher intercepts on the Academic, Linguistic and Mathematics Self Concepts in

the `High Track' students (see Table 8.2). This model adequately represents the data

since a posterior predictive check is 0.54, based on comparing error sum of squares of

Table 8.2 Self-concept: group comparisons

under invariance, high track intercepts

Mean 2.5% 97.5%

A1 ÿ0.87 ÿ2.83 1.16

A2 10.18 8.77 11.58

A3 4.47 3.33 5.61

A4 7.48 5.24 9.73

Correlations between factors

Corr[c1, c2] 0.38 0.31 0.46

Corr[c1, c4] 0.30 0.22 0.37

Corr[c1, c3] 0.24 0.17 0.31

Corr[c2, c3] 0.61 0.54 0.68

Corr[c2, c4] 0.62 0.56 0.67

Corr[c3, c4] ÿ0.02 ÿ0.10 0.05

Factor loadings

l5 0.52 0.48 0.56

l6 0.36 0.34 0.39

l7 0.52 0.47 0.56

l8 1.36 1.25 1.48

l9 0.67 0.60 0.74

l10 0.68 0.65 0.70

l11 0.44 0.42 0.46
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actual and samples of replicate data. As in the single group analysis, the ASC factor is

highly correlated over 0.5 with both LSC and MSC, but the latter two are effectively

independent.

Another model allows cij1 and cij2 to be drawn from different multivariate Normal

densities, and for the indicators to have different loadings lmg and intercepts kmg within

groups (Model F in Program 8.1). There is an improved predictive criterion compared

to the previous `invariance' model (about 429 000 vs. 438 000).

Example 8.2 Mental ability indicators: robust CFA Yuan and Bentler (1998) illustrate

the implications of non-Normality, including possible outliers that distort inferences,

using mental ability test data analysed by Joreskog (1970) and first presented by

Holzinger and Swineford (1939). There are in full 26 test items defined for 145 children

in the seventh and eighth grades of two schools. Yuan and Bentler focus on 9 of the 26

tests, namely

1. Visual perception

2. Cubes

3. Lozenges

4. Paragraph comprehension

5. Sentence comprehension

6. Word meanings

7. Addition

8. Counting dots

9. Straight curved capitals

They postulate three factors, the first spatial ability taken to explain X1ÿX3; the second,

verbal ability, explaining X4ÿX6; and the third, speed in tasks, designed to explain

X7ÿX9.

For these data, Yuan and Bentler use a number of robust frequentist techniques

and densities such as M±estimation and Multivariate t density models, which place

low weights on exceptional data points. They find an improved fit for these methods

over Normal theory based maximum likelihood. Here a scale mixture form of

the Student t with degrees of freedom n, with precisions for case i and variable m

defined by

fim � Fmwim

where the Fm � 1=s2
m is an overall precision for variable m, and the weights wim are

drawn from Gamma (nm=2, nm=2) densities. The degrees of freedom parameters are

drawn from an exponential prior with parameters Zm, and are constrained to be above

1. The Zm parameters are drawn from a uniform (0.01, 1) prior corresponding approxi-

mately to means 1 and 100 for nm.

The means mim for indicators X1 to X9 are given by

m
im
� k

m
� l

m,C[m]
C

i, C[m]

where {C � 1, 1, 1, 2, 2, 2, 3, 3, 3} is the factor index for variable m. The scale of the

constructs is defined by fixing l11 � l42 � l73 � 1, so that the full covariance matrix

between factors is estimated. The loadings under the alternative method when their

variance is set at 1 (and the covariance matrix becomes a correlation matrix) are derived

in parallel, namely
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Table 8.3 Mental ability: loadings and degrees of freedom estimates

Loadings Degrees of Freedom

Mean 2.5% 97.5% Mean 2.5% 97.5%

z11 4.6 2.8 5.9 n1 20.4 2.4 87.9

z21 2.5 1.1 4.3 n2 30.6 3.0 225.4

z31 6.3 2.7 11.1 n3 65.4 4.1 307.7

z42 1.6 1.2 1.9 n4 33.4 4.4 167.5

z52 2.1 1.4 2.8 n5 27.9 3.7 127.6

z62 3.5 2.4 4.8 n6 18.7 2.4 111.2

z73 17.1 14.0 20.1 n7 53.7 5.3 214.4

z83 19.0 13.4 27.0 n8 2.5 1.0 6.9

z93 24.4 16.3 36.8 n9 26.9 4.3 120.2

Correlations between factors

r12 0.56 0.38 0.72

r13 0.39 0.20 0.56

r23 0.23 0.05 0.39

zmj � lmjSm

A simple measure of fit is provided by the square root of the Mean Error sum of

squares (MSE). A posterior predictive check, based on comparing observed mean

square error and that obtained with replicated item scores (sampling from the posterior

means under the model) shows acceptable fit. The check criterion comparing the

new MSE with the observed one averages about 0.54. The predictions may also

be used in criteria such as those of Gelfand and Ghosh (1998) and Ibrahim et al.

(2001).

The loadings and the relativities between them (in terms of ratios lmj=lmk, where

j, k � 1, 3) are similar to those of Yuan and Bentler. However, the credible intervals are

wider than those implied by the standard errors of the robust procedures in Yuan and

Bentler (1998, Table 1). For example, the standard errors of z83 over the five robust

procedures vary from 1.67±1.82, as against a posterior standard deviation of around

3.2. Asymmetry in the densities of these loadings is also apparent, and would not be

allowed for in many frequentist procedures. The degrees of freedom specific to each

indicator show the `Counting Dots' item as the most dubious in terms of Normality.

Correlations between the factors suggest verbal and spatial ability to be positively

associated.

The weights wim show clear outliers for some variables. On `Counting Dots', the 24th

and 106th subjects seem to be extreme outliers, with weights wi8 below 0.005; these

are also identified by methods applied by Yuan and Bentler. The profile of remaining

cases on this variable is much less subject to skew; the next weight (for subject 35) is

nearly 0.8.

Example 8.3 Nonlinear and interactive latent variable effects The question of non-

linear effects of latent variables or of interactions between them has been raised in

applications of structural equation models (e.g. Bollen and Paxton, 1998). Arminger

and Muthen (1998) and Zhu and Lee (1999) consider Bayesian approaches for possible
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schemes involving one or more latent variables ji1, : : jiq, for which indicators Xi1, : :XiL

are available. If, also, ci1, : :cip have indicators Yi1, : :YiM , then one may have a

structural model whereby the endogenous constructs are predicted by powers of, or

interactions between, the jik. For instance, if p � 1 and q � 2, one might have

ci � a� g1ji1 � g2j2
i1 � g3ji2 � g4j2

i2 � g5ji1ji2

Arminger and Muthen (1998, p. 285) consider simulated data for n � 100 subjects based

on a measurement model relating five indicators to two constructs, j1 and j2, and a

structural model for a single observed and centred response Yi modelled as a function of

(a) main terms in j1 and j2,

(b) an interaction between them, and

(c) a random error, wi, independent of the constructs. So

Yi � g1j1i � g2j2i � g3j1ij2i � wi

This type of model has applications in performance testing (see Early et al., 1990), where

j1 might be task complexity and j2 goal specificity, with g1 and g2 expected to be

positive, but g3 negative on theoretical grounds.

The measurement model for the simulation involves loadings lmk from items

Xm(m � 1, : : 5) to factors k as follows: l11 � 1 (preset), l21 � 0:7, l31 � ÿ0:5, l42 � 1

(preset), l52 � 1:6. The coefficients in the structural model are

{g1, g2, g3} � (0:8, 1:7, 0:5)

The remaining parameters used to simulate the data are contained in Program 8.3, with

the dispersion matrix S of the constructs jik including a positive correlation between the

two factors.

Satisfactory convergence in this and similar small sample examples may be assisted by

good starting values (e.g. from maximum likelihood analysis) and by further prior

information on the structural or measurement model parameters (e.g. that the inter-

action parameter is expected to be positive or negative).

Here N(0, 1) priors on the free loadings l and coefficients g are adopted without

constraints to positive or negative values (with the loadings l11 � l42 � 1 being prede-

termined). Priors on precisions are as in Arminger and Muthen. Some guidance as to the

labelling of the constructs (in terms of ensuring identifiability without label switching in

MCMC sampling) is provided by the preset loadings l11 and l42. Clear convergence,

and incidentally convergence towards the parameters which reasonably approximate

the generating parameters (Table 8.4), is apparent by around 5000 iterations in a two

chain run of 25 000 iterations.

An inconsistency with the mode of generating the data is apparent if the assumed

model is taken as

Yi � g1ji1 � g2ji2 � g3ji1ji2 � g4j2
i1 � g5j2

i2

This model (Model B in Program 8.3), estimated with the same priors as above (and

with a 25 000 iteration run), shows `significant' g4 and g5, with 95% credible intervals

(0, 0.2) and (ÿ0.56, ÿ0.07). Estimates of the other coefficients are similar to those of

Model A. The predictive criterion of Gelfand and Ghosh, here relevant for predicting

both indicator sets X and Y (via the variables Z.X and Z.Y in Program 8.3), shows an

improved prediction for the extended model.
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Table 8.4 Nonlinear factor effects, parameter summary

Mean St. devn. 2.5% Median 97.5%

S11 1.66 0.25 1.24 1.64 2.22

S12 0.27 0.13 0.03 0.26 0.54

S22 0.27 0.13 0.03 0.26 0.54

g1 0.66 0.09 0.49 0.66 0.84

g2 1.73 0.21 1.37 1.72 2.18

g3 0.51 0.11 0.31 0.50 0.74

l21 0.63 0.05 0.53 0.63 0.74

l31 ÿ0.42 0.06 ÿ0.54 ÿ0.42 ÿ0.32

l52 1.36 0.16 1.08 1.36 1.68

8.3 LATENT TRAIT AND LATENT CLASS

ANALYSIS FOR DISCRETE OUTCOMES

As discussed above, the Normal linear model relating M continuous outcomes Y to p

underlying continuous factors c has the form

Yim � km � lm1ci1 � lm2ci2 � : :� lmpcip : :� uim m � 1, : : , M

for i � 1, : : n subjects. For identifiability, one option is to assume the factors

ci � (ci1, : :cip) have zero mean and variance unity. The residual error terms u are

usually taken to be conditionally independent, since the cij are intended to explain the

correlations among the observed items.

A similar framework may be postulated for observations on M discrete items (e.g.

binary or ordinal data), which are to be explained by p metric factors. For example,

again assuming conditional independence, suppose we have M binary items and that

there is p � 1 latent trait. Then a typical model analogous to that above has the form

Yim � Bern(pim) i � 1, : : n; m � 1, : :M

logit(pim) � km � lmci

where the ci are again standard Normal factor scores (sometimes called `latent traits' in

psychological or educational applications), where the km represent the success rate on

item m, and where the lm are loadings relating the mth item to scores on the latent trait.

A special variant of this is the Rasch model in educational testing, where lm � 1 for all

items,

logit(pim) � km � ci

where km represents the `difficulty' or discriminatory power of the mth item, and the ci

are interpreted as abilities or frailties of the subjects.

A number of modelling schemes have been proposed for other types of multivariate

discrete outcomes, including ordered multinomial outcomes and models for correlated

count outcomes (Chib and Winkelmann, 2000). Options include non-conjugate models

with multivariate Normal or Student t error densities within a log link (Poisson) or logit

link (binomial) framework, or models involving latent continuous observations Y*

which parallel each observed discrete variable. However, alternatively, a multivariate

error structure of dimension M might be replaced by a factor structure with p < M

constructs.
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For example, suppose the observations consist of a mixture of M-H continuous

variables and H ordinal outcomes containing r1, r2, : : rH categories, respectively. For

simplicity, assume r � r1 � r2 � : : � rH , and that the observed ranks are denoted

Yim, i � 1, : : n, m � 1, H. To model correlation among these variables or introduce

regression effects, one may define (Chapter 3) latent variables Yim* and cut points dmk

on their range, such that

Yim � k if dm, kÿ1 � Yim* < dmk

with rÿ 1 cut-points, defined as

ÿ1 � dm1 � . . . dm, rÿ1 � 1
As noted above, the Yim* might be taken to be multivariate Normal or Student t of

dimension H. For binary outcomes, Yi* is constrained to be positive when Yi � 1, and

sampling Y* from a Normal with variance 1 is equivalent to assuming a probit link for the

probability that Y � 1. With a large number of ordinal or binary outcomes, observed

together with metric outcomes, one may consider modelling the data in terms of a smaller

number of constructs: then the combined set of variables (Y1*, : :YH*, YH�1, . . . YM) is

expressed in terms of the usual LISREL model in Equation (8.1), but with variance

structures for the Y* variables defined by identifiability.

8.3.1 Latent class models

In some circumstances, it may be more plausible to treat the p latent variables as

categoric rather than metric. Thus, subjects are classified into one of K classes if

p � 1, or cross-classified into one of K1 � K2 classes if p � 2, rather than being located

on a continuous scale or scales. For example, Langeheine (1994) considers a longitu-

dinal setting where observed items relate to children at different ages, with the changing

observations on the items taken to represent stage theories of developmental psychology

which postulate distinct stages (i.e. discrete categories) of intellectual development. In

other circumstances, there may be no substantive rationale for preferring a latent trait

or latent class model, but both provide adequate fit to the observed data ± so leading to

model indeterminacy (Bartholomew and Knott, 1999, Chapter 6).

Let the prior probabilities on the K classes of a single latent category c be denoted Zk,

with SZk � 1. The `independent variable' c is now comparable to a categorical factor in

log-linear models, with the first category providing a reference category under a `corner

constraint'. The above example for M binary items may now be expressed

Yim � Bern(pim)

logit(pim) � km � lm2d[ci � 2]� . . .� lmKd[ci � K ]
(8:2a)

where d[ci � k] is 1 if the ith subject is allocated to the kth category of c and

d[ci � k] � 0 if ci is not allocated to the kth category. Depending on whether K � 2

or K > 2, the subjects are allocated to classes according to

ci � Bern(Z)

with Z assigned a beta prior (say), or according to

ci � Categorical(Z)

where Z is of dimension K and may be assigned a Dirichlet prior.
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An alternative, but ultimately equivalent, modelling framework takes

Yim � Bern(pci, m) (8:2b)

where ci has K categories of `caseness' and pkm are the probabilities of items m for

subject i according to that subject's caseness. With priors on ci as above, beta priors

may then be assigned to the pkm or a link function used such as

logit(pkm) � ukm k � 1, : : , K (8:2c)

where Normal priors, perhaps constrained to produce consistent labels during MCMC

sampling, are adopted for the ukm.

Latent categories may be useful in medical diagnosis where the observed indicators Y

are various tests or criteria of illness, with none being certain or `gold standard'

indicators of the presence of a disease. Thus, following Rindskopf and Rindskopf

(1986), one may assess whether a single latent categorisation (e.g. if K � 2, the latent

categories might be ill vs. not ill) underlies several observed binary diagnostic items,

none of which provide a `gold standard' test. This type of model is illustrated with

psychiatric caseness data from Dunn (1999).

Example 8.4 Psychiatric caseness Dunn (1999) presents data on three binary diag-

nostic items applied to n � 103 patients. The binary responses are taken from dichot-

omising more extensive scales, and are denoted CIS (Clinical Interview Schedule), GHQ

(General Health Questionnaire) and HADS (Hospital Anxiety and Depression Scale)

(see Dunn, 1999, p. 7). Let Ghij denote the totals of patients in category h of CIS, i of

GHQ, and j of HADS, where h, i and j � 1 for less ill, and h, i and j � 2 for more ill.

Then as in Dunn (1999), one may apply a log-linear model incorporating the classifi-

cation LC representing the patients latent diagnostic status (assumed to have K � 2

states, with index k � 1, 2). In terms of the notation of Section 8.3.1, LC corresponds to

the latent caseness category chij. As in amore general latentmixture regression (Chapter 3),

there are questions around label switching in MCMC sampling, and so of adopting

priors which ensure consistent labelling. The likelihood is multinomial

Ghij �Mult(phij, n)

with

phij � Skmhijk=Shijkmhijk

and log (mhijk) modelled in terms of (a) the main effects in the items and the latent

variable, and (b) the interaction effects between the items and the latent variable.

Specifically,

log mhijk � C � b1, h � b2, i � b3, j � b4, k � a1, h, k � a2, i, k � a3, j, k

As usual in a log-linear model, there are corner constraints on the parameters (e.g.

b11 � b21 � b31 � b42 � 0).

An alternative analysis involves disaggregating the observed data to individual level,

and adopting Bernoulli sampling, especially if there are continuous covariates which

assist in predicting the latent diagnosis.

In adopting the aggregate approach, a prior N(0, 10) confined to positive values is

adopted for the free parameter b4, 2 so that category two of the latent class variable

identifies more ill patients (the `cases'). A two chain run of 10 000 iterations (with
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convergence from around 4000 iterations) then produce similar results to those cited by

Dunn (1999, p. 42) for the main effects of CIS, GHQ and HADS items, and of the latent

diagnosis LC, and for the interactions CIS � LC, GHQ � LC and HADS � LC. The

posterior medians of logged odds ratios describing the interaction between LC and the

three items actually used are given in Table 8.5 (i.e. the interaction parameters CIS.LC,

GHQ.LC and HAD.LC). These are 3.67, 4.08 and 3.86, respectively, and indicate a

consistency between the three items.

Table 8.5 Psychiatric caseness: items (CIS, HAD, GHQ) and Latent Class

(LC)

Mean St. devn. 2.5% Median 97.5%

Aggregated (log-linear) model

CIS.LC 3.73 0.84 2.32 3.67 5.70

GHQ.LC 4.23 1.05 2.64 4.08 6.61

HAD.LC 3.99 0.97 2.45 3.86 6.34

CIS ÿ2.08 0.73 ÿ3.88 ÿ1.98 ÿ0.97

HAD ÿ2.32 0.83 ÿ4.31 ÿ2.19 ÿ1.10

GHQ ÿ2.86 0.98 ÿ5.04 ÿ2.69 ÿ1.45

LC ÿ4.71 0.85 ÿ6.62 ÿ4.63 ÿ3.26

Disaggregated model Class Probabilities (Prob LC � k)

Z1 0.42 0.05 0.31 0.42 0.49

Z2 0.58 0.05 0.51 0.58 0.69

Marginal Tables

(1) CIS by LC

Both No 39 3 34 39 44

CIS Yes, LC No 5 2 0 5 10

LC Yes, CIS No 10 3 5 10 15

LC Yes, CIS Yes 49 2 44 49 54

(2) GHQ by LC

Both No 42 3 35 42 48

GHQ Yes, LC No 2 2 0 2 6

LC Yes, GHQ No 12 3 6 12 19

LC Yes, GHQ Yes 47 2 43 47 49

(3) HAD by LC

Both No 40 3 34 40 45

HAD Yes, LC No 4 2 0 4 8

LC Yes, HAD No 10 3 5 10 16

LC Yes, HAD Yes 49 2 45 49 53

Probabilities pkm by LC (k � 1, 2) and Item (m � 1, 3)

p11 0.11 0.06 0.00 0.10 0.25

p12 0.05 0.05 0.00 0.04 0.17

p13 0.08 0.06 0.00 0.08 0.22

p21 0.83 0.06 0.71 0.84 0.94

p22 0.79 0.07 0.65 0.79 0.92

p23 0.83 0.06 0.71 0.84 0.94
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Marginal tables cross-tabulating patients by their caseness on each item and caseness

on LC can also be obtained. If the categorisation by LC is regarded as the `true'

diagnosis, then the sensitivity of each item can be obtained with regard to detecting

the true diagnosis. The overall probability of being a case (Z2) is estimated as 0.56.

A suggested exercise is to include second order interactions with LC (via parameters

g1hik, g2hjk, g3ijk) and assess fit via a predictive criterion ± for instance, using samples of

new cross-classified data Gnew, hij . Note that this model yields a higher probability of

being a case.

The second analysis uses disaggregated item data with Bernoulli sampling, and the

model in Equations (8.2b)±(8.2c). The prior constraint Z2 > Z1 is set for identifiability.

One possible set of outputs from this analysis is the marginal cross-tabulations of item

by LC classification. For instance, in the LC by GHQ table, the LC variable classifies 59

patients as cases, whereas there are 12 patients classified as well by the GHQ but who

are cases according to LC. On this basis, the sensitivity of the GHQ (with LC regarded

as the `true' diagnosis) is obtained as 47/59 � 80%.

The sensitivities are equivalently the probabilities p2m of being classed as more ill on

the three indicators given ci � 2. They show that the CIS scale has a high sensitivity

(83%), but also a relatively high chance of classifying someone as ill when they are well

according to LC (i.e. a false positive).

Finally, a latent trait analysis with a single continuous factor is carried out, namely

Yim � Bern(pim) i � 1, : : n; m � 1, : :M

logit(pim) � km � lmci

with all lm as free parameters and ci � N(0, 1). N(0, 10) and N(1, 10) priors are

assigned to km and lm, respectively. Sampling new data Zim � Bern(pim) and accumu-

lating the subjects according to whether Zim � 0 or 1 (m � 1, 2, 3) forms a predicted

cross-classification Ghij, new. These can be compared with the actual counts by a predict-

ive fit criterion (Gelfand and Ghosh, 1998). Another possibility with the latent trait

model is the opportunity to choose K � 2 cut points on the latent trait ci; for instance,

taking K � 3 might correspond to the divisions: well, some symptoms, and definitely ill.

Here K � 2 is chosen with the cut point at zero, and H[1:103] is the resulting classifier in

Program 8.4.

This model appears to have an edge on the latent class model, with the predictive

criterion (when w � 1) being around 91 compared to 111 under the LCA model; its

advantage is in providing more precise predictions. From a 10 000 iteration run in two

chains, the posterior means and 95% credible intervals of L � (l1, l2, l3) are 3.3

(1.7, 6.5), 3.9 (1.9, 7.5), and 3.7 (1.8, 7.2). The selected cut point on the latent trait

leads to similar marginal tables as those in Table 8.5, though slightly fewer patients are

classed as cases (namely those with positive ci).

Example 8.5 AIDS risks To illustrate the application of a latent trait structure for

modelling associations between a mix of continuous and discrete outcomes, data from

Shi and Lee (2000) on sexual practices and attitudes of female sex workers in the

Phillipines is used (see also Song and Lee, 2001). Three indicators (Y1, Y2, Y3) are

continuous and three (Y4, Y5, Y6) ordinal. The last three relate to AIDS risk from

intercourse with an AIDS infectee, a stranger or a drug user, and are positive measures

of `caution' or `worry' about contracting AIDS. They all have r � 5 ranked categories,

from 1 � no risk to 5 � high risk. By contrast, the first three measures are positive
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Table 8.6 AIDS risk: bivariate factor model

Mean St. devn. 2.5% 97.5%

Cut points

d11 ÿ1.57 0.09 ÿ1.76 ÿ1.40

d12 ÿ0.71 0.08 ÿ0.86 ÿ0.56

d13 0.42 0.07 0.27 0.57

d14 0.95 0.08 0.79 1.11

d21 ÿ4.33 0.32 ÿ5.02 ÿ3.77

d22 ÿ3.24 0.24 ÿ3.78 ÿ2.84

d23 ÿ1.39 0.13 ÿ1.68 ÿ1.17

d24 ÿ1.04 0.11 ÿ1.28 ÿ0.85

d31 ÿ3.30 0.29 ÿ3.99 ÿ2.85

d32 ÿ2.22 0.21 ÿ2.73 ÿ1.89

d33 ÿ0.20 0.09 ÿ0.37 ÿ0.02

d34 0.25 0.09 0.08 0.44

Loadings

l11 0.31 0.06 0.19 0.43

l21 0.66 0.13 0.46 0.96

l31 0.39 0.08 0.25 0.55

l42 0.56 0.25 0.22 1.12

l52 1.16 0.43 0.49 2.17

l62 1.36 0.49 0.62 2.42

Factor correlation

v ÿ0.15 0.09 ÿ0.38 ÿ0.01

measures of `recklessness': relating to frequencies of actual intercourse, of `hand jobs'

and of `blow jobs'.

Following Shi and Lee, two latent variables cij , i � 1, : : n, j � 1, 2 may be proposed

with the 6�2 matrix L of loadings of (Y1, . . . : , Y6) on the factors taking the following

structure:

L0 � l11 l21 l31 0 0 0

0 0 0 l42 l52 l62

where lm1, m � 1, : : 3 are free loadings relating Y1ÿY3 to ci1 and lm2, m � 4, : : 6 relate

Y4ÿY6 to ci2. Thus, if the loadings are consistently positive, the factors are interpretable

as overall levels of worry about AIDS and recklessness, respectively. The cij are

bivariate Normal with zero means, and their covariation described by (and only

identifiable as far as) a correlation matrix,

V � 1 v
v 1

� �
Note that one might consider a single factor model as an alternative, since conceptually

the factors seem to overlap.
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The three continuous indicators Yim are taken to be Normal and, despite being

standardised (as they are by Shi and Lee), taken to have means

km � lm1ci1

with variances fm. Observed values on the three ordinal indicators Yim are determined

by underlying latent variables Yim* , with rÿ 1 cut points dmk(m � 4, 5, 6;

k � 1, : : , rÿ 1). Thus,

Yim � Categorical (Pi, m, 1:r) m � 4, 5, 6

where

Pi, m, 1 � Qi, m, 1

Pi, m, k � Qi, m, k ÿQi, m, kÿ1 k � 2, : : , rÿ 1

Pi, m, r � 1ÿQi, m, rÿ1

and

logit [Qi, m, k] � dmk ÿ mim

The subject means mim for the ordinal variables are given by

mi4 � l42ci2

mi5 � l52ci2

mi6 � l62ci2

Shi and Lee obtain a negative correlation v of ÿ0.17 between c1 and c2 and positive

loadings on all of lm1 and lm2. Here a constraint of positivity on the loadings is applied

for identifiability. Another option might be an exchangeable prior lmk � N(ml, s2
l),

where ml is constrained to be positive.

A two-chain run of 2500 iterations (with convergence after 1250) reproduces the

structure obtained by Shi and Lee (see Table 8.6), namely positive loadings on the

first factor (worry about aids) and on the second indicative of recklessness, and accord-

ingly a negative correlation of around ÿ0.15 between the factors. The density of v
shows some negative skewness, so the ratio of the posterior mean to posterior standard

deviation may mislead in terms of `significance'.

8.4 LATENT VARIABLES IN PANEL AND CLUSTERED DATA ANALYSIS

The structural equations approach, whether with latent traits or classes, may be applied

to repeated data over time. For instance, Muthen (1997) stresses the role of latent

variable methods in panel and multi-level models with random coefficients and variance

components, as against the conventional psychometric application in terms of con-

structs measured with error. Molenaar (1999) cites some of the benefits of longitudinal

data as a way to understanding causal mechanisms, and also offering ways of control-

ling the processes under scrutiny, depending on interventions made or not made. The

elements of procedures to establish causality are illustrated by latent or observed

variables c1t and c2t at times t with coefficients bij relating cit to and cj, tÿ1. Then, if

c1 is a cause of c2, but not vice versa, one expects b12 � 0 and b21 6� 0; such procedures

are formalised as Granger causality (Granger, 1969). A variety of this type of inference,
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involving causal inter-relations of latent constructs over time, is illustrated by the well

known alienation study of Wheaton et al. (1977), considered in Example 8.11.

8.4.1 Latent trait models for continuous data

Corresponding to the canonical cross-sectional LISREL type specification in Equation

(8.1) suppose the data consist of time varying outputs possibly multivariate {Yimt}, and

time varying inputs {Xilt}, which are respectively indicators for time varying endogen-

ous construct cit and a time varying exogenous construct jit. Then the measurement

model (for t � 1, : : , T) has the form

Yimt � ky
jt � l1mcit � u

y
ijt m � 1, : :M (8:3a)

Xijt � kx
jt � l2jjit � ux

ijt j � 1, : :L (8:3b)

and the associated structural model could be simply

cit � a� gjit � wit (8:3c)

As in Chapter 6, one may also propose permanent subject effects. Accordingly, Long-

ford and Muthen (1992) suggest a measurement model with both constant latent effects

c1i and time varying latent effects c2it for multiple observed items Yimt:

Yimt � km � lm1c1i � lm2c2it � uimt (8:3d)

though this model raises identifiability issues. For example, if no constraints are placed

on the M pairs of loadings {lm1, lm2}, then both construct variances must be fixed. If

the measurement model included only stable traits, then one might consider changing

loadings lm1t.

As a generalisation of Equation (8.3c), various autoregressive structural models

are possible (Molenaar, 1999; Hershberger et al., 1996), for example, an AR(1) lag in

both c and j

cit � a� bcitÿ1 � gjitÿ1 � wit

Molenaar (1999) outlines state-space models for a multivariate latent vector

cit � (ci1t, ci2t, . . . :cipt) of dimension p < M, and the joint evolution of

{Yimt, m � 1, M} and {cijt, j � 1, : : p} is described by the matrix model

cit � Btcitÿ1 � wit (8:4a)

Yit � Ltcit � uit (8:4b)

where Bt is p� p and Lt is M � p.

8.4.2 Latent class models through time

The latent class models of Section 8.3.1 may similarly be extended to models where

repetition is over times instead of items, or possibly over both times and items

(see Hagenaars (1994) and Langeheine (1994)). For the latent class model, the addition

of a time dimension means changes in underlying state may occur, and in this context a

latent class model may have the edge over a latent trait model in terms of substantive

interpretability. Consider repeated observations on a binary item for subjects i:
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Yit � Bern(pit)

or equivalently, defining the observations as (1, 2) instead of (0, 1):

Yit � Categorical(ri, t, 1:2)

where rit1 and rit2 are the probabilities of Yit � 1, and Yit � 2, respectively, with

rit1 � pit. More generally, an observed variable with R categories will have likelihood

Yit � Categorical(ri, t, 1:R)

A latent class model for this type of observational series is often specified by assuming

Markov dependence between the observed and/or latent states at times t and tÿ 1.

Under a first order Markov model, the state occupied at time t depends only upon

the previous state, and not on any earlier ones. Then one possible model involves a

Markov chain defined by the observed categories, but mixes transition behaviour over

a latent state ci with K categories (van de Pol and Langeheine, 1990). It is necessary to

consider the first period observation Yi1 separately from others, as it has no (observed)

antecedent, and so initial allocation probabilities dk(k � 1, : :K) may be assumed,

which are also differentiated by the latent state c. So for subjects i � 1, : : n, one might

specify

ci � Categorical(Z1:K ) (8:5a)

Yi1 � Categorical(dci, 1:R) (8:5b)

Yit � Categorical(rci
, Yi, tÿ1

, 1: R) t > 1 (8:5c)

Another option models the Yit as independent of previous observed category Yi, tÿ1, but

involves transitions on a latent Markov chain, defined by a variable cit with K states. So

the multinomial probabilities Z are now specific for ci, tÿ1, with

cit � Categorical(Zci, tÿ1, 1:K ) t > 1 (8:6a)

and the observations have multinomial probabilities defined by the selected category

of cit

Yit � Categorical(rci, t, 1:R) (8:6b)

The first period latent state is modelled as

ci1 � Categorical(d1:K ) (8:6c)

A higher level of generality, analogous to Equation (8.3d) for metric data, would

be provided by a model with mixing over a constant latent variable c with K categories,

and a latent transition variable zit with L categories defined by the mixing variable.

So

ci � Categorical(Z1:K )

zi1 � categorical(kci, 1:L)

zit � categorical(zci
, zitÿ1, 1:L) t > 1

Yit � categorical(rci
, zit, 1:R)
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8.4.3 Latent trait models for time varying discrete outcomes

The time varying factor generalisation to multiple discrete responses Yijt and predictors

Xijt may, especially for binomial or ordinal data, involve latent continuous underlying

variables Yijt* and Xijt*. The model in these latent variables then resembles measurement

and structural models adopted for continuous data, as in Equations (8.3a)±(8.3c).

Thus, Palta and Lin (1999) propose a model for observations on M longitudinal

binary and ordinal items which allows for measurement error by introducing a single

latent construct (or possibly p latent constructs, where p is less than M). Their empirical

example consider the case where all outcomes y are binary, specifically M � 2 binary

items relating to tiredness. Then, as usual for binary outcomes, suppose there is an

underlying latent scale Y* for each item:

Yi1t � 1 if Yi1t* > t1

� 0 if Yi1t* � t1

(8:7a)

Yi2t � 1 if Yi2t* > t2

� 0 if Yi2t* � t2

(8:7b)

The latent scale is in turn related to an underlying time-varying continuous construct jit

in a structural model:

Yi1t* � b1jit � wi1t (8:7c)

Yi2t* � b2jit � wi2t (8:7d)

where b1 � 1 for identifiability. The structural model then relates the jit to observed

covariates Xijt (taken as free of measurement error):

jit � k� l1Xi1t � l2Xi2t � . . . eit (8:7e)

In the Palta±Lin model, the eit are taken to be autocorrelated, with

eit � r1ei, tÿ1 � u
(1)
it

u
(1)
it � N(0, s2

1)
(8:7f)

while the errors wikt(k � 1, : :K) are also autocorrelated, but with the same variance for

all k:

wikt � r2wik, tÿ1 � u
(2)
ikt

u
(2)
ikt � N(0, s2

2)

Because, for binary data, the scale of the latent Yikt* is arbitrary, a fixed scale assumption

such as var(w)�1 is typically assumed. Here the constraint s2
1 � s2

2 � 1 is adopted to fix

the scale. So that k can be identified, the thresholds t1 and t2 must also be set to zero.

8.4.4 Latent trait models for clustered metric data

Panel data is a particular type of clustered design, and the principle of multivariate data

reduction applies to other types of data which are hierarchically structured. Thus,

consider cross-sectional data with level 1 units (e.g. pupils) clustered by higher level
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units (e.g. schools at level 2), with latent variables operating at each level. Assume a two-

level model with p1 factors c at level 1 and p2 factors w at level 2 (clusters), and a

continuous outcomes Yijm for clusters j � 1, : : J, individuals i � 1, . . . nj within clusters,

and variables m � 1, : :M.

Assume further for illustration that p � p1 � p2 � 2. Then one might take

Yijm � km � lm1w1j � lm2w2j � gm1c1ij � gm2c2ij � u2jm � u1ijm (8:8)

where the level 1 errors u1ijm are Normal with variances s2
m and the level 2 error is MVN

of order 2 with dispersion matrix S. The priors adopted for the variances/dispersions of

the factor scores {w1j , w2j, c1ij , c2ij} depend in part upon the assumptions made on

relationships between the loadings at different levels.

Thus, the dispersion matrices F1 and F2 of the constructs c � (c1ij , c2ij) and

w � (w1j, w2j), respectively, are assumed to be identity matrices if the M � 2 loadings

L � {lm2, lm2} at level 2 are estimated independently of the M � 2 load-

ings G � {gm1, gm2} at level 1. For p1 � p2 � 2, factors1 at each level, there also needs

to be one constraint on the level 2 loadings (e.g. setting l11 � 1) and one on the level

1 loadings (e.g. setting g11 � 1) for identifiability. Setting structural relationships be-

tween the loadings at different levels (or setting extra loadings to fixed values) makes

certain dispersion parameters estimable. For example, one might take L � G.

Depending on the problem, further constraints may be needed to ensure identification

under repeated sampling in a fully Bayesian model.

8.4.5 Latent trait models for mixed outcomes

Analogous models including mixtures of discrete and continuous outcome variables

have been proposed (e.g. Dunson, 2000). Thus, consider a set of observations Yijm on

variables m � 1, : :M, for clusters j � 1, : : J and sub-units i � 1, : : nj within clusters.

Linked to the observations are latent variables Yijm* drawn from densities in the expo-

nential family (e.g. normal, Poisson, gamma), with means uijm � E(Yijm* ) predicted by

h(uijm) � bXijm � wjVijm � cijWijm

where h is a link function. Xijm is an M � 1 covariate vector with impact summarised by

a population level regression parameter b, and the wj and cij are, respectively, vectors of

cluster latent variables and latent effects specific to cluster and sub-unit. Vijm and Wijm

are vectors of covariates, and may be subsets of the Xijm, but often are just constants,

with Vijm �Wijm � 1. The latent variables Yijm* and Yijl* (m 6� l) are usually assumed

independent conditionally on wj and cij . Frequently, the Yijm* are Normal with identity

link and hence expectation

uijm � bXijm � wjVijm � cijWijm

and diagonal covariance matrix of dimension M �M.

In the case Vijm �Wijm � 1, an alternative formulation for uijm takes the wj and cij as

having known variances (e.g. unity), and introduces factor loadings lm and gm specific

to variable m. For example, with a single factor at cluster and cluster-subject level

1 For p1 factors at level 1 and p2 at level 2 and with L estimated independently of G, there are p1(p1 ÿ 1)=2
constraints needed on L and p2( p2 ÿ 1)=2 on G. Informative priors may be an alternative to deterministic
constraints.
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uijm � bXijm � lmwj � gmcij

As an example where all the observations Yijm are all binary, the Yijm* could be taken as

latent Normal variables, such that

Yijm � 1 if Yijm* > 0

For identifiability the variances of Yijm* are taken as unity, so that the probability of an

event, i.e. pijm � Pr(Yijm � 1), is

F(bXijm � wjVijm � cijWijm)

where F is the distribution function of a standard Normal variable. The Poisson is an

alternative latent density in this example, with

Yijm � 1 ifYijm* � hm

Yijm � 0 ifYijm* < hm

(8:9a)

where hm is a threshold count (e.g. unity), and where

Yijm* � Poi(uijm) (8:9b)

and

log (uijm) � bXijm � wjVijm � cijWijm (8:9c)

The `hits' variable hm may be a free parameter, and may differ between variables m.

If hm � 1 then Model 9 is equivalent to complementary log-log link for

Pr(Yijm � 1) � pijm, namely

log (ÿ log (1ÿ pijm)) � bXijm � wj Vijm � cijWijm

Another possibility is a `no hits' mechanism in (8.9a) defined by

Yijm � 1 if Yijm* � 0

If the Yijm consisted of M1 binary variables and M-M1 continuous variables, then

(cf. Muthen, 1984) one sets observed and latent variables identically equal

Yijm* � Yijm m �M1 � 1, : :M

while one of the latent variable options above for the binary outcomes m � 1, : :M1, is

used, such as

Yijm � 1 if Yijm* > 0

A diagonal dispersion matrix V � cov(Y*) will then have M-M1 free variance param-

eters. Extensions to the case where the set of the Yijm includes polytomous outcomes,

with categories ordered or otherwise, can be made.

Example 8.6 Changes in depression state The first two of the models in Section 8.4.2

for discrete longitudinal series, as in Equations (8.5a)±(8.5c) and (8.6a)±(8.6c), were

applied to data on 752 subjects for T � 4 periods (Morgan et al., 1983). The data were

binary (R � 2), with 0 � `not depressed' and 1 � `depressed', coded in the categorical

form (1, 2) in Program 8.6. Following Langeheine and van de Pol (1990), two latent

states are assumed on the underlying mixture or latent transition variables.
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The mixed Markov model with mixing only over a discrete latent variable ci, but no

latent transitions is applied first, as in Equation (8.5) (Model A). To gain identifiability,

the following constraints are made:

Z2 > Z1

d12 > d11

d21 > d22

where dci, j, j � 1, R defines the multinomial likelihood for the initial observations Yi1.

To set these constraints gamma priors are used, and then the property that Dirichlet

variables can be obtained2 as ratios to the sum of the gamma variables. These

constraints are based on the maximum likelihood solution reported by Langeheine

and van de Pol (1990, Table 4, Model D).

A two chain3 run of 5000 iterations shows early convergence under the above

constraints. The posterior parameter estimates suggest a small group (Z1 � 0:15) with

an initially high chance of being depressed (d12 � 0:65), but around 40% chances of

becoming non-depressed (r12 � 0:40), as in Table 8.7. The larger latent group

(Z2 � 0:85) has a high initial probability of being non-depressed and high rate of staying

so over time (r211 � 0:94).

To ensure identifiability of Model B, namely the latent Markov chain model in

Equations (8.6a)±(8.6c), an alternative strategy to constraining parameters is adopted;

specifically, it is assumed that one individual with the pattern `no depressed' at all four

periods is in latent class 1, and one individual with the response `depressed' at all periods

is in state 2. With this form of (data based) prior there is early convergence in a two

chain run of 5000 iterations.

The substantive pattern identified under this model (Table 8.8) is in a sense more clear

cut than Model A, since it identifies a predominantly non-depressive latent class

(defined by c1) with high initial probability d1 � 0:80, which has virtually no chance

Table 8.7 Depression state, Model A parameters

Mean St. devn. 2.50% 97.50%

d11 0.346 0.079 0.193 0.495

d12 0.654 0.079 0.505 0.807

d21 0.907 0.020 0.871 0.948

d22 0.093 0.020 0.052 0.129

Z1 0.150 0.041 0.086 0.247

Z2 0.850 0.041 0.754 0.914

r111 0.419 0.135 0.139 0.661

r112 0.581 0.135 0.339 0.861

r121 0.398 0.053 0.292 0.502

r122 0.603 0.053 0.498 0.708

r211 0.938 0.009 0.920 0.956

r212 0.062 0.009 0.044 0.080

r221 0.883 0.059 0.769 0.990

r222 0.117 0.059 0.010 0.231

2 If x1 � G(w, 1) and x2 � G(w, 1), y1�x1=Sxj , y2�x2=Sxj , then {y1, y2} are Dirichletwithweight vector (w, w).
3 Null initial values in one chain, and the other based on Langeheine and van de Pol.
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Table 8.8 Depression state, Model B

Mean St. devn. 2.5% 97.5%

d1 0.804 0.033 0.733 0.868

d2 0.196 0.033 0.138 0.261

Z11 0.990 0.009 0.967 1.006

Z12 0.010 0.009 0.000 0.027

Z21 0.165 0.048 0.075 0.259

Z22 0.835 0.048 0.737 0.929

r11 0.945 0.010 0.927 0.965

r12 0.055 0.010 0.034 0.074

r21 0.359 0.048 0.264 0.453

r22 0.641 0.048 0.549 0.735

(Z12 � 0:01) of moving to the other latent state defined by c2. The conditional prob-

ability of being non-depressed, given c1 � 1 is 0.945. The other latent transition variable

is more mixed in substantive terms, and includes a small group of non-depressed who

are not certain to stay so.

Example 8.7 Ante-natal knowledge This example applies the model of Palt and Lin

(Section 8.4.3) to data from an ante-natal study reported by Hand and Crowder (1996,

p. 205). The observations consist of four originally continuous knowledge scales ob-

served for 21 women before and after a course. There are nine treatment subjects who

received the course, and 12 control subjects. The four variates are scales with levels 0±5,

0±20, 0±30 and 0±5.

For illustrative purposes, the original data are dichotomised with Y1 � 1 if the first

scale is 5, 0 otherwise, Y2 � 1 if the second scale exceeds 15, Y3 � 1 if the third scale

exceeds 22, and Y4 � 1 if the fourth scale exceeds 4. Hence, the model (for

k � 1, 4; t � 1, 2) is

Yikt � 1 if Yikt* > 0

Yikt � 0 if Yikt* � 0

Yikt* � bkjit � wikt

jit � l1 � l2xi � eit

eit � r1ei, tÿ1 � u
(1)
it

wikt � r2wi, k, tÿ1 � u
(2)
ikt

with s2
1 � var(u1), s2

2 � var(u2). The only covariate is the fixed treatment variable x (i.e.

the course on knowledge) with coefficient l2. N(0, 10) priors are adopted for

b � (b2, b3, b4) and l � (l1, l2), and a G(1, 1) prior for 1=s2
2 � s2

1 is then obtained

via the constraint s2
1 � s2

2 � 1.

A two chain run of 10 000 iterations (with convergence from 1500) shows no evidence

of a treatment effect on the underlying knowledge scale jit over patients i and periods t

(Table 8.9). The scores on this scale for individual women show improvements among

the control group (e.g. compare j2 with j1 for subjects 4 and 6), as well as the course

group. There is a high intra-cluster correlation r2 governing measurement errors wikt on
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Table 8.9 Ante-natal knowledge posterior parameter summaries

Mean St. devn. 2.5% 97.5%

j1, 1 0.59 0.49 ÿ0.26 1.66

j1, 2 0.58 0.47 ÿ0.24 1.59

j2, 1 0.13 0.39 ÿ0.66 0.94

j2, 2 0.77 0.47 ÿ0.03 1.80

j3, 1 ÿ0.70 0.49 ÿ1.82 0.14

j3, 2 0.47 0.49 ÿ0.34 1.58

j4, 1 ÿ0.77 0.51 ÿ1.87 0.04

j4, 2 0.88 0.57 ÿ0.02 2.24

j5, 1 ÿ0.24 0.40 ÿ1.11 0.46

j5, 2 0.96 0.55 0.07 2.26

j6, 1 ÿ0.75 0.47 ÿ1.83 0.07

j6, 2 0.82 0.50 0.00 1.95

j7, 1 ÿ0.39 0.42 ÿ1.32 0.34

j7, 2 1.10 0.57 0.16 2.34

j8, 1 ÿ0.14 0.39 ÿ0.94 0.61

j8, 2 0.44 0.45 ÿ0.35 1.42

j9, 1 ÿ0.67 0.47 ÿ1.69 0.12

j9, 2 1.05 0.64 0.13 2.67

j10, 1 ÿ0.24 0.39 ÿ1.07 0.49

j10, 2 0.42 0.45 ÿ0.34 1.45

j11, 1 ÿ0.73 0.47 ÿ1.78 0.10

j11, 2 0.50 0.51 ÿ0.35 1.63

j12, 1 0.06 0.37 ÿ0.67 0.82

j12, 2 0.93 0.55 0.07 2.20

j13, 1 ÿ0.63 0.49 ÿ1.69 0.24

j13, 2 ÿ0.65 0.53 ÿ1.86 0.27

j14, 1 ÿ0.87 0.54 ÿ2.15 0.00

j14, 2 0.40 0.44 ÿ0.39 1.34

j15, 1 ÿ0.88 0.55 ÿ2.20 ÿ0.03

j15, 2 0.36 0.42 ÿ0.40 1.29

j16, 1 ÿ0.16 0.42 ÿ1.01 0.63

j16, 2 ÿ0.17 0.41 ÿ1.02 0.61

j17, 1 ÿ0.03 0.42 ÿ0.93 0.74

j17, 2 0.93 0.55 ÿ0.02 2.12

j18, 1 ÿ0.80 0.52 ÿ2.03 0.06

j18, 2 0.03 0.40 ÿ0.75 0.85

j19, 1 0.57 0.50 ÿ0.31 1.65

j19, 2 0.58 0.53 ÿ0.34 1.76

j20, 1 ÿ0.39 0.42 ÿ1.31 0.37

j20, 2 0.14 0.39 ÿ0.59 0.99

j21, 1 ÿ0.06 0.40 ÿ0.90 0.70

j21, 2 0.74 0.51 ÿ0.11 1.93

l1 0.21 0.22 ÿ0.21 0.67

l2 ÿ0.05 0.24 ÿ0.52 0.41

b2 2.40 1.09 0.80 4.97

b3 2.93 1.31 0.97 5.93

b4 4.04 1.48 1.44 7.34

r1 ÿ0.20 0.31 ÿ0.75 0.42

r2 0.89 0.10 0.64 0.98
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the same item at different time points, but the autocorrelation in the latent construct is

lower (in fact, biased to negative values).

Example 8.8 Factor structures at two levels This example replicates the analysis by

Longford and Muthen (1992), in which metric data Yijm are generated for i � 1, : : 10

subjects within j � 1, : : 20 clusters for m � 1, : : 5 variables, as in Equation (8.8), namely

Yijm � km � lm1w1j � lm2w2j � gm1c1ij � gm2c2ij � u2jm � u1ijm

This example illustrates how identification of the assumed parameters from the data

thus generated requires constrained priors on the loadings to ensure consistent labelling

of the constructs during sampling. In the Longford and Muthen simulation, the means

k � {k1, : : k5) are zero, and the level 1 variances Var(u1ijm) are 1. The level 2 variances

Var(u2jm) are 0.2. Also in the simulation, the loadings at level 1 and 2 are taken to be the

same, i.e.

L � G � 1 1 1 1 1

1 ÿ1 0 ÿ1 1

� �T

The dispersion matrices of the factor scores {c1, c2} at level 1 and {w1, w2} at level 2

are, respectively,

F1 � 1 0

0 1

� �
and

F2 � 1:25 1

1 1:25

� �
In estimation of an appropriate model from the data thus generated (i.e. coming to the

data without knowing how it was generated), one might adopt several alternative prior

model forms. The assumption L � G might in fact be taken on pragmatic grounds to

improve identifiability of the level 2 loading matrix. Here for illustration this is not

assumed.

Then with L and G independent, minimal identifiability requires one of the loadings

at each level must take a preset value. Here it is assumed that g11 � l11 � 1. The level

1 and 2 factor variances are taken as preset at one, and with no correlation between w1j

and w2j. Given the small cluster sizes, the observation variances, and level 2 loadings

may all not be reproduced that closely. Identifiability was further ensured by assuming

the first factor at each level is `unipolar' (has consistently positive loadings in relation to

the indicators Y), and by defining the second factor at each level as bipolar, for instance

constraining g12 to be positive and g22 to be negative. In any particular confirmatory

factor analysis, such assumptions would require a substantive basis.

On this basis a two chain run of 5000 iterations shows convergence at under 1500

iterations, and shows estimated level 1 loadings reasonably close to the theoretical

values (Table 8.10). The observational variances are also reasonably closely estimated.

The level 2 loadings also broadly reproduce the features of the theoretical values.

In the absence of knowledge of the mode of data generation, one might alternatively

(a) adopt a single level 2 factor, while still retaining a bivariate factor structure at level 1,

or (b) retain a bivariate level 2 factor but take L � G.
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Table 8.10 Two level factor structure, parameter

summary

Mean St. devn. 2.5% 97.5%

Level 1 loadings

g12 1.19 0.29 0.55 1.62

g21 1.09 0.18 0.70 1.40

g22 ÿ0.92 0.21 ÿ1.38 ÿ0.59

g31 0.82 0.10 0.61 1.02

g32 ÿ0.10 0.16 ÿ0.44 0.16

g41 0.85 0.19 0.42 1.18

g42 ÿ0.87 0.17 ÿ1.22 ÿ0.57

g51 0.89 0.25 0.54 1.46

g52 1.08 0.16 0.74 1.39

Level 2 loadings

l12 1.13 0.35 0.42 1.84

l21 0.60 0.27 0.11 1.21

l22 ÿ0.46 0.27 ÿ1.10 ÿ0.04

l31 0.47 0.22 0.08 0.91

l32 0.22 0.27 ÿ0.31 0.71

l41 0.36 0.21 0.03 0.82

l42 ÿ0.38 0.23 ÿ0.86 0.02

l51 1.09 0.27 0.52 1.58

l52 0.89 0.39 0.08 1.61

Level 1 variances

Var(u11) 0.71 0.49 0.06 1.73

Var(u12) 0.43 0.24 0.06 0.93

Var(u13) 0.94 0.12 0.72 1.20

Var(u14) 1.45 0.24 0.99 1.93

Var(u15) 1.18 0.48 0.10 1.87

Level 2 variances

Var(u21) 0.13 0.11 0.03 0.43

Var(u22) 0.15 0.12 0.03 0.47

Var(u23) 0.26 0.15 0.05 0.62

Var(u24) 0.10 0.07 0.02 0.27

Var(u25) 0.22 0.17 0.03 0.65

Example 8.9 Toxicity in mice This example uses simulated data on reproductive

toxicity in mice, drawing on the work of Dunson (2000) concerning the toxicological

impacts of the solvent ethylene glycol monomethyl ether (EGMME). Dunson analyses

data on litters i from parental pairs j, with nÿ nc � 132 litters born to pairs exposed to

EGMME and nc � 134 litters to control pairs not exposed. There are up to five litters

per pair, and two outcomes for each litter, namely Yij1 binary and Yij2 Poisson, with

Yij1 � 1 if the birth was delayed (i.e. prolonged birth interval) and Yij2 relating to litter

size. Litter size has an effective maximum of 20.
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The observed variables are linked to underlying Poisson variables Yij1* and

Yij2* � (Yij21* , Yij22* , . . . :Yij2M* ), with M � 20. Let Xi � 1 for exposed pairs and Xi � 0

otherwise. Then the Poisson means are

E(Yij1* ) � exp (b1i � b2Xi � w1j � cij)

and for m � 1, : :M, where M � 20 is the maximum litter size

E(Yij2m* ) � exp (b3i � b4Xi � w2j � cij)

The b1i and b3i are intercepts specific to each of the five possible litters per pair; thus b11

is the intercept specific to the first litter (when i � 1), and so on. b2 and b4 are exposure

effects on times between births and on litter size. The correlations between outcomes are

modelled via the common error cij . The observed indicators are defined according to

hits and no hits mechanisms, respectively, which is cumulated in the case of Yij2. Thus

Yij1 � d(Yij1* � 1)

Yij2 �
XM
m�1

d(Yij2m* � 0)

where d(u) equals 1 if condition u holds, and zero otherwise. Note that Y2* � 0 repre-

sents `no defect preventing successful birth', so that cumulating over d(Y2* � 0) gives the

number of mice born. However, the actual complementary log-log model involves the

chance Y2* � 1 of a defect at each m.

Here data are simulated on 270 litters (five litters for nc � 27 control pairs, and five

litters for ne � 27 exposed pairs) using the parameters supplied by Dunson (2000, p. 364).

In re-estimating the model, N(0, 1) priors are assumed on the parameters b2 and b4,

together with the informative priors of Dunson (2000) on b1i and b3i and the precisions of

w1j, w2j and cij . The complementary log-log link is used to reproduce the hits mechanism.

A two chain run of 2000 iterations, with convergence after 250, gives estimates for b2 and

b4 parallel to those of Dunson (2000, p. 364); the posterior means and 95% credible

intervals for these parameters are 1.92 (1.44, 2.40) and 0.32 (0.15, 0.48), respectively.

The interpretation is that exposure to the EGMEE delays births and reduces litter

sizes. There are several possible sensitivity analyses, including the extent of stability in

parameter estimates under less informative priors on the precisions.

Here an alternative model including explicit loadings on the constructs w1j and w2j is

also investigated. In this model, the two constructs have variance 1, but are allowed to

be correlated (with parameter v). On these assumptions, the loadings {l1, : : , l4) in the

following model may be identified:

Yij1 � d(Yij1* � 1)

Yij2 �
XM
m�1

d(Yij2m* � 0)

E(Yij1* ) � exp (b1i � l1w1j � cij) (i � 1, 5; j � 1, nc)

E(Yij1* ) � exp (b1i � b2 � l2w1j � cij) (i � 1, 5; j � nc � 1, n)

E(Yij2m* ) � exp (b3i � l3w2j � cij) (i � 1, 5; j � 1, nc; m � 1, : :M)

E(Yij2m* ) � exp (b3i � b4 � l4w2j � cij) (i � 1, 5; j � 1, nc � 1, n; m � 1, : :M)

l2 and l4 are constrained to be positive for identifiability.
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Table 8.11 Factor model for birth outcomes

Mean St. devn. 2.5% 97.5%

b2 1.92 0.23 1.48 2.38

b4 0.27 0.08 0.12 0.43

l1 0.00 0.31 ÿ0.59 0.65

l2 0.41 0.20 0.09 0.87

l3 0.82 0.38 0.22 1.69

l4 1.19 0.52 0.36 2.50

v 0.34 0.23 0.09 0.97

A two chain run of 2000 iterations shows there is a positive correlation coefficient

between the factors (albeit for these simulated data). There are also higher loadings l2

and l4 for the exposed group (as compared to l1 and l3, respectively) on the parent

level factors which represent chances of birth delay and birth defect, respectively. In real

applications, this might represent excess risk beyond that represented by the simple

dummy for exposure to EGMEE.

8.5 LATENT STRUCTURE ANALYSIS FOR MISSING DATA

In structural equation models, including confirmatory factor models, it may be that

latent variables rather than (or as well as) observed indicators contribute to predicting

or understanding missingness mechanisms. Sample selection or selective attrition that

lead to missing data may be more clearly related to the constructs than to any combin-

ation of the possible fallible proxies for such constructs. As above (Chapter 6), assume

the full set of observed and missing indicator data is denoted Y � {Yobs, Ymis}where

Ymis is of dimension M, and that the observed data includes an n�M matrix of binary

indicators Rim corresponding to whether Yij is missing (Rim � 1) or observed (Rim � 0).

Maximum likelihood and EM approaches to missing data in structural equation and

factor analysis models are considered by Rovine (1994), Arbuckle (1996) and Allison

(1987). As noted by Arbuckle (1996), the methods developed are often based on the

missing at random assumption, or assume special patterns of missingess, such as

the monotone pattern. Under monotone missingness, one might have completely ob-

served variable X for all n subjects, a variable Y observed for only n1 subjects, and a

variable Z fully observed for only n2 subjects and observed only when Y is (the n2

subjects are then a subsample of the n1). Then the likelihood may be writtenYn
i�1

f (Xiju)
Yn1

i�1

f (YijXi, u)
Yn2

i�1

f (ZijYi, Xi, u)

Under the MAR assumption, the distribution of R depends only upon the observed

data, so

f (RjY , v) � f (RjYobs, v)

whereas in many situations (e.g. attrition in panel studies) the attrition may depend upon

the values of the indicators that would have been observed in later waves. An example of

this non-random missingness is based on the Wheaton et al. (1977) study into alienation,

considered in Example 8.11. Since the interest is in accounting for missingness via
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latent constructs c based on the entire Y matrix, a non-random missingness model

might take the form f (Rjc, v).

Example 8.10 Fathers' occupation and education Allison (1987) considers a study

by Bielby et al. (1977) which aimed to find the correlation between father's occupational

status and education for black men in the US. With a sample of 2020 black males,

Bielby et al. found a correlation of 0.433, but realised this might be attenuated

by measurement error. They therefore re-interviewed a random sub-sample of 348

subjects approximately three weeks later, and obtained replicate measures on status

and education. Let y1 and y3 denote the first measures (on all 2020 subjects) relating

to status and education, respectively. For the sub-sample, observations are also

obtained on y2 and y4, repeat measures of status and education, respectively. For

the 1672 subjects remaining of the original sample, these two variables are then

missing.

On this basis, one may assume, following Allison, that the missing data are missing

completely at random ± though sampling mechanisms may generate chance associations

which invalidate the intention of the design. Since Ri2 and Ri4 are either both 1 or both

zero, a single response indicator Ri � 1 for y2 and y4 present and Ri � 0, otherwise may

be adopted.

For the 348 complete data subsample, the observed means are {16.62, 17.39, 6.65,

6.75} and the variance-covariance matrix is

180.9 126.8 24.0 22.9

126.8 217.6 30.2 30.5

124.0 130.2 16.2 14.4

122.9 130.5 14.4 15.1

while for the larger group the means on y1 and y3 are 17 and 6.8, with variance-

covariance matrix

217.3 25.6

125.6 16.2

Bielby et al. and Allison assume that the data were generated by two underlying factors

(`true' occupational and educational status) with

Y1i � k1 � l1c1i (8:10a)

Y2i � k2 � l2c1i (8:10b)

Y3i � k3 � l3c2i (8:10c)

Y4i � k4 � l4c2i (8:10d)

Both Bielby et al. and Allison take c1 and c2 to have a free dispersion matrix which

allows for covariation between the factors. This option means a constraint l1 � l3 � 1

is needed for identifiability. Alternatively, one might take c1 and c2 to be standardised

variables with their dispersion matrix containing a single unknown correlation param-

eter r. In this case, all the l parameters are identifiable. If in fact missingness is not

MCAR, then it will be related either to the known observations Y1 and Y3, or to the

partially unknown observations Y2 and Y4, or to the factor scores, c1 and c2.
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Table 8.12 Fathers' occupation and education

Mean St. devn. 2.5% Median 97.5%

Coefficients in missingness model

b0 1.362 0.223 0.933 1.359 1.805

b1 0.005 0.009 ÿ0.013 0.005 0.022

b2 0.019 0.031 ÿ0.041 0.019 0.079

Correlation between factors

r 0.608 0.047 0.511 0.609 0.696

Free loadings

l2 1.869 0.140 1.627 1.857 2.129

l4 1.024 0.047 0.938 1.022 1.123

The analysis of Allison is replicated here with an original sample size of 505, and later

subsample of size 87. An open mind on the response mechanism is retained, and it is

assumed that the probability of non-response pi � P(Ri � 1) may be related (via a logit

link) to Y1 and Y3 in line with MAR response. The response model is then

logit(pi) � b0 � b1Y1i � b2Y3i (8:11)

and priors bj � N(0, 1) are assumed. The measurement model in Equation (8.10) is

applied to all 592 subjects, regardless of observation status.

Parameter summaries are based a single chain run taken to 120 000 iterations (with

5000 burn in) for estimates of {b0, b1, b2}, {l2, l4} and the correlation r between the

two factors (and hence between true social and educational status). The diagnostics of

Raftery and Lewis (1992) suggest this number is required because of a high autocorrela-

tion in the samples, especially of l2 and l4. The inter-factor correlation of 0.61 (Table

8.12) compares to the estimate of 0.62 cited by Allison (1987, p. 86). There is in fact no

evidence of departure from MCAR in the data as sampled, in the sense that b1 and b2 in

Model (8.11) are not different from zero (their 95% credible intervals straddle zero). The

missingness model is though subject to possible revision, for example taking only Y3 as

the predictor. Subject to identifiability, response models including {Y2, Y4} or {c1, c2}

may also be investigated.

Example 8.11 Alienation over time This example considers adaptations of the data

used in a structural equation model of alienation over time as described by Wheaton

et al. (1977), originally with n � 932 subjects. In a reworked analysis of simulated data

from this study reported by Muthen et al. (1987), there are six indicators of two

constructs (social status and alienation) at time 1, and three indicators of alienation at

time 2. A slightly smaller number of subjects (600) was assumed.

Denote social status and alienation at time 1 by j1 and c1, and alienation at time 2

by c2. The original indicators for i � 1, : : 600 subjects are standardised, with three

indicators X1ÿX3 at time 1 related to the social status (exogenous) construct as

follows:

X1i � l11ji � u1i
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X2i � l21ji � u2i

X3i � l31ji � u3i

where u1, u2 and u3 are independently univariate Normal. The three indicators of

alienation are denoted Y11, Y21 and Y31 at time 1 and Y12, Y22 and Y32 at time 2.

They are related to the alienation construct at times 1 and 2 as follows:

Y11i � l12c1i � u4i

Y21i � l22c1i � u5i

Y31i � l32c1i � u6i

and

Y12i � l13c2i � u7i

Y22i � l23c2i � u8i

Y32i � l33c2i � u9i

The constructs themselves are related first by a cross-sectional model at time 1, namely

c1i � b11ji � w1i (8:12a)

and by a longitudinal model relating time 2 to time 1, namely

c2i � b21ji � b22c1i � w2i (8:12b)

Thus, alienation at time 2 depends upon alienation at time 1 and status at time 1.

Muthen et al. use various models to simulate missingness, which is confined to the

wave 2 indicators of alienation, and applies to all items for non-responding subjects.

Thus, let Ri be a binary indicator of whether a subject is missing at wave 2 (i.e. unit

rather than item non-response) with Ri � 1 for response present and Ri � 0 for response

missing (this coding for R is used to be consistent with Muthen et al.). Underlying this

binary indicator is a latent continuous variable Ri*, which is zero if Ri* < t.
One model for the Ri* assumes they are related only to fully observed (i.e. first wave)

data Xki and Yk1i:

Ri* � 0:667v*(X1i � X2i � X3i)

ÿ 0:333v*(Y11i � Y21i � Y31i)� di (8:13)

where di � N(0, 1) and v* � 0:329. The cut off t is taken as ÿ0.675. This is missingness

at random (only depending on observed data), and leads to a missingness rate of around

25%.

Another choice makes missingness depend upon both the wave 1 and 2 outcomes

whether observed or not, so that the missingness mechanism is non-ignorable. Thus,

Ri* � 0:667v*(X1i � X2i � X3i)

ÿ 0:333v*(Y11i � Y21i � Y31i � Y12i � Y22i � Y32i)� di (8:14)

In this case, Muthen et al. varied the degree of selectivity by setting v* at 0.33, 0.27 or

0.19.

A further option, also non-ignorable, makes missingness depend upon the latent

factors so that

Ri* � 0:667v*ji ÿ 0:333v*(c1i � c2i)� di (8:15)
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with v* � 0:619. This is non-ignorable, because c2 is defined both by observed and

missing data at phase 2.

Accordingly, values of (Xj, j � 1, 3) {Yj1, j � 1, 3} and {Yj2, j � 1, 3} are generated

and sampled data at wave 2 then removed according to the missingness model. One may

then compare (a) the estimates of the parameters {L, b, var(wj), var(um)} using the

original data with no imputed non-response (b) the parameters obtained when adopting

a missingness model based only on a MAR mechanism, and (c) the parameters obtained

adopting a missingness model based on the latent factors, for example as in Equation

(8.15). Under (b), logit models for Ri or Ri* depend upon the fully observed observations

at wave 1, and under (c) such models depending on the constructs c1, c2 and j.
Using the 9� 9 correlation matrix provided by Muthen et al., a full data set may be

generated and missingness then imputed according to Equation (8.13), (8.14) or (8.15).

We adopt the option in Equation (8.14), where missingness is related to all indicators,

whether subject to non-response at wave 2 or not, and take v* � 0:27. To generate the

data, it is necessary to sample all the {Xji, Yjti} and then `remove' the sampled data for

missing cases where Rij* is under the threshold. The form of the missingness models

(8.13)±(8.15) means there is either complete non-response at wave 2 or complete

response at unit level on all three indices. So individual item response indices Rij may

be replaced by a single unit response index, Ri � 0 for all missing observations at wave

2, and Ri � 1 otherwise. There are 169 of the 600 observations with missingness at

wave 3, a rate of 28%.

Under the response mechanism in Equation (8.14), attrition is greater for lower status

persons and more alienated persons: so missingess might be expected to be greater for

subjects with higher scores on c1 and c2. In Model B in Program 8.11, the response

model relates pi � Pr(Ri � 1) to the factor scores, namely,

logit(pi) � v0 � v1ji � v2c1i � v3c2i (8:16)

We then obtain the expected negative impacts on response of alienation (c1 and c2) and a

positive impactof status,j (seeTable8.13obtained fromiterations500±5000ofa twochain

run).The impactofc2 is asmightbe expected, lessprecisely estimated than thatofc1 Other

models relating pi to (say) just j and c2 might be tried. The coefficients of the structural

model (8.12) are close to the parameters obtained from the fully observed sample, though

the negatively signed impact b21 of social status j on alienation c2 at time 2 is enhanced.

Instead one might assume a model with no information to predict missingess, i.e.

logit(pi) � v0 (8:17)

(This is pi.1[ ] in Model B in Program 8.11.) In the present case, and with the particular

sample of data from the covariance matrix of Muthen et al., this produces very similar

estimates of structural and measurement coefficients to the non-ignorable model.

Both models in turn provide similar estimates of the parameters to those based on the

fully observed data set of 600� 9 variables (Model C in Program 8.11). Model (8.16)

allowing for non-ignorable missingness provides an estimate for l23 closer to the full

data parameter, but b21 is better estimated under the MCAR model (8.17). So for this

particular sampled data set, there is no benefit in using a missingness model linked to

values on the latent constructs. However, to draw firm conclusions about the benefits of

ignorable vs. non-ignorable missingess it would be necessary to repeat this analysis with

a large number of replicate data sets.
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Table 8.13 Alienation study missing data, parameter summary

Mean St. devn. 2.50% Median 97.50%

Missingness coefficients

v1 1.13 0.12 0.91 1.12 1.37

v2 0.70 0.26 0.19 0.70 1.21

v3 ÿ0.61 0.32 ÿ1.24 ÿ0.61 0.03

v4 ÿ0.50 0.47 ÿ1.48 ÿ0.48 0.42

Structural model coefficients

b11 ÿ0.57 0.06 ÿ0.69 ÿ0.57 ÿ0.46

b21 ÿ0.31 0.07 ÿ0.46 ÿ0.31 ÿ0.17

b22 0.54 0.07 0.40 0.54 0.69

Measurement model coefficients

l11 1.00

l22 1.06 0.07 0.93 1.05 1.20

l31 0.71 0.06 0.59 0.70 0.82

l12 1.00

l22 1.00 0.06 0.88 0.99 1.11

l32 0.72 0.05 0.62 0.72 0.83

l13 1.00

l23 0.89 0.09 0.73 0.89 1.08

l33 0.56 0.08 0.41 0.56 0.72

8.6 REVIEW

Despite some long-standing Bayesian discussion of certain aspects of factor analysis

and structural equation modelling (e.g. Lee, 1981; Press and Shigemasu, 1989), recent

MCMC applications have occurred at a relatively low rate compared to other areas.

This may in part reflect the availability of quality software adopting a maximum

likelihood solution. Some of the possible advantages of Bayesian analysis are suggested

by Scheines et al. (1999) and Lee (1992) in terms of modifying formal deterministic

constraints to allow for stochastic uncertainty. Recent developments introducing struc-

tural equation concepts into multi-level analysis are discussed by Jedidi and Ansari

(2001), who include an application of the Monte Carlo estimate (Equation (2.13b) in

Chapter 2) of the CPO to derive pseudo Bayes factors.

However, considerable issues in the application of repeated sampling estimation

remain relatively unexplored: whereas label switching in discrete mixture regression

is well documented (see Chapters 2 and 3), the same phenomenon occurs in models

of continuous latent traits. Similarly in latent class models with two or more latent

class variables (e.g. latent class panel models as in Section 8.4.2) there are complex

questions around consistent labelling of all such variables and how far constraints might

restrict the solution. Bayesian SEM applications with discrete data are also relatively

few.
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EXERCISES

1. In Example 8.2, try the more usual Normal density assumption for the indicators

(equivalent to Wim � 1 by default for all i) and assess fit against the Student t model

using the Gelfand-Ghosh or DIC criterion. The latter involves the likelihood com-

bined over all indicators Xm.

2. In Example 8.3, try estimating both models with a non-zero intercept g0 in the

structural model (with an N(0, 1) prior, say). Does this affect the relative perform-

ance of the two models?

3. In Example 8.4, add second order interaction parameters between the items and LC

in the log-linear model for the Ghij, and compare fit with the model confined to first

order interactions.

4. In Example 8.5, try a single factor model and evaluate its fit against the two factor

model.

5. In the Ante-natal Knowledge example, try an analysis without preliminary dichot-

omisation but regrouping the data into ordinal scales.

6. In Example 8.8, try alternative ways to possibly improve identifiability, namely (a)

assuming that level 1 and 2 loadings are the same, and (b) that only one factor is

relevant at level 2. Set up the Normal likelihood calculation and assess changes in

DIC or a predictive criterion.

7. In Example 8.10, repeat the analysis with only Y3 included in the missingness model.

Assess the change in DIC as compared to the model used in the Example, where the

relevant deviances are for both response indicators and observed outcomes.
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CHAPTER 9

Survival and Event History
Models

9.1 INTRODUCTION

Processes in the lifecycle of individuals including marriage and family formation,

changes in health status, changes in job or residence may be represented as event

histories. These record the timing of changes of state, and associated durations of

stay, in series of events such as marriage and divorce, job quits and promotions.

Many applications of event history models are to non-repeatable events such as mor-

tality, and this type of application is often called survival analysis. Survival and event

history models have grown in importance in clinical applications (e.g. in clinical trials),

in terms of survival after alternative treatments, and in studies of times to disease

recurrence and remission, or response times to stimuli.

For non-renewable events the stochastic variable is the time from entry into observa-

tion until the event in question. So for human survival, observation commences at birth

and the survival duration is defined by age at death. For renewable events, the depend-

ent variable is the duration between the previous event and the following event. We may

be interested in differences either in the rate at which the event occurs (the hazard rate),

or in average inter-event times. Such heterogeneity in outcome rate or inter-event

durations may be between population sub-groups, between individuals as defined by

combinations of covariates, or as in medical intervention studies, by different therapies.

Thus, in a clinical trial we might be interested in differences in patient survival or relapse

times according to treatment.

Whereas parametric representations of duration of stay effects predominated in early

applications, the current emphasis includes semiparametric models, where the shape of

the hazard function is essentially left unspecified. These include the Cox proportional

hazards model (Cox, 1972) and recent extensions within a Bayesian perspective such as

gamma process priors either on the integrated hazard or hazard itself (Kalbflesich,

1978; Clayton, 1991; Chen et al., 2000). While the shape of the hazard function in time is

often of secondary interest, characteristics of this shape may have substantive implica-

tions (Gordon and Molho, 1995).

Among the major problems that occur in survival and inter-event time modelling is a

form of data missingness known as `censoring'. A duration is censored if a respondent

withdraws from a study for reasons other than the terminating event, or if a subject does
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not undergo the event before the end of the observation period. Thus, we know only

that they have yet to undergo the event at the time observation ceases. This is known as

`right censoring', in that the observed incomplete duration is necessarily less than the

unknown full duration until the event. Other types of censoring, not considered in the

examples below, are left censoring and interval censoring. In the first, subjects are

known to have undergone the event but the time at which it occurred is unknown,

while in the second it is known only that an event occurred within an interval, not the

exact time within the interval.

Another complication arises through unobserved variations in the propensity to

experience the event between individual subjects, population groups, or clusters of

subjects. These are known as `frailty' in medical and mortality applications (Lewis

and Raftery, 1995). If repeated durations are observed on an individual, such as

durations of stay in a series of jobs, or multiple event times for patients (Sinha and

Dey, 1997), then the cluster is the individual employee or patient. The unobserved

heterogeneity is then analogous to the constant subject effect in a panel model. Given

the nature of the dependent variable, namely the length of time until an event occurs,

unmeasured differences lead to a selection effect. For non-renewable events such as

human mortality, high risk individuals die early and the remainder will tend to have

lower risk. This will mean the hazard rate will rise less rapidly than it should.

A third major complication occurs in the presence of time varying covariates and here

some recent approaches to survival models including counting processes (Andersen et

al., 1993; Fleming and Harrington, 1991) are relatively flexible in incorporating such

effects. In event history applications, counting processes also allow one to model the

effect of previous moves or durations in a subject's history (Lindsey, 2001).

Survival model assessment from a Bayesian perspective has been considered by

Ibrahim et al. (2001a, 2001b) and Sahu et al. (1997), who consider predictive loss criteria

based on sampling new data; and by Volinsky and Raftery (2000), who consider the

appropriate form of the Bayesian Information Criterion (BIC). Pseudo-Bayes factors

may also be obtained via harmonic mean estimates of the CPO (Sahu et al., 1997; Kuo

and Peng, 2000, p. 261) based on the full data.

Volinsky and Raftery suggest that the multiplier for the number of parameters be not

log(n) but log(d ), where n and d are, respectively, the total subjects and the observed

number of uncensored subjects. Then if ` is the log-likelihood at the maximum likeli-

hood solution and p the number of parameters

BIC � ÿ2`� p log (d )

Another version of this criterion, namely the Schwarz Bayesian Criterion (SBC), is

proposed by Klugman (1992). This includes the value of the prior p(�u) at the posterior

mean �u, and log-likelihood `(�u), so that

SBC � `(�u)� p(�u)ÿ p log (n=p)

where the last term on the right-hand side involves p � 3:1416. The AIC, BIC and SBC

rely on knowing the number of parameters in different models, but the often high level of

missing data through censoring means, for instance, that the true number of parameters is

unknown and the method of Spiegelhalter et al. (2001) might therefore be relevant.

Predictive loss methods may be illustrated by an adaptation of the Gelfand and

Ghosh (1998) approach; thus, let ti be the observed times, uncensored and censored, u
the parameters, and zi the `new' data sampled from f (zju). Suppose ni and Bi are the

mean and variance of zi, then, following Sahu et al. (1997), one criterion for any w > 0 is
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D �
Xn

i�1

Bi � [w=(w� 1)]
Xn

i�1

(ni ÿ ui)
2 (9:1)

where ui � max (ni, si) if si is a censored time and ui � ti if the time is uncensored.

9.2 CONTINUOUS TIME FUNCTIONS FOR SURVIVAL

Suppose event or survival times T are recorded in continuous time. Then the density f (t)

of these times defines the probability that an event occurs in the interval (t, t� dt),

namely

f (t) � lim
dt!0

Pr(t � T � t� dt)=dt

with cumulative density

F (t) �
�t

0

f (u)du

From this density the information contained in duration times can be represented in two

different ways. The first involves the chance of surviving until at least time t (or not

undergoing the event before duration t), namely

S(t) � Pr(T � t) � 1ÿ F (t)

�
�1

t

f (u)du

The other way of representing the information involves the hazard rate, measuring the

intensity of the event as a function of time,

h(t) � f (t)=S(t)

and in probability terms, the chance of an event in the interval (t, t� dt) given survival

until t. From h(t) is obtained the cumulative hazard H(t) � � t

0
h(u)du, and one may also

write the survivor function as S(t) � exp (ÿH(t)).

As an example of a parameterised form of time dependence, we may consider the

Weibull distribution for durations W (l, g), where l and g are scale and shape param-

eters, respectively (Kim and Ibrahim, 2000). The Weibull hazard is defined as

h(t) � lgtgÿ1

with survival function

S(t) � exp (ÿ ltg)

and density

f (t) � lgtgÿ1 exp (ÿ ltg)

The Weibull hazard is monotonically increasing or decreasing in time according to

whether g > 1 or g < 1. The value g � 1 leads to exponentially distributed durations

with parameter l.

To introduce stationary covariates x of dimension p, we may adopt a proportional

form for their impact on the hazard. Then the Weibull hazard function in relation to

time and the covariates is
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h(t, x) � lebxgtgÿ1 (9:2)

Under proportional hazards, the ratio of the hazard rate at a given time t for two

individuals with different covariate profiles, x1 and x2 say, is

h(t, x1)=h(t, x2) � exp (b(x1 ÿ x2))

which is independent of time.

An equivalent form for the Weibull proportional hazards model in Equation (9.2)

(Collett, 1994) involves a log-linear model for the durations ti and assumes a specified

error ui, namely the extreme value (Gumbel) distribution. Then

log (ti) � n� axi � sui (9:3)

where, in terms of the parameters in Equation (9.2), the scale is

s � 1=g

the intercept is

n � ÿs log (l)

and the covariate effects are

aj � ÿbjs j � 1, . . . , p

Taking ui as standard Normal leads to a log-Normal model for durations, while taking

ui as logistic leads to the log-logistic model for t (Lawless, 1982; Fahrmeir and Tutz,

2001).

In BUGS the Weibull density for durations is routinely implemented as

t[i] � dweib(lambda[i],gamma),

where the log of lambda[i] (or possibly some other link) is expressed as a function of an

intercept and covariates, and gamma is the shape parameter. While the Weibull hazard

is monotonic with regard to duration t, a non-monotonic alternative such as the log-

logistic may be advantageous, and this may be achieved in BUGS by taking a logistic

model for y � log (t). Here, t are observed durations, censored or complete.

Thus,

yi � Logistic(mi, k) (9:4)

where k is a scale parameter and mi is the location of the ith subject. The location may be

parameterised in terms of covariate impacts mi � bxi on the mean length of log survival

(rather than the hazard rate). The variance of y is obtained as p2=(3k2). The survivor

function in the y scale is

S( y) � [1� exp ({yÿ m}=s)]ÿ1 (9:5)

where s � 1=k. In the original scale, the survivor function is

S(t) � [1� {t=u}k]ÿ1 (9:6)

where u � em.

Example 9.1 Reaction times An example of a parametric analysis of uncensored

data is presented by Gelman et al. (1995, Chapter 16), and relates to response times

on i � 1, : : 30 occasions for a set of j � 1, : : 17 subjects; 11 were not schizophrenic

and six were diagnosed as schizophrenic. In Program 9.1, the first 11 cases are
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non-schizophrenic. As well as response times being higher for the latter, there is

evidence of greater variability in reaction times for the schizophrenics.

For the non-schizophrenic group a Normal density for the log response times

yij � loge tij (i.e. a log-Normal density for response times) is proposed, with distinct

means for each of the 11 subjects. We might alternatively adopt a heavier tailed density

than the Normal for the schizophrenic group, but there are substantive grounds to

expect distinct sub-types. Specifically, delayed reaction times for schizophrenics may be

due to a general motor retardation common to all diagnosed patients, but attentional

deficit may cause an additional delay on some occasions for some or all schizophrenics.

The observed times for non-schizophrenics are modelled as

yij � N(aj, v)

with the means for subjects j drawn from a second stage prior aj � N(m, F). For the

schizophrenics, the observed times are modelled as

yij � N(aj � tGij , v)

aj � N(m� b, F)

where b and t are expected to be positive. The Gij are a latent binary classification of

schizophrenic times, according to whether the Additional Attention Deficit (AD)

impact was operative or not.

We accordingly assign N(0, 1) priors for b and for t, measuring the AD effect, with

sampling confined to positive values. For the probabilities l1 and l2 of belonging to the

AD group or not (among the schizophrenic patients) a Dirichlet prior is adopted, with

weights of 1 on the two choices. Gelman et al. use the equivalent parameterisation

l1 � 1ÿ l and l2 � l with the group indicators drawn from a Bernoulli with parameter

l. Note that the constraint t > 0 is already a precaution against `label switching' in this

discrete mixture problem. Convergence of parameters (over a three chain run to 20 000

iterations) is achieved by around iteration 8000 in terms of scale reduction factors

between 0.95 and 1.05 on the unknowns, and summaries based on the subsequent

12 000.

We find an estimated median l2 of 0.12 (Table 9.1, Model A), which corresponds to

that obtained by Gelman et al. (1995, Table 16.1). The excess of the average log

response time for the non-delayed schizophrenic times over the same average for non-

schizophrenics is estimated at b � 0:32, as also obtained by Gelman et al.

We follow Gelman et al. in then introducing a distinct variance parameter for those

subject to attentional deficit, and also an additional indicator Fj � Bern(v) for schizo-

phrenic subjects such that Gij can only be 1 when Fj � 1. l2 is now the chance of an AD

episode given that the subject is AD prone.

The second half of a three chain run of 20 000 iterations leads to posterior means

l2 � 0:66, and v � 0:50 (Table 9.1, Model B). However, using the predictive loss

criterion of Gelfand and Ghosh (1998) and Sahu et al. (1997), it appears that the

more heavily parameterised model has a worse loss measure as in Equation (9.1), and

so the simpler model is preferred. This conclusion is invariant to values of w between

1 and values of w so large that w=(1� w) is effectively 1.

Example 9.2 Motorettes Tanner (1996) reports on the analysis of repeated observa-

tions of failure times of ten motorettes tested at four temperatures. All observations are
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Table 9.1 Response time models, parameter summary

Model A Mean St. devn. 2.5% Median 97.5%

l1 0.877 0.029 0.814 0.879 0.929

l2 0.123 0.029 0.071 0.121 0.186

b 0.317 0.08 0.16 0.317 0.477

m 5.72 0.05 5.63 5.72 5.81

t 0.843 0.06 0.729 0.842 0.962

Model B

l1 0.344 0.160 0.054 0.336 0.674

l2 0.656 0.160 0.326 0.664 0.946

b 0.261 0.100 0.082 0.253 0.472

m 5.72 0.04 5.63 5.72 5.81

t 0.552 0.245 0.228 0.468 1.099

v 0.500 0.236 0.068 0.527 0.888

Table 9.2 Failure times of motorettes (* censored)

Temperature (centigrade)

Motorette 150 170 190 220

1 8064* 1764 408 408

2 8064* 2772 408 408

3 8064* 3444 1344 504

4 8064* 3542 1344 504

5 8064* 3780 1440 504

6 8064* 4860 1680* 528*

7 8064* 5196 1680* 528*

8 8064* 5448* 1680* 528*

9 8064* 5448* 1680* 528*

10 8064* 5448* 1680* 528*

right censored at the lowest temperature, and three motorettes are censored at all

temperatures (Table 9.2).

The original times t are transformed via W � log10 (t), and a Normal density pro-

posed for them with variance s2 and means modelled as

mi � b1 � b2Vi

where Vi � 1000/(temperature�273.2). For censored times it is necessary to constrain

sampling of possible values above the censored time; it is known only that the actual value

must exceed the censored time. For uncensored cases, we follow the BUGS convention in

including dummy zero values of the censoring time vector (W.cen[ ] in Program 9.2).

Tanner obtains s � 0:26, b1 � ÿ6:02 and b2 � 4:31. We try both linear and quad-

ratic models in Vi and base model selection on the Schwarz criterion at the posterior

mean. The posterior means on the censored failure times come into the calculations of

the SBC's (Models A1 and B1 in Program 9.2). Less formal assessments might involve

comparing (between linear and quadratic models) the average deviance or likelihood
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over iterations subsequent to convergence. It is important to centre the Vi (especially in

the quadratic model) to guarantee early convergence of the bj, which means that the

intercept will differ from Tanner's.

Summaries in Table 9.3 are based on the last 4000 iterations of three chain runs to

5000 iterations. With N(0, 1000) priors on the bj and G(1, 0.001) prior on 1=s2, there is

a slight gain in simple fit, as measured by the average likelihood, with the quadratic

model. However, the SBC suggests that the extra parameter is of doubtful value, with

the simpler model preferred. As an illustration of the predictions of the complete failure

times for observations on incomplete or censored times, the times censored at 8064 for

temperature 1508C are predicted to complete at 16 970 (median), with 95% interval

(8470, 73 270) under the linear model. These appear as log10(t.comp) in Table 9.3.

Example 9.3 Log-logistic model As an example of log-logistic survival, we apply the

logistic model (9.4)±(9.5) to the logs of the leukaemia remission times from the Gehan

(1965) study. A G(1, 0.001) prior on k � 1=s is taken in Equation (9.5) and flat priors

on the treatment effect, which is the only covariate. Initially, k is taken the same across

all subjects (Model A).

A three chain run to 10 000 iterations (with 1000 burn-in) leads to an estimated mean

treatment difference of 1.31 (i.e. longer remission times for patients on the treatment)

and a median for s � 1=k of 0.58. These values compare closely with those obtained by

(Aitkin et al., 1989, p. 297). Treatment and placebo group survival curves as in Equation

(9.6) show the clear benefit of the treatment in terms of mean posterior probabilities up

to t � 50 (Table 9.4).

In a second model (Model B), the scale parameter k is allowed to differ between the

treatment and placebo groups. The predictive loss criterion in Equation (9.1) suggests

the simpler model to be preferable to this extension; the same conclusion follows from

the pseudo Bayes factor based on Monte Carlo estimates of the CPO (Sahu et al., 1997).

It is, however, noteworthy that b1 is enhanced in Model B, and that variability s
appears greater in the treatment group.

Table 9.3 Motorette analysis, parameter summary

Quadratic Mean St. devn. 2.5% Median 97.5%

SBC at posterior mean ÿ22.1

Log-likelihood ÿ3.3 6.2 ÿ17.0 ÿ2.7 7.1

b1 3.35 0.07 3.21 3.34 3.50

b2 5.43 0.85 4.00 5.34 7.32

b3 14.01 6.33 2.91 13.52 27.75

s 0.26 0.05 0.18 0.25 0.38

log10(t.comp) 4.63 0.38 4.01 4.58 5.48

Linear

SBC at posterior mean ÿ19

Log-likelihood ÿ4.6 6.0 ÿ18.1 ÿ4.0 5.5

b1 3.48 0.06 3.38 3.48 3.62

b2 4.34 0.46 3.49 4.32 5.31

s 0.27 0.05 0.19 0.26 0.39

log10(t.comp) 4.26 0.24 3.93 4.23 4.82
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Table 9.4 Treatment effect on remission times (Model A)

Parameter Mean St. devn. 2.5% Median 97.5%

b0 1.886 0.221 1.436 1.890 2.312

b1 (Treatment effect on

remission time)

1.312 0.354 0.652 1.296 2.046

s 0.582 0.093 0.427 0.573 0.790

Group survival curves

Placebo Treated

Time Mean St. devn. Mean St. devn.

1 0.958 0.026 0.995 0.005

2 0.882 0.053 0.985 0.011

3 0.791 0.072 0.971 0.019

4 0.701 0.083 0.954 0.026

5 0.616 0.090 0.934 0.034

6 0.541 0.092 0.913 0.041

7 0.475 0.091 0.890 0.048

8 0.419 0.089 0.866 0.055

9 0.371 0.087 0.842 0.062

10 0.331 0.083 0.817 0.068

11 0.296 0.080 0.791 0.073

12 0.266 0.076 0.766 0.079

13 0.240 0.073 0.741 0.083

14 0.218 0.070 0.716 0.088

15 0.199 0.067 0.692 0.092

16 0.182 0.064 0.668 0.095

17 0.168 0.061 0.645 0.098

18 0.155 0.058 0.623 0.101

19 0.143 0.056 0.601 0.103

20 0.133 0.053 0.580 0.105

21 0.124 0.051 0.560 0.106

22 0.116 0.049 0.541 0.108

23 0.109 0.047 0.522 0.109

24 0.102 0.045 0.504 0.109

25 0.096 0.043 0.487 0.110

26 0.090 0.042 0.471 0.110

27 0.085 0.040 0.455 0.111

28 0.081 0.039 0.440 0.111

29 0.077 0.038 0.426 0.111

30 0.073 0.036 0.412 0.110

31 0.069 0.035 0.399 0.110

32 0.066 0.034 0.386 0.109

33 0.063 0.033 0.374 0.109

34 0.060 0.032 0.363 0.108

35 0.057 0.031 0.352 0.108

36 0.055 0.030 0.341 0.107

37 0.053 0.029 0.331 0.106

(continues)
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Table 9.4 (continued)

Placebo Treated

Time Mean St. devn. Mean St. devn.

38 0.051 0.028 0.321 0.105

39 0.049 0.028 0.312 0.104

40 0.047 0.027 0.303 0.103

41 0.045 0.026 0.295 0.102

42 0.043 0.025 0.286 0.101

43 0.042 0.025 0.279 0.100

44 0.040 0.024 0.271 0.099

45 0.039 0.024 0.264 0.098

46 0.038 0.023 0.257 0.097

47 0.036 0.022 0.250 0.096

48 0.035 0.022 0.244 0.095

49 0.034 0.021 0.238 0.094

50 0.033 0.021 0.232 0.093

Example 9.4 Nursing home length of stay Morris et al. (1994) consider length of stay

for a set of 1601 nursing home patients in terms of a treatment and other attributes (age,

health status, marital status, sex) which might affect length of stay. Stay is terminated

either by death or return home. We here estimate linear covariate effects in a propor-

tional Weibull hazard

h(t, z) � gtgÿ1 exp (bx)

This is equivalent to a regression of the logged length of stay on the regressors with a

scaled error term u

log (t) � fx� su

where s � 1=g and f � ÿbs. We obtain results on the treatment and attribute vari-

ables similar to those of Morris et al. These are the coefficients f on the predictors of log

length of stay, which is a close proxy for length of survival in the context. All covariates

are categorical except age, which is converted to a spline form

age.s � min(90, age)ÿ65.

Health status is based on numbers of activities of daily living (e.g. dressing, eating)

where there is dependency in terms of assistance being required. Thus, health�2 if there

are four or less ADLs with dependence, health�3 for five ADL dependencies, health�4

for six ADL dependencies, and health�5 if there were special medical conditions

requiring extra care (e.g. tube feeding).

Convergence with a three chain run is achieved early and the summary in Table 9.5 is

from iterations 500±2000. Personal attributes such as gender, health status, age and

marital status all impact on length of stay. Married persons, younger persons and males

have shorter lengths of stay, though the effect of age straddles zero. Married persons,

often with a care-giver at home, tend to enter with poorer initial functional status,

associated with earlier death. The experimental treatment applied in some nursing

homes involved financial incentives to improve health status and (for the non-terminal

patients) achieve discharge within 90 days; however, the effect is not towards lower
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Table 9.5 Nursing home stays, parameter summary

Mean St. devn. 2.5% Median 97.5%

Full model

Intercept 5.739 0.165 5.437 5.735 6.070

Age 0.007 0.007 ÿ0.007 0.007 0.020

Treatment 0.201 0.093 0.017 0.203 0.381

Male ÿ0.562 0.108 ÿ0.772 ÿ0.562 ÿ0.342

Married ÿ0.262 0.128 ÿ0.516 ÿ0.259 ÿ0.006

Health 3 0.045 0.131 ÿ0.215 0.045 0.301

Health 4 ÿ0.377 0.131 ÿ0.636 ÿ0.378 ÿ0.117

Health 5 ÿ0.872 0.166 ÿ1.201 ÿ0.873 ÿ0.550

Scale 1.635 0.036 1.564 1.635 1.706

Reduced model

Intercept 5.766 0.149 5.475 5.763 6.066

Age 0.007 0.007 ÿ0.007 0.007 0.020

Treatment 0.198 0.089 0.022 0.197 0.373

Male ÿ0.565 0.112 ÿ0.791 ÿ0.566 ÿ0.342

Married ÿ0.257 0.127 ÿ0.499 ÿ0.258 0.001

Health 4 ÿ0.400 0.101 ÿ0.594 ÿ0.399 ÿ0.205

Health 5 ÿ0.897 0.149 ÿ1.182 ÿ0.897 ÿ0.596

Scale 1.635 0.037 1.557 1.636 1.707

length of stay, possibly because patients in treatment homes were more likely to be

Medicaid recipients (Morris et al., 1994).

It would appear that the effect of health status level 3 is not clearly different from zero

(i.e. from the null parameter of the reference health status), and so the groups 2 and 3

might be amalgamated. We therefore fit such a model (Model B in Program 9.4), and

find its pseudo-marginal likelihood to be in fact higher than the model (ÿ8959 vs.

ÿ9012) involving the full health status scale. The conventional log likelihood averages

around ÿ8548 for both models.

9.3 ACCELERATED HAZARDS

In an Accelerated Failure Time (AFT) model the explanatory variates act multiplica-

tively on time, and so affect the `rate of passage' to the event; for example, in a clinical

example, they might influence the speed of progression of a disease. Suppose

ni � b1x1i � b2x2i � . . .� bpxpi (9:7a)

denotes a linear function of risk factors (without a constant). Then the AFT hazard

function is

h(t, x) � eni h0(e
ni t)

For example, if there is Weibull time dependence, the baseline hazard is

h0(t) � lgtgÿ1
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and under an AFT model, this becomes

h(t, x) � eni lg(teni )gÿ1

� (eni )glgtgÿ1
(9:7b)

Hence the durations under an accelerated Weibull model have a density

W (legni , g)

whereas under proportional hazards the density is

W (leni , g)

If there is a single dummy covariate (e.g. xi � 1 for treatment group, 0 otherwise), then

ni � bxi � b when xi � 1. Setting f � eb, the hazard for a treated patient is

fh0(ft)

and the survivor function is S0(ft). The multiplier f is often termed the acceleration

factor.

The median survival time under a Weibull AFT model is

t:50 � [ log 2={legni}]=g (9:8)

In an example of a Bayesian perspective, Bedrick et al. (2000) consider priors for the

regression parameters in Equation (9.7a) expressed in terms of their impact on median

survival times in Equation (9.8) rather than as direct priors on the bj .

Example 9.5 Breast cancer survival We consider the breast cancer survival times (in

weeks) of 45 women, as presented by Collett (1994, p. 7). The risk factor is a classifica-

tion of the tumour as positively or negatively stained in terms of a biochemical marker

HPA, with xi � 1 for positive staining, and xi � 0 otherwise. We use a G(1, 0.001) prior

on the Weibull shape parameter.

A three chain run of 5000 iterations shows early convergence of b and convergence at

around iteration 750 for g. The summary, based on the last 4000 iterations, shows the

posterior mean of g to be 0.935, but with the 95% interval straddling unity (Table 9.6).

The posterior mean of the positive staining parameter b is estimated as around 1.1, and

shows a clear early mortality effect for such staining. The CPOs show the lowest

probability under the model for cases 8 and 9, where survival is relatively extended

despite positive staining. The lowest scaled CPO (the original CPOs are scaled relative

to their maximum) is 0.016 (Weiss, 1994).

Table 9.6 Breast cancer survival, parameter estimates

Mean St. devn. 2.5% Median 97.5%

b 1.105 0.566 0.098 1.075 2.288

g (Weibull shape) 0.935 0.154 0.651 0.931 1.266

t.50 92.0 23.8 54.7 89.1 147.8

Hazard ratio under

proportional hazards

3.14 1.75 1.09 2.73 7.50
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The posterior mean of the analytic median survival formula (9.8) for women with

cancer classed as positively stained is around 92 weeks, a third of the survival time of

women with negatively stained tumours. Under the proportional hazards model the

hazard ratio would be egb which has a median of 2.7 similar to that cited by Collett

(1994, p. 214), though is not precisely estimated both because of the small sample and

because it involves a product of parameters.

9.4 DISCRETE TIME APPROXIMATIONS

Although events may actually occur in continuous time, event histories only record time

in discrete units, generally called periods or intervals, during which an event may only

occur once. The discrete time framework includes population life tables, clinical life

table methods such as the Kaplan±Meier method, and discrete time survival regressions.

Applications of the latter include times to degree attainment (Singer and Willett, 1993),

and the chance of exit from unemployment (Fahrmeir and Knorr-Held, 1997). The

discrete framework has been adapted to semi-parametric Bayesian models (Ibrahim et

al., 2001a) as considered below.

Consider a discrete partition of the positive real line,

0 < a1 < a2 < : : < aL <1
and let Aj denote the interval [ajÿ1, aj), with the first interval being [0, a1). The discrete

distributions analogous to those above are

fj � Pr(TeAj)

� Sj ÿ Sj�1

(9:9)

where, following Aitkin et al. (1989),

Sj � Pr(T > ajÿ1)

� fj � fj�1 � . . .� fL

(9:10)

The survivor function at ajÿ1 is Sj and at aj is Sj�1 with the first survivor rate being

S1 � 1. The jth discrete interval hazard rate is then

hj � Pr(TeAj jT > ajÿ1) � fj=Sj

It follows that

hj � (Sj ÿ Sj�1)=Sj

and so

Sj�1=Sj � 1ÿ hj

So the chance of surviving through r successive intervals, which is algebraically

Sr�1 �
Yr

j�1

Sj�1=Sj

can be estimated as a `product limit'

Sr�1 �
Yr

j�1

(1ÿ hj)
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The likelihood is defined over individuals i and periods j and a censoring variable wij is

coded for the end point aj of each interval (ajÿ1, aj ] and each subject, up until the final

possible interval (aL, 1]. Suppose we have a non-repeatable event. Then if the observa-

tion on a subject ends with an event within the interval (ajÿ1, aj], the censoring variable

would be coded 0 for preceding periods, while wij � 1. A subject still censored at the end

of the study would have indicators wij � 0 throughout.

In aggregate terms, the likelihood then becomes a product of L binomial probabil-

ities, with the number at risk at the beginning of the jth interval being Kj . This total is

composed of individuals still alive at ajÿ1 and still under observation (i.e. neither

censored or failed in previous intervals). For individuals i still at risk in this sense (for

whom Rij � 1) the total deaths in the jth interval areX
Rij�1

wij � dj

The Kaplan±Meier estimate of the survival curve is based on the survival rates estimated

from the binomial events with Kj ÿ dj subjects surviving from nj at risk. In practice, we

may restrict the likelihood to times at which failures or deaths occur, i.e. when hj is non-

zero.

Some authors have taken the Kaplan±Meier approach as a baseline, but proposed

non-parametric methods to smooth the original KM estimates. Thus, Leonard et al.

(1994) suggest that the unknown density function of survival times f (t) be obtained via

an equally weighted mixture of hazard functions with m components

hm(t, j, Z) � mÿ1
Xm
k�1

h(t, jk, Z) (9:11)

where each h(t, jk, Z) is a specific hazard function (e.g. exponential, Weibull), Z denotes

parameters of that function not varying over the mixture and jk are components that do

vary. The number of components may exceed the number of observations n, in which

case some will be empty. The equally weighted mixture is analogous to kernel estimation

and smooths f without assuming that f itself comes from a parametric family. This

mixture has known component masses, and is easier to estimate and analyse than a

discrete mixture model with unknown and unequal probabilities. The special case

j1 � j2 � . . . � jm means that f can be represented by a parametric density.

Example 9.6 Colorectal cancer: Kaplan±Meier method To illustrate the Kaplan±

Meier procedure, we first consider data on survival in months in 49 colorectal cancer

patients (McIllmurray and Turkie, 1987), as in Table 9.7.

We restrict the analysis to survival in the treatment group subject to linolenic acid, and

in relation to five distinct times of death, namely 6, 10, 12, 24 and 32 months. Totals at risk

Kj (for whom Rij � 1) are defined according to survival or withdrawal prior to the start of

the jth interval. Thus, two of the original 25 patients censored at one and five months are

not at risk for the first interval where deaths occur, namely the interval (6, 9). For these

two patients the survival rate is 1. At 6 months, two treated patients die in relation to a

total at risk of K1 � 23 patients, so the survival rate is 1ÿ 2=23 � 0:913. The next patient,

censored at nine months, is also subject to this survival rate. The survival rate changes

only at the next death time, namely 10 months, when K2 � 20 patients are at risk, and

there are two deaths, so that the survival rate (moment estimate) is (0.9)(0.913)�0.822.

This process is repeated at the next distinct death time of 12 months.
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Table 9.7 Survival in patients with Dukes' C colorectal cancer and assigned to

linolenic acid or control treatment. Survival in months (* � censored)

Linolenic acid (n�25) Control (n � 24)

1* 13* 3* 18*

5* 15* 6 18*

6 16* 6 20

6 20* 6 22*

9* 24 6 24

10 24* 8 28*

10 27* 8 28*

10* 32 12 28*

12 34* 12 30

12 36* 12* 30*

12 36* 15* 33*

12 44* 16* 42

12*

A technique useful in many applications with survival times involves reformulating

the likelihood to reveal a Poisson kernel (Fahrmeir and Tutz, 2001; Lindsey, 1995).

Aitkin and Clayton (1980) show how for several survival densities, estimation is possible

via a log-linear model for a Poisson mean that parallels a log-linear model for the

hazard function. Here, although other approaches are possible, we use the equivalent

Poisson likelihood for the outcome indicators wij . These have means

uij � Rijhj

where hj is the hazard rate in the jth interval and has a prior proportional to the width of

that interval, namely hj � G(c[aj ÿ ajÿ1], c), where c represents strength of prior belief.

Taking c � 0:001, and three chains to 5000 iterations (with 1000 burn in) we derive

the survival rates Sj at the five distinct times of death, as in Table 9.8, together with the

hazard rates hj .

Table 9.8 Colorectal cancer: survival and hazard rates at distinct death times

Mean St. devn. 2.5% Median 97.5%

Survival probabilities

S1 0.913 0.062 0.759 0.926 0.990

S2 0.821 0.086 0.621 0.834 0.951

S3 0.627 0.116 0.374 0.637 0.824

S4 0.548 0.130 0.270 0.556 0.773

S5 0.437 0.153 0.111 0.447 0.703

Hazard

h1 0.087 0.062 0.010 0.074 0.241

h2 0.100 0.071 0.013 0.085 0.286

h3 0.236 0.118 0.067 0.216 0.513

h4 0.127 0.127 0.004 0.087 0.464

h5 0.202 0.199 0.005 0.141 0.733
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Example 9.7 Colon cancer survival: non-parametric smooth via equally weighted

mixture As an example of the equal weighted mixture approach, we consider data

on colon cancer survival in weeks following an oral treatment (Ansfield et al., 1977). Of

52 patients times, 45 were uncensored (ranging from 6±142 weeks) and seven patients

had censored survival times. Leonard et al. (1994) investigated Weibull and exponential

hazard mixtures in Equation (9.11), but were unable to find a stable estimate for the

Weibull time parameter Z in

h(t, Z, jk) � Zjkt
Zÿ1

where jk are location parameters which vary over components. They therefore used a set

value of Z � 2, and performed an exponential mixture analysis of the squared survival

times (s � tZ), so that

h(s, jk) � jk

They assume the exponential means are drawn from gamma density G(a, b), where a is

known but b is itself gamma with parameters k and z. In the colon cancer example, they

set a � k � 0:5 and z � 52ÿ2; these prior assumption are consistent with average

survival of a year in the original time scale.

Here the original Weibull mixture is retained in the untransformed time scale, and

m � 15 components taken, with Z a free parameter assigned an E(1) prior. The equiva-

lent assumption to Leonard et al. on the G(a, b) prior for the location parameters (in

the original time scale) involves setting a � k � 0:5 and z � 1=52.

Of interest are the smoothed survivor curve S(t) and the density f (t) itself. We obtain

similar estimates of the former to those represented in Figures 1 and 2 of Leonard et al.

(1994). The estimates of b and a=b (i.e. the parameters governing the Weibull means jk)

will be affected by using the full Weibull hazard. The last 4000 of a three chain run of

5000 iterations show b not precisely identified and skewed with median at around 115.

The Weibull time parameter has a posterior mean estimated at 1.72, with 95% interval

from 1.35 to 2.10. Figure 9.1 shows the resulting survivor curve up to 200 weeks.

The analysis is similar in terms of parameter estimates and survivor function whether

constrained (monotonic) or unconstrained sampling of jk is used, or whether the logs of

jk are modelled via Normal priors ± instead of modelling the jk as gamma variables

(Model B in Program 9.7). In the latter case, the prior mean of log (jk) is ÿ4 with

variance 1, so the jk will have average 0.018.

However, the predictive loss criterion in Equation (9.1) is lower for constrained

gamma sampling than unconstrained gamma sampling, because of lower variances of

new times zi when these times are censored. The log-Normal approach has a lower

predictive loss than either gamma sampling option, and gives a slightly higher estimate

of the Weibull time slope, namely 1.92 with 95% interval (1.45, 2.55).

9.4.1 Discrete time hazards regression

The usual methods for discrete time hazards assume an underlying continuous time

model, but with survival times grouped into intervals, such that durations or failure

times between ajÿ1 and aj are recorded as a single value. Assume that the underlying

continuous time model is of proportional hazard form

l(t, z) � l0(t) exp (bz) (9:12)
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Figure 9.1 Weibull mixture analysis

with survivor function

S(t, x) � exp (ÿ L0(t)e
bz)

where the integrated hazard is denoted by

L0(t) �
�t

0

l0(u)du (9:13)

Then the conditional probability of surviving through the jth interval given that a

subject has survived the previous j ÿ 1 intervals is

qj � exp ÿebz

�aj

ajÿ1

l0(u)du

" #
� exp ÿebz{L0(aj)ÿ L0(ajÿ1)}

� �
while

hj � 1ÿ qj

is the corresponding hazard rate in the jth interval [ajÿ1, aj).

The total survivor function until the start of the jth interval is

Sj � exp [ÿ ebzL0(ajÿ1)]

Defining

gj � ln [L0(aj)ÿ L0(ajÿ1)]

the likelihood of an event in interval [ajÿ1, aj) given survival until then, can be written

(Fahrmeir and Tutz, 2001; Kalbfleisch and Prentice, 1980) as
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hjSj � 1ÿ exp ÿebz�gj
ÿ �� 	Yjÿ1

k�1

exp ÿebz�gk
ÿ �

(9:14)

Let wj � 1 for an event in the jth interval and wj � 0 otherwise. As to the regression

term in Equation (9.14), we may allow z[aj] to be potentially time varying predictors.

More generally, also let bj denote a regression effect fixed within intervals, but that may

vary between intervals. If the predictors themselves are time specific one may introduce

lagged as well as contemperaneous effects (Fahrmeir and Tutz, 2001).

The typical log-likelihood contribution for an individual surviving j ÿ 1 intervals

until either an event or censoring is then

wj log [1ÿ exp (ÿ exp {gj � bjz[aj]})]ÿ
Xjÿ1

k�1

exp {gk � bkz[ak]}

This likelihood reduces to Bernoulli sampling over individuals and intervals with

probabilities of the event pij modelled via a complementary log-log link, and with the

censoring indicator forming the response. Thus, for a subject observed for ri intervals

until either an event or censoring

wij � Bernoulli(pij) i � 1, : : , n, j � 1, : : , ri

log {ÿ log (1ÿ pij)} � gj � bjzi[aj ] (9:15)

As well as fixed effect priors on gj and bj , one can specify random walk priors, also

called correlated prior processes (Gamerman, 1991; Sinha and Dey, 1997; Fahrmeir and

Knorr-Held, 1997). For example, a first order random walk prior is

gj�1 � gj � ej

where the ej are white noise with variance s2
g. A variant of this is the local linear trend

model

gj�1 � gj � dj � e1j

dj�1 � dj � e2j

where both e1 and e2 are white noise. Another option, again to avoid the parameterisa-

tion involved in assuming fixed effects, is for gj to be modelled as a polynomial in j

(Mantel and Hankey, 1978). Smoothness priors may also be used for time varying

regression coefficients bj (Sargent, 1997). Thus, a first order random walk prior in a

particular regression coefficient would be

bj�1 � bj � ej

where the ej have variance s2
b.

Example 9.8 Longitudinal study of ageing Dunlop and Manheim (1993) consider

changes in the functional status of elderly people (over age 70) using data from the

US Longitudinal Study of Ageing, carried out in four interview waves in 1984, 1986,

1988 and 1990. This was a prospective study following an initial sample of around 5000,

either through to death or the final wave. Dunlop and Manheim discuss the issues of

modelling the probability of an initial disability in Activities of Daily Living (ADL) in

terms of time-dependent covariates. A complete analysis would involve allowing for left

censoring, since some people are disabled at study entry (in 1984).
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They confine their analysis to people who were able in 1984 and consider transitions

to disablement or loss of function on six ADLs: walking, dressing, bathing, toileting,

feeding, and transferring (getting from chair to bed, and other types of short range

mobility). They identify an empirical ordering for the average age at loss of function on

these activities: the first disability is walking with an average age of 84 when disability

commences, then bathing at age 87, transferring (age 90), dressing (age 92), toileting

(age 93), and finally, feeding at age 100.

The analysis here follows Dunlop and Manheim in considering transitions to toileting

disability. In terms of the empirical ordering of Dunlop and Manheim, it would be

expected that people who are already limited in walking, bathing, transferring and

dressing to have a higher chance of a move to toilet disability. In a subsidiary analysis,

feeding status is also used as a predictor. Thus, time-dependent dummy covariates

(present/absent) at waves 1, 2 and 3 on these disabilities are used to predict transitions

to toileting disability in the intervals (k, k� 1), with k � 1, 2, 3. So yik � 1 if a transi-

tion to disability occurs for person i in the interval (k, k� 1).

A complementary log-log transform relates the probability that yik � 1 (given

yikÿ1 � yikÿ2 � : : 0) to the included covariates. As well as the ADL status variables,

age and education (a continuous variable) are used to predict loss of functional status;

these are divided by 100 for numerical reasons. Finally, a linear term in k itself (i.e. the

study wave) is included; this is then a minimal form of the polynomial prior mentioned

above.

Only persons observed through all four waves are included. For simplicity, observa-

tions where toilet status at k or k� 1 is unknown are excluded, but cases with missing

status on walking, bathing, transferring and dressing at waves 1 to 3 are included. This

involves Bernoulli sampling according disability rates djk specific to period k and

activity j.

A three chain run to 2000 iterations is taken with initial value files including imputed

values on the incomplete data (convergence is apparent by about iteration 300, and

posterior summaries based on iterations 300±2000). We find, as do Dunlop and Man-

heim, that transition to toileting disability is positively related to age, and to preceding

loss of status on walking, bathing and transferring (Table 9.9). A negative effect of

education is obtained, as also reported by Dunlop and Manheim. However, in contrast

to the results of Dunlop and Manheim, dressing status is not found to impact on this

transition. Also, while Dunlop and Manheim obtain a non-significant impact of wave k

itself, we obtain a clear gradient of increased chances of transition to disability with

larger k.

If the analysis is extended to include preceding feeding status, essentially the same

results are obtained (though convergence is delayed till around 1500 iterations). Thus,

existing loss of walking, bathing or transferring status are positive predictors of loss of

toileting status in the next interval. However, loss of feeding or dressing status, which

tend to occur among only the very old, are not clear preceding predictors of loss of

toileting status.

Program 9.8 also contains the code needed to make the coefficients on age, education

and the ability variables time specific, as in Equation (9.15). Initial runs with this

option suggested a slight lowering of the pseudo-marginal likelihood, and so

results are not reported in full. There was a suggestion under this model that the

education effect became less marked for waves 2 and 3 and enhancement of the linear

time coefficient also occurred. Another modelling possibility is to use lagged ability

variables.
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Table 9.9 LSOA, onset of toileting disability

(a) Excluding Feeding Mean St. devn. 2.5% Median 097.5%

Intercept ÿ8.3 0.8 ÿ9.9 ÿ8.3 ÿ6.68

Time (wave) 0.244 0.074 0.108 0.238 0.397

Age* 0.060 0.010 0.038 0.060 0.080

Education* ÿ0.040 0.014 ÿ0.067 ÿ0.040 ÿ0.011

Walking 0.937 0.135 0.674 0.936 1.199

Bathing 0.567 0.154 0.264 0.567 0.871

Transferring 0.519 0.143 0.233 0.517 0.803

Dressing ÿ0.177 0.191 ÿ0.553 ÿ0.178 0.196

(b) Including feeding

Intercept ÿ8.8 0.8 ÿ10.2 ÿ8.9 ÿ7.4

Time (wave) 0.251 0.073 0.104 0.251 0.394

Age* 0.066 0.009 0.047 0.066 0.082

Education* ÿ0.038 0.014 ÿ0.066 ÿ0.038 ÿ0.010

Walking 0.936 0.138 0.662 0.939 1.211

Bathing 0.564 0.157 0.249 0.566 0.857

Transferring 0.534 0.148 0.251 0.533 0.826

Dressing ÿ0.156 0.195 ÿ0.547 ÿ0.152 0.217

Feeding ÿ0.228 0.269 ÿ0.781 ÿ0.217 0.272

*Effects on original age and education scales

Example 9.9 Transitions in youth employment As an illustration of time varying

predictor effects, this example follows Powers and Xie (2000) in an analysis of a random

sample of young white males from the US National Longitudinal Survey on Youth

relating to the transition from employment (at survey time) to inactivity (in the next

survey). The sample contains 1077 subjects, and the analysis here relates to five transi-

tions between surveys (namely changes between 1979 and 1980, between 1980±

1981, . . , up to 1983±1984).

Age effects on the outcome are defined by age bands 14±15, 16±17 . . up to 22±23, and

there are three time varying covariates: whether the subject graduated in the previous

year; the local labour market unemployment rate; and whether the respondent had left

home at survey time. Fixed covariates relate to father's education (none, high school or

college), family structure not intact, family income in 1979, an aptitude score (Armed

Services Vocational Aptitude Battery Test, ASVAB) and living in the Southern USA or

not. There are fourteen coefficients for AIC and SBC calculations; here we the SBC

adjusted for the parameter priors is considered (Klugman, 1992) ± see Models A1 and

B1 in Program 9.9.

A model with fixed (i.e. time stationary) effects on all coefficients shows peak rates of

the outcome at ages 18±19 and 20±21, and a positive relation of the transition to

inactivity with coming from a broken home (Table 9.10). (Parameter summaries are

based on a three chain model to 2500 iterations, with early convergence at around 500

iterations). Though not significant the effects of high local unemployment and recent

graduation are biased towards positive effects. This event is negatively related to

aptitude, living in the South and having left home; the income effect is also predomin-

antly negative, but the 95% credible interval just straddles zero.
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Table 9.10 Employment transitions

Mean St. devn. 2.5% Median 97.5%

Unemployment effect varying

SBC ÿ1097

Age Effects

Age 14±15 ÿ2.92 0.33 ÿ3.58 ÿ2.91 ÿ2.30

Age 16±17 ÿ2.85 0.25 ÿ3.35 ÿ2.85 ÿ2.36

Age 18±19 ÿ2.57 0.26 ÿ3.08 ÿ2.57 ÿ2.05

Age 20±21 ÿ2.57 0.29 ÿ3.11 ÿ2.57 ÿ1.99

Age 22±23 ÿ2.67 0.44 ÿ3.57 ÿ2.66 ÿ1.83

Covariates

FHS 0.226 0.156 ÿ0.077 0.224 0.532

FCOL 0.072 0.178 ÿ0.276 0.075 0.414

GRAD 0.190 0.176 ÿ0.164 0.192 0.527

INCOME ÿ0.234 0.129 ÿ0.492 ÿ0.233 0.004

ASVAB ÿ0.440 0.074 ÿ0.585 ÿ0.440 ÿ0.295

NONINT 0.379 0.153 0.080 0.380 0.677

SOUTH ÿ0.517 0.185 ÿ0.891 ÿ0.513 ÿ0.163

SPLIT ÿ0.437 0.187 ÿ0.817 ÿ0.432 ÿ0.080

Unemployment (by year)

1979±80 0.257 0.210 ÿ0.128 0.250 0.677

1980±81 0.243 0.200 ÿ0.132 0.239 0.639

1981±82 0.236 0.192 ÿ0.129 0.233 0.614

1982±83 0.225 0.189 ÿ0.135 0.224 0.590

1983±84 0.210 0.195 ÿ0.154 0.208 0.581

Stationary coefficient model

SBC ÿ1056.8

Age effects

Age 14±15 ÿ2.857 0.320 ÿ3.538 ÿ2.851 ÿ2.232

Age 16±17 ÿ2.787 0.237 ÿ3.242 ÿ2.784 ÿ2.336

Age 18±19 ÿ2.514 0.248 ÿ3.005 ÿ2.517 ÿ2.033

Age 20±21 ÿ2.517 0.277 ÿ3.074 ÿ2.499 ÿ1.974

Age 22±23 ÿ2.618 0.431 ÿ3.487 ÿ2.590 ÿ1.846

Covariates

FHS 0.226 0.149 ÿ0.063 0.223 0.519

FCOL 0.063 0.181 ÿ0.286 0.062 0.407

GRAD 0.177 0.178 ÿ0.178 0.177 0.532

INCOME ÿ0.240 0.125 ÿ0.499 ÿ0.242 0.004

ASVAB ÿ0.439 0.074 ÿ0.585 ÿ0.438 ÿ0.293

NONINT 0.382 0.150 0.089 0.387 0.677

UNEMP 0.189 0.167 ÿ0.128 0.190 0.542

SOUTH ÿ0.509 0.180 ÿ0.881 ÿ0.504 ÿ0.170

SPLIT ÿ0.444 0.180 ÿ0.815 ÿ0.439 ÿ0.106
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Allowing the unemployment coefficient to vary over time according to a random

walk prior suggest a lessening effect of local labour market conditions, though no

coefficient is significant in any year. This more heavily parameterised model leads to a

clear worsening in the Schwarz criterion and also has a slightly worse predictive loss

criterion (9.1) for values w � 1, w � 100 and w � 10 000.

The previous analysis used a diffuse G(1, 0.001) prior on the precision 1=s2
b. Sargent

(1997) adopts an informative prior in the study he considers, namely a high precision

consistent with small changes in bj. For instance, one might say that shifts greater than

�0:1 in the unemployment coefficient in adjacent periods are unlikely. If this is taken as

one standard deviation (i.e. sb � 0:1), then the precision would have mean 100, and a

prior such as G(1, 0.01) might be appropriate as one option (see exercises).

9.4.2 Gamma process priors

In the proportional hazards model

h(ti, xi) � h0(ti) exp (bxi)

a non-parametric approach to specifying the hazard h or cumulative hazard H is often

preferable. Priors on the cumulative hazard which avoid specifying the time dependence

parametrically have been proposed for counting process models, as considered below

(Kalbfleisch, 1978). However, a prior may also be specified on the baseline hazard h0

itself (e.g. Sinha and Dey, 1997).

Thus, consider a discrete partition of the time variable, based on the profile of

observed times {t1, . . . tN} whether censored or not, but also possible referring to

wider subject matter considerations. Thus, M intervals (a0, a1], (a1, a2], . . . (aMÿ1, aM ]

are defined by breakpoints at a0 � a1 � . . . � aM , where aM exceeds the largest ob-

served time, censored or uncensored, and a0 � 0. Let

dj � h0(aj)ÿ h0(ajÿ1) j � 1, : : M

denote the increment in the hazard for the jth interval. Under the approach taken by

Chen et al. (2000), and earlier by workers such as Dykstra and Laud (1981), the dj are

taken to be gamma variables with scale g and shape

a(aj)ÿ a(ajÿ1)

where a is monotonic transform (e.g. square root, logarithm). Note that this prior

strictly implies an increasing hazard, but Chen et al. cite evidence that this does not

distort analysis in applications where a decreasing or flat hazard is more reasonable for

the data at hand.

In practice, the intervals aj ÿ ajÿ1 might be taken as equal length and a as the identity

function. If the common interval length were L, then the prior on the dj would be set at

G(L, g). Larger values of g reflect more informative beliefs about the increments in the

hazard (as might be appropriate in human mortality applications, for example).

The likelihood assumes a piecewise exponential form and so uses information only on

the intervals in which a completed or censored duration occurred. Let the grouped times

si be based on the observed times ti after grouping into the M intervals. The cumulative

distribution function (cdf) is

F (s) � 1ÿ exp ÿeBi

�s

0

h0(u)du

� �
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where Bi is a function of covariates xi. Assuming h0(0) � 0, the cdf for subject i is

approximated as

F (si) � 1ÿ exp ÿeBi

XM
j�1

dj(si ÿ ajÿ1)
�

( )
(9:16)

where (u)� � u if u > 0, and is zero otherwise.

For a subject exiting or finally censored in the jth interval, the event is taken to occur

just after ajÿ1, so that (si ÿ ajÿ1)
� � (si ÿ ajÿ1). The likelihood for a completed duration

si in the jth interval, i.e. ajÿ1 < si < aj, is then

Pij � F (xi, aj)ÿ F (xi, ajÿ1)

where the evaluation of F refers to individual specific covariates as in Equation (9.16),

as well as the overall hazard profile. A censored subject with final known follow up time

in interval j has likelihood

Sij � 1ÿ F (xi, aj)

Example 9.10 Leukaemia remission To illustrate the application of this form of prior,

consider the leukaemia remission data of Gehan (1965), with N � 42 subjects and

observed ti ranging from 1±35 weeks, and define M � 18 intervals which define the

regrouped times si. The first interval (a0, a1] includes the times t � 1, 2; the second

including the times 3,4 . . up to the 18th (a17, a18] including the times 35,36. The mid

intervals are taken as 1.5 (the average of 1 and 2), and then 3.5, 5.5, . . and so on up to

35.5. These points define the differences a1 ÿ a0, a2 ÿ a1, : : as all equal to 2. The Gehan

study concerned a treatment (6-mercaptopurine) designed to extend remission times; the

covariate is coded 1 (for placebo) and 0 for treatment, so that end of remission should

be positively related to being in the placebo group.

It may be of interest to assess whether a specific time dependence (e.g. exponential or

Weibull across the range of all times, as opposed to piecewise versions) is appropriate if

this involves fewer parameters; a non-parametric analysis is then a preliminary to

choosing a parametric hazard. One way to gauge this is by a plot of ÿ log {S(u)} against

u, involving plots of posterior means against u, but also possibly upper and lower limits

of ÿ log (S) to reflect varying uncertainty about the function at various times. A linear

plot would then support a single parameter exponential.

In WINBUGS it is necessary to invoke the `ones trick' (with Bernoulli density for the

likelihoods) or the `zeroes trick' (with Poisson density for minus the log-likelihoods).

With Bi � b0 � b1 Placebo, a diffuse prior is adopted on the intercept, and an N(0, 1)

prior on the log of hazard ratio (untreated vs. treated). Following Chen et al. (2000,

Chapter 10), a G(aj ÿ ajÿ1, 0:1) prior is adopted for dj, j � 1, : : , M ÿ 1 and a

G(aj ÿ ajÿ1, 10) prior for dM .

With a three chain run, convergence (in terms of scaled reduction factors

between 0.95 and 1.05 on b0, b1 and the dj) is obtained at around 1300 iterations.

Covariate effects in Table 9.11 are based on iterations 1500±5000, and we find a positive

effect of placebo on end of remission as expected, with the remission rate about

3.3 times (�exp(1.2)) higher. The plot of ÿ log S as in Figure 9.2 is basically

supportive of single rate exponentials for both placebo and treatment groups, though

there is a slight deceleration in the hazard at medium durations for the placebo

group.
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Table 9.11 Leukaemia regression parameters

Mean St. devn. 2.5% Median 97.5%

Intercept ÿ6.45 0.35 ÿ7.19 ÿ6.44 ÿ5.80

Treatment 1.22 0.36 0.53 1.24 1.95

Minus log survivor rates Actual Survivorship rates

Untreated Treated Posterior means

Mean St. devn. Mean St. devn. Untreated Treated

ÿ log S1 0.06 0.04 0.02 0.01 S1 0.947 0.986

ÿ log S2 0.23 0.09 0.07 0.03 S2 0.796 0.941

ÿ log S3 0.39 0.12 0.12 0.05 S3 0.676 0.902

ÿ log S4 0.65 0.17 0.20 0.07 S4 0.525 0.844

ÿ log S5 0.94 0.23 0.28 0.09 S5 0.394 0.783

ÿ log S6 1.08 0.26 0.33 0.10 S6 0.345 0.756

ÿ log S7 1.40 0.33 0.42 0.13 S7 0.255 0.697

ÿ log S8 1.59 0.38 0.48 0.14 S8 0.215 0.666

ÿ log S9 1.85 0.44 0.55 0.16 S9 0.169 0.624

ÿ log S10 2.06 0.49 0.62 0.18 S10 0.141 0.594

ÿ log S11 2.20 0.53 0.66 0.19 S11 0.124 0.573

ÿ log S12 2.54 0.63 0.76 0.22 S12 0.093 0.53

ÿ log S13 2.91 0.74 0.87 0.25 S13 0.069 0.485

ÿ log S14 3.11 0.81 0.93 0.27 S14 0.059 0.462

ÿ log S15 3.32 0.88 0.99 0.29 S15 0.05 0.441

ÿ log S16 3.52 0.95 1.05 0.30 S16 0.043 0.421

ÿ log S17 3.72 1.01 1.11 0.32 S17 0.037 0.402

ÿ log S18 3.72 1.01 1.11 0.32 S18 0.037 0.402
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Figure 9.2 Plot of -logS(u) versus u
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9.5 ACCOUNTING FOR FRAILTY IN EVENT HISTORY AND SURVIVAL

MODELS

Whether the event history or survival analysis is in discrete or continuous time, unob-

served differences between subjects may be confounded with the estimated survival

curve and the estimated impacts of observed covariates. While there is considerable

debate regarding sensitivity of inferences to the specification of unobserved heterogen-

eity, this is an important aspect to consider, especially in complex models with time-

varying effects of predictors or clustering of subjects.

Thus, frailty differences, whether modelled by parametric random effects or by non-

parametric methods, provide a way to account for within-cluster correlations in event

history outcomes (Guo and Rodriguez, 1992), or for multivariate survival times where

an underlying common influence is present (Keiding et al., 1997). Suppose subjects

(patients, children) are arranged within aggregate units or clusters (hospitals, families)

and event times are affected by cluster characteristics, known and unknown, as well as

by the characteristics of individuals. Thus, for survival after surgery, patients are

clustered within hospitals, while for age at pre-marital maternity, adolescent females

are clustered according to family of origin (Powers and Xie, 2000). In these examples,

random effects at cluster level are intended to account for unmeasured differences

between clusters that may affect the outcome at the subject level.

Example 9.11 Unmeasured heterogeneity and proportional hazards in discrete time

regression McCall (1994) discusses methods for assessing the proportional hazards

assumption in discrete time regression in a single level example (with no clustering), in

the context of data on joblessness durations in months. He considers tests for time

varying coefficients bj in Equation (9.15), which are equivalent to testing the propor-

tional hazards assumption in the underlying continuous time model (e.g. Kay, 1977;

Cox, 1972). In particular, he considers the need to allow for unmeasured heterogeneity

when applying such tests.

McCall uses simulated data based on the real joblessness example, with a sample of

n � 500 persons observed for a maximum of 60 intervals. An underlying continuous

hazard is assumed with l0(t) � 0:07, and an individual level gamma frailty ui modifying

the corresponding discrete time event probabilities, and distributed with mean and

variance of 1, namely ui � G(1, 1). Thus, for subject i at interval j, the most general

model involves time varying predictor x and z and time varying regression coefficients

b1 and b2:

hij � [1ÿ exp (ÿ ui exp {gj � b1jxij � b2jzij})]

and

Sij � exp ÿui

Xjÿ1

k�1

exp (gk � b1kxik � b2kzik)

 !
There is a concurrent 0.01 probability of being right-censored in any interval (e.g. via

emigration or death in the joblessness example).

Here we consider only one of the scenarios of McCall, involving fixed predictors x

and z, with fixed coefficients b1 and b2, and no trend in the gj. For n � 100, the

covariates are generated via
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x � 0:02� e1

z � 0:1x� e2

p
2

where e1 and e2 are standard Normal variables. This leads to a Bernoulli likelihood

model as above generated by a complementary log-log link

wij � Bernoulli(pij) i � 1, : : 100; j � 1, : : ri

log {ÿ log (1ÿ pij)} � g� b1xi � b2zi � ln (ui)

where b1 � ÿ0:5, b2 � 0:5, g � log (0:07) � ÿ2:66. The ri are determined by the min-

imum duration at which an event is generated (at which point wij � 1 and no further

observations are made), by censoring at 60 intervals, or by loss of follow up due to the

concurrent exit rate of 0.01. The latter two categories are coded Fail�0, those undergo-

ing an event as Fail�1 in Program 9.11. The data generation stage produces durations

of stay, status at final observation (event or censored), and values for the two covariates.

Values of ui are generated, but would be unobserved in a real application.

In the re-estimation stage, McCall allows (despite the generation mechanism) for

Weibull baseline hazards with L0j � jr and

gj � g ( jr ÿ ( j ÿ 1)r)

where r � 1 is the exponential case. Also, although the generation procedure assumes

fixed regression coefficients, we may test for time varying coefficients using a linear

dependence test, namely

b1j* � b1 � d1j (9:17a)

b2j* � b2 � d2j (9:17b)

with d1 � d2 � 0 if there is no time dependence. A quadratic form of this test may also

be used.

The data are now analysed as if in ignorance of the generating meachanism. In

applying a Bayesian analysis, certain issues regarding prior specification, especially

around the d parameters, may be noted. Since these parameters are multiplying large

numbers j within the log-log link, there may be initial numerical problems (i.e. in the

first 30 or 40 iterations) unless an informative prior is specified. Other stratagems such

as rescaling time (e.g. by dividing by 100) may be adopted to reduce numerical prob-

lems, especially in early samples. Note that a logit rather than complementary log-log

link is more robust to numerical problems (Thompson, 1977).

Rather than a multiplicative frailty, an additive frailty in li � log (ui) is taken in the

re-estimation stage. Some degree of information in the prior for the variance of li assists

in identifiability. Thus, one might say, a priori, that the contrast between the 97.5th and

2.5th percentile of ui might be 1000 fold at one extreme and 10 fold at the other;

corresponding percentiles of ui would be 30 � exp (3:4) as against 0:03 � exp (ÿ 3:5)

and 3:2 � exp (1:16) as against 0:32 � exp (ÿ 1:14). The implied standard deviations,

on the basis of approximate Normality of li � log (ui), are 1.7 and 0.6, respectively,

with precisions f � 1=var(l) (respectively 3 and 0.33). A G(3, 2) prior on f has 2.5th

and 97.5th percentiles 0.33 and 3.6, and can be seen to permit a wide variation in beliefs

about frailty.

Model A initially assumes no heterogeneity, and adopts a logit link with scaled time.

Three chain runs to 2500 iterations showed early convergence (under 500 iterations) and
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Table 9.12 Unemployment duration analysis

Mean St. devn. 2.5% Median 97.5%

(A) No heterogeneity

b1 ÿ0.40 0.18 ÿ0.75 ÿ0.40 ÿ0.04

b2 0.62 0.15 0.33 0.61 0.92

Avg. of b1j
* ÿ0.29 0.19 ÿ0.66 ÿ0.29 0.07

Avg. of b2j
* 0.26 0.13 0.02 0.26 0.52

d1(� time=100) 0.33 0.72 ÿ1.09 0.34 1.72

d2(� time=100) ÿ1.19 0.55 ÿ2.28 ÿ1.18 ÿ0.08

g ÿ2.37 0.26 ÿ2.92 ÿ2.36 ÿ1.90

r 1.10 0.03 1.04 1.10 1.16

(B) Log normal frailty

b1 ÿ0.66 0.29 ÿ1.31 ÿ0.65 ÿ0.06

b2 0.93 0.20 0.57 0.90 1.34

Avg. of b1j
* ÿ0.66 0.33 ÿ1.38 ÿ0.63 ÿ0.10

Avg. of b2j
* 0.67 0.27 0.21 0.64 1.26

d1(� time=100) 0.20 0.81 ÿ1.41 0.21 1.79

d2(� time=100) ÿ0.97 0.68 ÿ2.32 ÿ0.97 0.40

g ÿ3.66 0.81 ÿ5.60 ÿ3.48 ÿ2.51

r 0.93 0.08 0.76 0.95 1.06

f 0.73 0.51 0.17 0.59 2.15

(C) Discrete mixture

g1 ÿ3.61 0.88 ÿ5.37 ÿ3.70 ÿ2.22

g2 ÿ2.22 0.34 ÿ2.87 ÿ2.22 ÿ1.56

b1 ÿ0.50 0.22 ÿ0.91 ÿ0.50 ÿ0.07

b2 0.72 0.17 0.41 0.72 1.07

Avg. of b1j* ÿ0.45 0.26 ÿ0.99 ÿ0.44 0.03

Avg. of b2j
* 0.41 0.18 0.08 0.41 0.76

d1(� time=100) 0.21 0.80 ÿ1.41 0.22 1.71

d2(� time=100) ÿ0.98 0.63 ÿ2.17 ÿ0.98 0.26

w1 0.36 0.16 0.11 0.33 0.73

w2 0.64 0.16 0.27 0.67 0.89

r 1.05 0.04 0.97 1.05 1.13

summaries are based on iterations 500±2500 (Table 9.12). This model shows a trend in

the coefficient of z, and might be taken (erroneously) to imply non-proportionality. It

also shows a significant Weibull shape parameter. Accuracy in reproducing the central

covariate effects may need to take account of the trend estimated in the coefficient: thus

averaging b1j
* and b2j

* (as in Equation (9.17)) over all intervals is a more accurate

approach than considering the estimates of b and d. The original values are reproduced

in the sense that the 95% credible intervals for the average b1j
* and b2j

* contain the true

values, but there appears to be understatement of the real effects.

Adopting a parametric frailty (log-Normal with G(3, 2) prior on the precision of l) in

Model B again shows the estimated d1 in Equation (9.17) straddling zero, as it should

do. (Summaries are based on a three chain run of 2500 iterations and 500 burn-in.)
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There is still a tendency towards a declining effect for z(d2 < 0) to be identified, but the

95% interval clearly straddles zero. In contrast to the no frailty model, the posterior

credible interval for r includes the null value for 1. The average b1j
* and b2j

* (denoted

Beta.star[ ] in Program 9.11) in this model overstate (in absolute terms) the true effects,

but are less aberrant than those of model A. In terms overall model assessment, the

Pseudo-Marginal Likelihood (PML) based on CPO estimates shows model B to have a

PML of ÿ289:9, and so is preferred to Model A with PML of ÿ294:3.

Analysis C uses non-parametric frailty assuming two components with masses w1 and

w2 and differing intercepts on each component. Thus, if Ci is the latent group, we fit the

model

logit(1ÿ pij)} � g[Ci]( jr ÿ ( j ÿ 1)r)� (b1 � d1j=100)xi � (b2 � d2j=100)zi

A constraint on the terms gj is used for identifiability (preventing label switching). This

produces similar results to Model B on the d coefficients (i.e. both straddling zero) and

r. The average b1j
* and b2j

* in this model slightly understate the true effects. The gain in

the PML over Model A is relatively modest, namely ÿ292:9 vs. ÿ294:3, but the pattern

of results is much more plausible.

In this connection, McCall argues that the simple linear trend tests are sensitive to

whether unmeasured heterogeneity is allowed for, but less sensitive as to the form

assumed for such heterogeneity (e.g. parametric or non-parametric). In the present

analysis, a model without any form of heterogeneity might lead to incorrect inferences

on proportionality, the size of regression coefficients and the shape of duration effects.

This illustrates the potential inference pitfalls about duration or covariate effects if

heterogeneity is present but not modelled.

Example 9.12 Pre-marital maternity We consider age at pre-marital maternity data

analysed by Powers and Xie (2000), with the time variable being defined as age at

maternity minus 11. These data relate to n � 2290 women, arranged in m � 1935

clusters (with the clustering arising from the fact that the survey includes at least two

sisters from the same family). A birth outside marriage will typically be during the peak

ages of maternity (15±34), and times for many women are right censored at their age of

marriage. It is plausible to set an upper limit to censored times, such as 45 (age 56), and

this considerably improves identifiability of the models described below.

As one of several possible approaches, we adopt a parametric mixture, at cluster level

( j � 1, : : m), namely a G(w, w) prior on unobserved factors uj with mean 1 and

variance 1/w. Thus

ti �Wei(ni, r)I(ti*, 45) i � 1, . . . n

ni � ujmi

log (mi) � a� bxi

with ti* denoting censored times or zero for uncensored times, and j � ci denoting the

cluster of the ith subject. Another option would be a discrete mixture of K intercepts

with the group to which the jth cluster belongs being determined by sampling from a

categorical density with K categories.

The first analysis (with which a mixture model can be compared) is a standard model

with no frailty and a single intercept a. Starting values for three chains are based on null

values and on the 2.5th and 97.5th points of a trial run; results are based on iterations
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250±1000, given early covergence. The effects for binary indicators are reported as odds

ratios, so values above 1 translate into `positive' effects. The results are close to those

reported by Powers and Xie, and show extra-marital maternity positively related to

shorter education, and non-intact family of origin, and negatively related to weekly

church attendance, Southern residence, and self-esteem (Table 9.13).

For the model including frailty, we consider a prior on w that reflects possible

variations in the chance of this outcome after accounting for the influence of several

social and religious factors. For example, a G(2, 1) prior on w is consistent with 2.5th

and 97.5th percentiles on w of 0.3 and 5.5; these values are in turn consistent with ratios

of the 97.5th to the 2.5th percentiles of ui of approximately 400 000 and five, respect-

ively. This would seem a reasonable range of beliefs about the chances of such a

behavioural outcome. By contrast, taking a relatively diffuse prior on w will generate

implausible variations in the chance of the outcome ± and possibly cause identifiability

problems. One might experiment with other relatively informative priors on w to assess

sensitivity. Mildly informative priors on r and a are also adopted, namely r � G(3, 0.1)

and a � N(ÿ10, 100).

With a G(2, 1) prior on w, and applying the upper age limit to censored values, early

convergence (at under 500 iterations) is obtained in the mixture analysis, and summaries

are based on iterations 500±2000. The posterior mean of w is around 15, consistent with

a relatively narrow range in the chance of the outcome (a ratio of the 97.5th to the 2.5th

percentiles of ui of approximately 3). Compared to the analysis without frailty, Table

9.13 shows an enhanced impact of self-esteem. There is also an increase in the Weibull

parameter. In fact, the pseudo-marginal likelihood and predictive loss criteria both

show no gain in allowing frailty. Other model variations might be significant, though.

Thus, a monotonic hazard could be improved on for these data: either by a more

complex non-monotonic hazard (e.g. log-logistic) or by discretising the ages and taking

a piecewise or polynomial function to model the changing impact of age.

9.6 COUNTING PROCESS MODELS

An alternative framework for hazard regression and frailty modelling is provided by

counting process models (e.g. Aalen, 1976; Fleming and Harrington, 1991; Andersen et

al., 1993) which formulate the observations in a way enhancing the link to the broader

class of generalized linear models. Consider a time W until the event of interest, and a

time Z to another outcome (e.g. a competing risk) or to censoring. The observed

duration is then T � min (W , Z), and an event indicator is defined, such that E � 1 if

T �W and E � 0 if T � Z.

The counting process N(t) is then

N(t) � I(T � t, E � 1) (9:18)

and the at risk function

Y (t) � I(T > t)

where I(C) is the indicator function. If a subject exits at time T, his/her at risk function

Y (t) � 0 for times exceeding T. So the observed event history for subject i is Ni(t),

denoting the number of events which have occurred up to continuous time t. Let dNi(t)

be the increase in Ni(t) over a very small interval (t, t� dt), such that dNi(t) is (at most)

1 when an event occurs, and zero otherwise.
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Table 9.13 Models for premarital birth; parameter summaries (parameters converted to odds

ratios for binary predictors)

Model without frailty Mean St. devn. 2.5% Median 97.5%

Intercept ÿ12.4 0.5 ÿ13.2 ÿ12.5 ÿ11.2

Nonintact family (OR) 1.57 0.15 1.31 1.56 1.91

Mothers education under 12 years (OR) 1.70 0.17 1.38 1.69 2.03

Family Income* ÿ0.048 0.050 ÿ0.148 ÿ0.049 0.051

No of siblings 0.021 0.021 ÿ0.018 0.021 0.06

South (OR) 0.82 0.07 0.70 0.82 0.96

Urban (OR) 1.03 0.09 0.87 1.02 1.21

Fundamental Protestant upbringing (OR) 1.55 0.16 1.25 1.56 1.85

Catholic (OR) 0.99 0.09 0.84 0.98 1.19

Weekly Church Attender (OR) 0.93 0.07 0.79 0.93 1.08

Traditional Sex Attitude Score 0.14 0.08 0.01 0.14 0.31

Self Esteem Score ÿ0.30 0.09 ÿ0.47 ÿ0.30 ÿ0.13

Weibull Shape Parameter 3.67 0.13 3.35 3.71 3.90

Gamma mixture analysis

Intercept ÿ13.7 0.3 ÿ14.2 ÿ13.7 ÿ12.9

Gamma parameter (w) 14.7 3.1 9.2 14.5 21.5

Nonintact family (OR) 1.71 0.16 1.40 1.71 2.04

Mothers education under 12 years (OR) 1.92 0.21 1.54 1.93 2.36

Family Income* ÿ0.067 0.056 ÿ0.177 ÿ0.066 0.050

No of siblings 0.03 0.02 ÿ0.02 0.03 0.07

South (OR) 0.77 0.07 0.65 0.77 0.93

Urban (OR) 1.04 0.08 0.86 1.03 1.20

Fundamental Protestant upbringing (OR) 1.65 0.18 1.30 1.64 1.99

Catholic (OR) 0.93 0.09 0.77 0.93 1.11

Weekly Church Attender (OR) 0.89 0.07 0.77 0.89 1.03

Traditional Sex Attitude Score 0.18 0.09 ÿ0.01 0.19 0.36

Self Esteem Score ÿ0.39 0.10 ÿ0.60 ÿ0.39 ÿ0.21

Weibull Shape Parameter 4.07 0.09 3.86 4.08 4.22

*Parameter converted to original scale

The expected increment in N(t) is given by the intensity function

L(t)dt � Y (t)h(t)dt

with h(t) the usual hazard function, namely

h(t)dt � Pr(t � T � t� dt, E � 1jT � t)

In the counting process approach, the increment in the count (9.18) is modelled as a

Poisson outcome, with mean given by the intensity function (e.g. in terms of time

specific covariates). Under a proportional hazards assumption, the intensity is

L(t) � Y (t)h(t) � Y (t)l0(t) exp (bx) (9:19)

typically with h(t) � l0(t) exp (bx) as in the Cox proportional hazards model. The

intensity may equivalently be written

Li(t) � Yi(t)dL0(t) exp (bxi) (9:20)
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and so may be parameterised in terms of jumps in the integrated hazard L0 and a

regression parameter.

With observed data D � (Ni(t), Yi(t), xi) the posterior for the parameters in (9.18) is

P(b, L0jD) / P(Djb, L0)P(b)P(L0)

The conjugate prior for the Poisson mean is the gamma, so a natural prior for dL0 has

the form

dL0 � G(cH(t), c) (9:21)

where H(t) expresses knowledge regarding the hazard rate per unit time (i.e. amounts to

a guess at dL0(t)), and c > 0 is higher for stronger beliefs (Sinha and Dey, 1997). The

mean hazard is cH(t)=c � H(t) and its variance is H(t)=c. Conditional on b, the

posterior for L0 takes an independent increments form on dL0 rather than L0 itself,

dL0(t)jb, D � G(cH(t)� SidNi(t), c� SiYi(t) exp (bxi))

This model may be adapted to allow for unobserved covariates or other sources of

heterogeneity (`frailty'). This frailty effect may be at the level of observations or for

some form of grouping variable.

The above basis for counting processes is in terms of continuous time. In empirical

survival analysis, the observations of duration will usually be effectively discrete, and

made at specific intervals (e.g. observations on whether a subject in a trial has under-

gone an event will be made every 24 hours) with no indication how the intensity changes

within intervals. So even for notionally continuous survival data, the likelihood is a step

function at the observed event times.

If the observation intervals are defined so that at most one event per individual

subject occurs in them, then we are approximating the underlying continuous model

by a likelihood with mass points at every observed event time. Hence, the observation

intervals will be defined by the distinct event times in the observed data.

The prior (9.21) on the increments in the hazard might then amount to a prior for a

piecewise function defined by the observation intervals ± this approach corresponds to a

non-parametric estimate of the hazard as in the Cox regression (Cox, 1972). But the

hazard might also be modelled parametrically (Lindsey, 1995).

One aspect of the counting process model is the ability to assess non-proportionality

by defining time-dependent functions of regressors in hazard models of the form

hi(t) � l0(t) exp {bxi � gwi(t)}

Thus wi(t) � xig(t) might be taken as the product of one or more covariates with a

dummy time index g(t) set to 1 up to time t (itself a parameter), and to zero thereafter.

This is consistent with proportional hazards if g � 0.

Another possibility in counting process models applied to event histories is the model-

ling of the impact of previous events or durations in a subject's history. Thus, the intensity

for the next event could be made dependent on the number of previous events, in what are

termed birth models (Lindsey, 1995, 2001, Chapters 1 and 5; Lindsey, 1999).

Example 9.13 Leukaemia remissions We consider again the classical data from

Gehan (1965) on completed or censored remission times for 42 leukaemia patients

under a drug treatment and a placebo, 21 on each arm of the trial. A censored time

means that the patient is still in remission. Here the observation interval is a week, and
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of the 42 observed times, 12 are censored (all in the drug group). There are 17 distinct

complete remission times, denoted t.dist[ ] in Program 9.13. Termination of remission is

more common in the placebo group, and the effect of placebo (z1 � 1) vs. treatment

(z1 � 0) on exits from remission is expected to be positive.

The hazard is modelled parametrically, and for a Weibull hazard this may be achieved

by including the loge survival times, or logs of times since the last event, in the log-linear

model for the Poisson mean (e.g. Lindsey, 1995; Aitkin and Clayton, 1980). Thus

L(t) � Y (t) exp (bz� k* log t)

where k* is the exponent in the Weibull distribution, k, minus 1. We might also take a

function in time itself:

L(t) � Y (t) exp (bz� zt)

and this corresponds to the extreme value distribution. For the Weibull, a prior for k
confined to positive values is appropriate (e.g. a G(1, 0.001) prior), while for z a prior

allowing positive and negative values, e.g. an N(0, 1) density, may be adopted.

Three chain runs of 5000 iterations show early convergence on the three unknowns in

each model. We find (excluding the first 500 iterations) a Weibull parameter clearly

above 1, though some analyses of these data conclude that exponential survival is

appropriate (Table 9.14). The 95% credible interval for the extreme value parameter is

similarly confined to positive values. The extreme value model has a slightly lower

pseudo-marginal likelihood than the Weibull model (ÿ101.8 vs. 102.8); this is based on

logged CPO estimates aggregated over cases with Y (t) � 1 (Y[i, j ]�1 in Program 9.13).

The exit rate from remission is clearly higher in the placebo group, with the coefficient

on Z being entirely positive, and with average hazard ratio, for placebo vs. drug group,

of exp (1:52) � 4:57.

Example 9.14 Bladder cancer As an illustration of counting process models when

there are repeated events for each subject, we consider the bladder cancer study con-

ducted by the US Veterans Administrative Cooperative Urological Group. This involved

116 patients randomly allocated to one of three groups: a placebo group, a group

receiving vitamin B6, and a group undergoing installation of thiotepa into the bladder.

On follow up visits during the trial, incipient tumours were removed, so that an event

Table 9.14 Leukaemia treatment effect, Weibull and extreme value

models

Mean St. devn. 2.5% Median 97.5%

Weibull

Intercept ÿ4.70 0.64 ÿ6.06 ÿ4.68 ÿ3.52

Placebo 1.52 0.41 0.74 1.51 2.37

Shape 1.64 0.25 1.16 1.63 2.15

Extreme value

Intercept ÿ4.31 0.49 ÿ5.30 ÿ4.30 ÿ3.40

Placebo 1.56 0.42 0.76 1.55 2.39

Shape 0.090 0.030 0.029 0.091 0.147
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history (with repeated observations on some patients) is obtained, with 292 events (or

censorings) accumulated over the 116 patients. Times between recurrences are recorded

in months, with many patients not experiencing recurrences (i.e. being censored).

A beneficial effect of thiotepa would be apparent in a more negative impact b3 on the

recurrence rate than the two other treatment options. We compare (a) Weibull vs.

piecewise hazards, and (b) a subject level Normal frailty vs. a birth effect (modelling

the impact n of a count of previous recurrences), and follow Lindsey (2000) in using a

criterion analogous to the AIC.

Summaries are based on three chain runs of 2500 iterations after early convergence

(between 500±750 iterations in all model options discussed). The first two models use a

Weibull parametric hazard with shape parameter k. There is no apparent difference

from the exponential null value (k � 1) when frailty is included at the patient level

(Table 9.15). However, omitting frailty and allowing for the influence of the number of

previous events (also a proxy for frailty) shows the k coefficient clearly below 1. There is

a clear influence of previous events on the chance of a further one. However, neither

model shows a clear treatment benefit.

The average deviance for the latter model is around 182, and must be used in a

criterion that takes account of the extra parameters involved in the random frailty

effects. The DIC criterion adds the parameter count to the average deviance and so is

Table 9.15 Models for bladder cancer; parameter summaries

Mean St. devn. 2.5% Median 97.5%

Weibull hazard and patient frailty

a ÿ3.22 0.31 ÿ3.82 ÿ3.22 ÿ2.64

b2 ÿ0.008 0.316 ÿ0.622 ÿ0.010 0.598

b3 ÿ0.348 0.307 ÿ0.972 ÿ0.342 0.234

k 1.028 0.101 0.824 1.027 1.223

s2 0.890 0.352 0.375 0.833 1.713

Weibull hazard and history effect

a ÿ2.93 0.21 ÿ3.36 ÿ2.93 ÿ2.54

b2 0.093 0.169 ÿ0.254 0.094 0.419

b3 ÿ0.137 0.183 ÿ0.501 ÿ0.135 0.210

k 0.852 0.076 0.701 0.849 1.002

n 0.572 0.105 0.370 0.572 0.781

Non-parametric hazard and history effect

b2 0.054 0.166 ÿ0.274 0.055 0.382

b3 ÿ0.141 0.181 ÿ0.509 ÿ0.134 0.218

n 0.503 0.107 0.296 0.499 0.718

Hazard profile (non-parametric hazard)

DL01 0.023 0.008 0.011 0.022 0.040

DL02 0.057 0.014 0.033 0.056 0.088

DL03 0.083 0.019 0.051 0.081 0.125

DL04 0.075 0.018 0.044 0.074 0.121

DL05 0.050 0.014 0.027 0.049 0.082

(continues)
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Table 9.15 (continued)

Mean St. devn. 2.5% Median 97.5%

Hazard profile (non-parametric hazard)

DL06 0.088 0.023 0.049 0.085 0.139

DL07 0.030 0.013 0.011 0.028 0.060

DL08 0.033 0.014 0.012 0.031 0.066

DL09 0.054 0.020 0.022 0.052 0.098

DL010 0.020 0.012 0.005 0.018 0.048

DL011 0.015 0.010 0.002 0.012 0.039

DL012 0.061 0.023 0.026 0.058 0.118

DL013 0.025 0.014 0.005 0.023 0.057

DL014 0.028 0.017 0.005 0.024 0.072

DL015 0.020 0.014 0.003 0.017 0.052

DL016 0.022 0.016 0.003 0.018 0.061

DL017 0.037 0.023 0.008 0.032 0.094

DL018 0.027 0.021 0.003 0.023 0.082

DL019 0.014 0.016 0.000 0.009 0.056

DL020 0.014 0.014 0.000 0.009 0.052

DL021 0.015 0.014 0.000 0.011 0.050

DL022 0.031 0.023 0.004 0.026 0.089

DL023 0.017 0.016 0.000 0.012 0.057

DL024 0.038 0.026 0.005 0.032 0.103

DL025 0.022 0.022 0.001 0.014 0.082

DL026 0.022 0.022 0.000 0.015 0.080

DL027 0.026 0.026 0.001 0.019 0.100

DL028 0.028 0.028 0.001 0.019 0.101

DL029 0.040 0.041 0.001 0.027 0.152

DL030 0.065 0.065 0.002 0.049 0.258

DL031 0.071 0.073 0.001 0.047 0.250

187 for the history effect model. For the frailty model a subsidiary calculation gives an

effective parameter count of 27.5, and deviance at the posterior mean of 146, so the DIC

is 201. On this basis the `history effect' model is preferred.

For a non-parametric hazard analysis one may either set one of the treatment effects

to a null value or one of the piecewise coefficients. Here the first treatment effect (a) is

set to zero. Applying the history effect model again shows k below 1, but the average

deviance is 176 and taking account of the 35 parameters, the DIC statistic (at 209) shows

that there is no gain in fit from adopting this type of hazard estimation. The parametric

hazard (combined with the history effect model) is therefore preferred. The rates dL0(t)

for the first 18 months are precisely estimated and in overall terms suggest a decline,

albeit irregular, in the exit rate over this period. Applying the remaining model option,

namely non-parametric hazard with subject level frailty, and the assessment of its DIC,

is left as an exercise.

9.7 REVIEW

While many of the earliest papers describing the application of MCMC methods to

survival models (e.g. Kuo and Smith, 1992; Dellaportas and Smith,1993) are concerned
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with parametric survival functions, non-parametric applications are also developed in

Hjort (1990) and Lo (1993). A major benefit of the Bayesian approach is in the analysis

of censored data, treating the missing failure times as extra parameters, with the form of

truncation depending on the nature of censoring (e.g. left vs. right censoring). Censoring

is generally taken as non-informative but circumstances may often suggest an informa-

tive process.

Parametric survival models are often useful baselines for assessing the general nature of

duration dependence and parametric frailty models have utility in contexts such as nested

survival data; see Example 9.12 and Guo and Rodriguez (1992). However, much work

since has focussed on Bayesian MCMC analysis of non-parametric survival curves,

regression effects or frailty. For example, Laud et al. (1998) develop an MCMC algorithm

for the proportional hazards model with beta process priors. Example 9.14 illustrates a

comparison of a parametric hazard and non-parametric hazard based on the counting

process model, while Example 9.11 considers a non-parametric frailty.

Recent reviews of Bayesian survival analysis include Ibrahim et al. (2001a), Kim and

Lee (2002) and Rolin (1998).
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EXERCISES

1. In Example 9.2, apply multiple chains with diverse (i.e. overdispersed) starting points

± which may be judged in relation to the estimates in Table 9.3. Additionally, assess

via the DIC, cross-validation or AIC criteria whether the linear or quadratic model

in temperature is preferable.

2. In Example 9.4, consider the impact on the covariate effects on length of stay and

goodness of fit (e.g. in terms of penalised likelihoods or DIC) of simultaneously (a)

amalgamating health states 3 and 4 so that the health (category) factor has only two

levels, and (b) introducing frailty by adding a Normal error in the log(mu[i]) equation.

3. In Example 9.6, repeat the Kaplan±Meier analysis with the control group. Suggest

how differences in the survival profile (e.g. probabilities of higher survival under

treatment) might be assessed, e.g. at 2 and 4 years after the start of the trial.

4. In Program 9.8, try a logit rather than complementary log-log link (see Thompson,

1977) and assess fit using the pseudo Bayes factor or other method.

5. InProgram9.9under thevaryingunemploymentcoefficientmodel, tryamore informa-

tive Gamma prior (or set of priors) on 1=s2
b with mean 100. For instance try G(1, 0.01),

G(10, 0.1) and G(0.1, 0.001) priors and assess sensitivity of posterior inferences.

6. In Example 9.12, apply a discrete mixture frailty model at cluster level with two

groups. How does this affect the regression parameters, and is there an improvement

as against a single group model without frailty?

7. In Example 9.14, try a Normal frailty model in combination with the non-parametric

hazard. Also, apply a two group discrete mixture model in combination with the non-

parametric hazard; how does this compare in terms of the DIC with the Normal frailty

model?
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CHAPTER 10 Modelling and Establishing Causal Relations

Modelling and Establishing
Causal Relations:
Epidemiological Methods
and Models

10.1 CAUSAL PROCESSES AND ESTABLISHING CAUSALITY

Epidemiology is founded in efforts to prevent illness by contributing to understanding

the causal processes, or etiology, underlying disease. This includes establishing and

quantifying the role of both risk factors and protective factors in the onset of ill-health.

Risk factors include individual characteristics or behaviours, or external hazards that an

individual is exposed to, that increase the chance that the individual, rather than

someone selected randomly from the general population, will develop ill-health. Exter-

nal risk factors may relate to the environment or community, and include material

factors (e.g. income levels), psychosocial and biological risk factors in human popula-

tions (e.g. Garssen and Goodkin, 1999). Epidemiological analysis extends to studies of

disease in animal as well as human populations (Noordhuizen et al., 1997).

Bayesian approaches to modelling in epidemiology, and in biostatistics more generally,

have been the subject of a number of recent studies. Several benefits from a Bayesian

approach, as opposed to frequentist procedures which are routinely used in many epi-

demiological studies, may be cited (Lilford and Braunholtz, 1996; Spiegelhalter et al.,

1999). These include model choice procedures that readily adapt to non-nested models;

availability of densities for parameters without assuming asymptotic normality, and the

formal emphasis on incorporating relevant historical knowledge or previous studies into

the analysis of current information (Berry and Stangl, 1996). Also advantageous are

Bayesian significance probabilities (Leonard and Hsu, 1999) which fully reflect all uncer-

tainty in the derivation of parameters. Of particular interest is Bayesian model choice in

situations where standard model assumptions (e.g. linear effects of risk factors in logit

models for health responses) need to be critically evaluated. On the other hand, Bayesian

sampling estimation may lead to relatively poor identifiability or slow converegence of

certain types of models, including models popular in epidemiology such a

spline regressions (Fahrmeir and Lang, 2001) and issues such as informativeness of priors

andpossible transformationofparameters become important in improving identifiability.

Most usually, causal processes in epidemiology involve multiple, possible interacting

factors. Inferences about risk and cause are affected by the nature of the causal process,
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and by the setting and design of epidemiological studies, whether clinical or community

based, and whether randomized trial as against observational study. The main types of

observational study are case-control (retrospective) studies, cross-sectional prevalence

studies, and prospective or cohort studies (Woodward, 1999). Measures of risk are

governed by study design: for example, in a case-control study the focus may be on

the odds ratio of being exposed given case as against control status (Breslow, 1996),

whereas in a cohort study, the focus is on risk of disease given exposure status.

The major designs used have a wide statistical literature attached to them and statistical

thinking has played a major role in the development of epidemiology as a science. Some

authors, however, caution against routine application of concepts from multivariate analy-

sis, such as using continuous independent variables to describe risk profiles, using product

terms for evaluating interactions, or the notion of independent effects in the presence of

confounding(DaveySmithandPhillips,1992;Rothman,1986,Chapter1).Also, thegoalsof

an epidemiological analysis may not coincide with a hypothesis testing approach.

Underlying generalisations from epidemiological studies, and guiding the application

of statistical principles in them, are concepts of causality in the link between risk factor

and disease outcome. Thus, a causal interpretation is supported by: (a) strength in

associations, after controlling for confounding, evidenced by high risk ratios or clear

dose-response relationships; (b) consistent associations across studies, different possible

outcomes, and various sub-populations; (c) temporal precedence such that exposure

predates outcome (subject to possible latency periods); (d) plausibility of associations in

biological terms; and by (e) evidence of a specific effect following from a single exposure

or change in a single exposure.

10.1.1 Specific methodological issues

Describing the relationship between an outcome and a given risk factor may be compli-

cated by certain types of interaction between risk factors. Confounding, considered in

Section 10.2, relates to the entangling or mixing of disease risks, especially when the

confounder influences the disease outcome, and is also unequally distributed across

categories of the exposure of interest. It may often be tackled by routine multivariate

methods for correlated or collinear independent variables. Other major options are

stratification and techniques based on matching, such as the matched pairs odds ratio

(Rigby and Robinson, 2000).

Dose-response models (Section 10.3) aim to establish the chance of an adverse

outcome occurring as a function of exposure level (Boucher et al., 1998). Rothman

(1986, Chapter 16) argues that the leading aim of epidemiological investigation is to

estimate the magnitude of effect (e.g. relative risks) as a function of level of exposure.

This may indicate categorisation of a continuous exposure variable and classical calcu-

lation of an effect according to a category of the exposure would require then

sub-populations of sufficient size as a basis for precisely describing trend over categories.

However, random effect models to describe trend (e.g. via state space techniques),

especially in Bayesian implementations, may overcome such limitations (Fahrmeir and

Knorr-Held, 2000). Establishing consistent relationships depends on the selected out-

come and on the measurement of exposure: risk factors such as alcoholism or outcomes

such as good health cannot be precisely operationalised and have to be proxied by a set

of observable items, and so latent variable models come into play (Muthen, 1992).

Meta-analysis (see Section 10.4) refers to the combination of evidence over studies

and hence plays a role in establishing consistency of associations: it provides a weighted
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average of the risk or treatment estimate that improves on rules-of-thumb, such as `most

studies show an excess risk or treatment benefit' (Weed, 2000). Findings of heterogen-

eity in risk parameters across studies need not preclude consistency. Meta-analysis may

also play a role in more precisely establishing the strength of an association or dose-

response relationship, e.g. in providing a summary estimate of relative risk with im-

proved precision as compared to several separate studies.

10.2 CONFOUNDING BETWEEN DISEASE RISK FACTORS

As noted above confounding occurs when a certain risk factor ± not the focus of interest

or with an established influence in scientific terms ± is unequally distributed among

exposed and non-exposed subjects, or between treatment and comparison groups.

Often, the interest is in a particular risk factor X and it is necessary to adjust for

confounder variables Z. Mundt et al. (1998) cite the assessment of lung cancer risk

due to occupational exposure when there is in practice mixing of risk due to smoking

and occupational exposure. If smoking is more prevalent among occupations with a

cancer risk then the relationship between cancer and the occupational exposure would

be over-estimated. Complications arise in adjusting for confounders if they are not

observed (i.e. not explicitly accounted for in the model) or if they are measured with

error. A model erroneously omitting the confounder, or not allowing for measurement

error if it is included, leads to under-estimation of the average impact of X on Y (Small

and Fischbeck, 1999; Chen et al., 1999).

Whether Z is a confounder or not depends upon the nature of the causal pathways

(Woodward, 1999). Z is not a confounder if Z causes X, and X is in turn a cause of Y

(e.g. if Z is spouse smoking, X is exposure to tobacco smoke in a non-smoking partner,

and Y is cancer in the non-smoking partner). If Z causes X and both X and Z were

causal for Y, then Z is also not a confounder.

Generally, it is assumed that the true degree of association between the exposure and

the disease is the same regardless of the level of the confounder. If, however, the strength

of association between an exposure and disease does vary according to the level of a

third variable then Z is known as an effect modifier rather than a confounder. This is

essentially the same as the concept of interaction in log-linear and other models. It is

possible that such a third variable Z is a confounder only, an effect modifier only, or

both an effect modifier and confounder1.

1 Consider the example of Rigby and Robinson (2000) in terms of relative risk of an outcome (e.g. deaths
from lung cancer) in relation to smoking (X ) and tenure (Z), the latter specified as owner occupier (Z � 1),
renter in subsidised housing (Z � 2), and private renter (Z � 3). Tenure would be a confounder, but not an
effect modifier if the risk of cancer was higher among renter groups, but within each tenure category the
relative risk of cancer for smokers as against non-smokers was constant at, say, 2. Suppose the mortality rate
among non-smokers was 0.1 among owner occupiers, 0.15 among subsidised renters and 0.2 for private
renters. Then the mortality rates among smokers in the `tenure as confounder only' case would be 0.2
among owners, 0.3 among subsidised renters and 0.4 among private renters. The overall relative risk depends
then upon the distribution of tenure between smokers and non-smokers. If smoking is less common among
owner occupiers, then ignoring housing tenure in presentation or risk estimation would lead to overstating the
overall relative risk of mortality for smokers (e.g. estimating it at 3 or 4 rather than 2).

Tenure would be an effect modifier in this example if the mortality rate among non-smokers was constant, at
say 0.1, but the relative risk of cancer mortality for smokers as against non-smokers was higher among the renter
subjects than the owner occupiers. There is then no association between tenure and mortality in the absence of
smoking and differences in the relative risk between tenure categories reflect only effect modification. Tenure
would be both a confounder and effect modifier when the global estimate of the smoking relative risk is
influenced by the distribution of smoking across tenures, but the relative risk is concurrently different across
tenures. If there is effect modification with genuine differences in relative risk (for smokers and non-smokers)
according to the category of Z, then a global estimate of relative risk may make less substantive sense.
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10.2.1 Stratification vs. multivariate methods

One method to reduce the effect of a confounder Z is to stratify according to its levels

(Z1, : :Zm}, and then combine effect measures such as odds ratios over strata, according

to their precisions. Data from an Israeli cross-sectional prevalence study reported by

Kahn and Sempos (1989) illustrate the basic questions (Table 10.1). Cases and non-

cases (in terms of previous myocardial infarction) are classified by age (Z) and systolic

blood pressure (X ).

Age is related to the outcome because the odds ratio for MI among persons over 60 as

against younger subjects is clearly above 1. The empirical estimate is

15� 1767=(188� 41) � 3:44

with log (OR) � 1:24 having a standard deviation2 of (1=15� 1=1767� 1=188

�1=41)0:5 � 0:31. Moreover, age is related to SBP since with age over 60 as the

`outcome' and SBP over 140 as the `exposure', the empirical odds ratio is

124� 1192=(616� 79) � 3:04

Providing there is no pronounced effect modification, it is legitimate to seek an

overall odds ratio association controlling for the confounding effect of age. Suppose

the cells in each age group sub-table are denoted {a, b, c, d} and the total as

t � a� b� c� d.

To combine odds ratios ORi (or possibly log ORi) over tables, the Mantel±Haenszel

(MH) estimator sums ni � aidi=ti and di � bici=ti to give an overall odds ratioX
i

ni=
X

i

di (10:1)

This is a weighted average of the stratum (i.e. age band) specific odds ratios, with weight

for each stratum equal to di � bici=ti, since

{aidi=(bici)}di � aidi=ti � ni

Table 10.1 Myocardial infarction by age and SBP

Age Over 60 MI Cases No MI All in SBP group

SBP > � 140 9 115 124

SBP < 140 6 73 79

All in Age Band 15 188 203

Age Under 60

SBP > � 140 20 596 616

SBP < 140 21 1171 1192

All in Age Band 41 1767 1808

2 The standard error estimate is provide by the Woolf method which relies on the Normality of log(OR).
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The weights di are proportional to the precision of the logarithm of the odds ratio

under the null association hypothesis. For the data in Table 10.1 the estimator (10.1)

for the overall odds ratio is 1.57, as compared to 0.95 and 1.87 in the two age

groups.

A stratified analysis may become impractical if the data are dispersed over many

subcategories or multiple confounders, or if the impact of the risk factor is distorted by

categorisation, and multivariate methods such as logistic regression are the only prac-

tical approach. For example, logit regression methods are applicable to pooling odds

ratios over a series of 2� 2 tables from a case-control study, even if case/control status

does not result from random sampling of a defined population (Selvin, 1998, Chapter 4).

In the case of Bayesian estimation, credible intervals on the resulting effect estimates

will be obtained without requiring Normality assumptions. This is especially important

for small cell counts {a, b, c, d}, including the case when a cell count is zero such that

the estimate ad/(bc) is undefined.

Multivariate methods may be applied when there is intentional matching of a case

with one or more controls on the confounders. The precision of a risk estimate (e.g.

odds ratio or relative risk) will be increased if the control to case ratio M exceeds 1. As

well as providing control for confounding per se, matching on risk factors with an

established effect (e.g. age and cardiovascular outcomes, or smoking and lung cancer)

may enhance the power of observational studies to detect impacts of risk factors of as

yet uncertain effect (Sturmer and Brenner, 2000). Matched studies with a dichotomous

outcome may be handled by conditional logistic regression, conditioning on the ob-

served covariates in each matched set (each matched set of case and controls becomes a

stratum with its own intercept). For 1:1 matching, this reduces to the standard logistic

regression.

Example 10.1 Alcohol consumption and oesophageal cancer with age stratification One

possible analysis of studies such as that in Table 10.1 is provided by a logit or log-linear

model for the predictor combinations produced by the confounder and the exposure. For

instance, in Table 10.1 the assumption of a common odds ratio over the two age groups

corresponds to a model with main effects in age and blood pressure only, but without an

interaction between them.

This example follows Breslow and Day (1980) and Zelterman (1999) in considering a

case control study of oesophageal cancer (Y) in relation to alcohol consumption (X ),

where age (Z) is a confounding factor. Table 10.2 shows the age banded and all ages

study data.

The unstandardised estimate of the overall odds ratio (from the all ages sub-table)

96� 666=(109� 104) � 5:64

However, the association appears to vary by age (the corresponding estimate for the

65±74 group being only 2.59). One might apply the Mantel±Haenszel procedure to

obtain an aggregate effect pooling over the age specific odds ratios, though this is

complicated by undefined odds ratios (from classical procedures) in the lowest and

highest age groups.

An alternative is a log-linear model based on Poisson sampling for the frequencies

fYXZ, with case-control status being denoted Y (�1 for control and 2 for case). A log

linear model (Model A) corresponding to a common odds ratio over the six age groups

is then specified as
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Table 10.2 Case control data on oesophageal cancer

Annual alcohol consumption

Age group Over 80 g Under 80 g

25±34 Case 1 0

Control 9 106

35±44 Case 4 5

Control 26 164

45±54 Case 25 21

Control 29 138

55±64 Case 42 34

Control 27 139

65±74 Case 19 36

Control 18 88

75� Case 5 8

Control 0 31

All ages Case 96 104

Control 109 666

f YXZ � Poi(mYXZ)

log (mYXZ) � a� bY � gX � dZ � eYX � kYZ � ZXZ

and the common odds ratio across sub-tables is estimated as f � exp (eYX ). Fairly

diffuse N(0, 1000) priors are adopted for all the effects in this model. A two chain run

with null starting values in one chain, and values based on a trial run in the other, shows

convergence from 5000 iterations: the scale reduction factors for b2 only settle down to

within [0.9, 1.1] after then.

The Bayesian estimation has the benefit of providing a full distributional profile for

f; see Figure 10.1 with the positive skew in f apparent. Tests on the coefficient (e.g. the

0.4
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0.3
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0.2

0.15

0.1

0.05

0
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OR

5.7 5.9 6.1 6.3 6.5

Figure 10.1 Posterior density of common odds ratio
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probability that it exceeds 6) may be carried out by repeated sampling and accumulating

over those iterations where the condition f > 6 is met. The posterior mean of f (from

iterations 5000±10 000) is 5.48 with 95% credible interval 3.68 to 7.83.

The pseudo (log) marginal likelihood (Gelfand and Dey, 1994) for Model A, obtained

by accumulating over log CPOs, is ÿ90.1. The worst fit (lowest CPO) is for the

observation of 1 case in the 25±34 age band and high alcohol use. The predictive loss

criterion3 of Sahu et al. (1997), Ibrahim et al. (2001) and Gelfand and Ghosh (1998) is

1918, with w � 1. Classical criteria to assess whether this model is adequate include a x2

criterion comparing f22Z with m22Z (see Breslow, 1996, Equation (7), namely

x2 �
X
Z

( f22Z ÿ m22Z)2=Var(m22Z)

and this may be evaluated at the posterior mean of Model B. The relevant posterior

means (with variances) are 0.35 (0.11), 4.1 (2.2), 24.5 (19.1), 40.3 (33.6), 23.7 (18.8) and

3.15 (2.2). This yields x2 � 6:7 (5 d.f.), and so suggests Model A is adequate. Note that

the posterior variances of m22Z are higher than maximum likelihood estimates (for

instance, those provided by Zelterman (1999) stand at 0.22, 2.1, 7.8, 10.6, 6.3 and 1).

A model allowing for different odds ratios between caseness and high alcohol con-

sumption according to the confounder level involves adding a three way interactions

lYXZ to the above model. If these are taken to be fixed effects (Model B), then odds

ratios for the lowest and highest age groups are still effectively undefined (though are no

longer infinity providing the priors are proper). One may assess the fit of Model B as

compared to Model A via the above general criteria; these are in fact in conflict, with the

pseudo-marginal likelihood increasing to ÿ86.5, but the predictive loss criterion

worsening (as compared to Model A), namely to 1942. This worsening is in fact only

apparent for small w, and for w > 5, the predictive loss criterion also favours allowing

age specific odds ratios.

However, a random effects model (Model C) for the three way effects (and possibly

other parameters) is also possible, and will result in some degree of pooling towards the

mean effect, while maintaining age differentiation if the data require it (Albert, 1996). A

random effects approach also facilitates a more complex modelling option, considered

below, that involves choosing between a precision 1=s2
l for lYXZ which is effectively

equivalent to lYXZ � 0 (the common odds ratio model) and a precision which allows

non-zero three way effects. Fitting Model C with a gamma prior G(1, 0.001) on 1=s2
l

gives a relatively small sl for the lYXZ and age band odds ratios (phi.sr[ ] in Program

10.1) all between 5.45 and 5.6. This option has a better predictive loss criterion than

Model B and broadly supports pooling over age bands.

Finally, we apply the specific model choice strategy, with 1=s2
l set to 1 000 000 for

effective equivalence to lYXZ � 0. A binary indicator chooses between this option and

the prior 1=s2
l � G(1, 0.001) with equal prior probability. The option 1=s2

l � 1 000 000

is chosen overwhelmingly, and so this procedure suggest age differentiation in the odds

3 Let fi be the observed frequencies, u the parameters in the log-linear model, and zi be `new' data sampled
from f (zju). Suppose ni and Bi are the posterior mean and variance of zi, then one possible criterion for any
w > 0 is

D �
Xn

i�1

Bi � [w=(w� 1)]
Xn

i�1

(ni ÿ fi)
2

Typical values of w at which to compare models might be w � 1, w � 10 and w � 100 000. Larger values of w
put more stress on the match between ni and fi and so downweight precision of predictions.
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ratios is not required (and hence that age acts as a confounder rather than an effect

modifier).

Example 10.2 Framingham follow up study for CHD An illustration of confounding

influences in a cohort study is provided by data on development of coronary heart

disease during an 18 year follow up period among 1363 respondents included in the

Framingham study (Smith, 2000). At the start of follow up in 1948, the study partici-

pants were aged between 30 and 62, and the development of CHD among 268 partici-

pants is related to age, sex and Systolic Blood Pressure (SBP) at exam 1.

The aim is to control for confounding by age Z1 and sex (Z2 � 1 for males, 0 for

females) in the relation between CHD onset and systolic blood pressure (X ), which

for these subjects ranges between 90 and 300. Specifically an odds ratio f comparing

CHD onset probability for participants with initial SBP above and below 165 mm Hg is

sought. To investigate the impact of categorising continuous predictor variables,

whether the risk factor itself or a confounder, different types of logit regression may

be considered. The first is linear in the continuous predictors age and SBP, the second

converts these predictors to categorical form, and the third considers non-linear func-

tions of age and SBP.

The first logit regression takes both age and SBP as continuous with linear effects

(Model A in Program 10.2). A three chain run4 shows convergence at around 750

iterations and summaries are based on iterations 1000±5000. The resulting equation

for CHD onset probability (with mean and posterior SD of coefficients) is

logit(pi) � a� b1Z1 � b2X � b3Z2

� ÿ7:2� 0:050Z1 � 0:0171X � 0:92Z2

(0:9) (0:017) (0:002) (0:15)

Note that the maximum likelihood solution (from SPSS) is very similar, the only slight

difference being that the ML estimation has a coefficient on age of 0.052 with SD of

0.015. Mildly informative N(0, 10) priors are used for the coefficients on the continuous

predictors to avoid numerical overflow (which occurs if large sampled values for

coefficients are applied to high values for Age or SBP). It may be noted that the logit

link is more robust to extreme values in the regression term than alternatives such as the

probit or complementary log-log links. Another option is to scale the age and SBP

variables, for example to have a range entirely within 0 to 1 (e.g. dividing them by 100

and 300, respectively), or to apply standardisation.

In this first analysis, the original scales of age and SBP are retained and it is necessary

obtain the average SBP in the group with SBP above 165 (namely 188.4) and the

remainder (namely 136.5). The relevant odds ratio, under this continuous regressors

model, is then the exponential of the coefficient for SBP times the difference

188:4ÿ 136:5 � 51:9

f � exp (b2 � 51:9)

As noted by Fahrmeir and Knorr-eld (2000), an advantage of MCMC sampling is that

posterior densities of functionals of parameters (here of b2) are readily obtained by

4 Starting values are provided by null values, the posterior average from a trial run, and the 97.5th point from
the trial run.
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repeated sampling. Thus, the mean and 95% credible interval for f are obtained as 2.44

(2.09, 2.89).

Standard fit measures (e.g. predictive loss criteria or pseudo marginal likelihood) may

be applied. Thus the criterion in footnote 3 with w � 1 stands at 299.6 and the pseudo-

marginal likelihood at ÿ630.5. To further assess fit and predictive validity the risk

probabilities pi may be arranged in quintiles, and the cumulated risk within each

quintile compared with the actual numbers in each quintile who developed the disease.

Thus, among the sample members with the lowest 273 risk probabilities (approximately

the lowest 20% of the 1363 subjects) we find the number actually developing CHD, then

apply the same procedure among those ranked 274±546, and so on. There is some

departure in the logit model prediction from the actual risk distribution, as in Table

10.3. Note that this is best done by monitoring the pi (using the Inference/Summary

procedure in BUGS) and then using other programs or spreadsheets to reorder the

cases. Program 10.2 also contains the array rank[1363, 5] that monitors the quintile risk

category of each subject.

We next consider a categorical regression analysis (Model B in Program 10.2), with

the first continuous predictor SBP dichotomised at above and below 165, and the age

predictor forming a four fold category, denoted AgeBand[ ] in Program 10.2: age under

50, between 50±54, between 55±59, and over 60. As usual a corner constrained prior is

used with g1 � 0 and gj � N(0, 1000) for j � 2, 3, 4. A three chain run5 shows conver-

gence at around 300 iterations and summaries are based on iterations 500±5000. Thus

the model, with I(s) � 1 for s true, is

logit(pi) � a� b1Z2 � b2I(X > 165)� g[AgeBand]

Standard fitmeasures showaworse fit under thismodel. Thus, the predictive loss criterion

stands at 303.2 and the pseudo-marginal likelihood at ÿ641. The match of actual and

predicted risk is assessedover the 16possible riskprobabilities, formedby thehigh and low

categories of SBP and the four age groups (part b of Table 10.3). This shows an acceptable

fit (cf.KahnandSempos, 1989).Theposteriormedianof theodds ratiofbetweenhighand

low SBP subjects controlling for age confounding is estimated at around 2.74.

Specific types of nonlinear regression models have been proposed for representing

risks (Greenland, 1998a). For example, a flexible set of curves is obtained using

fractional polynomial models, involving the usual linear term, one or more conventional

polynomial terms (squares, cubes, etc.), and one or more fractional or inverse powers

(square root, inverse squared, etc.). A simple model of this kind in, say, SBP might be

logit(pi) � a� b1Z1 � b2X � b3X
2 � b4X

0:5

For positive predictors X, loge(X ) can be used instead of X 0:5 to give a curve with

a gradually declining slope as x increases (Greenland, 1995). In fact, inclusion of

loge (X ) allows for the possibility of non-exponential growth in risk; for instance,

exp (b loge (X )) � Xb can increase much slower than exponentially. Fractional polyno-

mials and spline regression have been advocated as improving over simple categorical

regression (Greenland, 1995); possible drawbacks are potentially greater difficulties in

identifiability and convergence, and also the desirability of ensuring sensible dose-

response patterns. For example, a polynomial model in SBP, while identifiable, might

imply an implausibly declining risk at SBP above a certain point such as 275.

5 Starting values are provided by null values, the posterior average from a trial run, and the 97.5th point from
the trial run.
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Table 10.3 Alternative logistic regression models to assess risk according

to SBP (Framingham study)

(a) All Continuous Predictors treated as such

Quintile of risk

Probability

Observed Expected under

logistic

Chi square

1st 16 22.3 1.80

2nd 30 35.6 0.88

3rd 64 48.5 4.95

4th 65 64.4 0.01

5th 93 98.7 0.33

Total 268 269.6 7.96

(b) Continuous predictors in category form

Summing over 16 Possible Risk Probabilities

Expected under

logistic

Observed Risk

probability

Chi square

15.3 13 0.081 0.41

16.9 15 0.101 0.25

4.6 7 0.132 0.81

18.5 18 0.134 0.01

31.6 36 0.173 0.53

8.2 7 0.195 0.20

34.9 35 0.210 0.00

14.3 16 0.234 0.19

12.4 13 0.263 0.03

37.9 36 0.269 0.10

5.2 3 0.292 1.68

20.5 25 0.297 0.82

9.4 9 0.362 0.02

14.7 14 0.419 0.03

4.9 5 0.490 0.00

17.5 16 0.499 0.14

266.8 268 5.22

Here the coefficient selection procedure of Kuo and Mallick (1998) is applied to the

specification

logit(pi) � a� b1Z1 � b2Z
2
1 � b3 loge (Z1)

� b4X � b5X
2 � b6 loge (X )� b7Z2

Age and SBP are obtained by dividing the original values by 100 and 300, respectively.

Binary selection indicators, with Bernoulli(0.5) priors, are applied to the coefficients

b1 ÿ b6. A single run of 10 000 iterations (see Model C in Program 10.2) shows b2 and

b6 to have posterior selection probabilities exceeding 0.98, while the remaining coeffi-

cients have selection probabilities below 0.10. A third logit model is therefore estimated,

namely

logit(pi) � a� b1Z
2
1 � b3 log (X )� b4Z2 (10:2)
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This yields a slight improvement in pseudo-marginal likelihood over the linear continu-

ous predictors model above (ÿ628.5 vs. ÿ630.5) and in the predictive loss criterion with

w � 1 (namely 298.4 vs. 299.6). The parameter summaries for Model (10.2), from

iterations 500±5000 of a three chain run, are in Table 10.4. The odds f ratio is very

similar to those previously obtained.

Example 10.3 Larynx cancer and matched case-control analysis The impact of match-

ing to control for confounders and clarify the risk attached to an exposure of interest is

illustrated by an example from Sturmer and Brenner (2000). They consider the utility of

matching in case-control studies on risk factors whose effect is established and of no

substantive interest. The interest is rather in the impact of a new suspected risk. They

cite existing case-control findings on the link between larynx cancer and smoking (four

categories, namely 0±7, 8±15, 16±25, over 25 cigarettes per day) and alcohol consump-

tion (bands of 0±40, 40±80, 80±120, and over 120 grammes per day). Table 10.5 shows

the relative distribution of cases and population between the 16 strata formed by

crossing these two risk factors.

The impact of smoking and alcohol is established, and the interest is in the impact of

case-control matching to assess the effect of a new putative risk X. We compare matched

Table 10.4 Nonlinear risk model, parameter summary

Mean St. devn. 2.5% Median 97.5%

Odds Ratio 2.63 0.34 2.05 2.61 3.39

a ÿ1.17 0.51 ÿ2.11 ÿ1.20 ÿ0.13

b1 4.81 1.39 1.90 4.87 7.41

b2 2.98 0.40 2.23 2.98 3.79

b3 0.93 0.15 0.64 0.93 1.22

Table 10.5 Larynx cancer cases and controls across established risk factor combinations

Stratum

identifier

Smoking rate

(no. of cigarettes

per day)

Alcohol

consumption

Exposure risk

to X (in population

and controls)

under moderate

confounding

Proportion of

cases belonging

to stratum defined

by known risk

factors

Proportion of

population

belonging to

stratum

1 0±7 0±40 0.01 0.010 0.168

2 41±80 0.02 0.024 0.140

3 81±120 0.03 0.017 0.053

4 Over 120 0.04 0.027 0.031

5 8±15 0±40 0.02 0.022 0.081

6 41±80 0.04 0.078 0.092

7 81±120 0.06 0.068 0.043

8 Over 120 0.08 0.095 0.023

9 16±25 0±40 0.03 0.066 0.081

10 41±80 0.06 0.103 0.09

11 81±120 0.09 0.127 0.045

12 Over 120 0.12 0.137 0.035

13 26� 0±40 0.04 0.012 0.043

14 41±80 0.08 0.037 0.034

15 81±120 0.12 0.054 0.025

16 Over 120 0.16 0.122 0.015
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sampling, with controls sampled according to the case profile (i.e. the proportionate

distribution among the 16 strata, as in the penultimate column in Table 10.5), with

unmatched sampling. Under unmatched sampling, the sampling of controls is according

to the population profile, given by the last column of Table 10.5.

For illustration, M � 2 controls are taken for each of 200 cases, and the exposure

disease odds ratio in each stratum (the odds ratio of exposure to X given case-control

status) is assumed to be 2. Sturmer and Brenner then generate samples with 200 cases

and 400 controls to establish the power to detect this effect size under various assump-

tions about the confounding of the new risk factor X with the established risk factors Z1

and Z2 (smoking and alcohol consumption). In Program 10.3 it is necessary to generate

both the stratum (defined by Z1 and Z2) from which an individual is sampled, and

exposure status to X; for cases these are indexed by arrays Stratcase[ ] and Exp.case[ ].

Under the first assumption there is no confounding, with an exposure rate to the new

factor X (proportion exposed to X in strata 1 to 16) set at 0.05 in all strata. Under an

alternative moderate confounding assumption, the exposure rate rises in increments

from 0.01 in the lowest smoking and alcohol intake group to 0.16 in the highest smoking

and drinking group (see Table 10.5).

Sturmer and Brenner report higher powers to establish the assumed odds ratio of 2

under matched than unmatched sampling, and higher powers also under moderate

confounding than no confounding. The analysis here confirms the ability of matched

case-control sampling to obtain the correct odds ratio regardless of the confounding

scenario, and the greater power to detect a positive odds ratio under moderate con-

founding rather than no confounding.

Under matched sampling both cases and controls are drawn to have the same

distribution across the 16 strata, namely that in the penultimate column of Table

10.5. It is necessary to assess the power of the study to detect a positive relation between

exposure and disease. The test used to establish the significance of the log of odds ratio

(and hence power of the study) for each sample of 600 involves the empirical variance of

the log of the odds ratio over all strata combined. It is preferable to use the log of the

odds ratio to assess power as this is more likely to be approximately Normal, whereas

the odds ratio itself is usually skewed.

Thus, let A, B, C and D be exposed cases, unexposed cases, exposed controls and

unexposed controls respectively accumulated over all strata, with the stratum equiva-

lents being aj, bj, cj and dj. So the variance of k � loge (OR) is

1=A� 1=B� 1=C � 1=D

where A � �jaj, B � �jbj, C � �jcj and D � �jdj. A refinement is to form the Mantel±

Haenszel estimate ORMH of the overall odds ratio, with weighting of the stratum odds

ratios according to their precision.

A run of 5000 iterations with moderate confounding and matched case-control

sampling with M � 2 leads to a power of 70.6% to detect a positive odds ratio at

2.5% significance (compared to 71.1% obtained by Sturmer and Brenner) and an

estimated mean OR of 2.02. Estimates using the Mantel±Haenszel procedure are very

similar, but involve slower sampling. When there is no confounding across the strata

formed by Z1 and Z2, but still matched case-control sampling, the power is reduced to

around 54% and the mean odds ratio is 2.12 (and median 2.01).

Under unmatched sampling with any degree of confounding the crude odds ratio is

an overestimate. To allow for the fact that, under this type of sampling, controls are

sampled disproportionately from strata with low exposure risk, one may adjust the
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crude odds ratio to take account of differential exposure to risk. One may obtain the

ratio of average exposure to risk among cases as compared to average exposure among

controls on the basis of a standard risk profile rj (exposed to risk of X ) over the strata.

Thus, Table 10.5 shows the population (and control) risk profile under moderate

confounding, and it can be seen that sampling from the case distribution pcase[ j] (penulti-

mate column) leads to higher average exposure than sampling from the population

distribution ppop[ j] (last column). A run of 10 000 iterations estimates the median of the

ratio Rexp � �rjpcase[ j]=�rjppop[ j] at 1.93 on the basis of the actual sampling propor-

tions over strata at each iteration. This is used to calculate adjusted totals C 0 � C:Rexp

of exposed controls, and D0 � 400ÿ C0 of unexposed controls. The median crude OR is

3.98, and the median of the adjusted OR is then 1.98. The log of the adjusted OR

is found to have a variance of 0:342 from a trial run, and from this a power of 52%

(Sturmer and Brenner obtain 51%) to detect an association between disease and expos-

ure is obtained, compared to 70.6% under matched sampling.

A wide range of alternative scenarios may be investigated; for example Sturmer and

Brenner (2000) consider a strong confounding scenario with the exposure risk ranging

from 0.005 in stratum 1 to 0.32 in stratum 16. Alternative numbers M of matched

controls may also be taken (e.g. up to M � 5).

Example 10.4 Obesity and mental health Increasingly, health strategy and measures

of health and clinical gain focus on improving quality of life, as well as extending life

expectancy. These measures in turn depend upon valuations of health status, founded in

utility theory, with different health states being assigned differing utilities ranging from

0 (death) to 1.0 (perfect health), or possibly scaled to run from 0 to 100. Following Doll,

Petersen and Brown (2000), we analyse responses on an instrument used to assess health

status and quality of life in both clinical and community settings, namely the Short

Form 36 or SF36 questionnaire (Jenkinson et al., 1993). This questionnaire has eight

subscales, and includes items on particular aspects of physical and mental health and

function. Here, observed subscale totals on the SF36 are used to measure the broader

latent dimensions of physical and mental health. We then examine the associations

between scores on these dimensions, actual reported illness status, and obesity, also

observed directly.

Doll et al. report on studies finding an adverse impact of obesity on mental health, in

addition to the established (and clinically plausible) impact of obesity on physical

health. Other studies, however, have not found an association between emotional

disturbance and obesity. Doll et al. suggest that some existing studies may not be

controlling for confounding of the link between obesity (X ) and mental health (F ) by

illness status (Z ). Thus, obese people are more likely to have chronic illness, and once

this is allowed for there may be no impact of obesity per se on emotional health.

Specifically, Doll et al. combine obesity (Xi � 1 for yes,� 0 for no) and chronic illness

(Zi � 1 for yes, � 0 for no) into a composite indicator Ji. They find no difference in

mental health between those with no illness and no obesity (Xi � Zi � 0) and those

obese only without being ill (Xi � 1, Zi � 0).

The work of Doll et al. illustrates that a set of items may contain information on more

than one latent dimension. Thus they use the eight items from the Short Form 36 Health

Status Questionnaire to derive mental and physical health factor scores, though they

assume these factors are uncorrelated (orthogonal) in line with the SF36 developers'

recommendations (Ware et al., 1994). In this connection, we consider six of the eight
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items of the SF36 recorded for 582 women aged 65±69 in the 1996 Health Survey for

England. The selected items have values from 0 to 100, with the low score corresponding

to most ill on all items and the high score to most well. Two items were excluded,

because their distribution was highly spiked (concentrated on a few values) despite being

nominally continuous variables. The density of the other scores is also skewed, with a

bunching of values on all the items at 100 (the `ceiling effect' in health status measure-

ment). One might consider truncated sampling combined with a density allowing for

skewness, and below a log-normal model is adopted ± which reflects the minimum of the

items being non-negative. Other options for sampling might be envisaged, such as a beta

density or even a binomial, if we round non-integer values between 0 and 100.

In fact, the binomial provides a simple way of dealing with missing values in the

health status outcomes, and is here used exclusively for that purpose ± it provides an

integer `success' total Vij between 0 and 100 in relation to a number at risk Nij of 100 (for

i � 1, : : 582 and j � 1, 6). It is necessary to impute missing values for the six SF36 items

to be able to use the log-normal model (applied to the observed and imputed data

combined as if it were all observed). The low rate of item missingness in these data is

thus modelled according to

Vij � Bin(pij , Nij)

logit(pij) � g0j � g1j � Vi

where Vi is the total score on all six items, and is a (relatively crude) measure of overall

health status. For illustration, a single imputation is used to `fill out' the health status

outcomes, though a full multiple imputation would use several imputations of the

missing data, possibly generated under different non-response mechanisms.

We then relate the logged scores v1ÿv6 on the six observed items, V1 to V6, (SF36

Physical Health, Pain, General Health, Vitality, Social Function, SF36 Mental Health)

to the 2 hypothesised latent constructs, also denoted physical and mental health, with

symbols F1 and F2. (Note that pain scores are higher for lower reported levels of pain.)

Thus items 1±3 are assumed to be linked to the physical health factor, and items 4±6 to

the mental health factor. For subject i

V1i � d1 � b11F1i � e1i

V2i � d2 � b12F1i � e2i

V3i � d3 � b13F1i � e3i

V4i � d4 � b24F2i � e4i

V5i � d5 � b25F2i � e5i

V6i � d6 � b26F2i � e6i

where the ej are independent Normal errors with zero means (with G(1, 1) priors on

their precisions tj). For identifiability the constraint b11 � b24 � 1 is adopted (see

Chapter 8). The factors are uncorrelated, and allowed to have free variances and

means which differ by obesity status X, by illness type Z or by illness-obesity combined

in analyses denoted (a), (b) and (c), respectively. Body mass X has categories below 20,

20±25, 25±30 and 30�, and illness Z has three categories (ill, slightly ill, well).

Thus in Model (a),

Fki � N(nXik, fk)
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with means njk varying over obesity category j and the k � 1, 2 factors. The precisions

1=fk are taken to be G(1, 0.001). Since relativities between categories are the main

interest, it may be assumed that n1k � 0, with centred parameters then obtained as

n0jk � njk ÿ �nk. In Model (b) the means are defined over illness and factor:

Fki � N(nZik, fk)

and in Model (c) over eight joint obesity and illness categories, with well and slightly ill

combined.

Convergence on all three models is apparent after 1000 iterations in Models (a) and

(b) (5000 iterations in Model (c)) in a two chain run of 5000 iterations (10 000 in Model

(c)), and applying the over-relaxation option. Starting values in one chain are null

values, and for the other are based on trial preliminary runs. Fit is assessed via the

predictive loss criterion of Ibrahim et al. (2001) and the pseudo-marginal likelihood of

Gelfand (1995).

In Model (a) it appears that the obesity group means on the two factors show the worst

health for the low BMI group; their physical health score of ÿ0.32 is clearly worse than

other levels of BMI and their emotional health is significantly negative (Table 10.6). It

may be that low BMI is a proxy for certain types of emotional disturbance. The CPOs

suggest potential outliers; for instance subject 447 has a low CPO on item 6, where the

score is 0, despite having scores of 100 on social function. This model has pseudo

marginal likelihood of ÿ16 980 and predictive loss criterion (with w � 1) of 7747� 103.

Table 10.6 Factor means by BMI and/or illness band

Model (a) Factor Means varying by BMI

Physical Health Factor Mean St. devn. 2.5% 97.5%

Mean by BMI Band 1 ÿ0.32 0.20 ÿ0.68 0.03

Mean by BMI Band 2 0.30 0.07 0.15 0.44

Mean by BMI Band 3 0.13 0.07 ÿ0.01 0.28

Mean by BMI Band 4 ÿ0.11 0.10 ÿ0.31 0.08

Mental Health Factor

Mean by BMI Band 1 ÿ0.10 0.04 ÿ0.18 ÿ0.01

Mean by BMI Band 2 0.08 0.02 0.04 0.12

Mean by BMI Band 3 0.03 0.02 ÿ0.01 0.07

Mean by BMI Band 4 ÿ0.01 0.03 ÿ0.06 0.04

Factor Loadings

b12 0.87 0.06 0.77 0.99

b13 0.49 0.04 0.43 0.57

b24 2.03 0.17 1.72 2.41

b25 1.93 0.19 1.58 2.33

Factor Variances

Var(F1) 0.46 0.05 0.37 0.56

Var(F2) 0.05 0.01 0.04 0.07

(continues)
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Table 10.6 (continued)

Model (b) Factor Means varying by Illness Type

Physical Health Factor Mean St. devn. 2.5% 97.5%

Ill ÿ0.55 0.04 ÿ0.63 ÿ0.46

Slightly Ill 0.21 0.04 0.13 0.29

Well 0.34 0.04 0.26 0.42

Mental Health Factor

Ill ÿ0.14 0.02 ÿ0.17 ÿ0.11

Slightly Ill 0.05 0.01 0.02 0.08

Well 0.09 0.01 0.06 0.11

Factor Loadings

b12 0.85 0.05 0.75 0.96

b13 0.52 0.04 0.46 0.60

b24 2.12 0.16 1.81 2.47

b25 1.94 0.18 1.59 2.31

Factor Variances

Var(F1) 0.31 0.04 0.25 0.39

Var(F2) 0.04 0.01 0.03 0.05

Model (c) Factor Means varying by Combined Illness and BMI Type

Physical Health Factor Mean St. devn. 2.5% 97.5%

Ill and Low BMI ÿ0.48 0.33 ÿ1.28 ÿ0.04

Ill and Avg BMI ÿ0.04 0.10 ÿ0.25 0.16

Ill and Above Avg BMI ÿ0.20 0.08 ÿ0.36 ÿ0.04

Ill and High BMI ÿ0.72 0.15 ÿ0.95 ÿ0.36

Well or Slight Ill, and Low BMI 0.35 0.18 0.01 0.70

Well or Slight Ill, and Avg BMI 0.43 0.08 0.29 0.59

Well or Slight Ill, & above avg BMI 0.36 0.08 0.21 0.51

Well or Slight Ill, and High BMI 0.30 0.09 0.13 0.48

Mental Health Factor

Ill and Low BMI ÿ0.16 0.09 ÿ0.35 0.01

Ill and Avg BMI 0.01 0.04 ÿ0.06 0.08

Ill and Above Avg BMI ÿ0.03 0.03 ÿ0.08 0.02

Ill and High BMI ÿ0.16 0.04 ÿ0.23 ÿ0.06

Well or Slight Ill, and Low BMI 0.08 0.06 ÿ0.05 0.20

Well or Slight Ill, and Avg BMI 0.10 0.03 0.05 0.15

Well or Slight Ill, & above avg BMI 0.07 0.02 0.02 0.12

Well or Slight Ill, and High BMI 0.10 0.03 0.05 0.16

Factor Loadings

b12 0.80 0.05 0.70 0.92

b13 0.47 0.03 0.40 0.54
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Table 10.6 (continued)

b24 2.04 0.14 1.78 2.33

b25 1.94 0.17 1.63 2.28

Factor Variances

Var(F1) 0.38 0.04 0.30 0.46

Var(F2) 0.04 0.01 0.03 0.05

A more convincing difference in mental health means is apparent for illness categories

± analysis (b). The ill subjects have significantly worse mental health, though slightly ill

as against well subjects do not differ in their mental health scores. This model has a

higher pseudo marginal likelihood but worse predictive criterion than Model (a) ± an

example of conflict in model assessment criteria.

In a third analysis, analysis (c), the least two serious illness categories are combined

and the resulting binary illness index crossed with the obesity categories. In terms of

mental health a virtually flat profile in means over BMI can be seen for the less ill

categories. Only when combined with more serious illness are both high BMI and low

BMI associated with worse emotional health (though the interaction between low BMI

and illness is not quite significant at the 5% level in terms of negative mental health).

This model has a better predictive criterion than Models (a) or (b), but only improves in

terms of pseudo-marginal likelihood over model (a). These findings replicate those of

Doll et al. quite closely even though the analysis here is confined to one demographic

group. Specifically, obesity does not have an independent effect on mental health and its

impact is apparent only when combined with more serious illness.

10.3 DOSE-RESPONSE RELATIONS

Dose-response models typically aim to establish the probability of an adverse effect

occurring as a function of exposure level (Boucher et al., 1998), or of health gain from

treatment inputs. They may derive from experiments involving human or animal

subjects, or from observational and cohort studies. Evidence of a monotonic trend in

the risk of disease over different exposure levels of a risk factor, lends support to a

causal relationship, and provides a basis for public health interventions. A monotonic

downward trend in disease risk with increased levels of a putative protective factor may

also be relevant (e.g. cancer in relation to vegetable and fruit consumption).

The National Research Council (NRC, 1983) places dose-response assessment as one of

series of stages in risk assessment, which includes hazard identification and hazard

characterisation. Within the characterisation stage, risk assessment involves establishing

a dose-response relationship and the site andmechanismof action. For example, in studies

of developmental toxicology, hazard identification includes establishing whether new

chemicals impair development before humans are exposed to them, and so the chemicals

are evaluated in experimental animals to assess their effect on development. Hasselblad

and Jarabek (1996) consider possible benefits of a Bayesian estimation approach in these

situations, for example in obtaining the lower confidence point of the `benchmark dose'

that produces a 10% increase in the chance of a developmental abnormality.

Quantification of exposure and of the resulting risk are central in framing and

assessing dose-response relations. In some circumstances, in designed trials or cohort
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studies, exposure to relevant risk factors may be intrinsically graded into a discrete

number of levels, while in other instances an originally continuous exposure may be

grouped into categories. Incidence rates may not be meaningful unless they are calcu-

lated for reasonably sized sub-populations, and if exposure is measured on a continuous

scale then this is not possible (Rothman 1986, Chapter 16). One then typically compares

estimates of effect for each category in comparison to a reference category (such as the

lowest dosage exposure group). These may be obtained by regression methods, or by

stratifying over a confounder at each level of the outcome, and forming a pooled

estimate with weights based on a common standard for the effect at each level.

The latter method may be illustrated by case-control data from Doll and Hill (1950)

on lung cancer in relation to daily smoking, with 60 matched female cases and controls

and 649 male cases and controls (Table 10.7). The weights are based on the distribution

of the two levels of the confounder (male, female) among the controls (Miettinen, 1972),

so that male and female weights are respectively w1 � 0:915 (�649/709) and w2 � 0:085.

An empirical estimate of the rate ratio of lung cancer for 1±4 cigarettes as compared to

zero cigarettes is obtained by comparing the weighted total of the ratios of exposed

cases to exposed controls with the weighted total of the ratios of unexposed cases to

unexposed controls. These are 0.915(55/33)�0.085(12/7) and 0.915(2/27)� 0.085(19/32),

respectively, so that the estimated effect (here a rate ratio) is 5.07. For 5±14 and 15�
cigarettes the corresponding estimates are 7.98 and 12.09.

In a Bayes implementation, one would seek to allow for sampling uncertainty (e.g.

illustrated by the small number of male cases at the lowest exposure level). Thus one

might assume multinomial sampling conditional on the four totals (male controls, male

cases, female controls, female cases). With a Dirichlet prior on the four sets of prob-

abilities one obtains posterior mean rate ratio estimates for exposure levels r � 2, 3, 4 of

4.71 (s.d. 2.2), 7.24 (3.1) and 10.9 (4.6). The Bayes procedure6 clarifies the uncertainty in

the empirical estimates, and shows they overstate the risk relative to baseline exposure.

A possible drawback in using a categorisation with several (R) levels of an originally

continuous risk factor means that confidence (credible) intervals in the resulting effect

estimates do not reflect the relationship between possible patterns in the effect estimates

and the continuity of the underlying variable. These considerations also apply if the

6 The program and data (inits may be generated randomly) are:
model {# weights according to distribution of confounder among controls
M[1:2] � dmulti(w[1:2], TM)
w[1:2] � ddirch(alpha[1:2])
# distribution of male cases over exposure levels (level 1 is zero exposure with no cigarettes smoked)
a[1, 1:4] � dmulti(pi.case[1, 1:4], N[1])
# distribution of female cases over exposure levels
a[2, 1:4] � dmulti(pi.case[2, 1:4], N[2]);
# distribution of male controls over exposure levels
b[1, 1:4] � dmulti(pi.control[1, 1:4], M[1])
# distribution of female controls over exposure levels
b[2, 1:4] � dmulti(pi.control[2, 1:4], M[2]);
for (i in 1:2) {pi.case[i, 1:4] � ddirch(alpha[ ]); pi.control[i, 1:4] � ddirch(alpha[ ])}
# rate (by sex i) among unexposed
for (i in 1:2) {SRR.div[i] <- w[i]*pi.case[i, 1]/pi.control[i, 1]
# rates by exposure j and sex
for ( j in 2:4) {SRR.top[ j, i] <- w[i]*pi.case[i, j]/pi.control[i, j]}}
for ( j in 2:4) {SRR[ j] <- sum(SRR.top[ j, 1:2])/sum(SRR.div[1:2])}}
Data
list(alpha�c(1,1,1,1), # total male and female cases
N�c(649, 60), # total male and female controls
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Table 10.7 Lung cancer cases and controls by exposure

(Daily Smoking Levels)

Cigarettes smoked daily Cases Controls

Males 0 2 27

1±4 33 55

5±14 250 293

15� 364 274

All levels 649 649

Females 0 19 32

1±4 7 12

5±14 19 10

15� 15 6

All levels 60 60

original variable is inherently ordinal, and not only if the categorisation derives from an

originally continuous risk factor.

Suppose estimates have been produced by a procedure such as above or by a

categorical regression (e.g. a logit model with disease outcome in relation to the risk

variable in category form and with a corner constraint). Suppose the estimated odds or

incidence ratios attached to category r derive from a population of size Nr, or person-

years total Tr, then a weighted regression, linear or non-linear, involving the Rÿ 1 effect

estimates as dependent variable, is one way to model the trend (Rothman, 1986, p. 337).

To model the trend, it is necessary to assign scores to each of the R categories. If the

categorisation involved aggregating over originally continuous data, the average or

median of a continuous exposure variable within each category might be used. For

ordinal data it is common to assign uniformly incremented scores, though modelling of

the cut-points on the underlying scale (see Chapter 3) might be a preliminary step.

It may be noted that a guide to the extent of non-linear impacts of the risk factor is

provided by comparing fit measures between a categorical regression in that risk factor

and a model with a linear trend in the corresponding category scores (Woodward,

1999). If the categorical regression does not improve markedly in fit over the linear

scores model, this might be a preliminary to a linear effect model in the original (i.e.

uncategorised) form of the exposure variable.

Greenland (1995) advocates spline regression to model dose-response effects. This

still involves assigning breaks in the risk variable but allows more effectively for a

changing gradient between disease rate and exposure, as the exposure varies over its

range. This may be beneficial if there is non-linearity in the dose-response curve

(Boucher et al., 1998). There are, however, many other approaches to non-parametric

regression which a Bayesian estimation approach may facilitate (Fahrmeir and Lang,

2001); efficient sampling for such models may be obtained using the BayesX software

(http://www.stat.uni-muenchen.de/ lang/bayesx/bayesx.html).

M�c(649, 60), TM�709,
# male cases (2, 33, etc) then female cases by exposure (0 cigarettes, 1±4 cigarettes daily, 5±14, 15�)
a�structure(.Data�c(2, 33, 250, 364, 19, 7, 19, 15),.Dim�c(2, 4)),
# male controls (27, 55, etc) then female cases by exposure (0 cigarettes, 1±4 cigarettes daily, 5±14, 15�)
b�structure(.Data�c(27, 55, 293, 274, 32, 12, 10, 6),.Dim�c(2, 4))
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10.3.1 Clustering effects and other methodological issues

Assuming that a categorical breakdown of the exposure variable or dose has been

adopted, a binomial or Poisson analysis of responses Yr from Nr units exposed is a

standard one in assessing the strength of the risk as dosages Xr are varied. However,

under certain types of sampling, especially if there is nesting of subjects, there may be

excess variability relative to the binomial. (Similar considerations apply if there are

multinomial outcomes at each dosage, such as say, no increase in morbidity, some

increase, or mortality.)

An example is intra-litter correlation in experiments in developmental toxicology.

Thus, let there be R levels of toxic exposure Xr and j � 1, : :Mr litters of size Nrj at each

exposure. Then a dose response analysis of a binary outcome (survival or death) may

focuses on the outcomes

Yrj � Bin(prj , Nrj)

under a model for the proportions responding such as

prj � [1� exp (ÿb0 ÿ b1Xr)]
ÿ1 (10:3)

Tests of dose effect involving the coefficient b1 may, however, be affected by the level

of intra-litter correlation, r(Xr) as dosage changes. Instead suppose the response pro-

portions are

prj � tr=[tr � vr] (10:4)

where

tr � t[Xr] � exp (g0 � g1Xr) (10:5)

vr � v[Xr] � exp (d0 � d1Xr) (10:6)

and the intra-litter correlation is

r[Xr] � [1� tr � vr]
ÿ1 (10:7)

This framework is consistent with a beta-binomial density with possibly overdispersed

variance relative to the binomial, namely

Var(YrjjNrj) � prj(1ÿ prj)=Nrj[1� (Nrj ÿ 1)=(1� tr � vr)]

Clustering reflects unobserved heterogeneity (frailty) for groups of related subjects.

In dose-response models involving human subjects, especially in trials involving self-

administration of treatment drug or placebo, outcomes may also be subject to another

generally latent influence, namely subject compliance with treatment(s). Variations in

compliance mean that actual exposure varies in an unknown way (Efron and Feldman,

1991; Zeger and Liang, 1991). Allowing for compliance amounts to modelling the true

(and latent) exposure to a treatment on the basis of manifest variables (Dunn, 1999).

The manifest variables would typically include both measures of compliance (e.g. bio-

markers for drug absorption) and observed responses to treatment. This leads to

structural equation models in which the latent exposure underlies both the observed

outcomes and bio-markers. In clinical trials where there is a placebo group, certain

additional assumptions may be reasonably made which facilitate analysis. For example,

if treatment allocation is random, one may sometimes assume that the propensity to

comply is similar between treated and control groups ± even if the placebo group are not
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exposed to an active drug or treatment. On the other hand, there may be circumstances

when compliance in the treatment group is related to prognosis (e.g. subjects with

adverse symptoms may be more likely to comply) (Mark and Robins, 1993).

Dose-response relations may involve dependencies on both time and the dose itself,

for example in bioassay where the analysis considers both the level of the mortality rate

itself and the patterns to times to mortality. In animal experiments, a proportion of the

animals may not be subject to experimental mortality at all, and go on to live their

natural life. One might consider a mixture analysis of susceptibles who will die prema-

turely in the experiment and non-susceptibles (Pack and Morgan, 1990). But the

analysis may be reduced to modelling the times to mortality of susceptible animals.

Often a proportional hazard analysis (see Chapter 9) involving multiplicative functions

of dose and time may be applied. Similar issues may occur in human disease onset or

mortality, in terms of the joint impact of age at death or onset and a putative exposure

such as smoking.

Dose-response relations may also be modified via multi-level approaches in order to

take account of subject level covariates ± and this might be one way to model concomi-

tant time/age effects (Greenland, 1998b; Wijesinha and Piantadosi, 1995). Consider the

logistic model in Equation (10.3). Both b0 and b1 may be made functions of subject

covariates vrj( j � 1, : :Mr) for instance, via

b0r � exp (l0vrj)

b1r � exp (l1vrj):

Example 10.5 Breast cancer and radiation Rothman (1986, Chapter 16) and Green-

land (1995) are among those arguing against assessment of dose-response relations

using categorical trend analysis. This might, for instance, involve selecting quintile or

quartile breaks in a continuous risk factor X and then modelling trends in terms of

category specific rates or odds ratios. The implicit assumption is that risk does not

change within categories, whereas in fact there is often a trend within the category. One

might ensure constancy of risk for all practical purposes by taking a larger number of

categories than conventionally used (e.g. 10 or 20), but then risk estimates for each

category tend to be unstable ± though Bayesian smoothing methods may well attenuate

this drawback. Alternatives are spline regression (see Example 10.6) which still involves

selecting breaks in the continuous X, but allows for trends within categories, or regres-

sion with category scores. For instance, one might take as category scores the average or

median exposure Xr within the rth category and then apply the usual regression

methods ± linear or power models, with a link function as appropriate.

To illustrate the role of scoring categories of a dose variable, we consider data from

McGregor et al. (1977) on incidence of breast cancer among women from Nagasaki or

Hiroshima, and aged 10 in 1945, according to four categories of radiation dose (Table

10.8). Following Rothman (1986) we can assign mid-category scores 0, 5, 55, and 150

and use as regression weights the total of person-years exposed Tr. If available, median

or mean exposures within the three upper categories would be preferable options (in

fact, a mean weighted for person years of exposure would be required).

The analysis is in terms of rates per 1000 Person-Years (PY). Following Rothman,

this outcome may be modelled as a continuous score with Normal errors. Note that a

more natural unit is per million person-years but this implies a very small precision and
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Table 10.8 Radiation exposure and cancer cases

Exposure* 0 > 0ÿ < 10 10ÿ < 100 100 and over

Breast cancer cases 38 105 48 34

Peson-years exposed 208515 463086 164639 52185

Incidence rate

per 1000 person-years 0.182 0.227 0.292 0.652

*> 0 ÿ< 10 means over zero but under 10.

possible prior specification problems. A weighted regression is used with precisions for

the rth category modelled as

Pr � Trt

with t an overall precision parameter and Tr the person year total for the rth category.

Following Rothman, a linear model is initially assumed. The linear slope of 0.00269

in the 1000 PY scale, with 95% interval from 0.0016 to 0.0038, compares to the

confidence interval cited by Rothman (1986, p. 337) of 1.23 to 3.63 in the 1 000 000

PY scale. The predicted mean incidence for an exposure of 100 rads is 0.463 per 1000

women-years, with interval from 0.37 to 0.56.

An alternative model is quadratic in exposure as in Example 10.2, while still retaining

the assumption of a continuous outcome. This yields an improved predictive loss

criterion of 0.014 (with w � 1) as compared to one of 0.023 with the linear model.

Note that there is a baseline or background mortality effect here (see Section 10.3.2),

namely mortality at zero rads, so that prediction of mortality in the first category is not

improved by power models.

Another sampling model might take the four observed counts of cases as Poisson with

means nr � aTrmr, with nr � 0:001Trmr for an analysis in incidence per 1000 person-

years. This option in fact suggests the quadratic model is over-parameterised. This

model yields improved predictions (z.scaled[ ] in Program 10.5, Model C) of the inci-

dence rates as compared to the linear model in a continuous outcome, namely

{0.204, 0.212, 0.308, 0.634} but has less precise predictions of the new data, and so

has a worse predictive loss. Arguably, though, this approach more appropriately reflects

the uncertainty in the observed data.

Example 10.6 Trend in CHD according to SBP, Framingham study The subject

matter for this example is the CHD onset data for the Framingham cohort, but

considering various options to improve dose-response modelling over the categorical

predictor model in Example 10.2.

The first expedient is a finer subdivision of the SBP variable. This sub-division has six

levels: under 140, 140±149, 150±159, 160±169, 170±179, and over 180. To assess trend,

scores are then assigned using the observed mean exposure within categories r � 1, : : , 6
and using as weights the observed numbers Nr in each category. The odds ratios for the

six category breakdown are estimated as fixed effects via a logistic regression (Model A1

in Program 10.6). Relative to the SBP under 140 category, they range from 1.5 for SBP

140±149 (with 95% credible interval including values under 1) to 4.04 (Table 10.9).

Subsequently, fitting a weighted linear trend to the six posterior mean odds ratios

(Model A2 in Program 10.6) gives a slope of 0.04 for the increase in the log OR for every
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Table 10.9 Odds ratios for successive SBP bands

Odds Ratio for SBP Mean St. devn. 2.5% 97.5%

140±149 1.50 0.31 0.95 2.17

150±159 1.88 0.40 1.24 2.75

160±169 2.37 0.61 1.38 3.74

170±179 3.50 0.91 1.98 5.53

180� 4.04 0.88 2.64 6.01

unit increase in SBP. For the threshold of 165 mm Hg systolic blood pressure, the odds

ratio estimated from this trend model is 2.65 with 95% interval from 2.3 to 2.8. The

central estimate is in fact very similar to the estimate from the continuous predictor

logistic model (see Example 10.2), but the credible interval is slightly narrower.

One might also compare the fit of a categorical model with a model linear in the

scores attached to each category (Woodward, 1999). Model A3 is linear in the averages

in each SBP band. Whereas the categorical regression in SBP has a DIC of 1277, this

simpler model has a DIC of 1272 and suggests that non-linearity in the effect of SBP (on

the logit of the incidence probability) may not be very marked. Note, though, that this

analysis is conditioned on the break points chosen for the six levels.

A different perspective on possible non-linearity (Models B and C) is supplied by

spline and state-space regression methods. As argued by Greenland (1995), spline

regression may avoid some of the problems associated with redefining a continuous

exposure into discrete categories. A simple categorical factor approach via logistic

regression implies (for example) an implausible jump in risk moving from an SBP of

169 to one of 170. In a spline regression, by contrast, the within category lines have a

non-zero slope, with smoothness also generated by using quadratic or cubic spline

terms. Thus, a quadratic spline in SBP would involve linear and quadratic terms across

the range of SBP, and spline terms operating only when category breaks (knot points)

are exceeded.

If Ck denotes the kth break for SBP, then with notation for SBP, Age and sex as in

Example 10.2, the spline terms Dk are zero if X < Ck and have value Dk � (X ÿ Ck)
2 if

the threshold is exceeded. If there are K category breaks (e.g. K � 5 in the above

analysis for SBP with cut-points Ck being 140, 150, 160, 170 and 180), then up to

five extra terms are potentially added in the regression. Spline terms in age are

denoted Ek � (Z1 ÿ Bk)
2 if the threshold Bk is exceeded and zero otherwise, so a full

quadratic spline model in age with three cut-points (at ages 50, 55 and 60) would be

represented as

b1Z1 � b2Z
2
1 � d1E1 � d2E2 � d3E3

A spline model has drawbacks regarding the number and location of knot points. It may

be wise to start off with a minimal number of knot points, and then add additional ones

if the data support them. For illustration and to improve identifiability, the quadratic

terms in Age and SBP across the range (terms such as b2Z
2
1) are omitted, and single

knots (i.e. K1 � K2 � 1) adopted in SBP and Age, respectively (with Age and SBP also

divided by 10 for numeric stability). The knots are at SBP�180 and age 55. The choice

of these points was based on earlier analyses with more than one knot in both age and

SBP ± though there remains a degree of arbitrariness unless the location of the knot

point(s) is assumed unknown and itself assigned a prior.
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With this framework, the odds ratio comparing subjects with SBP above and below

165 is based on the average SBP for those above and below the threshold. Here we

consider males aged 50 in these SBP bands, and for males these averages are 185.3 and

135.4. The fitted logit model for the probability p of CHD onset is then

L � logit(p) � a� b1Z1 � d1E1 � b2X � g1D1 � b3Z2 (10:8)

where Z1 and X are scaled by 0.1. To obtain the relevant odds ratio, it is necessary to

compare L for males aged 50 in the above and below 165 SBP groups. So Age is set to 50

in (10.8), and SBP at either 185.3 or 135.4. A profile of age effects (for the 18 ages 45, 46,

up to 62) at the average SBP of 148 is obtained as

Expit(a� b1Z1 � d1E1 � b2X � g1D1 � b3Z2)

where Expit(L) � exp (L)=[1� exp (L)] is the inverse of the logit transform (Greenland,

1998a). With start points provided by the 2.5th and 97.5th percentiles of a trial run,

convergence in a two chain run is obtained at around 1500 iterations. The spline term in

age is not significant, in line with no clear quadratic effect in age (Table 10.10). There is

a significant spline term in SBP, and additional terms might be experimented with. The

posterior median for the odds ratio of 3.02 exceeds those obtained earlier. The pseudo

marginal likelihood improves over Model A (ÿ628.5 vs. ÿ639).

The profile of CHD rates at various levels of SBP (for a male at average age 52.4)

obtained from Model B shows a tailing off in the increased risks of CHD at very high

SBP (Figure 10.2). This profile is stored in the vector SBP.eff[ ] in Program 10.6. Its

shape may be an artifact of the data in that there happen to be no CHD cases among a

small number (5) of subjects with SBP of 280 and over.

A final form of analysis of nonlinear risk effects (Model C) is relatively straightfor-

ward in terms of estimation through Bayesian sampling, and might serve as a basis for

selecting knot points in a subsequent spline analysis. This model uses a form of state-

space prior, and involves a large number of age and SBP categories, specifically 18 age

categories and 43 SBP categories (in intervals of five on the original scale so that the

groups are 90±95, 95±100, etc., up to 295±300). If bj denotes the age parameters and gj

the SBP group parameters, then a random walk prior is assumed, such that

bj � N(bjÿ1, tb) j � 2, : : , 18

gj � N(gjÿ1, tg) j � 2, . . . 43

To assist identification, it is assumed that b1 � g1 � 0. A two chain run shows conver-

gence after 2000 iterations and the second half of a run of 5000 iterations produces

gradients in the log-odds parameters for age and SBP groups (relative to the baselines,

Table 10.10 Quadratic spline in age and SBP, parameter summary

Mean St. devn. 2.5% Median 97.5%

Odds ratio 3.03 0.47 2.23 3.02 4.09

a ÿ7.92 0.88 ÿ9.60 ÿ7.91 ÿ6.13

b1 0.51 0.16 0.21 0.51 0.83

b2 0.22 0.03 0.16 0.22 0.28

b3 0.92 0.15 0.63 0.92 1.22

d1 ÿ0.021 0.525 ÿ1.039 ÿ0.022 1.019

g1 ÿ0.020 0.009 ÿ0.038 ÿ0.020 ÿ0.004
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age 45 and SBP of 90±95) as in Figures 10.3 and 10.4. This model improves over model

A in terms of pseudo-marginal likelihood (ÿ632.5 vs. ÿ639), but has a broadly similar

predictive loss measure (300.2 for w � 1 compared to 300.5 for Model A). Increasing w

(e.g. to 1000) does, however, give a larger fit advantage to Model C ± increasing w tends

to downweight relatively imprecise predictions and emphasize the match between the

actual data and the posterior means of the new data.

The results above use G(1, 0.01) priors on 1=tb and 1=tg, and results of this type of

analysis may well be sensitive to the priors on these parameters ± as they govern the

degree of smoothing. The posterior means for t0:5
b and t0:5

g are 0.11 and 0.20. If, instead,

G(5, 0.05) priors favouring relatively high precision are adopted, the posterior mean of

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
45 47 49 51 53

Age

55 57 59 61

L
o

g
 O

d
d

s 
(r

el
at

iv
e 

to
 a

g
e 

45
)

Figure 10.3 Age parameters
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t0:5
g is reduced to 0.15, but the shape of the log-odds curve is very similar to Figure 10.4.

From Figure 10.4, a final knot point at around 250 might be selected and the spline in

the upper category restricted to be linear (see Greenland, 1998a) to avoid the implaus-

ible fall in risk at very high SBP.

Example 10.7 Cumulative mortality in relation to dose-time The previous example has

illustrated how standard model assumptions (e.g. linearity in dose effects) may need to

be critically examined. As mentioned above, dose-response modelling one may also

need to consider the joint action of dose with other (confounding) factors, as well as

departures from standard sampling assumptions (e.g. clustering as a source of binomial

overdispersion).

To illustrate an alternative modelling structure, drawing on survival analysis concepts

to represent the joint effects of dose and a (confounding) time index, consider an animal

experiment reported by Pack and Morgan (1990). This involves deaths over a 13 day

period among flour beetles sprayed with the insecticide pyrethrins B, where the focus is not

only on endpoint or total mortality by the end of the period, but on cumulative mortality

at days 1, 2, 3, . . , up to 13. Four dosage levels (mg=cm2) were applied, 0.20, 0.32, 0.50 and

0.80. The relation of mortality to dose-time is expected to be differentiated by the sex k of

the beetle. It may be noted that the structure of this example could be applied with

suitable modifications in Example 10.6 (with SBP as the dose, and age parallel to time).

The probability of death at dose Xr in the jth time interval {tjÿ1, tj}, where

t0 � 0, t1 � 1, : : t13 � 13 is modelled as

prj � C(tj, Xr)ÿ C(tjÿ1, Xr) (10:9a)

where

1=C(t, X ) � [1� exp {ÿ b1 ÿ b2 log (X )}] [1� tÿb3b4] (10:9b)

Thus, separate dose-response and time-response models are present in Equation (10.9b).

As an illustration of the potential benefits of parameter transformation, an alternative
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model expresses b4 as exp (g4). Deaths are additionally classified by sex k, so this model

involves parameters {bk1, bk2, bk3, bk4}, though selective equality of parameters might

be investigated as one way to model simplification. As noted by Morgan (2000), the

function in time in Equation (10.9b) is the cumulative density of a log-logistic, and for

susceptible animals is the cumulative density of mortality over time, regardless of dose.

Prior substantive knowledge suggests the parameter b4 may be larger than the others,

and so the multivariate Normal precision matrix allows a wider range in its value.

Its prior mean is set at 20 for both males and females. In the alternative parameter-

isation the gk4 have prior means of 3, and variances 10. In the original parameterisation,

convergence with a three chain model is not obtained after 150 000 iterations, with the

parameter b24 failing to converge. By contrast, in the alternative parameterisation

convergence occurs in all parameters by 20 000 iterations and the summary in Table

10.10 is based on the iterations 20 000±30 000.

The deaths data for higher day numbers are rather sparse, and asymptotic consider-

ations applied in classical tests and often in simple Bayes assessments of fit (e.g. via AIC

and BIC criteria) will be of some doubt (Pack and Morgan, 1990, p. 752). Therefore,

bootstrap principles and/or predictive probability checks might be applied to assess fit.

Accordingly we find the likelihoods of actual and replicate data to be closely compar-

able, and a predictive check to average about 0.34. A similar conclusion is reached by

Pack and Morgan (1990), using Monte Carlo testing applied to the binomial deviance.

They obtain a deviance of 92 for the model (10.9), and a range of deviances in 100

replicate data sets (sampled from the ML estimate and fitted with the same model) from

76 to 130, with a mean of 90 and variance of 150. They conclude that the fitted model is

consistent with the simulated data.

Values of the dose and time profile parameters by sex of flour beetle, as in Table

10.11, are similar to those presented by Morgan (2000, p. 89). Note that the parameter

b12 has an asymmetric posterior density, and with a flatter prior than the one used in

Program 10.7 may become unstable. Morgan (2000) obtains a maximum likelihood

estimate for b12 of 3.37 with standard error 0.33, and a 95% interval (assumed to be

symmetric) from 2.72±4.02. It can be seen that a Bayesian analysis has an advantage in

representing parameters that in fact have asymmetric densities.

Example 10.8 Boric exposure Examples 10.6 and 10.7 have considered Bernoulli/

binomial sampling without allowing for overdispersion due to clustering or frailty

Table 10.11 Flour beetle mortality, parameter summary

Males Mean St. devn. 2.5% Median 97.5%

b11 4.99 1.36 3.26 4.82 8.86

b12 3.59 0.88 2.44 3.48 6.04

b13 2.71 0.20 2.34 2.71 3.09

g14 2.70 0.23 2.27 2.69 3.15

Females

b21 2.83 0.81 1.39 2.75 4.66

b22 2.75 0.59 1.67 2.71 4.04

b23 3.45 0.30 2.88 3.45 4.06

g24 4.00 0.38 3.30 4.00 4.77

DOSE-RESPONSE RELATIONS 423



Table 10.12 Boric acid exposure and in-utero damage

Mean St. devn. 2.5% Median 97.5%

d0 4.12 0.73 2.77 4.09 5.58

d1 ÿ7.67 1.92 ÿ11.18 ÿ7.56 ÿ3.80

g0 1.34 0.72 ÿ0.05 1.31 2.80

g1 ÿ4.74 2.08 ÿ8.93 ÿ4.66 ÿ0.70

p1 0.058 0.010 0.040 0.058 0.080

p2 0.074 0.009 0.058 0.074 0.095

p3 0.094 0.011 0.075 0.093 0.116

p4 0.130 0.026 0.083 0.128 0.186

r1 0.019 0.014 0.004 0.016 0.056

r2 0.036 0.020 0.010 0.032 0.085

r3 0.068 0.028 0.028 0.063 0.136

r4 0.231 0.065 0.121 0.227 0.374

effects. One might, for instance, in Example 10.6, introduce subject level random effects

to represent unmeasured influences on CHD onset, though this would considerably

slow estimation. To illustrate clustering as a source of binomial overdispersion and

another source of departure from standard modelling assumptions, consider an experi-

ment to assess in-utero damage to mice following exposure to boric acid (Slaton et al.,

2000). This is a constituent of many household products with suspected risks to humans.

The exposures in terms of percent of acid in the mice feed were X1 � 0 (control),

X2 � 0:1, X3 � 0:2 and X4 � 0:4, and the numbers of litters at each dose level were

M1 �M2 �M3 � 27 and M4 � 26. The outcome is the number dead Yrj among litters

of size Nrj, with j � 1, : :Mr and r � 1, : : , 4.

A three chain run with over-relaxation shows convergence at round 30 000 iterations

in the four parameters {b0, b1, g0, g1} in Equations (10.5)±(10.6). This gives estimates

of these parameters, and of the intra-litter correlations, as in Equation (10.7), based on

iterations 30 000±40 000 (Table 10.12).

These show the correlation as most pronounced at the highest dosage d4, and cursory

examination shows the high death rates within certain litters at this dose level. By

comparison, the maximum likelihood and their standard errors as estimates obtained

by Slaton et al. (2000) were

g0 � 1:54(1:10)

g1 � ÿ5:19(3:07)

d0 � 4:33(1:10)

d1 � ÿ8:26(2:99)

The beta-binomial mean proportion is

prj(Xr) � tr=[tr � vr] � [(d0 ÿ g0)� exp (d1 ÿ g1)Xr]
ÿ1

so that the standard logit dose-response model is, from Equation (10.3), equivalent to

letting g0 ÿ d0 � b0 and g1 ÿ d1 � b1. An absence of linear effect of dose in the mean

proportions is then equivalent to d1 � g1. One might therefore apply (in a sampling

framework) a test of whether g1 > d1, with a posterior probability over 0.95 or under
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0.05 being broadly equivalent to rejecting g1 � d1. A high probability that g1 > d1 is

consistent with an increasing dose-response.

Also, when t(Xr) and v(Xr) are exponential functions of dose, the intra-litter correl-

ation is

r[Xr] � [1� exp (g0 � g1Xr)� exp (d0 � d1Xr)]
ÿ1

so an absence of dose-response effect in both correlation and mean only occurs if

g1 � d1 � 0. If this happens then r[Xr] � r and the intra-litter correlation is constant.

The hypothesis of constant correlation might be assessed by monitoring whether

r[Xr] > r[Xs] over pairs r,s. A rejection of r[Xr] � r also amounts to rejecting

r[Xr] � 0, which is the condition required for the standard binomial sampling model

to be applicable.

Both inequalities g1 > d1 and r[Xr] > r[Xs] over pairs r > s were confirmed with

probability 1 (i.e. no samples were exceptions to these inequalities over iterations

30 000±40 000). Hence, there is both a dose effect and extra-binomial variation. One

might assess these features via model fit criteria. Thus, the predictive loss criterion of

footnote 3 is 267 under the binomial (with w � 1), but considerably lower at 174 under

the clustered binomial. The latter model provides a much improved fit of deaths at the

highest dose, for instance of Y82 � 12, with posterior mean n82 � 9:8 under the clustered

model against n82 � 2:2 under the binomial.

Slaton et al. point out a high correlation between g1 and d1 and suggest an alternative

parameterisation involving the parameters gj and bj � gj ÿ dj. Adopting this here

(Model C in Program 10.8) shows faster convergence (around 15 000 iterations with

over-relaxation) and the correlation between g1 and b1 is only ÿ0.07.

Example 10.9 Compliance and response An illustration of dose-response modelling

approaches where compliance is an issue is provided by simulated data from Dunn

(1999). Here n � 1000 subjects are randomly divided in a 50:50 ratio between control

and treated groups, with the outcome Y being a function of a latent true exposure F.

The treated group has a higher coefficient on the true exposure than the control group

in this simulation. Two fallible indicators C1, C2, of the compliance (e.g. bio-markers

for active or placebo drugs) latent exposure are available. The first of these provides a

scale for the unknown exposure F that is taken be centred at m. The second has

coefficient g � 1 on F. The observed outcome Y is also related to the latent exposure,

with the impact of F on Y allowed to differ according to assignment to treatment or

otherwise.

Specifically, the simulated data is generated according to

Yi � a� bGi
Fi � Zi

C1i � Fi � e1i

C2i � gFi � e2i

Fi � m� ui

(10:10)

where m � 70, a � 50, b2 � 4 for treated subjects (Gi � 2) and b1 � 1 for control

subjects (Gi � 1). The variances of the normally distributed errors Zi, e1i, e2i and ui

are, respectively, tZ � 225, t1 � 144, t2 � 225 and tu � 225 and their means are zero.

The model is re-estimated knowing only Y , C1, C2 and G. Both in setting priors on

precisions and intercepts, and in sampling inverse likelihoods (to estimate CPOs), it is
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preferable to scale the data by dividing Y , C1 and C2 by 100. Otherwise, the variances

are large and their estimation sensitive to prior assumptions. Initially, the same dose-

response model as in Equation (10.10) is assumed, except that in contrast to the

generating model, differential variances tZ1 and tZ2 of the errors Zi are adopted,

according to patient treatment group, so that

Yi � a� bGi
Fi � Zi, Gi

G(1, 0.001) priors on fZ j � 1=tZ j, fj � 1=tj and fu � 1=tu are adopted. A three chain

run with over-relaxation shows convergence at around 500 iterations, and the summary

in Table 10.13 is based on iterations 1000±5000. The original parameters are reasonably

accurately reproduced, when account is taken of the scaling.

In a second model, the Cj are taken as centred at nj and F to have zero mean and

variance 1.This approachmight be one among several options adopted in ignorance of the

generating model. Because the variance of F is known, slopes of C1 and C2 on F may be

estimated. Additionally, the intercept of Y is taken as differentiated by treatment. Thus

Yi � aGi
� bGi

Fi � Zi, Gi

C1i � n1 � g1Fi � e1i

C2i � n2 � g2Fi � e2i

This model has a considerably improved predictive loss criterion (0.32 vs. 0.54 for the

first model, when w � 1), but slower convergence. The treatment differential on the

effect of the latent exposure is still apparent, with b2 over four times that of b1.

Table 10.13 Compliance and latent exposure: parameter

summary

Mean St. devn. 2.5% Median 97.5%

1st model

a 0.55 0.05 0.44 0.55 0.64

b1 0.94 0.07 0.80 0.94 1.08

b2 3.94 0.07 3.79 3.93 4.09

g 0.995 0.009 0.978 0.995 1.012

m 0.701 0.006 0.689 0.701 0.713

t1 0.015 0.001 0.013 0.015 0.017

t2 0.024 0.001 0.021 0.023 0.026

tZ1 0.021 0.002 0.017 0.021 0.025

tZ2 0.025 0.013 0.002 0.025 0.049

tu 0.022 0.001 0.019 0.022 0.025

2nd model

a1 1.21 0.02 1.19 1.21 1.22

a2 3.30 0.04 3.26 3.30 3.35

b1 0.134 0.015 0.116 0.134 0.152

b2 0.603 0.027 0.559 0.604 0.644

g1 0.139 0.011 0.128 0.139 0.150

g2 0.155 0.011 0.142 0.154 0.168

n1 0.702 0.012 0.691 0.703 0.714

n2 0.696 0.013 0.682 0.696 0.710
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10.3.2 Background mortality

A standard modelling assumption in controlled trials and laboratory experiments is that

the responses of test subjects are due exclusively to the applied stimulus. In dose-

response models this assumption means that the control probability (i.e. for subjects

with no dose) of response is zero. However, multinomial or binary responses (e.g. for

type of defect or for mortality) for such trials, where one or more intervention or

treatment has been performed, may be subject to a background mortality effect. Such

nonzero control response may need to be allowed for in dose-response studies.

At the simplest, consider a binary mortality or other response Y with the probability

that Y � 1 modified to take account both of the chance of a background event and the

chance of a dose-induced event. Thus, let a and P(X ) denote the respective chances of a

background and treatment induced response, with corresponding random variables

YB � Bern(a)

and

YM � Bern(P(X )}

Then the overall probability that Y � 1 given a dosage X is a binary mixture

Pr (Y � 1jX ) � a� (1ÿ a)P(X )

This model has the effect of concentrating the dose-response curve modelled by P(X )

from (0, 1) into the range (a, 1). If Y is polytomous without ordering, or ordinal, and

contains S � 1 categories, then YB and YM are multinomial, with

Pr (YB � S) � as(s � 0, 1, : :S)

where
PS
0

as � 1 and

Pr (YM � sjX ) � H(ks � bX ) s � 1, : :S

� 1 s � 0
(10:11)

where H is an inverse link and the dose effect is linear for the assumed link. This defines

a proportional odds model for YM with cut points ks that are monotonically declining.

Example 10.10 Arbovirus injection This example involves the ordinal response data

on deformity or mortality in chick embryos as a result of arbovirus injection (Xie and

Simpson, 1999). Two viruses, Tinaroo and Facey's Paddock, were investigated, with 72

and 75 embryos, respectively, receiving these viruses. A further 18 embryos received no

virus.

There are S � 1 � 3 outcomes: survival without deformity, survival with deformity,

and death. There is one death (i.e. background mortality) among the controls. For the

g � 1, 2 treatments (Tinaroo, Facey's Paddock), the probabilities of the responses may

be expressed

Pr (YM � sjX ) � H(kgs � bgX ) s � 1, : :S

� 1 s � 0

For the Tinaroo group, there were four dosage levels (in inoculum titre in terms of PFU/

egg), namely 3, 20, 2400 and 88 000. For the Facey's Paddock group the doses were 3,
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18, 30 and 90. These doses are subject to a log10 transform. We adopt the previous

paramaterisation of the proportional odds model (see Chapter 3), with appropriate

constraints on the kgs.

Follwing Xie and Simpson, the baseline mortality effect for the control group is taken

to be binary rather than multinomial (excluding the option of survival without treat-

ment induced deformity), and so only one parameter a is required. Note also that, to use

the predictive loss criterion (footnote 3), it is preferable to use multinomial sampling

where the data are dummy indicators yij � 1 if Yi � j and yik � 0, k 6� j ± as opposed to

direct categorical sampling using Y as the data and the dcat( ) function. The two are

equivalent ways of modelling the data.

N(0, 100) priors are adopted on the kgs, N(0, 10) priors on the bg parameters7, and

a B (1, 1) prior on a. A three chain run then shows convergence at 2500 iterations and

the summary (Table 10.14) is based on iterations 2500±10 000. The mean posterior

probability of background embryo mortality (from natural causes) stands at 0.13

compared to an estimate of 0.11 obtained by Xie and Simpson. The mortality rate is

higher in the Tinaroo group as dosage increases and there are few surviving with

deformity, whereas the Facey's Paddock group have relatively more embryos surviving,

albeit with deformity. Accordingly, the b dose effect parameter is stronger for Tinaroo

embryos and there is only a small difference in cut points k21 and k22 comparing the

combined response of survival with deformity and death and the death response

considered singly.

A second model introduces nonlinear effects in dose (adding a term in 1/X ), so that

Pr (YM � sjd ) � H(kgs � bgX � gg=X ) s � 1, : :S

� 1 s � 0

Note that as X increases 1/X declines so a negative effect on 1/X is equivalent to X

increasing risk. An N(0, 10) prior on the g parameters is adopted. The analysis produces

a negative effect on 1/X only for the first group, with mean (and standard deviations) on

b1 and g1 being 2.3 (0.8) and ÿ2.3 (1.1), respectively. For the second group, the

coefficient on 1/X is positive. This model produces no improvement in the predictive

loss criterion (with w � 1) over the linear dose model, namely 85.4 as against 84.2,

although both bg and gg coefficients are significant.

Table 10.14 Arbovirus injection and chick embryo damage:

parameter summary

Mean St. devn. 02.5% Median 097.5%

a 0.13 0.05 0.05 0.13 0.23

b1 2.27 0.66 1.28 2.14 3.88

b2 3.48 1.19 1.69 3.26 6.04

k11 ÿ6.21 1.92 ÿ10.98 ÿ5.85 ÿ3.35

k12 ÿ11.04 3.38 ÿ19.31 ÿ10.35 ÿ6.11

k21 ÿ5.08 1.83 ÿ9.02 ÿ4.74 ÿ2.32

k22 ÿ5.37 1.85 ÿ9.35 ÿ5.03 ÿ2.56

7 A more diffuse N(0, 100) prior on the bg led to convergence problems. Moderately informative priors may
be justified in terms of likely bounds on relative mortality between treatments or between treatment and
baseline mortality.
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10.4 META-ANALYSIS: ESTABLISHING CONSISTENT ASSOCIATIONS

Meta-analysis refers to methods for combining the results of independent studies into

effectiveness of medical treatments, or into the impact of environmental or other health

risks, and so form a prior evidence base for planning new studies or interventions

(Hedges and Olkin, 1985). While randomised trials are the gold standard evidence for

meta-analysis (e.g. on medical treatment effectiveness), meta-analysis may use other

study designs, such as cohort and case control studies. The typical Bayesian approach

aims at estimating underlying `true' treatment or study effects, defined by random

deviations from the average effect. If observations on each study include an outcome

rate for a control and treatment group, then one may also model the average risk level

or frailty of subjects in each trial.

Several possible outcomes may be considered as summarising study or trial results:

examples are differences in proportions responding between treatment and control

groups, the ratio of odds responding, or the ratio of proportions responding. With

regard to previous sections, one might also pool the slopes of dose-response curves

(DuMouchel and Harris, 1983) or odds ratios after allowing for confounders. DuMou-

chel (1996) presents an example of combining odds ratios from different studies,

where studies differ in whether their odds ratio estimate controls for confounders.

Whether or not the ith study did control for a given confounder defines a set of binary

covariates that influence the estimates of underlying study effects in the meta-analysis

over studies.

Bayesian methods may have advantages in handling issues which occur in meta-

analysis, such as choice between fixed-effects vs. random-effects models, robust infer-

ence methods for assessing small studies or non Gaussian effects, and differences in

underlying average patient risk between trials. Further questions which a Bayesian

method may be relevant include adjusting a meta-analysis for publication bias, meta-

analysis of multiple treatment studies, and inclusion of covariates (Smith et al., 1995;

Carlin, 1992; DuMouchel, 1990; Prevost et al., 2000). Thus, whereas most medical meta-

analyses involve two treatment groups (or treatment vs. control), Bayesian techniques

can be used to compare either of the two main treatments with a common third

treatment to improve estimation of the main treatment comparison (e.g. Hasselblad,

1998; Higgins and Whitehead, 1996). Publication bias occurs if studies or trials for

meta-analysis are based solely on a published literature review, so that there may be a

bias towards studies that fit existing knowledge, or are statistically significant.

The simplest meta-analysis model is when effect measures yi, such as odds ratios for

mortality or differences in survival rates for new as against old treatment, are available

for a set of studies, together with estimated standard error si of the effect measure. For

example, consider the log odds ratio as an effect measure. If deaths ai and bi are

observed among sample numbers ri and ti under new and old treatments, then the

odds ratio is

{ai=(ri ÿ ai)}={bi=(ti ÿ bi)}

The log of this ratio may (for moderate sample sizes) be taken as approximately normal,

with variance given by

s2
i � 1=ai � 1=(ri ÿ ai)� 1=bi � 1=(ti ÿ bi) (10:12)

Under a fixed effects model, data of this form may be modelled as
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yi � N(m, s2
i )

where m might be estimated by a weighted average of the yi and the inverses of the s2
i

used as weights (since they are approximate precisions). Under a random effects model

by contrast, the results of different trials are often still taken as approximately Normal,

but the underlying mean may differ between trials, so that

yi � N(ni, s2
i ) (10:13)

where ni � m� di and the deviations di from the overall mean m, representing random

variability between studies, have their own density. For example, if the yi are empirical

log odds, then m is the underlying population log odds and the deviations around it

might have prior density

di � N(0, t2)

The rationale for random effects approaches is that at least some of the variability in

effects between studies is due to differences in study design, different measurement of

exposures, or differences in the quality of the study (e.g. rates of attrition). These mean

that the observed effects, or smoothed versions of them are randomly distributed

around an underlying population mean.

We may make the underlying trial means functions of covariates such as design

features, so that

ni � N(mi, t2)

mi � bzi

For instance, as mentioned above, DuMouchel (1996) considers odds ratios yi from nine

studies on the effects of indoor air pollution on child respiratory illness. These odds

ratios were derived within each study from logistic regressions, either relating illness to

thresholds of measured NO2 concentration in the home, or relating illness to surrogates

for high NO2 (such as a gas stove). Thus, four of the nine studies actually measured NO2

in the home as the basis for the odds ratio. In deriving the odds ratio, two of the nine

studies adjusted for parental smoking, and five of the nine for the child's gender. Thus,

in the subsequent meta-analysis, we can derive dummy indicators zi for each study

which describe the `regression design', or confounders allowed for, in deriving the odds

ratio.

10.4.1 Priors for study variability

Deriving an appropriate prior for the smoothing variance t2 may be problematic as flat

priors may oversmooth ± that is, the true means ni are smoothed towards the global

average to such an extent that the model approximates the fixed effects model. While

not truly Bayesian, there are arguments to consider the actual variability in study effects

as the basis for a sensible prior. Thus DuMouchel (1996, p. 109, Equation (5)) proposes

a Pareto or log-logistic density

p(t) � s0=(s0 � t)2 (10:14)

where s2
0 � n=�sÿ2

i is the harmonic mean of the empirical estimates of variance in the n

studies. This prior is proper but highly dispersed, since though the median of the density
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is s0, its mean is infinity. The (1, 25, 75, 99) percentiles of t are s0=99, s0=3, 3s0, 99s0. In

BUGS the Pareto for a variable T is parameterised as

T � acaTÿ(a�1)

and to obtain the DuMouchel form involves setting a � 1, c � s0, and then t � T ÿ s0.

Other options focus on the ratio B � t2=(t2 � s2
0) with a uniform prior one possibility.

The smaller is t2 (and hence B), the closer the model approximates complete shrinkage

to a common effect as in the classical fixed effects model. (This is obtained when t2 � 0.)

Larger values of B (e.g. 0.8 or 0.9) might correspond to `sceptical priors' in situations

where exchangeability between studies, and hence the rationale for pooling under a

meta-analysis, is in doubt. One might also set a prior directly on t2 directly without

reference to the observed s2
i . For instance, one may take the prior tÿ2 � x2(n)=n, with

the degrees of freedom parameter at values n � 1, 2 or 3 being typical choices. For a

meta-analysis involving a relatively large number of studies, or studies with precise

effects based on large samples, a vague prior might be appropriate, e.g.

tÿ2 � G(0:001, 0:001)

as in Smith et al.

Smith et al. (1995, p. 2689) describe how a particular view of likely variation in an

outcome, say odds ratios, might translate into a prior for t2. If a ten-fold variation in

odds ratios between studies is plausible, then the ratio of the 97.5th and 2.5th percentile

of the odds ratios is 10, and the gap between the 97.5th and 2.5th percentiles for di

(underlying log odds) is then 2.3. The prior mean for t2 is then 0.34, namely

(0:5� 2:3=1:96)2, and the prior mean for 1=t2 is about 3. If a 20-fold variation in

odds ratios is viewed as the upper possible variation in study results, then this is taken

to define the 97.5th percentile of t2 itself, namely 0:58 � (0:5� 3=1:96)2. From this the

expected variability in t2 or 1=t2 is obtained8.

Example 10.11 Survival after CABG An example of the above random effects meta-

analysis framework involves data from seven studies (Yusuf et al., 1994) comparing

Coronary Artery Bypass Graft (CABG) and conventional medical therapy in terms of

follow-up mortality within five years. Patients are classified not only by study, but by a

three-fold risk classification (low, middle, high). So potentially there are 21 categories

for which mortality odds ratios can be derived; in practice, only three studies included

significant numbers of low risk patients, and an aggregate was formed of the remaining

studies.

Verdinelli et al. (1996) present odds ratios of mortality, and their confidence intervals

for low risk patients in the four studies (where one is an aggregate of separate studies),

namely9 2.92 (1.01, 8.45), 0.56 (0.21, 1.50), 1.64 (0.52, 5.14) and 0.54 (0.04, 7.09). The

empirical log odds yi and their associated si are then obtained by transforming the

8 The upper percentile of t2 defines a 2.5th percentile for 1=t2 of 1/0.58�1.72. A G(15, 5) prior for 1=t2 has
2.5th percentile of 1.68 and mean 3, and might be taken as a prior for 1=t2. If a hundredfold variation in odds
ratios is viewed as the upper possible variation in study outcomes, a G(3, 1) prior is obtained similarly.
9 The standard deviations of the odds ratios would usually have been derived by considering numbers
(ai, bi, si, ti) as in Equation (10.12) and exponentiating the 95% limits of the log-odds ratio. The original
numbers are not, however, presented by Verdinelli et al. (1996).
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above data on odds ratios and confidence limits. With a random effects model, a flat

prior on the parameter t2 may lead to over-smoothing. To establish the appropriate

degree of smoothing towards the overall effect m, we first adopt the (weakly) data based

prior (10.14) previously suggested by DuMouchel (1996).

A three-chain run for the low risk patient data shows early convergence. From

iterations 5000±100 000 the estimated of the overall odds ratio in fact shows no clear

benefit from CABG among the low risk patients (Table 10.15). The chance that the

overall true effect is beneficial (i.e. that the pooled odds ratio m exceeds 1) is 0.699. The

deviance information criterion for this model, which partly measures the appropriate-

ness of the prior assumptions, is 11.35.

A second analysis adopts a uniform prior on t2=(t2 � s2
0). This leads to a posterior

mean for the overall odds ratio of 1.40 with 95% credible interval {0.25, 3.24}. The

DIC is slightly improved to 10.9. Finally, as in DuMouchel (1990), the prior

tÿ2 � x2(n)=n is taken with n � 3. This amounts to a 95% chance that t2 is between

0.32 and 13.3. This yields a lower probability that the overall odds ratio exceeds 1,

namely 0.6, but the posterior mean for the overall effect is slightly higher at 1.52,

with 95% interval {0.29, 4.74}. The DIC is again 10.9. The posterior median of t2 is

0.73.

Note that a relatively vague prior such as tÿ2 � G(0.001, 0.001) or tÿ2 � G(1, 0.001)

leads to an overall odds ratio estimate with very large variance and essentially no

pooling of strength: under the latter, the posterior 95% intervals for the odds ratios

{0.9, 7.57}, {0.23, 1.65}, {0.52, 4.77} and {0.07, 6.06} are very similar to the original

data. The DIC under this option worsens to 11.6.

Example 10.12 Thrombolytic agents after myocardial infarction An illustration of a

meta-analysis where pooling of information is modified to take account of covariates is

provided by mortality data from nine large placebo-control studies of thrombolytic

agents after myocardial infarction, carried out between 1986 and 1993 (Schmid and

Brown, 2000). Such covariates (if they have a clear effect on the trial outcome) mean the

simple exchangeable model is no longer appropriate. In the thrombolytic studies,

mortality rates were assessed at various times in hours ti between chest pain onset and

treatment, ranging from around 45 minutes to 18 hours.

The treatment effects yi are provided as percent risk reductions,

100ÿ 100m1i=m2i

where m1i is the treatment death rate and m2i is the control death rate (Table 10.16).

Hence, positive values of y show benefit for thrombolytics. Schmid and Brown provide

Table 10.15 CABG effects in lowest risk patient group

Study Mean St. devn. 2.5% Median 97.5%

1. VA 1.98 1.16 0.75 1.67 5.07

2. EU 0.99 0.45 0.32 0.92 2.05

3. CASS 1.53 0.77 0.59 1.36 3.50

4. OTHERS 1.34 1.06 0.23 1.15 3.70

Meta Analysis (Overall Effect) 1.41 1.23 0.45 1.25 3.20
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confidence intervals for these effect measures, so that sampling variances s2
i can be

derived. In fact, they assume a model with constant observation variance,

yi � N(ni, s2)

ni � N(mi, t2)
(10:15)

Alternate models for mi are a constant regression ignoring the time covariate, mi � g0

and a regression model

mi � g0 � g1ti

where ti is as in the third column of Table 10.16. We also consider a constant regression

model mi � g0, in which the sampling variances are taken equal to their observed values,

so that

yi � N(ni, s2
i ) (10:16)

Consider first the model (10.15) with a common sampling variance. Here the observa-

tions yi on the underlying mi are distorted by measurement error, and one may assume

that t2 < s2, or equivalently 1=t2 > 1=s2. This is achieved introducing a parameter

p � B(1, 1), and then dividing 1=s2 by p, where 1=s2 � G(1, 0.001). Under the empir-

ical sampling variance model in Equation (10.16), a DuMouchel prior for t is taken.

With a constant only regression, both models show early convergence in two chain

runs, and inference is based on iterations 1000±20 000. The first option shows t2 around

85, the second has t2 around 45. The underlying treatment effects accordingly vary more

widely under Equation (10.15), namely between 7.4 and 30.6, whereas under Equation

(10.16) they are between 17.6 and 28.5. The mean percent risk reduction g0 is estimated

as 19.5 under Equation (10.15) and 21.3 under Equation (10.16). The DIC is lower

under model (10.16), namely 206.9 as against 209.7.

Introducing the time covariate, together with the common sampling variance assump-

tion in Equation (10.15), shows that longer time gaps between onset and treatment

reduce the mortality improvement. The mean for g1 is ÿ1.2 with 95% interval

{ÿ2.3, ÿ0.2}. Pooling towards the central effect is considerably lessened, and trial

arms with longer time gaps (studies subsequent to ISIS-2 at 9.5 hours in Table 10.15)

do not show a conclusive mortality benefit. Specifically, the 95% credible intervals for

the corresponding ni include negative values, though the means are still positive.

Adopting an alternative prior for the study effects

ni � t5(mi, t2)

slightly enhances the contrasts in posterior means ni, but still only four studies show no

mortality reduction.

Example 10.13 Aspirin use: predictive cross-validation for meta analysis DuMouchel

(1996) considers predictive cross-validation of meta-analysis to assess model adequacy

(e.g. to test standard assumptions like Normal random effects). His meta-analysis

examples include one involving six studies into aspirin use after heart attack, with the

study effects yi being differences in percent mortality between aspirin and placebo

groups. The data (in the first two columns of Table 10.17) include standard errors si

of the differences, and the pooled random effects model takes the precision of the ith

study to be sÿ2
i . A Pareto-type prior for t, as in Equation (10.14), is based on the

harmonic mean of the s2
i . The model is then
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yi � N(ni, s2
i )

ni � N(m, t2)

It can be seen from Table 10.17 that one study (AMIS) is somewhat out of line with the

others, and its inclusion may be doubted on grounds of comparability or exchangeabil-

ity; this study may also cast into doubt a standard Normal density random effects meta-

analysis.

Such a standard meta-analysis using all six studies shows some degree of posterior

uncertainty in t. A two chain run to 10 000 iterations, with convergence by 1000

iterations, shows a 95% interval for t ranging from 0.06±3.5. In five of the six studies

the posterior standard deviation of ni is smaller than si, but for the doubtful AMIS

study this is not true ± compare sd(n6) � 0:95 with the observed s6 � 0:90 in Table 10.17.

There is greater uncertainty about the true AMIS parameter than if it had not been

pooled with the other studies. Despite the impact of this study the overall effect m has

posterior density concentrated on positive values, with the probability Pr (m > 0) being

0.944.

A cross-validatory approach to model assessment then involves study by study

exclusion and considering criteria such as

Uk � Pr (yk* < ykjy[ÿ k]) �
�

Pr (yk* < ykju, y[ÿ k])p(ujy[ÿ k])du

where y[ÿ k] is the data set omitting study k, namely {y1, y2, : : ykÿ1, yk�1, : : yn}. The

quantity yk* is the sampled value for the kth study when the estimation of the model

parameters u � (n, t) is based on all studies but the kth. Thus new values for the first study

percent mortality difference are sampled when the likelihood for the cross-validation

excludes that study and is based on all the other studies 2, 3, : : n. If the model assump-

tions are adequate, then the Uk will be uniform over the interval (0, 1), and the quantities

Table 10.17 Aspirin use: cross-validation assessment of meta-analysis

Observed Data Cross validation

yi sI Predictive

mean

Predictive

SD

Predictive

median

Predictive

probability

UK1 2.77 1.65 1.03 1.97 0.96 0.782

CDPA 2.5 1.31 0.97 1.94 0.86 0.779

GAMS 1.84 2.34 1.24 1.96 1.17 0.590

UK2 2.56 1.67 1.09 1.96 1.02 0.740

PARIS 2.31 1.98 1.15 1.99 1.09 0.677

AMIS ÿ1.15 0.90 2.29 1.24 2.30 0.014

Standard meta-analysis

Mean St. devn. 2.5% Median 97.5%

UK1 n1 1.76 1.17 ÿ0.21 1.67 4.34

CDPA n2 1.76 1.03 ÿ0.07 1.68 3.97

GAMS n3 1.40 1.29 ÿ1.04 1.32 4.18

UK2 n4 1.69 1.17 ÿ0.33 1.60 4.23

PARIS n1 1.56 1.21 ÿ0.59 1.46 4.24

AMIS n2 ÿ0.11 0.95 ÿ2.02 ÿ0.08 1.65

META-ANALYSIS: ESTABLISHING CONSISTENT ASSOCIATIONS 435



Zk � Fÿ1(Uk)

will be standard normal. A corresponding overall measure of adequacy is the Bonfer-

roni statistic

Q � N min
k

(1ÿ j2Uk ÿ 1j)

which is an upper limit to the probability that the most extreme Uk could be as large as

was actually observed.

One may also sample the predicted true study mean nk* from the posterior density

N(m[ÿk], t2
[ÿk]) based on excluding the kth study. This estimates the true mean for study

k, had it not formed one of the pooled studies.

Applying the cross-validation procedure (Program 10.13) shows that the Uk for

the AMIS study is in the lowest 2% tail of its predictive distribution (with predictive

probability 1.4%). However, the Bonferroni statistic shows this may still be accept-

able in terms of an extreme deviation among the studies, since Q � 0:17 (this is

calculated from the posterior averages of the Uk). There is clear evidence that the

AMIS study true mean is lower than the others, but according to this procedure, it is

not an outlier to such an extent as to invalidate the entire hierarchical meta-analysis

model or its random error assumptions. The posterior means nk* (the column headed

predictive means in Table 10.17) show what the pooled mean m would look like in

the absence of the kth study. The posterior mean n6* for the AMIS study is about 2.29,

with 95% interval 0.65 to 3.8, so that there is an unambiguous percent mortality

reduction were this study not included in the pooling.

One may also assess the standard meta-analysis against a mixture of Normals

ni � N(mGi
, t2)

where the latent group Gi is sampled from a probability vector p of length 2, itself

assigned a Dirichlet prior with elements 1. With the constraint that m2 > m1, this prior

yields estimates p2 � 0:61 and a credible interval for m2 that is entirely positive. The

probability that Gi is 2 exceeds 0.6, except for the AMIS study where it is only 0.26. In

fact, this model has a lower DIC than the standard meta-analysis (around 25 as

compared to 25.8).

10.4.2 Heterogeneity in patient risk

Apparent treatment effects may occur because trials are not exchangeable in terms

of the risk level of patients in them. Thus, treatment benefit may differ according

to whether patients in a particular study are relatively low or high risk. Suppose

outcomes of trials are summarised by a mortality log odds (xi) for the control group

in each trial, and by a similar log odds yi for the treatment group. A measure

such as di � yi ÿ xi is typically used to assess whether the treatment was beneficial.

Sometimes the death rate in the control group of a trial, or some transformation of

it such as xi, is taken as a measure of the overall patient risk in that trial, and the

benefits are regressed on xi to control for heterogeneity in risk. Thompson et al.

(1997) show that such procedures induce biases due to inbuilt dependencies between

di and xi.

Suppose instead the underlying patient risk in trial i is denoted ri and the treatment

benefits as ni, where these effects are independent. Assume also that the sampling errors s2
i

436 MODELLING AND ESTABLISHING CAUSAL RELATIONS



are equal across studies and across treatment and control arms of trials, so that

var(xi) � var(yi) � s2. Then, assuming normal errors, one may specify the model

yi � ri � ni � u1i

xi � ri � u2i

where u1i and u2i are independent of one another, and of ri and ni.

The risks ri may be taken as random with mean R and variance s2
r. Alternatively,

Thompson et al. take s2
r as known (e.g. s2

r � 10 in their analysis of sclerotherapy trials),

so that the ri are fixed effects. The ni may be distributed around an average treatment

effect m, with variance t2.

Another approach attempts to model interdependence between risk and effects. For

example, a linear dependence might involve

ni � N(mi, t2)

mi � a� b(ri ÿ R)

and this is equivalent to assuming the ni and ri are bivariate Normal.

Example 10.14 AMI and magnesium trials These issues are illustrated in the analysis

by McIntosh (1996) of trials into the use of magnesium for treating acute myocardial

infarction. For the nine trials considered, numbers of patients in the trial and control

arms Nti and Nci vary considerably, with one trial containing a combined sample

(Ni � Nti �Nci) exceeding 50 000, another containing under 50 (Table 10.18).

It is necessary to allow for this wide variation in sampling precision for outcomes

based on deaths rti and rci in each arm of each trial. McIntosh seeks to explain

heterogeneity in treatment effects in terms of the control group mortality rates,

Yi2 � mci � rci=Nci. Treatment effects themselves are represented by the log odds ratio

Yi1 � log (mti=mci)

To reflect sampling variation, McIntosh models the outcomes Y1 and Y2 as bivariate

normal with unknown means ui, 1:2 but known dispersion matrices �i. The term s11i in

�i for the variance of Yi1 is provided by the estimate

1={Ntimti(1ÿmti)}� 1={Ncimci(1ÿmci)}

while the variance for Yi2 is just the usual binomial variance. The covariance s12i is

approximated asÿ1=Nci, and hence the `slope' relating Yi1 to Yi2 in trial i is estimated as

s12i=s22i. Table 10.18 presents the relevant inputs. Then the measurement model as-

sumed by McIntosh is

Yi, 1:2 � N2(ui, 1:2, Si)

where ui1 � ni, ui2 � ri. One might consider a Multivariate t to assess sensitivity.

The true treatment effects ni, and true control group mortality rates, ri, are then

modelled as

ni � N(mi, t2)

ri � N(R, s2
r)
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with mi � a� b(ri ÿ R). If b is negative, this means that treatment effectiveness in-

creases with the risk in the control group, whereas b � 0 means the treatment effect is

not associated with the risk in the control group. The average underlying odds ratio f for

the treatment effect (controlling for the effect of risk) is obtained by exponentiating m1.

Inferences about b and f � exp (a) may be sensitive to the priors assumed for the

variances t2 and s2
r. We consider three options for the inverse variances 1=t2, namely a

G(3, 1) prior (see above) and a more diffuse G(1, 0.001) option. The prior on 1=s2
r is

kept at G(1, 0.001) throughout. The posterior estimate10 of b declines as the informa-

tiveness of the prior on 1=t2 increases, with the probability that b is positive being

highest (around 29%) under the G(3, 1) prior, and lowest (3%) under G(1, 0.001) priors.

Hence, only under diffuse priors on 1=t2 is the treatment effect associated with the risk

in the control group. The treatment odds ratio has a mean of around 0.62 with 95%

interval {0.30, 1.13} under the G(3, 1) prior on 1=t2 and 0.74 {0.44, 1.10} under the

G(1, 0.001) priors. Taking a multivariate Student t for Yi, 1:2 affects inferences relatively

little, tending to reduce the chance of b being positive slightly; the degrees of freedom

(with a uniform prior between 1 and 100) has a posterior mean of 51.

An alternative analysis follows Thompson et al. in taking the observed rti and rci as

binomial with rates pti and pci in relation to trial populations Nti and Nci. Thus

rti � Bin(pti, Nti)

rci � Bin(pci, Nci)

The models for yi � logit(pti) and xi � logit(pci) are then

yi � ri � ni

xi � ri

where the average trial risks ri may be taken as either fixed effects or random. Under the

fixed effects model we take s2
r � 1, while under the random effects model it is assumed

that 1=s2
r � G(1, 0:001). The gain effects are modelled as above,

ni � N(mi, t2)

mi � a� b(ri ÿ R)

Under the fixed effects option for ri and 1=t2 � G(1, 0:001) we obtain a probability of

around 17% that b exceeds zero. Under random effects for ri, inferences about b are

sensitive to the prior assumed for 1=t2, as under the McIntosh model. Even for the more

diffuse option, 1=t2 � G(1, 0:001) there is a 12% chance that b > 0, while for

1=t2 � G(3, 1) the chance that b > 0 is 36%. It may be noted that the more informative

prior is associated with a lower DIC. As above, neither prior gives an overall treatment

odds ratio f with 95% interval entirely below 1.

10.4.3 Multiple treatments

The usual assumption in carrying out a meta-analysis is that a single intervention or

treatment is being evaluated. The studies are then all estimating the same parameter,

comparing the intervention with its absence, such as an effect size (standardised differ-

ence in means), relative risk or odds ratio.

10 Two chain runs showed convergence at around 10 000 iterations and summaries are based on iterations
10 000±20 000.
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However, in some contexts there may be a range of r treatment options, some

studies comparing Treatment 1 to a control group, some studies comparing Treatment

2 to a control group, and some studies involving multi-treatment comparisons (control

group, Treatment 1, Treatment 2, etc.). One may wish to combine evidence over

i � 1, : : n such studies, to assess the effectiveness of treatments j � 1, : : r against no

treatment (the placebo or control group is not considered a treatment), and to

derive measures such as odds ratios comparing treatments j and k in terms of effective-

ness.

Example 10.15 MI prevention and smoking cessation Hasselblad (1998) considers an

example of three studies for short-term prevention of heart attack (myocardial infarc-

tion) using aspirin and heparin as possible alternative treatments. The outcome rates in

the studies were five day MI rates, with only one study comparing r � 2 options with the

placebo. Thus, the Theroux et al. (1988) study included no treatment (118 patients, of

whom 14 had attacks):

. treatment 1: aspirin (four out of 121 patients having an MI);

. treatment 2: heparin (one from 121 patients had an MI).

The second study compared only aspirin with a placebo group, and the third study

compared only heparin with a placebo group. There are then a total of A � 7 treatment

or placebo arms over the three studies.

Because of the small number of studies, a random effects model is not practical.

Following Hasselblad, the observations from each arm of each study are modelled in

terms of study risk effects ri, i � 1, : : n (the log odds of MI in the control group), and

treatment effects bj, j � 1, : : r. The odds ratios ORjk � exp (bj ÿ bk) then compare

heparin and aspirin, while the odds ratios fj � exp (bj), j � 1, : : r compare the treat-

ments with the placebo.

With N(0, 100) priors on all parameters, we find that the fj are unambiguously below

unity, so both heparin and aspirin can be taken to reduce short term MI mortality. The

95% interval for odds ratio OR21 just straddles unity (Table 10.19), and as Hasselblad

(1998) says, is `more suggestive of a beneficial effect of heparin over aspirin than that

from the Theroux study alone.'

A larger comparison by Hasselblad on similar principles involves 24 studies,

evaluating smoking cessation programmes (and treatment success measured by odds

ratio over 1). The control consisted of no contact, and there were three treatments: self-

help programs, individual counselling, and group counselling. The majority of studies

compare only one treatment with the placebo (e.g. individual counselling vs no contact)

or two treatments (e.g. group vs. individual counselling), but two studies have three

arms. One (Mothersill et al., 1988) compares the two counselling options with self-help.

Hence, there are A � 50 binomial observations.

Table 10.19 Multiple treatment comparison

Mean St. devn. 2.5% Median 97.50%

OR21 0.40 0.25 0.09 0.34 1.05

f1 0.36 0.12 0.17 0.34 0.63

f2 0.13 0.07 0.03 0.12 0.30
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We assume a random study effect modelling cessation over all options including no

contact,
ri � N(R, s2)

where R is the grand cessation mean. This random variation is clearly present as shown

by the credible interval (0.21, 0.78) on s2. The odds ratios f2 and f3 on the counselling

options are clearly significant (Table 10.20), and that on self-help f1 suggests a benefit

over no contact. The counselling options are in turn more effective than self-help.

To assess prior sensitivity, a two group mixture on ri is adopted with

ri � N(RGi
, s2

Gi
)

and Gi denoting the latent group. This leads (Model C in Program 10.15) to low and

high cessation rate studies being identified with posterior mean for R2 (the high

cessation group) being ÿ1.15 against R1 � ÿ3:35. The treatment odds ratios are little

changed however: f1 and f3 are slightly raised, OR21 is slightly reduced.

10.4.4 Publication bias

The validity of meta-analysis rests on encompassing all existing studies to form an

overall estimate of a treatment or exposure effect. A well known problem in this

connection is publication bias, generally assumed to take the form of more significant

findings being more likely to be published. Insignificant findings are, in this view, more

likely to be relegated to the `file drawer'. One may attempt to model this selection

process, and so give an indication of the bias in a standard meta-analysis based only on

published studies. There is no best way to do this, and it may be advisable to average

over various plausible models for publication bias.

A common approach to this problem is to assume differential bias according to the

significance of studies. Assume each study has an effect size Yj (e.g. log odds ratios or

log relative risks) and known standard error sj, from which significance may be assessed.

Then, studies in the most significant category using simple p tests (e.g. p between 0.0001

and 0.025) have highest publication chances, those with slightly less significance (0.025

to 0.10) have more moderate publication chances, and the lowest publication rates are

for studies which are `insignificant' (with p > 0:10). Hence, if a set of observed (i.e.

published) studies has N1, N2, and N3 studies in these three categories, and there are

M1, M2 and M3 missing (unpublished) studies in these categories, then the true number

of studies is {T1, T2, T3} where T1 �M1 �N1, T2 �M2 �N2, and T3 �M3 �N3 and

T3=N3 > T2=N2 > T1=N1.

Table 10.20 Smoking cessation: parameter summary

Mean St. devn. 2.50% Median 97.50%

OR21 1.69 0.22 1.30 1.68 2.16

OR31 1.92 0.36 1.31 1.89 2.73

OR32 1.14 0.19 0.81 1.13 1.55

R ÿ2.42 0.14 ÿ2.69 ÿ2.42 ÿ2.15

f1 1.29 0.16 1.01 1.28 1.62

f2 2.16 0.12 1.92 2.15 2.41

f3 2.46 0.42 1.73 2.43 3.36

s2 0.42 0.15 0.21 0.39 0.78
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The objective is to estimate an overall effect m of exposure or treatment from the

observed (i.e. published) effects. Suppose the Yj are log relative risks, so that m � 0

corresponds to zero overall effect. For a Normal random effects model this is defined by

Yj � N(nj, s2
j )

nj � N(m, t2)

where the nj model heterogeneity between studies. Given uninformative priors on t2 and

m, the posterior density of m is essentially a normal density, with mean given by a

weighted average of observed relative risks Yj and the prior relative risk of zero, with

respective weights

wj � 1=s2
j =[1=s

2
j � 1=t2]

on Yj and 1ÿ wj on zero. To allow for publication bias, one may modify this scheme so

that weights also depend upon significance ratios jYj=sjj.
Silliman (1997) proposes one scheme which in effect weights up the less significant

studies so that they have a disproportionate influence on the final estimate of the

treatment or exposure effect ± one more in line with the distribution of the true number

of studies. Suppose there are only two categories of study, those with higher significance

probabilities, and those with lower significance. Then introduce two random numbers

u1 and u2, and assign weights W1 � max (u1, u2) and W2 � min (u1, u2). This broadly

corresponds to modelling the overall publication chance and the lesser chance attached

to a less significant study. An alternative is to take W1 � U(0, 1) and W2 � U(0, W1).

Let Gj � 1 or 2 denote the significance category of study j. Then an additional stage is

included in the above model, such that

Yj � N(nj, s2
j )

nj � gj=WGj

gj � N(m, t2)

(10:17)

Givens et al. (1997) propose a scheme which models the number of missing studies in

each significance category, i.e. M1 and M2 in the above two category example. They

then introduce data augmentation to reflect the missing effects comparable to Yj,

namely Z1j, j � 1, : : , M1 in the high significance category, and Z2j, j � 1, : : , M2 in

the lower significance category. The missing study numbers M1 and M2 are taken as

negative binomial

Mj � NB(gj , Nj)

where the prior for g1 would reflect the higher publication chances in the high signifi-

cance category; the Givens et al. simulation in Example 10.16 described below took

g1 � U(0:5, 1) and g2 � U(0:2, 1). The missing effects are generated in a way consistent

with their sampled category11.

Example 10.16 Simulated publication bias We follow Givens et al. in generating a set

of studies, only some of which are observed (published) subject to a known bias

mechanism. Thus, the original known variances s2
j of 50 studies are generated according

11 Implementing the Givens et al. approach in WINBUGS is limited by M1 and M2 being stochastic indices,
and the fact that for loops cannot be defined with stochastic quantities.
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to s2
j � G(3, 9). The variance of the underlying study effects is t2 � 0:03. These variance

parameters are in fact close to those of a set of observed studies on excess lung cancer

rates associated with passive smoking. A standard meta-analysis of all 50 studies (taking

the s2
j as known) then gives an estimated overall relative risk, RR � exp (m) of 1.01 with

95% interval from 0.86 to 1.18. The priors used on m and t2 are as in Givens et al. (1997,

p. 229).

To reflect the operation of publication bias, a selective suppression is then applied.

The 26 `positive' studies with

jYj=ŝj j � 0

and significance rates p therefore between 0 and 0.5 are retained in their entirety. The 24

negative studies with jYj=ŝjj < 0 are subjected to a 70% non-publication rate. In prac-

tice, this led here to retaining seven of the 24 negative studies and all the 26 positive

studies (the seven retained had uniformly generated numbers exceeding 0.7, while non-

publication applies to those with numbers under 0.7). So M1 � 0 and M2 � 17. A

standard meta-analysis of this set of 33 studies gives an underlying central relative

risk exp (m) of 1.26 with 95% interval from 1.17±1.51. This is considerably in excess of

the `true' RR in the data set of all 50 studies.

We then use the comparison of uniforms method of Silliman to compensate for bias,

and the two mechanisms described above (Model A). Using the first mechanism gives an

estimated mean RR of 1.18, and 95% interval from 1.005±1.39. This approach gives a

clearer basis for doubting that the underlying RR over the studies exceeds unity. With

the second mechanism, one obtains a posterior mean RR of 1.12 with 95% interval from

1.02±1.23.

To assess sensitivity to priors on the underlying study effects (Smith et al., 1995) an

alternative Student t prior is taken, in combination with the second mechanism, such

that nj � t5(m, t2). This gives a mean RR of 1.11 with 95% interval from 1.006±1.23, so

that conclusions are unaltered. Similar models might be envisaged, for example regres-

sion models for the publication probability in Equation (10.17) with a coefficient on the

study significance ratio constrained to be positive:

Yj � N(nj, s2
j )

nj � gj=Wj

logit(Wj) � bYj=sj

b � N(0, 1)

Applying this model here (Model B) gives an interval on RR of {0.99, 1.26}.

10.5 REVIEW

Bayesian epidemiology has drawn on wider ideas and developments in Bayesian statis-

tics, but is oriented to specific concerns such as arise in the analysis of disease risk and

causation. These include control for confounding influences on disease outcome where

the confounder affects disease risk, and is also unequally distributed across categories of

the main exposure; allowing for measurement errors in disease risk or outcome, perhaps

drawing on information from calibration studies (Stephens and Dellaportas, 1992); the

delineation of disease and risk factor distributions over time, attributes of individuals
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(e.g. age) and place (Ashby and Hutton, 1996); and the tailoring of hierarchical methods

for combining information to the meta-analysis of medical intervention or risk factor

studies. Because epidemiological applications often focus on the impact of well docu-

mented risk factors, framing of priors often involves elicitation of informative priors;

this is so especially in clinical epidemiology in the sense of models for randomised trials,

diagnostic tests, etc, as illustrated by ranges of priors (sceptical, neutral enthusiastic,

etc.) possible in clinical trial assessment (Spiegelhalter et al., 1999) or the use of informa-

tive priors in gauging diagnostic accuracy (Joseph et al., 1995).

The above chapter has been inevitably selective in coverage of these areas. Thus while

state space random walk models have been illustrated in Example 10.6 (and the

modelling of place effects in disease outcomes in Chapter 7) more complex examples,

in terms of identifiability issues, occur in disease models with age, period and cohort

effects all present; methodological issues in this topic are discussed by Knorr-Held

(2000). Recent work on measurement error modelling in epidemiology includes

Richardson et al. (2001)
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EXERCISES

1. In Example 10.2, try the square root transforms instead of the loge transforms of age

and SBP in the coefficient selection procedure (or include both square root and loge

transforms). Then fit a risk model using the most frequently selected terms and assess

its fit.

2. In Example 10.4, replicate and assess the sensitivity of the analysis into illness and

obesity by using (a) correlated physical and mental health status factors, and (b)

using robust (heavy tailed) alternative for the density of the factors.

3. In Example 10.5 try adding a square root term rather than a square in rads to the

power model with continuous outcome. Does this improve fit?

4. In Model A in Example 10.6, fit a logistic regression with categories under 130,

130±149, 150±169, 170±189, 190±209 and 210 and over, and then fit a weighted

quadratic regression to the odds ratios (as in Model A2 in Program 10.6). How

does this illustrate the nonlinear impact of SBP?

5. In the flour beetle mortality Example 10.7, consider the generalisation for dosage

effects of the model

Rrj � C(tj, Xr)ÿ C(tjÿ1, Xr)

5. where

C(t, X ) � [1� lF (X )]ÿ1=l [1� tÿb3b4]
ÿ1

5. and where F (X ) � exp (b1 � b2 log X ) � exp (b1)X
b2 . For identiability a prior

l � U(0, 1) may be used with l � 1 corresponding to the proportional odds model

actually used in Example 10.7, and l � 0 giving a Weibull model, when

C(t, X ) � exp (ÿ eb1Xb2 ) [1� tÿb3b4]
ÿ1

6. Following Example 10.11, carry out a meta-analysis of the mortality outcomes

following CABG for high risk patients, where the odds ratios and their confidence

limits for seven studies are

OR � 0:58, 0:37, 0:43, 0:56, 0:27, 1:89, 0:95

LCL � 0:33, 0:15, 0:15, 0:19, 0:05, 0:31, 0:23

UCL � 1:01, 0:89, 1:26, 1:63, 1:45, 11:64, 3:83

7. In Example 10.12, apply a Bayesian significance test to obtain the probabilities that

the ni are positive.

8. In Example 10.14, assess sensitivity of inferences to adopting a Student t prior rather

than Normal prior for the study treatment effects, di, with degrees of freedom an

extra parameter (in both the McIntosh and Thompson et al. models).
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Index

abortion, attitudes to 149±51

Academic Self-Concept (ASC) 327, 329

Accelerated Failure Time (AFT) model

370±2

accelerated hazards 370±2

Activities of Daily Living (ADL) 201, 369,

377±8

acute myocardial infarction (AMI)

and magnesium trials 437±9

see also myocardial infarction

Additional Attention Deficit (AD) 365

adolescent self-concept 327

confirmatory factor analysis 328

adoption of innovations 314±15

AFF 287, 288, 302±4

Affective Perception Inventory 328

age effects in spinal surgery 116±18

age stratification, alcohol consumption and

oesophageal cancer with 401±4

Age-Period-Cohort (APC) models 310

ageing, longitudinal study of 377±8

agricultural subsistence, and road

access 282±4

AIDS risks 338±40

Akaike Information Criterion (AIC) 32±3, 40,

63, 97, 115, 379

alcohol consumption and oesophageal cancer

with age stratification 401±4

alienation over time 354±6

AMIS study 435±6

annuitant deaths 262±4

ante-natal knowledge 347±9

posterior parameter summaries 348

arbovirus injection 427±8

ARCH model 205, 210±13

area level trends 312±13

areas vs. case events as data 306

ARIMA models 185

ARMA coeffecients 178

ARMA models 171, 173±4, 193, 215

metric outcome 194

without stationarity 175±6

Armed Services Vocational Aptitude Battery

Test (ASVAB) 379

Arterial Road Accessibility (ARA) 282±4

aspirin, predictive cross-validation for

meta-analysis 433±6

asymmetric series 206±7

attempted suicide in East London 296±8

attitudes to abortion 149±51

autoregression on transformed outcome

193

Autoregressive Distributed Lag (ADL or

ARDL) model 173, 201

Autoregressive Latent Trait (ALT)

models 230, 231

autoregressive models 172±91, 208, 215

panel data analysis 230

without stationarity 175±6

baseball, shooting percentages 46±7

Basic Structural Model (BSM) 207±8

Bayes factors 88, 90, 91, 115, 200

Bayes Information Criterion (BIC) 32±3, 40,

97, 182, 362

Bayesian Cross Validation (BCV) method 96,

97

Bayesian model estimation via repeated

sampling 1±30

Bayesian regression 79±84

Bernoulli density 13, 17

Bernoulli likelihood model 385

Bernoulli priors 86

Bernoulli sampling 338, 377, 423±5

beta-binomial mean proportion 424

beta-binomial mixture for panel data 244±6

beta-density 15

binary indicators 403

for mean and variance shifts 215±16

binary outcomes 282

binary selection models for robustness

119±20

binomial data 43±4

binomial density 13, 17
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binomial sampling 423±5

biostatistics, Bayesian approaches to

modelling 397

bivariate factor model 339

bivariate forecasts 189±91

bivariate mortality outcome with correlated

errors 289

bivariate Poisson outcomes 160±3

bladder cancer 391±3

BMI 411±13

boric acid exposure 423±5

breast cancer

and radiation 417±18

survival 371±2

Caesarian section, infection after 103±4

case-control analysis, larynx cancer

407±9

case-control data, oesophageal cancer 402

causal processes 397±9

specific methodological issues 398±9

causal relations 397±447

causality, establishing 397±9

central limit theorem 37

chain trace plots 162

CHD, Framingham study 404±7, 418±22

chi-square 15

Cholesky decomposition 16

CIS (Clinical Interview Schedule) 336±8

clinal clustering model 307

clustered metric data, latent trait models

for 343±4

clustering

effects on dose-response models 416

in relation to known centres 304±10

coaching programs 56±8

coal consumption, UK 207±8

coal production, US 185±8

co-integrated series 201

colon cancer survival, non-parametric smooth

via equally weighted mixture 375

colorectal cancer

Kaplan±Meier method 373±4

survival and hazard rates at distinct death

times 374

Columbus, Ohio, crime data 284±6, 301±2

compositional effects 136

conditional autoregression approach 288

conditional autoregressive (CAR) prior 276,

277, 282, 287±9

conditional error model 262

conditional likelihood 175

conditional logit model 99, 101

Conditional Predictive Ordinate (CPO) 87, 90,

106±7, 115, 183, 219, 238, 284, 286, 289,

362, 371

harmonic mean estimator 40

statistics 182

conditional priors 293

vs. joint priors 276±8

conditional specification of spatial error 293±8

confirmatory factor analysis models 324

adolescent self-concept 328

with a single group 327±33

confounding between disease risk

factors 399±413

conjugate mixture approach 246±8

consumption function for France 219±21

contaminated sampling, group means

from 121

contamination/misclassification model 125

contextual effects 136

continuity parameter models 195

continuous data

latent trait models for 341

smoothing methods for 51±3

with fixed interaction schemes, spatial

regressions models 275±8

continuous outcomes 229

continuous time functions for survival

363±70

convergence

assessing 18±20

diagnostics 18±19

of Gelman-Rubin criteria 72

convolution model 279, 281

Coronary Artery Bypass Graft (CABG),

survival after 431±2

correlated error model 285

count data, ecological analysis

involving 278±89

count regression 83

counting process models 388±93

counts, integer valued autoregressive (INAR)

models for 193±5

covariance modelling in regression 290±1

covariances between factors 329

Cox proportional hazards model 389

crime rate data 284±6

cross-fertilisation in plants, Darwin data

on 53±4

cross-level effect 144

cross-sectional data 259

cross-validation methodology 96, 126

cross-validation regression model

assessment 86±8
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cumulative mortality in relation to

dose-time 422±3

cumulative odds model 101

Darwin data on cross-fertilisation in

plants 53±4

demographic data by age and time

period 261±2

dental development data 259±61

dependent errors 173±4

depression state, changes in 345±7

deviance criterion 94

Deviance Information Criterion (DIC) 33, 45,

71±2, 182, 236, 238, 239, 250, 254, 256,

303, 304, 392, 436, 439

diagnostic tests, ordinal ratings in 108±10

differential equation prior 117

diffusion processes 314

direct modelling of spatial covariation 289±98

Dirichlet process mixture 239

Dirichlet process priors (DPP) 60±1, 75, 82,

155

Dirichlet processes 58±67

discontinuities in disease maps 281

discordant observations, diagnostics for 120±1

discrete mixture model 154

discrete mixtures 58±67

discrete outcomes 334

multi-level models 139±40

spatial covariance modelling for 296±8

spatial effects for 278±89

time-series models 191±200

discrete parametric mixtures 58±60

discrete time approximations 372±82

discrete time hazards regression 375±6

discrete time regression, proportional hazards

in 384±7

disease models, spatial priors in 279±81

disease risk factors, confounding

between 399±413

disease risks, entangling or mixing of 398

distance decay functions 291, 305

distance decay parameter 310

distribution function 243

dose-response models 398, 413±28

clustering effects on 416±17

compliance and response 425±6

dose-response relations, background

mortality 427

dose-time, cumulative mortality in relation

to 422±3

Dukes' colorectal cancer 374

Durbin±Watson statistic 183

Dutch language tests 142

dynamic linear models 203±9

ECM models 201±3

ecological analysis involving count

data 278±89

economic participation among working age

women 165±7

EDA method 291

England vs. Scotland football series 197±8

ensemble estimates 41±58

environmental pollution, multiple sources

of 306±7

epidemiological analysis of small area disease

data 278

epidemiological methods and models

397±447

epidemiological modelling, Bayesian

approaches 397

EQS 326

error correction models 200±3

ethylene glycol monomethyl ether

(EGMME) 350±2

event history models, accounting for frailty

in 384±8

exchange rate series volatility 213±15

exponential mixtures for patient length of stay

distributions 64±7

exponential samples 14±15

factor structures at two levels 349±50

fathers' occupation and education 353±4

fertility cycles to conception 48±51

fixed effects models 249

flour beetle mortality 423

forecasting, panel data analysis 257±64

Framingham study 404±7, 418±22

France, consumption function for 219±21

gamma density 15, 196, 243, 375

gamma Markov process 196

gamma process priors 381±2

gamma-Poisson heterogeneity 255

gamma-Poisson mixture 95

gamma-Poisson model 254

gamma variables 253

GARCH model 205, 210±11, 213

Gaussian correlation function 290

Gaussian distance decay function 302

Geisser-Eddy cross-validation method 90

Gelman±Rubin criteria 23

convergence of 72

Gelman±Rubin statistic 19, 162

gender, language score variability by 147±9
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General Additive Models (GAM) for nonlinear

regression effects 115±18

General Linear Models (GLMs) 82

General Motors 188

General Self-Concept (GSC) 327

general variance function 94

Geographically Weighted Regression

(GWR) 299±302, 314

Gessel score 26±7

GHQ (General Health Questionnaire) 336±8

Gibbs sampling 5±12

Glasgow deaths 288±9

GLS 137

GNP series 184, 185, 186

goodness of fit criteria 96

group factor model, extension of 328

group means from contaminated sampling 121

group survival curves 368

growth curve

variability 232±3

with random variation in trajectory

parameters over subjects 234

growth curve analysis, plasma citrate

readings 235±6

growth curve model, variable lag effects 242

HADS (Hospital Anxiety and Depression

Scale) 336±8

Hald data 91±2

harmonic mean estimates 89

hazard function 389

hazard profile 392±3

hemorrhagic conjunctivitis 70±2

hepatitis B in Berlin regions 44±5

heterogeneity

between subjects 228±9

in patient risk 436±7

heterogeneity modelling 43±4, 245, 254

regression parameters and estimated firm

effects 255

heteroscedasticity 302±4

in level 1 language score variances 148

modelling 145±51

hierarchical mixture models 31±78

histogram smoothing 69±70

homoscedastic errors 282

homoscedasticity 285

hospital profiling application 158±60

hospitalisations

following self-harm 296±8

mental illness 72±4

of schizophrenic patients 97

hypertension trial 236±42

alternative models 238

multi-level model, parameter summaries 241

ICAR models 280±2, 287, 288, 293, 298, 301,

303, 311

imputation approach 253

indicator-factor loadings 329

infection after Caesarian section 103±4

influence checks 22±3

informative priors 81

innovations, adoption of 314±15

integer valued autoregressive (INAR) models

for counts 193±8

inter-urban moves 247

Intrinsic Bayes factor 40

inversion method 13±14

invertibility/non-invertibility 177±9

investment levels by firms 188±9

joint priors vs. conditional priors 276±8

Joint Schools Project (JSP) 153±6

Kaplan±Meier method 372, 373

colorectal cancer 373±4

Kernel plot of directional parameter 311

Kullback-Leibler divergence 41

kyphosis and age data 116±18, 127±8

labour market rateable values 55±6

lamb fetal movement counts, times series

of 217±18

language scores

in Dutch schools 140±3

variability by gender 147±9

Language Skills Self-Concept (LSC) 327, 329

Laplace approximation 84

to marginal likelihood 97

Laplace priors 281

larynx cancer

and matched case-control analysis 407±9

case data in Lancashire 308±10

latent class models 335±8

through time 341±2

latent dependent variable method 117

latent mixtures, regression models with 110±15

latent structure analysis for missing

data 352±6

latent trait analysis 334±5

latent trait models

for clustered metric data 343±4

for continuous data 341

for mixed outcomes 344±5

for time varying discrete outcomes 343
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latent variable effects, nonlinear and

interactive 332±3

latent variables in panel and clustered data

analysis 340±52

LCA model 338

least squares estimate 152

Left Skewed Extreme Value (LSEV)

distribution 102

leukemia

cases near hazardous waste sites 304, 307±8

cases near nuclear processing plants 304

remission data 11±12, 367, 382±3, 390±1

survival data 123±4

likelihood model for spatial covariation 294±6

likelihood vs. posterior density 3

linear mixed model 234±5

link functions 102±3

lip cancers data 287±8, 302±4

LISREL 324, 326, 335, 341

log-logistic model 367

log-normal heterogeneity 255

logit model 124

logit under transposition 124

long term illness 143±5

longitudinal discrete data 243±57

longitudinal studies

ageing 377±8

missing data in 264±8

lung cancer

cases and controls by exposure 415

death trends 160±3

in London small areas 23±6

M-estimators 119

magnesium trials and acute myocardial

infarction (AMI) 437±9

Mantel±Haenszel (MH) estimator 400

MAR assumption 352, 356

marginal likelihood

approximations 90

identity 88

in practice 35±7

Laplace approximation to 97

model selection using 33±4

Markov chain model 230, 342

Markov Chain Monte Carlo see MCMC

Markov mixture models 216±18

Markov models 342

mixed 346

Mathematics Self-Concept (MSC) 327±9

maths over time project 153±6

maximum likelihood estimates of SMRs 278±9

maximum likelihood estimation 121, 151

maximum likelihood fixed effects 46

maximum likelihood methods 123

maximum likelihood model 239

MCMC chains, monitoring 18

MCMC estimation of mixture models 59

MCMC methods 5, 12, 137

survival models 393±4

MCMC sampling 235

mean error sum of squares (MSE) 332

measurement models 324

for simulation 333

meningococcal infection 196±7

mental ability

indicators 331

loadings and degrees of freedom

estimates 332

mental health 409±13

mental illness hospitalisations 72±4

meta-analysis 398, 429±43

validity of 441

mice, toxicity in 350±2

migration histories 246±8

milk, protein content 242±3

missing data 250

in longitudinal studies 264±8

latent structure analysis for 352±6

mixed Markov model 346

mixed outcomes, latent trait models for

344±5

mixture models, MCMC estimation of 59

MNL model for travel choice 105

model assessment 20±7, 32

model checking 21±2, 39±40

model choice 21±2

model identifiability 19±20

model selection

criteria 32

predictive criteria 39±40

using marginal likelihoods 33±4

monitoring MCMC chains 18

Monte Carlo Markov Chain methods see

MCMC

Moran's l 283

motorettes

analysis, parameter summary 367

failure times 365±7

moving average models 172±91

multi-level data analysis 135±70

complex statistical issues 136

motivations for 167±8

multivariate indices 156±63

overview 135±7

typical features 135
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multi-level models

discrete outcomes 139±40

robustness in 151±6

univariate continuous outcomes 137±9

multinomial data, densities relevant to 17

multinomial logistic choice models 99±100

multinomial logistic model 103

multinomial logit model 101

multiparameter model for Poisson data 6±9

multiple count series 196

multiple discrete outcomes 195±6

multiple logit model 70

multiple sources of environmental

pollution 306±7

multiple treatments 439±40

multiplicative conjugate gamma 254

multivariate count series 195

multivariate indices, multi-level data 156±63

multivariate interpolation 85

multivariate methods vs. stratification 400±1

multivariate priors 314

varying regressions effects via 300

multivariate random effects 228

multivariate series 174

multivariate t 16

MVN model 274

MVN prior 279

myocardial infarction (MI)

and smoking cessation 440±1

by age and SBP 400

thrombolytic agents after 432±3

natural conjugate prior 10

negative binomial 13

Nelson±Plosser series 184±5

nested logit specification 100±1

nickel concentrations at stream locations 294

NIMH Schizophrenic Collaborative

Study 248

nodal involvement in regression models

88±91

non-linear regression effects, General Additive

Models (GAM) for 115±18

non-parametric hazard and history effect 392

nuisance factors 231

nursing home length of stay 369±70

obesity 409±13

observation model 268

odds ratios 403

for successive SBP bands 419

oesophageal cancer

case control data on 402

with age stratification and alcohol

consumption 401±4

ordinal outcomes 101±2

ordinal panel data 244

ordinal ratings in diagnostic tests 108±10

ordinal regression 98±110

O-ring failures 107±8

outlier analysis 22±3

outlier identification 121

outlier probability 185

outlier resistant models 120

overdispersed discrete outcomes, regression

models for 82±4

overdispersion 94, 95, 140

oxygen inhalation, time series models 182±4

panel data analysis 227±71

autoregression observations 230

forecasting 257±64

normal linear panel models 231±43

overview 227±31

review 268±9

time dependent effects 231

two stage models 228±30

panel migrations, parameter summary 248

PANSS score 265, 267, 268

parasuicide models 297

Pareto or log-logistic density 430

patent applications 253

patient length of stay distributions, exponential

mixtures for 64±7

patient risk, heterogeneity in 436±7

performance testing applications 333

plants, Darwin data on cross-fertilisation

in 53±4

plasma citrate readings, growth curve

analysis 235±6

Poisson count 97

Poisson data 43±4

multiparameter model for 6

Poisson density 278

Poisson deviance 93

Poisson-gamma mixture models 46

Poisson-gamma model 257

Poisson heterogeneity 43

Poisson log-normal model 254

Poisson regression 93, 95, 97

Poisson sampling 195

Poisson sampling model 278

polio infections in US 198±200

polytomous regression 98±110

pooling over similar units 41±58

posterior density 37±9
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of common odds ratio 402

vs. likelihood 3

with Normal survival data 10±11

potato plants, viral infections in 112±15

precision parameter 240

predictions 3±4

predictive criteria for model checking and

selection 39±40

predictive loss criterion 329

predictive loss methods 362

predictor effects in spatio-temporal

models 313±14

predictor selection in regression models

85±6

pre-marital maternity data 387±8

priors

consistent with stationarity and

invertibility 177±9

constraints on parameters 80

for parameters 2±3

for study variability 430±1

on error terms 176±7

regression coefficients 179

sensitivity on 21

specifications 81, 174±5, 229

probit models 90

product limit 372

proportional hazards in discrete time

regression 384±7

proportional hazards model 381

protective factors 397

protein content milk 242±3

Pseudo-Bayes Factors (PsBF) 90±1, 362

pseudo-marginal likelihood (PML) 207, 387,

403

psychiatric caseness 336±8

publication bias 441±2

simulated 442±3

quadratic spline in age and SBP 420

quadratic variance function 95

radiation and breast cancer 417±18

random effects 233, 258

and parameter estimates 166±7

random effects models 230±1, 403

random level-shift autoregressive (RLAR)

model 177

random variables, simulating from standard

densities 12±17

random walk 68

random walk priors 116

reaction times 364±5

Receiver Operating Characteristic (ROC)

curve 109

regional relative risks 46

regression analysis, model uncertainty

84

regression coefficients 90, 95, 105, 138, 291,

313

priors 179

regression mixtures, applications 111

regression models 79±133

and sets of predictors in regression 84±98

cross-validation assessment 86±8

for overdispersed discrete outcomes 82±4

nodal involvement in 88±91

predictor seletion in 85±6

with latent mixtures 110±15

see also non-linear regression effects

REML estimates 160

repeated sampling, Bayesian model estimation

via 1±30

replicate sampling 40

response model 268

response time models, parameter

summary 366

rheumatoid arthritis 250±3

Right Skewed Extreme Value (RSEV)

distribution 102±3

risk factors 117, 397

for infection after Caesarian delivery 104

for long term illness 146

road access and agricultural subsistence

282±4

robust CFA 331

robust priors 81

robust regression methods 118±26

robustness in multi-level modelling

151±6

row and median polish 291

sales territory data 96

sample of anonymised individual records

(SAR) 143, 286

sampling parameters 4±5

Scale Reduction Factor (SRF)

schizophrenia ratings 248±50

schizophrenia treatments 265±8

schizophrenic patients, hospitalisations of 97

schizophrenic reaction times 364±5

Scholastic Aptitude Test-Verbal 56

Schwarz Bayesian Criterion (SBC) 362, 366,

379

Schwarz Information Criterion 32

Search Variable Selection Scheme (SVSS) 86
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self-concept

covariation between correlated factors and

loadings relating

indicators to factors 329

group comparisons under invariance, high

track intercepts 330

self-harm, hospitalisations following 296±8

semi-parametric Bayesian models 372

sensitivity 20±7

on priors 21

ship damage data models 92±6

shopping travel problem 125±6

SIDS deaths 61±4

simultaneous models 324

small domain estimation 163±7

smoking cessation and myocardial infarction

(MI) 440±1

smoothing methods

for age 117

for continuous data 51±3

smoothing prior approach 115

smoothing problems 67±74

smoothing to the population 31

smoothness priors 68±9

SMRs, maximum likelihood estimates

of 278±9

space-time interaction effects 312

spatial autoregression model 276, 284

spatial correlation parameter 297

spatial covariance modelling for discrete

outcomes 296±8

spatial covariation

direct modelling of 289±98

likelihood model for 294±6

spatial data analysis 273±322

spatial disturbances model 284

spatial econometrics 278

spatial effects for discrete outcomes 278±89

spatial epidemiology 136

spatial errors

conditional specification of 293±8

non-constant variance 286

spatial errors model 284

spatial expansion model 298±9, 301±3

spatial heterogeneity 298±304

spatial interpolation 291±2

spatial outcomes models 273±322

spatial priors in disease models 279±81

spatial regimes 277

spatial regressions models, continuous data

with fixed interaction

schemes 275±8

spatio-temporal models 310±16

predictor effects in 313±14

spinal surgery, age effects in 116±18

spot market index volatility 212±13

stack loss 123

State Economic Areas (SEAS) 160±3

state space models 215

state space smoothing 205±6

stationarity/non-stationarity 177±9

formal tests of 180±1

stationary coefficient model 380

stationary prior 257

stochastic variances 210

stochastic volatility models 210±12

stratification vs. multivariate methods 400±1

structural equation models 324±60

applications 332

benefits of Bayesian approach 326±7

extensions to other applications 325±6

structural shifts modelling 205, 215±21

Student t density 16, 118, 123

Student t disturbances 286

Student t model 253

subsistence rates models 284

suicide patterns in London boroughs 296±8,

315±16

survival after coronary artery bypass graft

(CABG) 431±2

survival data with latent observations 9±10

survival models 361±96

accounting for frailty in 384±8

MCMC methods 393±4

Swedish unemployment and

production 189±91

switching regression models 216±17

systolic blood pressure (SBP) 400, 404, 405,

418±22

tabulation method 136

Taylor series expansion 84

temporal correlation model, parameter

summary 257

threshold model forecasts, US coal

production 187

thrombolytic agents after myocardial

infarction (MI) 432±3

time dependence forms 179±80

time dependent effects, panel data analysis 231

time series

of lamb fetal movement counts 217±18

periodic fluctuations 179

time series models 171±225

assessment 182

discrete outcomes 191±200
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goals of 171

time varying coefficients 203±9

time varying discrete outcomes, latent trait

models for 343

total predictive likelihoods 91

toxicity in mice 350±2

transitions in youth employment 379±81

transposition model 123

travel choice 104±7

TV advertising 208±9

UK coal consumption 207±8

ultrasonography ratings 127

parameters 110

uncorrelated errors model 284, 285

unemployment, US time series 218±19

unemployment coefficient 381

unemployment duration analysis 386

unidimensional self-concept factor 329

univariate random effects 228

univariate scale mixture 53±4

univariate t 16

unmeasured heterogeneity 384±7

unstructured error matrix 258

US

coal production 185±8

polio infections 198±200

unemployment time series 218±19

US National Health Interview Survey 163

US Veterans Administrative Cooperative

Urological Group 391

VAR models 189±91

variable autoregressive parameters 235

variable lag effects, growth curve model

242

variance parameters 37±8

variances of factors 329

variogram methods 292±3

varying regressions effects via multivariate

priors 300±1

viral infections in potato plants 112±15

voting intentions 202±3

WBC coefficient 124

Weibull density 14, 364

Weibull distribution 363

Weibull hazard 363, 375

and history effect 392

and patient frailty 392

Weibull mixture 375

Weibull proportional hazards model 364

Weibull time dependence 370

Weiner process 116

white noise errors 259

white noise variability 279

Wishart density 16

Wishart prior 234

Wishart prior density 232

youth employment, transitions in 379±81
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