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PREFACE TO THE
SECOND EDITION

Because the first edition of this book was well reccived by the academic and
engineering community, a special attempt was made in the second edition to
include only those changes that seemed to clearly improve the book's usc in the
classroom. Most of the modifications were included only after obtaining input
from several users of the book.

Except for a few minor corrections and additions, just six significant changes
were made. Only two, a new section on the central limit theorem and one on
gaussian random processes, represent modification of the original text. A third
change, a new chapter (10) added at the end of the book, scrves 1o illustratc a
number of the book’s theoretical principles by applying them to- problems
encountered in practice. A fourth change is the addition of Appendix F, which is
a convenient list of some uscful probability densities that are often encountered.

The remaining.two changes are probably the most significant, especially for
instructors using the book. First, the number of ecxamples that illustrate the
topics discussed has been increased by about 30 percent (over 85 examples are
now included). These examples were carefully scattered throughout the text in an
efTort to include at least one in each section where practical to do so. Second,
over 220 new student excrcises {(problems) have been added at the ends of the
chapters (a 54 percent increase).

The book now contains 630 problems and a complete solutions manual is
available to instructors from the publisher. This addition was in response to in-
structors that had used most of the exerciscs in the first cdition. For these instruc-
tors’ convenience in identifying the new problems, they are listed in each chapter
as “Additional Problems.”
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xiy PREFACE TO THE SECOND EDITION

All other aspects of the book, such as ils purpose (a textbook), intended
audience (juniors, seniors, first-year graduate students), level, and style of presen-
tation, remain as before.

I would like to thank D. L Starry for her excellent work in typing the manu-
script and the University of Florida for making her services available. Finally, 1
am again indebted to my wile, Barbara, for her selfless efforts in helping me

proofread the book. If the number of in-print errors is small, it is greatly due to
her work.

Peyton Z. Peebles, Jr,

TYRUTT ORI S

RIS

PREFACE TO THE
FIRST EDITION

This book has been written specifically as a textbook with the purpose of intro-
ducing the principles of probability, random variables, and random signals to
either junior or senior engineering students,

The level of material included in the book has been selected to apply to a
lypical undergraduate program, However, a small amount of more advanced
malerial is scattered throughout to serve as stimulation for the more advanced
student, or to fill out course content in schools where students are at a more
advanced level. (Such topics are keyed by a star *) The amount of material
included has been determined by my desire to fit the tex{ to courses of up to onc
semester in length. (More is said below about course structure.)

The need for the book is easily established. The engineering applications of
probability concepts have historically been taught at the graduate level, and
many excellent texts exist at that level. In recent times, however, many colleges
and universitics are introducing these concepts into the undergraduate curricula,
especially in electrical engineering, This fact is made possible, in part, by refine-
ments and simplifications in the theory such that it can now be grasped by junior
or senior engineering students. Thus, there is a definite need for a text that is
clearly written in a manner appealing to such students. I have tried to respond to
this need by paying careful attention to the organizalion of the contents, the
devclopment of discussions in simple language, and the inclusion of text examples
and many problems at the end of each chapter. The book contains over 400
problems and a solutions manual for all problems is available to instructors from
the publisher,

Many of the examples and problems have purposely been made very simple
in an eflort to instill a sense of accomplishment in the student, which, hopefully,

XY




thrmmn B

) -

X¥i PREFACE TO THE FIRST EDITION

will provide the encouragement to go on (o the more challenging problems.
Although emphasis is placed on examples and problems of electrical engincering,
the concepls and theory arc applicable to all arcas of cngincering,

The International System of Units (SI) has been used primarily throughout
the text. However, because technology is presently in a transitional stage with
regard to mecasurements, some of the more established customary units (gallons,
°F, ctc.) arc also utilized; in such instances, values in SI units follow in paren-
theses. ’

The student background required to study the book is only that typical of
junior or senior engincering students. Specifically, it is assumed the student has
been introduced to multivariable calculus, Fourier scries, Fourier transforms,
impulsc functions, and some Jincar system theory (transfer function concepts,
especially). 1 recognize, however, that students tend to forget a fair amount of
what is initially taught in many of thesc arcas, primarily through lack of
apportunity to apply the material in later courses. Therefore, | have inserted
short reviews of some of these required topics. These reviews are oceasionally
included in the text, but, for the most part, exist in appendixes at the end of the
book.

The order of the material is dictated by the main topic. Chapter | introduces
probability from the axiomatic definition using set theory. In my opinion this
approach is morc modern and mathematically correct than other definitions. Tt
also has the advantage of creating a better base for students desiring to go on to
graduate work, Chapter 2 introduces the theory of a single random variable.
Chapter 3 introduces operations on onc random variable that are bascd on sta-
tistical expectation. Chapter 4 cxtends the theory to several random variables,
while Chapter § defines operations with scveral variables. Chapters 6 and 7 intro-
duce random processes. Definitions based on temporal characterizations arc
developed in Chapter 6. Spectral characterizations are inciuded in Chapter 7.

The remainder of the text is concerned with the response of linear systems
with random inputs, Chapler 8 contains the general theory, mainly for lincar
time-invariant systems; while Chapter 9 considers specific opltimum systems that
cither maximize system outpul signal-lo-noise ratio or minimize a suitably
defined average error.

Finally, the book closes with a number of appendixes that contain material
helpful to the student in working problems, in reviewing background topics, and
in the interpretation of the text.

The bodk can profitably be used in curricula bascd on cither the quarter or
the semester system. At the University of Tennessce, i one-quarter undergraduate
course at the junior level has been successfully taught that covers Chapters 1
through 8, cxcept for omitting Sections 2.6, 3.4, 4.4, 8.7 through 8.9, and all
starred malerial. The class met three hours per week.,

A one-semester undergraduate course (threc hours per week) can readily be
structured to cover Chapters 1 through 9, omitting all starred material except
(hat in Sections 3.3, 5.3, 7.4, and 8.6.

Although the text is mainly developed for the undergraduate, 1 have also

4

PRVIRINEEEN

S

—r = e
S e A — R

i

rpdas

VREFACS TO THE FIRST &DiTION xvii

successfully used it in a one-quarter graduate course (first-year, three hours per
week) that covers Chapters 1 through 7, including all starred material.

It should be possible to cover the enlire book, including all starred material,
in a one-semester graduate course (first-year, threc hours pet week).

I am indebted to many people who have helped make the book possible. Drs.
R. C. Gonzalez and M. O. Pace read portions of the manuscript and suggested a
number of improvements. Dr. T. V. Blalock taught from an early version of the
manuscript, independently worked 'a number of the problems, and provided
various improvements. 1 also extend my appreciation to the Advanced Book
Program of Addison-Wesley Publishing Company for allowing me to adapt and
usc several of the figures from my earlier book Communication System Principles
(1976), and to Dr. J. M. Googe, head of the clectrical engincering department of
the University of Tennessee, for his support and encouragement of this project.
Typing of the bulk of the manuscript was ably done by Ms. Belinda Hudgens;
other portions and various corrections were lyped by Kymberly Scott, Sandra
Wwilson, and Denise Smiddy. Finally, I thank my wife, Barbarn, for her aid in
proofrcading the entire book.

Peyton Z. Peebles, Jr.
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CHAPTER

ONE
PROBABILITY

1.0 INTRODUCTION TO BOOK AND CHAPTER

The primary goals of this book are to introduce the reader to the principles of
random signals and to provide tools whereby one can deal with systems involv-
ing such signals. Toward these goals, perhaps the first thing that should be done
is define what is meant by random signal. A random signal is a time waveformt
that can be characterized only in some probabilistic manner, In general, it can be
either a desired or undesired waveform.

The reader has no doubt heard background hiss while listening to an ordi-
nary broadcast radio receiver. The waveform causing the hiss, when observed on
an oscilloscope, would appear as a randomly fluctuating voltage with time, It is
undesirable, since it interferes with our ability to hear the radio program, and is
called noise.

Undesired random wavelorms (noise} also appear in the outputs of other
types of systems. In a radio astronomsr’s receiver, noise interferes with the
desired signal from outer space (which itsell is a random, but desirable, signal). In
a television system, noise shows up in the form of picture interference often called
“snow.” In a sonar system, randomly generated sea sounds give rise to a noisc
that interferes with the desired echoes. .

The number of desirable random signals is almost limitless. For example, the
bits in a computer bit stream appear to fluctuate randomly with time between the

t We shall usually assume random signals 1o be voltage-time waveforms. However, the theory to
be developed throughout the book will apply, in most cases, to random functions other than voltage,
of arguments other than time.
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2 PRODABILITY, RANDOM VARIADLES, AND RANDOM SIGNAL PRINCIPLES

zero and one states, thereby creating a random signal. In another example, the
output voltage of a wind-powered generator would be random because wind
speed Nuetuates randomly. Similarly, the voltage from a solar detector varics ran-
domly due to the randomness of cloud and weather conditions. Still other exam-
ples arc: the signal from an instrument designed to measure instantancous ocean
wave height; the space-ariginated signal at the output of the radio astronomer's
antenna {the relative intensity of this signal from space allows the astronomer {0
form radio maps of the heavens); and the vollage from a vibration analyzer
attached o an automobile driving over rough terrain,

In Chapters § and 9 we shall study methods of characterizing systems having
random input signals. However, from the above examples, it is obvious that
random signals only represent the behavior of more fundamental underlying
random phenomena. Phenomena associated with the desired signals of the last
paragraph arc: information source for computer bit stream; wind speed; various
weather conditions such us cloud density and size, cloud speed, elc.; occin wave
height; sources of outer spice signals; and terrain roughness. All these phenom-
ena must be deseribed in some probabilistic way.

Thus, there are actually two things to be considered in characlerizing
random signals. One is how (o describe any one of a varicty of random phcnom-
ena: another is how to bring time into the problem so as to creale the random
signal of interest. To accomplish the first item, we shall introduce mathematical
concepls in Chapters 2, 3, 4, and 5 (random variables) that are suficiently general
they can apply to any suitably defined random phenomena. To accomplish the
seeond item, we shall introduce another mathematical concept, called a random
process, in Chapters 6 and 7. All these concepts are bascd on probability theory.

The purpose of this chapter is to introduce the clementary aspects of prob-
ability theory on which all of our later work is based. Scveral approaches exist
for the definition and discussion of probability. Only two of these are worthy of
modern-day consideration, while all others are mainly of historical intcrest and
are not commented on further here. Of the more modern approaches, onc uses
the relative frequency definition of probability. Tt gives a dcgree of physical
insight which is popular with engincers, and is often uscd in texts having prin-
cipal topics other than probability theory itsclf (for cxample, sce Pecbles, 1976).1

The second approach to probability uses the axiomatic definition. 1t is the
most mathematically sound of all approaches and is most appropriate for a text
having its lopics based principally on probability thcory. The axiomatic
approach also scrves as the best basis for readers wishing to proceed beyond the
scope of this book ta more advanced theory. Becausc of these facts, we adopt the
axiomatic approuch in this book.

Prior to the introduction of the axioms of probability, it is nccessary that we
first develop certain elements of st theory.f

+ References are quoted by name and date of publication. They are tisted at the end of the hook.
$ Our treatment is limited to the level required to introduce the desired probability concepts. For
additional details the reader is referred 1o McFadden (1963), or Milton and Tsokos (1976).

S

PROBABILITY 3
1.1 SET DEFINITIONS '

A set is a collection of objects. The objects are called elements of the set and may

. abe anything whatsoever. We may have a sct of voltages, a set of airplanes, a set of

.

chairs, or even a scl of sets, called a class of sets. A set is usually denoted by a
capilal letter while an clement is represented by a lower-case letter. Thus, il ais
an clement of sct A4, then we write

ae A (1.1-1)

If u is not an clement of A, we write

ad A (1.1-2)

A set is specified by the content of two braces: {-}. Two methods exist for
specifying content, the tabular method and the rule method. In the tabular
method the clements are cnumerated explicitly. For example, the set of all in-
tegers between § and 10 would be {6, 7, 8, 9}. In the rule method, a set’s content
is determined by some rule, such as: {integers .between 5 and 10}.t The rule
method is usually more convenient to use when the set is large. For example,
{integers from 1 to 1000 inclusive} would be cumbersome to write explictly using
the tabular method.

A sel is said to be countable if its clements can be put in one-to-one corre-
spondence with the natural numbers, which are the integers 1, 2, 3, etc. Il a set is
not countable it is called uncountable. A set is said to be empty if it has no ele-
ments. The empty sct is given the symbol & and is often called the null set.

A finire set is onc that is cither emply or has elements that can be counled,
with (he counting process terminating. In other words, it has a finite number of

_ clements. If a set is not finite it is called infinite. An infinite set having countable

clements is called countably infinite.
If every element of a set A is also an element in another set B, A is said to be
contained in B. A is known as a subset of B and we write

\ AcB (1.1-3)

If at least one element e;(ists in B which is not in A, then A is a proper subset of B,
denoted by (Thomas, 1969)

AcB (1.1-4)

The null set is clearly a subset of all other sets.
Two sels, A and B, are called disjoint or mutually exclusive if they have no

common clements. I i - . :
OV =N \\L e ) — 41l [ ¢
’ " B

t Sometimes notations such as {I|S </ <10,/ an integer) or {115 <1 < 10, / an integer} are
seen in the literature.
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4 PRODAUIL.ITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

Examplevl.l-l To illustrate the topics discussed above, we identify the sets
listed below.

A={1,3,57)
B=1{1,23..)
C={05<c<85)

D = {0.0}
E={24,68, 10,12, 14)
F={-50<f< 120}

The set A is tabularly:specified, countable, and finite. B is also tabularly
specified and countable, but is infinite. Set C is rule-specified, uncountable,
and infinite, since it contains «ll numbers greater than 0.5 but not exceeding
8.5. Similarly, sets D and E are countably finite, while set F is uncountably
infinite. It should be noted that D is not the null set; it has one element, the
number zero. !

.Set A is contained in sets B, C, and F. Similarly, C< F, D < F, and
E < B. Sets B and F are not subsets of any of the other sets or of each other.
Sets 4, D, and E are mutually exclusive of each other. The reader may wish
to identify which of the remaining sets are also mutually exclusive,

The largest or all-encompassing set of objects under discussion in a given
situation is called the universal set, denoted S. All sets (of the situation
considered) are subsets of the universal set. An example will help clarify the
concept of a universal set.

Example 1.1-2 Suppose we consider the problem of rolling a die. We are
interested in the numbers that show on the upper face. Here the universal set
is S={1,2, 3,4, 5 6}. In a gambling game, suppose a person wins il the
number comes up odd. This person wins for any number in the set 4 =

{1, 3, 5}. Another person might win if the number shows four or less; that is,

for any number in the set B = {1, 2, 3, 4},
Observe that both A and B are subsets of S. For any universal set with N

elements, there are 2V possible subsets of §. (The reader should check this for -

a few values of N.) For the present gxample, N = 6 and 2" = 64, so that there
are 64 ways one can define * winning” with one die.

It should be noted that winning or losing in the above gambling game is
related to a set. The game itself is partiaily specified by its universal set (other
games typically have a different universal sct). These facts are not just coin-
cidence, and we shall shortly find that sets form the basis on which our study of
probability is constructed.

PROBABILITY S

Figure 1.2-1 Venn diagrams. (a) lllustration
of subsets and mutually exclusive seis, and
(b) illustration of intersection and union of
sets. [Adapted from Peebles,(1976) with permis-
sion of publishers Addison-Wesley, Advanced
Book Program.)

1.2 SET OPERATIONS

In working with sets, it is helpful to introduce a geometrical representation that
cnables us to associate a physical picture with sets.

Yenn Diagram

Such a representation is the Venn diagram.t Here scts are represented by closed-
planc figures. Elements of the sets are represented by the enclosed points (arca).
Thé universal set S is represented by a rectangle as illustrated in Figure 1.2-1a.
Three sets 4, B, and C are shown, Set C is disjoint from both A and B, while set
B is a subset of A4.

Equality and Difference

Two scts A and B are equal if all elements in A are present in B and all elements
in B arc present in A; that is, if 4 € Band B < A. For cqual sets we writc 4 = B,
The difference of two sets 4 and B, denoted A — B, is the set containing all

t After John Venn (1834-1923), an Englishman.
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clements of 4 that are not present in B. For example, with 4 = {0.6 <a < 1.6}
and B={1.0sh <25}, then A-B={06<c< 10)or B—A= {l6<d<
2.5). Note that A — B # B — A.

Union and Intersection
The union (call it C) of two scts A and B is written
C=AvuD

It is the set of all elements of A or B or both. The union is sometimes called the
stom of two sets.
The intersection (call it D) of two sets A and B is written

D=ANB (1.2-2)

1t is the set of all clements common (o both A and B. Interscction is somelimes
called the product of two scts. For mutually exclusive sets A and B, AnB=¢.
Figurc 1.2-1b illustrates the Venn diagram area to be associated with the intersec-
tion and union of scts..

By rcpeated application of (1.2-1) or (1.2-2), the union and intersection of N
scts A,, n = 1,2,..., N, become

N
C=A,udyu-—udy=1)4,

(1.2-3)

N
D=A,n Ay ndy= ()4, (1.2-4)

am=]
Complement
The complement of a sct A4, denoted by A, is the set of all clements not in A. Thus,
A=8—-A (1.2-5)
It is also casy to scc that F=58=a, AV A=S,and An A=

Example 1.2-1 We illustrate interscction, union, and complement by taking
an example with the four scts

B=1{26782910, i1}
C={1,34678)

S = {1 < integers S 12}
A=1{1,3512}
Applicable unions and interscctions here arc:
AuB={,2356713859, 10, 11, 12}
AvuC={1,3456138, 12}
BucC={23 4,6,7,89 10, 11}

AnB=0
AnC={1,3}
BnC={67,8}

(12-1)

| £
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A2

Figure 1.2-2 Venn diagram applicable to
Example 1.2-1.

Complements are:

- A=1{2,4,6,172891011}
B={1,34512}
C=1{2529101], 12}
The various sets are illustrated in Figure 1.2-2.

Algebra of Sets

All subsets of the universal set form an algebraic system for which a number of
theorems may be stated (Thomas, 1969). Three of the most important of these
relate to laws involving unions and intersections. The commutative law states that

AnB=BnA (1.2-6)
AuB=BuUA (1.2-7)

. The distributive law is written as
' ARBUCO=(ANnBUAAC (1.2-8)
AUBAC=(AuB N4V (1.2-9)

The associative lal)‘v is written as
'.‘(AUB)UC=AU(BUC)=AUBUC (1.2-10)
AnBAC=An(BnC)=AnBnC (1.2-11)

These are just restatements of (1.2-3) and (1.2-4).

De Morgan’s Laws

By usc of a Venn diagram we may readily prove De Morgan's lawst, which state
that the complement of a union (intersection) of two sels A and B cquals the
intersection (union) of the complements A and B. Thus,

v B
AnB

=

(1.2-12)
(1.2-13)

v
i

‘A_nB
AuB

—_
=
i

t Afier Augustus De Morgan (1806-1871), an English mathematician.
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From the last two cxpressions one can show that if in an identity we replace,

unions by intersections, inlersections by unions, and sets by their complements,
then the identity is preserved (Papoulis, 1965, p. 23).

Example 1.2-2 We verify De Morgan's law (1.2-13) by using the example scts
A={2<ax16) and B={5<b <22} when § = {2 <s < 24}, First, if we
define C = A n B, the reader can readily see from Venn diagrams that
C=AnB={5<c<g16}soC=AnB={2<c<5 16 <c<24}. This
result is the left side of (1.2-13).

Second, we compute A=S—-A={16<a<24} and B=S—B=
{2<b<5, 22<bsg24), Thus, C=AuUuB={2<c¢<5 16<c<24),
This result is the right side of (1.2-13) and De Morgan’s law is verified.

Duality Principle

Tl\i§ prinf:iple (Papoulis, 1965) states: if in an identity we replace .unions by inler-
sections, intersections by unions, $ by &, and & by S, then the identity is pre-
served. For example, since

ANnBul=(AnBudn0 (1.2-14)
is a valid identity from (1.2-8), it follows that
AuBnNnC=(AuBn(du ) (1.2-15)

is also valid, which is just (1.2-9).

1.3 PROBABILITY INTRODUCED THROUGH SETS

Basic to our study of probability is the idea of a physical experiment. In this
section we develop a mathematical model of an experiment. Of course, we arc
interested only in cxperiments that are regulated in some probabilistic way. A
single performance of the experiment is called a trial for which there is an
outcome.

Experiments and Sample Spaces

Although there exists a precise mathematical procedure for defining an experi-.
ment, we shall rely on reason and examples. This simplified approach will ulti-
mately lead us to a valid mathematical model for any real experiment.t To

t Most of our early definitions involving probability are rigorously established only through con-
cepts beyond our scope. Although we adopt u simplified development of the theory, our finn! results
are no less valid or useful than if we had used the ndvanced concepts.

PrROBALITY Y

illustrate, one experiment might consist of rolling a single dic and observing the
number that shows up. There are six such numbers and they form all the possible
outcomes in the experiment. If the dic is “unbiased " our intuition tells us that
cach outcome is cqually likely to occur and the likelihood of any one oceurring is
' (later we call this number the probability of the outcome). This experiment is
seen Lo be governed, in part, by (wo sets. One is the set of all possible outcomes,
and the other is the set of the likelihoods of the outcomes. Each set has six cle-
ments. For the present, we consider only the set of outcomes,

The set of all possible outcomes in any given experiment is called the sample
space and it is given the symbol S. In effect, the sample space is a universal set for
the given experiment. S may be different for different experiinents, but all experi-
ments are governed by some sample space. The definition of sample space forms
the first of three clements in our mathematical model of experiments. The remain-
ing clements are events and probability, as discussed below.

Discrete and Continuous Sample Spaces

In the carlier dic-tossing cxperiment, $ was a finite set with six clements. Such
sumple spaces ure said to be diserete and finite, The sample space enn also be dis-
crete and infinite for some cxperiments. For example, § in the experiment
“choose randomly a positive integer " is the countably infinite set {L,2,3 ..}

Some experiments have an uncountably infinite sample space. An itlustration
would be the experiment * oblain a number by spinning the pointer on a wheel of
chance numbered from 0 to 12." Here any number s from 0 to 12 can result and
$ = {0 < s < 12}. Such a sumple space is called continvous.

Events

In most situations, we are interested in some characteristic of the outcomes of our
experiment as opposed to the outcomes themselves. In the experiment “draw a
card from a deck of 52 cards,” we might be more interested in whether we draw a
spade as opposed to having any interest in individual cards. To handle such situ-
ations we define the concept of an event,

An event is defined as a subset of the sample space. Because an event is a set,
all the carlier definitions and operations applicable to sets will apply to events.
For example, il two evenls have no common outcomes they are mutually
exclusive.

In the above card experiment, 13 of the 52 possible outcomes are spades.
Since any one of the spade outcomes satisfies the event “draw a spade,” this
cvent is a set with 13 clements. We have carlier stated that a set with N clements
can have as many as 2% subscts (events defined on a sample space having N
possible outcomes). In the present example, 27 = 2°2 = 4.5(10"%) events.

As with the sample space, events may be either discrete or continuous, The
card event “draw a spade” is a discrete, finite event. An example of a discrete,
countably infinite cvent would be “sclect an odd integer™ in the experiment

o
'll{
{
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- B
“randomly sclect a positive integer.” The cvent has @ countably infinite number ‘ probability of the event equallo the union of any number of mulually exclusive
, of clements: {1, 3, 5, 7, ...}. However, cvents defincd on a coulably infinite sample ' cvents is cqual to the sum of “? individu:'\l cvent _me“h“'“c“~ _ :
: space do nol have to be countably infinite. The event {1, 3, 5, 1} is clearly not An example should help jve a physical pictire of the meaning of the above
infinite bul applics to the integer sclection experiment. n  Aaxioms.
Events defined on conlinuous sample spaces arc usually continuous. In the ‘
’ cxperiment *choose randomly a number a from 6 to 13, the sample space is ¢ Example 1.3-1 Let an ciperiment consist of obtaining a number x by spin-
. S = {6 <5 < 13). An event of interest might cor'rcqund 1o the chosen number { n‘ing the p;)inlcr on a “lair” whccl'of‘ chirce that is labcled from 0 10 100
l':\\\mgi:::::;:c:]c.:land 1.6; l:mt l;, (h: c‘z_vcr;l (call it A)‘IS A= {~7.4 <I a < 1.6} N poinls.- The san?plc spacis S = (0<x< 1(})}_ We rcason that probability of
s may also be defined on continuous sample spaces. An At the pointer (alling betw:en any (Wo numben X3 2 X should be (x; — x,)/100
example of'such an cvent is A = {6.13692} for the sumple space § = {6 <5 = 13} 4 since the wheel is fair. As a check on this assignmenl, we sce that the event
of the previous paragraph. We comment later on this type of event. t A={x, <x<x } sa}isﬁcs axiom 1 for all x and x,, and axiom 2 when
The above definition of an cvenl as a subset of the sample space forms the X, = 10'0 and x .2_,_ 0 - o
sccond of three elements in our mathematical model of experiments. The third % o Now ‘suppc;sc w'e break the wheel's periphery into N contiguous scg-
clement involves defining probability. } ments A, = {X.-1 <X S Xo)y Xp = (MI0O/N, n =1, 2, ..., N, with xo = 0.
1 Then P(A4,) = I/N, and, for any N,
Probability Definition and Axioms s! P(O py > _ i P(A,) = % L=
To cach cvent defined on a sample space S, we shall assign a nonncgative numbcer k n=t nel et N
called probability. Probability is thercfore a function: it is a function of the cvents 3 from axiom 3.
defined. We adopt the notation P(A)t for *the probability of event A" When an i -
cvent is stated explicitly as a set by using braces, we employ the notation P{-} ' L . .
instead of P({*})- Example l.3tl allows us to return to our ea.rllcr discussion of dilscrclc events
The assigned probabilitics are chosen so as to satisfy three axioms. Let A be ' defincd on continuous sample spaces. If the interval X, = Xa-1 I8 aliowed to
‘ any event defined on a sample space S. Then the first two axioms are : ﬂPPFOﬂ{:l} zero (— 0),.thc propablllty P(A,)~ P(x,,);_ that 1s,.P(A,,) becom.cs lh‘c o
probability of the pointer falling exactly on the potnt X,. Since N — co in this \_%
axiom 1: P(A) =20 (1.3-1a) ¢ situation, P(4,)— 0. Thus, the probability of a discrete cvent defined on a contin- '}1
axiom 2: Ps) = | (13-1h) uous sample space is 0. This fact is true in gepcral. ‘ ‘ "":3
‘ " : A consequence of the above statement is that events can occur even if their B
The first only represents our desire 10 work with nonncgative numbers. The probability is 0. Intuitively, any number can be 0_"““""“' from the wheel of ‘
sccond axiom recognizes that the sample space itsclf is an event, and, since il is chance, but that precise number may never occur again. The infinite sample space
the all encompassing cvent, it should have the highest possible probability, which has only one outcome satisfying such a discrete cvent, SO It probability is 0. Such
. is sclected as unity. For this reason, S is known as the certain event. Alternatively, - events are not the sume as the impossible event which has 1o clements and cannot
the null set & is an event with no elements; it is known as the impossible event occur. The converse situation can also happen where evenls with probability 1
and its probability is 0. may not occur. An‘example for the wheel of chance cxpf:nment wqgld be the
l “The third axiom applics to N cvenls Agn=12...,N, where N may possi- cvent A = {all numbers except the number x,}. Events with probability 1 (that
may not occur) are not the same as the certain event which must occur.

bly be infinite, defincd on a sample space S, and having the property 4, N A, =

& for all m # n. 1tis .
Mathematical Model of Experiments

N N
axiom 3: "(H"*) = ";P(An) it Ann A= (13- The axioms of probability, introduced above, complele our mathematical model
. $ of an experiment. We pause to summarize. Given some real physical experiment
foral m#n=1,2 .. N, with N possibly infinite. The axiom statcs that the . having a set of particular outcomes possible, we first defined a sample space to
\ mathematically represent the physical outcomes. Second, it was recognized that

certain characteristics of the outcomes in the real experiment were of interest, as
oppused to the outcomes themselves; events were defined to mathematically

1 Occasionally it will be convenicnt to use brackets, such as PLA] when Als itself an cvent such as
C -
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represent these characteristics. Finally, probablities were assigned to the defined
events to mathematically account for the randon nature of the experiment.

Thus, a real experiment is defined mathemaically by three things: (1) assign-
mc.n‘t of a ‘samplc space; (2) definition of events of interest; and (3) making prob-
ability assignments to the events such that the axioms are satisfied. Establishing

the correct model for an expsriment is probably the single most difficult step in
solving probability problems.

Exan?ple 1.3-2 An experiment consists of obstrving the sum of the numbers
showxpg up when two dice are thrown. W develop a model for this
experiment, '

The sample space consists of 62 = 36 points as shown in Figure 1.3-1,
Each possible outcome corresponds to a sum having values from 2 to 12.

Suppose we are mainly interested in thrse events defined by 4 =
{sum =7}, B={8<sum <11}, and C = {10 <sum}. In assigning proba-
bilities to these events, it is first convenient to define 36 elementary events
Ay = {sum for outcome (j, J) =i+ j}, where i represents the row and j repre-
sents the column locating a particular possible oulcome in Figure 1.3-1. An
clementary event has only one element. ‘

For probability assignments, intuition indicates that each possible out-
i:on;c has the same likclihqod ol occurrence if the dice are fair, so P(4,) =
frs Itlow because the evenfs 4, i and j=1, 2, ..., N =6, are mulu}ully
c.xcluswc. they must satisly exiom 3. But since the events A, B, and C are
snm.ply the unions of appropriate clementary events, their probabilities are
derived from axiom 3. From Figure 1.3-1 we easily find

6 6
P(A) = P(UA,',_J = Y P4, ,.)= 6(—1-) =1
1=y (=1 6

36
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As a matter of interest, we also observe the probabilitics of the cvents
BAC and BUC to be PB n C)= 2(he)="s and P(BuU ()=

10('/s6) = Yrs-

1.4 JOINT AND CONDITIONAL PROBABILITY

In some experiments, such as in Example 1.3-2 above, it may be that some cvents
are not mutually exclusive because of common elements in the sample space.
These elements correspond to the simultaneous or joint occurrence of the non-
exclusive events, For two events 4 and B, the common elements from the cvenl
A n B

Joint Probability

The probability P(4 ~ B) is called the joint probability for two events A and B
which intersect in the sample space. A study of a Venn diagram will readily show
that

P(A n B) = P(A) + P(B) — P(A v B) (1.4-1)
Equivalently,
P(A U B) = P(A) + P(B) — P(A n B) < P(A) + P(B) (1.4-2)

In other words, the probability of the union of two events never exceeds the sum
of the event probabilities. The equality holds only for mutually exclusive events
because 4 N B = &, and therefore, P(4 n B) = P(J) = 0.

Conditional Probability

Given some event B with nonzero probability

P(B)>0 (1.4-3)
we deline the conditional probability of an event A, given 3, by
P(A n B)
(4] B) = ——— 1.4-4
PAIB) = = (1.4-4)

The probability P(A41 B) simply reflects the fact that the probability of an event A4
may depend on a second event B. If 4 and B are mutually exclusive, A n B = (&,
and P(A| B) = 0. )

Conditional probability is a defined quantity and cannot be proven,
However, as a probabilily it must satisfy the three axioms given in (1.3-1). P(4 | B)
obviously satisfics axiom | by its definition because P(4 n B) dnd P(B) are non-
negative numbers. The second axiom is shown to be satisfied by letting § = A4:

P(S| B) =—-—W=F‘(-E)'= 1 (1.4-5)
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!
The third axiom may be shown to hold by considering the union of 4 with an
event C, where A and C are mutually exclusive. If P(4 v C|B) = P(A| D) + A
P(C| B) is true, then axiom 3 holds. Since 4 n C = & thea cvenls An Band
B ~ C are mutually cxclusive (use a Venn diagram to verify this fact) and

P4 U C) A B] = P{(A A B U (CnB)=PANB+PCA B)

(1.4-6)
Thus, on substitution into (1.4-4)
_ P[4 v C)nB] PAn B) P(Cn B)
P4 © OBl == =7 1@ P(B)
= P(A|B) + P(C|B) (1.4-7)

and axiom 3 holds.

Example 1.4-1 In a box therc are 100 resistors having resistance and toler-
ance as shown in Table 1.4-1. Let a resistor be selected from the box and
assume each resistor has the same likelihood of being choscn. Define three
cvents: A as “draw a 47-Q resistor,” B as “draw a resistor with 5% toler-
ance,” and C as “draw a 100-Q resistor.” From the table, the applicable

probabilities arct

44
P(A) = P47 Q) = T00

P(B) = P(5% -2
)= 7 100

P(C) = P(100 Q) = T3625
The joint probabilitics are
P(A nB)=P(47Qn5%)=—2§-
100
P(AnC)=PATQA100Q)=0

24
= P(5% 1) = ——
P(B A C) = P(5% n 100 ) = =&

abilitics are related to the number of resistors in the box that salisfy an
be selected. An alternative appronch would be based on
ample 1.3-2. The reader may view the latter approach as

tItis reasonable thut prob:
event, since each resistor is equally likely to
clementary events similar to that used in Ex
morc rigorous but less readily applied.

A
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Table 1.4-1 Numbers of resistors

in a box having given resistance and

tolerance.
Tolerance
Resistance (£1) 5% 10% Total
22 10 14 24
47 28 16 44
100 24 8 32
Total 62 ki 100

By using (1.4-4) the conditional probabilities become

A
P(A|B)=__——P(P(’;)B)=%%
P(AnC
P(A|C)=—(—P(——2)———)=o
L PBAC) 24
P(B|C)=—(—R%)—2=§§

P(A|B) = P(47 Q|5%) is the probability of drawing a 47-Q resistor given
that the resistor drawn is 5%. P(4|C) = P(47 100 Q) is the probability
of drawing a 47-Q resistor given that the resistor drawn is 100 Q; this is
clearly an impossible event so (he probability of it is 0. Finally,
P(B|C) = P(5%100 Q) is the probability of drawing a resistor of 5% toler-
ance given that the resistor is 100 Q.

Total Probability :

The probability .P(A) of any event A defined on a sample space S can be
expressed in terms of conditional probabilities. Suppose we are given N mutually
exclusive events B,,n=1,2,..., N, whose union equals S as illustrated in Figure

1.4-1. These events satisfy

B,nB, = meEn=12 ... N (1.4-8)
N
UBu=S (1.4-9)
nmt
We shall prove that
N
P(A) = Y. P(4|B,)P(B,) (1.4-10)

LER?

which is known as the total probability of event A.
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Figure 1.4-1 Venn disgram of N
" mutually exclusive events B, and
another event A,

:;':B,,-S. BuNBym @  forallmyn
Since 4 N § = A, we may start the proof using (1.4-9) and (1.2-8):

AnS=An(C}B,,>= O(Ar\B,,)

n=1 A=

(1.4-11)

Nc.?w the events 4 N B, are mutually exclusive as seen from the Venn diagram
(Fig. 1.4-1). By applying axiom 3 to these events, we have

N
P(d)=P(An S)= P[ U n B,,)] = iP(A A B,) (1.4-12)

n=1 n=]

(»;'l;crco)(m-ll) has been used. Finally, (1.4-4) is substituted into (1.4-12) to obtain
4-10).

Bayes’ Theoremt

The definition .of conditional probaBility, as given by (1.4-4), applies to any two
events. In particular, let B, be one of the events defined above in the subscction
on total probability, Equation (1.4-4) can be written

P(BnIA)=——-———P([i;(;‘) A4) (14-13)
if P(A) # 0, or, alternatively,
P(AIB,,)T%%TB-Q (1.4-14)

if P(B,) # 0. One form of Bayes' theorem is obtained by equating these two
expressions:

P(A|B)P(B,)

P(B, | 4) = ==

(1.4-15)

t The theorem is numed for Thomas Bayes (1702-1761), an English philosopher.
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Another form derives from a substitution of P(d4) us given by (1.4-10),

P(A] B,)P(B,)
(A B)P(B,) + -+ + P(4] By)P(By)

P(B,14) = (1.4-16)
P
form=1,2..,N.
An cxample will serve to illustrate Bayes' thcorem and conditional proba-

bility.

Example 1.4-2 An elementary binary communication system “consists of i
transmitter that sends one of two possible symbols (a | or a 0) over a channel
{o a receiver. The channel occasionally causes errors Lo occur so that a 1
shows up at the receiver as a 0, and vice versa.

The sample space has two elements (0 or 1). We denote by By, i = 1,2,
the events * the symbol before the channel is 1,” and “ the symbol before the
channel is 0,” respectively, Furthermore, define 4,,i =1, 2, as the cvents " the
symbol after the channel is 1," and *“the symbol after the channel is 0,
respectively. The probabilities that the symbols 1 and 0 are selected for trans-

mission are assumed to be
P(B,)=0.6 and P(B;) =04

Conditional probabilities describe the effect the channel has on the (rans-
mitted symbols. The reception probabilities given a 1 was transmitted are
assumed to be

P(A,]B,)=09
P(A,|B)) = 0.1
The channel is presumed to affect Os in the same manner so
P(4,]B;) = 0.1
P(A,]B,;) =09

In either case, P(4,]B) + P(4,|B) =1 because 4, and 4, arc mutually
exclusive and are the only “recciver” events (other than the uninteresting
events & and S) possible. The channel is often shown diagrammatically as’
illustrated in Figure 1.4-2. Because of its form it is usually called a binary
symmelric channel.

From (1.4-10) we obtain the “ received ” symbol probabilities

P(A ) = P(A,| B,)P(B,) + P(A,| B;)P(B,)
= 0.9(0.6) + 0.1(0.4) = 0.58

P(Ay) = P(A; ]| B)P(B,) + P(Ay| B))P(8y)
= 0.1(0.6) + 0.9(0.4) = 0.42
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0.y

”a
PR =06

rALBY

P(Hy) = 0.4 Figure 1.4-2 Binary synunetric

1.0 PAlBY) A, commum’cauon system dia-
grammatical model applicable
0.9 ) to Example 1.4-2.

From cither (1.4-15) or (1.4-16) we have
P(A,| B)P(B,) _0.9(0.6) _0.54

PB,1A) = 201 0.58 =—0—5§z0.93|
P(BytAy) = P4, ))(11/;1;«132) = 0’3_(2'24) = %—2 ~ 0.857
0,y = ALBIIE) L 0409 802015
140 = T A’f;’“’ ) 0104 2 ~ 0069

These last two numbers are probabilitics of system error while P(B,14))
and P(B,}4,)are probabilities of correct system transmission of symbols.

In Bayes' theorem (1.4-16), the probabilities P(B,) are usually referred to as a
priori probabilities, since they apply to the events B, before the performance of
the experiment. Similarly, the probabilities P(A4] B,) are numbers typically known
prior to conducting the experiment. Example 1.4-2 described such a case. The
conditional probabilities arc sometimes called transition probabilities in a com-
munications context. On the other hand, the probabilitics P(B,| A) arc called a
posteriori “probabilities, since they apply after the experiment’s performance when
some cvent A is obtained.

1.5 INDEPENDENT LYENTS

In this scction we introduce the concept of statistically independent cvents.
Although a given problem may involve any number of cvents in general, it is
most instructive to consider first the simplest possible case of two events.

eaeriSeue L

SR YOS

PO G

U

R rr
LN

T

Y

B T E A N A

23

ey

Y
PSR,

PROBABILITY 19

Two Events

Let two evenls A and B have nonzero probabililics of occurrence; that is, assume
’(A) # 0 and P(B) # 0. We call the events statistically independent if the probabil-
ity of occurrence of one cvent is not affected by the occurrence of the other event.
Mathematically, this statement is equivalent to requiring

P(A| B) = P(4) (1.5-1)
]
for statistically independent events. We also have
P(B| A) = P(B) (1.5-2)

for statistically independent events. By substitution of (1.5-1) into (1.4-4), inde-
pendencet also means that the probability of the joint occurrence (intersection) of
two events must equal the product of the two event probabilities:

P(A A B) = P(A)P(B) (1.5-3)

Not only is (1.5-3) for (1.5-1)] nccessary for two cvents to be independent but it is
sufficient. As a conscquence, (1.5-3) can, and often does, serve as a lest of

independence.
Statistical independence is fundamental to much of our later work. When

_events arc independent it will often be found that probability problems are

greatly simplified.
It has already been stated that the joint probability of two mutually exclusive
events is 0t
P(A N B)=0 (1.5-4)
If the two events have nonzero probabilities of occurrence, then, by comparison
of (1.5-4) with (1.5-3), we easily establish that two events cannot be both mutually
cxclusive and statistically independent. Hence, in order for two events to be inde-
pendent they must have an intersection A N B # .
If a problem involves more than two cvents, those cvents satisfying either

(1.5-3)or (1.5-1) are said lo be independent by pairs.

Fxample 1.5-1 In an experiment, one card is selected from an ordinary
52-card deck. Define events A as “sclect a king,” B as “select a jack or
queen,” and C as ugelect a heart.” From intuition, these cvents have probabil-
ities P(A) = Y52, P(B) = %2, and P(C) = Vo2 '

It is also easy (o state joint probabilities. P(A A B) =0 (it is not possible
lo simultancousty select & king and a juck or qucen), P(4 n C) = s, and

PB A C) = Ys3-

+ ‘We shall often use only the word independence 1o mean statistical independence.
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We determine whether 4, B, and C are independent by pairs by applying

(1.5-3):

P(A 1 B) = 0 % P(4)P(B) = 332.27

P(A n C) =-5-%= P(A)P(C) =5l2

PB A Q)= 2 = PBPC) =

Thus, 4 and C are independent as a pair, as are B and C, However, 4 and B ° .

are not independent, as we might have guessed from the fact that 4 and B
are mutually exclusive. !

In many practical problems, statistical independence of events is often
assumed. The justification hinges on there being no apparent physical connection
between the mechanisms leading to the events. In other cases, probabilities
assumed for elementary events may lead to independence of other events defined
from them (Cooper and McGillem, 1971, p. 24).

Multiple Events

When more than two events are involved, independence by pairs is not sufficient
to establish the events as statistically independent, even if every pair satislies
(1.5-3). ’

In the case of three events A7, A;,and A4,, they are said to be independent i,
aqd only xtt, they are independent by all pairs and are also independent as a
triple; that is, they must satisfy the four equations:

P(4, n Ay) = P(A})P(4)) (1.5-5a)
P(A; n Ay) = P(4,)P(A4,) (1.5-5b)
P(Ay n Ay) = P(A;)P(4,) (1.5-5¢)
P(A; N Ay 0 A3) = P(A)P(4,)P(4;) (1.5-5d)

Tl1c reader may wonder if satisfaction of (1.5-5d) might be sufficient to guaranice
independence by pairs, and therefore, satisfaction of all four conditions? The

answer is no, and supporting examples are relatively easy to construct. The
reader might try this exercise.
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More generally, for N events A,, 4,, ..., Ay to be called statistically inde-

pendent, we require that all the conditions

P(A; n Aj) = P(A)P(4))

Pldin 4,0 AY = P(A)P(A))P(A,) (1.5-6)

P(Ay n Ay nveon Ay = P(A)P(A3) - P(A)

be satisfied forall 1 € i<j<k <+ <N. Therearc 2" = N - | of-these condi-
tions (Davenport, 1970, p. 83).

Example 1.5-2 Consider drawing flour cards from an ordinary 52-card deck.
Let events 4,, A,, A5, A, define drawing an ace on the first, second, third,
and fourth cards, respectively, Consider two cases. First, draw the cards
assuming each is replaced after the draw. Intuition tells us that these events
are independent so P(A;, n A, N Ay n A) = P(A)P(A)P(A)P(Ay) =
(4/52)* =~ 3.50(10" %), :

On the other hand, suppose we keep each card after it is drawn. We now
expect these are not independent events. In the general case we may write

PlA, n Ay n Ay 0 AY)
= P(A)P(A; N A3 N A4l A4y)
= P(A)P(A| A )P(As N A Ay N A))
= P(A)P(A;| A)P(A;| A, N AP(A Ay 0 Ay 1 A3)

4 3 2 1
== — = 3.69(107¢
52 51 50 49 ( )
Thus, we have approximately 9.5-times better chance of drawing four aces
when cards are replaced than when kept, This is an intuitively satisfying
result since replacing the ace drawn raises chances for an acc on the suc-
ceeding draw,

Properties of Independent Events

Many properties of independent events may be summarized by the statement: If
N events A, 4,, ..., Ay are independent, then any one of them is independent of
any event formed by unions, intersections, and complements of the others
(Papoulis, 1965, p. 42). Several examples of the application of this statement are
worth listing for illustration.
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For two independent cvents A, and A, it results that A, is independent of™
A,, A, is independent of A,, and A, is independent of A,. These statements are
proved as a problem at the end of this chapter.

For three independent events 4,, 4,, and A4, any one is independent of the
joint occurrence of the other two. For example

P[A, Ay N A:\)) = P(AI)P(AZ)P(A.\) = P(A)P(A4, 0 Ay) (1.5-7)

with similar stalements possible for the other cascs Ay N (A, N A4y) and
Ay 0 (A, © Ay). Any onc cvent is also independent of the union of the other
two. For example

PlAy A (A; U A4)] = P(A)P(A; L 4y) (1.5-8)

This result and (1.5-7) do not nccessarily hold if the events are only independent
by pairs.

*1.6 COMBINED EXPERIMENTS

All of our work up to this point is rclated to outcomes from a single experiment.
Many practical problems arisc where such a constraincd approach does not
apply. One example would be the simultaneous measurement of wind speed and
barometric pressure at some location and instant in time. Two experiments are
actually being conducted; one has the outcome “speed”; the other outcome is
“pressure.” Still another type of problem involves conducting the same expeti-
menl several times, such as flipping a coin N times. In this case there are N per-
formances of the same experiment. To handle these situations we introduce the
concept of a combined experiment.

A combined experiment consists of forming a single experiment by suitably
combining individual experiments, which we now call subexperiments. Recall that
an experiment is defined by specifying three quantitics. They are: (1) the applic-
able sample space, (2) the cvents defined on the sample space, and (3) the prob-
abilities of the cvents. We specily these three quantities below, beginning with the
sample space, for a combined experiment.

*Combined Sample Space

Consider only two subexperiments first. Let S, and S, be the sample spaces of
the two subexperiments and let s, and 5, represent the elements of S, and S,
respectively, We form a new space S, called the combined sample space,t whose
clements are all the ordered pairs (s, 52). Thus, if S, has M elements and S, has
N clements, then S will have MN clements. The combined sample space is
denoted

=5, %5, (1.6-1)

t Also called the cartesian product space in some lexts.
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Example 1.6-1 1If S, corresponds to flipping a coin, then §, = {H, T}, where
H is the element “heads” and T represents “tails.” Let §, = {1,2,3,4,5,6)
corresponding to rolling a single die. The combined sample space § =
S, x S, becomes

S = {(H, 1), (H, 2), (H,3), (4, 4), (1, 5), (H, 6),
(T, 1), (T, 2, (T, 3), (T, 4), (T, ) (T, 6))

In the new space, elements are considered (o be single objects, each object
being a pair of items.

Example 1.6-2 We flip a coin twice, each flip being taken as one sub-
experiment. The applicable sample spaccs are now

S, = {H, T}
S, ={H, T}
S = {(H, H), (H, T), (T, H), (T, m}

In this last example, observe that the clement (H, T) is considered different
from the element (T, H); this fact emphasizes the elements of S are ordered pairs
of objects.

The more general situation of N subexperiments is a direct extension of the
above concepls. For N sample spaces S,, n = 1,2,..., N, having elements s,, the
combined sample space S is denoted

S=8§ xSy x - x8y (1.6-2)
and it is the sct of all ordered N-tuples
(S1s S20 0000 SN) (1.6-3)

*Events on the Combined Space

Events may be defined on the combined sample space through their relationship
with events defined on the subexperiment sample spaces. Consider two sub-
experiments with sample spaces S, and S,. Let A be any event defined on S, and
B be any event defined on S;, then

: C=AxB (1.6-4)
is an event defined on S consisting of all pairs (s, 5;)such that )
s, €A and s, €B (1.6-5)

Since elements of A correspond to clements of the event A x S, defined on §, and
clements of B correspond to the event S, x Bdefined on S, we easily find that

AxB=(A4x%xS)n{S xB) (1.6-6)
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Thus, the event defined by the subset of S given by A x B is the intersection of -

the subsets 4 x S, and S, x B. We consider all subsets of S of the form 4 x B as

events. All intersections and unions of such events are also events (Papoulis, 1965,
p. 50).

Example 1.6-3 Let S, = {0 s x <100} and S, ={0< y<50}. The com-

bined sample space is the set of all pairs of numbers (x, y) with 0 < x < 100 . .

and 0 < y < 50 as illustrated in Figure 1.6-1. For events
A={x; <x<x,}
B={y,<y<y) :
where 0 € x, < x; < 100 and 0 < y, < y, < 50, the events S, x B and 4 x
S, are horizontal and vertical strips as shown. The event

AxB={xl<x<X2}X{)’1<Y<YI}

is the rectangle shown. An event §; x {y = y,} would be a horizontal line.

_In the more general case of N subexperiments with sample spaces S, on
which events A4, are defined, the events on the combined sample space S will all
be sets of the form

A x Ay x o X Ay (1.6-7)

and unions and intersections of such sets (Papoulis, 1965, pp. 53-54).
y
&4 X8, @ AX8
50
/ s

N\
s

0 X3 100 x
QN(_J
N 4 _J
Y
Sy

Figure 1.6-1 A combined sample space for two subexperiments.
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*Probabilities

To complete the definition of a combined experiment we must assign probabil-
ities Lo the evenls defined on the combined sample space S. Consider only two
subexperiments first, Since all events defined on S will be unions and intersections
of events of the form A x B, where A = S, and B < §,, we only need to deter-
mine (A x B for any A and B. We shall only consider the case where

P(A x B) = P(A)P(D) (1.6-8)

Subexperiments for which (1.6-8) is valid are called independent experiments.
To sce whal elements of § correspond Lo elements of A4 and B, we only need
substitute S, for B or S, for A in (1.6-8):

P(A x S,) = P(4)P(S;) = P(A) (1.69)
P(S, x B) = P(S,)P(B) = P(B) . (1.6-10)

Thus, elements in the set 4 x S, correspond to elements of 4, and those of
S, x B correspond to those of B.
For N independent experiments, the generalization of (1.6-8) becomes

P(A, x Ay x ++* x Ay) = P(A,)P(Ay) -+ P(Ay) (1.6-11)

where 4, =8, n=1,2,...,N.

With independent cxperiments, the above results show that probabilities for
events defined on S arc completcly determined from probabilities of events
defined in the subexperiments.

1.7 BERNOULLI TRIALS

We shall close this chapter on probability by considering a very practical
problem. It involves any experiment for which there are only two possible out-
comes on any trial. Examples of such an experiment are numerous: flipping a
coin, hitting or missing the target in artillery, passing or failing an cxam, re-
ceiving a 0 or a | in a computer bit stream, or winning or losing in a game of
chance, are just o few.

For this type of experiment, we let A be the clementary event having one of
the two possible outcomes as its element. 4 is the only other possible clementary
event. Specifically, we shall repeat the basic experiment N times and determine
the probability that A4 is observed exactly k times out of the N trials. Such re-
peated experiments are called Bernoulli trials.t Thosc readers familiar with com-
bined experiments will recognize this cxpcrimcnt'as the combination of N
identical subexperiments. For readers who omitted the section on combined
experiments, we shall develop the problem so that the omission will not impair
their understanding of the material,

t Afier the Swiss mathematician Jucob Bernoulti (1654-1705).

F S

o




26 PROBARILITY, RANDOM VARIABLES, AND RANDOM SIGNAIL PRINCIPLES

Assume that clementary cvents arc statistically independent for cvery trial.
Let event 4 occur on any given trial with probability

P(A) = p (L.7-1)
The cvent A then has probability
PAy=1-p (1.7-2)

After N trials of the basic experiment, onc particular sequence of oulcomes has A
occurring k times, followed by A4 occurring N — k times.t Becausc of assumed
statistical independence of trials, the probability of this one sequence is

P(AYP(A) -+ PLA)PUAPA) -+ PA) = 1 = O (1.7-3)

N — k terms

k terms

Now there are clearly other particular sequences that will yicld k cvents A
and N — k cvents A.p The probability of cach of these sequences is given by
(1.7-3). Since the sum of all such probabilitics will be the desired probability of 4
occurring cxactly k limes in N trials, we only need find the number of such
sequences. Some thought will reveal that this is the number of ways of taking k
objects at a time from N objects. From combinatorial analysis, the number is

known to be
N N!
<k>—k!(N_k)! (1.7-4)

The quantity (§) is called the binomial coefficient. It is sometimes given the symbol
o
From the product of (1.7-4) and (1.7-3) we finally obtain

N
P{A oceurs exactly k times} = <k>p‘(l —pt (1.7-5)

Exawple 1.7-1 A submarinc attempts to sink an aircraft carrier. It will be
successful only if two or more torpedocs hit the carrier. 1f the sub fires three
torpedoes and the probability of a hit is 0.4 for each torpedo, what is the
probability that the carrier will be sunk?

t This particular sequence corresponds 1o one N-dimensional clement in the combined sample

space S. ) )
t All such sequences define all the elements of S that satisfy the event {4 occurs exactly k times in

N trials) defined on the combined sample space.
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Define the event A = {torpedo hits}. Then P(A) = 0.4, and N = 3. Prob-
abilities are found from (1.7-5):

3

P{exactly no hits} = <g>(0.4)0(1 —04) =0216
) (

P{cxactly one hit} = ( )0.4)‘(1 —~0.4)r = 0432

2 )
> (0.4)%(1 — 0.4)° = 0.064

3

P{exactly two hits} = <3>(O.4)2(l —0.4)! =0.288
P{exactly three hits} = ( )

The answer we desire is

P{carrier sunk} = P{two or more hits}
= P{exactly two hits} + P{cxactly three hits}
= 0.352

Example 1.7-2 In a culture used for biological research the growth of un-
avoidable bacteria occasionally spoils results of an experiment that requires
at least three out of four cultures to be unspoiled to obtain a single datum
point. Experience has shown that about 6 of every 100 cultures are randomly
spoiled by the bateria. If the experiment requires three simultaneously
derived, unspoiled data points for success, we find the probability of success
for any given set of 12 cultures (three data points of four cultures each).

We treat individual datum points first as a Bernoulli trial problem with
N = 4 and p = P{good culture} = *%, oo = 0.94. Here

P{valid d%\lum point} = P{3 good cultures} + P{4 good cultures}
4 4
= <j>(0.94)’(1 - 0.94) + (4)(0.94)‘(1 ~ 0.94)° =~ 0.98

Finally, we trcat the required three data points as a Bernoulli trial
problem with N = 3 and p = P{valid datum point} = 0.98. Now

P{successful experiment} = P{3 valid data points}

= (;)(O.QS)J(I —0.98)° =~ 0.941.

Thus, the given experiment will be successful about 94.1 percent of the time.

|
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PROBLEMS

-1 Specify the following sets by the rule method.
A=1{1,23},B=1{8101214},C={1,3,57,...}

1-2 Use the tabular method to specify a class of sets for the sets of Problem 1-1.
1-3 State whether the following sets arc countable or uncountable, or, finite or

infinite. 4 = {1}, B = {x = 1}, C = {0 < integers}, D = {children in public school

No. 5}, E = {girls in public school No. 5}, F = {girls in class in public school
No. 5 at 3:00 aM}, G={all lengths not exceeding one meter}, H =
{(=25<x< =3),I={-2,~1,lsx<2} :

1-4 For each set of Problem 1-3, determine il it is equal to, or a subset of, any of -

the other sets. i
1-5 State every possible subset of the set of letters {aq, b, ¢, d}.
1-6 A thermometer measures temperatures from —40 to 130°F (—40 to 54.4°C),

(a) State a universal set to describe temperature measurements. Specifly °

subsets for:

(b) Temperature measurements not exceeding water’s freezing point, and

(c) Mecasurements exceeding the freezing point but not exceeding 100°F
(37.8°C).

*1.7 Prove that a set with N elements has 2V subsets.

1-8 A random noise voltage at a given time may have any value from —10 to
10V.

(a) What is the universal set describing noise voltage?

(b) Find a set to describe the voltages available from a half-wave rectifier for -

positive voltages that has a linear output-input voltage characteristic.
(¢) Repeat parts (a) and (b) il a dc voltage of —3 V is'added to the random
noise.

1-9 Showthat Cc AifC< Band B < 4.

1-10 Two sets are given by 4 = {-6, -4, —0.5,0, 1.6, 8} and B= {-05,0,1,2, "}

4}. Find:

(@ A—-B () B—A4 (@ AuB (@ANB
11 A univeral set is given as § = {2, 4, 6, 8, 10, 12}. Define two subsets as
= {2, 4, 10} and B = {4, 6, 8, 10}. Determine the following:

(a) A=S—A b)) A—Band B~ A4 (c) AuB d) AnD

(e AnB
1-12 Using Venn diagrams for three sets 4, B, and C, shade the areas corre-
sponding to the sets: Lo

@WAUB-C BYBnA ()ANnBAnC @H{AuBnC

1-13 Sketch a Venn diagram for three events where AN B# &, Bn C # &,
CnA#Z,bUlANBNC=(.

1-
A
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1-14 Use Venn diagrams to show that the following identities are true:
(@ (AUBNC=C-[(ANnC)u(BnC)
) (AuBUC)—(AanC)=(Zr\B)u(l§nC)u(Cn/l)
) AnBnC=4AuBul

1-15 Use Venn diagrams to prove De Morgan's laws (4 v B) = An B and
(A~ B)=Au B
1-16 A universal set is S={-20<s< —4), I A={-10<s<5 -5} and
B={-7<s< —4)},find:

(@) Au B ‘.

by AnB

(c) A third set C such that the sets 4 A Cand B n Care as large as possible
while the smallest element in Cis ~9.

(d) Whatistheset A n B n C?

@ Use De Morgan's lalvs to_show_lhal:
(@ AnBUC)=(AuBn(d v )

) @rnBRAC)=AuBuC

In each case check your results using a Venn diagram.
1-18 A die is tossed. Find the probabilities of the events 4 = {odd number shows

upl, B = {number larger than 3 shows up}, A v B,and 4 n B.
1-19 An a game of dice, a “ shooter” can win outright if the sum of the two

fbers showing up is either 7 or 11 when two dice are thrown. What is his
prebability of winning outright?

<ll’-/20« A pointer is spun on a fair wheel of chance having its periphery labeled
-

om 0 to 100.
(1) What is the sample space for this experiment?
(b) What is the probability that the pointer will stop between 20 and 357
——{c) What is the probability that the wheel will stop on 587
@ An experiment has a sample space with 10 equally likely elements § = {a,,
/..., a0} Three events are defined as 4 = {a,, as, ag}, B = {ay, a3, a6, a5},
and C = {ag, ay}. Find the probabilitics of:
(@ Au C
mBul
) An(Bu(
() A0 B
&) (AuBnC
1-22 Let 4 be an arbitrary event. Show that P(A) = L — P(A).
1-23 An experiment consists of rolling a single dic. Two events are defined as:

A = {a 6 shows up} and B = {a 2 or a 5 shows up}.
(@) Find P(4) and P(B).

) Define a third cvent C so that P(C) = | — P(4) — P(B).
{ 1-24/1n a box there are 500 colored balls: 75 black, 150 green, 175 red, 70 white,
ard 3

0 blue. What are the probabilitics of sclecting a ball of each color?

. ol
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1-25 A singlc card is drawn (rom a 52-card deck.
(«) What is the probability that the card is a jack?
(hy What is the probability the card will be a 5 or smaller?
(¢) What is the probability that the card is a red 107

Ay .
1-26/ Two cards arc drawn from a 52-card deck (the first is not replaced).
(a) Given the first card is a queen, what is the probability that the sccond is

also a queen?
(b) Repeat part (a) for the first card a queen and the second carda 7,

) What is the probability that both cards will be a queen?

1-27//An ordinary 52-card deck is thoroughly shuffled. You are deall four cards
Up. What is the probability that all four cards are scvens?

1-28 For the resistor selection experiment of Example 1.4-1, define event D as
“draw a 22-Q resistor,” and L as “draw a resistor with 10% tolerance.” Find
P(D), P(E), P(D n E), P(D| E), and P(E| D).

1-29 For the resistor selection experiment of Example 1.4-1, define two mutually

exclusive events B, and B, such that By v By =S.
(@) Use the total probability theorcm o find the probability of the event

“select a 22-02 resistor,” denoted D.
(b) Use Bayes’ thcorem Lo find the probability that the resistor sclected had

5% tolerance, given it was 22 Q.

@ In three boxes there are capacitors as shown in Table P1-30. An cxperiment
consists of first randomly selecting a box, assuming each has the same likelihood
of sclection, and then selecting a capacitor from the chosen box.

{a) What is the probability of selecting a 0.01-uF capacitor, given that box 2

is sclected?
(b) 12 0.01-uF capacitor is selected, what is the probability it came from box

37 (Hint: Usc Bayes’ and total probability theorems.)

Table P1-30 Capacitors

Number in box

et et

Value (uF) { 2 3 Tolals
0.01 v 20 95 25 140
0.1 55 kM 15 165
1.0 70 80 145 295
Totals 145 210 245 600

1-31 For Problem 1-30, list the ninc conditional probabilitics of capacilor sclec-
iag, given certain box sclections.

./um\\g .
1-32) Rework Example 1.4-2 if P(B,) = 0.6, P(By) = 04, P(A,|B}) = P{A,|B,)
0%, and P(A, 1By = P44 B,) = 0.05.

a7
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cwork Example 1.4-2if P(B,) = 0.7, P(B,) = 0.3, P(4,] B,) = P(A;]B;)) =
-0 and P(A;) B)) = P(A,1B,) =0. What type of channcl docs this system have?
{1-34 /A company sclls high fidelity amplificrs capable of generating 10, 25, and
W of audio power. It has on hand 100 of the 10-W units, of which 15% are
defective, 70 of the 25-W units with 10% defective, and 30 of the 50-W units with
10% defective. ’
(a) What is the probability that an amplifier sold from the 10-W units is
defective? '
(b) If each wattage amplifier sells with equal likelihood, what is the probabil-
ity of a randomly selected unit being 50 W and defective?
(c) What is the probability that a unit randomly sclected for sale is defective?
gﬁf‘\ missile can be accidentally launched if two relays 4 and B both have
iféd. The probabilities of 4 and B failing are known to be 0.01 and 0.03 respec-
tively. It is also known that B is more likely to fail (probability 0.06) if A has
failed.
{a) What is the probability of an accidental missile launch?
{by What is the probability that 4 will fail if B has failed?
(c) Are the events “A fails" and “ B fails " statistically indcpendent?
1-36 Determine whether the three events A, B, and C of Example 1.4-1 are sta-
tistically independent.
1-37 List the various equations that four events A, Ay, Ay, and A, must satisly

i are to be statistically independent.
Hiven that two events 4, and A4, are statistically independent, show that:

’ {w) A, is independent of 4,

(b) A, is independent of 4,

(c) A, is independent of 4,
*1.39 An experiment consists of randomly selecting one of five cities on Florida's
west coast for a vacation. Another experiment consists of selecting at random one
of four acceptable motels in which to stay. Define sample spaces S, and S, for the

two experiments and a combined space S = S, x S, for the combined experiment :

having the two suqupcrimcms.
*1.40 Sketch the area in the combined sample space of Example 1.6-3 correspond-
ing to the event A4 x: B where:

(@) A= {10 <x'< 15} and B= {20 < y < 50}

(b A={x=40}andB={5<yS40}

) A production line manufactures S-gal (18.93-liter) gasoline cans to a volume
tolerance of %. The probability of any one can being out of tolerance is 0.03. If
four cans are selected at random:

(a) Whatis the probability they are all out of tolerance?

(h) Whatis the probability of exactly two being out?

(¢} What is the probability that all are in tolerance?

1-42 Spacccraft arc expected to land in a prescribed recovery zone 80% of the
lime. Over a period of time, six spacecraft land.
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(a) Find the probability that none lands in the prescribed zone.

(b) Find the probability that at least one will land in the prescribed zone.

(¢) The landing programsis-called successful if the probability is 0.9 thal three
or n;orc out of six spacccralt will land in the prescribed zone. Is the program suc-
cessful?

1-43 In the submarine problem of Example 1.7-1, find the probabilities of sinking
the carrier when fewer (N = 2) or more (N = 4) torpedoes are fired.

ADDITIONAL PROBLEMS

1-44 Use the tabular method to define a set 4 that contains all integers with
magnitudes not exceeding 7. Define a second set B having odd integers larger
than —2 and not larger than 5. Determine if A <« Band if B <« 4.

l-rdj A set A has three elements a,, a5, and ay. Determine all possible subsets
of A, .

1-46 Shade Venn diagrams to illustrate each of the following sets: (@) (4 v B) n
COANBUCEMAUVBUVECADDMAANBAOVEACA D).
1-47 A universal set S is comprised of all points in a rectangular area defined by
0<x<3 and 0<y=<4 Define three sets by 4 = {y<3x-1)2}, B=

{r21}, and C={y=>3—x}. Shade in Venn diagrams corresponding to the .

sets(@ANBnCand(h)Cn Bn A

1-48 The take-off-roll distance for aircralt at a certain airport can be any number
from 80 m to 1750 m. Propeller aircraft require from 80 m to 1050 m while jets
use from 950 m (o 1750 m. The overall runway is 2000 m,

{(a) Determine sets A, B, and C defined as “ propeller aircraft take-ofT dis-
tances,” “jet aircraft take-off’ distances,” and “runway length safety margin,”
respectively.

(b) Determine the set A N B and give its physical significance,

(c) What is the meaning of the set-4 U B?

{(d) What are the meanings of thesets 4 U B u. C and 4 u B? .
1-49 Prove that DeMorgan’s law (1.2-13) can be extended 1o N events A i=1,
2,..., N asfollows '

Aind;n o ndy=A,vAdu- - udy
1-50 Work Problem 1-49 for (1.2-12) to prove
(AvvAuvdy=And, N ndy

1-51 A pair of fair dice are thrown in a gambling problem. Person 4 wins if the
sum of numbers showing up is six or less and one of the dice shows four. Person -
B wins il the sum is five or more and one of the dice shows a four. Find: (a) The
probability that 4 wins, (b) the probability of B winning, and (c) the probability
that both 4 and B win. )

1-52 You (person A4) and two others (B and C) each toss a fair coin in a two-step

]
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gambling game. In step 1 the person whose toss is not a match to either of the
other two is *odd man oul.” Only the remaining two whose coins match go on
to step 2 Lo resolve the ultimate winner.

(a) What is the probability you will advance to step 2 after the first toss?

(h) What is the probability you will be out after the first toss?

(¢) What is the probability that no one will be out after the first toss?

*1-53 The communication system of Example 1.4-2 is to be extended to the cuse
of threc transmitted symbols 0, 1, and 2. Define appropriate events 4; and B;,
i=1, 2, 3, to represent symbols after and before the channel, respectively.
Assume channel transition probabilities are all equal at P(4,;]B) = 8.1, i # j, and
are P(A,|B) = 0.8 for i = j = 1, 2, 3, while symbol transmission probabilities are
P(B,) = 0.5, P(B,) = 0.3, and P(B,) = 0.2,

(a) Sketch the diagram analogous to Fig. 1.4-2,

() Compule received symbol probabilitics P(A,), P(4;), and P(4,).

(¢} Compute the a posteriori probabilities for this system.

(d) Repeat parts (b) and (c) for all transmission symbol probabilitics cqual.
Note the cflect.
1-54 Show that there arec 2¥ — N — | equations required in (1.5-6). (Hint: Recall
that the binomial coefficient is the number of combinations of N things taken n
at a time.)
1-55 A student is known to arrive late for a class 40% of the time. If the class
meets five times each week find: (a) the probability the student is late for at least
three classes in a given week, and (b) the probability the student will not be late
at all during a given week.
1-56 An airline in a small city has five d(‘:partures each day. It is known that any
given Right has a probability of 0.3 of departing late. For any given day find the
probabilities that: (a) no flights depart late, (b) all flights depart late, and (c) three
or more depart on time.
1-57 The local manager of the airline of Problem 1-56 desires to make sure that
90% of flights leave on time, What is the largest probability of being late that the
individual flights can have if the goal is to be achicved? Will the operation have
to be improved significantly?
1-58 A man wins in a gambling game i he gets two heads in five llips of a biased
coin. The probability of getting a head with the coin is 0.7.

(@) Find the probability the man will win. Should he play this game?

(b What is his probability of winning if he wins by getting at least four
heads in five flips? Should he play this new gamc?

*1-59 A rifleman can achieve a “marksman” award if he passes a test. He is
allowed to fire six shots at a target’s bull’s eye. If he hits-the bull's eye with at
least five of his six shots he wins a set. He becomes a marksman only if he can
repeat the feat three times straight, that is, if he can win three straight sets. If his
probability is 0.8 of hitling a bull’s eye on any one shot, find the probabilitics of
his: (a) winning a sct, and (b) becoming a marksman,
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TWO
THE RANDOM VARIABLE

2.0 INTRODUCTION

In the previous chapter we introduced the concept of an event to describe charac-
teristics of outcomes of an experiment. Events allowed us more flexibility in
determining properties of an experiment than could be obtained by considering
only the outcomes themsclves. An cvent could be almost anything from
= descriptive,” such as “draw a spade,” to numerical, such as “ the outcome is 3.”

In this chapter, we introduce a new concept that will allow events to be
defined in a more consistent manner, they will always be numerical, The new
concept is that of a randont variable, and it will constitute a powerful tool in the
solution of practical probabilistic problems.

2.1 THE RANDOM VARIABLE CONCEPT

Definition of a Random Variable

We definc a real random variablet as a real function of the elements of a sample
space S. We shall represent a random variable by a capital letter (such as W, X,
or Y)and any particular value of the random variable by a lowercase letter (such

t Complex random variables are considered in Chapter S.

M
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R asw, X, 0f y). Thus, given an experiment defined by a sample space S with ele-
Wi ments 5, we assign toevery s & real number

X(s) (2.t-1)

»
according to some rule and call X(s) a random variable.

A random variable X can be considered Lo be a function that maps all ele-
ments of the sample space into points on the real line or some parts thereof. We
illustrale, by two examples, the mapping of a random variable.

ixample 2.1-1 An cxperiment consists of rolling a dic and fipping 8 coin,
The applicable sample space is illustrated in Figure 2.1-1. Let the random
variable be a function X chosen such that (1) a coin head (H) outcome corre-
sponds to positive values of X that arc equal to the numbers that show up on
the dic, and (2) a coin tail (T) outcome corresponds to negative values of X
that are equal in magnitude to twice the number that shows on the die. Here
X maps the sample space of 12 elements into 12 values of X from —12to 6
s shown In Figure 2,11,

Example 2.1-2 Figure 2.1-2 illustrates an cxperiment where the pointer on a
whee! of chance is spun. The possible outcomes are the numbers from 0 to 12
marked on the wheel. The sample space consists of the numbers in the set
{0 <5< 12} We define a random variable by the function

X=X@s=5

Points in S now map onto the real line as the set {0 < x < 144}.
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12

i

L 1
09 36 100 144 200 x  to Example 2.1-2.

As seen in these two examples, a random variable is a function that maps 3

each point in S into some point on the real line. It is not necessary that the
sample-space points map uniquely, however. More than one point in S may map

into a single value of X, For example, in the extreme case, we might map all six

points in the sample space for the experiment “throw a die and observe the
number that shows up” into the one point X = 2. '

Conditions for a Function to be a Random Variable

Thus, a random variable may be almost any function we wish. We shall, however,

require that it not be multivalued. That is, every point in S must correspond to * -

only one value of the random variable,

Moreover, we shall require that two additional conditions be satisfied in
order that a function X be a random variable (Papoulis, 1965, p. 88). First, the
set {X < x} shall be an event for any real number x. The satisfaction of this con-
dition will be no trouble in practical problems. This set corresponds to those
points s in the sample space for which the random variable X(s) does not exceed
the number x. The probability of this event, denoted by P{X < x}, is equal to the
sum of the probubilitics of all the clementary events corresponding to {X < x}.

The second condition we require is that the probabilities of the events
{X = o} and (X = — o0} be 0: ‘

P{X=—-0)=0 P(X=c0}=0 e

This condition does not prevent X from being either — o or oo for some values
of s; it only requires that the probability of the set of those s be zero.

L Figure 2.1-2 Mapping applicable
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Discrete and Continuous Random Variables

A discrete random variable is onc having only discrete values. Example 2.1-1 illus-
trated a discrete random variable. The sample space for a discrete random vari-
able can be discrete, continuous, or even a mixture of discrete and continuous
points. For example, the * wheel of chance” of Example 2.1-2 has a conlinuous
sample space, but we could define a discrete random variable as having the vitlue
1 for the set of outcomes {0 < s < 6} and —1 for {6 < s < 12}. The result is o
discretc random variable defined on a continuous sample space.

A continuous random variable is one having a continuous range of valucs. Tt
cannot be produced from a discrete sample space because of our requirement
that all -random variables be single-valued functions of all sample-space points.
Similarly, a purely continuous random variable cannot result from a mixcd
sample space because of the presence of the discrete portion of the sample space.
The random variable of Example 2.1-2 is continuous.

Mixed Random Variable

A mixed random variable is one for which some of its values are discrete and some
are continuous. The mixed case is usually the least important type of random
variable, but it occurs in some problems of practical significance.

2.2 DISTRIBUTION FUNCTIONM

The probability P{X < x} is the probability of the event {X < x}. It is a number
that depends on x; that is, it is a function of x. We call this function, denoted
Fx(x), the cumulative probability distribution function of the random variable X,
Thus,

Fx(x) = P{X < x} (2.2-1)

We shall often call Fy(x) just the distribution function of X, The argument x is any
real number ranging from — o to co.

The distribution function has some specific properties derived from the fact
that Fy(x) is a probability. These are:}

() Fy(—o0)=0 (2.2-20)
(2) Fylw) =1 (2.2-2b
() 05 Fyx) <1 (2.2-20)
(@) Fy(x,) € Fylx)) if  x, <x, (2.2-2d)
(5) P{x; <X < xp} = Fx(x3) — Fylx)) (2.2-2¢)
(6) Fx(x™)= Fylx) (2.2-2)

t We use the notation x* to imply x + ¢ where ¢ > 0 is infinitesimally small; that is, ¢ — 0.
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The first three of these properties are easy to justify, and the reader should justify
them as an exercise. The fourth states that Fy(x)isa nondecreasing function of x.
The fifth property states that the probability that X will have values larger than
some number x; but not exceeding another number X, is equal to the difference
in Fy(x) cvaluated at the two points. It is justified from the fact that the cvents
(X < x,} and {x, < X < x,} are mutually exclusive, so the probability of the
event {X sx,}={X< xJulx<Xs x,)} is the sum of the probabilitics
P{X < x} and P{x, <X = x,}. The sixth property states that Fy(x) is a func-
tion continuous from the right.

Propertics 1, 2, 4, and 6 may be uscd as tests to determine il some function,
say Gyl(x), could be a valid distribution function. If so, all four lests musl be
passcd.

If X is a discrete random variable, consideration of its distribution function
defined by (2.2-1) shows that Fy(x) must have a stairstep form, such as shown in
Figure 2.2-1a. The amplitude of a step will equal the probability of occurrence of
the value of X where the step occurs. if the values of X arc denoted x;, we may
write Fy(x) as

N
Fylx)= L P{X= xJt(x — x)) (2.2-3)
i=1
where (+) is the unit-step function defined byt
1 x20
= 2-4
1(x) {0 20 (2.2-4)

and N may be infinite for some random variables. By introducing the shortencd

notation
P(x) = P{X = x} (2.2-5)

(2.2-3) can be written as

N
Fyx) = T Plxulx — xi) (2.2-6)
=1

We next consider an example that illustrates the distribution function of a
discrete random variable.

Example 2.2-1 Let X have the discrete values in the set {—1, -0.5, 0.7, 1.5,
3} The corresponding probabilitics are assumed to be {0.1, 0.2, 0.1, 04, 0.2}.
Now P{X < —1} = 0 because there arc no sample space points in the sct
{X < —1}. Only when X = —1 do we obtain onc outcome. Thus, there is an
immediate jump in probability of 0.1 in the function Fy(x) al the point
y= =1 For =l <x< —0.5, there arc no additional sample space points so
Fy(x) remains constant at the value O.1. At x = —0.5 there is another jump of

t This definition dilfers slightly from (A-5) by including the equality so that 1{x) satislies (2.2-2/)

L
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Fx(X)
T Tt —
0.5
i 1 | 1 1

- 0 ; ! 2 3 Y
-0.5 0.7 1.5
(a)
Sx(x)
0.6}
04l 0.4
0.2 0.2
0.1 t 0.2+ o 1
A b, .
-1 0 I 2 3 x
)

Figure 2.2-1 Distribution function {(a) and density function (b) applicable to the dscrele random vari-
able of Example 2.2-1. [Adapted from Peebles (1976) with permission of publishers Addison-Wesley,
Advanced Book Program.)

0.2 in Fyx(x). This process continues until all points are included. Fx(x) then
equals 1.0 for all x above the last point. Figure 2.2-1a illustrates F(x) for this
discrete random variable.

A continuous random variable will have a continuous distribution function.
We consider an example for which Fy(x) is the continuous function shown in
Figure 2.2-2a.

Example 2.2-2 We return to the fair wheel-of-chance cxperiment. Let the
wheel be numbered from 0 to 12 as shown in Figure 2.1-2. Clearly the prob-
ability of the cvent {X < 0} is O because there are no sample space points in
this set. For 0 < x < 12 the probability of {0 < X < x} will incrcase linearly
with x for a fair wheel. Thus, F y{(x) will behave as shown in Figurc 2.2-2a.

The distribution function of a mixed random variable will be a sum of two
parts, one of stairstep form, the other continuous. ’
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FX‘X)
1.0 S
0.5
~~;s"j,
1
0 6 12 x
(a)
[x{x)
A
12
Figure 22-2 Distribution [function (a) and
density function (b) applicable to the continuvous
; 1 random variable of Example 2.2-2. [Adapted
6 12 x  from Peebles (1976) with permission of publishers
) Addison-Wesley, Advanced Book Program.]

2,3 DENSITY FUNCTION

The probability deusity function, denoted by fx(x), is defined as the derivative of
the distribution function:

. {F y(x)
‘ Six) = fd—’;’f- (2.3-1)

We often call fy(x) just the density function of the random variable X,

Existence

If the derivative of Fy(x) exists then f(x) exists and is given by (2.3-1). There may,
however, be places where dFy(x)/dx is not defined. For example, a continpous
random variable will have a continuous distribution Fy(x), but Fy(x) may have
corners (points of abrupt change in slope). The distribution shown in Figure
2.2-2a is such a function. For such cases, we plot fy(x) as a function with step-
type discontinuities (such as in Figure 2.2-2b). We shall assume that the number
of points where F,(x) is not differentiable is countable. '
For discrete random variables having a stairstep form of distribution func-
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tion, we introduce the concept of the unit-impulse function 3(x) to describe the
derivative of Fy(x) at its stairstep points. The unit-impulse function and ils
propertics are reviewed in Appendix A, Tt is shown there that 8(x) may be delined
by its integral property

Plxg) = Jw P(x)0(x ~ xo) dx (2.3-2)

where ¢(x) is any function continuous at the point x = xg; 6(x) can beinterpreted
as a “function” with infinite amplitude, area of unity, and zero duration, The
unit-impulse and the unit-step functions are related by

5(x) = % (2.3-3)
or
r 5(8) dE = u(x) (2.3-4)

h

The more general impulse function is shown symbolically as a vertical arrow
occurring at the point x = x, and having an amplitude equal to the amplitude of
the step function for which itis the derivative,

We return (o the case of a discrete random variable and differentinte Fy(x),
as given by (2.2-6), lo obtain

N

Sxlx) = z Plx)d(x — x) (23-5)

l=1

Thus, the density function for a discrete random variable exists’in the sense that
we use impulse functions to describe the derivative of Fy(x) at its stairstep points.
Figure 2.2-1b is an example of the density function for the random variable
having the function of Figure 2.2-1a as its distribution.

A physical interpretation of (2.3-5) is readily achicved. Clearly, the probabil-
ity of X having one of its particular values, say x;, is a number P(x,). If this prob-
ability is assigned to the point x,, then the density of probability is infinite
because @ point has no “width” on the x axis. The infinite “amplitude™ of the
impulse function describes this infinite density. The “size” of the density of prob-
ability at x = x, is accounted for by the scale factor P(x,) giving P(x))é(x — x;) for
the density at the point x = x,.

|
|
!
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Propertics of Density Functions

Scveral properties that fx(x) satisfics may be stated:
(1) 0s/fxlx) allx

) r filx) dx = 1

S

©) Fx(-‘)'—'-j_ Jx(8) d¢ (2.3-6¢)

x1
4 Plxy<X< X3} = [ Sx(x) dx (2.3-64)

X1
Proofs of these properties are left to the reader as exercises. Properties 1 and 2
require that the density function be nonnegative and have an area of unity. These
{wo propertics may also be used as tests to see if some function, say gx(x), can be
a valid probability density function. Both tests must be satisfied for validity.
Property 3 is just another way of writing (2.3-1) and serves as the link between
F ¢(x) and fy(x). Properly 4 relates the probability that X will have values {from x,
to, and including, x, to the density function.

Example 2.3-1 Let us lest the function gx(x) shown in Figurc 2.3-1a to sce il
it can be a valid density function. 1t obviously satisfics property | sincc it is
nonncgative. Its arca is ax which must equal unity to satisly property 2.
Therefore a = 1/a is necessary if gx(x)istobea density.

Suppose a = l/o. To find the applicable distribution function we first

wrile
0 Xog—=a> X2 Xg+ 0
1
—(x—Xot+a& Xo— S X <X
g = {2 ST °
1 !
;—;—z(x—xo) Xog SX <X+ a

Next, by using (2.3-6¢), we obtain

0 Xo — 0> X
- X l 2
J gx(é‘)dé=7&3(x—xo+a) Xg — & S X < Xo
xqg—a
G.\'(~")=<l x . (. 1 2
§+ xo{lx({)‘é—z’*‘a(x“xo)—zaz (x — Xo
Xg S X <X+ 0

1 Xgt+tasx

This function is plotted in Figure 2.3-1b.

(2.3-6a).”

236y &,
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0 Xg - Xo X to X
(a)
Gylx)|fora=— | | |
1 1 1
i | i
] | |
1.0F | | -
1 | {
| | |
A
0.5}
5 [ | |
i | |
| | I A
! ] Figure 23-1 A possible probability
0 Ko - Xo Xo ta X density function (a) and 8 distribution

(3] function (b) applicable to Examnple 2.3-1.

Example 2.3-2 Supposc a random variable is known to have the triangular
probability density of the preceding example with xo =8, a= 5 and a=
1/a = '/, . From the carlier work

0 I>x213
Sx(x) = {(x —3)/25 3gx<8
0.2 — (x — 8)/25 . §<x <13

We shall use this probability density in (2.3-6d) to find the probability that X
has values greater than 4.5 but not greater than 6.7. The probability is

6.7

K

P45 <X <67} = J [(x — 3)/25] dx
= 0.2288

.-. 1 [x?
' —25[2 —3'{] 4.5

Thus, the event {45 < X < 6.7} has a probability of 0.2288 or 22.88%.

6.7

2.4 THE GAUSSIAN RANDOM VARIABLE

A random variable X is called gaussiant if its density function has the form

1
Sxx) = \/—5-:—;5

t After the German mathemaltician Johann Friedrich Carl Gauss (1777-1855). The gaussian
density is often calied the normal density.

e - ax)3/20xt

(2.4-1)

~
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/‘x (x)

!

oo [T

S

0 ay -0y ax ay +ox x

Fx(x)

Figure 2.4-1 Density (a) and
distribution (h) functions of o
) gaussian rundom variable,

0 dy-oy dy uy toy X

where gy > 0 and ~ o0 < ay < oo are real constants. This function is sketched in
Figure 2.4-la. Its maximum value (2no})~!/? occurs at x = ay. Its “spread”
abogt the point x = ay is related to gy, The function decreases to 0.607 times its
maximum at x = ay + oy and x = ay — oy,

The gaussian density is the most important ot all densities. It enters into
nearly all areas of engineering and science. We shall encounter the gaussian
rz;ndt?m variable frequently in later work when we discuss some important types
of noise.

The distribution function is found from (2.3-6¢) using (2.4-1). The integral is

Fx(x) =

This integral has no known closed-form solution and must be evaluated by
numerical methods. To make the results generally available, we could develop a
set of tables of Fy(x) for various x with a, and o as parameters. However, this
approach has limited value because there is an infinite number of possible com-

l . :
Ve [ a (2.4)
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binations of ay and @y, which requires an infinite number of tables, A hetter
approach is possible where only one table of Fy(x) is developed that corresponds
(o normalized (specific) values of ay and oy, We then show that the one table can
be used in the general case where ay and gy can be arbitrary.

We starl by first selecting the normalized case where ay = 0 and oy = 1.
Denote the corresponding distribution function by F(x). From (2.4-2), F(x) is

] x
Flx) = —= p =32 (2.4-3)
(x) o me dg

-

which is a function of x only. This function is tabularized in Appéndix B for .

x 2 0. For negalive values of x we use the relationship
F(-x) =1 = F(x) (2.4-4)

To show that the general distribution function Fy(x) of (2.4-2) can be lound
in terms of F(x) of (2.4-3), we make the variable change

w=(§ = ay)oy (2.4-5)
in (2.4-2) to obtain ‘
Fylx) = —-l— J‘(x’"!"”(‘ =l dy (2.4-0)
X \/2—7! »

From (2.4-3), this expression is clearly equivalent to
x—a
Fylx) = 1(———i‘> (2.4-7)
Tx

Figure 2.4-1b depicts the behavior of Fy{x).
We consider two examples to illustrate the application of (2.4-7).

Example 2.4-1 We find the probability of the event {X < 5.5} for a gaussian
random variable having ay =3 and oy = 2.

Here (x — ay)/oyx = (5.5-3)/2 = 1.25. From (24-7) and the definition of
Fy(x)

P{X < 5.5} = Fy(5.5) = F(1.25)
By using the table in Appendix B

P{X < 5.5} = F(1.25) = 0.8944

s

-~
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Example 2.4-2 Assume that the height of clouds above the ground at some
location is a gaussian random variable X with ay = 1830 m and gy = 460 m.
We find the probability that clouds will be higher than 2750 m (about
9000 ft). From (2.4-7) and Appendix B:
P{X > 2750} =1 — P{X <2750} =1 — F(2750)
) 2750 — 1830
1—r( 260 >—1—F(2.0)

| — 09772 =0.0228

i

i

I

The probability that clouds are higher than 2750 m is thercforc about 2.20
percent if their behavior is as assumed.

2.5 OTHER DISTRIBUTION AND DENSITY EXAMPLES

Many distribution functions are important enough to have been given names. We
give five examples. The first two are for discrete random variables; the remaining
three are for continuous random variables. Other distributions are listed in

Appendix F.

Binomial
LetO<p<land N = 1,2,..., then the function
N [N
S =2 (k>l’*(l — RS — k) 25-)
k=0

is called the binomial density function. The quantity (M is the binomial cocfficient

defined in (1.7-4) as
Ny N (2.5-2)
k kYN — k)

y can be applied to the Bernoulli trial experiment of Chapter
I. It applics to many gamcs of chance, detection problems in radar and sonar,
and many cxperiments having only two possible outcomes on any given trial.

By integration of (2.5-1), the binomial distribution function is found:

Fyx) = i (N> *1 - W rfx — k) (2.5-3)
X)) = X P P S .

k=0

The binol.ni:\l densit

Figure 2.5-1 illustrates (he binomial density and distribution functions for

N = 6and p =025

T Aty B e LT

© fx(x)
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0.3560
0.2966
0.3}
0.1780 0.1318
0.0330
0.0044 0.0002
) I 1
0 1 2 3 4 S 6 x
(a)
Fx(x)
1ok 0.9624 0.9954 0.9998 1.0000
0.8}06
0.5340
Q.5
J.1780
5 |l 1 A z L 1 Figure 2.5-1 Binomial density (a) and
2 3 4 5 6 x  distribution (b) functions for the case
) N = 6 and p = 0.25.
Poisson

The Poissont random variable X has a density and distribution given by

) k
fi) = e T 2o = (2.5-4)
k=0 .
o0 bk
Fabx)=e™ 3 ulx =K (2.5-5)
k=Q

where b > 0 is a rcal constant. When plotted, these functions appear quite similar
to thosc for the binomial random variable (Figure 2.5-1). In fact, it N— oo and
p— 0 for the binomial case in such a way that Np = b, a constant, the Poisson
case results. ;

The Poisson random variable applies to a wide variety of counting-type
applications. It describes the number of defective units in a sample taken from a
production line, the number of telephone calls made during a period of time, the

t After the French mathematician Siméon Denis Poisson (1781-1840).
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number of electrons emilted {rom a small section of a cathode in a given time
interval, etc. If the time interval of interest has duration T, and the events being
counted are known to occur at an average rate 4 and have a Poisson distribu-
tion, then b in (2.5-4) is given by

b=AaT (2.5-6)
We illustrate these points by means of an example.

The

Example 2.5-1 Assume automobile arrivals at a gasoline station are Poisson
and occur at an average rate of 50/h. The station has only one gasoline
pump. If all cars are assumed to require one minute to'. obtain fuel, what is
the probability that a waiting line will occur at the pump?

A waiting line will occur if two or more cars arrive in any one-minute
interval, The probability of this event is one minus the probability that either
none or one car arrives. From (2.5-6), with 1 = 3%/, cars/minute and T = |
minute, we have b = %, On using (2.5-5)

Probability of a wailing line = 1 — Fy(1) — F,(0)
= | - 0'5/6[1 + -g:l = 0.2032

We therelore expect a line at the pump about 20.32% of the time.

Uniform

The uniform probability density and distribution functions are defined by:

_Jib—a) asxsb
Jxlx) = {0 clsewhere (2.5-7) |
0 x<a
Fy(x)y={(x—a)(b—a) a<x<b (2.5-8)
l bsx

for real constants —o0 < a < 0 and b > a. Figure 2.5-2 illustrates the behavior
of the above two functiohs.

The uniform density finds a number of practical uses, A particularly impor-
tant application is in the quantization of signal samples prior to encoding in
digital communication systems. Quantization amounts to “rounding off ” the
actual sample to the nearest of a large number of discrete “ quantum levels.” The
errors introduced in the round-ofT process are uniformly distributed.

3 am e
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Nitx)

(b = a)

(a)

]
|
|
|
|
L Figure 2.5-2 Uniform probubility dcns.ity
0 a b X function (a) and its distribution function
(&) (h).
Exponential

The exponential density and distribution functions are:

l » = (x—aljb ]
S =<b ¢ ' (2.5-9)
0 x<a
| —g~tx-a® x>a (2.5-10)
Falx) = {0 x<a

for real numbers — oo < a < o and b > 0, These functions are plotted in Figure
2.5-3. o ' . '

The cxponential density is useful in describing raindrop sizes when a large
number of rainstorm measurements are made. It is also known to appx:oxxmalcly
describe the fluctuations in signal strength received by radar from certain types of
aircraft as illustrated by the following example.

Example 2.5-2 The power reflected from an aircraft of complicated shape

that is received by a radar can be described by an exponential random vari- -

able P, The density of P is therefore

1
.._e'PIl"o P>0

Je(p) =< Py
0 p<0

-

i
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Seix)

LY

—

b

(@)

| - etx-ati®

0 a X Figure 2.5-3 Exponential density
12 {a) and distribution (b) functions.

where P, is the average amount of received power. At some given time P
may have a value different from its average value and we ask: what is the
probability that the received power is larger than the power received on the

average?
We must find P{P > Po} =1— P{P S Po}=1- Fp(P). From (2.5-10)

P{P>Po}=1—-(1- g~ PoPoy = ¢~ = 0.368
In other words, the received power is larger than its average value about 36.8
per cent of the time.

Rayleigh
The Rayleigh‘f density and distribution functions are:
2
2y — qle- X
fay =5 aje x2a (2.5-11)
0 x<a
| — g txonp xza
Fylx) = { (2.5-12)
0 x<a

t Named for the English physicist John Willinm Steutl, Lord Rayleigh (1842-1919).
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fxlx)

0.607 /Z
b

n a a+/-b; x

(a)

0 a at

N

2 Figure 2.5-4 Rayleigh density (a)
(b) and distribution () functions.

for real constants —o0 <a<® and b > 0. These functions are plotted in

Figure 2.5-4.
The Rayleigh density describes the envelope of one type of noise when passed

through a bandpassfilter. It also is important in analysis of errors in various
measurement systems.

2.6 CONDITIONAL DISTRIBUTION AND
DENSITY FUNCTIONS

The concept of conditional probability was introduced in Chapter 1. Recall that,
for two events A and B where P(B) # 0, the conditional probability of 4 given B

had occurred was

P(A|B) = f@ﬁ%ﬂ. (2.6-1)

In this scction we extend the conditiona! probability concept (o include random

variables.
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Conditional Distribution

Lel 4 in (2.6-1) be identified as the event {X < x} for the random variatle X. The

resulting probability P{X < x| B} is defined as the conditional distribution func-
tion of X, which we denote Fy(x|B). Thus

P(X <xn B)

Falx|B) = PLX < 318} = =52

where we use the notation {X < x n B} to imply the joint event {X < x} n B,
This joint event consists of all outcomes s such that

X)) < x and seB (2.6-3)

The conditional distribution (2.6-;'2

) applies to discrete, continuous, or mixed
random variables.

Properties of Conditional Distribution

All the properties of ordinary distributions apply to Fy(x|B). In other words, it
has the following characteristics:

(1) Fy(—o0|B)=0 (2.6-4a)
(2 Fx(w|B)=1 (2.6-4b)
(3) O Fyx|BY< 1 (2.6-4¢)
(4) Fx(x,1B) < Fy(x,|B) il x,<x,; (2.6-4d)
() P{x, <X <x,|B} = Fy(x3|B) — Fy(x,| B) (2.6-4¢)
(6) Fx(x™|B) = Fy(x| B) (2.6-4f)

These characteristics have the same general meanings as described earlier follow-
ing (2.2-2). '

Conditional Density

In a manner similar to the ordinary density function, we define conditional density

Junction of the random variable X as the derivative of the conditional distribution

function. If we denote this density by f,(x| B), then

Jx(x|B) =

dF (x| B)
" (2.6-5)

If Fx(x| B) contains step discontinuities, as when X is a discrete or mixed random

variable, we assume that impulse functions are present in fi(x| B) to account for
the derivatives at the discontinuitics.

(2.6-2),
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Propertics of Conditional Density

Because conditional density is related to condilioqal distribq(ion lhr'ougl}nlhc
derivative, it satisfies the same properties as the ordinary density function. They
are:

(1) fx(x1B)20 , (2.6-6a)
¥)] J.m Sx(x|B) dx =1 (2.6-6b)
(3) Fy(x|B)= f Jx(1B) d¢ . (2.6-6¢)
(@) Plx, <X <x;|B) = I" Sxlx| B) dx (2.6-64)

We take an example to illustrate conditional density and distribution.

le 2.6-1 Two boxes have red, green, and blue balls in.thcm; tt}c num-
E:ra:)nfpballs of each color is given in Table 2.6-1. Our experiment will be to
select a box and then a ball from the selected box. One box (number 2{15
slightly larger than the other, causing it to b? select'cd more freq‘t‘lcntly. ;l
B, be the event “select the larger box” while B, is the event “select the
smaller box.” Assume P(B,) = ¥, and P(B;) = ¥%,. (B, and B, are mutuall){
exclusive and B, u B, is the certain event, since some box must be sclected;
therefore, P(B,) + P(B,) must equal unity.)
Now define a discrete random variable X to have values x; = 1, x, = 2,
and x5y = 3 when a red, green, or blue ball is selected, and let B be an event
equal to cither B, or B,. From Table 2.6-1:

5 80
PX =1|B=B)=10  P(X=1]8=DB)=1{1g
35 . 60
PX=2|B=B)=15  PX=2|B=8)=15
60 ! 10
P(X=3|B=B)=1 PX=3|B=B)=15

Table 2.6-1 Numbers of colored
balls in two boxes

Box
X, Ball color 1 2 Totals
1 Red 5 80 85
2 Green 35 60 95
3 Blue 60 10 70
Tolals 100 150 250
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The conditional probability density Sx(x|B,) becomes
5 35 60
Sx(x|By) = 100 Sx -1+ 100 S(x—2) + 00 3(x —3)

By direct integration of fx(x|B,):

5 35 60
Fx|B,) = —5 uix —1 4 ——ulx—2 +— u{x — 3
(1 By) = o i = 1)+ g o = ) g5 1 = 3
Fyto) or Fylxify)
1.000
1.0
0.827 !
| Fx(x}
%
0.437 ~0_..420 _!
ll S Ryt
1
0.050 |
=== 1
0 | 2 3 x
(a)
fx("m|)
0.600
0.6 {
0.4 0.350
0.2
0.050
0 1 2 3 X
(2]
[x(x)
0.437
0.4 0.390
0.2 0.173
t Figure 2.6-1 Distributions (a)and den-
0 | 2 3 x  sities () and (c) applicable to fxams
() ple 2.6-1.
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For comparison, we may find the density and distribution of X by deter-
mining the probabilities P(X = 1), P(X =2), and P(X = 3). These are found
from the total probability theorem embodied in (1.4-10):

P(X = 1) = P(X = 1| B)P(B,) + P(X = 11B,)P(B,)

s (2\ 80 (8
3 (A B (L) =04
100<1o)+150(10> 0437

35 (2 60 (8
PX =2)=7 <1o> +1—5(—)<ﬁ> = 0.390

60 (2 10 (8
P(X =3) —.]_?)(-1—0> +-ﬁa <-1-6> =0.173

[(x) = 0437 8(x — 1) + 0390 8(x — 2) + 0.173 8(x = 3)

Thus

and
Fy(x) = 0.437u(x — 1) + 0.390u(x — 2) + 0.173u(x - 3)

These distributions and densities are plotted in Figure 2.6-1.

*Methods of Defining Conditioning Event

The preceding example illustrates how the conditioning event B can be defined
from some characteristic of the physical experiment. There are several other ways
of defining B (Cooper and McGillem, 1971, p. 61). We shall consider two of these

in detail.
In one method, event B is defined in terms of the random variable X. We

discuss this case further in the next paragraph. In another method, cvent B may
depend on some random variable other than X. We dJiscuss this case further in

Chapter 4. ]
One way lo define’event B in terms of X is tolet

B={X <b) (2.6-7)

where b is some real number —o0 < b < 0. After substituting (2.6-7) in (2.6-2),
we gett ’

P(X<xnXsgb}
SX =Y (2.6-8)

Fyx|X <b)=P{X s x|X b} =

1 Notation vsed has allowed for deletion of some braces for convenicnce. Thus, Fy(x]{X S b})is
writien Flx] X < b)and P({X < x) A (X < b)) becames PXsxn X<h).

~
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for all events {X < b} for which P{X < b} # 0. Two cases must be considered;
one is where b < x; the second is where x < b If b < x, the cvent {X < D) is a
subset of The evenT (X Z X, 50 (X s x} n {X < b} = {X < b). Bquation (2.6-8)
becomes

_PX<sxnX<b) P{X<b)
Fxel X < b = == 2 b “P(Xx<b)}

1 bs<x (269

When x<b the event {X <x} is a subset of the event {X <b}, so
{X <x} n {X b} = {X < x} and (2.6-8) becomes

PIX<xnXsb) P{X<x} Fy(x)

Fy(x|X <b) = = = <b (26-1
X SD)===prr <l ~Pxso "R <P @610
By combining the [ast two expressions, we obtain ‘
Fy(x)
= <b
Fx1X <b)={Fb) ~ 26-11)
1 b<sx
Fx(x|X &) or Fy(x)
g =
™~ Fx(xIX < 6)
———
[ b x
(a)
[x (xIX < b)or fx(x)

Sx(xiX <b)

Ix(x)

0 b x
)

Figure 2.6-2 Possible distribution functions (a) and density functions (b) applicable to a conditioning
event B (X 5 b).
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I'he conditionad density function derives from the derivative of (2.6-11):

L) A,
Sex) X sby={Fxb) [ry fx(x)dx (2.6-12)
0 x=b

Figure 2.6-2 sketches possible functions representing (2.6-11) and (2.6-12).

From our assumption that the conditioning cvent has nonzero probability,
we have 0 < Fy(b) < 1, so the expression of (2.6-11) shows that the conditional
distribution function is never smaller than the ordinary distribution function;

Fy(x1X < b) 2 Fy(x) (2.6-13)

A similar statement holds for the conditional density function of (2.6-12)
wherever it is nonzero:

SxlxlX < b) 2 fy(x) x<b Yo(2.6-14)

The principal results (2.6-11) and {2.6-12) can readily be extended to the more
general event B = {a < X < b} (sce Problem 2-39).

Example 2.6-2 The radial *'miss-distance” of landings from parachuling sky
divers, as measurcd from a target’s center, is a Rayleigh random variable
with & = 800 m? and « = 0. From (2.5-12) we have

Fy(x) = [1 = e~ *8007(y)

The target is a circle of 50-m radius with a bull's eye of 10-m radius. We find
{the probability of a parachuter hitting the bull’s eye given that the landing is
on the target,
The required probability is given by (2.6-11) with x = 10 and b = 50:
P(bull’s eyc|landing on target) = Fy(10)/F 4(50)
= (l — L’- IOOIHOO)/(I - L,-IS()()/K()()) - 0'122()

Parachuter accuracy is such that about 12.29% of landings falling on the
target will actually hit the bull’s cye.

PROBLEMS

2-1 The sample space for an experiment is § = {0,- 1, 2.5, 6}. List all possible
values of the following random variables:
(@) X =2s
(b) X =552~ 1|
(¢) X = cos ns)
(d)y X =(1 —=3s)7!
2-2 Work Problem 2-1for § = {-2 < s < 5}.

[T
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2-3 Given that a random variable X has the following possible valucs, state il X
is discrete, continuous, or mixed.

(@) {-20 <x < =5}

h {10, 12 <x < 14, 15,17}

{c) {—10fors>2and Sfors< 2, where | < s < 6}

@ {4,3.1,1, -2}

2-4 A random variable X is a function. So is probability P. Recall that the
domain of a function is the sct of values its argument may take on while its range
is the sct of corresponding values of the function. In terms of scls, cvents, and
sumple spaces, state the domain and range for X and P,

2.5 A man matches coin {lips with a {riend. He wins $2 if coins match and loses
$2 if they do not match. Sketch a sample space showing possible outcomes for
this experiment and illustrate how the points map onto the real linc x that defincs
the vatucs of the random variable X = “dollars won on a trial.” Show a sccond
mapping for a random yariable Y = *dollars won by the fricnd on a trial.”

2-6 Temperature in a given city varics randomly during any year from —21 to
49°C. A housc in the cily has a {hermostat that assumes only three positions: 1
represents “call for fieat below 18.3°C." 2 represents “dead or idle zone,” and 3
represents “call for aic conditioning above 21.7°C." Draw a sample space for
this problem showing the mapping nccessary o definc a random variable
X =" thermostat setting.”

2-7 A random voltage can have any value defined by theset S ={a<s s b). A
quantizer divides S into 6 equal-sized contiguous subscts and gencrales a voltage
random variable X having values {—4, =2, 0, 2, 4, 6. Each valuc of X is equal
to the midpoint of the subset of S from which it is mapped.

{a) Sketch the sample space and the mapping to the linc x that defines the
values of X.

(b) Find a and b.

*2.8 A random signal can have any voltage value (at a given time) defined by the
set S={1py<sS ay}, where ao and ay are real numbers and N is any integer
N > 1. A voltage quantizer divides S into N equal-sized contiguous subsets and
converts the signal level into one of a set of discrete levelsa,, n=1,2..., N, that
correspond to the “input” subsets {a,-; <$ S a,). The set {aj, az,...s ay) can
be taken as the discrete values of an “output” random variable X of the quan-
tizer. If the smallest “input” subsct is defined by A =a; — ao and other subsets
by a, = do-y = 2" 1A, detcrmine A and the quantizer levels a, in terms of ag, ax,
and N.

2-9 An honest coin is tossed three times.

{a) Sketeh the applicable sample space S showing all possible clements.
Let X be a random variable that has values representing the number of
heads oblained on any triple toss. Sketch the mapping of § onto the real line
defining X.

(b) Find the probabilities of the values of X.

2-10 Work Problem 2-9 for a biased coin for which p{hcad} = 0.6.

THE RANDOM VARIABLE 59

2-11 !{gsislor R, in Figure P2-11 is randomly selected from a box of resistors
conlaining 180-0, 470-Q, 1000-0, and 2200-Q resistors. All resistor values have
the same likelihood of being selected. The voltage E, is a discrete random vari-

: « able. Find the set of values E, can have and give their probabilities.

R, =820Q

E, i

o Figure P2-11

2.12 Bolts made on a production linc are nominally designed to have a 760-mm
length. A go-no-go testing device eliminates all bolts less than 650 mm and over
920 mm in length. The surviving bolts are then made available for sale and their
lengths are known to be described by a uniform probability density function.
A cerlain buyer orders all bolts that can be produced with a +5% tolerance
about the nominal length. What fraction of the production line's output is he
purchasing?

2-13 Find and sketch the density and distribution functions for the random vari-
ables of parts (a), (b), and (c) in Problem 2-1 if the sample spacc elements have
cqual likelihoods of oceurrence.
2-14 Il temperature in Problem 2-6 is uniformly distributed, sketch the density
and distribution functions of the random variable X,
2-15 For the uniform random variable defincd by (2.5-7) find:

(a) P{0.9a + 0.1b < X 5 0.7a + 0.3b}

(b) P{la+b)2<X < b}
2-16 Determine which of the following are valid distribution functions:

| —e™*? x>0
(a) Gylx) =
' x<0
0 x<0
(b) Gylx) = {05+ 05 sin [n(x — 1)/2] 0<x<?

1 x22
. .
(€) Gxlx)= p [1{x — a) — u(x — 2a)]
2-17 Dectermine the real constant a, for arbitrary real constants m and 0 < b,

such that
Ju(x) = ae~lx-mit

is 2 valid density function (called the Laplacet density).

1 After the French mathematician Marquis Pierre Simon de Laplace (1 749-1827).
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2-18 An intercom system masler stalion provides music to six hospital rooms.
The probability that any one room will be switched on and draw power at any .

time is 0.4. When on, a room draws 0.5 W.

(@) Find and plot the density and distribution functions for the random vari-
able ** power delivercd by the master station.”

(b) If the master-station amplifier is overloaded when more than 2 W is
demanded, what is its probability of overload?

*2-19 The amplifier in the master station of Problem 2-18 is replaced by a 4-W '..

unit that must now supply 12 rooms. Is the probability of overload better than if
two independent 2-W units supplied six rooms each?

2-20 Justify that a distribution function F(x) salisfies (2.2-2a, b, c).

221 Use the definition of the impulse function to evaluate the following
integrals, i
(Hint: Refer to Appendix A.) '

4
(a) J (3x? + 2x — 4)3(x — 3.2) dx
3

(b) j ? cos (6nx)d(x ~ 1) dx

-

© J' “ 245(x — 2) dx
o XY+ 3x2 42

(ht J’w O(x = xg)e Iux (x

3
(e) J. u(x — 2)6(x — 3) dx
-3

2-22 Show that the properties of a density function fy(x), as given by (2.3-6), arc
valid.
2-23 For the random variable defined in Example 2.3-1, find:
(a) P{xo ~ 0.6a < X < xo + 0.3a}
(b) P{X = xo}
2-24 A random variable X is gaussian with ay = Oand oy = 1.
(a) What is the probability that | X | > 27
(b) What is the probability that X > 27

2-25 Work Problem 2-24 if ay = 4 and oy = 2.

226 For the gaussian density function of {2.4-1), show that

J.w xfx(x) dx = ax

-

t The quantity / is the unit-imuginary; that is, j = /= 1.
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2-27 For the gaussian density function of (2.4-1), show that
j (x = ax)fx(x) dx = o}
-

2-28 A production line manufactures 1000-Q resistors that must satisfy a 10%
tolerance,

{a) If resistance is adequately described by a gaussian random variable X for
which ay = 1000 Q and gy = 40 Q, what fraction of the resistors is expected to be
rejected?

(b) if a machine is not properly adjusted, the product resistancés change to
the case where ay = 1050 Q (5% shift). What fraction is now rejected ?

2-29 Cannon shell impact position, as measured along the line of fire from the
target point, can be described by a gaussian random variable X. It is found that
15.15% of shells fall 11.2 m or farther from the target in a direction toward the
cannon, while 5.05% fall farther than 95.6 m beyond the target. What arc ay and
ay for X?

2-30 (a) Use the exponential density of (2.5-9) and solve for I, defined by.

= f " Xy d

(b) Solve for I, definced by

1, =j Xfy(x) dx
©
{¢) Verify that I, and I, salisfy the equation /, — I3 = b2,
2-31 Verify that the maximum value of fy(x) for the Rayleigh density function of
(2.5-11) occurs at x =a + \/172. and is equal to \/573 exp (— ') ~ 0.607@.
This value of x is called the mode of the random variable. (In general, a random
variable may have more than one such value—explain.)
2-32 Find the value x=x, of a Rayleigh random variable for which
P{X < xo} = P{xq < X}. This value of x is called the median of the random vari-
able.
2-33 The lifetime of a system expressed in weeks is a Rayleigh random variable
X for which
(x/200)e %1400 0 < x

Julxy= {o x<0

(a) What is the probability that the system will not last a full week?
(b) What is the probability the system lifctime will exceed one year?
2-34 The Cauchyt rapdom variable has the probability density function

Ji) = 2L

b* + (x = a)?

t After the French mathematician Augustin Louis Cauchy (1789-1857),

e
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for real numbers 0 < b and — 0 <a < 0. Show that the distribution function of

Xis
. 11 o fx—u
Fy(x) = 3 + - tan ( b )

2-35 The Log-Normal density function is given by
exp {—[In (x = b) — ax]*/20}}

Jx(x¥) = ﬁ;ax(x —b)
0 x<b

x2b

for real constants 0 <oy, —c0 <ay <o, and —o0 <b < o, where In (x)
denotes the natural logarithm of x. Show that the corresponding distribution
function is

ln(x—-b)-—ax]
F| ————— x2b
Fy(x) = [ Ox

0 x<b

where F(+)} is given by (2.4-3). ,
2-36 A random variable X is known to be Poisson with b = 4.
(a) Plot the density and distribution functions for this random variable.
(b) What is the probability of the event 0= X <517
2-37 The number of cars arriving at a certain bank drive-in window during any
{0-min period is a Poisson random variable X with b = 2. Find:
(a) The probability that more than 3 cars will arrive during any 10-min
period.
i(b) The probability that no cars will arrive.
2.38 Rework Example 2.6-1 to find fy(x|B,) and Fy(x|B,). Sketch the two
functions.
*2.39 Extend the analysis of the text, that leads to (2.6-11) and (2.6-12), to the
more general event B={a < X < b}. Specifically, show that now

0 x<a

Fx(x) = Fx(a)

Fy(xfa<X sb)= F(b) = Fa(@ agsx<b

1 bsx

and
0 x<a

Sx(x) L)
flxla < X $B) = 4 Tl = L) dx

0 b<sx

a<x<h
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*2.40 Consider the system having a lifetime defincd by the random variable X in
Problem 2-33. Given that the system will survive beyond 20 weeks, find the prob-
ability that it will survive beyond 26 weceks.

ADDITIONAL PROBLEMS

2-41 A sample space is defined by S = {1,2<5<3, 4, 5}. A random variable is
defined by: X =2 for 0<s<25 X=3 for 25<5<3.5, and X =35 for
35<s5s<6.

(a) Is X discrete, continuous, or mixed?

(b) Give a set that defines the values X can have.

2-42 A gambler flips a fair coin three times.

(a) Draw a sample space S for this experiment. A random variable X rep-
resenting his winnings is defined as follows: He loses $1 if he gets no heads in
three flips; he wins $1, $2, and $3 if he obtains 1, 2, or 3 heads, respectively. Show
how elements of $ map to values of X. :

(b) Whal are the probabilities of the various values of X7
2-43 A function Gx(x) = a[l + (2/m) sin™! (x/c)] rect (x/2¢) + (u + bju(x — ¢) is
defined for all ~o0 < x < co, where ¢ > 0, b, and a are real constants and rect (+)
is defined by (E-2). Find any conditions on a, b, and c that will make Gx(x) a
valid probability distribution function. Discuss what choices of constants corre-
spond to a continuous, discrete, or mixed random variable.

2-44 (a) Generalize Problem 2-16(a) by finding values of real constants a and b
such that

Gx(x) = [1 — a exp'(—x/b)]u(x)
is a valid distribution function. '
(b) Are there any values of a and b such that G,(x) corresponds to a mixed

random variable X? .
2-45 Find a constant b > 0 so that the function

: e¥/4  0<x<b
\1 Sulx) = {0 / cliwhfrc
is a valid probability density.
2-46 Given the function

- gx(x) = 4 cos (nx/2b) rect (x/2b)

find a value of b so that gx(x) is a valid probability density.
2-47 A random variable X has the density function
Sx(x) = (Y)u(x).exp ("X/?)
Define cvents 4 = {1 < X <3}, B={X <25}, and C=A n B. Find the prob-
abilities of events (a) 4, (b) B, and (c) C.
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*2-48 Let (x) be a continuous, but otherwise arbitrary real function, and lct «
and b be real constants. Find G(a, b) defined by

Gla, b) = fw ¢(x) d(ax + b) dx

(Hint: Use the definition of the impulse function,)

2-49 For r.cal ct_)nstan(s b>0,c>0, and any g, find a condition on constant a
and a relationship between ¢ and a (for given b) such that the function

all = (x/b 0
fx(x)={ [1~(x/b)] Osxsc
0 elsewhere
is a valid probability density.
2-50 A gaussian random variable X has ay = 2, and oy = 2.
{a) Find P{X > 1.0}.
(b} Find P{X < —1.0}.
s Ao .
?-Sl In a certain “junior olympics, javelin throw distances are well approx-
1n3ulcd by a guussiun distribution for which ay = 30 m und gy = 5 m. In u quali-
fying round, contestants must throw farther than 26 m to qualify. In the main
event the record throw is 42 m.
(a) What is tl:te probability of being disqualified in the qualifying round?
(b) In the main event what is the probability the record will be broken?
2-5? Suppose height to the bottom of clouds is a gaussian random variable X for
w!uch ay = 4000 m, and gy = 1000 m. A person bets that cloud height tomorrow
will fall in the set A = {1000 m < X < 3300 m} while a second person bets that

height will be satisfied by B = {2000 m < X < 4200 m}. A third person bets they
are both correct. Find the probabilities that each person will win the bet.

2-53. Let X be a Rayleigh random variable with a = 0, Find the probability that
X will have values larger than its mode (see Problem 2-31).

2-54 A certain large city averages three murders per week and their occurrences
follow a Poisson distribution. '

{(a) What is the probability that there will be five or more murders in a given
week ?

(b) On the average, how many weeks a year can this city expect to have no
murders?

(¢) How many weeks per year (average) can the city expect the number of
murders per week (o equal or exceed the average number per week ?

" 2-55 A certain military radar is set up at a remote site with no repair facilitics. If
the radar is known (o have a mean-time-between-failures (MTBF) of 200 h find
the probability that the radar is still in operation one week later when picked up
for maintenance and repairs.

2-56 If the radar of Problem 2:55-is permanently located at the remote site, find
the probability that it will be operational as a function of time since its set up.

R S L R TR, - ~X S SURNSY S LA AP
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2-57 A computer undergoes down-lime if a certain critical component fails. This
component is known to fail at an average rate of once per four weeks. No signifi-
cant down-lime occurs if replacement components are on hand because repair
can be made rapidly. There arc three components on hand and ordered replace-
ments are not due for six weeks.

(a) What is the probability of significant down-time occurring before the
ordered components arrive?

(b) If the shipment is delayed two weeks what is the probability of significant
down-time occurring before the shipment arrives? .

*2.58 Assume the lifelime of a laboratory rzsearch animal is defined by & Raylcigh
density with @ = 0 and b = 30 weeks in (2.5-11) and (2.5-12). If for some clinical
reasons it is known that the animal will live at most 20 weeks, what is the prob-
ability it will live 10 weeks or less?

*2.59 Supposc the depth of water, measured in meters, behind a dum is described
by an exponential random variable having a density

S(x) = (1/13.5) exp (—x/13.5)

There is an cmergency overllow at the top of the dam that prevents the depth
from exceeding 40.6 m, There is a pipe placed 32.0 m below the overflow (ignore
the pipe’s finite diameter) that feeds water to a hydroelectric generator.

(@) What is the probability that water is wasted through emergency over-
flow?

(b) Given that water is not wasted in overflow, what is the probability the
gencrator will have water to drive it?

{¢) What is the probability that water will be too low to produce powe !

*2.60 In Problem 2-59 find and sketch the distribution and density functions of
water depth given that water will be deep enough to generale power but no water
is wasled by emergency overflow. Also sketch for comparisons the distribution
and densily of water depth without any conditions?

*2-61 In Example 2.6-2 a parachuter is an “expert™ if he hits the bull's eye. If he
falls outside the bull's eye but within a circle of 25-m radius he is called
“qualified " for competition, Given that a parachuter is not an expert but hits the
target what is the probability of being * qualified?”
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OPERATIONS ON
ONE RANDOM| VARIABLE—EXPECTATION

3.0 INTRODUCTION

The random variable was introduced in Chapter 2 as a means of providing a sys-
tematic definition of events defined on a sample space. Specifically, it formed a
mathematical model for describing characteristics of some real, physical world
random phenomenon. In this chapter we extend our work to include some
important operations that may be performed on a random variable, Most of these
operations are based on a single concept-—expectation.

3.1 EXPECTATION

Expectation is the name given to the process of averaging when a random vari-
able is inyolved. For a random variable X, we usc the notation E[X], which may
be read “ the mathematical expectation of X," * the expected value of X" “the
mean value of X,” or “the statistical average of X." Occasionally we also use the
notation X which is rcad the same way as E[X]; that s, X = E[X].t

Nearly cveryone is familiar with averaging procedures. An cxample thatl
serves to lic a familiar problem to the new concept of expectation may be the
casicst way to proceed.

1 Up to this point in this hook an overbar represented the complement of a set or event, Hence-
forth, unless specifically stated otherwise, the overbar will always represent amein value.

66

OPERATIONS ON ONE RANDOM VARIABLE—EXPECTATION 67

Exzmple 3.1-1 Ninety people are randomly sclected and the fractional dollar

value of coins in their pockets is counted. If the count goes above a dollar,

the dollar valuc is discarded and only the portion from 0¢ (0 99¢ is accepted.

It ic found that 8, 12, 28, 22, 15, and § people had 18¢, 45¢, 64¢, 72¢, 774, and

95¢ in their pockets, respectively. .
Our everyday experiences indicate that the average of these values is

8 12 28 22
Average § = 0.18(5—0) + 0.45<§6> + 0.64(6(-)) + 0.72<§6>

15 5
+ 0.77(-9—0-) + 0.95<%)

~ $0.632

Expected Value of a Random Variable

The everyday averaging procedure used in the above example carries over
directly to random variables. In fact, if X is the discrete random variable
“fractional dollar value of pocket coins,” it has 100 discrete values x; that oceur
with probabilities P(x)), and its expected value E[X] is found in the same way as
in the example:

100

E[X]= l;x, P(x)) G.1-1)

The values x, identily with the (ractional dollar valucs in the example, while P(x))
is identified with the ratio of the number of people for the given dollar value to
the total number of people. If a large number of people had been used in the
“sample” of the example, all fractiona! dollar values would have shown up and
the ratios would have approached P(x,). Thus, the average in the example would
have become more like (3.1-1) for many more than 90 people.

In general, the expected value of any random variable X is defined by

E[X]=X=J

00

Xfx(x) dx (3.1-2)

Il X happens to be discrete with N possiblc values x; having probabilities P(x;) of
occurrence, then :

N
Sxx) = E P(x)d(x — x)) (3.1-3)
' (=1
from (2.3-5). Upon substitution of (3.1-3) into (3.1-2), we have
N
E[X]= Y. xP(x)  discrete random variable (3.1-4)
=1

Hence, (3.1-1) is a special case of (3.1-4) when N = 100. For some discrete
random variables, N may be infinite in (3.1-3) and (3.1-4).
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Example 3.1-2 We determine the mean value of the conlinuous, cxponen-
tially distributed random variable for which (2.5-9) applics:
1
={x=a)d
~¢ x>a
J(x) = {bh
0 x<a

From (3.1;2) and an inAt'c.g.ral from Appendix C: .

L) alb «©
E[X] =J .'Ee‘(x-n)lb dx __.e_b_ xe= P dx = a4+ b

If a random variable's density is symmetrical about a line x = a, then
E[X] = a; that is, !

E[X]=a il fylx+a) =fx(—x+;1) (3.1-5)

Expected Yalue of a Function of a Random Variable

As will be evident in the next section, many useful parameters relating to a
random variable X can be derived by finding the cxpected value of a real func-

tion g(+) of X. It can be shown (Papoulis, 1965, p. 142) that this expected value is
given by

) E[y(X)] = le g(x) f(x) dx

(3.1-6)
If X is a discrete random variable, (3.1-3) applies and (3.1-6) reduces to
N
E(g(X)) = 3 g(x)P(x)) discrete random variable (3.1-7)
j=t

where N may be infinite {or some random variables.

Example 3.1-3 It is known that a particular random voltage can be rep-
resented as a Rayleigh random variable V having a density function given by
(2.5-11) with @ = 0 and b = S. The voltage is applied to a device that gener-
ates a vollage Y = g(V) = ¥ that is equal, numerically, to the power in V (in
a 1-Q resistor). We find the average power in V by means of (3.1-6):

© 3
Power in V = E[y(V)] = E[V?*] = j 3'5’_ PRCLEIN
(4]
By lctting & = v?/5, d¢ = 2v dv/5, we obtain

Power in V=5I (e dE=5W
0
after using (C-46).
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*Conditional Expected Yalue

I, in (3.1-2), fx(x) is replaced by the conditional density fy(x|8), where I3 is any
event defined on the sample space, we have the conditional expected value of X,
denoted E[X | B]:

E[X|B] = J ? (x| B) dx (3.1-8)

- @0

One way to define event B, as shown in Chapter 2, is to let it depend on the
random variable X by defining

B={X <b) ~w<b<ow (3.1-9)
We showed there that
x| X < b) = j"_wf}i)(‘))c) = *<t (3.1-10)
0 xzb
Thus, by substituting (3.1-10) into (3.1-8):
HX1X 1) = b X0 X (3.1-11)

. Sxlx) dx

which is the mean value of X when X is constrained to the set {X < h}.

3.2 MOMENTS

An immediate application of the expected value of a function g{-) of a random
variable X is in calculating moments. Two types of moments are of interest, those
about the origin and those about the mean.

Moments About the Origin

The function

g(X) = X" n=012... (3.2-1)

when used in (3.1-6) gives the moments about the origin of the random variable
X. Denote the nth moment by m,. Then,

@«

m, =E[X"}= J x"fy(x) dx

-

(3.2-2)

Clearly my = 1, the area of the function fy(x), whilc m, = X, the expected value
of X.
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Central Moments

Momcnts about the mean valuc of X arc called central moments and are given the

symbol ji,. They are defined as the expected value of the function
gX)=(X - Xy n=012,.. (3.2-3)

which is
i, = E[(X ~- XM= JQ (x = X)fxlx) dx (3.2-4)

The moment gg = 1, the arca of fy(x), while yy = 0.(Why?)

Variance and Skew

The sccond central moment jt; is so important we shall give it the name variance
and the special notation o%. Thus, variance is given byt

al =y = EIX ~ X)) = r (x = R)(x) dx (3.2-5)

-

The positive squarc rool dy of variance is called the standard deviation of X i it is
a measure of the spread in the function fx(x) about the mean.
Variance can be found from a knowledge of first and sccond moments. By
expanding (3.2-5), we havel
ol = E[X? ~2%X + X3 = E[X*] —2RE[X)+ X?
= E[XY) - Xt=m;— m} (3.2-6)

Example 3.2-1 Let X have the exponential density function given in Example
1.1-2, By substitution into (3.2-5), the variance of X is

® oo |
o = J. (x—-X)? 3 et i

By making the change of variable &£ = x — £ we obtain

pm-an (o ' _
0'{:———1)—_-!’ fze'”" (lc=(ﬂ+b—z\')z+b1
-

i . .
t The subseript indicates that a} is the vanance of a random variable X. For a random variable ¥

its varianee would be al.
1 We use the fact that the expected value of A sum of functions of X cquals the sum of expected
vatues of individual functions, as the reader can readily verify s an cxereise,
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after using an integral from Appendix C. However, from Example 3.1-2, X =
E[X] = (a + D). s0

The reader may wish to verily this result by finding the sccond moment
E[X?] and using (3.2-6).

The third central moment gty = E[(X — X)*] is a mcasurc of the asymmelry
of fy(x) about x = X =m,. 1t will be calied the skew of the density function. If a
density is symmetric about x = X, it has zero skew. In fact, for this case jt, =0
for all odd values of n. (Why?) The normalized third central moment jiyfa is
known as the skewness of the density function, or, alternatively, as the coefficient
of skewness.

Example 3.2-2 We continue Example 3.2-1 and compute the skew and cocffi-
cient of skewness for the exponential density. From (3.2-4) with n =3 we
have

sy = E[X = R)%) = E[X° — IRXT+3RX - R)
-0 38X +28° = X3~ 38(0% + Ry +28°

Next, we have

—_— ®© 3
X3 = j -:—)- e~ x = @® + 3a%h + 6ab® + 6b°

after using (C-48). On substituting % =a-+ b and o} = b? from the carlicr
example, and reducing the algebra we find

pty = 2b°
i
. L‘_§= 2
Ox

This density has a relatively large cocfficicnt of skewness, as can be seen intu-
itively from Figure 2.5-3.

+33 FUNCTIONS THAT GIVE MOMENTS

Two [unctions can be defined that allow moments to be calculated for a random
variable X. They are the characteristic function and the moment gencrating
function.
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* Characteristic Function
The characteristic function of a random variable X is defined by
Oy (w) = E[e/“X] (3.3-1)

where j = (/—1. It is a {unction of the real number —00 < w < 0. If (3.3-1) is
written in terms of the density function, ®y{(w) is seen to be the Fourier transformt
(with the sign of w reversed) of fy(x):

Oy(w) = fm Sx(x)e’** dx (3.3-2)

Because of this fact, if ©y(w) is known, fy(x) can be found from the inverse Fourier
transform (with sign of x reversed)

. [ '
Jx(x) = Cp j D glew)e M dw (3.3-3)

By formal differentiation of (3.3-2) n times with respect to w and setting w = 0 in
the derivative, we may show that the nth moment of X is given by

d"®y(w)

m, = (—j)" do"

(3.3-4)

w=0

A major advantage of using ®,(w) to find moments is that ®,(w) always
exists (Davenport, 1970, p. 426), so the moments can always be found if ®,(w) is
known, provided, of course, the derivatives of ®,(w) exist.

It can be shown that the maximum magnitude of a characteristic function is
unity and occurs at w = 0; that is,

[ Dx(w)]| S Py(0) =1 (3.3-5)
(See Problem 3-24))

Example 3.3-1 Again we consider the random variable with the exponcntial

density of Example 3.1-2 and find its characteristic function and first
moment.

t Reuders unfumiliar with Fourier trunsforms should interpret @,(w) as simply the expected vulue
of the function g{X) = exp (jwX). Appendix D is included as a review for others wishing to refresh
their background in Fourier transform theory.
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By substituting the density function into (3.3-2), we get

@ | L,n/h @ b Jux
(l)".(m) = - e"‘(.\‘—n)/be}w.\!' dx = _1___ e < Iy
, 0 y S

Evaluation of the integral follows the use of an integral from Appendix C:
L,alb e L
Pxlw) ==~ [—(l/b i),

¢ Jou .

=(1/b=Jw)x

e jwb

The derivative of Gy(w) is

) B B Jb _:l
ey — - —
dw | —jwb (1 — jwb)

so the first moment becomes

d® y(w)
dw

=q+ b,

w=n0

my = (=)

in agreement with m, found in Example 3.1-2.

*Moment Generating Function

Another statistical average closely related to the characteristic function is the
moment generating function, defined by

M x(v) = E[e"™] (3.3-6)

where v is o real number — o < v < 0. Thus, M (v) is given by

My(v) = jw Sx(x)e"™ dx (3.3-7)

-

The main advantage of the moment generating function derives from ils
ability to give the moments. Moments are related to M y(v) by the expression:

(3.3-8)

va 0

The main disadvantage of the moment generating function, as opposed to the
characteristic function, is that it may not exist for all random variables. In fact,
M x(v) exists only if all the moments exist (Davenport and Root, 1958, p. 52).

.
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Example 3.3-2 To illustrate the calculation and use of the moment gener-

ating function, let us reconsider the exponential density of the carlier exam-

ples. On use of (3.3-7) we have

w
Mx(v) = [ 3 gt ahevE (x
A )
(?””' o
= j Av=mie gy
) (U
_ "ﬂl'
Tl —bv

In evaluating M y(v) we have used an integral from Appendix C.
Ry differentiation we have the first moment

dM x(v)
m, = 200 \V_o .
_ e™[a(t — bv) + b}

=7 (1 = by} =a+b

v=0

which, of coursc, is the same as previously found.

34 'l‘RANSFORMA'l'lONS OF A RANDOM VARIABLI
i

. . f . .
Quite often one may wish to transform (change) one random variable X into a
new random variable Y by means of a transformation

Y = T(X) (3.4-1)

Typically, the density function fx(x) of distribution function F(x) of X is known,
and the problem is to determine either the density function f¢(y) or distribution
function Fy(y) of Y. The problem can be viewed as a “black box " with input X,
output Y, and * transfer characteristic” Y = T(X), as illustrated in Figure 3.4-1.
Ih.gcncrnl, X can be a discrete, continuous, or a mixed random variable. In
turn, the transformation T can be lincar, nonlincar, segmented, staircase, clc.
Clcarly, therc arc many cases to consider in a general study, depending on the
form of X and T. In this section we shall consider only three cases: (1) X contin-
uous and T continuous and cither monotonically increasing or decreasing with
X; (X continuous and T continuous but nonmonotonic; (3) X discrete and T

X Y = T(X) Y
iy

felx)

Figure 3.4-1 Transformation of a random variable X
10 a new random variable Y.
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continuous. Note that the transformation in all three cases is assumed contin-
uous. The concepts introduced in these three situations arc broad enough that
(he reader should have no difliculty in extending them (o other cases (sec
Problem 3-32).

Monotonic Transformations of a Continuous Random Variable

A transformation T is calied monotonically increasing if T(x,) < T(x,) for any
X < Xxp.1tis monotonically decreasing if T(x,) > T(x,) for any x, < X3z.

Consider [irst the increasing ti< atign. We assume (hat T'is continuous
and differentiable at all values of x for which fy(x) # 0. Let Y have n particular
value yo corresponding to the particular value xo of X as shown in Figure 3.4-2a.
The two numbers are related by -

xo = T7'(yo) (3.4-2)

where T~ ! represents the inverse of the transformation T. Now the probability
of the event {Y < yo} must cqual the probability of the event {X < xo} because
of the one-to-one correspondence between X and Y. Thus,

Fy(ye) = P{Y < yo} = P{X < xo} = Fx(xo) (3.4-3)

Yo = T(x0) or

Figure 3.4-2 Monotonic trans-
formations: (a) increasing, and (b)
decreasing. [Adapted from Peebles
x (1976) with permission of publi-

shers Addison-Wesley, Advanced
(b) Book Program.)
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or

yo x0=T=1{yo)
j L) dy = j Sx(x) dx (3.4-4)

- =@

Next, we differentiate both sides of (3.4-4) with respect to y, using Leibniz's rulet
to get

700 = LT o) T2 (349
Since this result applies for any y,, we may now drop the subscript and wrile
s =rar-on (3.4-6
or, morc. com;.)actly;' ’
1) = 5 04

In (3.4-7) it is understood that x is a function of y through (3.4-2).

h A consideration of Figure 3.4-2b for the decreasing transformation verifies
that

Fylyo) = P{Y < yo} = P{X 2 xo} = I = Fy(x,). (3.4-8)

A rc?etitiqn o.f the steps leading to (3.4-6) will again produce (3.4-6) except that
the right side is negative. However, since the slope of T~!(y) is also negative, we
conclude that for either type of monotonic transformation

dT"(y)l

S =T (3.4-9)

or simply

Jr(y) = fxlx)

dx
y (3.4-10)

1 Leibniz's rul.c. after the great German mathematician Gottfried Wilhelm von Leibniz (1646~
1716), states that, if H{x, u) is continuous in x and u and

Biv)
G(u) =J. H(x, u) dx
a(u)"

‘thcn the derivative of the integral with respect to the parameter u is

dG v
2w i, 1) L — g,y 20 [ 2 )
di dt - L
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Exnmple 3.4-1 If we take T to be the tinear transformation Y = T(X) =
aX 4 b, where a and b are any real constants, thea X =77 HY)= (Y - D)u
and dx/dy = 1/a. From (3.4-9)

i) -A( b ")

Il X is assumed to be gaussian with the density function given by (2.4-1),

a

we get
) Uty ~byfa-ax)tj20x2 | |
fy(y) = g~y —bia ax)f2ox? | _ .
2not a
- __l____ e-(y-(au,\' +b)]3/2a2ax2
2nalal

which is the density function of another gaussian random variable having
ay=aay+b and o} =a%c}

Thus, a linear transformation of a gaussian random variable produces another

gaussian random variable. A linear amplifier having a random voltage X as ils

input is one example of a linear transformation,

Nonmonotonic Transformations of a Continuous Random Variable

A transformation may not be monotonic in the more general case, Figure 3.4-3
illustrates one such transformation. There may now be more than one interval of
values of X that correspond to the event {V < yo}. For the value of y, shown
in the figure, the event {Y < yo} corresponds to the event {X < xy and x, <
X < x,}. Thus, the probability of the event {Y < yo} now cquals the probability

y=Tx)

Figure 3.4-3 A nonmonotonic
transformation. [Adapted from
Pecbles (1976) with permission
of publishers Addison-Wesley,
Advanced Book Program.]
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of the event {x values yiclding Y < Yo}, which we shall write as {x|Y £ yo}- In
other words

FY(}’o)=P{Y5,Vo} = P{x|Y S ¥} = j. Sx(x) dx (34-11)
(x1Y S yo)

Formally, onc may differentiate to obtain the density function of Y

- 1 ?
o0 =7 j Stx) dx (34-12
Yo Jixir syal

Although we shall not give a proof, the density function is also given by
(Papoutlis, 1965, p. 126)

fx(xn)
=Y —t— 4-13
10 = e (34-19)
FER -
where the sum is taken so as to include all the roots X, n = 1,2, ..., which are
the real solutions of the cquation?
y = T(x) (3.4-14)

We illustrate the above concepts by an example.

Example 3.4-2 We find fy(y) for the squarc-law transformation
Y = T(X) = cX?

shown in Figure 3.4-4, where c is a real constant ¢ > 0. We shall use both the
procedure leading to (3.4-12) and that leading to (3.4-13).

In the former case, the event (Y < y} occurs when {—-\/y_/é's x <
\/3'_/;‘} = {x|Y < y}so (3.4-12) becomes

d (Y
=7 j L) e y20
Y J-o
Upon use of Leibniz's rule we obtain
d (-
L =fx(\/;'_/—c) '(—\dL;:/z‘) "fx("\/}ﬁ') f—(’syiy/é
JuJI9) + L= /910

2oy

y=0

t1fy = T(x) has no real roots for a given value of y, then fy(y) = 0.

OPEKAIONS ON ONE RANDOM VARIABLE-—EXI’ECTATION 9

ymex?

Figure 344 A square-law trans-
formation. [Adapted from Peebles
(1976) with permission of publishers
Addison-Wesley, Advanced  Book
x  Program.)

In the latter case where we use (3.4-13), we have X =4./Y/c, Y 20,50
x, = —Jyle and x, = J/y/c Furthermore, dT(x)/dx = 2¢x $O

AT | ey = —2¢ [2=
Ix lios, = 2cx, = —2c\/-z— —2\/2;
dT(x)

dx  |xmxa B 2\/2;

From (3.4-13) we again have

fx(\/;/_c).~+ Sx(= \/:v_/Z)
2J/¢

Jey

= y=0

Transformation of 8 Discrete Random Variable

If X is a discrete random variable while Y = T(X) is a continuous transfor-
mation, the problem is especially simple. Here

[(x) = ¥, Plx)d(x = x2) (3.4-15)

Fy(x) =3, Plxulx — X,) (3:‘4-16)

where the sum is taken to include all the possible values x,,0 =1, 2,...,of X.

If the transformation is monotonic, there is a one-to-one correspondence
between X and Y so that a set {ya) corresponds to the set {x,} through the equa-
tion y, = T(x,) The probability P(y.) equals P(x,). Thus,

£) = % POSly — 34 (34-17)

Fyy) = T, Puly = a) (3.4-18)
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where
Ya=T(x,) (3.4-19)
Ply,) = P(x,) (3.4-20)
If T is not monotonic, the above procedure remains valid except there now

exists the possibility that more than one value x, corresponds to a value Vao In

such a case P(y,) will equal the sum of the probabilities of the various x, for
which y, = T(x,). ' '

PROBLEMS

3-1. A discrctc‘random variable X has possible values x; =%, i=1, 2, 3, 4, 5,
which occur with probabilities 0.4, 0.25, 0.15, 0.1, and 0.1, respectively. Find the
mean value £ = E[X] of X.
3-2 The natural numbers are the possible values of a random variable X; that is
x,=n,n=1,2, ... These numbers occur with probabilities P(x ) = (ILY. Fi ’
the expected value of X, d () = (" Find
3-3 Il!' t.hc probabilities in Problem 3-2 are P(x,) =p", 0 <p < I, show that
p= '/, is the only value of p that is allowed for the problem as formulated.
(Hint: Use the fact that f2 fi(x) dx = 1 is necessary.)
34 Glyc an example of a random variable where its mean value might not equal
any of its possible values.
3-5 Find:

{a) the expected value, and

(b) the variance of the random variable with the triangular density of Figure
23-1aifa=1/a

3-§ Show that the mean value and variance of the random variable having the
uniform density function of (2.5-7) are:

X = E[X]=(a+b)2
and
ol =(b—a)*/12
?-7 A pointer is spun on a fair wheel of chance numbered from 0 to 100 around
its circumference,
(@) What s th‘c average value of all possible pointer positions?
(b) What deviation from its average value will pointer position take on the

average; that is, what is the pointer's root-mean-squared deviation from its
mean? (Hint: Use results of Problem 3-6.) .

3-8 Find:
(a) the mean value, and

(b) the variance of the random variable X defined by Problems 2-6 and 2-14
of Chapter 2,

OPERATIONS ON ONE RANDOM VARIABLE—EXPECTATION 81

*3.9 For the binomial density of (2.5-1), show that
E[X]=X=Np

and
ox = Np(l = p)

3-10 (a) Let resistance be a random variable in Problem 2-11 of Chapter 2, Find

the mean value of resistance.
(b) What is the output, voltage E, il an average resistor were used in the
circuit? ! .

(c) For the resistors specified, what is the mean value of E,?7+Does the
voltage of part (b) equal this value? Explain your results.
3-11 (a) Use the symmetry of the density function given by (2.4-1) to justify that
the parameter ay in the gaussian density is the mean value of the random vari-
able: X = ay.

(b) Prove that the parameter o} is the variance. (Hint: Use an cquation from
Appendix C.)
3-12 Show that the mean value E[X] and variance o of the Rayleigh rundom
variable, with density given by (2.5-11), are

E[X]) =u+ /nb/d

and
o} = b(d — n)/4

3-13 What is the expected lifetime of the system defined in Problem 2-33 of
Chapter 2?
3-14 Find:

(@) the mean value, and

(b) the variance for a random variable with the Laplace density

1
= — g-lx=mip
fx(x) 2b e

where b and m are real constants, b > 0 and —o0 < m < 00,
3-15 Determine the mean value of the Cauchy random variable in Problem 2-34
of Chapter 2. What can you say about the variance of this random variable?
*3.16 For the Poisson random variable defined in (2.5-4) show that:

(a) the mean value is b and

(b) the variance also equals b.
3-17 (a) Use (3.2-2) to find the first three moments my, m,, and my for the expo-
nential density of Example 3.1-2.

(b) Find m,, m;, and my from the characteristic function found in Example
3.3-1. Verify that they agree with those of part (a).
3-18 Find expressions for all the moments about the origin and central moments
for the uniform density of (2.5-7).
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3.19 Definc a function g(*) of a random variable X by

1 X2 X
X)=
o) {0 x < Xp

where x, is a real number — 00 < Xo < o0, Show that

E[g(X)] = 1 — Fx(xo}

3-20 Show that the sccond moment of any random variable X about an arbi-
trary point a is minimum when a = X that is, show that E[(X —a)l] is
minimum for a = X.

3-21 For any discrete random variable X with values x; having probabilities of

occurrence P(x)), show that the moments of X are

N
my= L XPx) i

[ERY
N
o= Y (x; = X)"P(x)
i=1
where N may be infinite for some X.

3-22 Prove that central moments p, are related to moments iy about the
origin by

e 3 (e

k=0

3-23 A random variable X has a density function fx(x) and moments M, . If the

density is shifted higher in x by an amount « > 0 to a new origin, show that the .

moments of the shilted density, denoted m,, are related to the moments i, by

my= T (;‘()a"‘*mk
k=0

*3.24 Show that any characteristic function O 4(w) satislies
[ Dx(w)| < Ox(0) = 1

3-25 A random variable X is uniformly distributed on the interval (—5, 15).
Another random variable Y = ¢~ X% is formed. Find E[Y].

3.26 A gaussian voltage random variable X [sce (2.4-1)] has a mean value X =
ay =0 and variance o} = 9. The voltage X is applied to a square-law, full-wave
diode detector with a (ransfer characteristic Y. = 5X* Find the mean value of the
output voltage Y.

*3.27 For the system having a lifetime specified in Problem 2-33 of Chapter 2,
determine the expected lifetime of the system given that the system has survived
20 weeks.
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%328 The characteristic function for a gaussian random variable X, having a
mean value of 0, is

Oy(@) = exp (~03 &)

Find all the moments of X using ©x(w)
*1.29 Work Problem 3.28 using the moment generating function

M) = exp (63 v*/2)

for the zero-mean gaussian random variable.
*3.30 A discrete random variable X can have N + 1 values x, = kA k=0,1,...
N, where A >0 is a real number. Its values occur with equal probability. Show
that the characteristic function of X is

1 sin [(N + Dwh/2] GNwb2
N+1 sin (wA/2)
3.31 A random variable X is uniformly distributed on the interval (— /2, 1/2). X
is transformed to the new random variable ¥ = T(X) = a lan (X), where a > 0.
Find the probability density function of Y.
3.32 Work Problem 3.31 if X is uniform on the interval (— 1, 7). ,
1.33 A random variable X undergoes the transformation Y = a/X, where a is a
real number. Find the density function of Y.
3.34 A random variable X is uniformly distributed on the interval (—a, a). It is
transformed to a new variable Y by the transformation Y = cX? defined in
Example 3.4-2. Find and sketch the density function of Y.
3.35 A zero-mean gaussian random variable X is transformed to the random
variable Y determined by

Ox(w) =

=cX X>0
0 X<0

where ¢ is a real constant, ¢ > 0. Find and sketch the density function of Y.

336 If the transformation of Problem 3-35 is applied to 2 Rayleigh random vari-
able with a = 0, what is its effect?

*3.37 A random variable © is uniformly distributed on the interval (8,, 6;) where
0, and 0, are real and satisfy

0<0,<0,<™

Find and sketch the probability density function of the transformed random vari-
able Y = cos (©).
3-38 A random variable X can have values —4, =1, 2, 3, and 4, cach with prob-
ability ‘. Find:

(a) the density function,

(b) the mean, and

(¢) the variance of the random variable Y = 3X3.
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ADDITIONAL PROBLEMS

3-39 (a) Find the average amount the gambler in Problem 2-42 can expect (o
win. (b) What is his probability of winning on any given playing of the game?
3-40 The arcsine probability density is defined by

rect (x/2a)

n/a? — x? ‘

for any real constant a > 0. Show that ¥ =0and X? = a*/2 for this density.

*3-41 For the animal described in Problem 2-58 find its expected lifetime given
that it will not live beyond 20 weeks. '

3-42 Find the expected value of the function g(X) = X> where X is a random
variable defined by the density :

Jxx) = (hu(x) exp (—x/2)

3-43 Continue.Problem 3-25 by finding all moments of Y. (Hint: Treat Y" as a
function of Y, not as 4 transformation.)
3-44 Reconsider the production line that manufactures bolts in Problem 2-12.

{(a) What is the uverage length of bolts that are placed up for sale?

(b) What is the standard deviation of length of bolts sold?

(c) What percentage of all bolts sold are expected to have a length within
one standard deviation of the average length?

(d) By what tolerance (as a percentage) does the average length of bolts sold
match the nominally desired length.of 760 mm?

3-45 A random variable X has a probability density

_ [(n/16) cos (nx/8) -4<x54
Jalx) = {0 elsewhere

Sx(x) =

Find: (a) its mean value X, (b) its second moment F, and (c) its variance.

3-46 A certain meter is designed to measure small dc voltages but makes errors
because of noise. The errors are accurately represented as a gaussian random
variable with a mean of zero and a standard deviation of 10~* V. When the dc
voltage is disconnected it is found that the probability is 0.5 that the meter

reading is positive due to noise. With the dc voltage present this probability
becomes 0.2514. What is the dc voltage?

3-47 Find the skew and coefficient of skewness for a Rayleigh random variable
for which a = 0in (2.5-11).

3-48 A random variable X has the density

ChiX—x?+8x—12) 2<x<6
0 elsewhere

' Silx) = {

Find the following moments: (4) mq, (b) m,, (¢) m,, and (d) Ha.

OPERATIONS ON ONE RANDOM VARIAUBLE —EXPECTATION 8D

3-49 The chi-square density with N degrees of [reedom is defined by
XN =1

S = e

where I{+) is the gamma function

u(x)e =2

I(z) = Jmﬁ"‘e“ d¢  realpartofz>0
¢]

and N =1, 2,....Show that () X = N, (b) X% = N(N + 2), and (c) o} = 2N for
“this density. ‘ ' —
3-50 For the density of Problem 3-49 find its arbitrary moment X" n=
0,1,2... . '
3.51 A random variable X is called Weibullt if its density has the form

Sx(x) = abx®~! exp (—ax"u(x)

where a> 0 and b> 0 are real constants. Use the definition of the gamma
function of Problem 3-49 to find (a) the mean value, (b) the second moment,

* and (c) the variance of X.

*3.52 Show that the characteristic function of a random variable having the bino-
mial density of (2.5-1) is
Dylw) = [1 — p + pe}"
*3.53 Show that the characteristic function of a Poisson random variable defined
by (2.5-4) is
Dy(w) = exp [—b(1 — ¢/)]

*3.54 The Erlangt random variable X has a characteristic function

a ¥
o=

.... Show that ® = N/a, X* = N(N + 1)/a?, and

for a>0 and N=1, 2,
2 = N/a. .
g:\’SS A/rundom variable X has ¥ = =3, X? =11, and o} =2. For a new
random variable Y = 2X — 3, find (a) ¥, (b) Y2, and (¢) o. '
*3.56 For any real random variable X with mean X and variance o}, Chebychev's
Inequality§ is
P{|1X — X| 2 Aoy} < 1/22

* where 1 > 0 is a real constant. Prove the inequality. (Hine: Define a new random

variable Y =0 for | X — X| < lay and ¥ = %% for [X — X| > Aoy, observe
that Y < (X — X)?* and find E[Y])

1 After Ernst Hjulmar Waloddi Weibull (1887~ - ), a Swedish upplied physicist.
B - ] ish engineer.

1 A. K. Erlung (1878-1929) was 0 Danis r

§ After the Russian mathematician Pafauty Lvovich Chebychev (1821-1894).
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O

3-57 A gaussian random variable, for which

Sxx) = @1/m) exp (= 4x7)
is applicd to a squarc-law device to producc a ncw (output) random variable
Y = X%2. (a) Find the density of Y. (b) Find thc moments m, = E[YM, n=
0, 1, .... (Hint: Put your answer in tcrms of the gamma function defined in
Problem 3-49.)
3-58 A gaussian random variable, for which X = 0.6 and gy =08, is trans-
formed to a new random variable by the transformation

CHAPTER

FOUR
'MULTIPLE RANDOM VARIABLES

. FN_"__ — B smmat

‘ 4 10X <0
; 2 0<X <10
. =T(X)=
I Y (X) -2 —-10< X <0
—4 —~—<X<—-10 '

{(a) Find the density function of Y.

(b) Find the mean and variance of Y.
3-59 Work Problem 3-31 except assume a transformation Y = T(X) = a sin (X)
with a > 0.
3-60 Let X be a gaussian random variable with density given by (2.4-1). If X is
transformed to a new random variable Y = b + e*, where b is a rcal constant,
show that the density of Y is log-normal as defined in Problem 2-35. This trans-
formation allows log-normal random numbers to be gencrated from gaussian
random numbers by a digital computer.
3.61 A random variable X is uniformly distributed on (0, 6). If X is transformed
to a new random variable Y = 2(X — 3)? — 4, find: (a) the density of Y, (b) ¥,
(c) o}.

Ex SNt

4.0 INTRODUCTION

'."\-’:5‘14: Air 5

Pk

In Chapters 2 and 3, various aspects of the theory of a single random variable
were studied. The random variable was found to be a powerful concept. It
cnabled many realistic problems to be described in a probabilistic way such that
practical measures could be applied to the problem even though it was random.
For cxample, we have seen that shell impact position along the line of fire from a
cannon to a target can be described by a random variable (Problem 2-29). From
knowledge of the probability distribution or density function of impact position,
we can solve for such practical measures as the mean value of impact position, its ,
variance, and skew. These measures are not, however, a complete enough descrip- ;
tion of the problem in most cascs. )

Naturally, we may also be interested in how much the impact positions ]
deviate from the line of fire in, say, the perpendicular (cross-fire) direction.In i
other words, we prefer to describe impact position as a point in a plane as ‘)

cay

e

I e

opposed to being a point along a line. To handle such situations it is necessary

that we extend our theory to include two random variables, one for each coordi-

nate axis of the plane in our example. In other problems it may be necessary to
extend the theory to include several random variables. We accomplish these “al
extensions in this and the next chapter. 'y

Fortunately, many situations of interest in engineering can be handled by the ‘

theory of two random variables.t Because of this fact, we emphasize the two-

variable case, although the more general theory is also stated in most discussions

to follow. o - :

S0 s

1 In particular, it will be found in Chapter 6 that such important concepts as autocorrelation, L
cross-correlation, and covariance functions, which apply to random processes, arc based on two c \
random variables. B
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4.1 VECTOR RANDOM VARIABLES

Suppose two random variables X and Y are defined on a sample space S, where
spgcific values of X and Y are denoted by x and y, respectively. Then any ordered
pair of numbers (x, y) may be conveniently considered to be a random point in the
xy plane. The point may be taken as a specific value of a vector random variable

or a random vector.t Figure 4.1-1 illustrates the mapping involved in going from . -

S to the xy plane.

The plane of all points (x, y) in the ranges of X and Y may be considered a
new sample space. It is in reality a vector space where the components of any
vector are the values of the random variables X and Y. The new space has been
called the range sample space (Davenport, 1970) or the two-dimensional product
space. We shall just call it a joint sample space and give it the.symbol S,.

As in the casc of one random variable, let us define an cvent A by

A={X < x) (4.1-1)
A similar event B can be defined for Y:
B={Y 5y} 4.1-2)

Events 4 and B refer to the sample space S, while events {X < x) and {Y <)
refer to the joint sample space S,.1 Figure 4.1-2 illustrates the correspondences

1 There are some specific conditions that must be satisfied in a complete definition of a random
vector (Davenport, 1970, Chapler 5). They are somewhat advanced for our scope and we shall simply
assume the validity of our random vectors.

Do not forget that elements s of S form the link between the two events since by writing {X < x}

we really refer to the set of those s such that X(s) < x for some real number x. A similar statement
holds for the event {Y <y},

S,
————— 1 (X0), Yis)

Function X

Flgure 4.1-1 Mapping from the sumple space S to the joint sample spuce S, (xy plune),

MULTIPLE RANDOM VARIANLES K9

Y

A={X<x)
V.

Figure 4.1-2 Comparisons of events in § with those in S,

between cvents in the two spaces. Event 4 corresponds to all points in S, for
which the X coordinate values are not greater than x. Similarly, event B corre-
sponds to the Y coordinate values in S, not exceeding y. Of special interest is
to observe that the event 4 n B defined on S corresponds to the joint event
{X < x and Y <y} defined on S,, which we write {X <x, Y < y}. This joint
event is shown crosshatched in Figure 4.1-2.

In the more general casc where N random variables X,, X,, ..., Xy are
defined on a sample space S, we consider them to be components of an N-

dimensional random vector or N-dimensional random variable. The joint sample

space S, is now N-dimensional.

4.2 JOINT DISTRIBUTION AND ITS PROPERTIES

The probabilities of the two cvents A = {X < x} and B={Y S.y,} huyc {llrc:}dy
been defined as functions of x and y, respectively, called probability distribution
functions:

Fylx) = P{X < x) (4.2-1)
Fyly) = P(Y < y} (42-2)

We must introduce a new concept to include the probability of the joint event
{(¥<sx, Y <y

Joint Distribution Function

We define the probability of the joint event {X < x, Y < p}, which is a funcliop
of the numbers x and y, by a joint probability distribution function and denote it
by the symbol Fy y(x, y). Hence,

Fyylx, ) =P{X <x, Y <y} (4.2-3)

R R

[}
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It should be clear that P{X Sx, Y <y} =P(4 n B), where the joint cvent
A A Bis defined on S.

To illustrate joint distribution, we take an example where both random vari-

ables X and Y are discrete.

Example 4.2-1 Assume that the joint sample space S, has only three possible
clements: (1, 1), (2, 1), and (3, 3). The probabilities of these clements are
assumed to be P(1,1)=02, P2, 1)=103, and P{, 3) =05 We find
FX. Y(xv ,V)-

In constructing the joint distribution function, we obscrve that the event
{X £x, Y <y} has no elements for any x < | andfor y < 1. Only at the
point (1, 1) does the function assume a step valuc. So long as x 2 { and
y =1, this probability is maintained so that Fy y(x, y) has a stair step
holding in the region x > L and y 2 1 as shown in Figure 4.2-1a. For larger x
and y, the point (2, 1) produces a second stair step of amplitude 0.3 which
holds in the region x =2 and y 2 L. The sccond step adds do the first.
Finally, a third stair step of amplitude 0.5 is added to the first two when x
and y are in the region x 2 3 and y 2 3. The final function is shown in
Figure 4.2-1a.

The preceding example can be used to identify the form of the joint distribu-
tion function for two general discrete random variables. Let X have N possible
values x, and Y have M possible values y,., then

N M
FX. Y(xl y) = zl Elp(xnt ym)u(x - xll)u(y - ym) (42'4)
where P(x,, y) is the probability of the joint event {X = x,, ¥ = Y} and u(*) is
the unit-step function. As seen in Example 4.2-1, some couples (%ns Ym) may have
zero probability. In some cases N or M, or both, may be infinite.

If Fy ylx, y) is plotted for continuous random variables X and Y, the same
general behavior as shown in Figurc 4.2-la is obtained except the surface
becomes smooth and has no stairstep discontinuitics.

For N random variables X,, n=1,2, ..., N, the generalization of (4.2-3) is
direct. The joint distribution function, denoted by Fy Xau o xalX 10 X210 000 X i8S
defined as the probability of the joint event {X; < X4 X, %3, Xn S xy}:

F.\"..\'z......\’n(xl:xzv-“vXN)= P{X, < xy, Xy € Xgeeees Xu < xy) (4.2-5)

For a single random variable X, we found in Chapter 2 that Fy(x) could be
cxpressed in general as the sum of a function of stairstep form (due to the discrete
portion of a mixed random variable X) and a function that was continuous (due
to the continuous portion of X). Such a simple decomposition of the joint dis-
tribution when N > 1 is not gencrally true [Cramér, 1946, Scction 8.4]. However,
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Fy, vix. ¥)

Figure 4.2-1 A joint distribution function
{a), and its corresponding joint density
function (b), that apply to Examples
(2} 4.2-1 and 4.2-2.

it is true that joint density functions in practice often correspond to all random
variables being either discrete or continuous. Therefore, we shall limit our con-
sideration in this book almost entirely to these two cases when N > L.

Propertics of the Joint Distribution

A joint distribution function for two random variables X and Y has several
properties that follow readily from its definition. We list them:

(1) Fyy(—on—@)=0 Fry(=0,0)=0 Frix —0)=0  (42:60
() Fy. (o0, ) =1 (4.2-6b)
(3) 0sFyy{x,y)s1 (4.2-6¢)
(4) Fxylx, pisa nondecreasing function of both x and y (4.2-64)
(5) Fx.o(x2, y2) + Fx x{xs, y1) = Fx,vx1, y2) = Fx,vlx2, 70

=P{x; <X<x3, h<YS ¥y} 20 (4.2-6¢)
(6) Fx,ylx, 00} = Fx(x) Fy, (0, y) = Fy(y) (4.2-6¢f)

|
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The first five of these propertics are just the two-dimensional extensions of .
the propertics of one random variable given in (2.2-2). Properties 1, 2, and 5 may
be used as tests to determine whether some function can be a valid distribution

function for two random variables X and Y (Papoulis, 1965, p. 169). Property 6 K
deserves a few special comments. :

2y

=3
T

G g oh Sy S

P S AL S

nr

0.5

0.5

Marginal Distribution Functions |

_‘] .

Property 6 above states that the distribution function of one random variable can

be obtained by setting the value of the other variable to infinity in Fy 4(x, y). The

- functions Fy(x) or Fy(y) obtained in this manner are called marginal distribution
Junctions, .

To justify property 6, it is easiest to return to the basic events A and B, de- .

fined by A = {X < x} and B = {Y <y}, and observe that Fy y(x, y) = P{X < x,

Y <y} = P(A n B). Now if we set y to oo, this is equivalent to making B the cer- .

tain event; that is, B = {Y < o0} = S, Furthermore, since A N B=A A S = A, -

then we have Fy (x, )= P4 N S)= P(A) = P{X 5 x} = Fy(x). A similar
proof cun be stated for obtaining F,(y)

AR

LT

Fy(y) .
1.0 BB — :

e

0.5

0.5

1 ! Figure 4.2-2 Marginal distributions applicable
0 | 2 3 ¥ (o Figure 4.2-1 und Example 4.2:2: (a) Fy(x)
) and (b} Fy{y).

.- = —< l E“' | ] )

Example 4.2-2 We find explicit expressions for Fy, y(x, y), and the marginal
distributions Fx(x) and F(y) for the joint sample space of Example 4.2-1,

The joint distribution derives from (4.2-4) if we recognize that only three
probabilities are nonzero:

From an N-dimensional joint distribution function we may oblain a k-
dimensional marginal distribution function, for any selected group of & <_>f the N
random variables, by setling the values of the other N — k random variables to
infinity. Here k can be any integer 1,2,3,...,N — L.

fromimaazia st

Fx.v(x, y) = P(1, Dul(x ~ Du(y - 1)
+ P2, Du(x — uly - 1)
+ P(3, 3u(x — Iu(y — 3)
where P(1, 1) = 0.2, P(2, 1) = 0.3, and P(3,3) =0.5. If we set p = co:

4.3 JOINT DENSITY AND ITS PROPERTIES

In this section the concept of a probability density function is extended to include 3

multiple random variables.
Fy(x) = Fyx, y(x, 00)..

We shall refer often to fy, y(x, y) as the joint (Iensityﬁmclion._ .
If X and Y arc discrete random variables, Fy y(x, y} will possess step f.hsgo'n-
tinuities (see Example 4.2-1 and Figure 4.2-1). Derivatives at these disconltinuities r

»\ = P(l, Du(x — 1) -+ P(2, Du(x = 2) + P(3, 3)u(x — 3) Joint Density Function j
i: =0.20(x — 1) + 0.3u(x — 2) + 0.5u(x — 3) For two random variables X and Y, the joint probability densi'lyf.mwt.ion, dcno.lcd ‘

g Jx.v(x, p), is defined by the second derivative of the joint distribution function n
% If we set x = co: wherever it exists: i
8 -
F3 Fy(y) = Fx, 4(c0, y) O*Fy (x, y) -
;E' S vx, y) = == (4.3-1)

i = 02u(y — 1) + 03u(y ~ 1) + 0.5u(y — 3) : dx dy F
LS A
) = 0.5u(y — 1) + 0.5u(y — 3) o

Plots of these marginal distributions are shown in Figure 4.2-2,
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arc normally undefined. However, by admitting impulse functions (sce Appendix
A), we are able to define [y, y(x, y) at these points. Thercfore, the joint density
function may be found for any two diserete random variables by substitution of

(4.2-4) into (4.3-1):
N M
fert =L T Plxy ya) Ox = X) 8y — Y 4.3-2)
. 1

n=] m=
An cxample of the joint density function of two discrete random variables is

shown in Figure 4.2-1b.

When N random variables X, X2, ooos Xy arc involved, the joint density
function becomes the N-fold partial derivative of the N-dimensional distribution
function:
o~FX1.X1,.... Xn(xlv X3y eeen xN) (4‘3_3)

Dxl axl et axN

fxl.k:..... Xn(xll Xy eres xN) =

By direct integration this result is equivalent to

FX|.X:..... ,\‘N('\.ll Ngseens xN)

B J J‘ f Fen oo xlEas Ean oo S 46y Gy o d (@3-4)

) -

Properties of the Joint Density

Several properties of a joint density function may be listed that derive from its
definition (4.3-1) and the propertics (4.2-6) of the joint distribution function:

(1) frre 20 (4.3-50)

) j j oxln ¥ dy dy =

y x
(3) Fx, ¥lx, y) = I J_ So. vl ¢,) dé, dg,

(4.3-5h)
(4.3-5¢)

@ Fx(x)=r r Fy o(E0 €2 dEs dé, (43-50)

‘ Fy(y) = 'r j"” Sxol§ &2) ¢y dg, (4.3-5¢)

6 Pl<XSxon<Ysn= j f Fr o, ) dxdy (435)

» x4

(6) fx(x)':j Jex, y) dy (4.3-59)

Sey) = J Sx vlx, p) dx (4.3-5h)

Marginal Density Functions

The functions fx(x) and fy(y) of property 6 arc called marginal probability density ,‘zJ l
functions or just marginal density functions. They arc the density functions of the 5z z,§
singlc variables X and Y and are defined as the derivatives of the marginal dis- ' };3

tribution functions:

By substituting (4.3-5d) and (4.3-5¢) into (4.3-6) and (4.3-7), respectively, we are
able to verify the equations of property 6.

joint density function with an example.

|
|
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Properties 1 and 2 may be used as sufficient tests to determine if some function
* can be a valid density function. Both tests must be satisficd (Papoulis, 1965,
p. 169).

“I'he first five of these properlics are readily verificd from carlicr work and the
-reader should go through the neccssary logic as an exercisc. Property 6 intro-
duces a new concept.

d
Sxlx) = :":X) | (4.3-6)

d
5y =222 (837

We shall illustrate the calculation of marginal density functions from a given

Example 4.3-1 We find fx(x) and f,(y) when the joint density function is given'
by {Clarke and Disney, 1970, p. 108):

=-x(y+ 1)

Sx.y(x, y) = u(x)u(y)xe

From (4.3-.‘59) and the above equation:

flx) = j’ u(x)xe~ 0+ dy = u(x)xe™* J‘ e~ dy
i o 0

= u(x)xe”*(1/x) = u(x)e™™

N 1

after using an int\cgral from Appendix C.
From (4.3-5h):

after using another integral from Appendix C.
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For N random variables X |, X,, ..., Xy, the k-dimensional marginal densit); :
Junction is defined as the k-fold partial derivative of the k-dimensional marginal

distribution function. It can also be found from the joint density function by inte-
grating out all variables except the k variables of interest X, X5, ..., X,:

See v (X X2, 000, X5)

=J j Sxu xa e xnX Xay ooy X dXy oy dxyyg oo dxy (4.3-8) . "
-© )

4.4 CONDITIONAL DISTRIBUTION AND DEI;IS!TY
i

In Section 2.6, the conditional distribution function of a random variable X,

given some event B, was defined as

P{X < x n B)

Fx(x|B)= P{X < x| B} = 70

for any event B with nonzero probability. The corresponding conditional density

function was defined through the derivative

dF (x| B)

" fx(x1B) = dx

(4.4-2)

In this section these two functions are extended to include a second random vari-

able through suitable definitions of event B,

Conditional Distribution and Density—Point Conditioning

Often in practical problems we are interested in the distribution function of one
random variable X conditioned by the fact that a second random variable Y has

some specific value y. This is called point conditioning and we can handle such *

problems by defining event B by
B={y—A8y<Y <y+Ay} (4.4-3)

where Ay is a small quantity that we eventually let approach 0. For this event,
(4.4-1) can be wrilten

_ j‘yh\r o fx. v(&1, §2) d,y dE,

Falxly — Ay < Y <y + Ay) = Lzard= (4.4-4) S

B8 1@ d&-

where we have used (4.3-5f) and (2.3-64).
Consider two cases of {(4.4-4). In the first case, assume X and Y are both dis-
crele random variables with values x;, i=1,2,..., Nyand y;, j=1,2, ..., M,
respectively, while the probabilities of these values are denoted P(x;) and P(y)),

(@4-1)

MULTIPLE RANDOM vARIABLES U7

respectively. The probability of the joint occurrence of x; and p, is denoted
P(x;, y;). Thus,

M
S = Y P Sy = ») | (e.4-3)
J=1
N M . (
Seodx )= % T Plxg, y) 8x = x) 8y = y) (4.4-6)
i=1 J=1

Now suppose that the specific value of y of interest is yy. With substitution of

v

(4.4-5) and (4.4-6) into (4.4-4) and allowing Ay — 0, we obtain

& Pl ) _ .
Fax|Y =y) = ‘; —#y.Tk u(x — x,) (4.4-7)
o After differentiation we have
& Plxi y) )
SxlY =)= ‘g,‘ —;‘G;)J— 3x — x) (4.4-8)

Example 4.4-1 To illustrate the usc of (4.4-8) assume a joint dgnsily funcEion
as given in Figure 4.4-la. Here P(x,, y)) = sy Plxg, 1) = Y5, elc. Smc.:c
P(y;) = (Yhs) + (is) = %5, use of (4.4-8) will give fx(x| ¥ = y,) as shown in
Figure 4.4-1b.

The second case of {4.4-4) that is of interest corresponds to X and Y both
continuous random variables, As Ay— 0 the denominator in (4.4-4) becom_cs 0.
However, we can still show that the conditional density fx(x] Y = y) may exist. If
Ay is very small, (4.4-4) can be written as

j{-w Sx, (&1 y) dE, 28y (4.4-9)

Filxly—8y<Ysy+dy= Sr(y28y

and, in the limit as Ay— 0

]“ l
FyxlY =y = - f:\’fyzg' -V).(C (4.4-10)

for every y such that fy(y) # 0. After differentiation of both sides of (4.4-10) with
respect to X1

j:\' Y(x» ,V)
= ) o 2200 Y 4.4-11)
fX(xl Y Y) fy()')
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fx, rla. )

Syt1Y =)

Figure 4.4-1 A joint density function
(a) and a conditional density function
(b) applicable to Example 4.4-1.

When there is no confusion as to meaning, we shall often write (4.4-11) as

- fx. Y(X» .V) .
Sx1y) o (4.4-12)

It can also be shown that

) = Sx ()
Slylx) = ——L———fx(x) (4.4-13)

.

Example 4.4-2 We find fy(y]x) for the density functions defined in Example
43-1, Since

-x(y+1)

Ty, vl p) = ulxuly)xe

and

Sx(x) = ulx)e™™

MULTirce RANDOM VARIASLES 9y

are nonzero only for 0 <y and 0 < x, fy(y|x) is nonzero only for 0 < y and
0<xItis
fe(y1x) = u(xpuy)xe™™

from (4.4-13).

xConditional Distribution and Density—Interval Conditioning

1L is somelimes convenicnt to define event I3 in (4.4-1) and (4.4-2) in terms of a

random variable Y by

B={n.<Y sl (4.4-14)

where y, and y, arc real numbers and we assume P(B) = Plr.<Y Syl # 0.
With this definition it is readily shown that (4.4-1) and (4.4-2) become
Fy vl y) — Fy y(X, ya)

Fy(ys) = Frlya)

¥ ."x—m Se vl y) d¢ dy
=i ' 4415
ve (20 Sarx y)ydx dy ( )

Fylxlya <Y Sy =

and

» Jx. v1% Y) dy
. Y - Ys [} 4.4‘16
Hx1p.<Y S 9) {20 Sx.rlx y) dx dy ( )

These last two expressions hold for X and Y either continuous or discrete
random variables. In the discrete case, the joint density is given by (4.3-2). The
resulting distribution and density will be defined, however, only for y, and y,
such that the denominators of (4.4-15) and (4.4-16) arc nonzero. This requirement
is satisfied so long as the interval y, < y Sy, spans at least one possible value of
Y having a nonzero probability of occurrence.

An example will serve to illustrate the application of (4.4-16) when X and Y

arc continuous random variables.

Example 4.4-3 We use (4.4-16) to find fx(x]Y < ) for the joint density func-
tion of Example 4.3-1. Since we have here defined B={Y < y), then y, =
— oo and y, = y. Furthermore, since [y, y{x, y) is nonzero only for 0 < x and
0 < y, we nced only consider this region of x and y in finding the conditional
density function. The denominator of (4.4-16) can be written as [~ o f¥({) dé.

By using results from Example 4.3-1

¢ o mpde [ _de Y
LJ’“’“‘L(&+1)"[ TN T

- 0

i
|
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IxlxlY Sy)
1.0
yao
0.8
10.0
o6}
1.0
0.1
0.4
y=0
0'2 \
0 1 T
1 1 1 L )
0 0.5 1.0 1.5 2.0 2.5 3.0
X

Figure 4.4-2 Conditional probability density functions applicable to Example 4.4-3.

and zero for y < 0, after using an integral { i
1S oo gral from Appendix C. The numerator

4 y
J‘ fx. Y(x, §) dé J‘ u(x)xe“»\‘(("l) dé
—w o

y
u(x)xe™* j e~ X d¢

(]
= u{x)e " *(1 —e™*’) y>0
and zero for y < 0, after using another integral from Appendix C, Thus

et

This function is plotted in Figurc 4.4-2 for several values of y.

y+1

SlxY <y) = u(x)u(y)(

4.5 STATISTICAL INDEPENDENCE

It will be recalled from (1.5-3} that two cvents A and B ¢ alistically i
dent if (and only if) ’ nd B are stalistically indepen-,

P(A n B) = P(A)P(B) (4.5-1)

MULTIPEE RANDOM Vaiabies 1ol

This condition can be used Lo apply to (wo random variables X and Y by defin-

ing the events A = {X < x} and B ={Y sy} for two real numbers x and y

Thus, X and Y are said to be statistically independent random pariables il (and
only if)
P{X <x, Y <y} =P{X < x}P(Y <) (4.5-2)
From this expression and the definitions of distribution functions, it follows
that
Fy, o(x, y) = Fy(x)Fy(y) . (4.5-3)

it X and Y are independent. From the definitions of density function‘s, (4.5-3)
gives

Je fxy y) = L5 () S) (4.5-4)

by differentiation, il X and Y are independent. Either (4.5-3) or (4.5-4) may serve
as a suflicient definition of, or test for, independence of two random variables.
The form of the conditional distribution function for independent cvents is

* found by use of (4.4-1) with B = {Y < y}:

PX<x Y <y} Fealxy) (4.5-5)

F Y SN=""py 37~ A0

By substituting (4.5-3) into (4.5-5), we have
Fx(x|Y S y) = Fx(x) (4.5-6)

In other words, the conditional distribution ccases to be conditional and simply
equals the marginal distribution for independent random variables. It can also be

shown that
Fyyl X < x) = Fyly) (4.5-7)
Conditional density function forms, for independent X and Y, arc found by
differentiation of (4.5-6) and (4.5-7):
LKxlY < y) = fx(x) (4.5-8)
Sy X < x) =,y (4.5-9)

Example 4.5-1 For the densities of Example 4.3-1:
S ) = u(x)u(y)xe =0+ Y
-X

mmmﬂwmﬁmﬁumn

Therefore the random variables X and Y are not independent,

3

p==m

[,

oL e
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In the more general study of the statistical independence of N random vari-
ables X0 Xaooe, Xyowe define events A; by

/ll={’\,lsxl} i= lo 2'---|N (4.5"0)

where the x, are real numbers. With these definitions, the random variables X,
are said to be statistically independent if (1.5-6) is satislicd.

It can be shown that if Xy, Xayoens Xy arc statistically independent then any
group of these random variables is independent of any other group. Furthermore,
a function of any group is independent of any function of any other group of the
random variabics. For example, with N = 4 random variables: X, is independent
of Xy+ X+ Xy Xy is independent of X, + X, etc. {scc Papoulis, 1965,
p. 238).

4.6 DISTRIBUTION AND DENSITY OF
A SUM OF RANDOM VARIABLES

The problem of finding the distribution and density functions for a sum of sta-
tistically independent random variables is considered in this section.

Sum of Two Random Variables

Let W be a random variable equal to the sum of lwomdom vari-

ables X and Y
W=X+Y (4.6-1)

This is a very practical problem because X might represent random signal

voltage and Y could represent random noise at some instant i time. The sum W

would represent @ signal-plus-noisc voltage available to some receiver.
The probability distribution function we seck is defined by

Fi(w) = P{W S w} = P{X + Y S w) (4.6-2)

Figure 4.6-1 illustrates the region in the xy planc where x +y = W. Now from
(4.3-5/), the probability corresponding to an clemental area dxdy in the xy plane
located at the point (X, ¥) is fy, y(x, y) dx dy. If we sum all such probabilities over
the region where x + y S wWwe will obtain Fy{w). Thus

Fylw) = [w J‘w_’ Sy vlx, y) dx dy (4:6-3)

o) JxB - D

and, after using (4.5-4):

o W-’y
Fyfw) = '[ S J flx) dx dy (4.6-4)

xX= ="
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»

~
®
b3

xty=w

x+y<w

Fipure 4.6-1 Region in xy plane where x +
ysw

xifxx\\\\\

By differentiating (4.6-4), using Leibniz’s rule, we get the desired density function

Sw(w) = J‘_ S0 Sxlw =) dy {4.6-5)

This expression is recognized as a convolution integral. Consequently, we have
shown that the density function of the sum of two statistically independent random
variables is the convolution of their individual density functions.

Example 4.6-1 We use {4.6-5) to find the density of W=X+Y where the
densities of X and Y arc assumed to be

S0 = £ 19 = wtx = )

Si9) = 3 L) =y = B

with 0 < a < b, as shown in Figure 4.6-2a and b, Now because 0 < X and
0 < Y, we only nced examine the case W =X+ Y > 0. From (4.6-5) we
wrile

Jw(w) = j s [u(y) — uly — bY}{u(w — y) — u(w ~ y — @)l dy

l o0
= J. 1 —uly— bYI[u(w — y) — u(w — y — a)) dy

L[ -
=;,;U u(w—y)dy—L uw — y = a) dy

—J‘mu(y — bu(w — y) dy + J
0 o

@

u(y - b)u(w — y — a) (Iy]

~
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Sx(x)
L
a
[4] a x
(@)
fely)
IR
b
0 b y
h)
Sw(w)
L —
[
o b ~
a a+b ¥ Figure 4.6-2 Two densily functions (a)
(c) and (b) and their convolution (c).

All the'sc integrands are unity; the values of the integrals are determined by
the }Jnxt-stcp functions through their control over limits of integration. After
straight{orward evaluation we get

wab Osw<a
1/b as<w<b
Swlw) =
i (@+b—wab bs<w<a+b
0 w2a-+b

which is sketched in Figure 4.6-2c.

*Sum of Several Random Variables

When ll.u: sum Y of N independent random variables X,, X,, ..., Xy is to
be considered, we _may extend the above analysis for two random variables.
Let Y, =X, 4+ X,. Then we know from the preceding work that fy (y,) =
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Jea(x2) # fx (x ).t Next, we know that X, will be independent of ¥y = X, + X,
becuuse X, is independent of both X, and X,. Thus, by applying (4.6-5) to the
two variables X, and Y, to find the density function of Y, = Xy + Y;, we get
Jrraxy+x3+5,(02) = [x,(x3) *frimxi+x:01)
= fx,(X3) * fx,{x3) * S, (xy) (4.6-6)

By continuing the process we find that the density function of Y =X, + X, +
oo+ Xy is the (N_— 1)-fold convolution of the N individual density functions:

S =fx,,(«"~) *fx~-|('\‘N—l) L *fx.(-\'x) - (46-7)

The distribution function of Y is found from the intcgral of fy(y) using
(2.3-6¢).

*477 CENTRAL LIMIT THEOREM

Broadly defined, the central limit_theorem says that the probability distribution
function of the sum of a large number of random variables approaches 4 ussinn
distribution. Although the (heorem is known to apply to some cases of sta-
tistically dependent random variables (Cramér, 1946, p. 219), most applications,
and the largest body of knowledge, are dirccted toward statistically independent
random variables. Thus, in all succeceding discussions we_assume stalistically
independent random variables. -

e

*Unequal Distributions

Let %, and o} be the means and variances, respectively, of N random variables
X, i=1,2,..., N, which may have arbitrary probability densitics, The central
fimit theorem stales that the sum Yy = X, + X; 4+ - + X, which has _mean
V,=X,+ X, + - + Xy and variance oy, = 0%, + 0y, + ' +0x,, has a

probability distribution that asymptotically approaches gaussian _as N — oo,
Necessary conditions for the theorem's validity are difficult to state, but sufficient
conditions are known to be (Cramér, 1946; Thomas, 1969)

0%, > By >0 i=1,2..,N (4.7-1a)
E[X, - X1 <B, i=1,2..,N (4.7-10)

where B, and B, are positive numbers. These conditions guarantee thiat no one
fandom variable in the sum dominates. .

“"The rcader should observe thal the central limit theorem guarantees only
that the distribution of the sum_of random variablcs becomes gaussian, It does
not follow that the probability density is always gaussian. For continuous

t The asterisk denotes convolution.
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random variables there is usually no problem, but certain conditions imposed on
the individual random variables (Cramér, 1946; Papoulis, 1965 and 1984) will
guarantec that the density is gaussian.

For discrete random variables X, the sum Y, will also be discrete so its
density will contain impulscs and is, Therelore, not gaussian, cven though the dis-
tribution approaches gaussian. When the possible discrele values of cach random

vanable are kb, k=0, oL 1, 42, ..., with b a constant,t the envelope of the
impulses in the density of the sum will Be gaussian (with mean ¥, and variance
al,). This casc is discusscd in some detail by Papoulis (1963).

The practical uscfulness of the central limit theorem docs not reside so much
in the cxactness of the gaussian JistAbution for N — co because the variance of
Yy becomes infinite from (4.7-1a). Usclulness derives more {rom the fact that Yy
for finite N may have a distribution that is closely approximated as gaussian. The
approximation can be quile accurate, even Tor relatively small values of N, in the
Central region of the gaussian curve near ThHe mean. However, the approximation
can be very inaccuralc in the tail regions away from the mean, cven for large
values of N (Davenport, 1970; Melsa and Sage, 1973). Of course, the approx-
{mation is made more accurate by increasing N.

*Equal Distributions

1f all of the statistically independent random variables being summed are contin-
Tous and have the same distribution function, and therefore the same density, the
proof of the Central Limit thcorem is relatively straightforward and is next
developed.

Because the sum Yy =X, + X, + o+ Xy has an infinite variance as
N - oo, we shall work with the zero-mean, unit-variance random variable

N " ik
Wy =(Yy— Pov, = L X,)/[‘Zld.]
i=1 =

P .
= T - %) (4.7-2)

—\/—ﬁa‘\.:nl

instead. Here we define X and ol by

X=X alli 4.7-3)
’ o} =0% alli (4.7-4)

since all the X have the same distribution.
The theorem's proof consists of showing that the characteristic function of
1, is that of a zero-meat, unit-variance gaussian random variable, which is

By () = €Xp (—w?/2) (4.7-5)

t These are called lattice-type discrele random variables (Papoulis, 1965).
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- from Problem 3-28. If this is proved the density of Wy must be gaussian from
7 7(3.3-3) and the fact that Fourier transforms are unique. The characteristic func-

tion of Wy is

wW jo y
Oy () = E[e™""] = E[cxp { Y (X - X)}]

Noyi=1

- <1«*{cxp[ Jo_ (x, - ?)]}>~ (4.7-6)
; VTG :

The last step in (4.7-6) follows from the independence and equal distribution of
the X,. Next, the exponential in (4.7-6) is expanded in a Taylor polynomial with
a remainder term Ry/N:

E{exp [ j%ax X, — X)]}

Jao ) ' ( Jo )’ X, = 2 RN}
= E{1 X, - =
{ +(\/I-V-O’x( =R \/ﬁ"x 2 +N
=1 — (@¥2N) + E[Ry)IN @)

v./hcrc E[Ry] approaches zero as N— oo (Davenport, 1970, p. 442). On substitu-
tion of (4.7-7) into (4.7-6) and forming the natural logarithm, we have

In [@y,(@)] = N In {1 = (@?/2N) + E[Ry)/N} (4.7-8)
Since
PLE S
1n(1-—z)=—-[2+—2'+?+"-] lzi <t 4.7-9)

we identify z with (w?/2N) — E[RJ/N and write (4.7-8) as

2 2
In [y ()] = —(w?/2) + E[Ry] — —IZ— [a) - E-[-R—N]-] 4+ (47-10)

2N~ N
s0
:i_x‘r;{ln [Ow, ()]} =In {hlll-l:n d)w"(w)} = -2 (4.7-11)
. Finally, we have
r}im DOy () = e~/ (4.7-12)
which was to be shown. '

We illustrate the use of the central limit theorem through an example.
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Example 4.7-1 Consider the sum of just two independent uniformly distrib-
uted random variables X, and X, having the same density

Ji) =1 [ = ulx = )]

where a > 0 is a constant, The means and variances of X, and X, are X =

af2 and o} = a?/12, respectively. The density of the sum W =X, + X, is .

available from Example 4.6-1 (with b = a):

Sw(w) = 1 tri (.‘1’)
a a

where the .funclion tri (+) is defined in (E-4). The gaussi‘im approximation to
W has variance o}, = 20} = a?/6 and mean W = 2(a/2) = a:

g=(w=a)ijtal)3)

V' (a?/3)

Figure 4.7-1 illustrates f,,(w) and its gaussian approximation. Even for the
case of only two random variables being summed the gaussian upprox-

Approximation to f,,(w) =

imation is a fairly good one. For other densities the approximation may be . - i

very poor (see Problem 4-63).

1O
Gaussiun approximation
3 - twmniad
/" e ~lwu)ia'id)
05k /a/w(w)
] 1
0 [ 4w

Figure 4.7-1 The triungulur density function of Example 4.7-1 and its gaussian approximation,
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PROBLEMS

4-1 Two events 4 and B delined on a sample space § are related (o a joint sam-
ple space through rundom varinbles X and Y and are defined by A = {V < X}
and B = {y, < Y < y,;}. Make a sketch of the two sample spaces showing areas
corresponding to both events and theevent A N B = {(Xsx,pm<Y<smh
42 Work Problem 4-1 for the two cvents A = {v) < X gx,} and B =
{ri <Y <yl .
4-3 Work Problem 4-1 for the two events 4 = {x; < X € x; or x; <V v}
and B={y, <Y <y}, . .
4-4 Three events 4, B, and C satisfy Cc Bc A and are defined by A =
{(X<x,, Y<y} B={X<x, Y<p} and C={X<x,, Y <y} for two
random variables X and Y.
o {a) Sketch the two sample spaces § and S, and show the regions correspond-
ing to the three events. ’

(b) What region corresponds to theevent A n B~ C?

4-5 A joint sample space for two random variables X and Y has four elements
(1, 1, 2, 2), 3, 3), and (4, 4). Probabilitics of these elements are 0.1, 0.35, 0.05,
and 0.5 respectively. -

(«) Determine through logic and sketch the distribution function Fy (x, y).

(b) Find the probability of the event {X < 2.5, Y < 6}.

{¢) Find the probability of the event {X < 3}.

.4-6 Write a mathematical cquation for FFy ((x, y) of Problem 4-5.
-4-7 The joint distribution function for two random variables X and Y is

Fy y(x, y) = u(xu(y)[1 — e~ — &7 4 "]

where u(+) is the unit-step function and a > 0. Sketch Fy y(x, y).
4-8 By use of the joint distribution function in Problem 4-7, and assuming
a = 0.5 in each case, find the probabilities:

(@) P{X s 1,Y 52} (0 P{0.5S < X < 1.5}

(¢) P{—-15<X <2 1<Y <3}
4-9 Find and sketch the marginal distribution functions for the joint distribution
function of Problem 4-5,
4-10 Find and sketch the marginal distribution functions for the joint distribu-
tion function of Problem 4-7.
4-11 Given the function

Gy ylx, 3) = a1l — e 7]

“Show that this function satisfics the first four propertics of (4.2-6) bat fuils the
filth one. The function is therefore not a valid joint probability distribution
function.
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4-12 Random variables X and Y arc components of a two-dimensional random
veetor and have ajoint distribution

0 x<0 or yp<0

xy 0<x<| and O<sy<|
X 0<x<t and 1<y

y 1 €x and O<y<t

1 1<x and 1<y

(«) Sketch Fy vlx, .
(h) Find and sketch the marginal distribution functions Flx)and Fy(y).

4-13 Show that the function
0 x <y
G,\‘,y(-"‘))—' {l Xy
cannot be a valid joint distribution function. [Hint: Use (4.2-6¢).]

4-14 A fair coin is tossed twice. Define random variables by: X = “number of
heads on the first toss” and Y =" number of heads on the sccond toss” (note

that X and Y can have only the values 0 or 1).
(a) Find and sketch the joint density function of X and Y.

(b) Find and sketch the joint distribution function.
4-15 A joint probability density function is

1/ab 0<x<a and
Jx A3} = {0 elsewhere

Find and sketch Fy, (X, Y-
4-16 1fa < b in Problem 4-15, find:

() PIX+Y S Ja/4) {hy P{Y < 2bX/a).
4-17 Find the joint distribution function applicable to Example 4.3-1.
4-18 Sketch the joint density function fx, v(x, y) applicable to Problem 4-5. Write
an equation for fx, y(¥, ¥). ‘

4-19 Determine the joint density an
Problcm:i-7.

O<y<b

d both marginal density functions for

4-20 Find and sketch the joint density function for the distribution function in

Problem 4-12,
4-21 (a) Find a censtant b (in terms of a) so that the function
pe=t*t"  0<x<a and O<y<®

Sxolx )= {0 clsewhere

is a valid joint density function.
(h) Find an expression for the joint distribution function.

b gt TSI TN
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4-22 (a) By use of the joint density function of Problem 4-21, find the marginal
density functions.

(h) Whatis P{0.5a < X < 0.754) in terms of a and b7
4-23 Delermine a constant b such that cach of the following are valid joint
densily funclions:

3xy O<x<l d
(@) fx 6 ) = y x an 0<y<b
0 elsewhere
() fxr( ) = bx(1 —y) 0<x<05 and 0<y<!
0 clsewhere
b(x* +4y) 0D :
(C)fx,y(x.y)={(x 9 <lixl<! and 0gy<?
0 clsewhere

*4.24 Given the function

x*+yl<b
elsewhere

2 2
Sxrx y) = {((;‘ + y*")/8n

(a) F!nd a constant b so that this is a valid joint density function.
(h) Find P{0.5b < X* + Y? < 0.8b}. (Hint: Use polar coordinates in both

pirts.)
*4.25 On a firing range the coordinates of bullet strikes relative to the target
bull's-cye arc random variables X and Y having a joint density given by

~(x? +y2)/2¢1

Sx (X, y) =

2na?

Here o! is a constant related to the accuracy of manufacturing a gun's barrel.
What value of g2 will allow 80% of all bullets to fall inside a circle of diameter
6 cm ! (Hint: Use polar coordinates.)

4-26 Given the function

b(x + y)? _2<x<2 and ~3<y<3

S r(x y) = {0 elsewhere

{a) Find the constant b such that this is a valid joint density function.
(b) Determine the marginal density functions fx(x) and fy(y)

4-27 Find the conditional density functions Sx(x1y), Sx(x[ya) Sylylx,) and
fy(y| x,) for the joint density defined in Example 4.4-1,

4-28 Find the conditional density function fx(x| ) applicable tu Example 4.4-2.

4-29 By using the results of Example 4.4-2, calculate the probability of the event
{y<21X = 1}

i

iﬁ.e;,i
o0
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4-30 Random variables X and Y are joimly gaussian and normalized if

x¥ — 2pxy + y?
A=) where -l1gpsi

(a) Show that the marginal density functions are

1
Jx A%, y) = ——==—=exp ["
2n /1 = p?

1
o) = = oxp (X)) == 0 (<)

(Hint: Complete the square and use the fa r
Hin ct that the area i
domty s i) : under a gaussian

(b) Are X and Y statistically independent?
4-31 By use of the joint density of Problem 4-30, show that

L] ¥ = ) = e exp | = X2
WY =9 =" =5 ""[ 201 - p?)

4-32 Given the joint distribution function

Fyyx, y) = u(x)u(y)[l — e™™ — e~ 4 e7*7]
find:

(a) The conditional density functions fy(x| Y = y)and fy(y| X = x).
(b) Are the random variables X and Y statistically independent?

4-33 For two independent random variables X and Y show that

P{st}=J

Fy(x)/x(x) dx
or

Fx(0) Sx(y) dy

4-34 Two random variables X and Y have a joint probability density function

.

P{st}=1-'[

-w

= x2y
Jx (%, ) = 16
0 elsewhere

O<y<x<2

(¢) Find the marginal density functions of X and Y.
(b) Are X and Y stalistically indépendent?

1‘:1-35 Show, by use of (4.4-13), that the area under f,(y] x) is unity.
4-36 Two random variables R and © have the joint density function
u(r)fu0) — (0 = 20)3r _ 4y

: ¢

Juofr, 0) = 5

(@) Find PO<R < 1,0 <O < n/2}.

Bttt N A TR R |
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(b) Find fx(r|© = m). ‘
(c) Find fx(r|® < 7) and compare to the result found in part (b), and explain

the comparison.
4-37 Random variables X and Y have respective density functions

Jxlx) = -1[; [u(x) — ulx — a))

July) = buly)e™

where a > 0 and b > 0. Find and sketch the density function of W = X + YifX
and Y are statistically independent. -
4-38 Random variables X and Y have respective density functions

Sylx) = 0.13(x — 1) + 0.26(x — 2) + 0.48(x — 3) + 0.35(x — 4)

Jily) = 048(y — 5) -+ 0.58(y — 6) + 0.18(y = 7)
Find and sketch the density function of W = X + Yif X and Y are independent.
4-39 Find and sketch the density function of W = X + Y, where the random
variable X is that of Problem 4-37 with « = s and Y is that of Problem 4-38.
Assume X and Y are independent.
4-40 Find the density function of W = X + Y, where the random variable X is
that of Problem 4-38 and Y is that of Problem 4-37. Assume X and Y are inde-
pendent. Sketch the density function for b = 1 and b =4
*4-41 Three statistically independent random variables X,, X5, and X all have
the same density function ’

1
Julx) = p (ux) = ulxy = )] i=123

Find und sketch the density function of ¥ = X, + X + X,ila> 0is constant.

ADDITIONAL PROBLEMS

4-42 In a gambling game two fair dice arc tossed and the sum-of the numbers
that show up determines who wins among two players. Random variables X and
Y represent the winnings of the first and second numbered players, respectively.
The first wins $3 if the sum is 4, 5, or 6, und loses $2 if the sum is 11 or 12; he
neither wins nor loses for all other sums. The second player wins $2 for i sum of
8 or more, loses $3 for a sum of 5 or less, and neither wins nor loses for other
sums,

(¢) Draw sample spaces § and S, and show how clements of § map to cle-
ments of S5

(b) Find the probabilitics of all joint outcomes possible in §,.
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4-43 Discrete random variables X and Y have a joint distribution function
Fy y(x, y) = 0.10u(x + Auly — 1) + 0.13u{x + My + 5)
+ 0.17u(x + Duly — 3) + 0.05u(x)u(y — 1)
+ 0.18u(x — )u(y -+ 2) + 0.23u(x — Nu(y — 4)
+ 0.12u(x — Auly + )
Find: (¢) the marginal xlis':lribtxlioxls Fy(x) and Fy(y) and sketeh the two functions,
() X and ¥, and (c) the probability P{—1 < X <4, ~3<Y <3
4-44 Random variables X and Y have the joint distribution
%(i(—_‘_—-\‘e———_;%‘—”i—e"’)u(y) 0<x<4

Fy ylx, 3) =40 x<0ory<0

1+ -;- e
Find: {a) The marginal distribution functions of X and Y, and (b) the probability
P3<Xs51 <Y <2}

4-45 Find the joint distribution function of the random variables having the joint
density of Problem 4-48.

4-46 Find a value of the constant b so that the function

—%e"" 4d<xandany yz0

e y(x, y) = bxy? exp (= 2xyju(x — Duly — )

is a valid joint probability density.
4-47 The locations of hits of darts thrown at a round dartboard of radius r are
determined by a vector random variable with components X and Y. The joint

density of X and Y is uniform, that is,
)= 1/nr? x4yt <r?
Sexy) = 0 clsewhere

Find the densitics of X and Y.
4-48 Two random variables X and Y have a joint density

C S ) = lulx) - ulx - Auy)y® exp [—(x + 1y’

Find the marginal densitics and distributions of X and Y.
4-49 Find the marginal densities of X and Y using the joint density

Serla Y= 2u(x)u(y) exp [..(4}, + %)]

Y have the joint density of Problem 4-49. Find

4-50 Random variables X and
an twice the valucs of X for

the probability that the values of Y arc not greater th
x<ld

WA BT
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4-51 Find the conditional densities fx(x]Y = y) and fy{y| X = X) applicable to
thé joint density of Problem 4-47.

4-52 For the joint density of Problem 4-48 determine the conditional densitics
Sx(x| ¥ = yyand f(y| X = x).

4-53 The time it takes a person to drive to work is a random variable Y. Because
of traflic driving time depends on the (random) time of departure, denoted X,
which occurs in an interval of duration To that begins at 7:30 A.M. each day.
There is a minimum driving time T, required, regardless of the time of departure.
The joint density of X and Y is known to be

Sxyl% 9) = ey = Ti*uly = Ty)u(x) — ulx — To)] exp [—(y = Tilx + 1)]

where
c=(1+ ToP2l0 + T’ — 1]

(a) Find the average driving time that results when it is given that departure
occurs at 7:30 A.M. Evaluate your result for To=1h.

(b) Repeat part {a) given that departure time is at 7:30 A.M. plus Ty,

(¢) What is the average time of departure if Ty = 1 h? (Hint: Note that point
conditioning applies.)

*4-54 Start with the expressions

Y
Fyly|B) = P{Y < y|B) =£{__§ay9)f‘_"}
dF(y| B
fy(le)=——';—yyl—l

which are analogous to (4.4-1) and (4.4-2), and derive Fy(ylx, < X < x,) and
fiylx, < X S x) which are analogous to (4.4-15) and (4.4-16).

*4.55 Extend the procedures of the text that lcad to (4.4-16) to show that the joint
distribution and density of random variables X and Y, conditional on the event

B={y, < Y < y,}. are
0 YSVa

Fy, X y) — Fx,y(-". Ya)

1 Fy(e ylyi< Y Sy =47 Fy) = P ya<yEn,
S Fy y(X, )~ Fy, y(X o)

1 (Fy(ﬁf.) = F:(;f) = on<y

: ¥ and

4 0 ysSy. and  y>n
: e vx y1ya < Y<yn= Sy % ) <Y EW

Fyly) — Friva)
4-56 Determine if random variables X and Y of Problem 4-53 are statistically
independent.
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4-57 Determine if X and Y of Problem 4-49 are statistically independent.
4-58 The joint density of four random variables X, i=1,23,and 4, is

4
fx,.x;.x,, x(X1 X2, X3, Xy) = H exp (~2]x])
© my

Find densities (@) Sy, x, ;%1 X2, X31%8)  (B) Sy, xs(%1s X21X3, x4),  and
(€) Sx,(xy [ %2, X3, x4}

4-59 If the difference W = X — ¥ 1s tormed instead of the sum in (4.6-1), develop -

the probability density of W. Compare the result with (4.6-5). Is the density still a
convolution of the densities of X and Y ? Discuss.

4-60 Statistically independent random variables X and Y have respeclive
densities

Sx(x) = [u(x + 12) = u(x — 12)J[1 — |x/12]]/12

Jr(y) = (1/4)u(y) exp (- y/4)
Find the probabilities of the events:

(@ {Y <8 —(2]X|/3)},and () {Y < 8 +2] X|/3)}.
Compare the two results,

4-61 Statistically independent random variables X and Y have respective
densities
Jx(x) = Su(x) exp (—5x)
Sely) = 2u(y) exp (~2y)
Find the density of the sum W = X + Y,
*4-62 N statistically independent random variables X, i=12, ..., N, all have
the same density
Sxlx) = aulx;) exp (—ax)

where a > 0 is a constant. Find an expression for the density of the sum W =
X, +X;4 -+ Xyforany N,

*4-63 Find the exact probability density for the sum of two statistically indepen-
dent random variables each having the density

Jxx) = 3[ulx + a) = u(x — a))x?/2a*

where @ >0 is a constunt. Plot the density along with the gaussian approx-

imation (to the densily of the sum) that has variance 20} and mean 2X. Is the
approximation a good onc? '

*4-64 Work Problem 4-63 cxcept assume
Jx(x) = (1/2) cos (x) rect (x/n).

CHAPTER

FIVE

OPERATIONS ON
MULTIPLE RANDOM VARIABLES

5.0 INTRODUCTION

After establishing some of the basic theory of several randpm variab}cs in the pre-
vious chapter, it is appropriate to now extend the opcrat‘lons d.cscrxbcd in Chap-
ter 3 to include multiple random variables. This chapter is d.cdlcaled to these cx-
tensions. Mainly, the concept of expectation is enlarged to mcludt_: l'wo or more
random variables. Other operations involving moments, c}mraclcnsue functions,
and transformations are all special applications of expectation.

5.1 EXPECTED VALUE OF A
FUNCTION OF RANDOM VARIABLES

When more than a single random variable is involved, expectation must be taken
with respect to all the variables involved. For example, if g(X, Y? is some func-
tion of two random variables X and Y the expected value of g(+,*) is given by

w -
g=E[g(X, V)] = J I 9(x, Y)fx, ¢(x, y) dx dy (5.1-1)
~® J-wo
This expression is the two-variable extension of (3.1-6).
17
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For N random variables Xy, X3, ..., X and some function of these vari-
ables, denoted g(X 4, ..., Xa) the expected value of the function becomes

§ = E[g(Xy .. Xa)l

=J o [ e 0l D

oty -t

Thus, cxpectation in general involves an N-fold integration when N random viri-
ables are involved.

We illustrate the application of (5.1-2) with an example that will develop an
important point.

Example 5.1-1 We shz’xll find the mecan (expected) value of a sum of N
weighted random variables, Il we let

N
YX oo Xp) = ‘Zl“lxl

where the * weights® are the constants o, the mean value of the weighted

sum becomes
N
El Z o X,
(a1

N L w
z j ”'J. al'xlf.\’l.....,\'n(xl‘""XN) (1X| ”'{IXN

E[_(I(XU [ERX} XN)]

- -

from (5.1-2). After using (4.3-8), the terms in the sum all reduce to the form

J a; X felx) dx = E[a,X) = o E[X|]

SO
N N
1;[ 5 a,x,] - 3 LX)
I=] o iml

which says that the mean value of a weighted sum of random variables equals
the weighted sum of mean values.

The above extensions (5.1-1) and (5.1-2) of expectation do not invalidate any
of our single random variable results. For example, let

g(xl:"'»xN)=g(xl) (5.1-3)
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and substitute into (5.1-2). After integrating with respect to all random variables
except Xy, (5.1-2) becomes

o

g=E[g(X )] = J glx ) fx,(x1) dx, (5.1-4)

which is the same as previously given in (3.1-6) for onc random variable. Some
reficction on the reader's part will verify that (5.1-4) also validates such earlicr

lopics as moments, central moments, characteristic function, etc, for a single

random variable.

Joint Moments About the Origin

Onc important application of (5.1-1) is in defining joint moments about the origin.
They are denoted by m,, and are defined by

My = ELX"Y*] = r r XYy 1%, y) dx dy (5.1-5)

for the case of two random variables X and Y. Clearly m,o = E{X"] are the
moments m, of X, while mg, = E[Y*] are the moments of Y. The sum n + k is
called the order of the moments, Thus gz, Mags and m,, are all second-order
moments of X and Y. The first-order moments moy = E[Y]=? and mo =
E[X] = X are the expected values of Y and X, respectively, and are the coordi-
nates of the “center of gravity ” of the function fx, v(x, ¥).

The sccond-order moment m,, = E[X Y] is called the correlation of X and
Y. It is so important to later work that we give it the symbol Ryy. Hence,

Ryy = myy = E[XY] = f J ‘ xyfx. v(x, y) dx dy (5.1-6)

If correlation can be wrilten in the form
Ryy = E[XJE[Y] (5.1-7)
then X and Y are said to be uncorrelated. Statistical independence of X and Y is
sufficient to guarantee they are uncorrelated, as is readily proven by (5.1-6) using
(4.5-4). The converse of this statement, that is, that X and Y are independent irx

and Y are uncorrelated, is not necessarily true in general.t
If

Ryy=0 (5.1-8)
for two random variables X and Y, they are called orthogonal.

A simple example is next developed that illustrates the important new topic
of correlation.

t Uncorrelated gausstan random variables are, however, known to also be independent (see
Section 5.3).

~
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Example 5.1-2 Let X be a random variable that has a mean value X =
E[X] =3 and variance o} = 2. From (3.2-6) we easily determine the second
moment of X about the origin: E[X?] = m,o = 02 + X2 =11,

Next, let another random variable Y be defined by

Y= —6X+22

The mean value of Y is P= E(Y] = E[—6X +22] = —6X + 22 =4. The
correlation of X and Y is found from (5.1-6)

Ryy=my, = E[XY]) = E[—-6X? + 22X] = —6E[X?] + 22X
= ~6(11)+22(3) =0

Since Ryy =0, X and Y are orthogonal from (5.1-8). On the other hand,
Ryxy # E[X]E[Y] = 12,50 X and Y are not uncorrelated [see (5.1-7)].

We note that two random variables can be orthogonal even though cor-
related when one, Y, is related to the other, X, by the linear function
Y =aX + b. It can be shown that X and Y are always correlated if ja] % 0,
regardless of the value of b (see Problem 5-9). They are uncorrelated if a = 0,
but this is not a case of much practical interest. Orthogonality can likewise
be shown to occur when a and b are related by b = —aE[X?]/E[X] when-
ever E[X] # 0. If E[X] = 0, X and Y cannot be orthogonal for any valuc of
aexcept a = 0, a noninteresting problem. The reader may wish to verify these

statements as an exercise. .

For N random variables X;, X,,..., X, the (ny + ny + -+ + ny)-order
momients are defined by

Myipyony = E[XT' X3 -0 X3N]

=J. J XU X e xaX1s ooy Xp) dixy oo dxy (5.1-9)

- -

where ny, ny, ..., nyareallintegers = 0, 1, 2,....

Joint Central Moments

Another important application of (5.1-1) is in defining joint central moments. For
two random variables X and Y, these moments, denoted by g, , are given by

= E[(X = XY(Y = 7))
= J J (x - X)"()’ - ?)kfx (%, y) dx dy {5.1-10)

-
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The sccond-order central moments
fzo = E[(X — X)*] = o} (5.1-11)
oy = E[(Y — V)!] = o} (5.1-12)

are just the variances of X and Y.
The sccond-order joint moment g, is very important. It is called the covari-
ance of X and Y and is given the symbol Cy,. Hence

Cyy =gy, = E[(X — X)(Y - ?)]
= Jw J ) (x = XNy = V) fx, vlx, y) dx dy (5.1-13)

By direct expansion of the product (x — X)Xy — 9), this integral reduces 1o the
form

Cyy = Ryy — X P= Ry, — E[X]E[Y)] ¥ (5.1-14)

when (5.1-6) is used. If X and Y are cither independent or uncorrclated, then
{5.1-7) applics and (5.1-14) shows their covariance is zero:

Cxy=0 X and Y independent or uncorrclated (5.1-15)
If X and Y are orthogonal random variables, then
Cyy = —E[X]E[LY] X and Y orthogonal {(5.1-16)

from use of (5.1-8) with (5.1-14). Clearly, Cyy = 0 if cither X or Y also has zero
mein value, :
The normalized second-order moment

P =gl noiter = Cxrloyay (5.1-170)
given by

p= hi}é——-u (—1'—?)-! (5.1-17h)
Ox Oy

is known as the correlation coefficient of X and Y. It can be shown (scc Problem
5-10) that

~-1gpgt . (5.1-18)

For N random variables X, X,, ..., Xy the (n, + ny + -+ + ny)-order joint
central moment is defined by

L= B, = X)X, = R e (Xy = B ™)

w (‘m =
[T g

(in = K™ w1 o X)Xy e dxy (5.1-19)

An example is next developed that involves the use of covariances.
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Example 5.1-3 Again let X be a weighted sum of N random variables X
that is, let
N
X = Za‘ X,
im i
where the o, are real yvcighting constants. The variance of X will be found.
From Example 5.1-1,

N N
E[X]) = 'Zlal E(X])= lzla‘;\;l =X

so we have

N
X - %= YafX;—K)
I=1

and

N N
o = E{X - R)] = E[Za((x, _R) Y X, - x,)]
=1 =t
N N _ N N
=Y YaoElX,— ax, - X)1= '2 ,Z a0, Cx.x,

Im1 J=1 -1 =1
Thus, the variance of a weighted sum of N random variables X, (weights o)
equals the weighted sum of all their covariances Cy,x, (weights a; o). For the
special case of uncorrelated random variables, where

0 oy
CX(X;={ 2

ax‘ i"—'j
is truc, we get
. N
2 2.2
ox = Z“l ox
(=1

In words: the variance of a weighted sum of uncorrelated random variables
(weights «)) equals the weighted sum of the variances of the random variables

(weights of).

.

*52 JOINT CHARACTERISTIC FUNCTIONS

The joint characteristic function of two random variables X and Y is defined by

Oy lwy, w,)=E

al numbers. An cquivalent form is

[eforx +1o17] (5.2-1)

where o, and w, are rc

Oy ylw,, wa) = J j. fx.rlx e x e dx dy (5.2-2)

- it

OPERATIONS ON MULTIPLE RANDOM VARIABLES 123

This expression is recognized as the two-dimensional Fouricr transform (with
signs of @, and w, reversed) of the joint density junction. From the inverse
Fouricr transform we also have

l o« ]
S Ax )= o J j Oy y(w,, wy)e oIV do, dw, {5.2-3)

- - a0

By setting either w; =0 or w, = 0 in (5.2-2), the characteristic functions of X
or Y arc obtained. They arc called marginal characteristic functions:

Gylw,) = Oy, y(wy, 0) {5.2-4)
Oy(w,) = Dy, ¥(O, w,) (5.2-5)

Joint moments m,, can be found from the joint characteristic function as
follows:

a"“‘bx,' Hwy, wz)-

n X
dw) dw;

(5.2-6)

my = (="
wy =0, 0320

This expression is the two-dimensional extension of (3.3-4).

Example 5.2-1 Two random variables X and Y have the joint characteristic
function

Oy y(wy, wy) = €xp (—2w} — 80)%)
We show that X and Y are both zero-mean random variables and that they

are uncorrelated.
The means derive from (5.2-6):

X =E[X]=my= —jw—’l

a(")l wy ™0, wa=0
= —j(—4w,) cxp(—2w{—8m§)‘ =0
f wim0, w3=0
P = E[Y] = mo = —j(—16w)) exp(—2w}—8w§)\ =0
o w1 =0, 01=0

Also from (5.2-6):

Ryy = E[XY]=my, = (=) [exp (—2wi — 8w§)]‘

dw, 0w,

w1 =0, w3=0

=0

w1 =0,w1=0

= —(—4w,)(— 16w,) exp ("'2“’} "_,84’2)

Since means are zcro, Cyy = Ryy from (5.1-14). Thercfore, Cxy = 0 and X
and Y are uncorrclated.

-~
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The joint characteristic function for N random variables X, X,, ..., Ny s

defined by
Dy, 201, .., wy) = E[elorX 14+ Junkn) (5.2-7)
Joint moments are obltnined from
I .
(o 0 @y, e wh) 5.8
m;nn oo ny ( .]) (7(0';' Bw? . 5(0;:," Wm0 ( . )
where
R=ni4+n+ +ny (5.2-9

5.3 JOINTLY GAUSSIAN RANDOM VARIABLES

Gaussian random variables are very important because they show up in ncarly
every area of science and engineering. In this section, the case of (wo gaussian

random variables is first examined. The more advanced case of N random vari-
ables is then introduced.

Two Random Variables

Two random variables X and Y are said to_be jointly gaussian if their joint
density function is of the form o

Jxor(x, y) = 3
Moxdy /1 —p

k /,\',Y (v, )

. 2t - p?) Ox Ox0y
i which is sometimes called the bivariate gaussian density. Here
X = E[X] (5.3-2)
Y = E[Y] (5.3-3)
ok = E[(X - %)} (5.3-4)
af = E[(Y - 7)) (5.3-5)
p=E[X — XXY - 7))/oy0, (5.3-6)

obtained from

!

2n0x 0y /1 ~ p?

Seodl 9) S fx oK, ) =

Figure 5.3-1a illustrates the appearance of the joint gaussian density function
(5.3-1). Its maximum is located at the point (X, 7). The maximum valus is

(5.3-7)
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()

5
/
/
) /4 T
z ; Figure 5.3-1 Skeich of the joint
° X ‘ density function of two gaussiun
) random variables.

The locus of constant values of fy y(x, y) will be an cllipscT as shown in Fl'ggrc
5.3-1b. This is equivalent to saying that the line of intcrscgtnon foncd by slicing
the function fy y(x, y) with a plane paralle! to the xy plane is an ellipse,

Observe that if p = 0, corresponding (o uncorrelated X and Y, (5.3-1) can be
written as

Jx. %, ¥) = [ £y () (5.3-8)
where fy(x) and fy{y) are the marginal density functions of X and Y given by
Silx) = \/211!—"}( exp [— (t—;‘?:] (5.3-9)
Sily) = \/il%—; exp [— v 2—0;)1] (5.3-10)
T When ay = oy and p =2 0 the cllipse degenerates into o circle; when p= 1 or =1 the cllipses

degenerale into axes rotated by angles n/4 and —n/4 respectively that pass through the point (£, ¥).

3

P

—— )

"

[ m Sraa

2D e

[ ant

pros——

§ =y

e .
R



]

L

126 PROBABILITY, RANDOM VARIADLES, AND RANDOM SIGNAL PRINCIPLES

Now the form of (5.3-8) is sufficient to guarantee that X and Y are statistically
independent. Thercfore we conclude that any two uncorrelated gaussian random
variables are also statistically independent. 1t results that a coordinate rotation
(lincar transformation of X and Y) through an angle

0=ltan" -2—?1“'-1%
. 2 gy — Oy

is sufficient to convert corrclated random variables X and Y, having variances o
and o, respectively, correlation cocflicient p, and the joint density of (5.3-1), into
two statistically independent gaussian random variables.t

By dircct application of (4.4-12) and (4.4-13), the conditional density func-
tions fy(x| Y = y) and fi{(y| X = x) can be found from the above expressions (scc
Problem 5-29).

(5.3-11)

Example 5.3-1 We show by cxample that (5.3-11) applics to arbitrary as well
as gaussian random variables. Consider random variables ¥, and Y, related
to arbitrary random variables X and Y by the coordinate rotation

Y, = X cos () + Y sin ()
Y, = =X sin () + Y cos (0)

It ¥ and ¥ are the means of X and Y, respectively, {he mecans of ¥, and Y,

arc clearly ¥, = X cos (0) + Vsin (0) and ¥, = — X sin (0) + Ycos (0),

respectively, The covariance of Y, and Y, is

Cyivy = E[(Y, - }—,1)(Yz - ?z)]

= E[{(X — X) cos () + (Y — 1) sin (0}

A=(X = X)sin () + (Y = 1) cos (M}]

= (o} — o2} sin (0) cos (0) + Cxy[cos® (0) — sin? (0]
. = (02 — a})('h) sin (20) + Cxy cos (20)
Here Cyy = E[(X — XXY — N1 = poyor. I we require Y, and Y; to be
uncorrelated, we must have Cy,y, = 0. By equating the above equation to
zero we obtain (5.3-11). Thus, (5.3-11) applies to arbilrary as well as gaussian

random variables,

{1 Wozeneraft and Jacobs (1965), p. 155,

-
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*N Raudom Variables

N random variables X, X, ..., Xy are called jointly gaussian if their joint
density function can be written ast

G2 {_ CEREMLE Xl}

Sxus o xXps o XN) = 20"
{5.3-12)
where we define matrices
x; — X, -
Ix—R1=|" %s (5.3-13)
xy — Xy
and
Cihh Cup Cin
(€4l = C:,, C:“ C:,N v(5.3-14)

Cvi Cna ** Can
We usc the notation [-] for the matrix transpose, [-]7! for the matrix inverse,
and |[-1] for the determinant. Elements of [Cy), called the covariance matrix of
the N random variables, are given by

2 A
Ox, r=j

L (5.3-15)
CX(X/ t 9&.’

Cu'—' E[(XI_XI)(XJ_ XJ)J ={

The density (5.3-12) is often called the N-variate gaussian density function.
For the special case where N = 2, the covariance matrix bccomes

o} poy ax]
C =[ % b 5.3-16
l XI an|”X) ‘7}\': ( )
$0 .

' 1 1o},  —ploxox
C “=———[ . P (5.3-17)

™ =055 L —prorior, ok
HCxA™t ] = 1/o},0%,(1 — o) (5.3-18)

On substitution of (5.3-17) and (£.3-18) into (5.3-12), and letting X, = X and
X, = Y, itis easy to verify that the bivariate density of (5.3-1) resulls.

t We denote a matrix symbolically by use of heavy brackets [*}.

AR

YLramms
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-l

. *Some Propertics of Gaussian Random Variables

We state-without proof some of the properties exhibited by N jointly gaussian
“random variables X ,,..., X,.

I. Gaussian random variables are completely defined through only their first-
and second-order moments; that is, by their means, variances, and covari-
ances. This fact is readily apparent since only these quantitics are needed to
completely determine (5.3-12).

2. If the random variables are uncorrelated, they are also statistically indepen-
dent, This property was given earlier for two variables.

3. Random variables produced by a linear transformation of X,, ..., X will also
be gaussian, as proven in Section 5.5.

4. Any k-dimensional (k-variate) marginal density function obtained from the N-
dimensional density function (5.3-12) by integrating out N — k random vari-
ables will be gaussian. If the variables are ordered so that X, ..., X, occur in
the marginal density and X, ,,, ..., Xy are integrated out, then the covariance
matrix of Xy, ..., X, is equal to the leading k x k submatrix of the covariance

. matrix of X'y, ..., Xy (Wilks, 1962, p. 168).

5. The conditional densily fy, (X, ..., Xl Xauy = Xs4qs ooor Xy = xp) is.
gaussian (Papoulis, 1965, p. 257). This holds for any k < N.

*5.4 TRANSFORMATIONS OF
MULTIPLE RANDOM VARIABLES

The function g in either (5.1-1) or (5.1-2) can be considered a transformation
involving more than onc random variable. By defining a new variable Y =
9(X 1, X2, ..., Xy), we see that (5.1-2) is the expected value of Y. In calculating
expected values it was not necessary to determine the density function of the new
random variable Y. It may be, however, that the density function of Y is required
in some practical problems, and its determination is briefly considered in this
section, '

In fact, one may be more generally interested in finding the joint density
function for a set of new random variables

),‘='I;(X|p Xz,..., ,\'N) [=l’2,'._’N (5.4_‘)

defined by functional transformations T;. Now all the possible cases described in
Chapter 3 for one random variable carry over to the N-dimensional problem,
That is, the X, can be continuous, discrete, or mixed, while the functions T, can
be linear, nonlinear, continuous, segmented, etc. Because so many cases arc
possible, many of them being beyond our scope, we shall discuss only one repre-
sentative problem,

We shall assume that the new random variables Y], given by (5.4-1), are pro-
duced by single-valued continuous functions T, having continuous partial deriv-

|

BT g G
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atives everywhere. 1t is further ussumed that a set of inverse continuous functions

i as si -valued contin-
T; ' exists such that the old variables may be expressed as single-valv Min
Tous Tunctions of the new variables:

X, = TP (Y Yoo Y j= L2000 N (5.4-2)

These assumptions mean that a point in the joint sample space of the X; maps

int ointin the space of the new variables Y.

lmolc,):tﬂ,lgngcpa closed rcgi%n of points in the space of the X, and Ry be llll'cb":lt')(r.
responding region of mapped points in the space of thc‘ Y}, then the pro r;'l“l‘l.y
that a point falls in Ry will equal the probapl'llty that.ns mapped pointfalls in
R, . These probabilitics, in terms of joint densities, are given by

J"‘ J‘th._"xﬂ(x,, veey XN) dxl v (IxN

Rx
= j"" an..... YN(Ylv LEXR) yN) dyl (1)'~ (54'3)

Ry

This equation may be solved for fh'(“" yq(yl;l. ..., yy) by treating it as simply a

iple integral involving a change of vanablcs. o
mu“[llr))/lcwlgrkti’ng on the lc?t side of (5.4-3) we change the 'vuriubles Xi to f\cw (\;‘.\g-
ables y; by means of the variable changes (5.4-2). The mtcgrund is change by
direct functional substitution. The limits change from the region Ry to the region
Ry. Finally, the differential hypervolume dxy o fIxN will cha.mgc to ll:c Yf\luc
[J}dy, * dyy (Spicgel, 1963, p. 182), wlu.:rc I.’Jlixs the m_;\_rg,mlude (?r lm‘c mo-r
,biant J of the transformations. The jacobian is the determinant of a matrix o

derivatives defined by

ATy v T}
Y, Yy
J=1 b (5.4-4)
aTFY - ATR'
Y, Yy

Thus, the left side of (5.4-3) becomes

J J‘fx...... Xl X1y oes Xpy) dy oo dxy

Rx

=J JfXI-c...XN(XI = Tl‘ll""xN:: Tf;l)l‘ll {lyl dyN (54-5)

Ry

¢+ After the German mathematician Karl Gustav Jukob Jucobi (1804-1851).
Lo
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Since this result must cqual the right side of (5.4-3), we conclude that
R CIYRPS 7Y =t xilX1 = Tih xy= TyOIJL (54-6)

When N = 1, (5.4-6) reduces to (3.4-9) previously derived for a single random

variable.
The solution (5.4-6) for the joint density of the new variables Y, is illustrated

here with an example.

Example 5.4-1 Let the transformations be lincar and given by
Y, = Ti{X,, X3) =aX, + hX,
Y, = (X, X3) =X,y +dX,

where a, b, ¢, and d arc rcal constants. The inverse functions arc casy (o
obtain by solving these two equations for the two variables X, and X, :

X, =T; (Y, ;) = (dY, — b¥y)/lad — be)
Xy =T (Y, Ya) = (=cY, + aY;)/lad = hc)
where we shall assume (ad — bc) # 0. From (5.4-4):

df(ad — be) ~b/ad — bc)
—cf(ad = be) af(ad — be)

1
= (ad — ho)

J =

Finally, from (5.4-6),

[eox dy, — by, —cyi +ay;
Y¥\ gd —be ' ad —be
Sy ) = lad — bel

55 LINEAR TRANSFORMATION OF
GAUSSIAN RANDOM VARIABLES

iy

Equation (.‘5.4-6) can be readily applied to the problem of lincarly transforming a
sct of gaussian random variables X, X;, ..., Xy for which the joint density of '
(5.3-12) applics. The new variables Y;, Y3,..., Yyarc T

Yoo a Xy bagg Xyt v Xy

Y1=(72|X|+ﬂ11X2+"'+(’1NXN (55-1)

Y~=(1N|X1 +“N2X2 '}‘"'+aNNXN

where the coefficients ay, i and j = 1, 2,....N
the following matrices:

o pfasy . s«
Il SHI e LT

s 2%,
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, are real numbers. Now if we define

ajy Gy ' Ay

(Ty=| e o (5.5-2)
(l,'” “;\Il v dnN
Y, 14 X, X,
(Yi=1: (7= iXl=1: 181 =
YN YN XN A-)N
(5.5-3)
then it is clear from {5.5-1) that
1Y) = [TIX] Y - I={TlIX - X (5.5-4)
(X1 =I[T1" 'Yl (X - R =IT1""1Y - VI {5.5-5)
so long as [T is nonsingular. Thus,
X, =T (Y0 ) = a'V, +a'Y, + o + a'™Yy (5.5-6)
.a_}_(l = aT‘-l = a'
a7, = 3, =4q (5.5-7)
X = Ry=d'(Y, = P) 4+ +a(Vy - ) (5.5-8)

from (5.5-5). Here a" represents the ijth element of [T

The density function of the new variables Y}, ..., Yy is found by solving the
right side of (5.4-6) in two steps. The first step is to determine [J|. By using
(5.5-7) with (5.4-4) we find that J equals the determinant of the matrix |T]™".

Henee,t

"'1

JI =T 'Y = 5.5-9

The second step in solving (5.4-6) procecds by using (5.5-8) to obtain
' N N _
Cuy = EL(X: = XXX, — 2= Y a*} d"ELYi — YXYn - 7.
k= m=}
N N
= Y a* 3 a"Cnyr, (5.5-10)

knl m=|

Since Cyy, is the ijth clement in the covariance matrix [Cyl of (5.3-12) and Cyya

t We represent the magnitude of the deteeminant of a matrix by [I['J]|.
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is the kmth element in the covariance maltrix of the new variables Y, which we
denote [Cy], (5.5-10) can be written in the form

[Cxb=1TI7CHTY) (5.5-11)
Here [ T) represents the transpose of | 7], The inverse of (5.5-11) is
1Cy " =THIC) T} (5.5-12)
which has a determinant
HCA™ = ICh™ " TP (5.5-13)

On substitution of (5.5-13) and (5.5-12) into (5.3-12):

le...,.X,v(xl =T ..., Xy =Ty

I e exp {_ Ix — XV[THC ™ ITHx — X

(2ﬂ)~/2 2 } (5'5'14)

Finally, (5.5-14) and (5.5-9) are substituted into (5.4-6), und (5.5-4) is used 1o
oblain

: iy - Py = ¥
Sor ooy = G cxp{_ly MICH "y l}

(2mM? 2

This result shows that the new random variables Y., Y.,
1un because (5.5-15) 1s of (he required form,
In summary, (5.5-15) shows that a linear transformation of gaussian random

variables produces gaussian random variables. The new variables have mean’
values
=

(5.5-15)

...y Yy are jointy gauss-

N
P= Ya,X, (5.5-16)
k=

from (5.5-1) and covariances given by the elements of the covariance matrix

ICol = [THNCHTY (5.5-17)

as found from (5.5-11).

Example 5.5-1 Two gaussian random variables X, and X, have zero means
and variances o}, = 4 and a2, = 9, Their covariance Cy,x, cquals 3. IF X,
and X, are linearly transformed 1o new variables Y, and Yy according to

Y, =X, -2X,
Y, = 3X, + 4X,

we use the above results to find the means, variances, and covariance of Y,
and Y,

_—

SRR B AR s Yo R TE ey L S A
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[lere

1 =27 4 3
(T] = [3 4J and ICxl = 39

Since X, and X, are zero-mean and gaussian, Y, and Y, will also be zero-
mean and gaussian, thus ¥, = 0and ¥, = 0. From (5.5-17):

1o—24 3 1 3'1_[ 28 -oo'J
1cyl=lTllcxllTl’=l3 4JL3 94l.—2 41 [-66 252

Thus, o}, = 28, 0}, = 252, and Cy,y, = —66.

*5.6 COMPLEX RANDOM VARIABLES

A complex random variable Z can be defined in terms of real rundqm variables X
and Y by

Z=X+jY (5.6-1)

I ) . . sint density of
where j = /= 1. In considering expected values involving Z, the joint densily

X and Y must be used. For instance, if ¢(+) is some function (real or complex) of
Z, the expected value of g(Z) is obtained from

E[¢(Z)] = Jw r g(2) fx, v(x, y) dx dy (5.6-2)

- @ -
Various important quantities such as the mean valu'c and variance arc
obtained through application of (5.6-2). The mean value of Z is

Z = E[Z) = E[X] +jE[Y) =X +j7¥
The variance o2 of Z is defined as the mean value of the function ¢(Z) =
|Z — E[Z]]?; that is,

(5.6-3)

o} = E[1Z - E[Z]V] (5.6-4)

Equation (5.6-2) can be extended to include functions of two random
variables

Z,=X,+jYs (5.6-5)

and

Z,=X,+jY, {5.6-0)

n # m, il expectation is taken with respect to four random variables X,,,‘, Yo ,‘\.,,.
Y, through their joint density function fx, v, x..r.(Xms Yu» Xas ¥ I[ this density
n

satisfies

f.\’,... Yms Xuns Y.(xm v Yo Sns yn) =fx... Y...(xm s Ym)fx,.. Y.(xn ’ }'..) (56'7)
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then Z,, and 7, arc called statistically independent. The extension to N random

variables is straightforward.
The correlation and covariance of Z,,and Z, arc defined by

Ry = E[Z8Z,] n#Em (5.6-8)
and
(‘an. = "[{Zm - l':[zm]}*{zn - 1':[2"”_] n#m (56'9)

respectively, where the superscripted asterisk* represents the complex conjugale.
If the covariance is 0, Z,, and Z, arc said to be uncorrelated random variables, By
sctting (5.6-9) to 0, we find that

R,z = E[Z}E(Z,) m#n (5.6-10)
for uncorrclated random variables. Statistical independence is sufficient lo guar-

antee that 7, and Z, are uncorrelated.
Finally, we note that two complex random variables arc called orthogonal if

their correlation, given by (5.6-8), equals 0.

PROBLEMS

5.1 Random variables X and Y have the joint density

1
— 0<x<6 and O<y<4d
Lol ¥ = 24 '
0 elsewhere

What is the expected value of the function g(X, Y) = (X Yy

5.2 Extcnd Problem 5-1 by finding the expected value of g(Xy, X3, XN Xg) =
XTXRNPNE, where iy, 1, 1y, and ng arc integers 20 and

!
-— 0<.\',<uand0<x2<bandO<x,<c

abed
fx..,\',.,\';..\u(-\'l-xz’-\'s,-"4)= and 0 < x, < d
0 " clsewhere
5.3 The density function of two rand;om variables X and Y is
E feorl, 3) = G164

Find the mean value of the function

| , |
5 0<XS§ and 0<}$2

N = | 1
i ¥) -1 3 <X and/or 3 <Y

0 all other X and Y
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5.4 For the random variables in Problem 5-3, find the mean value of the
function

gx, V)= €2
5.5 Three statistically independent random variables X, X,.and X, have mean
values X, =3, £, =6, and Xy = —2. Find thc mean values of the following
functions:
(@) g(X 0 X2, X3) =X, 43X, +4X,
(h) g(X 1, X2y X3) = XXXy
© ¢(Xy Xq, X3)= =2X,X; = 3X, X5 + 4X, X,
) gX X2, X3) =X, + X3 + X,
5.6 Find the mean value of the function
gX,V)=X*+ y?

where X and Y are random variables defincd by the density function
-{(x2+yd)202

Sxoox, y) =

2na?

with o a constant.
5.7 Two statistically independent random variables X and ¥ have mean valucs
X = E[X]=2and ¥ = E[Y] = 4. They have sccond moments X =E[X¥) =8
and Y2 = E[Y?] = 25. Find: ‘

(a) the mcan value (b) the second moment and

(¢) the variance of the random variable W = 3X - Y.

5.8 Two random variables X and Y have means X =1 and ¥ =2, variances
o} = 4 and o} = 1, and a corrclation coeflicient pyy = 0.4, New random variables
I and V are defined by

Ve==X+12Y W=X+13Y
Find:
(a) the means (b) the variances (¢) the correlation and
(d) the correlation coefficient pyw of Vand W.

5-9 Two random variables X and Y are related by the expression
Y=aX+b

where a and b are any real numbers.
(a) Show that their correlation coeflicient is

_ { if a > 0 for any b
P=1-1 ifa<0foranybd

(b) Show that their covariance is
Cyy = ua}

wicic % is the variance of X.
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* . .
§-10 Show thal the correlation cocllicient satisfies the expression

- [, ]

lpl ES
Moz Hao

1

5-11 Find all the second-order moments and central moments for the density

function given in Problem §5-3,

5-12 Random variables X and Y have the joint density function

2
ﬁv.r(»}'):{(x'*'}’) /40 —l<x<1 and
0 elsewhere

-JI<y<3

() Find all the second-order moments of X and Y.
(b) What are the variances of X and Y?
(¢} What is the correlation coefficient?

5-13 Find all th ird- H .
Problem 5-?2. ¢ third-order moments by using (5.1-5) for X and Y defined in

5-14 For fiiscrele random variables X and Y, show that:
(a) Joint moments are

N M
My, = ‘Zl /Z P(x;, y)xiy
- =]
(b) Joint central moments are
N M
Hm = E Z Plx;, y)x, = X)"(,VJ ~ Py

Im1 jmy

where P(x;, y) = P{X =x,, Y = X has N i
possitle vaturs . f v as N possible values x;, and Y has M

5-15 For two random variables X and Y:
Jx, ¥(x, y) = 0.158(x + N(y) + 0.18(x)d(y) + 0.18(x)é(y — 2) + 0.46(x — 1)3(y + 2)
+ 0.28(x —~ 1é(y ~ 1) + 0.05(x — 1)d(y — 3)

Find: (4) th i ; ,
of X and }g,) c» correlation, (b) the covariance, and (c) the correlation coefficient

(d) Are X and Y cither uncorrelated or orthogonal?
5-16 Discrete random variables X and Y have the joint density
Jx. r(%, y) = 048(x + a)d(y - 2) + 0.35(x — a)é(y — 2)
+0.1(x — )3y — a) + 0.26(x — 1)5(y — 1)

Determine thc.vz'iluc of «, if any, that minimizes the correlation between X and Y
and find the minimum correlation. Are X and Y orthogonal?
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5-17 For two discrete random variables X and Y:
Jx y(x, p) = 0.38(x — a)d(y — o) + 0.55(x + a)3(y — 4) + 0.28(x + 2)3(y + 2)

Determine the value of o, if any, that minimizes the covariance of X and Y. Find
the minimum covariance. Are X and Y uncorrelated?

5-18 The density function

x U
. X ovex<2 and D<y<l
Sy r(x, y) = 9 .
0 clsewhere :

applics to two random variables X and V.
(a) Show, by usc of (5.1-6) and (5.1-7), thut X and Y are uncorrelated.
(h) Show that X and Y are also statistically independent.

5-19 Two random variables X and Y have the density function

fo vl y) %(.\‘+0.5y)2 0<x<2 and 0O<y<3
x G Y=

0 elsewhere

(a) Find all the first- and second-order moments.
(b) Find the covariance.
(¢)- Are X and Y uncorrelated?

5-20 Define random variables V and W by
V=X4+aY
We=X-aY

where « is a real number and X and Y are random variables. Determine o in
terms of moments of X and Y such that ¥ and W arc orthogonal.

*5.21 If X and Y in Problems 5-20 are gaussian, show that W and V¥ are sta-
tistically independent if a® = a}/e}, where o and o} are the variances of X and
Y, respectively.

5-22 Three uncorrelated random variables X, X,, and Xy have means X, = {,

X,= -3, and ¥, =15 and second moments E[X?] =25, E[X]] =11, and
ELN2} =35 Let Y = X, —2X, + 3X, be a new random variable and find:

() the mean value, (h) the variance ol Y.

5.23 Given W = (uX + 3Y)? where X and Y arc zero-mean random variables
with variances o2 = 4 and o7 = 16, Their corrclation cocfficient is p = —0.5.

(@) Find a value for the parameter a that minimizes the mean value of W.

(b) Find the minimum mean value.

*5.24 Find the joint characteristic function for X and Y defined in Problem $-3.
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*5.25 Show that the joint characteristic function of N independent random vari-

~ ables X,, having characteristic functions by (w) is

N
Oy, x @1 ey WN) = [T ®xfw)
in1

*5.26 For N random variables, show that
[y, e e )| S PO 0=

*5.27 For lwo zero-mcan gaussian random variables X and Y, show that their
joint characteristic function is

Dy, ylw,, y) =cxp {- hilokwt + 2payayw0; + ot wil}

*§.28 Zcro-mean gaussian random variables X and ¥ have variances % = 3 and
al = 4, respectively, and a correlation cocellicient p = =Y.
(@) Write an expression for the joint density function.
(h) Show that a rotation of coordinates through the angle given by (5.3-11)
will produce new statistically independent random variables. '
45,29 1ind the conditional density functions fy(x| Y = p) and fylp) X = x) nppli-
cablc to two gaussian random variables X and Y defined by (5.3-1) and show
that they are also gaussian.

*5.30 Zcro-mean gaussian random variables Xy, X5, and X, having a covariance
matrix

4 205 105
[Cxl=]205 4 205
1.05 205 4 .

are trunsformed to new variables
Y, =5X, +2X, - X,
,=-X, +3X,+ X,
¥, = 2X, - X, + 2N,

(a) Find the covariance matrix of Y;, Y, and Y;.
(b) Write an expression for the joint density function of Yy, Y,,and Y;.

*5.3] A complex random variable Z is defined by
7 = cos (X) +j sin (Y)

where X and ¥ are independent real random variables uniformly distributed
from —nton.

(a) Find the mean valuc of Z.

(h) Find the variance of Z.

. Af:-
~:
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ADDITIONAL PROBLEMS

5.32 Two random variables have a uniform density on a circular region de-
fined by
ynrt  x*+yisr?
Srx 9= {0 clsewhere

Find the mean value of the function g(X, Y) = X* + Y2,

*5.33 Definc the conditional expected value of & function ¢(X, Y) of random vari-
ables X and Y as

E[g(X, Y}|B] = _[ j glx, N Sx.v(x, y1B) dx dy

-0 J-

{a) 1f event B is defined as B = {ya < Y < 3}, where y, <y, are conslants,
evaluate E[g(X, Y)| B]. (Hint: Use results of Problem 4-55.)
(b) 1f B is defined by B = {Y =y} what does the conditional expected value

of part (a) become?
5.34 For random variables X and Y having =1 F=20l=60}=9 and
pm =3, nd (a) the covariance of X nnd Y, (b) the correlnlon of X and Y,
and () the moments myq and mg; . '
5.35 X = Y, Xi=%,P=2 Y? =19, and Cyy = -l/Zﬁ for random vari-
ables X and Y.

(a) Find 0%, 6}, Ryy,and p.

(b) What is the mean value of the random variable W = (X +3Y)? +
2X + 317
5.36 Let X and Y be statistically independent random variables with £ = %,
Xi=4 P=1, and Y?=5. For a random variable W = X —2Y + | find
(@) Ryy, (b) Ryw,(¢) Ryw, and (d) Cyy-(e) Are X and Y uncorrclated?
5.37 Statistically independent random variables X and Y have moments m o =
2, My = 14,mgy = 12,and myy = —6. Find thc moment ji3,.

5.38 A joint density is given as
x(y + 1.5
S, v(x, y= {0 Y )
Find all the joint moments m,, n and k=01,....
5.39 Find all the joint central moments L, n and k=0, 1,..., for the density of
Problem 5-38.
*5.40 Find the joint characteristic function for random variables X and Y de-
fincd by

O<x<! and O<y<l
elsewhere

Sx.o(x, ) = (1/2x) rect (x/m) rect [(x + y)/n] cos (x + )

Usec the result to find the marginal characteristic functions of X and Y.
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. . s oee define ¢ mean and
. #5.50 Two gaussian random variables X, and X', are defined by the mean 3

*5-41 Random variables X | und X ; have the joint characteristic function ¥ ! ian
. covariance matrices

Dy xys, w3) = [(1 = j20, X1 ~ j2w,)]~M?

where N > Ois an integer.
(¢) Find the correlation and moments m,q and g, .
(b) Determine the means of X, und X,.
(c) What is the correlation coefficient?

el 2] eas] s

s Y, and Y, are formed using the transformation

m= "]

a) 171 and (b) {Cy). (c) Also find the correlation coefficient of Y,

.

Two new random variable

*5-42 The joint probubility density of two discrete rundom variables X and Y
consists of impulses located at all lattice points (mb, nd), where m=0, 1, ..., M
and n=1,2,..., N with b> 0 and d > 0 being constants. All possible points are

540 Loy Tor £ 13 K. 0 sy it .- A "ansdl Yé. mplex random variables Z, and Z, have zcro means. Th'c corrcluliop of

. 15};e rcalopa‘;ts of Z, and Z, is 4, while the correlation of' tl.xc'lmlz;glir::ldrg' Z;::’l:nnls ‘?s

The real part of Z, and the imuginqry part of Z, ar'e st.\;|§/uc:\ y P

a pair, as are the imaginary part of Z, illld’lht.:’ real part of Z,.

(a) What is the correlution of Z.l and Z,7? ‘
(h) Are Z, and Z, statistically independent?

*$43 Let X,, k=1,2, ..., K, be statistically independent Poisson random vari- i
ables, each with its own variance b, (Problem 3-16). Show that the sum X = 4

Xy + X+ o0+ X is u Poisson random variable. (Hint: Use results of Prob-
lems 5-25 and 3-53.)

5-44 Assume gy = 0, = ¢ in (5.3-1) and show that the locus of the maximum of
the joint density is u linc passing through the point (£, 7) with slope n/4 (or
—n/4) when p = 1 (or —1).

5-45 Two gaussian random variables X and Y have variances o} =9 and o} =
4, respectively, and correlation coeflicient p. It is known that a coordinate rota-

lion by an ungle —n/8 results in new random variables Y, and Y, that are uncor-
related. What is p?

*5-46 Let X and Y be jointly gaussian random variables where a3 = ol and
p = —1.Find a transformation matrix such that new random variables Y, and Y,
are statistically independent,

*5-47 Random variables X and Y having the joint dénsity

Sx, v, y) = (hlulx — Quly — 1)xy? exp (4 ~ 2xy)
undergo a transformation
1 1
71 = [1 - 1]

to generate new random variables Y, and ;.
(a) Find the joint density of Y, and Y,.

(b) Show what points in the y,y, plane correspond (o a nonzero value of the
new density,

*5-48 Equation (5.4-S) can sometimes be used to find the density of a single func-
tion of several random variables if auxiliary random variables are used. Apply the
idea to finding the densily function of Z = aX Y, where a is a constant and X and
Y are random variables, by defining the auxiliary variable W = X,

*5-49 Apply the method of Problem 5-48 to finding the density function of
Z = bY/X, with b a constant, when using the auxiliary variable W = X.

e oh
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notation x(t) to represent a specific waveform-of a random process denoted by
X(1).

Clearly, a random process X(t, s) represents a family or ensemble of time
functions when t and s are variables. Figure 6.1-1 illustrates a few members of an
ensemble. Each member time function is called a sample function, ensemble
member, or sometimes a realization of the process. Thus, a random process also
represents a single time function when ¢ is a variable and s is fixed at a specific
value (outcome).

A random process also represents a random variable when ¢ is fixed and s is
a variable. For example, the random variable X(ty, 5) = X(t,) is obtained from
the process when time is “frozen™ at the value ;. We often usc the notation X :
o denote the random variable associated with the process X(1) at time {,. X, cor- 1
responds to a vertical “slice” through the ensemble at time t,, as illustrated in
Figurc 6.1-1. The statistical properties of X, = X(t,) describe the statistical
properties of the random process at time ¢,. The expected value of X, is called
(he ensemble average as well as the expected or mean value of the random process
(at time t,). Since t; may have various values, the mean valuc of a process may
not be constant; in general, it may be a function of time. We casily visualize any

CHAPTER

SIX
RANDOM PROCESSES

6.0 INTRODUCTION

In the real world of engincering and science, it is necessary that we be able to "% Xanal?) i
deal with time waveforms. Indeed, we frequently encounter random time wave-
forms in practical systems. More often than not, a desired signal in some system
is random. For example, the bit stream in a binary communication system is a
random message because each bit in the stream occurs randomly. On the other
hand, a desired signal is often accompanied by an undesired random waveform,
noise. The noise interferes with the message and ultimately limits the performance
of the system. Thus, any hope we have of determining the performance of systems
with random waveforms hinges on our ability to describe and deal with such
waveforms. In this chapter we introduce concepts that allow the description of
random waveforms in a probabilistic sensc.

Xpaill)

N |/*/\/\
“ N " N~

EN )

6.1 THE RANDOM PROCESS CONCEPT

The concept of a random process is based on enlarging the random variable
concept to include time. Since a random variable X is, by its definition, a func-
tion of the possible outcomes s of an experiment, it now becomes a function of  * )
both s and time. In other words, we assign, according to somc rulc, a time . \

function Flgure 6.1-1 A continuous ) '
___.\ ; /-\'L\\/ random process. [Reproduced v
0 \,'/——J ! I from Peebles (1976) with per-
o mission of publishers Addison-

. Wesley, Advanced Book Pro-
. gram.)

(1, 8) 6.1-1)

to cvery outcome s. The family of all such functions, denoted X(t, 5), is called a
random process. As with random variables where x was denoted as a sprcific
value of the random variable X, we shall often use the convenicnt short-form

5
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number of random variables X, derived from a random process X{r) at times (;,

RANDOM FROCESNEN 14D

If X is continuous and ¢ can have any of a continuum of values, then N(1) is

i=1,2,...:

Y called a continious random process. Figure 6.1-1 is an illustration of this class of
process. Thermal noise gencrated by uany realizable network is o practical
example of a waveform that is modeled as a sample function of a continuous
random process. In this example, the network is the outcome in the underlying
random experiment of selecting a network, (The presumption is that many net-
works are available from which to choose; this may not be the case in the real
world, but it should not prevent us from imagining a production line producing
any number of similar nctworks) Each network establishes a sample function,
and all sample functions form the process.t .

A second class of random process, called a discrete ramdom process, corre-
sponds to the random variable X having only discrete values while ¢ is contin-
wous. Figure 6.1-2 illustrates such a process derived by heavily limiting the
sample functions shown in Figure 6.1-1. The sample functions have only two dis-

X=X, )= X(1) (6.1-2)

. : dA random process can also represent a mere number when ¢ and s are both
o ixed.

Classification of Processes

It is convenient to cl.assify random processes according to the characteristics of ¢
and the random vunflble X = X(1) at time ¢. We shall consider only four cases
based on r and X having values in the ranges —oc0 <t < 00 and — o0 < x < .t

t Other cuses cun be defined bused on a definition of ra i

i ndom processes on u finite time interval
(sc;.for example: Rosenblatt (1974), p. 91; Prabhu (1965), p. 1; Miller (1974), p. 31; Parzen (1962)
P. 7; Dubes (1968), p. 320; Ross (1972), p. 56). Other recent lexts on random processes are Hclslron{
(1984), and Gray and Davisson (1986). :

. 1 Note that linding the mean value of the process al any time ¢ is equivatent (o linding the average
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Figure 6.1-4 A discrete random sequence formed by sampling the wavclorms of Figure 6.1-2,
[Adapted from Pechles (1976) with permission of publishers Addison-Wesley, Advanced Book Program.}

crete values: the positive level is generated whenever a sample function in Figure
6.1-1 is positive and the ncgative level pccurs for other times.

A random process for which X is continuous but time has only discrete
values is c¢alled a continuous random sequence (Thomas, 1969, p. 80). Such a
sequence can be formed by periodically sampling the ensemble members of
Figure 6.1-1. The result is illustrated in Figure 6.1-3.

A fourth class of random process, called a discrete random sequence, corre-
sponds to both time and the random variable being discrete. Figure 6.1-4 illus-
trates a diserete random scquence developed by sampling the sample functions of
Figure 6.1-2. .

In this text we arc concerned almost entirely with discrete and continuous

random processes.
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Decterministic and Nondeterministic Processes

1n addition to the classes described above, a random process can be described by
the form of its sample functions. If future values of any sample function cannot be
predicted exactly from observed past values, the process is called nondeterministic.
“I'he process of Figure 6.1-1 is one example.,

A process is called deterministic if future values of any sample function can be
predicted from past values. An example is the random process defined by

X(1) = A cos (wy 1.+ ©) (6.1-3)

Here A4, ©, or w, (or all) may be random variables. Any one sample function cor-
responds to (6.1-3) with particular values of these random variables. Thereflore,
knowledge of the sample function prior to any time instant automatically allows
prediction of the sample function's future values because its form is known.

6.2 STATIONARITY AND INDEPENDENCE

As previously staled, a random process becomes a random variable when time is
fixed at some particular value. The random variable will possess stalistical
properlies, such as a mean value, moments, variance, elc., that are related to its
density function. If two random variables are obtained from the process for two
time instants, they will have statistical properties (means, variances, joint
moments, etc) related to their joint density function. More generally, N random
variables will possess statistical propertics related to their N-dimensional joint
density function.

Broadly speaking, a random process is said to be stationary il all its sta-
tistical properties do not change with time. Other processes are called nonsta-
tionary, These statements are not intended as definitions of stationarity but are
meanl to convey only a general meaning. More concrete definitions follow.
Indecd, there are several “levels” of stationarity, all of which depend on the
density functions of the random variables of the process.

Distribution and Dénsity Functions

To define stationarity, we must first definc distribution and density functions as
they apply to a random process X(1). For a particular time t,, the distribu-
tion function associated with the random variable X, = X(¢,) will be denoted
Fy(x,; t;). Itis defined ast

Fx(x,;ll)=P{X(I,)5x,} {6.2-1)

1 Flx,: 1,) is known as the first-order distribution finction of the process X{1).
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fpr ar;y rczfl number x,. This is the same definition used all along for the distribu-
u%n unction of or.mc'rando.m variable. Only the notation has been altered to
reflect the fact that it is possibly now a function of time choice ¢,.

For two random variables X, = X(t
. or dom 1 =X(t,) and X, = X(t,), the second- joi
distribution function is the two-dimensional cxtcnsizon of 262.)2-1): norder join

Fx(xi, %3500, 1) = P{X(t;) < x,, X(t,) < x5} (6.2-2)

In a similar manner, for N random var; j
s ariables X, = X(t),i=1, 2 N -
order joint distribution function is Y e M the Nk

Fxlxis ooy xnity, ooy th) = PUX(t) S %, ..., X(ty) < xp) (6.2-3)

Joint density functions of interest are f i
ound [rom appropriate derivati
the above three relationships:t °P P erivatives of

Slses 00 = dF (e 1,)dx, (6.2-4)
Ixlxy, X504, 1,) = 32 Falxy, x50y, 1)/(0x, dx,) (6.2-5)
Selxy, ooy xn s Tiseeey ) = (7”.F.’ﬁ(x,, e XL e B0X, 0 Oxy)  (6.2-6)

Statistical Independence

Two processes X (1) and Y(t) are statistically independent if the random variable
group X(1,), X(t,), ..., X(ty) is independent of the group Y(1}), Y(t3), ..., Y(r,)

for any choice of times 1,, ¢ 1 L A
an ( b lay oo, by, 1, £, .00, ty,. Independenc i
the joint density be factorable by grot;ps: B P " requires tha

fx.y(xn ey Xny Yy veey Iaes byyonny In» 1,1. veny I'M)

=fX(xh ooy Xy tl: ceey tN)fY(yl! cens Yags t’lr seay ‘IM) (6'2'7)

First-Order Stationary Processes

/-‘.\ random process is cz.lllcd stationary to order one if its first-order density func-
tion does not change with a shift in time origin. In other words

) Sxleis ) = fxlx,5 1, + Q) (6.2-8)

must be true for any 1, and any real nun . ] .
. § i nber A if X(¢) is (0 be a first-order siy-
tionary process. (1) rst-order st

Consequences of (6.2-8) are thal fy(x D1y) s i
’ ¢ é Xy, s independent .
process mean value E{X(1)] is a conslant? b P ntof ¢, and the

E[X(1)] = X = constant (6.2-9)

t Analogous to distribulion functions

these are called irst-, second-, und Nth-order density e
" €
./ " » l ) f

TRecewn 112
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To prove (6.2-9), we find mean values of the random variables Xy = X(¢,} and
X, = X(ty). For X:

E[X,]=E[X(t)]= J“’ Xy fxlxys 1) dxy (6.2-10)
For X,:

@

xg Sx(xq; tg) dx,t (6.2-11)

E[X,] = E[X(t;)] = I

.Now by letting f, =, + A in (6.2-11), substituting (6.2-8), and using (6.2-10),

we get
E[X(t, + A)] = E[X(1,)] (6.2-12)

which must be a constant because ¢, and A are arbitrary.

Second-Order and Wide-Sense Stationarity

A process is called stationary to order two if its second-order density [unction
satisfies

Sulxy, X251y, 80) = fulxy, X33 8y + A, 1y + 4) (6.2-13)

for all t,, t,, and A. After some thought, the reader will conclude that (6.2-13) is a
function of time differences t, — ¢, and not absolute time (let arbitrary A = —1,),
A second-order stationary process is also first-order stationary because the
second-order density function determines the lower, first-order, density.

Now the correlation E[X,X,] = E[X(¢,)X(t,)] of a random process will, in
general, be a function of 1, and t,. Let us denote this function by Ry(r,, 1;) and
call it the autocorrelation function of the random process X(1):

Ryxlty, 13) = E[X(£,)X(1,)]. (6.2-14)
A consequence of (6.2-13), however, is that the autocorrelation function of a
second-order stationary process is a function only of time dilferences and not
absolute time; that is, if

f=y =t (6.2-15)

then (6.2-14) becomes
Ryx(ty, ty + 1) = E[X(t)X(r, + v)] = Ryx(1) (6.2-16)

Proof of (6.2-16) uses (6.2-13); it is left as a reader exercise (sec Problem 6-6).
Many practical problems require that we deal with the autocorrelation
function and mean value of a random process. Problem solutions are greatly

t Note that the variable x, of integration has been replaced by the alternative variable x, for con-
venience.
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simplified il these quantities are not dependent on absolute time. Of course,
second-order stationarity is suflicient to guarantec these characteristics. How-
cver, it is often more restrictive than nccessary, and a more relaxed form of sta-
tionarily is desirable. The most useful form is the wide-sense stationary process,
defined as that for which two conditions are true:

E[X(t)] = X = constant (6.2-17a)
E[X(DX(t + 1)) = Ryxlt) (6.2-17h)

A process stationary to order 2 is clearly wide-sense stationary. However, the
converse is nol neeessarily triue.

Example 6.2-1 We show that the random process
X(t) = A cos (wet + O)

is wide-sense stationary if it is assumed that A4 and g arc constants and © is
a uniformly distributed random variable on the interval (0, 2n). The mean
valuc is '

in

1
ELX(1)] = j Acos (wot +0) —d0=0
o 2n
The autocorrclation function, from (6.2-14) with ¢, =t and t, =t +7,
becomes

Ryy(t, t + 1) = E[A cos (wo ! + ©)4 cos (ot + woT + O)]
KL
= T ELcos (g 1) -+ €08 (2wt 4 wg 1 + 20)]

Al AZ . ]
iy cos (g 1) - Y Elcos (2mgt + wy 1 -+ 20)]
The sccond term easily evaluates to 0. Thus, the autocorrelation function
depends only on t and the mean valuc is a constant, so X(1) is widc-scnse
stationary.

-

When we are concerned with two random processes X(t) and Y(1), we say
they arc jointly wide-sense stationary if cach satisfies (6.2-17) and their cross-
correlation function, defined in general by

Ryy(tyy 1) = ELX(1,)Y(t2)] (6.2-18)
is a function only of time difference © = ¢, — t; and not absolutc time; that is, if
Roplt, £ + 1) = ELX(OY(t + 0] = Ryy(2) (62-19)
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" N-Order and Strict-Sense Stationarity

By extending the above reasoning to N random variables X, = X{t), i =1, 2, ...,
N, we say a random process is stationary to order N if its Nth-order density func-
tion is invariant to a time origin shift; that is, if

Sx(xts coey Xns by ven W) = SxlX gy oo Xn U+ By oty + 4) 0 (6.2-20)

for alt 1,, ..., ty and A. Stationarity of order N implics stationarity to all orders
k < N. A process stationary to all orders N =1, 2, ..., is called strict-sense
stationary,

Time Averages and Ergodicity

The time average of a quantity is defined as

i T
ACY = lim == | []dt (6.2-21)
. T—oo 2T -T
Here A is used to denote time average in a manner analogous to E for the sta-
tistical average. Time average is taken over all time because, as applied to
random processes, sample functions of processes are presumed to exist for all
lime, ) :
Specific averages of interest are the mean value X = A[x(!)] of a sample func-
tion (a lower cuse letter is used to imply a sample function), and the time autocor-
relation function, denoted R (1) = A[x(1)x(t + 1)]. These functions are defined by

. i
X=Alx(t)] = 111:1; T J: Tx(t) dt (6.2-22)
Re(r) = ALx()x(! + 1))
N I
= Tll_:r; T J_ Tx(t)x(l + 1) dt (6.2‘-23)

I'or any one sample function of theiprocess X(f), these last two integrals
simply produce two numbers (for a fixed value of t). However, when all sample
functions are considered, we see that x and R,,(t) are actually random variables.
By taking the expected value on both sides of (6.2-22) and (6.2-23), and assuming
the expectation can be brought inside the integrals, we obtaint

E[%] = X (6.2-24)
E[R,.(1)] = Ryx(1) (6.2-25)

Now suppose by some theorem the random variables X and R,,() could be
made to have zero variances; that is, X and R, (1) aclually become constants,

1 We assumne also that X(1) is a stationary process so that the mean and the autocorretation func-
tion are no! time-dependent.
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Then we could write

i=X (6.2-26)
Rx(t) = Ryp(t) (6.2-27)

In other words, the time averages % and Jex(t) equal the statistical averages X
und Ryx(7) respectively. The ergodic theorem allows the validity of (6.2-26) nnd
(6.2-27). Stated in loose terms, it more generally allows all time averages to equal
the corresponding statistical averages. Processes that satisfy the ergodic theorem
are called ergodic processes. .

Ergodicity is u very restrictive form of stationarity and it may be difficult (o
prove that it constitutes a reasonable assumption in any physical situation.
Nevertheless, we shall often assume a process is ergodic to simplify problems. In
the real world, we are usually forced to work with only one sample function of a
process and therefore must, like it or not, derive mean value, correlation func-
tions, elc. from the time waveform, By assuming ergodicity, we may infer the
similar statistical characteristics of the process. The reader may feel that our
theory is on shaky ground based on these comments, However, it must be
remembered that all our theory only serves to model real-world conditions.
Therefore, what difference do our assumptions really make provided the assumed
model does truly reflect real conditions?

Two random processes are called Jjointly ergodic if they are individually

ergodic and also have a time cross-correlation function that equals the statistical
<ross-correlation function:+

Roy(t) = lim —= J i X(OWt + 7) dt = Ryy(x) (6.2-28)
T-w 2T -T .

6.3 CORRELATION FUNCTIONS

The autocorrelation and cross-correlation functions were introduced in the pre-
vious section. These functions are examined further in this section, along with
their properties. In addition, other correlationstype functions are introduced that
arc important to the study of random processes.

Autocorrelation Function and Its Propertics

Recall that the autocorrelation function of a random process X(t) is the correla-
tion E[X,X,] of two random variables X, = X(t,) and X, = X(t,) defined by
the process at times ¢, and ¢, Mathematically,

Ryxlty, 13) = E[X(1,)X(t,)] (6.3-1)

t As in ordinary stationarity, there are various orders of ergodic stationarity. For more detail on
ergodic processes, the reader is referred to Papoulis (1965), pp. 323-332,
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H , " oy 3.
For time assignments, f, = and (, =1, -+ 1, with v a real number, (6.3-1)
assumes the convenient form
. 4 i el
Ryxlt, t + 1) = E[X(0)X( + 1)] (6.3-2)
If X(1) is at least wide-sense stationary, it was noted in Section 6.2 that

Ryxlty £ 4 1) must be a function only of time difference t =, — 1. Thus, for
wide-sense stationary processes

Ryx(r) = E[X(DX(1 + 1)) (6.3-3)
For such processes the autocorrelation function exhibits the following—p‘ropcrlics:
(1) [Rxx(r)] < Ryx(0) (6.3-4)
(2) Ryx(—1) = Ryx(r) (6.3-5)
(3) Ryx(0) = E[X*1)] (6.3-6)

The first property shows that Ry{t) is bounded by its value at the origin, \s{hxlc
the third property states that this bound is cqual !o !hc mean-squared value
called the power in the process. The sccond property indicates that an aulocor‘rc-
lation function has even symmetry. '

Other properties of stationary processes may also be stated [see Cooper and
McGillem (1971), p. 113, and Melsa and Sage (1973), pp. 207-208]:

(4) 11 E[X(1)] = X # 0 and X(¢) has no periodic components then

lim Ryy(t) = X2 (6.3-7)
fe} = w
(5) If X(r) has a periodic component, then Ry,(tr) will have a pcrio'dlc com-
ponent with the same period. o (6.3-8)
(6) If X(¢) is ergodic, zero-mean, and has no periodic component, then
lim Ryy(t) =0 (6.3-9)
X
(7) Ryx(r) cannot have an arbitrary shape. (6.3-10)

Properties 4 through 6 arc more or less sclf-explam\(o‘ry. Prope:rty 7 si.mply says
that any arbitrary function cunnot be an aulocorrc!nl'lon funcuor_n This fact will
be more apparent when the power density spectrum is mtrod'uccd in Chapter 7. It
will be shown there that Ry (1) is related to the power dcnsx{y spectrum through
the Fourier traimsform and the form of the spectrum is not arbitrary,

EExample 6.3-1 Given the autocorrelation function for & stationary process is

. =2
R.\"\(T) 25 + 1 + 61'2

we shall find the mean value and variance of the process X(t). From property
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4, the mean value is E[X(1)] = X = /25 = +5. The variance is given by
(3.2-6), so

a} = E[LX*0] — (E[X(0])?
But E[X2(1)] = Ryx(C) = 25 + 4 = 29 from property 3, s0
ol =29—25=4

Cross-Corrclation Function and Its Properties

The cross-correlation function of two random processcs X(0) and Y(r) was defined
in (6.2-18). Setting t, = t and T = {; — [, we may write (6.2-18) as

Ryy(t, t + 1) = E[X(O)Y(t + 1)] (6.3-11)

If X(t) and Y(1) arc at least jointly wide-scnsc stationary, Ryy(t, t + 1) is indepen-
dent of absolute time and we can write

Ryplt) = E[X(OY(t + ¥)) (6.3-12)

I
Ryglt, t - 1) =10 (6.3-13)

then X(1) and Y(1) arc called orthogonal processes. If the two processes are sla-
tistically independent, the cross-corrclation function becomes

Ryylt, t + 1) = E[X(ELY( + )] (6.3-14)

If, in addition to being independent, X() and Y(1) arc at least wide-sense station-
ary, (6.3-14) becomes

Ry(t)=X? (6.3-15)

which is a constant.
We may list some propertics of the cross-correlation function applicable to

processes that arc at least widc-sensc stationary:
(1) Ryy(—=1) = Ryxl(1) (6.3-16)
B @ 1Rer®)1 S /RerlORyr(0) (63-17)
3) | Ryyr(1)] < hIRxx(0) + Ryy(0)] (6.3-18)

Property | follows from the definition (6.3-12). It describes the symmetry of
Ryy(x). Property 2 can be proven by expanding the incquality

E[{Y(t + 1) + aX(0)}*] 20 (6.3-19)

where a is a real number (see Problem 6-27). Properties 2 and 3 both constitute
bounds on the magnitude of Ryy(1). Equation (6.3-17) represents a tighter bound
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than that of (6.3-18), because the geometric mean of two positive numbers cannot
exceed their arithmetic mean; that is

VRxx(ORy(0) < i[Rxx(0) + Ryy(0)] (6.3-20)

Example 6.3-2 Let two random processes X (1) and Y(r) be defined by
X(t) = A cos (we t) + B sin (wy?)
Y(t) = B cos (wot) — A sin (wo!)

where A and B are random variables and w, is a constant. It can be shown
(Problem 6-12) that X(t) is wide-scnsc stationary il A and B are uncorrclaled,
zero-mean random variables with the same variance (they may have different
density functions, however). With these same constraints on A and B, Y(t) is
also wide-sense stationary. We shall now find the cross-correlation function
Ryy(t, t + 1) and show that X(¢) and Y(1) arc jointly wide-sense stationary.
By use of (6.3-11) we have '

Ryylt, t + 1) = E[LX(OY(t + 1)}
= E[AB cos (wqt) cos (we! + wo 1)
4+ B2 sin (g t) cos (wo ! + o T)
— A? cos (we ) sin (wet + wo 1)
— AB sin {wq 1) sin (wo! + 057)]
= E[AB] cos (2wg t + we 1)
+ E[B*] sin (wo 1) cos (wo!t + W 1)
— E[A?] cos (wo t) sin (wo ! + wo 1)

Since A and B are assumed to be zero-mean, uncorrelated random variables,
E[AB]) = 0. Also, since A and B are assumed to have equal variances,
E[A?] = E[B*] = ¢* and we obtain

! Ryylt, t + 1) = —0? sin (wo1)

Thus, X(t) and Y(1) are jointly wide-sense stationary because Ryylty t + 1)
depends only on 1.

Note from’ the above result that cross-correlation functions are not
necessarily even functions of t with the maximum at t = 0, as is ¢he case with
autocorrelation functions.

Covariance Functions

The concept of the covariance of two random variables, as defined by (5.1-13),
can be extended to random processes. The autocovariance function is defined by

Coxlts t + ) = E[{X() — ELX(OIHX(c + ©) — ELX(¢ + 0])]  (63-21)
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which can also be put in the form
Coxlt, t + 1) = Ryplt, t + 1) — E[X()JE[X(t + 7)) (6.3-22)
The cross-covariance function for two processes X(t} and Y(r) is defined by
Cxrlt, 0 + 1) = E[{X(0) = E[XO)}{Y(t + 1) — E[Y(t + 1)) (6.3-23)
or, alternatively,
Cxvlt,t + 1) = Ryylt, t + 1) — E[X()]ELY(t + 1)] (6.3-24)
For processes that are at least jointly wide-sense stationary, (6.3-22) and
(6.3-24) reduce to _
Cxx(t) = Ryx(x) - X2 : (6.3-25)
and :
Cxr(t) = Ryylt) — X7 ' (6.3-26)
The variance of a random process is given in general by (6.3-21) with t = 0.

For a wide-sense stationary process, variance does not depend on time and is
given by (6.3-25) with t = 0: :

o = E[{X(1) — ELX()]}?] = Ryx(0) - X? (6.3-27)
For two random processes, if
Caltt +1)=0 (6.3-28)
they are called uncorrelated, From (6.3-24) this means that
Ryy(t, t + 1) = E[X(D]E[Y(t + )] (6.3-29)

Since this result is the same as (€.3-14), which applies to independent processes,
we conclude that independent processes are uncorrelated. The converse case is
not necessarily true, although it is true for Jjointly gaussian processes, which we
consider in Section 6.5. S

v

64 MEASUREMENT OF CORRELATION FUNCTIONS

In the real world, we can never measure the true correlation functions of two
random processes X(1) and Y(1) because we never have all sample functions of the
ensemble at our disposal. Indeed, we may typically have available for measure-
ments only a portion of one sample function from each process, Thus, our only
recourse is to determine time averages based on finite time portions of single
sample functions, taken large enough to approximate true results for ergodic pro-
cesses. Because we arc able to work only with time functions, we are forced, like
it or not, to presume that given processes are ergodic. This fact should not prove
too disconcerting, however, if we remember that assumptions only reflect the
details of our mathematical model of a real-world situation. Provided that the
model gives consistent agreement with the real situation, it is of little importance
whether ergodicity is assumed or not.
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) A | Detay
4 T-1 *

Product

| H+2T 2
T f"l () dt PP Rolt, +2T)

Figure 6.4-1 A time cross-correlation function measurement system. Autocorrelation function mea-
surement is possible by connecting points 4 and 8 and applying either x{1) or j{1).

Figure 6.4-1 illustrates the block diagram_or a possibl_c system for measuring
the approximate time cross-correlation function of two jointly ergodic rund?m‘
processes X(t) and Y(t). Sample functions x(¢) and y(t) arc delayed by :\.moun(s 7
and T — 7, respectively, and the product of the delayf:d waveforms is formed.
This product is then integrated to form the output'whnch (.:quals l.hc mtcgrz.ll at
time t, + 2T, where ¢, is arbitrary and 2T is the integration period. The inte-
grator can be of the integrate-and-dump variety described by Pcebles (1976,
p. 361). . . g ..
If we assume x(¢) and y(r) exist at least during the interval =T < and ¢ is
an arbitrary time except 0 < ¢, then the output is easily found to be

1 n+T
Rty +2T) = — x(Oy(t + 1) dt (6.4-1)
¢ 2 1 =T
Now if we choose ¢, = 0t and assume T is large, then we have
T
R,(2T) = Elf x(Op(t + 1) dt = R, (1) = Ryy(7) (6.4-2)
-T

Thus, for jointly ergodic processes, the system of Figure 6.4-1 can approximately
measure their cross-correlation function (v is varied to obtain the complete
function). . . |
Clearly, by connccting points A and B and applying cither x(¢t) or y{t) to the
system, we can also measure the autocorrelation functions Ryy(t) and Ry (7).

Example 6.4-1 We connect points 4 and B together in Figure 6.4-1 and use
the system to measurc the autocorrelation function of the process X(f) of
Example 6.2-1. From (6.4-2)
"
R(2T) = 517 J A? cos (ot + 0) cos (wot + 0 + wy1) dt
-T

2 rT '
= 4~ [cos {wo T) + €08 2wyt + 20 4 wy1)] dt
4T °
_’,'
In writing this result 0 represents a specific value of the random variable ©;

t Since the processes are assumed jointly crgodic and therefore jointly stationary, the integral
(6.4-1) will «end to be independent of 1, if T is large enough.

[
Ry



o

ps

158 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

the value that corresponds {o the specific enscmble member being used in
(6.4-2). On straightforward reduction of the above integral we obtain
R2T) = Rux(®) + &(T)
where
Ryxlt) = (4%/2) €05 (@a T)
is the true autocorrelation function of X(1), and
sin 2wy T)
2w, T
is an crror term. If we require the error term's magnitude to be at least 20
times smaller than the largest value of the true autocorrelation function then
1e(T)] < 0.05R xx(0) is nccessary. Thus, we must have 12w T < 0.05 or
T = 10/w,

In other words, if T = 10/w, the crror in using Figurc 6.4-1 lo mcasure the
autocorrelation function of the process X(t) = A cos (wot + ©) will be 5%
or less of the largest valuc of the truc autocorrelation function.

oT) = (A2/2) cos (wo T + 20

6.5 GAUSSIAN RANDOM PROCESSES

A number of random processcs arc important cnough to have been given names.
We shall discuss only the most important of these, the gaussian randony process.

Consider a continuous random process such as illustrated in Figure 6.1-1
and deline N random variables Xy = XU oees X=X - Xn = X(ty) corre-
sponding to N time instants £y, ..oy {1y oo ty. If, for any N =1, 2, ... and any
times t, ..., Iy, thesc random variables arc jointly gaussian, that is, they have a
joint density as given by (5.3-12), the process is called gaussian. Equation {5.3-12)
can be written in the form

_ o {—(1/2x — XJICH Uy = X1 (6.5-1)
JEmMHCK

where matrices {x — K] and [Cyl are defined in (5.3-13) and (5.3-14) and (5.3-15),
respectively. The mean valnes X, of X(t)are

X, =lE[X‘] = E[(X(t)] {6.5-2)
The clements of the covariance matrix [Cy] arc
Cu=Cxn = E[(X; - X)Xy~ XJ]
= E[{X(t) — ELX()}{ X0 — E(X(t))})
= Cxxltis 1) (6.5-3)

which is the autocovariance of X(t) and X(,) from (6.3-21).

R TR IR PO
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From (6.5-2) and (6.5-3), when uscd in (6.5-1), we sce that the mean and auto-
covariance functions arc all that arc needed lo completely specily a gaussian
random process. By expanding (6.5-3) to get

Cxx(ti, i) = Ryx(tiy i) — E[X(¢)IECX (1] (6.5-4)

we sce that an alternative specification using only the mean and autocorrelation
function Ryx(t;, ty) is possible.

If the gaussian process is not stationary the mean and autocovariance func-
tions will, in general, depend on absolute time. However, for the important case
where the process is wide-sense stationary, the mean will be constant,

R, = E(X(¢t)]=X  (constant) {6.5-5)

while the autocovariance and autocorrelation functions will depend only on time
differences and not absolute time,

Cuxxltis t) = Cxxlte — 1) (6.5-6)
Ryx(tis i) = Rxx(ti — 1) (6.5-7)

It follows from the preceding discussions that a wide-scnsc stationary gauss-
ian process is also strictly stationary.
We illustrate some of the above remarks with an example.

»

Example 6.5-1 A gaussian random process is known to be wide-sense sta-
tionary with a mean of X = 4 and autocorrclation function

Ryx(t) = 25¢ M

We seek to specify the joint density function for threc random variables X(¢)),
i=1,2, 3, defined at times t; = tp + [(i — 1)/2], with t, a constant.
Here t, — t; = (k — i)/2,iand k=1,2,3,50

Ryxlty — 1)) = 25e ™32
and
Cxlty — 1) = 25¢731 W2 — 16

from (6.5-4) through (6.5-7). Elements of the covariance matrix are found
from (6.5-3). Thus,

(25 — 16) (25¢~%* — 16) (25¢~5* - 16)
[Cxl =] (25e731* — 16) (25 — 16) (25e~3% — 16)
(25¢~¢* — 16) (25¢=%* — 16) (25 — 16)

and X, = 4 completely determine (6.5-1) for this case where N = 3.
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Two random processes X(1) and Y{t) are said to be Jointly gaussian if the
random variables X(ty), ..., X(ty), Y(t}), ..., Y(t},) defined at times Ly, eeny iy for
X(1) and times 1}, ..., ty, for Y(1), are jointly gaussian for any N, t,...,ty, M, 1},
R

*6.6° COMPLEX RANDOM PROCESSES

Hf the complex random variable of Section 5.6 is generalized (o include time, the
result is a complex random process Z(t) given by

Z() = X(1) +JY(0) (6.6-1)

where X(r) and Y(r) are real processes. Z(1) is called stationary if X(1) and Y(1) are
jointly stationary. If X(¢) and Y(1) arc jointly wide-sense stationary, then Z{1) is
said to be wide-sense stationary,

Two complex processes Z(t) and Z (1) are joinlly wide-sense stationary if
each is wide-sense stationary and their cross-correlation function (defined below)
is a function of time differences only and not absolute time.

We may extend the operations involving process mean value, autocorrelation

function, and autocovariance function to include complex processes. The mean
value of Z(1) is

E[Z(1)] = E[X(1)]] + JE[Y(1)] (6.6-2)
Autocorrelation function is defined by
Ryt t + 1) = E[Z*()Z(¢t + 1)] (6.6-3)

where the asterisk * denotes the complex conjugate. Autocovariance Junction is
defined by

Caalty t + 1) = EL{Z(1) - ELZWI}*{Z(¢ + 7) - E[2( + 1)]))

If Z(1) is at least wide-sense stationary, the mean value becomes a constant

(6.6-4)

Z=X+j¥ (6.6-5)

and the correlation functions are independent of absolute time: .
Ruaty t + 1) = Ryy(v) (6.6-6)
Caa{t, 1 + 1) = Cyy() (6.6-7)

For two complex processes Z(r) and Z[1), cross-correlation and cross-
covariance functions are defined by

Ryzft, t + 1) = E[ZHOZ{t + 1)) i#]) (6.6-8)
and
Copfts ¢ + 1) = E[{2(1) — ELZ(01}*{Z4t + ©) - E[Z{e+ 0]}  i#j
(6.6-9)
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respectively. 1f the two processes are at least jointly wide-sense stationary,

btain
o (6.6-10)

(0.6-11)

Ryzftot + 1) = Ry [0) i#j
Cpaft t + 1) = Cpyl0) iAJ

Z(1) and Z 1) are said to be uncorrelated processes il Cyp (1,1 + 1) = 0,i#)
! J N — . .
They are called orthogonal processes if Ryzft, t+ 1) = 0,i#J.

Example 6.6-1 A complex random process V(1) is comprised of a sum of N
complex signals:

N .

V(l) - Z A"e}wnl-fje,

na )
Here wy/2n is the (constant) frequency of each signa!. A, s a ru'ndom v;nrlfl‘talf:
representing the random amplitude of the nth signal. Similarly, @, 1? a
random variable representing a random phase angle. ‘Wc assume all the V‘d(l;-
ables A and ©,, for n =1, 2, ..., N, are statistically mdcpcnd'cn( and l]w R
are unil:‘ormly distributed on (0, 2r). We find the autocorrelation function of
146)

From (6.6-3):

Ryt t + 1) = E[V*O)V(t + )]

N N
- - b Jwgt ¥ JBm
E[ZA,.c Jaot=J00 5 4, ot thoor ]

LLE m=1

i f) ¢ E[A, A, e/ O] = Ryp(1)

nel mel

i

From statistical independence:
N N
RVV(t) = e}m“. z Z E[AnAm]E[cxp {j(em - en)}]
a=| m=}

However,

Efexp {/(®, — ©))1 = E[cos (©,, — ©,)] +jE[sin (©,, — ©,)]

_ J‘zu J‘u ' [cos (0,, = 0,) + j sin (0,, — 0,)] d0, d0,,
b Jo (@m i

)2
0 m#n
R m=n
SO N —
Ryy(T) = L'Imo' Z An
nat .3!
i
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PROBLEMS

6-1 A random cxperiment consists of sclecting a point on some city street that
has two-way automobile traffic. Define and classify a random process for this
experiment that is related to traffic flow.
6-2 A 10-meter section of a busy downtown sidewalk is actually the platform ofa
scale that produces a voltage proportional to the total weight of people on the
scale al any time.

{a) Sketch a typical sample function for this process.

(h) Whatis the underlying random experiment for the process?

(¢) Classify the process.

*6-3 An cxpcriment consists of measuring the weight W of some person cach 10
minutes. The person is randomly male or female (which is not known though)
with equal probability. A two-level discrete random process X(¢) is gencrated
where

X{)= £10
The level — 10 is generated in the period following 2 measurement if the mea-
sured weight does not exceed W, (some constant). Level + 10 is generated if

weight exceeds W, . Let the weight of men in kg be a random variable having the
gaussian density

fiwlw]male) = 1 exp [—(w — 770}/ 1.3Y4]

Jm113

Similarly, for women

1
(o ale) = —==— cxp —(w — 54.4)%/2(6.8)
./ll(v‘rcm‘ ) \/2——7!68 p [ YA |

(@) Find 1%, so that P{W > W, | malc} is cqual to P{W < W, | female}.

{h) 1 the levels £ 10 arc intcrpreted as « decisions ” about whether the weight
measurcment of a person corresponds to a male or female, give n physical signifi-
cance to their generation.

(c) Sketch a possible sample function.

6-4 The l}vo-!cvcl semirandom binary process is defincd by

: X()=Aor —A (n-1)T <t<nT

where the levels 4 and ~ A oceur with equal probability, T is a positive constant,
andn=0,+1, £2,....

(a) Sketeha typical sample function.

(b) Classily the process.

(¢) s the process deterministic?
6-5 Sample functions in a discrete random process arc constants; that is

X(1) = C = constant
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where C is a discrete random variable having possible values ¢, = 1. ¢, = 2, and
¢y = 3 occurring with probabilities 0.6, 0.3, and 0.1 respectively.

(a) Is X(1) deterministic?

(h) Find the first-order density function of X(f) at any time .
6-6 Utilize (6.2-13) to prove (6.2-16).
*6-7 A random process X(t) has periodic sample functions as shown in Figure
16-7 whare B, T, and 4t < T are constants but ¢ is a random variable uniformly
distributed on the interval (0, T).

(a) Find the first-order distribution function of X{1).

(h) Find the first-order density function.

(¢) Find E[X(1)], E[X(1)]. and 0%.

X

0 81y 3 e+ 1y e+ T t

Figure P6-7

6.8 Work Problem 6-7 for the waveform of Figure P6-8. Assume 2to < T.

x(n
4—!,—-—)—1
A
[ ] 'YX}
| L
0 [ ‘+’9 e+ T [

Figure 1'6-8

+6.9 Work Problem 6-7 for the waveform of Figure P6-9. Assume 415 < T.

xtn

Half-cycle

t=1l 41

Figure 1’6-9
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6-10 Given the random process
X(1) = A sin (wyt + ©)

where A and w, are constants and © is a random variable uniformly distributed
on the interval (= x, n). Define a new random process Y(f) = X(:).

(¢) Find the autocorrelation function of Y(1).

{(h) Find the cross-correlation function of X(1) and Y(1).

(¢) Are X(t) and Y(1) wide-sense stationary?

(d) Are X(1) and Y(1) jointly wide-sense stationary?
6-11 A random process is defined by

Y(t) = X(1) cos (wqot + O)

where X(1) is a wide-sense stationary random process that amplitude-modulates a
carricr of constant angular frequency w, with a random phase ® independent of
X(1) und uniformly distributed on (-, n). :

{a) Find E[Y(1)].

() Find the autocorrelation function of Y(1).

(¢} Is Y(r) wide-sense stationary?

6-12 Given the random process

X(1) = A cos (wy 1) + B sin (wy 1)

where w, is a constant, and 4 and B are uncorrelated zero-meun random vari-
ables having different density functions but the same variances o2, Show that X(/)
is wide-sense stationary but not strictly stationary.

6-13 If X(t) is a stalionary random process having a mean value E[X(1)] =3 and
autocorrelation function Ryy(t) = 9 + 2¢~M, find:

(¢) the mean value and

{b) the variance of the random variable

: 2
Y= J X(t) de

(Mint: Assume expectation and integration operations are interchangeable.)
6-14 Define a random process by

X(t) = A cos (n1)

where 4 is a gaussian random variable with zero mean and variance g3,
(a} Find the density functions of X(0) and X(1)
(b) Is X(1) stationary in any sense?

6-15 For the random process of Problem 6-4, calculate:

(a) the mean value E[X()] (h) Ryx(ty = 05T, 1, =077} (o) Ryylt, =
027, 1, = 1.27).

6-16 A random process consists of three sample functions X(¢, s,) = 2, X(1, 5,) =

2 cos (1), and X(t, 5,) = 3 sin (1), each oceurring with equal probability, Is the
process stationary in any sense?
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6-17 Statistically independent, zero-mean, random processes X(t) and Y1) have
autocorrelation functions
Ryx(1) = e

and
Ryy(t) = cos (2r1)
respectively. ' .
l (@) Find the autocorrelation function of the sum W (1) = X(1) +’Y(l). )

(b) Find the autocorrelation function of the difference Wit) = ,\(!)_— Y{t).

(¢) Find the cross-correlation function of W(t) and Wz(t?. .
6-18 Definc a random process as X(f) = p(¢ + ¢), where p(r? is any periodic v.vav.c-
form with period T and ¢ is a random variable uniformly distributed on the inter-
val (0, T). Show that

-
E[X(0X(t + )] = :}: L PP + 1) dS = Rx(7)

*6-19 Use the result of Problem 6-18 to ﬁnd_ the autocorrelation fugcuon of

random processes having periodic sample function waveforms p(t) define

(a) by Figure P6-7 with ¢ = 0 and 4t, < T, and

(b) by Figure P6-8 withe =0and 2t, < T. -
6-20 Definc two random processes by X(1) = p + t) :'u‘\d Y(l).='p3$l —g t) wur::1
p,{t) and p,(r) are both periodic waveforms with pcfnod T and ¢ is o ran lom vass-
able uniformly distributed on the interval (0, T). Find an expression for the cro
correlation function E[X()Y(t + 1)].
6-21 Prove:

(a) (6.3-4) and (b} (6.3-5).

- ive arguments to justify (6.3-9). . .

:-z ‘Iil)r lhf random ;J)roccss having the autocorrelation function shown in
Figure PG6-23, find:

(@) E(X(1)] (b) E[X0)] and (¢) o},
Ryx(r)
50
- 20 - —
-10 0 10 T

Figure P6-23
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6-24 A random process Y(1) = X(1) — X(r + 1) is defined in terms of a process

X(f) that is at least wide-scnse stationary.
(a) Show that the mean value of Y(1) is O even il X(¢) has a nonzcro medn

value.
(hy Show that
‘711' = 2[Ryx(0) — Ryx(1)]

(¢) 1f Y(0) = X(t} + Xt + 1), find E[Y(1)] and o}. How do these results
compare to those of parts {a) and (b)?
6-25 For two zcro-mean, jointly wide-sense stationary random processes X(1)
and Y(1), it is known that ol = 5and o} = 10, Explain why cach of the lollowing
functions cannot apply to the processes if they have no periodic components.

(@) Ryy{t) = 6u(t) cxp (=31) () Ryx(t) =3 sin (51)
(©) Rty =9(1 + 2c%)7 (d) Ryy(t) = —cos (67) exp (—[tl)

(e} Ryy(t) = 5[‘___Sin}(r3r):‘1 sin “01')]

R =6+4
(f) Ryy(v) [ 10t
6-26 Given (wo random processes X(1) and Y(). Find cxpressions for the auto-
correlation function of W(t) = X(1) + Y(i}il:
(@) X(1) and V(1) are corrclated.
(b) They are uncorrclated.
(¢) They are uncorrelated with zero means.
6-27 Usc (6.3-19) to prove (6.3-17).
6-28 Lel X(1) be a stationary continuous random process that is dilTerentiable.
Denote its time-derivative by X(1). *
{a) Show that E[X(1] = 0.
() Find Ry4(x) in terms of Ry (7).
(¢) Find Ryg(r) in terms of Ryx(1). (Hint: Use the definition of the derivative
. L X+ - X
X() = lim _(__f_r)___(_z
=0
and assume the order of the limit and expectation operalions can be inter-
changed.)
6-29 A gziu&si:m random process has an autocorrelation function

Ryy(1) = 6 cxp (~111/2)
Determine a covariance matrix for the random variables X(1), X(t + 1), X(t +2),
and X(r -F )
6-30 Work Problem 6-29 if
sin (n1)

Ryx(e) = 6 ——
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6-31 An ensemble member of a stationary random, process X() is sampled at N
times t;, i =1,2,..., N. By treating the samples as random variables X, = X(1)),
an estimate or measurement £ of the mean value X = E[X()] of the process is
sometimes formed by averaging the samplcs:

a 1 X
X=’N"Z:IXI

(a) Show that E[X] = X.
(M If the samples arc scparated far enough in time so that the random vari-
ables X, can be considered statistically independent, show that the variance of the

estimale of the process mean is
(o8)* = a}/N

6-32 For the random process and samples defined in Problem 6-31, let an esti-
mate of the variance of the process be defined by

1 N

F=g L= &7
{m1

Show that the mean value of this estimate is

N =1
ok

E(7}) =

6-33 Assume that X(f) of Problem 6-31 is a zero-mean stationary gaussian
process and let
~_1 &2
or=— )X
X N ‘?l i

be an eslimate of the variance o3 of X(t) formed from the samples. Show that the
variance of the estimate is

4
. A~ 20
variance of 0§ = —ﬁ'-‘-

(Hint: Use the facts that E[X?] = o}, E[X*]1 =0, and E[X*] = 30% for a
gaussizn random variable having mean zero.)
6-34 How many samples must be taken in Problem 6-33 if the standard devi-
ation of the estimale of the variance of X(r} is to not exceed 5% of 6}?

*6-35 A complex random process Z(t) = X(1) + jY(0) is defined by jointly station-
ary rcal processes X{t) and Y(¢). Show that

EC1 Z(0)1?] = Rex(0) + Ryy(0)
*6-36 Let X (), Xa(0), Yi(0) and Y,(¢) be real random processes and define
Z,(0 =X, +i%0  Z) = X0 —jYa0)

e ey I LX)
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Find expressions for the cross-correlation function of Z\(t)and Z,(1)if:
(a) All the real processes are correluted. l =
(b) They are uncorrelated.
(¢} They are uncorrelated with zero means.

*6- N, > 0 el liona e
37 Let Z01) be a stationary complex random process with an autocorrelation

function R,,(t). Define the random variable

at+T
W= f Z(t) di

where T > 0 and « are real numbers. Show that

r
ELIW() = J._T('l' = TR (x) dr

ADDITIONAL PROBLEMS

6-(38 For a random process X(¢) it is known that fy(x,, Xy, X35 Uy, by, ty) =
(gcx,r, ;r]z, X3ity + Aty + A 15+ A)_ for any ¢,, t,, ty and A. Indicate which of
! ]o :wmg'slatemcnls are unequivocably true: X(t) is (a) stationary to or-
(er _a( ) sta(xona_ry to order 2, (c) stationary to order 3, {d) strictly stationary
e} wide-sense stationary, (/) not stationary in any sense, and (g) ergodic, ’
:S.-3.9'A rapdom process is defined by X(t) = X, + V¢ where Xo and V are sta-
[l;llcal)lg independent random _variablcs uniformly distributed on i'nlervals
am;,,(,c) (gz]dz:r:g v, .V1], r?specllvcly. Find (a) the mean, (b) the autocorrelation
autocovari: i i i '
0. State the tyos ance functions of ){(1). (d) Is X(1) stationary in any sense? If
* : ' ’
6b-40m(u) Find lhc. first-order density of the random process of Problem 6-39
(b) Plot the density for ¢ = k(Xo, = Xo,)(V; ~ Vi) with k=0, %, 1. and 2-
Assume V; = 3V, in all plots, B .
g—tﬂ Assume a wid?-scnsc sl.alionary proccss‘X(t) has a known mean £ and a
nown au(ocorrcl.auon function Ryy(z). Now suppose the process is observed at
time 1, zfnd we wish to estimate, that is, predict, what the process will be at time
ty + t with © > 0, We assume the estimate has the form
X, +1)= aX(t,) + B
where a and § are constunts.
(@) Find o and f} so that the mean-squared prediction error

o e’=£[{X(l,+r)—X(t, + 1)}%]
is minimum,

(b) Fxnd lhc'mmlmum mean-squared error in terms of Ry (). Develop an
alternative form in terms of the autocovariance function.

6;42 Fmdr the time average and lime autocorrelation function of the random
process o E_xample 6.'2-1. Compare these results with the statistical mean and
autocorrelation found in the example.
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6-43 Assume that an crgodic random process X(1) has an autocorreltion
function

9
Ryylt) = 18 + ~r‘ [1 + 4 cos (127)]

6+

(a) Find | X1.

(b) Docs this process have a periodic component?

(¢) What is the average power in X(1)?
6-d44 Define a random process X(1) as follows: (1) X(1) assumes only pne of two
possible levels 1 or —1 at any time, (2) X(1) switches back and forth between its
two levels randomly with tine, (3) the number of level transitions in any lime
interval 7 is a Poisson random variable, that is, the probability of exactly k trin-
sitions, when (he average rate of transitions is 4, is given by ((AT)/k ] exp (—it),
(4) transitions oceurring in any time interval are statistically independent of tran-
sitions in any other interval, and (5) the levels at the start of any interval are
equally probable. X(1) is usually called the random teleyraph process. 10 is an
example of a discrete random process.

{a) Find the autocorrelation function of the process.

(b) Find probabilities P{X(t) = 1} and P{X(1) = —~1} for any 1.

(c) Whatis E[X(1)]?

(d) Discuss the stationarity ol X(1).
6-45 Work Problem 6-44 assuming the random telegraph signal has fevels 0
and 1.
6-46 8 =6 und Ryy(t, t + 1) = 36 + 25 exp (— | t]) for u random process X{1).
Indicate which of the following statements are true based on what is known with
certainty. X(1) (o) is lirst-order stationary, (b) has total average power of 61 W, (¢}
is ergodic, (d) is wide-sense stationary, (¢) has a periodic component, and () has
an ac power of 36 W.

6-47 A zcro-mean random process X(1) is ergodic, has average power of 24 W,
and has no periodic components. Which of the following can be a valid auto-
correlation function? If onc cannot, state al least one reason why.
(a) 16 + 18 cos (31), (b) 24Sa?(21), () [1 + 37*]7" exp (—61), and (d) 244(t — 7).

6-48 Use the result of Problem 6-18 to find the autocorrelation function of a
random process with periodic sample function waveform p(t) defined by

p() = A cos? 2ni/T)

where A and T > 0 are constants,

6-49 An engincer wanls to measure the mean value of a noise signal that can be
well-modeled as a sample function of a gaussian process. He uscs the sampling
estimator of Problem 6-31. After 100 samples he wishes his cstimate to be within
+0.1 V of the truc mean with probability 0.9606, What is the largest variance the
process can have such that his wishes will be truc?
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6-50 Lct X(1) be the sum of a deterministic signal s(t) and a wide-sense stationary
noise process N(1). Find the mean valuc, and autocorrclation and autocovariance
functions of X(). Discuss the stationarity of X(1).

6-51 Random processes X(f) and Y{1) are defined by
X(t) = A cos (wet + ©)
Y(1) = B cos (wet + ©)

where A, B, and w, arc constants while © is a random variable uniform on
(0, 2). By the procedures of Example 6.2-1 it is easy to find that X(f) and Y(1) arc
zero-mean, wide-sense stationary with autocorrelation functions

Ryy(1) = (A%/2) cos (mq 1)
Ryy(t) = (83%/2) cos (wy 1)

(a) Find the cross-correlation funclion Ryy{t, -+ 1) and show that X(1) and
Y(1) arc jointly wide-sense slationary.

(b) Solve (6.4-2) and show that the response of the system of Figurc 6.4-1
cquals the true cross-corrclation function plus an crror term ¢(T) that decrcascs
as T increascs.

(c) Sketch |[e(T)] versus T to show its behavior, How large must 7' be to make
Le(T)} less than 1% of the largest valuc the correct cross-corrclation function can
have?

6-52 Consider random processcs
X(t) = A cos (wot + ©)
Y(t) = B cos (w ¢t + D)

where A. B, w,, and m, are constants, while © and @ are statistically independent
random variables uniform on (0, 2n).

(@) Show that X(1) and Y(1) are jointly wide-sense stationary.

(h) If © = & show that X(1) and Y{1) are not joinlly widec-sensc stationary
unless w, = Wo.

6-53 A zcro-mean gaussian random process has an autocorrelation function

‘ Ryxle ={‘3U ~(le1/60  1tls6

0 elsewhere

Find the covariance function nccessary 10 specify the joint density- of random
variables defined at times ;= 2(i — Di=12..3 Give the covariance matrix
for the X; = X{f)).

6-54 1f the gaussian process of Problem 6-53 is shifted to have a constant mean

§ = -2 but all elsc is unchanged, discuss how the autocorrelation function and

covariance matrix change. What is the cffect on the joint density of the five
random variables?
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*6-55 Extend Example 6.6-1 to allow the sum of complex-amplitude unequal-
frequency phasors. Let Z;, i=1,2,..., Nbe N complex zero-mean, uncorrelated
random variables with variances ¢3,. Form a random process

N
Z(t) = E Z, oot

i=1

where w, are the frequencies of the phasors.

(a) Show that E[Z(t)] = 0.

(b) Derive the autocorrelation function and show that Z(t) is wide-sense
stationary.

*6-56 A complex random process is defined by
Z(1) = exp (jQU)

where Q is a zero-mean random variable uniformly distributed on the interval
from wy — Aw to we + Aw, where wg and Aw are positive constants. Find:

(a) the mcan value, and (b) the autocorrelation function of Z(t).

(¢) Is Z(t) wide-sense stationary?

*6-57 Work Problem 6-56 except assume the process
Z(t) = &/ 4 e” ¥ = 2 cos ()

* ‘e . .
6-58 Let ).((t) and Y(t) be statistically independent wide-sense stationary real pro-
cesses having the same autocorrelation function R(r). Define the complex process

Z(t) = X(t) cos (we t) + jY(t) sin (we )

w!lcrc w, is a positive constant. Find the autocorrelation function of Z(t). Is Z(t)
wide-sense stationary?

.
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7.1 POWER DENSITY SPECTRUM AND ITS PROPERTILES

CHAPTER
SEVEN

The spectral properties of a deterministic signal x(t) are contained in its Fourier
transform X (w) given by

SPECTRAL CHARACTERISTICS OF

.b . RANDOM PROCESSES X = J‘w x(t)e™ 0 dt (7.1-1)

-

The function X(w), sometimes called simply the spectrum of x(1), has the unit of
volts per hertz and describes the way in which relative signal voltage is distrib-
uted with frequency. The Fourier transform can, therefore, be considerdd to be a
voltage density spectrum applicable to x(r). Both the amplitudes and phases of the
frequencies present in x(t) are described by X(w). For this reason, if X{w) is
known then x(1) can be recovercd by means of the inverse Fourier transform

R

) = — f X(w)e" do (7.1-2)
2n J..,

_..~._

In other words, X(w) forms a complete description of x(t) and vice versa.

In attempling to apply (7.1-1) to a random process, we immediately encoun-
ter problems, The principal problem is the fact that X(w) may not cxist for most
sample functions of the process. Thus, we conclude that a spectral description of
a random process utilizing a voltage density spectrum (Fourier transform) is not
feasible because such a spectrum may not exist, Other problems arise if Luplace

- transforms arc considered (Cooper and McGillem, 1971, p. 132).

On the other hand, if we turn our attention to the description of the power in
the random process as a function of frequency, instead of voltage, it results that
such a function does exist. We next proceed to develop this function, called the
power density spectrumt of the random process.

s

LA ]

7.0 INTRODUCTION

A'” of the l:orcgoing discussions concerning random processes have involved 1}

t!mc domain. That is, we have characterized processes by means of autoco ]16

tion, cross-corrc.lution, and covariance functions without any considcra(i:;rc a-f

:ﬁcj;‘;ﬂ r;:‘r;;l)]%r(;lscs. A: ris wclllknown, both time domain and frequency donl:uion
exist for analyzing linear system inistic wi

But wl}at about random waveforms&'I Is thcr: som: :VT; ?:t;l;f:;:;:::n\r‘:g\:?f‘)fms-

cesses in the frequency domain? The answer is yes, and it is the purpose ﬂ(:(l:;:s

ISR
SRR T

The Power Density Spectrum

chapter to intr e the (i . : b i
i ra;url)om proccssoc(sh;;bnunr most unpor(.n}l concepts that apply to charncterizing 1 For a random process X{(0), let x4{1) be defined as that portion of a sample func-
The spectral des 1e Irequency domzu_n.. tion x(1) that exists between — 7 and T that is
— pectral description of a deterministic waveform is obtained by Fourier i
Fl:;ns‘orn:lng lrhc waveform, and the reader would be correct in concluding that : (1) x(r) -T<t<T (1.1-3)
urier tr: avoan i . : . N (1) = a1
random tlnsrorms play an imporlunt role in the spectral characterization of ! 0 elsewhere
" fl wavelorms. However, the direct transformation approach is not attrac- 4
ive for random waveforms because the transf : S Now so long as T is finite, x,{f) will satisfy
analysis of rand : anslorm may not exist, Thus, spectral : & !
sign'lyls random processes requires a bit more subtlety than do deterministic : T
als, .
An a inle s . J [x{0)] di < o0 (7.1-4)
 appropriate spectrum to be associated with a random process is intro- i T
duced in the following scction. The ¢ ; ¥
transforms. Readers wishing to ¢ concepls rely heavily on theory of Fouricr ¥
. . rs ; . 3
b referred to A di ‘é‘s hing 1o refresh ll'lclr'background on Fourier theory are i i 1 Many books call this function u power spectral density, We shall occusionally use ulso the names
ppendix D where a short review is given. : &8 power density or pawer spectrim,
; m
b b
‘%, it A
» 3
R . « . ( i
' ‘ v v , 5 R
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and will have a Fourier transform (sec Appendix D for conditions sufficient for
the existence of Fouricr transforms), which we denote X p{(w), given by

T T
X () = j Xyt~ it dt = j x{t)e ™" dt (7.1-5)
LT

T

The energy contained in x(1) in the interval (=T, T)ist

T T
LTy = j 2 di = j X2y di (7.1-6)
T T

Since x4{t) is Fouricr transformable, its cnergy must also be related to Xq{w) by
Parseval's theorem. Thus, from (7.1-6) and (D-21) of Appendix D

T ©
E(T) = J ‘x’(t) dt = i J 1 X ) |? dw (7.1-7)

-7

By dividing the expressions in (7.1-7) by 2T, we obtain the average power
P(T) in x(1) over the interval (=T, T):

E(T L (® X0
WY = —m 1 = 1o .
P(T) T “‘_Tx (1) de o -[ T dw (7.1-8)

AL this poinl wc obscrve that | X (@) |}/2T is a power density spectrum because
power resulls {hrough its inlegration. However, it is not the function that we seek
for two reasons, One is the fact that (7.1-8) does not represent the power in an
entire sample function. There remains the step of letting T become arbitrarily
large so as to include all power in the ensemble member. The second reason is
that (7.1-R) is only the power in one sample function and does not represent the
process. In other words, P(T) is actually a random variable with respect (o the
random process. By taking the expected value in (7.1-8), we can obtain an
average power Pyyfor the random process.}

From the above discussion it is clear that we must still form the limit as
T — oo and take the expected value of (7.1-8) to obtain a suitable power density
spectrum for the random process. It is important that the limiting operation be
done last (Thomas, 1969, p. 98, or Cooper and McGillem, 1971, p. 134). Alter
these operations are performed, (7.1-8) can be written

T w© 2
Pyy = lim L ey ae L lim EUX ) (.19)
, 2 2T

T-o 2T - -0 T~

1 We assume it renl process X{1) and interpret x{f) as cither the vollage across i 1-0 impedance or
the current through 1€ In other words, we shall assume a 1-Q2 real impedance whenever we discuss
energy of pawer in subsequent work, unless specifically stated otherwise.

{ In taking the expected value we replace x(1) by X() in (7.1-8) since the integral of x*(1) is an
operition performed on all sample functions of X(1).
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Gquation (7.1-9) establishes two important facts. First, average power Pyy in
a random process X (1) is given by the time average of its second moment:

T
Pyy = lim El?J ELX(0] de = A{E[X*0]} (7.1-10)
T-re0 -T

For a process that is at least wide-sense stationary, E[X(1)] = X2, a constant,
and Pyy = X1 Sccond, Pyy can be obtained by a frequency domain integration.
I we define the power density spectrum for the random process by

ELX o]

Syxlw) = lim 7.1-11
we) = o 140
the applicable integral is
l 0
Pxx=-27r -wSXX(w) dw (7.1-12)

from (7.1-9). Two examples will illustrate the above concepts.

Example 7.1-1 Consider the random process
X(t) = A cos (wqt + ©)

where A and w, arc real constants and © is a random variable uniformly dis-
(ributed on the interval (0, n/2). We shall find the average power Pyy in X(f)
by use of (7.1-10). Mean-squared value is

2 2
E[X4(¢)] = E[A? cos® (wot + ©)] = E[%— + %- cos (Qwg t + 29)]
Az Az ®/2 2
—-—2—+7L ;cos (2wt + 20) d0
A AR

=7 - sin (2wo t)

This process is not even wide-sense stationary, since the above function is
time-dependent. The time average of the above expression is

A E‘Xz = lim L i ——-Az —2 !
t A
{EL (03} rl-m 2T J_T[ 2 " sin Qwgt) | dt
which casily evaluates to

Pyy = A{ELXY(0]) = A*/2

NGRS
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Example 7.1-2 We reconsider the process of the above example to find

Sxx(w) and average power Py, by use of (7.1-11) and (7.1-12), respectivel
First we find X {w): ( ) respectively,

T
X(w) = f A cos (wo t + ©) exp (~jwt) dt
T

(SN

p
exp (jO) J exp [jlwy — w)t] dt
4-1'

A T
+ 7 ¢xp (—jO®) exp [—jlwy + w)t] dt
R -7

sin [{(w — wy)T]

= AT j
P U0 = a0t
+ AT oxp (—j@) Snl@ + wgT]

(@ + w,)T

Next we determine I.X,(w)l2 = X {w)XHw) and find its expected value. After
some simple algebraic reduction we obtain

E[| X)) _ A’ { Tsiv' [ =0T | T sin’ [fw + 0g)T])
2T 2 {n [o-w)T? "1 [@+w)T) !

Now it is known that
: 2
lim 'r[sm (aT):, - 5@

Tow & T
(Lathi, 1968, p. 24), so (7.1-11) and the above result give
Aln
. Sxxlw) = - [0l — wo) + 8(w + w,))
Finally, we use this result to obtain average power from (7.1-12):
© AZN . Al
Pyx = 7 . BN (3w — wy) + d(w + wg)] dw = 7

Thus, Pyy found here agrees with that of the earlier Example 7.1-1,

Properties of the Power Density Spectrum

The power density spectrum possesses a number of important properties:

(1) Syxlw)20 (7.1-13) -
) Sxx(—w) =8xplw)  X(1) real (7.1-14)
(3)  Syx(w) is real (7.1-15)

l 0
@ o f_msn(w) dw = A{E[X*(1)]) (7.1-16)

T T

R

2. fv‘__‘,:'?:’{i&";l’:ﬁib

e
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Property | follows from the definition (7.1-11) and the fact that the expected
vialue of a nonnepative function is nonnegative. Similarly, property 3 is true from
(7.1-11) since | X {w) |? is rcal. Some reflection on the properties of Fourier trans-
forms of real functions will verify property 2 (see Problem 7-9). Property 4 is just
another statement of (7.1-9).

Sometimes another property is included in a list of propertics:

(5)  Spe(w) = wSyx(w) (7.1-17)
It says that the power density spectrum of the derivative X (1) = dX(0)/dt is w*
times the power spectrum of X{r). Prool of this property is left as a‘reader exer-

cise (Problem 7-10).
A final property we list is

(6) ‘2']; Jw Sxx(w)e"w‘ (Iw = A[Rxx(l, { -+ T)] (7']'18)
8y x(w) = r A[Ryx(t, ¢ + T))e ™" de (7.1-19)

It stutes that the power density spectrum and the time average of the autocor-
relation function form a Fourier transform pair. We prove this very important
property in Section 7.2. Of course, il X(f) is at least wide-sense stationary,
A[Rxx(t, t 4 1)] = Ryx(1), and property 6 indicates that the power spectrum and
the autocorrelation function form a Fourier transform pair. Thus

Sxalw) = J Ryx(t)e ™ dr (7.1-20)
l o0
Ryx(t) = = Syylw)e! dw (7.1-21)
2t Jow
for a wide-sense stationary process.

Bandwidth of the Power Density Spectrum

Assume that X(1) is a fowpass process; that is, ils spectral components are clus-
tered near w = 0 and have decreasing magnitudes at higher frequencies. Except
for the fact that the area of 8y,(cw) is not necessarily unity, Syx(w) has character-
istics similar to a probability density function (it is nonnegative and real). Indecd,
by dividing 8y y(w) by its area, a new function is formed with area of unity that is
analogous to a density function. .

Recall that standard deviation is a measure of the spread in a density func-
tion. The analogous quantity for the normalized power spectrum is a measure of
its spread that we call rms bandwidth,t which we denote W, (rad/s). Now since
Syx{w) is an even function for a real process, its “mean value™ is zero and its

t The notation rms bandwidth stands for root-mean-squared bandwidth,
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wstandard deviation ™ is the square rool of its sccond moment. Thus, upon nor-
malization, the rms pandwidth is given by

[ WSy ylw) dw

oL 7.1-22
W i [ Syalen) dw 122

Lxample 7.1-3 Given the power speetrum
Sxxl0) D
Sevlw) = —— T
= T (f 10)1)

where the 6-dB bandwidth is 10 radians per second, we find W, First,
using (C-28) from Appendix C,

! 10 dw - 10° ! __._‘_Iﬂl——
T T o o (100 + @)

10° —— ) +-—]—-l'\n"<9—> ? }
2000100 + ©) |- 2000 10/ |-

= 50n

Next, from (C-30) of Appendix C:

» 10w? dw
[+ (/1002

* w? dw
= 10° —
-, (100 + @)

=10 _ = | +-l-l'm" CATH
= 103000 + @) |0 20 10/ |- w

5000n

S000r
W = ’_—5—67[— = 10 rad/s

and the 6-dB bandwidth of 8yylm) are equal in this cusc, they

]

Thus

Although W
aie not equal in peneral.

e e

e gt

“The above concept is readily extended to a process that has a bandpass form
of power spectrum; that is, its significant spectral componens cluster ncar some
_1f we assume that the process X(1) is real, Sxy(@) will be

frequencics @y and — g . ;
m = 0. With this assumption we define a

real and have cven symmetry about

mean frequency o by

® Sy} do
X (e

My =
O o Syxlm) dw

(7.1-23)
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and rms bandwidth by
4 o (w = @) Syxlw) dw
far Sxx(w) dow

“The reader is encouraged to sketch a few lowpass and bandpass power speetrums
and justify for himscll why the factor of 4 appears in (7.1-24).

Wie= (7.1-24)

72 RELATIONSHIP BETWEEN POWER SPECTRUM
AND AUTOCORRELATION FUNCTION

In Section 7.1 it was stated that the inverse Fourier transform of the power
density spectrum is the time average of the autocorrelation function; that is

l o
o J_ mhxx(u))e’"" day = A[Rxx{t, 1 4 1))
This expression will now be proved.

It we use (7.1-5), which is the definition of X {w), in the defining equation

(7.1-11) for the power spectrum we havet

H o l T o T =
rhfl 1;[5—7: J_ TX(!,)c’ "oty I_ Txu,)e Jota dlz]

. 1 T T
= lim 3T J:T J TE[X(Il)X(lz)]e'l"’“’"" dt, dt,

T -

(7.2-1)

il

Sxxlw)

(1.2-2)

_The expectation in the integrand of (7.2-2) is identified as the autocorrelation

function of X(1):

ELX(1)XU L)) = Ryxltys 1) T, and1)<T (7.2-3)
Thus, (7.2-2) becomes
) . 1 T T
bx,\-(“{) = Tlnqn; T J_T J_TR“.(:,. (e doue=0h ey dty (1.2-4)
Suppose we next make the variable changes
1=1, de = dt (7.2-5q)
T=ly == =1 dr = dt, (7.2-5h)
in (7.2-4); we obtain '
L (T[T
Sxxlw) = Th_r.rl T .[—r-, J_T_Rxx(l, {+t)dt e de (7.2-6)

+ We use X(1)in {7.1-5), rather than x(r), to imply that the operalions performed take place on the
process as npposed to one sample function,
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Next, taking the limit with respect to thé t integral first will allow us to inter.

change the limit and t integral operations to get

w T
Sxxlw) =j {hm LI Ryx(t, t + 1) dl}e"’“" dt
T=w 2T

The quantity within braces is recognized as the time average of the process auto-
correlation function

(7.2-7)

1 T
A[Rxx(t, t + 1)) = lim — Rxx(!, t+t)de (7.2-8)
To—w 2T
Thus, (7.2-7) becomes
Syxlw) = J‘ A[Ryx(t, € 4+ 1)]e” % dr (7.2-9)

which shows that 8y y(w) and A[Ry,(t, ¢ + 1)] form a Fourier transform pair:
A[Ryxlt, t + 1)] & 8y x(w) (7.2-10)

This expression implies (7.2-1), which we started out to prove.
For the important case where X{r) is at least wide-sense stalxonary,
A[Rxx(t, t + 7)] = Ryx(1) and we get

Sxxlw) = J Ryx(t)e™e" dt (7.2-11)
Ryx(t) = % f Syxlw)e’ dw (7.2-12)

or
Ryx(1) & Sy x(w) (7.2-13)

The expressions (7.2-11) and (7.2-12) are usually called the Wiener-Khinchin rela-
tlons after the great American mathematician Norbert Wiener (1894-1964) and
the German mathematician A, I. Khinchin (1894-1959). They form the basic link
between the time domain description (correlation functions) of processes and
their description in the frequency domain (power spectrum).

From (7.2-13), it is clear that knowledge of the power spectrum of a process
allows complete recovery of the autocorrelation function when X(f) is at least
wide-sense stationary; for a nonstationary process, only the time average of the
autocorrelation function is recoverable from (7.2-10).

Example 7.2-1 The power spectrum will be found for the random process of
Example 6.2-1 that has the autocorrelation function

Ryx(1) = (4%/2) cos (wy 1)

a1
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where A and w, are constants, This equation can be written in the form

A2
Ruxte) = 7 (¢4 ¢71o%)

Now we note that the inverse transform of a frequency domain impulse func-
tion is
1

o f_:é(w)e/“" dw =—

from (A-2) of Appendix A. Thus ;
| & 2nd(w)

and, from the frequency-shifting property of Fourier transforms given by

(D-7} of Appendix D, we get

1t 280 — wy)

0y

By using this last result, the Fourier transform of Ry (t) becomes
Aln
8xx(w) ==~ [dw - wo) + S(w + wo)]

This function and Ryx(1) are illustrated in Figure 7.2-1.

Rxx(f)

~PR

LA I
2w, 2w,
()
S xx(w)
Al
2
_________ I
Figure 7.2-1 The autocorrelation
function (a) and power density
spectrum (b) of the wide-sense
“We 0 We w stationary random process of
()] Example 7.2-1,
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73 CROSS-POWER DENSITY SPECTRUM
AND ITS PROPERTIES

Consider a real random process W() given by the sum of two other rcal pro-
cesses X(1) and Y(1):
W) = X(0) + Y() (7.3-1)
The autocorrelation function of W()is
Runlty 1 + 7) = ETWOW( + 1))

E(LX() + Y(OILX( + )+ Y + 0]}
= Ry, t + 1)+ Ryt 0 )

+ Ryylty t 4 1)+ Ryt £+ 7) (7.3-2)

[

Now il we take the lime average of both sides of (7.3-2) and Fouricr transform
the resulting expression by applying (7.2-9), we have

Spppl@) = Syal) + Spplen) + FLALR L CF O3} + FlAQRylt, 1+ 00} (739

where F {-} represents the Fourier transform. It is clear that the left side of (7.3-3)
is just the power spectrum of W(t). Similarly, the first two right-side terms are the
power spectrums of X(t) and Y(c), respectively. The second two right-side terms
arc new quantities that are the subjects of this section. It will be shown that they
are cross-power densiry spectrums defined by (7.3-12) and (7.3-14) below.

The Cross-Power Density Spectrum

For two rcal random processes X(1) and Y(1), we deline x4{t) and y;{1) as trun-
cated ensemblec members; that is !

x(1) —T<t<T
= 7.3-4
x{0) {0 clsewherc ( )
and .
- 5 t0) ~T<t<T 73.5)
yalty = {0 clsewhere (733

Both x441) and yg{0) arc assumed to be magnitude integrable over the interval
— T, T) as indicated by (7.1-4). As a conscquence, they will posscss Fourier

transforms that we denote by X +{w) and Yi{w), respectively:
xXq{1) e X 3{(c0) (7.3-6)
yol1) = Yolo) (7.3-7)
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We next define the cross power Pyy(T) in the two processes within the inter-
val (T, T) by

1 T T
PxT) = 5= J Tx,-(t)y-,(r) dt = 57—. J x(O)y(r) dt (1.3-8)
- -T

Sinc? x,.(l) anc! yo{t) arc Fouricr transformable, Parseval's theorem (D-20)
applics; its left side is the same as (7.3-8). Thus, we may write

4 ! j ® XHo¥(w)

t
PydT) = 3= J XOx0 dr=o-1| o7 (1.3-9)

Thi.s cross power is a random quantity since its value will vary depending on
which cnsemble member is considered. We form thc average cross power,
denoted Pyy(T), by taking the expected value in (7.3-9). The result is

_ l T - * g
Par(T) = 7= J Tny(t, £) dt = % J E—[)—(’—(;‘M do  (1.3-10)

Finally, we form the total average cross power Pyy by letting T — c0:

LT [ E[X} '
R _ (e EX M) Y]]
xr lexl T J_Tny(t, t) dt I le rh:r; T dw (7.3-11)

It is clear .lh.at the integrand involving w can be defined as a cross-power density
spectrum; it is a function of @ which we denote

E[XHw)Yr{w)]

i Syylw) = lim ———= -
xy Jm T (7.3-12)
Thus
Pay = |
xr =5 -msx,(w) dw (1.3-13)

l.ly repealing the above procedure, we can also definc another cross-power
density spectrum by

. E[YHw)X
Syx() = lim —L-iz;—’&)-]- (7.3-14)
Cross power is given by
l o
Py = 7 J' Syx(w) dw = Pyy (7.3-15)

Tolal cross power Pyy + Pyx can be interpreted as the additional power two pro-
cesses are capable of generating, over and above their individual powers, due to
the fact that they are correlated.
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e




WA T
3wl

L

X2 LT v = e
RS S RS A

184 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

Properties of the Cross-Power Density Spectrum

Some properties of the cross-power spectrum of real random processes X(f) and
Y(¢) are listed below without formal proofs.

(1) 8xr{w) = 8yx(—~w) = 8}x(w) (7.3-16)

(2) Re [Syy(w)] and Re [Syx{w)] are even functions of w (see Problem 7-40).

(1.3-17)

(3) Im [Syy(w)] and Im [8yx(w)] are odd functions of w (see Problem 7-40).

(7.3-18)

(4) 8xy(w) = 0and Syy(w) = 0if X(r) and Y(¢r) are orthogonal. (7.3-19)
(5) If X(1) and Y(1) are uncorrelated and have constant mé_ans Xand ¥

8yp(w) = Syxlw) = 218 Pé(w) ' (7.3-20)

(6) ALRy(t, ¢ + )] = Sxy{w) (7.3-21)

| ATRyxt, £+ 1)] & Syp(w) (1.3-22)

In the above properties, Re {-] und Im [+] represent the real and imaginary
parts, respectively, and A[-] represents the time average, as usual, defined by
(6.2-21). , o

Property 1 follows from (7.3-12) and (7.3-14), Properties 2 and 3 are proved
by considering the symmetry that X{(w) and Y;{w) must possess for real pro-
cesses. Properties 4 and 5 may be proved by substituting the integral (Fourier
transform) forms for X {w) and Yy{w) into E[X ¥ w)Yr{w)] and showing that the
function has the necessary behavior under the stated assumptions,

Property 6 states that the cross-power density spectrum and the time average
of the cross-correlation function are a Fourier transform pair; its development is
given in Section 7.4. For the case of jointly wide-sense stationary processes,
(7.3-21) and (7.3-22) reduce to the especially useful forms

$yy(w) = J‘j Ryy(t)e ™o dt (7.3-23)
Syxlw) = J‘-w Ryx(t)e ™4 dv (7.3-24)
Ryylr) = ﬁ J::Sx,(w)c/"" dw . (7.3-25)
Ryy(1) = i J:,S”(w)elm dw (7.3-26)

Example 7.3-1 Suppose we arc given a cross-power spectrum defined by

$(w) = a + jbawf/W -W<o<W
=0 elsewhere
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where W > 0, ¢ and b are real constants. We use (7.3-25) to find the cross-
correlation function, It is

(" bw\ .,
Ryylt) = el i atj)e dw

w

a (v Jor oy + —L—J wel” dw
=§-’—T -we e j21[W o

On using (C-45) and (C-46) this expression will readily reduce to

a el'un w i b Jwe 9___1_] v }
Ryy(t) == t-— _":I + 2nW {e [I" ot dtew)

2n | jt
= L [(aWt ~ b) sin (W1) + bWt cos (V1))
nir?

«7.4 RELATIONSHIP BETWEEN CROSS-POWER SPECTRUM
AND CROSS-CORRELATION FUNCTION

In the following discussion we show that

o 1 T ot
Syplw) = J : {lim 5T '[ .ny(l. 1+1) dl}e ot gt (7.4-1)
~w \T—o -1

as indicated in (7.3-21). ‘
The development consists of using the transforms of the truncated ensemble

members, given by .,

Xw) = J x(t)e ™ di (7.4-2)
-7
.
Y{w) = J y(t)e ™I dt (7.4-3)
o
in (7.3-12) and then taking the expected value and limit as indicated (o oblain
Syy(w). From (7.4-2) and (7.4-3):

N(w) Y{ow) = J

'S M

X(rye! dey J W e,
. oy

o
= J j X(ep(eg)e eI dey ey (7.4-4)
T

-rJ-7

Now by changing variables according to (7.2-5), dividing by 2T, and taking the
expected value, (7.4-4) becomes

M = E[JT-' {;IF JT x(Oy(t + 1) dt}e’/"" dr}

2’1‘ -T=t -T
e (T -
= J {-— J Ryy(t, t + 1) depe Jor it (7.4-5)
T L.
-T=-t (< =T
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After the limit is taken:

ELX o) Yao)
hm ———
Tom 21

[ s
lim N R.\’)’((y 4 1) dtye e lr
Tear J=T=1 2’ .
- o
= lim == | Ryylt 0 1) dipe™ 0 de
o Lpam 2T )

which is the same as (7.4-1). Since {7.4-0) is a Fourier transform, and such trians-
forms are unique, the inverse transform applics:

1

Sxplen)

il

(7.4-6)

T |
lim L J‘ Ryt t+ 1) dt = e J Syy(w)e!* dw (14-7

T 21 -1 -

It should be noted from (7.4-7) that, given the cross-power spectrum, the
cross-corrclation function cannot in general be recovered, only its time average
can. For jointly wide-sense stationary proccsses, however, the cross-corrclation
function Ryy(t) can be found from Syy(m) since its time average is just Rygy(t)

Although we shall not give the proof, a devclopment similar to the above
shows that (7.3-22) is true.

Example 7.4-1 Let the cross-correlation function of two processes X(1) and
Y1) be

Ryfdt, t + 1) = -A?B- Lsin (g T) + €O [we(20 + 1]}

where A, B, and mq arc constants. We find the cross-power spectrum by use
of (7.4-1). First, the time average is formed

2T

| v
lim — J Ryylts £ + 1) dt
-

T

AB AB . 1 (7
= =i —_ — 2t + 1)] dt
= sin (we ) + 2 le; 3T j_rcos [wol )]

The imtegral is readily evaluated and is found Lo be zero. Finally we Fourigr
(ransform the time-averaged cross-correlation function with the aid of pair

12 of Appendix E:
{i‘-zﬁ sin (g t)}

~jnAB
>

F

i

Sxylw)

[ — ) = S(n -+ wy)]

il

&

e e 41— £ e s T ST —_—

v

4
i
gy
.l

[ 4
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7.5 SOME NOISE DEFINITIONS AND OTHER TOPICS

In many practical problems it is helpful to sometimes characterize noise through
its power density spectrum. Indeed, in the following discussions we define two
forms of noise on the basis of their power spectrums. We also consider the
response of a product device when one of its input wavclorms is a random signal
Or NoiIse.

White and Colored Noise

A sample function nff) of a wide-scnsc stationary noisc random process N(1) is
called white noise if the power density spectrum of N(() is a constant at all fre-
quencies. Thus, we define

Synlw) = A7o/2 (7.5-1)

for white noise, where g is a real positive constant. By inverse Fouricr trans-
formation of (7.5-1), the autocorrelation function of N(1) is found to be

Rysls) = (4 /2) 8(1)

‘The above two functions arc illustrated in Figure 7.5-1. White noisc derives ils
name by analogy with * white™ light, which contains all visible light frequencies
in its spectrum.

White noise is unrealizable as can be scen by the fact that it possesses infinite
average power:

(7.5-2)

1 a
— ‘[ Synlw) dw = o0 (7.5-3)

n J)ou

However, one type of real-world noise closely approximales white noise. Thermal
noise gencrated by thermal agitation of clectrons in any electrical conductor has a
power spectrum that is constant up to very high frequencics and then decreases.
For cxample, a resistor at temperature T in kelvin produces a noise vollage

Runlir) SNN(w)
Xol2 A2 .
0 T 0 w
ta) th

Figure 7.5-1 (1) The autocorrelation function and (h) the power densily spectrum of white noise.
[ Adupted from Pecbles (1976) with permission of publishers Addison-Wesley, Advanced Book Program.)
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‘

across its open-circuited terminals having the power spectrumt (Carlson, 1975,
p. 118)

Syn(w) = %}%D (7.5-4)

where a = 7.64(107'2?) kelvin-seconds is a constant. At a temperature of T =
290 K (usually called room temperature although it corresponds to a rather cool
room at 63°F), this function remains above 0.9 (.Vo/2) for frequencies up (o
10'? Hz or 1000 GHz. Thus, thermal noise has a nearly flat spectrum at all fre-
quencies that are likely to ever be used in radio, microwave, or millimeter-wave
systems.}

Noise having a nonzero and constant power spectrum over a finite frequency
band and zero everywhere else is called band-limited white noise. Figure 7.5-2a

t The unit of 8,,(w) is actuully volts squured per herlz. According 1o our convention, we obtain
walts per hertz by presuming the voltage exists across a 1-0) resistor.

{ This stutement must be reexumined for T < 290 K, such as in some superconducting systems or
other low-temperature devices (masers),

(a)

Ryn(r)

2 Figure 7.5-2 Power density spectrum
(a) and sutocorrelation function (b)
) of lowpass band-limited white noise.
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depicts such a power spectrum that is lowpass. Here

P——" -W<w<W
Sunlw) = {W (7.5-5)
0 elsewhere

Inverse transformation of (7.5-5) gives the autocorrelation function shown in

Figure 7.5-2b: i
sin (Wt)

W1

The constant P cquals the power in the noise. ' T
Band-limited white noise can also be bandpass as illustrated in Figure 7.5-3.

Ryy(v) =P (1.5-6)

-w, 0 v Wy , w
W L4
-uo-’—;: -w°+-2— ) w"_i w°+2
(a
RNN(")
z
YA IR
/T
PN
/
/ \
~ Ve

()]

Figure 7.5-3 Power density spectrum (a) and autocorrelation function (b) for bandpass bund-limited
white noise. {Adapted from Peebles (1976) with permlssion of publishers Addison-3Wesley, Advanced
Book Program.}
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The applicable power spectrum and autocorrelation function are: Sy
Pr/W wg — (W/[2) <o} <wo + (W/2)
: = 7.5-1
Swal®) {0 clsewhere ¢ )

and
) sin (W1/2)

Ryp1) =
wnl®) )
where g and Y are constants and P is the power in the noisc.

Again, by analogy with colored light that has only a portion of the visible
light frequencics in ils spectrum, we deline colored noise as any noisc that is not
whitc. An example serves to illustrate colored noise.

cos (w, 1) (7.5-8)

Example 7.5-1 A wide-scnsc stationary noisc process N() has an autocorrel-

ation function
Rynlt) = Pe™ 21

where P is a constant. We find its power spectrum. Itis

o0
Spnlm) = f pe et de

-

-
@© 0
=P J etk dr 4 P J g3 dr
o
Run(T)

,I‘.-Jlll

SNN(U)

Figure 7.5-4 The autocorrelation
function {a) and power spectrum
(h) of the colored naise »f Example
7.5-1. [Adapted from Pechles (1976)
with  permission  of publishers |
“ Addison-Wesley,  Advanced Book

Program.)

h
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These integrals casily cvaluate using (C-45) to give
+ p___6r
3+jo  3-jo 9+

Synlw) =

This power spectrum is sketched in Figure 7.5-4 along with the preceding
autocorrelation function.

I'roduct Device Response to a Random Signal

Product devices are frequently encountered in electrical systems. Often they
involve the product of a random waveform X(t) (either signal or noise or the sum
of signal and noise) with a cosine (or sinc) “carrier” wave as iltustrated in
Figuie 7.5-5. The response is the new process

Y(t) = X()Aq cos (wo!) (7.5-9)

where Ag and w, are constants. We seek to find the power spectrum Syy{w) of
Y(() in terms of the power spectrum Syx(w) of X(t).
The autocorrelation function of Y(1) is

Ryflt, t + 1) = E{Y(O)Y(t + 1)]
= E[A2 X(£)X(t + 1) cos (wo!) cos (wo t + W )]

A2
= —22 Ryx(t, t + 1)[cOS (wo 1) + cos 2wot + wo 1)} (7.5-10)
Even if X(1) is wide-sense stationary Y(1) is not since Ry,{t, t + ) depends on ¢
Thus, we apply (7.1-19) to obtain Syy(w) after we take the time average of
Ryylt, t + 1) Let X(¢) be assumed wide-sense stationary. Then (7.5-10) becomes
A!
ARy, t+ 1)) = 7° Ryx(1) cos (wg 1) (1.5-11)
On Fourier transforming (7.5-11) we have
. Az
Syr(w) = 52 [Bxx(®@ — wo) + 8xx(® + )] (1.5-12)
A possible power density spectrum of X(r) and that given by (7.5-12) are illus-

trated in Figure 7.5-6. It presumes that X(1) is a lowpass process, although this is
not a constraint in applying (7.5-12).

X Yi)
—————p=1  Product et
S xxlw) Syyiw)

Figure 7.5-5 A product of interest in electrical systems.

[Adapted from Peehles (1976) with permission of publishers

Aq €O (Wel) Addison-Wesley, Advanced Book Program.] ‘
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Syxtw)
Sxxl0) ——
.4 W
2 2
0 w
(a)
Syylw)
W
0 W w

b)

Figure 7.5-6 Power density spectrums upplicuble to Figure 7.5-5; (4) at the input and (b) at the

outpul. [Adapted from Peebles (1976) with permission of publishers Addison-Wesley, Advanced Book
Program.]

Example 7.5-2 One important use of the product device is in recovery
(demodulation) of the information signal (music, speech, etc.) conveyed in the
wave transmitted from a conventional broadcast radio station that uses AM
{amplitude modulation). The wave received by a receiver tuned (o a station
with frequency wy/2x is one input to the product device. The other is a “local
oscillator™ signal A4, cos (wg () generated within the receiver. The product
device output passes through'a lowpass filter which has as its output the
desired information signal, Unfortunately, this signal also contains noise
because noise is also present at the input to the product device: the input
noise is added to the received radio wave, We shall calculate the power in the
output noise of the product demodulator.

Let the power spectrum of the input noise, denoted X(t), be approx-

imated by an idealized (rectangular) function with bandwidth Wy centered
at +wy. Thus,

N of2 —wo —(Wre/2) < w < —wy + (Wyp/2)
Syxlw) = { A/2 wo — (Wie/2) < 0 < wg + (Wyy/2)
0 elsewhere

where L74/2 is the power density within the noise band, By applying (7.5-12)

SPECTRAL CHARACTERISTICS OF RANDOM PROCESSES 193

the power density spectrum of the output noise Y(¢) of the product device is
readily found (by sketch) to be

N A8 —2wo — (Wap/2) < @ < =20q + (Wer/2)
Sy A4 — W2 < < Wiy/2

S =4 4 428 2wy — (Wief2) < @ < 200 + (Wye/2)
0 clsewhere

Now only the noise in the band —Wps/2 < w < Werl2 cannot be removed
by a lowpass filter (which usually follows the product de\:nce.@ remove
unwanted noise and other undesired outpuls) because (h.c dcsnlrcd signal is u;
the same band. This remaining component of 8,(w) gives rise to the fina
output noise power, denoted N,

g -~ 2
N, =_21_ J‘"vll Modd o NoAd War
n

8n

- Warl2 4

*76 POWER SPECTRUMS OF COMPLEX PROCESSES

Power spectrums may readily be defined for corpplcx processes. We ]consu‘icr‘ or':lc)f
those processes that are at least wide-sense stationary. In terms of t 1e‘a\‘1_ oco e
lation function Ry,(v) of a complex random process Z(1), the power density spee-
trum is defined as its Fourier transform

o«
Sy lw) = J' R (t)e ™1 de (7.6-1)
The inverse transform applics, so

o

1 wt -
Ryu(7) = = J. $zz(w)e™" dw (7.6-2)

-
For two jointly wide-sense stationary complex processes Z,(t) and Z',,(l), their
cross-power density spectrum and cross-correlation function arc a Fourier trans-
form pair:

o«
Szazlw) = J Ry, (t)e™ /" dt (1.6-3)
wa . .
L%s o 1.6-4
Ryz(0) = I J: m“’z.\z.(w)‘- "dw ( )
An equivalent statement is:
Rz,2.(0) = 84,2, (w) (7.6-5)
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Example 7.6-1 We reconsider the complex process V(1) of Example 6.6-1 and
find its power spectrum, From the previous example ‘

N
Y R W H

n={
On Fouricr transforming this autocorrelation function we obtain

N
Syvlw) = 5{e""°‘ T 7’}

A=}

N
¥ ALF {eloe)

nr

2n8(w — we) Y, H

a=d

after using pair 9 of Appendix L.

PROBLEMS

7-1 We arc given the random process
X(1) = A cos (wg t + O)

where A and wp are constants and © is a random variable uniformly distributed

on the interval (0, n).
(a) 1s X(1) wide-sense stationary?
{h) Find the power in X(f) by using (7.1-10).
{¢) Find the power spectrum of X(1) by using (7.1-11) and calculate power

from (7.1-12). 1Do your two powers agrec?
7.2 Work Problem 7-1 if the process is defined by

X(1) = u()A cos (wot + Q)

where u{f) is the unit-step function.
*7-3 Work Problem 7.2 assuming © is uniform on the interval (0, n/2).

7.4 Work Problem 7-1if the random process is given by X(1) = 4 sin (gt + ©O).
¥7.5 Waork Problem 7-1 if the random process is

X(1) = A? cos? (wo! + ©)
7.6 Let A and B be random variables. We form the random process
X() = A cos (wyt) + B sin (g t)

where o, is # real constant,
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(a) Show that if A4 and B are uncorrelaled with zero means and equal
variances, then X(1) is wide-sense stationary.

(h) Find the autocorrelation function of X{r).

(¢) Find the power density spectrum.

7-7 A limiting form for the impulsc function was given in Example 7.1-2. Give
arguments to show that the following arc also true:

(@ lim T exp [—naT?] = 8(a)

T=w

(M lim -gcxp [—ja| T} = d«)

T

7.8 Work Problem 7-7 for the following cases:

(@) tim — Sntel) @T) _ 5
Tow ol

(hy tlim T{l—|a|T]= o)
T—~o
fa) < 1T

7-9 Show that (7.1-14) is true.

7-10 Prove (7.1-17). {Hint: Use (D-6) of Appendix D and the definition of the
derivative.)

7-11 A random process is defined by
Y(1) = X(1) cos (wet + ©)

where X(t) is a lowpass wide-sense stationary process, w, is a real constant, and
© is a random variable uniformly distributed on the interval (0, 2n). Find and

. - skelch the power densily spectrum of Y(r) in terms of that of X(1). Assume O is

independent of X(1).

7-12 Determine which of the following functions can and cannot be valid power

. density spectrums. IFor those that are not, explain why.

wl

@ 30T 3 (b) exp [—(w - 1)2;

w*

© L0 @
¢) —4—T - ( ) ——5—"""""¢
41 1+ o + jot

1-13 Work Problem 7-12 for the following functions.

cos (3w)
(a) i+ w? ®) (1 + 0?)?

lw]

' !
(€) 1+ 2w+ w? (d) Jl - BwI

bt Soib

R

..-‘,".-.n"‘.si_",;“ .

X

kN
0

d
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7-14 Given that X(1) = Y N, « X (1) where {a;} is a set of real constants und the
processes X (1) are stationary and orthogonal, show that

N
Z “lz Sx.x,(ﬂ))

=1

Sxxlw) =

7-15 A random process is given by
X(t) = A cos (Qt + @)

where A is a real constant, Q is a random variable with density function fi(+),
and '@ is a random variable unlformly’ istributed on the interval (0, 2r) indcepen-
dent of Q. Show that the power spectrim of X(t) is

Sexle) = "2 (o) + fo =)

7-16 1f X(t) is a stationary process, find the power spectrum of
Y(t)= A + BX(t)

in terms of the power spectrum of X(1) if 4 and B are real constants.
7-17 Find the power density spectrum of the random process for which :

Ryx(t) =

il P and w, are constants. Determine the power in the process by use ol'(7 1-12),
7-18 A random process has the power density spectrum

P cos* (wo 1)

, 6w?
bxx(w) = 1 + w4

Find the average power in the process,
7-19 Work Problem 7-18 for the power spectrum

6e?

S = —

xx(w) [l + wz:]g
7-20 Work Problem 7-18 for the power spectrum

6w?

Syxlw) = ———=
XX( ) “ +w1)4

7_-21 Assume X(f) is a wide-sense stationary process with nonzero mean value
X # 0. Show that

Sxx((u) = 27[1?2(5(0)) + J‘m

-

Cyx(tle ™o dt

where Cy (1) is the autocovariance function of X(t).
7-22 For a random process X{t), assume that

Ryx(x) = Pe~v3e!
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where P > 0 and a > 0 are constants, Find the power density spectrum of X
[Hint: Use Appendix E to evaluate the Fourier trunsform of R gx(1).]

7-23 A random process has an autocorrelation function

P[1 - (24/T)] O<t< TR
Ryx(t) = { P[1 +(2v/T)] -T/251<0
0 1< ~T/2 and > T/2

Find and skelch its power density spectrum. (Hint: Use Appendix E)) .

*7.24 A random process X(t) has a periodic autocorrelation function wlhicre the
function of Problem 7-23 forms the central period of duration T, Find and sketch
the power spectrum.

7-25 If the random processes of Problem 7-14 are stationary, zero-mean, sti-
tistically independent processes, show that the power spectrum of the sum is the
same as for orthogonal processes. For stationary independent processes with
nonzero means, what is 8y x(w)?

7-26 Given that a process X (1) has the autocorrelation function

Ryy(t) =

where A > 0, ¢ > 0, and wg arc real constants, find the power spectrum of X(1).

: 7-27 A random process X{1) having the power spectrum of Problem 7-19 is
: applied to an ideal differentiator.
' (a) Find the power spectrum of the differentiator’s output.

(b) What is the power in the derivative?
7-28 Work Problem 7-27 for the power spectrum of Problem 7-20.
7-29 A wide-sense stationary random process X{f) is used to define another
process by

Ae™*" ¢os (g 1)

¢ ) Y() = J WEX( ~ &) dE

i where h{t) is some real function having a Fourier transform H(w). Show that the
power spectrum of Y(t) is given by

Syrlw) = Syx(w)| H(w)|?

7-30° A deterministic signal A cos (mg 1), where A and g are real constants, is
added to o noise process N(f) for which
w?

Sund) = TR

and W > 0is a constant,

{a) Find the ratio of average signal power to average noise power,

(b) What value of W maximizes the signal-to-noisc ratio? What is the conse-
quence of choosing this vajuc of W? '
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7.31 Find the rms bandwidth of the power spectrum

I)
L jel<kw
Selw)={ 1+ (/W)
Q ‘(l)l > KW

where P, IV, and K are real positive constants. I K — oo, what happens?
7-32 Find the rms bandwidih of the power spectrum

S _ P cos (nw/2W) jwl < W
Sad@) =10 lol > W

where W > 0and P > 0 arc constants.
7-33 Determine the rms pandwidth of the power spectrums given by:

() Syylw) = {P jml < W
Syxlw) =19, oo W

. _ re — /W] lol < W
(h) Syxlm) = {0 lw] > W

where P and W are real positive constants.
*7.34 Given the power spectrum
P P

3"‘.\'.\‘("’):‘_"'l m-—a2’+“+ w + o\ ]
T\ Tw W

ants, find the mean frequency and rms

where P, o, and W are real positive const

bandwidth.
7-35 Show that the rms bandwidth of the power spectrum of a re

process X(1) is given by

al bandpass

Wi, = 4(W7 — @)

where @, is given by (7.1-23)and W1is given by the right side of (7.1-22).

*7.36 Jointly widc-sensc stationary random processcs X(¢) and Y() definc a
process W(f) by

W) = X() cos (wo 1) + Y(1) sin (0o 1)

where g is a real posilive constant.

(@) Develop some conditions on the mea
N() and Y0 such that (1) is wide-scnse stalionary.

(h) With the conditions of part'(a) applicd to w(n), find its power spectrum in

terms of power spectrums of X(1) and Y(1).
(@) I N and Y() arc also uncorrelaled

win?

n values and correlation functions of

1, what is the power spectrum of

B Y 2t T
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7.37 A random process is given by
W) = AX(1) + BY()

where A and B are rcal constants and X(1) and Y(1) are jointly wide-sense station-
ary processcs.

(a) Find the power spectrum Sywwlw) of W)

(b) Find Swwlw) il X(t) and Y(¢) are uncorrelated.

(c) Find the cross-power spectrums Sx{w) and Syp(w).

*7.38 Definc two random processcs by

X(1) = A cos (wot + ©)
Y(t) = W(t) cos (wot + Q)

where A and w, are real posilive constants, © is a random variable independent
of W(t), and W() is a random process with a constant mean value W, By using
(1.3-12), show that

AW
Sxrle) = = % 8w — wo) + 8(w + @q)]

regardless of the form of the probability density function of @.

*7.39 Again consider the random processes of Problem 7-38.
(@) Use(6.3-11)to show that the cross-correlation function is given by

AW
R t+1)= - {cos (wo7) + E[cos (20)] cos 2wt + wo1)
— E[sin (20)] sin 2wo! + ©o 1)}

where the expectation is with respect to © only.
(b) Find the time average of Ryy(t, { + 1) and determine the cross-power

denrity spectrum 8 yy(w).
7.40 Decomposc: the cross-power spectrums into real and imaginary parts
according to

Sxy(w) = Ryy(w) + jlxy(w)
Syx(w) = Ryx(w) + jlyx(w)
and prove that
Ryy(w) = Ryx(—w) = Ryx(w)
Igylw) = Iyx(—w) = — 1y x(w)

7-41 From the results of Problem 7-40, prove (7.3-16).

_ 7-42 Show that (7.3-19) and (7.3-20) are true.

R T
L

o
i
2




[

A

TRl

200 PROBABILITY, RANDDOM VARIABLLS, AND RANDOM SIGNAL PRINCIPLES

7-43 (a) Sketch the power spectrum of (7.5-4) as a function of aw/T.

(b) For what values of w will 8yu(w) remain above 0.5(A44/2) when
T =42 K (the value of liquid helium at one atmosphere of pressure)? These
values form the region where thermal noise is approximately white in some
amplifiers operated at very low (emperatures, such as a maser.
7-44 For the power spectrum given in Figure 7.5-2a, show that (7.5-6) defincs the
corresponding band-limited noise autocorrelation function. .
7-45 Show that (7.5-8) gives the autocorrelation function of the bandpass band-
limited noise defined by Figure 7.5-3a.
7-46 A lowpass random process X(r) has a continuous power spectrum S, y(w)
and §yx(0) # 0. Find the bandwidth W of a lowpass band-limited white-noise
power spectrum having a density 8x,(0) and the same total power as in X(t).
7-47 Work Problem 7-46 for a bandpass process assuming 8yy(w,) # 0, where
wy is some convenient {requency about which the spectral components of X(1)
cluster,

*7-48 A complex random process is given by
Z{) = At

where Q2 is a random variable with probability density function f;(+) and A is a
complex constant. Show that the power spectrum of Z(¢) is

Spzlw) = 21) A |Yi(w)

ADDITIONAL PROBLEMS

7-49 The autocorrelation function of a random process X({t) is
Ryx(t) =3 + 2 exp (—41?)

(a) Find the power spectrum of X(1).

(h) What is the average power in X(1)?

(¢) What fraction of the power lies in the [requency band - I/ﬁ <
w< l/ﬁ?
7-50 State whether or not each of the following functions can be a valid power
density spectrum, For those that cannot, explain why.

|w] exp (—4w?)

() I+ jw

(b) cos (3w) exp {—w? + j2w)

w6

(© (12 + w?)®

{d) 6 tan [12w/(1 + w?)]
(¢) cos? (w) cxp‘(—xwz) '(j‘) (—jw)jw)/(3 — jw)*(3 + jw)?

T-51 Il Syx(w) is a valid power spectrum of a random process X(t), discuss
whether the functions dSylw)/dw and d?$yylw)/dw? can be valid power spec-
trums.
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7.52 {¢) Rework Problem 7-15 and show that even if @ is a constan (not
random) the power spectrum is still given by

Syxlw) = (WA 2)[ /o) + Jul = )]
[Hint: Time-average the autocorrelation function before Fourier transforming to

obtain Sy y{w).] o ‘
(b) F:‘il\ld the total power in X{t) and show that it is independent of the form

of the density function fy{w).
7-53 Find the rms bandwidth of the power speetrum .

Syylw) = /{1 + (/W)
where W > 0 is a constant.
7-54 Work Problem 7-53 for the power spectrum
Seylw) = @Y1+ (/W]
7.55 Work Problem 7-53 for the power spectrum
Seylw) = [T+ (/W)
7-56 Work Problem 7-53 for the power spectrum
Sepl@) = @1 + (0/W)*]*
*7.57 Generalize Problems 7-83 and 7-55 by finding the rms bandwidth of the
power spectrum
Syxlw) = 1/ + (/W)Y
where N 2 2 is an integer.

*7.58 Generalize Problems 7-54 and 7-56 by finding the rms bandwidth of the
power speclrum

Syxlw) = w*/[1 + (W)Y

where N 2 3 is an integer.

7-59 Assume a random process has a power spectrum
. 4 — (w9 Jw]|<6
Sus@) =1, clsewhere

Find (a) the average power, (b} the rms bandwidth, and (¢) the autocorrelation
function of the process. . , '

7.60 Show that rms bandwidth of a lowpass random process X(1), as given by
(7.1-22), can also be oblained from

W= —1 d¥Ryy(1)
T Rel0)  de?

=20

where Ryxlr)is the autocorrelation function of X ().

4
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7-61 A random process has the autocorrclation function
Ry y(t) = B cos? (g 1) exp (= witl)

where B. w,, and W arc positive constants.

(a) Find and sketeh the power spectrum of X(1) when g is at least scveral
times larger than W,

(h) Compute the averige power in the lowpass part of the power spectrum.
Repeat for the bandpass parl. In cach case assume oy » W.

*7.62 Generalize Problem 7.61 by replacing cos? (wy 1) with cos® (i, 1) where

N = 0is an integer. What is the resulting power spectrum when N is (@) odd, and
(hyeven?

%763 The product of a wide-sense stalionary gaussian random process X{1) with

itself defayed by T seconds forms i new process Y(1) = X(O)X(t ~ 7. Determine
{ar) the autocarrelation function, and (h) the power spectrum of Y. Mine: Use
the fact that E[X X, Ny Xy) = E[X XJELXy Xa] + l;’[,\'l,‘\’_‘Jl:'[,\'zX."] -

ELN, XN X - 2ELX JELX JELN JELX ] for gaussian random variables
NNy Xy and X,.(Thomas, 1969, p. 64.)}

7-64 Find the crass-corrclation function Ryylt, t +7) and cross-power spectrum
Syylo) for the delay-and-multiply device of Problem 7-63. {Hint: Usc the fact
that  E[X, X, X,] = E[X,JE[X:X5] + E[XJE[X X+ E[X,)E[X . X] —

LN JELX JJECX ] for three gaussian random variables X Xa, and X,
(Thomas, 1969, p. 64.)}

7.65 If X(1) and Y(1) arc real random processcs determine which of the following
functions can be valid. For those that are not, state al least one reason why.

() 1Ry S i/ RyxORys(®)

() Syx(w) = 6/(6 + Tw?)

(1) Ryylt) = cxp (- lth
(¢) Ryy(1) =2sin (37)

4 cxp (=31h)

| + w? () Sxrlw) = 3 .i"’z

() Syxlm) =

() Syylw) = 18(w)
7.66 FForm the product of two statistically independent jointly wide-sense sta-
tionary random processes X(1) and Y(1) as

W) = XY

Find gcx;cml expressions for the following corrclation functions and power
spectrums in terms of those of X(1} and Y(1): {(a) Rypwlts ¢+ 7) and Syrlo),
(M) Rgplt, 1 417 and Syp{w), and (€) Ryex{tst + 1) and Sy x(®). R

Ry xlr) = (W /m)Sa(W, 1)
and
Ryylt) = (Wy/m)Sa(iV, 1)

with constants Wy > W, find explicit functions for Rywlt, 1 + 1) and Swlm).

ot &2 Lhrp S AR DaE:

pomys ey
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7-67 An cngincer is working with the function
Ryy(x) = P(1 + 1) cxp (= Wit

where P > 0 and W > 0 arc constants. He suspects that the function may not be
4 valid cross-correlation for two jointly stationary processes X(1) and Y(t), as he
has been told. Determine if his suspicions arc truc. {Hint: Find the cross-power
spectrum and see il it satisfics propertics (7.3-16) through (7.3-18).]

7-68 A wide-sensc stationary process X(1) is applicd to an ideal differentiatpr
having the response Y({1) = dX(t)/dr. The cross-corrclation of the input-output
processes is known o be

Ryy{t) = dRyx{t)/d1

(@) Determine 8xy(w) and Syx(w) in terms of the power spectrum Syxlw) of
X().
{h) Since Syx(w) must be real, nonncgative, and have cven symmetry, what
are the propertics of Syy(w)?
7-69 The cross-correlation of jointly wide-sense stationary processes X({f) and
¥{(r) is assumed to be
Ryy(1) = Bu(t) exp (~ Wr)

where B > 0 and W > 0 are constants.
(a) Find Ryx(1).
(M Find 8xy(w) and Syxlw).

770 Work Problem 7-69 for the function

Ryy(t) = Bu(t)t exp (= W1)

7-711 The cross-power spectrum for random processes X{f) and Y(t) can be
wrilfen as
Sxr(@) = Sxx(@)(w)

where Syx(w) is the power spectrum of X(t) and H(w) is a function with an
inverse Fouricr transform Ni(t). Derive expressions for Ryy(t) and Ry (1) in terms
of Ryx(t) and h(z).

772 The power spectrum of a bandpass process X{(r) is shown in Figure P7-72.
X(1) is applied to a product device where the second multiplying input is
3 cos (wg 1) Plot the power spectrum of the device's output 3X(1) cos (wo ).

S,\',\'(W)
A
R i i
-ty l 1]} oy ] w
coy AW —ug b W wy W wy | 2W Figuse 17-72
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7-73 Let lh? “carrier™ Ay cos (wo ) in Figure 7.5-5 be modified to add a phase
ru.ndom variable © so .lha( Y{1) = Ao X(1) cos (wot + ©). If © is uniformly dis-
lrlbu’led on (0, 27} and is independent of X(0), find Ryy(t, t + 1) and Syy(w) when
X(1) is wide-sense stationary,
7-74 Assume a stationary bandpass process X(1) is adequalely approximated by
the power spectrum
8xx(w) = Pu{w — wo)w ~ wy) exp [—(w — we)?/b]
* Pul~w — wol~w — wy) exp [—(w + we)3/b]

where wo, P> 0, and b > 0 are constants. The product Y(f) = X(1) cos (wy 1) is
formed. ‘ °

(¢) Find and sketch the power spectrum of Y(1).

(b) Determine the average power in X(¢) and Y(¢).

:7-75 Compute the power spectrum of the complex process of Problem 6-55,
(7-76 Let X(1) and Y(1) be statistically independent processes with power spec-
rums
Sxx(w) = 28(w) + 1/[1 + (w/10)2]
and

Syr(w) = 4/[1 + (w/2)?)
A complex process
Z() = [X(0) + jY(1)] exp (juwo 1)

is formed where (w, is a constant much larger than 10.
(a} Determine the uutocorrelation function of Z(r).
{b) Find and sketch the power spectrum of Z(),

CHAPTER

EIGHT

PENTacr

LINEAR SYSTEMS WITH RANDOM INPUTS

8.0 INTRODUCTION

A large part of our preceding work has been aimed at describing a random signal
by modeling it as a sample function of a random process. We have found that
time domain methods based on correlation functions, and frequency domain
techniques based on power spectrums, constitute powerful ways of defining the
behavior of random signals. Our work must not stop here, however, because one
of the most important aspects of random signals is how they interact with lincar
systems, The knowledge of how to describe a random waveform would be of little
value to a communication or control system engineer, for cxample, unless he was
also able to determine how such a wavcform will alter the desired output of his
sysiem,

In this chapter, we cxplore methods of describing the response of a lincar
system when the upplied waveform is random. We begin by discussing some basic
aspects of linear systems in the following section. Those readers well-versed in
linear system theory can proceed directly to Section 8.2 without loss. For others,
the topics of Section 8.1 should serve as a brief revicw and summary.

8.1 LINEAR SYSTEM FUNDAMENTALS

In this section, & bricf summary of the basic aspects of linear systems is given.
Attention will be limited to a system having only one inpul and one output, or
response, as illustrated in Figure 8.1-1, Tt is assumed (hat the input signal x(1) and
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.
Lincar
system

hit, 1)

Inpat x (1) —— Qutput v(/)

(a)

e
Input x(n ——J LTI

system Qutput y(1)

hy Figure 8.1-1 {a) A general single-input single-
H{w) output lincar system, and (h) a similar lincar,
(D] time-invariant (LT1) system.

the response y{!) arc deterministic sighals, even though some of the topics dis-
cussed apply to random waveforms. Which topics are applicablc to random
signals will be made clear when they arc used in later scctions.

The General Linear System

Cicarly, the lincar system (Figure 8.1-ta) will, in general, cause the response ¥t
to be diflferent from the input signal x{(t). We think of the systcm as operating on
x{1) to cause (1) and write

y(1) = L[x(1)) (8.1-1)

Here L is an operator representing the action of the system on x(1).

A system is said to be lincar if its responsc to a sum of inputs x,(f), t = 1,
2,..., N, is equal to the sum of responses taken separately. Thus, if x,(1) causes a
response ¥, {0, n =1, 2, ..., N, then for a lincar system

N N N
W= L[ L % x,.(!):\ = T, Ll 0] = L @yl (8.1-2)
n=l n=} LED)

must hold, where the a, are arbitrary constants and N may be infinite.
From the definition (2.3-2) and propertics of the impulsc function we may

wrile
o
X1} = J x(&)S(r ~ &) dg (8.1-3)
By substituting (8.1-3) into (8.1-1) and observing that the epcrator operates on
the time function, we obtain

W) = LLx0) = 'U O = ) dc] - r COLLS — ) 48 (.10

We now define a new function li{t, &) as the impulse response of the tincar system;
that is,

LIS ~ &) = Mt <) (8.1-5)

T

T epod > BT AL

SNE e e e
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Equation (8.1-4) becomes
@
e = J x(§)te, &) d& (8.1-6)

which shows that the response of a general linear system is completely deter-
mined by its impulse response through (8.1-6).

Linear Time-Invariant Systems

A general lincar system is said to be also timc-invariant if the form of its impulse
response h{t, &) docs nol depend on the time that the impulsc is applied. Thus, if
an inpulse 8(r), occurring at t = 0, causes the response Ni(r), then an impulse
5(t — &), occurring at t = &, must cause the response h(r — &) if the system is time-
invariant. This fact means that

W, &) = h{t — €) (R.1-7)

for a lincar, time-invariant system, so (8.1-6) becomes

) = j x(&h(t — &) d¢ (8.1-8)

Equa‘ion (8.1-8) is known as the convolution integral of x{t) and h(t); it is some-
times written in the short form

Ae) = x(1) » h(t) (8.1-9)

By a suitabie change of variables, (8.1-8) can be put in the alternative form

W) = f h&E)x(t — §) d¢ (8.1-10)

Time-Invariant System Transfer Function

Either (8.1-8) or (8.1-10) shows that a lincar time-invariant system is completely
characterized by its impulse response, which is a temporal characterization. By

_Fourier transformation of y(t), we may derive an equivalent characterization in

the frequency domain. Hence, if X(w), Y(w) and H(w) are the respective Fourier
transforms of x(t), 1{t), and h(t), then .

vy = | e de= [ U” X = O dc}-—w @
= © x(t)[‘["‘ h(t _ C)e—jm(l-l) dl}e-jmc df
= «© x(f)”(m)e‘lmt dE = X{w)H(w) (8.1-11)

. BN
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The function H(w) is called the transfer Junction of the system, Equation
(8.1-11) shows that the Fourier transform of the response of any linear (ime-
invariant system is equal to the product of the transform of the input signal and
the transform of the network impulse response.

In the actual calculation of a transfer function for a given nctwork, an alter-
native definition based on the response of the system 1o an exponential signal

(1) = e/ 8.1-12)

may be more convenient. It can be shown (Thomas, 1969, p. 142, or Papoulis,
1962, p. 83) thatt

L[ e}ul] _yﬂ
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With x(1) = exp (jwit) as the input we must have an output y(r) = Hlw)x(1)
from (8.1-13). Henee, dy()/dt = H{wljwx(t) and

() = % H{w)ox(t) + H{w)x(t)

Finally, we solve for H{w):
|

= T3 Gul/R) .

= e T x(t) (®.1-13 Idealized Systems
where To simplify the analysis of many complex systems, it _is o!‘ten conveninc'nl{ 13
: approximate the system's transfer funclion H{w) by an idealized one. ldea ITL
: A= L ®.1-14 transfler functions are illustrated in Figure 8.1-3a for a lowpass system; (l:l) .1;?;; u.’s
2 bi ) applics to a b: ass § . ery case the ideal-
An example serves to illustrate the determination of H(w) by means of (8.1-13). to a highpass system and (¢) applies (o a 'b.lndp.lss system l'n every s the ileal
:“ ized system has a transfer function magnitude that is flat within its passband
% Example 8.1-1 We find H(w) for the network shown in Figure 8.1-2, By o o 0@
o ussuming a clockwise current | (and no loading in the output circuit), we 1
v have} S i
() =L g, He) ~<
e dt -W 0 \\&’\\ w
-~
But y{t) = iR so @ 0(w)
o140 Pl or 0(w)
ok ~. ) |
= ~
and —
“~e
L dy(t) Lo .
)= el S
) S0(w)

t 1t should be carefully observed that (8.1-13) holds only for x(1) given by (8.1-12); that is, for un
exponential waveform,

$ L in the network is an inductance and should not be confused with L above, which stands for n
linear system operator,

L
Input x(r) R Output y(1) Figure 8.1-2 A lincar time-invariant network. [Re-
produced from Peebles (1976) with permission of pub-
o— . ° lishers Addison-Wesley, Advanced Book Program.]

o

&“_‘l I )

1wl or 0(w)

|—-—w—» ~—w--|
-. 1
T4 e i
—
1 \\\ 1
-y 0 \\\ Wy w
\\
-
T 0w
(c)

Figure 8.1-3 1deul system transfer functions. (u) Lowpass, (b) highpus.s, and (c) bundpass syslcms:
(Reproduced from Peebles (1976) with permission of publishers Addison-Wesley, Advanced  Book

Program.)
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sero outside this band; its midband gain is unity and its phasc () is defined Lo
be a linear function of [requency.

In replacing an actual system with an idealized one, the latter would be
assigned a midband gain and phase slope that approximate the actual valucs.
“The bandwidth W (in lowpass and bandpass cascs) is chosen according (o some
convenient basis. For example, W could be made equal to the 3-dB bundwidth of
the actual system, or alternatively, it could be chosen to satisly a specific require-
ment. An cxample of the latter case is considered in Scction 8.5 where W, called
noise handwidth, is seleeted to cause the actual and ideal systems to produce the
same oulput noisc power when cach is excited by the same noisc souree.

Causal and Stable Systems

To complete our summary of basic topics in lincar system theory, we consider
two final items,

A lincar time-invariant system is suid to be causal if it does not respond prior
to the application of an inpul signal. Mathematicaily, this implics p{1) = O fort <
1o if x(1) = 0 for < g, where 4 is any real constant. From (8.1-10), this condi-
tion requires that

)y=0 for <0 (8.1-15)

All passive, linear time-invariant networks that can be constructed will satisfy
{8.1-15), As @ consequence, i sysiem satisfying (8.1-15) is often called physically
realizable.

A linear time-invariant system is said 1o be srable if its responsc o any
bounded input is bounded: that is, if | x{(t)} < M, where M is some constant, then

1Ml < M fora stable system where [ is another constant independent of the
input. By considering (8.1-10), it is readily shown that

I = j‘m [h()] dt < o0 (8.1-16)

-

will ensure that a system having the impulsc responsc h(t) will be stable.

8.2 RANDOM SIGNAL RESPONSE OF LINEAR SYSTEMS

Wwith the preceding summary of lincar system theory in mind, we proceced now Lo
determine characteristics of the response of a stable, linear, time-invariant system
as illustrated in Figure 3.1-1b when the applied waveform is an ensemble member
A1) of a random process X(1). We assume in all work (hat the system's impulse
response () is a real function.t In this scction we restrict our attention to lempo-
pal characteristics such as mean value and mean-squared value of (he response,
its nutocorrelation lunction, and applicable cross-correlation functions, Spectral
characteristics are devetoped in Section 8.4,

t Al reat-warld neiworks have real impulse responses,

LINEAR SYSTEMS WITH RANDOM INPUTS 211

System Response—Convolution

Even when x(f) is a random signal, the network’s response y{f) is given by the
convolution integral:

) = f X(Oh(t — §) d¢ (8.2-1)
or
W = J WXt = &) d§ (8.2-2)

where hi(t) is the network’s impulse response.

We may view (8.2-2) as nn operation on an ensemble member x(r) of the
random process X(f) that produces an cnsemble member of & new process Y(/).
With this viewpoint, we may think of (8.2-2) ns delining the process Y(1) in ferms
of the process X():

Y(t) = [ T hEX( = &) dg (8.2-3)

Thus. we may cnvision the system as accepting the random process X(t) as its
input and responding with the new process Y(t) according to (8.2-3).

Mean and Mean-Squared Value of System Response

We may readily apply (8.2-3) to find the mean value of the system's responsc. By
assuming X(t) is wide-scnsc stationary, we havet

. !
E[Y()] = EU hOX(t —§) dC}

- J HOELX( — & dE

-0

=X J n(¢) dé =¥  (constant) (8.2-4)

t ltis known (Coopér and McGillem, 1971, p. 169) that the operation

E[J’ ’W(I)h(l) d(-l = J‘“E[W(f)]h(l) dt

is valid, where W(1} is some bounded function of a random process [on the interval (14, 1,)]) nud (e} is
# nonrandom time function, if

o
J ELLWIO MO dt < oo

.\vhcrc 1, and 1, are real constanis thal may be infinite. This condition is satisfied in all physical cases
if (1) is wide-sensc stationary hecause W(1) will be bounded and the systems are stable [sce (8.1-16)].
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}hxs f:xprcssion indicates that the mean value of Y(t) equals the mean value of
(r) times the area under the impulse response if X(t) is wide-sense stationary.
For the mean-squared value of Y(¢), we calculate

ELY()) = E[j W)X (e~ &4) ddy jm W)X (r ~ £3) dfz]

«© w
= J:m J‘_QE[X(I = SIX( = EIMEIE,) dy dé; (8.2-5)
If we assume the input is wide-sense stationary then

ELX(e = €)Xt = &)] = Ryx(8y — &) (8.2-6)
and (8.2-5) becomes indepcndcn_; of t:
_z . w0 o« N
Vi= h[Yz(’)J = J_ . J_ Rxx(cn - ¢z)h(fl)h(¢z) dfl dfz (8-2'7)

Although this expression gives the power in Y(t), it may be tedious to calculate in
most cases. We develop an example of its solution for a simple case.

Example 8.2-1 We find Y? for a system having white noise at its input, Here

Ryx(§y = &2) = (N o/28(&y —~ &2)

where .47, is a positive real constant, From (8.2-7):
=1 w w . .
Yi= J‘_w '[_w(-/‘ o/ 20y = &IEL) dEy ME,) de,y

= (Vo/2) JW h*(¢,) dé,

p { p p p (o] hc arca lllldCl lhc Squdlc 0‘ Ill mn
Ou( u OWer bCCOIHCS ro Ol(lolldl tot
( )

Autocorrelation Function of Response
Let X(¢) be wide-sense stationary. The autocorrelation function of Y(t) is

Ryrlty t + 1) = E[Y(OY(t + 7)]

= EU w/'('ijx(t = §)dg, fm h(€)X(e + 7 —§3) dfz:'

= J_w [_WE[X(I = EDX(e + 1 = SIMEINE,) dEy dE;  (8.2-8)
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which reduces to

Ryy{t) = J.m J‘w Ryx(t + & — ENMEINS) dE,y ds 8.2-9)

- Jmw

. because X(t) is assumed wide-sense stationary.

Two facts result from (8.2-9). First, Y(1) is wide-sense stationary il X(1) is
wide-sense stationary because Ry,(r) does not depend on ¢ and E[Y(1)] is a con-
stant from (8.2-4). Second, the form of (8.2-9) shows that Ry,(3) is the two-fold
convolution of the input autocorrelation function with the network’s impulse

response; that is
Ryy(1) = Ryx(1) * h{—1) * h(x) (8.2-10)

Cross-Correlation Functions of Input and Output

The cross-correlation function of X(1) and Y(t) is

Ryslt, t + 1) = ELX(OY( + 1)) = E[X(t) r WOX(t -+ —=28) f‘s‘:\

= J' E[X(O)X(t + 1~ OINE) d§ (8.2-11)
If X(¢) is wide-sense stationary, (8.2-11) reduces to
Ryy(t) = J Ryx(t = OA(E) dE (8.2-12)
which is the convolution of Ry x(z) with h{1):
Ryy(1) = Ryx(1) * h(2) (8.2-13)
A similar development shows that
Ryy(t) = ,[ Ryxlt — EY(—=§) d§ (8.2-14)
or
Ryx(1) = Ryx(t) » h(—7) (8.2-15)

From (8.2-12) and (8.2-14), it is clear that the cross-correlation functions
depend on t and not on absolute time £. As a consequence of this fact X(r) and
Y(t) are jointly wide-sense stationary if X(r) is wide-sense stationary, because we
have already shown Y(t) to be wide-sense stationary.

By substituting (8.2-12) into (8.2-9), autocorrelation function and cross-
correlation functions are scen (o be related by

Ryy(t) = J Ryy(t + & M(E,) dEy (8.2-16)

g
R

o
e
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or
Ryy(1) = Ryyl(1) » W(—1) (8.2-17)
A similar substitution of (8.2-14) into (8.2-9) gives
Ryy(7) = J Ryx(t — §)1(E2) d¢, (8.2-18)
or
Ryy(t) = Ryx(t) » h(r) (8.2-19)

Example 8.2-2 We shall continue Lixample 8.2-1 by finding the cross-
correlation functions R gy(t) and Ryx(1). From (8.2-12)

Ryy(t) = Jm (A”o/5(x = OE) d¢

= (N of2)7)
From (8.2-14)
Ryx(t) = Jm (N of25(t — (=€) dg
= (N o2 ~T) = Ryy(—7)

These two results are seen Lo satisly (6.3-16), as they should.

8.3 SYSTEM EVALUATION USING RANDOM NOISE

A practical application of the forcgoing theory can be immediately dcYclopcd; it
is based on the cross-correlation function of (8.2-12). Supposc we desire .lo find
the impulsc response of some linear time-invariant sys}cm. I we have available a
proadband (relative to the system) noise source having a flat power spectrum,
and a cross-corrclation measurcment device, such as shown in Figure 6.4-1, h{r)
can casily be determined.

For the approximately white noise source

K Rest) » (520 831

With this noise applicd to the system, the cross-correlation function from (8.2-12)

or Examplc 8.2-2 becomes

Ryp(0) & r (i‘—;—°>6(r — B dE

-m

- (r‘-;é)h(t) (3.3-2)

e vty Sl PRI NS e = T A S G I o3 S R RS R
A oA i . RN F L5
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, ‘ System | V(D
X )
Cross-correlation
l measurement
system

Figure 8.3-1 A method for finding a system's impulse response. [Reproduced from Peebles (1976) with
permission of publishers Addison-W esley, Advanced Book: Program.)

b R yytr)

or

hr) = <32,—0>Rx,(r) (8.3-3)

Since a measurement K yy(t) of Ryy(t) can be oblained from the cross-corrclation
mecasurement device, (8.3-3) gives us a measurcment f(x) of h{z)

Hr) = (-J%O)R,,.(r) = h(t) (8.3-4)

Figure 8.3-1 illustrates the concepts described here.

8.4 SPECTRAL CHARACTERISTICS OF SYSTEM RESPONSE

Because the Fourier transform of a correlation function (autocorrelation or cross-
correlation) is a power spectrum for wide-sense stationary processes, it would

“seem that if Ry (1) is known for the input process one can find Ry (1), Rxy(t), and

Ryx{t) as described in Section 8.2 and therefore obtain power spectrums by trans-
formation. Indeed, this approach is conceptually valid. However, from a practical
standpoint the integrals involved may be difficult to evaluate.

In this section an alternative approach is taken where the desired power
spectrum involving the system's response is related to the power spectrum of the
input. In every case, the input process X(r) is assumed to be wide-sense station-
ary, which, as previously proved, means that Y(¢) and X(t) arc jointly wide-sense
stationary.

Power Density Spectrum of Response

We show now that the power density spectrum Syy(w) of the response of a linear
lime-invariant system having a transfer function H(w) is given by

Syy(w) = 8xx(w)| Hw)|? (8.4-1)

where Syy(w) is the power spectrum of the input process X(1). We call | H(w)|? the
power transfer function of the system.

The proof of (8.4-1) begins by writing Syy(w) as the Fourier transform of the

oultpul aulocorrelation function

Syrw) = J. Rr)‘(‘)"-j"" dt (8.4-2)




= s
BT Ry

216 PROBABILITY, RANDOM VARIABLIS, AND RANDOM SIGNAL PRINCIPLLS

On substitution of (8.2-9), (8.4-2) becomes

Sryrlw) =J h(Cx)J h(g) J‘Q'Rxx(f +& = Ele I du dE, dE, (8.4-3)

The change of variable § = ¢ + ¢, — §,, d¢ = dr, produces

©

Syr(w) = f_ W& Jelos d¢, JQ h(¢a)e /"% dE, j Ryx({le™1o¢ d¢  (8.4-4)

These three integrals are recognized as H*(w), H(w), and Sxx(w) respectively,
Hence

Syylw) = HYw)H(w)8 xx(w) = 8xx(w)| H(w)|? (8.4-5)

and (8.4-1} is proved,

. The average power, denoted Pyy, in the system's response is readily found by
using (8.4-5):

l @
Py =35 ‘[ 8xx(w)| H(w)]? dw (8.4-6)

Example 8.4-1 The power spectrum and average power o[.(hc response of

th}::. r;]ctwork of Example 8.1-1 will be found when X(1) is white noise for
whlic

8 x) = 20
Here H(w) = [ + (wL/R)]"! so

|
2 S ———————
| H(w)|* = LR
and
SYY(w) SXX(‘D)I H(w)'z = l_— '*"/2/‘ a)ol/jlz)z

Average power in Y(t), from (8.4-6), is

(= Ko [®  do Vo R
Pyy=— | S8yw)dw =22 =220
v 2n£w (@) do == -w 1 + (@R~ "4L

after an integral from Appendix C is used.
As a check on the calculation of Pyy, we note that (pair 15, Appendix E)

1

he) = (R/L)u(t)e K- e+ H(w) = 1 + (jwL/R)

B N T =T arns ¥
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for this nctwork, and, using the result of Example 8.2-1, we get

=7 _ AN 5 2'_”,”‘ __.ri"oR
Pyy=1 "(2 b \L ¢ de = 4],

The two powers are in agreement,

Cross-Power Density Spectrums of Input and Outpul

It is casily shown (sec Problem 8-42) that the Fourier transforms of the cross-
correlation funclions of (8.2-12) and (8.2-14) may be wrilten as

Syy(w) = Syx(w)H(w) (8.4-7)
Syx(w) = Sy xlw)H(—w) (8.4-8)

respectively.

8.5 NOISE BANDWIDTH

Consider a system having a lowpass (ransfer function H(w). Assume while noise
is applied at the input. The power density of this white noise is ,¥7g/2 where .47,
is a rcal positive constant. The total average power cmerging from the network is
[from (8.4-6)]

L [* (A R
Pyy =5~ J_w (—2—°>| H(w)]? dw (8.5-1)

By assuming the system impulse response is real,t | H{w){? will be an cven func-
tion of w and (8.5-1) can be written

Pre =20 (") o) 8.5-2
= | H(w)]? dw (8.5-2)
0

Now consider an idealized system that is equivalent to the actual system in
the sensc that both produce the same output average power when they both are
excited by the same white noise source, and both have the same value of power
transfer function at midband; that is, | H(0)|? is the same in both systems. The
principal dilference between the two systems is that the idealized one has @ rect-
angularly shaped power transfer function | I1,(w)|? defined by

[ H(0)|? |w] < Wy

0 lw] > Wy (8.5-3)

|H (w)|* = {

t The impulse response of any physical system is idways real.
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ant sclected to make output powers in the two
in the idealized system is

N ol HO) [P Wy

where Wy is @ positive cons!
syslems cqual. The outpul power

L (= Ao ("™ o1 do = 8.5-4)
ﬁgn<—2—°>l 1P do = o L {HO)? do » (
By cquating (8.5-2) and (8.5-4), we require that W, be given by

Ji Ll deo (8.5-5)

Wo = "o

1, is called the noise bandwidth of the system.

e
——

| for a system having the power

Example 8.5-1 The noise bandwidth is foun
transfer function
! 2 _---————-l —_—
I T (W)

is the 3-dB bandwidth in radians per sccond. Here | Oy =1, s0

v W dm . (m)\"‘ Wn
/y = ——— = ¥ tan —_ = -
W L W4 wile 2

1t Wy, is larger than the system 1B bandwidth by

where W

“I'his cxpression shows th

4 factor of aboul 1.57.

e e

If we repeat the above development for a bandpass transfer function with a

centerband frequency @ao it will be found that

5{;‘ |II((L))]2 dw

= (8.5-6)
W= T o

roblem 8-45). The develop-

as a reader excrcise (sce P : .
isc power in terms of nois¢

Proof of this result is left ;
lc expression for output no

ment also provides a simp
bandwidth:

./‘, .
Pyy = —2;"- | H{wo) |* W (8.5-7)

For a lowpass filter, (8.5-7) applics by letting wo = 0.
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*8.6 BANDPASS, BAND-LIMITED, AND
NARROWBAND PROCESSES

A random process N(t) will be called handpass if its power density spectrum
Syn(w) has its significant components clustered in a band of width W (rad/s) that
docs not include w = 0. Such a power spectrum is illustrated in Figure 8.6-1a.f
Our definition does not prevent the power spectrum from being nonzero at
o = 0; it only requires that Sun{0) be small in relation to more significant values,
so as to distinguish the bandpass casc from o lowpass power spectrum with sig-
nificant peaking at higher frequencics.

All subscquent discussions in this section will relate to special forms of
bandpass processcs.

*3and-Limited Processes

Il the power spectrum of a bandpass random process is zero outside some fre-
quency band of width W (rad/s) that docs not include @ = 0, the process is called
hand-limited. The concept of a band-limited process forms a convenient approx-
imation for physical processes that often allows analytical problem solutions that
otherwise might not be possible. A band-limited bandpass process power Spec-
{rum is illustrated in Figure 8.6-1b.

+ Power spectrums arising in physical systems will always decrease as frequency bscomes sulli-
ciently large, so a suitable value of W can always be found. For example, I could be chosen lo
include nll frequencies for which Sy(w) 2 0.18,xlmg) where m, is some convenient frequency neaf
where §y,(w) has its largest magnitude (see Figure 8.6-1).

-

Swnfw)
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! !
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|
j N g | N
~Wo 0 Wo w
r<—-— [T " f‘——- W ———]
Sl\m(w)
ey Wy
' i
|
| |
| i
|
/ i

wo w
=
Figure 8.6-1 Power density spectrums (a) for a bandpass random process and (b} for a band-limitet
bandpass process.
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*Narrowband Processecs

A band-limited random process is said to be narrowband if W < wq, where w is
some conveniently chosen frequency near band-center or near where the power
spectrum s at its maximum, A power spectrum of a narrowband process is
skctehed in Figure 8.6-2a. A typical sample function, if viewed on an oscilloscope,
might look as shown in (4). The appearance of n(t) suggests that the process
might be represented by a cosine function with angular frequency w, and slowly
varying amplitude and phase; that is, by

N(1) = A(t) cos [wyt + O(1)] (8.6-1)

where A(t) is a random process representing the slowly varying amplitude and
O(r) is a process representing the slowly varying phase. Indeed this is the case,
and, for the important practical case where N(1) is gaussian noise, it is known
that A(t) and O(1) have Rayleigh and uniform {over 2n) first-order probability
density functions respectively. The processes A(r) and O(1) are not statistically
independent when N(r) is gaussian (Davenport, 1970, p. 522, or Davenport and
Root, 1958, pp. 161-165), but for any one instant in time the process random vari-
ables are independent,

In some problems, (8.6-1) is a preferred representation for N(1). For others, it
is convenient 1o use the equivalent form

N(1) = X(1) cos (wo ) = Y(1) sin (wy ) P 8.6-2)
S wniw)
W <€ w, W
Wy 0 (2 w
(a)
Carrier with  n(r) Randomly

randomly fluctuating

Nuctuating _ L «  tnvelope
phase Py, el N\
" y \ Z
~— 7\_ —
A A
\

- 7 Figure 8.6-2 (1) A power spectrum

\j_\ \_/ of a narrowband random process

u—’ \\\/ U // - N() and (b) a typical ensemble

. ~ member n(t). [Reproduced from
~ —_//

~ Peebles (1976) with permission of

publishers Addison-Wesley, Ad-
th) vanced Dook Program.}
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where the processes X(r) and Y{1) are given by
X(1) = A1) cos [O(1)] (8.6-3)
Y(1) = A() sin [O1)) (8.0-4)
Expressions relating A(r) and ©(f) to X (1) and Y(1) are
Al) = X)) + YH() {8.6-5)
O = tan~" [Y()/X(1)] T (8.6-6)

*Propertics of Band-Limited Processes

The representations (8.6-1) and (8.6-2) are acluull‘y more general than i}nphed
above; they can also be applied to any band-limited random process. For the
remainder of this section we concern ourselves only with (8.6-2). .

Let N(1) be any band-limited wide-sense stationary rcul. rflndom process with
a mean value of zero and a power density spectrum that satisfics

Syn(w) #0
Syn(w) =0

O<wy— W, <|lwl<wy— W, + W
elsewhere (8.6-7)

where W, and W are real positive constants. Then N(t) can be represented by the
right side of (8.6-2),1 where the random processes X(¢) and Y(r) have the follow-
ing properties:

(1) X(1) and Y(t) are jointly wide-sensc stalionary (8.6-8)

(2) E[X()]=0 E(Y(] =0 (8.6-9)

() E[X*0)] = E[Y*()] = E[N*(1)] (8.6-10)

(4)  Ryx(®) = % JQSNN(w) cos [(w — we)t] dw (8.6-11)
o

(5)  Ryplt) = Ryx(x) (8.6-12)

(6) Kyylr)= ;l; J‘wSNN(w) sin [(w — we)t] dw (8.6-13)
o

(1) Ryx®) = =Rt} Ryy(t) = = Ryy(=1) (8.6-14)

(8)  Ryr(0) = E[LX()Y(I =0  Ryp(0y=0 (8.6-15)

11 we denote the right side of (8.6-2) by N() the equality in (R.6-2) must be interpreted in the
sense of zero mean-squared crror; that is N(r) equils N{(1) in the sense thal

E{{NU) - N()}*]1 =0
(Zicmer und Tranter, 1976, p, 241).
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9 Syxlw) = L [Synlw — we) + Sy + wo)]

AN RANDUM SIGNAL PRINCIVLES

(8.6-16) e~

(10) Syrl) = Sxxlo) (8.6-17)
(1) Syplw) = jL,[Synlr ~ wg) — Snaler + wg)) (8.6-18) .
(12) Spal@) = —Sxrlw) (8.6-19)

In the preceding 12 results, wg is
Saalt): R yx(®), Ryt), Ryy(2),

correlation functions of X{1) and Y(1) while Syx(m) Syplm), Sgylm) and Syx(w) are

the corresponding power speetrun

of the quantity within the brackets.
We outline the proofs of the above propertics in the next subscction, Here we

discuss their meaning and develop an example. We sce that in addition to being

zero-mean (property 2) wide-sensc
also ave cqual powers (property

5), and therefore the same power spectrum (property 10). Random variables

defined for the processes X(t) and

g). If N(r) has a power spectrum with components having even symmetry about

w = +wg, then X(0) and Y(1) will
quence of this last point is that t
zero (propertics 11 and 12).

he cross-power spectrums of X(ty and Y(r) arc

any convenicnt frequency within the band of
and Ryy(t) arc autocorrelation and cross-

1s; and L[ -] denotes taking the lowpass parl

stationary (property 1) processes, X(1) and Y(1)
3), the same autocorrelation function (property

Y(t) at any onc time arc orthogonal (property

be orthogonal processes (property 6). A conse-

Example 8.6-1 Consider the

spectrum shown in Figure 8.6-3a. We shall find Syxl®), Sxylw), and Ryy{(7).

By shifting Syn(®) by +wo

Syrlw) according to (8.6-16) as the lowpass portion of Synlw — we) +

Sanlw + wo), a8 illustrated in

Simitarly, we form the difference of the spectrums in (b) to obtain Sxy(w)
according to (8.6-18) as shown in (d). This function also gives Syx(w) from

(8.6-19) as shown.
To find Ryy(t) we apply (

oo+ Wi
Ryt =~ J P sin [(@
n 1

oo =W

I)
= — [cos (W 1) — cos (W,1)]
nt

P {os W+ W (W - W)t
"L 2 2

nt

ap . [(wy + Wt [(w, - w,):]
=—sin |5 sin | "
nt 2 2

bandpass proccss having the power density
and —w, as shown in (b), we may construct

(c). This function also equals Syy(w) by (8.6-17).

8.6-13):

) Wiae
— o)1) dw = o J sin (x) dx

-Wit

W, 3% W, — W
—Cos[( z+2 |)f+( 2 - 1)‘]}
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San(w) W, +W, =W
P
'
1 L 1 A
-2w, ~We 0 We 2wy W
o =Wy cwe t W, We =Wy Wy t W,
(a)
Suntw = we)
P
1 1 [ __l 1 l 1 l
~2wg * ~wy Wy 0 W, Wy 1w, w
S ynlw + We)
r
l 1 l 1 [— I 1 1
=2w, ~Wy -w, 0 W, wy 2wy w
(5)
Sxx(w) or Syriw)
2F
P i
1 i
W, W, W, W, w

()

~18xv(w) of [8yx(w)

7 | w

Wy

-W, -w,,0 ] l_P w '
(d)

Figure 8.6-3 Power spectrums applicable 1o Example 8.6-1.
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Figure 8.6-4 Cross-correlation function of Example 8.6-1.
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Now since I¥, + W, = W, we may writc this result as

WP sin (We/2) |
Riyy(t) = ~=— »mtZl - '
() - $_(Wr/2) sin [(W - 2W,)1/2]
yvhich is an odd function of t as (8.6-14) indicates it should be. Figure 8.6-4
illustrates a plot of Ry,(r) for the special case W, = W/6.
It should be noted that if W, = W/2, corresponding to Synlw) having

even components aboul w = oL wo, we get Ryy(t) = 0 for all . In this case,
X(1) :!nd Y(1) are orthogonal ‘processes; they are also independent if N(1) is
gaussian, L

1

*Proofl of Properties of Band-Limited Processes

Itisa qui‘te long and involved task to prove all 12 properties of band-limited
processes in detail. Therefore, we shall outline most of the proofs and give the
details on only a few.

. Property 2 is proved by taking the expected value on both sides of (8.6-2).
Since N(t) is assumed wide-sense stalionary with a mean value of zero, then
E[X(1)] =0and E[Y(1)] = 0 are necessary and property 2 follows. '

The sequence of developments leading to the proofs of properties 9 and 4 will
now be given. We begin by assuming the usual case W, = W/2 (see Figurc 8.6-1h)
and observing that the network of Figure 8.6-5a gives X(1) at its output if the

ideal lowpass filter has a bandwidth W/2 and if wy > W/2.f We shall assume
these conditions true. Thus

V() = 2N(t) cos (wp 1)
= 2[X(1) cos? (wq 1) — Y(t) sin (wy 1) cos (wg ()]
= X{1) + [X(1) cos (2w ) — Y(t) sin (2w, 1)] (8.6-20)

The filter will remove the bandpass process contained within the brackets so (hat
only X(t) appears in the output, Next, we develop an expression for Ry(t,t + 1):

Ryxlty t + 1) = E[X{)X(t + 1)]
= E[Jl hV(t — u) du J‘m )Vt + © ~ ) va

w -

ow w
= J. j huh()R yn(t + u — v)4 cos [wolt — u)]
- b
€08 [we(t + © —v)] du dv ' (8.6-21)
1 These are idcalized values based on an ideal product device. Practical values of bandwidth and

wy may bc considerubly different. The ussumption W, = /2 is for simple definition of filter band-
width and is not & constraint in propertics 9 or 4,
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o Tleat _
N(l)—'—{ Product o] owpas X(r)
— fittes
}

2 cos (Wyf) Bandwidih = 55

tw)
Ny Product I“‘:;":m e () Figtfrc 8‘6-5'Block diagrams of networks that
Vitn fitter realize (a) X(1) and (b)) Y{) from a random
? w process N(r) = X(1) cos {wq 1) = Y1) sin (w, 1),
Hundwabih =Y | Reproduced  from Peebles (1970) with per-
Sdan mission  of  publishers  Addison-3Wesley,
) Advanced Book Program.)

In developing (8.6-21), we have written X (1) and X(¢ + 1) in terms of the convolu-
tion integral involving h(1), the impulse response of the lowpass filter, substituted
V(1) rom (8.6-20), and used the fact that N(r) is assumed wide-sense stationary.
The further reduction of (8.6-21) is lengthy (Peebles, 1976, p. 157) and will only be
outlined. If the cosine factors are replaced by their exponential forms and if
Ryn(t + 1 — v) is replaced by its equivalent, the inverse transform of the power
spectrum 8yp(w), (8.6-21) becomes the sum of four integrals, It can be shown
that two of these integrals, the only two involving ¢, are zero. Thus, Ryy(t, I + 1)
becomes a function of T only and X(1) is therefore wide-sense stationary, proving
part of property 1. The two remaining integrals are used to prove propertics 9
and 4.

A procedure exactly the same as discussed in the last paragraph can be uscd
to prove first that Y(s) is wide-sense stationary, thereby providing the proof of
another part of property 1. The development also proves properties 10 and 5; it
is based on the fact that Y(1) is produced by the operations shown in Figure
8.6-5h.

Property 3 next results (rom use of property 5 with © = 0 and the integration
of 8xx(tw) using property 9.

Propertics 11, 6, 8, and the balance of property | are proved by considering
the cross-correlation functlion

Ryylt, £ 4+ 1) = E[X()Y(t + 1}]
l'.'|:fv hu) V(1 = u) du Jm o)Vt + t =) (I(I]

- w - -

|

- I Jw HEOM(O)R s + 10 = 0)4 cos [wolt = )]

- sin [wolt + t — )] dv du (8.6-22)

which is developed in a manner analogous to (8.6-21). Reduction of (8.6-22) as
discussed earlicr shows that Ry, (1, 1 + 1) depends only on 1, so that X(¢) and Y(1)
are jointly wide-scnse stationary (proving property 1); it also proves propertics |1
and 6. Property B results from property 6 with v = 0.
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Proofs of the remaining propertics, 7 and 12, follow (rom consideration of the
autocorrelation function of N(t). It is readily found by using (8.6-2) that

Ryplt, 0 1) = ELN(ON( + 1]
= [Ryp(t) + Ryp(0))Y; cOS (09 7)
+ [Ryxlt) = Ryy()] '/z cos (2wt + wyo 7)
— [Ryylt) = Ryx(D)] 1/, sin (1q1)
— [Ryyl1) + Ryx()) 'y sin Qe £ -+ 1) (8.6-23)

Since N(1) is wide-sensc stationary by original assumplion, its aulocorrelation
function cannot be a function of t. Thus, we require

Ryx(t) = Ryy(1) (8.6-24)

and

Ryy(t) = = Ryx(7) (8.6-25)

in (8.6-23); these results prove property 12 and the first part of property 7.
Finally, recognizing that Ry(1) = Ryx(=1) for a cross-correlation function, we
obtain the second parl of property 7, which says that Ryy() is an odd function
of ©.

8.7 MODELING OF NOISE SOURCES

All our work in this chapter so far has related to finding the response of a lincar
system when a random waveform (desired signal or undesired noisc) was applicd
al its input, In cvery casc, the system was assumed to not contain any internal
sources. In particular, the system was assumed to be frec of any internally gener-
ated noise. Tn the real world, such an assumption is never justificd because all net-
works (systeins) generale one of more types of noise internally. For example, all
conductors or semiconductors in a circuit are known to gencrate thermal noise
{see Section 7.5) because of thermal agitation of free electrons.t The question
paturally ariscs: How can we handle practical networks that produce internally
generated noise? The remainder of this chapter is concerned with answering this
question.”

We shall find that, by suitable modeling techniques for both the network and
for the external source that drives the network, all the internally generated
netwaork noise can be thought of as having been caused by the external source. In

t There ate many other types of internally generated noise such as shot noise, partition noise,
induced grid noise, flicker naise, secondary emission noise, etc. The reader is referred to the literature for

maore detiil (Mumiford and Scheibe, 1968 van der Zicl, 1970)
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eflect, we shall replace the noisy practical network with a noisc-free identical
nelwork that is driven by a “more noisy " source.
Our work begins by developing modcls for noisc sources.

Resistive (Thermal) Noise Source

Suppose we have an ideal (noise-free, infinite input impedance) voltmeter that
responds to vollages that fall in a smail ideal {rectangular) frequency band dw/2n
centered at angular frequency w. If such a voltmeter is used to measure the
vollage across a resistor of resistance R (ohms), it is found, both in practice and
theoretically, that a noise voltage e,(t) would exist having a mean-squared value
given by

;"T(T _E_T_’I.:_d_(g (8.7-1)

Here k = 1.38(1072%) joule per Kelvin is Boltzmann’s constant,t and T is tem-
perature in Kelvin, This result is independent of the value of w up to extremely
high frequencies. {Scc Section 7.5 where A7o/2 cquals 2kTR here. The reader
should justify this fact as an cxercise.)

Now becausc the voltmeter does not load the resistor, Z,’,-(T) is the mean-
squarced open-circuit voltage of the resistoriwhich can be (reated as a voltage
source with internal impedance R. In other words, the noisy resistor can be
modeled as a Thevenin} voltage source as shown in Figure 8.7-1a. An equivalent
current source is shown in (b) where

2kT dw

R (8.7-2)

(1) = el()/R* =

is the short-circuit mean-squared current.
From Figure 8.7-1a it is found that the incremental noise power dN,, delivered
{0 the load in the incremental band dw by the noisy resistor as a source is
N = el()R, _ 2kTRR, dw
PTR AR AR+ R

(8.7-3)

The maximum delivered power occurs when R, = R. We call this maximum
power the incremental available power of the source and denote it by N, 1 it is
given by
kT dw
AN, = /AR = "= (8.7-4)
2n

We see from (8.7-4) that the incremental power available from a resistor source is
independent of the resistance of the source and depends only on its physical tem-
perature T. These facts may be used as a basis for modeling arbitrary sources.

t Ludwig Bolizmann (1844-1906) was an Austrian physicist.
{ Named for the French physicist Léon Thevenin (1857-1926).
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Noisy Noise
resistor free

|

|

H |

! i

{ i Figure 8.7-1 Equivalent circuit models of noisy
i __{ resistor: (u). vollage model and (b) current maodel,
L ——————————— | [Adapted from Peebles (1976} with permission of

publishers Addison-Wesley, Advanced Book Pro-
th) gram.)

Arbitrary Noise Sources, Effective Noise Temperature

Suppo§c an actual noise source has an incremental available noise power dN
gp::n-cnrcglt output mean-squared voltage e,,’(l), and impedance as mcasur:d'
clween its output terminals of Z(w) = R(w) + jX (w). The avai i
power is casily found to be ’ ’ e vatlable nois
_ e
"7 4R (w) (8.7-5)

?f we now uscribc_ all the source’s noise 1o the resistive part R,(w) of its output
:;npcdnncc by defining an effective noise temperature T, such that (8.7-1) applics
hen ’

el = 2T, ) 22 (8.7-6)

As Wll!] a purely resistive source, available power is still independent of (he
source impedance but depends on the source's temperature

o dw
¢£N“ = kT, P (8.7-7)

We consider two examiples that illustrate eflective noise temperature,

Exnmp!c 8.7-.I Two different resistors al different physical temperatures are
placc':d in series. The effective noise temperature of the series combination us
& notse source is {0 be found,
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Temperature 7

Temperature Ty

Figure 8.7-2 Cquivalent circuits for
two resistors at different tgmperatures
in series.

Figure 8.7-2 illustrates Thevenin equivalent circuits for the combination.
Since the individual resistors as sources may be considered independent, their
mean-squarcd voltages add. Hence,

el + e300 = &)

By applying (8.7-1) to both sides of the preceding expression, we obtain

- L d
TR+ T3 Ry 52 = 24T, 4 1) 2
or
o TR+ TRy
TR+ R,

Example 8.7-1 clearly shows (hat eflective noise temperature of a source is
not necessarily equal to its physical temperature. In the special case where 7, =
Ty =T, then T, = T. Morc gencrally, it is true that any passive, two-terminal
source that contains only resistors, capacitors, and inductors, alt al the same
physical temperature T, will have an cflective noise temperature T, = T, (Ziemer
and Tranter, 1976, p. 471). The next example can be used to illustrate this last
point,

Examyple 8.7-2 We reconsider Example 8.7-1, except we now allow a capace-
itor (0 be placed across one resistor as shown in Figurc 8.7-3.

By superposition, ¢2(1) is the sum of contributions from each resistor as a
noise source. The mean-squared voltage, denoted m due to the first
resistor is reutdily secn to be

P+ wiRIC

!
I = o2

= ¢i{{
enl(l) "I( )I ! "'j(”RlCl
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—

Temperature Ty

The preceding example shows that effeclive noise temperature may be a
§ _function of frequency. In this case, the available noise power is also frequency
it dependent.
J Again we sce that T, =T in the above cxample if T, = T3 = T, as it must
* because it is a linear, passive, two-terminal network with only resistors and a

-
A
P — capacitor, as noted previously.

-

- W

Temperataee 7y

I

VFigure 8.7-3 Lyuivalent cireuits for

capacitor.

a lincar, passive, two-lerminal network of two resistors and one

That duc to the sccond resistor is
B 110
cnl(l) = cl(l)

Thus, by applying {8.7-1) to the two individual resistor mean-squared volt-

ages, we have

o T,R, do
) = el (1) + enlt) = 2k[m + Ty Rz] -

utput impedance of the nciwork as an overall source by

Next, we find the o
to 0. We gel

magining the noisc sources set
R, (1/jwCy) R,

= EEASICAuA L [P T o

Zdw) = Ra + 2= T(jwCy) ~ T 1 HjoRG

R,(1 = joR,C))

Rat =% wiRIC}

Il

which has a resistive part
R@) = Ry + s
A0V = P2 T 2 RIC

Hy\upplying (8.7-6) to the cquivalenl source, We have

- R dw
el = 2kT’[R2 T + szfC}] n

f(t—) for the actual and cquivalent nelworks to find 73

Finally, we equalc ¢
T TR, + Ty Ry(1 -+ wiRICYH)
fFUR 4R w!RICH

An Antenna as a Noise Source

In practice, all antennas produce noisc at their output because of reception of
clectromagnetic radiation from noisc sources external to the antennaf The
amount of available noise power dN,, in an incremental band dw depends in a
rather complicated manner on all the space surrounding the antenna. However, il
is possible to model the antenna in a simple way by assigning to it an antenna
temperature T, chosen so that dN,, and T, arc rclated by (8.7-4). Thus, '
dw

dN,, = kT, o= (8.7-8)
In general, antenna temperature may vary with frequency. However, in many
applications T, can be considered constant (with respect to w) because its varia-
tion with frequency over a frequency band comparable to that of the desired
signal being reccived is often small, '

Example 8.7-3 A very scnsitive meter that is capable of measuring noisc
power in a (small) frequency band 1 k7 wide at any frequency ay/2n is
attached to a microwave antenna uscd in a radio relay link. It registers 2.0
(107 '8 W when the meter's input impedance is matched to the antenna so
that its reading is maximum, We find the antenna temperature T,.

Since maximum power is extracled from the antenna, the power is its

available power and (8.7-8) gives
~18 - .
mdN,, __ 2x(2)10 200 _aao

=

1= m _ 138(10 ™)2r(10%)  1.38

8.8 INCREMENTAL MODELING OF NOISY NETWORKS

In this scction we shall show how a noisy nctwork can be modcled as a noisc-frec
network cxcited by a suitably chosen external noise source. We also develop
some measures of the “noisiness” of a network. All our work is applicable to an

incremental band dw.

t There are many sources of external noise; several of these are described by Peebles (1976, pp.
463-464).
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Lincar
two-port

e Figure 8.8-1 A lincar  two-port

network driven by a source of
impedance Z,.

Available Power Gain

Considcr first a linear, noise-lree, two-port (d-terminal) network having an input
impedance Z; when the outpul port is open-circuited. Its oulput impedance,
fo.und by looking back into its output port, is Z, when being driven by a source
with source impedance Z,. The source open-circuit voltage is e(t) and the
network’s open-circuit output voltage is e,(f). The applicable network is illus-
trated in Figure 8.8-1.
The available power, denoted dN,,, of the source is
el
dN,, = iR (8.8-1)
where R, is the real part of Z,. This power is independent of Z;. The available
power, denoted dN,,,, in the output due to the source is

—_
ANy = 20

4R,

where R, is the reul.purt of Z,. This power does depend on Z, through its influ-
ence on the gencration of e (1) but does not depend on the load impedance Z,.

We: define the available power gain denoted G, of the two-port network as the
ratio of the available powers

3

(8.8-2)

ANy R, eX(0)

G" = =
dN,, ~ R,eX)) 88-3)

_ When a cuscade of M noise-free networks is involved where M = 1,2,...,it
18 cusy lo see that the overall availuble power gain G, is the product of available
power gains G,,, m=1,2,..., M, if G, is the gain of stage m when all preceding
stages are connecled and treated as its source (see Problem 8-65), Thus,

G, = []G, (8.8-4)

Equivalent Networks, Effective Input Noise Temperature

Co.nsider next the case of a lincur two-port network with internally generated
noise. The network is assumed to be driven from a source with effective noise
temperature T, as shown in Figure 8.8-2a. If G, is the network’s available power
gain, the available output noise power due to the source alone is

dw

N, = G,dN,, = G, kT, 22

» (8.8-5)

from (8.8-3) and (8.7-7).
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Noisy

Souree temperature 77 == network e (INy + AN, 2 d N,

(a)

Sowee tempetature Ty 0 1, ——p— Nonettee 1 AN VAN, -l

netwuork
e S
(h
kT, Iy Noise-free Ny + AN = dN,, *
network
. dw
k7, T
{¢)

Figure 8.8-2 A network with internally gencrated noise driven from a noise source (a), and equivalent
noise-free networks (b) and (¢). [ Reproduced from Pechles (1976) with permission of publishees Addison-
Wesley, Advanced Book Program.}

Total available oulput noise power dN,, is larger than dN,,, because ol inter-
nally generated noise. Let AN,, represent the excess available noise power at the
outpul. We shall imagine that AN,, is generated by the source by defining effec-
tive input noise temperature T, as the temperature increase that the source would
require 1o account for all output available noise power, 1t therefore follows that

AN, = G kT, 9 (8.8-6)

With this definition, the noisy network is replaced by a noise-free network driven
by a source of temperature T; -+ T, as shown in Figurc 8.8-2),

It is somewhat helpful to model the available source noise power by use of
(wo inputs, as shown in Figure 8.8-2¢, The second input represents the internally
generated noisc due to the network, The representation is convenient in visual-
izing noisc cllects when networks are cascaded as illustrated in Figure 8.8-3, By
equating expressions for output available noisc powers in the cascade and equiv-
alent network, the effective input noise temperature T, of the cuscade is deter-

mined to be

vIv ',‘
'Y G, GG, GGy Gy

where 7, and G,,,m = 1,2, ..., M, arc the cffective input noise temperature and
available power gain, respectively, for the mth stage when all m =1 previous
stages are connected and form its source,

An especially useful application of (8.8-7) is to the cascade of stages in an
amplifier. We develop an example.
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[N Gy U Gu
Source XX e X (N 4
N Network Network Netwuork
| n M + BN,
g . od : . . dw
K1 4 AT, 42 KTwn 58 KT 52
()
! G=G,Gy~Gu

Caseade ANyow ¥ BN

(h)

in cascade and (h) the cquivalent network. [Rvprmlm'('(l SJrom Peehles

Figure 8B.R-3 (i) M networks
Wesley, Advanced Book Program.)

(1976 with perniission of publishers Addison-

Example 8.8-1 The stages in a three-stage amplificr have cllective input noisc
temperatures Toy = 1350 K, T,y = 1700 K and T,y = 2600 K. The respeclive

available power gains arc G, =16 G, = 10, and G, = 6. We find the cllee-
tive input noisc temperaturc 0

{ the overall amplificr by usc of (8.8-7):
1700 2600
—_— =13 6.25 + 16.2
1350 + T +\6(|0) 1350 + 106.25 + 16.25

T,

1472.5 K
We sce that, even (hough T,y and Ty are larger than Ty, the contributions to
T, by the second and third stages are much smaller than that of the first stage’

because of the gain of previous stages. In general, it is clear from (8.8-7) that
an amplificr should have its lowest noise, highest gain stage first, followed by

its next best stage, cte, for best noisc performance.

Spot Noise Figures
[EfTective input noise temperature T, of a network is a measure of its noisc per-
formance. Better performance corresponds Lo lower values of Te. Another
measure of performance is incremental ot spot noise figure denoted by F and
defincd as the total incremental available output noisc power dN,, divided by the
incremental available output noisc power due to the source alone:

dN AN... + AN AN
P = 20 = 208 an = ‘ 1) 8.8-8
F=iNn" dNu * AN (8-8)

An alternative form derives from the substitution of (8.8-5) and (8.8-0):

F=1+ T (8.8-9)

7,

A A

ey g bl

LINEAR SYSTEMS WITHI RANDOM INPUTS 235

In.:m ideal network, T, =0 so F=1. For any real nctwork, F is larger than
unity.

In practice, a given nctwork might be driven by a varicty of sources. For
cxz\m.plc, an amplifier might be driven by an antenna, mixer, attenuator, other
amplificr, ctc. Itsspot noisefigure is therefore afunction of the effective nois‘c tem-
perature of the source. However, by defining a standard source as having a stan-
dard noise temperature T, = 290 K and standard spot noise figure Fo, given by

T,
Fo=1 +-,7;’- (8.8-10)
o
a nciwork can be specified independent of its application,
_ When a network is used with the source for which it is intended to operate F
I‘élg ;))c calicd the operating spot noise figure and given the symbol F,,. From

~

Fop=1+ (8.8-11)

-3

Operating and standard spot noisc figures can also be developed for a
cascadc of networks (scc Problems 8-66 and 8-68).

Ey.(amplc 8.8-2 An engineer purchascs an amplifier that has a narrow band-
wxfillx of 1 kHz and standard spot noise figure of 3.8 at its frequency of oper-
ation. The amplificr's available outpul noisc power is 0.1 mW when its inpul
is connected to a radio receiving antenha having an antenna temperature of
SQ K. We find the amplifier's input effective noise (emperature T., its oper-
ating spol noise figure F,p, and its available power gain G,. ’

T, derives from (8.8-10):

T, =To(Fo—1)= 290(3.8-1) = 812 K
We can now use (8.8-11) to obtain F,:
812
Fo=1+—=1L
» %0 1115
From (8.8-5) and (8.8-6) we add to get total available output noise power:

dN"’ = leos + ANnn = ﬂz"—-*:—;;)—cf—dg
n

SO

2n dN,, < 2n(0.1)107°

Gn = = ~
KT, + T,) doo  1.38(107 Y812 + 80)2n(10%) ™ 8.12(10™%)

4

{
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8.9 MODELING OF PRACTICAL NOISY NETWORKS

In a realistic network, the frequency band of interest is not incremental. There-
fore such quantities as available power gain, noise temperature, and noise figure
are not necessarily constant but become frequency dependent, in general. In this
section we extend the earlier concepts bused on an incremental frequency band to

include practical networks, by defining average noise temperatures and average
noise figures.

Average Noise Figures

We deline average operating noise figure F,P as the toral output available noise

power N,, from a network divided by the total output available noise power N,
due to the source ulone. Thus, :

802

- Nlo
Fop= N (8.9-1)
N, is found by integration of (8.8-5):
Ny = = 1.6, d 8.9-2
uul_2n° s U, dw (*')
We may similarly use (8.8-8) with (8.8-5) to determine N,,:
0 o k «©
N, = f dN,, = f Fo, dN,,, = — f Foo TG, dw (8.9-3)
0 Jo 21 Jo
Thus, from (8.9-1)
o Foo T, G, d
A8 Fy TG, dw (8.9-4)

*7 (¢ TG, dw

In many cases the source’s temperature is approximately constant. Operaling
average noise figure then becomes

P [3° Fyp G, dw

T, constant
*= 56, do s con

An antenna is an example of a source having an approximately constant noise
temperature (so long as the surroundings viewed by the antenna are fixed).
Another example is a standard source for which T, = Ty = 290 K is constant. We
define average standard noise figure Fy as that for which the source is $andard. In

this case
P [3’ Fo G, dw

7 &G, dw

as can be shown by repeating the steps leading 10 (8.9-4).

(8.9-6)

(8.9-5) -

. -
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Averape Noise Temperatures

From the definition of cliective inputnoise temperature 1, it foll(?\vs that the
incremental available output noise power from a network with available power
gain G, that is driven by a source of temperature T, is

l
dN,, = G KT, + T) &= (89-7)
2n
Total available power is therefore .
N, = Jw(lN,, = L3 J GT, + T} dw (8.9-8)
uo o zn o

Next, we define average effective source temperature T, and average effective
input noise temperature ’T, as constant temperatures that produce the same total
available power as given by (8.9-8). Hence

L «©
Nom X (T T) J G, de (8.9-9)
av 27 o
By equating (8.9-9) and (8.9-8) on a term-by-term basis, we pel
F o [;,° T.G, dw (8.9-10)
*je G, dw
and
7o {8 TG do (89-11)

& G, dw

17 (8.8-10) and (8.8-11) are substituted into (8.9-6) and (8.9-4), respectively, we
obtain the interrelationships

T
SR 8.9-12
£y 1‘*'72) ( )
Fo=1+ 7 (8.9-13)

By cquating T, from these last two cxpressions, we obtain alternative interrela-
tionships

Fy=1+ L (Fop=1) (8.9-14)
IO
Fop=1"1 —Ti’ (Fo=1) (89-15)
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Average cffective noise temperalure is a very useful concept for modcling
network noise in a simple way. To demonstrate this fact, note that {8.9-9) can be
written as

N, = 2 (T 4 TG o) & Gilw) do (89-16)
2n G (wo)

where @, is the centerband angular frequency of the function G (w). Since G, (w)
is the available power - gain (or power transfer function) of the nctwork, we
identify
W, = 50 G (o) dw (89-17)
G-((UO)
as the noise bandwidth of the network, by analogy with (8.5-6). Figquation (R.9-16)
becomes

i W,
N,, = Gwok(T, + T. 3{ (8.9-18)

which says that actual available output noisc power is that duc to a source with
canstant temperaturc T, o T, driving an cquivalent noise-frec network with an
ideal rectangular transfer function of bandwidth Wy(rad/s) and midband available
power gain G (o). This result represcnts a very simple network modecl.

Modeling of Attenuators

Consider a source of average cffective temperature T, driving an impedance-
matched lossy attenuator with power loss L (a number not less than onc) at all
frequencics. The atlenuator has a physical temperature T,. It can be shown
(Pecbles, 1976, p- 463; Mumford and Scheibe, 1968, p. 23) that the average effec-
tive input noise temperature of the attenuator is

T,=TL -1 (8.9-19)
From (8.9-12) and (8.9-13) the applicable average noise figures arc

Fo=1+ T’— (L-1 (8.9-20)
To
Fop=1 +7TI.’7‘(L— 1 (8.9-21)

Note that if T, = To of il T, = T,, the average noise figure of the attenuator is
just cqual to its loss.

Model of Example System

One of the most important applications of the theory of this and the preceding
1wo sections is in modeling receiving systems. As illustrated in Figure 8.9-1a, con-
sider a receiving antenna that drives a receiver amplificr through various broad-
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Antenna Physical Available power
temperature 7, temperature gain = Galia)
n

Naise-ree
receiver

Noise-free
loss L

KT (L - DWy kT‘E Wy
Ix In
(@)
Ciain = GUriwol
kT, W A Nolse-lree
—x rystem Naw

hy

Figure 89-1 A madel of a receiving system {a) and its equivalent (b). [Reproduced from Peebles (1976),
with permission of publishers Addison-Wesley, Advanced Book Program.}

band components having an overall loss L. These components (which may
include microwave transmission lines, isolators, or other devices) are all assumed
to have physical temperature T,. The antenna temperature is T, and the receiver
average effective input noise temperature is Tg. The recciver's noise bandwidth is
W, and it has a centerband available power gain Gglwo). We demonstrate that
the system is equivalent to that shown in Figure 8.9-1b.

‘The equivalent system has the same noise bandwidth as the actual system
and has a centerband available power gain Galwo)/L. Tt is driven by a simple
source with system noise temperature Toys- The available output noise power in
the actual system is the sum of the antenna's contribution plus those due to
cxcess noises in Lhe attenuator and receiver. By using earlicr models, this noise
power is

G plwa)W)
Ny = kT, + T{L - D+ T L) —LI((—Z(’,);)’ﬁ (8.9-22)
For the cquivalent system
- GlwaW
N = kT, ZR\el N .

a0 ays l,(2n) (8-9 2‘”

By cquating the above two cxpressions, we obtain
T=T+ T - D+ Te L (8.9-24)

From (8.9-24), the average effective input noise temperaturc of the system laken
al point A in Figure 89-lais

T,=TUL -1+ TxL {8.9-25)

et 0T

i e Btb 8o e

T N
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From (8.9-13) the average system operating noise figure is

T
Foot+lgp_pelr
, FE=D+EL

(8.9-26)

Exafnple 8.9-1 An antenna with temperature T, = 150 K is connected to a
receiver by means of a waveguide that is at a physical temperature of 280 K
and has a loss of 1.5 (1.76 dB).+ The receiver has a noise bandwidth of
Wy/2r = 10° Hz snd an average effective input noise temperature T} =

700 K. We dclcrmineplhc syslem’s noise temperature 7,,, its operating
average noise figure F,_, and its available output noise power whe
Galwo) = 10" (120 dB). ' P -
From (8.9-24)
Tope = 150 4 280(1.5 — 1) + 700(1.5) = 1340 K
From (8.9-26)

280 700
Fop=1 +E6(l.5—-l)+l—56(1.5)z8.93 or 9.51 dB
Finally, we use (8.9-23) to find N,
N ~23 12 106
. 0 = 1.38(1072%)1340.0(10 )T§ = 12.3 mW

PROBLEMS

8-1 A signal x(t) = u(r) exp (—at) is applied to a network having an impulsc
response h(t)'= Wu(t) exp (— W1). Here @ and W are real positive constants and
u(+) is the unit-step function, Find the system’s response by use of (8.1-10).

8-2 Work Problem 8-1 by using (8.1-11) to find the spectrum Y(w) of the re-
sponse. ’

8-3 A rectangular pulse of amplitude 4 and duration T, defined by
A o
x(1) = 0<t <1
0 clsewhere

is applied to the system of Problem 8-1.
(@) Find the time response y(1).
(b) Sketch your response for W = n/T and W = 2a/T.

t A number L expressed in decibels (dB), denoted Ly, is related to L as a numeric (power ratio)
by Lyy = 101og,o(L).
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8-4 A filter is called ganssian 6 it has o transfer function

1
H(w) = —=—
! V21 Wi

where W, is the root-mean-squared (rms) bandwidth.

(a) Sketch H(w). .

(b) How is W,, related to the 3-dB bandwidth?

8-5 Two systems have transfer functions H,(w) and Hj(w).

(a) Show that the transfer function IH(w) of the cascade of the twa, which
means that the output of the first feeds the input of the second system, is H(w) =
H () H y{w).

(b) For a cascade of N systems with transfer functions H (w), n = 1,2,..., N,
show that .

e @2 e

N
H(w) = ] H,(w)
[}

*8.6 Work Problem 8-1if the output of the given network is applied to u sccond
identical network and the response is tuken from the second network.

8-7 The impulse response of a system is

O0<t

et
h(t) =
) {0 t<0
By use of (8.1-8) or (8.1-10), find the responsc of the network to the pulse
(1) = A 0<t<T
W= clsewhere

where A4 and T are real positive constants.
8-8 Work Problem 8-7 if the network’s impulse response is

iy = Pt 0<t
=0 1 <0

8-9 Given the network shown in Figure 1°8-9.
(a) Find the impulse response h(t).
(b) By Fourier transforming (1), find H(w).
{¢) Sketeh M) and H{e).

R . I :
tnput x(¢) ‘I ' hd %I.’-(')d.t-—r-h—Oulpul »uo)
| |
|
Network |
| oy

Figure P8-9 [ Reproduced from Pecbles (1976), with permission of publishers Addison-tVesley, Advanced
Bovk Program.)

)
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8-10 Find the transfer function of the nctwork of Figurc P8-9 by usc of (8.1-13).
811 By using (8.1-13), find the transfer function of the network iltustrated in
Figure P&-11. Assume that no loading is present duc to any outpul circuitry.

n
_I_
Input C Quipwt
O e e @ 0= () Figure PR-11

8-12 Work Problem 8-11 for the network of FFigure P8-12.

¢,
tnput R T ¢, Outpul

! Figure P8-12

o— —o

*8.13 (1) Work Problem 8-il for the nctwork of Figure P8-13.
(h) Under what conditions will the network behave approximalcly as a
lowpass filter?
(¢) Find a relationship between Ry, Cy, R,, and C, such that the network
behaves at all frequencics as a pure resistive attenuator,

¢;  Output

taput K Figure P8-13 [ Reproduced Jrom Peehles
(1976), with permission of publishers Addison-
> —0 Wesloy, Advanced Book Program.)

o—

8-14 Given the nctwork shown in Figurc P8-14. .
(@) If the output causes no loading on the network, find the transfer function

H(w). '

(h) ‘Define wg = 1/ /LC and Qo = Rjwo L. Plot | H(w)|? as a func.tlon' of

x = (= we)Qolwo for Qo large and w near wy. (Hint: Use the approximation

w =~ w, for the most significant values of w when @, is large.)

R
W —0
Tt [ ety 1 Outpint
o-——--——--—-—»——I-—-—- _— Figure PR-14

e A

i

«
2
b
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*8.15 (a) Find the transfer function H{w) for the network shown in Figure PR-15.

(h)y Define my = l/\/-IT and Qg = (R + R,)C and assume @y » 1, s0
that the values of w for which H(w) is significant correspond 10 @ & w,. Use
these facts to obtain an approximation for I(w).

(¢) If an impulsc is applicd to the network, find an cxpression for the approx-

imate energy absorbed by R, . (Hint: Usc Parseval's theorem).

L R C
o FTETWN—
tnput vir} Ry Ouipat v (1)
O—— _— Flpure PR-18

8-16- A class -of filters called Burterworth filters has a power transfer function
defined by
1
U S —
Hi)|® =17 GE
where =1, 2, ..., is a number related to the number of circuit elements and W
is the 3-dB bandwidth in radians per sccond. Sketch | F{m) | for n=1,2,4,and 8
and note the behavior. As n-» oo, what doces | H(m) |} become?
8-17 Determine which of the following impulsc responses do not correspond to a
system that is stable, or realizable, or both, and state why.
(@) W) = u(t + 3)
h hit) = u(t)e ="
{¢) Me) = ¢ sin (wg!) (g a real constant
{(d) b1y = uie "M sin (g 1) g o real constant,
§-18 Usc (8.1-10) and prove (8.1-15).
8-19 Show that (8.1-16) must be truc il a lincar time-invariant system is to be
stable.
8-20 A system is defined by

no = j x(¢) d&

for all x(t) for which the integral exists. Show that the system is linear, time-
invariant, and causal.
8-21 A random process

X(1) = A sin (wo 1 + ©)
where A and w, are real positive constants and © is a random variable uniformly
distributed on the interval (==, n), is applicd to (he network of Problem 8-1.
Find an expression for the network’s response process using (8.2-3).
8-22 Work Problem 8-21 for a nctwork with impulse response

Ity = u(tite ™!

ST

-
4
ki
—' g )
3

‘\
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8-23 A random process X (1) is applied to a linear time-invariant system. A re-
sponse Y(t) = X(1) — X(t — 1) occurs where 7 is a real constant.

(a) Sketch a block diagram of the system.

(b) Find the system’s transfer function.
8-24 Work Problem 8-23 if the response is

Y{)=X(t - 1) + J'IX(I —§) d§

L}
where 1, and ¢, are real constants.
8-25 A random process X(t) has an autocorrelation function

Ryy(t) = A? + Be™

where 4 m}d B are positive constants. Find the mean value of the response of a
system having an impulse response '

e M 0<t
h(t) =
) {0 t<0

where W is a real positive constant, for which X(¢) is its input.
8-26 Work Problem 8-25 for the system for which

-Wi
H) = {le 0<t
0 t<0

8-27 Work Problem 8-25 for the system for which

=W
M) = {c sin {wet) 0 <t
0 t<0

where W and w, are real positive constants.
8-28 \r\{hitc noisc with power density 5 W/Hz is applied to the system of Problem
8-25. Find the mean-squared value of the response using (8.2-7).
8-29 Work Problem 8-28 for the system of Problem 8-26.
8-30 Work Problem 8-28 for the system of Problem 8-27.
8-31 Let jointly widc-s<?nsc stationary processes X ,(t) and X,(r) cause responses
Y, (1) and Y,(t), respectively, from a linear time-invariant system with impulsc
response h(r): If the sum X(6) = X (1) + X (1) is applicd, the response is Y(1). Find
expressions, in terms of I{r) and characteristics of X ,{t) and X (1), for

(@) E[Y]  (B) Ryylt, t +7)
8-32 Show that the cross-correlation function for the output com

k H (o] s Y,

and Y,(t) in Problem 8-31 is given by P ponents 10

Ryt + 1) = J f Ry x,{t + 1 — 0)h(t)h(v) du dv
-w -®

= RY:Y:(T)
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8-33 Two separate systems have impulse responses /i,() and hy(t). A process
X, (1) is applied to the first system and its response is Y(1). Similarly, a process
X ,(t) invokes a response Y,(¢) from the second system. Find the cross-correlition
function of Y,(t) and Y,(1) in terms of h,(1), hy(t), and the cross-correlation func-
tion of X (1) and X ,(r). Assume X, () and X (1) are jointly wide-sense stationary.
8-34 Two systems are cascaded. A random process X(1) is applicd to the input of
the first system that has impulse response hy(0); its response W(1) is the input to
the second system having impulse response hy(t). The sccond system'’s output is
Y(1). Find the cross-correlation function of W(1) and Y(1) in terms of h(t) and
In,(1), and the autocorrelation function of X (1) if X(1) is wide-sensc stationary.
8-35 Let the two systems of Problem 8-34 be identical, each with the impulse
responsc given in Problem 8-26. If E[X(1)] = 2 and W = 3 rad/s, find E[Y(1)].
8-36 The random process X(1) of Problem 8-21 (the signal) is added to white
noise with power density . 1o/2, where .47 is a positive constant, and the sum is
applied (o the network of Example 8.1-1.

(@) Find the power spectrums of the output signal and output noise.

(b) Find the ratio of output signal average power (0 outpul noise average
poWer.

(¢) What value of W = R/L will maximize the ratio of part (b)?

8-37 A rundom process X (1) having autocorrelation function
Rxx(f) = 1’8-"'1

where P and « are real positive constants, is applied to the input of a system with

impulse response

we " 0<t

Wy=4 °

0 t<0
where W is a real positive constant. Find the autocorrelation function of the
network’s response Y(1).
8-38 Find the cross-corrclation function Ry,(t) for Problem 8-37.
8-39 For the processes and system of Problem 8-31, show that the power spec-
trum of Y(t)is

Syp(w) = | H(@) P[8x,x,(0) + Sxx,{0) + Sx,xn(w) + 8y, ()]

8-40 If X,(1) and X,(1) arc statistically independent random  processes in
Problem 8-31, use the results of Problem 8-39 to show that the output power
spectrum becomes

Syp(w) = ]”(w)lz[sx.,\'.(w) + Sx;,n(“’) + 4”/\-’1)?2 3(w)]

8-41 Rework Example 8.4-1 when the network is replaced by two identical net-
works in cascade, that is, when H{w) = [I + (jwL/R)]™2

8-42 Show that (8.4-7) and (8.4-8) are true.

-

)
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8-43 A nctwork with transfer function H{w) = jw is a differentiator; its input is
the widc-sense stationary random process X (1) and its outputis X() = dXxny/de.

(a) By using {8.4-7), show that

1
ARy x{7)
Ryxld) = =

(h) By using (8.4-1), show that

R (1)

Riglty = — 3

dt

8-44 Given the random process
1 i+7T
= — X&) d
m)er,‘““

where X{1) is o wide-scnse stalionary process. Use (8.2-1) to show that the power

spectrum of Y(1) is

. 72 |
SY)~((D) = S.\‘x((l))[,s_‘%(%_l]

8-45 Prove (8.5-6).
8-46 A random process X{1) has a power spectruin Sxx(w) that i§ nonzero only
for — Wy < w < Wy, where Wy is a real positive constant. X(1) is applied to a

system with transfer function

H{w) = 1 + jlo/Wi) —-Wy <w< Wy

Find the average power Pyy in the network's response Y(

bandwidth of 8xx(wh the con
Discuss the effect of letting Wy— 0.

8-47 Find the noisc bandwidth of the system having the powcer transfer function

!
|HO)P = T

where W is a real positive constant.

8-48 Work Problem 8-47 for the funclion

i
V) = Wy

1) in terms of the rms
stant W,, and the average power Pyx In X(n.
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8-49 Work Problem 8-47 for the function

1
1l ——————
P = 5wy T

8-50 Whitc noisc with power density Ao/2 is applicd to a lowpass nctwork for
which | 11(0)] = 2; ithasa noise bandwidth of 2 MHz. If the avcrage output noisc
poweris 0.1Wina 1-Q resistor, whatis 7?

8-51 Whilc noisc with power density A7o/2 is applied to an ideal lowpass filter

with bandwidth W.

(¢) Find and sketch the autocorrelation function of the responsc.

(h) 1f samples of the output noise taken at times t, = na/W, n =0, +1,
+2, ..., are considered as values of random variables, what can you say about

thesc random variables?

8-52 Work Problem 8-51 for an ideal bandpass filter centered on 2 frequency
we/2m that has a bandwidth W. Assume sample times are now {, = n2n/W,n =0,

+1, £2,....
*8.83 A band-limitcd random process N(f) has the power density spectrum

—WR2<sw-w, < W2
~WR<w+w,<W/2

P cos [n(w — wo)/ W]
Snalw) = { P cos [n(w + wo)/W]

0 elsewhere

where P, W, and wo > W are real positive constants.

(a) Find the power in N(1).

(b) Find the power spectrum Syx(@) of X(1) when N(1) is represented by
(8.6-2).

(¢} Find the cross-correlation function Ryy(t).

(d) Are X(1) and Y(0) orthogonal processes?

*g8.564 A band-limited random process is given by (8.6-2) and has the power

density spectrum shown in Figure P8-54.

{a) Sketch Syx(w).
(b) Sketch Syylw), ifa sketch is possible.

Sanlw)
r we > W
“Wo 0 we - %’ Wo we * %’ w

Figure P8-54
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*8-55 Work Problem 8-54 for the power spectrum of Figure P8-55.

Swnlw)
W, w—w_li_}gl
wy > W, ,"-%ﬂ
—————— " - ————— —
I 1
Wy 0 Wo w
Wy oo

Figure 1'8-55

*8-56 Use (8.6-2) and derive (8.6-23).

8-57 A sonar echo system on a sibmarine transmits a random noise n(t) to deter-
mine the distance to another *target” submarine, Distance R is given by vr,/2
where v is the speed of the sound waves in water and 75 is the time it takes the
reflected version of n(t) to return. Its block diagram is shown in Figure P8-57.
Assume that n(t) is a sample function of an ergodic random process N(t) and T is
very large.

(a) Find V in terms of a correlation function of N(2),

{b) What value of the delay 7, will cause ¥ to be maximum?

(c) State in words how the submarine can determine the distance to the
target.

Round- (np defuy = ry

] )
Transmitter CQ
i \
Y C<]|‘ ‘ \
Delay rp Ilydrophoncs
\
Product Distance

!

. i
v I RARLL

Figure P8-57
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8-58 T'wo resistors with resistances Ry and R, are connected in paradlel and have
physical temperatures Ty and Ty, respectively,

(@) Find the effective noise temperature T, of an equivalent resistor with
resistance equal to the parallel combination of Ry and R,.

by UT, =Ty =T, whatis T,?
8-59 Work Problem 8-58 for three resistances R,, R,, und R; in parallel when
they have physical temperatures T, 73, and Ty, respectively.
8-60 Work Example 8.7-2 if a sccond capacitor is placed across the resistance
R,. Is it possible to choose C, so that 7, is independent of frequency.?

*8-61 Find the effective noise temperature of the network of Figure P8-61 il R,

and R, are at physical temperatures 7y and 7, respectively,

o——o  Figure P8-61

8-62 A two-port network is illustrated in Figurc P8-62. Find its available power
gain,
Temperature = Ty

R, Ry

Temperature Ty K,

Noisy fwo-part
e e Figure 1'8-62

8-63 Il the two-port network of Problem 8-62 has a physical temperature T, and

is driven by a source of resistance R, and effective noise temperature T;, what is

the effective input noise temperature of the network?

8-64 If the output of the network of Problem 8-62 is connected to the input of a

sccond indentical network, what is the available power gain of the cascade if
=50, R, =30und R, =7Q7

8 65 Show that (8.8-4) is valid.

8-66 In u cascade of M network stages for which the mth s(ay: has available

power gain G,, and operating spot noise figure F,,,, when driven by all previous
stages as its source, show that the overall cascade’s operating spot noise figure is

poep T = 1) T (Fopu =)

° i T T.G, T.6,Gy " G-y

where Ty, -, is the temperature of all stages prior to stage m treated as a source.
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= 631 (8.0 dB). An engi-

8-67 An amplifier has a standard spot noise figure Fo
a that is known to have

neer uses the amplifier to amplify the output of an anlenn
an antenna temperature of T, = 180 K.
{a) What is the efTective input noise temperature of the amplifier?
() Whatis the operating spot noise figurc?
8-68 In o cascade of M stages for which Fgmsm =1, 2, s
spot noisc figure of stage m which has available power gain G,
standard spat noisc figure of the cascade of networks is

M, is the standard
show that the

Fop—1 , Fay—1 P
["0=Fm+ ()2(‘ +—?—!—(—‘+.‘_(_‘_E__o_!u__(“____
' Gy G, a1

8-69 An amplificr has three stages for which 7, =200 K (lirst stage), T =
450 K, and T,y = 1000 K (last stage). If the availuble power gain of the sccond
stage is 5, what gain must the first stage have to guarantcc an cfective input
noise temperature of 250 K?

8-70 An amplificr has an operading spot noise figu
source of clicctive noise temperature 225 K.

(a) What is the standard spot noisc figure of the amplifier?

() fa matched attenuator with a loss of 3.2 dB is placed between the source
and amplifier’s input, what is the operating spot noise figure of (he allenuator-
amplificr cascade if the atlenuator’s physical temperature is 290 K?

(¢) Whatis the standard spot noise figure of the cascade in (h)7
s a microwave receiver having an operaling spot

fTeclive noise temperature
figure of 6 dB.

re of 10 dB when driven by a ~

8-71 Onc manufacturer scll
noise figure of 10 dB when driven by a source with ¢
130 K. Another sclls a recciver with a standard spot noise
(¢) Find the ¢lfeclive inpul noise temperatures of the two reeeivers.
(h) All other parametcrs, such as gain, cosl, clc, being the same, which
pecciver would be the hest 1o purchase?
8-72 What is the maximum average clicctive inpu
amplifier can have if its average standard noise figure is to not exeeed 177
8-73 An amplificr has an average standard noise fipure of 2.0 dB and an average
operating noise figure of 6.5 4B when used with o source of average elfeetive
source temperature T.. What is T
8-74 An antenna with average noisc temperaturc 60 K connccts to @ receiver
through various microwave clements that can be modcled as an impedance-
matched attenuator with an overall loss of 2.4 dB and a physical temperature of
275 K. The overall system noise lemperature is T, = 820 K.
(@) Whal is the average effective input noise tcmperature of the receiver?
(h) What is the average operaling noise figure of the attenualor-receiver
cascade?
(¢} What is the available outpu
able power gain of 110 dB and a noisc b
§-75 1f the antenna-atlenuator cascade of P
source, what is its average eflective noisc temperature?

t noisc lemperaturce that an

{ noise power of the receiver if it has an avail-
andwidth of 10 MHz?
roblem 8-74 is considered as @ noise

PRSP
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8-76 The los_s L in Figure 8.9-la is replaced by two cascaded matched attenu-
ators, onc with loss L, at temperature 7 attached to the antenna output, and
one wu‘h loss L, at temperature Ty that connecls to the recciver, Derive '\’ new
cxpression for T,,, analogous to (8.9-24). ‘

ADDITIONAL l’hOBLEMS

8-77 A network is driven by a resistive source as shown in Figure P8-77. Find:
() Zi\ (b) Z,, and {¢) G,. (d) Is the network a malched attenuator?

Lonad

S0 £
—0

Ro=1000 7, 7

Suurce

Figure l’s‘-77

8-78 A network has the transfer function
2eli?0
= @0+ jop
{a) Determine and sketeh its impulsc responsc. (Ifint: Use Appendix 1)

(b) Is the network physically realizable?
{¢) Determine if the network is stable by evaluating / in (R.1-106).

H(w)

*8.79 Show that the im
79 | : pulse responsc of a cascade of N identical s,
with transfer function ' networks, cach

H,(w) = /& + jm) .
where « > 0 is a constant, is given by

N=1

t
ho(t) = v = -
a) = )[(N = l)l] exp (—af)
8-80 A signal
x(t) = u(t) exp (—at)
is applied to a network having an impulse response
I(t) = w()W?r exp (= W1)

Here o > 0 and W > 0 are real constants B !
o e ) . By use of (8.2-2) find the network's
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8-81 Work Problem 8-80 assuming
W) = W)W 32 exp (~ Wi)

8-82 A stationary rundom process X(1) is applied to the input of a system for
which

2(t) = 31:(()!2 exp (—8¢)

Il E[X(1)] = 2 what is the mean valuc of the system’s response Y(t)? . E

8-83 Work Problem 8-28 for the system of Problem 8-82,

8-84 White noise with power density .¥"5/2 js applied to a network with impulse
response

h(t) = u()We exp (— W)

where W > 0 is a constant, Find the cross-correlations of the input and output.
8-85 Work Problem 8-84 for a nctwork with impulse response.

h(t) = u(t)Wt sin (wqt) exp (— W)

where wyg is @ constant.
8-86 A random process X(1) is applied to & network with impulse response

h(t) = u(t)t exp (= bt)

where b > 0 is a constant. The cross-correlation of X(t) with the output Y() is
known to have the same form:

Ryy(1) = u(t)r exp (= b1)
(a) Find the autocorrelation of Y(1).
(b) Whal is the average power in Y(1)?
8-87 Work Problem 8-86 except assume
I(r) = wu(t)e® exp (—bi)
and
Ryy(7) = u(x)r? exp (—b1)
8-88 Two identicul networks are cascaded, Each has impulse response
M) = u(t)3t exp (—41)

A wide-sense stationary process X(1) is applied to the cascade's input,
(a) Find an expression for the response Y(t) of the cascade.
(b) 1M E[X(1)] = X = 6, find E[Y(1)].

8-89 A stationary random process X(¢), having an autocorrelation lunction

Ryx(r) = 2 exp (—4]7]) ﬁ

is applied to the network of Figure P8-89. Find: (a) 8yx(w), (b) | H(w)]?, and
(€} Syy(w).
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( =dF
(.
I\
o S {
Y
VWA
X(1) KwlSH G =2F -
o ¢ o Figure P8-89

8-90 A wide-sense stationary process X(r), with mean value 5 and power spec-
{rum

Syx(w) = 50n8(cw) + 3/[1 + (w/2)*]
is applied to a network with impulse response
h(t) =4 cxp (—4}t])
{¢) Find H{w) for the network,
Determine: (b) the mean ¥, and (c) the power spectrum of the response Y(1).
8-91 White noise, for which Ryy(r) = 1072(1), is applicd to a network with
impulse response

h(e) = u(t)3t exp (—41)

(@) Use (8.2-9) to obtain the network’s output noise power (in a Il-ohm
resistor),

(b) Obtain an expression for the output power spectrum.
8-92 White noisc with power density .#°5/2 = 6(107%) W/Hz is applied to an
ideal filter (gain = 1) with bandwidth W (rad/s). Find W so that the output's
averape noise power is 15 watts.
8-93 An ideal filter with a midband power gain of 8 and bandwidth of 4 rad/s
has noise X (1) at its input with power spectrum

$xx(w) = (50//8n) exp (= w¥/8)

What is the noise power at the network’s output?

8-94 White noise with power density Ao/2, 479 > 0 a constant, is applied (o a
lowpass ncetwork for which H(0) = 2 and its noise bandwidth is 2 MHz I
average output noisc power is 0.1 W in a l-ohm resistor, what is ,1”5?

8-95 A system's power transfer function is

[H(w)]? = 16/[256 + w*]

|
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(@) What is its noise bandwidth? .
(b) 1f white noise with power density 6(107%) W/Hz is applicd to the input,
find the noise power in the system's output.
*8.96 Assume a band-limited random process N{t) has a power spectrum

Sunlew) =
Blulw — we + W) — ww — we — Wyl exp [—a(m — wg -+ W)

4+ Bl —w — wy + W) — u(—w = wy — W)} exp [—al(—w — oy -+ W]

where B, mg, Wy, and ¥, arc positive constants, and a is a constant.

Assume 2wq > 1) + Wy and find analytical cxpressions for (a) the power
speetrum Sy x(w) and (b) the cross-power spectrum S¢ylew) for the processes X{1)
and Y(r)invelved in the representation of {8.6-2) for N(1).

(¢) Sketeh Sgylm)and Syl far W = Wy 2 and a = /W,

(d) Repeat part (¢) exeept with a = ~ /W,

.97 Find the functions Ryx(r) and R ,(1) applicable in Problem 8-96.
8-98 Determine the clfective noise temperature of the network of Figure P8-98 il
resistors Ry and Ry are at dilferent physical temperatures T, and Ty, respectively.

—0

R,
M R,
Ty .\Il

¢
T o [Figure P8-98

8-99 Two resistors in scrics have different physical temperaturcs as in Example
8.7-1. Let R, and R, be independent random variables uniformly distributed on
(1000, 1500) and (2200, 2700), respectively. Their average resistances arc then
R, = 1250 Qand R, = 24504Q.

(¢} What is the cllcctive noise temperature 0
T, =250 K and T, = 330 K and average resistors are used?

(b) What is the mean cffective noise temperature of the
values of 7, and 73?7
8-100 Anamplificr hasthre
and T:,,-: 600 K (output stage). Availablc power gair
overall input cflective noise temperature is 190 K.

(@) Whatis the available power gain of the sccond stage?

(h) Whatis the cascade's standard spot noisc figure? .

{(¢) What is the cascade’s operating spot noise figure when used with a source
of noisc temperature T, = 50 K? .
8-101 Three networks arc cascaded. Available power gains arc ,6‘ =8 (mp.ul
stage). G, = 6, and G, = 20 (outpul stage). Respective input cflective spot noisc
= 100 K, and T., = 280 K.

[ the Lwo resistors as a souree if

source for the same

¢ stages for which T, = 150K (first stage), T,y = 350 K,
1 of the first stage is 10 and

{ermperatures are T, = 40K, T,
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(a) What is the input effective spot noise temperature of the cascade?

(b) 1 the cascade is used with a source of noisc temperature T, = 30 K, find
the percentage of total available output noise power (in a band dw) due to cach
of the following: (1) source, and the cxcess noises of (2) network 1, (3) network 2,
and (4) network 3.

8-102 An antenna with cffective noisc temperature 7, = 90 K is connected to an
altenuator that is at a physical temperature of 270 K and has a loss of 1.9. What
is the effective spot noisc temperature of the anlenna-attenuator cascade if its
outpul is considered as a noise source?

8-103 An amplilicr, when used with a source of average noisc temperature 60 K,
has an average operating noise figure of 5.

{a) Whatis T,?

(h) If the amplifier is sold to the engincering public, what noise figure would
be quoled in a catalog (give a numerical answer)?

{¢) What average operating noise figure results when the amplifier is uscd
with an antenna of temperature 30 K?

8-104 An enginecr purchases an amplificr with average operating noise figurc of
1.8 when uscd with a 50-Q broadband source having average source temperature
of 80 K. When used with a different 50-Q source the average operating noise
figurc is 1.25. What is the average nois¢ (emperature of the source?

8-105 An amplificr with a noise bandwidth of at least 1.8 MHz is needed by an
engincer. Two units from which he can choose are: unit 1—average standard
noisc figure = 3.98, noisc bandwidth = 2.0 MHz, and available power
gain = 10%; unit 2—average standard noisc figurec = 2.82, noisc bandwidth =
2.9 MHz, and available power gain = 10°.

Find: (a) T, for unit 1, (b) T, for unit 2, (¢) excess noise power of unit 1, and
() excess noise power of unit 2,

(e) If the source’s noisc lemperature T, is very small, which unit is the best lo
purchase and why?

() 1f T, » T., which is best and why?

*8.106 A resistor is cooled to 75 K and serves as a noise source for a network
with available power gain

G, (w) = 10°4/(10% + w?)*

(@) Wrile an expression for the power spectrum of the network’s output noise
that is due to the source.

(b) Compute the available output noisc power that is duc to the source
alone.
8-107 A broadband antenna, for which T, = 120 K. connects through an attenu-
ator with loss 2.5 to a receiver with average input effective noise femperature
80 K, availablc power gain 10'2, and noisc bandwidth 20 MHz. The antenna
and attenuator both have a physical temperature of 200 K.

(a) What is the attenuator’s input cfective noisc temperature?

(b) What is the system’s noise temperature?

e e
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(¢) Find the average standard noise figure of the receiver by itself.

(d) What is the available noise power at the recciver's output (in system
operation)?

(¢) Determine the input eflective noise temperature of the attenuator-receiver
taken as a unit,

(/) What is the average operating noise figure of this system when the
antenna is the source?

8-108 An antenna with average noise temperature 120 K connects (o a receiver
through an impedance-matched attenuator having a loss of 1.5 and physical tem-
perature 75 K. For the overall system T;,, = 500 K.

(@) What is the average effective input noise temperature of the receiver?

(b) What is the average operating noise figure of the attenualor-receiver
cascade?

(c) What is the available output noise power of the receiver if its available
power gain is 120 dB and its noise bandwidth is 20 MHz (system is connected)?
8-109 A receiving system consists of an antenna with noise temperature §0 K
that feeds & maltched attenuator with physical temperature 220 K and loss 2.6.
The attenuator drives an amplifier with average effective noise temperature 170
K, noise bandwidth 4 MHz, and available power gain 108

. Find: {a) the overall system’s average noise temperature 'f;,,, (b) the available
noise power N,, at the system's output, (c) the total noise power available at the
attenuator’s output (within the noise bandwidth) and how much of the total (as a

percentage) is duc o the antenna alone, and (d) the average apcraling noise figure
Fop of the system.

CHAPTER

NINE
OPTIMUM LINEAR SYSTEMS

9.0 INTRODUCTION

The developments of the preceding chapter related entirely to the analysis of a
linear system. In this chapter we do an about-face and concentrate only on the
synthesis of a linear system, In particular, we choose the system in such a way
that it satislies certain rules that make it optimum.

In designing any optimum system we must consider three things: inpur speci-
fication, system constraints, and criterion of optimality.

Input specification means that at least some knowledge must be available
about the input to the syslem. For example, we might specify the input to consist
of the sum of a random signal and a noise. Alternatively, the input could be the
sum of a deterministic signal and a noisc. In addition, we may.be able to specily
signal and noise correlation functions, power spectrums, or probability densitics.
Thus, we may know a great deal about the inputs in some cases or little in others.
Regardless, however, there is some minimum knowledge required of the charac-
teristics of the input for any given problem.

System constraints define the form of the resulting system. For example, we
might allow the system to be linear, nonlinear, time-invariant, realizable, ete. In
our work we shall be exclusively concerned with linear time-invariant systems
but will not necessarily require that they be realizable. By relaxing the realizabil-
ity constraing, we shall be able o introduce the most important topics of interest
without undue mathematical complexity.

In principle, there is great latitude available in choosing the criterion of opti-
mality. In a0 practical sense, however, it should be a meaningful measure of
“goodness ™ for the problem at hand and should correspond to equations thal

257
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are mathematically tractable. We shall be concerncd with only two criteria. One
will involve the minimization of 4 suitably defined ciror quantity. The other will
relate to maximization of the ratio of a signal power (0 & noise power. This last
criterion lcads us to an optimum system often called a matched filter,

9.1 SYSTEMS THAU MAXIMIZE SIGNAL-TO-NOISE RATIO

An important class of sysiems involves the transmission of a4 deterministic signal
of known form in noise. A digital communication system is one cxamplet where,
during a time interval T, @ known signal may arrive at the receiver in the pres-
ence of additive noise. The presence of the signal corresponds (o transmission of
a digital * 1,” while absence of the signal occurs when a digital “0" is transmitted
(noisc is always present). It would scem reasonable that sonc system (or filker])
could be found that would enhance its output signal power at some instant in
time while reducing its output average noise power. Indced, such a filter that
maximizes this output signal-fo-noise ratio can be found and it is called a matched
Silter. Tt can be shown that decisions made as o whether the signal was present
or not during time interval T have the smallest probability of being in crror il
they are based on samples taken at the times of maximum signal-to-noise ratio.
Although our conuments here are dirceted toward a digital communication
system, we shall find as we progress that the matched filter concept is @ broad
one, applying to many situations.

In this section we shall consider the optimization of a lincar time-invariant
system when the input consists of the sum of a Fouricr-transformable delermin-
istic signal x(1) of known form and continuous noisc n(f). If we denote by x, (1) and
(1) the outpul signal and noise, the criterion of optimality we choosc is the max-
imization of the ratio of the output signal power at some tine 1, to the output
average noisc power. Thus, with (1) assumed to be a sample function of & wide-
sense stationary random process§ N, (1), we maximize

A EX (Al (
— | =TT 9.1-1
(N) EIN2(0] @-1-1)
where

§, = 1xf)1 9.1-2)

is the output signal power at time ¢, and
N, = E[N2(0) 9.1-3)

is the oulpul average noise Power.

example, many other sysiems such as radars, sonars, radio
automobile crash avoidance systems are other examples.
¢+ We oflen use the words system, filter, or network in this chapter to convey the same meaning.
is cquivalent to assuming the input noise is from a wide-sense stationary

§ This assumplion i
andom process sinee the sysiem is assumed to he lincar and Lime-invariant (sce Section 8.2).

t Although we discuss only this
allimeters. ionospheric sounders, nnd
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Matched Filter for Colored Noise

Define X{w) as the Fourier transform of x{1), and H{m) as the transfer function of
the system. The output signal at any time ¢ is

1 o«
x,(t) = 7 J X(w)H(w)e™" dw (9.1-4)

From (8.4-6), thc output average noise power can be written in the form

t (™

N, = E[N}0)] = o J Spal)| 1) | dw 9.1-5)
where Syn(w) is the power density spectrum of the random process, denoted N(1),
that represents the inpul noise n(t). By use of (9.1-4) at time ¢, and (9.1-5), we can
write (9.1-1) as

i (* 0 2
— Jowis
<§) 2= u_wX(w)H(m)c da)L
N T LT st -
I U_w‘ ) Hw)|* de

To find H{w) that maximizes (9.1-6), we shall apply the Schwarzt inequality.
If A(mf and B(w) arc two possibly complex functions of the real variable w, the

inequality states that .
@ 2 © «©
J‘ A(w)B(w) dw| < J | A(w)|? dw ‘[ { B(w)}? dw 9.1-7)

The equality holds only when B(w) is proportional to the complex conjugate of
A(m): that is, when

B(w) = CA*w) (9.1-8)

where C is any arbitrary real constant.
By making the substitutions

Alw) = / Syalw)H(w) (9.1-9)

X(w)e!

Blw) = ——F——=—=
() 2n/ Synlw)

(9.1-10)
in (9.1-7) we oblain

cw Sanlw)

(9.1-11)

{ ®© . 2 ® | . | o
“2—1; J.-.,X(w)H(w)e]‘“ dw\ 5'[ mSNN(‘U)IH(w)Iz dw '(_2_,!_)7 j | X () dw

t Named for the German mathematician Hermann Amandus Schwarz (1843-1921).

RO

L

-



*
\

TR T

260 PROUABILITY, RANDOM VARIABLES, ANI) RANDOM SIGNAL FRINCIPLES

With this last result, we write (9.1-6) as

SN[ 1 X))
() <5 [ S oo o

The muximum value of (§/N,) occurs when the equality holds in (9.1-12), which
implies that (9.1-8) is true. Denote the optimum filter transfer function by H ).
We find this function by solving (9.1-8) using (9.1-9) and (9.1-10); the result is

e X*(w)
2nC Syn{w)

From (9.1-13), we lind that the optimum lilter is proportional to the complex
conjugate of the input signal’s spectrum; we might say that the system is there-
fore matched to the specified signal since it depends so intimalely on it H,(w) is
ilso mvurscly proportional to the power spectrum of the input noise, In general,
this noise has been assumed nonwhite; that is, colored. Because of these facts, an
optimum filter given by (9.1-13} is called a matched filter for colored noise.

H(w) is also proportional to the inverse of the arbitrary constant C. In
other words, H,,(w) has an arbitrary absolute magnitude. This fact allows the
optimum system to have arbitrary gain. Intuitively, we feel that this should be
true because gain affects both input signal and input noise in the same way, and,
in the ratio of (9.1-1), gain cancels.

The time ¢, at which the output ratio (§,/N,) is maximum enters into the
optimum system transfer function only through the factor exp (~—jwe,). Such a
factor only represents an ideal delay. Since ¢, is a parameter that a designer may
have some latitude in choosing, its value may be selected in some cases to muke
the optimum filter causal.

In general, the system defined by (9.1-13) may not be realizable. For certain
forms of colored noise realizable filters may be found (Thomas, 1969, Chapter 5).
In practice, one can always approximate (9.1-13) by a suitably chosen real filter.

Hoplw) = g~ Jote 9.1-13)

Matched Filter for White Noise

If the input noise is white with power density J4/2, the optimum filter of (9.1-13)
becomes

H,plw) = KX*(w)e v ' (9.1-14)

where K = I/nC. 75 is an arbitrary constant. Here the optimum filter is related

only to the input signal's spectrum and the time that (§/N,) is maximum. Thus,.

the name matched filter is very appropriate. Indeed, the name was originally
attached to the filter in white noise; we have liberalized the name to include the
preceding colored noise case.

The impulse response denoted hy,, (1) of the optimum filter is the inverse
Fourier tranform of H,,(w). From (9.1-14), it is easily found (hat

hylt) = Kx*(t, — 1) (9.1-15)
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For real signals x(1), (9.1-15) reduces to

houl(t) = Kx(t, = 1) 9.1-10)
Byuation (9.1-16) indicates that the impulse response is cqual to the input \fglhll
displaced to a new origin at =, and folded aboutl this point so as to “run
backward,”

Example 9.1-1 We shall find the matched filter for the signal of Figure 9.1-1a
when received in white noise. From (9.1-16), the matched- filter’s impulse
response is as shown in (b). By Fouricr transformation of the waveform in (h),
we readily obtain
sin (wt/2) _,.,
H opi () = KAt _(_(_/24_) Jwlta + 1o =t/ 2}
An alternative developmient consists of Fourier-transforming the input signal
to get X{w) and then using (9.1-14).

Whether or not any chance exists for the matched filter to be realizable
may be determined from the impulse response of Figure 9.1-1b. Clcurl‘y. to be
causal, and therefore realizable, the detay must be at least T — 1, that s

L2T—1,
x(n
A
-1y 0 T~7g !
(a)
I (1)
K |
T
I
]
|
1
fgt1y =T 0 to dy ¥T1y 1
)

nput Integrator

1 Chede P O uiput

(3

Figure 9.1-1 A matched filter and its related signals, (a) Input signal, (b) the filter’s impulse response,
and (¢) the filier's block diagram [Reproduced from Peebles (1976), with permission of publishers
Addison-Wesley, Advanced Book Program.}
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If we assume this last condition is satisficd, the optimum filter is iltustrated in
(¢) where the arbitrary constant K is sct cqual to 1/4. This filter still requirces
that perfect integrators be possible. Of course, they arc nol. However, very
good approximalions arc possible using modern operational amplificrs with
fecdback, so for all practical purposes matched filters for rectangular pulses
in white noise may be constructed.t

9.2 SYSTEMS THAT MINIMIZE MEAN-SQUA'RED ERROR

A sccond class of optimum systems is concerned with causing the outpul to be a
good cstimate of some function of the input signal which arrives along with addi-
tive noise. One cxample corresponds to the outpul being a good cstimale of the
derivative of the input signal. In another casc, the system could be designed so
that its output is a good cslimate of cither the past, present, or future value of the
input signal. We shall concern oursctves with only this last case. The optimum
system or fifter that results is called a Wiener filter.}

Wiener Filters

The basic problem to be studicd is depicted by Figure 9.2-1. The input signal x(1)
is now assumed to be random; it is therefore modeled as a sample function of a
random process X(1). It is applied to the input of the system along with additive
noise n(1) that is a sample function of a noise process N(1). We assume X (1) and

t Other technigues using integrate-and-dump methods exist. See Peebles (1976), pp. 161-162.
4 Afier Norberl Wicner (1894-1964), a preat American mathematician whose wark has tremen-
dously aflected nuny areas of science and engineering.

Actual system path

LT system 8 .
UUERER Dy /.m.‘ly/‘(m 1 Yi) = N0+ ML)
[

. e

X Delay 4
e X(I + I")

Ideatized (conceptual)
aufpnt generation

Figure %.2-1 Operitions that define the Wiener Blter problem.
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OPTIMUM LINEAR SYSTEMS 263

N(1) arc jointly wide-sense stationary processes and that N(1) has zcro mean. The
sum of signal and noisc is denoted W(1):

W(t) = X(1) + N(1) 9.2-1)

The system is assumed to be linear and timc-invariant with a rcal impulse
r;:s;))onsc h(t) and a transfer function I(w). The output of the system is denoted
().

In general, we shall select H(w) so that Y(1) is the best possible estimate of the
input signal X(1) at a time ¢ + (,; thal is. the best estimate of X(t +¢,). 1(¢,> 0,
Y(1) is an cstimale of a future value of X(1) corresponding to a prediction filter. 1f
1, <0, Y() is an cstimate of a past valuc of X(1) and we have a smoothing filter. 1€
1, =0, Y(1) is an cstimate of the current value of X{1).

Now if Y(1) differs from the desired true value of X(r + (,), we make an
crror of

&) = X(1 -+ t,) = Y(1) (9.2-2)

This crror is illustrated conceptually in Figure 9.2-1 by dashed lines. The
optimum filter will be chosen so as lo minimize the mean-squared value of #(¢).t
We .shall not be concerned with obtaining a system that is realizable. Some infor-
mation is given by Thomas (1969) on the more difficult problem where H{w) must
be realizable. Thus, we seck to find H(w) that minimizes

ECeX(0)] = EL{X(t + 1) = Y(N}*]
= E[XXt 4+ ) = 2Y(DX(t + 1) + V(]
: = Ryx(0) = 2Ryx{t,) + Ryr(0) (9.2-3)
From the Fourier transform relationship between an autocorrelation func-

tion and a power spectrum, we have

‘ kAl
Ryx(0) = 7 J Syxw) dw {9.2-4)

where Syy(m) is (he power density spectrum of X(1). From a similar rclationship
and (8.4-1) we have

-

©

1
Ryy(0) = m J‘_ Swwl(w)| Hw)]? dw (9.2-5)

where 8,y(w) is the power spectrum of W(1). By substitution of (9.2-4) and (9.2-5)
into (9.2-3), we have

o«

’ 1
E[£3(0)] = —2Ryx(ty) + g[ [Sx(@) + Sww(@) | H@)?} do (9.2:6)

-

t We could elect to minimize the average error, or even force such an error Lo be zero. This
approach does not prevent large positive errors from being offset by large negative errors, however.
Hy minimizing the squared error, we climinate such possibilitics.
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To reduce (9.2-6) further, we develop the cross-correlation function:

Ryxlt,) = ELY()X(t +1,)] = E[X(l +t,) J‘m OW( - &) {IC:I

= r Rupslt, + &) dé 927

- @

where Ry (+) is the cross-correlation function of W(r) and X(t). After replacing
Ry x(t, + € by its equivalent, the inverse Fourier transform of the cross-power
spectrum 8,y ,(w), we obtain

Ryxlt,) = J” - J‘“’ Sy x(@)e’* 9 dw h() d¢

e 2T oy
l o« «©
= '2—7'(' Jl “JSW’\'((U)EI‘M'{J: wh({)ej“'c d{} fIUJ
l o
T f Sy sl —w)e! dw (9.2-8)

Substitution of this expression into (9.2-6) allows it to be written as

B0 = 5- f_w {8xx(®@) = 28y x(@H(—w)e™* + S @) H(@) P} deo
9.2-9)

The transfer function that minimizes E[e%(f)] is now found, We may write
H(w) in the form

H(w) = A(w)e®@ (9.2-10)

where A(w) is the magnitude of H(w), and B(w) is its phase. Next we observe that
Sxx(w) and Sy (w) are real nonnegative functions, since they are power spec-
trums, while the cross-power spectrum 8y x(w) is complex in general and can be
wrillen as

Sy a(w) = Clw)e* (9.2-11)
After using (9.2-10) and (9.2-11) in (9.2-9) and invoking the fact that
H(—w) = I*(w) 9.2-12)
for filters having a real impulse response h(t), we obtain
. |
E[e}(0] = I j {8xx(w) + Syw(w)d*(w)} dw
l W
-~ J 2C(w) A{w)ellwte * D) =Bl g, 9.2-13)

We minimize E[%(r)] by first selecting the phase of H{w) to maximize the sccond
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integral in (9.2-13) and then, with the optimum phase substituted, minimize the
resulting expression by choice of A(w). Clearly, choosing

Blw) = wt, + D{(w) 9.2-1:h

will maximize the second integral and give the expression

E[e3(1)] = L 'r’ {Syx(w) — 2C(W)A(w) + Sywlw)AX (W)} dw

n -
1 (> (. Cw) . C(w) 2} : 0.
=5 J_w {bx_\.(u)) - __Sww(w) + b,,.,,f(a))[/!(w) - Sww(w)j] dey  (9.2-15)

In writing the last form of (9.2-15), we have completed the square in A{w). Finally,
it is clear that choosing
C(w)

4 23— 2-16
1) Spewlw) © )

will minimize the right side of (9.2-15). By combining (9.2-16), (9.2-14), and
(9.2-11) with (9.2.10) we have the optinum filter transfer function which we
denote M {w):

Swalw) .,
H, ) = -%_:.i._:@_) plots (9.2-17)

For the special case where input signal and noise are uncorrelated, it is casy
to show that

Siewl(w) = Sy (@) + Syn(w) (9.2-18)
Sy y(w) = Sy y(w) (9.2-19)

where Syx(w) is the power spectrum of N(1). Hence, for this special case

Syy
H plw) = ——~—¥-@———~ plte (9.2-20)
Syxw) + Syylw)

Example 9.2-1 We find the optimum f{ilter for estimating X{t -+ 1) when
there is no input noise. We fet Syple) = 01in (9.2-20):

llum(“)) = L,.lml‘

This expression corresponds to an ideal delay line with delay —1,. 11, > 0,
corresponding to prediction, we require an unrealizable negative delay line. If
{, <0, corresponding to a smoothing filter, the required delay is positive and
realizable. Of course, t, =0 results in H,(w) = 1. In other words, the
optimum filter for cstimating X(f) when no noise is present is just a dircct
connection from input (o output, a result that is intuitively agrecable.

B
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vt
Sl

Minimum Mean-Squared Error

On substitution of (9.2-17) into (9.2-15), we readily find the mean-squarcd error of
the optimum filter

1 Syl Sipnlen) - 18wy 2
I':[Cz(”]mlu o _‘;\;\(‘ NSl | Sp ,\("’)l dn ©.2-21)
2n S}
FFor the special case where input signal and noisc arc uncorrelated, this cquation
reduces o
Eo" Syxlm)s
ELEH 0] = 57 -—“—(“i)-—"'iﬁ’l- dm (9.2-22)
20 - Sxal) + Syale)

9.3 OPTIMIZATION BY PARAMETER SELECTION

We conclude our discussions of optimum lincar systcms by briclly considering a
second approach that minimizes mean-squared crror. The problem we undertake
is identical to that of the last section up to (9.2-9), which defines the mean-
squared error. Now, however, rather than secking the filter that minimizes this
crror, we specify the form of the filter in terms of a number of unknown param-
clers and then determine the parameter valucs that minimize the mean-squarcd
error. This procedure necessarily leads Lo a real filter so long as the form we
choose corresponds to such filter.

If we assume the speeial case where the input signal X (1) and noise N(1) arc
uncorrclated, (9.2-9) can be written as

E[3)]) = —21;[- J J S, (w) dw 9.3-1)

where

Solw) = Syylw) = ZS.\-.\-((U)H(—-u))c‘"""‘ A+ [Syyle) 4+ Saunti) ) ) |r (9.3-2)
Since the imaginary part of H(—w) cxp (jw!,) is an odd function of o when h(t) is
real (as assumed), the only contribution to the integral of (9.3-1) due to the

middle term in (9.3-2) results from the real part of H(—w) exp (jot,). Thus, the
crror-contributing part of (9.3-2) can be written ast

$ () = Syx(@)[1 — Hl@e™ ™" = H(—w)e + | H(@)*] + Sxpl)] {w)|?
s @)l — H(—w)t P+ Spd@) )l 9.3-3)

because H(~w) = H*(w).

We summarize the synthesis procedure. Firsl, a filter
filter. The applicable transfer function H{w) will depend on @ number of unknown
parameters. H{w) is next substituted into (9.3-3), to obtain §,(w), the power

form is chosen for & real

+ 1 writing (9.3-0, we atso usc the fact that 2 Re(z) = 2+ 2° forany complex number 2.
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density spectrum of the error &(t). Finally, the error E[e}(1)] is calculaled from
(9.3-1) and the parameters are then found by formally minimizing this error.
Although this procedure is direct and conceptually simple to apply, the solution
of the integral of (9.3-1) may be tedious. For the case where Syx(w) and Syy(w)
arc rational functions of @ and H(m) corresponds to a real filter form, the
resulting integral has been tabulated for a number of functions §,,(w) involving
orders of w up to 14 (Thomas, 1969, pp. 249 and 636, and James, et al, 1947,
p. 369).

All the preceding discussion has related to the special case where the input
signal dnd input zero-mean noisc arc jointly wide-scnse stationary and uncor-
related.- For the more general case of corrclated signal and noise, the choice of
form for I{m) must bc substituted into (9.2-9) and the integral solved, The
unknown filter coefTicients are then determined that minimize E[e*(1).

PROBLEMS

9-1 A matched filter is to be found for a signal defined by

A(r + 0/t ~1<t<0 . 2
x(t)={A@t -t/  O<t<t - X(w) = Ar[fl—"—(—('—;;—/—)]
T

0 elsewhere
when added to noise having a power density spectrum

A
”/i + (1)1

Spnlw) =

where 4, t, and W, are real positive constants.

(a) Find the matched filter's transfer function H, (w).

(b) Find the filter's impulse responsc Do) Plot J1p(1).

(¢) 1s there a value of for which the filter is causal? If so, find it.

(d) Sketch the block diagram of a network that has [ (w) as its teansfer
function.

9.2 Work Problem 9-1 {a), (b), and (¢) for the signal
x(f) = u(t)[e ™" — "]

ila > 1is a real constant.

9-3 Work Problem 9-1 (a), (b), and (c) for the signal
x(t) = u(—n[e"* — &)

if a > 1 is a rcal constant.

*9.4 By proper inverse Fourier transformation of (9.1-13), show thal the impulse
response I, (1) of the matched filter for signals in colored noise satisfics

J - hopl(é)RNN(’ - ':) (If = .\"({n —_ {)
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9-5 A signal x{1) and colored noise N(f) arc applied to the network of Figure
P9-5. We select | H (w)]? = 1/8yn(w) so that the noise N,(t) is white. We also
make H,{w) a matched filter for the signal x,(¢) in the white noise N,(t). Show
that the cascade is a matched filter for x(¢) in the noise N(¢).

xt) + N 51 nw N
Colored o W) - i (W) xolt) + No(1)
noise L—-———j White

noise

Figure P9-5

9-6 tor the matched filter of Example 9.1-1, find and sketch the output signal.
{Mint: Fourier-transform x(t) and use a transform pair from Appendix E to
obtain x,(1).]

9.7 Assume the power densily of the white noise at the input to the matched
filter of Example 9.1-1 is A y/2 with ¥y > 0 a real constant. Find the output
signal-to-noise ratio of the filter at time .

9-8 Show that the maximum output signal-to-noise ratio obtainable from a filter
matched (o a signal x(f) in white noisc with power density A o/2is

Su> 2 (= 2 2E
(Na mn—"VU J.—uolX(l)I ‘lt—.‘/’TO

where E is the energy in x(1) and 4", > O1is a real constant.
9-9 Let 1 be a positive real constunt. A pulse

A cos (ni/7) |t} < </2
X ’-{0 . ] > /2

is added to white noise with a power density of A g/2. Find (5,/N ), for a filter:

matched to x(t) by using the result of Problem 9-8.
9-10 Find the matched filter’s transfer function applicable to Problem 9-9.

9-11 Show that the output signal x,(1) from a filter matched to a signal x{t} in
white noisc is

x(0 =K J XMEx(E 4+t —1,) dE
That is, x,(t) is proportional to the correlation integral of x(t).

9.12 Show that the outputl signal x,(f) from a filter matched to a signal in white
noise rcaches its maximum magnitude at ¢ = ¢, if the filter impulse response is
given by (9.1-15). (Hint: Use the result of Problem 9-11.)

9-13 Fourier-trunsform the signal of Figure 9.1-ta, and use (9.1-14) (o verily he
optimum system transfer function given in Example 9.1-1.

9-14 The signal

X() = u(t)e™ "
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where W > 0 is u real constant, is applicd to a filier along with white noise with
power density . 174/2, 47y > 0 being o real constant,

() Find the transfer function of the filter matched 1o x(r) at time (.

(h) Find and skeich the lilter's impulse response.

(¢) 1s there any value of 1, that will make the filter causal?

(/) VFind the output maximum signal-to-noise ratio.
915 Work PProblem 9-14 for the signal

N = u(=1)e™

9-16 Wark Problem 9-14 for the signal
X(0) = (e

9-17 Work Problem 9-14 for the signal

() = —u(—0e™
918 11 o reat signal x(1) exists only in the interval 0 <t < T, show that the cor-
relation receiver of Figure P9-18 is a matched filter at time ¢ = T'; that is, show
that the ratio of peak signal power fo average noise power, both at time T, is the
same as the ordinary matched filter, Assume white input noise.

X() + N —w  Product - [TCYdE e Y(1) = 1)+ N

xtn

Figore PY-18

9-19 Find the matched filter for the signal

x(n) = Ae™"

in while noise with power density J74/2 where o7y > 0, a > 0, and A are real
constants.

9-20 A random signal X (1) and uncorrelated white noise N(1) have autocorrela-
tion functions

WwrP _.
Ryxlt) = ¢ i

RyslT) = (17o/2)8(1)

where W > 0, P > 0, and .47, > 0 arc real constants,

() Find the transfer function of the optimum Wiener filter.

(b} Find and sketch the impulse response of the filter when 1, <0, ¢, > 0, and
t,=0.
9-21 Find the minimum mean-squared error of the filter in Problem 9-20.

[ PR,
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9.22 Work Problem 9-20 for colored %oisc defined by
Ryndt) = Wy e
where W, > 0is a real constant.

9.23 Work Problem 9-21 for the noisc defined in Problem 9-22.
9.24 A random signal X(1) and additive uncorrelated noise N(1) have respective

power spcclrums

Syxlw) = T o and Syl = m

(a) Find the transfer function of the Wicner hiter for the given signal and

noisc.
(b) Find the minimum value of the error in predicting X(r -+ L)

9.25 Work Problem 9-24 for signal and uncorrclated white noisc defined by
'

5.\',\'((’)) = ”/2 + (I)A

Snal02) = A of2

where 4 > 0,1V >0, and 7 > Qare real constants.

9.26 A delerministic signal x(t) = A cos {wqt) and while noise with power
density ~17o/2 are applicd to a one-scction lowpass filter with transfer function

H(w) = WIW + jw). Here W>0, 4,>0 0o, and A arc all real constants.
What value of W will cause the ratio of output average signal power Lo average
noise power to be maximum? ‘

9.27 Work Problem 926 if the network ¢

filters in cascade. ‘ .
9.28 Work Problem 926 if x(t) = A cos (wo! + ®), where © is a random vari-

able uniformly distributed on the interval (0, 2n).

9-29 A random signal X{1) having the autocorrelation function
Ryxlt) = Wye'

A of2 are applicd to u lowpuss filter

onsists of two identical one-section

waln

and uncorrclated noise with power density
with transfer function

H{m) = Ve T

Here W > 0 and Wy > 0 are real constants.

() What value of W will minimize the me

e an estimate of A OXi
(h) Calculate the minimum mean-squarcd error.

+9.30 Work Problem 9-29 by finding the real constants G > 0
filter defined by

an-squarcd crror if the output is to

and W > 0 for the

aw

H(m) = —m

T3
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ADDITIONAL PROBLEMS

9-31 A signal x(t) = u(t)Se? exp (—2t) is added to white noisc for which 7/2 =
10~ 2 W/Hz. The sum is applied to a matched filter.

{a) What is the filter’s transfer function?

(b) What is (S,/N.)?

(¢) Sketch the impulsc response of the filter.

() 1s the filter realizable?
9-32 A signal

x(t) = u(t)? exp (= W)

is added to noisc with power spectrum
Swnlw) = PIW} + o?)

where W, P, and Wy are positive constants. The sum is applied to a matched
filter,

(a) Find the filter's transfer function.

{b) Find the filter’s impulse response.

(¢) Whatis the signal-to-noise ratio at the output?
9.33 A pulse of amplitude A >0 and duralion > 0 is x(1) = A rect (t/7). The
pulse is added to white noise of power density 4 o/2 when it arrives at a receiver.
For some practical reasons the receiver (filter) is not a maltched filter but is a
simple lowpass filter with transler function

H(w) = WAW + jo)
W > 0 a constant. :
(a) Find the ratio of instantaneous output signal power x2(t) at any time ¢ to
avcrage noise power E[N(1)] at the filter’s output. At what time, denoted by f,,

is the ratio maximum?

{h) Attime, what bandwidth W will maximize signal-to-noisc ratio?

(¢) Plot the loss in output signal-to-noise ratio that results, compared to a
matched filter, for various values of 0 < W < 5/t. What is the minimum loss?

*9.34 Reconsider the system of Problem 9-33 excepl assume
H(w) = WH(W + jw)?

(a) Find the time ¢, at which output signal-to-noisc ratio is largest.
(b) For the t, found in (a) determine the output signal-to-noise ratio. Plot
this result versus Wt for 0 < Wt < 6 and determine whal value of W gives the

best performance.
{¢) What minimum loss in signal-to-noisc ratio occurs compared to a

matched filter?
9-35 A pulsc
x(f) = A rect (1/20[1 — (t/9)?]

where A and T > 0 arc constants, is added to white noise,
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(u) Find the output signal x,{t) of a filter matched to the pulse.

(b) Sketch x(1) and x,{1).

(c) What is the matched filter’s output signal-to-noise ratio?

() What is its transfer function if K in (9.1-16) is chosen so that | H,,(0)} =
17 Is there a value of ¢, that makes the filter causal?

*9.36 A deterministic waveform y(¢) is defined by
() = ‘,(,)emn'dwo: v(l)e""’°‘

where a(t) and (1) are “slowly” varying amplitude and phase *modulation”
functions and wq, > 0 is 4 large constant, The white-noise matched filter for y(¢) is
defined by

hept) = ¥*(t, — 1)
if K =11in (9.1-15). Now let y(t) be offset in frequency by an amount w, before
being applied to the * matched filter " so that

Y (1) = (1) exp (~jwyt)

is applied with noise (o the filter.
(1) Show that the filter’s response to Yg(t) is

Xt = £, 0) = r VEWA(t, — ¢ + QeI d¢

The function | x(«, w,)}? is called the ambiguity function of the waveform y(t).

(b) Show that the volume under the ambiguity {unction does not depend on
the form of Y(t) but only on | x(0, 0)}%.

{c¢) Show that

xt, = 1, wy) = eloott=tl on wEW*(t, — ¢ + e ot gg

*9.37 Reconsider the ambiguity function of Problem 9-36.
(a) Show that |x(t, w|* < 1x(0, O[3
{(b) Show that another form for x(r, @,) is

l o
x(t, w,) = e J‘ YHw)¥(w + wye ™" dw

where W(w) is the Fourier transform of y(1).
(c) Show that

15, 0) = r VW& + 1) de

o«©
=L J | W(w) P~ dw

2n

X0, wd)_J. (&) Pe™ /% d&
1
T n

— J‘ W)V (w + w,) dw
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(d) Show that the symmetry of (1, w,)is given by
71, wy) = eI (=1, —w,)
9-38 The deterministic signal
x(t) = rect (1/T) exp (jwg t + jut?/2)
is a pulse having a linearly varying frequency with time during the pulse's dura-

tion T. The nominal frequency is wy(rad/s). The matched filter for white noise has
the impulse response of (9.1-15) which, for ¢+, = 0, is -

(N = K rect (1/T) exp (jwot — jut?f2)

opl
(a) If instantaneous frequency is to increase by a total amount Aw (rad/s)
during the pulse’s duration T, how is the constant u related to Aw and T?
(b) Find the value of K such that | H, {we}| = I when g is large. [Hint: Note
that

Clx) = J’x cos (n&22) dE
o
and
S(x) = Jx sin (n€?/2) d¢
o

called Fresnel integrals, approach ‘/z as x—» 0]

(¢) For the K found in (b), determine the output x,(t) of the filter. Sketch the
envelopes of the signals x(f) and x,(t) for AwT = 80r using the same time-voltage
axes. What observations can you make about what has happended to x(1) as it
passes through the filter?

*9.39 (4) Find the transfer function H,,(w) of the matched filter of Problem 9-38.
(Hint: Put the expression in terms of Fresnel integrals having arguments

= JAoT/2n{I - [Aw - wo)/Awl}/\/2

Xy = JAwT/2n {1 + [2w — wo)/dw]}/ /2
where jt = Aw/T.)

(b) Sketch the approximate form of | H,,(w)| that results when AwT is large.
9-40 A rundom signal X(1) and uncorrelated white noise have respective power
spectrums

and

Sexl@) = 2/2 Pyy Wy 0H(W3 + w*)
and
Sunlw) = Ao/2

Here Pyy is the average power in X(t), while Wy and 75 are positive constants.
{(a) Find the transfer function of the Wicner (ilter for this signal and noise.
() What is the minimum mean-squared filter error?

sl
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(¢) LEvaluate the result of () for Pyy =2 W, Wy = 15 rad/s, and . 47y/2 =0.1
W/Hz, [Hint: Use the known integral {Thomas, 1969, p. 249)
1 (" by - o w?) dw
=0x | @i+ (@ = 2a5a,)0" + alm® 2a,a,d,
1 + a, has no rools in

aghy — ayhg

I

where bg, by, do, s and a, arc constants and agA? + 4y
the lower hall-plane when A = @ +jo.]
9-41 Work Problcm 9-40 for the signal with the power spectrum

Syyl@) = AW + )’
Put results in terms of the average power Pyyin XU
9-42 The respective power spectrums of a random signal
noise N{) arc i

X(n) and uncorrelated

Syalw) = (1720/(10% - ?)

and
Sunlw) = (162 + w?)?
(@) What is the transfer function of the Wiener filter?
(h) What is the minimum mean-squared prediction error? (Hint: Use resulls
from PProblem 9-40.)
*9.43 Generalize the random signal of P
trum is

roblem 9-42 by assuming its power spec-

Sxylw) = (W 2/2000//(W} + ©%)

andwidth, Find the minimum mean-squitred pre-

where W, is the signal's 3-dB b .
> 9.5, What docs an increase in Wy mecan

diction crror and plot the result for 1y
in a physical sense?

9.44 A random signal X{1) plus uncorrel
spectrims

ated noise N(n), having respeelive power

Sxal) = 2Py Wy/(W 3 + w?)
and
() = 4PuyWHOVE + w?)?

yw are the average signal and noise

SNN

is appticd to @ Wiener filter. Here Pyy and P
powcrs.‘rcspcclivcly, while Wy and Wy are positive constants. o
{«) Usc (9.2-22) and find the filter's minimum mcun-sqtun'cq plrcdncllon c:ror..
(h) Show that as Pyx— ELe* () ain— Pane and that E[e0]min— Pxx if

Pyg-von ] )
() From i praphicat plot of Elal(0) Lagud ay VErsus Wi/ W, (lclcn‘mnc ir
there is o preferred pandwidth ratio when Pan/l'xy = 8. 18 there o ratio that

should be avoided? Discuss. (Hint: Use the integral given in Problem 9-40.)

CHAPTER

TEN

SOME PRACTICAL APPLICATIONS
OF THE THEORY

10.0 INTRODUCTION

The main purpose of this book has been (o introduce the reader to the basic

principles nccessary 1o mode! random signals and noisc. The principles were
broad cnough to include the descriptions of waveforms modified by passage
through linear networks. In this chapter we shall apply the basic principles to a
few practical problems that involve random signals, noise, and networks. Obvi-
ously, the list of practical applications is almost limitless and it is necessary to
scleet only a finite fow. Although the applications discusscd here may not neees-
sarily serve the main intcrests of all readers, they do represent important applica-
tions and do serve to illustrate the use of the book's theory.

In the following scctions we shall describe two practical communication
sysiems, two control systems {one with application to one of the communicalion
systems), an application involving a compuler-lype signal, and two applications
that rclate to radar. In every casc we arc primarily interested in how these appli-
cations arc affected by the presence of random noise. We begin by considering
the common broadcast AM (amplitude modulation) communication system.

0.1 NOISE IN AN AMPLITUDE MODULATION
COMMUNICATION SYSTEM

The communication system most familiar to the general public is probably the
AM (amplitude modulation) systen. In this system the amplitude of a high-
frequency “carrier ™ is made to vary (be modulated) as a linear function of the
message waveform, usually derived from music, specch, or other audio source.
The carrier frequency assigned to a broadcast station in the United Stales is one

278
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of the values from 540 to 1600 kHz in 10-kHz steps. Each station mus( contain
its radiated power to a 10-kHz band centered on its assigned frequency.

In this section we shall give a very brief introduction to the AM broadcast
system and illustrate how the noise principles of the preceding chapters cun be
used to unulyze the system's performance.

+ n (1)

54(0)

AM System and Waveforms f"""%“"""}
Figure 10.1-1 illustrates the basic functions that must be present in an AM } { .
system. In this figure we include only those functions necessary to the study of | Ly i )
noise performance. A practical system would include many other devices such us = 2 I :
amplifiers, mixers, oscillators, and antennas that do not directly aflect our per- - l WS x |
formance calculations. H ! ;_J :
The transmitted AM signal has the form = T 8 }
samlt) = [Ag + X(1)] cos [wot + 0] (10.1-1) S 5 “1
where Ay > 0, wy, and 0, are constants, while x(r) represents a message that we { 23 {
model as a sample function of a random process X(1). Note that the amplitude ! ®= !
[Ag + x(1)] of the carrier cos (wot + Up) is a linear function of x(t). Now, in l }
general, one has no control over ), because the turn-on time of a transmitler is U P J
random and the channel itsell may introduce a phase angle that is random |
» (which we presume is absorbed in the value of 0y). Thus, we may properly model } W
flo as a value of a random variable @, independent of X(r) and uniformly distrib- |
o uted on (0, 27). These considerutions allow s,(f) 10 be modeled as a sample func- cq l
g tion of a transmitted random process S,\(t) given by N &
Sadt) = [Ao + X(1)] cos (wo ¢ + @) (10.1-2) i EE
The transmitted signal arrives at the receiver after passing through a channe! §.§ NS g '
with gain G,. The channel is assumed to add no signal distortion but does add L% R R
zero-mean white gaussian noise of power density 4"¢/2. A practical channel typi- 5 §
cally adds delay but this effect does not modify the noise performance. A rzceiver

He bandpass filter passes the received signal sg(t) = G, sam(f) With negligible distor-
tion but has no wider bandwidth than necessaty so as lo not pass excessive

noisce.t The noise n{t) at the filter's ouiput is a bandpasg noise so the (hcory of i‘ —————————————— |
; Section 8.6 applies. lI 5 - I
B We model waveforms sg(f) and n{t) as sample functions of processes S,(1) and ; E ] ¥ :
ES N(1), respectively. Thus, we may write | 2 ;'5 3 i
i H 7. « |
Fa Sult) = Gy, Samlt) s : i b4 .9 :
e : y :
= Genl o + X(1)] cos (wo ! + By) (10.1-3) ! | |
.: N(t) = N1} cos {wot + Og) — N (1) sin (wet + Op) (10.1-dy S U S
l where N (1) and N (1) arc lowpass noiscs with average powers NX(1) = Nf(l) = )

Nz(!) from Section 8.6.

BN

©

Ficure 10.1-1 Funciional block diagram of a broadcast AM system.

Message

x(1)

t The required bandwidth 1Y, must be at least twice the spectral extent W,y of X(1).

A,

m
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Noise Performance

A good mcasure of noisc performance is the ratio of the average power in the
output signal s,1) of the system to the average power in the oulput noise nge). In
the AM receiver an cnvelope detcctor is uscd to recover the transmiticd message.

The total waveform applicd to the cnvelope detector becoimes

S4(1) + N = {Ganl Ao + X+ N} cos (wol + @) = N (1) sin (wq + ©u)

= A1) cos [wot + O + ()] (10.1-5)
wheret
—an-! N } (10.1-6)
o= 0™ fo o ’
Al = ({Galdo + X(N] + NOY + N2
, 2N, N30 + N3O >'“ o1
= Gl Ao + '\('n<l e X T G AL+ X7 (10.1-7

Now only (10.1-7) is of interest because A1) is the cnvelope of Syl + N(1). The

detector output is this envelope.
Since NI + NX1) is the instantaneous envclope of the squarc of N{1}

(rctated to received noise power), while G2,[4o + X()]? is the instanlancous
envelope of the detector's input signal (related to reccived signal power), we make
the assumption that input {received) signal-to-noisc power ratio is largc so that
[NXN) + NY0OYGEHLAo + X(1)]? is small most of the time. The assumption allows

A1) % Gl Ao + X(0] + N (10.1-8)

from (10.1-7) Only when this condition is truc do we oblain quality performance

anyway, so other situations are not usually of interest. .
1t we model s,(1) and nt) in Figure 10.1-1 as sample functions of processes

S, and N, respectively, then (10.1-8) clearly gives
S{) = GenlAo + X(1)) (10.1-9)
N1 = NLO (10.1-10)

The wseful outpul signal average powcr, denoted by S, is that duc to X()

(10.1-9). Il outpul averiage noisc power is denoted by N, then

5, = GL N0 (10.1-11)
N, =NIn =N (10.1-12)

t Fypieally, arermodulation whete 1 X an s the maxinuum 0
cirible in AN so (A b () > Gis assumed in (10.1-7)

agnitude of N exceeds oy is e
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and performance is measured by

S, Gh X*()
=] === 10.1-13
<N,)AM N(1) ( )

ext, we model the bandpass filter in Figurc 10.1-1 as an ideal filter with
bandwidth W, (rad/s). Noise power rcadily follows

=T l 0+ (Wieel) JV ”,
N (‘)=,—2J' (A of2) dw = —5—= (10.1-14)
20 o= (Weee D) 2n
From (10.1-13) we have
S° 2n(';czh Xl(!)
<Na>AM S (10.1-13)

Equation (10.1-15) is the principal result of this scction. 1t describes the per-
formance of the AM system. 1t is helpful to demonstrate the use of (10.1-15) by
means of an example.

Example 10.1-1 Assume an AM system uscs an unmodulated carrier of peak
amplitude Ay = 10\/9—5V and a message of power m-sSOO W, Its
channcl has a gain G¢h=\/3—i/100 with a noise density N of2 = (1079
W/Hz The receiver uses a filter with bandwidth W, .. = 2n(10*) rad/s. We
compute various signal powers and system performance.

From Problem 10-1 the average power in the transmitted carricr is
A}j2 = 4750 W, the transmitted power duec to message modulation is
Ryx(0)/2 = X2(1)/2 = 250 W, Total average-liransmilted power is, therefore,
5000 W. '

From (10.1-15) we compute

5.\ _ 2n(32)1074(500)
(N.,>AM = 107 %20(10%) 8000  (or 39.03 dB)

This signal-to-noise ratio represents fairly good performance.

At the input to the envelope detector the reccived average signal power is
5000 W decreased by the loss incurred in passing over the channel:
5()()()(\/.'4_2/1()0)2 =16 W. From (10.1-14) and (10.1-12) the input avecrage
noisc power is 10~ *2x(104/r = 2(107%) W. Input signal-to-noisc 'ratio
becomes 16/2(107 %) = 80,000 (or 49.03 dB). This valuc is well above the
minimum for performance as required for (10.1-15) to be valid; in fact, if the
performance of an AM system is satisfactory then (10.1-15) will always be
valid {the reader should justify this fact by examining the efficiency of an AM

system --scc Problems 10-4 and 10-2)
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10.2 NOISE IN A FREQUENCY. MODULATION
COMMUNICATION SYSTEM

Another communication system with which the reader is familiar is the broadcast
FM (frequency modulation) system. Here the instantaneous frequency of a sinu-
soidal *carrier” waveform is made to vary as a linear function of the message
waveform. If X(1) is a process repfesenting the message, the FM transmitted
waveform can be represented by lhc’lfoccss :

Y
Senlt) = A cos I:wévl,'+ O + kpn fX(t) dl} {10.2-1)

where A, wg, and kg, > 0 are constanist and ©, is a random variable indepen-
dent of X(r) and uniformly distributed on (0, 2n). In a practical station w,/2n is
the station's assigned {requency and is one of 100 possible frequencies from 88,1
to 107.9 MHz. Euch station transrhits power in a 200-kHz “channel” centered
on its assigned lrequency. .

The constant kg in (10.2-1) is the transmitter's modulation constant. Its unit
is rad/sccond per volt when X(i1) is a voltage. Transmitted signal bandwidth is
difficult to compute in FM because FM is a nonlinear modulation. If kg, is large
enough, this bandwidth can readily be much larger than the bandwidth of the
message process X(t). If X(¢) is presumed to be bounded at | X(f)|,... and have a
crest-factor defined by (Problem 10-3)

2 2
1 X O mes _ 1X(0) s (102:2)

“TEXN] T X

the bandwidth of Spy(t) for the broadband case is approximated by (Pecbles,
1976)

Win % 280 = 2kgy | X(0) Ipax
= Uk Ko /X0 (10.2-3)
Here
Aw = kpy | X(0) s (10.2-4)

is the peak frequency deviation that instantaneous frequency can make from w,
(on cither side).
Although difficult to prove, the average transmitted waveform power is

(10.2-5)

AZ
Pey = E[Sh(0] = 5

which is independent of the modulation.

t 1F kyy i3 negative its sign can be absorbed into the definition of X{t).
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IFM System and Wavelorms

Figure 10.2-1 illustrates the basic functions present in a (ypical FM system. The
transmitted wavelform passes over the channel modeled as a power gain G2,
without distortion or delay (as also assumed in Section 10.1 above), The receiver’s
bandpass filter (BPF) is wide enough to puss Gy, Semlt) with little distortion but
not so wide as (o pass excess noise. Its bandwidth is, therefore, Wey = 2Aw.

The purpose of the fimiter is to remove amplitude fluctuations in the
received waveform. The limiter is necessary so that the receiver responds only to
frequency variations (that contain the message) and not to amplitude variations
that are mainly duc to noise. The discriminator is the actual demodulation
device; it produces a voltage proportional (constant of proportionality K,) to
instantancous deviations of the frequency of its input waveform from a nominal
value . Ideally, with no noise, the discriminator’s output signal is Ky kpy X(0).
The Towpass filter must pass this waveform with low distortion so that its output
is proportional to X(f)

Sdt) = Kpkey X(0) (10.2-6)

It should have a bandwidth no wider than the spectral extent of X(r), denoted by
Wy, so as to not allow excessive output noise.

If the receiver's “input™ is defined as the input to the limiter, the input
signal’s average power S;is

A2
S, = G, Ty (10.2-7)
while the cutput signal power is
S, = E[S}(1] = K} ki XT(0) (10.2-8)

By modeling the BPF in Figure 10.2-1 as an ideal filter the inpul noise power
is readily found to be

l wo +Aw 1/‘ V A
Ny=5-2 f 20 gy = 2020 (10.2-9)
n T

o = 8w
Input signal-to-noise power ratio is

S nG2 A?

NS T Aw 10.2-10
(N l)m 240 Aw (10 )

from (10.2-7) and (10.2-9).

Computation of output noise power is less straightforward than the preced-
ing computations, However, its development forms the most intcresting problem
in computing system performance.

o
Gridh
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Figure 10.2-1 Functional block diagram of an FM communication sysicit.
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M System Performance

Care must be exercised in finding outpul noise power beeause FM is a nonlincar
operation. For relatively large (S/N)im and wideband operation (developed
abeve), signal and noise powcrs may be independently found, Signal power is
found assuming noisc zero (above). Noisc power is found assuming the message
is zero but carrier is still transmitted. In this latter casc the waveform at the
limiter is

Gy A cos [wot + Op] + N(t) cos (ot + Oq) — N (1) sin (ot + G)
= A(t) cos [wot + O + (1)) (10.2-11)

where the bandpass noise N{t) is modeled as in (10.1-4) (see also Section 8.6) and

A) = {[Gen A 4+ NAN)? + N} (10.2-12)
- N0
— Vo -
Y(f) = tan {GchA " N,(l)} (10.2-13)

For large input signal-to-noise ratio we have 1[G Al > IN () and { G, AL >
N AN ] most of the time, so (10.2-13) becomes

Y1) = tan™! L-glh(-%‘l x -(I;V—’h(% (10.2-14)

Equation (10.2-11) is now approximated by

A(1) cos [wo! + O + ()] = A(t) cos [a)ot + Oy + E;I!’—(%J (10.2-15)

ch

Because the limiter removes A(f) and the discriminator responds only to instanta-
neous frequency deviations from wy, the input to the lowpass filter is

KI) {IN:(I)
—_— —= 10.2-16
(Geh A) (I’ ( )
If Sy n,(w) is the power spectrum of N,{t) the power spectrum of (10.2-16) is
K 2
< GmD A> PRI () (10.2-17)

However, we may use (8.6-17) and (8.6-16) to write this power spectrum as

2
(GK DA) WSy {0 = Wo) + Syl + wo)] lw] < dw  (10.2-18)
ch

where Sy () is the power spectrum of N1); it is constant at .474/2 over bands
of width 2Aw centered at mg and —w,.
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Final output noise power results from the action of the lowpass filter on
(10.2-18). We have

I Wy K 2
N, = E[N}1)] = T J ( 2 ) <o’[8~‘~‘(w — wo) + Syn(w + we)] dw

Wy G\'hA
K} Wy A Ao, #o K} Vo W3
= 5563, A7 f 2 77T S 1021
OQutput performance is determined by
2 4272 Yiy
(i _3nGaA k.,,gx (1) (10.2-20)
No FM "VO WX

from (10.2-8) and (10.2-19). An alternative form of (10.2-20) is

S, 6 (Aw 3(S,\
—_ = | = —_ 10.2-21
(N«:)m KS, (Wx> NIJFM ( )

An important observation derives from (10.2-21). Since FM bandwidth is
24w, we see that performance increases as the cube of bandwidth relative to
(SN dm. However, (S/N ).y deercases as the reciprocal of bandwidth from
(10.2-10), so the net performance increases as the square of bandwidth. By simply
increasing bandwidth at the transmitter, system performance rapidly increases.
There is a limit to this procedure, unfortunately, that occurs when conditions
under which the performance equations were derived are no longer valid. The
break point, or threshold, occurs approximately where (S//N )y drops below
about 10 (or 10 dB). For a more detailed discussion of FM threshold the reader
is referred to Peebles (1976). We shall emphasize FM system performance
through an example.

Example 10.2-1 An FM system uses a message with crest factor 3 and band-
width Wy/2n = 3 kHz The FM modulator's bandwidth is 2Am/2n = 20 kHz
and  the  reeciver's input signal-to-noise  ratio is 81 From  (10.2-2])
(So/N g = 2000 (or 33.01 dB). We determine how much performance can be
increased by raising A,

From (10.2-10) {(S)/N )y deereases (o 10 from 81 il Awm increases by a
fuctor of 8.1, Nexl(, we again use (10.2-21) but now with Aw/2r = 8.1(10) kHz

and (SN gy = 10:
S 6 (81)°
3 = | — 10) =
(NO)FM 9 (3) ( 0) 131’220

{or 51.18 dB). The bandwidth increase of 8.1 times has improved (S,/N )
by 65.61 times.
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10.3 NOISE IN A SIMPLE CONTROL SYSTEM

In this section we shall bricly consider the noise response of a simple control
system modeled by the block diagram shown in Figure 103-1. The following
section will then illustrate how a very practical network can be analyzed by
applying the results developed here.

Transfer Function -

Typical loop behavior in Figure 10.3-1 is to force the feedback signal F to
approximate the command C so that the error C-F is small. The control loop’s
response R may be conveniently chosen. For example, if R in the time domain is
to be the derivative of the command then H,(w) = 1/jw, the transfer function of
an integrator. If R is to approximate C then Hy(w) = 1.

From Figure 10.3-1 it is clear that

R(w) = H,(w)[Clw) — H(w)R{w)] (10.3-1)

50

() ] (10.3-2)

R(w) = C(w)[m

We defline the transfer function of the control loop as

_ Rlw) _ H(w) )
H(w) = Clo) = ——-——-———-l T H (@) @) (10.3-3)

The transfer function (10.3-3) is not always stable. There are combinations of
1 (w) and Hy{w) that can cause instability, In general, if /1 (w) and H,(w) arc
stable und | H () J(w)| falls below unity, as a function of w, before the phase of
I (w)H 5(cw) becomes —m, und if the phase of H (w)H ,(w) cquals —x at only one
frequency, the transfer function H(w) is stable. The product H {w)!] (w) is called
the open-loop transfer fimetion of the control system. Stability is a deep subject in
conlrol systems and we shall not develop it further because it detracts from the
simple points (o be made here.

Now suppose the command waveform in Figure 10.3-1 is the sum of o signal
S0 and noise N (7). Becanse the system is linear its responses (o signal and noise
may be computed separately. If 8y v (w) is the power spectrum of N (1) then the
power spectrum of the response noise N (1) is

H \(w) 2

T+ Hy (@)l (@) (10.3-4)

Snpnilw) = 5N,N,(‘/J)\

whenever the network is stable.
An cxample serves to illustrate the use of (10.3-4).

R
R
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3
Example 10.3-1 Let a signal
S.() = Au)e™™
g 4 plus white noise of power density A7o/2 be applicd to the contro! network ’,n
where ‘l
KW, .9
H (W) = ——— K, > !
< O = e 3
3 HE () =1
= = f “This choice means that we desire the response to cqual (he command. We
- find the output signal and the output noisc power.
v From (10.3-3)
S PR <1715 ) Wp— 1.
3 |+ [K W /(W +jw)] {1+ KQW, + jow
ot

2
B3
&

Command
Clw)

Flw)

Feedback
signal

Figure 103-1 Block diagram of a simple control system.

From pair 15 of Appendix E the inverse transform of () is

ht) = K,W,t}(l)c LKW

The response signal becomes

Salt) = j‘ WSt — &) &¢

o

=K, WA J Wt — o1 KWL= Jrg =t

-m

= K W, Au(ne™"" J g™l KONI-IR g

0

KW,

RN exp { =L KW = WIS

(I + KW, - W
For K, » L sothat (1 + K,)W, » W this rcsull becomes
Sk(l) = S((l)

The approximation is more accurate as ¢ beeomes large.
From (10.3-4) the oulput noisc powcr spectrum is

= A oK W)2
SNan(w) - [(l + Kl)wl:]z + w?

Output noise power is found using (C-25):

> L%y
Pyane = o Syanaltn) do

Ao KW AWK W
SAT+ K 4
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We observe in passing that this control loop is stable and its transfer

« function is equivalent 1o u simple lowpuss filter of gain K, /(1 + K|) = | und

3-dB bundwidth (1 + K )W, = K| W,. This unity-gain large-bandwidth filter

resulted from a narrowband (bundwidth W) high gain filter (gain K,) inside
the loop.

Error Function
The error @ = C — Fin Figure 10.3-1 is readily found. From

Qw) = C(w) = Flw) = Clw) — H,(w)H (w)Q(w) (10.3-5)

we have

Clw)

T T H(@Hw) (10.3-6)

Qlw)

Wiener Filter Application

By comparing (10.3-3) with the transfer function of a Wiener filter for uncor-
related signal and noise as given by (9.2-20) we see that the Wiener filter can be
implemented as a loop. From (9.2-20)

o el
ol = T (@ eata] (1037
} : Thus )
; H(w) = 1,,(w) (10.3-8)
1 if
3 H () = el (10.3-9)
H3(00) = [Sun()/8 a{ele ™o L (00

Of course these functions H(w) and H,{w) may not be realizable even for realiz-
able signal and noise power spectrums. Other choices for H (w) and H,(w) arc
also possible (Problem 10-10),

10.4 NOISE IN A PHASE-LOCKED LOOP

=

P

paisng

The phase-locked loop (PLL) is a practical system to which the noise theory of
this book can be applied as a good example. The PLL is also an example of the
control system of the preceding section.

Figure 10.4-1 depicts the block diagram of a PLL. Broadly, the aclion of the
loop is to force the phase of the output of the voltage-controlled oscillator (VCO)
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Quiput signal
sxlt)

H ()

Filter

oscillator

Volage

Ervor signal

e, (1)

Phase
detector

A, cos [wot + 8, + 8,40))
= Ay cos [8,(1))

Feedback signal

=~ A, cos [8,(r)]
Figure 10.4-1 Block diagram of a phase-locked loop (PLL).

A, cos [Lor + 8, + 8/1)]

Input signal



gl

=~

290 PROBAIILETY, RANDOM VARIABLES, ANI RANDOM SIGNAL PRINCIFLES

1o closcly follow the phase of the input signal. This action lcads to onc of the
most important uscs of the PLL, that of demodulating a frcqncncy-modulnlcd .
signal. 1{ there is no input noisc N {1} and the VCOs phasc follows that of the
input FM signal, then the VCOs signal has the same FM as that transmitted.
Since the VCO is just a frequency modulator, its input wavcform (loop's output
waveform) has to be proportional to the original message used at the transmitter.

When input noisc is present there is noisc on the output signal. In this scction we
shall develop this output noisc power and find the available output signal-to-

noise power ratio.

IPhase Detector

Consider first the phase detector. Although there are many forms of phase dctee-
tor | Blanchard (1976) and Kilapper et al (1972)] they all provide an oulpul
response proportional to the difference between the phases of the two imput
wavefors for small dilference phascs. Thus

) = K, 00,0 = 0,03 (10.4-1)

if the two input wavelorm's phases arc delined as 0,(1) and 0,(t). The constant Kp
is the phase delector's sensitivity constant; its unit is volts per radian for e, (1) a
voltage. In some phase delectors the response is also proportional to the ampli-
tudes of the two input waveforms. Others depend only on onc input amplitude
because the other is large cnough to saturate the device giving a type of limiting.
Another type allows both inputs to limit in the detector and the outpul is not a
function of cither input waveform's level. We shall assume cither this tast form of
detector or that an actual limiter is in the path of the signal's input when a detec-
tor is used with limiting in the feedback path's input. Thus our phasc detector is

deseribed by (10.4-1).

Loop T'ransfer Function

Since the VCO in Figure 10-4-1 acts like a frequency modulator for the
“ message " sgl1), its oulput can be written as

VCO output = Ay cos {wet + U + 0,11

A, cos [wot 4+ 0o + ky js,((:) dr]

= A, cos [0,(t)) (10.4-2)

1]

where k, is the VCO's modulation constant,

0,(1) = wot + Uo + ky jsn(l) dt (10.4-3)
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and
0,0 = ky J.vn(l) dt (10.4-4)

The other phase detector input signal, from Figure 104-1, is the input wave-
form. If we define its phase as

0,(t) = ot + 0o + 0(0) (10.4-5)

then the phase delector’s response (10.4-1) becomes

e ) = K,l:mor + 0o + 041) = ot = 0 — ky an(r) dt]

= Kr[ﬁ.-(r) —ky an(r) m‘) (10.4-6)
Nexl, if we define Fourier transforms as follows
e, (1) = E o) (10.4-7)
01} = Ow) (10.4-8)
splt) & Sglw) (10.4-9)
we may write (10.4-6) as
ky S
Eyw) = Kp[e.-(w) - R ."‘“”} (104-10)
jw
From Figure 10.4-1
_ Sg(w)
E(w) = —__”:.(w) (10.4-11)

On cquating (10.4-10) and (10.4-11) we find the PLL's transfer function, denoted
by H4{w), to be
S a(w) Kpjoll fw) jo

Hy{w) = = =
W) = 5@ " Jo + Kpky Hyw)  ky

H{w) (10.4-12)

where we also definet

Kpky Hy(w)

Hw) = —— e
jw 4+ Kpky Hi(o)

(10.4-13)

1 In many texts H(w) is called the PLL transfer function but the loop's output is defined at a dil-
ferent point. (Where would it be?)
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Pliise modatition

Cupat wavelorn

of input wavelorm )
#,0) @ Kpll, (@) sult)
6, {w} Sulm)
Phase muadulition kvtjw
of feedbuch wavelorm
8,.(1) Voltage-controlied
e (w) oscillator
(u)
Phase-locked loop
8,(n
) = jull(wWhy ey )
Salw)
0, (w)
)

Figure 10.4-2 (a) Equivalent block diagram of the linear PLL of Figure 10.4-1, and (h) the trunsfer
function equivalent of the loop in {a),

It should be noted that the above definition of transfer function relates the
output signal to the input signal’s phase modulation 0(t) according to

Silw) = H{w)O(w) (10.4-14)
or

sp() = Jw halt — $O(8) dS (10.4-15)

-

where h(f) denotes the inverse transform of Hq(w)
hy(t) e H{w) - (10.4-16)

The above developments show, in elfect, that Figure 10.4-2 is an equivalent
form for the loop of Figure 10.4-1.

Loop Noise Performance

We shall apply the preceding results (o the case where the input to the PLL is the
sum of an FM signal plus bandpass noise N (1) modeled as

N = N_(1) cos (we t) — N (1) sin {we 1) (10.4-17)

The representation (10.4-17) follows developments of Section 8.6 where N (1) and
N,(1) are lowpass random processes having the properties defined in (8.6-7)
through (8.6-19). The actual input to the PLL is, therefore,

A, cos [mo! + 0o + ki JX(:) dl.‘ + N () cos (wq 1) — N(t) sin (wet) (10.4-18)

A S A
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where kyy is the M omodulitor’s constant, N() is the messape process, amd o4,
wg, and 0y are the input F'M signul's peak amplitude, frequency, and phase,
respectively.

The exact analysis of the PLL’s response to the waveform of (10.4-18) is very
involved. However, it can be shown that the waveform of (10.4-18) can be put in
the form (Problem 10-11)

R(t) cos [wot + Uy + Opp(r) + Ox(1)] (10.4-19)

where ‘
Opm(t) = ke J X(e) dt (10.4-20)

and (1) is a phase angle caused by noise. For large-input signal-to-noise ratio
(A2 EINHOY and input noise N{1) broadband relative to the FM signald, the
autocorrelation function of Oy(1) is approximaltely 1/A4} times the autocorrelation
function of N,{(1) (Problem 10-12). This fact mecans that, within a reasonable
approximation, 0x{t) can be replaced by the equivalent angle Nt/ A4;.

With the above noise cquivalence used, the input phase modulation to the
PLL from (10.4-19}) is

041) = Ot} + 051

N.(t
= Opy(t) + N (10.4-21)
. A
i
The component Opy(f) is due to the signal. If X(¢) is a random process with power
spectrum 8y y{(w), we use (10.4-20) in (10.4-21) and find that the power spectrum of

040y is

i ki Syx(w) Sy nlw)
ha'"‘(m) == (u\;x N‘/';jz

(10.4-22)

After using the PLL's transfer function (10.4-12), the output waveform's power
spectrum becomes

Syl @) = Spgf@)] Holw)|*

kew \? ’
= Sx,\'(‘v)("m> |H(@)[? + Syn0) 73 | H(@)] (10.4:23)
ky A‘ ky

The first right-side tcrm in (10.4-23) is duc to the desired message while the
second is due to noise. Loop design is typically chosen so that | H(w)|* = | Tor all
frequencics of interest in Syy(w). In fact, if the message is to be preserved with
very small distortion the bandwidth of the transfer function H{w) may be signifi-
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cantly larger than the frequencics of interest in Syylew). Thus, if Wy is the spectral
extent of the message X(1) then the power in the output signal component is

S, = L ) Sy () -l-\iﬂ zlll(u))lz do = l(-'-ﬂ 2 L ” Syl dw
o n -.,_\‘ XX I\'Iy’ kV I e XX

Kyeng z--:\,—r"
=Ry ¥ (10.4-24)

v

In some loops (scc example to follow) | H{w)|* docs not decrease rapidly enough
to remove high-frequency noise duc to the factor w? in Y H{w)|? in (10.4-23). In
these cascs it may be necessary to folfow the loop with a separate fifter to heltter
remove noise spectral components at frequencics |w] > Wy. As long as cither the
loop or a separate filler removes these components, the overall output noisc

power is approximately

{ "a w?
N, I J: .I',H"‘"‘(m) m |} do

o JM A Wi (10.4-25)

2
57 w?dn =
2nAlky oy InAzkl
oulput signal-to-noisc power catio from (10.4-25) and

Finally, we determine
k amplitude of the transmitied

(10.4-24). As in Section 10.2, we let A be the pea
FM signal and let G, e the gain of the channel, so that

A = AGa (10.4-26)
Thus,
2 2.2 2
S\ _ 3G A K2 ) ""“‘X Ui (10.4-27)
N,/ vm Ao Wy

10.2-20) we find that both the discriminator und

On comparing (10.4-27) with {
formance when the received (input)

PLL forms of FM receiver have the same per
signal-lo-noise ratio is large.

ple of a practical PLL's transfer function let the

Example 10.4-1 As an exam
function with 3-dB bandwidth W, where

foop filter be a simplc low-pass
3%

b —
i) W, + jo

The function TH{w), from {10.4-13), becomes

|

) = —_—T 7N
moEEE
), 0,

i gipse
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Figure 10.4-3 | [(w)] for the loop of Example 10.4-1.

where the quantitics defined by
w, = (Kl‘kV vvl.)llz

L[
{=3 Kpky

are called the natural frequency and damping factor, respectively, of the loop.
Figure 10.4-3 illustrates how | H(w)| behaves with w/fw, for { as a parameter,
The curve for { = 1//2 is most flat in the sense that the largest number of
derivatives of | H(w)} arc zcroat @ = 0.

For{ = I/ﬁ and @, = Wy, the signal’s spectral extent, we have

4

W
H(w LR X
| Hw)] Wt o

The more cxact power in the noise term of (10.4-23) becomes

Ao Wi J“" w? dw A W3
= ) g =
mAXKE | W+t 2/ 24K

N0

after using (C-38). On com aring this resull with (10.4-25) we sce the noise in
the loop output is 3n/2\/2 = 3.33 times that of a broadband loop followed
by an abrupt-cutofT filter of bandwidth Wy,

e Ny

¢
t
b
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10.5 CHARACTERISTICS OF
RANDOM COMPUTER-TYPE WAVEFORM

As another example of the practical application of the theory of this book we
examine a waveform not unlike those encountered in binary computers. The
waveform is shown in Figure 10.5-1; it consists of a sequence of rectangular
pulses of durations T, having amplitudes that randomly may equal 4 or — 4.
Amplitudes 4 and —A are assumed to occur with equal probability and the
amplitude of any pulse interval is assumed to be statistically independent of the
amplitudes of all other intervals, The random process from which this type of
waveform is modeled as a sumple {unction is called a semirandom binary process
(sec also Problem 6-4); in the remainder of this section we shall examine the
deseription, power spectrum, and autocorrelation function of this process.

Process Description

The semirandom binary process X(¢) can be described by

X = Y A rect l"”,kn} (10.5-1)
A= -

where {4,} is a set of statistically independent random variables and rect () is
defined by (E-2). The A, satisly

k=0, 1, £2,... (10.5-2)

E[A] =0
) A k=
E[A, A,] = {0 ke Z: (10.5-3)

The truncated version of X(t) is needed in calculating power spectrum. We
truncate to a time interval 27 centered on ¢ = 0 that is a discrete multiple of 7,
according to

27T = (2K + )T, (10.5-4)
0
Ty
J— A
1 Il 1
) [0 ! 1
ST\ kY ¥ NTR

-A

Figure 10.5-1 Typical waveform of a semirandom binary random process.
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Thus, the truncated process X (¢} is

N L
N = Y A, rect |:{——-Iuﬁ] (10.5-3)

k=~ K b
Power Spectrum
We compute the power spectrum Syy(w) of X (1) by use of (7.1-11). The Fourier

transform of X {1), denoted by Xy{w), is

K
Xdw)=T, T A Sa(wTy/2e e
k=~
1y )
=T, Salwh/2) Y. A Aot (10.5-6)
ke =K

from (10.5-5) and pair S of Table L-1. Next,
I'.T | ‘Y'l'((')) Iz] _ 'l;‘ Si\z((l)'r,/z) i i’ L[A fl ]L'_ JO& = mdes Ty
T QK+ 1 Spaze "

AT, Sa*(wT,/2) (10.5-7)

Now because (10.5-7) does not depend on K, and therefore not on T through
(10.5-4), we have
E[} X 4{w)[*]

ST = AT, SaY(wT;/2) (10.5-8)

Syxlw) = lim

T-w

The bandwidth of this power spectrum at its —3-dB3 point is 0.44292n/1) =
0.4429,.

Autocorrelation Function

It follows from (10.5-1) through (10.5-3) that E[LX()X (1 + 1)] is zero unless both ¢
and £ 1 fall in the same pulse interval. The autocorrelation function is, there-
fore,
Ryalty 1+ 1) = ELN(N( 1))
{,42 (k= "yn < (tand 4+ 1) < (k -+ ‘AT,

(10.5-9)
) clsewhere

Thus, the process X (1) is not even wide-sense stationary since (10.5-9) depends on
absolute time f.

The time-averaged wutocorrelation function is readily obtained by inverse
Fourier transforming (10.5-8) according to (7.2-9). After using pair 7 of Table E-1
we obtuin

T t
Ryy(r) = lim ~—[T J Ryx(t, ¢ + 1) di = A tri <1—> (10.5-10)
.

Tw - b,
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The direct computation of Ryy(1) by time-averaging Ryex(t, t + 1) is possible, but
4 bit more complicated than the inverse transform procedure used here {see

Thomas, 1969, p. 107).

10.6 ENVELOPE AND PHASE OF A
SINUSOIDAL SIGNAL PLUS NOISE

Many practical prablems involve the probability density function of the cnvelope
of the sum of a sinusoidal signal and noise. A radar, for cxample, may be inter-
ested in determining if a short segment (pulsc) of a sinusoidal wavelorm is being
received at some time or if only hoise is being received. This problem is onc of
detection based on observing the received waveform's envelope; if the envelope is
large enough (becausc of the signal’s presence) the radar decides both the signal
and the noisc are present. We examine radar detection further in Section 10.7.

In this section we discuss probability densitics involved in describing the
cnvelope and phase of the sum of the sinusoidal signal and noisc.

Waveforms
Lt the signal be
s(t) = Aq cos{mqal + 0y) = Ag cos (Uy) cos (wo 1) — Ag sin (0,) sin (wq 1) (10.6-1)

where Aq. wp, and g are constants. We assume the noisc n(t) to be added to s(f)
is o sample function of a zero-mean, wide-scnse stationary gaussinn bandpass
process N{1) with power EIN¥()] = o*. FFrom (8.6-2), the sum can be writlen as
si) + N{1) = [Ag cos (0o) + X(1)] cos (g 1) = [Aq sin () + Y(1)] sin (wqot)
= R{f) cos [met + o] (10.6-2)

where N(1) and Y(1) are zero-mean, gaussian, lowpass Processcs having the same
powers ELX}0)] = E[Y}()] = E[N*(N] = o2, Other propertics of X{1) and Y(1)
are given in (8.6-7) through {8.6-19). The envelope and phase of the sum are R(1)
and ©(1), respectively. We may think of R(1) and O(t) as transformations of X(f)

and Y(‘r) as [ollows:
"R = TN, ¥) = {[Ao cos (0o) + X]* + [4o sin (0) + Y3?)1? (10.6-30)

A, sin(0g) + Y
o - N -t | Aesinel ® 10.6-31
O = TH(X, Y) = tan ‘:Ao on (00) & X] (10.6-3h)

fnverse transformations arc:
N=T{"R @)= R cos (@) — A, cos ) (10.6-4a)
y = T; R O) = R sin (@) — Ay sin (0g) (10.6-4h)
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The functional dependence on t has been suppressed in writing (10.6-3) and
{10.6-4) with the implied understanding that the quantitics X, Y. R, and © are
random variables defined from the respective processes at time L.

Probability Density of The Envelope

lfmm (8.6-15), processes X (1) and Y(1) are statistically independent {at the same
times 1) because they are gaussian and uncorrelated. The joint density of random
variables X and Y is, therefore,

¢ (x4 p)f 242

Se ol y) = 5 (10.6-5)

2no

From (5.4-4) the jacobian of the transformations (10.6-4) is readily found to
be R. We next apply (5.4-6) to obtain the joint density of random variables R
and ©:

‘ u(ryr 1
Srolr ) = Tag? P {-— 251 {rt — 2rd, cos (0 — Og) + A(’,)} (10.6-6)

The density of R alone is obtained by intcgrating over all values of ©:

2
Sl = J fr.olrs 0) d0
[v]

u(ryr —~(r14 A} 2al L A (0 =~ 0a)
r a r Ao cou (0 = 0a)al
S A o et 4o (10.6-7)

The integral is known to cqual the modificd Bessel function of order 7ero

| in
lo(f) = 5= J el et do (10.6-8)
0
Thus,
u(r rA
Sulr) = -0—2) r’n(ﬁ)e""”“””"’ (10.6-9)

which is known as the Rice probability density.

Equation (10.6-9) is our principal result; it is the density of the envelope R(f)
at any time ¢, Figure 10.6-1 illustrates the behavior of (10.6-9). For Ay,/o = 0, the
case of no signal, the density is Rayleigh. For Ag/o large the density becomes
gaussian. To show this last fact we note that

ef
I(f) = > 1 10.6-
ol 5 B (10.6-10)
so for rdqfo? large
N r -—(r—- A )1
Julr) = ulr) Y cxp[ > o ] (10.6-11)
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08 .

0.6

0.2

0 6

Figure 10.6-1 Probuability densities of the envelope of a sinusoidal signal (amplitude 4;) plus noise
(power o) for various ratios A,/o.

This h_mclion peaks for r near A,, and since A, » g, the most significant values
of r exist only neuar A, . Therefore, with r = A5 (10.6-11) becomes

e-(r -Ao)l/2e2

Julr) = (10.6-12)

2no?

which is a gaussian function with mean 4, and variance o2,
Although difficult to derive, the mean and variance of R as found from

(10.6-9) are known (Appendix F).

Probability Density of Phase

The density of the phuse © of (10.6-2) derives by integrating (10.6-6) over all
values of R. We shall leave the detailed steps for the reader us an =xercisc
(Problem 10-16). The procedure is to first complete the square in r in the expo-
nent, and, after u suitable variable chunge, integrate the sum of two terms. The
result becomes (Middleton, 1960, p. 417)

Sol0) = (1/2m) exp (= A3/20%)
. Aqg cos (0 — 0,) exp [—A?, sin? (0 — ()0):]

\/5;(, 201

F[Ms_o(o_—ﬂJ (10.6-13)
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Figure 10.6-2 Probability density function of the phase of the sum of u sinusoidal signal and gaussian
noise. Curves are plotied for u signal phase of U, = 3n/4.

where the function F(+) is given by (B-3). Figure 10.6-2 illustrates the behavior of
Jol0) for various values of Ay/a when 0, = 3n/4.

For noisc only, which is the case of Ag/o = 0, Figure 10.6-2 shows that the
density of ® is uniform on (0, 2n1). As Ag/o becomes large the density approaches
an impulse function tocated at the signal’s phase (at 0 = ). Thus,

im [ful0)] = 80 = 0,) (10.6-14)

Acle= o

(Problem 10-17).

10.7 RADAR DETECTION USING A SINGLE OBSERVATION

Radar can be used to detect the presence (and distance) of a ncarby object (called
the radar target). A representative problem might be to deteet the presence of an
aircralt approaching an airport. Here the airport’s radar radiates a pulse of radio
frequency (RF) energy. The pulsc propagates outward until it strikes the target
(aircruft), whereupon some of the energy is reflected back toward the radar. The
targel's presencs cun be detected at the radar simply by detecting the presence of
the reflected RF pulse. Once the received pulse is detected the delay between the
time of the radiated pulse and the received pulse is proportional to the target’s
distunce from the radar. After a sufficient time interval (called the pulse repetition
Srequency, or PRF, interval, chosen for the most distant detection of interest) the
radar transmits another RF pulse and the entire “ detection” process is repeated.

o
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g
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Reccived RT
pulse plus Envclope 14 +
noisc detector
(Envelope = R) -

W g(R)

W,
‘Threshotd

Figure 10.7-1 Simple radar detection network.

A straightforward implementation within the radar receiver to achicve detee-
tion is depicted in Figure 10.7-1. During any PRF interval noise is always being
received (mainly due to the padar's own sell-generated noise). A relected pulsc is
reccived with this noisc only when a target is present. The envelope delector pro-
duces an output W(r) that is some monotonic function g(+) of the envelope R(1) of
the received signal-plus-noise waveform. The first-order probability density func-
tion of R{r) was developed in the preceding Section 10.6. On the average R(1), and
therefore 1W(r), with a target present will be larger than R(t) when only noisc is
being reccived. A suitable detection logic comparces W(t) to a threshold Wy if
W{1) > W, the receiver deeides that a target is present; if W) < Wy it assumes
only noisc is being received. These tests amount (o determining when D >0 in
Figure 10.7-15 when D > 0 u target is dectared 1o be present.

On the average the detcetion logic is valid. On any onc PRIS interval,
however, it is possible for the receiver to make mistakes. For example, if no target
is truly present it may oceur that noisc could become large enough at some time
to make W(1) cxeced Wy and causc i false detection; this type of detection is
called a false alarm. The probability of falsc alarm, denoted by Pr,, is

P= [ Solw) dw (10.7-1)
JWy

where folw) is the probability density of W) given that there is no tarpel present.
Generally, a radar wants Py, to be small.

Another type of error oceurs when a target is actually present but noise is
such as to cancel its cllect during the signal's duration and foree W() < 1. The
radar usually is designed such that the probability of this event, called the prob-
ahility of a miss, i small: it equals one minus the detection probability, denoted
by Ry. given by

Py = J Li(w) dw (10.7-2)
wr

Here fi(w) is the probability density of W(1) when a targel is present.

In most radars P, and Pr, arc parameters of greatest importance. Wy is
usually chosen to give a prescribed value of Py,. P4 then depends on the ampli-
{ude of the targel's returned signal. In this section we shall develop cxpressions
for 17, and Py when the radar makes detection decisions based on a single obser-
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vation (l_lscs only one PRF interval). Our results can be extended to multiple
Ql)scrvxlllolls but the details are complicated and we only refer the reader to the
literature {Difranco and Rubin, 1968).

False Alarm Probability and Threshold
When there is no target only noisc is present al the input to the envelope detec-
tor. From (10.6-9) the density of the envelope of the noisc is

Julr) = %g! et (10.7-3)

yvhcrc o% is the power in the input noise. Because the detector characteristic ¢(R)
is assumed monatonic, there is an equivalent threshold Ry on R that is related to
W, by

Wr = g(Ry) (10.7-4)
Ry =g~ '(Wr) (10.7-5)
where g~ '(+) is the inverse function of g(-). We may then compute Py, from the

cnvelope as follows:

P = ‘[jo'fo(w) dw = [ff,(r) dr

¥ Jhy
T L ern2ar gy o o ReU2A
=), 7 e dr=c¢ (10.7-6)
Thus,
) l 1/2
Ry =42¢°In (YT)} (10.7-7)
and

, |\ e
Wr = g[{Za in <P_,,>} J (10.7-8)

where In (+) represents the natural logarithm,
Equation (10.7-8) gives the threshold Wi that is to be used to realize a speci-

ficd value of P,, when the noise power level is o at the detector’s input.

Example 10.7-1 A radar recciver uses a square-law envclope detector defined
by W = 3R% We find what threshold is required when noise power al the
detector's input is o = 0,025 W and P, = 10~ % is required. From (10.7-8)

Wp = 3[2(0.025) In (T(-)‘T".)] =207V

passorE

P A



o

304 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

Detection Probability
When a target signal is present the density of the received waveform's envelope is
given by (10.6-9). Again using the idea of an equivalent threshold Ry on the
envelope R we expand (10.7-2) to get
Py = J Jiw)ydw = | fylr) dr
Wy Ry

-

" r rA .
B J — 2 [0( T Je i A0S g
A © v

v

A3
d

(10.7-9)
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Figure 10.7-2 Radar detection prababilities for various false alarm probabilitics when detection is

based on a single observistion. LAdapted fram Burton (1964) with permission.]
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where

+

Qla, 1) = J N RCTAR LNTN (10.7-10)
[

is called Marcum's Q-function (Marcum, 1950, 1960). Figure 10.7-2 illustrates Py
for virrious vitlues of A3/20 with £, ax a parameter. Generally, the smaller 17 s
required to be the Jarger is the necessary signal strength to achieve a given vilue
of Py,

When Py, is small while Py is relatively farge so that the threshold 1V} is lurge
and signal strength is relatively large, the approximation of (10.6-12) cun be used

in (10.7-9) 10 obtain
Py F[ﬁ - \/2 In <L)—] {10.7-11)
. an -

where () is given by (B-3).

Example 10,7-2 We find the value of P, in a receiver having Py, = 107"
when the received signal-to-noisc power ratio at the detector’s input is
16.0 dB. Here 43/20% = 39.811 (16 dB). Thus, (Ag/0) — /2 In (1/P;,) = 2.137.
FFrom Table B-1 and (10.7-11), Py & FQ2.137) = 0.9837 or 98.37%, which is in
agreement with Figure 10.7-2.

PROBLEMS

10-1 Show that {a) the time-averaged awtocorrclation function of S (1), as given
by (10.1-2) s

Rantt) == lotd 10 Byx(0)] cos (g 1)
il X(1) is w zero-mean process, and (b) the power spectrum is
!
{

y T

A e . .
S = my) b S b)) l/||""',\x\(“' ) 1Sy by

Sanfen) =+ ,
where Sy y(w) is the power spectrum of X(1).

10-2 Define transmitter efliciency 1y in an amplitudg modulation communica-
tion system as the ratio of transmitted power due to the message to the totul
power. For a zero-mean stitionary rundom message show that

Han = Rexl®) _ _ [ o Syxlw) dw _ X
IaM = T Rogl0) 2042 + 2., Sypl@) do 42 4 X30)
o+ X5

=~

where Ry (1) and Syyplw) are the autocorrelation function and power spectrum,
respectively, of the message X(t).

taidh



P

s o

e

Ei: ] AROER LT -
TR ety sy

——
T
et

iR

——
e

306 PROBAMLITY, RANDOM VARIANLES, AND RANDOM SIGNAL PRINCIPLES

10-3 Deline crest factor K¢, fora zero-mean, bounded, random signal by

K2 = | X() 12/ X0

If no overmodulation is to oceur, such that } X(0) s
signhal of an amplitude modulation system, show that the transm

(Problem 10-2) is

< Ag in the transmitted
itter cfliciency

|
Nam S T T
Iam =771 K,
What is the maximum cfficicncy for a mcssage X(1) = A, cos (wn ! + ®,), where
A, and o, are constants while @, is a random variable uniform on (0, 2n)?
10-4 Use (10.1-3) (10.1-4), and (10.1-14) to show that the input sign:d-lu-noi.\'c

power ratio at the envelope detector of Figure 10.1-1is

(g_) SR _ nGALAG YA
Ni/am  NID) A0 Weee

o show that (10.0-15) ean he wrilten in the form

(), (5)
Nﬂ AM AM NI AM

where 54y is defined in Problem 10-2.
10-5 1n an AM broadcast system the total average (ransmitted power is | kW.
The channcl gain is Gy = 3\/5(10"‘). Avcrage noisc power at the cnvelope
detector's input is 105 W and the output signal-to-noisc power! ratio of the
receiver is 180 (or 22.55 dB).
() What is the average signal power al the input to the envelope detector?
(h) Find (S/Ndan- '
(¢) What is the transmitter’s cficiency?
(Hint: Use results of Problem 10-1)
10-6 When the messige in an FM system is a sinusoid, such as x() = A, cos
(w,, 1) where A, >0 and @, arc constants, modulation index P is defined by
flen = A/,
(@) Write an cxpression
waveform in terms of fley .
(h). What is the approx
Aw is large relative to 7
(¢) For the specilic wavcform x(1) = 0.1 cos (10%), what arc By and the
teansmitter’s constant Ky if the approximate bandwidth is to be 200 kHz?

he autocorrelation function of Seal(n, as given by
ion in

Use this resultt

for the instantancous frequency (rad/s) of the I'M

imate bandwidth of the FM signal in terms of frw if

10-7 Find an expression for
(10.2-1). when X{n) is a gaussian, zero-mean process. Formulate the cxpress

terms of the corrclation coefficient and variance of the process

() = kiw J X(1) dt
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[.Hin!: Note that the expectation involving X(1) leads to a characteristic
function.]
10-8 Il} an FM syslcTn the transmitted signal has 10 kW of average power and a
bz\nd}V:dlh of approximately 150 kHz when a random message with a crest factor
of fi(ls uscd (Problem 10-3). The signal passes over a channel for which G, =
1075 and A o/2 = 5(107'%)/3. -
(o) I_de the signal and noisc average powcers and the signal-to-noise ratio at
the receiver's input.
.(b) What is‘lhc message's spectral extent if the output signal-to-noisc power
ratio of the receiver is found to be 25,0007
10-9 Let M, (m) = K W /(W + jw) and H,{w) = Hjw in (10.3-3) where K,>0
and 1, > 0 arc constants. l
(a) Arc there any values of K, and/or 1, that will make Tig
oA . / . that will make the loap of Figure
[ (b1t w, = 200 and K =_40 find the loop's output noisc power if white noisc
of power d.cnsnly Nof2 = 107* W/Hz is applied at the input. ([fint: Usc the inte-
gral given in Probhlem 9-40.)
10-10 Show that the transfer function of the control system of Figure 10.3-1 is
the same as the Wiener filter of (9.2-20) if

l’l((l)) = [i‘-“.((_')) C’l""'
Synlm)
and
Hy(w) = e~/

*10-11 Show that the sum of an FM w i i
7 aveform plus noise a -
can be written in the form P s given by (10419

R(t) cos [wot + O + Opult) + 0xN]

where

Opal) = King un) di

and
R(1) = C{N.A) + Ay cos (0o + Op(0]}" + (N0 + A;sin [0 + 0ry (0]}
N (1) cos [0, + Opy(0)] = N(1) sin [0 + Orult)]

Al + N‘(l) cos [00 + OFM({)J + N,(f) sin [00 + OFM(()]}

* . .
10-12 Ass.umc the bandpass noise N(1) in Problem 10-11 is wide-sensc stationary
i\lnd gaussian and note that if [ A,] > IN(0)} and | 4, > | N ()] most of the time
ien ' ‘

Ou(1) = tan™! {

N0
0ut) =4 = cos [00+0,.-..m]—ﬁ'/‘—1(i’sin [0 + Opu(0)]
. i

S TR
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{a) Show that the autocorrelation function of the process ©y(t), for which
0,41 is a sample function, is

t+e
Rguorlty 1 + 1) = A—li RNrN‘(r)E[cos {k,.-,,, J X&) d{}:|
i t

to RN,N,mE{sin {km f X0 dcﬂ
{ t

where Ry, y,(1) and Ry, y (7} are the correlation functions of N(f) and N (1), and
the expectations are with respect to the message process X(f) assumed statistically
independent of the noises. (flint; Use the results of Section 8.6.)

() If noises N () and N,(1) are broadband relative to the FM signal, justily
that

I
Rgpoplti t + 1) = yE Ryn (1) = Rg,e,(T)
i

(¢) Il the message process varics slowly enough for values of T that are impor-
tant to Ry, u,(7) such that

t+e
Ry J X&) dE = kg Xt)e

is valid, show that the expression of part (a) reduces (o

—atkl,T?
[_'X?_A] RN,N,(T)

it X(1) is a zero-mean, wide-sense stationary gaussian message of power a%. (Ilinf:
Make use of characteristic functions.)
10-13 In Example 104-1 let { = ', instead of l/ﬁ and recompute the loop's
output noise power N,. Comparc the result with that of (10.4-25). Is there any
improvement over the case where { = l/ﬁ? (H1int: Make usc of the integral
given in Problem 9-40.)
10-14 Assume white noise is added to an FM signal and the sum is applied to a
phase-locked loop for message recovery. Thus, 8y y (w) = A7 in (10.4-23),

{a) If

I
Rgpanlli t + 1) = 1 cxp

W, Wy(W, + jew)
ll = ] J 2 ,
) = S oW, + @)

where W, W,, and W, are positive constants, find an expression for the power
contained in the noise part of (10.4-23),

(b) Assume the loop is designed so that Wy = 2wy, Wy = wy/5, and W, =
w}/SK, where K = Kk, and w, is called the loop’s crossover frequency (rad/s), it
is the frequency where | KH (w)/jw]| = 1. Evaluate the result found in part («)
when wy equals the message’s spectral extent Wy,

s oy

e gy s

LI
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(¢) I K is very large, to what docs the eviduation of part (b) approach?
[Hint: Use the known integral

o (bow* = byw? + by) dew
ly= 2n J,w adw® + (@} = 2aga)w? + (a2 = 2,050 + a}
_agby —ay by —(aga,b,/u;)
- 2ag{ay ay — ayay)

where aq, ay, a3, a3, bo, by, and b, are constants and ayA* + a,A% + a3 2 + ay
has no roots in the lower half-plane when A = w + jo (Thomuas, 1969, p. 249).]
10-15 A sample function of a semirandom binary process is to be passed through
a lowpass filter with transfer function [l{w) = W, /(W, + jw) where 1 is its 3-dB3
bandwidth. If the rise and fall times of the pulses in the outpul waveform arc not
to cxceed 5% of the pulse duration 7, what minimum value of 1Y, is required?
(Hint: Assume the input wivelorm has been at level — oA Tor many pulse intervals
and suddenly makes a transition to level A; determine rise time as thal required
for the output to rise from — A to 0.94.)

*10-16 Carry out the steps suggested in the text and show that (10.6-13) derives
from (10.6-6).

0-17 1T Ay o in (10.6-13) show that (10,6-14) is (rue,
10-18 A radar recciver uses a tincar envelope detector where 1W = R Find an
expression for false alarm probability £ in terms of 1V, the threshold voltage
level.
10-19 Work Problem 10-18 for a square-law detector defined by W = KR?,
where K > 0 is a constant.
10-20 A radar uses a linear envelope detector defined by W = R/4. The threshold
voltage is W, = 0.7 volt, Mcasurements show that 7', = 4(10 7)., What is the
noise power al the envelope detector’s input?
10-21 Work Problem 1020 for o square-law  detector with  characteristic
W = RY/4,
10-22 False alarm probability is 107 in a radar that must have a detection
probability of 0.9901, When target is present what signal-to-noise power ratio is
necessary at the envelope detector's input? [{ine: Assume (10.7-11) applies.]

*10-23 A radar receiver as shown in Figure 10.7-1 uses a squarc-law detector
defined by W = KR? where K > Ois a constant. Find an expression for the prob-
ability density of W, i

*10-24 A radar receiver uses a binary detection logic bused on observing N PRF
intervals (multiple observations). I the observations in the N intervals e sta-
tistically independent and the detection and false alarm probabilities on any one
observation arc Py, and Pr,, respectively, find Py and P, that correspond to un
overall detection logic based on oblaining ut least n detections in N inlervals,
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i A simpler form of (A-1) is often applicable to many practical situations. If ;
3 X, = —00, X; = 00, and ¢(x) is arbitrary cxcept that it is continuous at x = Xg,
2 APPENDIX then
liﬁ . J BX)6(x = Xo) dx = (o) (A-2) g
b 2 FUNCTION o :
REVI EW OF THE IMPU LSE U A uscful fact that is casily obtained from (A-1) is 8 5

or, equivalently
du(x)

dx

. , "B
Iﬁ . J 8(E — xg) d& = u(x — Xq) (A-3) $

—
rivstvey

= §(x) (A-4)

where 1{(x) is the unit-step function defined by

- | 0<wx A-S
H(x) = 0 x<0 (A-5)

L
HIUBA
e wiet

The impulse function can be generalized o N-dimensional space {Korn and
Korn, 1961, p. 745). If we assume a carlesian coordinate system with axes {y, ¢2,
..., &y, and a function #(&y, €10 .00 &4 that is continuous at the point (¢, = xy,

2= Xg, ..., &y = Xy), then an N-dimensional impulse function 85\, &3, ..., En) is
defined by

[
DATF &
mm e Do A

i
gt

i B . o @
ol : is k Ise function
"o There are scveral ways of defining what is known as the impuls - J’ .[ E &y ENBE =X &y = Xay ey Sy — X dE. - d
'?‘;u (Papoulis, 1962 denoted 8(x). The most mathematically soum.l approach is to . _m‘f’( né2 Enos, 82— X2 $n — xp) &, En
3: define S(x) on the basis of its integral property. If p(x) is any arbitrary fuxlcnon of B Xgs oo ) (A-6) ;L,
¥ of x, < X, are two values of X and xo is the point of “oceurience of the - . o g
}. 'il;\p\lll.\'C. then S(x) satisfics (Korn And Korn, 1961, p. 742) Of.spccml interest is the two-dimensional case; it is known that 8(&,, &,) can be y
B . ) written as (Bracewell, 1965, p. 85) :
1 0 Xp<Xo OF  No<X ,
1 1 8(Ey, €2) = 8(51)3(¢5) (A-T)
l‘ ji 3 [h(xa) + dl(xa)) Xy €Xo <X so (A-6) becomes ;
;' Bl A . (A-1) " L]
§ Py —~ No) dy = _‘_ Bxd) No = X, J J‘ PEL E)H(E — xSy ~ Xp) dEy dEy = P(xyix3) (A-8)
l : 2 e cw Jow
it
(i | By using (A-7) with an appropriate choice of $(4;, £&,) we readily find that,
i. z Hlxa) Xp = N3 for N = 2, {A-6) can be written as H
,’ \ .
: : fo eve O 3
'%i 1t can he shown, using (A-1), that §(x) bchaves as a .fun?‘non l\;lvm.g even J J S(E, = Xo, &3 — yo) dE d&; i
% symmetry, an arcd of unity, a vanishingly amall “duration,” and an inlinite wm o ‘
' N B
.y C e (Pecbles, 1976, pp. 34-35). y x |
‘;-, amplitude ™ (Pecbie o = | 8 o dEy | (&~ x0) 4, i
b -
n
Ei § The function is also assumed to have hounded ariation in the neighborhood of x = X, (¢ foot- = u(x — xou(y — Yo) (A-9)
i note, page 321
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10wy = xpdu(y — yo) is interpreted as a two-dimensional unit-step function
1{X — Xy, ¥ = Yo) We have

Pulx — X0,y = yo) _

ax 0y =3(x — Xg, ¥ =~ Yo) (A-10)

where
3(x = Xg, ¥ = ya) = 8(x — x6)0(y — yo) (A-11)
H(x = Xg, y = yo) = u(x — xo)u(y — yo) (A-12)

e SN E Y
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APPENDIX

B
GAUSSIAN DISTRIBUTION FUNCTION

The general gaussian or normal probability density and distribution functions
are:

Jux)y = 2,10{, e 2ay? (B-1)
Fylx) = j " /() de = r<1‘—;i> | (B-2)
S "

where — w0 < ay < 00, 0 < oy are constants and F(-) is the “normalized ™ dis-
tribution function for ay = 0 and oy = 1; that is

B |
Flx) = s S B-3
{x) Jw ﬁ;t dg (B-3)

F(x) is listed in the following table. When ay 32 0 and gy # 1, Fy(x) can be found
from IF(x) by use of (B-2). For negative values of x, usc

F(=x)= 1= F(x) (B-4)
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‘T'able B-1

PRINCHLES

Values of Fx) for 0 € x < 389 in steps of 0.01

x 0 m o YR 06 o 08 o

o0 S0 sM0 L0800 8120 5160 SieoS230 27 539818y
01 LSS SR SII% SSITSSST SS90 5606 S6D3 ST 578)
03 793 S832  .SK71 5910 5048 SURT G026 6064 6103 6148
01 6179 6217 6255 6293 61 6368 6406 6443 G480 6517
04 6554 6591 6628 6664 6700 6736 6772 GROB 6844 6879
08 6915 6050 .6ORS (7019 7054 08K 7123 157 190 7224
06 7157 7291 134 78T 7389 7422 1434 7486 7517 7549
07 7580 7611 7642 7673 7704 7734 7764 7794 7823 JIES2
0.8 .I881  .1910 7939 7967 .7995 8023 8051 8078 8106 RIRR)
09 8159 8186 .8212 8238 8264 .R289 8315 8340 8365 8189
1.0 841} B4R .R40 8485 8508 .8531 8554 8571 8599 8621
L1 864) 8665 8686 &I0R 8729 8149 8770 R790 8810 8RO
12 8849 .BR69 RERS  BY0T  R925  B94d 8962 R980 8997 9015
L1 oM o049 9066 9082 9009 9lis 913t 9147 9162 9177
L4 9197 907 0222 9236 9251 925 9219 9292 9306 9M9
LS 0332  0MS 9357 9370 9382 9394 9406 94IR 9429 9441
6 9462 9163 0474 9484 9495 9508 9515 9525 9535 0848
17 9¢d 9s64 957 95k2  9sv1 9599 9608 9616 9625 96N
% OGi1 0649 0656 9664 9671 9678 96RG 9691 9699 9706
Lo 9T 9719 9726 9732 973 9744 9750 9736 9761 9767
S0 9772 9778 978} 978 9793 979R 9803 9R08 9812 917
51 9821 826 9830 983 9818 9842 9846 9RSO 9uS4  9BST
53 NG NSRG4 9RGS  RTL9K75 9RTR . ORRI 9884 98RT  .9%90
21 9wl 9R96  9R9§ 9901 9904 9906 .99 Wotl 99t 9906
54 991% 9920 w922 9928 9927 om0 991 09932 993 9936
55 0918 9940 9941 9943 9945 9946 994R 9949 9951 9952
S 90%h  uSS 9986 9987 99se 9960 9961 9962 9961 9964
17 0065 9966 9967 9968 9969 9970 9971 9972 97y 994
a8 9974 9975 9976 9917 9977 W98 9979 9979 9980 99Kl
2.9 9981 9982 9982 99K} .99R4 9984 9985 9985 9986 9986
10 9087 9987 9987 9URS 90K 9989 9989 9989 9990 9990
L1 w000 9990 9991 9991 9992 9992 9992 9992 9993 .999)
Yo ogumd 9993 9994 9994 999 U 9ou4 9995 9995 9998
11 0005 G005 9996 096 9996 9996 9996 9996 9996 9997
.“,‘ .l)l]l)', .()\)07 .i)‘)()', .\)l)|)7 'I)I)I)" .l)\)l)7 .l)l)l)7 .l)‘)()" '()()I)R ‘I)I’l)R
15 9998  SU9R 999 9998 9998 999K 9998 9998 9998 999%
16 9998 9999 9999 9999 9999 9999 9999 9999  .9999 9999
V70009 9999 (9999 9999 9999 9999 9999 9999 9999 9999
VR O9000 9999 9999 9999 9999 999 9999 10000 1O0D0  LOXNG
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APPENDIX

C
'USEFUL MATHEMATICAL QUANTITIES

TRIGONOMETRIC IDENTITIES

cos (x £ y) = cos (x) cos () F sin (x) sin () (C-1)
sin (x £ ) = sin (x] cos () 3:-cos (x) sin (y) (C-2)
cos (.\' + g) = Tsin (x) (C-3)
sin (x + g) = -+cos (x) (C-4)
cos (2x) = cos? (x) — sin? (x) (C-S)v
sin (2x) = 2 sin (x) cos (x) (C-6)
2cos (x)= el 479 (C-7)
2fsin(x)=e¢ —e” /" (C-8)
2 cos (x) cos (y) = cos (x — ) + cos (x + y) (C-9)
2 sin (x) sin () = cos (x — y) — cos (x + ¥) (C-10)
2 sin (x) cos (y) = sin (x — y‘) + sin (x + ) (C-11)
2 cos? (x) = | + cos (2x) (C-12)
2 sin? (x) = | — cos (2x) (C-13)
4 cos® {x) = 3 cos (x} + cos (3x) (C-14)
RIS
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4 sin® (x) = 3 sin (x) — sin (3x)

8 cos? (x) = 3 -+ 4 cos (2x) + cos (4x)

8sin*(x)=3—-4 ;:os (2x) + cos (4x)
A cos (x) — B sin (x) = R cos (x + 0)

where
R=./4*+ B?

0 = tan™! (B/A)
A = R cos (0)
B =R sin (0)

INDEFINITE INTEGRALS
Rational Algebraic Functions

(a 4 bx)"*!
b{n + 1)

dx Ill]l - b |
=~ r ;DX
a+bx b ¢

dx _ - [ <
(a+bx)" (n— Dbla + bx)"™! "

O<n

j(u + bx)" dx =

J‘ dx _ 2 tan™* (M) b? < 4ac
c+bx+axt  [4ge — b2 J4ac — b?

1 2ux + b — /b* — dac )
= In b* > 4ac
Jbt —dac  |2ax + b+ /bt~ dac
-2
= b2 =4
2ux + b ae
x dx I b dx
Y ntax + bx ¢~ — | ————e
J‘c+bx+u,\'2 2a nlaxt 4 bx 4 cl 2(1_].c-f-b>c-§-ax2
[ dx 1 tan ! bx
Jal+ 00 ab a
[ xdx |
Jase =§ln (a? + x?)
[ dx —x—atn (T
at +xt ’

(C-15)
(C-16)
(C-17)
(C-18)

(C-19a)
(C-19h)
(C-19¢)
(C-19d)

(C-20)

(C-21)

(C-22)

(C-23)

(C-24)

dx N | \
ST, LT
(a4 X1 2aiat 4+ nt) 2!

USEFUL MATUHEMA FICAL QUANTITIES 31T

' <:‘:> (C-28)
o X

[ xdy -1

z. : 22 = 2 ) (C-29)
J(a? 4 xF) 2a* 4 x%)
[ X dx —-X 1 X

! = +—tan"' = C-30
J@ + 3 At +xY) 0 2a a (C-30)

dx X x 3 X
T = — — = "' [ = v C-3n

J @+ 33 da¥a? + x50  8ata? + &) 8a? (u) .
r x¥dy —x X ! X

. = 3 - — tan~ ' = c-n
J @ T a0 R ) LT (-42)
[~y Wi Sx

(a? 4 x3)?} TR LA TR

~

3 X
4= tan" ! = [QERR
' 8u " (u) ( )

2 = 2 2 +
(@ + xY)* 7 baa® + XY’ 24a’(a?

o

.
Nty R ¢

[P [ ———— .I, ..—-—-—‘_..-‘_--
S A N 0t + XY 24aia’ +

" -4

xtdx a?

dx X Sx + 3x + b an-t [ X
h] 2 ) ; , -
4 x0T 1660(@* + XY 16a” u

(C-34)

' X \ | ( V[N
SRS L P N
X9 16atat + XY 16a? )

(C-35)

_ x Tx
J @+ x)* 6+ x3)Y 24’ + x

[ dx X4 axy2 +

+ o + L (2
N 16a3(a? + X3 16d° ‘“ a
(C-306)
a? a.\'\/a

|
= In (
Joat+x 4(13\/’3 X2 —ax/2 +

.
xtdx

X ax /24 a?

! -1 .
(12> * 203./2 wn <“2 - -\'2> (€37

2
“
N

Trigonometric Functions

Jcos (x) dx = sin (x)

J'x cos (x) dx = cos (x) + x sin (x)

| 1
= — ] + tan ™! - -38
Joat et 4a /2 " <.\" —axy/2 + a’) 2./2 " <“1 - \> (38

(C-39)

(C-40)
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NEcos () dy = 28 cos (X) 4+ (v} = 2) sin (¥)
sin(n) dy ss o cos (W)

vosin (v dyocesin (v) v eos (X))

o sin () dy = 2 sin () - (v - ) eos (x)

J
|
|
:

Exponential Functions

' Sx
" dx = — a real or complex
a
R
ax X N l
xe*dx = " = - — a real or complex
J a a .
¢ 2
2 2x 2
XWdy =" — -+ a rcal or complex
J a at o
[ ot 6 6
L ux L e - _— l
N dy = ¢ -7+ -3 a rcal or complex
N ‘ a at d
r o
¢ sin (x) dx = —— [a sin (x) — cos (x)]
J at+ 1
* SN

et cos (V) dy = pEa [a cos (x) - sin (v)]
<

DEFINITE INTEGRALS

J e PRy = Mol et a >
a
-

F\" ’ -
e % dy = ﬁ/ti
JO

ffor.

" sin (.\‘)[ -

n
Sa(x) dy = J’ —_—dx =
b b X 2

s

Sal () dx =n/2

JO

(C-41)

(C-42)

(C-4%)

(C-44)

(C-45)

(C-46)

(C-47)

(C-48)

(C-49)

(C-50)

(C-51)

(C-52)

(C-53)

(C-54)

FINITE SERIES

N
IOES)
ns 2

% W e NN + 12N + 1)
n/:l 6
N NN !
[ R L
n?:‘l " 4
N . .\,Nl o |
:n;) v = X -1
: N'/ n N~ N
HBO)I!(N-n)!'\.y =+
N .
T eHon o sin [N + DA/2) o+ ovaran
=0 sin (¢/2)
N N N N!?
= —_— ¥
";,(n) ,,g’o nt(N — n)! 2

USEFUL MATIHEMATICAL QUANTITIES 319

(C-55)

(C-56)

(C-57)

(C-58)

(C-59)

(C-60)

(C-61)
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D
REVIEW OF FOURIER TRANSFORMS

The Fourier transformt or spectrum X(w) of a signal x(¢) is given by

.. [ -]
X{w) = ‘[ x(t)e™ I dt (D-1)
The inverse Fourier transform allows the recovery of x(t) from its spectrum X(w).
It is given by

X)) = —l— J X(w)e!" dw (D-2)
2N jo
Together, (D-1) and (D-2) form a Fourier transform pair. Extensive tables of
transform pairs exist (Campbell and Foster, 1948). A transform pair is often sym-
bolized by use of a double-ended arrow:

1)+ X (w) (D-3)

The 1Fourier transform X(w) is valid for real or complex signals, and, in
general, is o complex function of w even for real signals x(¢). X(w) describes the
relative complex voltages (amplitudes and phases) as a function of @ that are
present in a waveform x(1). From (D-1), we sec that the unit of X{w) is volts por
hertz if x(t) is a voltage-lime waveform. Thus, X(w) can be considered as the
density of voltage in x(t) as a function of angular frequency .

t Named for the great French mathematician and physicist Baron Jean Baptiste Joseph Fouricr
(1768-1830).
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CXISTENCE

Conditions (hat guarantee the existence of the Fourier transform of a waveform
Xy are;

1. that x(r) be bounded with at most a linite number of maxima and minima and
a finite number of discontinuities in any finite time interval,t and

2, Jw Ix(0)] dt < 0 3 (D-4)

-m .

These conditions are only sufficienr Tor X(w) to exist; they are not necessary,
Many signals of practical interest do not satisfy these conditions but do have
transforms, Examples arc: the unit-impulse function &(r) that has the transform
X(w) = 1; and the unit-step function u(r), defined by w{t) =1 for 0 <t and
u(t) = 0 for ¢ < 0, that has the transform X(w) = nd(w) + (1/jw).

PROPERTIES

A number of extremely useful propertics of Fourier trunsforms may be stated, We
give these without proofs since the prools may readily be found in the literature
(Peebles, 1976, p. 29; Papoulis, 1962, p. 14). In these properties, we assume the
Fourier transform of some signal x(1) is X(w), while the notation X, (w) implies
the transform of a signal N, () withn=1,2,..., N,

Linearity

For constants a, (that may be complex):

N N .
x( =Y a,x(0e L X, ()= Xw) (D-5)
nxj n=y
Time and Frequency Shifting
With 1, and o, real constants:
X{t = to) e+ X(w)e e (D-6)
(el o X(w — wy) (1>-7)

t These are known as the Dirichlet conditions, after the German mathemaltician Peter Gustov
Lejeune Dirichlet (1805-1859). A signal satislying them is said to have bounded variaion {Thomas,
1969, p. 579). '
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Scaling

With a a rcal constant:

| w
x{at) = T2l X<;>

X(1) & 2nx(—w)

Duality

Differentiation
d"x(1)
i

= (jw)" X(w)

" X ()

dw”

(=jO)"5(0) ¢

Integration
! OV X(w)
J_ x(1) dr & 2 X (0)8(w) + _—_jm
() — j X g

Conjugation
N1 e AN w)

N 1) e X )

Convolution
X{) = Jm xyn)x,(t = 1) dre X (o)X j() = X(w)
NOES .\',(l).\'z(I)Hﬁ J N (EX 3w = &) dé = X(w)
Correlation

A() = J"" SO A 1) deer X)X o) = X(o)

N

X = .\-.'(z).\-z(r)'-*il; J XHEX (S + @) d = X(w)

(D-8)

(1D-9)

(D-10)

(D-11)

(D-12)

(D-13)

(1-14)
(D-15)

(DD-16)

CD-17)

(1-18)

(D-19)
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Parseval’st Theorem

o l o
j XF(r)xy(1) d1 = — f XHw)X 3() dw {D-20)
o n oo
An alternative form occurs when x, (1) = x,{1) = x(1):

f [x(O)? di = ;1; [ ' | X(w)|? den (N-21)

"

MULTIDIMENSIONAL FOURIER TRANSFORMS

The Fourier transform X(w,, w;) of a function x(t,, t,) of two “time " variables ¢,
and t, is defined as the iterated double transform. Upon Fourier transforming
X(ty, 13) first with respect to t, we have

4]
: X(wy, 1) = J Xty ty)e ™t dr, (D-22)
-m
X(w,, wy) results from Fourier transformation of X(w,, f,) with respect to f,:
' o
X(wy, wy) = J X(my, ty)e ™ gy, (D-23)
- o
or
,\'(m,. ) = J J' N e Jorgty - Jimpry (/,‘ (1,2 ()-24)

By usc of similar logic, the two-dimensional inverse Fourier transform is

1 m [
Xt ) =5 f j Xy, @)oo o, oy, (D-25)
- -om

The extension of the above proccdures to an N-dimensional function is
direct; we obtain the Fourier transform pair ’

X(w,....,w,ﬁ:j j XLy, cony el = donn gy gy (D-26)
-® -

I L] o
Ny ooiity) = (2_71)’7 j j X(y ooy gledntn bt domn gy o dwy (1D227)
-a -

t Named for M. A. Parseval.

e

e A E—————n
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PROBLEMS
D-! Find the Fourier transform of a pulse x(¢) defincd by
) = {,4 ~1/2<1<1/2
0 clsewhere

where © > 0 and 4 are real constants,
D-2 Ifa signal () is the product of x(t) of Problem D-1 with a cosine wave, thit
is, if
${1) = x(1) cos (wot + 0,)
where w, and 0, are real constants, what is the Fourier transform of y(1)?
D-3 Find the Fourier transform of the waveform

A(l-—u> jtjs
x([): T

0 lt]>r

where v > 0 and A are real constants.
D-4 By direct use of (D-1), find the Fourier transform of the waveform

__ JA cos (m1/27) [t} <t
x(‘)—{O lef>1

where 1 > 0 and A are real constants.
D-5 The waveform of Problem D-4 can be written in the form

x(f) = A rect (¢/21) cos (ne/21)
where rect (1/21) is defined by (E-2). By using (D-19), find the Fourier transform of

©ox(1). .

D-6 The complex form of the Fourier series of an arbitrary periodic signal y(f) of
period T is

y(l) = Z cn L,,IAIIIIT
n= -

where the Fourier series coefficients are given by

1 T2

Co== yt)e™ 2T (gt

T -T2
forn=0, +1, +2,.... Show that the Fourier transform of this arbitrary period-
ic signal is

i 2
Yw =21 ¥ C, 6(w - "—;5)

where () is the unit-impulse function of Appendix A.

REVIEW OF FOLIGER TRANSFORMS A28

*1)-7 Prove the FFourier (ransform pair
|
A 2n & nn
oS =nTyer > b<<u -
ne - I e 1

where 1" > 0 is 1 real constant and 8(+) is the impulse function of Appendix A.
{(int: Represent the time function by a complex IFouricr series as in Problem
D-6, find the Fourier cocfficients of the series, and then Fouricr-transform the
series).

*-8 From the expression in Problem D-7, it is readily shown that

hall o 2n & nn
=jnwl _ T — e
E e =7 > «5((0 T )

nE - w n® =<

Use this result to prove that the periodic signal

@

W= T xt=nT)

nE =~ w

comprised of repetitions in each period T of a basic waveform x(¢), has the
Fourier transform Y(w) given by

n & 2 2
o) = 2 >:\<_r_>a( - T)
where X{w) is the Fouricr transform of x(¢). By using the result of Problem D-6,

we see that the coeflicient €, of the Fourier series of y(1) is related to the Fourier
transform of its component wavelorm x(r) by

! n2n
C, == X{—
n 'I‘ < rr >

D-9 Find the Fourier transform of the wavelform
x(t) = u()ele

where af -} is the unitstep function of (A-5) and g is a real constant,
D-10 Find the Fourier transform of a sequence of 2N + 1 pulses of the form
given in Problem D-1, where N =0, 1, 2,.... That is, find the transform of

N
A= T xle—nT)
nz =N
with T > 0 a real constant and t < T.
D-11 Determine the Fourier transform of the signal

Ae? O<t<r
xX(1) =
0 cisewhere

where t > 0 and 4 are real constants,
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D-12 Show that the.inverse Fourier transform of the function

. K -W<w< W
X(w) =
0 clsewhere

x(t) = (KW/m) Sa (W1)
where W > 0 and K are repl constants and Sa (+) is the sampling function defincd

by (15-3).
D-13 The tansfer function H{w) of alowpass liller can be approximated by

N
Ko+2 ¥ K,cos (nnw/W) —W<w< WV
Hw) = nui

0 clsewhere
Here IV > 0. Ko, K. ..o Ky are real constants and N 2 0 s an integer. FFind the
inverse [ourier transformy i(r) of Hm) which is the impulse response of the
network, in teems of sampling functions (sce Problem 13-12).
D-14 Let &) have the Fourier transform N{(w). Find the transforms of the fol-
Jowing functions in terms of N(m):

(a) (1t = 2) exp (iwgy i) {h) i\l(’—‘) exp [jmy(t — ) () x(r — 3) — Ix(20)

Here g is it real constant.
D-15 If x(r)+«» X(m), find the inverse transforms of the following functions in
terms of x{1):

. . . d X {w) , .
() X)X (e 4 y) (h) N -+ ) - {7;)—— () N (~w) 1 X(w)

Here * represents complex conjugation and m,, is a real constant,

D-16 A voltage \{f) exisls across a resistor of resistance R, Show that the real

energy £ expended in the resistance is
|

K=
2R

[ | X} d

where N(m) is the Fourier transform of x(1).
D-17 His known thal

2a

M) =e M 5 = X(w)
a4

where 2 > 0is a real constant, Find the Fourier transform Y(m) of
8

() = —s
30 L
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D-18 Us_c (h.c definition (A-2) of an impulse function to prove that the impulse
has the Fourier transform 1. That is, show that ‘

MO
D-19 By use of various Fouri i
- y rious Fourier transform properties, show that the following are
(@) A — A(2m)6(w) where A is a constant
(h) cos (wy t) = n[8(w — we) + 3w + wy)] where ), is a real constanl

13-20 Use the facts that
|

u(t)e ™
o+ jo

and

\ cos (wg 1) &= n[(w — wq) + Hw + wy)]

where a > 0 and mg are real constants, o prove that

&+ jo

u(t)e ™ cos (wg 1) & — 0
(@ + wg — w?) + j(2aw)

1-21 Prove (D-6) and (D-10).
*D-22 Prove (D-12). [Hint: Use (D-16).]
D-23 Prave (D-18).
D-24 Find the FFourier transform of the signal

Xty ty) = A ~t, <4<t and  —r1, <, <1,
0 clsewhere

where 1y > 0, 1, > 0, and A arc real constants.

1
i
)
b

2 v ime—
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i Table -1 Fourier Transform Puirs
B APPENDIX Pai 0] Nw) Notes
E } ad(t) 2
2 a/2n ad{tw)
TABLE OF USEFUL FOURIER TRANSFORMS 3w r{aw) + (1)
. {
l; . 4 i) - /_2—7(—1 (o)
; S rect {t/1) t Sa (wt/2) >0
6 {(W/n) Sa (Wr1) rect (w/2¥W) W>0
7 tri (t/0) t Sa? (wr/2) t>0
8 (1V/x) Sa? (1) tri (w/21¥) >0
Y gl . 2nd(w — any)
10 3 -- 1) (e
11 cos (i, 1) {3 — wy) + New -+ wy)]
12 sin (1) —jn[8lw = wy) ~ 8w -+ wy)]
13 (1) cos {w, 1) -g [ ey — arg) + Sl 4 )] + :}m 3
2 Wy —
" LI . § y
14 1{1) sin (e 1) -Jjs (8t = ) = S{ew 4 )] + —
4 Wy —
5 uit)e ™ !
a + jw >0
i 1} I
16 u(nre m}—z >0
17 1,at 2
() te m x>0
In the following table of Fourier transform pairs, we define : . 6
- Do 18 Wde™ —2 €50
|5 1 E>0 (a + jw)
1 ue) = { (E-1) 2
’ B -l X
: 0 <0 ]/ : 19 ekl Tl o> 0
1 Yl<h :
! rect (f) = { (E-Z) . 20 p el aSAne i a>0
| 0 &> ’
| sin (&) ;
Sa () =—— (E-3)
¢
. |- < -
tri (&) = ¢ IEI (E-4)
0 g1 1 .
X(t) & X{w) (E-5)
and let g, 1, @, iy, and W be real conslants.
328




APPENDIX

T

SOME PROBABILITY DENSITIES
AND DISTRIBUTIONS

For convenience of reference we list below the probability density fy(x) and dis-
tribwtion function FFy(x) for some weli-known distributions. Where appropriate,
we also give the mean ¥, variance o}, and characteristic function @ ().

A number of constants and functions are used as defined below:f

a, ay, dy. by by by, g, and poare real constants {(F-1a)
N is a positive integer (-1

§(&) = impulse function of (2.3-2) T(F-10)

u(&) = unit-step function of (2.2-4) (F-1d)

rect (&) = rectangular function of ([-2) (F-1e)

Mx) = J' XS (g Re(x)>0
o
= gamma function (-1}
1o .
Pla, ) = — [ grlemd (& Re(a) >0
l (d) JU

Sineomplete g function (- 1g)

t Re t21 denntes the real pane ol 2

RAII]
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l x
P(x|N) = W L gD 1= U2 g

= chi-squarc probabilily function

N x
= P(_Z—'E) (F-1h)

1 w/p¥1
P-4
o+ 1) L e de
= Pearson’s form of incomplele gamma function (Pearson, 1934)

=Pp+1Lu/p+1) (F-11)

_Ta+h [~

Hu, p) =

Lo ) = g | @7t — ot ae
= incomplcte beta funclion (F-1))
F(x) = gaussian distribution of (B-3) {F-1k)
e (x/2)

1,(x) = (x/2)"
(x) = (x/2) kgo PIEYL

== f e~ ™ cos (10) dO
T Jjo

= modificd Bessel function of first kind of order # = 0, 1, 2,... (F-1)

© (£ o
Qa, 1) = J; &l oag) exp [_(C__;-_a_’):, dE (F-1m)

The functions of (F-1f) through (F-1j) and that of (F-11) are discussed in detail in

Abramowitz and Stegun, cditors (1964 o is M ’ ion; it i
tabulated in Marcum (1950). - QP is Mareum's Q-function: it s

DISCRETE FUNCTIONS

Bernoulli

ForO<p<1

Slx) = (1 = p)3(x) + pa(x = 1) (F-2)
Fy(x) = (1 = phe(x) 1 pu(x - 1) (1°-3)
Y=p (I-4)

7y =p(l - p) (F-5)
() =1 = p -+ pei (I"-6)
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Binomial

ForO<p<landN=12...

NN
Jxlx) = kZO < )p‘(l —p"re(x — k)

N
Fylx)= 3 (N)p"(l = )" Mu(x ~ k)

K=o \ K
X =Np
a'z\- = Np(i —p)

Oylw) = (1 = p + petI"

Pascalt

ForO<p<landN=1,2,...

k=N N 1
- N
X =—

P
L (UY)
X pz

Dylw) = pMe™e[1 — (1 ~ plet1 ™"

Poisson
Forb>0
w bk
Sx)=e~* 7 S =k
k=0 K:
, o bk
Fulx)=¢" — u(x — k)
! =0 k!
X=0
ot =b

Oy (w) = exp [ble! — 1))

t Blaise Pascal (1623-1662) was a French mathematician,

(¥-7)

(F-8)

(F-9)
(F-10)
(F-11)

(F-12)
(F-13)
(F-14)

(F-15)

(F-16)

SUREE PIOBAIITEEY D1 RSEEIES AND s L isntions VY

CONTINUQUS FUNCTIONS

Arcsine
lFora >0

rect (x/2a)

Sxlx) =
nJut — x?
0 -0 <X < —-d
| | X
Fylx) = 3+ sin™! <—> —aSx<u
< i3 o
| 4SS x<w
V=0
2
2 (o
Oy = —
X 2

Beta

Fora>0and b >0

[ox) = [I:(("‘I)FU[)’)) [u(x) = u(x — DIx*= 11 = xpP~!
: _ 1, bhu(x) x <1
Filx) = {1 x>
X' - a
a+
ol = ab

@+ b a+b+1)

Cauchy
Forh>0und —o0 <a <0

(b/n)

T (x— )t

|1 ;-
Fyx) = 5+ tan™! <'\ - “)

Jax)

X =iy undefined

it

[l

o) = is undefined

(I)_Y((U) = L,}uw ~bjw]

(F-22)

(F-23)

(1°-24)

(FF-25)

(F-26)

(F-27)

(F-28)

(F-29)

(1-30)

(F-31)

{1F-32)
(F-33)
(F-34)
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Chi-Square with N Degrees of Freedom

For N =1.2,..

\-(NIZ)" 1
; 2 H2(x)

Silx) = N ¢

N x
Fy(x) = P(x|N) = P(?' -i)
. N

2N

(l)'\.((,)) = (! - _I’2U}) - NI

-
i

I

i

Erlang

ForN=12...anda>0

alxN=tema
Jilx) = —_(I_V—-—:l_)-!—- u(x)
N-1 RY]
- A=) .
el
u
1 N
ox= a

Exponential

Fora>0
Jx(x) = ae " "u(x)
Fy(x) =[1 — e™*Ju(x)
I oo
XN=-
«
|
al = =

(1°-35)

(F-36)

(F-37)
(I7-38)
(17-39)

(F-40)

(F-41)

(F-42)

(F-43)

(IF-44)

(F-45)
(F-46)

(F-47)

(1-48)

(7-49)
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Gamma

Fora>0and b >0

hobh=1 —ax
Jx(x) = a_\_l—‘(lT;_ t(x) (F-50)
Fx(x) = I(:—/L}’-.;, b - l>u(x) (F-51)
X= L (FF-52)
a
ok = % (1-53)
a h
Dyw) = (a _jw> (F-54)

Nole that if b is a positive integer the gamma densily becomes the Erlang density.
Aiso il h=N/2,for N=1,2,...., and « = Yy the gamma density becomes the
chi-square density.

Gaussian-Univariate

: Forb>0and —oo <a< o

Sx(x) = (ah)™ 2™ txmmi (F-55)
Fy(x) = I"('\' 7/;) (FF-56)
)
/\_’ = (17,57)
b
: _ 7 -

% =3 (F-58)
D) = e totd) (F-59)

Gaussian-Bivariate
For —o0 <a; <o, —0 <a, <0,b,>0,b, >0and —1 <psi
fx,.x,(xn X} = [nszbz(l - /’I)J- 1

. =1 [(x; —a,)?
P {u = /)’)[ h

_ 2p(xy = afxy; —ay) (x; - “2)1]}

Vb, i hy

x,—a,| [x,—a
Fyo, g(xp 0 =L =] = __'J, —L'z z:" ) F-61
-\l..\)(xl ‘2) ( [\/h_,/z \/m Iy (F-61)

(F-60)

!

e o
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where L(x,, x,, p) is a probability function discussed extensively and graphed in
Abramowitz and Stegun, editors (1964), p. 936. Also

£ =aq ‘ (F-62)
X,=u, (F-63)
ai, = b,/2 (F-04)

(1°-05)

Dy, x,(0, ©y) = exp {jw,a, + jw, ay = flwib, + 2pw,0,/biby + wib,]}

(F-606)
Laplace
Forb>0uand —w <a <
L
Jx) =5 &7 (F-67)
etz —w<x<a
Fylx) =" o
xx) {l — Ypedx=a agx<© (F-68)
X=ua (F-69)
2 2 o
gy = i (F-70)
s u}mu .
Dylw) =b m (rF-71)
Log-Normal
For—o0o<a<m, —w<b<w,andao>0
“(.\, - b)(,’-"" {(x=b)=a)}f2a?
Julx) = 172
! J2n(x = by (72
Fy(x) = u(x = I*fe"In (x = b} — a]} (I°-73)
- 0'2
X =0b+exp (u + 3-) (1--74)
a} = [exp (o) — 1] exp (2a + o?) (FF-75)
Rayleigh
For ~co <a<ovand b >0
2
Sx(x) = 3 (x — a)e~ =My — q) (F-76)

SOMUE PROBABILITY DENSITIES AND DISTRIBUTIONS an

Fo(x) = [1 — e M yix — a) (F-77)
- b -
X=a+ \/1? (F-78)
e h(44— n) 79

Rice [Thomas (1969), Middleton (1960)]

Fora>0and b >0

ax

Ju(x) = 17‘2- e *""/“’1(,(57):(.\-) (IF-80)

Fy(x)= [1 - Q<% %)]u(-\') (F-81)
~ % L2 [&! K2
el e

o = b2 + k?) — (X)? (F-83)
2

2= F-84

k I'l ( )

Uniform

For—ww<a<h<w

u(x — a) = w{x — b)

Jitx) = by a (1°-85)

lmw={glf¥%:ﬂ x<h (F-86)
! xzb

X= L}-’—’ (F-87)

= (—h—%)—z- (17-88)

) = = (F-89)

T jolb — a)

5
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Weibull
Fora>0and h >0 )
P
fe(x) = abx* e u(x)

Fux) =1 e ")

, P 2h g e b

Ty =
X (l“h

Note that if b = 2 the Weibull density becomes a Rayleigh density.

(F-90)
(1590

(1592

(-9
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of derivative of i process, 166, 246
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Fourier transform of, 196
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Average effective noise temperature, 237
Average ellective source temperature, 237
Average operating noise figure, 236
Average stundard noise figure, 236
Axioms of probability, 10

Band-timited random process, 219
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Dand-limited white noise, 188
Bandpass random progcess, 219
Wandwidth:
noise, 210, 217-218, 238
of a power spectrum, 177179
rms, 177-179, 198, 201
Bayes, Thomas, $ 6.
Bayes' theorem, 16
Bernoulli densily, 331
Bernoulli, Jacob, 25m.
Bernoulli trials, 25
Bessel function, 299, 331
Reta density, 333
Winary communication system, 17
Binary procdss, semirandom, 162
Binary symmetric channel, 17
Binomial cocficient, 26, 33
Binomial density function, 46, 332
characteristic function of, 83
mean of, 8t
varianee of, 81
Binomial distribution function, 46
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oltzmann, Ludwig, 227 with interval conditioning, 99 Fourice transform of. 184, 185-186. 193 X ive law of sels, 7
Boltzmann’s constant, 227 with point conditioning, 96-99 of independent Pmcc'ssc\ .154 ' Dum.mn. 5.8 .
Bound(sh: propertics of, 83 of jointly wide-sense sl:\;ilmnr roc 150, Puality principle, &
an autocorrekation function, 153 Conditional distribution funclion, 52, 62,96 154 | ary processes, 150, o
f Effective noise temperature, 229, 233, 237

on cross-correlation function, 154, 155

on linear system response, 210
Bounded vasiation, 310m, 321,
Butterwaorth filter, 243

Cartesian product space, 220
Cauchy, Augustin Louis, 61
Cawchy density function, 61, RAR
Cauchy distribution function, 62
Cauchy tandon variabie, 61
Cansal system, 2H
Central limit theorem, 108-108
Central moments, 70, 82,120 122
related to moments about origin, 82
Certain event, 10
Channel, 17, 276, 281
hinary svinetric, 17
Characteristic luaction:
of binomial density, 85
delined, 72,122
of Ertang random variable, 8s
of exponential random variable, 72 73
of gaussiin random variabiels), 83, 138
joint, 122-124, 138
marginal, 123
moment generating property of, 72, 123-124
of Poisson random variabie, 85
for several random variables. 124
for two randont variables, 122

with interval conditioning, 99
with point conditioning. 96-99
propertics of, 52
Conditional expecied vatue, 69,139
Conditional probability, 13
Conditioning event, 55-57
interval, 99
point, 96 -99
Continuous rndom process, 145
andam segquenee, 146

Continuous
Continuous tandom variable, M
Convalution integral, 103, 207, 223
Convolution of density functions, 103, 103
Correlation?

of independent random variables, 119, 134

of orthogonal random variables, 119,134

of random variables, £19, 134

of uncorrelated random viriables, 19, 134
Correlation coeflicient, 124,136
Correlation functions:

autocorrelation, 149, 152154, 160 161,

212-21)

autocavariance, 155-156, 160161

cross-correlation, 150, 154, 213-214

cross-covariance, 156

of derivative of a process, 166, 246

lime autocorrelation, 151

lime cross-correlation, 152

(See also listings hy specific 1ypes)

measurcment of, 156-158

of orthogonal processes, 154

properties of, 154

real and imaginary parts of, 199

relationship 1o cross-power spectrum, 184,
185-186, 193

of response of linear system, 213-214

time, 152

time average of, 184, 1RS-186

Cross-covatianee flunction:

of complex processes, 160-161
defined, 156

of independent processes, 156

of uncorrelated processes, 156

of wide-sens: stalionary processes, 156

Cross-power density spectrum:

of complex processes, (93
defined, 183

of lincar system, 217

properties of, 184

real and imaginary parts of, 199

Cross-power densily spectrum:

relationship to cross-correlation function, 184,
IR5-186, 193

Cross-power spectrum (see Cross-power density

spectrumy)

Cumulative probability distribution function (sce

Probability distribution (unction)

Efficiency, 279, 305-306
Elementary cvent, |2
Elements of a set, 3
Empty set, 3
Ensemble, 143
Iinsemble average, 143
Ensemble member, 143
Envelope detector, 278
Foual sels, §
Erpodie random process, 152, 187n,
Ergodic theorem, 182
Erlang, A. K., RSn.
Frlang density, 33
Erlang random variable, 85
Eveni(s):
certin, 10
on contbined sample space, 23-24
defined. 9
clementary, 12
impossible, 10
joint, R9
mutuatly exclusive, 9
pairwise independence of, 19
probability of, 10
statistically independent, 18-22
Iixcess available noise power, 233
Expectation (see Expected value)
Lixpected value (expectation):
conditional, 69, 119

Damping factor, 295

Decibets, 240n,

Delta function (see Impulse function)

De Morgan, Augustus, 7o,

De Morgan’s laws, 7, 32

Density function (see Probability density function)

Correlation integral, 268
Corrclation receiver, 269
Countable sct,
Countably infinite set, 3
Covarianee:
of independent random variables, 121

of a function of a random variable, 68, 133

of a function of several random variables,
17-119

of random process, 143, 153, 160

ol a random variable, 67-68, 133

of a sum of random varinbles, 118

Chebyehey's inequality, &S
Chebychey, Pafnuty L. RS,
Chi-square density, RS, 331, 34
Class of setg, 3

Classification of process, L4 146

CocMcient of skewness, 74

Colored noise, 190

Combined experiment, 22

Combined sumple space, 22

Communication systemis):
:Ill\]\lillldk“II\\‘\‘\ll:IliOll (AM), 275279
binary. 17

of orthogonal random variables, 121

of random variables, 121, {34

of uncorrctated random variables, 121, 134
Covariance mpctions (see Correlation functions)
Covarianee matrix, 127

aflter Yinear transformation, 132
Crest-factor, 280, 306

Derivative of random process, 166, 203
power spectrum of, 177

Detection probability, 304-305

Peterministic random process, 147

Deterministic signal, 173

Diflerence of sets, §

Dirichlet, Peter Gustav Lejeune, 321n.

Experiment(s), R
combined, 22
independent, 25
mathematical definition of, 8, 11-12
Exponential density function, 49, 68, 70, 71,
72-74,3M
Exponcential distribution function, 49, 334

t . .
’ § i frequency allocations, 275-276, 280
'5 v hequency madulation (FM]), 280 284 Crossover frequency, 308 Dirichlet conditions, 321n,
i three-symbol, 13 Cross power, HRY Discrete random process, 145
d Commutative law of sets, 7 Cross-correlation function{s): Diserete random sequence, 146 “"IV-‘ tlarm, 302
L . bounds on, 154, 155 i " Uilter (system):
v 3 Complement of set, 6 haunds on, 124,10 Discrete random variable, 37, 79 Butt l.
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Fibter {system):
prediction, 263
smouthing, 263
Wiener, 262 266
Finite set, 3
Fiest-onder stationary andom provess, 1K
Fower, Waron Jean Baptiste Joseply, 3200,
Fourier series:
coellicients, 324, 325
defined, 324
Fourier transform of, 324, 325
Fourier trunsform(s):
of autocorrelation function, 177, 180, 193
of cross-correlation function, 184, 185-186,
193
defined, 72,173, 320
existence, 321
inverse, 72, 173, 320
multidimensional, 323
properties of, 321-323
table of pairs of, 329
of time-uveraged autocorrelution function, 177
of time-averaged cross-correlution function,
184
uniqueness, 161
Frequency-domuin unalysis, 172
Frequency modulation (1'M), 280-284
Fresned integrals, 273

Gamma dJensity, 33§

Gamma function, 85, 330, 331

Guauss, Johann Friedrich Carl, 43n,

Guaussiun densily function:
conditional, 112, 128
marginal, 125, 128
mean value of, 81, 124
N-dimensional (N-vuriate), 127, 128
of one random variable, 43, 60, 61, 335
two-dimensional (bivariate), 112, 124, 335
vuriance of, 81, 124, 336

Gaussian distribution function:
of one random variable, 44, 335
table of, 318

Guussian lilter, 241

Gaussian random process, 156, 158-160
variance estimate of, 167

Gaussian random variable(s):
churacieristic function of, 83, 138
conditional density function of, 128
defined, 43, 124, 127
linear transformation of, 77, 130-133
marginal density flunction of, 125, 128
mean value of, 81, 124
momenl generating lunciion of, §3

Gaussian random variable(s):
properties of, 128
variance of, K1, 124, 336

dealized system, 209--210
Tmpaossible event, 10
Taputse function:
defined, 41, 310-312
limiting forms of, 176, 195
N-dimensional, 311
relationship to unit-step function, 41, 311, 312
two-dimensional, 311-312
Impulse response of linear system, 206, 207
Incomplete beta function, 331
Incomplete gamma function, 330, 331
Incremental avuilable power, 227
Incremental noise power, 227
Independent events, 18-22
Independent experiments, 25
Independent rundom processes, 148
Independent rundom variables, 100-102,
133-134
joint characteristic function of, 122-124, 138
Infinite set, 3
Integrals:
Fresnel, 273
tuble of definite, 318-319
table of indefinite, 316-318
Integrator, 157
Intersection of sets, 6
Interval conditioning, 99
Inverse Fourier trunsform (see Fourier transform)

J, 60n.
Jacobi, Karl Gustav Jakob, 129n,
Jucobian, 129
Joint centrs) moments, 120-122
of two discrete random variables, 136
Joint characteristic function, 122-124
of independent random variables, 138
of two gaussian random variables, 83, 138
Joint event, 89
Joint moments, 119-120
of two discrete random variubles, 136
Joint probability, 13
Joint probability density function (see Probabil-
ity density function)
Joint probability distribution function {see ’rob-
ability distribution function)
Joint sumple space, 88
Jointly ergodic random processes, 152, 157,
Jointly gaussian random processes, 156, 160
Jointly wide-sense stutionary random processes,
150, 160 -161, 213

Khinchin, AL 1L, 18U

Faplace, Natquis Pierre Simon de, $9n.
Laplace deasity function, $9, 16
Laphee transform, 173
Leibmiz, CGrotthiicd Wilhiehn von, Ton
faabme's tale, 10
Likehhood, v
Lincar system:
causal, 210
cross-correlation function, 213-214
cross-power spectrums, 217
detined, 206
idealized, 209-210
impulse response, 206, 207, 210
noise temperature, 239
optimum, 257
output autocorrelition function, 212-213
output mean-syuured vitlue, 212
outpus mean viiue, 211
outpul power, 212, 216
oulput pawer spectrum, 215
physically realizable, 210
response 1o deterministic signil, 206- 209
response to random signal, 211
stable, 210
time-invariant, 207
transfer function, 208
white noise eviluation of, 214-215
Liguid helium, 200
Log-normal deasity function, 62, 86, 336
Log-normal disteibution function, 62, 336

Mapping, 35
Marcum's Q-function, 305, 331
Marginal characteristic function, 123
Murginal density function {see Probability
density function)
Marginal distribution function (see Probability
distribution function)
Maser, 188n., 200
Matched filter, 25%
for colored noise, 259 260
impulse response, 260, 261, 267
maximum signal-to-noise ratio of, 260, 268
vulput signal from, 268
for rectangular pulse, 261-262
teansfer function, 260
for vhite noise, 260-262
Marix, covariance, 127
Mean Trequency, 178
Mean (expected) value:
from awtocorrelation function, 153
comditional, 69, 139
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NMuan (eapected) value:
estiniate of, 107
of Tunction of o randmn variuble, 68, 133
of function of several tandom viriables,
117ty
ol provess sample function, 154
ol girdomy provesstesh, 104 188 i)
of random process derivintive, 166
of random variabie, 67-68, 133
of sum of random variables, § N
of system response, 211 .
Mean-squared error, 263-266
Muean time between failures (MBI, 64
Measurement of correlation functions, 156-158
Median of random variable, 61
Mixed random variable, 37
NMode of random vaciable, 61
Modulation index, 306
Moment generating function, 73
of gaussian random variable, §3
Momenis:
central, 70, 82, 120
fram characteristic function, 72, 123 124
interrelitionships, 82
joint, 119122
from moment generating function, 73
aboul arigin, 69, 82, 119-(20
of two discrete random viriables, 136
Monotonic transfornutions:
decreusing, 75, 76
increasing, 75-76
Mutually exclusive events, 9
Mutually exclusive sets, 3

N-order stationary random process, 151
Narrowband gaussian process, 220
Narrowband random process, 220
Natural frequency, 295
Natuead numbers, 80
Noise, 1

arbitrury source of, 228

colared, 190

in controt system, 285- 28§

in phase-locked toop, 288-295

resistive soviree of, 227

thermal, 1K7, 227

types of, 226n,

white, 187
Noise bandwidth, 210, 217-21%, 238
Noise figure:

ol attenuator, 238

average, 236

averige operating, 236

averige stasdard, 236
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Noise figure:
average syslem operating, M0
mcremental, 204
operating spol, 235, 249
spot, 234 238
standard spot, 215, 250
Noise performance:
of amplitude modulation system, 278-279
of frequency modulition system, 281-284
of phase-locked loop, 292 298
of radar, 3J01-3058
Naoise temperature:
of antenna, 231
ol attenaator, 18
avetape, 248
average ellective inpul, 237
average cllective souree, 237
eflective, 228
clfective input, 233
standared, 238
system, 239
Nondeterministie randam process, 147
Nonstationary ramdom process, 147
Normal density funclion (see Gaussian density
function)
Normab distribution function {(see Gaussian dis-
tribution function)
Noenalized second-order mmment, 121
Null set, 3

Open-loop transfer function, 285
Operating spol noise figure, 235, 249
Operator, 206

Order of moment, (19, 120
Orthogonal random process, 154, 161
Orthogonal random variables, 119, 134
Qulcome of experiment, §
Overmodulation, 278, 306

Parseval, MU A,
Parseval's theorem, 323
Pascal, Blaise, Y32n,
Paseal density, 332
Phase detector, 290
Point conditioning, 96-99
Poisson, Simeon Denis, 470,
Poeeants adennity Tane e, 7, 88, VLY
mean ol 81,100
varianee of, 8122
Paisson riandom variable, 47, 140
Power:
from antocorrelation function, 183
remental aviifable, 227
from power density spectium, 175

{

Power:
in o pndom process, (S 173178
in tesponse of linear system, 212, 216
from second moment of process, 175
Power densily (see Power densily spectrum)
Power density spectrum, 153,173
bandwidth of, 177-179
of complex process, 193
defined, 178
of derivitive of process, 177
inverse Fourier transform ol 177, £80
of output of lincar system, 215
of product deviee output, 191
properties ol 176177
telationship toantocorreltion lunchion, 117,
179181
relationship 1o awtocovarianee function, 196
Power gain, available, 232
Power speetral density, 173a.
Power spectrum (see Power density speetrum)
Pawer transfer function, 215
Prediction filter, 263
Probability,
a posteriori, 18
a priori, |8
axioms of, 10
conditional, 13
detined, 10
of detection, M2, M4 -305
of false alarm, 302, 301
join, 13
of miss, 302
total, 15
transition, IR
Probability density function:
arcsing, 84, 133
Bernoutdli, 131
beta, 333
hinomial, 46, &1, 332
Cauchy, 61, M)
chi-square, 85, 131, 334 '
conditional, 52, 96-99
defined, 40, 93, 148
of discrete random variable(s), 41,94
Lrlang, 33
enislenee, 0
evponental, 00 A
i, LS
paussinn, AL 60, 61, 112,124 128,038
joing, 93
Laplace, 59,81, 36
log-notmal, 62, 86, 116
mninad, W8, 90
of N random variables, 94

Probability density function:
normal, 430,
Pascal, 312
Poisson, 47, 8, 332
properlics of 42, 53,94
of random process(es), 148n.
Rayleigh, 50, 336
Rice, 299, 137
of sum of random variables, 102-105
teansformation of, 74-80, 128-133
Iriangular, 43
of two random variables, 93
uniform, 48, 337
Weibull, 85, 1R
Peobability distribution function:
arcsine, 133
Bernoulli, 331
heta, 333
binomial, 46, 332
Cauchy, 62, 333
chi-square, 134
conditional, 52, 62, 96-99
defined, 37, 89, 147-148
of discrete random varinble(s), 38, 90
Erlang, 1)
exponential, 49, 334
gamma, 335
gaussian, 43-45, 115
joint, 89, 90, 148
Laplace, 336
log-normal, 62, 336
marginal, 92,93
of one random variable, 17
Pascal, 332
Pofsson, 47, 332
properties of, 37-38, 91
of random process, {47n., 147-148
Rayleigh, 50, 337
Rice, 337
of several random variables, 90
of st of random variables, 102-105
of two random variables, 89
uniform, 48, 337
Weibull, 338
Process (see Randoem process)
Product device, 191 -193
Paoduct of sets, &
Prodact space, two-dimensional, 88
Pulse repetition frequency (PRF), 301

Quiantizer, 88

Random point, B8
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Random process(cs):
awtocorrelation function, 149, 18 184, 160
autocovariance function, 155, 160
band-limited, 219
bandpass, 219
classified, 144 -146
complex, 160-161
continuous, 145
cross-correlation function, 150, 154, 160 -161
crass-covirinnee funclion, 156, 160-161
cross-power spectrum, 182- 185, 193 ;
defined, 142, 160
density function of, 148
derivative of, 166, 2460
deterministic, 147
discrele, 145
distribution function of, 147-148
ergodic, 152
estimale of, 168 i
first-order stationary, 148-149
gaussian, 156, 1SR-160
jointly ergodic, 152, 157n.
jointly wide-sense stationary, 150, 160-161,
213
mean of, 143, 153,160
mean value estimate of, 167
N-order stationary, 151
narrowhand, 220
nondeterministic, 147
nonstationary, 147
orthogonal, 154, 161
periodic component in, 153
power of, 153,173, 175
random telegraph, 169
sample function of, 143
second-order stationary, 149
semirandom binary, 162, 296
stationary, 147
statistically independent, 148
stiicl-sense stationary, [ St %
time carrelation functions of, 151-152 i
uncorreluted, 156, 16] '
variance of, 156
wide-sense stationary, 150, 160-161
Random sequence: b
conlinwos, 146
diserete, 146

Random signal, | B
Random telegriiph process, 169 i
Random variable(s): il

auxiliary, 140 \‘

Cavchy, 61
central momenis of, 70, 82, 120-122 :
characteristic function of, 72, 122 ’
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Random variable(s):
coellicient of skewness, 71
complex, 133
conditions for, 36
continuous, 37
correlution of, 119
correlation coeflicient, 124, 136
covariance of, 121, 134
delined, 34, 88, 89
discrete, 37
Erlang, 85
gaussian, 43, 81, 119n, 124~128, 130-133
independent, 100-102, 133-134
joint central moments of, 120
joint characleristic function of, 122-124, 138
joint momenis of, 119, 123, 124
lattice-type, 106n.
marginal charucteristic functions of, 123
mean of, 67-68, 133
mediun of, 61
mixed, 37
mode of, 61
moments of, 69--70
N-dimensional, 89
orthogonal, 119, 134
Poisson, 47, 140
Rayleigh, 50, 81
skew, 71
standard deviation, 70
trunsformution of, 74-80, 128--130, 130-133
uncorreluted, 119, 134
uniform, 48, 59
variance of, 70, 133
vector, 88
Weibull, 85
Random vector, 88, 89
Range, 58
Runge sumple spuce, 88
Ralional power spectrums, 267
Rayleigh, Lord (John William Strutt), 50n,
Rayleigh density function, 50, 336
maximum value of, 61
mean of, 81
median of, 61
mode of, 61
variance of, 81
Ruyleigh distribution function, 50, 337
Ruyleigh random variable, 61
Realizable linear system, 210
Realization of & process, 143
Rice density, 337
rms bandwidth, 177-179, 198, 201

Sample function, 143

Sample space, Y

combined, 22

continuous, 9

discrete, 9

joint, 88

range, 88
Sampling function, 326
Schwiirz, Hermann Amandus, 259n.
Schwarz's incquality, 259
Sccond-order stationary rundom process, 149
Semirandom binary process, 162, 296
Series, table of, 319
Set(s):

algebra of, 7

associative luw of, 7

classof, 3

commutative law of, 7

complement of, 6

countable, 3

countably infinite, 3

defined, 3

difference of, §

disjoint, 3

distributive law of, 7

clements of, 3

empty, 3

cquality of, §

finite, 3

infinite, 3

intersection of, 6

mutually exclusive, 3

null, 3

product of, 6

sum of, 6

uncountable, 3

union of, 6

universal, 4

Yenn diagrum of, §
Sct theory, 2
Skew, 70
Skewness, 70
Smoothing filter, 263
Spectrum (Fourier transform), 72, 173
Spot noise figure, 234-235, 249, 220
Stable linear system, 210
Stundard deviation, 70
Standard noise temperature, 235
Standurd source, 235
Stationarity (see Random process)
Statistical averuge (see Expected vulue)
Statistical independence:

of events, 18-22

of experiments, 235

by pairs, 19
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Statistical indepondence: '
of vandom processes, (48
of random variables, 100-102, 134
Subexperiments, 22
Subset, 3
Sums of random variables:
density function of, 102-105
distribution function of, 102105
mean of, 1B
vitrianee of, 122
System noise temperature, 239

Tables:
of definite integrals, 318
of finite serics, 319
of Fourier transform pairs, 329
of gaussiin distribution function, 314
of indefinite integrals, 316318
of trigonometric identities, 115-316
Telegraph process, 169
Thermal noise, 187
Thevenin, Léon, 227,
Thevenin voltage source, 227
Threshold, 284, 302, 303
Time autocorrelation function, 15t
Time uverage, 151
Time cross-correlation function, 152
Time-domain analysis, 172
Time-invariant system, 207
Total probability, 1§
Transfer function:
open-loop, 285
of phase-locked foop, 290-292
of system, 208, 215
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128-130
lincur, 77, 130-131
monotonie, 75-77
nonmanotonic, 77-80
square-law, 78-79
Transition probability, 18
Trind, ¥

Transformation of random variable(s), 74--80,
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Trgonometric identities, tible of, 118 316
Two-danensional product space, 88

Uncorrelated riandom processes, 156, 161
Uncorrelited rundom viriables, 19, 14
Unecountable set, 3
Uniform density function, 48, 139, 337
mean of, 80, 337
varianee of, 80, 337
Union of sets, 6
Unit-impulse function (sve Impulse function)
Unit-step function: *
defined, 38, 311, 312
reluted to impulse function, 311, 312
two-dimensional, 311-3§2
Universal set, 4

Variance:
estimatte of, 167
ol random process, 156
of random variable, 70, 133
of sum of random variables, 122
Vector random variable, 8%
Yenn, John, Sn.
Venn diagram, §
Yoltage density spectrum, 173

Weibull density, 85, 338

Weibull, BErnst H, W, 85,

White noise:
autacorrelation function of, 187
band-limited, 188 '
defined, 187
in system evaluation, 214215
power spectrum of, 187

Wide-sense stationary rundom process, 150,

160-161

Wicener, Norberl, 180, 262n,

Wicener lilter, 262-2006, 288, 307
minimum mean-squared error of, 266
teansfer function of, 265 !

Wicner-Khinchin relations, 1¥Q




