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PREFACE TO THE
THIRD EDITION

In this edition, about a third of the text is either new or substantially revised.
The new topics include the following:

A chapter on statistics. With this addition, the first nine chapters of the
book could form the basis for a senior-graduate course in probability and
statistics.

A chapter on spectral estimation. This chapter starts with an expanded
treatment of ergodicity and it covers the fundamentals of parametric and
nonparametric estimation in the context of system identification.

A section on the meaning and generation of random numbers. This
material is essential for the understanding of computer simulation of random
phenomena and the use of statistics in the solution of deterministic problems
(Monte Carlo techniques).

Other topics include bispectra, state variables and vector processes, factoriza-
tion, and spectral representation.

I wrote the first edition of this book long ago. My objective was to develop
the subject of probability and stochastic processes as a deductive discipline and
to illustrate the theory with basic applications of general interest, 1 tried to
stress clarity and economy, avoiding sophisticated mathematics or, at the other
extreme, detailed discussion of practical applications. It ‘appears that this
approach met with some success. For over a quarter of a century, the book has
been used as a basic text and standard reference not only in this country but
throughout the world. I am deeply grateful.

McGraw-Hill and I would like to thank the following reviewers for their
many helpful comments and suggestions: John Adams, Lehigh University; David
Anderson, University of Michigan; V. Krishnan, University of Lowell; Robert J.
Mulholland, University of Oklahoma; Stephen Sebo, Ohio State University;
-and Samir S. Soliman, Southern Methodist University.

Athanasios Papoulis

xi



PREFACE TO THE
SECOND EDITION

This is an extensively revised edition reflecting the developments of the last two
decades. Several new topics are added, important areas are strengthened, and
sections of limited interest are eliminated. Most additions, however, deal with
applications; the first ten chapters are essentially unchanged.

In the selection of the new material 1 have attempted to concentrate on
subjects that not only are of current interest, but also contribute to a better
understanding of the basic properties of stochastic processes. The new material
includes the following:

Discrete-time processes with applications in system theory

Innovations, factorization, spectral representation

Queueing theory, level crossings, spectra of FM signals, sampling theory

Mean square estimation, orthonormal expansions, Levinson’s algorithm, Wold's
decomposition, Wiener, lattice, and Kalman filters

Speetral estimation, windows, extrapolation, Burg’s method, detection of line
spectra

This book concludes with a self-contained chapter on entropy developed ax-
iomatically from first principles. It is presented in the context of earlier
chapters, and it includes the method of maximum entropy in parameter estima-
tion and elements of coding theory.

As in the first edition, I made a special effort to stress the conceptual
difference between mental constructs and physical reality. This difference is
summarized in the following paragraph, taken from the first edition:

Scientific theories deal with coricepts, not with reality. All theoretical results
are derived from certain axioms by deductive logic. In physical sciences the
theories are so formulated as to correspond in some useful sense to the real
world, whatever that may mean. However, this correspondence is approxi-

xiii



XiV  PREFACE TO THE SECOND EDITION

mate, and the physical justification of all theoretical conclusions is based on
some form of inductive reasoning.

Responding to comments by a number of readers over the years, I would like to
emphasize that this passage in no way questions the existence of natural laws
(patterns). It is merely a reminder of the fundamental difference between
concepts and reality.

During the preparation of the manuscript I had the benefit of lengthy
discussions with a number of colleagues and friends. I thank in particular Hans
Schreiber of Grumman, William Shanahan of Norden Systems. and my col-
leagues Frank Cassara and Basil Maglaris for their valuable suggestions. I wish
also to express my appreciation to Mrs. Nina Adamo for her expert typing of the
manuscript.

Athanasios Papoulis



PREFACE TO THE
FIRST EDITION

Several years ago I reached the conclusion that the theory of probability should
nolonger be treated as adjunct to statistics or noise or any other terminal topic,
but should be included in the basic training of all engineers and physicists as a
separate course. I made then a number of observations concerning the teaching
of such a course, and it occurs to me that the following excerpts from my early
notes might give vou some insight into the factors that guided me in the
planning of this book:

“Most students, brought up with a deterministic outlook of physics, find
the subject unreliable; vague, difficult. The difficulties persist because of inade-
quate definition of the first principles, resulting in a constant confusion between
assumptions and logical conclusions. Conceptual ambiguities can be removed
only if the theory is developed axiomatically. They say that this approach would
require measure theory, would reduce the subject to a branch of mathematics,
would force the student to doubt his intuition leaving him without convincing
alternatives, but I don’t think so. I believe that most concepts needed in the
applications can be explained with simple mathematics, that probability, like any
other theory, should be viewed as a conceptual structure and its conclusions
should rely not on intuition but on logic. The various concepts must, of course,
be related to the physical world, but such motivating sections should be
separated from the deductive part of the theory, Intuition will thus be strength-
ened, but not at the expense of logical rigor.

“There is an obvious lack of continuity between the elements of probabil-
ity as presented in introductory courses, and the sophisticated concepts needed
in today’s applications. How can the average student, equipped only with the
probability of cards and dice, understand prediction theory or harmonic analy-
sis? The applied books give at most a brief discussion of background material;
their objective is not the use of the applications to strengthen the student’s
understanding of basic concepts, but rather a detailed discussion of special
Lopics.
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“Random variables, transformations, expected values, conditional densi-
ties, characteristic functions cannot be mastered with mere exposure. These
concepts must be clearly defined and must be developed, one at a time, with
sufficient elaboration. Special topics should be used to illustrate the theory, but
they must be so presented as to minimize peripheral, descriptive material and to
concentrate on probabilistic content. Only then the student can learn a variety
of applications with economy and perspective.”

I realized that to teach a convineing course, a course that is not a mere
presentation of results but a connected theory, I would have to reexamine not
only the development of special topics, but also the proofs of many results and
the method of introducing the first principles.

“The theory must be mathematical (deductive) in form but without the
generality or rigor of mathematics. The philosophical meaning of probability
most somehow be discussed. This is necessary to remove the mystery associated
with probability and to convince the student of the need for an axiomatic
approach and a clear distinction between assumptions and logical conclusions.
The axiomatic foundation should not be a mere appendix but should be
recognized throughout the theory.

“Random variables must be defined as functions with domain an abstraet
set of experimental outcomes and not as points on the real line. Only then
infinitely dimensional spaces are avoided and the extension to stochastic pro-
cesses is simplified.

“The inadeguacy of averages as definitions and the value of an underlying
space is most obvious in the treatment of stochastic processes. Time averages
must be introduced as stochastic integrals, and their relationship to the statisti-
cal parameters of the process must be established only in the form of ergodicity.

“The emphasis on second-order moments and spectra, utilizing the stu-
dent’s familiarity with systems and transform techniques, is justified by the
current needs.

“Mean-square estimation (prediction and filtering), a topic of considerable
importance, needs a basic reexamination. It is best understood if it is divorced
from the details of integral equations or the calculus of variations, and is
presented as an application of the orthogonality principle (linear regression),
simply explained in terms of random variables.

“To preserve conceptual order, one must sacrifice continuity of special
topics, introducing them as illustrations of the general theory.”

These ideas formed the framework of a course that I taught at the
Polytechnic Institute of Brooklyn. Encouraged by the students’ reaction, 1
decided to make it into a book. I should point out that I.did not view my task as
an impersonal presentation of a complete theory, but rather as an effort to
explain the essence of this theory to a particular group of students. The hook is
written neither for the handbook-oriented students nor for the sophisticated few
who can learn the subject from advanced mathematical texts. It is written for
the majority of engineers and physicists who have sufficient maturity to appreci-
ate and follow a logical presentation, but, because of their limited mathematical
background, would find a book such as Doob’s too difficult for a beginning text.
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Although I have included many useful results, some of them new, my hope
is that the book will be judged not for completeness but for organization and
clarity. In this context I would like to anticipate a criticism and explain my
approach. Some readers will find the proofs of many important theorems
lacking in rmigor. I emphasize that it was not out of negligence, but after
considerable thought, that I decided to give, in several instances, only plausibil-
ity arguments. I realize too well that “a proof is a proof or it is not.” However. a
rigorous proof must be preceded by a clarification of the new idea and by a
plausible explanation of its validity. 1 felt that, for the purpose of this book, the
emphasis should be placed on explanation, facility, and economy. 1 hope that
this approach will give you not.only a working knowledge, but also an incentive
for a deeper study of this fascinating subject.

Although 1 have tried to develop a personal point of view in practically
every topic, I recognize that I owe much to other authors. In particular, the
books “Stochastic Processes” by J. L. Doob and “Théorie des Functions
Aléatoires” by A. Blanc-Lapierre and R. Forter influenced greatly my planning
of the chapters on stochastic processes.

Finally, it is my pleasant duty to express my sincere gratitude to Mischa
Schwartz for his encouragement and valuable comments, to Ray Pickholiz for
his many ideas and constructive suggestions, and to all my colleagues and
students who guided my efforts and shared by enthusiasm in this challenging
project.

Athanasios Papoubs
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CHAPTER

1

THE MEANING
OF PROBABILITY

1-1 INTRODUCTION

The theory of probability deals with averages of mass phenomena occurring
sequentially or simultaneously: electron emission, telephone calls, radar detec-
tion, quality control, system failure, games of chance, statistical mechanics,
turbulence, noise, birth and death rates, and queueing theory, among many
others.

It has been observed that in these and other fields certain averages
approach a constant value as the number of observations increases and this
‘value remains the same if the averages are evaluated over any subsequence
specified before the experiment is performed. In the coin experiment, for
example, the percentage of heads approaches 0.5 or some other constant, and
the same average is obtained if we consider every fourth, say, toss (no betting
system can beat the roulette).

The purpose of the theory is to describe and predict such averages in
terms of probabilities of events. The probability of an event & is a number
P(57) assigned to this event. This number could be interpreted as follows:

If the experiment is performed 2 times and the event &7 occurs n,, times, then,
with a high degree of certainty, the relative frequency n /n of the oceurrence of &
is close to P(.o7):

P(a) =n/n (1-1)

provided that # is sufficiently large.
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This interpretation is imprecise: The terms “with a high degree of certainty,”
“close,” and “sufficiently large” have no clear meaning. However, this lack of
precision cannot be avoided. If we attempt to define in probabilistic terms the
“high degree of certainty” we shall only postpone the inevitable conclusion that
probability, like any physical theory, is related to physical phenomena only in
inexact terms. Nevertheless, the theory is an exact discipline developed logically
from clearly defined axioms, and when it is applied 1o real problems, it works.

OBSERVATION, DEDUCTION, PREDICTION, In the applications of probability to
real problems, the following steps must be clearly distinguished:

Step I (physical) We determine by an inexact process the probabilities
P(.2%) of certain events 27,

This process could be based on the relationship (1-1) between probability
and observation: The probabilistic data P(.27) equal the observed ratios n., /n.
It could also be based on “reasoning” making use of certain symmelries: If, out
of a total of N outcomes, there are N, outcomes favorable to the event .2/,
then P(o7) = N, /N.

For example, if a loaded die is rolled 1000 times and five shows 203 times,
then the probability of five equals 0.2. If the die is fair, then, because of its
symmetry, the probability of fice equals 1 /6.

Step 2 (conceptual) We assume that probabilities satisfy certain axioms,
and by deductive reasoning we détermine from the probabilities P(.7) of
certain events &7 the probabilities P(,) of other events &,

For example, in the game with a fair die we deduce that the probability of
the event even equals 3 /6. Our reasoning is of the following form:

If P(l)= =+ =P(6) =+ then P(even)=g

Step 3 (physical) We make a physical prediction based on the numbers
P(#,) so obtained.

This step could rely on (1-1) applied in reverse: If we perform the
experiment 2 times and an event & occurs 21, times, then n, = nP(&).

If, for example, we roll a fair die 1000 times. our prediction is that even
will show about 500 times.

We could not emphasize too strengly the need for separating the above
three steps in the solution of a problem. We must make a clear distinction
between the data that are determined empirically and the results that are
deduced logically.

Steps 1 and 3 are based on inductive reasoning. Suppose, for example, that
we wish to determine the probability of heads of a given coin. Should we toss
the coin 100 or 1000 times? If we toss it 1000 times and the average number of
heads equals 0.48 what kind of prediction can we make on the basis of this
observation? Can we deduce that at the next 1000 tosses the number of heads
will be about 4802 Such questions can be answered only inductively.

In this book, we consider mainly step 2, that is, from certain probabilities
we derive deductively other probabilities. One might argue that such derivations
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are mere lautologies because the results are contained in the assumptions. This
is true in the same sense that the intricate equations of motion of a satellite are
included in Newton's laws,

To conclude, we repeat that the probability P(.a/) of an event &7 will be
interpreted as a number assigned to this event as mass is assigned to a body or
resistance to a resistor. In the development of the theory. we will not he
concerned about the “physical meaning™ of this number. This is what is done in
cireuit analysis, in electromagnetic theory, in classical mechanics, or in any other
scientific discipline. These theories are, of course, of no value to physics unless
they help us solve real problems. We must assign specilic. if only approximate,
resistances to real resistors and probabilities to real events (step 1); we must
also give physical meaning to all conclusions that are derived from the theory
(step 3). But this link between concepts and observation must be separated from
the purely logical structure of each theory (step 2).

As an illustration, we discuss in the next example the interpretation of the
meaning of resistance in circuit theory.

Example 1-1. A resistor is commonly viewed as a two-terminal device whose
voltage is proportional to the current
u(r)

R = 0] (1-2)

This, however, is only a convenient abstraction. A real resistor is 4 complex device
with distributed inductance and capacitance having no clearly specified terminals.
A relationship of the form (1-2) can, therefore, be claimed only within certain
errors, in certain frequency ranges, and with a variety of other qualifications.
Nevertheless, in the development of circuit theory we ignore all these uncertainties,
We assume that the resistance R is a precise number satisfying (1-2) and we
develop a theory based on (1-2) and.on KirchholF's laws. It would not be wise, we
all'agree, if at each stage of the development of the theory we were concerned with
the true meaning of R.

1-2 THE DEFINITIONS

In this seetion, we discuss various definitions of probability and their roles in
our investigation.

Axiomatic Definition

We shall use the following concepts from set theary (for details see Chap. 2):
The certain ¢vent .~ is the event that occurs in every trial. The union 2/ +
of two events .27 and # is the event that oceurs when & or & or both oceur,
The intersection .27% of the events .o/ and # is the event that oceurs when
both events & and & oceur. The events 27 and & are mutually exclusive if the
oceurrence of one of them excludes the occurrence of the other.
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We shall illustrate with the die experiment: The certain event is the event
that occurs whenever any one of the six faces shows. The union of the events
even and Jess than 3 is the event I or 2 or 4 or 6 and their intersection is the
event 2. The events even and odd are mutually exclusive.

The axiomatic approach to probability is based on the following three
postulates and on nothing else: The probability P(27) of an event o7 is a
positive number assigned to this event

P(2/) >0 (1-3)
The probability of the certain event equals 1:
Bl =1 (1-4)
In the events .& and % are mutually exclusive, then
P+ Z) =P() + P(H) (1-5)

This approach to probability is relatively recent (A. Kolmogoroff,1933). How-
ever, in our view, it is the best way to introduce a probability even in elementary
courses. It emphasizes the deductive character of the theory, it avoids concep-
tual ambiguities, it provides a solid preparation for sophisticated applications,
and it offers at least a beginning for a deeper study of this important subject.

The axiomatic development of probability might appear overly mathemati-
cal. However, as we hope to show, this is not so. The elements of the theory can
be adequately explained with basic calculus.

Relative Frequency Definition

The relative frequency approach is based on the following definition: The
probability P(.&) of an event 27 is the limit

P(of) = iin =2 (1-6)
n=re N
where n_, is the number of occurrences of & and n is the number of trials.

This definition appears reasonable. Since probabilities are used to de-
scribe relative frequencies, it is natural to define them as limits of such
frequencies. The problem associated with a priori definitions are eliminated,
one might think, and the theory is founded on observation.

However, although the relative frequency concept is fundamental in the
applications of probability (steps 1 and 3), its use as the basis of a deductive
theory (step 2) must be challenged. Indeed, in a physical experiment, the
numbers 1, and n might be large but they are only finite; their ratio cannot,
therefore, be equated, even approximately, to a limit. If (1-6) is used to define

TA. Kolmogoroff: Grundbegriffe der Walirscheinlichkeits Rechnung, Ergeb. Math und ihrer Grensg.
val. 2, 1933,
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P(27), the limit must be accepted as a hypothesis, not as a number that can be
determined experimentally.

Early in the century, Von Misesi used (1-6) as the foundation for a new
theory. At that time, the prevailing point of view was still the classical and his
work offered a welcome alternative to the a priori concept of probability,
challenging its metaphysical implications and demonstrating that it leads to
useful conclusions mainly because it makes implicit use of relative frequencies
based on our collective experience. The use of (1-6) as the basis for deductive
theory has not. however, enjoyed wide acceptance even though (1-6) relates
P(27) to observed frequencies. It has generally been recognized that the
axiomatic approach (Kolmogoroff) is superior.

We shall venture a comparison ‘between the two approaches using as
illustration the definition of the resistance R of an ideal resistor. We can define
R as a limit

e(t)
S nll—':nx f"(f)

where e(¢) is a voltage source and i,(t) are the currents of a sequence of real
resistors that tend in some sense to an ideal two-terminal element. This
definition might show the relationship between real resistors and ideal elements
but the resulting theory is complicated. An axiomatic definition of R based on
Kirchhoff's laws is, of course, preferable,

Classical Definition

For several centuries, the theory of probability was based on the classical
definition. This concept is used today to determine probabilistic data and as a
working hypothesis. In the following, we explain its significance.

According to the classical definition, the probability P(.27) of an event o7
is determined a priori without actual experimentation: It is given by the ratio

Ney
B()i= =2 (1-7)

where N is the number of possible outcomes and N, is the number of
outcomes that are favorable to the event &7,

In the die experiment, the possible outcomes are six and the outcomes
favorable to the event even are three; hence Pleven) = 3/6.

It is important to note, however, that the significance of the numbers N
and N, is not always clear. We shall demonstrate the underlying ambiguities
with the following example.

tRichard Von Mises: Probability, Statistics and Truth, English edition, H. Geiringer, ed., G. Allen
and Unwin Lid., London, 1957,
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Example 1-2. We roll two dice and we want to find the probability p that the sum

of the numbers that show equals 7. .
To solve this problem using (1-7), we must determine the numbers N and

N...(a) We could consider as possible outcomes the 11 sums 2: 3,..+,12. Of these,
only one, namely the sum 7, is favorable; hence p'= 1/11. This result is of course
wrong. (b) We could count as possible outcomes all pairs of numbers not
distinguishing between the first and the second die. We have now 21 outcomes of
which the pairs (3,4), (5,2), and (6,1) are fayorable. In this case, N_, = 3 and
N = 21; hence p = 3/21. This result is also wrong. (c) We now reason that the
above solutions are wrong because the outcomes in (a) and (b) are not equally
likely. To solve the problem “correctly,” we must count all pairs of numbers
distinguishing between the first and the second die. The total number of outcomes
is now 36 and the favorable outcomes are the six pairs (3,4), (4,3), (5,2), (2,5),
(6, 1), and (1, 6); hence p = 6/36.

The above example shows the need for refining definition (1-7). The
improved version reads as follows:

The praobability of an event equals the ratio of its favorable outcomes to the total
number of outcomes provided that all outcomes are equally likely.

As we shall presently see, this refinement does not eliminate the prablems
associated with the classical definition.

Notes 1. The classical definition was introduced as a consequence of the principle of
insufficient reasonti: “In the absence of any prior knowledge, we must assume that the
events .o/ have equal probabilities.” This conclusion is based on the subjective interpre-
tation of probability as a measure of our state of knowledge about the events 7. Indeed,
if it were not true that the events .7 have the same probability, then changing their
indices we would obtain different probabilities without a change in the state of our
knowledge.

2. As we explain in Chap. 15, the principle of insufficient reason is equivalent to
the principle of maximum entropy.

CRITIQUE. The classical definition can be questioned on several grounds.

A. The term equally likely used in the improved version of (1-7) means, actually,
equally probable. Thus, in the definition, use is made of the concept to be
defined. As we have seen in Example 1-2, this often leads to difficulties in
determining N and N_,.

B. The d'cﬁnition can be applied only to a limited class of problems, In the die
experiment, for example, it is applicable only if the six faces have the same
probability. If the die is loaded and the probability of four equals 0.2, say,
the number 0.2 cannot be derived from (1-7),

TH. Bernoulli, Aris Conjectandi, 1713,
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C. It appears from (1-7) that the classical definition is a consequence of logical
imperatives divorced from experience. This, however, is not so. We accept
certain alternatives as equally likely because of our collective experience.
The probabilities of the outcomes of a fair die equal 1/6 not only because
the die is symmetrical but also because it was observed in the long history of
rolling dice that the ratio n .,/n in (1-1) is close to 1/6. The next illustration
1s, perhaps, more convineing:

We wish to determine the probability p that a newborn baby is a boy. It is
generally assumed that p = 1/2; however, this is not the result of pure
reasoning. In the first place, it is only approximately true that p=1/2
Furthermore, without access to long records we would not know that the
boy-girl alternatives are equally likely regardless of the sex history of the
baby’s family, the season or place of its birth, or other conceivable factors, It
is only after long accumulation of records that such factors become irrele-
vant and the two alternatives are accepted as equally likely,

D. If the number of possible outcomes is infinite, then to apply the classical
definition we must use length, area, or some other measure of infinity for
determining the ratio N_/N in (1-7). We illustrate the resulting difficultics
with the following example known as the Bertrand paradox.

Example 1-3. We are given a circle € of radius r and we wish to determine the
probability p that the length I of a “randomly selected” cord AB is greater than
the length /3 of the inscribed equilateral triangle.

We shall show that this problem can be given at least three reasonable
solutions.

L If the center M of the cord AB lies inside the circle €, of radius r/2 shown
in'Fig. I-la, then [ > r/3. It is reasonable, therefore, 1o consider as: favorable
outcomes all points inside the circle €, and as possible outcomes all points
inside the circle €. Using as measure of their numbers the corresponding
areas wr>/4 and =r2, we conclude that

mr2/4 1

= s
wre 4

D
A 5 "N
S\ Alrlz \B
qlh B =

e (Bl )
5 T

(a) () (c)

FIGURE 1-1
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IL. We now assume that the end A of the cord AB is fixed. This reduces the
number of possibilities but it has no effect on the value of p because the
number of favorable locations of B is reduced proportionately. If B is on the
120¢ arc DBE of Fig. 1-1b, then / > ry3. The favorable outcomes are now
the points on this arc and the total outcomes all points on the circumferénce
of the circle €. Using as their measurements the corresponding lengths 27r/3
and 27r, we obtain

I ‘We assume finally that the direction of AB is perpendicular to the line FK of
Fig. I-le. As in TI this restriction has no effect on the value of p. If the center
M of AB is between G and H, then I > ry3. Favorable outcomes are now
the points on GH and possible outcomes all points on FK. Using as their
measures the respective lengths r and 2r, we obtain

1| =

:
P*ZrA

We have thus found not one but three different solutions for the same
problem! One might remark that these solutions correspond to three different
experiments. This is true but not obvious and, in any case, it demonstrates the
ambiguities associated with the classical definition, and the need for a clear
specification of the outcomes of an experiment and the meaning of the terms
“possible” and “favorable.”

VALIDITY. We shall now discuss the value of the classical definition in the
determination of probabilistic data and as a working hypothesis.

A. In many applications, the assumption that there are N equally likely alterna-
tives is well established through long experience. Equation (1-7) is then ac-
cepted as self-evident. For example, “If a ball is selected at random from a box
containing m black and n white balls, the probability that it is white equals
n/lm + n)” or, “If a call occurs at random in the time interval (0, 7), the
probability that it occurs in the interval (¢, 1,) equals (¢, — 1,)/T."

Such conclusions are of course, valid and useful; however, their validity
rests on the meaning of the word random. The conclusion of the last example
that “the unknown probability equals (r, —t,)/T" is not a consequence of the
“randomness” of the call. The two statements are merely equivalent and they
follow not from a priori reasoning but from past records of telephone calls.

B. In a number of applications it is impossible to determine the probabilities of
various events by repeating the underlying experiment a sufficient number of
times. In such cases, we have no choice but to assume that certain alternatives
are equally likely and to determine the desired probabilities from (1-7). This
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means that we use the classical definition as a working hypothesis. The hypothe-
sis is accepted if its observable consequences agree with experience, otherwise it
is rejected. We illustrate with an important example from statistical mechanics.

Example 1-4. Given # particles and m > n boxes, we place at random each
particle in one of the boxes. We wish to find the probability p that in n preselected
boxes, one ‘and only one particle will be found,

Since we are interested only in the underlying assumptions, we shall only
state the results (the proof is assigned as Prob. 3-15). We also verify the solution
for n = 2 and m = 6. For this special case, the problem can be stated in terms of a
pair of dice: The sz = 6 faces correspond to the m boxes and the n = 2 dice (o the
n particles. We assume that the preselected faces (boxes) are 3 and 4.

The solution to this problem depends on the choice of possible and favorable
outcomes. We shall consider the following three celebrated cases:

Maxwell-Boltzmann statistics. 1f we accept as outcomes all possible ways of placing
n particles in m boxes distinguishing the identity of eéach particle, then

nl

m”

For 7 =2 and m = 6 the above yiclds p = 2/36, This is. the probability for
getting 3.4 in the game of two dice.

Bose—Einstein statistics: If we assume that the particles are not distinguishable, that
is, if all their permutations count as one, then

o (m — 1)la!
B (n+m—1)!

For n=2 and m = 6 this yields p = 1/21. Indeed| if we do not distinguish
between the two dice, then N = 21 and N_,= 1 because the outcomes 3,4 and 4,3
are counted as one.

Fermi-Dirac statistics. If we do not distinguish between the particles and also we
assume that in each box we are allowed to place at most one particle, then
nl(m —n)!

m!

Forn = 2 and m = 6 we obtain p = 1/15. This is the probability for 3, 4 if we do
not distinguish between the dice and also we ignore the outcomes in which the two
numbers that show are equal.

Oné might argue, as indeed it was in the carly years of statistical mechanics,
that only the first of these solutions is logical. The fact is that in the absence of
direct or indirect experimental evidence this argument cannot be supported. The
three models proposed are actually only Aypotheses and the physicist accepts the
one whose consequences agree with experience.

C. Suppose that we know the probability P(:27) of an event &7 in experiment 1
and the probability P(Z#) of an event & in experiment 2. In general, from this
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information we cannot determine the probability P(&7%2) that both events o7
and # will occur. However, if we know that the two experiments are indepen-
dent, then

P( /@) = B(o/)P(F) (1-8)

In many cases, this independence can be established a priori by reasoning that
the outcomes of experiment 1 have no effect on the outcomes of experiment 2.
For example, if in the coin experiment the probability of heads equals 1 /2 and
in the die experiment the probability of even equals 1/2, then, we conclude
“logically™ that if both experiments are performed, the probability that we get
heads on the coin and even on the die equals 1 /2 X 1/2. Thus, as in (1-7), we
accept the validity of (1-8) as a logical necessity without recourse to (1-1) or to
any other direct evidence.

D. The classical definition can be used as the basis of a deductive theory if we
accept (1-7) as an assumption. In this theory, no other assumptions are used and
postulates (1-3) to (1-5) become theorems. Indeed, the first two postulates are
obvious and the third follows from (1-7) because, if the events .o and & are
mutually exclusive, then N_., , = N, + N_; hence

Novw No Ny

P+ F)=——=—+ — =P(F) + P(F

) N N N ( (2)

As we show in (2-25), however, this is only a very special case of the axiomatic
approach to probability.

1-3 PROBABILITY AND INDUCTION

In the applications of the theory of probability we are faced with the following
question: Suppose that we know somehow from past observations the probabil-
ity P(.27) of an event .%/ in a given experiment. What conclusion can we draw
about the occurrence of this event in a single future performance of this
experiment? (See also Sec. 9-1.)

We shall answer this question in two ways depending on the size of P(.27):
We shall give one kind of an answer if P(.27) is a number distinctly different
from'0 or 1, for example 0.6, and a different kind of an answer if P(.27) is close
to Oior 1, for example (.999. Although the boundary between these two cases is
not sharply defined, the corresponding answers are fundamentally different.

Case I Suppose that P(.27) = 0.6. In this case, the number 0.6 gives us
only a “‘certain degree of confidence that the event &/ will occur.”™ The known
probability is thus used as a “measure of our belief” about the occurrence of &/
in a single trial, This interpretation of P(.&7) is subjective in the sense that it
cannot be verified experimentally. In a single trial, the event .2/ will either
oceur or will not occur. If it does not, this will not be a reason for questioning
the validity of the assumption that P(.a7) = 0.6.

Case 2 Suppose, however, that P(.27) = 0,999. We can now state with
practical certainty that at the next trial the event ./ will occur. This conclusion
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is objective in the sense that it can be verified experimentally. ‘At the next trial
the event .27 must occur. If it does not, we must seriously doubt, if not outright
reject. the assumption that P(.o7) = 0,999,

The boundary between these two cases, arbitrary though it is (0.9 or
0.999992), establishes in a sense the line separating “soft” from “hard™ scientific
conclusions. The theory of probability gives us the analvtic tools (step 2) for
transforming the “subjective™ statements of case 1 to the “objective” statements
of case 2. In the following, we explain briefly the underlying reasoning,

As we show in Chap. 3, the information that P(.&/) = 0.6 leads to the
conclusion that if ‘the experiment is performed 1000 times, then “almost
certainly” the number of times the event .o will occur is between 550 and 650,
This is shown by considering the repetition of the original experiment 1000
times as a sivigle outcome of a new experiment. In this experiment the probabil-
ity of the event

& = {the number of times . oceurs is between 550 and 650}

equals 0:999 (see Prob. 3-6). We must, therefore, conclude that (case 2) the
event .27, will oceur with practical certainty.

We have thus succeeded. using the theory-of probability, to transform the
“subjective”™ conclusion about 2/ based on the given information that P(.oZ) =
0.6, to the “objective” conclusion about #/; based on the derived conclusion
that P(.7}) = 0.999. We should emphasize. however. that both conelusions rely
on inductive reasoning. Their difference, although significant, is only quantita-
tive, As in case 1, the “objective” conclusion of case 2 is not a certainty but only
an inference. This, however, should not surprise us; after all. no prediction
about future events based on past experience can be accepted as logical
certainty.

Our inability to make categorical statements about future events is not
limited to probability but applies to all sciences. Consider, for example, the
development of classical mechanics. It was observed that bodies fall according
to certain patterns, and on this evidence Newton formulated the laws of
mechanics and used them to predict future events. His predictions, however,
are not logical certainties but only plausible inferences. To “prove” that the
future will evolve in the predicted manner we must invoke metaphysical causes.

1-4 CAUSALITY VERSUS RANDOMNESS

‘We conclude with a brief comment on the apparent controversy between
causality and randomness. There is no conflict between causality and random-
ness or between determinism and probability if we agree, as we must, that
scientific theories are not discoveries of the laws of nature but rather inventions
of the human mind. Their consequences are presented in deterministic form if
we examine the results of a single trial; they are presented as probabilistic
statements if we are interested in averages of many trials. In both cases, all
statements are qualified. In the first case, the uncertainties are of the form
“with certain errors and in certain ranges of the relevant parameters™ in the
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second, “with.a high degree of certainty if the number of trials is large enough.”
In the next example, we illustrate these two approaches.

Example 1-5. A rocket leaves the ground with an initial velocity ¢ forming an
angle @ with the horizontal axis (Fig. 1-2). We shall determine the distance
d = OB from the origin to the reentry point B.

From Newton’s law it follows that

L‘l

d = —sin20 (1-9)
g

The above seems to be an unqualified consequence of a causal law; however,
this is not so. The result is approximate and it can be given a probabilistic
interpretation.

Indeed, (1-9) is not the solution of a real prablem but of an idealized model
in which we have neglected air friction, air pressure, variation of g, and other
uncertainties in the values of v and 8. We must, therefore, accept (1-9) only with
qualifications. It holds within an error ¢ provided that the neglected factors are
smaller than 6.

‘Suppose now. that the reentry area consists of numbered holes and we want
to find the reentry hole. Because of the uncertainties in ¢ and 8, we are in no
position' to give a deterministic answer to our problem. We can, however, ask a
different question: If many rockets, nominally with the same velocity, are launched,
what percentage will enter the nth hole? This question no longer has a causal
answer; it'can only be given a random interpretation.

Thus the same physical problem can be subjected cither to a deterministic or
10 a probabilistic analysis. One might argue that the problem is inherently
deterministic because the rocket has a precise velocity even if we do not know.it. If
we did, we would know exactly the reentry hole. Probabilistic interpretations are,
therefore, necessary because of our ignorance.

Such arguments can be answered with the statement that the physicists are
not concerned with what is frue but only with what they can observe.

CONCLUDING REMARKS

In this book, we present a deductive theory (step 2) based on the axiomatic
definition of probability. Occasionally, we use the classical definition but only to
determine probabilistic data (step 1),

To show the link between theory and applications (step 3), we give also a
relative frequency interpretation of the important results. This part of the book,
written in small print under the title Frequency interpretation, does not obey the
rules of deductive reasoning on which the theory is based.



CHAPTER

2

THE AXIOMS
OF PROBABILITY

2-1 SET THEORY

A set is a collection of objects called elements. For example, “car, apple,
pencil” is a set whose elements are a car, an apple, and a pencil. The set
“heads, tails” has two elements. The set “1, 2, 3, 5 has four elements.

A subset & of a set &7 is another set whose elements are also elements of
&/, All sets under consideration will be subsets of a set .* which we shall call
Space.

The elements of a set will be identified mostly by the Greek letter £, Thus

&=l ail) (2-1)

will mean that the set .27 consists of the elements £....,¢,. We shall also
identify sets by the properties of their elements. Thus

.o/'= {all positive integers} (2-2)

will mean the set whose elements are the numbers 1,2,3, ... .
The notation

Leod Leok

will mean that £, is or is not an element of 2.

The empty or null set is by definition the set that contains no elements.
This set will be denoted by {#).

If a set consists of n elements, then the total number of its subsets
equals 2",
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FIGURE 2-2

Note In probability theory, we assign probabilities to the subsets (events) of . and we
define various functions (random variables) whose domain consists of the elements of /.
We must be careful, therefore, to distinguish between the element ¢ and the set (£)
consisting of the single element &,

Example 2-1. We shall denote by f, the faces of a die. These faces are the
elements of the set = {f,...., f)- In this case, n = 6; hence .~ has 2° = 64
subsets:

9).{f1}.--- {(Fifadseens {fifafa)s -ns ~

In general, the elements of a set are arbitrary objects. For example, the 64
subsets of the set . in the above example can be considered as the elements of
another set. In Example 2-2, the elements of .~ are pairs of objects. In
Example 2-3, . is the set of points in the square of Fig. 2-1.

Example 2-2. Suppose that a coin is tossed twice. The resulting outcomes are the
four objects fih, ht. th, it forming the set

= {hh, bt th o)

where Ak s an abbreviation for the element “hcads—heads.” The set . has
2% = 16 subsets. For example,

&= [heads at the first toss) = {hh, fir)
& = {only one head showed) = (hz, th)
' = {heads shows at least once} = {hh, hit, th}

In the first equality, the sets o7, &, and € are represented by their properties as
in (2-2); in the second, in terms of their clements as in (2-1),

Examplé 2-3. In this example, ./ is the set.of all points in the square of Fig. 2-1.
Its elements are all ordered pairs of numbers (x, y) where

0<sx<sT O<sysT
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FIGURE 2-3 FIGURE 2-4

The shaded area is a subset & of " consisting of all points (x, ) such that
—b < x —y < a. The notation

#={-bh<x—y=<a)

describes .27 in terms of the properties of x and v as in (2-2).

Set Operations

In the following, we shall represent a set . and its subsets by plane figures as
in Fig. 2-2 (Venn diagrams).

The notation & C &/ or &2 # will mean that & is a subset of &/, that
is, that every element of & is an element of 27, Thus; for any &7,

{#} c¥cac.”

Transitivity 1f £ c 2 and & C o/ then ¢ C o/

Equality /= 2 ifff &/c & and & < &

Unions and intersections The sum or union of two sets &7 and & is a set
whose elements are all elements of 2 or of & or of both (Fig. 2-3). This set
will be written in the form

oA+ HB or R AU
The above operation is commutative and associative:
YA B=F+ o (F+F)+L=+(F+7F)
We note that, if & ¢ o, then &/ + % = 27. From this it follows that
A+ A= A+ W)= A=A

The product or intersection of two sets .2/ and & is a sct consisting of all
elements that are common to the set 27 and & (Fig. 2-3). This set is written in
the form

A or QR
The above operation is commutative, associative, and distributive (Fig. 2-4):
DB = Bl  (AB)E= A (BE) B+ €)= AB+ AC

+1ff is an abbreviation for if and only if.
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FIGURE 2-5 FIGURE 2-6

We note that if &/ c &, then &/ = 27, Hence
ol =of By ={) A=
Note If two sets .27 and Z# are described by the properties of their elements as in (2-2),
then their intersection &% will be specified by including these properties in braces. For
example, if
= {1,2,3,4,5,6)} of = {even} 4 = {less than 5}

thent

&% = [even, less than 5} = (2,4} (2-3)

Mutually exclusive sets Two sets o7 and & are called mutually exclusive
or disjoint if they have no common elements, that is, if

/B = (d)
Several sets @7}, .o/, ... are called mutually exclusive if
7o, = (§) forevery iand j+#i

Partitions A partition % of a set .7 is a collection of mutually exclusive
subsets .o/, of . whose union equals ..# (Fig. 2-5).

o+, =S = () i#) (2-4)
All partitions will be denoted by boldface German seript (Fraktur) letters. Thus
A= [‘M’lw ,.,.Q/”]

FWe should stress the difference in the meaning of commas in (2-1) and (2-3). In (2-1) the braces
include all elements ¢ and

{Ev-n b= G}V - U (L)

15 the union of the sets {£,). 1n (2-3) the braces include the properties of the sets (even] and (less
than 5), and

{even, less than 5} = {even} M {less than 5)
i§ the intersection of the sets {even) and (less than 5),
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FIGURE 2-7

Complements The complement 27 of a set .27 is the set consisting of all
elements of .~ that are not in .& (Fig, 2-6). From the definition it follows that

S+ =S Ad=) S=w F={) (f)=.r
If & c o then Z o ; if AP then F= B
De Morgan’s law  Clearly (see Fig. 2-7)
L+ B=AB AD =T+ B (2-5)

Repeated application of (2-5) leads to the following:
If in a set identity we replace all sets by their complements, all unions by
intersections, and all intersections by unions, the identity is preserved.
We shall demonstrate the above using as example the identity
A(B+ ) = AP+ AE (2-6)

From (2-5) it follows that

|

H(B+E) =+ B+ € =A+ B
Similarly,
AP+ AE = (AB)(HE) = (L + BT+ &)

and since the two sides of (2-6) are equal, their complements are also equal.
Hence

T+ Bl = (L+ B) A+ E) (2-7)

Duality principle  As we know, .= {#i} and () = .#. Furthermore, if in
an identity like (2-7) all overbars are removed, the identity is preserved. This
leads to the following version of De Morgan’s law:

If in a set identity we replace all unions by intersections, all intersections
by unions, and the sets .~ and {ff} by the sets {#i} and ., the identity is
preserved.

‘Applying the above 'to the identities

(B + ) =B+ e A= S
we obtain the identities
A+ BC=(A+ B) A+ £) {#)y.a7= (¢}
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2-2 PROBABILITY SPACE

In probability theory, the following set terminology is used: The space .~ s
called the certain event, its elements experimental outcomes. and its subsets
events. The empty set (1} is the impossible event, and the event {£;} consisting of
a single element ¢ is an elementary event. All events will be identified by script
letters.

In the applications of probability theory to physical problems, the identi-
fication of experimental outcomes is not always unique. We shall illustrate this
ambiguity with the die experiment as might be interpreted by players X, V.
and Z.

X says that the outcomes of this experiment are the six faces of the die
forming the space .#“={f,,..., f;). This space has 2° = 64 subsets and the
event (even} consists of the three outcomes f., f,, and fe

Y wants to bet on even or odd only, He argues, therefore that the
experiment has only the two outcomes even and odd forming the space
= {even, odd). This space has only 22 = 4 subsets and the event {even}
consists of a single outcome.

Z bets that one will show and the die will rest on the left side of the table.
He maintains, therefore, that the experiment has infinitely many outcomes
specified by the coordinates of its center and by the six faces. The event {even}
consists not of one or of three outcomes but of infinitely many.

In the following, when we talk about an experiment. we shall assume that
its outcomes are clearly identified. In the die experiment, for example, .~ will
be the set consisting of the six faces e

In the relative frequency interpretation of various results. we shall use the
following terminology.

Trial A single performance of an experiment will be called a rial. At
cach trial we observe a single outcome ¢- We say that an event 27 occurs
during this trial if it contains the element £,. The certain event occurs at every
trial and the impossible event never aceurs. The event .o/ - 2 oceurs when o7
or % or both oceur. The event /% occurs when both events .2/ and 2 occur.
If the events .27 and & are mutually exclusive and .27 occurs, then 4 does not
oceur. If o/ c & and o/ ocours, then & occurs. At each trial, either &7 or &/
occurs.

If, for example, in the dic experiment we obscrve the outcome f5, then the
event (f5}, the event {odd), and 30 other events oceur.

The Axioms

We assign to each event 27 a number P(2r) which we call the probability of the
event /. This number is so chosen as to satisty the following three conditions:

. P(/) =20 (2:8)
1 P(4) =1 (2-9)
m it /B={#) then P(+ B)=P(s) + P(#) (2-10)
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These conditions are the axioms of the theory of probability. In the
development of the theory. all conclusions are based directly or indirectly on the

axioms and only on the axioms. The following are simple consequences.

Properties. The probability of the impossible event is 0);
P{#} =0
Indeed, o/ {¢#} = (¥} and &/ + (B} = o/; therefore [see (2-10)]
P(&7) = P(o/+ @) = P(/) + Pl
For any .27,
Py =1-P() <1
because o7+ = .~ and /7 = {(§): hence
1 = P(7) = P(o/+ o) = P(A)i+ P(FF)
For any &/ and &,

(2-11)

P(A+ B) = P(F) + P(F) — P(4F) < P(/) +P(Z) (213)

To prove the above, we write the events .o+ &% and & as unions of two

mutually exclusive events:
A+ B=oA+ TB B =AB+ AB
Therefore [see (2-10)]

P(oA+ B) =P(A) + P(FB) P(RB)=P(AD) + P(AD)

Eliminating P(.57#), we obtain (2-13).
Finally, if & © %7, then

P(o) = P(B) + P(4B) = P(H)
because % + /@ and B(/A) = ().

(2-14)

Frequency interpretation The axioms of probability are so chosen that the resulting
theory gives a satisfactory representation of the physical world. Probabilities as used in
real problems must, therefore, be compatible with the axioms, Using the frequency

interprétation
n,
P(sr) = =<
7
of probability, we shall show that they do.

I. Clearly, P(&/) = 0 because n,= 0 and n > 0,
II. P(.7) = | because ./ occurs at every trial; hence n_ = n.

L If 2728 =0, then 1., =n., +n, because if &+ 9 occurs then & or #

oceurs but not both. Hence

Nasip W N

Pl + @) = i

¥ T2 p(ad) + ()
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Equality of events. Two events .o/ and 2 are called equal if they consist of the
same clements. They are called equal with probability I if the set

(#+ B)AB) = AP+ FB

consisting of all outcomes that are in .27 or in & but not in .&/%# (shaded area
in Fig. 2-8) has zero probability.

From the definition it follows that (see Prob. 2-4) the events . and & are
equal with probability 1 iff

P() = P(Z) = P(H4RB) (2-15)

If P(a7) = P(#) then we say that .o/ and & are equal in probability. In
this case, no conclusion can be drawn about the probability of &7, If fact, the
events .27 and & might be mutually exclusive.

Erom (2-15) it follows that, if an event .# equals the impossible event with
probability 1 then P(.#") = 0. This does not, of course, mean that .4 = {#}.

The Class § of Events

Events are subsets of . to which we have assigned probabilitics. As we shall
presently explain, we shall not consider as events all subsets of . but enly a
class § of subsets.

One reason for this might be the nature of the application. In the die
experiment, for example, we might want to bet only on even or odd. In this case,
it suffices to consider as events only the four sets {f1}, {even), {odd), and .~

The main reason, however, for not including all subsets of . in the class
& of events is of a mathematical nature; In certain cases involving sets with
infinitely many outcomes, it is impossible to assign probabilities to all subsets
satisfving all the axioms including the generalized form (2-21) of axiom II1.

The class § of events will not be an arbitrary collection of subsets of ..
We shall assume that, if 2/ and & arc events, then &7+ & and /% are also
events. We do so because we will want to know not only the probabilities of
various events, but also the probabilities of ‘their unions and intersections. This
leads to the concept of a field,

FIELDS. A field & is a nonempty class of sets such that:
If o€§ then Fe§ (2-16)
If o/ and ZF then &+ FeF (217
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These two properties give a minimum set of conditions for § to be a field,
All other properties follow:

If €@ and Be§F then &/Fe§ (2-18)

Indeed, from (2-16) it follows that &/ & § and #Z € . Applying (2-17) and
(2-16) to the sets .97 and %, we conclude that

T+ BeF T+ B =SB eF
A field contains the certain event and the impossible event:
SEF (B} e (2-19)

Indeed, since & is not empty, it contains at least one element .&7; therefore [see
(2-16)] it also contains &7, Hence

T+ A= LeF AI= (e

From the above it follows that all sets that can be written as unions or
intersections of finitely many sets in § are also in §. This is not, however,
necessarily the case for infinitely many sets.

Borel fields. Suppose that' 27,..., &7, ... is an infinite sequence of sets in F.
If the union and intersection of these sets also belongs to &, then § is called a
Borel field.

The class of all subsets of a set . is a Borel field. Suppose that € is a
class of subsets of . that is not a field. Attaching to it other subsets of ., all
subsets if necessary, we can form a field with € as its subset. It can be shown
that there exists a smallest Borel field containing all the elements of €.

Example 2-4. Suppose that .~ consists of the four elements a,b,c,d and €
consists of the sets {a} and {b). Attaching to € the complements of {a) and {b) and
their unions and intersections, we conclude that the smallest field containing (a)
and {b) consists of the sets

}y  {a) (b} {a, b} {c.d) {b.c,d} {a,cod)

Events. In probability theory, events are certain subsets of . forming a Borel
field. This permits us to assign probabilities not only to finite unions and
intersections of events, but also to their limits.

For the determination of probabilities of sets that can be expressed as
limits, the following extension of axiom I11 is necessary.

Repeated application of (2-10) leads to the conclusion that, if the events
&y, ..., o, are mutually exclusive, then

PS4+ + 0L = P(S) + == +P() (2-20)
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The extension of the above to infinitely many sets does not follow from (2-10), 1y
is an additional condition known as the axiom of infinite additivity

Ila. If the events .27, 5%, .. are mutually exclusive, then

P(ot, + 9, + -+ ) = P(H)) + P(&5) + - (2-21)

We shall assume that all probabilities satisfy axioms I, I1, III, and I1q.

Axiomatic Definition of an Experiment

In the theory of probability, an experiment is specified in terms of the following
concepts:

1. The set . of all experimental outcomes.
2. The Borel field of all events of .~.
3. The probabilities of these events.

The letter .~ will be used to identify not only the certain event, but also
the entire experiment.

We discuss mext the determination of probabilities in experiments with
finitely many and infinitely many elements.

Countable spaces. If the space . consists of N outcomes and N is a finite
number, then the probabilities of all events can be expressed in terms of the
probabilities

P{GY =p

of the elementary events {{;}. From the axioms it follows, of course, that the
numbers p, must be nonnegative and their sum must equal 1:

pi =0 Pt +py=1 (2-22)

Suppose that & is an event consisting of the r elements . In this case,
&/ can be written as the union of the elementary events {{}, ). Hence [see (2:20)]

P(&r) = {{kl} EEN +p fk,} =ipg, F (2-23)

The above is true even if .~ consists of an infinite but countable number
of elements £y, £5,... [see (2-21)].

Classical definition 1f . consists of N outcomes and the probabilities p;
of the elementary events are all equal, then

1
p= (2:24)
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In this case, the probability of an event .o/ consisting of r elements equals r/N:

P(ar) = — (2:25)
N
This very special but important case is equivalent to the classical definition
(1-7), with one important difference, however: In the classical definition. (2-25)
is deduced as a logical necessity; in the axiomatic development of probability,
(2-24), on which (2-25) is based, is a mere assumption,

Example 2-5. (a) In the coin experiment, the space . consists of the outcomes i
and 1:

S = {h,i1}

and its events are the four sels (@), (e}, (h), .. 1f P{h) =p and Pt} = g, then
p+g=1

(5) We consider now the experiment of the toss of a coin three times. The
possible outcomes of this experiment are;

hhh, hbe, bk, hi, thh, the, tth, et

We shall assume thal all elementary events have the same probability as in (2-24)
(fair coin). In this case, the probability of each elementary event equals 1 /8. Thus
the probability P(Afik} that We get three heads equals 1/8. The event

{heads at the first two tosses} = {hhih, i)

consists-of the two outcomes hlth and hhir; hence its probability cquals 2 /8,

The real line. If . consists of a noncountable infinity of elements, then its
probabilitiesicannot be determined in terms of the probabilities of the elemen-
tary events. This is the case if . is the set of points in an n-dimensional space.
In fact, most applications can be presented in terms of events in such a space.
We shall discuss the determination of probabilities using as illustration the real
line.

Suppose that . is the set of all real numbers. Its subsets can be
considered as sets of points on the real line. It can be shown that it is impossible
to define probabilities to all subsets of . so as to satisfy the axioms. To
construct a probability space on the real line, we shall consider as events all
intervals x, <x <x, and their countable unions and intersections. These
events form a field § that can be specified as follows:

It is the smallest Borel field that includes all half-lines x < x. where x, is
any number.

This field contains all open and closed intervals, all points, and, in fact,
every set of points on the real line that is of interest in the applications. One
might wonder whether § does not include all subsets of .. Actually, it is
possible to show that there exist sets of points on the real line that are not
countable unions and intersections of intervals. Such sets, however, are of no
interest in most applications. To complete the specification of ., it suffices to
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alt) a4

alx) ¢

!
J_

(a) (b) (c)

FIGURE 2-9

assign probabilities to the events {x <x,}. All other probabilities can then be
determined from the axioms.
Suppose that «(x)is a function such that (Fig. 2-9a)

[’ a(x)dr=1 a(x)>0 (2-26)

We define the probability of the event {x < x,} by the integral

Xi

Plx<x} = ["a(x)dr (2:27)

This specifies the probabilities of all events of .. We maintain for example,

that the probability of the event {x, <x <x,} consisting of all points in the
interval (x,, x,) is given by

Plx, <x <x,) = [":a(.t) dx (2:28)

£

Indeed, the events {x < x}and (¥, <x < X,} are mutually exclusive and their
union equals {x < x,}. Hence [see (2-10)]

Plx <3} + Plx; <x <x,) =P(x < x,)

and (2-28) follows from (2-27),

We note that, if the function a(x) is bounded, then the integral in (2-28)
tends to 0 as x; — x,. This leads to the conclusion that the probability of the
event {x,) consisting of the single outcome X, is 0 for every x,. In this case, the
probability of all elementary events of .2 equals 0, although the probability of
their unions equals 1. This is not in conflict with (2-21) because the total
number of elements of . is not countable.

Example 2-6. A radioactive substance is selected at =0 and the time ¢ of
emission of a particle is observed. This process defines an experiment whose
outcomes are all points on the positive ¢ axis. This experiment can be considered
as a special case of the real line experiment if we assume that . is the entire ¢
axis and all events on the negative axis have zero probability.
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Suppose then that the function a(z) in (2-26) is given by (Fig. 2-95)

1 =10
1) =ce Ut I - =
a(t) =ec=u() U =5 ‘29
Inserting into (2-28), we conclude that the probability that a particle will be
emitted in the time interval (0, 1) equals

¢ {
1)

Example 2-7. A telephone call occurs at random in the interval (0, T). This means
that the probability that it will occur in the interval 0 < ¢ < ty equals t,/7T. Thus
the ‘outcomes of this experiment are all points in the interval 0, 7) and the
probability of the event {the call will ocour in the interval (1, ,)) equals

th— 1

T

Plyst<i)=

This is again a special case of (2-28) with a(1) = 1/T for0< ¢ < T and 0
otherwise (Fig. 2-9¢).

Probability masses. The probability P(.27) of an event .27 can be interpreted as
the mass of the corresponding figure in its Venn diagram representation.
Various identities have similar interpretations. Consider, for example, the
identity P(.o/ + Z) = P(&/) + P(#) — P(o/F). The left side equals the mass
of the event &7+ . In the sum P(o7) + P(&), the mass of .22 is counted
twice (Fig. 2-3). To equate this sum with P(2/+ &), we must, therefore,
subtract P(.27%).

2-3 CONDITIONAL PROBABILITY

The conditional probability of an event &/ assuming .#, denoted by P(.27].#), is
by definition the ratio

P(otd) .
= e 2-29
P(A14) =~ (2:29)
where we assume that P(.#) is not 0.
The following properties follow readily from the definition:
If #cs/ then P(##)=1 (2-30)

because then o7.#= .. Similarly,

P(s/)
P(.#)

if o/c.# then P(H#)= = P(o) (2.31)
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Frequency interpretation  Denoting by 7., 1t ., and 1, the number of occurrences
of the even(s &7, &, and o/# respectively, we cenclude from (1-1) that

&

H o n N s
P(#) =—= P(#)=—2 P(At)=—=
/] n n

Hence
P(A) o /0 (VD

P(o/|\#) = W = W n = ‘i (2-32)

This result can be phrased as follows: If we discard all trials in which the event . dig
not occur and ‘we retain only the subsequence of trials in which # occurred. then
P/ |.# ) equals the relatve frequency of occurtence n . ./n . of the event & in that
subsequence,

Fundamental remark. We shall show that, for a specific .#, the conditional
probabilities are indeed probabilities: that is, they satisfy the axioms.
The first axiom is obviously satisfied because P(27.#) = 0 and P(.#4) > 0:

P(/#) =0 (2-33)
The second follows from (2-30) because .# C ./
P(AA) =1 (2:34)

To prove the third, we observe that if the events .27 and & are mutually
exclusive; then (Fig. 2-10) the events .o4# and Z.# are also mutually exclusive,
Hence

Pl(/+ B).#) _ P(AL) + P(BA)
P(.#7) b P(.#)

P+ Bl#) =

This yields the third axiom:
P(oZ+ B\#) = P(A|.4) + P(Z|.4) (2-35)

From the above it follows that all results involving probabilities holds also
for conditional probabilities. The significance of this conclusion will be appreci-
ated later.

o= {0} pn) ={0}

FIGURE 2,10 FIGURE 2-11
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&

Example 2-8. In the fair-dic experiment, we shall determine the conditional
probabilily ofithe event (f,) assuming that the event even occurred. With

F={f} &= {even} = {f. [1, [i)
we have P(.o7) = 1/6 and P(.#) = 3/6. And since &/ = o/, (2-29) vields

P(f)
Pleven} —

1
P{fsleven) = -
3

This equals the relative frequency of the occurrence of the event {two) in the

suhsuqucncc whose outcomes are even numbers.

Example 2-9. We denote by ¢ the age of a person when he dies. The probability
that r <1, is given by

Pt <t} = [“alt)dr
[}]

where alf) is a function determined from mortality records. We shall assume that
(1) =3 % 1072100 = 1)> 0 <t < 100years

and 0 otherwise (Fig. 2-11).
From (2-28) it follows that the probability that a person will die between the
ages of 60 and 70 equals

P60 <t < 70) = [ (1) dr=10.154
60

This equals the number of people who die between the ages of 60 and 70 divided
by the total population.
With

A=<t <T0) H={i260) A=A

it follows from (2-29) that the probability that a person will die between the ages of
60 and 70 assuming that he was alive at 60 equals

(M) dt

P60 < 1 < 70|t > 60) = %ﬁ = (.486

jm w(r) di

This equals the number of people who die between the ages 60 and 70 divided by
the number of people that are alive at age 60,

Example 2-10. A box contains three white balls wy, w., w; and two red balls r, r;.
We remove at random two balls in succession. What is the probability that the first
removed ball is white and the second is red?

We shall give two solutions to this problem. In the first, we apply (2-25) in
the second, we use conditional probabilities.
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First solution. The space of our experiment consists of all ordered palrs that we
can form with the five balls:
W]wz W:ll'_; “.Irl Hv‘|f'_, r:w, I'_sl\': l'-:"\"g ",‘ll

The number of such pairs equals 5 X 4 = 20. The event {white first, red second)
consists of the six outcomes

Wylly Wira Waly Wars WaFy Wals
Henee [See (2-25)] its probability equals 6,/20.
Second solution. Since the box contains three white and two red balls, the probability
of the evenl #| = {white first) equals 3 /5. If a white ball is removed. there remain
two white and two red balls; hence the conditional probability P(2,| #,) of the
event #, = {red second) assuming {white first) equals 2 /4. From this and (2-29) it
follows that

M= = —

2
P(#i#) = P(: )P = 7

where 7,22, is the event {white first, red second),

Total Probability and Bayes’ Theorem

I A = [o7,,...,47,] is a partition of ..~ and & is an arbitrary event (Fig, 2-5),
then

P(#) = P(FA)P() + - +P(BLf)P()  (236)

Proof. Clearly,
B =B =B(A, + -+ ) = Bofy + o LB,

But the events #.2/ and #.2z; are mutually exclusive because the events ./
and & are mutually exclusive [see (2-4)]. Hence

P(B) = P(BA,) + - +P(BA)
and (2-36) follows because [see (2-29)]
P(B4, ) = P(#\4, \P() (2:37)

This result is known as the roral probability theorem.
Since P(#/) = P(o/| B)P(H) we conclude with (2-37) that
P(L)
P(Z| B) = P(B| o7, ) ——— 2-38
(4148) = P( B, ) s (239)
Inserting (2-36) into (2-38), we obtain Bayes® theorem::

P(Sla7, )P(4,)
P('@I'M{I)P(‘Ml) SO0 +P(£[‘Q{:|)P(‘B‘lc|)

Pz z) = (2-39)

FThe main idea of this theorem is due to Thomas Buyes (1763). However, its final form (2-39) was
given by Laplace several years later,
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Note The terms @ priori and a posteriori are often used for the probabilities P(&7) and
P/ 2),

Example 2-11. We have four boxes. Box 1 contains 2000 components of which
5 percent are defective. Box 2 contains 500 components of which 40 percent are
defective. Boxes 3.and 4 contain 1000 cach with 10 percent defective. We select ar
random one of the boxes and we remove at randon a single component,

(a) What is the probability that the selected componen! is defective?

The space of this experiment consists of 4000 good (g) components and 500
defective (d) components arranged as follows:

Box 1= 1900g, 1004 Box 2:  300g, 200d
Box 3: 900g, 1004 Box4: 900g, 100d
We denote by &, the event consisting of all components in 'the ith box and
by 2 the event consisting of all defective components. Clearly,
P(#,) = P(5,) = P(#;) = P(#,) = 5 (2-40)
because the boxes are selected at random. The probability that a component taken

from a specific box is defective equals the ratio of the defective to the total number
of components in. that box. This means that

. 100 ) . 200
P(21%,) = 2000 0:05° P(2|@;) = S 0.4
(2-41)
Pmu,a)-mﬂ - 0.1 P(2|D,) = — =
("‘_lnnn_' (Z124) = 505 =

And since the events 2, &,, #;, @; form a partition of ./, we conclude from
(2-36) that

P(Z2) =005 §+04 X+ +01x§+0.1x 5=0.1625

This is the praobability that the selected component is defective.

(h) We examine the selected component and we find it defective. On the
basis of this evidence, we want to determine the probability that it came from
box 2.

We now want the conditional probability P(&,| 2). Since

P(2)=01625 P(2|%,) =04 P(H,) =025
(2-38) vields

0.1625

Thus the a priori probability of selecting box 2 equals 0.25 and the
a posteriori probability assuming that the selected component is defective equals
0.615. These probabilities have the following frequency _inlemrcliltion: If the
experiment is performed n times, then box 2 is selected 0.25x times. If we consider
only the n,, experiments in which the removed part is defective, then the number
of times the part is taken from box 2 equals 0.615n .
 We conclude with a comment on the distinction between assumptions and
‘deductions: Equations (2-40) and (2-41) are not derived; they are merely reasonable
assumptions. Based on these assumptions and on the axioms, we deduce that
P(Z) = 0.1625 and P(&,| Z) = (0.615.

= 0.615

P(2,]7) =04 %
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Independence
Two events &7 and & are called independent if
P(##B) = P(o/)P(2) (2-42)
The concept of independence is fundamental. In fact, it is this concept

that justifies the mathematical development of probability, not merely as a topic
in measure theory, but as a separate discipline. The significance of indepen-
dence will be appreciated later in the context of repeated trials. We discuss here
only various simple properties.

Frequency interpretation Denoting by n.,, n, and n ., the number of occurrences of
the events o7, &, and .&/F respectively, we have

o Ny Novs
/i

n :
P() == P(@)=—" PF)=

If the events .2/ and & are independent, then
P(AF)  tgm/n  Nys

n, -
T;P(H/J_ P(#) na/n n

Thus, if & and & are independent, then the relative frequency n_/n of the accurrence
of .2 in the original sequence of n trials equals the relative frequency N g/ of the
occurrence of 7 in the subsequence in which & occurs.

Wc_show next that if the events ,.rf{’_and 4 are independent, then the
events &/ and & and the events .27 and % are also independent.
As we know, the events .2/% and &/2 are mutually exclusive and

B=AB+IF P(F)=1-P(F)
From this and (2-42) it follows that
P(AZB) = P(B) — P(¥B) = [1 — P()|P(2) = P()P(B)

This establishes the independence of &7 and . Repeating the argument, we
conclude that .27 and Z are also independent.

In the next two examples, we illustrate the concept of independence. In
Example 2-124, we start with a known experiment and we show that two of its
events are independent. In Examples 2-12b and 2-13 we use the concept of
independence to complete the specification of each experiment. This idea is
developed further in the next chapter.

Example 2-12. If we toss a coin twice, we generate the four outcomes hh, ht, th,
and .

(f?) To construct an experiment with these outcomes, it suffices (o assign
probabilities to its clementary events. With a and b two positive numbers such
that a + b = 1, we assume that

Phhy =a*  P{in) = Plth} =ab  P{u) = b*
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These probabilities are consistent with the axioms because
a® +ab +ab + b* = (a + b}: = ]
In the experiment $o constructed; the events
##, = {heads at first toss} = {hh, ht}
5 = {heads at second toss} = {hh, th)
consist of two elements cach, and their probabilities are [see (2-23)]
P(H) = P{hh} + P{ht} =a* + ab =a
P(H3) = P{hh) + P(th) =a" + ab=a

The intersection -#,%5 of these two events consists of the single outcome {/h).
Hence

P(H##5) = Plhh) = a® = P(H,) P(H5)

This shows that the events #, and 2%, are independent.

(b) The above experiment can be specified in terms of the probabilities
P(#) = P(#5) = a of the events -#] and %, and the information that these
events are independent.

Indeed, as we have shown, the events %, and 5 and the events 27, and
A -are also independent. Furthermore,

HHy = () A= (W) = (hy = {u)
and P(F#) = 1 — P(#))= 1 —a, P(H#,) =1 — P(#,) = 1 — a. Hence
P{hh} = a* P{ht) = a(l — a) P{th} = (1 —a)a Plut} = (1 - c.-)j

Example 2-13. Trains X and Y arrive at a station at random between 8 a.m. and
8.20 a.m. Train X stops for four minutes and train ¥ stops for five minutes.
Assuming that the trains arrive independently of each other, we shall determine
various probabilities related to the times x and y of their respective arrivals, To
do so, we must first specify the underlying experiment.

The outcomes of this experiment are all points (x, y) in the square of Fig.
2-12. The'event

o/ = (X arrives in the interval (1), ¢,)) = {f; <x < 15}

is a vertical strip as in Fig. 2-12a and its probability equals (2, — 1,)/20. This is

FIGURE 2-12
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our interpretation of the information that the train arrives at random. Similarly
the event :

Z = (V¥ arrives in the interval (15, 1;)} = {1, <y < ()

is a horizontal strip and its probability equals (7, — 14) /20,

Proceeding similarly, we can determine the probabilities of any horizontal or
vertical sets of points. To complete the specification of the experiment, we must
determine also the probabilities of their intersections. Interpreting the
independence of ‘the arrival times as independence of the events &7 and H, we
obtain
(t = 1) (1s = 15)

20 % 20

The event 2748 is the rectangle shown in the figure. Since the coordinates of
this rectangle are arbitrary, we conclude that the probability of any rectangle
equals its area divided by 400. In the plane, all events are unions and intersections
of rectangles forming a Borel field. This shows that the prabability that the point
(x, ¥) will be in an arbitrary region R of the plane equals the areas of R divided
by 400. This completes the specification of the experiment.

(@) We shall determine the probability that train X arrives before train Y.
This is the probability of the event

P(AB) = P(A)P(Z) =

&= {x<y)
shown in Fig. 2-12b. This event is a triangle with area 200. Hence

P(£) 200
(£) =200

(b) We shall determine the probability that the trains meet at the station.
For the trains to meet, x must be less than y + 5 and y must be less than x + 4.
This is the event

G={-4=<xr—y<5}

of Fig. 2-12¢. As we see from the figure, the region & consists of two trapezoids
with common based, and its area equals 159.5. Hence
B 159.5
()= 75
(¢) Assuming that the trains met, we shall determine the probability th.at
train X arrived before train Y. We wish to find the conditional probability
P(#'| 2). The event £2 is a trapezoid as shown and its area equals 72. Hence
P(£Z) T2

TGRS P(Z) 1595

INDEPENDENCE OF THREE EVENTS. The events &7, &/, .7, are called (mut-
vally) independent if they are independent in pairs:

Pt} = P()P(]) i %) (2:43)
and

P(of 0, o)) = P ) P(a7,) P(97) (2-44)
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WB= T = A= B

FIGURE 2-13

We should emphasize that three events might be independent in pair but
not independent. The next example is an illustration.

Example 2-14. Suppose that the events &, %, and £ of Fig. 2-13 have the same
probability
P() = P(B) =P(€) =3
and the intersections /%, o/¢, B¢, and /B¢ also have the same probability
P = P(AZ) = P(A€) =P(HC) = P(AFE)

(a) If p = 1/25, then these events are independent in pairs but they are not
independent because

P(ABE) + P(#)P(B)P(£)

(B) If p = 1/25, then P(/ <) = P(o/)P(Z)P(£) but the events are not
independent because

P(AF) % P(LYP(B)
From the independence of the events .27, &, and # it follows that:

1. Any one of them is independent of the intersection of the other two.
Indeed, from (2-43) and (2-44) it follows that

P2, 05003) = P(&4)) P(82,) P(o45) = P(a)) P( s/, o4y)  (2-45)
Hence the events .7, and 27,97, are independent.
2. If we replace one or more of these events with their complements; the

resulting events are also independent.
Indeed, since
A = A+ LAy, P(AA) =1 — P(F)
we conclude with (2-45) that
Pty 84,57,) = P(otyoty) — P(&,20,) P(25) = P(&,) P(:4,) P(.57,)

Hence the events @/, o7, and 57, are independent because they satisfy
(2-44) and, as we have shown earlier in the section, they are alse independent
in pairs.

3. Any one of them is independent of the union of the other two.
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To show that the events &/, and &% + 2/ are independent, it suffices to

show that the events .2/ and . /ﬁ Bh= /2 o7y are independent. This
follows from 1 and 2.

Generalization. The independence of # events can be defined inductively:
Suppose that we have defined independence of & events for every k < n. We
then say that the events &7, ..., %/ are independent if any k < n of them are
independent and

P(ety - o) = P(#)) -~ P(24,) (2-46)

This completes the definition for any n because we have defined independence
for n = 2.

PROBLEMS

2-1. Show that (@) & + & + o + P= & (b) (A + DNTB) = AF + B,
22, f /=2 <x <5land & = {3 <x < G}, find &+ &, ¥DB, and (& + BNAR),
2-3. Show that if .@/# = (#}, then P(2/) < P(3).
2-4, Show that (a) if P(2/) = P(#) = P(A/H), then P(/F + H7)=0; (b) if
P(#) = P(#) = 1, then P(o/2) =
2-5. Prove and gencralize the following identity
P(oA+ B+ ¢) =P(&) + P(HB) + P(&) — P(AD)
— P(AE) — P(HE) + P(ABE)
2-6. Show that if . consists of a countable number of elements ¢, and each subset {¢)
is‘an event, then all subsets of ./ are events.
2-7. 1f /"= {1,2,3, 4}, find the smallest field that contains the sets {1) and {2,3}.
2-8. If &/ C A, P(o/) = 1/4, and P(H) = 1/3, find P(7|#) and P(H|/).
2-9. Show that P(w/P|¢) = P(A|BEIP(H| 6) and P(ABE) = P(t|BE)
P(H#| £)P(£).
2-10. (Chain rule) Show that

P(t, - ) = P(A |y, ) -+ P3N 1) P( 1))

2-11. We select at random m ub;ccl‘s from aset . of n objects and we!denote by .7,
the set of the sclected objects. Show that the probability p that a particular
clement &, of .~ isin &7, equals m/n.

Hint: p equals the probability that a randomly selected element of . is in &7,

2-12. A call oceurs at time ¢ where ¢ is a random point in the interval (0, 10). (@) Find
P{6 < ¢ < 8} (b) Find P{6 < ( < 8]t > 5).

2-13. The space . is the set of all positive numbers ¢. Show that if P{t, <t <1, + 1,
0=tk = P{t < 1} for every 1y and 1, then P{t < ;) = 1 — ¢~ where ¢ is a
constant,

2-14, The events o and Z are mutually exclusive. Can they be independent?

2-15. Show that if the everits &/, ..., o7, ‘are independent and 2, equals &/ or & o
-7, then the events &, ... ..Sd,, are also independent.



2-16.

2-17.

2-18.

2-19.

2-20.

2-21.
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Show that 2" — (n + 1) equations are needed (o establish the independence of n
events.

Box 1'contains 1 shite and 999 red balls. Box 2 contains 1 red and 999 white balls,
A ball is picked from a randomly selected box. If the ball is red what is the
probability that it came from box 12

Box 1 contains 1000 bulbs of which 10 percent are defective. Box 2 contains 2000
bulbs of which 5 percent are defective. Two bulbs are picked from a randomly
selected box. (a) Find the probability that both bulbs are defective. (b) Assuming
that both are defective, find the probability that they came from box 1.

A train and a bus arrive at the station at random between 9 am. and 10 Am. The
train stops for 10 minutes and the bus for x mimutes. Find x so that the probability
that the bus and the (rain will meet equals 0.5,

Show that a set . 'with n elements has
nEA=T) -~ =k+ 1) !
1-2-k k(= k)

k-element subsets.

We have two coins; the first is fair and the second two-headed. We pick one of the
coins at random, we toss it twice and heads shows both times. Find the probability
that the coin picked i§ fair.



CHAPTER

3

REPEATED
TRIALS

3-1 COMBINED EXPERIMENTS

We are given two experiments: The first experiment is the rolling of a fair die
A ={fise e f) Pl[fl}=cli

The second experiment is the tossing of a fair coin

S = {ht}  Pyfh} = Py} =

ral—

We perform both experiments and we want to find the probability that we get
“two” on the die and “heads” on the coin.

If we make the reasonable assumption that the outcomes of the first
experiment are independent of the outcomes of the second, we conclude that
the unknown probability equals 1/6 % 1/2.

The above conclusion is reasonable; however, the notion of independence
used in its derivation does not agree with the definition given in (2-42). In that
definition, the events &/ and & were subsets of the same space. In order 10 fit
the above conclusion into our theory, we must, therefore, construct a space ./
having as subsets the events “two” and “heads.” This is done as follows:

The two experiments are viewed as a single experiment whose outcomes
are pairs £,4, where ¢, is one of the six faces of the die and ¢, is heads or

33
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tails.7 The resulting space consists of the 12 clements
Filie s ol il ot

In this space, {two} is not an elementary event but a subset consisting of
two elements

{two) = {f,h, far)
Similarly, {heads) is an event with six elements
{heads) = ([ h;. .., fuh)

To complete the experiment, we must assign probabilities to all subsets of
. Clearly, the event {two} occurs if the die shows “two” no matter what shows
on the coin. Hence

Pltwo} = P(f5) = ¢
Similarly,

P{heads} = P,{h} =

o=

The intersection of the events {two} and {heads) is the elementary event
{f>h). Assuming that the events {two} and {heads} are independent in the sense
of (2-42), we conclude that P{f,h) = 1/6 X 1/2 in agreement with our earlier
conclusion.

CARTESIAN PRODUCTS. Given two sets ./ and ./, with elements £, and £,
respectively, we form all ordered pairs £,£, where £, is any element of .| and
£, is any element of .. The cartesian product of the sets ./, and ., is a set
" whose elements are all such pairs. This set is written in the form

= S X P

Example 3-1. The cartesian. product of the sets
. = {car, apple, bird} A= {h,1)
has six elements

A XS = {ear-h, car-, apple-h, apple-t, bird-h, bird-t}
Example 3-2. If .4 = (&, (), /4 = {(h,1}. Then
A X A= {hh he th)

In this example, the sets #| and .4 arc identical. We note also that the
element A is different from the element th.

tIn the earlier discussion, the symbol £, represented a swigle element of a set . In the following,
& will also represent an arbitrary element of a set 7. It will be understood from the context
whether ; is one particular clement or any element of ..
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A4 A X B A XA
o * FIGURE 3-1

It o is a:subset of .4 and 2 is a subset of .7, then the set
C=X DB
consisting of all pairs £,{, where £, € &7 and {, € &, is a subset of .7,

Forming similarly the sets &7 X ., and .4 X &, we conclude that their
intersection is the set &7 x Z:

HKX B = (X)) NI(A X F) (3-1)

Note Suppose that . is the x axis, .»5 is the y axis, and .o/ and B are two interyals:
o= {x; £x x5} B={y, <y =y}

In this case, &/ X & is a rectangle, &/ X /% is a vertical strip, and .4 x & is a
horizontal strip (Fig. 3-1).

We can thus interpret the cartesian product &/ X 2 of two arbitrary sets as a
generalized rectangle.

Cartesian product of two experiments. The cartesian product of two experi-
ments #, and ./ is a new experiment "= ./ X ./ whose events are all
cartesian produets of the form

X B (3-2)

where 27 is an event of ., and & is an event of %, and their unions and
intersections.

In this experiment, the probabilities of the events &/ X ./, and ./ X #
are such that

P(X A) =P(H) P(AF X B)=Py(R) (3-3)

where Py(.e7) is the probability of the event & in the experiments . and
Py(H) is the probability of the event & in the experiments /. The above is
motivated by the interpretation of . as a combined experiment. Indeed, the
event o/ X /5 of the experiment .~ occurs if the event .7 of the experiment
) accurs no matter what the outcome of /5 is. Similarly, the event ./, X #
of the experiment .~ occurs if the event & of the experiment .5 occurs no
matter what the outcome of 4] is. This justifies the two equations in (3-3).
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These eguations determine only the probabilities of the events .o/ % ~
and ) X &. The probabilities of events of the form /% % and of their
unions and intersections cannot in general be expressed in terms of P, and P,.
To determine them, we need additional information about the experiments ‘,/"‘
and 5.

Independent experiments. In many applications, the events @K A and
7 X # of the combined experiment .~ are independent for any &/ and &,
Since the intersection of these events equals &7 % & [see (3-1)), we conclude
from (2-42) and (3-3) that

P(&/% B) = P(/% A5)P(A X B) = P(A)P(B)  (3-4)

This completes the specification of the experiment ./ because all its
events are unions and intersections of events of the form &/ X .

We mnote in particular that the elementary event {£,4,) can be written'as a
cartesian product {£,} X {¢,) of the elementary events {£,} and {£,) of 4 and
/. Hence

P(&125) = P& Pa(Ls) (3-5)

Example 3-3. A box B, contains 10 white and 5 red balls and a box B, contains 20
white and 20 red balls. A ball is drawn from cach box. What is the probability that
the ball from B; will be white and the ball from B, red?

The above operation can be considered as a combined experiment.
Experiment ./ is the drawing from B, and experiment -4 is the drawing from
Bs. The space . has 15 elements; 10 white and 5 red balls. The event

#; = {allwhite balls in B,)
has 10 elements and its probability equals 10,/15. The space ., has 40 elements:
20 white and 20 red balls. The event

5= {all red balls'in B}
has 20 elements and its probability equals 20/40. The space ./) X ./, has

40 % 15 elements: all possible pairs that can be drawn.
We want the prabability of the event

#| X > = {white from B, and red from B;}

Assuming independence of the two experiments, we conclude from (3-4) that
10 20
P(#, % 2,) = P X)) P(#) = 5 X o0

Example 3-4. Consider the coin experiment where the probability of “heads”
equals p and the probability of “tails” equals ¢ = 1 ~ p. If we toss the coin twice,
we obtain the space

A=A XS A= A=)

Thus .~ consists of the four outcomes Ah, ht, th, and 1. Assuming that the
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experiments ., and .5 are independent, we obtain
Plhh) = Pi{h}P,(h) = p?
Similarly,
PlltYy=pg  P{thy=qgp  P{ir} = g*
We shall use the above to find the probability of the event
7 = (heads at the first toss} = [k, ht}
Since #} consists of the two outcomes Ak and ki, (2-23) vields
P(H|) = P{hh} + P{ht} = p* +pg =p
This follows also from (3-4) because #, = {h} x ..

Generalization. Given n experiments ./, ... .. #,, we define as their cartesian
product

A= e (3-6)
the experiment whose elements are all ordered » tuplets £, - - ¢, where ¢ is

an element of the set .. Events in this space are all sets of the form
S X s X
where o/ C ., and their unions and intersections. If the experiments are

independent and P;(.2/) is the probability of the event ©/ in the experiment
77, then

P(,_C}'/l K2 R ‘C%:) = PI(MI)PH('MI) (3:7)
Example 3-5. If we toss the coin of Example 3-4 n times, we obtain the space
A=A X e X consisting of the 2" elements &, -+ ¢, where §; =k or .
Clearly;

Ii

h
'”{41 i £n} = Pl{gl} o P,,(f,,} Fr{ "i} = (s ! (3'8)

.
I
L

If, in particular p = g = 1/2, then

1
P L} = 5 (39)

From (3-8) it follows that, if the clementary event {¢; «+- £,} consists of k
heads and n — k tails (in a specific order), then

B{ty o ) =ptar (3-10)

We note that the event %, = {heads at the first oss) consists of 2"~
outcomes & + -« {, where {; = h and £, = t or h for i > 1. The event ¥ can be
wrilten as a cartesian product

H= (b} X A X s XA
Henee [see (3-7)]
P(H)) = Pi{b)Py(A3) - B(A)=p
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because F(.4) = 1. We can similarly show that if
;= {heads al the /th toss} ;= {tails at the ith toss)
then
P(¥;)=p PLT )Y=4

Dual meaning of repeated trials. In the theory of probability, the notion of
repeated trials has two fundamentally different meanings. The first is the
approximate relationship (1-1) between the probability P(5/) of an event &7 in
an experiment . and the relative frequency of the occurrence of .o/, The
second is the creation of the experiment . X -+ - X 2.

For example. the repeated tossings of a coin can be given the following
two interpretations:

First interpretation (physical) Qur experiment is the single toss of a fair
coin. Its space has two elements and the probability of each elementary event
equals 1/2. A trial is the toss of the coin once.

If we toss the coin n times and heads shows m, times, then almost
certainly 1, /n = 1/2 provided that n is sufficiently large. Thus the first
interpretation of repeated trials is the above inprecise statement relating
probabilities with observed frequencies.

Second interpretation (conceptual) Our experiment is now the toss of the
coin 7 times where n is any number large or small. Its space has 2” elements
and the probability of each elementary event equals 1/2% A trial is the toss of
the coin n times. All statements concerning the number of heads are precise
and in the form of probabilities.

We can, of course. give a relative frequency interpretation to these
statements, However, to do so, we must repeat the n tosses of the coin a large
number of times.

3-2 BERNOULLI TRIALS

It is well known from' combinatorial analysis that, if a set has n clements, then
the total number of its subsets consisting of & elements each equals

(,,) _ aln = 1) - (n =k +1) _ ! (3:11)
\k 1-2--- k ki(n—k)!
For example, if # = 4 and k = 2, then

4y 4-3 B,

(2)—1-2 :

Indeed. the two-element subsets of the four-element set abed are
ab ac ad be bd cd

The above result will be used to find the probability that an event occurs &
times in n independent trials of an experiment .. This problem is essentially
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the same as the problem of obtaining & heads in n tossings of a coin. We st ari,
therefore, with the coin experiment.

Example 3-6. A coin with P{h} =p is tossed n times. We maintain that the
probability p,(k) that heads shows & times is given by

k) = (7 )P‘ T =y (3-12)

Proof. The experiment under consideration is the n-tossing of a coin. A single
outcome is a particular sequence of heads and tails. The event {k heads in any
order} consists of all sequences containing & heads and n — & tails. The % heads
of each such sequence form a k-element subset of a set of »n heads. As we noted,
there are (;\') such subsets. Hence the event {k heads in any order} consists of ("

elementary events containing & heads and n — & tails in a specific order. Since the
probability of each of these elementary events equals p*q” % we conclude that

P{k heads in any order} = ( )p"q" I

Special Case. If n =3 and k = 2, then there are three ways of getting two heads,
namely. hht, hih, and thh. Hence ps(2) = 3p*g in agreement with (3-12).

Success or Failure of an Event .27 in n
Independent Trials

We consider now our main problem. We are given an experiment .~ and an
event &/ with

P(s/)=p P(H)=q p+qg=1

We repeat the experiment n times and the resulting product space we denote by
A" Thus

= K A
We shall determine the probability p,(k) that the event & occurs exactly K
times.
FUNDAMENTAL THEOREM

p(k) = P/ occurs k times in any order} = ( )p‘q" 5 (3-13)

Proof. The event {7 occurs k times in a specific order) is a cartesian product
Hy X+ % #, where k of the events &, equal 2/ and the remaining n — &
equal @7, As we know from (3-7), the probability of this event equals

P(#) - P(B) = e
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because
- [P if 9 =ar
P(3) = . _
q if @B=uq/
In other words,
P{.a/ oceurs k times in a specific order} = pfg=* (3-14)

The event {27 occurs & times in any order} is the union of the (f) events
{2/ ocecurs & times in a specific order} and since these events are mutually
exclusive, we conclude from (2-20) that (k) 1s given by (3-13),

In Fig. 3-2, we plot p, (k) for n = 9. The meaning of the dashed curves will be
explained later.

Example 3-7. A fair die is rolled five times. We shall find the probability p.(2) that
“six™ will show twice.
In the single roll of a die, .27 = [six} is an event with probability 1/6. Setting
Plar)=¢t P(H)=% n=5 k=2
in (3-13), we obtain

r- ()

Example 3-8. A pair of fair dice is rolled four times. We shall find the probability
p4(0) that “seven” will not show at all.

“The space of the single roll of the two dice consists of the 36 elements fify
The event 7= (soven) consists of the six elements

flfﬁ'fhf!‘f'.‘.fﬁ‘jg .‘.!f!fd'fdfl
Therefore P(&) = 6/36 and P(7) = 5/6. With 21 = 4 and & = 0, (3:13) yields

pa(0) = (3)*
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k points

0 L (3 T FIGURE 3-3

Example 3-9. We place at random n points in the interval (0. T). What is the
probability that % of these points are in the interval (1y,1,) (Fig. 3-3)7

This. example can be considered as a problem in repeated trials, The
experiment o is the placing of a single point in the interval (0, 7). In this
experiment, &= (the point is in the interval (1, £,)} is an event with probability

ly —

P(et)=p=

In the space ., the event {27 occurs k times} means that k of the n points are
in'the interval (1,,1,). Hence [see (3-13)]

P{k points dre in the interval (1, ¢,)} = (: )p*q"”‘ (3-15)

Example 3-10.. A system'containing n components is put into operation at ¢ = 0.
The probability that a particular component will fail in the interval (0, 1) equals

b= f’a(‘r) dr  where «(t) =0 fza(l) dr =1 (3-16)
0 0

‘What is the probability that & of these components will fail prior to time ¢?
This example can also be considered as a problem in repeated trials,
Reasoning as above, we conclude that the unknown probability is given by (3-15).

Most likely number of successes. We shall now examine the behavior of p,k)
as a function of & for a fixed n. We maintain that as k increases, p, (k)
increases reaching a maximum for

k=Ko = [(n + 1)p] (3-17)

where the brackets mean the largest integer that does not exceed (n + Dp. If
(n + 1)pis an integer, then p,(k) is maximum for two consecutive values of k:

k=ki=(n+1)p and k=k,=k,—-1l=mp—q

Proof. We form the ratio

Pk —=1) o kq
Palk) (n—k+1)p
If this ratio is less than 1, that is, if & < (n + 1)p, then p.Lk — 1) is less than
P,{k). This shows that as k increases, p,(k) increases reaching its maximum for

k =[(n+ Dpl. For k > (n -+ 1)p, the above ratio is greater than 1: hence
k) decreases.
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If K, = (n -+ Dpis an integer, then
pulky —=1) kg (n+ 1)pg
p.(k)) (n—k, +1) [n—(n—Dp+1]p

This shows that p,(k) is maximum for & = k; and k =k, — 1.

Example 3-11. (a) If n = 10 and p = 1 /3, then (n + 1)p = 11/3; hence &
[11/3] = 3.
(b)If n = 11 and p = 1/2, then (# + 1)p = 6: hence k, = 6, k, = 5.

mix

We shall, finally, find the probability
Plky = k < k)
that the number k of occurrences of 27 is between k, and k,. Clearly, the

events {.&/ occurs k times), where k takes all values from &, to k,, are
mutually exclusive and their union is the event {k, < k < k,}. Hence [see (3-13)]

k; ks
Plki sk <k} = ¥ p(k) = L (y)pta"* (3-18)
k=k, k=k,

Example 3-12. An order of 10* parts is received. The probability that a part is
defective equals 0.1. What is the probability that the total number of defective
parts does not exceed 11007

The experiment . is the selection of a single part. The probability of the
evenl &/ = {the part is defective} equals 0.1. We want the probuability that in 10*
trials, .27 will oceur at most 1100 times. With

p=01 n=10° k=0 k,=1100
(3-18) vields

1100
P{0 < k < 1100) = X (‘24)(0.1)*(0.9)'"“‘ (3-19)
k=0

3-3 ASYMPTOTIC THEOREMS

In the preceding section, we showed that if the probability P(.2#) of an event .o/
of a certain experiment equals p and the experiment is repeated # times, then
the probability that .27 occurs & times in any order is given by (3-13) and the
probability that k is between &, and &, by (3-18). In this section, we develop
simple approximate formulas for evaluating these probabilities.

Gaussian functions. In the following and throughout the book we use exten-
sively the normal or gaussian function

g(x) = e+ /2 (3-20)

hl
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and its integral (see Fig. 3-4 and Table 3-1),

x 1 x .
G(x) = fﬁwa(y) dy = Vﬁfwe“-‘"ﬂ dy (3-21)

As is well known

mA: 1
ey

-

(3-22)
From this it follows that
1 0
Gln)= — =R e = 3-23)
(w) V21T f—:oe (

Since g(—x) =g(x), we conclude that
6(=x) =1 - G(x) (3-24)
With a change of variables, (3-21) yields

;., ]xze—(x—b)l/Zaidx = G( eI b) = G(XI — b) (3-25)
A

a

av

for any @ and b,
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TABLE 3-1
S 1

erf x = —f ey = 6(x)— =

V2@ o 2
X erl x X erf x b erf x x erf x
0.05 0.01994 0.80 0.28814 1:55 0.43943 230 0. 48928
0.10 0.03983 0.85 0.30234 160 0.44520 235 (149061
0.15 0.05962 0,90 0.31594 1.65 0.45053 240 0.49180
0.20 0.07926 0.95 032894 1.70 (1.45543 245 0.49286
025 0.09871 1.00 034134 1.75 (.45994 250 0.49379
0.30 0.11791 1.05 0.35314 1.80 (.46407 2:55 0.49461
0.35 0.13683 1.10 0.36433 1.85 0.46784 2,60 0.49534
0.40 0.15542 115 0.37493 1.90 0.47128 2.65 0.49597
0.45 0.17364 1.20 (.38493 1.95 0.47441 2,70 (1.49653
0.50 0.19146 1.25 0.39435 2.00 (0.47726 275 0.49702
0.355 0.20884 1.30 0.40320 205 0.47982 2.80 0,49744
0.60 0.22575 1.35 0.41149 2.10 0.48214 2.85 049781
0.65 0.24215 1.40 0.41924 215 0.48422 2.90 049813
0.70 0.25804 1.45 0.42647 220 048610 2,95 0.49841
0.75 .27337 1.50 0.43319 235 0.48778 3.00 049865

For large x, G(x) is given approximately by (see Prob. 3-9)
1
G(x) =1~ ;9(-*} (3-26)
We note, finally, that G(x) is often expressed in terms of the error function

: 1 [.r 3/ 4 ~ G(x) 1
er x_vf?._w-ue fy = G(x 5

DeMoivre-Laplace Theorem

It can be shown that, if #pg > 1, then

1
n kon—k _ —(k=np¥ /2npq (3_27)
= e
'(k } E V2mnpg
for k in y/npg neighborhood of np. This important approximation, known as
the DeMoivre—Laplace theorem, can be stated as an equality in the limit: The
ratio of the two sides tends to 1 as n — «. The proof is based on Stirling’s
formula

“y2an n— o (3-28)

The details, however, will be omitted.7

nl=n"e™

1The proof can be found in Feller, 1957 (see references at the end of the book).
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Thus the evaluation of the probability of k successes in n trials, given
exactly by (3-13), is reduced to the evaluation of the normal curve
1 ax
e"[.\"'}l[)) /2npg (3_29)
2wnpg

for x = k.

Example 3-13. A fair coin is tossed 100 times. Find the probability p, that heads
will show 500 times and the probability p, that heads will show 510 times.
In this example
p=q =05 n = 1000 Vnpg = 5v10

(@) If k =500 then k — np = 0 and (3-27) yields

(b) If k = 510 then k — np = 10 and (3-27) yiclds

—02

e

=—— = piozo7
P = ovem

As the next example indicates, the approximation (3-27) is satisfactory
even for moderate values of n.

Example 3-14. We shall determine p, (k) for p= 0.5, n = 10, and k = 5.
(a) Exactly from (3-13)

10 1
n =
Pa(k) = (k]p*q" ‘= Si57 2w = 0246
(b) Approximately from (3-27)
pi(k) = ;‘,‘(&>n{ll:/2nﬂq = 1 - 0.252
" V2mnpg V57

APPROXIMATE EVALUATION OF P{k, < k < k,). Using the approximation (3-27),
we shall show that

ks j
2 k, — np ky—np
() skgnk = G _:._) _ ﬁ(—l J (3-30)
k-k'(k) vhpq vnpq

Thus, to find the probability that in # trials the number of occurrences of an
event .o/ is between k, and k,, it suffices to evaluate the tabulated normal
function G(x). The approximation is satisfactory if npg = 1 and the differences
ky — np and k, — np are of the order of ynpg .



3-3 Asymrronic mHEorems  S1

Fioa Lk np) 2y

o=vhpg »1

k+1 FIGURE 3-5

Proof. Inserting (3-27) into (3-18), we obtain

ky ; 1 k2

2 k n—k _ —(k=np)* a3
2, ( pfqFi= e / (3-31)
k=k, k) V2T Tk

The normal curve is nearly constant in any interval of length 1 because
&* = npg > 1 by assumption; hence its area in such an interval equals approxi-
mately its ordinate (Fig. 3-5). From this it follows that the right side of (3-31)
can be approximated by the integral of the normal curve in the interval (&, k,).
This yields

&2

e—(k—np)l/Zn: = jkfefu—nm-'/?_n: dx (3‘12)
av2m g, aV 2Tk

and (3-30) results [see (3-25)].

Error correction. The sum on the left of (3-31) consists of k, — k; + 1 terms.
The integral in (3-32) is an approximation of the shaded area of Fig. 3-6a,
consisting of k, — k, rectangles. If k, — k; > 1 the resulting error can be
neglected. For moderate values of k, — k,, however, the error is no longer
negligible. To reduce it, we replace in (3-30) the limits k, and k, by &, — 1/2

|

47y 7y
% 7% % 5 //
o .
(| Ky n, 4 X :r x
k=05 ks + 0.5
(a) (b)

FIGURE 3-6
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and k, + 1/2 respectively (see Fig. 3-6b). This yields the improved approxin-
tion

—_—
-~
——
T
=
<
=
|
o~
Py

_(k2 +0.5—np " (k, — 0.5 —np

e 3-33
Vapg \ Vhpy ) §#93)

W
Example 3-15. A fair coin is tossed 10000 times, What is the probability that the
number of heads is between 4900 and 51002
In:this problem

n = 10000 p=q=105 ky = 4900 k= 5100

Since (ky — np)/ upg = 100/50 and (k, — np)/ Vnpg = —100/50, we conclude
from (3-30) that the unknown probability equals

6(2) — G(-2) = 26(2) — | = 0.9545

Example 3-16. Over a period of 12 hours 180 calls are made at random. What is
the probability that in a four-hour interval the number of calls is between 50 and
70?2

The above can be considered as a problem in repeated trials with p = 4/12
the probability that a particular call will occur in the four-hour interval. The
probability that k& calls will occur in this interval equals [see (3-27)]

k 180~ &
(130) 0z =L e
kN3 (3 /55

and the probability that the number of calls is between 50 and 70 equals [see
(3-30)]

E l_'ffu)(l)k(g)m-A =G(V25) — G(—V25) = 0.886

k=5n( 3] 13

Note It seems that we cannot use the approximation (3-30) if k, = 0 because the sum
contains values of k that are not in the ‘/;xp—q vicinity of np. However, the corresponding
terms are small compared to the terms with &k near up: hence the crrors of their
estimates are also small. Since

G(—np/\/npq) = G( — ‘/np/q) =i for np/q =1
we conclude that if not only 7 = 1 but also np > 1, then
k2 ks — np
E n pkqu-k =G = B (3-34)
Py (k ] Vapg
In the sum (3-19) of Example 3-12,

ky —np 10
np = 1000 npg = 900 -
npg 3
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Using (3-34), we abtain
1110

% ¢ 10
z ( '21)“"')‘(0 9)1" K = "‘[T] = 0.99936
k=0 <

_ We note that the sum of the terms of the above sum from 900 to 1100 equals
2G(10,/3) — 1 ='0.99872;

The Law of Large Numbers

According to the relative frequency interpretation of probability, if an event .o/
with P(.27) = p occurs k times in 21 trials, then & = np. In the following, we
rephrase this heuristic statement as a limit theorem.

We start with the observation that k = np does not mean that k will be
close to np. In fact [(see (3-27)]

P{k =np} = 0 as p - @ (3-35)

1
Vimnpa

As we show in the next theorem, the approximation k& = np means that the
ratio k/n is close to p in the sense that, for any & > 0, the probability that
|k/n—p|l <& tends to 1 as n — x.

THEOREM. For any ¢ > 0,
K :

Pil="=pl<gy > 1 as n —+w (3-36)
n

Proof. The inequality |k /n — p| < & means that

n(p—e) <k <n(p+e)
With &k = nlp — &) and k, = n(p + ) we have

T
n
Inserting into (3-30), we obtain

- ky —np - k2 —np —ZG( ne )
Plky sk sk} =6 e 3 = i

But &y/n/pg — = as n — = for any . Hence

‘P{|£—p se}=26(slﬂl)—l—»l as. n — o (3-37)
1 P4

Example 3-17. Suppose that p =g = 0.5 and & = 0.05. In this case
n(p— &) =045n n(p +¢&) = 0551 eyn/pq = 0:lyn

se} = Plki =k < ks}= }A: [f_)p"q"'*

K=k,
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In the table below we show the probability 2G(0.1vn ) — 1 that & is between 0.45p
and 0.55n for various values of n.

" 100 400 900
0.1y 1 2 3
2G(0/yi)— 1 | 0.682 0954 0.997

Example 3-18. We now assume that p = 0.6 and we wish to find 7 such that the
probability that & is between 0.59n and 0.61n is at least 0.95.
In this case, p = 0.6, ¢ = 0.4, and £ = 0.01. Hence

P{0.59n < k < 0.61n) = 2G(0.01,/n/0.24 ) — 1
Thus n must be such that

26(0.014/n /024 ) — 1 = 0.98

From Table 3-1 we see that G(x) > 0.99 if x > 2.35. Hence 0.01y/i /024 > 235
yielding n > 13254,

GENERALIZATION OF BERNOULLI TRIALS. The experiment of repeated trials
can be phrased in the following form: The events &7, = &7 and &/, = 7 of the
space . form a partition and their respective probabilities equal p, = pand
P> =1 — p. In the space .»°", the probability of the event {&/, occurs k, = k
times and &/, occurs k, = n — k times in any order} equals p,(k) as in (3-13).
We shall now generalize.

Suppose that

A= [, .., 2]

is a partition of . consisting of the r events &7 with

P(/, ) = p; pitentpi =1

We repeat the experiment n times and we denote by p(k,,....k,) the
probability of the event (& occurs k, times,...,.27 ocours k, times in any
order} where

ki + -4k, =n
We maintain that
n!

i — Ryate
pn(kla---;kr) - kl!"‘ kr!PH

- pk (3-38)

Proof. Repeated application of (3-11) leads to the conclusion that the number
of events of the form {27, occurs £, times, ..., .7 occurs k, times in a specific
order} equals

n!
kgl - k!
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Since the trials are independent, the probability of each such event equals
piles gk
and (3-38) results.
Example 3-19. A fair die is rolled 10 times. We shall determine the probability

that f; shows three times, and “even™ shows six times.
In this case

Ay=A{N}Y S={Hful) G={fafs)
Clearly,

-._
5
5
It
=i
by
|

=5
and (3-38) vields

Kk, =3 ka=6 ky=1

3

101 1181
P1(B,6,0)1= W(E) (3) = 0.002

DeMoivre—Laplace theorem. We can show as in (3-27) that, if k, is in the Vn
vicinity of np, and n is sufficiently large, then

( l[(kl —np,)’ (A-,.—np,f”
expl —— oo
n! ; 2 np, np,

V@rn) "'p, o p,

(3-39)

Equation (3-27) is'a special case.

3-4 POISSON THEOREM AND RANDOM
POINTS

We have shown in (3-13) that the probability that an event o/ occurs k times in
n trials equals

n(n—1)- (n-—k+1)

[ i
In the following, we obtain an approximate expression for this probability under
the assumption that p < 1. If n is so large that np = npg > 1, then we can use
the DeMoivre—Laplace theorem (3-27). If; however, np is of order of one, (3-27)

is no longer valid. In this case, the following approximation can be used: For &
of the order of np,

kqn—k (3_40)

n! K n—k -u]r(”p)k (3 4])
e =¢ —_— i
Ki(n— k)" k!
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Indeed, if & is of the order of np, then k < n and kp < 1. Hence
n(n —1) - (n—k +1)=n-n -+ 4 =nk
q— 1 —p = e r qu~k e~ eﬂrh&‘)p = p P

Inserting into (3-40), we obtain (3-41).
The above approximation can be stated as a limit theorem (see Feller,
1957);

POISSON THEOREM. If
n—» o p—0 np —a

then
&

2

n! - =
Ki(n —k)1 P94 == T

(3-42)

Example 3-20. A system contains 1000 components. Each component fails
independently of the others and the probability of its failure in one month eguals
1073, We shall find the probability that the system will function (i.e., no component
will fail) at the end of one month.

This can be considered as a problem in repeated trials with p = 1073,
n = 10°, and k = 0. Hence [see (3-15)]

Plk = 0} = g" = 0.999'%%
Since np = 1, the approximation (3-41) yields
Plk =0} =e " =¢~' = 0.368
Applying (3-41) to the sum in (3-18), we obtain the following approxima-

tion for the probability that the number k of occurrences of &7 is between k,
and k,:

k2 (np)*
Plk, <k <k,) = e-"ﬂk_zk = (3-43)

Example 3-21. An order of 3000 parts is received. The probability that a pi.lﬂ. is
defective equals 10~2. We wish to find the probability P{k > 5) that there will be
more than five defective parts.
Clearly,
P{k > 5} =1—P(k <5)

With np = 3, (3-43) yields
5 3k
Pk <5} =e¢? ,.EJ’»_ = 0916

Hence
Pk > 5) = 0.084
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Generalization of Poisson theorem. Suppose that .o, . .., &7 | , arethe m + 1

events of a partition with P{%) = p,. Reasoning as in (3-42), we can show that
if np; — a; for i < m, then
S

Ky
1 71

Pt e k! P (3-44)

Random Poisson Points

An important application of Poisson’s theorem is the approximate evaluation of
(3-15) as T and n tend to =. We repeat the problem: We place at random »
points in the interval (—7/2, T,/2) and we denote by P{k in 1.} the probability
that k of these points will lie in an interval (¢, ;) of length ¢, — 1, = 1,. As we
have shown in (3-15)

t
kn—k — =
P{k int,) = [ )p q where p = (3-45)
We now assume that 7 > 1 and ¢, < 7. Applying (3-41), we conclude
that
L (nt, T)K
Pk int,) =e /7 % (3-46)

for k of the order of nt,/T.
Suppose, next, that n and T increase indefinitely but the ratio

A=n/T

remains constant. The result is an infinite set of points covering the entire ¢ axis
from — to +o. As we see from (3-46), the probability that k of these points
are in an interval of length z, is given by

Plkint,) =e Ma—r—— ( : ) (3-47)

POINTS IN NONOVERLAPPING INTERVALS. Returning for a moment to the
original interval (— 7/2, T/2) containing n points, we consider two nonoverlap-
ping subintervals ¢, and 1, (Fig, 3-7).

—— FIGURE 3.7
r
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We wish to determine the probability
Plk, int,, k,in t,

that &, of the n points are in interval ¢, and &, in the interval ¢,. We maintain
that
N k ks
¢ ff" ) g !(] rb ] »
== = = = — 3.4 8
( T ( T T) i)

n! La,
Plk, in t, kyin 1} = ———— -(?)
a b3 %

where ky=n —k, — k,.
Proof. The above can be considered as a generalized Bernoulli trial. The
original experiment .~ is the random selection of a single point in the interval
(=T/2,T/2). Inthis experiment, the events .27, = {the point is in ¢ }, 27, = (the
point is in ,}, and 2/ = (the point is outside the intervals ¢, and ¢,} form a
partition and
t ty by 1y
PliozN === Pz =L priara g 0 b
()=2 Plah) =2 Plaf)=1-2-2
If the experiment . is performed 5 times, then the event (k, in ¢, and k, in
1,} will equal the event {7, occurs k, = k, times, 7 occurs k, = k, times,
and &7, occurs k; =n — k; — k, times}. Hence (3-48) follows from (3-38) with
r=3.

We note that the events {k, in ¢,} and {k, in ¢,) are not independent
because the probability (3-48) of their intersection {k, in ¢, k, in ¢,} does not
equal P{k, in r }P{{k, in 1,}.

Suppose now that

n
— = A n— w T — =

T

Since nt, /T = At, and nt,/T = Af,, we conclude from (3-48) and Prob. 3-16
that

L ks
= a1, (’“a} E_M" (’\{b.)

Plk,int, k,int) =e Kl P (3-49)
From (3-47) and (3-49) it follows that
P(k,int, k,int,} = P{k, in t,}P{k, in ;) (3-50)

This shows that the events (k, in 1.} and {k, in .} are independent.

We have thus created an experiment whose outcomes are infinite sets of
points on the ¢ axis. These outcomes will be called random Poisson points. The
experiment was formed by a limiting process; however, it is completely specified
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in terms of the following two properties:

1. ‘The probability P{k, in ¢ ) that the number of points in an interval (L t2)
equals k, is given by (3-47).

2. If two intervals (i,. t3) and (15, ) are nonoverlapping, then the events {k,
(2),¢5)) and {k,, in (¢4, ¢,)} are mdgpcndcm

The experiment of random Poisson points is fundamental in the theory
and the applications of probability. As illustrations we mention electron emis-
sion, telephone calls, cars crossing a bridge, and shot noise, among many others,

Example 3-22. Consider two.consecutive intervals (1, £,) and (1., t;) with respective
lengths 1, and r,. Clearly, (1, ;) is-an interval with length ¢, = ¢, + 1,. We denote
by k,, k,, and k_=k_ + k, the number of points in these intervals, We assume
that the number of points &, in the interval (14, t3) is specified. We wish to find the
probability that k, of these points are in the interval (¢,, 1,), In other words, we
wish to find the conditional probability
Plk, int,|k in .}

With ky, = &, — k,, we observe that

{k, int,, k. int) = {k,int, k, int,}

Hence
Pk, int,, k;in 1,}
P{k_in ¢}
From (3-47) and (3-49) it follows that the above fraction equals
e M (An) ek ] e[ (Arg) sk,
e M (A e
Since t, =1, + t, and k, =k, + k, the above yields

Plk;in t,lk in 1} =

ko (15 ()"
Pk, int,lk, int} = ( ) (—) (3-51)

k! 7

This result has the following useful interpretation: Suppose that we place at
random k. points in the interval (¢,, £5). As we sce from (3-15), the probability that
k. of these points are in the interval (¢,,1,) equals the right side of (3-51).

Density of Poisson points. The experiment of Poisson points is specified in
terms of the parameter A. We show next that this parameter can be interpreted
as the density of the points. Indeed, if the interval Ar = ¢, — 1, is sufficiently
small, then
ADte A=A Al
From this and (3-47) it follows that
P(one point in (¢,1 + Ar)} = A Ar (3-52)
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Hence
P{one point in (1 + Ar)}

A= Al,lTn T (3-53)

Nonuniform density Using a nonlinear transformation of the ¢ axis, we
shall define an experiment whose outcomes are Poisson points specificd by a
minor modification of property 1.

Suppose that A(¢) is a function such that A(r) = 0 but otherwise arbitrary,
We define the experiment of the nonuniform Poisson points as follows:

1. The probability that the number of points in the interval (1}, ¢,) equals k is

given by
5 k
] U%\m dz]

. (3-54)

Plk in (t,1,)} = exp{-[“;\(r) di
]
2. The same as in the uniform case.
The significance of A(r) as density remains the same. Indeed, with 1, —r
= At and k = 1, (3-54) yields

Pfone pointin (f,r + Ar)} = A(1) At (3-55)
as in (3-52).

PROBLEMS

3-1. A pair of fair dice is rolled 10 times. Find the probability that “*seven’ will show at

least once.
Answer: 1 — (5/6)".

3-2, A coin with plh} = p = 1 — g istossed n times. Show that the probability that the
number of heads is even equals 0.5[1 + (g — p)"].

3-3. (Hypergeometric series) A shipment contains K good and N — K defective compo-
nents. We pick at random n < K components and test them. Show that the
probability p that k of the tested components are good cquals

_ (K\({N—-K N
H (k)(n—-’\')/(”)
3-4, A fair coin is tossed 900 times. Find the probability that the number of heads is
between 420 and 465,
Answer: G(2) + G(1) — 1 = 0.819.
3-5. A fair coin is tossed n times. Find n such that the probability that the number of
heads is between 0.492 and 0.52n is at least 0.9.
Answer: G(0.04Vn) + G(0.02Vn ) = 1.9; hence n > 4556.
3-6, If P() = 0.6 and k is the number of successes of &7 in n trials (a) show that
P(550 < k =650) = 0.999, for n = 1000. (b) Find n such that P0.39n <k =
0.61n} = 0.95.
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37, A system has 100 components. The probability that a specilic component will fail in
the interval (a, b) equals ¢~ */T — ¢ “U/7 Find the probability that in the interval
(0, 7 /4). no more than 100 components \ul] fail.
3-8, A coin is tossed an infinite number of times. Show that the probability that &
heads are observed at the ath toss but not earlier equals ": l),w“q" K

3-9. Show that

1y 1 1

_.(1 : ?J!B(-\’)<1 = G(x) < —g(x) x>0
B &

Hint: Prove the following inequalities and/integrate from x 1o w:

d 2 .) : o d 1 ) X c
=S otz = = e , i3 72
( ¢ e = [\ “‘J ]>r

3-10. Suppose that in # trials, the probability that an event o7 accurs at least once
equals: Py. Show that, if P/) = p and pn < 1, then P, = np.
3-11. The probability that a driver will have an accident in 1 month equals 0.02, Find the
probability that in 100 months he will have three accidents.
Answer: About 4e*/3.
3-12. A fair die is rolled five times. Find the probability that one shows twice, three
shows twice, and siv shows once,
-3-13. Show that (3-27) is:a special case of (3-39) obtained with r = 2, k, = k, ks = n — k.
Ry=p.P2=1-p
3-14. Players X" and Y roll dice alternately starting with X. The player that rolls eleven
wins. Show that the probability p that X wins equals 18/35.
Outline: Show that

P(a7) = P(oN#YP( ) + P(AZ)P(A)

Set &= (X wins), .#= {eleven shows at first try). Note that P(e/) =p,
P(aAl#)= 1, P(#) = 2/36, P(eA1M) = | — p,

3-15. We place at random n particles in m > n boxes. Find the probability p that the
particles will be found in n preselected boxes (one in each box). Consider the
following cases: (a) M-=B (Maxwell-Boltzmann)—the particles are distinet: all
alternatives are possible, (b) B-E (Bose-Einstein)—the particles cannot be distin-
guished; all alternatives are possible, (¢) F-D (Fermi-Dirac)—the particles cannot
be distinguished: at most one particle is allowed in a box.

Answer:

M-B | B-E F-D

n! nl(m - 1)! al(m = n)!
e mt (o m = 1)! m!

Outline: (a) The nuniber N of all dlternatives equals m”: The number N, of
favorable alternatives equals the n! permutations of the particles in the preselected
‘boxes. (b) Place the e — 1 walls separating the boxes in line ending with the 1
particles. This corresponds to one alternative where all particles are in the last box.
All other possibilities are obtained by a permutation of the # + m — | objects
consisting of the m — 1 walls and the n particles. All'the (m — 1)! permutations of
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the walls and the #! permutations of the particles caunt as one alternative. Henee
N =ilm + n = )/lm — 1inl and N, = 1.(c) Since the particles are not distin-
guishable, N eqguals the number of ways of selecting a1 out of m objects: A = [’L‘J
and N, = 1.
3-16. Reasoning as in (3-41); show that, if
Kyt ks +ky=n P+ pstpy=1 Kyp; < 1 Kap, =l

then

nl (Cals

kKo tkyl Kyl

Use the above to justify (3-49).

3-17. We place al random 200 points in the interyal (0, 100). Find the probability that/in
the interval (0,2) there will be one and.only one point (4) exactly and (&) bsing the
Poisson approximition.



CHAPTER

4

THE CONCEPT
OF A RANDOM
VARIABLE

4.1 INTRODUCTION

A random variable (abbreviation: RV) is a number x(¢) assigned to every
outcome ¢ of an experiment. This number could be the gain in a game of
chance, the voltage of a random source, the cost of a random component, or any
other numerical quantity that is of interest in the performance of the experi-
ment.

Example 4-1. (a) In the die experiment, we assign to the six outcomes f; the
numbers x(f,) = 10i. Thus

x(fi) = 10,...,x(f5) = 60

(#) In the same experiment, we assign the number 1 to every even outcome
and the number 0 to every odd outcome. Thus

X(fi) = 3(f) =x(f;) =0 x(f2) =x(fi) =x(fs) = 1

THE MEANING OF A FUNCTION. An RV is a function whose domain is the set
# of experimental outcomes. To clarify further this important concept, we
review briefly the notion of a function. As we know, a function x(z) s a rule of
correspondence between values of ¢ and x. The values of the independent
variable ¢ form a set . on the ¢ axis called the domain of the function and the
values of the dependent variable x form a set /7 on the x axis called the range
of the function. The rule of correspondence between and x could be a curve,
a table, or a formula, for example, x(¢) = (%

63
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The notation x(¢£) used to represent a function is ambiguous: [t might
mean either the particular number x(f) corresponding to a specific 1, or the
function x(z), namely, the rule of correspondence between any ¢ in ./, and the
corresponding x in .. To distinguish between these two interpretations, we
shall denote the latter by x, leaving its dependence on ¢ understood.

The definition of a function can be phrased as follows: We are given twg
sets of numbers ./, and .. To every t € , we assign @ number x(1)
belonging to the set 4. This leads to the following generalization: We are given
two sets of objects /. and J,", consisting of the elements @ and g respec-
tively. We say that g is a function of « if to every element of the set .2 we
make correspond an element B of the set .. The set .4 is the domain of the
function and the set 5 ifs range.

Suppose, for example, that . is the set of children in a community and
3 the set of their fathers. The pairing of a child with his or her father is a
function.

We note that to a given a there corresponds a single B(a). However, more
than one element from ., might be paired with the same B (a child has only
one father but a father might have more than one child). In Example 4-1b, the
domain of the function consists of the six faces ‘of the die. Its range, however,
has only two elements, namely, the numbers 0 and 1.

The Random Variable

We are given an experiment specified by the space ., the field of subsets of
called eyents, and the probability assigned to these events. To every outcome £
of this experiment, we assign a number x(£). We have thus created a function x
with domain the set . and range a set of numbers. This function is called
random-variable if it satisfies certain mild conditions to be soon given.

All random variables will be written in boldface letters. The symbol x(Z) will
indicate the number assigned to the specific outcome £ and the symbol x will
indicate the rule of correspondence between any element of . and the number
assigned to it. Example 4-1a, x is the table pairing the six faces of the die with
the six numbers 10,...,60. The domain of this function is the set /=
{fis-- ., f¢) and its range is the set of the above six numbers. The expression
x(f5) is the number 20.

Events generated by random variables. In the study of RVs, questions of the
following form arise; What is the probability that the RV x is less than a given
number X, or what is the probability that x is between the numbers x, and X5
If, for example, the RV is the height of a person, we might want the probability
that it will not exceed certain bounds, As we knoow, probabilities are assigned
only to events; therefore, in order to answer such questions, we should be able
to express the various conditions imposed on x as events.
We start with the meaning of the notation

{x <x)
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This notation represents a subset of .~ consisting of all outcomes £ such that
x({) < x. We elaborate on its meaning: Suppose that the RV x is specified by a
table. At the left column we list all elements & of . and at the right the
corresponding values (numbers) x(£,) of x. Given an arbitrary number x. we find
all numbers x({;) that do not exceed x. The corresponding elements ¢, on the
left column form the set {x < x). Thus {x < x} is not a set of numbers but a set
of experimental oufconies.
The meaning of

{x) < x 2 x,)
is similar. It represents a subset of . consisting of all outcomes ¢ such that
X; < x({) < x, where x| and x, are two given numbers.
The notation
{[x=x}
is a subset of .~ consisting of all outcomes ¢ such that x(£) = x.
Finally, if R is a set of numbers on the x axis, then
(x € R)

represents the subset of .4 consisting of all outcomes £ such that x(£) € R.

Example 4-2, We shall illustrate the above with the RV x(f) = 10i of the die
experiment (Fig. 4-1).

The set {x < 35} consists of the elements fi, f5, fy because x(f,) < 35 only
if i =1,2, 0r3.

The set {x < 5} is empty because there is no outcome such that x(f;) < 5.

The set {20 < x < 35) consists of the elements f, and f; because 20 < x(f,)
< 35only if i = 2 or 3.

The set {x = 40} consists of the element f, because x(f,) = 40 only if i = 4.

Finally, (x = 35) is the empty set because there is no experimental outcome
such that x(f;) = 35.

Note In the applications, we are interested in the probability that an RV x takes values
in a certain region R of the x axis. This requires that the set {x € R} be an event, As we
noted in Sec. 2-2, that is not always possible. However, if {x < x} is an event for every x
and R is a countable union and intersection of intervals, then (x € R} is also an event. In

g
e )
o S , x>50
Koniss

FIGURE 4-1
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the definition of RVs we shall assume, therefore, that the set {x < x} is an event. This
mild restriction is mainly of mathematical interest,

We conclude with a formal definition of an RV,

DEFINITION. An RV x is a process of assigninga number x(£) to every outcome
¢, The resulting function must safisfy the following two conditions but is
otherwisc arbitrary:

I. The set {x < x} is an event for every x.
IL. The probabilities of the events {x = =} and (x = — 2} equal 0:
Plx =) =10 Plx= —=) =0

The second condition states that, although we allow x to be 4= or —=
for some outcomes, we demand that these outcomes form a set with zero
probability.

A complex RV z 15 a sum

z=X+t]Jy

where x and y are real RVs. Unless otherwise stated, it will be assumed that all
RVs are real.

4-2 DISTRIBUTION AND DENSITY
FUNCTIONS

The clements of the set ./ that are contained in the event {x < x} change as
the number x takes various values. The probability P{x < x} of the event
{x < x] is, therefore, a number that depends on x. This number is denoted by
F(x) and is called the (cumulative) distribution function of the RV x.

DEFINITION. The distribution function of the RV x is the function
F(x) = P{x < x} (4-1)

defined for every x from —= to =,

The distribution functions of the RVs x, y, and z are denoted by F,(x),
£,(y), and F.(z) respeetively. In this notation, the variables x, y, and z can be
identified by any letter. We could, for example, use the notation Fw), E(w),
and F.(w) to represent the above functions. Specifically,

E(w) = Plx < w)

is the distribution function of the RV x. However, if there is no fear of
ambiguity, we shall identify the RVs under consideration by the independent
variable in (4-1) omitting the subscripts. Thus the distribution functions of the
RVs x, 'y, and z will be denoted by F(x), F(y), and F(z) respectively.

Example 4-3. In the coin-tossing experiment, the probability of heads equals p
and the probability of tails equals 4. We define the RV x such that

x(h) =1 x(r) =0
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e fix)

FIGURE 4-2

We shall find its distribution function F(x) for every x from — 10 =.
If x = 1, then x(h) = 1 < x and x(¢) = 0 < x. Hence (Fig. 4-2)

F(x)=P{x <x} =Plh, 1} =1 x=1
If0 <x < 1, then'x(k) = 1 > x and x(1) = 0 < x. Hence
F(x) =P{x<x} =Pt} =4 D<x<l1
If x <0, then x(h) = 1 > x and x(+) = 0> x. Henee
F(x) =Px<x)=P@}=0 x<0
Example 4-4, In the die experiment of Example 4-2, the RV x is such that

x(f;) = 10i. If the die is fair, then the distribution function of x is a staircase

function as in Fig. 4-3.
We note, in particular, that

F(100) = P{x < 100} = P(.#) =1
F(35) = Px < 35) = P{fy, [, fa} = 5
F(30.01) = P{x < 30.01} = Py, fa 5} = &
F(30) = P{x < 30} = P{fi; fo: f3) = &
F(29.99) = P{x < 29.99) = P(fy, fa} = 5

Example 4-5. A telephone call occurs at random in the interval (0.1). In this
experiment, the outcomes are time distances ¢ between 0 and 1 and the probability

that ¢ is between #; and 1, is given by
Plyst<i) =64
We define the RV x such that
()=t 0=<r=l

Flx)
1 ]
flx)
12
1/6
T 0 %0 %
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Note

Thus the variable ¢ has a double meaning: 1t is the outcome of the expeiiment and
the corresponding value x(r) of the RV xi We shall show that ‘the distribution
function F(x) of x'is'a ramp as in Fig. 4-4,

If x > 1, theri x(r) < v for every outcome. Henee

F(x)=Px<a}=Pl0<t=<1}=P(") =1 x>1
110 < x = 1, then x(1).< x for every ¢ in the interval (0, x). Hence
A(x) = Px<y) =P{0<st=<a) O<xr<]l
If e <10, then (x < «x}is the impossible event because x(1) = 0 for every ¢. Hence
F(x)=Plx<x)=P#} =0 x<0
Example 4-6. Suppose that an RV x is such that x(Z) = a for every ¢ in ., We

shall find' its distribution function.
If x > a, then x(¢) = a < x for every {. Hence

F(x) =P{x <a}=P() =1 xza

If & < a, then {x:< x} is the impossiblc event because x(¢) = a. Hence
F(x)=Px<x)=P{fl) =0 x<a

Thus a constant can beinterpreted as-in RV with distriblition function 4 delayed

step Ut — @) as in Fig. 4-5.

A complex RV z = x 4 jy has no distribution function because the incquality

X +Jjy <x + v has no meaning. The statistical properties of z are specified in lerms of
‘the joine distribution of the RVs x and y (sce Chap. 6).

Percentiles, The u percentile of an RV x is the smallest number v, such’ that

u=Pix<x}="F(x,) (4-2)

Thus x,, is the inverse of the function u = F(J.) Its domain is the interval
(0 < u < 1, and its range is the x axis, To find the graph of the function Xy WE
interchange the axes of the F(x) eurve as in Fig. 46, The median of x is the

smal

lest number, m such that F(m) = 0.5. Thus m is the 0.5 percentile of x.
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FIGURE 4-6

Frequency interpretation of F(x) and x,. We perform the experiment n times
and we observe n values x,..., 2 v, of the RV x. We place these numbers on
the x axis and we form a staircase function F,(x)as in Fig 4-6a. The steps are
located at the points x; and'their height equals 1/n. They start at the smallest
value ¥, of x;, and F,(x) = 0 for x <x_;.. The function F,(x)so constructed
is called . the empirical distribution of the RV x.

For a specific x, the number of steps of F,(x) equals the number n, of x5
that are smaller than x; thus £(x) =n, /n. And since n /n = Plx < x) for
large n, we conclude that
E(x) = ':—: — P{x <x} = F(x) as n — ™ (4-3)

The empirical interpretation of the u percentile x, is the Quetelet curve
defined as follows: We form n line segments of length x, and place them
vertically in order of increasing length, distance 1/n apart. We then form a
Staircase function with corners at the endpoints of these segments as in Fig.
4-6b. The curve so obtained is the empirical interpretation of x, and it equals
the empirical distribution £,(x) if its axes are interchanged.

Properties of Distribution Functions

In the following, the expressions F(x ") and F(x ) will mean the limits
F(x") = lim F(x + &) F(x") =lim F(x — &) 0<e—0
The dfstribution function has the following properties

1. F(+m) =1 F(—==) =0

Proof.
F(+o) =Plxs=} =P(A) =1 F(==)=Px=—-x} =0
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2. It is a nondecreasing function of x:

if x,<x, then F(x,) < F(x,) (4-4)

Proof. The event {x < x,} is a subset of the event {x < x,} because, if x({) < X,
for some £, then x(¢) < x,. Hence [see (2-14)] P{x < x;} < P{x < x,} and (4-9)
results.

From (4-4) it follows that F(x) increases from 0 to 1 as x increases from
— o to .

3. if F(xy) =0 then F(x) =0 forevery x <ux, (4-5)

Proof. It follows from (4-4) because F(—w=)= 0. The above leads to the
following conelusion: Suppose that x({) = 0 for every {. In this case, F(0) =

P{x < 0} = 0 because {x < 0} is the impossible event. Hence F(x) = 0 for every
= =<()e
4. P{x >x} =1 — F(x) (4-6)

Proof. The events {x < x]} and {x > x} are mutually exclusive and
(x<x}+{x>x} ="

Hence Plx < x} + P{x > x} = P(.*) = 1 and (4-6) results.

5. The function. F(x) is continuous from the right:

F(x%) = F(x) (4-7)
Proof. 1t suffices to show that P{x <x + &} = F(x) as ¢ — 0 because Plx <
X + e} = F(x +¢£) and F(x + &) » F(x*) by definition. To prove the above,
we must show that the sets {x < x + ¢} tend to the set {x < x) as £ — 0 and to

use the axiom Illa of finite additivity. We omit, however, the details of the
proof because we have not introduced limits of sets.

6. Plx, <x <x,) = F(x;) — F(x,) (4-8)
Proof. The events {x < x,} and {x; < x < x,)} are mutually exclusive because
x(¢) cannot be less than x, and between x, and x,. Furthermore,
x=x)={x=<x)}+{x <x=x;}
Hence
P{x < x,} = P{x < x,} + P{x| <x < x5}

and (4-8) results.
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7. Plx =x} = F(x) — F(x) (4-9)

Proof. Setting x; =x — ¢ and x, = x in (4-8), we obtain
Plx—e<x =<x)=FE(x) —F(x— &)

and with & — 0, (4-9) results.
8. Plx, <x <x,) = F(x,) — F(x;7) (4-10)

FProof. 1t follows from (4-8) and (4-9) because
(i =x=<x) =[x, <x s} +{x=1x)

and the last two events are mutually exclusive.

Statistics. We shall say that the statistics of an RV x are known if we can
determine the probability P{x € R) that x is in a set R of the ¥ axis consisting
of countable unions or intersections of intervals. From (4-1) and the axioms it
follows that the statistics of x are determined in terms of its distribution
function.

Continuous, discrete, and mixed types. We shall say that an RV x is of
continuous type if its distribution function F(x) is continuous. In this case,
F(x~) = F(x); hence
Plx=x)=0 (4-11)
for every x.
We shall say that x is of discrete type if F(x) is a staircase function as in
Fig. 4-7. Denoting by x; by discontinuity points of F(x), we have

F(x;) — F(x7) = P{x =%} = p, (4-12)

In this case, the statistics of x are determined in terms of x; and p,. If the points
X, are equidistant, that is, if x, = a + bi, then the RV x is of lattice rype.

We shall say that x is of mived rype if F(x) is discontinuous but not a
staircase.

Note that if the set .#” has finitely many elements, then any RV defined
on . is of discrete type. However, an RV x might be of discrete type even if ./
has infinitely many elements.

f(x) Flu) = Fixy)

it

L
=

FIGURE 4-7
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Example 4-7. If &7 is an arbitrary event of " and x ., is an RV such that
1 {e &
Xor (L) = {0 re o (413)
then x - is called the zero-one RV associated with the event 27, Thus
Kor=1) = (xo,=0)=5
Hence x . is of discrete type taking only the two values 0 and 1 with
P{x_, =1} =P() Plx,=0}=1-Pla7)

The space 7, however, might have infinitely many elements.

The Density Function

The derivative

) dF(x)
x) = 4-
f(x i (4-14)
of F(x) is called the density function (known also as the frequency function) of
the RV x.

If the RV x is of discrete type taking the values x; with probabilities p,,
then

flx) = E_Pf‘s(x —%;) p; = P{x=x} (4-15)

where 8(x) is the impulse function (Fig. 4-7). The term p;(x — x;) is shown as
a vertical arrow at x = x; with length equal to p,.

In Example 4-2, the RV x is of discrete type taking the six values
x, = 10,...,x, = 60 with p, = 1/6. Hence

Flx) = £[6(x — 10) + 8(x — 20) + -+~ +8(x — 60)]

PROPERTIES. From the monotonicity of F(x) it follows that
f(x) =0 (4-16)

Integrating (4-14) from —oc to x and using the fact that F(—) = 0, we
obtain

F(x) = [ 1(2) a¢ (4-17)
Since F(=) = 1, the above yields
[ ey dx =1 (4-18)

From (4-17) it follows that

F(x;) = F(x,) = [ “(x) e (4-19)
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Hence [see (4-8)]
Plx, <x sx;) = [ f(x) dy (4-20)

If the RV x is of continuous type, then the set on the left might be replaced by
the set {x, < x < x,}. However, if F(x) is discontinuous at x, or x,, then the
integration must include the corresponding impulses of f(x).

With x; =x and x,=x + Ax it follows from (4-20) that, if x is of
continuous type, then

Plx < x <x + Ax) =f(x) Ax (4-21)

provided that Ax is sufficiently small. This shows that f(x) can be defined
directly as a limit

Plx =x =x+ Ax)

22
Ax 422)

fi(x) = lim
Ax—0
Note As we can 'see from (4-21), the probability that x is'in a small interval of specified
length Ax is proportional to f(x) and it is maximum if that interval contains the point
x,, where f(x) is maximum, This point is called the mode or the most likely value of x.
An RV is called unimaodal if it has a single mode.

Frequency interpretation We denote by An, the number of trials such that
x=<x({) <x+ Ax

From (1-1) and (4-21) it follows that

f(x)Ax = A}% (4-23)

4-3 SPECIAL CASES

In the preceding sections, we defined RVs starting from known experiments. In
this section and throughout the book, we shall often consider RVs having
specific distribution or density functions without any reference to a particular
probability space.

Existence theorem. To do so, we must show that given a function f(x) or its
integral

Fx) = [ f(e)de

we can construct an experiment and an RV x with distribution F (x) or density
f(x). As we know, these functions must have the following properties:

The function f(x) must be nonnegative and its arca must be 1. The
function F(x) must be continuous from the right and, as x increases from —=
to =, it must increase monotonically from 0 ta 1.
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Proof. We consider as our space . the set of all real numbers, and as its eventg
all intervals on the real line and their unions and intersections. We define the
probability of the event (x < x,} by

Plx =x)) = F(x)) (4-24)
where F(x) is the given function. This specifies the experiment completely (see
Sec, 2-2).

The outcomes of our experiment are the real numbers. To define an RV x
on this experiment, we must know its value x(x) for every x. We define x such
that

X x)=x (4-25)
Thus x is the outcome of the experiment and the corresponding value of the
RV x (see also Example 4-5),

We maintain that the distribution function of x equals the given F(x).
Indeed. the event {x <x,) consists of all outcomes x such that x(x) < x,.
Hence

P{x = x;} = P{x < x;} = F(x;) (4-26)

and since this is true for every x,, the theorem is proved.
In the following, we discuss briefly a number of common densities,

Normal. An RV x is called normal or gaussian if its density is the normal curve
g(x) [see (3-20)). shifted and scaled

o= ) -

o
This is a bell-shaped curve, symmetrical about the line x = 1 (Fig. 4-8) and its
area equals 1 as it should|[see (3-22)]. The corresponding distribution function is
given by

o x=m)t/2a? (4-27)

o2

F() = G(%) (4-28)

where (x) is the tabulated integral of g(x) [see (3-21)].
‘We shall use the notation

N(n;o)
af(x) Normal  F(x)
0.84Il
0.5
0.159
0 ﬂia' zly 71+T~rr :

FIGURE 4-8
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Uniform

E(x)
~f{x)
0 X o) X FIGURE 4.9

to indicate that an' RV x is normal as in (4-27). The significance of the constants
n and ¢ will be given in Sec. 5-4 (n: mean, o: standard deviation).
Example 4-8. An RV x is N(1000;50). We shall find the probability that x is
between 900 and 1050. Clearly.
P{900 < x < 1050} = F(1050) — F(900) = G(1) — G(—2)

Since
G(—=x)=1- G(x) (4-29)
we conclude from Table 3-1 that
P(900 < x < 1050} = G(1) + G(2) — 1 =10.819

Uniform. An RV x is called uniform between x; and x, if its density is
constant in the interval (x, x,) and 0 elsewhere

1
= _—"2 =pn ¥ SL=<X; (4-30)
0 otherwise

The corresponding distribution function is a ramp as in Fig. 4-9.

Example 4-9. A resistor r is an RV uniform between 900 and 1100 €. We shall
find the probability that ¢ is between 950 and 1050 £,
Since fi(r) = 1/200 in the interval (900, 1100), (4-20) yiclds

1 r0s0
B dr = 0.5
0 ey
Binomial. We say that an RV x has a binemial distribution of order n ifit takes
the values 0, 1,...,n with

P(950 < r < 1050} =

Plx = k) =(2]pkq"'* p+g=1 (4-31)
Thus x is of lattice type and its density is a sum of impulses (Fig. 4-10a)
f(x) = L (¢)pta"*o(x = %) (432)
k=0

The corresponding distribution is a staircase function and in the interval (0, #) it
is given by
m
F(x)= Y, (: )p"q"“" m=<x<m+1 (4-33)
k=0



76 THE CONCLPT OF A RANDOM VARIARLE

fx)

f(x) A Binomial 0.229|- ~ x Poisson.a=3
n=9 i &5
0:2 p=q=12
0.1}
& &
. i
(T I T T T I A T
(a)

FIGURE 4-10

We note that, if 2 is large, then [see (3-34)] F(x) is close to an N(np,/npq )
distribution. In other words,

" _[x—np
F(x) = 6|— (4-34)
vnpg |
Example 4-10 Bernoulli trials. In the experiment of the »n tosses of a coin, an
outcome is.a sequence £, <+ £, of k heads and n — & ‘tails where k& = 0;....m.

We define the RY x such that
28y - )=k

Thus x equals the number of heads. As we know [see (3-13)}, the probability that
X = Kk equals the right side of (4-31). Hence x has a binomial distribution.

Suppose that the coin is fair and it is tossed n = 100 times. We shall find the
probability that x is between 40 and 60. In this case

p=qg=05 np=50 npg=>75

and (4-34) yields

60 — 50 40 — 50
P[4ﬂsxsﬁﬂ]=6( )~1(

3 3 ) = G(2) — 6(—2) = 09545

Poisson. An RV x is Poisson distributed with parameter a if it takes the values
0,1, ., .o ... With

e
P{x=k]="_"k_| k=0,1, ... (4-35)
Thus x is of lattice type with density
= gk
flx) =e® ¥ —a(x—k) (4-36)
k=0 k!

The corresponding distribution is a staircase function as in Fig. 4-10b.
With p, = Pl{x = k}, it follows from (4-35) that

Pr—q e fatT (k= 1) _k
P e “a* k! a
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FIGURE 4-11

If the above ratio is less than 1, that is, if & <a, then p,_, < p,. This shows
that, as k increases, p, increases reaching its maximum for & = [a], Hence

if @ < 1. then p, is/maximum for k = 0;

if @ > 1 but it is not an integer, then p, increases as k increases, reaching
its maximum for k = [al];

il @ is an integer, then p, is maximum for k =a — 1 and k = a.

Example 4-11 Poisson points. In the Poisson points cxperiment, an outcome £ is
a set of points t, on the ¢ axis.

(@) Given a constant ¢, we define the RV n such that its value n({) equals
the number of points t, in the interval (0,1,). Clearly, n = kK means that the
number of points in the interval (0,r,) equals k. Hence [see (3-47)]

k
Plo =k} = e Mo Lol ﬂ’,‘;) (437)
Thus the number of Poisson points in an interval of length ¢, is a Poisson
distributed RV with parameter a = Az, where A is the density of the points.

(b) We denote by t; the first random point to the right of the fixed point 7,
and we define the RV x as the distance from ¢, to t, (Fig. 4-11a). From the
definition it follows that x(¢) = 0 for any £. Hence the distribution function of x is
0 for x < 0. We maintain that for x > 0 il is given by

Flx)=1—¢*
Proof. As we know, F(x) equals the probability that x < x where x is a specific
number. Bul x < x means that there is at least one point between 7, and ¢, + x.

Hence 1 — F(x) equals the probability p;, that there are no points in the interval
(1,1, +x). And since the length of this interval equals x, (4-37) yields

oy = e =1=F(x)
The corresponding density
flx) = Ae *U(x)

is called exponential (Fig. 4-116).
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TABLE 4-1
Normal r Lognormal
e~s’ﬂ

:l,, ~1nar2
| .
0 X 0 l/e x
b Rayleigh d Maxwell

xe~ R Re-FR

A »

0 1 % 0 X
1 Gamma (Erlang)
0 n x
Cauchy

1+x?
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Gamma. An RV x has a gamma distribution if

(,h

¥) = yab=temer = »
I yaPle (x¥) v ) (4-38)
In the above, b and ¢ are positive numbers and
L(b+1) = [ yrerdy 6> —1 (4-39)
0

is the gamma function. This function is also called the generalized factorial
because I'(h + 1) = bI(b), If b is an integer, I'(n + 1) =nln) = -+ =n!
because I'(1) = 1. Furthermore,

13 oo = -
=l s A 20 Ay = D) IRE iy |
r(q] [~V _f“t & =r

The following densities are special cases of (4-38).

Erlang. If b = n is an integer, the Erlang density
n

(H == ”'_\-"’|g""[j( 'Y)

results. With' # = 1, we obtain the exponential density shown in Fig. 4-11.

Jile) =

Chi-square. For b = n/2 and ¢ = 1/2, (4-38) yields
g2t E R (%) (4-40)

1
) = 3Gy

This density is denoted by y2(n) and is called chi-square with n degrees of
freedom. It is used extensively in statistics.

In Table 4-1, we show a number of common densities. In the formulas of
the various curves, a numerical factor is omitted. The omitted factor is deter-
mined from (4-18).

4-4 CONDITIONAL DISTRIBUTIONS

We recall that the probability of an event &7 assuming .# is given by

P(2.4)

P4
The conditional distribution F(x|.# ) of an RV x, assuming .# is defined as

the conditional probability of the event {x < x}:

P{x < x,.#)

—P(/-—)

In the above, (x < x, -#) is the intersection of the events {x < x} and ., thatis,
the event consisting of all outcomes ¢ such that x({) < x and ¢ € .4,

P(A#) = where P(.#) #0

F(x|#) = Plx <x|#) = (4-41)
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F(x) F(xleven)

i e (| >
FIGURE 4-12

Thus the definition of F(x|.#) is the same as the definition (4-1) of F(x),
provided that all probabilities are replaced by conditional probabilities, From
this it follows (see Fundamental remark, Sec. 2-3) that F(x|-#) has the same
properties as F(x). In particular [see (4-3) and (4-8)]

E(=|.#)=1 F(—=|#) =0 (4-42)
Plx, <X <x,,#}

Plx, < x < x|} =F(x,|#) — F(x,l4) = — R (4-43)

The conditional density f(x|.#) is the derivative of F(x|.#):

o _ dF(xl#) i P{x <x <x + Ax|.#)
fixi€) = dx E A:Tu Ax

This function is nonnegative and its area equals 1.

(4-44)

Example 4-12. We shall determine the conditional F(x|.#)of the RV x(f,) = 10i
of the fair-die experiment (Example 4-4), where .#= (f, fy. fs} is the event

“even.”
If x > 60, then {x <x) is the certain event and {x <x, ) =.¢. Hence
(Fig. 4-12)
F(x|.# Bl 60
M) = = >
(x|.¢) %) X

If 40 < x < 60, then {x < x, #) = {f,, f,). Hence
PUfa £} 2/6

F(xl/)=—m—3-/—6‘ 40 < x < 60
If 20 < x < 40, then {x < x, #) = (f;). Hence
_ P} 176

Fal) =gy =55 Nsx<®

If x < 20, then {x < x, #)} = (#}. Hence
F(xl#)=0 x<20
To find F(x|.#), we must, in general, know the underlying experiment.
However, if .# is an event that can be expressed in terms of the RV x, then, for
the determination of F(x|.#), knowledge of F(x) is sufficient. The following
two cases are important illustrations.
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F(x|x=a)
i1

F(x)

=
=Y
=¥

FIGURE 4-13

I. We wish to find the conditional distribution of an RV x assuming that x < a
where a is number such that F(a) # 0. This is a special case of (4-41) with
A= {x < a)
Thus our problem is to find the function
P{x = x,x < a}
F(xlx sa) =P[x5x|x 50} = W

If x = a, then {x < x, x < 4} = {x < a}, Hence (Fig. 4-13)

7 Pfx < a)
(X]X_Sﬂ)—m— xza
If x < a,then (x <x, x <a) = {x <x}, Hence
Plx <x Hix
F(x|x <a) = [ )— (x) <a

Px <a) F(a)

Differentiating F(x|x < a) with respect to x, we ‘obtain the corresponding
density: Since F'(x) = f(x), the above yields

) F)

F == for x<a (4-45)
@ [ foax

fxlx <a) =

and'it is 0 for x > a.
II. Suppose now that .#= {b <x < a}. In this case, (4-41) yields

Plx<x,b<x<a

findlamsia) = P{b < x < a}
If x> a,then {x <x, b <x <a} ={b <x < a). Hence
F(a) — F(b)
F(xlb<xsa)=m=l x=a
If b<x <a,then{x <x, b <x<a}={b<x <x). Hence
F(xlb<x <a) =f{.¢:)_—i’(_b)_ bsx<a

F(a) — F(b)
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flxlb<x=a)
/

0 b a ¥ FIGURE 414
Finally, if x < b, then {x < x, b < x < a} = {#}. Hence
F(x|lb <x<a)=10 X =Bb

The corresponding density is given by

flxlb<x<a) = % for b<x<a (4-46)
and it is 0 otherwise (Fig. 4-14).
Example 4-13. We shall determine the conditional density f(x| |x — 5| < k) of
an N(n:o) RV. Since
Pllx —m| < ko) =Pln —ke <x<n+ ka} =G(k)— G(—k) =26G(k) =1
we conclude from (4-46) that
| e~ (x—nF /2at
26(k) =1  o2m

for x between m — ko and 75 + ko and 0 otherwise. This density is called
rruncated normal.

fxllx —n| < ko) =

Freque;lcy inlerprelntion_ In a sequence of n trials, we reject all outcomes ¢ such that
x(Z) < b or x(£) > a. In the subsequence of the remaining trials, F(x|h < x < a) has the
same frequency interpretation as F(x) [see (4-3)].

Total Probability and Bayes’ Theorem

We shall now extend the results of Sec. 2-3 to random variables.

1. Setting # = {x < x) in (2-36), we obtain
P{x < x} = P(x < x|} P(s#,) + - -+ +P{x < x|/} P(,)
Hence [see (4-41) and (4-44)]

F(x) = F(x|./)P(,) + =+ +F(x|aZ)P(32,) (4-47)
f(x) = f(xl&)P(4) + - +f(x]2,) P(2) (4-48)

In the above, the events .&7,,...,.%7, form a partition of ..
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fixloir)

#  FIGURE 4-15
X

Example 4-14. Suppose that the RV x is such that f(x|.#) is N(n;a,) and
f(x|#7) is N(n,; o5) as in Fig. 4-15, Clearly, the events .# and .# form a partition
of . Setting /) = .# and o4, = .# in (4-48), we conclude that

_ X — L—p (x—mu)
F(x) = pf(xla) + (1 *p)f(xl./)=§wi;(‘ ”1) 4 _L-,-(‘ "-)

| oy ay as

where p = P(.#).

2. From the identity
 P(Bl)P()
P(AH) = — P@) (4-49)
[see (2-38)] it follows that
Plx < x|o#) F(x|a/)

— e F(z/)——r( P()(450)

3. Setting & = {x, < x < x,)in (4-49), we conclude with (4-43) that

Plox <x) =

P{x, < x < x;|a7}

ElEgbaraxs )= Plx, <x<x,)

P(57)

F(x|le7) — F(x,|7) :
= F(m) —Fxy) ) {4y

4. The conditional probability P(.27|x = x) of the event %/ assuming
x = x cannot be defined as in (2-29) because, in general, P(x = x} = 0. We shall
define it as a limit

Plflx=x) = Alim"l’[.zflx <x<x+ Ax} (4-52)

With x, = x, x, =x + Ax, we conclude from the aboyve and (4-51) that

f(xl27)

A= ="

P(a) (4-53)
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Total probability theorem. As we know [see (4-42)]
F(e]or) = j Flxla) de =1
Multiplying (4-53) by f(x) and integrating, we obtain
[~ P(a£1x = x) f(x) de = P() (4-54)
This is the continuous version of the total probability theorem (2-36).

Bayes’ theorem. From (4-53) and (4-54) it follows that

P(#H|x=x) : P(e/x =x)f(x)
() = —5 =)

=— (4-55)
f P#]x =) f(x) dx

This is the continuous version of Bayes' theorem (2-39).

Example 4-15. Suppose thdt the probability of heads in a coin-tossing experiment
/" is not a number, but an RY p with density f( p)defined in some space .2 The
experiment of the toss of a randomly selected coin is a cartesian product 7 X /.
In this experiment, the event #= {head} consists of all pairs of the form ¢ h
where £, is any element of >4 and A is the clement heads of the space
= {h, 1}, We shall show that

p(#) = [ 'of () dp (4-56)

Proof. The conditional probability of #° assuming p = p is the probability of
heads if the coin with p = p is tossed. In other words,

P{Hlp=p)=p (4-57)
Inserting into (4-54), we obtain (4-56) because f(p) = 0 outside the mterval (0, 1).

PROBLEMS

4-1. Suppose that x, is the u percentile of the RV x, that is, F(x,) = w. Show that if
f=x) = f(x). then x, , = —x.

4-2. Show that if f(x)is symmetrical about the pointx = gand Pln —a < x <q +a) =
I=a,thena =9 —x,,=x;_,s—n

4-3. (a) Using Table 3-1 and linear interpolation, find the z, percentile of the N(0, 1)
RV z for u = 0.9, 0925, 0.95, 0,975, and 0.99. (b) The RV x is N(n. o). Express its
X, percentiles in terms of z,.

4-4. The RV is x is N(n,a) and Ply — ko <x <7 + ko) =p;. (a) Find p; for
k=1, 2, and 3. (b) Find k for p; = 0.9, 0,99, and 0:999, (c) If Pln —z,0 <x<
M+ z,0) = y, express z,, in terms of y.

4-5. Find x, for u = 0.1,02,...,0.9 (&) if x is uniform in the interval (0, 1); (&) if
Jlx) = e *U(x),
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4-8.
4-9,
4-10.
4-11.

4-12.

4-13.

4-15.

4-16,
4-17.

4-18.
4-19.

4-21.

4-22,
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. We measure for resistance R of each resistor in a production line and we accept

only the units the resistance of which is between 96 and 104 ohms, Find the
percentage of the accepted units (a) if R is uniform between 95 and 105 ohms;
(b} if R is normal with 7 = 100 and & =2 chms.

Show that if the RV x has an Erlang density with # = 2, then Flx) =
(1= &~ = axe” (%)

The RV x is N(10; 1), Find f(x|(x — 10)* < 4).

Find f(x)if F(x) = (1 — e~ *")U(x — c).

H x is N(0,2) find (a) P{l < x < 2} and () P{l < x <2|x > 1).

The 'space . consists of all points ¢ in the interval (0, 1) and Pl0 <, <y} =y
for every y < 1. The function G(x) is increasing from G(—=) =0 to G(=) = 1;
hence it has an inverse G~ "(y) = H(y). The RV x is such that x(¢;) = H(1,).
Show that F.(x) = G(x).

If x is N(1000;20) find (@) Plx < 1024), (b) Plx < 1024]x > 961}, and (¢)
P{31 < vx < 32).

A fair coin is tossed three times and the RV x equals the total number of heads.
Find and sketch F,(x) and f,(x).

. A fair coin is tossed 900 times and the RV x equals the total number of heads: (a)

Find f.(x): 1; exactly 2; approximately using (4-34). (b) Find P{435 < x < 460).
Show that, if a < x({) sb for every { € ., then F(x)=1 for x> 5 and
F(x)=0for x < a.

Show thatif x(£) < y(£) for every { € .7, then F (w) = F(w) for every w.

Show that if B(r) = f(e]lx > ¢) is the conditional failure rate of the RV x and
B(t) = kt, then f(x)is a Rayleigh density (se¢ also Sec. 7-3).

Show that P(=/) = P(e/[x < x)F(x) + P(a/|x > x)[1 — F(x)].

Show that

P(a/x <x)F(x)

E(xle7) = )

. Show that if P(&lx =x) = P(@lx =x) for every x < x;, then P(&/|x < x,) =

P(Z|x < xy).

Hint: Replace in (4-54) P(27) and f(x) by P(a/|x < x) and flx|x <xg).
The probability of /ieads of a random coin is-an RV p uniform in'the interval (0, 1).
(a) Find P{0.3 < p < 0.7)..(b) The coin is tossed 10 times and heads shows 6
times. Find the a posteriori probability that p is between 0.3 and 0.7.
The probability of heads of a random coin is an. RV p uniform in the interval
(0.4,0.6). (a) Find the probability that at the next tossing of the coin heads will
shows. (b) The coin is tossed 100 times and heads shows 60 times. Find the
prabability that at the next tossing heads will show.
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5

FUNCTIONS
OF ONE
RANDOM
VARIABLE

5-1 THE RANDOM VARIABLE g(x)

Suppose that x is an RV and g(x) is a function of the real variable x. The
expression

y = g(x)

1S a new RV defined as follows: For a given £, x(¢) is a number and g[x(2)] is
another number specified in terms of x({) and g(x). This number is the value
¥(&) = g[x(¢)] assigned to the RV y. Thus a function of an RV x is a composite
function y = g(x) = g[x(¢)] with the domain set . of experimental outcomes.
The distribution function F,(y) of the RV so formed is the probability of
the event {y < y} consisting of all outcomes ¢ such that y(£) = g[x({)] < y. Thus

F,(y) =Py <y) = P{g(x) <y} (5-1)

For a specific y, the values of x such that g(x) <y form a set on the x
axis denoted by R. Clearly, g[x({)] <y if x({) is a number in the set R,.
Hence

F(y) = P(xeR,) (5-2)
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FIGURE 5-1

The above leads to the conclusion that for g(x) to be an RV, the function
2(x) must have the following properties:

1. Its domain must include the range of the RV x.

2, It must be a Baire function, that is, for every v, the set R, such that
£(x) < y must consist of the union and intersection of a countable number of
intervals. Only then {y < y) is an event.

3. The events {g(x) = + oo} must have zero probability.

5-2 THE DISTRIBUTION OF g(x)

We shall express the distribution function F,(y) of the RV y = g(x) in terms of
the distribution function F.(x) of the RV x and the function g(x). For this
purpose, we must determine the set R of the x axis such that g(x) <y, and
the probability that x is in this set. The method will be illustrated with several
examples. Unless otherwise stated, it will be assumed that F,(x) is continuous.

1. We start with the function g(x) in Fig. 5-1. As we see from the figure,
g(x) is between @ and b for any x. This leads to the conclusion that if y > b,
then g(x) <y for every x, hence Ply <y} = 1; if y < a, then there is no x
such that g(x) <y, hence Ply <y} = 0. Thus

_ 1 y=b
F”(y)#{ﬂ y<a

With x; and y, = g(x,) as shown, we observe that g(x) <y, for ¥ <x,.
Hence

F(y) = P{x =x;) = F(x))
We finally note that

glx) <y, if x=<xjorifxf<wy<xy
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'y a>0 4 a<0
== ' ol K>y;b
y<y— | |
- > d
\ 0 x 0 x
x<22t
/ y<y
FIGURE 5-2
Hence

F(y;) = P(x < xj} + P(x§ < x sx7) = F(x3) + F(x§) - F(x3)
because the events {x < x3} and (x4 < x < x¥'} are mutually exclusive.
Example 5-1
y=ax+b

To find F,(y), we must find the values of x such that ax + b < y.
(a) If a > 0, then ax + b < y for x < (y — b)/a (Fig. 5-2a). Hence

y—b
Fy(y) = P{x =)= F,(
a
(b)If a <0, then ax + b <y for x > (y — b)/a (Fig. 5-2b). Hence

F, Plas220) o _p(220 0
) ) = —_— = —_— —
() {xz = } ( = ) a<

y—b

) a>0
a

Example 5-2
y=x*
If y > 0, then x? <y for — 1/; <x< \/; (Fig. 5-3a). Hence

E(y) =P~y sx<\y}=F(y)-E(-y) »>0

F® E@)

1 1

|
<
-
=¥
=
-

(b)

FIGURE §-3
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If y <0, then there are no values of x such that x* < y. Hence
F(y)=P{@}=0 y <0

Special case If x is uniform in the interval (-1, 1), then

1
E(x) =5 + x| <1

x
2
(Fig. 5-3b). Hence

1 y> 1
E(y) =y for 0<y<1l and F_r(,\')={0 o0

2. Suppose now that the function g(x) is constant in an interval (x;, x,):
g(x) =y, X <x<x
In this case
Ply =pi} =Plxg < x =< x1} = Ex;) = F.(xg) (5-3)
thncg F(y) is discontinuous at y =y, and its discontinuity equals F,(x,) —
F.(xp).

Example 5-3. Consider the function (Fig. 5-4)

g(x)=0 for —c<x<c and g(.r)={::_;g _f,zc,c

In this case, F,.(_v) is discontinuous for y = 0.and its discontinuity equals F,(c) —
F(=¢). Furthermore,

If y=0 then Py <y} =~Pfx<y +c}=F(y+¢c)
If y<0 then P{y<y)=Px<y-c}=F(y—rc)

g(x) Fu(x)

|
L
y
BN,

Y

FIGURE 5-4
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g(x)

Fi(x)

FIGURE 5-5

Example §-4 Limiter. The curve g(x) of Fig. 5-5 is constant for x < —b and
X = b and in the interval (=5, b) it is a straight line. With y = g(x), it follows that
F(y) is discontinuous for y =g(—b)= —b and y =g(b) = b respectively.

Furthermore,

If y=b then g(x) <y forevery x; hence F(y)=1

If =-b<y<b then g(x) <y forx<y; hence F,(y)="F.(y)
If y<—b then g(x)<y fornox; hence F(y) =0

3. We assume next that g(x) is a staircase function

glx) =g(x) =y, =

In this case, the RV y = g(x) is of discrete type taking the values y, with
Ply =y} = P{x; g <x=x;} = F(x) — Flx—y)

LT

Example 5-5 Hard limiter. If

x>0
s={ 1 §Z0

then y takes the values + 1 with
Ply= 1) = P(x < 0} = F(0)
P(y=1) = P{x > 0} = 1 — F,(D)
Hence F,.('y) is 4 staircase function as in Fig. 5-6.

gfx) F(x) £
] fr—— 1 1
0 —§ J’:J—
! 0 x =1 _i_;

FIGURE 5-6
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g(x)1 F.(Xw

FIGURE 5-7

Example 5-6 Quantization. If
g(x)=ns (n—1)s<x<ns
then y takes:the values y, = ns with
Ply =ns} = P{(n — 1)s <x < ns} = F.(ns) = F(ns —s)

4. We assume, finally, that the function g(x) is discontinuous at x = x,
and such that

g(x) <g(xg) for x<x, g(x)>g(xy) for x>z
In this case, if y is between g(xg) and g(xg), then g(x) <y for x < x,. Hence

F(y) =Plx<xo} = E(x)) g(x5) <y <g(x;)
Example 5-7. Suppose that

g(x)={x+c x=0

x—c x <0
is discontinuous (Fig. 5-7). Thus g(x) is discontinuous for x = 0 with g(07) = —¢
and g(0*) = ¢. Hence F,(y) = F,(0) for |y| < ¢. Furthermore,
¥ y=c then g(x) <y forx <y—c; hence F,(y)=F.(y—c)
If —-c<y<ec theng(x)=sy forx<0; hence  F(y) = F.(0)

If y<s-=e then g(x) <y forx <y+c¢; hence F(y)=F/(y+¢)

Example 5-8. The function g(x) in Fig. 5-8 equals 0 in the interval (—c.c)
and it is discontinuous for x = +¢ with gle*) =¢, gle™) =0, gl—c") = —¢,
g(—c*)=0. Hence F,(y) is discontinuous for y =0 and it is constant for
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g(x)T Ei(x) E ()
oh
| B |
—¢] 0 ¢ x - 0 ¢ - 0 ¢ ¥

FIGURE 5-8
O<y=<cand —¢ <v < 0. Thus
If y=ie then g(x) <y forx=<y; hence F(y)=F,/(y)
If 0<y<e then g(x)<y forx <c: hence F(y) =F.(c)

If —e<y<0 then g(x)<y forx

IA
|
~

hence  F(y) =F.(—«¢)

If ¥ < =¢ then g(x) <y forx

IA

hence. F (y) =F/(»)

5. We now assume that the RV x is of discrete type taking the values X0
with probability p,. In this case, the RV y = g(x) is also of discrete type taking
the values y; = g(x,).

If ¥, = g(x) for only one x = x,, then

Ply =y} = Plx = x;} = p,
If, however, y, = g(x) for x = x; and x = x, then
Ply =y} = Plx = x;} + P(x =x;} =p, +p,
Example 5-9
y=x

(@) If x takes the values 1,2,....6 with probability 1 /6, then y takes the
values 17,22, .., 6% with probability 1,/6.

(B) If, however, x takes the values =2, —1,0,1,2,3 with probability 1/6.
then y takes the values 0, 1,4, 9 with probabilitics 1/6,2/6,2/6,1/6 respectively.

Determination of fy( ¥)

We wish to d'ctermine the density of y = g(x) in terms of the density of x.
Suppose, first, that the set R of the ¥ axis is not in the range of the function
g(x), that is, that £(x) is not a point of R for any x. In this case, the probability
that g(x) is in R equals 0. Hence £,(3) = 0 for y & R. It suffices, therefore, to
consider the values of y such that for some x, g(x) = y.
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FIGURE 5-9
FUNDAMENTAL THEOREM. To find f,(y) for a specific y, we solve the equa-
tion y = g(x). Denoting its real roots by x,,,

y=glx)= - =g(x,) ="+ (5-4)

we shall show that

LR R
O = T )l

where g'(x) is the derivative of g(x).

Proof. To avoid generalities, we assume that the equation y = g(x) has three
roots as in Fig. 5-9. As we know

fi(y)dy=Ply <y<y-+dy}

It suffices, therefore, the find the set of values x such that y <g(x) <y + dy
and the probability that x is in this set. As we see from the figure, this set
consists of the following three intervals

Xy <x <Xy +dig Xy v, <X <X Xq <X <Xz +dig
where dx; > 0, dxy > 0'but dx, < 0. From the above it follows that
Ply <y <y +dy} = Plx; <x<x; +dr}
+ Plas -+ diy <% < xy) + Plxy < x < x5+ diy)

The right side equals the shaded area in Fig. 5-9. Since

Plx; <x <x, +de)) =f(x))dx, dey =dy/g'(x,)

Plx, +dx, <x < x3) = fi x;) ldv, dx, = dy/g'(%2)

Plxy < x <Xy +dog) =fi(x:) dey  dys = dy/g'(xy)
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we conclude that

f‘y(-‘.j) f,r(—"‘) f.(-t'_:)
(y) dy = iy + 2h
f()a y’(x,){y lx'(r;)lr" 2'(x3)"

1y

and (5-5) results.

We note, finally, that if g(x) =y, = constant for every x in the interval
(g, v then [see (5-3)] F,(y) is discontinuous for y = y,. Hence f,(y) contains
an impulse 8(y — y;) of area F (x,) — F.(x,).

Conditional density The conditional density f,(y[.#) of the RV y = g(x)
assuming .# is given by (5-3) if on the right side we replace the terms f,(x,) by
fulx,|.#) (see, for example, Prob. 5-17).

Illustrations

We give next several applications of (5-2) and (5-5).

1. y=ax+b g'(x) =a

The equation y = ax + b has a single solution x = (y — b)/a for every y.
Hence

fily) = if,r(y ~ b] (5-6)

la| a
Special case If x is uniform in the interval (¥, x,), then y is uniform in
the interval (ax, + b, ax, + b).
‘Example 5-10. Suppose that the voltage v is an RV given by
v = i(r+r,)
where i = 0.01 A and r; = 1000 Q. 1f the resistance r is an RV uniform between

900 and 1100 (2, then v is uniform between 19 and 21 V.

1

1
2, = ey = ——
y=_ 8 (x) -

The equation y = 1/x has a single solution x = 1/y. Hence

0= %fx(%) (5-7)
Special case 1f x has a Cauchy density with parameter e,
a 1/aar
el = TraE then fy(}'):W

is also a Cauchy density with parameter 1/a.
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felr) = fu(9) !
M g=7 {1 ITW(?
.‘/’
0 500 1100 7 0 EE
1100 900 FIGURE 5-10

Example 5-11. Suppose that the resistance r is uniform between 900 and 1100 0
as in Fig. 5-10. We shall determine the density of the corresponding conductance

g=1/r
Since f.(r) = 1/200 S for r between 900 and 1100 it follows from (5-7) that

1

1
T eVE oy =50

=<
200e2 O Tioo “¢

and 0 elsewhere.
3 y=ax* a>0 g/(x)=2ax

If y < 0, then the equation y = ax? has no real solutions; hence f,(y) = 0. If
y > 0, then it has two solutions

and (5-5) yields

£y = ml;—/;[f[\/?] +ﬁ.(—\/§” y50  (58)

We note that F(y)=0fory <0 and

F,(y):P{_‘/—; <x< \E} =F,(E)—Fx(—ﬁ) 320

¥  FIGURE 5-11
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Example 5-12. The voltage across a resistor is an RV e uniform between 5 ang
10 V. We shall determine the density of the power

w=— r= 1000 O
T

dissipated in r.
Since f,(e) = 1/5 for e between 5 and 10 and 0 elsewhere, we conclude
from (5-8) with @ = 1/r that
10 1 1

=y/— — e
Fulw) w a0 " 1o

and 0 elsewhere.

Special case  Suppose that

1 2
) = =x)2 e
filx) ar y=x
With a = 1, it follows from (5-8) and the evenness of f,(x) that (Fig. 5-11)

1 1 S
fHly)= "‘/_;_fx(ﬁ) = ﬁe Y2U(y)

We have thus shown that if x is an N(0,1) RV, the RV y = x? has a
chi-square distribution with one degree of freedom [see (4-40)].

1
4. y=x g'(x)=ﬁ

The equation y = yx hasa single solution x = y* for y > 0 and no solution for
y < 0. Hence

(v) = 23F.(y?)U(») (5-9)
The chi density Suppose that x has a chi-square density as in (4-40),
1
s n/2=1,-x/2
fx(l’) 2n/2r(n/2)x € U(y)
and y = Vx. In this case, (5-9) yields

2 3

) = n=lg= 2(( y) (5-10)

27T (n/2)”

This function is called the chi density with n degrees of freedom, The following
cases are -of special interest.
Maxwell For n = 3, (5-10) yiclds the Maxwell density

f(y) = 2/my? e /2,
Rayleigh  For n = 2, we obtain the Rayleigh density fuly) = ye 2 2U(y).
5. y=xU(x) g’(x) = U(x)
Clearly, f(y)=/0 and F(y)=0 for y <0 (Fig. 5-12). If y > 0, then the



5-2 THE DISTRIBUTION OF gix) 97

equation y = xU(x) has a single solution x, = y. Hence
) =fy) FE(¥)=F(y) y>0

Thus F,(y)is discontinuous at y = 0 with discontinuity F,(0%) — F(07) = F(0).
Hence '

FL(¥) =F(n)U(y) + F(0)8(y)

6. y=e* g'(x)=e¢"

If y > 0, then the equation y = e* has the single solution x = In y. Hence

1
fly) = ;fx(ln ¥)  ¥>0

If y <0, then f,(y) = 0.
Special case If x is N(n; o), then

e*(Ln)‘~n)Z/2¢r: (5‘11)

WM = o

This density is called lognormal (see Table 4-1).

T y =asin(x + #) a>0

If |y| > a, then the equation y = asin(x + #) has no solutions; hence f,(y) = 0.
If |y| < a, then it has infinitely many solutions (Fig. 5-13a)

.Y
x,,=arcsmz—8 n= —...,—1,01...

Sinee g'(x,) = acos(x, + 6) = va* — y?, (5-5) yields

1 -3
fi(y) = ‘[‘12—_—7‘ n_):_;af,(l,,)

Special case Suppose that x is uniform in the interval (=7, 7). In this
case, the equation y = asin(x + 6) has exactly two solutions in the interval
(=, ) for any @ (Fig. 5-14). The function f,(x) equals 1/27 for these two
values and it equals 0 for any x, outside the interval (=, w). Retaining the

vl <a (5-12)



98 FUNCTIONS OF ONE RANDOM VARIABLE

K, xo\-7 Xa A\ T X7 x l i ) :
, >
Xp XXz Xn Xpe) X

(a) ()

FIGURE 5-13

two nonzero terms in (5-12), we abtain

Iyl <a (5-13)

2
f(y)=—7F=
: 2myat —y*

To find F,(y), we observe thaty <y if x is either between —m and x; or
between x, and 7 (Fig. 5-13a). Since the total length of the two intervals equals
7 + 2x, + 28, we conclude, dividing by 27, that

1 1 ¥
E,(y) = = + — arcsin — vl <a (5-14)
: 2 m a
We note that although f,(+a) = =, the probability that y = xa is 0.
Smooth phase 1f the density f,(x) of x is sufficiently smooth so that it can
be approximated by a constant in any interval of length 27 (see Fig. 5-13b),
then

w E fl'(xu) '—"‘fj fx(.f) de =1

because in each interval of length 27 the above sum has two terms. Inserting
into (5-12), we conclude that the density of x is given approximately by (5-13).

£(x)4 500 F ()

|

o |

= | 1
|
i

y=lsin(x+a)

ST
:

=5 0 = x =1

FIGURE 5-14
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Example 5-13. A particle leaves the origin under the influence of the force of
gravity and its initial velocity v forms an angle ¢ with the horizontal axis, The path
of the particle reaches the ground al a distance

i

d=—sinle
g

from the origin (Fig. 5-15). Assuming that ¢ is an RV uniform between 0 and w2
we shall determine: (a) the density of d and (b) the probability that d < dy
Solution. (a) Clearly,

d=asinx a=u0"/g

where the RV x = 2¢ is uniform between 0 and =. If 0 <d <a, then the
cquation d = asin x has exactly two solutions in the interval (0, 7). Reasoning as
in (5-13), we obtain

e
S

0<d<a

and 0 otherwise.
(b) The probability that d < d}, equals the shaded area in Fig. 5-15:

2 dy
Pld < dy} = F)(d,) = — arcsin —=

8. ¥y = tanx
The equation y = tan x has infinitely many solutions for any y (Fig. 5-164)
X, = arctan y n= ...,—1,0,1,...
Since g'(x) = 1/cos* x = 1 + y?, (5-5) yields
1 2 _
fy) = Tt L f(x) (5-15)

n=—x

Special case If x is uniform in the interval (= /2, 7/2), then the term
f{x) in (5-15) equals 1/ and all others are 0 (Fig. 5-16b). Hence y has a
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(x4
1
@ 0 7 x
(a) (b)
FIGURE 5-16
Cauchy density
_ 1/
ol ) = s (5-16)
=t 4

As we see from the figure, y < y if x is between —7/2 and x,. Since the length
of this interval equals x, + 7 /2, we conclude, dividing by . that

L my 11 :
E(y)= *(A’, 7 —) = — + —arctan y (5-17)
’ T 2 2 T

Example 5-14. A particle leaves the origin ina free motion as in Fig, 5-17 crossing
the vertical line x = d' at
y =dtan g

Assuming that the angle ¢ is uniform in the interval (=8, 6), we conclude as in
(5-16) that

dy20
fuly) = m for |yl <dtanf
and 0 otherwise.
fers
1426
—f 0 0 9 O dtano vy

¥
(a) (b)

FIGURE 5-17
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THE INVERSE PROBLEM. In the preceding discussion, we were given an RV x
with. known distribution F(x) and a function g(x) and we determined the
distribution Fi{y) of the RV y = g(x). We consider now the inverse problem:
We are given the distribution of x and we wish to find a function g(x) such that
the distribution of the RV y = g(x) equals a specified function F,(y). This topic
is developed further in Sec. 8-5. We start with two special cases.

From F,(x) to a uniform distribution. Given an RV x with distribution F,(x),
we wish to find a function g(x) such that the RV u = g(x) is uniformly
distributed in the interval (0, 1). We maintain that g(x) = F,(x), that is, if

IN

u=F.(x) then F(u) = u for0 < u < | (5-18)

Proof. Suppose that x is an arbitrary number and « = F (x). From the mono-
tonicity of Fy(x) it follows that u < u iff x < x, Hence

E(u) =Plu <u} = P{x <x} = F(x) =u

and (5-18) results.

The RV u can be considered as the output of a nonlingar memoryless
system (Fig. 5-18) with input x and transfer characteristic F,(x). Therefore if we
use uas the input to another system with transfer characteristic the inverse
FS V() of the function u = F,(x), the resulting output will equal x:

If x=F"") then Plx <x) =F(x)

From uniform to £,(y). Given an RV u with uniform distribution in the interval
(0,1), we wish to find a function g(z«) such that the distribution of the RV
y = g(u) is a specified function £,(y). We maintain that g(u) is the inverse of
the function u = F,(y): :

If y=F""(u) then Pfy <y} =F(y) (5-19)
x: u = Fx) x = F""u)
—— R iy |
1
Flu)
1
1] 1
y =F!""u)
i F"'”(H) e

FIGURE 5-18
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Proof. The RV u in (5-19) is uniform and the function F(x) is arbitrary.
Replacing F,(x) by F,(y), we obtain (5-19) (see also Fig. 5-18).

From F.(x)to F(y). We consider, finally, the general case: Giycn F(x) and
F,(y), find g(x) such that the distribution of y = g(x) equals F,(y). To solve
this problem, we form the RV u = F,(x) as in (5-18) and the RV y = F{ U(y) 45
in (5-19). Combining the two, we conclude:

If y=F""F(x) then Ply=<y}==Fi(y) (5-20)

5-3 MEAN AND VARIANCE

The expected value or mean of an RV x is by definition the integral
Efx) = [ xf (%) dx (5-21)

This number will also be denoted by 7, or 7.

Example 5-15. If x is uniform in the interval (x;, x,), then f(x) = 1/(x, — x,)in
this interval. Hence
1

E{x} [ xax
Xy = — — X =
Xy — Xy Ux,

Xy +x,

We note that, if the vertical line v = a is an axis of symmetry of flx) then
E{x} = a; in particular, if f(—x) = f(x), then E{x} = 0. In the above example,
f(x) is symmetrical about the line x = (x, + x,)/2.

Discrete type  For discrete type RVs the integral in (5-21) can be written
as a sum. Indeed, suppose that x takes the values X, with probability p,. In this
case [see (4-15)]

f(x) = EP.-'B(I —x;)
i
Inserting into (5-21) and using the identity

f”__-tﬁ(x —Xx;)dx =x,

we obtain

Efx} = Xpx; p=Plx=x) (522)

Example 5-16. If x takes the values 1,2,....6 with probability 1/6; then
E{x}=4(1+2+ - +6) =35



5-3 MEAN AND VARIANCE 103

i‘ﬂ' & ﬁ (X< =
| | g L, ‘ p/ —H{u<x () =x.4)
Xi-l Xk Xid) X
(a) (b)
FIGURE 5-19

Conditional mean  The conditional mean of an RV x assuming .# is given
by the integral in (5-21) if f(x) is replaced by the conditional density flx|#):

E{xha) = [ xf(xl) dx (5-23)

For discrete type RVs the above yields
E{x|.#) = Yx;P{x = x,|.#) (5-24)
1

Example 5-17. With .#= {x = a}, it follows from (5-23) that

1\ Ax.ljf'( x)dx

E{x|x > a} = f F(xlx=a)de=—~——
= f flx)dx
Lebesgue integral. The mean of an RV can be interpreted as a Lebesgue
integral. This interpretation is important in mathematics but it will not be used
in our development. We make, therefore, only a passing reference:

We divide the x axis into intervals (x,, x,.,) of length Ax as in Fig.
5-19a. If Ax is small, then the Riemann integral in (5-21) can be approximated
by a sum

o0

[ AGyde= T xf(x) bx (5:25)

k=—w

And since f(x;,)Ax = P{x, < x < x, -+ Ax), we conclude that
Efx}'= % x.Plx, <x <x, + Ax}
k=—=

In the above, the sets {x, < x <., + Ax} are differential events specified in
terms of the RV x, and their union is the space .7 (Fig. 5-19b). Hence, to find
E(x}, we multiply the probability of each differential event by the corresponding
value of x and sum over all k. The resulting limit as Ax — 0 is written in the
form

E{x) = f,de

and is called the Lebesgue integral of x.
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Frequency interpretation We maintain that the arithmetic average ¥ of the observed
values x, of x tends to the integral/in (5-21) as n — oo

L L Ll 0 7 fir

T=——— 2 E{ (5-26)

Proof. We denote by An; the number of x;'s that are between z; and 2, + Ax =2z,
From this it follows that

X+ X, =2z, Ax

And since f(z,) Ax = An,/n [see (4-23)] we conclude that

- I o

R Yoz Ax = Yoz f(z,) Ax = j, xf(x)dx
and (5-26) results.

We shall use the above to express the mean of x in terms of its distribu-
tion. From the construction of Fig. 5-20a it follows readily that ¥ equals the
area under the empirical percentile curve of x. Thus

% = (BCD) — (OAB)

where (BCD) and (OAB) are the shaded areas above and below the u axis
respectively. These areas equal the corresponding areas of Fig. 5-20b; hence

if 0
X = 1= F.(x)] de— | ‘Fy(x)dx
[, - E) s = [ R
where F,(x)is the empirical distribution of x. With n — o this yields

E{x}=j:R(x)dx—fLF(x)¢r R(x) =1 —F(x) (520

Zh st

Zj e

(a) (b)

FIGURE 5-20
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FIGURE 5-21

Mean of g(x). Given an RV x and a function g(x), we form the RV y = g(x).
As 'we see from (5-21), the mean of this RV is given by

) = [ v () dy (5-28)

It appears, therefore, that to determine the mean of y, we must find its density
£,(y). This, however, is not necessary. As the next basic theorem shows, Efy)
can be expressed directly in terms of the function g(x) and the density f.(x)
of x.

THEOREM

E(e () = [~ 8(x)f(x)dx (5-29)

Proof. We shall sketch a proof using the curve g(x) of Fig. 5-21. With y =
g(x)) = g(x,) = g(x;) as in the figure, we see that

fi(y) dy = f(xy) dry + f.(x;) diy + f(x3) d,
Multiplying by y, we obtain
¥, (¥) dy =g(x;) f.(x;) dey + g(x5) fo(x;) diy + g(x3) fo(x5) dxy

Thus to each differential in (5-28) there correspond one or more differen-
tials in (5-29). As dy covers the y axis, the corresponding dx’s are nonoverldp-
ping and they cover the entire x axis. Hence the integrals in (5-28) and (5.29)
are equal.

If x is of discrete type as in (5-22), then (5-29) yields

E(g(x)) = Le(x)P(x =x) (5-30)
i
Example 5-18. With x; an arbitrary number and g(x) as in Fig. 5-22, (5-29).yields

E(z(9) = [ 'fulx) dr = F(x0)

This shows that the distribution function of an RV can be expressed as expected
value.
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(x) 4
g E{g(x)}=F.(x0)

1

0 Xy X

FIGURE 5-22

Example 5-19. In this example, we show that the probability of any event o7 can
be expressed as expected value. For this purpose we form the zero-one RV X,
associated with the event 27:

1 e o
x,,(;)={0 fﬁ._;{

Since this RV takes the values 1 and 0 with respective probabilities P(27) and
P(7), (5-22) vields

E{x) =1 X P(a7) + 0 % P(&F) = P()
Linearity  From (5-29) it follows that
E{a;g(x) + - +a,8,(x)} =a,E{g,(x)} + - +a,E{g,(x)} (531)

In particular, Elax + b) = aE{x) + b

Complex RVs Ifz = x + jy is a complex RV, then its expected value is by

definition

E(z} = E{x} + JE{y)

From this and (5-29) it follows that if

g(x) = gl(x) +jgz(x)

is a complex function of the real RV x then

Ee(9) = [~ ai(2)f(x) ds +5 [ ea(x)f(x)de = [ g(x) () s

(5-32)
In other words, (5-29) holds even if g(x) is complex.
Variance
The variance of an RV x is by definition the integral
o= [ (x = m)f(x) dx (533)

where 7= E{x). The positive constant &, denoted also by o, is called the
standard deviation of x.
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From the definition it follows that o? is the mean of the RV (x — )%
Thus

o? = E{(x— 1)%} = E(x* = 2xn + 12} = E(x?) - 2nE{(x) + 1
Hence

o = E(x*} - E*}{x) (5-34)

Example 5-20. If x is uniform in the interval (—¢,¢), then 7 = 0 and

b

2 3 L oge
o =E{x"} = el xtdy =

w0

Example 5-21. We have written the density of a normal RV in the form

1 S
](\) = o bx=n) f2u?
o2

where up to now 7 and ¢* were fwo arbitrary constants. We show next that 7 is
indeed the mean of x and o~ its variance.

Proof. Clearly, f(x) is symmetrical about the line x =2: hence Efx) =m.
Furthermore,

= ] =
f e =Mt gy —
=

because the area of f(x) equals 1. Differentiating with respect to o, we obtain

i N2
fx (x ;7) o L e =
—® o

Multiplying both sides by o2/y27, we conclude that Efx — )%} = a? and the
proof is complete.

Discrete type. If the RV x is of discrete type, then
o= Tplx,—n)7 p=Px=x) (5-35)

Example 5-22. The RV x takes the values 1 and 0 'with probabilities p and
g = 1 — p respectively. In this case
E{x}=1xp+0xXqg=p

E(x*) =1 xp+0°xqg=p

Hence
o? = E(xY) - EXx} =p—n>=pm
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Example 5-23. A Poisson distributed RV with parameter @ takes the valueg
0. 1,... with probabilitics

l!k

Pix =k} =e " —

{ } k!

We shall show that its mean and variance equal a:

E{x} =a E(x*)=da*+a g =a (5-36)

Progf. We differentiate twice the Taylor expansion of e*:

Ixfui“"r
= k=1 = gk
2% = E k S z k—
k-0 K ax-y k!
« ak—2 1 = gk | = gk
ot = 3 k(k -1 S e
‘ E, e =7 a-EI k! u~k>;, k!
Hence
— pit - at 2 =g - !ak 2y
E{x} =e k;lkﬁ=u E{x*)=e k):lkm=a Fa

and (5-36) results:

Poisson points. As we have shown in (3-47), the number n of Poisson points in an
nterval of length 1, is a Poisson distributed RV with parameter a = At,. From
this it follows that

Efn} = Aty = 03 (5-37)

This shows that the density A of Poisson points equals the expected number of
points per unit time.
Notes 1. The variance o® of an RV x is a measure of the concentration of x near its
mean 7). Its relative frequency interpretation, (empirical estimate) is the average of
G, — o

1
2 . 2
ot == (x.—m)
n
where t; are the observed values of x. This average can be used as the estimate of o

only if m is known. If it is unknown, we replace it by its estimate ¥ and we change n to
n — 1. This yields the cstimate

vie T (5 5-=,'—,fo

==l

known as the sample variance of x [see (8=64)]. The reason for changing n to n — 1 is
explained later.
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2. A simpler measure of the concentration of x near #. is the first

absolute central
moment M = E(|x — x ). Its empirical estimate is the average of |x; -

-ql:
l 1
M= = Yy, —q
If n is unknowa, it is replaced by X. This estimate avoids the computation of squares.

5-4 MOMENTS

The' following quantities are of interest in the study of RVs:

Moments
m, = E(x) = [ :.\"’f(.r) dx (5-38)
Central moments
o= Bl =)} = [ (x = )" () e (5-39)
Absolute moments
E{IxI"}  E{lx—5]%) (5-40)

Generalized moments

E{(x—a)")  E{lx-al") (5-41)
We note that

Hence
= 3 (Mo =) (5-42)
Ky _k);ﬂ(k)"u( )
Similarly,
— _ n =g - n - k_i—k
m, = E{[(x =n) + 2]} {’Eu(k)(x ) }
Hence
m, = i (;: ):,u«,‘ﬂ"_k (5-43)

k=0
In particular,

W

Ky =my=1 my=a =0  p=c
and

3=y — 3m, + 21° my=p, + 300+ n°
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Notes 1. If the function f(x) is interpreted as mass density on the x axis, then Efx)
u]uuls its center of gravity, E(x?} equals the moment of inertia with respect o the origin,
and ¢? equals the central moment of inertia. The standard deviation & is the radius of
gyration,

2, The constants 5 and ¢ give only a limited characterization of f(x). Knowledge
of other moments provides additional information that can be used, for example, to
distinguish between two densities with the same n and' o. In fact, if m,, is known for
every n, then, under certain conditions, f(x)is determined uniquely [sce also (5:69)),
The underlying theory is known in mathematics as the moment problem.

3. The moments of an RV are not arbitrary numbers but must satisfy various
inequalities. For example [see (5-34)]

o’ = mMy — mf =0
‘Similarly, since the quadratic
Ef(x" — a)z} =m,, — 2am, + a*
is nonnegative for any a, its discriminant cannot be positive. Hence

My, = m,z,

Normal random variables. We shall show that if

f(x) = e
then
B = {1 5 ntyer  moak )
E(lxl") = {1,, 3. Mfln = 1o" n =2k (545)
2%klor 2/ n=2k+1

The odd moments of x are 0 because f(—x) = f(x). To prove the lower
part of (5-44), we differentiate k times the identity

f_:e“”l = E

— 1:3-22k=1) 7
f_”:(z"e iy = 2k 22kH

This yields

and with @ = 1/207, (5-44) results.
Since f(—x) = f(x), we have

E{Illz“'.l] =2j:°x2k*'f(x.)dx = f 2141 e ’d’.’
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With y = x*/2c?, the above yields

ank+1
[2 (207%) o
—— ko= v
ko 2a j[] LT d}

and (5-45) results because the last integral equals k!
We note in particular that

Efx%} =30 = 3E3(x%} (5-46)

Example 5-24. 1f x has a Rayleigh density

X

_,r('x_) =—¢ --‘,,zfu(_f)
el
then
I = gl L = 1k j2a2
Efx!} = —,f X le s 2eS s e e R
=g i 1 S
From this and (5-45) it follows that
R n /7 =7
Ex} = {1 30 naym/2 n=2k+1 (547)
Ly Pl n=2k

In particular,

=

E{x} = aymr/2 vi=(2-m/2)a®
Example 5-25. If x has a Maxwell density

26-13/?.23(-}(&‘)

fx)= u;/;‘;x

then
B} = —— Ittt
a2 J-a”
and (5-45) yields

1-3--(n+ Da"  n=2k

EOD S { L AP A (&43)

In particular,
E(x} = 2ay2/m  E{x%} =3a*
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Poisson random variables. The moments of a Poisson distributed RV are
functions of the parameter a:
a*

m,(a) = E{x"} =e ¢ f: k”

(5-49
k=0 k‘l )
= ak
(@) =Ef(x—a)"} =™ ¥ (k= a)" 13 (5-50)
k=0 :
‘We shall show that they satisfy the recursion equations
myia(@) = alm,(a) + m;(a)] (5-51)
Byea(@) = alnp,_\(a) + w,(a)] (5-52)
Proof. Differentiating (5-49) with respect to @, we obtain
= g = ak-1 1
mi(a) = —e™ L k"— + o™ ¥ k™M = _m () + —m, ()
i—a k! Fomrs k! a
and (5-51) results. Similarly, from (5-50) it follows that
= a* % a*
pla) = = ¥ (k=a)"— —ne™* T (k—a)"" —
k=0 k! k=0 :
w gk-1
+e® Y (k—a)'k
= k!
Setting k = (k —a) + a in the last sum, we obtain p!, = —p, —nw, |+

(1/aXp, .y +aw,) and (5-52) results.

The preceding equations lead to the recursive determination of the
moments m, and w,. Starting with the known moments m; = a, g, = 0, and
&, = a [see (5-36)], we obtain »1, = a(a + 1) and

my=a{a*+a+2a+1)=a*+3a>+a py=a(ps+2p)=a
ESTIMATE OF THE MEAN OF g(x). The mean of the RV y = g(x) is given by

E(s() = [ s(x)(x) dx (5:53)

Hence, for its determination, knowledge of f(x) is required. However, if x is
concentrated near its mean, then E{g(x)} can be expressed in terms of the
moments 2, of x.

Suppose, first, that f(x) is negligible outside an interval (n — &,7 + &)
and in this interval, g(x) = g(»). In this case, (5-53) yields

E(g(x)} = g(n)]:_:lf(ﬂ dx = g(n)
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This estimate can be improved if g(x) is approximated by a polynomial

g(x) =g(m) +e'(n)(x—a)+ - +g<"f(,,)('_f:”—)"
n!

Inserting into (5-53), we obtain
a? b
E{g(x)} =g(n) +g"(n)— + +g”"(n) (5-54)

e )
L

In particular, if g(x) is approximated by a parabola, then

2

n, = E{g(x)} =g(n) + g"(nJE; (5-55)

And if it is approximated by a straight line, then 7, = &(1n). This shows that the
slope of g(x) has no effect on 7,; however, as we show next, it affects the
variance a- of y.

Variance. We maintain that the first-order estimate of o2 is given by
ol = lg'(n)IPo? (5-56)

Proof. We apply (5-55) to the function g?(x). Since its second derivative equals
2(g")?* + 2gg", we conclude that

o+ = E{e*(x)} = > + [(87)} + gg”] o

Inserting the approximation (5-55) for 7, into the above and neglecting the ot
term, we obtain (5-56).

Example 5-26. A voltage E = 120V is connected across a resistor whose resistance
is an RV r uniform between 900 and 1100 £. Using (5-55) and (5-56), we shall
estimate the mean and variance of the resulting current

E
fie= o
r
Clearly, E{r} = n = 103, o = 100%/3. With g(r) = E/r, we have
2(n) =012 gi(n)=—-12x107° g"(n)=24x10""
Hence
E{i} = 0.12 + 0.0004 A o2 =48 x 107% 47

Tchebycheff Inequality

A measure of the concentration of an RV near its mean 1) is its variance o2 In
fact, as the fcllowing theorem shows, the probability that x is outside an
arbitrary interval (n — &, + &) is negligible if the ratio o /e is sufficiently
small. This result, known as the Tchebycheff inequality, is fundamental.
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THEOREM. For any £ > 0,
UZ

Pllx — 7l 2 ¢} < — (5-57)

Proof. The proof is based on the fact that
—n— o
Pllx — = c) dx x)dx = f(x)dy
“X 7']'| ZF] f—x f(i)(‘ - ‘,:'M-sf( 1')( fir—rﬂan'r(A)d-‘
Indeed
2N 7 dx > x —m) f(x)dx > &2 X
ol= [ Gomifdez [ (s-mif)dezef  fGoa

lx=7lze
and (5-57) results because the last integral equals P{lx — | = &}.
Notes 1. From (5-57) it follows that, if ¢ = 0, then the probability that x is outside the
interval (y — &, + &) equals 0 for any &; hence x = with probability 1. Similarly, if
E(x*}=m*+a%=0 then =0 o=0

hence x = 0 with probability 1.

2. For specific densities, the bound in (5-57) is too high. Suppose, for example, that
x is normal. In this case, P{|x — n| = 3¢} = 2 — 2G(3) = 0.0027. Inequality (5-57),
however. yields P{lx — 1| = 3¢} < 1/9.

The significance of Tchebycheff's inequality is the fact that it holds for any f(x)
and can, therefore be used even if f(x)'is not known.

3. The bound in (5-57) can be reduced if various assumptions are made about f(x)
[see Chernoff bound (Prob. 5-30)].

MARKOFF INEQUALITY. If f(x) = 0 for x < 0, then, for any « > 0,

Plx>a) < % (5-58)

Proof.
E(x) = [ xf(x)de > [ f(x) dr > e[ f(x)dx
{x) fnxf(X) faxf(x) afnf(x)
and (5-58) results because the last integral equals P{x > a}.

COROLLARY. Suppose that x is‘an arbitrary RV and a and n are two arbitrary
numbers. Clearly, the RV |x = a|” takes only positive values. Applying (5-58),
with « = £", we conclude that

E _ n
Pllx —al"ze") < ﬂs"_"]l
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Hence

E{|x — al"}

Pllx —al = ¢} < - (5-59)
E

This result is known as the inequality of Bienayme. Tchebycheff's inequality is a
special case obtained with @ = 5 and n = 2.

5-5 CHARACTERISTIC FUNCTIONS

The charactenistic function of an RV is by definition the integral

®(0) = [ flx)e™ dx (5-60)
This function is maximum at the origin because f(x) > 0:
|[P(w)] < @(0) =1 (5-61)

If jw is'changed to s, the resulting integral
O(s) = [ flx)emde  ®(jw) = B(w) (5-62)
is the moment (generating) function of x.
The function
¥(w) =InP(w) =W(jo) (5-63)

is the second characteristic function of x.
Clearly [see (5-32)]

®(w) = B[ O(s) = E(e)
This leads to the following:
If y=ax+b then @,(w)=-e"d (aw) (5-64)
because
E{ej“’} — E{eim(axd-b)} = ejbn{E[ejuw:)

Example 5-27. We shall show that the characteristic function of an N(x, o) RV x
equals

@ (w) = exp{ine — 07w’} (5-65)

Proof. The RV z.= (x — 1) /o is N(0, 1) and its moment function equals

1 C 2
®.(s) = \/T_‘rr.f ee 2 dz
With
¥2 =8 &
2=s = =gl =iy
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we conclude that

i

SN2 dr—e

2 1 ,
Q. (s) =¢' ’“f_ T_e X

And since x = oz + 7, (5-65) follows from (5-64).

Inversion formula  As we see from (5-60), ®(w) is the Fourier transform
of f(x). Hence the properties of characteristic functions are essentially the
same as the properties of Fourier transforms. We note, in particular, that Flx)
can be expressed in terms of ®(w)

1 =
f(.\-)::f B w)e™ " dw (5:66)

Moment theorem. Differentiating (5-62) n times, we obtain
OU(5) = E{x"e™)
Hence
DU(0) = E{x") =m, (5-67)

Thus the derivatives of ®(s) at the origin equal the moments of x. This
justifies the name “moment function™ given to ®(s).
In particular,

®'(0) =m, =7 DY(0) =my =7 + o> (5-68)

Note Expanding ®(s) into a series near the origin and using (5-67), we obtain

=z m,
O(s)= ¥ —s" (5-69)
a=0/
This is valid only if all moments are finite and the series converges absolutely near
s = 0. Since f(x)can be determined in terms of ®(s), (5-69) shows that, under the stated
conditions, the density of an RV is uniquely determined if all its moments are known.

Example 5-28. We shall determine the moment function and the moments of an
RV x with gamma distribution:

chrl
flx) =axtTle*U(x)  y= NUER]
From (4-39) it follows that
yi(e)

o(s) = )-’I;mx""e"""“"dx - (5-70)

(c=9" (=)
Differentiating with respect 1o/ s and setting 5 = 0, we obtain
B(b+ 1)+ (b+in — 1)

®(0) = = E{x"}
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With n = 1 and n = 2, this yields

b h -
LR TCES)

¢ & i

The exponential density is a special case obtained with b = 1:
! " c 1

f(x)=ce *U(x) O(s)=—— Ex}== a2=—

=5 C (ein

Chi square. Seiting b =ni/2 and ¢ =1/2 in (5-70), we obtain the moment
function of the chi-square density y*(m):

1
D e E{x} =m ot =2m (5-71)
V(1 —25)"
Cumulants. The cumulants A, of RV x are by definition the derivatives
d"W(0)
&t Ao

of its second moment function W(s). Clearly [see (5-63)] W(0) = A, = 0; hence

(5-72)

1 1
W(is) = Ags Aps® 4 or £ — X, 8" - ¢
2= n

AL
We maintain that
Ay=n A=0° (5-73)
Proof. Since ® = ¢Y, we conclude that
O = we¥ o= W (W)
With s = 0, this yields
©'(0) = W'(0) =m,  ©(0) = W(0) + [W(O)] = m,

and (5-73) results.

Discrete Type

Suppose that x is a discrete type RV taking the values x, with probability p,. In
this case, (5-60) yields

P(w) = Epie"“"‘ (5-74)

Thus $(w) is a sum of exponentials, The moment funetion of x can be defined
as in (5-62). Howeyer, if x takes only integer values, then a definition in terms of
z transforms is preferable.
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LATTICE TYPE. If n is a lattice type RV taking integer values, then its moment
function is by definition the sum

M(z)=E{z") = X pz" (5-75)

n=-—=

Thus (1 /z) is the z transform of the sequence p, = P{n = n}. With ®(w) as in
(5-74), the above yields

() = T(e™) = 2 p.e™

Thus ®(w) is the discrete Fourier transform (DFT) of p, and
W(s) =1Inl(e’) (5-76)
Moment theorem. Differentiating (5-75) k times, we obtain
r%(z) = E{n(n — 1) -+ (n—k + 1)z**)
With z = 1, this yields

r“(1) = E(n(n — 1) =+ (n — k + 1)} (5-77)
‘We note, in particular, that (1) = 1 and
(1) = E(n} F"(1) = E{n?} — E{(n) (5-78)

Example 5-29, (@) If n takes the values 0 and 1 with P{n=1}=p and
P{n = 0} = g, then

F(z)=pz +q
r'(1)=Efm)=p (1) =E{n?) - E@} =0
(b) If n has the binomial distribution

P.=Pn=n}= ("’:)p"q”"” O<n<m

then
(z)= L (7)pmam"z" = (pz + )"
n=0
(1) = mp (1) =m(m — 1)p*
Hence

E{n} =mp o*=mpg

Example 5-30. If n is Poisson distributed with parameter a,

n

a
P{n=n}=e"’m n=0,1,...
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then

o |

Mz) =et B a":Tl = gdfz=i) (5-79)
n=in b

In this case [see (5-76)]
Wis) =a(e*—1) W(0)=u Y () =a

and (5-73) yiclds E{n} = a, ¢* = a in agreement with (5-36).

Determination of the density of g(x). We show next that characteristic fu nctions
can be used to determine the density f,(y)of the RV y = g(x) in terms of the
density f,(x) of x.

From (5-32) it follows that the characteristic function

®(0) = [ e (y) dy

of the RV y = g(x) equals
@,(w) = E{e™5®) = [~ el (1) (5-80)
If, therefore, the above integral can be written in the form
f_m e Yh( y) dy

it will follow that (uniqueness theorem)
H(¥) =h(y)

This method leads to simple results if the transformation y = g(x) is one-to-one.

Example 5-31. Suppose that x is N(0; o) and y = ax?. Inserting into (5-80) and
using the evenness of the integrand, we obtain

i, o 2 2 2
= f elawxis—xt 20l o
V2= ‘o

0,() = [ emo(x) de =

a
As x increases from 0 to =, the transformation y = ax” is one-to-one: Since

dy = 2axdx = 2yfay dx

the above yields
2 @ . dy
' ~ ey, ~y/2a0% __ 7
¢y(m) ay2m Iu e Zv‘ay
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Hence

~y/2aa®

fly) = Wﬁ—m—.U( y)

in agreement with (5-8).

Example 5-32. We assume finally that x is uniform in the interval (=m/2,7/2)
and y = sinx. In this case

= ; )
@) = [ M5 (a) s = = [ ehusnr gy
. =3

As x increases from —7/2 to m/2, the function y = sin x increases from —1 to 1
and

dy = cosxdr = /1 — y2dx
Hence

Vi o dy
D, (w) = ;quem—l—z

T -y

This leads to the conclusion that

i
= for |y|l <1
() ”\/I_T or

and 0 otherwise, in agreement with (5-13).

PROBLEMS

5-1. The RV x is N(5,2) and y = 2x + 4. Find 7y, 0y, and f,(y).
5-2. Find F(y) and f(y)ify = —4x + 3 and f,(x) = 2¢ > U(x).
5-3. If the RV x is N(0,¢) and g(x) is the function in Fig. 5-4, find and sketch the
distribution and the density of the RV y = g(x).
5-4. The RV x is uniform in the interval (—2¢, 2¢). Find and sketch f(y) and F(y)if
¥ =g(x) and g(x) is the function in Fig. 5-3.
5-5. The RV x is N(0, b) and g(x) is the function in Fig. 5-5. Find and sketch f,(y)
and F(y).
5-6. The RV x is uniform in the interval (0, 1). Find the density of the RV y = —Inx.
5-7. We place at random 200 points in the interval (0, 100). The distance from 0 to the
first random point is an RV z. Find F.(z) (a) exactly and () using the Poisson
approximation.
5-8. Ify = V2x and f,(x) = ce **U(x), find f,(y).
5-9. Express the density f,(y) of the RV y = g(x) in terms of £,(x) if (a) g(x) = |xl;
(b) g(x) = e *Ulx).
5-10. fir)!d F,(;') and fi(y) if F(x)= (1 — e~ *)U(x) and (@) y=(x - DU(x — 1)
b)y = x*.
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5-11. Show that, if the RV x has a Cauchy density with @ = 1 and y = arctanx, then y is
uniform in the interval (-7 /2, 7 /2).

5-12. The RV x is uniform in the interval (—2,27). Find f(y) if (a) y =x°,
(B)y = x*, and (c) y = 2sin(3x + 40°).

5-13. The RV x is uniform in the interval (=1,1). Find g(x) such that if y = g(x) then
£,(0) = 2e"U(y).

5-14. Given that RV x of continuous type, we form the RV y = g(x). {a) Find fily) if
g(x) = 2F,(x) + 4. (b) Find g(x) such that y is uniform in the interval (8, 10).

5-15. A fair coin is tossed 10 times and x equals the number of heads. {a) Find F,(x).
(b) Find F(y)if y = (x — 3)%
5-16. If tis an RV of continuous type and y = a sin wt, show that

{l/vr\/az—y1 vl <a
0

50) ==
Iyl >a

5-17. Show that if y = x?, then

u(y) f(y)

Hlx= 0) = =

5-18. (a) Show that if y =ax + b, then o, = |alo,. (b) Find 5, and o, if y=
o= nx)/a.x‘
5.19. Show that if x has a Rayleigh density with parameter « and y = b + ¢x?, then
2 _ 424
oy =4dcta’.
5-20. (a) Show that if m is the median of x, then

E{lx — al) = E(Ix — ml) + 2" (x — a)f(x) &

for any a.(b) Find ¢ such that E{|x — ¢|} is minimum.
§-21. Show that'if the RV x is N(»n; ), then

2 e ol
= — W S0t . =L} =
E(lxl) = o)/ = e 77 4 ZnG(U) 7

522, If x is N(0,2) and y = 33, find 7,, 0, and f,(»).
5-23, Show that if % = [27,,..., 2] s a partition of ., then

E(x) = E{x| o) P(%)) + -+ +E[x|) P(,).

5.24, Show that if x = 0 and E{x} = 0, then P{x > V/n.} = v/ .

5-25. Using (5-59), find E{x*} if n, = 10 and @, = 2. :

5-26. If x is uniform in the interval (10, 12) and y = x%, (a) find f,(v); (b) find Efy}:
1, exactly; 2, using (5-55).

5-27. The RV x is N(100,3). Find approximately the mean of the RV y = 1/x using
(5-55).
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§:28. We are given an even convex function g(x) and an RV x whose density f(x) is

symmetrical as in Fig. P5-28 with a single maximum at x = 7, Show that the mean
E{g(x — a)) of the RV g(x — a) is minimum if ¢ = 7.

g(x)

f(x)
FIGURE P5-28

5-29.

5-30.

5-31.

e

0 X

Show that if x-and y are two RVs with densities f (x) and f,(¥) respectively, then
E{log f,(x)} = E{log f,(x)}
(Chernoff bound) (a) Show that for any a > 0 and for any real s,

O(s)

o

Ple™ = a} < where ®(s) = E{e**} (1)

Hint: Apply (5-58) to the RV y = e**. (h) For any 4,
Plx = A} <e "@(s) s>0
Plx <A} se ™M®(s) s<0

Hint: Set a = ¢*! in (i).
Show that (a)if f(x) is a Cauchy density, then ®(w) =e % (b) if f(x)isa
Laplace density, then ®(w) = «° /(a® + w®).

5-32. Show that if E{x} = 7, then

5-33.

5-34.

5-35,

= M
Ele™) =e L = o= E{(x~)")
n=0) :

Show that if @ (w,)= 1 for some @ # 0, then the RV x is of lattice type taking
the values x, = 27n/w,.
Hint:

0=t =d(0) = [ (1= ™), (x) de

The RV x has zero mean, central moments u,, and cumulants A,. Show that
Ay = pa, Ay =y — 3p% if y is N0;o) and o, =a,, then Elx‘)=
Ely*} + Ay
An RV x has a geometric distribution if

P{x = k} = pg* k=01,... p+qg=1

Find [(z) and show that m, = q/p, ¢ = q/p°



5:36. An RV x has a Pascal (or negative binomial) distribution if

g (TN oy ok (nHk—=1) & 3 |
Plx = k) (k)”( a) -( p )pr." k=0,1,...
Find I'(z) and show that 5, = ng/p, a? = nq/p*.
5-37. The RV x takes the values 0, 1.... with P{x = k} = p,. Show that if

y=(x—DUx-1) then F(z)=p,+z '[F(2) —py]
My =fe=1tpy  E{y*) = EX%} =29, +1-p;
5-38. Show that, if ®(w) = E{e/**}, then for any a,,

Hoon

Y Y o(e—w Jajal =0

F=1=
f{’ Y a, e/t } >0
i=1
5-39. The RV x is N(0;o). (a) Usm;= characteristic functions, show that if g(x) is a
function such that g(x)e * /2" = 0 as |x| — e, then

dE(g(x)} _ 15{ ﬂ"g(x)} 5

o v=a (i)

Hint:

di 2
(b) The moments g, of x are functions of v. Using (i), show that
n(n =

Hal) = f.u.. A(B) dp

5.40. Show that, if n is an integer-valued RV with moment function M(z) as in (5-75),
then

I =ik
P{n =k} = E[_ﬂr(ef Ye ke dw



CHAPTER

6

TWO
RANDOM
VARIABLES

6-1 BIVARIATE DISTRIBUTIONS

We are given two RVs x and y, defined as in Sec. 4-1, and we wish to determine
their joint statistics, that is, the probability that the point (x,y) is in a specified
regionf D in the xy plane. The distribution functions F(x) and F(y) of the
given RVs determine their separate (marginal) statistics but not their joint
statistics. In particular, the probability of the event
x=zx}nfy<y}={x<x,y<y)

cannot be expressed in terms of F,(x) and F,(y). In the following, we show that
the joint statistics of the RVs x and y are completely determined if the
probability of this event is known for every x and y.

Joint Distribution and Density

The joint (bivariate) distribution F,(x, y)or, simply, F(x, y) of two RVs x and
y is the probability of the event

{x<x,y <y} = {(x,y) € D}

where x and y are two arbitrary real numbers and D, is the quadrant shown in

TThe region [0 is arbitrary subject only to the mild condition that it can be expressed as a countable
union or intersection of rectangles.

124
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|53
wm

Ji
I S
(c)
FIGURE 6-1
Fig. 6-la:
F(x,y) =Plx <x,y <y (6-1)
PROPERTIES. 1. The function F(x, v) is such that
F(—o, ) =10 Flix, —«) =0 F(,0¢) =1
Proof. As we know, P{x = —x=} = Ply = — =) = (I. And since
(x=—swoy=y)clx=—=) (xsxy=-=}cy=—=

the first two equations follow. The last is a consequence of the identities
[x<eyy<el=.7 P(F)=1
2. The event {x; < x < x,,y <y} consists of all points (x, y)in the vertical

half-strip D, and the event (x <x, y; < ¥ < y,} consists of all points (x,y) in
the horizontal half-strip D, of Fig. 6-1b. We maintain that

Plx, <x <%,y <y} = F(xs,¥) — F(x,5) (6-2)
Plx<x, ¥, <y <y} = Flx.y) — Flx,y) (6-3)

Proof. Clearly,
(x=x, y<p}={x<xpysyl+{x <x=<x.y<y]
The last two events are mutually exclusive; hence [see (2-10)]
Plx <X,y <y} = Plx s x,y <y} + Plx, <x<x5,¥ <)
and (6-2) results, The proof of (6-3) is similar.
3. Plx; < x x5, 9 SY=¥)
= F(x3,¥3) —Flx1.92) = F(x3,5,) + F(x. %) (6-4)
This is the probability that (x,¥)is in the rectangle Dy of Fig. 6-lec.
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Proof. 1t follows from (6-2) and (6-3) because
[¥y <X < %20y <95) = (X, <X 3,y Sy} +(m <x<

A
o)
-
A
L]
I
=

and the last two events are mutually exclusive.

JOINT DENSITY. The joint density of x and y is by definition the function
’F(x, y)
G (6:5)

dx dy

From this and property 1 it follows that
X ¥y

Flx,y) = - dad 656

(xy)= [ [ fla.B)dadp (66)

Joint statistics. We shall now show that the probability that the point (x, y)is in
a region D of the xy plane equals the integral of f(x, y)in D. In other words,

P{(x.y) € D) = f [FCx,y) dedy (6-7)

where {(x,y) € D) is the event consisting of all outcomes ¢ such that the point
[x(2). y(2)] is in D.

Proof. As we know, the ratio
Flx+Ax,y+Ay) — F(x,y+ Ay) — F(x + Ax, y) + F(x,y)

AxAy
tends to 8°F(x, y)/dxdy as Ax — 0 and Ay — 0. Hence [see (6-4) and (6-5)]
Plx<x <x+Ax,y <y <y+ Ay} =[x, p)AxAy (6-8)

We have thus shown that the probability that (x,y) is in a differential rectangle
equals f(x, ) times the area Ax Ay of the rectangle. This proves (6-7) because
the region [2 can be written as the limit of the union of such rectangles.

Marginal statistics. In the study of several RVs, the statistics of each are called
marginal. Thus F,(x) is the marginal distibution and f,(x) the marginal density
of x. In the fo]lcwmg, we express the marginal statistics of x and y in terms of
their joint statistics £(x, y) and fCx, y).

We maintain that

F(x) = F(x,%) E(y) = F(=.) (69)
£ = [ fryydy fi0) = [ fende (610

Proof. Clearly, {x < =} = (y < =} = .»/; hence
{(x <x} =[x <x,y <=} {y<y}=(x==y=vy}
The probabilitics of the two sides above vield (6-9).
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Differentiating (6-6), we obtain

ﬁru n AF(xy) ¢
e _f J(x.B)dp % = [ fla,y)da (6-11)

Setting y = o in the first and x = = in the second equation, we obtain (6-10)
because [see (6-9)]

aF(x,=) ) aF (=, y)
() = D gy - e

Existence theorem. From properties 1 and 3 it follows that
F(=2=,y) =0  F(x,—=) =0  F(o,=)=1 (6-12)
and
F(x3,55) = F(x,95) = F(%5,9,) + F(x;3,) = 0 (6-13)
for every x; <x; y; <y,. Hence [see (6-6) and (6-8)]
f f f(x,9) dedy = 1 fx.¥) =0 (6-14)
Conversely, given F(x, y) or f(x, y) as above, we can find two RVs x and
¥, defined in some space ., with distribution F(x, y) or density fCx,v). This

can be done by extending the existence theorem of Sec. 4-3 to joint Statistics.

Joint normality. We shall say that the RVs x and 'y are Jountly normal if their
joint density is given by

1 (x — )’ (x =m0 =) (¥ —m)
f(x.,\'):Acxp{- ( L] — 2r ] L + - ]}

21 - r%) af & 70 a5
(6-15)
This function is positive and its integral equals 1 if
A= [r] <1 (6-16)

2770',0:\/1 =5

Thus f(x, y)isan exponential and its exponent is a negative quadratic because
|| < 1. The function f(x, y) will be denoted by

N(ny,mps 00,023 7)
As we shall presently see, 1, and 7, are the expected values of x and v, and o}
and o7 their variances. The significance of » will be given later (correlation

coefficient),
‘We maintain that the marginal densities of x and y are given by

e

| 1
f;(1)="lm f"(y)=a-,\/2_7r

e~ =mtf2ad (6.17)
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Proof. To prove the above, we must show that if (6-15) is inserted into (6-10),
the result is (6-17). The bracket in (6-15) can be written in the form

x = y—m31° ) —m,)°
[...]:[J_,-_’L F (1 =y =)
ay o, o5
Hence
2
f f(x,y)dx = Aexp —()—?i)—]
= 20,

= 1 =Ty Yy=1m Z\
X - = Xl
f_zcxp{ T [ - r = [ dx

J

The last integral is a constant B (independent of x and y). Therefore [see
(6-10)]

fil y) = ABe —(y=na) f2a3

And since f,(y) is a density, its area must equal 1. This vields AB = 1/a,\27
and the second equation in (6-17) results, The proof of the first is similar.

Notes 1. From (6-17) it follows that if two RVs are jointly normal, they are also
marginally normal. However, as the next example shows, the converse is not true.

2. Joint normality can be defined as follows: Two RVs x and y are jointly normal if
the sum ax + by is normal for every a and b [see (8-36)].

Example 6-1. We shall construct two RVs x, and y, that are marginally but not
jointly normal. We start with two jointly normal RVs x and y with density f(x, )
as in (6-15). Adding and subtracting small masses in the region D of Fig. 6-2
consisting of four circles as shown, we obtain a new function fi(x,y) such that
filx, ) = flx,y) £ £ in D and f(x, y) = f(x, y) everywhere else. The function
f(x, ¥) so formed is a density; hence it defines two new RVs x; and y,. These RVs
are not jointly normal because fi(x, ¥) is not of the form (6-15). We mainlain,

sy Fdy 2
o\
1 ¥ 271
0 x| | x+dx
3

FIGURE 6-2



6-1 BIVARIATE DISTRIDUTIONS 129

however, that they are marginally normal. Indeed, the densities of x; and ¥, are
determined by the masses in the vertical strip Xy <x<.ux; + dyvand the horizontal
strip ¥y <y <y, + dy. As we see from the figure, the masses in these strips have
not changed. This shows that x; and y, are normal because x and y are normal.

Discrete type. Suppose that the RVs x and y are of discrete type taking 'the
values x; and y;, with respective probabilities

Plx=xi}) =p,  Ply=w) =14 (6-18)
Their joint statistics are determined in terms of the joint probabilities
Plx =x, 5=y} =py (6-19)
Clearly,
Yo, =1 (6-20)
1k

because, as i and k take ‘all possible values, the events {x =x,, y = y,) are
mutually exclusive and their union equals the certain event.

We maintain that the marginal probabilities p; and g, can be expressed in
terms of the joint probabilities p,,:

Pi=YPx 4= L (6:21)
k i
This is the discrete version of (6-10).

Proof. The events (y = y,} form a partition of #. Hence as & ranges over all
possible values, the events {x =x,, y = y,} are mutually exclusive and their
union ‘equals {x = x ). This yields the first equation in (6-21) [see (2-36)]. The
proof of the second is similar.

Probability Masses

The probability that the point (x,¥) is in a region D of the plane can be
interpreted as the probability mass in this region. Thus the mass in the entire
plane equals 1. The mass in the half-plane x < x to the left of the line L, of
Fig. 6-3 equals F,(x). The mass in the half-plane y < y below the line L, equals
F,(y). The mass in the cross-hatched quadrant (x <x, y <) equals F(x, y).

FIGURE 6-3
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Finally, the mass in the clear quadrant (x > x, y > y) equals
P{x>zx,y >vy) =1 = F(x) —F,(y) +F(x,y) (6-22)

The probability mass in a region [ equals the integral [see (6-7)]

];)ff(r, y) dxdy

If, therefore, f(x. y)is a bounded function, it can be be interpreted as surface
mass density.

Example 6-2. Suppose that

1 2 42y 202
f(x,3) = 7—.-,,-1" (x2+y2)/20 (6:23)
27

We shall find the mass 21 in the circle x2 + y2 < a2, Inserting (6-23) into (6-7) and
using the transformation

X =rcosf y =rsiné
we obtain

1 i e - 2 . .
L. o2 =l =m0 3
m S j;) f—nl rdrdf =1 —¢ (6-24)

POINT MASSES. If the RVs x and y are of discrete type taking the values x, and
¥y, then the probability masses are 0 everywhere exeept at the points (x;, y,).
We have, thus, only point masses and the mass at each point equals p;; [see
(6-19)). The probability p, = P{x = x,} equals the sum of all masses p;, on the
line x = x, in agreement with (6-21).

If i=1,....M and k= 1,..., N. then the number of possible point
masses on the plane equals MN. However, as the next example shows, some of
these masses might be 0.

Example 6-3. (a) In the fair-die experiment, x equals the number of dots shown
and y equals twice this number:
x(f)=i y(f)=2i i=1....6

In other words, x; =i, v, = 2k and
i i=k
0 I #k
Thus there are masses only on the six points (¢,24) and the mass of each point
cquals 1 /6 (Fig. 6-4a)

(b) We toss the die twice obtaining the 36 outcomes f,f; and we define X
and y such that x equals the first number that shows and y the second

(L) =i W)=k ik=1...6

Thus x, =i, v, = k, and p,, = 1/36. We have, therefore, 36 point masses (Fig.
6-4b) and the mass of each of each point equals 1/36. On the line ¥ =1 there ar¢
six points with total mass 1/6.

pu = Plx =iy = 20 = {
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FIGURE 6-4
(¢) Again the die is tossed twice but now
X(fifi) = li =kl y(fifi) =i +k
and! y the values 2,3;..., 12. The

In this case, x takes the values 0,1....,5
number of possible points equals 6 % 11 = 66; however, only 21 have positive
masses (Fig. 6-4¢). Specifically, if x =0, then y =2, or 4,..., or 12 becausc if
x = 0, then i = k and y = 2i. There are, therefore, six mass points.on this line and
the mass of cach point equals 1/36. If x= 1, theny =3, 0or 5,..., or 11. There
are, therefore, five mass points on the line x = 1 and the mass of each point equals
2/36. For example, if x =1 and y = 7, then i = 3, k = 4, or i = 4, k = 3: hence

Plx =1,y =7)=2/36.

LINE MASSES. The following cases lead to line masses:

1. If x is of discrete type taking the values x, and y is of continuous type, then
all probability masses are on the vertical lines x = x, (Fig 6-5a). In particu-
lar, the mass between the points y, and y, on the line x = x, equals the

probability of the event

-;yz
+y Loy

(x=x; ¥, <y=yj)

0 X x

(a)

FIGURE 6-5

X=C052
i

y=sinz

(c)
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2. It y = g(x), then all the masses are on the curve y = g(x). In this case,
F(x, y) can be expressed initerms of £,(x). For example, with x and v as in
Fig. 6-5b, F(x, y) equals the masses on the curve y = g(x) to the left of the
point 4 and between B and C (hedvy line). The masses to the left of 4
equal F(x,). The masses between B and C equal F(x.) = F (x,). Hence

Fx, ) = Bylx) + Fl(x) = Filxa) v =glx) =g(xs) = g(x,)

3. If x=g@) and 'y = A(z), then all probability masses are on the curve
x = glz), y=h(z) specified parametrically. For example, it g(z) = cos z.
fi(z) = sin.z, then the curve is a circle (Fig. 6-5¢). In this case, the joint
statistics of x and y can be expressed in terms of F.(z).

Independence

Two RVs x and y are called (statistically ) independent if the events {x & A4} and
{y € B} are independerit [see (2-40)), that is, if

P{x € A,y € B} = P{x € A}P[y = B} (6-25

where A and B arc two arbitrary sets on the x and y axes respectively,
Applying the above to the events {x < x} and {y < v}, we conclude that, if
the RVs x and y are independent, then

E(x, y) = F(x)Fi(v) (6-26)
Hence
[z ) = fla) £,(3) (6-27)

It can be shown that, if (6-26) or (6-27) is true, then (6-25) is also true; that
is, the RVs x and y are independent [see (6-7))].
If the RVs x and y are of discrete type as in (6-19) and independent, then

P = Pims (6:25)
This tollows if we apply (6-25) to the events {x =} and {y = y,}.

Example 6-4  Buffon's needle. A fine needle of length 2q is dropped at random
on a board covered with parallel Jines distance 2b apart where b > a as in Fig.
0-6a. We shall show that the probability p that the needle intersects one of the
lines equals 2a /7 b,

In terms of RVs the above experiment can be phrased as follows: We denote
by x the distance from the center of the needle to the nearest line and by 0 the
angle between the needle and the direction perpendicular to the lines. We assume
that the RVs x and 0 are independent, x is uniforni in the interval (0, b). and 8 is
uniform in the interval (0,7 /2). From this it follows that

r2] 3

1%
f(x.8) = fi()f(0)=—— O=<xsb 0<bs
b

and 0 elsewhere. Hence the probability that the point (x,8) is in a region D
included in the rectangle R of Fig. 6-6b cquals the areas of D times 2/7b.
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FIGURE 6-6

The necdle intersects the lines if x < acos . Hence plequals the shaded
arca of Fig. 6-6b times 2/mb;
2 pl

2w 2a
p =Pfx <acosd) = ¥j acoshdo =
b i

a7l
The above can be used to determine experimentally the number = using the
relative frequency interpretation of p: If the necdle is dropped # times and it
intersects the'lines n; times, then
n; 2a 2ah

— =p=— hence =
n b bn,

THEOREM. If the RVs x and y are independent, then the RVs
z=g(x) = hi(y)

are also independent.

Proof. We denote by A. the set of points on the x axis such that g(x) < z and
by B, the set of points on the y axis such that A(y) < w. Clearly,

{z=<z} ={xeA4.) [(w<w)=[veB,) (6-29)

Therefore the events {z < z} and {w < w} are independent because the events
{x € 4.} and {y € B,)} arc independent.

INDEPENDENT EXPERIMENTS. As in the case of events (Sec. 3-1), the cancept
of independence is important in the study of RVs defined on product spaces.
Suppose that the RV x is defined on a space ., consisting of the outcomes ¢,
and the RV y is defined ‘on a space .7, consisting of the outcomes ¢,. In the
combined experiment .| X ./, the RVsx and y are such that

X(0&) =x(0)  WLHG) =¥(L) (6-30)

In ather words, x depends on the outcomes of .7} only. and y depends an the
outcomes of .~ only,
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THEOREM. If the experiments .7 and .75 are independent, then the RVs x
and y are independent.

Progf. We denote by ./ ‘the set {x < x}in #| and by &, the set {y <y} in
-#5. In the space ./ X ./,

x<x}=w x4 (y=y}=Ax4,
From the independence of the two experiments, it follows that [see (3-4)] the

events &7, X .5 and ./ X %, are independent. Hence the events {x < x} and
{y <y} are also independent.

Example 6-5. A dic with P(f;} = p; is tossed twice and the RVs x and y arc such
that

MAf) =i YU =k

Thus x-equals the first number that shows and y equals the second; hence the RVs
x and y are independent. This leads to the conclusion that

Py = Plx =i,y =k} =pp,

Circular Symmetry
We say that the joint density of two RVs x and y is circularly symmetrical if it
depends only on the distance from the origin, that is, if

Flx,p) =g(r)  r=yx2+y? (6-31)

THEOREM. If the RVs x and y are circularly symmetrical and independent,
then they are normal with zero mean and equal variance.

Proof. From (6-31) and (6-27) it follows that

g(Ver +v?) = £ £,(9) (6-32)

Sinece
dg(r)  dg(r) or ar
=—— and — =
dx dr ax ax

we conclude, differentiating (6-32) with respect to x, that
X
~er) =fi(x)f,(¥)
Dividing both sides by xg(r) = xf (x)f,(y), we obtain
18r) 1 fix)
rg(r) x fi(x)

The right side above is independent of y and the left side is a function of r

X
r

(6-33)
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3 3 e . . \
= y/a° + ¥~ . This shows that both sides are independent of x and v. Hence

1 g(r)
———— = a = constant
roglr)
From this if follows that
dlng(r) o
e e(r) = Ae“ /-
dr
and (6-31) yields
S = "(\j + \'“] = Qeettrdia (6-34)
Thus the RVs x and y are normal with zero mean and variance o” = — 1 /a.

6-2 ONE FUNCTION
OF TWO RANDOM VARIABLES
Given two RVs x and y and a function g(x, ¥), we form the RV
z = g(x,y)
We shall express the statistics of z in terms of the function g(x, ¥) and the joint
statistics of x and y.

With z a given number, we denote by D. the region of the xy plane such
that g(x, y) < z. This region might not be simply connected (Fig. 6-7). Clearly,
{z=z) =(gxy) <z} =((x,y) €D}

Hence [see (6-7)]

F.(z) = P{z <z} = P{(x,y) € D.) =[I JiCx,p) dedy (6:35)

Thus, to determine F.(z). it suffices to find the region D. for every z and to

evaluate the above integral.
The density of z can be determined similarly. With AD. the region of the

xv plane such that z < g(x, y) < z + dz, we haye
{z:<z<z+dz) = [(x,y) € AD.}

7)) |
B
DN \\\\l"

77 /,V’/l

A

FIGURE 6-8

FIGURE 6-7



136 1wo RANDOM VARIABLES

Hence

f(z)dz=Plz<z<z+dz} = ff_\”j'( X, y) dedy (6-36)

Hlustrations

In the following, we use (6-35) and (6-36) to find the statistics of various
functions of x and y.

Lz=x+y

The region D, of the xy plane such that x -+ y < z is the shaded part of
Fig. 6-8 to the left of the line x + y = z. Integrating over suitable strips, we
abtain

F(z) = j:f_‘:’f(x, y)dxdy (6:37)

We can find f.(z) either by differentiating F.(z) or directly from (6-36),
The region AD, such that z < x +y <z + dz is a diagonal strip bounded by
the lines x +y =z and x +y =z + dz. The coordinates of a point of this
region are z — y, y and the area of a differential equals dydz. Hence

f.-(z)dz=fjf(2—y,.v)d)'dz (6-38)

INDEPENDENCE AND CONVOLUTION. If the RVs x and y are independent,
then

flx,¥) = flx) f(y)

Inserting into (6-38), we obtain
F2) = [ £z =) f0) dy (639)

The above integral is the convolution of the functions f,{x) and fi{y). We thus
reach the following fundamental conclusion:

If two RVs are independent, then the density of their sum equals the convolution
of their densities.

We note that, if f(x) =0 for x <0 and fily) =0 for y <0, then
F.0) = 0 for z < 0 and

HE)= Flz =90 dy 250 (6:40)

Example 6-6. It follows from (6-39) that the convolution of two rectangles is @
trapezoid. Hence, if the RVs x and y are uniform in the intervals (a, b) and (¢, d)
respectively, then the density of their sum z = x + y is a trapezoid as in Fig, 6-94.
If, in particular, b — a = d — ¢, then f.(z) is a triangle as in Fig. 6-9b.



6-2 ONE FUNCTION OF TWO RANDOM VARIABLES 137
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FIGURE 6-9

Suppose, for example, that resistors r, and r, are two independent RVs
uniform between 900 and 1100 £, From the above it follows that, if they are
connected in series, the density of the resulting resistor r = T, + I, is a triangle
between 1800 and 2200 Q). In particular, the probability that r is between 1900 and
2100 £2 equals 0.75.

Example 6-7. If the RVs x and y are independent and
f(x) =ae"®U(x)  fi(y)=Be P U(y)

(Fig. 6-10) then for z > 0,

aB
z —— (e 7" — ¢ Bz
fl(z) =ap [ e~ e By =( B—a (EESetie) by lFe (6-41)
! alze=o= B=a
£i(x) L(y}q{ f;(z)K +y
0 x 0 ¥ 0 2

FIGURE 6-10
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S 5.',' )

FIGURE 6-11

2. z=x/y
The region D, of the xy plane such that x/y <z is the shaded part of
Fig. 6-11. Integrating over suitable strips, we obtain

F(Z) = f“xf_y:f( X, y)dedy + ji‘_l;fjf(.r. y) dedy (6:42)

The region AD. such that z < x/y < z + dz is a triangle sector bounded
by the lines x = yz and x = y(z + dz). The coordinates of a point in this region
are zy, y and the area of a differential equals |y| dv dz. Inserting into (6-36) and
canceling dz, we obtain

Z)= f:[.vlf(zy, y) dy (6-43)

Normal densities. We maintain that, if the RVs x and y are jointly normal with
zero mean

f(x.y) : : e v (6-44)

x,y) = —exp| — S =T - -
27ro'|rr2\/1 == 2(1 =r%) | g 90, 03

then their ratio z = x/y has a Cauchy density centered at ra, /o

Fiz) = cr,o-z\/l = FE /T (645)

ai(z = ro',/c:rz)z +af(l —r?)

Proaf. Inserting (6-44) into (6-43) and using the fact that f(—x, — y) = flx, y),
we obtain

- ¥2 z2 z 1 ]}
3] = e T e +— |} dy
e 2mayo5Vl — r? jl'* . p{ 2(1 = r7) [OT gi%s 9

and (6-45) results because the above integral equals (1 — %) divided by the
quantity in brackets.
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FIGURE 6-12

Integrating.(6-45) from —< to z, we obtain the corresponding distribution
function

| 022 — Fay
—arctan——
(LA ay V1 —r?

F(z) =

(6-46)

eql_

Quadrant masses Using (6-46), we shall show that the probability masses
my, Moy, s, my in the four quadrants of the xy plane are given by

1 a @
ny =my= = + ms = my = = (6-47)

1
4 27 2 - 4 2
where (Fig. 6-12)
@ = arcsin r = arctan r/V1 —r? —m/2 <o < /2
Progf: The second and fourth quadrant is the region of the plane such that

x/y < 0, The probability that the point (x,y) is/in the region equals, therefore,
the probability that the RV z = x/y is negative. Hence

| | r
m, +my = Plz < 0) = F.(0) = = — —arctan———=
4 4 z 2 - \/l =5
and (6-47) results because
m, = n, ny =m, my A+ m, +my+mg =1

This useful result could have been obtained by integrating f(x, ¥) in each
quadrant; the above method is, however, simpler,

3. z=yx*+ y2
The region D. is the circle x4 y? < z2 and F.(z) equals the probability
masses in this c:rclc If flx,y) = g(r)is cxrculally symmetrical, then

Fiz) = zﬁj“‘rg(,-) dr 350
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Normal densities. () If

ey Y o= (X 1y%) /20 p
flx,y) L (6-48)
then
S 1= I il 22 /%
E(z)=— [ re "2 dr =1 =¢-* /20 z>10 (6-49)
a4y
Hence
o z oy A o e
f(z) = 3¢ T U(2) (6-50)

Thus, if the RVS x and y are normal. independent with zero mean and equal
variance, then the RV z = \/xl + y® has a Rayleigh density.
(h) Suppose now that

chlu 1 +yd )20t ((‘_51)

flx.y) =

27ma

The region AD. of the plane such that z < \[rl +y% <z +dz is a ciredlar
ring with inner radius z and thickness dz. With

X =zcosf Yy = zsin 0 dydy = zdzdb
it follows that
| 2

23T 2 e\ >
‘- z L’ — o X,y d.\'d\' - 5 ,*l(:::»-l}fnl'*t:mmfl)‘];lrr*:dzdﬂ
Fi(2)ia ffm:j( ) dxd) zmr_j“ ¢
Hence
(z) = < E,—l-':"-n:)/‘znr: :T'_l,:qv:mﬂ/rr:da
f(2) 27a" j(‘]
This yields
(=)= 3:1.)(”5 )u'“""'ﬁﬁ": z>0 (6-52
(1 AV
where
1 2 n
Iy(x) = 5= [Ter <0 dp (6-53)

T0

is the modified Bessel function,

Example 6-8. Consider the sine wave
XCOs wt + ysinwf = reos(wl + 0)

Since r = \/x* 4 y* . if follows from the above that, if the RVs x and y are normal
as in (6-48), then the density of r is Rayleigh as in (6-50),



-2 ONE FUNCTION OF TWO RANDOM VARIABLES 141

FIGURE 6-13

4. z = max(x,y) w= min(x.y)
(a) The region D. of the xy plane such that max(x, ¥) < z is the set of
points such that x < z and y < z (shaded in Fig. 6-13a). Hence
F(z) =F.(z.2) (6-54)
If the RVs x and y are independent, then
Fi(2)=F(2)F(z)  f(z) =F(2)F(2) + [ (2)F(z) (6-55)
(b) The region D, of the xy plane such that min(x, y) < w is the set of
points such that x < wor y < w (shaded in Fig. 6-13b). Hence
F(w) = F(w) + F{w) = F () (6-56)
If the RVs x and y are independent then it is simpler to express the result in
terms of the reltability function.
RA(x) = Plxi>x) = 1 —Fy(x) (6-57)
Defining R (v) and R, (w) similarly, we conclude from (6-56) that
Ry(w) = RW)R,(w)  fulw) = LO0) R,(w) + F,(w)R,(w) (658)

Discrete type. If the RVs x and y are of discrete type taking the values x; and
Yg. then the RV z = g(x,y) is also of discrete type taking the values z, =
g(x,, ¥, ). The probability that z = z, equals the sum of the point masses on the
curve glx, y) = z,.
Example 6-9. A fair die is tossed twice and the RVs x and y arc such that
X(fif ) =1 y(Uify) =k
The xy plane has 36 equal point masses as in Fig, 6-14. The RV z = x + y takes
the values z, = x, -+ v, with probabilitics p, = m /36 where m is the number of
points on the line x +y = z,. As we sce from the figure
z,= 2 3 4 5 6 7 8§ 9 10 11 12
1 2 3 4 5 6 5 4 3 2 I
P~ 3 3 36 36 36 36 36 36 36 36 36
For example, there are four mass points on the line x +y = 5; henee pg = 4/36.
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°

x+y=35

>

0 \ x
FIGURE 6-14

6-3 TWO FUNCTIONS
OF TWO RANDOM VARIABLES

Given two RVs x and y and two functions g(x, y) and h(x, y), we form the RVs
z=g(xy) w=h(xy) (6-59)

We shall express the joint statistics of z and w in terms of the functions g(x, y)
and A(x, y) and the joint statistics of x and y.

With z and w two given numbers, we denote by D_ the region of the xy
plane such that g(x, v) <z and h(x, y) < w. Clearly,

(z<z,w<w}={(xy) €D.,)
Hence [see (6-7)]

Fo(z,w) = P{(x.y) €D.,) = [[ fo(x,y) dedy (6-60)
D.y
Suppose, for example, that
2= x>+ y? w=y/x (6-61)

In this case, the set D_ such that

VxP+yt <z yix<w

is the shaded region of Fig. 6-15a, and F.,(z, w) equals the mass in this region.
Example 6-10. If
| ety 5 3
foplxy p) = ——=e W27 g = x4y wW=y/x
" 2mo=

then [sce (6-49)) the mass in the circle v + 2 < z? equals | — ¢ = /7. Since
f,{x, ¥) has circular symmetry we conclude that for z > 0

20 it rr

FZam) = ;(1 =R S

+ arctan w

and F, (z,w) =0 for z < (. This is a product of a function of z times a function
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(b)
FIGURE 6-15
of w. Hence the RV z and w are indepeadent with
. T | 1
Ei(z) = (1 =7 72")U( 2) F,(w) = 5 + —uarctanw

In other words, z has & Rayleigh density and w has a.Cauchy density [see (5-17)) as
in Fig. 6-15b.
Joint Density
We shall determine the joint density of the RVs
z=g(x.y) w = li(x,y)

in terms of the joint density of x and y.

Fundamental theorem. To find f, (z,w), we solve the system
glx,v) =2z h(x,y)=w (6-62)
Denoting by (. y,) its real roots
g, ) =2 h(x,.v,) =w

we maintain that

1 ¥ A Xy Y :
f.“.(Z_.W) _ fu(-"l I) i e f_n( v Y ) (()—63)
) s )1 Fte sl
where
dz dz dxy  dx =
ax  dy A
0= = 6-64
(%, y) dw  dw ay dy ( )

ax  ay| |9z aw

is the jacobian of the transformation (6-62).
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I\ B
| |
|

—# dz— X2
UI

[
Proof. 'We denote by AD_, the region in the xy plane such that

Y

FIGURE 6-16

z <g(x,y) <z+dz w<hix,y) <w+dw

This region consists of differential parallelograms, one for each (x, y,) as in
Fig. 6-16. The area of each parallelogram equals dzdw/ |J(x,, y,)| and its mass
equals

f&_\‘( Xus ,V,,) dz‘[w/ |J(":n‘ yn)l

Since f..(z,w)dzdw equals the mass in AD.,, we conclude, summing the
masses in all parallelograms, that

f:y(.t’nYu)dzdw fu-('rn’y")dZdW
" o led == et OISR AR S —
f.u'(z W) W 1-’(-1‘1,-)';” ik 1-’("":;'»\’711)'

and (6-63) results,
If the system (6-62) has no solutions in some region of the zw plane, then
fo(z,w) = 0 in that region.
We shall illustrate the above theorem with two special cases.
LINEAR TRANSFORMATION
z = ax + by w=cx +dy (6-65)

If ad + be # 0, then the system ax + by = z, cx + dy = w has one and only
one solution

x =Az + Bw y=Cz+ Dw
Since J(x, y) = ad — be, (6-63) yields

1
few(ziw)i= mf_,,.uz + Bw,Cz + Dw) (6-66)

Joint normality. From (6-66) it follows that if the RVs x and y are jointly
normal and

z = ax + by w=cx +dy

then z and w are also jointly normal.
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a quadratic in x and y. If, in this quadratic, we replace x by 4z + Bw and y by
€z + Dw asiin (6-66), then an exponential results whose exponent is a quadratic
in z and w. This shows that the RVs z and w are jointly, and therefore also
marginally, normal.

From the above it follows that, if x and y are jointly normal and z = x + vy,
then z is normal. We should emphasize, however, that if x and y are marginally
but not jointly normal, then z is not, in general, normal. We give next a counter
example.

Proof. Joint normality means that f, (x, y) is an exponential whose exponent is

Example 6-11. We shall construct two marginally normal RVs x, and y, such that
their sumz; = x,; + y is not normal: We start with two jointly normal RVs x and y
and add and subtract masses on the four circles of Fig. 6-17. The resulting mass
distribution specifies the joint density of the RVs x;-and y,. As we have shown in
Example 6-1, these RVs are marginally normal, However, their sum z, is not
normal.
Rotation. A special case of (6-65) is the transformation
Z = XCOS ¢ + ysin ¢ W= —Xxsine + ycos ¢ (6-67)
In thiscase a = d = cos ¢, b= —¢ = sin ¢, and ad — bc = 1. Hence
X = Z:COS ¢ — wsin @ y = zsing + wcos g
and (6-66) yields
Foulz,w) =f, (zcos e — wsin e, zsing + weos @) (6-68)
Thus, if two RVs are rotated by an angle ¢, their probability masses are rotated

in the oppesite direction by the same angle. .
Circular symmetry If fey(x, ¥)is circularly symmetrical as in (6-31), then

fo(x: %) = fi,(x cos @ — ysin g, xsing + ycos @) (6-69)
because
(xcos ¢ — ysing)® + (xsing +ycosp)’ = x>+ y2
Hence [see (6-68)]
Felzsw) = fo(zow) = g(Vz2 + w?) (6-70)

.VT
d;

y
¥ > x+y=z+dz

3 L—dxu 1+y=z>\ &
FIGURE 6-17
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Conversely, if the RVs x,y and z, w have the same statistics for every o,
then their joint density is circularly symmetrical. Fiom (6-34) it follows that if x
and y are also independent, then they are normal.
POLAR COORDINATES. Consider the RVs

r=\/x3+yi ¢ = arctany/x (6-71)
where we assume that r> 0 and —7 < ¢ < 7. With this assumption, the
system V‘xz + y* = r, arctan y/x = ¢ has a single solution
X =1rcos @ vy =rsing for r>0

Since [see (6-64)]

; -1
q L n 1
COS r sin ¢
Tl = 1l ==
sin ¢ reos g r
we conclude from (6-63) that
f(r @) = 1f,,(rcos ¢, rsing) r>0 (6-72)

and 0 for r < 0.
Example 6-12. We shall show that if
XCoS w! + ysin wt = reos(wt — ) lel <

and the RVs x and y are N(0, o) and independent, then the RVs r and ¢ are
independent, @ is uniform in the interval (—, 7) and r has a Rayleigh distribution.

Proof. Since x = rcos e, y = rsing, and

AL () 2at
fa,\-(-" 3) = 2170_:‘
(6-72) vields
r 2 gl
Tra(Tyia) et ——— = A r>0 le] <
2o

and 0 otherwise. This is a product of a function of r times a function of ¢. Hence
the RVs r and ¢ are independent with

7 Syt 1
Y= =07 fley = 5=

for r > 0, —7 < ¢ < 7 and 0 otherwise. The proportionality factors are so chosen
as to make the area of each term equal to 1.

From the above it follows that, if the RVs r and ¢ are independent, r has.a
Rayleigh distribution, and ¢ is uniform in the interval (=, ), then the RVS

X = I'COS @ y =rsine

are N0, o) and independent.
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Auxiliary variables. The determination of the density of one functionz = g(x,y)
of two RVs ean be determined from (6-63) where w is a conveniently chosen
auxiliary variable, for example w = x or w = y. The density of z is then found by
integrating the function f_ (z.w) so obtained.

Example 6-13, We shall find the density of the RV

z=ax + by
using as auxiliary variable the function w = y.
The system z =ax + by, w=y has a single solution: x = (z — bw)/a,
¥ = w.'Since

=4

J(x.9) =}3 b

it follows from (6-63) that

Fulzm) = Tfu[ )

a

Hence

fiz)= ]—f:)'}.-( : —ahy ’ )') dy (6-73)

la|
Example 6-14. With
z=2Xy w=X

the system &y =z, x = w has a single solution: x =w, y = z/w. In this case;
J = —w and (6-63) yiclds

foulzw) = iff‘.('af. =)

[w|

Hence the density of the RV z = xy is given by

fi(z) = f:‘thlf”(w.%) dw (6-74)
L

0 2 1 w

FIGURE 6-18
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Special case, We now assume that the RVs x and y are independent and each is
uniform in the interval (0, 1). In this case,

fow =) =105 2) =1

in the ftriangle z <w <1, 0 <z < | (shaded in Fig. 6-18) and 0 elsewhere.
Inserting'into (6-74), we obtain

| . -
Aol =z  O<z<l .
= f W @i {(] elsewhere (6:13)

Example 6-15. An RV z has a Student-r distribution t(n) with n degrees of
freedom if
¥4 I[(n+ 1)/2]

= y = = =
\/(] +12/”)'H1 ! \/wn] (n/2)

flz)= (6-76)

We shall show that if x and y are two independent RVs, x is N(0.1). and yis
x(n):
LX) ~eT* 2 fiy) ~ yiA= e 2y )

then the RV
X

=5 vy /n

has a t(n) distribution

Proof. We introduce the RV w = y and use (6-63) with

W n fn
X =z — y=w J(.\'.J’)=\/-=\/—
¥ W

This yields

f:w(zi W) = \/;fu(zﬁ)fr(“') =

Integrating with respect to w, we obtain

x W 22
f.(z) ~ f w‘"'””cxp{—;(l + T)} dw

Ll

I W Yo, hrE
cxp{ - —z‘}w“"‘ e <U(n)
Vi 2

and (6-76) results because fyw“ e " dw = [(a)/b?. The constant y; is
determined from (4-18).

PROBLEMS

6-1.

If x and y are the zero-one RVs associated with the events 7 and 3 respectively,
() find the probability masses in the -y plane and (5) show that the RVs x and ¥
are independent iff the events o7 and & are independent.
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6-2. The RVs xand y are independent and z = x + v. Find £ (y)if

L(¥) = cem=U(x) () = cEee U 2)

149

6-3. The RVs x and y ar¢ independent and y is uniform in the interval (0, 1). Show that.

if z=x + y. then
fi(2) = E{(z) — Fi(z = 1)
6-4. {a) The function g(x) is monotone increasing and y = g(x), Show that
F.(x) if y>a(x
Folxoy) = :( it y>e(x)
F.(y) i y<g(x)

() Find £, (x, y)if g(x) is monotanc decreasing.
6-5. Express F, (z,w)in terms of F, (x, v) il z= max(x,y), w = min(x, y).

6:6. The RVs x and y are N(0,2) and independent. Find fz) and Fxz) if (a)

z=2x+ 3v, and (b) z = x/y.
6-7. The RVs x and y are independent with

, i s, _ (=g .
A= me UGy fiy= (AT <
ki 0 Jyl > 1

Show that the RV z = xy is N(0, a).
6-8. The RVs x and y are independent with Rayleigh densities

f(8) = e R0 () = e ()
a B

(a) Show that if z = x/y, then

2a
S sl
B (2% +a’y/p?)

L(z) = (z)

(H) Using (i), show that for any k& > 0,

2

Ple< ko) = 5ot
6-9. The RVs x and y are independent with exponential densities
fulx) =we U(x)  fily) = BeHU(y)

Find the densities of the following RVs:

X *
1. 2x + ¥ 2. %I =y 3. ; 4. max(x.y) 5. min(x,y)

6-10. The RVs x and y are independent and each is uniform in the interval (0. (a). Find

the density of the RV z = |x — ¥/

6-11, Show that (@) the convolution of two normal densities is a normal density, and (5)

the convolution of two Cauchy densities is a Cauchy density,
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6-12. The RVs x and 0 are independent and 0 is uniform in the interval (=, 7). Show

6-13.

6-14.

6-15.

6-16.

6-17.

that if z = xcos(wr + 0), then

)= f;‘ I\/f:(" f‘ ‘ f(_‘"_ dy

yi—2z?

The RVs x and y are independent, x is N(0,¢), and 'y is uniform in the interval
(0, 7). Show that if z = x + a cosly, then

1
e § S~ (z—acos )/ 200
J:(2) = wat dy

The RVs x and y are of discrete type, independent, with Plx =»n) =a,, Ply = n)

=b,, n=0,.1,....Show that, if z=x + y, then
n
Plz=n}= Ylayb,
k=0

The RV x is of discrete type taking the values x, with P{x = x,} = P, and the RV
y is of continuous type and independent of x. Show that if z = x + y and w =Xy,
then

1 W
Fi(z) = );fy(z = )pp fulw)i= Emh(rﬂ)l’”

n
The Rys x and y are normal, independent, with the same variance. Show that. if
z = /x* + y2, then f.(z)is given by (6-52) where 7 = ‘fn;" =
The RVs x; and x, are jointly normal with zero mean. Show that their density can
be written in the form
1 1 7 K2
. _ _ = Pxa) 3 1 12
f(Xn5%3) 2“‘/‘mp{ ZAC X} c [#ZI #:3]

where X [XI!.“‘Z]‘ iy = Elx;x;} and A = py iy + i,

6-18. Show that if the RVs x and y are normal and independent, then

6-19.

‘ iy /
Pi{xy <0} = G(Ei) + G(lJ - ZG(—)G(n—’)
a, ay Ty oy
The RVs x and y are independent with respective densities y2(m) and y*(n).
Show that if

x/’n : xm/l*l
2= then fi(2) =y U(2)
y/n (1 + mx/n)

This distribution is denoted by F(r1, n) and is called the Snedecor F distribution. It
is used in hypothesis testing (see Prob. 9-34),
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7

MOMENTS AND
CONDITIONAL
STATISTICS

7-1 JOINT MOMENTS

Given two RVs x and y and a function g(x, y). we form the RV z = g(x.y). The
expected value of this RV is given by

E{z} = f:zf_.(z) i (7-1)

However, as the next theorem shows, E(z} can be expressed directly in terms of
the function g(x, y) and the joint density f(x, v) of x and y.

THEOREM

E{g(x,y)) = f;fj (2, ) f(x, ¥) dvdy (7-2)

Proof. The proof is similar to the proof of (5-29), We denote by AD. the region
of the xy plane such that z < glx, y) <z + dz. Thus to each differential in
(7-1) there corresponds a region AD._ in the xy plane. As dz covers the z axis,
the regions A D. are not overlapping and they caver the entire xy plane, Hence
the integrals in (7-1) and (7-2) are equal.

We note that the expected value of g(x) can be determined either from
(7-2) or from (5-29) as a single integral

Eg() = [ [ GadfCey)dedy = [ g(x)fi(x) ds



152 MOMENTS AND CONDITIONAL STATISTICS

This is consistent with the relationship (6-10) between marginal and joing

densities.
If the RVs x and y are of discrete type taking the values x, and y, witp

probability p,, as in (6-19), then
E(g(x,y)} = Lg(xi v)pix (7-3)
ik

Linearity. From (7-2) it follows that
n n
b{ R akgk(x,y)} = ¥ ayE{g(x.y)) (7-4)
k=1 k=1

This fundamental result will be used extensively.
We note in particular that
E{x + y} = E{x} + E{y} (7-5)
Thus the expected value of the sum of two RVs equals the sum of their
expected values. We should stress, however, that in general

E{xy} # E{x}E[y)

Frequency interpretation As in (5-26)
X(4) +y(4) + - +x(Z) +3¥(8,)
n
X(5))+ o +x() W)+ e v

= " + " = E{x} + E{y}

Efx + ) =

However, in general,

X(6)y(6) + o x( (L)

n

E{xy} =

L x(4) + - +x(g) ” y(&) + - +¥(L)

n n

= E{x}E{y)

Covariance. The covariance € or C,, of two RVs x and y is by definition the
number

€ = E{(x= 1)y = m,)} (7-6)
where Efx} = 7, and E{y} = n,. Expanding the product in (7-6) and using (7-4)
we obtain
C = E(xy) — E{x)E{y) (7-7)
Correlation coefficient: The correlation coefficient r or r,, of the RVs X
and y is by definition the ratio '
(€

Ty

r= (7-8)
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We maintain that

lrl <1 ICl < 0,0, (7:9)
Progof. Clearly,
E{[a(x —7,) + (v = 11))]:} =a’o} + 2aC + o? (7-10)

The above is a positive quadratic for any a; hence its discriminant is negative. In
other words,

C*—alo? <0 (7-11)
and (7-9) results.

We note that the RVs x,y and x — N ¥ — m, have the same covariance
and correlation coefficient,

Example 7-1. We shall show that the correlation cocflicient of two jointly normal
RVs is. the parameter 7 in (6-15). It suffices to assume that 7, =17, =0 and to
show that E{xy} = raa,.

Since

x* SUE x N 5 3

'—Z—Zr +—;=(%7r-) + (1 =r?)—

Ty ﬂ']ﬂ': lJ':' ‘71 (fz f!i
we conclude with (6-44) that

1 = At i x (x— r}’ﬂ’,/!ﬂ)z
E(xy)=—r [ yerrai expl| = o L b
Vi ‘[-x ff*ﬂ',\/Z-zr(l - r?) 20 (1 —r7)

The inner integral is a normal density with mean yo, /o, multiplied by x; hence it
equals n/ay /a,. This yields

roy /o,

E = 3 20031205 Oy = rir o7,
IS e Lo y = royo,

Uncorrelatedness Two RVs are called uncorrelated if their covariance is
0. This can be phrased in the following equivalent forms

C=0 r=20 E{xy} = E(x}E{y)
Orthogonality Two RVs are called orthogonal if
E{xy} =0
We shall use the notation
xLly
to indicate that the RVs x and 'y are orthogonal.

Note (a) If x and y are uncor;claled. then x —n, Ly—mn,. (b) If x and y arc
uncorrelated and n, = 0 or 9, = 0 then x L y.
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Vector space of random variables: We shall find it convenient to interpret RVs
as vectors in an abstract space. In this space, the second moment

E{xy)

of the RVs x and y is by definition their inner product and E{x?) and E

; s ! {¥*} are
the squares of their lengths. The ratio

E{xy}
VER)E(Y)
is the cosine of their angle.
We maintain that
E*(xy} < E(x*}E{y?) (7-12)

This is the cosine inequaliry and its proof is similar to the proof of (7-11): The
quadratic

Ef(ax — y)z} = a’E(x?) — 2aE{xy) + E[y?)
is positive for every a; hence its discriminant is negative and (7-12) results. If
(7-12) is an equality, then the quadratic is 0 for some @ = a,; hence y = ax.
This agrees with the geometric interpretation of RVs because, if (7-12) is an
equality, then the vectors x and y are on the same line.

The following illustration is an example of the correspondence between
vectors and RVs: Consider two RVs x and v such that £{x?} = Efy?*). Geometri-
cally, this means that the vectors x and y have the same length. If, therefore, we
construct a parallelogram with sides x and y, it will be a rhombus with diagonals
x + y and x — y (Fig. 7-1). These diagonals are perpendicular because

E((x +y)(x —y)} = E{x* -y} =0

THEOREM. If two RVs are independent, that is, if
flesx) = F.(e) fly) (7-13)

then they are uncorrelated.

Proof. Tt suffices to show that
E{xy) = E()E(y) el

X—yLx+y

Y FIGURE 7-1



7-1 sowe momests 158

From (7-2) and (7-13) it follows that

E{xy) = f;j‘;:‘."f‘( X)) dvdy = fx xf (x) dr'fz yio(¥) dy

and (7-14) results.

If the RVs x and y are independent, then the RVs g(x) and h(y) are also
independent [see (6-29)]. Hence

E{g(x)h(y)) = E{g(x))E(h(y)) (7-15)
This is not, in general, true if x and y are merely uncorrelated.

We note, finally, that if two RVs are uncorrelated they are not necessarily
independent. However, for normal RVs uncorrelatedness is equivalent to inde-
pendence. Indeed, if the RVs x and y are jointly normal and r = 0, then [see
(6-15)] flx, y) = fLx)f (3).

Variance of the sum of two RVs 1If z = x +y, then 1. = 0, + n,; hence

) 2 iy 2
o = Ef(z = n.)) = £{[(x - n) + v = m,)]’)
From this and (7-10) it follows that

2 2
=0

; 7+ 2raa, + o) (7-16)
The above leads to the conclusion that if » = 0 then
(;-:3 = 013 T ,7_‘1 (7-17)

Thus, if two RVs are uncorrelated, then the variance of their sum equals the
sum of their variances.
It follows from (7-14) that this is also true if x and y are independent.

Moments

The mean
= E[x*y’) = [ x5y7f(x, y) dxd (7-18)
M, {x ¥ } f f Vif(x,y y

of the product x*y” is by definition a joint moment of the RVs x and y of order

k+r=n.
Thus my = n,, my, = 7, are the first-order moments and

may = E{x?} my, = Efxy} my, = E(y?)

are the second-order moments. :
The joint central moments of x and y are the moments of x — #, and

¥=mi
e = E{(x =)@ =0} = [ [ (e =004 = ) fx, ) ey
(7-19)
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Clearly, p,, = gy, = 0 and
My =C iy = af o2 = O

Absolute and generalized moments are defined similarly [see
(5-41)].

For the determination of the joint statistics of x and y knowledge of their
joint density i1s required. However, in many applications, only the first- and
second-order moments are used, These moments are determined in terms of the
five parameters

(5-40) and

Mx Ty P &y Ty
If x and y are jointly normal, then [see (6-15)] the above parameters
determine uniquely f(x, y).
Example 7-2. The RVs x and y are jointly normal with
7, = 10 7y =0 o, = 2 ay = 1 Ty =05

We shall find the joint density of the RVs

Z=Xx+Yy W=x-—-y
Clearly,

Ne=ap iy, =10 = — 9, =10

2

2 2 3 a2 2
s =0 top + 2r o0, =7 oy =07 + o5 — 2r o0, =3

E{aw} = E{x* —y?} = (100 + 4) — | = 103
N E{zw} — E{z}E{w} 3

a.a, VT %

|

As we know [see (6-66)], the RVs z and w are jointly normal because they are
linearly dependent on x and y. Hence their joint density is

N(10,10: V7 .¥3:3/7)
Estimate of the mean of g(x,y). If the function g(x,v) is sufficiently smooth

near the point (n,,7,). then the mean 7, and variance o of glx,y) can be
estimated in terms of the mean, variance, and covariance of x and y:

1 (2% a*g a’g
P X RELE. s 7:20)
T ek e et e (
g ) 2 ag g dg 2 ) )
2 2 + [ =] &2 7-21)
a; (ﬁ):)(r +2(6‘!’)(c7_\ ]rcr(r o (

where the function g(x, v) and its derivatives are evaluated at x =, and
¥ =7
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Proof. We expand g(x, v) into a series about the point (m,. 7.

g do
glwoy) =glmen) + (¥ —q)— +(¥—nm)—= + - (7:22)
dx Yay =

Inserting the above into (7-2). we obtain the moment expansion of E{g(x, ) in
terms of the derivatives of g(x, ¥) at (7,.n,) and the joint moments p,\,- of x
and y. Using only the first five terms in (7-22), we obtain (7-20). Equation (7-21)
follows if we apply (7-20) to the function [g(x. ¥) = 7,]* and neglect moments
of ordeér higher than 2. )

7-2  JOINT CHARACTERISTIC FUNCTIONS

The joint characteristic funcrion of the RVs x and y is by definition the integral

RS
Plw;, w,) = } I Fs p)eltenx Ty gy dy (7-23)
Jond
From the above and the two-dimensional inversion formula for Fourier trans-
forms, it follows that

flx, 3) = 471.'3 fjljl(l)( W@y e e ey e, (7-24)
Clearly,
B0, wy) = Efe/@rtum) (7-25)
The logarithm
Y(w, 0,) = In®(w,0,) (7-26)
of ®(w;, w,) is the joint second characteristic function of x and y.
The marginal characteristic functions
D (w) = Efe™) D (w) = Efe'™) (7-27)

of x and y can be expressed in terms of their joint characteristic function
$lw,,w,). From (7-25) and (7-27) it follows that

O (w) = B(w,0) DBlaw)=D(0.0) (7-28)
‘We note that, if z = ax + by, then
b (@) = Efe/ ™) = B aw, bw) (7-29)

Hence ®.(1) = d(a, b).

Cramér—Wold theorem The above shows that ift ®.(w) is known for every
a and b; then ®(w, w;) is uniguely determined. In other words, if the density
of ax + by is known for every @ and ‘b, then the joint density f(x, y) of x and y
i§ uniquely determined.

Independence and convolution. If the RVs x and y are independent, then [see
(7-15)]
.E‘ t,J(m.xi m;)‘l] = _E{e.lwﬂ}h‘{erm:r}
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From this it follows that
Glw, @) = d(w)P(w,) (7-30)
Conversely, if (7-30) is true, then the RVs x and y are independent,
Indeed, inserting (7-30) into the inversion formula (7-24) and using (5-66). we
conclude that fCx, y) = f(x)f (y).
Concolution theorem  1f the RVs x and y are independent and z = x + y,
then

Efe’*)| = Ef e} = Ele/*) Bl ¢l*Y)
Hence
P(w) =D (0)P, (o) Y(w) =W (w)+ V() (7-31)
As we know [see (6-39)], the density of z equals the convolution of f,(x)

and f/(y). From this and (7-31) it follows that the characteristic function of the
convolution of two densities equals the product of their characteristic functions.

Example 7-3. We shall show that if the RVs x and y are mdependent and Poisson
distributed with parameters a and b respectively, then their sum z = x + y is also
Poisson distributed with parameter a + b.
Proof. As we know (sce Example 5-30)

V(w) =ale™ — 1) ¥ (w) = b(e! —1)
Hence

Ww) =W (a) + V(w) = (a+b)e" —1)

It can be shown that the converse is also true: If the RVs x and y are
independent and their sum is Poisson distributed, then x and y are also Poisson
distributed, The proof of this difficult theorem will not be given.

Example 7-4. It was shown in Sec. 6-3 that if the RVS x and y are jointly normal,
then the sum ax + by is also normal. In the following we reestablish a special case
of the above using (7-30): If x and y are independent and normal; then their sum
Zz =X +'y is also normal.
Progf. In this case [sce (5.65)]

(o) =jnw - jow  V(w)=inwo - 100
Hence

(@) = i(n, + n)w — (e + oo

It ciin be shown that the converse is also true (Cramér theorem): If the RVs xand
y are independent and their sum is normal, then they are also normal. The proof of
this difficult theorem will not be given.§

1E. Lukaes; Characteristic ¥ [ Hafner Publishing Co., New York, 1960,
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FIGURE 7-2

Normal RVs. We shall show that the joint characteristic function of two jointly
normal RVs is given by

D(w, w,) = oAM= nats), = Hwfaf + 2racawlbs + 6 3irs) (7-32)

!Traof. This can be derived by inserting f(x,y) into (7-23). The following
simpler proof is based on the fact that the RV z = ®;X + w,y is normal and

V.(w) = jn.0 — s0l0® (7-33)
Since
n. = WM, + w1, 07 = wlol + 25w w00, + W03

and ® () = Plw,w, w,w). (7-32) follows from (7-33) with w = 1.

The above proof is based on the fact that the RV z = o x + w,y is normal
for any w, and o.; this leads to the following conclusion: If it is known that the
sum ax + by is normal for every ¢ and b, then RVs x and y are jointly normal.
We should stress, however, that this is not true if ax + by is normal for only a
finite set of values of 4 and b. A counterexample can be formed by a simple
extension of the construction in Fig. 7-2.

Example 7-5. We shall construct two RVs x, and x, with the following properties:
Xys X5, and x; + x, are normal but x, and x, are not jointly normal.

Suppose that x and y are two jointly normal RVs'with mass density f(x, y).
Adding and subtracting small masses in the region D of Fig. 7-2 consisting of eight
circles as shown, we obtain a new function fi(x, y) such that fi(x, ¥) = flx, y) + ¢
in D and f(x, y) = f(x, y) everywhere else. The function fy(x, y) is a density;
henee it defines two new RVs x; and y,, These RVs are obviously not jointly
normal. However, they are marginally normal because x and y are marginally
normal and the masses in any vertical or horizontal strip have not changed.
Furthermore, the RV z; = x; +y; is also normal because z = x + y is normal and
the masses in any diagonal strip of the form z <x +y <z +dz have not
changed.
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Moment theorem. The moment generating function of x and y is given by
D(si,5;) = Efef*HiaY)

Expanding the exponential and using the linearity of expected values, we obtain
the series

‘ 2
(s, 5;) = Z 1 Z ( ']E{*'Q Al Br
n=0 " ko
= 1 +tm,sy + mys; + %(mz“sf + 20718185 + Mgss) 4 oo (7-34)

From this it follows that
akar -
M (O,U) =My, (7-35)

The derivatives of the function W(s,, s,) = In ®(s,. 5,) are by definition
the joint cumulants A,, of x and y. It can be shown that

Ay =y Agp = my, Agy = oy Ap = B Ay = By
Hence
W(sy,5,) = 8y + mas2 + 3(07s] + 2ra0,8,5, + ofsy) + o

Example 7-6a. Using (7-34), we shall show that if the RVs x and y are jointly
normal with zero mean, then

E[x*y*) = E(x*}E{y*] + 2E*{xy} (7-36)
Proof. Aswe see from (7-32)

O(sy,5:) =e 1 A=1L(okst+2Css, + aisi)

where C = Elxy) = ro;05. To prove (7-36), we shall equate the coefficient

1 4 )
ail3)E6y)
of sis3 in (7-34) with thc currcsponding coeflicient of the expansion of ¢ ™. In this
expansion, the factors sis; appear only in the terms
e
T —-(o-,'.s'1 + 2Cs;5; + ow.v-.)

Hence
4l|( )E[" ¥} = "(Zola, +4C2)

and (7-36) results.
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Price’s theorem.t Given two jointly normal RVs x and ¥, we form the mean

I=E(g(x,y)) = f_x fj &(x,y)f(x, v) dedy (7-37a)

of some function g(x,y) of (x,y). The above integral is a function I(w) of the
covariance p of the RVs x and y and of four parameters specifying the joint
density f(x,y) of x and y. We shall show that if glx, Wiflx, ») =0 as
(x, y) = o=, then :

"I (p) = e Mg (x,y) 9*g(x,y)
w f_mf — o (X ) dedy = L{——

—% dxtay”

e } (7:37b)

Proof. Inserting (7-24) into (7-37a) and differentiating with respect to g, we
abtain

o1 ) = g
a,(:) I (—4.—.1_2)[,/_&3(""'5')

x x
Xf f @ i P(w), w,) e W0 do daws diedy
From this and the derivative theorem, it follows that

FU(p) e f(x,y)
5}1." zf_wfuxﬂ(-r‘_\’) r‘l‘_t"{?y" (LLd_‘I‘

Integrating by parts and using the condition at %, we obtain (7-37b) (see also
Prob. 5-31).

Example 7-6b. Using Price’s theorem, we shall rederive (7-36). Setting glx,¥) =
x*y? into (7-37h), we conclude with n = 1 that

2

A4
} = 4E(w) =4 (k) = =+ 1(0)

() g ﬁl'g(x.y)
e | axady

If u =0, the RVs x and y arc independent; hence J(0) = E{x*y®} = E{x*)Ely*}
and (7-36) results.

+R. Price, A Useful Theorem for Nonlinear Devices Having Gaussian Inputs.” IRE. PGIT, Vol.
1T-4, 1958, See also A. Papoulis, “On an E: ion of Price's Theorem,” [EEE Transucnions on

Information Theory, Vol. IT-11, 1965.
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7-3 CONDITIONAL DISTRIBUTIONS

As we have noted, conditional distributions can be expressed as conditional
probabilities:
= b 1 Plz <z, #)
A A=A s P(.4)
(7-38
Plz<z,w<w, #) )

£ P(.#)

=

zWh ) =Plz <z, w < wl#} =

The corresponding densities are obtained by appropriate differentiations. In this
section, we evaluate these functions for various special cases.

Example 7-7. We shall first determine the conditional distribution F,(y|x <)
and density f.(y[|x < x).
With #= (x <x}, (7-38) yields

Plx <x,y <y) F(x;y)

-t Plx<x)  F(x)
FCx.v) /oy
flylx<x) = %

Example 7-8. We shall next determine the conditional distribution F(x, y|.#) for
#={x; < X < x,). In this case, F(x, y|.#) is given by

Plx <X,y <y, x, <x<2x,}
P(x; <x<x3)

I

Fx,ylx; <x £x,)

F(x3,y) = F(x,,¥)

X > X,
k. F(x;) — F(x)) :
F(x,y) — F(x,,¥)
—— Iy <X <a

E(x:) — F(x))

and it equals 0 for x < x,. Since f = a°F/ax dy, the above yields

f(xiple, <x <xy) = #’;(1) v <x<xs (139

and 0 otherwise.

The determination of the conditional density of y assuming x = x is of
particular interest. This density cannot be derived directly from (7-38) because,
in general, the event {x = x} has zero probability. It can, however, be defined as
a limit. Suppose first that

=[x, <x = x,}
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In this case, (7-38) vields

Fyle <x < xy) = DELSXS Xy <0 Flasy) ~F(x.5)
> - Plx, < x <x3) - —-'(_T) = F.(x))

X

Differentiating with respect to y, we obtain

I.J:f( X, yv)dy

Liilx <x <x,)= (7-40)

F(x2) — Fi(x))
because [see (6.6)]

dF(x,y) X

T = j, ,f( a,y) da

To determine f,(y|x = x), we set x, = x and x, =x + Ax in(7-40). This
yields

Xk Ax
f fla, y) da _ flxy) Ax

(yly <x<x+4x) = -
S ) = = AL fl)A

Hence
Filxs)
f(x)

If there is no fear of ambiguity, the function f,(y|x = x) will be written in
the form f(y|x). Defining f(x|y) similarly, we obtain

filylx=1x) = A]im”f_‘_( yix <x<x + Ax) =
By

("l.‘ '.’ i
flyle) = % flxlp) = % (7-41)

If the RVs x and y are independent, then
flx.y) =f(x)f(y)  flple) =fy)  flxly) = f(x)

Notes 1. For a specific x, the function fCx, ¥)is a profile of f(x, y); that is, it equals the
intersection of the surface f(x,y) by the plane x = constant. The conditional density
flylx) is the equation of this curve normalized by the factor 1//(x) so as to make its
area 1. The function f(x{y) has a similarinterpretation: It is the normalized equation of
the intersection of thesurface f(x, ¥) by the plane y = constant.

2. As we know, the product f(y)dy equals the probability of the'event (y <y <y
+ dy). Extending this to conditional probabilitics, we obtain
Plx, <x ¥y, y<y<y+dy}

P{x; < x x5}

fi(ylxy <xsx;)dy =

This cquals the mass in the rectangle of Fig. 7-3a divided by the mass in 'the vertical strip
X, < x < x,. Similarly, the praduct flylx)dy equals the ratio of the mass in the
differential rectangle dxdy of Fig. 7-3b over the/mass in the vertical strip (x, x +.dx).
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L

(a) () FIGURE 7-3

3. The joint statistics of x and y are determined in terms of their joint density
Sx, y). Since

JCx,y) = flylx)f(x)
we conclude that they are also determined in terms of the marginal density f(x) and the

‘conditional density f(y|x).

Example 7-9. We shall show that, if the RVs x and y are jointly normal with zero
mean as in (6-44), then

. e 1 ' » [y = r(r:,\'/o'l)l "
b= n:\/.“.'.'r(l —r?) th[ 25 (L =r") ] (74

Proof. The exponent in (6-44) equals

(y —rosx/o0) x>

2020 - 17) 207

Division by f(x) removes the term —x~/2¢; and (7-42) results.

The same reasoning leads to the conclusion that if x and y are jontly normal
with Efx} = n, and Ely) = 5, then f(y|x) is given by (7-42) if v and x are
replaced by ¥y — 5, and x — n, respectively. In other words, for a'given x, }:(.\'L\‘)
is a normal density with mean 7, + ros(x — n,) /ey and variance a2l =)

Bayes’ theorem and total probability. From (7-41) it follows that

Fwlx)f(x)
T ARt A (7-43)
flxly) 0

This is the density version of (2-38):
The denominator f(y) can be expressed in terms of f(y|x) and fCx).
Since

f(y) = j‘“ flaoy)de  and  f(x.y) = f(ylx)f(x)
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we conclude that (total probability)
fy) = f lf( vlx)f(x) de (7-44)
Inserting into (7-43), we obtain Bayes' theorem for densitics
flylx) flx)
/l Flylx)f(x) dx

=

flxly) = (7-45)

Note As (7-44) shows, to remove the condition x =+ from the conditional density
fCylx) we multiply by the density f{x) of x and integrate the product.
Discrete type. Suppose that the RVs x and y are of diserete type
Plx=x} =p;  Ply=y,} =a
P{x = x.,¥ = yi} = pis i=1,...,.M =y N
where [see (6-21)]

g = ZP;& = Eprk
k

From the above and (2-29) it follows that
Plx=x,¥y=w) pq
Ply=ylx=x})= —————— = —
{y i l} I’{x:'\‘l} tnr
Muarkoff matrix. We denote by w7, the above conditional probabilities
Ply =ylx =x;} =y

and by [l the M X N matrix whose clements are 7. Clearly,

o (7-46)
P
Hence
> 0 T (7-47)
3

Thus the elements of the matrix IT are positive and the sum on each row equals
1. Such a matrix is called Markoff. The conditional probabilitics
Pik
Pix = xly =) == 2
qx
are the elements of an. N % M Markoff matrix.
If the RVs x and y are independent, then

(i
P = Pyt T = i awt =P
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We note that

" P;
= ik —— qr = ZT“:I;”J (7-48)
ay, ;

These equations are the discrete versions of Egs. (7-43) and (7-44).

System Reliability

We shall use the term system to identify a physical device used to perform a
certain function. The device might be a simple element, a light bulb, for
example, or a more complicated structure. We shall call the time interval from
the moment the system is put into operation until it fails the zime fo failure. This
interval is, in general, random. It specifies, therefore, an RV x > 0. The
distribution F(r) = P{x < t} of this RV is the probability that the system fails
prior to time ¢ where we assume that ¢ = 0'is the moment the system is put into
operation. The difference

R(t) =1 — F(t) = P(x > 1)

is the system reliability. Tt equals the probability that the system functions at
time 1.

The mean time to failure of a system is'the mean of x. Since F(x) = 0 for
x < (), we conclude from (5-27) that

Ex} = j;,xxf(x) dx = _[;R(r) dt (7-49)

The probability that a system functioning at time ¢ fails prior to time x > ¢
equals

Plx <x,x > 1} 5 F(x) = F(t)

t) = = 7-50
Eix Pix > 1) - F(1) i
Differentiating with respect to x, we obtain
f(x)
=l S aE c 7-51)
Flx =) ) x>t (

The product f(x|x > t)dx equals the probability that the system fails in the
interval (x, x + dx), assuming that it functions at time /.

Example 7-10. If f(x) =ce “*, then F(1) = 1 —e " and (7-51) yields

This shows that the probability that a system functioning at tme / fails in the
interval (x, x + dx) depends only on the difference x — 1 (Fig, 7-4). We show later
that this is true only if f(x)is an exponential density.
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0 t X FIGURE 7-4

Conditional failure rate. The conditional density f(x|x > ) is a function of x
and . Its value at & = ¢ is a function only of r. This function is denoted by B(r)
and is called the conditional failure rate or, the hazard rate of the system. From
(7-51) and the definition it follows that
F(r)
() =rtlx>i1) = ——— 7-52

B =1(tls >ty = T (752)
The product B(r) dt is the probability that a system functioning at time ¢ fails in
the interval (1, ¢ + dr). In Sec. 8-1 (Example 8-3) we interpret the function (1)
as the expected failure rate.

Example 7-11. (@) I f(x) =ce ", then F(t) =1 —e " and

ot

B(t) = ﬁ=t

(b) If fx) = c?xe ", then Flx)=1— exe * —e " and
c2te ¢! %t

B(1) = - — =

cte~ ¢ e 1 +ict

From (7-52) it follows that
F'(t) R'(t)
1 — F(¢t) T R(t)
We shall use this relationship to express the distribution of x in terms of the

function B(r). Integrating from 0 to x and using the fact that In R(0) = 0, we
obtain

B(r) =

—fﬁ(z) dt = In R(x)
0
Hence
R(x) = l—F(x)=exp{~—f“B(r)dr} (7-53)
And since f(x) = F(x), this yields
f(x) = BCx) x| = [ B0 ) (7:54)
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Example 7-12. A system is called memoryless if the probability that it fails in an
interval (¢, x), assuming that it functions at time f, depends only on the length of
this interval. In other words, if the system works a week, a month, or a year after it
was put into operation, it is as good as new. This is equivalent to the assumption
that f(x}x > 1) = f(x — 1) as in Fig. 7-4. From this and (7-52) it follows that with
X =1
B(t) = fltlx>1) = f(z1 —t) = f(0) =¢

and (7-34) yields f(x) ='ce“*. Thus a system is memoryless iff x has an exponential
density.

Example 7-13. A special form of B(1) of particular interest in reliability theory is
the function
B(1) = c®!

This is a satisfactory approximation of a variety of failure rates, at least near the
origin. The corresponding f(x) is obtained from (7-54):

f(x) = ax®~! exp{ ~%b} (7-55)

This function is called the Weibull density.

We conclude with the observation that the function 8(t) equals the value

of the conditional density f(x|x > ¢) for x = ¢; however, 8(r) is not a density
because its area is not one. In fact its area is infinite. This follows from (7-53)
because R(x) = 1 — F(=) = 0.

Interconnection of systems. We are given two systems S, and S, with times to
failure x and y respectively, and we connect them in parallel or in series or in

Parallel Series Stand-by
y S S 5 5 S S,
— —

z X W X ¥ s 1 X

S, S,

y y

¥ y y
Z W ¥
x x i

0 z (1] w 0 ¥

FIGURE 7-5
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standpy as in Fig. 7-5, forming a new system §. We shall express the properties
of S in terms of the joint distribution of the RVs x and y.

Parallel. We say that th_c two systems are connected in parallel if S fails when
both systems fail. Denoting by z the time to failure of 8, we conclude thatz = ¢
when the larger of the numbers x and'y equals ¢. Hence [see (6-54)]

z = max(x,y) E(z)i=F(z,z)
If the RVs x and y are independent, F.(z) = F,(2)F,(z).
Series. We say that the two systems are connected in series if S fails when at
least one of the two systems fails. Denoting by w the time of failure of S, we

conclude that w = ¢ when the smaller of the numbers x and y equals t. Hence
[see (6-56)]

w = min(x,y) E(w) =F/(w) + F(w) = E.(w,w)
If the RVs x and y are independent,
Ry(w) =R (w)R,(w)  B,(t)=B.(t) +B,(r)

where B8,(t), 8,(¢), and B,(r) are the conditional failure rates of systems §,, S,
and § respectively,

Standby. We put system S, into operation, keeping S, in reserve. When S,
fails, we put S, into operation. The system § so formed fails when S, fails. If ¢,
and t, are the times of operation of S, and S,, ¢, + 1, is the time of operation
of §. Denoting by s the time to failure of system S, we conclude that

Ss=Xx+y

The distribution of s equals the probability that the point (x, y) is in the
shaded region of Fig. 7-5. If the RVs x and y are independent, the density of s
equals

£ls) = [ R0 fs = 1) de
as in|(6-40).

7-4 CONDITIONAL EXPECTED VALUES

Applying theorem (5-29) to conditional densities, we obtain the conditional
mean of g(y):

E(g) ) = [~ e()f(yla) dy (7-56)

This can be used to define the ¢onditional moments of y.
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g
/‘ ¢(x)
0] xNx+dx x
Efyx = x} FIGURE 7-6

Using a limit argument as in (7-41), we can also define the conditional
mean E{g(y)|x}. In particular,

e = E(ylx) = [ 3f(ylx) dy (7-57)
is the conditional mean of y assuming x = x, and
gt = E((y = my )’} = [ (v = m ) f(vlx)dy  (7-58)

18 its conditional variance.

For a given x, the integral in (7-57) is the center of gravity of the masses in
the vertical strip (x, x + dx). The locus of these points, as x varies from — to
w, is the function

e(x) = [ yf(ylx)dy (7-59)
known as the regression line (Fig. 7-6).

Note If the RVs x and y are functionally related, that is, if y = g(x), then the probability
masses on the xy plane are on the line y = g(x) (see Fig. 6-5b); hence Efy|x) = g(x).

Galton’s law. The term regression has its origin in the following observation
attributed to the geneticist Sir Francis Galton (1822-1911): “Population ex-
tremes. regress toward their mean.” This observation applied to parents and
their adult children means that children of tall (or short) parents are on the
average shorter (or taller) than their parents. In statistical terms this can be
phrased in terms of conditional expected values:

Suppose that the RVs x and y model the height of parents and their
children respectively. These RVs have the same mean and variance, and they
are positively correlated:

MNe =My =7 0:t=0)'=a r>0
According to Galton’s law, the conditional mean Ely|x) of the height of
children whose parents height is x, is smaller (or larger) than x if x > n (or
x <k
<X if x<ng

E(ylx) = qv(x){ e if ¥<nq
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0 4 X FIGURE 7-7

This shows that the regression line ¢(x) is below the line y = x for x > 7 and
above this line if x < x as in Fig. 7-7. If the RVs x and y are jointly normal,
then [see (7-60) below] the regression line is the straight line o(x) = rv. For
arbitrary RVs, the function ¢(x) does not obey Galton’s law. The term regres-
sion is used, however, to identify any conditional mean.

Example 7-14. If the RVs x and y are normal as in Example 7-9, then the function
="M

E{ylx} =0, + 1o, (7-60)

l’)’l
is-a straight line with slope ros/c; passing through the point (1;,7,). Since for
normal RVs the conditional mean Efy|x} coincides with the maximum of f(y|x)
we conclude that the locus of the maxima of all profiles of f(x, y) is the straight
line (7-60).

From theorem (7-2) it follows that
Elgxy)l) = [ [ gCe)flx, vlat) dedy (7-61)

This expression can be used to determine E{g(x, y)|x}; however, the conditional
density f(x, y|x) consists of line masses on the line x-constant. To avoid
dealing with line masses, we shall define E{g(x,y)|x) as a limit:

As we have shown in Example 7-8, the conditional density f(x, y|lx < x <
X + Ax)is 0 outside the strip (x, x + Ax) and in this strip it is given by (7-39)
where x, =x and x, =2x + Ax. It follows, therefore, from (7-61) with .#'=
{x <x <x + Ax} that

% ex+Ax f(a,y)da
E{g(x.9)lx <x <x + Ax) = I_JX *ela,y) Frrin) —Fa Y

x

As Ax — 0, the inner integral tends to glx, v)flx, y)/f(x). Defining
E(g(x,y)|x) as the limit of the above, we obtain

EQgxy)lx) = [ () f(ylx) dy (7:62)
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We also note that
Efg(x.3)|x) = [ g(x.9)f(xlx) dy (7-63)

because glx,y) is a function of the RV y, with. x a parameter: hence its
conditional expected value is given by (7-56). Thus
Efg(x,y) [x) = Efg(x.y)[x) (7-64)
One might be tempted from the above to conclude that (7-64) follows
directly from (7-56); however, this is not so. The functions g(x,y) and g(x,y)
have the same expected value, assuming x = x, but they are not equal. The first
is a function g(x,y) of the RVs x and y, and for a specific £ it takes the value
g[x(£), ¥(&)]. The second is a function g(x,y) of the real variable x and the RV
y, and for a specific £ it takes the value glx,y(£)] where x is an arbitrary
number.

Conditional Expected Values as RVs

The conditional mean of y, assuming x = x, is a function ¢(x) = Ely|x) of x
given by (7-39). Using this function, we can construct the RV @(x) = Ely|x} as'in
Sec. 5-1. As we see from (5-29), the mean of this RV equals

Elo()) = [~ plx)f(x) de= [~ fx) [ sf(slx) dys
Since f(x, ¥) = f(x)f(y|x), the above yields
E(EWN} = [ [ wf(ry) dedy = Ey) (7-65)
This basic result can be generalized: The conditional mean E{g(x.y)|x} of
g(x,y), assuming x = x, is a function of the real variable x. It defines, therefore,

the function E{g(x, y)|x) of the RV x. As we see from (7-2) and (7-6]), the mean
of E{g(x,y)|x) equals

[ A [ sxon fole) dyds = [ [ gCeoy)fry) duds

But the last integral equals E{g(x,y)}: hence

E{E(g(x.¥)Ix}} = E{2(x.y)} (7-66)
We note, finally, that
E(g(x) g:(v) |} = E(g)(x)ga(¥)x} = g:(x) E{£:(y) %) 7.67)

E(g,(x) g:(¥)) = E{E(g,(x)g:(y)1x)} = E{g,(x) E{g2(¥)x}}

Example 7-15. Suppose that the RVs x and y are N(0,0: oy, @31 F). As we know
Bk =or ENY) =30
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Furthermore, fly|x) is a normal density with mean rosx /oy and variance
i 2
rr:\/l =r* . Henca

s ! - rosx < £ i
[;{_\"'.\'} =N5, o, = ( . ) +os(l =r®)

:r,
Using (7-67), we shall shaw that
E{xy} = riro, E(x?y?} = E(X')E(y?) + 2E*{xy)
Proof
a

Elxy} = E{xE(ylx}} = E{ru’_.i} = ro,—

T,

E{X:}‘E]

I

a J

E{x*E{y|x}} = -';'{.‘«3[1'3151 :A +ai(l —r?) \

2

I

[%5.3 ol o) 5 - ] 3
3:r{'r”% - «r"’rr_.'(l —r?) = ooy + 2rofos

o - -
and the proofiis complete [see also (7-36)].

7-5 MEAN SQUARE ESTIMATION

The estimation problem is fundamental in the applications of probabhility and it
will be discussed in detail later (Chap. 14). In this section, we introduce the
main ideas using as illustration the estimation of an RV y in terms of another
RV x. Throughout this analysis, the optimality criterion will be the minimization
of the mean square value (abbreviation: MS) of the estimation error.

We start with a brief explanation of the underlying concepts in the context

of repeated trials, considering first the problem of estimating the RV y by a
constant.
Frequency interpretation As we Know. the distribution function F(y) of the RV y
determines completely its statistics. This does not, of course, mean that if we know F(y)
we can predict the value ¥(£) ol y at some future trial) Suppose, however, that we wish to
estimate the unknown y(¢) by some number ¢. As we shall presently see, knowledge of
F(y) can guide us in the selection of ¢.

If y is estimated by a constant ¢, then, at a particular trial, the error y({) — ¢
results and our problem is to select ¢ so as to minimize this error in some sense. A
reasonable criterion for selecting ¢ might be the condition that, in a long series of trials,
the error 15 close to (0:

y(@)i—c+ vty —c
- ~
As we see from (5-26), this would lead to the conelusion that ¢ should equal the mean of

v (Fig. 7-8a). -
_Another criterion for selecting ¢ might be the minimization of the average of

M)~ ¢l, In this case, the optimum ¢ is the median of y (see page 68),

0
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FIGURE 7-8

In our analysis, we consider only MS estimates. This means that ¢ should be such
as to minimize the average of |y(Z) — ¢|®. This criterion is in general useful but it is
selected mainly because it leads to simple results. As we shall soon sce. the best ¢ is
again the mean of y.

Suppose now that at each trial we observe the value x(¢) of the RV x. On the basis
of this observation it might be best to use as the estimate of ¥ not the same number ¢ at
each trial, but a number that depends on the observed x(¢). In other words, we might use
as the estimate of y a function ¢(x) of the RV x. The resulting problem is the optimum
determination of this function.

It might be argued that, if at a certain trial we observe x(¢), then we can determine
the outcome ¢ of this trial, and hence also the corresponding value y(£) of y. This,
however, is not so. The same number x(¢) = x is observed for every ¢ in the set [x = x)
(Fig. 7-8b). If, therefore, this set has many elements and the values of y are different for
the various clements of this set, then the observed x(¢) does not determine uniquely y(¢).
However, we know now that £ is an element of the subset {x = x}, This information
reduces the uncertainty about the value of y. In the subset {x = x}, the RV x equals x
and the problem of determining ¢(x) is reduced to the problem of determining the
constant ¢(x). As we noted, if the optimality criterion is the minimization of the MS
error, then ¢(x) must be the average of y in this set. In other words, ¢(x) must equal the
conditional mean of y assuming that x = x. _

We shall illustrate with an example. Suppose that the space . is the set of all
children in a community and the RV'y is the height of each child. A particular outcome £
15 a specific child and y(¢) is the height of this child. From the preceding discussion it
follows that if we wish to estimate y by a number, this number must equal the mean of y.
We now assume that cach selected child is weighed. On the basis of this observation, the
estimate of the height of the child can be improved. The weight is an RV x; hence the
optimum estimate of y is now. the conditional mean E{y|x} of y assuming x = x where &
is the observed weight.

In the context of probability theory, the MS estimation of the RV y by a
constant ¢ can be phrased as follows: Find ¢ such that the second moment
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(MS error)
e=Ely-a)Y = [ (y-eolf(»)a (7-68)

‘of the difference (error) y — ¢ is minimum. Clearly, e depends on ¢ and it is
minimum if

% = [ 2y - sy =0
that is, if
c= [ yfly)dy
Thus 2
c = Ely) = fjl)’f( ) dy 7-69)

This result is well known from mechanics: The moment of inertia with respect
toia point ¢ is minimum if ¢ is the center of gravity of the masses.

NONLINEAR MS ESTIMATION. We wish o estimate 'y not by a constant but by a
function ¢(x) of the RV x. Our problem now is to find the function ¢(x) such
that the MS error

e =E{ly - c(x)]’) = ]j f_‘ [y = ()P fx, y) dedy  (7-70)

IS minimum.
‘We maintain that

c(x) = Efyle) = [ 3 (ylx) dy (7-71)

Proof. Since f(x, y) = f(y|x)fCx), (7-70) yields
e= [0 [ [y =e( flyle) dyax

The integrands above are positive. Hence e is minimum if the inner integral is
minimum for every x. This integral is of the form (7-68) if ¢ is changed to ¢(x),
and f(y) is changed to f(y|x). Hence it is minimum if c(x) equals the integral
in (7-69), provided that f(y) is changed to f(y|x). The result is (7-71).

Thus the optimum c(x) is the regression line ¢(x) of Fig, 7-6.

As we noted in the beginning of the section, if y = g(x), then E{y|x} =
2(x); hence ¢(x) = glx) and the resulting MS error is 0. This is not surprising
because, if x is observed and'y = g(x), then y is determined uniquely.

If the RVs x and y are independent, then Efylx} = Ely) = constant. In
this case, knowledge of x has no effect on the estimate of y.
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Linear MS Estimation

The solution of the nonlinear MS estimation problem is based on knowledge of
the function @(x). An easier problem, using only second-order moments, is the
linear MS estimation of y in terms of x. The resulting estimate is not as good 4
the nonlinear estimate; however, it is used in many applications because of the
simplicity of the solution,

The linear estimation problem is the estimation of the RV v in terms of
linear function Ax + B of x. The problem now is to find the constants 4 and B
S0 as to minimize the MS error

e =E{[ly — (Ax + B)]%) (7-72)
We maintain that ¢ = e, is minimum if
ro.,
B (7-73)
K20 O
and
i ,
= g — — = a2(1 —r?) (7-74)

20

Proof. For a given A, ¢ is the MS error of the estimation of y — Ax by the
constant B. Hence e is minimum if B = E{ly — Ax} as in (7-69). With B so
determined, (7-72) yields

% = E{[(y _ T)_v) = A(X - "Px)]z} = (7‘;! i ZA"'O-.\'U_\‘ i A?'(J"‘;

This is minimum if A = ro, /o, and (7-73) results. Inserting into the above
quadratic, we obtain (7-74).

Terminology. In the above, the sum Ax + B is the nonhomogeneous linear
estimate of yin terms of x. If y is estimated by a straight line ax passing through
the origin, the estimate is called homogeneous.

The RV x is the data of the estimation, the RV e = y — (Ax + B) is the
error of the estimation, and the number e = E{g?) is the MS error.

Fundamental note. In general. the nonlinear estimate @(x) = Ely|x} of y in
terms of x is not a straight line and the resulting MS error E{ly — ¢x)F) is
smaller than the MS error e, of the linear estimate Ax + B. However, if the
RVs x and y are jointly normal, then [see (7-60)]

I‘O'_‘.X F'O'.‘.Th.
-+ Ty —

g(x) =
a,

X X

is a straight line as in (7-73). In other words:

For normal RVs, nonlinear and linear MS estimates are identical.
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The Orthogonality Principle
From (7-73) it follows that
E{ly — (Ax + B)]x) =0 (7-75)

This result can be derived directly from (7-72). Indeed, the MS error e isa
function of 4 and B and it is minimum if de /3.4 = 0 and de/dB = 0. The first
equation yields

de
dA4

=E{2[y = (Ax + B)](=x)) = 0

and (7-75) results. The interchange between expected value and differentiation
is equivalent to the interchange of integration and differentiation.

Equation (7-75) states that the optimum linear MS estimate Ax + B of y
is such that the estimation error y — (.A4x + B) is orthogonal to the data x. This
is known as the orthogonality principle. 1t is fundamental in MS estimation and
will be used extensively. In the following, we reestablish it for the homogencous
case.

HOMOGENEOUS LINEAR MS ESTIMATION. We wish to find a constant a such
that, if y is estimated by ax, the resulting MS error

e = E{(y — ax)’) (7-76)
is minimum. We maintain that @ must be such that

E{(y — ax)x} =0 (7-77)
Proof. Clearly, e is minimum if e’(a) = 0; this vields (7-77). We shall give a

second proof: We assume that « satisfies (7-77) and we shall show that e is
minimum. With @ an arbitrary constant,

E{(y — Ex)z} = E{[(y —ax) + (a — E)x]l}
= E{(y — ax)’} + (a — a) E{x?) + 2(a —a) E{(y — ax)x}
In the abave, the last term is 0 by assumption and the sccond term is positive.
From this it follows that
Ef(y — Ex)z] > E{(y — ax)z}

for any a@; hence e is minimum.
Thc linear MS estimate of y in terms of x will be denoted by Elylx).

Solving (7-77), we conclude that

E{xy)

E—{XET (7-78)

E(ylx) = ax a=
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MS error Since
¢ = E((y — ax)y}) — E{(y — ax)ax} = E{y*} — E{(ax):} — 2aE{(y — ax)x)
we conclude with (7-77) that
e = E{(y — ax)y} = E(y?} - E[(ax)7} (7-79)

We note finally that (7-77) is consistent with the orthogonality principle:
The error y — ax is orthogonal to the data x.

Geometric interpretation of the orthogonality principle. In the vector represen-
tation' of RVs (see Fig. 7-9). the difference y — ax is the vector from the point
ax on the x line to the point y, and the length of that vector equals ve . Clearly,
this length is minimum if ¥ — ax is perpendicular to x in agreement with (7-77),
The right side of (7-79) follows from the pythagorean theorem and the middle
term states that the square of the length of y — ax equals the inner product of y
with the error y — ax.

Risk and loss functions. We conclude with a brief comment on other optimality
criteria limiting the discussion to the estimation of an RV y by a constant ¢. We
select a function L(x) and we choose ¢ so as to minimize the mean

R=E(L(y—c)} + f L(y —c)f(y)dy

of the RV L(y — ¢). The function L(x) is called the loss function and the
constant R is called the average risk. The choice of L(x) depends on the
applications. If L(x) =x°, then R = E{(y — ¢)°} is the MS error and as we
have shown, it is minimum if ¢ = Efy}.

If L(x)= |x|, then R = E{ly — ¢|}. We maintain that in this case, ¢
equals the median y, s of y (see also Prob. 5-20).

Proof. The average risk equals
R=[ Ww—clf(ndy=[ (e=p)f(»)dy + [ (v=e)f(y)ay
Differentiating with respect to ¢, we obtain
dR 1 a0
e =[SO @ = [1) dy=2F(e) - 1
Thus R is minimum if F(c) = 1/2, that is, if ¢ = y..

y—ﬂl_l X
Y,

y—ax

ax X FIGURE 79
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We note finally that in certain applications, y is esiimated by its mode. that

is, the value y, .. of y for which f(y) is maximum. This is based on the
following: The probability that y 15 in an interval (¢, ¢ + dy) of specified length

dy equals Plc <y <c¢ + dy} = j(< ) dy This is maximum if ¢ =y

Yimax

PROBLEMS

1.

7-4.
7-5.
7-6.

7-1

7-8.

7-9.

7-10.

7-11.

The RVs x and y are N(0; rr) and 'independent. Show that if z = |x — yl|, then
Elz} = 20/ Wm. Ele®) = 20>

. Show that if x and y are two independent RVs with. £ (x) = ¢ *Ulx) . fily) =

e *U(y), and z = (x — y)U(x — y). then Efz) = 1 /2,

. Show that for any x, y real or complex

(a) |ExyPI® < E(xPIE(y ) s

(b) (triangle inequality) ‘/[_{ |x + ylz} < \/F.'[!xlz] + \/E[ [yl7)

Show that, if r =1, theny = ax + b.

Show that, if E{x*} = E{y*} = Elxy}, then x = y.

Show that, if the RV x is of discrete type taking the values x, with Plx =x,) = p,
and z = g(x,y), then

E(z) = L E(g(x,M}p,  fo(2) = Eflzlx,)p,

n

The RV n is Poisson with parameter A and the RV x is independent of n, Show
that, if z = nx and
€
i) = m then @_(w) = cxp{ae “* — A}
Show that, if the RVs x and y are N(0,0; o, 3 r), then
e
(a) E{f"(ylx)} - \/7 7(2— cxp{~ 203(2 - rl)}
1

(b) E{fx(x)f}'(y)} S o7

2wa=N4d = r°

Show that if the RVs x,y are N(0,0; oy, a,; £) then

2000, 20,0, .
= ——(cosa + asina)

e F

E{|xy|l} = — | arcsin dp

{1yl 7 j;; s T
where r = sina and C = roy0,.

Hint: Use (7-37) with glx, y) = layl.

The RVs x and y are uniform in the interval (=1, 1) and independent. Find 'the
conditional density f,(r|«#) of the RV r = y/x* + ¥* where #= {r < ).
We have a pile of m coins. The probability of heads of the /th coin cquals p,. We
select at random one of the coins, we toss it n times and heads shows & times.
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7-12.
7-13.

7-14,

7-15.

7-16.

7-17.

7-18.
7-19.

7-20.

7-21.

7-22.

7-23.
7-24,
7-25.

7-26.

MOMENTS AND CONDITIONAL STATISTICS

Show that the probability that we selected the rth coin equals
s n—k
pr(l—p,)"
: = =7
P =p)’ "+ oo +pi(L —p, )"

The RV x has a Student-t distribution #(n). Show that E{x} = n /(1 — 2).

Show that if 8.(2) = f.(t[x > ¢), B,(tly = 1) and B(t) = kB (1), then | E(x)
=[1 - £ (]~

Show that, for any x.y, and & > 0,

Pllx—y| > €} < tl [[x—,‘}

Show that the RVs x and y are independent iff for any a and b:
E{U(a — x)U(b —y)) = E(U(a - X)}E{U(b — y))
Show: that
1

Efylx< 0} = F_m[_u Elylx}f . (x)dx

Show that, if the RVs x and y are independent and z = x + ¥ then f.(z|x) =

A6 = o

The RVs x, y are N(3,4:1,2;0.5). Find f(y|x)and f(x[y).

Show that, for any x and y, the RVs z = F(x) and w = F,(y|x) are independent

and c¢ach is uniform in'the interval (0, 1),

The RVs x and y are N(0,0;3,5;0.8). Find g(x) such that #{ly — g} is

minimum.

In the approximation of y by ¢(x), the “mean cost” E{ely — o(x)]} results, where

£(x) is a given function. Show that. if g(x) is an even convex function as in Fig.

P5-28, then the “mean cost™ is minimum if ¢(x) = Efy|x).

Show that if ¢(x) = Efy|x} is the nonlinecar MS estimate of y in terms of x. then
E{ly - o))’} = E{y*} - E{¢*(x)}

If g, =, =0, 0, = o, = 4 and ¥ = 0.2x (linear MS estimate); find Efly — )}

Show that if the constants A, B, and « are such that E{ly — (Ax + B)J’} and

E{lly — 7,) — alx — 0, )%} are minimum, then a = A.

Given n, =4, 1, = 0,0, =1, 0, =2, r,, = 0.5, find the parameters A, B, and ¢

that minimize Efly — (Ax + B)] } and E((y = ax)?).

The RVs x, y are independent, integer-valued with Plx = k) = p,, Ply = k} = 4;-
Show that (@) if z = x + y. then (discrete-time convelution)

P(Z = "} = Z Py—xqx
T

(b) if the RVs x, y are Poisson distributed with parameters @ and b respectively
and w = x — y,'then

@ ucibk 0 n>0
Plw =) =¢ 4 );:,, (—” T n = {Ini il
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7-27, If ¥ = x*, find the nonlinear and linear MS estimate of v in terms of ¥ and the
resulting MS errors,

7-28. The RV x has'a Rayleigh density [sec (6-50)], Find its conditional failure rate B(r).

7-29. Find the reliability R(1) of a system if Blr) =ct/(1 + at).

7-30. The RV x is uniform in the interval (0, 7). Find and sketch Blr).

7-31. Find and sketch R(1) if B(t) = 4U(s) + 2U(r — T). Find the mean time to failure
of the system.

7-32. The RVs x and y are jointly normal with the zéro mean, and 05 = 2 iy = 4
ryy = 0.5. (a) Find the regression line Efy| .t} = ¢(x). (b) Show that the RVs x and
¥ — ox)are independent,

7-33. (a) Show that E{ly — ¢)%} = &7 + (c — 5,)? for uny ¢. (b) Using this, show that
E(ly — ¢)?) is minimum if ¢ = M 48 in (7-69). (¢) Reasoning similarly, show that
Ely — g} is minimum if g(x) = E{vla} as in (7-71).



CHAPTER

8

SEQUENCES
OF RANDOM
VARIABLES

8-1 GENERAL CONCEPTS
A random vector is a vector
XX, e X o] (8-1)

whose components x; are RVs,
The probability that X is in a region D of the n-dimensional space equals
the probability masses in D:

PXeD) = [ f(X)dX X=[x....,x,] (8-2)
D
In the above
W e 5]

= =" 8-3
fOX) = f(xy,.005x,) a1, 0%, (8-3)

is the joint (or, multivariate) density of the RVs x, and
F(X) = F(xy,...,x,) = P(x £ x;,...,X, <X, (8-4)

is their joint distribution.

If we substitute in F(x,,..., x,) certain variables by «, we obtain the joint
distribution of the remaining variables. If we integrate f(x,,...,x,) with
respect o certain variables, we obtain the joint density of the remaining

182
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variables. For example
F( X, X3) = F( Xy, 0, Xy, 0)

Py x) = fj fj‘ Sy, %5, x5, 0,) diyd, (8:5)

Note In the above, we identify various functions in terms of their independent variables.
Thus f(x,, x5)is the joint density of the RVs X, and x and it is in general different from
the joint density f(x,, x,) of the RVs X, and x,. Similarly, the density fi(x,) of the RV
x; will often be denoted by f(x,).

TRANSFORMATIONS. Given k& functions
gi(X),...,g.(X) X=[xp,...,0 Y, ]
we form the RVs
Yi = &UX)... .. ¥ = 8.(X) (8-6)

The statistics of these RVs can be determined in terms of the statistics of X as
in Sec. 6-3. If k < n, then we could determine first the joint density of the »
RVS ¥y, ¥ Xp 410+, X,, and then use the generalization of (8-5) to elimi-
nate the X’s. If k > p, then the RVs y, ..., ¥, can be expressed in terms of
¥iy.-4» Y, In this case, the masses in the & space are singular and can be
determined in terms of the joint density of Yis---> ¥, It suffices, therefore, to
assume that k = n.

To find the density Fyy5.<., v,) of the random vector Y = [vi,....¥,] for
a specific set of number y,,..., Y, We solve the system

g X) =y ces 80 X) =, (8-7)

If this system has no solutions, then f,(y,,...,¥,) = 0. If it has a single solution
X =[x,...,x,], then

— f:(":ls-'-vxn

i) Ty Soee S ARG 8-8
B0iseses ) = (88)
where
S 22l
ax; ax,
J(Xl,.-.,X,,)= ............. (8-9)
98, 98,
dx, ax,

is the jacobian of the transformation (8-7). If it has several solutions, then we
add the corresponding terms as in (6-63).
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Independence

The RVs x;,...,x, are called (mutually) independent if the events
{x; <x}),...,{x, <x,} are independent. From this it follows that

F( X500 Xy) = B(xq)=2* F(x,)
i ) = KXY == i)

Example 8-1. Given n independent RVs x; with respective densities filx); we
form the RVs

(8-10)

Y=g s ey = n
We shall determine the joint density of y,. The system
Xy =Yk + X3 =Yoo Xyt e dx, =y,
has a unique solution
Xy =W = Y= l<k=n
and its jacobian equals 1. Hence [see (8-8) and (8-10)]

Fl¥iveea¥a) = AOODH2 =¥ fildn = Y1) (8-11)

From (8-10) it follows that any subset of the set x; is a set of independent
RVs. Suppose, for example, that

f(xlrxzrxz) = flx) f(x2) f(x3)

Integrating with respect to x., we obtain f(x,, x,) = f(x,)f(x,). This shows
that the RVs x; and x, are independent. Note, however, that if the RVs x; are
independent in pairs, they are not necessarily independent. For example, it is
possible that

f(xl,xz)=f(x1)f(xz) fxy, x5) =f(x|)f(x3) f(x, x3) = fx,) f(x3)

but flx, x3, x3) # f(x,)f(x,)f(x3) (see Prob. 8-2).
Reasoning as in (6-29), we can show that if the RVs x, are independent,
then the RVs

yl = gl(xl)‘ aiw -1Yn = gn(xn)
are .also independent.

INDEPENDENT EXPERIMENTS AND REPEATED TRIALS. Suppose that
= K e K
is a combined experiment and the RVs x; depend only on the outcomes {;
of
X{(&) iy &) = x(6) i=1,...,n

If the experiments ./ are independent, then the RVs x; are independent [see
also (6-30)]. The following special case is of particular interest.
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Suppose that x is an RV defined on an experiment .~ and the experiment
is performed 7 times generating the experiment " = % -++ % . In this
experiment, we define the RVs x,; such that

(& 2 & 8) =x(8) = (8-12)

From this it follows that 'the distribution F,(x,) of x, equals the distribution
F.(x) of the RV x. Thus, if an experiment is performed n times, the RVs x,
defined as in (8-12) are independent and they have the same distribution F(x).
These RVs are called i.i.d. (independent, identically distributed).

Example 8-2 Order statistics. The order statistics of the RVs x, are n RVs ¥
defined as follows: For a specific outcome ¢, the RVs Xx; take m‘. values x,(£).
Ordering these numbers, we obtain the sequence

(o) s s ()= e <x (D)
and we define the RV y; such that
W) =x,(8) < - sHld) =x, ()= -+ <y(0)=x,() (813)

We note that for a specific i, the values x,(£) of x; oceupy different locations in the
above ordering as ¢ changes.
We maintain that the density f;(y) of the kth statistic y, is given by

fiully) = EEYI - B fuly)  (8-14)

n!
(k=1)(n = k)!
where F,(x) is the distribution of the ii.d, RVs x; and f,(x) is their density.
-Proof. As we know
fily)dy = P{y <y, sy + dy)

The event & = {y <y, <y +.dy} occurs iff exactly k¥ — 1 of the RVs x; are less
than y and the one is in the interval (y, y + dy) (Fig. 8-1), In the original
experiment ., the events

= [x<y) oy ={y <x<y+dy) &y = (x> y + dy}
form a partition and
P() = () P(as) =f.(y) dy P(ef) =1 -F(»)

In the experiment ", the event & occurs iff &/ occurs k& — 1 times, 2/, oceurs
once, and 2/, occurs n—k times. With k; =k — 1, k, =1, ky=n—k, it

X,
__':I_.“_, % I :4:' | v ’\é
% Y ¥ ytdy Yo

FIGURE 8-1
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follows from (3-38) that
n!

i DI — k)

P =Y ) P(ota) P15 0y)

and (8-14) results,
Note that
L) =1 = ED)19)  fuly) =2 (0} u(y)

These are the densities of the minimum y; and the maximum y, of the RVs X

Special Case. If the RVs x; are exponential with parameter a:
fi(x) = ae *U(x) F{x) = (1 —e **)U(x)

then

fi(y) =nae™*"U(y)
that is, their minimum y, is also exponential with parameter na.
Example 8-3. A system consists of m components and the time to failure of the
ith component is an RV x; with distribution F,(x). Thus

1L = F(1) = Plx, > 1}

is the probability that the ith component is goad at time ¢. We denote by n(t) the
number of components that are good at time ¢. Clearly,

n(r) =n,+ - +n,

‘where

1 X; >
n={0 V2 B =1-EO

Hence the mean E{n(7)} = n(r) of n(z) is given by
N == B () koot — 8 ()
We shall assume that the RVs x; have the same distribution F(t). In this case,
n(t) = m[1 — F(t)]

Failure rate The difference (1) — n(t + dt) is the expected number of
failures in the interval (2, ¢ + dt). The derivative —n'(¢) = mf(z) of —nlt) is the
rate of failure. The ratio

. t
(O (O (8-15)
n(t) 1 —F(1)

is called the relative expected failure rate. As we see from (7-52), the function p(1)
can also be interpreted as the conditional failure rate of ¢ach component in the
system. Assuming that the system is put into operation at.f = 0, we have n(0) = a1}
hence n(0) = E{n(()) = m. Solving (8-15) for n(z), we obtain

n(t) =m cxp{— f"’.,e(f) d'r}

B(t) = —
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Example 8-4 Measurement errors. We measure an object of length 5 with n
instruments of varying accuracies. The results of the measurements are 1 RVs
X =mn +w Efv} =0 Efv}} =c?

where v, are the measurement errors which we assume independent with zero
mean. We shall determine the unbiased, minimum variance, lincar estimation of
7. This means the following: We wish to find » constants «, such that the sum

A= agx, + o agx,
is an RV with mean E{#)} = a; E{x;} + -+« +a,E{x,} = n and its variance
V= af«rlz Gpaed +r.t,:,¢r,,"

is minimum. Thus our problem is to minimize the above sum subject to the
constraint

ap+ 0 ta, =1 (8-16)
To solve this problem, we note that
V=afol + - +alo? — Alay + - +a,— 1)
for any A (Lagrange multiplier). Hence ¥ is minimum if
ay A

— =2aj0°—A=0 o =
da; s Y 2o

Inserting into (8-16) and solving for A, we obtain
A 1
e
2 Voi+ - +1/o7
Hence
.\f,/a'l2 g et 4‘.:,,./::7,,z

ol U T SR (8-17)
L T

Illustration. The voltage E of a generator is measured three times. We list below
the results x; of the measurements, the standard deviations o; of the measurement
errors, and the estimate E of E obtained from (8-17):

x,=98.698.8989 o, = 0.200.250.28
2y/0.04 + x,/0.0625 + x;,/0.0784

= 98.73
1/0.04 + 1/0.0625 + 1/0.0784

E=

Group independence. We say that the group G, of the RVs x,...,x, is
independent of the group G, of the RVs y, ..., ¥ if

(G s e B o e s ) (T G T (O ey i) (8-18)
By suitable integration as in (8-5) we conclude from (8-18) that any subgroup of
G, is independent of any subgroup of G,. In particular, the RVs x, and y, are

independent for any ¢ and J. ‘
Suppose that . is a combined experiment .} X %, the RVs x; depend

only on the outcomes of .7, and the RVs y, depend only on the outcomes of
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5. If the experiments . and . are independent, then the groups G, ang
G, are independent.

We note finally that if the RVs z,, depend only on the RVs x, of G, and
the RVs w, depend only on the RVsy; of G,, then the groups G, and G, are
independent. '

Complex random variables  The statistics of the RVs

2= Xy A e By = X Y

are determined in terms of the joint density f(xy,..., X, V..., ,) of the 2x
RVs x; and y;. We say that the complex RVs z; are independent if
L2 o Xy Vs eod (= e ) EE A G e (8-19)

Mean and Covariance

Extending (7-2) to n RVs, we conclude that the mean of g(x,,...,x,) equals
x

i [ 8 m ) (e xy) iy o i, (8-20)

If the RVs z; = x; +jy; are complex, then the mean of g(z...,z,)
equals
I o 8z 2 Ry ooy Yiner s B) ity -y,
—@ -
From the above it follows that (linearity)
Efa,g)(X) + ++- +a,8,(X)) =a,E{g(X)} + - +a,E(g,(X))

for any random vector X real or complex.

CORRELATION AND COVARIANCE MATRICES. The covariance C;; of two real
RVs x; and x; is defined as in (7-6). For complex RVs
Cyp = E{(x; = n)(x} = 9)} = E{x;x}) = E{x}E(x)
by definition. The variance of x; is given by
o = Cy = E{lx, = 0,2} = E{Ix?} = 1E(x)

The RVs x; are called (mutually) uncorrelated if C;; = 0 for every i #J. In
this case, if

X=X+ " +x, then gZ=ogf+ " +07] (8-21)
Example 8-5. The RVs
l n l n .
x-——;’g'xl v=n_11};l{x.—x)

are by definition the sample mean and the sample variance respectively of x;. We
shall show that; if the RVs x, are uncorrelated with the same mean E(x,) = n and
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variance o.* = a2, then
Efx} =y o= /n (8-22)

and
E{v} = o? (8-23)

Proof. The first equation in (8-22) follows from the linearity of expected values and
the second from (8-21):

I n
EG)=~ LE(x)=n of=— Yof=—

i=1 i

To prove (8-23), we observe that

1
E{(x; —n)(x— 1)) = —E{(xi = n)(xy —m) + -+ (x, = )])
a?

1
= JElx = m)(x; - )} = —

becausc the RVs x; and x; are uncorrelated by assumption. Hence

=32 — - (T _ 2100 :Vi_i_nil
El(x, = 07} = E{l(x; —n) - G- )]} =2 + e =

o

This yields
=l

] " ]
E{v) = o EE{(“’: - i)-} - =l 'n -
=1

l-l;.

and (8-23) results. 5
Note that if the RVs x, are iid. with E{|x, — 5|’} = u4, then (see Prob.

8-21)

LI (] 4)
SR

~

If the RVs x;,...,x, are independent, they are also uncorrelated. This
follows as in (7-14) for real RVs. For complex RVs the proof is similar: If the
RVs z, = x, + jy, and z, = X, + jy; are independent, then f(x, x5, ¥, ¥2) =

f(xi) y[)f(Xz' )’z)- Hence

f ,---[zz,sz(.vl,xz,}’n}‘z)dxld)’l‘i"zd)’z

= [T ey de [ 2 e ) de s

This yields Efz,z%) = E{z,}E{z5) therefore, z; and z, are uncorrelated.
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Note, finally, that if the RVs x, arc independent, then

E{g!(“‘1) “ale gn(xu)} — E{gl(xl)] S E{},’"(X,,)} (.““34)
Similarly, if the groups x;,....x, and y,,...,y, are independent, then
Elg(xq,...x,) Ay ... ¥} = Ele(xy, - o X, ) E(R(¥s - -2 ¥0))
The correlation’ matrix. We introduce the matrices
Rll Rlu C 11 Cl.-t
R" P R T C‘H e R S )
Ry 3o Cu G

where
Ry = E{xif) =Ry Cy=R; =~y = Cp
The first is the correlation matrix of the random vector X = [x,...,x, ]|
and the second its covariance matrix. Clearly,
R, = E{X'X*)
where X’ is the transpose of X (column vector). We shall discuss the properties

of the matrix R, and its determinant A,. The properties of C, are similar
because C, is the correlation matrix of the “centered” RVs x, — 17,.

THEOREM. The matrix R, is nonnegative definite. This means that
Q= Yaa¥R,; = AR, A*> 0 (8-25)
i

where A" is the conjugate transpose of the vector A = [a;=--5a1

Proof. It follows readily from the linearity of expected values
Eflayx, + -+ +a,x,1°} = LaarE(xx* (8-26)
i

If (8-25) is strictly positive, that is, if Q > 0 for any A # 0, then R, is
called positive definite.v The difference between Q = 0 and 0 > 0 is related to
the notion of linear dependence.

DEFINITION, The RVs x; are called linearly independent if
Eflax, + - +a,x,1*} > 0 (8-27)

ntn

for any A +# 0. In this case [see (8-26)], their correlation matrix R, is positive
definite.

TWe shall use the abbreviation p.d. to indicate that R;, satisfies (8-25). The distinction between
Q= 0and Q > 0 will be understood from the context.
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The RVs x; are called linearly dependent if
ax; + - +a.x, =0 (8-28)
for some A = 0. In this case, the corresponding Q equals 0 and the matrix R,

is singular [see also (8-29)].

From the d‘eﬁniiion it follows that, if the RVs x, are lineatly independent,
then any subset is also linearly independent.

The correlation determinant. The determinant A, is real because Ry=Rj.
We shall show that it is also nonnegative

A,=0 (8-29)
with equality iff the RVS x, are linearly dependent. The familiar inequality
A, =Ry Ry — RY, > 0 s a special case [see (7-12)).

Suppose, first, that the RVs x, are linearly independent. We maintain that,
in this case, the determinant A, and all its principal minors are positive

A, >0  ksn (8-30)

Proof. ‘The above is true for n = 1 because A; = R, > (. Since the RVs of any
subset of the set {x,} are linearly independent, we can assume that (8-30) is true
for k <n — 1 and we shall show that A, > 0. For this purpose, we form the
system

Rya, + - +R,a,=1
Ryiay + 2 HR;,a, =) (8-31)

Rallal e +Rmiau =)
Solving for a;, we obtain @, = A, /A, where A, _, is the correlation determi-
nant of the RVs x,,...,x,. Thus @, is a real number. Multiplying the jth
equation by af* and adding, we obtain
=
0= YaarR;=a, = —— (8-32)
i A,
In the above, @ > 0 because the RVs x; are lincarly independent and the I;ft
side .of (8-27) equals Q. Furthermore, A, , > 0 by the induction hypothesis:
hence A, > 0. .
We shall now show that, if the RVs x; are lincarly dependent, then
A, =0 (8-33)

Proof, In this case, there exists a vector A4 # 0 such that a;x, + -*- +a,x, = 0.
Multiplying by x* and taking expected values, we obtain

@Ry + o +a, R, =0 i=1,....n

This is a homogencous system satisfied by the nonzero vector A; hence A, = (.
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Note, finally, that [see (15-161)]
A, =RyRy " R, (8-34)

with equality iff the RVs x; are (mutually) orthogonal, that is, if the matrix R, is
diagonal.

8-2 CONDITIONAL DENSITIES,
CHARACTERISTIC FUNCTIONS,
AND NORMALITY

Conditional densities can be defined as in Sec. 7-2. We shall discuss Various
extensions of the equation f(y|x) = f(x, y)/f(x). Reasoning as in (7-41),
we conclude that the conditional density of the RVs x,,...,x, ., assuming
Xy .o. ;X IS given by

LR bt t)
f(x,,,...,xkﬂlxk,...,x,)— FC: 150 (8-35)

The corresponding distribution function is obtained by integration:

F(xrn"-vxk+||xk,..‘,x:)
Xn LN
=f_ f_ ey apilog o) dog o v day, (336)

For example,

f(.t lx,, x ) = f(-l’,,xz,xs) = dF(X||«"2ex3)
11X, X3 o ) e

Chain rule From (8-35) it follows that
f(xli' X ’xn) =f(‘tn|xn—l“' 4 xl) T f(xllxl)f(x() (8_37)

Example 8-6. We have shown that [see (5-18)] if x is an RV with distribution F(x),
then the RV y = F(x) is uniform in the interval (0,1). The following is a
generalization,

Given n arbitrary RVs X;, we form the RVs

yl = F(‘l) )'2 = F(32|xl)--"v-yn = F(x,,lx,,,],...,x,) (8.38)

We shall show that these RVs are independent and each is uniform in the interval
(0,1).

Proof. The RVs y, are functions of the RVs x, obtained with the transformation
(8-38). For 0 <y, < 1, the system

M=Flx) v =F(xalx)0en, vy = F(xplkpegsener %)
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has a unique solution x,, ..., X, and its jacobian equals
ﬁyl
= 0 0 0
F)_\'l
ayy Ay,
= = 0

J= Xy dx,

Yy Y,
r?n (?x”

The above determinant is triangular; hence it equals the product of its diagonal
elements
Y

ax, = (Xlxgpoen 0 %y)

Inserting into (8-8) and using (8-37), we obtain

_ Xy ymeesiX) -
f(“!)f("":l'rl) i f(xn!xn—ll"'lxl)

in the n-dimensional cube (0 < y; < 1, and 0 otherwise:

1

F(Vi500490)

From (8-5) and (8-35) it follows that

f(x,lx_,) = [jmf(xl- -‘lexz) dx,

f(x,lx_,) = fj f_m f(x,lxz,.r;.xd)f(xz.XSde)d\'z dxy

Generalizing, we obtain the following rule for removing variables on the left or
on the right of the conditional line: To remove any number of variables on the
left of the conditional line, we integrate with respect to them. To remove any
number of variables to the right of the line, we multiply by their conditional
density with respect to the remaining variables on the right, and we integrate
the product. The following special case is used extensively (Chapman-—

Kolmogoroff):
f(x,lx;} =f_= f(xllxzvxa)f(xzh's)dfz (8-39)

Discrete type The above rule holds also for discrete type RVs provided
that all densities are replaced by probabilities and all integrals by sums. We
mention as an example the discrete form of (8-39): If the RVs x;, x,, x; take the

values a;, by, ¢, respectively, then
Plx, = alxs = ¢,} = LP(x, = albe.c,}P{x; = bilc,)  (8-40)
k



194 SEQUENCES OF RANDOM VARIABLES

CONDITIONAL EXPECTED VALUES. The conditional mean of the RVs
g(x,,...,x,) assuming .# is given by the integral in (8-20) provided that the
density f(xy,...,x,) is replaced by the conditional density f(x,....,x, [.),
Note, in particular, that [see also (7-57)]

Efx{|X5, .-, x ) = fm Xy fi(xy 1%, e s ) ity (8-41)

The above is a function of x,,...,x,; it defines, therefore, the RV
E{x,lx5,....x,). Multiplying (8-41) by f(x,,..., x,) and integrating, we con-
clude that

E{E{x,[x5.....x5}} = E{x,) (8-42)
Reasoning similarly, we obtain
E{x;lx,, x5} = E{E{x,[x;, x5,x,}}

= [-* E{x; x5 25, X4} f(204lx5, x3) dr (8-43)

This leads to the following generalization: To remove any number of variables
on the right of the conditional expected value line, we multiply by their
conditional density with respect to the remaining variables on the right and we
integrate the product. For example,

E{x,lx;} = fx E(x,lx,, x.a]f(«"zixs) dv, (8-44)
and for the discrete case [see (8-40)]
E{xllcr} = EE(X,lbk.C,}P{xz =bklcr} (8'45)
k

Example 8-7. Given a discrete type RV n taking the values 1,2,... and a
sequence of RVs x; independent of n, we form the sum

S, (8-46)
k=1

This sum is an RV specified as follows: For a specific £, n(¢) is an integer and s({)
equals the sum of the numbers x,(¢) for & from 1 to n({). We maintain that if the
RVsx; have the same mean, then

E{s} = nE{n} where E{x;}) =17 (847)

Clearly, E{x;|n = n} = E{x,} because x, is independent of n. Hence

"
E{s|n =n} = E{ D X
k=1
From this and (7-65) it follows that
£{s} = E{ E{s|n}} = E{nn})

n =n} = }E Efx;} =nn
k=1

and (8-47) results.
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We show next that if the RVs are el it
" ow next that if the Rvs X are uncorrelated with the same variance
o=, then

E(s%} = n°E{n?) + o °Efn) (848)

Reasoning as above, we have

E{s’ln=n) = ¥ T E{x;x,) (8-49)
f=1 k=1

where

B = {7 77 1k
1 n- 1# k
The double sum in (8-49) contains # terms with i = & and #* —n terms with
i'# k; hence it equals

(a2 + N2)n + 92(n* —n) = n2n® + o2n
This yields (8-48) because
E{s’} = E{ E(s*|n}} = E{nn® + o*n)

Special Case. The number n of particles emitted from a substance in ¢ seconds is a
Poisson RV with parameter At. The energy X, of the kth particle has a Maxwell
distribution with mean 3k7 /2 and variance 3k>7%/2 (see Prab. 8-5). The sum s in
(8-46) is the total emitted energy in ¢ seconds. As we know E{n) = Ar, Efn) =
A*t2 + At [see (5-37)]. Inserting into (8-47) and (8-48), we obtain

3kTAt L 15Kk2TRAe
E{S} = > o= ——4—

Characteristic Functions and Normality
The characteristic function of a random vector is by definition the function
D(Q) = E{e/2%} = Efelomit = tuaxn) = (1) (8-50)
where
X =[5 X Q=[w,...,;0,]

As an application, we shall show that if the RVs x; are independent with
respective densities f,(x;), then the density f.(z) of their sumz = x; + - -+ +x,
equals the convolution of their densities

£(2) = fi(2)* - = f(2) (8-51)
Proaf. Since the RVs x; are independent and el depends only on x;, we
‘conclude that from (8-24) that
E{C'"“‘""'* SIS pleltifi) - - Ff pltiaxa]
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Hence

(1)3(&)) = E(e’"’“" b ror ¢\..)‘ = ([’1(“’) SO d)“( UJ) (352]
where @,(@) is the characteristic function of x,. Applying the convalution
theorem for Fourier transforms, we obtain (8-51).

Example 8-8. (a) (Bernoulli trials) Using (8-52) we shall rederive the fundamental
equation (3-13). We define the RVs x, as follows: x; = 1 if heads shows at the jth
trial and x, = 0 otherwise. Thus

P{x; =1} = P{h} =p Plx; =0} =Pt} =4 P (@) = pe’™ + g (8-53)
The RV z=x; + -+ +x, takes the values 0,1,..., n and fz =k} is the event
{k heads in i tossings). Furthermore,

O.(w) = Efe'™ ) = Z Plz=k}e** (8-54)
k=0

The RVs x; are independent because x; depends only on the outcomes of the ith
trial and the trials are indépendent. Hence [see (8-52) and (8-53)]

n
&, (w) =(pe +q)" = ¥ (2]1":4‘“‘”(1""
k=0
Comparing with (8-54), we conclude that
Plz = k} = P{k heads) = ( )p‘q" & (8-35)
(b) (Poisson theorem) We shall show that if p < I, then
e~ " (np)t
k!

as in (3-41). In fact, we shall establish a more general result. Suppose that the RVs
x; are independent and each takes the value 1 and 0 with respective probabilitics
p;and g, = | — p,. If p; < 1, then

Pla=k) =

el < g g — 1) = pret 4 g, = B, (w)
With z = x; + --- +x,, it follows from (8-52) that
D (@) = e MM o el =) gatet 1)

where A= pi i p This leads to the conclusion that [see (5-79)] the RV z is
approximately Poisson distributed with parameter a. It can be shown that the
result is exact in the limit if

P =0 and e s e as n—x

NORMAL VECTORS. Joint normality of n RVs x; can be defined as in (6-15):
Their joint density is an exponential whose proncnt is a negative quadratic. We
give next an equivalent definition that expresses the normality of # RVs in
terms of the normality of a single RV,
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DEFINITION. The RVs x; are jointly normal iff the sum

ax; + o Fdx, = AX! (8-56)

n=n
is a normal RV for any A.
We shall show that this definition leads to the following conclusions: If the
RVs x, have zero mean and covariance matrix C, then their joint characteristic
function equals

D(Q) = exp{—10CO} (8-57)
Furthermore, their joint density equals
1
FOx) = ——— expl—2XC X'} (B-58)
(27) A

where A is the determinant of C.

Proof. From the definition of joint normality it follows that the RV

W=wXx; + " +o,x,=0X (8-59)

ntn

is normal. Since E{x,} = 0 by assumption, the above yields [see (8-26)]

=

Ew) =0 EwY) = Tow,C, =a
()

Setting 7 = 0 and @ = 1 in (5-63), we obtain

a,

Efe™} = cxp[— —

This yields

E[einx’} = exp{ - ; Ew,chu} (8-60)
iJ
as in (8-57). The proof of (8-38) follows from (8-57) and the Fourier inversion
theorem.

Note, finally, that if the RVs x, are jointly normal and uncorrelated, they
are independent. Indeed, in this case, their covariance matrix is diagonal and its
diagonal elements equal ;>. Hence €' is also diagonal with diagonal clemerits
1 /a*. Inserting into (8-38), we obtain

I W .
f(x.....,x"J=;lT‘/uT)..°"P{‘5(}?+ *,;,,2)}

Example 8-9. Using characteristic functions, we shall show that if the RVs x, arc
jointly normal with zero mean, and £{x,x;) = €, then

E{xxox:%,} = CpCqy + CaChy + ClaCig (8-61)
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Progf. ‘We expand the exponentials on the left and right side of (8-60) and we show
explicitly only the terms containing the factor ww;wqw

I :
Efeitum+ WAy = s +HE((‘”:"| U eed +’-"4‘4)~] +

24
= Sheer 4—!5{‘1‘:‘3‘4}“’1“‘2‘”]“)4

I 11 2
= ({]) =N

Il

8
o g (CiaCsi + CiaCas + CryCoi)w,w w0,

Equating coeflicients, we obtain (8-61).

Complex normal vectors. A complex normal random vector is a vector 7 —
X +iY =lz,..., z,,] the components of which are n jointly normal RVs 7, =
x; + Jy,. We shall assume that E{z;} = 0. The statistical properties of the vector
Z are specified in terms of the joint density

FAZ) S F(Xiae s Xy Yiroen V)

of the 2n RVs x; and y,. This function is an exponential as in (8-58) determined
in terms of the 21 by 2n matrix

D= [C.\'.\' C.\’}}
CYX C)')’

consisting of the 2n* + n real parameters Efx;x;), Ely, ), and E{x;y;}). The
corresponding characteristic function

P2(Q) = E{exp(jux; + =+ +ux, + 0y, + 0 +0,%,)))

At

is an exponential as in (8-60):

e o O Ut
®,(0) = exp(— 1 =g w2 ”[]
A0 =eml-10) o-lv v &L
where U= [uy, ... u,], V=[v,,...,v,], and Q = U + jI".
The covariance matrix of the complex vector Z is an n by n hermitian
matrix

Czz = E{Z'2*) = Cyy + Cyy — j(Cxy = Cyy)
with elements Efz,z*). Thus, C,, is specified in terms of n® real parameters.
From this it follows that, unlike the real case, the density fAZ) of Z cannot in
general be determined in terms of C,, because f,(Z) is a normal density
consisting of 2n* + n parameters. Suppose, for example, that »# = 1. In this
case, Z = z = x + jy is a scalar and C,, = E[|z[?}. Thus, C,, is specified in
terms of the single parameter o2 = E{x? + y2}. However, fi(z) = flx,y) is a
bivariate normal density consisting of the three parameters o, a,, and E{xy). In
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the following, we present a special class of normal vectors that are statistically
determined in terms of their coyariance matrix. This class is important in
modulation theory (see Sec. 11-3).
Goodman’s Theorem. If the vectors X and Y are such that
Cyx=Cyy Cxy= —Cyx
and Z = X +jY, then
Crz = 2(Cyx — jC,\‘r)

f(Z) = exp{—ZC51Z*) (8-62a)

1
"T"‘CZ/I

1
P,(0) = ch{—Z(ICuﬂ*} (8-62b)

Proof. 1t suffices to prove (8-62b); the proof of (8-62) follows from (8-62b) and
the Fourier inversion formula. Under the stated assumptions,

Cxx Cyrl|lur
g=lu V][ —Cxy C.\r,\'H V']
= UCxyU" + VCxyU" = UCy V' + VCy iV

Furthermore Ciy = Cyy and C, = —Cy,. This leads to the conclusion that

VC g U = UC V" UC U = VCyoyV* = 0
Hence

30C,, 0 = (U + jV)(Cyxy —iCxy)(U"' = j¥') = Q
and (8-62b) results.

Normal quadratic forms. Given n independent N(0,1) RVs z;, we form the
sum of their squares

X=z}+ -t +z2

Using characteristic functions, we shall show that the RV x so formed has a
chi-square distribution with n degrees of freedom:

fulx) = yx" 72" le ™ 2U(x)

N, R. Goodman, “‘Statistical Analysis Based on Certuin Multivariate Complex Distribution,”
Annals of Math. Statistics, 1963, pp. 152-177.



200 SEQUENGES OF RANDOM VARIABLES

Proof. The RVs z; have a y*(1) distribution (see page 96); hence their charac.
teristic functions are obtained from (5-71) with m = 1. This vields

. 1
D.(s5) = E{e*}) = ———
SIS Vi
From (8-52) and the independence of the RVs 1_: it follows therefore that
1

va —2s)"

Q.\'('s‘) = ¢1(5.) H.QM(S) ==

Hence [see (5-71)] the RV x is y2(n).
Note that

1 1 1
X =
v(l = 25)’” \/(1 = 25)" V‘(]' _ 2&‘)".'"

This leads to the conclusion that if the RVs x and y are independent, x is y*(m)
and y is y*(n), then the RV

z=x+y is x*(m+n) (8-63)

Conversely, if z is y2(m + n), x and y are independent, and x is y*(m),
then y is x2(;2). The following is an important application.

Sample variance. Given » i.i.d. N(n, &) RVs x;, we form their sample variance

S I
o ._—Z s \ _
$=—Ze-® K=o L (8-64)

=1

as in Example 8-4. We shall show that the RV

7 =

(n—1)s* 1 (x,—X
i

2
) is x2(n—1) (8-65)

i=1 A5

Proof. We sum the identity
(xi— )" = (x,—X+%—1)° = (x, -+ (X—n)" +2x, ~ D(E-n)
from 1 to n. Since L(x; — ¥) = 0, this yields

)5("‘_7’):)":("‘"’_‘)2+n(i;"]2 (8.66)

o =1 o

i=1
It can be shown that the RVs % and 52 are independent (see Prob. 8-17). From

this it follows that the two terms on the right of (8-66) are independent.
Furthermore, the term

2

2 (2
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is,,\fz(l) because the RV X is N(n, /v ). Finally, the term on the left side is
x (n) and the proof is complete.
From (8-65)»and (5-71) it follows that the mean of the RV (n — 1)s* for?
equals n — 1 and its variance equals 2(n — 1). This leads to the conclusion that
o2 4 iy
E(s®) = (n — l)m =i Vars? = 2(n — 1) o Eild

(n—l)3=n—l
(8-67)

Example 8-10. We shall verify the above for n = 2, In this case,

- Xt X 5 B y 5
X = 5 5= (x; =X)" + (x5 — %)+ 5(x; —x3)°

The RVs x; -+ x, and x; — x, are independent because they are jointly normal
and E{x, — x;} = 0, E{{x; — x,)(x; + x5)} = 0. From this it follows that the RVs
x and s are independent. But the RV (x, — x,)/a/2 = s /o is N(O, 1); hence its
square s° /o2 is ¥>(1) in agreement with (8-65).

8-3 MEAN SQUARE ESTIMATION

In Sec, 7-5, we considered the problem of estimating an RV s by a linear and a
nonlinear function of another RV x. Generalizing, we consider now the problem
of estimating s in terms of n RVS x,,...,x, (data). This topic is developed
further in Chap. 14 in the context of infinitely many data and stochastic
processes.

LINEAR ESTIMATION. The linear MS estimate of s in terms of the RVs x; is the

sum
§=ax,+ - +aXx (8-68)

atn

where a, ..., a, are n constants such that the MS value
P=E{(s— 8% =E{[s - (a)x + -+ +a,x,)]’) (8-69)
of the estimation error s — § is minimum.
Orthogonality principle. P is minimum if the error s — § is orthogonal to the
data x:
E{[s.— (ax; + - +a,x,)]x} =0 i=1...,.n (8-70)

Proof. P is a function of the constants «; and it is minimum if
aP

— = E[=2[s — (ayx, + -+ +a,x,)]x) =0

da;

and (8-70) results. This important result is known also as the projection theorem.
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Setting ¢ = 1,..., n in (8-70), we obtain the system
Ryjay + Ryja; + - + R4, = Ry

Ry a1 Rya, H= R a. =Ry, (8-71)

Riqay + Rsa, + 4 +R_a, =R,

nnn
where R;; = E{x;x,} and R,; = E{sx ).
To solve this system, we introduce the row vectors

X=[xl""-‘xu Az[a“...,a" R”=[R“:.....R(,"]

and the data correlation matrix R = E{X‘X} where X' is the transpose of X,
This yields

AR = R, A=RyR™! (8-72)

Inserting the constants a, so determined into (8-69), we obtain the LMS
error. The resulting expression can be simplified. Since s — § L x, for every i,
we conclude that s — & 1 §; hence

P'= E{(s — 8)s) = E{s?} — AR}, (8-73)

Note that if the rank of R is m < n, then the data are linearly dependent.
In this case, the estimate § can be written as a linear sum involving a subset of
m linearly independent components of the data vector X.

Geometric interpretation. In the representation of RVs as vectors in an abstract
space, the sum § = a\x, + --- +a,x, is a vector in the subspace S, of the data
x, and the error € = s — § is the vector from s to § as in Fig. 8-2a. The
projection theorem states that the length of ¢ is minimum if € is orthogonal to
X;, that is, if it is perpendicular to the data subspace S,. The estimate § is thus

the “projection™ of s on S,

> - X

,, )

FIGURE 8-2
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If's is'a vector in S, then § = s and P-= 0. In this case, the n + 1 RVs
8§, X 45 -+ -+ Xy @re lincarly dependent and the determinant A, | , of their correla-
tion matrix is 0. If s is perpendicular to S, then 8 = () and ”I’ = E{ls|?). This is
the case if's is orthogonal to all the data %, that is, ift Ry, = 0 for ji + 0,

Nonhomogeneous estimation. The estimate (8-68) can be improved if a constant
is'added to the sum. The problem now is to determine # + 1 parameters ay
such that if

S=aytax, + - 4ax (8-74)

ri“ll
then the resulting MS error is minimum. This problem can be reduced to the
homogeneous case if we replace the term e, by the product a,x, where e
Applying (8-70) to the enlarged data set

XpiXyse X, where Elxgx;} = { Elx:d = m, e
1 i=0
we obtain
ag tmyey e Egua, =n
mag + Rya, + - + Ra, =Ry,

............................ (8.75)
.0+ Ry + - + R, « =R,

nntn

Note that, if 5, =7, = 0, then (8-75) reduces to (8-71). This yields «, = 0 and
a)l = (1".

Nonlinear estimation. The nonlinear MS estimation problem involves the de-
termination of a function g(x,,...,x,) = g(X) of the data x, such as to
minimize the MS error

P = E{[s - &(X)]’} (8-76)

We maintain that P is minimum if
g(X) = E{slx) = [ sf(s|x) ds (877)

The function f,(s|X) is the conditional mean (regression surface) of the RV s
assuming X = X.
Proof. The proof is based on the identity [see (8-42)]

P = E{[s — e(X)]*) = E{E{[s - (0]"1X]} (8-78)
Since all quantities are positive, it follows that P is minimum if the conditional

MS error

E{[s —g(X)]*1x] = f_:[-‘ — g(X)]*fi(s1x) ds (8-79)
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is minimum. In the above integral, gX') is constant. Hence the integral js
minimum if g(X) is given by (8-77) [see also (7-71)].

The general orthogonality principle: From the projection theorem (8-70) it
follows that
E{[s ‘5](('|x: <o R e ] (8-80)

for any ¢;,...,¢,. This shows that if § is the linear MS estimator of s, the
estimation error s — 8'is orthogonal to any linear funetiony = ¢;x, + -+ + gk
of the data x,.

We shall now show that if g(X) is the nonlinear MS estimator of s. the
estimation error s — g(X) is orthogonal to any function w(X), linear or nonlin-
car, of the data x:

Ef[s —g(X)]w(X)} = 0 (8-81)

Proaf. We shall use the following generalization of (7-60):
E{[s — g(0)]w(X)) = E(w(X)E(s — g(X)X}) (8-82)
From the linearity of expected values and (8-77) it follows that
E{s — g(X)|X} = E{s|X} — E{g(X)|X) =0
and (8-81) results.
Normality. Using the above, we shall show that if the RVs $, X}y 000X, are

jointly normal with zero mean, the linear and nonlinear estimators of s are
equal:

§=apx; + - +a,x, = g(X) = E{s|X} (8-83)
Proof. To prove (8-83), it suffices to show that § = E{s|X). The RVs s — § and
x; are jointly normal with zero mean and orthogonal; hence they are indepen-
dent. From this it follows that

Efs — 31X} = E{s — 3} = 0 = E(s|X} — E(3IX)
and (8-83) results because E{§|X) = &

Conditional densities of normal RVs. We shall use the preceding result to
simplify the determination of conditional densities involving normal RVs. The
conditional density f(s].X) of s assuming X is the ratio of two exponentials the
exponents of which are quadratics, hence it is normal. To determine it, it
s;:fﬁces, therefore, to find the conditional mean and variance of s. We maintain
that

E(slX) =5 E((s - 8)%IX) = E{(s - 9)}) =P (8-84)
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The first follows from (8-83). The second follows from the fact that s — § is
orthogonal and, therefore, independent of X. We thus conclude that
1
_/‘(Sf-l'.w-v.,r,:) = —p s —(agx + = agx )E20 (8-85)

27P

Examp!e 8-11.' The RVs x; and X, are jointly normal with zero mean. We shall
determine their conditional density fCxs]x ). As we know [see (7-78))

=

E{x;|x;} = ax -
{ il l . Ry

sz:m =P = E{(x; — ax))x,} = Ry — aR,,
Inserting into (8-85); we obtain

et ax ;- 2p

A _ I
I("I“l) 3 ‘!m

Example 8-12. We now wish to find the conditional density SCxslxy, x5). In this
case,

E{xylxy x5} = apxi + a;x,
where the constants a; and a5 arc determined from the system
Rya + Ryya, = Ry Ryaay + Rsyyay = Ry
Furthermore [see (8-84) and (8-73)]
Tliexe = P = Ryg = (Rizay + Ryay)
and (8-85) yields

e~ (Xa—aixy—ayea)t 28

JCaslx,, x;) =

2w P

Example 8-13. In this example, we shall find the two-dimensional density
(x5, x3)x;). This involves the evaluation of five parameters [see (6-15)) two
conditional means, two conditional variances, and the conditional covariance of
the RVs x, and x, assuming x.

The first four parameters are determined as in Example 8-11:

Riz Ry;
E{x,lx;} = R_"l E{x;lx} = R_”«"l
1
Ri Ri
012::... =Ry - '_]*] ”—lzjlan =Ry~ 'R_“

The conditional covariance

(. R Ris
Conin, = E . X3 = ‘R—”’H x5= ﬁ:xl

is found as follows: We know that the errors X, — Rpx /Ry, and x5 — Rygx, /Ry,

X, =;r'} (8-86)
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are independent of x,. Hence the condition x; = x; in (8-86) can be removed.
Expanding the product, we obtain

_ RiRys
Ct:nu, =Ry — R—”

This completes the specification of flx,, xslx,).

Orthonormal Data Transformation

If the data x; are orthogonal, that is, if R;; = 0 for i # j, then R is a diagonal
matrix-and (8-71) yields

Ry E{sx) g

a; = R — E{xl} ( '87)

i i

Thus the determination of the projection § of s is simplified if the data x, are
expressed in terms of an orthonormal set of vectors. This is done as follows. We
wish to find a set {i;) of n orthonormal RVs i, linearly equivalent to the data set
{x,}. By this we mean that each i, is'a linear function of the elements of the sct
{x,} and each x, isa linear function of the elements of the set (i, }. The set {i.)
is not unique. We shall determine it using the Gram-Schmidt method (Fig.
8-2b). In this method, each i, depends only on the first k& datax,,...,x,. Thus

AN
L) = y1X

i =% +yix, (8-88)

in 'Yilxl + -Y',.!'xl 35 05 +')’,:’x"

1

In the notation %, k is a superscript identifying the kth equation and r is a
subscript taking the values 1 to k. The coefficient ¥| is obtained from the
normalization condition

E{ilz} = (Y:)ZRH =i

To find the coefficients y; and 3, we observe that i, L x, because i, L i, by
assumption. From this it follows that

Elizx)}) =0= 'leRn + 722R2|

The condition Efi3} = 1 yields a second equation. Similarly, since i, L i, for
r <k, we conclude from (8-88) that i, L x, if r <k. Multiplying the kth
equation in (8-88) by x, and using the above, we obtain

Efiyx,) =0=9y{R,, + -+~ +yfR,, l<r<k-1  (889)

This is a system of k — 1 equations for the k unknowns y%,...,yf. The
condition E{if} = 1 yields one more equation.
The system (8-88) can be written in a vector form

I=XTI' (8-90)
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where I is a row vector with elements i,. Solving for X, we obtain

X, = I ) X=1Tr"!' =1L
X =i, + 151, (8-91)
X, = It +UGis + - Hi2h

In the above, the matrix ' and its inverse are upper triangular

Y1

! hoap e
Y2 Y5 2 "
F= [ Pnn s, L= 2l [
0
0 1 I
Y

Since Efii;} = (i — j] by construction, we conclude that

E(I'T) =1, = E{I"X'XT) = I"E[(X‘X}I’ (8-92)
where 1, is the identity matrix. Hence
I"RT =1, R=L'L RS (8-93)

We have thus expressed the matrix R and its inverse R as products of an
upper triangular and a lower triangular matrix [see also Cholesky factorization
(14-79)].

The orthonormal base {i,} in (8-88) is the finite version of the innovations
process i[n] introduced in Sec. (12-1). The matrices I' and L correspond to the
whitening filter and to the innovations filter respectively and the factorization
(8-93) corresponds to the spectral factorization (12-3).

From the linear equivalence of the sets {i,} and (x), it follows that the
estimate (8-68) of the RV s can be expressed in terms of the set {i,}:

§=byi, + --- +b,i, = BI'

where again the coefficients b, are such that
s —8 Ly l<k<n
This vields [see (8-92)]
E{(s — BI')I} = 0 = E{sI} - B

from which it follows that

B'= E{sl) = E{(sXT} = R,I' (8-94)

Returning to the estimate (8-68) of s, we conclude that
§ = BY = BI'X"' = AX! A= BI" (8-95)

This simplifies the determination of the vector A if the matrix I" is known.
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8-4 STOCHASTIC CONVERGENCE AND
LIMIT THEOREMS

A fundamental problem in the theory of probability is the determination of the
asymptolic properties of random sequences. In this section, we introduce the
subject, concentrating on the clarification of the underlying concepts, We start
with a simple problem.

Suppose that we wish to measure the length @ of an object. Due to
measurement inaccuracies, the instrument reading is a sum

X=a-+uwv
where v is the error term. If there are no systematic errors, then v is an RV
with zero mean. In this case, if the standard deviation ¢ of v is small compared
to a, then the observed value x({) of x at a single measurement is a satisfactory
estimate of the unknown length a. In the context of probability, this conclusion
can be phrased as follows: The mean of the RV x equals @ and its variance
equals o2, Applying TchebychefFs inequality, we conclude that
2

Pllx—al <&} > 1— U, (8-96)
=

If, therefore, o < g, then the probability that |x — al is less than that & is close
to 1. From this it follows that “almost certainly” the observed x(Z) is between
a — ¢ and a + &, or equivalently, that the unknown a is between x({) — ¢ and
x(£) + . In other words, the reading x({) of a single measurement is “almost
certainly” a satisfactory estimate of the length a as long as ¢ < a. If & Is not
small compared to a, then a single measurement does not provide an adequate
estimate of @. To improve the accuracy, we perform the measurement a large
number of times and we average the resulting readings, The underlying proba-
bilistic model is now :a product space

H = A S KA
formed by repeating n times the experiment .~ of a single measurement. If the
measurements are independent, then the ith reading is a sum
X, =a+w,

where the noise components v; are independent RVs with zero mean and
variance o>. This leads to the conclusion that the sample mean
gl it A, (897)
n
of the measurements is an RV with mean a and variance o2 /n. If, therefore, n
is 50 large that &® < na?, then the value x(£) of the sample mean ¥ in a single
performance of the experiment .~" (consisting of n independent measure-
ments) is a satisfactory estimate of the unknown a.
To find a bound of the error in the estimate of a by %, we apply (8-96). To
be concrete, we assume that n is so large that o®/na® = 107%, and we ask for
the probability that x is between 0.9a and 1.1a. The answer is given by (8-96)
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with & = (.1a.

100¢*

n
Thus, if the experiment is performed n = 10°¢2/a> times, then “almost cer-
tainly™ in 99 percent of the cases, the estimate % of @ will be between 0.94 and
1.1a. Motivated by the above, we introduce next various convergence modes
involving sequences of random variables.

Pl0.9a2 <x < l.la}) > 1 -

= (.99

DEFINITION. A random sequence or a discrete-time random process is a se-
quence of RVs
Xiaes Xy nss (8-98)
For a specific £, x,(£) is a sequence of numbers that might or might not
converge. This suggests that the notion of convergence of a random sequence
might be given several interpretations:
Convergence everywhere (e) As we recall, a sequence of numbers x,
tends to a limit x if; given £ > 0, we can find a number ny, such that
b [ for every n > n, (8-99)
We say that a random sequence x,, converges everywhere if the sequences
of numbers x,({) converges as above for every {. The limit is a number that
depends, in general, on £. In other words, the limit of the random sequence x,,
is an RV x:
X —TiX as n — x

Convergence almost everywhere (a.e.) 1 the set of outcomes £ such that

limx, (&) = x(£) as n— = (8-100)

exists and its probability equals 1, then we say that the sequence x, converges
almost everywhere (or with probability 1). This is written in the form

P{x, —» x} =1 as n—® (8-101)

In the above, {x, — x] is an event consisting of all outcomes ¢ such' that

x,(£) = x({). :
Convergence in the MS sense (MS) The sequence x,, tends to'the RV x in
the MS sense if
Eflx, —xI*} >0 as n-o» (8-102)
This is called fimit in the mean and it is often written in the form
lLim.x, =x n -

Congvergence in probability (p) The probability P(lx — x| > £} of the
event {|x — x,| > &} is a sequence of numbers depending on . If this sequence
tends to 0:

Pllx=x;| =&} =0 n-3>w (8-103)



210 SEQUENCES OF RANDOM VARIABLES

for any & > 0, then we say that the sequence x,, tends to the RV x in probability
(or in measure). This is also called stochastic convergence,

Convergence in distribution. (d) We denote by F(x) and F(x) respec-
tively the distribution of the RVs x, and x. If

Ei(¥) = F(x) = (8-104)

for every point x of continuity of F(x), then we say that the sequence x,, tends
to the RV x in distribution. We note that, in this case, the sequence x,({ ) need
not converge for any £,

Cauchy criterion  As we noted, a deterministic sequence x,, converges if it
satisfies (8-99). This definition involves the limit x of x,. The following theo-
rem, known as the Cauchy criterion. establishes conditions for the convergence
of x, that avoid the use of x: If

Basm =%l 20 a5 n—>o (8-105)

for any m > 0, then the sequence x, converges.
The above theorem holds also for random sequence. In this case, the limit
must be interpreted accordingly. For example, if

E{1%,m =%, =0 a5 no>e

for every m > 0, then the random sequence X, converges in the MS sense,

Comparison of convergence modes. In Fig. 8-3, we show the relationship
between various convergence modes. Each point in the rectangle represents a
random sequence, The letter on each curve indicates that all sequences in the
interior of the curve converge in the stated mode. The shaded region consists of
all sequences that do not converge in any sense. The letter d on the outer curve
shows that if a sequence converges at all. then it converges also in distribution.
We comment next on the less obvious comparisons:
If a sequence converges in the MS sense, then it also converges in
probability. Indeed, Tchebycheffs inequality yields
2:
Plx, — x| > 2} < ——E{"‘"Ez 1

Ifx, — xin the MS sense, then for a fixed & > 0 the right side tends to 0; hence
the left side also tends to 0 as n — « and (8-103) follows. The converse,

FIGURE 8-3
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"

(a) (5)

FIGURE 8-4

however, iis not necessarily true. If x, is not bounded, then P{|x, — x| > &}
might tend to 0 but not E{[x, — x|%}. If, however, X, vanishes outside some
interval (—¢, ¢) for every n > n,, then p convergence and MS convergence are
equivalent,

It is self-evident that a.e. convergence implies p convergence. We shall
show by a heuristic argument that the converse is not true. In Fig. 8-4, we plot
the difference |x,, — x| as a function of n where, for simplicity, sequences are
drawn as curves. Each curve represents, thus, a particular sequence |x,({) —
x(¢)]. Convergence in probability means that for a specific n > n, only a small
percentage of these curves will have ordinates that exceed & (Fig. 8-4a). It is, of
course, possible that not even one of these curves will remain less than ¢ for
every n > n,. Convergence a.e., on the other hand, demands that most curves
will be below & for every n > n, (Fig. 8-4b).

The law of large numbers (Bernoulli). In Sec. 3-3 we showed that if the
probability of an event 2 in a given experiment equals p and the number of
successes of &7 in n trials equals &, then

k
Pl=: =D
We shall reestablish this result as a limit of a sequence of RVs. For this

n
purpose, we introduce the RVs

= = {1 if .27 occurs at the ith trial
‘ 0 otherwise

< s} — 1 as n—w (8-106)

We shall show that the sample mean
x‘ + as e +xn

Xy = n

of these RVs tends to p in probability as n — .
Proof. As we know

E(x} = E(x,}) =p <al=pg o5 =—
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Furthermore, pg = p(l — p)'< 1/4. Hence [see (5-57)]

P{lx |<}>]——IE’-> = =
fxeis oS ol ne> thEs Ty
This reestablishes (8-106) because X,({) = k/n if &7 occurs k times,

The strong law of large numbers (Borel) It can be shown that X, tends (o
p not only in probability, but also with probability 1 (a.e.). This result, due to
Borel, is known as the strong law of large numbers. The proof will not be given.
We give below only a heuristic explanation of the difference between (8-106)
and the strong law of large numbers in terms of relative frequencies.

Frequency interpretation We wish to estimate p within an error e = 0.1, using as its
estimate the sample 'mean X,,. If 7 = 1000, then
39
= =
dne= 40

P{Ix, —pl <01} > 1

Thus, if we repeat the experiment at least 1000 times, thew in 39 out of 40 such runs, our
error |X, — p| will be less than 0.1.

Suppose, now, that we perform the experiment 2000 times and we determine the
sample mean X, not for one n but for every n between 1000 and 2000. The Bernoulli
version of the law of large numbers leads to the following conclusion: If our experiment
(the toss of the coin 2000 times) is repeated a large number of times, then. for a specific
n larger than 1000, the error X, —/p| will exceed 0.1 only in one run out of 40. In other
words, 97.5 percent of the runs will be “good.” We cannot draw the conclusion that in
the good runs the error will be less than 0.1 for every n between 1000 and 2000. This
conelusion, however, is correct, but it can be deduced only from the strong law of large
numbers,

Ergodicity. Ergodicity is a topic dealing with the relationship between statistical
averages and sample averages. This topic is treated in Sec. 12-1. In the
following, we discuss certain results phrased in the form of limits of random
sequences.

Markoff’s theorem. We are given a sequence x; of RVs and we form their
sample mean
X+ o Fx,

Xp =

n

Clearly, X, is an RV whose values %,(£) depend on the experimental outcome .
We maintain that, if the RVs x; are such that the mean 7, of %, tends to a limit
1 and its variance &, tends to 0 as n — oo

E®,) =7, —==n & =£E[X,-7,))-=20 (8107

n—+x
then the RV X, tends to 7 in the MS sense
E((x,, - n)i} —— 0 (8-108)

n-sw
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Proof: The proof is based on the simple inequality
%, = ml* <2I%, —7,1° + 27, —I?
Indeed, taking expected values of both sides, we obtain

E((x, — )%} =< 2E((%, —7,)°) + 2(7, — n)°
and (8-108) follows from (8-107).

COROLLARY (Tchebycheff’s condition). If the RVs x, are uncorrelated and

g+ o el
e (8:109)

‘then

1 .
X, 5o m = lim — ) E{x}
i=1

in the MS sense.

Proof. It follows from the theorem because, for uncorrelated RVs, the left side
of (8-109) equals &, .

We note that Tchebycheff’s condition (8-109) is satisfied if g; < K < = for
every i. This is the case if the RVs x; are i.i.d. with finite variance.

Kinchin We mention without proof that if the RVs x, are i.i.d., then their
sample mean X, tends to m even if nothing is known about their variance. In
this case, however, X, tends to m in probability only. The following is an
application:

Example 8-14, We wish to determine the distribution F(x) of an RV x defined in
a certain experiment. For this purpose we repeat the experiment # times and form
the RVs x; as in (8-12). As we know, these RVs are iid. and their common
distribution equals F(x). We next form the RVs

; 1 if x,<x

W=V i x>
where x is a fixed number. The RVs y,(x) so formed are also i.i.d. and their mean

cquals
E{y,(x)} =1 x Py, = 1} = P{x, < x} = F(x)
Applying Kinchin’s theorem to y,(x), we conclude that
yi(x) + -0+ y(x)
n

in probability. Thus, to determine F(x), we repeat the original experiment o limes
and count the number of times the RV x is less than x. If this number equals &
and n is sufficiently large, then F(x) = k/n. The above is thus a restatcment of
the relative frequency interpretation (4-3) of F(x) in the form of a limit theorem.

2 Fx)

"o
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The Central Limit Theorem
Given n independent RVs x,, we form their sum
o =20 ¢ RS 5 ¢
This is an RV with mean n = 7, + -+ +n, and variance o° = o + -~ 442,
The central limit theorem (CLT) states that under certain general conditions,

the distribution F(x) of x approaches a normal distribution with the same mean
and variance:

(8-110)

F(x) =G(x_ n)

o

as n increases. Furthermore, if the RVs x; are of continuous type. the density
f(x) of x approaches a normal density (Fig. 8-5a):

pr SRR (8-111)

1
=
f(2) o2
This important theorem can be stated as a limit: If z = (x — n) /o then

2/2

1
Fi(z) 7= G(2) T2t Ee*

for the general and for the continuous case respectively. The proof is outlined
later.

The CLT can be expressed as a property of convolutions: The convolution
of a large number of positive functions is approximately a normal function [see
(8-51)].

The nature of the CLT approximation and the required value of n for a
specified error bound depend on the form of the densities fi(x). If the RVs x;
are i.id., the value n = 30 is adequate for most applications. In fact, if the

e‘(:—m’f?a’

N

N

/ \
/ A\
7 a

of

(a) (%)

e

k

FIGURE B-5
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funetions f,(x) are smooth, values of n as low as 5 can be used. The next
example is an illustration,

Example 8-15. The RVs x; are i.i.d. and uniformly distributed in the interval (0, 1),
We shall compare the density f,(x) of their sum x with the normal approximation
(8-111) for n = 2 and n = 3. In this problem,
T

o U5
'!(_TT' m=n

=

1 ~

n =2 f(x)isa triangle obtained by convolving a pulse with itself (Fig. 8-6)

T2
&

3

n="T F-=

n =3 f(x) consists of three parabolic picees obtained by convolving a
triangle with a pulse

l

1 [

._ﬂ T:_T_: . _i y— 2= VST 7T
ni= = f(m)—T e

As we can'see from the figure, the approximation error is small even for such small
values of n.

For a discrete-type RVs F(x) is a staircase function approaching a normal
distribution. The probabilities p, however, that x equals specific values x, are,
in general, unrelated to the normal density. Lattice-type RVs are an exception:

@ i@ X=X+ X+%3
7
o T T 2T 37x
fx) f(x)
i - %\/%—e""‘""’" el 71_/%_:"" S
(a) (&) (c)

FIGURE 8-6
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If the RVs x; take equidistant values ak,, then x takes the values ak and for
large n, the discontinuities p, = P{x = ak} of F(x) at the points X, = ak equal
the samples of the normal density (Fig. 8-5b):

1 e
g (@k=m)*" /20t )
o (8-112)

P{x = ak} =

We give next an illustration in the context of Bernoulli trials. The RVs x, of
Example 8-7 are iii.d. taking the values 1 and 0 with probabilities p an:J q
respectively; hence their sum x is of lattice type taking the values k =0, . ... .
In this case,

Efx} = nE{x;} = np ol =no’ = npq

& (i

Inserting into (8-112), we obtain the approximation

1 5
P{x =k} = (2):)"@*""‘ = = (koY /204 (8-113)

¢ V2mnpa

This shows that the DeMoivre—Laplace theorem (3-27) is a special case of the
lattice-type form (8-112) of the central limit theorem.

Example 8-16. A fair coin is tossed six times and x, is the zero-one RV assaciated

with the event {heads at the ith toss). The probability of k& heads in six tosses
cquals

1
P{x:k}:(g)?=f"k X=X X g

In the following table we show the above probabilities and the samples of
the normal curve N(n, o?) (Fig. 8-7) where

n=np=3 a? =npg =135
k 0 1 2 3 4 5 6
P 0.016 0094 023¢ 0312 0234 0094 0016
Nin,a) | 0016 0086 0233 0326 0.233 0086 01016

ik =3F A
P Lt R

£ —

1
Var
le\
7 N
0 I 2 3 4 5 6

k  FIGURE 8-7
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[-:RROR1 CORRECTION. In the approximation of fx) by the normal curve
N(n,0°), the error

e % f2a=

1
A

results where we assumed, shifting the origin, that 5 = 0, We shall express this
error in terms of the moments

m, = E{x"}
of x and the Hermite polynomials
Sk 3
oyE_m L) X~ /2
Hy(x) = (=1)"e*/ PP
=.t"‘~(§).r*’3+l'3(§)4r*‘4+~-- (8-114)

These polynomials form a complete orthogonal set on the real line:

[c_97‘:’,1['{,,(.1‘]”,,,(.\‘) dy = {:;'m n=im

— n+F=m

Hence £(x) can be written as a series

E(x)) =

A e X:
oA ey C,H,(—) 8-115
oV 27 L k§3 i 1 ( )

The series starts with & = 3 because the moments of e(x) of order up to 2 are
0. The coefficients C, can be expressed in terms of the moments m, of x.
Equating moments of order n = 3 and n = 4, we obtain [see (5-44)]

3loCy=my  Alo?Cy = my — 3c?

First-order correction. From (8-114) it follows that
Hyx) =x>—3x Hyj(x)=x*-6x>+3
Retaining the first nonzero term of the sum in (8-115), we obtain

L my (x° 3x _
e 20 4 o - (8-116)

60" | o o

1) = e

If f(x) is even, then my = 0 and (8-115) yields

1 ey | 1 pmy xt o 6x? .
ORISRt P Y S | i SR 1 || INTEET )
f(x) = V2T ¢ [1 ¥ 24(0"‘ 3](0’" a? ( )

Example 8-17, If the RVs x; are i.i.d. with density f;(x) as in Fig. 8-8a, then _[(‘x)
consists of three parabolic pieces (see also Example 8-12) and N(0, 1 /4) is its
normal approximation. Since f(x)is even and my = 13/80 (see Prob, 8-4), (8-117)



218  SEQUENCES OF RANDOM VARIABLES

it @
-+ ——— et
n=3 / \ 1)
0.5 ==
// — . +0.05 .
f(x)=flx) flx) =S 2
= e 3 =
=0i5i 0 N0 SRS
—0.05
(a) (b)
FIGURE 8-8
yields

(2 g S LR e
f(.l)~ ;c’ (]_F-FT?E =Xy

In Fig. 8-8h, we show the error_£(x) of the normal approximation and the
first-order correction error f(x) — f(x).

ON THE PROOF OF THE CENTRAL LIMIT THEOREM. We shall justify the
approximation (8-111) using characteristic functions. We assume for simplicity
that ;= 0. Denoting by ®(w) and P(w), respectively, the characteristic
functions of the RVs x, and x = x; + **+ +x,, we conclude from the indepen-
dence of x; that

P(w) = ®(w) - D(w)

Near the origin, the functions W(w) = In ®(w) can be approximated by a
parabola:

Y(w) = —30/0*  @(w) =e 2 for | <e (8-118)
If the RVs x; are of continuous type, then [sce (5:61) and Prob. 5-25]
D (0) =1 |B(w)| <1 forlw] #0 (8-119)

Equation (8-119) suggests that for small ¢ and large #, the function Pla) is
negligible for |w| > &, (Fig. 8-94). This holds also for the exponential ¢ /*
if & = = as in (8-123). From the above it follows that

P(w) = =70 /2 oo M2 _ gl 2 forag) o (8-120)

in agréement with (8-111).
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FIGURE 8-9

The exact form of the theorem states that the normalized RV
X = =t S . =
z= — o= o e g

o

tends to an N(0,1) RV as n — o

1
ful(2) sz —e 72 (8-121)

n—s= v -

A general proof of the theorem is given below. In the following, we sketch a
proof under the assumption that the RVs x; are i.i.d, In this case

o) = - =d0) o=ofn
Hence,
) (il =
.’(w) = 2% (U',& )
Expanding the functions ¥,(w) = In ®,(w) near the origin, we obtain
3.2
¥(w) = - —— + 0(w")

Hence,

0)2

(] 1 w?
‘If_.(w)=n\l»',-(?1/’—_lr)= —7"'0("/——];:; 5 (8-122)

This shows that ®.(w) — ™ /2 4s = oo and (8-121) results.
As we noted the theorem is not true always. The following is a set of

sufficient conditions:
(G) D.]Z 4 cea gt — (8-123)

n g%

(b) There exists a number a > 2 and a finite constant K such that

[ xfi(x)dx <K <= foralli (8-124)



220 SEQUENCES OF RANDOM VARIABLES

These conditions are not the most general. However, they cover a wide range of
applications. For example, (8-123) is satisfied if there exists a constant & > ()
such that g; > & for all i. Condition (8-124) is satisfied if all densities filx)are 0
outside a finite interval (—¢.¢) no matter how large.

Lattice type The preceding reasoning can also be applied to discrete-type
RVs. However, in this case the functions ®(w) are periodic (Fig, 8-954) and
their product takes significant values only in a small region near the points
w = 2mn/a. Using the approximation (8-112) in each of these regions, we
obtain

d(w) = ze--uxfuJAnm.,]:/E @y = — (&125)
i}

As we can see from (11A-1), the inverse of the above yields (8-112).
The Berry—Esseén theoremt This theorem states that if

E(x}} < ca? alli (8-126)
where ¢ is some constant, then the distribution F(x) of the normalized sum
xl + o + xﬂ > y)

Lt i
a

is close to the normal distribution G(x) in the following sense
= 4c
|F(x) — G(x)| <« — (8-127)
o

The central limit theorem is a corollary of (8-127) because (8-127) leads to
the conclusion that

f(k) — G(x) as o o > (8-128)

This proof is based on condition (8-126). This condition, however, is not too
restrictive. It holds, for example, if the RVs x, are i.i.d. and their third moment
is finite.

: We note, finally, that whereas (8-128) establishes merely the convergence
in distribution of X to a normal RV, (8-127) gives also a hound of the deviation
of F(x) from normality.

The central limit theorem for products. Given n independent positive RVs x,.
we form their product:

Y= XX, fhex x; >0

A, Papoulis: “Narrow-Band Systems and Gaussianity,” IEEE Transactions on Information Theary,
January 1972,
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THEOREM. For large #, the density of y is

1

1 ;
f(y) = i cxp{—?(ln y- n)'}b"( ¥) (8-129)

approximately lognormal:

where
1= Y E(lnx} ¢>= ¥ Var(lnx,)
rel

Proof. The RV
z=Ilny=Inx; + - +lnx,

is the sum of the RVs Inx,. From the CLT it follows, therefore, that for large n,
this RV is nearly normal with mean 7 and variance o2, And since y = % we
conclude from (5-10) that y has a lognormal density. The theorem holds if the
RVs Inx; satisfy the conditions for the validity of the CLT.

Example 8-18. Suppose that the RVs x; are uniform in the interval (0, 1), In this

case,
| ; il 3
E{lnx,} = [ Inxde = —1 !'.{(Inx,)'j'} = f (Inx)"dx =2
o <1
Hence n = —nand o2 = n. Inserting into (8-129), we conclude that the density of
the product y = x; -~ x, equals

1 1 5
i) =——— cxp{ = rﬂﬂﬂ yiF n)'}U( ¥)

wWamn

8-5 RANDOM NUMBERS: MEANING
AND GENERATION

Random numbers (RNs) are used in a variety of applications involving comput-
ers and statistics. In this section, we explain the underlying ideas concentrating
on the meaning and generation of RNs. We start with a simple illustration of
the role of statistics in the numerical solution of déterministic problems.

MONTE CARLO INTEGRATION. We wish to evaluate the integral
1= flg(.r) dx (8-130)
0

For this purpose, we introduce an RV x with uniform distribution'in the interval
(0, 1) and we form the RV y = g(x). As we know,

E(e () = ['#()L(x) d = [le(x) s (8131)

hence 7, = J. We have thus expressed the unknown / as the expeeted value of
the Rv’y. This result involves only concepts; it does not yield a numerical
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method for evaluating [. Suppose, however, that the RV x models a physical
quantity in a real experiment. We can then estimate [ using the relative
frequency interpretation of expected values: We repeat the experiment a large
number of times and observe the values x, of x; we compute the corresponding
values y;, = g(x;) of y and form their average as in (5-26). This yields

1
I=E[g(x) = ;Zg(x,) (8-132)

The above suggests the following method for determining /:

The data x;, no matter how they are obtained, are random numbers; that
is, they are numbers having certain properties. If, therefore, we can numerically
generate such numbers, we have a method for determining /. To carry out this
method, we must reexamine the meaning of RNs and develop computer
programs for generating them.

THE DUAL INTERPRETATION OF RNs. “What are RNs? Can they be generated
by a computer? Is it possible to generate truly random number sequences?”
Such questions do not have a generally accepted answer. The reason is simple.
As in the case of probability (see Chap. 1), the term random numbers has two
distinctly different meanings. The first is theoretical: RNs are mental constructs
defined in terms of an abstract model. The second is empirical: RNs are
sequences of real numbers generated either as physical data obtained from a
random experiment or as computer output obtained from a deterministic
program. The duality of interpretation of RNs is apparent in the following
extensively quoted definitionsf:

A sequence of numbers is random if it has every property that is sharcd by all
infinite sequences of independent samples of random variables from the uniform
distribution (J. M. Franklin)

A random sequence is a vague notion embodying the ideas of a sequence in which
cach term is unpredictable to the uninitiated and whose digits pass a certain
number of tests, traditional with statisticians and depending somewhat on the uses
to which the sequence is to be put. (D. H. Lehmer)

It is obvious that these definitions cannot have the same meaning. Never-
theless, both are used to define RN sequences. To avoid this confusing ambigu-
ity, we shall give two definitions: one theoretical, the other empirical. For these
definitions we shall rely solely on the uses for which RN are intended: RNs are
used to apply statistical techniques to other fields. It is natural, therefore, that
they are defined in terms of the corresponding probabilistic concepts and their

TD. E. Knuth: The Art of Computer Programming, Addison-Wesley, Reading, MA, 1969.
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properties as physically generated numbers are expressed directly in terms of
the properties of real data generated by random experiments.

CONCEPTUAL DEFINITION. A sequerice of numbers x; 1s called random if it
equals the samples x; = x,({) of a sequence x, of i.id. RVs x; defined in the
space of repeated trmls
It appears that this definition is the same as Franklin’s. There i is, however,
a subtle but important difference. Franklin says that the sequence x; has every
property shared by i.i.d. RVs; we say that x, equals the samples of 1he, iid. RVs
In this definition. all theoretical pmputm of RNs are the same as the
corresponding properties of RVs. There is, therefore, no need for a new theory.

EMPIRICAL DEFINITION. A seqguence of numbers x; is called random if its
statistical properties are the same as the properties of random data obtained
from a random experiment.

Not all experimental data lead to conclusions consistent with the theory of
probability. For this to be the case, the experiments must be so designed that
data obtained by repeated trials satisfy the rid. condition, This condition is
accepted only after the data have been subjected to a variety of tests and in any
case, it can be claimed only as an approximation. The same applies to com-
puter-generated RNs. Such uncertainties, however, cannot be avoided no mat-
ter how we define physically generated sequences, The advantage of the above
definition is that it shifts the problem of establishing the randomness of a
sequence of numbers to ap area with which we are already familiar. We can,
therefore, draw directly on our experience with random experiments and apply
the well-established tests of randomness to computer-generated RNs.

Generation of RN Sequences

RNs used in Monte Carlo calculations are generated mainly by computer
programs; however, they can also be generated asiobservations of random: data
obtained from real experiments: The tosses of a fair coin generate a random
sequence of (0's (heads) and 1's (tails); the distance between radioactive emis-
sions generates a random sequence of exponentially distributed samples. We
accept number sequences so generated as random because of our long experi-
ence ‘with such experiments. RN sequences experimentally generated are not,
however, suitable for computer use, for obvious reasons. An efficient source of
RNs is a computer program with small memory, involving simple arithmetic
operations, We outline next the most commonly used programs.

Our objective is to generate RN sequences with arbitrary distributions. In
the present state of the art, however, this cannot be done directly. The available
algorithms only generate sequences consisting of integers z, uniformly dis-
tributed in an interval (0, m). As we show later, the generation of a sequence x,
with an arbitrary distribution is obtained indirectly by a variety of methods
involving the uniform sequence z;.
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The most general algorithm for generating an RN sequence z, is an
equation of the form

2 =i 2 s 2=y), mOdin (8-133)

where f(z, ,....,z,_,) 15 a function depending on the r most recent past
values of z,. In this notation, z, is the remainder of the division of the number
Az, .., 2,-,) by m. The above is a nonlinear recursion expressing z, in
terms of the constant m, the function f, and the initial conditions z,, ..., T
The quality of the generator depends on the form of the function f. 1t might
appear that good RN sequences result if this function is complicated. Experi-
ence has shown; however, that this is not the case. Most algorithms in use are
linear recursions of order 1. We shall discuss the homogeneous case.

LEHMER'S ALGORITHM. The simplest and one of the oldest RN generators is
the recursion

z,=az, ; modm z;=1 n=1 (8-134)

n
where m is a large prime number and « is an integer. Solving, we obtain
mod m (8-135)

n
o=
Z, a

The sequence z, takes values between 1 .and m — 1; hence at least two of its
first m values are equal. From this it follows that z,, is a periodic sequence for
# > m with period m, < m — 1. A periodic sequence is not, of course, random.
Hawever, if for the applications for which it is intended the required number of
sample does not exceed m,,, periodicity is irrelevant. For most applications, it is
cnough to choose for m a number of the order of 10" and to search for a
constant @ such that m, = m — 1. A value for m suggested by Lehmer in 1951
is the prime number 2°' — 1.

To complete the specification of (8-134), we must assign a value to the
multiplier . Our first condition is that the period m, of the resulting sequence
z, equal m, — 1.

DEFINITION. An integer a is called the primitive roor of m if the smallest 2
such that

a*=1mod misn=m—1. (8-136)

From the definition it follows that the sequence a” is periodic with peried
m, = m — 1iff a is a primitive root of m. Most primitive roots do not generate
good RN sequences. For a final selection, we subject specific choices to a variety
of tests based on tests of randomness involving real experiments. Most tests are
carried out not on terms of the integers z; but in terms of the propertics of the
numbers

e (8-137)
m

These numbers take essentially all values in the interval (0, 1):and the purpose
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of testing is to establish whether they are the values of a sequence o, of
continuous-type i.i.d. RVs uniformly distributed in the interval (0,1). The iii.d.
condition leads to the following equations:

For every u, in the interval (0, 1) and for every »,

Plu, < u) = u, (8-138a)

Pluy 2wy m, <u} = Pluy <) - Plu, <u,)  (8-1386)

To establish the validity of these equations, we need an infinite number of tests.
In real life, however, we can perform only a finite number of tests. Furthermare.
all tests involve approximation based on the empirical interpretation of proba-
bility. We cannot, therefore, claim with certainty that a sequence of real
numbers is truly random. We can claim only that a particular sequence is
reasonably random for certain applications or that one sequence is more
random than another. In practice, a sequence u,, is accepted as random not only
because it passes the standard tests but also because it has been used with
satisfactory results in many problems.

QOver the years, several algorithms have been proposed for generating
“good” RN sequences. Not all, however, have withstood the test of time. An
example of a sequence z, that seems to meet most requirements is obtained
from (8-134) with @ = 27 — 1 and m =2 — I:

z, = 16,807z mod 2,147,483.,647 (8-139)

=1

This sequence meets most standard tests of randomness and has been used
effectively in a variety of applications.

We conclude with the observation that most tests of randomness are
applications, direct or indirect, of well-known tests of various statistical hy-
potheses. For example, to establish the validity of (8-138a), we apply the
Kolmogoroff-Smirnov test, page 272, or the chi-square test, page 273. These
tests are used to determine whether given experimental data fit a particular
distribution. To establish the validity of (8-1386), we apply the chi-square test;
page 274. This test is used to determine the independence of various events,

In addition to direct testing, a variety of special methods have been
proposed for testing indirectly the validity of both equations in (8-138). These
methods are based on well-known properties of RVs and they are designed for
particular applications. The generation of random vector sequences is an
application requiring special tests.

Random vectors. We shall construct a multidimensional sequence of RNs usi.ng
the following properties of subsequences. Suppose that x is an RV .wuh
distribution F(x) and x, is the corresponding RN sequence. It follows from

S, K. Park and K. W. Miller “Random Number Generations: Good Ones Are Hard 10 Find,"
Communications of the ACM, vol. 31, no. 10, October 1988
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(8-138) that every subsequence of x; is an RN sequence with distribution Fi(x),
Furthermore, if two subsequences have no common elements, they are the
samples of two independent RVs. From this we conclude that the odd-subscript
and even-subscript sequences

vy =Xy Xi =Xy L= 2

are the samples of two iid. RVs x? and x¢ with distribution F(x). Thus,
starting from a scalar RN sequence, x;, we constructed -a veclor RN sequence
(x7, x{). Proceeding similarly, we can construct RN sequences of any dimen-
sionality, Using superscripts to identify various RVs and their samples, we
conclude that the RN sequences

EE =R ki = Ty m Tl 2 s q (8-140)

1 mi—m+k

are the samples of m iid. RVs x', ..., x" with distribution F(x).

Note that a sequence of numbers might be sufficiently random for scalar
but not for vector applications. If, therefore, an RN sequence x, is to be used
for multidimensional applications, it is desirable to subject it to special tests
involving its subsequences.

RN Sequences with Arbitrary Distributions

In the following, the letter u will identify an RV with uniform distribution in the
interval (0, 1); the corresponding RN sequence will be identified by w«,. Using
the sequence u,, we shall present a variety of methods for generating sequences
with arbitrary distributions. In this analysis, we shall make frequent use of the
following:

If x; are the samples of the RV x, then y, = g(x,) are the samples of the
RV y = g(x). For example, if x, is an RN sequence with distribution F,(x),
then y, = a + by, is an RN sequence with distribution F,[(y — a)/b]if b > 0,
and 1 — F[(y — a)/blif b < 0. From this it follows, for example, that ¢, = 1 —
u, is an RN sequence uniform in the interval (0, 1).

PERCENTILE TRANSFORMATION METHOD. Consider an RV x with distribu-
tion F (x). We have shown in Sec. 5-2 that the RV u = F.(x) is uniform in the
mlcrval (0, 1) no matter what the form of F,(x) is. Denoting by F,'~ Y(x) the
inverse of F,(x), we conclude that x = F“ l’(1.1) (see Fig. 8-10). From this it
follows that

X, = F(u) (8-141)

is an RN sequence with distribution F,(x), [see also (5-19)]. Thus, to find an RN
sequence x, with distribution a given function F,(x), it suffices to determine the
inverse of F (x) and to compute F,'~ I’(u ). Note that the numbers x; are the i,
percentiles nf F(x)
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FIGURE 8-10

Example 8-19. We wish to generate an RN sequence x, with exponential
distribution. In this case,

F(x)=1—e*/? x= —Aln(1 —n)
Since 1 — u is an RV with uniform distribution, we conclude that the sequence
x, = —Alnuy, (B-142)

has an exponential distribution.

Example 8-20. We wish to generate an RN sequence x, with Rayleigh distribution.

In this case,
Fix)=1-e*72 FSUu) == 2In(l - u)

Replacing 1 — u by u, we conclude that the sequence

x; == 2lny; (8-143)

has a Rayleigh distribution.

Suppose now that we wish to generate the samples x, of a diserete-type
RV x taking the values @, with probability
pp = Pl{x =a.} k=1,...,m
In this case, F,(x) is a staircase function (Fig. 8-11) with discontinuities at the
points a,, and its inverse is a staircase function with discontinuities at the points
Fla,) =p, + ++* +p;. Applying (8-141), we obtain the following rule for
generating the RN sequence x;:
Set x; = a;iff py + o> Fpp S <P+ v B (8-144)
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Fix) X, = F“ )
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FIGURE §-11

Example 8-21. The sequence
0 if D<u;<p
7 =] if p<u, <1
takes the values 0 and 1 with probability p and | — p réspectively. It specifies,

therefore, a binary RN sequence.
The sequence

X, =k iff 00k <u, <0.1(k + 1) k=0,1,..., 9

takes the values 0, 1, . .., 9 with equal probability. It specifies, therefore, a decimal
RN sequence with uniform distribution.

Setting
=l p = (z)p‘q” = =0 m
into (8-15), we obtain an RN sequence with binomial distribution.
Setting
A
a, =k p,‘=e“"m k=01, ...

into (8-15) we abtain an RN sequence with Poisson distribution.

Suppose now that we are given not a uniform seguence, but a sequence X,
with distribution F(x). We wish to find a sequence y, with distribution F,(y).
As we know, v, = F,'~ (u,) is an RN sequence with distribution F,(»). Hence
(see Fig. 8-10) the composite function

Yi= BB xp)) (8-145)

generates an RN sequence with distribution F,(y) [see also (5-20)].
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Exnn:ple 8-22. We are given an RN sequence x; > 0 with distribution F.lx) = |
o 8 4 o " \
— ¢ ¥ —xe fmd we I\us.h Lo generate an/ RN sequence p; > 0 with distribution
Fi(y)= "1 =¢ " In this example F* () = —In(l — u); hence
=7
Ey (Fi(x)) = =l —F[(x)] = —ln(e " +xe %)
Inserting into (8-145), we abtain

i = —lIn(e * e )

REJECTION METHOD. In the percentile transformation method, wé used the
inverse of the function F,(x). However, inverting a function is not a simple task.
To overcome this difficulty, we develop next a method that avoids inversion. The
problem under consideration is the generation of an RN sequence ¥, with
distribution F(y) in terms of the RN sequence x; as in (8-145).

~ The proposed method is based on the relative frequency interpretation of
the conditional density

Plx <x <x +dx, .#})
P(.#)

flxl#) de = (8-146)
of an RV x assuming .# (see page 80). In the following method, the event .# is
expressed in terms of the RV x and another RV u, and it is so chosen that the
resulting function f.(x|.#) equals f(y). The sequence y, is generated by
setting y, = x, if .# occurs, rejecting x; otherwise. The problem has a solution
only if f(x) =0 in every interval in which f (x) = 0. We can assume, there-
fore, without essential loss of generality, that the ratio f,(x)/f(x) is bounded
from below by some positive constant a:

£lx) >a>0 for every x
fip( %)
Rejection theorem. If the RVs x and u are independent and
£,(x)
=< r(x where r(x)=a———7 <1 (8-147)
{u=r(x)} e
then
folxlt') = f(x) (8-148)

Proof. The joint density of the RVs x and u equals f,(x) in the strip 0 <u < 1
of the xu plane, and 0 elsewhere. The event .# consists of all outcomes such
that the point (x, u) is in the shaded area of Fig. 8-12 below the curve u = r(x).
Hence

Pt = [ rOx)f(x) de = u[:f,.(x) dv —a

The event {x < x <x + dx, .#) consists of all outcomes such that the peint
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FIGURE 8-12

(x,u) is in the strip x < x < x + dx below the curve u = r(x). The probability
masses in this strip equal f (x)r(x)dx. Hence

Plx <x=2x +de,#) = f.(x)r(x)dx
Inserting into (8-146), we obtain (8-148).
From the rejection theorem it follows that the subsequence of x, such that

u, < r(x;) forms a sequence of random numbers that are the samples of an RV
y with density f.(y|.#) = f.(y). This leads to the following rule for generating
the sequence y;: Form the two-dimensional RN sequence (x,, u,).

f_\'( Ii)
a )

flx)

Set y, =x, if u; < reject x, otherwise  (8-149)

Example 8-23. We are given an RN sequence x; with exponential distribution and
we wish to construct an RN sequence y, with truncated normal distribution:
2

L) = e U) 1(0) = = UC)

f‘(x) /Ze " 28
TGN A

Selting a = y/m/2e, we obtain the following rule for generating the sequence ¥;:

For x > 0,

Set wi=ux if w<e NTVI2 peject x, otherwise

'MIXING METHOD. We develop next a method generating an RN sequence ¥,
with density f(x) under the following assumptions: The function f(x) can be
expressed as the weighted sum of m densities f,(m):

f(x) =p fix) + +pfa(x)  p>0 (8-150)

Each component f,(x) is the density of a known RN sequence x*

In the mixing method, we generate the sequence x; bya mxxmg process
involving certain subsequences of the m sequences Vi selected according to the
following rule:

Set x;,=x} i pr+ i dp_ Su<p+ i dp (8-151)
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Mixing theorem. If the sequences u, and x!, ... . x;" are mutually independent,
then the density f (x) of the sequence x; specified by (8-151) equals
fi(x) = p fillx) + - +p,, [l x) (8-152)

Proof. The sequence x; is a mixture of m subsequences. The density of the
subsequence of the kth sequence xf equals f,(x). This subsequence is also a
subsequence of x; conditioned on the event

e ={py+ - tp o <u<p + - +p)

Herice its density also equals f,(x|.27,). This leads to the conclusion that

fulxl22) = fi(x)
From the total probability théorem (4-58), it follows that
Fa(x) = £l x| P(22) + -« f (x| o, ) P(o2,)

And since P(.#)) = p,. (8-152) results. Comparing with (8-150), we conclude
that the density f,(x) generated by (8-152) equals the given function f(x).

Example 8-24. The Laplace density 0.5¢ ™' can be written as a sum

f(x) = 0.5eU(x) + 0.5 U(—x)
This is a special case of (8-150) with

filx)=e tU(x)  fofx) =e'U(=x) p,=pa=05

A sequénce x; with density f(x) can, therefore, be realized in terms of the
samples of two RVs x' and x* with the above densities. As we have shown in
Example 8-19, if the RV v is uniform in the interval (0, 1), then the density of the
RV x!' = —Inv equals fi(x); similarly, the density of the RV x* = Inv equals
fo(x). This yields the following rule for generating an RN sequence x, with
Laplace distribution: Form two independent uniform sequences ¢, and ¢;:

Set x,=—lny, if 0O=wp <05

Set w, =lInu if 05<u <1

GENERAL TRANSFORMATIONS. We now give various examples for generating
an RN'sequence w, with specified distribution F, (w) using the transformation
w=g(x',...,x")
where x* are m RVs with known distributions. To da so, we determine £ such

that the distribution of w equals F, (w). The desired sequence is given by
wr= el a)
Binomial RNs. If x* are m i.i.d. RVs taking the values 0 and 1 with probabili-

ties p and g respectively, their sum has a binomial distribution. From this it
follows that if xf are m binary sequences, their sum

- 1 5 L
W=t X
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: : f Teecibinti 7 L ey
is an' RN sequence with binomial distribution. The »t sequences x7 can be
realized as subsequences of a single binary sequence x, as in (8-140).

Erlang RNs. The sum w=x'+ ==« +x™ of m iid. RVs x* with density
¢~ *U(x) hasan Erlang density [sec (4-38)]:

Fulw) ~ w"=le™"U(w) (8-153)
From this it follows that the sum w, = w/ + << +w/” of m exponentially

distributed RN sequences w," is an RN sequence with Erlang distribution,
The sequences l.,‘ can be generated in terms of m subsequences of a
single sequence u; (see Example 8-19):

i

|
w, = ——(Inu} + - +Inu™) (8-154)
e

Chi-square RNs. We wish to generate an RN sequence w; with density
Filw) ~ wh2=te=w211 ()

For # = 2m, this is a special case of (8-153) with ¢ = 1 /2. Hence w, is given by
(8-154).

To find w, for n = 2m + 1, we observe that if yis ¥*(2m) and z is N(0, 1)
and independent of y, the sumw = y + z? is y2(2m + 1) [see (8-63)]; hence the
sequence

wy= —2(lna! + -+ +lnu) + (z)

hasa y*(2m + 1) distribution.

Student-t RNs. Given two independent RVs x and y with distributions N(0, 1)
and x2(n) respectively. we form the RV w = x//y/n. As we know. w has a
1(n) distribution (see example 6-15). From this it follows that. if ., and y, are
samples of x and y, the sequence
‘xl
W, =

Yo/

has a ¢(n) distribution.

Lognormal RNs. If z is N(0, 1) and w = e®*"?, then w has a lognormal distribu-
tion [see (5-10)]:

)= 1 (Inw —a)?
Hence, if z, is an N(0, 1) sequence, the sequence

— bz
W, =€

has a lognormal distribution.
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z  FIGURE 8-13

RN sequences with normal distributions. Several methods are available for
generating normal RVs. We give next various illustrations. The percentile
transformation method is not used because of the difficulty of inverting the
normal distribution. The mixing method is used extensively because the normal
density is a smooth curve; it can, therefore, be approximated by a sum as in
(8-150). The major components (shaded) of this sum are rectangles Fig. (8-13)
that can be realized by sequences of the form au, + b. The remaining compo-
nents (shaded) are more complicated, however; since their areas are small, they
need not be realized exactly. Other methods involve known properties of
normal RVs. For example, the central limit theorem leads to the following
method.
Given m independent RVs u*, we form the sum

z=ulF o +u?
If m is large, the RV z is approximately normal [see (8-111)]. From this it

follows that if «{ are m independent RN sequences their sum

Z;=u} + e Ll

i

is approximately a normal RN sequence. This method is not very efficient. The
following three methods are more efficient and are used extensively.

Rejection and mixing (G. Marsaglia). In Example 8-23, we used the rejection
method to generate an RV sequence vy, with a truncated normal density

e 2U(y)

2
_f\‘( }’) = ‘/E

The normal density can be written as a sum
1 1 1 1
=i T 8-155)
f:(z) P 2f,.IZ) -+ 2f,( ) (

The density f,(y) is realized by the sequence y, as in Example 8-23 and the
density f(—y) by the sequence —y,. Applying (8-151), we conclude that the
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following rule generates an N(0, 1) sequence z;:

Set z; =y if 0<u, <035

- . (8-156)
Set z; = —y; if 05 =<u <1

Polar coordinates. We have shown that, if the RVs rand ¢ are independent, r
has the Rayleigh density f.(r)=re™" /> and ¢ is uniform in the interval
(=, 7). then (sce Example 6-12) the RVs

Z = rcos ¢ W = rsing (8-157)

are N(0, 1) and independent. Using this, we shall construct two independent
normal RN sequences z; and w; as follows: Clearly, ¢ = 7{(2u — 1); hence ¢, =
7(2u, — 1). As we know, r = V2x = Y= 2Inv where x is an RV with exponen-
tial distribution and v is uniform in the interval (0, 1). Denoting by X, and v, the
samples of the RVs x and v, we conclude that 7, = {/2x, = /= 2In, is an RN
sequence with Rayleigh distribution. From this and (8-157) it follows that if u,
and v; are two independent RN sequences uniform in the interval (0, 1), then
the sequences

z;= /= 2Inv; cosw(2u, — 1) w,=/— 2Ing, sin7 (2w, — 1) (8-158)

are N(0, 1) and independent.

The Box—Muller method. The rejection method was based on the following: If
X, is an RN sequence with distribution F(x), its subsequence y, conditioned on
an event .# is an RN sequence with distribution F(x|.# ). Using this, we shall
generate two independent N(0, 1) sequences z, and w; in terms of the samples
X ¥; of two independent RVs x,y uniformly distributed in the interval (—1, 1),
We shall use for .# the event

A= {q <1} q=\/m3-+-v2
The joint density of x and y equals 1/4 in the square |x| < 1, |y| < 1 of

Fig. 8-14 and 0 elsewhere. Hence

P(#) =~  Pla<q) = for g <1

But {g < g, .#} = {q < g), for q < 1 because {q < g} is a subset of .#. Hence

Plaq <q, )

F(ql#) = )

=q° flal#)=29 0D<q<1 (8-159)

Writing the RVs x and y in polar form:

X =qcose y=gsing tang =y/x (8-160)
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FIGURE 8-14

we conclude as in (8-159) that the joint density of the RVs q and ¢ is such that

Plg<q<g+dg.¢ <o <o-+dg) gdgde/4
P(.4) - /4

fzprb(qr ¢|/) dqd’-P =

for 0 <g <1 and |¢| < 7. From 'this it follows that the RVs q and ¢ are
conditionally independent and

fq(q|/)=2q f,‘,(xp)=]/2ﬂ- 0<g=<l —r @< T

THEOREM. If x and y are two independent RVs uniformly distributed in the
interval (=1, 1) and q = y/x? + y?, then the RVs

X ¥ .
=—y—4ding w=—y—-4Ilnq (8-161)
q q
are conditionally N(0, 1) and independent:

1 2,8
Fol 2 W) = £V [k ) = e

Proof. From (8-160) it follows that

z=y\—4dInqcose w=y—4lngsine

This system is similar to the system (8-157). To prove the theorem, it suffices,
therefore, to show that the conditional density of the RV r =/ 4lng
assuming # equals re=" /2. To show this, we apply (5-5). In our case,

e __,.: G __—_r'fz —_l_. —3
qlr) =et 4 gilr) = e M= i) flal#)
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Hence Al :
filrhe#) = faka )q!(F)] = 2e=" 1 Ee""* = rem" /2
This shows that the conditional density of the RV ris Rayleigh as in (8-157).
The preceding theorem leads to the following rule for generating the
sequences z; and w;; Form two independent sequences x;, = 2u, — 1, y, =
2 — L

— X Vil

If g, = yx2 +y2 < l,set z;= —[=dIng, w;= j\/~ 41n g,
q, ;

Reject (x;, y,) otherwise.

COMPUTERS AND STATISTICS. In this section, we analyzed the dual meaning
of random numbers and their compuler generation. We conclude with a brief
outline of the general areas of interaction between computers and statistics:

1. Statistical methods are used to solve numerically a variety of deterministic
problems.
Examples include the following: evaluation of integrals, solution of differen-
tial equations; determination of various mathematical constants. The solu-
tions are based on the availability of RN sequences. Such sequences can be
obtained from random experiments; in most cases, however, they are com-
puter generated. We shall give a simple illustration of the two approaches in
the context of Buffon's needle. The objective in this problem is the statistical
estimation of the number 7. The method proposed in Example 6-4 involves
the performance of a physical experiment. We introduce the event .&/=
{x < @cos B) where x (distance from the nearest line) and 6 (angle of the
needle) are two independent RVs uniform in the intervals (0, @) and (0, 7/2),
respectively. This event occurs if the needle intersects one of the lines and its
probability equals b /2a. From this it follows that

P() = % = 8-162
) = n " oab ot ( 2)

where n . is the number of intersections in n trials. The above estimate can
be obtained without experimentation. We form two independent RN se-
quences x; and ¢, with distributions F,(x) and F,(8), respectively, and we
denote by 1, the number of times x; < @ cos 6,. With n_, so determined the
computer generated estimate of = is obtained from (8-162).

2. ?omputers are used to solve a variety of deterministic problems originating
in statistics.
Examples include the following: evaluation of the mean, the variance. or
other averages used in parameter estimation and hypothesis testing; classifi-
cation and storage of experimental data; use of computers as instructional
tools. For example. graphical demonstration of the law of large numbers or
the central limit theoren. Such applications involve mostly routine computer
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programs unrelated to statistics. There is, however, another class of deter-
ministic problems the solution of which is based on statistical concepts and
RN sequences. A simple illustration follows:

We are given m1 RVs x,...,x, with known distributions and we wish to
estimate the distribution of the RV y = g(x,, ..., X, ). This problem can, in
principle, be solved analytically; however, its solution is, in general, complex.
See, for example, the problem of determining the exact distribution of the
RV q used in the chi-square test (9-76). As we explain next, the determina-
tion of Fi(y) is simplified if we use Monte Carlo techniques. Assuming for
simplicity that » = 1, we generate an RN sequence x; of length n with
distribution the known function F(x) and we form the RN sequence
¥; = g(x,). To determine F,(y) for a specific v, we count the number n, of
samples y, such that y; < y. Inserting into (4-3), we obtain the estimate

F(y) == (8-163)

A similar approach can be used to determine the « percentile x,; of x or to
decide whether x, is larger or smaller than a given number (see hypothesis
testing, Sec. 9-2).

Computers are used to simulate random experiments or to verify a scientific
theory.

This involves the familiar methods of simulating physical systems where now
all inputs and responses are replaced by appropriate RN sequences.

&

PROBLEMS

8-1. Show that if F(x, v, z) is a joint distribution, then for any x, <x,, ¥) < ¥a,
2 S 2,

Flixas Vo 22) + Flag, 00 20) 4 F{ 95..23) + Flx2, 310 21)
— By, ¥as 23) = F(, ), 25) = F(xy, ¥5, 2= £, 91, 21) =0
8-2. The events &, ¥4, £ are such that
P(o/) = P(H) =P(€) =05
P(HB) = P(AE) = P(HE) = P(4/P£) =0.25

Show that the zero-one RVs associated with these events are not independent:
they are, however, independent in pairs.

8-3. Show that if the RVs x,y,z are jointly normal and independent in pairs, they arc
independent.

8-4. The RVs x; are i.i.d. and uniform in the interval (—0.5,0.5). Show that

E{(x; + %+ x3)") = &
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8-5.

8-6.

8-7.

8-8.

8-9.

8-12.

8-13.

SEQUENCES OF RANDOM VARIABLES

(a) Reasoning as in (6-34), show that if the RVs x,y,2 are independent and their
joint density has spherical symmetry:

fCx,y,2) = f(Vx® 57 + 22)

then they are normal with zero mean and equal variance,

(b) The components v,, v,, v, of the velocity v =

independent RVs with zero mean and variance kT /m. Furthermore, their joint

density has spherical symmetry. Show that v has a Maxwell density and

2kT 3kT 15k<T*
E{v- v

Tm m m*

E(v} =2

Show that if the RVs x,y,z are such that r, = r, =1, then r,, = 1.
Show that
Efx;xa0x3) = B[ E{x,x,lx,, x5} I3} = E{x, Efx;|x3. %5} )
Show that Elylx,} = E(£{ylx,, x,)lx;} where Elylx;,x,) =a;X; +a,Xx, is the

linear MS estimate of y terms of x; and x,.
Show that if

then
B{s?) < ME(n?}

. We denote by x,, an RV equal to the number of tosses of a coin until heads shows

for the mth time. Show that if P(h) = p, then Efx,,) = m /p.

Hint: E(x,, =X, 1} = Elx;} =p + 2pg + =~ +npg" ' + --+ = 1/p.
The number of daily accidents is a Poisson RV n with parameter a. The probability
that a single accident is fatal equals p. Show that the number m of fatal accidents
in-one day is a Poisson RV with parameter ap.

Hint;

n
E{e*™n=n) = ) e’”k(Z)P‘Q""' = (pe' +q)"
k=0

The RVs x, are independent with densities f,(x) and the RY n is independent of
x; with P(n= k) = p,. Show that if

5= ):I X then fi(s)= X plf()= o #fi(9)]
k= k=1

The RVs x; are ii.d. with moment function ®,(s) = E{e**). The RV n takes the
values 0, 1, ... and its moment function equals I(2) = E{z"). Show that if

n
y=Xx then &(s)=Efe?) = I[0,5)]
i=1
Hint: Ele™|n = k) = E{e'1+  +x0) = 04(s).
Special case: 1f n is Poisson with parameter a, then D, (s) = )2,
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The RVs x; are iid. and uniform in the interval (0, 1), Show that if v = max X
then F(y)=y" forO0 <y < 1.

Given an RV x with distribution F,(x), we form its order statistics y, as in
Example 8-2. and their extremes ’

Z=Yi = Xmax W=Yi= Xnin
Show that
£olzw) = {n(n — D2 W) F(2) — Fi(w)]" ? 2> W
0 z < W
Given n independent N(m; 1) RVS z;, we form the RV w =27 + --+ +2z2. This
RV is called noncentral chi-square with n degrees of freedom and cccentricity
e =mnj + - +7;. Show that its moment generating function equals

1 es

ex )
Y —29)" .\p{ L= 2s)

Show that if the RVs x; are i.i.d. and normal, then their sample mean x and sample
variances s* are two independent RVs.

D, (s) =

. Show that, if a;; + a,x; + a,x, is the nonhomogeneous linear MS estimate of s in

terms of x| and x,, then
E{S —a Xy —mpx = Mo} = ay(x =) +an(xs —11)
Shows that
E{ylx,} = E{E{y]xl-‘z}lxl}
We place at random »n points in the interval (0, 1) and we denote by x and y the
distance from the origin.to the first and last point respectively. Find F(x), F(y),
and F(x, y).

Show that if the RVs x, are i.i.d. with zero mean, variance ¢ *, and sample variance
¥ (sec Example 8-5), then

NS
n : n—1

The RVs x, are N(0; o) and independent. Using Prob. 7-1, show that if

1
ai = — E{x"} = o

Vo o =
zi= o Yo% = x5 then Efz} =0 o= T
i1
Show that if R is the correlation matrix of the random vector Xz [xy,..., x,] and

‘R~ is its inverse, then

E{XR'X} =n
Show that if the RVs x, arc of continuous type and independent, then. for
sufficiently large n, the density of sin(x, + -+ + x,,) is nearly equal to the density
of sinx where x is an RV uniform in the interval (==, 7).
Show that if a, - a and E(|x, —a,|%} - 0, then x, — « in the MS scnse as
n— o,
Using the Cauchy criterion, show that a sequence x,, tends to a limit in the MS
sense iff the limit of Elx,x,,} as n,m = = exists.
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8-27. An infinite sum is by definition a limit:

" n
Y xo=limy, v,= Lx
k=1 e k=1

Show. that if the RVs x, are independent with zero mean and variance o}, then

the sum exists in the MS sense iff

Yof<w
k=1
Hine:
5 n+m
E{(yosm — %)} = X of
k=n+1

8-28. The RVs x; are i.i.d. with density ce~“*U(x). Show that, if x = x; + -+~

f:(x) is an Erlang density.
8-29. Using the central limit theorem, show that for large n:

c” ¢

e [ Wl S
(n— 1)!): V2mn

e fex —n)? /2n

+x,, then

8-30. The resistors r,, r,, Iy, r, are independent RVs and each is uniform in the interval
(450;550). Using the central limit theorem, find P{1900 < r, + r, + 15 + 1, <

2100}.

8-31. Show that the central limit theorem does: not hold if the RVs x,; have a Cauchy

density.

8-32. The RVsx and y are uncorrelated with-zero mean and @, = o, = @. Show that if

z =X + jy, then

f(2) = f(x,¥) =

1

3
27a* o

1 1
d.(0) = cxp{—i(azu: + o*lc'z)} = exp{- Za'flﬂlz}

where Q = u + ju. This is the scalar form of (8-62).

ety 2a® g I3



CHAPTER

9

STATISTICS

9-1 INTRODUCTION

Probability is a mathematical discipline developed as an abstract model and its
conclusions are deductions based on the axioms. Statistics deals with the
applications of the theory to real problems and its conclusions are inferénces
based on observations. Statistics consists of two parts: analysis and design.

Analysis, or mathematical statisties, is part of probability involving mainly
repeated trials and events the probability of which is close to 0 or to 1. This
leads to inferences that can be accepted as near certainties (see page 12).
Design, or applied statistics, deals with data collection and construction of
experiments that can be adequately described by probabilistic models. In this
chapter, we introduce the basic elements of mathematical statistics.

We start with the observation that the connection between probabilistic
concepts and reality is based on the approximation

Pt (9-1)

relating the probability p = P(27) of an event o/ to the number n, of
successes of <7 in n trials of the underlying physical experiment. We used this
empirical formula to give the relative frequency interpretation of all probabilis-
tic concepts. For example, we showed that the mean 7 of an RV x can be
approximated by the average

1
n

f=—2x =X (9-2)

of the observed values x; of x, and its distribution F(x) by the empirical

241
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Fix.6) Fix.6)

known A ol # unknown
Predict « Estimate 4
() (h) FIGURE 9-1
distribution
=3 ”!. ~
AEII= — (9-3)
n

where n, is the number of x;’s that do not exceed x. These relationships are
empirical point estimates of the parameters 1 and F(x) and a major objective
of statistics is to give them an exact interpretation,

In a statistical investigation, we deal with two general classes of problems.
In the first class, we assume that the probabilistic model is known and we wish
to make predictions concerning future observations. For example, we know the
distribution F(x) of an RV x and we wish to predict the average T of its n
future samples or we know the probability p of an event & and we wish to
predict the number n,,, of successes of &7 in n future trials. In both cases, we
proceed from the model to the observations (Fig. 9-1a). In the second class, one
or more parameters €, of the model are unknown and our objective is either to
estimate their values (parameter estimation) or to decide whether 8, is a set of
known constants 6, (hypothesis testing). For example, we observe the values x,
of an RV x and we wish to estimate its mean 7 or to decide whether to accept
the hypothesis that 77 = 5.3. We toss a coin 1000 times and heads shows 465
times. Using this information, we wish to estimate the probability p of heads or
to decide whether the coin is fair. In both cases., we proceed from the
observations to the model (Fig. 9-15). In this chapter. we concentrate on
parameter estimation and hypothesis testing. As a preparation, we comment
briefly on the prediction problem.

Prediction. We are given an RV x with known distribution and we wish to
prediet its value x at a future trial. A point prediction of x is the determination
of a constant ¢ chosen so as to minimize in some sense the error x — ¢. At a
specific trial, the RV x can take one of many values. Hence the value that it
actually takes cannot be predicted; it can only be estimated. Thus prediction of
an RV x:is the estimation of its next value x by a constant ¢. If we use as the
criterion for selecting ¢ the minimization of the MS error E{(x — ¢)*), then
¢ = E{x}. This problem was considered in Sec. 7-3 and Sec. 8-3.

An interval prediction of x is the determination of two constants ¢, and ¢,
such that

Ple,<x<e,) =y=1-8 (9-4)
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()

FIGURE 9-2

where y is a given constant called the confidence coefficient. The above equatipn
states that if we predict that the value x of x at the next trial will be in the
interval (¢,,¢,), our prediction will be correct in 100y% of the cases. The
problem in interval prediction is to find ¢, and ¢, so as to minimize the
difference ¢, — ¢; subject to the constraint (9-4), The selection of v is dictated
by two conflicting requirements. If ¥ is close to 1, the prediction that x will be
in the interval (¢, c,) is reliable but the difference ¢; — ¢y is large; if v is
reduced, ¢, — ¢; is reduced but the estimate is less reliable. Typical values of ¥
are 0.9, 0.95; and 0.99. For optimum prediction, we assign a value to y and we
determine ¢, and ¢, so as to minimize the difference € — ¢, subject to the
constraint (9-4). We can show that (see Prob. 9-6) if the density f(x) of x has a
single maximum, ¢, — ¢, is minimum if fle)= flc,). This yields ¢, and ¢, by
trial and error. A simpler suboptimal solution is easily found if we determine )
and ¢, such that

=

Plx <¢;} = i Plx> ¢} = 5 (9-5)

3%

This yields ¢, = x; , and c, =X, _4,, where x, is the u percentile of x (Fig.
9-2a). This solution is optimum if f(x) is symmetrical about its mean n because
then f(e,) = f(c,). If x is also normal, then x, = 5 + 2,0 where z, is the
'standard normal percentile (Fig. 9-2b).
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Example 9-1. The life expectancy of batteries of a certain brand is modeled by 4
normil RV with 7 = 4 years and o = 6 months. Our car has such a battery. Find
the prediction interval of its life expectancy with y = (.95,

In this example, 8 = 0.05, 2, 5= Zy93s = 2 = —2;,». This yields the
interval 4 & 2 < (15, We can thus expect with confidence coefficient 0.95 that the
life expectancy of our battery will be between 3 and 5 years.

As a second application, we shall estimate the number 1, of successes of
an event & in n trials. The point estimate of 2, is the product np. The
interval estimate (k, k,) is determined so as to minimize the difference k, — k,
subject to the constraint

Plk,<n_ <k} =v

We shall assume that # is large and y = 0.997. To find the constants & and k,,
we set k = n,, and & = /pg/n into (3-37). This yields

-P[np = 3ynpg <n_,<np + BJWTq} = 0.997 (9-6)

because 2G(3) — 1 = 0.997. Hence we predict with confidence coefficient (.997
that n_, will be in the interval np + 3y/npgq .

Example 9-2. We toss a fair coin 100 times and we wish to estimate the number
1., of heads with ¥ = 0.997. In this problem n = 100 and p = (1.5, Hence

ky = np — 3ynpg = 35 k; = np — 3ynpg = 65

We predict, therefore, with confidence coefficient 0.997 that the number of heads
will be between 35 and 65,

The above example illustrates the role of statistics in the applications of
probability to real problems: The event /= {heads} is defined in the experi-
ment . of the single toss of a coin. The given information that P(.&/) = 0.5
cannot be used to make a reliable prediction about the occurrence of &7 at a
single performance of .. The event

2= {35 <n< 65)

is defined in the experiment 4, of repeated trials and its probability equals
P(F) = 0.997. Since P(#) = | we can claim with near certainty that 4 will
oceur at a single performance of the experiment 7« We have thus changed the
“subjective” knowledge about &/ based on the given information that P(.27) =
0.5 to the “objective” conclusion that & will almost certainly occur, based on
the derived probability that P(:#) = 1. Note, however, that both conclusions
are inductive inferences; the difference between them is only quantitative.

9-2 PARAMETER ESTIMATION

Suppusc that the distribution of an RV x is a function F(x,#) of known form
depending on a parameter 8, scalar or vector. We wish to estimate 8. To do so,
we repeat the underlying physical experiment n times and we denote by x; the
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observed ‘values of x. Using these observations, we shall find a point estimate
and an interval estimate of 6.
A point estimate is a function [iz g(X') of the observation vector X =

[xy. .. x,]. The corresponding RV § = £(X) is the point estimator of 9. Any
function of the samp}c vector X = [x;;...y x, ) is called a statistic. ¥ Thus a point
estimator 1s a statistic. E

_ We shall say that ® is an unbiased estimator of the parameter 6 if
E{8} = 8. Otherwise, it is called biased with bias b = E{d) = 6. If the function
£(X) is properly selected, the estimation error 8 — 8 decreases as Increases.
If it tends to 0 in probability as n — =, then 8 is called a consistent estimator,
The sample mean X of x is an unbiased estimator of its mean 1. Furthermore,
its variance ¢2/n tends to 0 as n — . From this it follows that X tends to # in
the MS sense, therefore, also in probability. In other words. % is a consistent
estimator of 7. Consistency is a desirable property; however, it is a theoretical
concept. In reality, the number # of trials might be large but it is finite. The
objective of estimation is thus the selection of a function g(X) minimizing. in
some sense the estimation error g(X) — 6. If g(X) is chosen so as to minimize
the MS error

e =E{[g(X) - 0]) = [R[g(X) - 0]f(X.6) dX (9-7)

then the estimator § — g(X) is called the best estimator. The determination of
best estimators is not, in general, simple because the integrand in (9-7) depends
not only on the function g(X) but also on the unknown parameter 8. The
corresponding prediction problem involves the same integral but it has a simple
solution because in this case, 8 is known (see Sec. 8-3),

In the following, we shall seleet the function g(X) empirically. In this
choice we are guided by the following: Suppose that  is the mean 8 = E{g(x)}
of some function g(x) of x. As we have noted, the sample mean

w1
b= —Falx) (9-8)

of g(x) is a consistent estimator of 6. If, therefore, we use the sample mean 8 of
q(x) as the point estimator of #, our estimate will be satisfactory at least for
large n. In fact, it turns out that in a number of cases it is the best estimate.

INTERVAL ESTIMATES. We measure the length 0 of an object and the results
are the samples v, = 6 + v, of the RV x = # + v where » is the measurement
error. Can we draw with near certainty a conclusion about the true value of 8?
We cannot doiso if we claim that 6 equals its point estimate 6 or any other

+This interpretation of the term staristic applies only for €hap. 9. In all other chapters, staristics
means. siatistical properties.
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constant. We can, however, conclude with near certainty that # equals 6 within
specified tolerance limits. This leads to the following concept.

An interval estimate of a parameter 6 is an interval (8,, 8,), the endpoints
of which are functions 0, = g,(X) and 6, = g,(X) of the observation vector X.
The corresponding random interval (8,,0,) is the interval estimator of 6. We
shall say that (8, 8,) is a y confidence interval of @ if

P{9; <0 <8} =y (9-9)

The constant y is the confidence coefficient of the estimate and the difference
8=1—1vy is the confidence level. Thus vy is a subjective measure of our
confidence that the unknown 6 is in the interval (8, 6). If ¥ is close to 1 we
can expect with near certainty that this is true. Our estimate is correct in 100y
percent of the cases, The objective of interval estimation is the determination of
the functions g,(X) and g,(X) so as to minimize the length 6, — 6, of the
interval (6, 8,) subject to the constraint (9-9). If 8 is an unbiased estimator of
the mean 7 of x and the density of x is symmetrical about 7, then the optimum
interval is of the form = = @ as in (9-10). In this section, we develop estimates
of the commonly used parameters. In the selection of # we are guided by (9-8)
and in all cases we assume that n is large. This assumption is necessary for good
estimates and, as we shall see, it simplifies the analysis.

Mean

We wish to estimate the mean n of an RV x. We use as the point estimate of n
the value

¥BeT

of the sample mean % of x. To find an interval estimate, we must determine the
distribution of X. In general, this is a difficult problem involving multiple
convolutions. To simplify it we shall assume that ¥ is normal. This is true if x is
normal and it is approximately true for any x if » is large (CLT).

X=

x| o=

Known variance. Suppose first that the variance o? of x is known. The
normality assumption leads to the conclusion that the point estimator X of 7 is
N(n, o/ Vn). Denoting by z, the u percentile of the standard normal density,
we conclude that

a o
P{") _zx—s/zﬁ <X<nm+ 21-5/27—;} =G(z,_;,) = G(—2_5,)

=1 -

2] &
I
| o

(9-10)
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TABLE 9-1

S)Sks “u

" 0.90 0925 085 0.975 (.89 0.995 0.999 0.9995
z 1.282 14400 1645 11967 2326, 2576 3.090 3291

)

because z, = —z,_, and G(—z,_,) = G(z,) = u. This yields

_ a _ o \
F{x_zl—as/:*‘/:<ﬂ<‘+zl .-»,-:Tf‘tl”ﬁzy (9-11)
n vn
We can thus state with confidence coefficient y that n is in the mterval
X+ zy-5,00/ Vi . The determination of a confidence interval for = thus pro-

ceeds as follows:

Observe the samples x, of x and form their average ¥. Select a number
y =1 — 5 and find the standard normal percentile z, for ¥ = 1 — /2. Form
the interval ¥ + 2,0/ Vn .

This also holds for discrete-type RVs provided that n is large [see (8-110)],
The choice of the confidence coefficient y is dictated by two conflicting
requirements: If y is close to 1, the estimate is reliable but the size 2z,0/ Vn
of the confidence interval is large: if y is reduced, z, is reduced but the
estimate is less reliable. The final choice is a compromise based on the
applications. In Table 9-1 we list z, for the commonly used values of w. The
listed values are determined from Table 3-1 by interpolation.

Tchebycheff inequality. Suppose now that the distribution of X is not known. To
find the confidence interval of x, we shall use (5-57): We replace x by ¥ and o
by o/ Vn , and we sel & = a/nd. This yields

a o
Pl — — <9 <X+ —)>1-86= 9-12
{x Vno = v‘mﬁ} v . )

The above shows that the exact y confidence interval of 7 is contained in
the interval ¥ + o/ Vnd . If, therefore, we claim that n is in this interval, the
probability that we are correct is larger than y. This result holds regardless of
the form of F(x) and, surprisingly, it is not very different from the estimate
(9-11), Indeed, suppose that y = 0.95; in this case, 1/ Va = 4.47. Inserting into
(9-12), we obtain the interval %+ 4470/ Vn.. The corresponding interval (9-11),
obtained under the normality assumption, is ¥ + 2o/ Vi because 275 = 2.

Unknown variance. If o is unknown, we cannot use (9-11). To estimate 7, we
form the sample variance

1 & ;
2= —— 3 (x,—X)° (9-13)
n=1,2



248 srtaTisTICS

This is an unbiased estimate of o2 [see (8-23)] and it tends to o as n — =,
Hence, for large n, we can use the approximation s = ¢ in (9-11). This yields
the approximate confidence interval

s s (
T =2 — N <Xt s 9-14
1—8/2 \/; % 1=8/2 = )

We shall find an exact confidence interval under the assumption that x is
normal. In this case [see (8-65)] the ratio

X—19

s/Vn

has a Student-¢ distribution with n» — 1 degrees of freedom. Denoting by ¢, its
u percentiles, we conclude that

(9-15)

i —
Pt < <t =2u—1= 9-16
{ u S/JIT 'Y ( )
This yields the interval
= L) L )
x_tl~5/lﬁ <7 <l'+'|ka/zf (9-17)

In Table 9-2 we list 7,(n) for n from 1 to 20. For a > 20, the t(n)

distribution is nearly normal with zero mean and variance n/(n — 2) (see Prob.
7-12).

Example 9-3. The voltage V' of a voltage source is measured 25 times. The results
of the measurementt are the samples x; = V/ + v, of the RV x = V' + v and their
average cquals ¥ = 112 V. Find the 0.95 confidence interval of V.
(a) Suppose that the standard devidtion of x due to the error v is o = 0.4 V.
With & = 0.05, Table 9-1 yields z;47; = 2. Inserting into (9-11), we obtain the
interval
F 4 zgorso/vn = 112 £2 X 0.4/y25 = 112 4 0.16 V

(b) Suppose now that ¢ is unknown. To estimate it, we compute the sample
variance and we find s2 = 0.36. Inserting into (9-14), we obtain the approximate
estimate

Xk g s/ = 112+ 2 X0.6/Y25 = 112 + 024 V.
Since 1,455(25) = 2,06, the exact estimate (9-17) yields 112 + 0.247 V.
In the following three estimates the distribution of x is specified in terms

of a single parameter. We cannot, therefore, use (9-11) directly because the
constants 1 and ¢ are related.

t1n most examples of this chapter, we shall not list all experimental data. To avoid lengthly tables,
we shall list only the relevant averages.
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TABLE 9-2
Student-t Percentiles (1)

u
\ 9 95 975 99 995

1 3.08 6.31 12 318 63.7
2 1.89 2.92 4.30 6.97 9.93
3 1.64 235 318 4.54 5.84
4 1.53 2.13 2.78 375 4.60
5 1.48 2.02 2.57 337 4.03
6 1.44 1.94 245 314 3.71
7 1.42 1.90 2317 3.00 3.50
8 1,40 1.86 231 290 3.36
9 1.38 1.83 2.26 2:82 3.25
10 137 1.81 2.23 2,76 317
11 1.36 1.80 220 2,72 3.11
12 1.36 1.78 2.18 268 3.06
13 1.35 1.77 2.16 2.65 3.01
14 135 1.76 2.15 2.62 298
15 1.34 1.75 213 2.60 2.95
16 1.34 1.75 212 2.58 292
17 133 174 211 257 290
18 1.33 173 2.10 2,55 2.88
19 1.33 1.73 2,09 2.54 2.80
20 1.33 1.75 209 253 2.85
22 132 12 2,07 251 282
24 1.32 1.71 2,06 249 2.80
26 132 1.7 2,06 2.48 2.78
28 1.31 1.70 205 247 2.76
30 131 1:70 2,05 2.46 275

n
For n 2 30: t,(n) = z,,]/ =

Exponential distribution. We are given an RV x with density

F(x.A) = —e=AU(x)

>

and we wish to find the y confidence interval of the parameter A. As we know,
1 = A and o = A; hence, for large n, the sample mean X of x is NCA, A/ V).
Inserting into (9-11), we obtain

A A
—z,— <X<Atz,—)=y=2u-1
P{A z,,‘/’T X u&} Y
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This yields

X

Pl—— — <A< ———} = 9-18
[+ 2,/Vn 1= 2,/Vn } i )
and the interval ¥/(1 + z,/ Vn ) results.

Example 9-4. The time to failure of a light bulb is an RV x with exponential
distribution. We wish to find the 0.95 confidence interval of A. To do so, we
‘observe the time to failure of 64 bulbs andwe find that their average x equals 210
hours. Setting z,,/ Vit = 2/ V64 = 0.25 into (9-18), we obtain the interval

168 < A < 280
We thus expect with confidence coefficient 0.95 that the mean time to failure

E(x} = A of the bulb is between 168 and 280 hours.

Poisson distribution. Suppose that the RV x is Poisson distribution with param-
eter s
k

A
P{x=k]=e’"F k=0,1,...

In this case, 7 = A and o’ = A; hence, for large n, the distribution of X is
approximately N(A, YA /n) [see (8-110)]. This yields

A
P{li*/\](i‘”v—}=y
n

The points of the XA plane that satisfy the inequality [¥ — Al < z,/A/n are in
the interior of the parabola

. Z
(A =X)" =—A (9-19)

From this it follows that the y confidence interval of A is the vertical segment
(A4, A,) of Fig. 9-3 where A, and A, are the roots of the quadratic (9-19).

e =
A

. L7
2
)
n
=

1
0 X FIGURE 9-3



9-2 pARAMETER ESTIMATION 251

Example 9-5. The number of particles emitted from a radioactive substance per
second is:a Poisson RV x with parameter A, We observe the emitted particles x; in
64 consecutive seconds and we find that ¥ = 6. Find the 0.95 confidence interval of

A. With z7/n = 0.0625, (9-19) vields the quadratic
(A —6)° = 0.06254

Solving, we obtain A, =542, A, = 6.64. We can thus claim with confidence
coefficient 0.95 that 542 < A < 6.64.

Probability. ‘We wish to estimate the probability p = P(.27) of an event .57, To
do'so, we form the zero-one RV x associated with this event. As we know.
Elx) = p and g = pq. Thus the estimation of p is equivalent to the estimation
of the mean of the RV x.

We repeat the experiment n times and we denote by & the number of
successes of 7. The ratio ¥ = k/n is the point estimate of p. To find its
interval estimate, we form the sample mean % of x. For large #, the distribution
of X is approximately N(p,pg/n ). Hence

[Pq
P{Ii—p!(z“ —}:y=2ll—l
n

The points of the Xp plane that satisfy the inequality [¥ — p| < z,,\/pq/n are in
the interior of the ellipse

2 -p)
= n

- k

(p—x)"= X—1L== (9-20)
n

‘From this it follows that the y confidence interval of p is the vertical segment

(pys p;) of Fig. 9-4. The endpoints p; and ps of this segment are the roots of

(9-20). For n > 100 the following approximation can be used:

I T(L=%)
b, =¥tz ———=  py<p<p; (9-21)
2 n
This follows from (9-20) if we replace on the right side the unknown p by its
point estimate X.

FIGURE 9-4
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Example 9-6. In a preelection poll, 500 persons were questioned and 240 responded
Republican. Find the 0.95 confidence interval of the probability p = [Republican)
In this example, z, =2, n = 500, X = 240,/500 = (.48, and (9-21) yiclds the
interval 048 + 0.045.

In the usual reporting of the results, the following wording 15 used: We
estimate that 48 percent of the voters are Republican. The margin of error is + 4.5
percent. This only specifies the point estimate and the confidence interval of the
poll. The confidence cocflicient (0.95 in this case) is rarely mentioned,

Variance

We wish to estimate the variance v = o° of a normal RV x in terms of the n
samples x; of x.

Known mean. We assume first that the mean 7 of x is known and we use as the
point estimator of v the average

(x;=m)" (9-22)
As we know,

E{%) =u o= =]

n

Thus ¥ is'a consistent estimator of o, We shall find an interval estimate. The
RV nv/o* has a y*(n) density (see page 200). This density is not symmetrical:
hence the interval estimate of o is not centered at o2 To determine it, we
introduce two constants ¢, and ¢, such that (Fig. 9-5a)

nv ) nv )
P{? (Cl}=5 F{; >C2}25

This yields ¢; = x3 5(n), ¢; = xi_; »(n), and the interval

ni ni
—  _sgtl—— (9-23)
Xi-s/2(n) X 2(1)

FIGURE 9-5
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TABLE 9-3
Chi-square percentiles x2(n)

e
n 005 01 025 08 ik 9 95 975 D9 948

1 0.00 000 000 000 002 27] 384 502 663 T8RS
2 001 002 005 010 021 461 5099 738 921 1060
3 007 031 022 035 625 781 935 1134 1284
778 949 1114 1328 1486
924 1107 1283 1509 1675
10:64 1259 1445 1681 1855
1202 1407 1600 1848 2028
1336 1551 17.53 2009 21.96
1468 1692 1902 21.67 23.59
1599 1831 2048 2321 25.19
11 2,600 3.05 3.82 457 17.28 1968 21:92 2473 26.76
12 307 357 440 523 1835 2334 2622
13 357 411 501 589 7.04 1981 36 2474 27.09
14 407 4.66 363 657 779 2106 2368 262 29.14
15 4.60 523 626 726 855 2231 2500 2749 3058
160 504 3581 691 796 931 2354 2630 2885 3200
17 570 641 756 8467 1009 2477 2759 309 3341
18 626 701 823 939 10.86 2599 2887 31.53 3481
19 6:84 7.63 891 1012 1165 2720 30014 3285 3619
20 743 826 9359 1085 1244 2841 3141 3407 3757 40.00
22 86 95 110 123 140 308 339 368 403 428
24 99 109 124 138 157 332 364 394 430 456
260 112 122 138 154 173 356 389 419 456 483
28 125 36 153 169 189 379 413 445 483 510
300 138 150 168 185 206 403 438 47.0 509 5737
40 2070 222 244 265 291 5188 558 593 637 668
500 280 29.7 324 348 377 632 675 714 762 795

4 021 030 048 071
5 041 055 083 115
6 0.68 087 124 1.64
700 0990 1241 169 207
8 134 16y 218 273
9 173 209 270 333
100 2160 256 325 3.94

For n= 500 yi(m) = =(z, + y2n — 1)°

results. This interval does not have minimum length. The minimum interval is
such that f.(¢,) = f (¢c,) (Fig. 9-5b); however, its determination is not simple.
In Table 9-3, we list the percentiles y,(n) of the y*(n) distribution.

Unknown mean. If 7 is unknown, we use as the point estimate of o> the
sample variance s° [see (9-13)]. The RV (n — 1)s%/c? hasa y (n — 1) distribu-
tion. Hence

(n —1)s*
P{Xr?/z(n = )< D < Xi_s (= ])} =i
This yields the interval
2 e 1362
’(n— 1)s ) (n— 1)s (9:24)
Ki-ss2(n = 1) Xaypaltt = 1)
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Example 9-7. A voltage source I is measured six times. The measurements are
modeled by the RV x = V' + ». We assume that the error v is N0, o). We wish to
find the 0.95 interval estimate of o>

(a) Suppose first that the source is a known standard with ¥ = 110 V. We
insert the measured values x; = 110 + v, of ¥ into (9-22) and we ‘find # = 0.25
From Table 9-3 we obtain

A’&.n:s(()) =124 ¥ﬁ_~n:5(6) = 14.45

andi(9-23) yields 0.104 < o < 1.2. The corresponding interval for o is 0.332 < o
< 1.096 V.

(b) Suppose now that ¥ is unknown. Using the same data, we compute 57
from (9-13) and we find s> = 0.30. From Table 9-3 we obtain

Xﬁ,uzs(s) = 0.83 Xﬁ.'ns“) = 12.83

and (9-24) yields 0.117 < o* < 1.8, The corresponding interval for o is 0.342 < o
<134 V.

PERCENTILES. The « percentile of an RV x is by definition a number ¥, such
that F(x,) =w. Thus x, is the inverse function F'~"(«) of the distribution
F(x) of x. We shall estimate x,, in terms of the samples x, of x. To do so, we
write the n observations x, in ascending order and we denote by y; the kth
number so obtained. The corresponding RVs ¥ are the order statistics of x [see
(8-13)].

From the definition it follows that y, <x, iff at least k of the samples x,
are less than x,; similarly, y,., > x, iff at least k + » of the samples x, are
greater than x,. Finally, y, <x, <y, iff at least k and at most k¥ + r — 1 of
the samples x; are less than x,. This leads to the conclusion that the event
{3 <x, < yi.,) ocours iff the number of successes of the event (x < X, in n
repetitions of the experiment . is at least & and at most k + r — 1. And since
P{x <x,} = u, it follows from (3-18) with p = u that

kwr—|

Py <z, <w.)- T (% )u'"(l — (9-25)

m=k

Using this basic relationship, we shall find the v confidence interval of x,
for a specific u. To do so, we must find an integer & such that the sum in (9-25)
equals y for the smallest possible r. This is a complicated task involving trial
and error. A simplt_’. solution can be obtained if n is large. Using the normal
approximation (3-33) with p = nu, we obtain

k+r—05 - nu k=05 —nu
Py <%, <¥isi,) "“G( )— ,{ )=?

V(1 = o) Vru(n —u)

This follows from (3-33) with p = nu. For a specific y, r is minimum if nu is
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Flx),

NE(x

(a) (b}
FIGURE 9-6

near the center of the interval (k, k + r). This yields

k=nu—zi_;,\nu(l— u) k+r=nun+ pynu(l —u) (9-26)

to the nearest integer.

Example 9-8. We observe 100 samples of x and we wish to find the 0.95 confidence
interval of the median x;s of x. With u = 0.5, nu = 50. 2475 = 2, (9-26) vields
k =40, 'k + r = 60. Thus we can claim with confidence coeflicient (.95 that the
median of x is between yy, and y,.

DISTRIBUTIONS. We wish to estimate the distribution. F(x) of an RV x in
terms of the samples x, of x, For a specific x, F(x) equals the probability of the
event {x < x}; hence its point estimate is the ratio n,/n where n, is the number
of x s that do not exceed x. Repeating this for every x, we obtain the empirical
estimate

A n ¥

F(x) = —

n

of the distribution F(x) [see also (4-3)]. This estimate is a staircase function
(Fig. 9-6a) with discontinuities at the points x,.

Interval estimates. For a specific x, the interval estimate of F(x) is obtained
from (9-20) with p = F(x) and % = F(x). Inserting into (9-21), we obtain the

interyal
A(x) + %{rﬁ[‘f—' e

We can thus claim with confidence coefficient y = 2u — 1 that the unknown
F(x) is in the above interval, Note that the length of this interval depends on x.
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We shall now find an interval estimate F(x) + ¢ of F(x) where ¢ is a
constant. The empirical estimate F(x) depends on the samples x; of x. It
specifies, therefore, a family of staircase functions F(x), one for each set of
samples x,. The constant ¢ is such that

P{E(x) — F(x)l <c} =y (9-27)

for every x and the y confidence region of F(x) is the strip F(x) + ¢. To find c,
we form the maximum

w = max |F(x) — F(x)] (9-28)

(least upper bound) of the distance between F(x) and F(x). Suppose that
w = w(£) is a specific value of w. From (9-28) it follows that w < ¢ iff F(x) —
F(x) < ¢ for every x. Hence

y=Plw=<c) = F,(c)

It suffices, therefore, to find the distribution of w. We shall show first that the
function F,(w) does not depend on F(x). As we know [see (5-18)], the RV
¥ = F(x) is uniform in the interval (0, 1) for any F(x). The function y = F(x)
transforms the points x; to the points y, = F(x;) and the RV w to itself (see
Fig. 9-6b). This shows that F, (w) does not depend on the form of F(x). For its
determination it suffices, therefore, to assume that x is uniform. However, even
with this simplification, it is not simple to find E, (w). We give next an
approximate solution due to Kolmogoroff:
For large n:

F(w)= 11— 2e-2 (9-29)

From this it follows that y = F(c) = 1 — ¢~"", We can thus claim with
confidence coefficient y that the unknown F(x) is between the curves F(x) + ¢
and F(x) — ¢ where

e
e 20 2

This approximation is satisfactory if w > 1/ Vi .

(9-30)

Bayesian Estimation

We return to the problem of estimating the parameter @ of a distribution
F(x,8). In our earlier approach, we viewed 8 as an unknown constant and the
estimate was based solely on the observed values x; of the RV x. This approach
to estimation is called classical. In certain applications, 8 is not totally unknown.
.!f, for example, 6 is the probability of six in the die experiment, we expect that
its possible values are close to 1/6 because most dice are reasonably fair. In
bayesian statistics, the available prior information about § is used in the
estimation problem. In this approach, the unknown parameter @ is viewed as
the value of an RV 0 and the distribution of x is interpreted as the ¢onditional
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distribution F,(x[#) of x assuming 0 = . The prior information is used to
assign somehow a density f,(8) to the RV 6, and the problem is to estimate the
value 8 of 0 in terms of the observed values x; of x and the density of 0. The
problem of estimating the unknown parameter @ is thus changed to the problem
of estimating the value 8 of the RV 8. Thus, in bayesian statistics, estimatior 15
changed to prediction.

We shall introduce the method in the context of the following problem.
We wish (o estimate the inductance # of a coil. We measure € n times and the
results are the samples x, = 6 + v, of the RV x = # + v. If we interpret 8 as an
unknown number, we have a classical estimation problem, Suppose, however,
that the coil is selected from a production line. In this case, its inductance 8 can
be interpreted as the value of an RV 0 modeling the inductances of all coils.
This is a problem in bayesian estimation. To solve it, we assume first that no
observations are available, that is, that the specific coil has not been measured.
The available information is now the prior density f,(6) of 8 which we assume
known and our problem is to find a constant 8 close in some sense to the
unknown #, that is, to the true value of the inductance of the particular coil. If
we use the LMS criterion for selecting 8, then [see (7-62)]

6= E(0) = [ of,(6) de

To improve the estimate, we measure the coil 2 times. The problem now
is to estimate @ in terms of the n samples x; of x. In the general case, this
involves the estimation of the value @ of an RV 0 in terms of the n samples x
of x. Using again the MS criterion, we obtain

)

6 = E(6]X) =j’ 0,(01X) d (9-31)
[see (8-77)] where X =[x, ..., x,] and
flxla)
- £ 9.32
fo(81X) 7(X) fa(0) (9-32)

I_n the above, f(X|8) is the conditional density of the n RVs x, assuming 8 = 6.
If these RVs are conditionally independent, then

F(X18) = f(x,16) -+ £(x,18) (9-33)

where f(x|6) is the conditional density of the RV x assuming 8 = . These
results hold in general. In the measurement problem, f(x[8) = f,(x — 8).

We conclude with the clarification of the meaning of the various densities
used in bayesian estimation, and of the underlying model, in the context of the
measurement problem. The density f,(8), called prior (prior to the measure-
ments), models the inductances of all coils. The density f,(8].X), called posterior
(after the measurements), models the inductances of all coils of measured
inductance v. The conditional density f,(x|8) = f,(x — #) models all measure-
ments of a particular coil of true inductance 8. This density, considered as a
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f1Xx\a) =

0, f=p, X g FIGURE 9-7

function of 8, is called the likelihood function. The unconditional density f (x)
models all measurements of all coils. Equation (9-33) is based on the reasonable
assumption that the measurements of a given coil are independent.

The bayesian model is a produet space .= ./, X .7, where ./, is the
space of the RV @ and' ../ is the space of the RV x. The space ./, is the space
of all coils and .7 is the space of all. measurements of a particular coil. Finally,
- is the space of all measurements of all coils. The number 8 has two
meanings: [t is the value of the RV 0 in the space .#; it is also a parameter
specifying the density f(x[8) = f,(x — @) of the RV x in the space ..

Example 9-9. Suppose that x =8 + v where v is an N(0. o) RV and 6 is the
value of an N(6,, o) RV 8 (Fig. 9-7). Find the bayesian estimate 8 of .

The density f(x|8) of x is N(0, o). Inserting into (9-32), we conclude that
(see Prob. 9-37) the function f(8|X)is N(8,,a,) where

2 2 2 2

2 T a5 BOG

e e e 0[:‘—,0"-(* 5
n oy +a/n o o

Erom the above it follows that E(0lX) = 0, in other words, § = 8-

Note that the classical estimate of is the average ¥ of x,. Furthermore, its
prior estimate is the constant 8y, Hence d is the weighted average of the prior
estimate (I,, and the classical estimate ¥. Note further that as » tends to =, &, — 0
and no /a - 1; hence @ tends to x. Thus, as the number of measurements
increases, the bayesian estimate § approaches the classical estimate ; the effect of
the prior becomes negligible.

We present next the estimation of the probability p = P(2/) of an event
o/, To be concrete, we assume that .27 is the event ‘“‘heads” in the coin
experiment, The result is based on Baves’ formula [sec (4-67)]

0 = WP{.IF.\')f('x) (9.33)

f_mP(yd.’lx)f(x) dx

In bayesian statistics, p is the value of an RV p with prior density f(p). In the
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absence of any observations, the LMS estimate j is given by

B = flﬁf(ﬁ) dp (9-35)
(]

To improve the estimate, we toss the coin at hand n times and we observe that
“heads” shows & times. As we know,

P{.#|p =p} =p*q"*  .#= {k heads)

Inserting into (9-34), we obtain the posterior density

k n—k
f(p|-#) = M (9-36)

fn p*a"*f(p) dp

Using this function, we can estimate the probability of heads at the next
toss of the coin. Replacing f(p) by f(pl.#) in (9-35), we conclude that the
updated estimate p of p is the conditional estimate of p assuming .#:

f”’pf( pl#t) dp (9-37)

Note that for large »n, the factor o(p) = p*(1 — p)"=* in (9-36) has a
sharp maximum at p = k/n. Therefore, if f( p) is smooth, the product f(p)¢( p)
is concentrated near k/n (Fig. 9-8a). However, if f(p) has a sharp peak at
p = 0.5 (this is the case for reasonably fair coins), then for moderate values of
n, the product f(p)e(p) has two maxima: one near k /n and the other near 0.5
(Fig. 9-8b). As n increases, the sharpness of ¢(p) prevails and f(pl.#) is
maximum near k /n (Fig. 9-8¢).

Example 9-10. We toss a coin of unknown quality n times and we observe k
heads. Using this information, we wish to find the bayesian estimate p of the
probability p that at the next toss heads will show.

In the absence of any prior information, we assume that p is the value of an
RV p uniformly distributed in the .interval (0,1). Setting f(p) = 1 in (9-36) and

------ fp)
——= pt(1=p)*
— f(plk heads)

i
|
i LA L ]
0 0305 1 0 0305 1 0 1
(a) ()

FIGURE 9-8
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using the identity

, ki(n = k)!
L I e v L )
j”n (@ =p)"" dp ==
we obtain
(i + 1)1 ; S
"(pl e Ifi — 0 <]
fCpl#) k!(urk)!ﬁ( ) <p

This function is known as the beta density. The updated estimate p of p is
obtained from (9-37):

. (n+1)! gy ik 7Lv
F‘k!(u—k)!‘&p (I =p)" "dp=2r05

This result is known as the law of succession,

Note Bayesian estimation is a controversial subject. The controversy has its origin on the
dual interpretation of the physical'meaning of probability. In the first interpretation, the
probability P(.27) of an event &/ is an “objective’” measure of the relative frequency of
the oceurrence of &/ in a large number of trials, In the second interpretation, P ) is a
“subjective” measure of our state of knowledge concerning the occurrence of &7 in a
single trial. This dualism leads to two different interpretations of the meaning of
parameter estimation. In the coin experiment, these interpretations take the following
form:

In the classical (objective) approach, p is an unknown number. To estimate its
value, we toss the coin 2 times and use as an estimate of p the ratio p = k/n. In the
bayesian (subjective) approach, p is also an unknown number, however, we interpret it as
the value of an RV 0, the density of which we determine using whatever knowledge we
might have ‘about the coir. The resulting estimate of p is determined from (9-37). If we
know nothing about p, we set f(p) = 1 and we obtain the estimate p = (k + 1)/(n + 2).
Conceptually, the two approaches are different. However, practically, they lead in most
estimates of interest to similar results if the size n of the available sample is large. In the
coin problem, for example, if n is targe, k is also large with high probability; hence
(k + 1)/(n + 2) = k/n. Il n is not large, the results are different but unreliable for
either method. The mathematics of bayesian cstimation are also used in classical
estimation problems if @ is the value of an RV the density of which can be deter-
mined objectively in terms of averages. This is the case in the problem considered in
Example 9-9.

Method of Maximum Likelihood

Up to now, we considered the estimation of particular parameters, and the
selection of their estimators was based on the relative frequency interpretation
of the mean of some function of x. In the following, we develop a general
method of estimation. This method can be used for most applications but it is
efficient primarily for large values of 7. We introduce the method in the context
of the followitg problem.
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Density Likelihood

- =M

(a)

FIGURE 9-9

We have an RV x with density f(x, #) and we wish to estimate 8 in terms
of'a single observation of the RV x. To do so, we plot the density f(x,8) as a
function of 6, assigning to x the observed value of x, and we determine the
value § = 0 Of 6 that maximizes f(x,6). We shall call the curve f(x,#) so
plotted the likelthood function of x and the number 6 the mavimum likelihood
(ML) estimate of 6. This estimate is the value of 8 for which the probability
F(x, 8) dx that the RV x is in the interval (x, x + dx) is maximum.

Example 9-11. If Fig. 9-9 we plot the Erlang density

S(x,8) = 02xe “U(x)
as a function of x and the corresponding likelihood function. The likelihood
function is maximum for ¢ =2/x. Thus the ML estimate of @ in terms of the

obscrved value x of x is 8 = 2/x. The mode x 1 /6 of the density is the
predicted value of x if 0 is known (sce page 179).

Hiax =

We shall now determine the ML estimate of 0 in terms of n observations
x; of x. To do so, we form the joint density

fUX,8) = f(x,,8)--- f(x,,8)

of the # samples x, of x. This density, considered as a function of @ is called the
likelihood function of X. The value 6 of ¢ that maximizes f(X]6) is the ML
estimate of §. The logarithm

L(X.0) = Inf(X,0) = E In f(x,.0) (9-38)

is the Iathke!dmad function of X. From the monotomcuy of the logarithm, it
follows that 4 also maximizes the function L(x, ). If § is in the interior of the
domain © of @, then § is a root of the cquation

(X 0) 1 f(x,.0)

- =0 (9-39)
a0 =g S(xp0) a6
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Example 9-12. Suppose that f(x,8) = fe™ " U(x). In this case,
f(X.,0)=0%""% L(X,0)=nlné - 0nz
Hence
aL(x,a) n .
T = E — nx =
Thus the ML estimator of 6 equals 1/% This estimator is biased because
E{1/x} = no /(n — 1),

=i o=

The ML method can be used to estimate any parameter. However, for
moderate values of n, the estimate is not efficient. The method is used primarily
for large values of n. This is based on the following important result.

Asymptotic properties. For large n, the distribution of the ML estimator @
approaches a normal curve with mean # and variance 1/nl where

2

aL(x,8) |* « |L(x,0)
I=E{ Tt } :[_z — | f(x.0) dx (9-40)
Thus
o 1 nl 2 ’
13(0) = exp( = (0 - 0)’) (9-41)

The number / is called the information about # contained in x. Using integra-
tion by parts, we can show that (see Prob, 9-24)

3*L(x,8)
I=-E — "~
ae*
We show later [see (9-46)] that the variance of any estimator of 8 cannot be
smaller than 1/#/, From this it follows that the ML estimator is asymptotically

normal, unbiased, with minimum variance. In the next example, we demonstrate
the validity of the above theorem. The proof will not be given.

Example 9-13. Suppose that the RV x is N{n, o) where 7 is a known constant.
We wish to find the ML estimate @ of its variance ¢ = a2, In this problem,
1

H(X,0) = IJZ_T')"cxp{k ._,Ll Y (x; - n):}

n 1 >
L{X,0) = —=I )= == &= m)”
(X,0) = = ZIn@mrv) = =¥ (x,~ )
Inserting into (9-39), we obtain

dL(X,8) n 1 2
o - T aai{n-n)t=0
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This vields the estimator

As we know [see (8-67)]

E{%) =a? O —

Furthermore, for large n the RV v is nearly normal (CLT) as in (9-41), To
complete the validity of (9-41), it suffices to show that af = 1/er =n/2a*. This
follows from the identity

e L = DA

e 20° e

The Rao-Crameér Bound

A basic problem in estimation is the determination of the best estimator 6 of a
parameter 8. It is easy to show that if 6 exists, it is unique (see Prob. 9-39).
However, in general, the problem of determining the best estimator of 8, or
even of showing that such an estimator exists, is not simple. In the following, we
determine the greatest lower bound of the variance of most estimators. This
result can be used to establish whether a particular estimator is the best or that
it is close to the best. We shall assume that the density f(x,8) of x is
differentiable with respect to ¢ and that the boundary of the domain of x does
not depend on 4. Differentiating the area condition [f(x, 8) dx = 1 with respect
to @, we obtain the identity

- (7f( Xy 0)
— iy = 9-42
j-, 5 =0 (9-42)
A density satisfying the conditions leading to this identity will be called regular.
We show next that
(al(X,8) dL(X, 8
E{—( )}=0 L“——( )

=l 9-43
o = } n ( )

where L(X. @) = In f(X, 6) is the log-likelihood of X and n/ is the information
about @ contained in X [see also (9-40)).

Proof. From the identity L(x,8) = In [fCx, 8) and (9-42), it follows that
= 9L(x,0) « af(x,0)
f_x—aa f(x,0)dx = f_:_cm dy =0

This shows that the mean of the function aL(x, @) /a0 is 0; hence its variance
cquals E(|dL(x, 6) /a0|%). Inserting into (9-38), we obtain (9-43) because the
RVs In f(x,, 8) are independent.
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We shall use (9-43) to determine the greatest luwgr bound of the variance
of an arbitrary estimator 0 of 6. Suppose first that 8 = g(X) is an unbiased
estimator of #:

E(8) = jg(X),r(x.a)dX:a
R

Differentiating with respect to 8, we abtain

(’( 0) AL(X,0)

1-f (X)) ————dX = [ (X) Tf(X,B)u'X
This yields
SL(X, ) =1 9-44
E{K(X)T} = (9-44)

Multiplying the first equation of (9-43) by # and subtracting from (9-44), we
obtain

sy ks

£{(e) 0]
We shall use this identity to prove the following important result.

THEOREM. The variance E{[g(X) — 8]’} of any unbiased estimator 8 of 6
cannot be smaller than 1 /nf:

of = — (9-46)

Proof. The proof is based on Schwarz’s inequality
E*{aw) < E{22)E{w?) (9-47)

Squaring both sides of (9-45) and applying (9-47) to the RVs z = g(X) — # and
w = dL(X, 6) /36 we obtain

1 < E{[g(X) - H]Z}EHWI“} (9-48)

and (9-46) results.

We shall now determine the class of functions for which the estimator 0 is
best, that is, that (9-46) is an equality. As we know, (9-47) is an equality if
2 = cw. Hence (9-48) is an equality if g(X) — 0 = c dL(X, )/30. To find ¢, we
insert into (9-48) and use (9-43). This yields ¢ = 1/nl hence

dL(X,8)
— = nl[g(X) - 0] (9-49)

Thus the estimate 6= g(X) is best if the log-likelihood function L(X,8)
satisfies (9-49).
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COROLLARY. If 6= g(X) is a biased estimator of @ with mean £{8)} = +(8),
then

o lor »
Ug == = M
5 o (9-50)
Proof. The statistic 6 = g(X) is an unbiased estimator of the parameter 7 = +(8).

We can, therefore, apply (9-46) provided that we replace @ by 7(8) and nl by
the information about = contained in X. Since

JL[ X, 0(7)] _ OL(X,0) db
ar - a  dr

and 8/(z) = 1/7'(8) we obtain
E{ aL[X,6(z)] H __n :
i B0k

and (9-50) results. Reasoning as in (9-49), we conclude that (2-44) is an equality
iff

dL[X,0(z)]  nl
dr [1—’(9)]2

[g(Xx) —a(r)] (9-51)

Note If f(x,0)is a density of exponential type, that is, if
f(x,8) = h(x)exp{a(8)g(x) + b(a)) (9-52)

then the statistic 6=(I/:x)Eq(x) is the best estimator of the paramcter 7(8) =
—b'(0)/a"(0). This follows readily from (9-51).

9-3 HYPOTHESIS TESTING

A statistical hypothesis is an assumption about the value of one or more
parameters of a statistical model. Hypothesis testing is a process of establishing
the validity of a hypothesis. This topic is fundamental in a variety of applica-
tions: Is. Mendel’s theory of heredity valid? Is the number of particles emitted
from a radioactive substance Poisson distributed? Does the value of a parame-
ter in a scientific investigation equal a specific constant? Are two events
independent? Does the mean of an RV change if certain factors of the
experiment are modified? Does smoking decrease life expectancy? Do voting
patterns depend on sex? Do 1Q scores depend on parental education? The list
is endless.

We shall introduce the main concepts of hypothesis testing in the context
of the following problem: The distribution of an RV x is a known func-
tion F(x,8) depending on a parameter . We wish to test the assumption

= 0, against the assumption 6 # 6, The assumption that 8 = 8, is denoted
by H, and is called the null hypothiesis. The assumption that 8 + 8, is denoted
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by H, and is called the alternative hypothesis. The values that 8 might take
under the alternative hypothesis form a set O, in the parameter space. If 0,
consists of a single point 8 = @, the hypothesis H, is called simple: otherwise
it is called composite. The null hypothesis is in most cases simple.

The purpose of hypothesis testing is to establish whether experimental
evidence supports. the rejection of the null hypothesis. The decision is based on
the location of the observed sample X of x. Suppose that under hypothesis H,
the density f(X, #,) of the sample vector X is negligible in a certain region D,
of the sample space, taking significant values only in the complement 5 of
D_. It is reasonable then to reject H,; if X is in D, and to accept H, if X is in
D,. The set D, is called the critical region of the test and the set D, is called the
region of acceptance of H,. The test is thus specified in terms of the set D).

We should stress that the purpose of hypothesis testing is not to determine
whether H,, or H, is true. It is to establish whether the evidence supports the
rejection of H,,. The terms “accept” and “reject” must, therefore, be inter-
preted accordingly. Suppose, for example, that we wish to establish whether the
hypothesis £, that a coin is fair is true. To do so, we toss the coin 100 times
and observe that heads show & times. If k = 15, we reject H,,, that is, we decide
on the basis of the evidence that the fair-coin hypothesis should be rejected. If
k = 49, we accept H,,, that is, we decide that the evidence does not support the
rejection of the fair-coin hypothesis. The evidence alone, however, does not lead
to the conclusion that the coin is fair. We could have as well concluded that
p = 049,

In hypothesis testing two kinds of errors might occur depending on the
location of X:

1. Suppose first that H, is true. If X & D, we reject H,, even though it is true.
We then say that a Type I emor is committed. The probability for such an
error is denoted by a and is called the significance level of the test. Thus

a=P(X € D.|H,) (9-53)

The difference | —a = P{X & D.|H,)} equals the probability that we accept
Hy, when true. In this notation, P{ -~ - |Hy} is not a conditional probability.
The symbol H, merely indicates that H, is true.

2. Suppose mext that H,, is false. If X & D, we accept H, even though it is
false. We then say that a Type Il error is committed. The probability for such
an erroris a function B(A) of @ called the operating characteristic (OC) of the
test. Thus

B(8) = P(X & D,|H,) (9-54)

'.I'hc difference 1 — B(6) is the probability that we reject H,, when false, This
is denoted by P(0) and s called the power of the test. Thus

P(0) = 1 - B(6) = P(X € D,|H,) (9-55)
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Fundamental note Hypothesis testing is not a part of statistics. It is part of decision
theory based on statistics. Statistical consideration alone cannot lead to a decision. They
merely lcad to the following probabilistic statements:

If Hy istrue, then P(X € D} = o

. 9-56]

If H, isfalse, then P{X & D} = g(a) (9-56)
Guided by these statements, we “reject” Hy if X € D, and we “aceept” H, if X & D..
These decisions are not based on (9-56) alone, They take into consideration other, often
subjective, factors, for example, our prior knowledge concerning the truth of Hy, or the
consequences of a wrong decision.

The test of a hypothesis is specified in terms of its critical region. The
region D_is choseén so as to keep the probabilities of both types of errors small,
However both probabilities cannot be arbitrarily small because a decrease in o
results in an increase in . In most applications, it is more important to control
a. The selection of the region D, proceeds thus as follows:

Assign a value to the Type Ierror probability « and search for a region D,
of the sample space so as to minimize the Type 11 error probability for a specific
8. If the resulting B(A) is too large, increase a to its largest tolerable value: if
B(6) is still too large, increase the number » of samples.

A test is called most powerful if B(#) is minimum. In general, the critical
region of a most powerful test depends on 8. If it is the same for every 8 O,
the test is wniformly most powerful. Such a test does not always exist. The
determination of the critical region of a most powerful test involves a search in
the n-dimensional sample space. In the following, we introduce a simpler
approach.

TEST STATISTIC. Prior to any experimentation, we select a funetion
q=g(X)

of the sample vector X. We then find a set R, of the real line where under
hypothesis H,, the density of q is negligible, and we reject H,, if the value
g =g(X)of qisin R,. The set R, is the critical region of the test; the RV q is
the fest statistic. In the selection of the function g(X) we are guided by the
point estimate of ‘0.

In a hypothesis test based on a test statistic, the two types of errors are
expressed in terms of the region R, of the real line and the density f, (g, #) of
the test statistic q;

a=Plac R} = [ f,(a.00) da (9-57)

B(8) = Plq € R.IH,) =fﬁf.,(q,e)dq (9-58)

To carry out the test, we determine first the function f (g, 8). We then
assign a value to a and we search for a region R, minimizing S(#). The search
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is now limited to the real linc. We shall assume that the function f, (g.8) has a
single maximum. This is the case for most practical tests.

Qur objective is to'test the hypothesis # = 8, against each of the hypothe-
ses B # 0, 0> 6, and 8 < 6,. To be concrete, we shall assume that the
function f,(q, #) is concentrated on the right of f, (g, 6,) for 0 > 8, and on its
left for 8 < @, as in Fig. 9-10.

Hp:6+6,

Under the stated assumptions, the most likely values of q are on the right of
J8q. 0,)if 0> 6, and onits left if 6 < §,,. It is, therefore, desirable to reject H,,
if g <, orif g>e¢,. The resulting critical region consists of the half-lines
g < ¢; and g > ¢,. For convenience, we shall select the constants ¢, and ¢,
such that

a
Pla <¢|Hy) = 2 Pla > e;|Hy) =

) R

Denoting by ¢, the u pereentile of g under hypothesis H,, we conclude that
€y =l 20 €3 = 84y, s2- This yields the following test:

Accept Hy iff g, » <q <gqy_,,» (9-59a)
The resulting OC function equals
i-a /2 n
B = [, (q.0) da (9-60a)
A 3

H;:8>0,

'Under =I1'ypothesis H,, the most likely values of ¢ areon the right of fula, 8). It
is, therefore, desirable to reject H,, if g > ¢, The resulting critical region is now
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the half-line ¢ > ¢ where ¢ is such that
P{q>cli'!r\} =a €C=4q-q
and the following test results;
Accept Hy iff g < q,_, (9-595)

The resulting OC function equals

BO) = [ fila,0)dg (9-60b)

Hy:0<8,
Proceeding similarly, we obtain the critical region q < ¢ where ¢ is such that
Pla <clHp) =a c=g,
This yields the following test:
Accept H, iff g > g, (9-59c¢)

The resulting OC function equals
B(8) = [ f,(q.0) dq (9-60c)

The test of a hypothesis thus involves the following steps: Select a test
statistic q = g(X) and determine its density. Observe the sample X and com-
pute the function g = g(.X). Assign a value to a and determine the critical
region R,. Reject H, iff ¢ € R,_.

In the following, we give several illustrations of hypothesis testing. The
results are based on (9-59) and (9-60). In certain cases, the density of q is known
for 6 = 4, only. This suffices to determine the critical region. The OC function
B(8), however, cannot be determined.

MEAN. We shall test the hypothesis H: n = 5, that the mean 7 of an RV x
equals a given constant 7,

Known variance. We use as the test statistic the RV

X— My

= (9-61)
A= i (
Under the familiar assumptions, X is N, o/ vn ); hence q is N(m,, 1) where
L ]
= (9-62)
Ty a/vn

Under hypothesis Hy, q is N(0,1). Replacing in (9-59) and (9-60) the 4.



270  STATISTICS

percentile by the standard normal percentile z,, we obtain the following test

Hyn # 1y Accept Hyiff z, » <4 <zy_, . (9-63a)
B(n) = Pllal <z, polHi} = 6(2)_cpp = M) = 6202 = m,) (9:64a)
Hi:m >my Accept H, iff g <z;_, (9-63b)
B(m) = Pla <z_,|H) = G(z,_, — n,) (9-648)

Hyin <7 Accept H, iff g > z,, (9-63¢)
B(n) =Pla >z |H} =1 -Gz, — n,) (9-64¢)

Unknown variance. We assume that x is normal and use as the test statistic the
RV

X — 1y

S 9.65)

q S‘/\G ( )

where s is the sample variance of x. Under hypothesis H;, the RV q has a

Student-r distribution with n — 1 degrees of freedom. We can, therefore, use

(9-59) where we replace g,, by the tabulated r,(n — 1) percentile. To find B(n),
we must find the distribution of q for 5 # n,.

Example 9-14. We measure the voltage V of a voltage source 25 times and we find
X = 110.12 V (see also Example 9-3). Test the hypothesis V' = ¥, = 110 V against
V' 110 V with @ = 0.05. Assume that the measurement error » is N(0, o).
(a) Suppose that o = 0.4 V. In this problem, 2;_, » = z( 45 = 2:
110.12 = 110
4§ = — =
L 0.4/v25

Since 1.5:s in the interval (—2,2), we accept H,;:
(b) Suppose that o is unknown. From the measurements we find s = 0.6 V.
Inserting into (9-65), we obtain
110.12 — 110
= o6

Table 9-3 vields t,_, »(n — 1) = 13445(25) = 2.06 = —t;5. Since 1 is in the
interval (—2.06,2.06), we accept H,.

PROBABILITY. We shall test the hypothesis Hy: p=p,=1—g, that the

probability p = P(2/) of an event & equals a given constant p,, using as data

the number & of successes of .7 in n trials. The RV k has a binomial

distribution and for large n it is N(np, vnpq ). We shall assume that n is large.
The test will be based on the test statistic

q= ﬂ (9-66)

\f npody

Under hypothesis H,, q is N(0, 1), The test thus proceeds as in (9-63).
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To find the OC function B(p), we must determine the distribution of q
under the alternative hypothesis. Since k is normal, g is also normal with

np = np, ; npq

Mg = Oy =
< VIPody ! npydy

This yields the following test:

H;: p #py Accept Hy iff z, , <qg<z,_, . (9-67a)
:I—nwl_n.;. | Zayz— Mg

B(p) =Pllal <z;_,,IH } = G| —==— ) = ‘5( 77_-] (9-684

‘ : \ \/p‘l/l)u‘lu J \/pq/ﬁnfﬂl )

Hy:p>p, Accept Hyift g <z, _, (9-675)
Zia = 7,

B(p) = Pla <z, ,IH,) EG(;—_’ (9-68b)
VP4 /Podo

Hyip <py Accept Hy iff g > z, (9-67¢)

- Za— 7.

B(p) =Pla>z|H]} =1~ b(—” (9-68¢)

Pa/pPydy

Example 9-15. We wish to test the hypothesis that a coin is fair against the
hypothesis that it is loaded in favor of “heads™:

Hi:p=05 against Hy: p>0.5
We toss the coin 100 times and “heads” shows 62 times. Does the evidence

support the rejection of the null hypothesis with significance level a = 0.05? In
this example, z,_, = z,45 = 1.645. Since
20 o4s ress
=—— =245>1.
T

the fair-coin hypothesis is rejected.

VARIANCE. The RV x is Ni(n, o). We wish to test the hypothesis H,: ¢ = o,

Known mean. We use as test statistic the RV

a= ):(x’ " )'2 (9:69)

i Ty

Under hypothesis H,, this RV is y2(n). We can, therefore, use (9-59) where g,
equals the x2(n) percentile.

Unknown mean. We use as the test statistic the RV

=2
e E("f ") (9-70)

i oy
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Under hypothesis H,, this RV is x*(n — 1). We can, therefore, use (9-59) with
g, = xatn = 1).

Example 9-16. Suppase that in Example 9-14, the variance «* of the measurement
error is- unknown. Test the hypothesis Hy: o = 0.4 against H;: o > 0.4 with
a = 0.05 using 20 measurements x; = '+ v,

(a) Assume that V¥ = [10 V. Inserting the measurements x; into (9-69), we
find

20 1x, =110
g= (—

2
=362
0.4 ) .

=1

Since yi_ (1) = xi3,s(20) = 3141 < 36.2, we reject H,.
(b) If ¥ is unknown, we use (9-70). This yields

20 J‘—f
q= 1‘:( ol

=],

)~ s
Since y7_.(n — 1) = x@4s(19) = 30.14 < 22.5, we accept Hy,.

DISTRIBUTIONS. In this application, H, does not involve a parameter; it is the
hypothesis that the distribution F(x) of an RV x equals a given function F(x).
Thus

Hy: F(x) = Fy(x) against Hy: F(x) # Fy(x)

The Kolmogoroff—-Smirnov test. We form the random process F(x) as in the
estimation problem (see page 256) and use as the test statistic the RV

q= m:axlf«‘(.r) — Fy(x)l (9-71)

This choice is based on the following observations: For a specific £, the function
F(x) is the empirical estimate of F(x) [see (4-3)); it tends, therefore, to F(x) as
n — . From this it follows that
E(F(x)}) = F(x)  F(x) =2 F(x)

This shows that for large n, g is close to 0 if H,, is true and it is close to
F(x) — Fy(x)if H, is true. It leads, therefore, to the conclusion that we must
reject H, if q is larger than some constant ¢. This constant is determined in
terms of the significance level a = P{q > ¢|H,} and the distribution of q. Under
hypothesis H,,, the test statistic q equals the RV w in (9-28). Using the
Kolmogoroff approximation '(9-29), we obtain

a =Plqg>clH,) =1 —e 2 (9-72)

The test thus proceeds as follows: Form the empirical estimate F(x) of F(x)
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and determine ¢ from (9-71).
Accept H, iff L in2
ceept Hy iff g >y — Elnf (9-73)

The resulting Type II error probability is reasonably small only if 2 is large.

Chi-Square Tests

We are given a partition A = .27, ..., 7, ] of the space ./ and we wish to test
the hypothesis that the probabilities p, = P(5/) of the events .27 equal m
given constants pg;:

Hy: p; = py;» alll i against Hy: p; # py;, SOme i (9-74)

using as data the number of successes k; of each of the events &/, in n trials.
For this purpose, we introduce the sum

(K, - npy,)°
e e )

=] NP,

(9-75)

known as Pearson’s fest statistic. As we know, the RVs k, have a binomial
distribution with mean np, and variance np,q,. Hence the ratio k,/n tends to o
as n = . From this it follows that the difference |k; — npy,| is small if p, = p,,
and it increases as |p; — py,| increases. This justifies the use of the RV q as a
test statistic and the set ¢ > ¢ as the critical region of the test.

To find ¢, we must determine the distribution of q. We shall do so under
the assumption that n is large. For moderate values of n. we use computer
simulation [see (9-85)]. With this assumption, the RVs k, are nearly normal with
mean kp;. Under hypothesis H,,, the RV q has a y>(m — 1) distribution. This
follows from the fact that the constants p,, satisfy the constraint Epy; = 1. The
proof, however, is rather involved.

The above leads to the following test: Observe the numbers k, and
compute the sum ¢ in (9-75); find x7_ (m — 1) from Table 9-3.

Accept H, iff g < xi_.(m — 1) (9-76)
We note that the chi-square test is reduced to the test (9-68) involving the
probability p of an event 7. In this case, the partition % equals [+, .%/] and

the statistic g in (9-75) equals (k — np,)*/npyq, where p,=po, @y = Pos
k =k, and n — k = k, (see Prob. 9-40).

Example 9-17. We roll a die 300 times and we observe that f, shows k, = 5543 4.4
61 40 57 times. Test the hypothesis that the die is fair with a = 0.05. In this
problem, py; = 1/6, m = 6, and np,, = 50. Inserting into (9-75), we obtain

& (k;, — 50)°
L M

i=1

Since yios(5) = 11.07 > 7.6, we accept the fair-die hypothesis.

7.6
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The chi-square test is used in goodness-of-fit tests involving the agreement
between experimental data and theoretical models. We next give two illustra-
tions.

TESTS OF INDEPENDENCE. We shall test the hypothesis that two events & and
¢ are independent:

Hy: P(eZ0 #) = P(o/)P(#) against Hy: P(Z0 B) #+ P(L)P(H)
(9-77)

under the assumption that the probabilities b = P(%4) and ¢ = P(£) of these
events are known. To do so, we apply the chi-square test to the partition
consisting of the four events

A =Bt wL=BnNE Wy=BnE W=BOL

Under hypothesis H,,, the components of each of the events 27 are indepen-
dent. Hence

Frll:bC p|,2‘=b(l—(') I’u,\:“_b)’f Pos = (1 =56)(1 =¢)
This yields the following test:

(k. =mpo) :
Accept H,, iff E L A B e ) (9-78)
17| nPy;
In the above, k; is the number of occurrences of the event .7 for example, k,
is the number of times & occurs but ¢ does not occur.

Example 9-18. In a certain university, 60 percent of all first-year students are male
and 75 percent of all entering students graduate. We select at random the records
of 299 males and 101 females and we find that 168 males and 68 females
graduated. Test the hypothesis that the events & = {male) and # = {graduate} are
independent with & = 0.05. In this problem. m = 400, P(#) = 0.6, P(£) =0.75.
Po; =045 0.150.3 0.1, k; = 168 68 131 33, and (9-75) vields

(k; — 400!’“[)2

= by b VG
“ 3007y,

=

Since x{y5(3) = 7.81 > 4.1, we accept the independence hypothesis.

TESTS OF DISTRIBUTIONS. We introduced earlier the problem of testing the
hypothesis that the distribution F(x) of an RV x equals a given function Fl,(x)
The resulting test is reliable only if the number of available samples x; of x is
very large. In the following, we test the hypothesis that F(x) = F,,(.r) not at
every x but only at a set of m — 1 points a; (Fig. 9-11):

Hy: F(a,)) =Fi(a),1 <i<m—1 against H: F(a;) # Fy(a,), some i
(9-79)
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a, @y Cem x FIGURE 9-11

We introduce the m events

= {a
where @, = — and a,, = «. These events form a partition of . The number
k, of successes of .27 equals the number of samples x; in the interval (@,_;, @,).
Under hypothesis H,

P ) = Fy(a;) = Fyla;—)) = pai

Thus, to test the hypothesis (9-79), we form the sum g in (9-75) and apply
(9-76). If H, is rejected, then the hypothesis that F(x) = F(x) is also rejected.

<x=<a} i=1,..., m

i—1

Example 9-19. We have a list of 500 computer-generated decimal numbers x; and
we wish to test the hypothesis that they are the samples of an RV x uniformly
distributed in the interval (0,1). We divide this interval into 10 subintervals of
length 0.1 and' we count the number k; of samples x, that are in the ith
subinterval. The results are

k,=43 56 42 38 59 61 41 57 46 57
In this problem, m = 500, p,; = 0.1, and

10 (k, - S0)°
g= 3 — =138

Since xﬁ_.,j(Q) = 16.9 > 13.8 we accept the uniformity hypothesis.

Likelihood Ratio Test

We conclude with a general method for testing any hypothesis, simple or
composite. We are given an RV x with density f(x, 8), where @ is an arbitrary
parameter, scalar or vector, and we wish to test the hypothesis Hy: 0 € 0,
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against f,: 6 € ©,. The sets ©, and O, are subsets of the parameter space
Q=0,ue,

The density f(X,0), considered as a function of 8, is the likelihoad
function of X. We denote by 6,, the value of 8 for which f(X, #) is maximum in
the space ©. Thus 6,, is the ML estimate of #. The value of @ for which f( X, 8)
is maximum in'the set ©@, will be denoted by 8,,,. If H, is the simple hypothesis
8 = 8, then 6,,, = 6. The maximum likelihood (ML) test is a test based on the
statistic

A= HX, o) (9-80)
f(X.86,)

Note that
0<h<1

because f(X,6,,) < f(X,6,). We maintain that A is concentrated near 1 if /,
is true. As we know [see (9-41)], the ML estimate 8,, of # tends to its true value
0% as n — . Furtheérmore, under the null hypothesis, 8* is in the set @,;
hence A — 1 as n — . From this it follows that we must reject H, if A < c.
The constant ¢ is determined in terms of the significance level « of the test.

Suppose, first, that H,, is the simple hypothesis 8 = 6,,. In this case,
a = P(A < clHy) = [fi(X.6,) dA (9-81)
0
“This leads to the following test: Using the samples x, of x, form the likelihood
function f(X,#). Find 6,, and 6,,, and form the ratio A = f(X,8,,,)/f(X,8,):
Reject H, iff A <A, (9-82)

where A is the @ percentile of the test statistic A under hypothesis H,.
If H, is a composite hypothesis, ¢ is the smallest constant such that
P{A < ¢} <A, forevery 6 € ©,.
Example 9-20. Supposc that f(x, 8) ~ e “*U(x). We shall test the hypothesis
Hy:0<8 <8, against Hy: 0> 8,

In thfs problem. @ is the segment 0 < 6 < 6, of the real liné and © is the
half-line @ > 0. Thus both hypotheses are composite. The likelihood function

f(x, 9) = gt —ni

is shown in Fig. 9-12a for ¥ > 1/6, and & < 1/6,. In the hali-line 8 > 0 this
function is maximum for 6 = 1/%. In the interval 0 < @ < it is maximum for
0 =1/% if X > 1/8, and for 8 = 8, if ¥ < 1/0,. Hence

o, =

m

i) -

A ‘1/x for ¥ > 1/8,
S for ¥ <178,
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fX.0)

(a) (h)

FIGURE 9-12

The likelihood ratio equals (Fig. 9-125)
1 for ¥ > 1/6,
N =
(X8,)" e~ "ot Fnta for %< 1/6,
We reject H, if A < ¢ or, equivalently, if ¥ < ¢, where ¢, equals the « percentile

of the RV x.

To 'carry out a likelihood ratio test, we must determine the density of X.
This is'not always a simple task. The following theorem simplifies the problem
for large n.

ASYMPTOTIC PROPERTIES. We denote by m and m, the number of free
parameters in @ and @, respectively, that is, the number of parameters that
take noncountably many values. It can be shown that if m > m,. then the
distribution of the RV w = —2In A approaches a chi-square distribution with
m — my degrees of freedom as 2 — . The function w = —2In A is monotone
decreasing; hence A < ¢ iff m > ¢, = —2In ¢. From this it follows that

a=P{x<c}=P{w>c])
where ¢, = x7_.(m — my), and (9-82) yields the following test
Reject Hy, iff —2In A > xi_ (m — my) (9-83)
We give next an example illustrating the theorem.

Example 9-21. We are given an N(7,1) RV x and we wish to test the simple
hypotheses 7 = 7, against i # 7. In this problem n,,, = 7, and

fitX,m) = —lrcxp{—%'x(-\'. -’}
V@m)"

This is maximum if the sum [see (8-66)]

Y(x,—n)’ = X(x, —5) +a(x - n)’
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is minimum, that is, if » = ¥. Hence n,, = ¥ and

exp[=4 X (2, — m0)°) no_ 2\
A= —r 05 =ep —;(I*m.){
oo(~1L (x— %)) 2
From the above it follows that A > ¢ iff [¥ —my| < ;. This shows that the
likelihood ratio test of the mean of a normal RV is equivalent (o the test (9-63a)
Note that in this problem, m = 1 and m, = 0. Furthermore,

= 2 X -7y )
w= =2Ink=n(x—my) =( l/\/;)

But the right side is an RV with y3(1) distribution. Hence the RV w has a
x-(m — m,) distribution not only asymptotically, but for any 7.

COMPUTER SIMULATION IN HYPOTHESIS TESTING. As we have seen, the test
of a hypothesis H,, involves the following steps: We determine the value X of
the random vector X = [x,,...,x,,] in terms of the observations x, of the m
RVs x, and compute the corresponding value g = g(.X) of the test statistic
q = g(X). We accept H, if g is not in the critical region of the test, for
example, if g is in the interval (g,,4,) where g, and g, are appropriately
chosen values of the u percentile g, of q [see (9-59)]. This involves the
determination of the distribution F(g) of q and the inverse g, = F'""u) of
F(g). The inversion problem can be avoided if we use the following approach.
The function F(g) is monotone increasing. Hence,

4, <q <@y iff a = F(q,) < F(q) < F(q,) = b
This shows that the test g, < g < g, is equivalent to the test
Accept H; iff a < F(q) <b (9-84)

involving the determination of the distribution F(g) of q. As we have shown in
Sec. 8-3, the function F(g) can be determined by computer simulation [see
(8-163)):

To estimate numerically F(g) we construct the RV vector sequence
Xy =y o801 i=1,...,n

where x, ; are the computer generated samples of the m RVs x,. Using the
sequence X;, we form the RN sequence q; = g(X,) and we count the number
n, of g's that are smaller than the computed g. Inserting into (8-163), we
obtain the estimate F(g) = n,/n. With F(g) so determined, (9-84) yields the
Lest

n
Accept H, iff a < -2 < b (9-85)
n

In the above, g = ¢(X) is a number determined in terms of the experi-
mental data x,. The sequence g,, however, is computer generated.
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The above approach is used if it is difficult to determine analytically, the

function F(q). This is the case in the determination of Pearson's test statistic
(9-75).

PROBLEMS

9-1. The diameter of cylindrical rods coming out of a production line is a normal RV x

9-2.

9-3.

9-4.

9-6.

9-8.

=
b
e

9-10.

with o = 0.1 mm. We measure # =9 units and find that the average of the
measurements is ¥ =91 mm. (a) Find ¢ such that with-a 0.95 confidence coeffi-
cient, the mean m of x is in the interval ¥ £ c. (b) We claim that 3 is in the
interval (90.95,91.05). Find the confidence coefficient of our ¢laim.

The length of a product is an RV x with ¢ = | mm and unknown mean, We
measure four units and find that ¥ = 203 mm. (a) Assuming that x is a normal RV,
findithe 0.95 confidence interval of 1. (b) The distribution of x is unknown. Using
Tchebychefl’s inequality, find ¢ stch that with confidence coefficient 0,95, 7 is in
the interval 203 + ¢.

We know from past records that the life length of type A tires is an RV x with
a = 5000 miles. We test 64 samples and find that their average life length is
X = 25,000 miles: Find the 0.9 confidence interval of the mean of x.

We wish to determine the length a of an object. We use as an estimate of a the
average X of n measurements. The measurement error is approximately normal
with zero mean and standard deviation 0.1 mm. Find 2 such that with 95 percent
confidence, X is within £0.2 mm of a.

. The RV x is uniformly distributed in the interval # — 2 < x < 8 + 2. We observe

100 samples x, and find that their average equals ¥ = 30, Find the 0.95 confidence
interval of 4.

Consider an RV x with density f(x) = xe *Ulx). Predict with 95 percent confi-
dence that the next value of x will be in the interval (a, b). Show that the length
b — a of this interval is minimum if @ and b are such that

fla) = f(b) Pla < x < b} =095

Find 2 and b.

( Estimation-prediction) The time to failure of electric bulbs of brand A is-a normal
RV with & = 10 hours and unknown mean. We have used 20 such bulbs and have
observed that the average ¥ of their time to failure is 80 hours. We buy a new bulb
of the same brand and wish to predict with 95 percent confidence that its time to
failure will be in the interval 80 + ¢. Find c.

Suppose that the time between arrivals of patients in a dentist’s office constitutes
samples of an RV x with density e~ **U(x). The 40th patient arrived 4 hours after
the first. Find the 0.95 confidence interval of the mean arrival time n = 1 /6.

The number of particles emitted from a radioactive substance in 1 second is a
Poisson distributed RV with mean A. It was observed that in 200 seconds, 2350
particles were emitted. Find the 0.95 confidence interval of A.

Among 4000 newborns, 2080 are male. Find the 0.99 confidence interval of the
probability p = P{male).
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9-11.

9-12.

9-13.

9-14,

9-15.

9-16.

9-17.

9-18.

9-19.

9-20.

9-21.

9-22.

9-23.

STATISTICS

In an exit poll of 900 voters questioned, 360 responded that they favor 4 particular
proposition. On this basis, it was reported that 40 percent of the voters favor the
proposition. («) Find the margin of error if the confidence coefficient of the results
15 0.95. (b) Find the confidence coefficient if the margin of error is +2 percent
In a market survey, it was reported that 29 percent of respondents favor product A
The poll was conducted with:confidence coefficient (.95, and the margin of error
was +4 percent. Find the number of respondents.

We plan a poll for the purpose of estimating the probability p of Republicans in a
community. We wish our estimate to be within +£0.02 of p. How large should our
sample be if the confidence coefficient of the estimate is 0.95?

A coin is tossed once, and heads shows. Assuming that the probability p of heads
is the value of an RV p uniformly distributed in the interval (0.4,0.6), find its
bayesian estimate.

The time to failure of a system is an RV x with density f(x,8) = ge "U(x). We
wish to find the bayesian estimate 6 of @ in terms of the sample mean X of the n
samples x; of x. We assume that 8 is the value of an RV @ with prior density
f(8) = ce=“"U(@). Show that

o TRl
8=

e
¢ =kie A2

i | =

The RV x has a Poisson distribution with mean f. We wish to find the bayesian
estimate # of # under the assumption that 8 is the value of an RV 8 with prior
density f,(8) ~ 8%~ °U(0). Show that
nx+b+1

n+c

i-

Suppose that the 1Q scores of children in a certain grade are the samples of an
Ni(n,a) RV x. We test 10 children and obtain the following averages: ¥ = 90,
s = 5. Find the 0.95 confidence interval of 1 and of o.

The RVs x; are iii.d. and N(0, o). We observe that x7 + «+- +x7, = 4. Find the
0.95 confidence interval of o.

The readings of a voltmeter introduces an crror v with ‘mean 0. We wish to
estimate its standard deviation o. We measure a calibrated source ¥ = 3 V four
times and obtain the values 2.90, 3.15, 3.05, and 2,96. Assuming that v is normal,
find the 0.95 confidence interval of o.

The RV x has the Erlang density f(x) ~ c*x'e™“*U(x). We observe the samples
x;= 3.1,34,3.3. Find the ML estimate & of c.

The RV x has the truncated exponential density f(x) = ce“*—*9U(x — x;,). Find
the ML estimate ¢ of ¢ in terms of the » samples x; of x.

The time to failure of a bulbis an RV x with density ce ~“*U(x), We test 80 bulbs
and find that 200 hours later, 62 of them are still good. Find the ML estimate of c.
‘The RV x has a Poisson distribution with mean 8. Show that the ML estimate of @
equals X,

9-24. Show that if L(x,8) = In f(x, ) is the likelihood function of an RV x, then

E{I aL(x. 6)
a0

J--
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9.25, We are given an RV x with mean v and standard deviation o = 2, and we wish to

9-26.

9-27.

9-28.

9-29.

9-30.

9-31.

9-32.

9-33,

9.34.

test the hypothesis n = 8 against 7 = 8.7 with a = 0.01 using as the test statistic
the sample mean X of 21 samples. (a) Find the critical region R, of the test and the
resulting B if n = 64. (b) Find n and R, if 8 = 0.05.
A new car is introduced with the claim that its average mileage in highway driving
is:at least 28 miles per gallon. Seventeen cars are tested. and the following mileage
is obtained:

190 200 24 25 26 268 272 27

28 282 284 29 30 31 32 333 35
Can'we conclude with significance level at most 0.05 that the claim is true?
The weights of cereal boxes are the values of an RV x with mean ». We measure
64 boxes and find that ¥ = 7.7 0z. and s = 1.5 oz. Test the hypothesis H,: 7 = 8
oz. against H: n # 8 oz. with a = 0.1 and « = 0,01.
Brand A batteries cost more than brand B batteries. Their life lengths are two RVs
x-and y. We test 16 batteries of brand A and 26 batteries of brand B and find these
values, in hours:

X=4.56 se=11 y=42 s, =09

Test the hypothesis n, = 7, against 7, > 7, with & = 0.05.

A coin is tossed 64 times, and heads shows 22 times. Test the hivpothesis that the
coin is fair with significance level 0.05. We toss a coin 16 times, and heads shows &
times. If & is such that k; < k < k,, we accept the hypothesis that the coin is fair
with significance level a = 0.05. Find k, and k, and the resulting B error.

In a production process, the number of defective units per hour is a Poisson
distributed RV x with parameter A = 5. A new process is introduced, and it is
observed that the hourly defectives in a 22-hour period are

x=3 035 426 41537 4083243635869

Test the hypothesis A = 5 against A < 5 with e = (0.05.

A die is tossed 102 times, and the ith face shows k, = 18, 15, 19, 17, 13, and 20
times. Test the hypothesis that the die is fair with @« = 0,05 using the chi-square
test,

A computer prints out 1000 numbers consisting of the 10 integers j = 0, 1,...,9
The number n; of times j appears equals

n;=85 110 118 91 78 105 122 94 101 96

Test the hypothesis that the numbers j are uniformly distributed between 0 and 9,
with a = 0.05.

The number x of particles emitted from a radioactive substance in 1 second is a
Poisson RV with mean 8. In 50 seconds, 1058 particles are emitted. Test the
hypothesis 6, = 20 against 8 # 20 with @ = 0.05 using the asymptotic approxima-
tion.

The RVS x and y are N(7,, a,) and N(n,, a,) respectively and independent. Test
the hypothesis &, = ¢, against o, #o, using as the test statistic the ratio (see
Prob. 6-19)

”m

o ;
L —n) ) = L-—m)

=1 i=1

1
4= —
m
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9-38. Show that the variance of an RV with student:t distribution 1(r) equals n/(n — 2)

STATISTICS

n

9-36. Find the probability ps thatin a4 men’s tennis tournameént the final mateh will last

five games. (@) Assume thit the probability' p'that a player wins a set equals 0.5,
(h) Use bayesian statistic with uniform prior (see law of succession).

9-37. Show that in the measurement problem of Example 9-9, the bayesian estimate 8.0f

the parameter # equals

“ a-,z m’r,: - a? 0“3
0 =—0,+ —x where of = — X ————
aT© (o n oy +o/n

"9-38., Using the ML method, find the y confidence interval-of the variance © — o2 of an

N(n,e) RV with known mean.

9:39. Show that if 0, and 8, are o unbiascd mikimum variace estimators of a

pardmcu.r #, then 9 —02 Hmz Form the RV 6= LO, i e 2)/2. Show that
o5 = a1+ r)/2 <o where o2 is the common variance of 6, ind (L and r is
their correlation coefficient.

9.40. The number of successes of an event & in 4 irials equals k. Show that

(k, j,”P]]Z + (k:_ np:)l N (ky — "P1‘):
gy nps - npyps

where ky = n — ky and P(&/)=p, =1 —p,.
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CHAPTER

GENERAL
CONCEPTS

10-1 DEFINITIONS

As we recall, an RV x is a rule for assigning to every outcome ¢ of an
experiment . a nuwmber x(¢). A stochastic process x(7)1s a rule for assigning to
every ¢ a function x(¢, ). Thus a stochastic process is a family of time functions
depending on the parameter ¢ or, equivalently, a function of ¢ and . The
domain of ¢ is the set of all experimental outcomes and the domain of ¢ is a set
R of real numbers.

If R is the real axis, then x(¢) is'a continwous-time process. 1f R is the set
of integers, then x(¢) is a discrete-time process. A discrete-time process is, thus,
4 sequence of random variables. Such a sequence will be denoted by x, as in
See. 8-4, or. to avoid double indices. by x[n).

We shall say that x(¢) is a discrete-state process if its values are countable.
Otherwise, it iS a continuous-state process.

Most results in this investigation will be phrased in terms of continuous-
time processes. Topies dealing with discrete-time processes will be introduced
either as illustrations of the general theory, or when their discrete-time version
is not self-evident.

We shall use the notation x(z) to represent a stochastic process omitting,
as in the case of random variables, its dependence on ¢ Thus x(r) has the
following interpretations:

1. It is a family (or an ensemble) of functions x(z, £). In this interpretation.
and ¢ are variables,

285
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x(1.8) x(t. )

e
| AARS

() (b)

FIGURE 10-1

2. Itis a single time function (or a sample of the given process). In this case, ¢ is

a variable and ¢ 1s fixed.

3. If ¢ is fixed and ¢ is variable, then x(¢) is a random variable equal to the srate
of the given process at time ¢.

4. If ¢ and ¢ are fixed, then x(t) is a number.

H

A physical example of a stochastic process is the motion of microscopic
particles in collision with the molecules in a fluid (brownian metion). The
resulting process x(¢) consists of the motions of all particles (ensemble). A single
realization x(¢, &;) of this process (Fig. 10-1a) is the motion of a specific particle
(sample). Another example is the voltage

x(1) = reos(wt + @)

of an ac generator with random amplitude r and phase ¢. In this case, the
process x(¢) consists of a family of pure sine waves and a single sample is the
function (Fig. 10-14)

x(1,4,) = £({)cos[wt + ¢(L)]

According to our definition, both examples are stochastic processes. There
is, however, a fundamental difference between them. The first example (regular)
consists of a family of functions that cannot be described in terms of a finite
number of parameters. Furthermore, the future of a sample x(¢,&) of x(z)
cannot be determined in terms of its past. Finally, under certain conditions, the
statisticst of a regular process x(r) can be determined in terms of a single
sample (see Sec. 13-1). The second example (predictable) consists of a family of
pure sine waves and it is completely specified in terms of the RVs r and e.
Furthermore, if x(¢, ¢) is known for ¢ < t,, then it is determined for ¢ > ¢,.
Finally, a single sample x(r, ) of x(1) does not specify the properties of the

TRecall that statistics hereafter will mean statistical propesties.
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entire process because it depends only on the particular values W) and (&) of
rand ¢. A formal definition of regular and predictable processes is given in Sec,
12-3.

Equality. We shall say that two stochastic processes x(1) and y(1) are equal
(everywhere) if their respective samples x(¢, £) and y(z, ¢) are identical for every
¢ Similarly, the equality z(¢) = x(r) + y(¢) means that 2(z, £) = x(¢, {) + y(t, &)
for every £. Derivatives, integrals, or any other operations involving stochastic
processes are defined similarly in terms of the corresponding operations for
each sample.

As in the case of limits, the above definitions can be relaxed. We give
below the meaning of MS equality and in App. 10A we define MS derivatives
and integrals. Two processes x(7) and y(¢) are equal in the MS sense iff

E{lx(¢) = y(£)I*} = 0 (10-1)

for every r. Equality in the MS sense leads to the following conclusions: We
denote by &7 the set of outcomes ¢ such that x(r, ) = ¥(1. ) for a specific t,
and by 22 the set of outcomes ¢ such that x(t,{) = y(t, &) for every . From
(10-1) it follows that x(¢,¢) — y(r, &) = 0 with probability 1; hence P(.5/) =
P(.~") = 1. It does not follow, however, that P(.57) = 1. In fact, since .22 is
the intersection of all sets .27, as ¢ ranges over the entire axis, P(.22) might
even equal 0.

Statistics of Stochastic Processes

A stochastic process is a noncountable infinity of random variables, one for each
t. For a specific 1, x(¢) is an RV with distribution

F(x,t) = P(x(1) < x} (10-2)

This function depends on ¢, and it equals the probability of the event {x(¢) < x)
consisting of all outcomes ¢ such that, at the specific time ¢, the samples x(¢, {)
of the given process do not exceed the number x. The function F(x, ) will be
called the first-order distribution of the process x(¢). Its derivative with respect
to x:

Flx,t) = a”ﬁ—t') (10-3)

18 the first-order density of x(1).

Frequency interpretation If the experiment is performed n times, then a functions
x(2, £) are observed, one for each trial (Fig. 10-2). Denating by n,(x) the number of
trials such that at time ¢ the ordinates of the obscrved functions do not exceed x (solid
lines), we conclude as in (4-3) that

F(x, 1) =

X) (10-4)
n
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FIGURE 10-2

The second-order distribution of the process x(¢) is the joint distribution
E (% %5 0000 = Pix(n,) < x:x() < %) (10-5)
of the RVs x(¢,) and x(t,). The corresponding density equals

B (%53 Lta t5)

Xy, Kaibygty) = —————— =
i %33 s 02) ax, 0x, (18:5)

We note that (consistency conditions)
F(xp0,) = F(x%5t, t) f(xy50) =f fQxp x50, 15) dx,

as in (6-9) and (6-10).
The nth-order distribution of x(t) is the joint distribution F(x,...,x,;
ty,...,1,) of the RVs x(r,),...,x(r,).

SECOND-ORDER PROPERTIES. For the determination of the statistical proper-
ties of a stochastic process; knowledge of the function F(xy, ..., X, ty...yt,) I8
required for every ,\,, » and n. However, for many apphuauons only certam
averages are used, in particular, the expected value of x(¢) and of x*(¢). These
‘quantities can be expressed in terms of the second-order properties of x(1)
‘defined as follows:

Mean The mean n(t) of x(¢) is the expected value of the RV x(1):

7(r) = E{x(r)} = [1 xf(x.t) dx (10-7)

Autocorrelation The autocorrelation R(r;,1,) of x(¢) is the expected
value of the product x(z,)x(¢,):

R(ty,15) = E{x(1)x(t2)) = [ [ wixaf (s xai i 1) dvy dey (10-8)

The value of R(r,r,) on the diagonal ¢, =1, = is the average power of
x(¢):
E{x2(1)} = R(#,1)
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The autocovariance C(1, t,) of x(1)'is the covariance of the RVs x(#,) and

K(l'z):
C(fnf;):R(fpfz)_'fi(ll)"'l(’:) (10'9)
and its value C(¢, 1) on the diagonal 1, = ¢, = 1 equals the variance of x(r).
Note The following is an explanation of the reason for introducing the function R(ty, t5)
even in problems dealing only with average power: Suppose that x(7) is the input to a
linear system and y(r) is the resulting output. In Sec. 10-2 we show that the mean of yir)
can be expressed in terms of the mean of x(r). However, the average power of y(z)
cannot be found if only E{x*(¢)} is given. For the determination of Ely*(e)}, knowledge
of the function R(t,, ;) is required, not just on the diagonal ¢, = t,, but for every 1, and
f5. The following identity is a simple illustration
E([x(1,) + x(1)F} = R(1;,1,) + 2R(t1,12) + R(t2, 1)

This follows from (10-8) if we expand the square and use the linearity of expected values.

Example 10-1. An extreme example of a stochastic process is a deterministic signal

x(t) = f(¢). In this case,

n(t) = E{f(D} =F(1)  R(1y,6) = E{f(1,}f(12)} = F(1;)f(12)
Example 10-2. Suppose that x(t) is a process with
() =3 R(t;.tp) =9+ 4e~ 300l

We shall determine the mean, the variance, and the covariance of the RVs
z = x(5) and w = x(8).
Clearly, E{z} = n(5) = 3 and E{w} = n(8) = 3. Furthermore,

E{z*} = R(5,5) = 13 E{w*} = R(8.8) = 13
E{zw} = R(5,8) = 9 + 4¢ "0 = 11,195
Thus z and w have the same variance o> =4 and their covariance equals
C(5,8) = de="0=2195.
Example 10-3. The integral

s=f"x(:)dr

a

of a stochastic process x(¢) is an RV s and its value s(¢) for a specific outcome ¢ is
the area under the curve x(¢,¢) in the interval (a,b) (scc also App. 10A).
In.terprcting the above as a Riemann integral, we conclude from the linearity of
expected values that

7= E(s) = ["E(x()) di = ["n(1) at (10-10)
Similarly, since

st= fbfbx(tl)x(rz)dt, dt,

a’a
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we conclude, using again the linearity of expected values, that

E{s?) :j:’f”ﬁ{x(:,)x(:z)]d:,d:: = [*[°RCtyts) diydts  (10-11)

Example 10-4. We shall determine the autocorrelation R(t,, t,) of the process
x(1) = reos(wt + @)

where 'we assume that the RVs rand ¢ are independent and ¢ is uniform in the
nterval (=, 7).
Using simple trigonometric identities, we find

E{x(t,)x(t;)} = $E{r*}E{cos w(t, — t5) + cos(wr; + wt, + 2¢)}

and since
E{cos(wty + wit, + 2¢)} = ﬁ _:cus(wl, +wl+ 2¢)de =0
we conclude that
R(1y,05) = 5 E{r®}cos w(t; —1;) (10-12)

Example 10-5 Poisson process. In Sec. 3-4 we introduced the concept of Poisson
points and we showed that these points are specified by the following properties:

Py: The number n(#,, ¢,) of the points t; in an interval (t;, t;) of length ¢ =t — ¢,
is a Poisson RV with parameter At:

o AL k
Pln(t,.1,) = k) = # (10-13)

P,: If the intervals (1, ¢,) and (15, () are nonoverlapping, then the RVs nlz,, t,)
and n(z;, ¢4) are independent.
Using the points t,. we form the stochastic process
x(1) = n(0,1)

shown in Fig. 10-3a. This is a discrete-state process consisting of a family of
increasing staircase functions with discontinuities at the points t,.
For a specific ¢, x(¢) is a Poisson RV with parameter Af; hence

E{x(1)} = n(t) = At
‘We shall show that its autocorrelation equals
AL, + At ts 0 =its

ﬂ (10-14)
VAL + At < s

R(ry.t5) =

or equivalently that
C(ryatz) = Amin(e 1) = An U, — 1)) + AU( = 1)



10-1 pesnvimons 291

x(¢)4 Poisson process X(1)4 Telegraph signal

" o UrLgr

(a) (&)

FIGURE 10-3

Proof. The above is true for ¢, = 1, because [see (5-36)]
E{x*(t)) = At + A%? (10-15)

Since R(1), 1) = R(1,, 1)), it suffices to prove (10-14) for 1; < t5. The RVs x(1))
and x(f,) — x(2,) are independent because the intervals (0,¢,) and (¢,,1,) are
nonoverlapping. Furthermore, they are Poisson distributed with parameters Af,
and A(z; — t,) respectively. Hence

E{x(¢)[x(t2) — x(¢))]} = E{x(t;)}E{x(t3) — x(t,)} = At,A(ts— 1)
Using the identity
x(t)x(t2) = x(1))[x(1;) + x(12) — x(¢,)]
we conclude from the above and (10-15) that
Rty t5) = Aty + X2t + AtjA(t, — 1))

and (10-14) results.

Nonuniform case 1f the points t; have a nonuniform density A(¢) as in
(3-54), then the preceding results still hold provided that the product A(z, — 1)) is
replaced by the integral of A(¢) from ¢, to ..

Thus

E{x(1)) = jn‘;«(a)da (10-16)
and

R(1;.15) =f“"a(:_)m[1 +]:2A(.')d1] e (10-17)

Example 10-6 Telegraph signal. Using the Poisson points t;, we form a process
x(¢) such that x(+) = 1 if the number of points in the interval (0, ¢) is even, and
x(2) = —1 if this number is odd (Fig. 10-3b).
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Denoting by plk) the probability that the number of points in the interval
(0.1 equals &, we conclude that [see (10-13)]

P(x(1) = 1} =p(0) +p(2) + : -

(Ae)?
=¢."“[l -+ + <=+ | = ¢ M cosh At

21
PX(1) = =1} =p(1) +p(3) + -

(A1)’
3!

=¢""“[M+ ] = ¢ Mgsinh At

Hence
E{x(£)} = e *(cosh At — sinh A1) =e *¥ (10-18)

To determine R{t,,7,), we note that, il x(r;) = I, then x(r,) = | if the
number of peints in the interval (¢,.¢5) is even. Hence

P{x(t2) = 1x(t,) = 1) =e McoshAt ¢ = lt5— 1]
Multiplying by P{x(r,) = 1}, we obtain
Plx(t;) = 1,x(1,) = 1} = ¢ * cosh Are*'2 cosh At,
Similarly,
P{x(t,) = =1,x(13) = =1} = ¢ *cosh Afe "= sinh At,
P{x(r,) = 1,x(t5) = =1} =¢ Msinh Xte "2 sinh AL,
P{x(t;) = —1,x(r5) = 1} = *sinh Ate*"* cosh A1,
Since the product x(r,)x(¢5) equals 1 or — 1, we conclude omitting details that
R(tyyty)i=te= A=l (10-19)

The above process is called semirandom telegraph signal because its value
x(0) = 1 at ¢ = (is not random. To remove this certainty, we form the product
¥(t) = ax(4)

where a is an RV taking the values +1 and —1 with equal probability and is
independent of x(¢). The process y(z) so formed is called random telegraph signal.
Since Efa} =0 and E{a%) = I, the mean of y(¢) equals E{a}E{x(¢)) = 0 and its
autocorrelation is given by

E{w(e)¥(12)} = E{a)E{x(1,)x(1,)} = e” M0

We note that as ¢ — = the processes x() and ¥(¢) have asymptotically equal
stalistics.
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General Properties

The statistical properties of a real stochastic process x(7) are completely
determined in terms of its nth-order distribution

B i K n il iyereets 6) =Plx(6) <xp,...0x(1,) <x;)  (10:20)

The joint statistics of two real processes x(¢) and y(z) are determined in
terms of the joint distribution of the RVs

X0 e X)) )

The complex process #(1) = x(1) + jy(t) is specified in terms of the joint
statistics of the real processes x(r) and y(7).

A wveector process (n-dimensional process) is a family of 2 stochastic
processes.

Correlation and covariance. The autocorrelation of a process x(r), real or
complex, is by definition the mean of the product x(¢,)x *(r,). This function, will
be denoted by R(t,, ;) or R (t,.1,) or R (,,1,). Thus

R (1, 15) = E{x(t )x*(t3)} (10-21)

where the conjugate term is associated with the second variable in R, (¢, 1,).
From this it follows that

R(t5,1,) = E[x(£,)x*(2,)} = R*(t,.t5) (10-22
We note, further, that
R(ty1) = E{Ix(1)[F) = 0 (10-23)

The last two équations are special cases of the following: The autocorrela-
tion R(t,,1,) of a stochastic process x(t) is a positive definite (p.d.) function,
that is, for any a, and a;:

YaaER(e. ) =0 (10-24)
i

This is a consequence of the identity

0< E{’Zﬂ,x(l,)r} = Za,a;"E{X(I;)x*(!,)}
U Lo

We show later that the converse is also true: Given a p.d. function
R(t,, 1,), we can find a process x(¢) with autocorrelation R(f,.,).

FThere are processes (nonseparable) for which this is not true. However, such processes ure mainly
of mathematical interesl.



294 STOCHASTIC PROPERTIES

Example 10-7. (a) If x(z) = ae’*! then
R(ty,15) = Efaeiha*e 11} = E{|a|?)e/oti=t)
(b) Suppose that the RVs a; are uncorrelated with zero mean and variance
o’ If

i

x(t) = Za.f"u’[
i
then (10-21) yields
R(ty,1,) = Y oleli=td
1

The autocovariance C(ty, t,) of a process x(¢) is the covariance of the RVs
x(1,) and x(¢, ):

C(’i-lz)=R('|r’z)_"l(f|)77*(’2) (10-25)
In the above, n(t) = E{x(¢)) is the mean of x(r).
The ratio
G5,
r(t, ;) = 1) (10-26)

V(1. 1,)C (15, t5)
is the correlation coefficient T of the process x(t).

Note The autocovariance C(r;, 1,) of a process x(1) is the autocorrelation of the centered
process
%(1) = x(1) = (1)
Hence it 1s p.d.
The correlation coefficient #(t, 1,) of x(¢) is the autocovariance of the normalized
process X(1)//C (1, t) ; hence it is also p.d. Furthermore [see (7-9)]

lr(r )l =1 r(r,0) =1 (10-27)
Example 10-8. If
b b
s= [ x(t)dt then s —u, = | %(r)dt
[ n, = [%(0)
where %(r) = x(2) — 5, (¢). Using (10-11), we conclude from the above note that
of = E{ls = n,1?} = [*[*C.e,. 1) at, aty (10-28)
a a

The cross-correlation of two processes x(¢) and y(1) is the function
R (11, 13) = E{x(1))y*(1,)} = R%.(t3,1,) (10-29)

fIn optics, C(ry, 1) is called the coherence function and £y, t5) s called the complex degree of
coherence (see Papoulis, 1968),
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Similarly,
Coplry,t3) = fs 1) = (e )mF (1) (10-30)

is their cross-covariance.
Two processes x(+) and y(1) are called (mutually) orthogonal if

R (1),1:) =0 forevery 1, and ¢, (10-31)

They are called uncorrelated if
C..(t:t5) =0 forevery 1, and r, (10-32)
a-dependent processes  In general, the values x(r,) and x(1,) of a stochastic

process x(7) are statistically dependent for any (i dl]d 15, However, in most
cases this dependence decreases as [f, — t,| — . This leads to the following
concept: A stochastic process x(f) is culicd a-dependent if all its values x(¢) for
t <t,and for t >z, + a are mutually independent. From this it follows that
Clr ) =0 for [ty =t;] >a (10-33

A process x(1) is called correlation a-dependent if its autocorrelation
satisfies (10-33). Clearly, if x(¢) is correlation a-dependent, then any lincar
‘combination of its values for ¢ < r, is uncorrelated with any linear combination
of its values for ¢ > 1, + a.

White noise We shall say that a process v(¢) is white noise if its values
v(1;) and w(1;) are uncorrelated for every , and ¢, # ¢,:

Clet;) =0t

As we explain later, the autocovariance of a nontrivial white-noise process
must be of the form

C(t, 1) =q(t;)8(t, — ;) q(t) =0 (10-34)

If the RVs w(;) and w(¢;) are not only uncorrelated but also indépendent,
then w(z) will be called strictly white noise. Unless otherwise stated, it will be
assumed that the mean of a white-noise process is identically (.

Example 10-9. Suppose that w(7) is white noise and
x(1) =[’u(n)da (10-35)
0
Inserting (10-34) into (10-35), we obtain
s i
E(x*(1)) = £)8(t, — o) dryde, = [q(r)dt (10-36)
["()} j‘.'j;Q(|)(| 5) dry di; j‘:!(|)'l
because
f'a(:, —ty)dta=1 for O<t, <t
0

Uneorrelated and independent increments 1f the increments x(¢,) — x(t;)
and x(r,) — x(r;) of a process x(7) are uncorrelated (independent) for any
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1, < b <ty < ty, then we say that x(¢) is a process with uncorrelated (indepen-
dent) increments. The Poisson process is a process with independent incre-
ments. The integral (10-35) of white noise is a process with uncorrelated

increments.

Independent processes 1f two processes x(¢) and y(1) are such that the
RVs x(1,),...,x(t,) and y(t{). ..., ¥(¢;) are mutually independent, then these
processes are called independent.

Normal processes. A process x(1) is called normal, if the RVs x(z,), ... ,x(z,)
are jointly normal for any n and ¢;,....¢,.

The statistics of a normal process are completely determined in terms of
its'mean m(#) and autocovariance C(z, f,). Indeed, since

E(x(1)} =n(1)  ol(r) =C(1,1)
we conelude that the first-order density f(x,¢) of x(¢) is the normal density

Nln(e);/C(¢, 1) 1.

Similarly, since the function r(¢,,¢,) in (10-26) is the correlation coeffi-
cient of the RVs x(¢,) and x(z,), the second-order density f(x,, x5; £, £;) of x(r)
is the jointly normal density

N["?(H)o"l(fz);\/c(’h‘l) VE(15,15) 3"(’1-'2)]

The nth-order characteristic function of the process x(7) is given by [see
(8-60)]

1
ch{j}:ﬂ(’i)“’. = EZC(I:'JJ()"’.“"A-} (10-37)
i ik
Its inverse fi(xy,...,X,i1},--.,1,) is the nth-order density of x(1).

Existence theorem. Given an arbitrary function n(t) and a p.d. function C(1,, ),
we can construct a normal process with mean n(r) and autocovariance C(1,, L)
This follows if we use in (10-37) the given functions 7(t) and C(t,,f,). The
inverse of the resulting characteristic function is a density because the function
C(t,, 1) is p.d. by assumption.

Example 10-10. Suppose that x(¢) is a normal process with
() =3 Cltyi 1) = de=02w

() Find the probability that x(5) < 2.
Clearly, x(5) is a normal RV with mean n(5) = 3 and variance C(5,5) = 4.
Hence
P{x(5) <2} = G(—1/2) = 0.309

(b) Find the probability that [x(8) — x(3)| < 1.
The difference s = x(8) — x(5) is a normal RV with mean n(8) — 7(5) = 0
and variance

C(8.8) + €(5,5) — 2C(8,5) = 8(1 — ¢~"®) = 3,608
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,(r)h
t,: Point process
K z,. Renewal process
B e b =2+ vt 2,
_ ;i
e e
£ Z) — = !
t tht t,
FIGURE 10-4
Hence

P{Ix(8) — x(5)| = 1) =2G(1/1.9) —1=04

Point and renewal processes. A point process is a set of random points t, on the
time axis. To every point process we can associate a stochastic process x(1)
equal to the number of points t; in the interval (0, £). An example is the Poisson
process. To every point process t; we can associate a sequence of RVs z, such
that

z, =t Zol=hits =ik iz = b =it g

n 1l

where t, is the first random point to the right of the origin. This sequence is
called a renewal process. An example is the life history of light bulbs that are
replaced as soon as they fail. In this case, z, is the total time the ith bulb is in
operation and t; is the time of its failure.

We have thus established a correspondence between the following three
cconcepts (Fig. 10-4): () a point process t;, (b) a discrete-state stochastic process
x(¢) increasing in unit steps at the points t,, (¢) a renewal process consisting of
the RVs z; and such that t, = z; + --- +z,. This correspondence is developed
further in Sec. 16-1.

Stationary Processes

A stochastic process x(r) is called strict-sense stationary (abbreviated SSS) if its
statistical properties are invariant to a shift of the origin. This means that the
processes x(t) and x(+ + ¢) have the same statistics for any c.

Two processes x(¢) and y(r) are called jointly stationary if the joint
statistics of x(r) and y(¢) are the same as the joint statistics of x(r +¢) and
¥(t + ¢) for any e,

A complex process z(1) = x(¢) + jy(¢) is stationary if the processes x(¢)
and y(¢) are jointly stationary.

From the definition it follows that the nth-order density of an SS8S process
must be such that

FCXpne o X3 Ly siby) =S5 000 Xyily € by +c¢) (10-38)

for any e.
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From the above it follows that f(x;1) = f(x;t + ¢) for any c. Hence the
first-order density of x(1) is independent of 7:
flxs 1) = f(x) (10-39)
Similarly, f(x,, X5;¢; + ¢, 1, + ¢) is independent of ¢ for any ¢. This leads
‘to the conclusion that
Fltipkastintz) = (%, X50) 7= =it (10-40)
Thus the joint density of the RVs x(r + 7) and x(z) is independent of f and it
equals f(x, x5; 7).

WIDE SENSE. A stochastic process x(¢) is called wide-sense stationary (abbrevia-
ted WSS) if its mean is constant

E(x(t)) =n (10-41)
and its autocorrelation depends onlyon 7 =1, — 15:
E{x(r + 7)x*(1)} = R(7) (10-42)

Since T i$ the distance from ¢ to ¢ + 7, the function R(7) can be written in the
symmetrical form

T T
R = B{x{t+ - |x*|r— =
(7) {x( + 2)1 ( 2)} (10-43)
Note in particular that
E{Ix(¢)I?} = R(0)
Thus the average power of a stationary process is independent of ¢ and it equals

R(0).

Example 10-11. Suppose that x(¢) is a WSS process with autocorrelation
R(7) = de™ !
We shall determine the second moment of the RV x(8) — x(5). Clearly,
E([x(8) ~ x(5)I'} = E{x*(8)) + E{x*(5)} - 2E(x(8)x(5)}
=R(0) + R(0) — 2R(3) =24 — 2A4e ™
Note As the above example suggests, the autocorrelation of a stationary process x(¢) can

be defined as average power. Assuming for simplicity that x(¢) is real, we conclude from
(10-42) that

E{[x(¢ + 7) = x(0)]} = 2[R(0) = R(x)] (10-44)

From (10-42) it follows that the autocovariance of a WSS process depends
onlyon 7 =t — t,:

C(r) = R(7) = Inl* (10-45)
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and its correlation coefficient [see (10-26)] equals

r(r) = C(7)/€(0) (10-46)
Thus 'C(7) is the covariance, and r(7) the correlation coefficient of the RVs
x(t +7) and x(¢).

Two processes x(7) and y(t) are called jointly WSS if each is WSS and
their cross-correlation depends only on 7 = 1, — ¢,:

R, (7) = E{x(t + 7)y*(1))  C,(7) =R, (7) —nmf (10-47)
If x(z) is WSS white noise, then [see (10-34)]
C(7) = qd(7) (10-48)

If x(¢) is an a-dependent process, then C(7) = 0 for |7| > a. In this case,
the constant a is called the correlation time of x(¢). This term is also used for
arbitrary processes and it is defined as the ratio

I =
"= o)

In general C(7) # 0 for every 7. However, for most regular processes

C(r)dr (10-49)

C(7) W’ 0 R(7) W’ |'q|2

Example 10-12. If x(r) is WSS and
T
5= x(t)de
- x®

then [see (10-28)]

a2 = [" [T clt, - n)dndt = [ @T = ls))C(z)dr  (10-50)

ST —o7

The last equality follows with = = t; — 1, (see Fig. 10-5); the details, however, are

omitted [see also (10-143)].

T 2

2r
_f f Clty—t) diy dt, = |2T—=|])C(r)dr c(7)
=TT —2T
T & ///.‘
58 27— |1
NS L
PAAY
7 T 1’/ //\" = ~
of 4 7z 1 —2T —a 0 a 2T 7
dr__ B
=T
27— r|>

FIGURE 10-5
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Special cases. {a) If C(7) = ¢b(7), then
o= q/jr(zr — lrl)6(r) dr = 2Tq

(b) If the process x(r) is a-dependent and a < T, then (10-50) yiclds

5

i f_l;_(_ez‘ — |[ZD)C(x) dr = 27[1('(1) a7

This shows that, in the evaluation of the variance of s, an a-dependent process
with @ < T can be replaced by white noise as in (10-48) with

q= fqu(T) ds

If a process is SSS, then it is also WSS. This follows readily from (10-39)
and (10-40). The converse, however, is not in general true. As we show next,
normal processes are an important exception.

Indeed, suppose that x(z) is a normal WSS process with mean n and
autocovariance C(7). As we see from (10-37), its nth-order characteristic
function equals

1
exp{j'n Y — ;Zcu, —Ik)w,wk} (10-51)
i =ik

This function is invariant to a shift of the origin. And since it determines
completely the statistics of x(¢), we conclude that x(1) is SSS.

Example 10-13. We shall establish necessary and sufficient conditions: for the
stationarity of the process
x(1) = acos wt + bsin wt (10-52)
The mean of this process equals
E{x(1)) = E{a)cos wt + E{b}sin vt
This function must be independent of . Hence the condition
Efa) = E(b} =0 (10-53)
is necessary for both forms of stationarity. We shall assume that it holds.
Wide sense. The process x(#) is WSS iff the RVs a and b are uncorrelated with
equal variance:
Ef{ab} =0  Efa’) = E{b’} =07 (10-54)
If this holds, then
R(7) = a’ coswr (10-55)

Proaf. 1f x(1) is WSS, then
E{x*(0)} = E(x*(w/2w)} = R(0)
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But x(0) = a and x(7/2w) = b; hence E{a’} = E{b2). Using the above, we obtain
E{x(t + 7)x(1)} = E{[acos w(t + 7) + bsin w(r + 7)][acos ws + bsin wt])
= a? cos wr + E{ab}sin w(21 + 1) (10-56)

This is independent of ¢ only if E{ab) = 0 and (10-54) results,
Conversely, if (10-54) holds, then, as we see from (10-56). the aulocorrelation
of x(t) equals &= cos wr; hence x(1) is WSS,

‘Strict sense. The process x(¢) is SSS iff the joint density f(a, b) of the RVs a and b
has circular symmetry, that is, if

fla,b) = f(Va® +b?) (10-57)

Proof. If x(¢) is SSS, then the RVs
x(0) =a x(7w/20) = b
and
x(t) = acoswt + bsinw! x(t +7/2w) = bcos wr — asin wt

have the same joint density for every . Hence [see (6-70)], f(a, b) must have
circular symmetry.

We shall now show: that, if' f(a, b) has circular symmetry, then x(1) is SSS.
With 7 a given number and

a; =acoswr + bsinwr by = bcos wr — asin wr
we form the process
x,(t) = a,cos wt + by sinwt =x(t + 7)

Clearly, the statistics of x(r) and x,(r) are determined in terms of the joint
densities f(a, b)and fl(ay, b)) of the RVs a,b and a, b;. But [see (6-67)] the RVs
a,b and a;, b, have the same joint density. Hence the processes x(¢) and x(¢ + 7)
have the same statistics for every 7.

Corollary. If the process x(1) is SSS and the RVs a and b are independent, then
they are normal.

Proof. It follows from (10-57) and (6-34).
Example 10-14. (a) Given an RV w with density f(w) and an RV ¢ uniform in the
interval (—, 77) and independent of w, we form the process

x(1) = acos(wr + ¢) (10-58)

We shall show that x(1) is WSS with zéro mean and autocorrelation

a* a* c
R(7) = TE{cos wr) = 5 Re (1) (10-59)

where
® (1) = E{e/*7}) = E{cos wr} + jE(sin w1} (10-60)

is the characteristic function of .
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Proof. Clearly [see (7-59)]
E{cos(wr + @)} = E{ E{cos(wt + ¢)lw})
From the independence of @ and ¢, it follows that
E{cos(wi + ¢)|w) = coswt E{cos ¢} — sin wt E{sin ¢}
Hence E{x(1)) = 0 because

] m I v
Ef{cos ¢} = g[vwcoswdqz =) Efsing} = ;fr_sin e de =0

Reasoning similarly, we obtain E{cos(2et + ot + 2¢)} = 0. And since
2cos[w(r + 7) + @Jeos(wt + @) = cos wr + cos(2wt + w1 + 20)

we conclude that

R(7) = a*E{cos[w(t + 7) + @Jcos(wi + @)} = gE{cus wr}

(b) With w and ¢ as above, the process
2(1) = ae’tett®)
is' WSS with zero mean and autocorrelation

E(z(t + 7)z*(1)} = a’E{e’™}) = a* D (7)

Centering. Given a process x(¢) with mean 7(7) and autocovariance C (¢, 1,),
we form difference

i(r)=x(f) - (1) (10-61)

This difference is called the centered process associated with the process x(1).
Note that

E(x(1)} =0 Ri(4),6) = C(1),1,)

From this it follows that if the process x(¢) is covariance stationary, that is, if
C(t,.1;) = C(t, — 1,), then its centered process %(r) is WSS.

Other forms of stationarity. A process x(¢) is asymptotically stationary if the
statistics of the RVs x(r, + ¢),...,x(t, + ¢) do not depend on c if ¢ is large.
More precisely, the function

T s Xt =,y ol 1 C)

tends to a limit (that does not depend on ¢) as ¢ — =, The semirandom
telegraph signal is an example.

A process x(¢) is Nth-order stationary if (10-38) holds not for every n, but
only for n < N.

A process x(t) is stationary in an interval if (10-38) holds for every 1, and
2, + ¢ in this interval.

We say that x(¢) is a process with stationary increments if its increments
¥(t) = x(t + h) — x(z) form a stationary process for every hA. The Poisson
process is an example.
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MEAN SQUARE PERIODICITY. A process x(7) is called MS periodic if

E{lx(r+ T) —x(0)1”) = 0 (10-62)
for every £. From this it follows that, for a specific 1,
x(t + T) = x(t) (10-63)

with probability 1. It does not, however, follow that the set of outcomes ¢ such
that x(¢ + T,.{) = x(r. ) for all ¢ has probability 1.

As we see from (10-63) the mean of an MS periodic progess is periodic,
We shall examine the properties of R(t,,1,).

THEOREM. A process x(r) is MS periodic iff its autocorrelation is doubly
periodic, that is, if
R(ty +mT,t, + nT) = R(1,.1,) (10-64)

for every integer m and n.

Proof. As we know [see (7-12)]
E*{zw} < E{z°}E{w?}

With z = x(¢,) and'w = x(¢; + T') — x(r,) the above yields

EXx(t)[x(t; + T) — x(£:)]} = E(x2(1)}E[[x(t: + T) — x(1,)]%}
If x(¢) 1s MS periodic, then the last term above is (. Equating the left side to10,
we obtain

R(t,,t, + T) — R(t,,t5) =0

Repeated application of this yields (10-64).

Conversely, if (10-64) is true, then

Rt +T,t+T)=R(t+T,t)=R(t,1)
Hence
E([x(t+T) —=x()]*} = R(t + T, 1 + T) + R(1;1) = 2R(t + T,1) =0

therefore x(¢) is MS periodic.

10-2 SYSTEMS WITH STOCHASTIC INPUTS

Given a stochastic process x(¢). we assign according to some rule to each of its
samples x(, £;) a function y(z, £;). We have thus created another process

¥(t) = T[x(1)]
whose samples are the functions y(t, £;). The process y(r) so formed can be
considered as the output of a system (transformation) with input the process
x(r). The system is completely specified in terms of the operator 7, that is, the
rule of correspondence between the samples of the input x(¢) and the output

ylr).
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The system is deterministic if its operates only on the variable ¢ treating {
as a parameter. This means that if two samples x(¢, ¢;) and x(r, ;) of the input
are identical in ¢, then the corresponding samples y(r, £;) and y(¢, {,) of the
output are also identical in ¢. The system is called srochastic if T operates on
both variables ¢ and ¢ This means that there exist two outcomes ¢; and £, such
that x(r, £,) = x(t, {,) identically in ¢ but y(z,£;) # y(1, {;). These classifications
are based on the terminal properties of the system. If the system is specified in
terms of physical elements or by an equation, then it is deterministic (stochastic)
if the elements or the coefficients of the defining equations are deterministic
(stochastic). Throughout this book we shall consider only deterministic systems.

In principle, the statistics of the output of a system can be expressed in
terms of the statistics of the input. However, in general this is a complicated
problem. We consider next two important special cases.

Memoryless Systems
A system is called memoryless if its output is given by
(1) =g[x(1)]

where g(x) is a function of x. Thus, at a given time ¢ = t;, the output y(z,)
depends only on x(#,) and not on any other past or future values of x(¢).

From the above it follows that the first-order density f,(y; r) of y(¢) can be
expressed in terms of the corresponding density [ (x;¢) of x(t) as in Sec. 5-2.
Furthermore,

E(y(0)} = [ a(x)filx;0) v
Similarly, since y(¢,) = g[x(¢,)] and y(z,) = g[x(¢,)], the second-order den-

sity fy(yy, ¥21 £y, ) of y(¢) can be determined in terms of the corresponding
density f,(x,, x5; 1, £5) of x(#) as in Sec. 6-3. Furthermore,

E((e)¥(t)} = [~ [ s(x)e(x)fi(x 523t 1) dey dy

The nth-order density fy(y,,. ves Vs Ly ovoy 1) O ¥(2) can be determined
from the corresponding density of x(¢) as in (8-8) where the underlying transfor-
mation is the system '

¥(4) = g[x(t)].- .. ¥() = g[x(1,)] (10-65)

STATIONARITY. Suppose that the input to a memoryless system is an SSS
process x(¢). We shall show that the resulting output y(¢) is also SSS.

Proof. To determine the nth-order density of y(1), we solve the system
8(x1) = yp-.008(%,) =, (10-66)
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If this system has a unique solution, then [see (8-8)]

f.x(xl*"" Xpslivesoas ,,)
|g’("'1) 8 (-‘,,)l

Soae v Vi by o s 8,) = (10-67)
From the stationarity of x(¢) it follows that the numerator in (10-67) is invariant
to a shift of the time origin. And since the denominator does not depénd on .
we conclude that the left side does not change if ¢, is replaced by f; + c. Hence
y(¢) is §SS. We can similarly show that this is true even if (10-66) has more than
one solution.

Notes 1. If x(¢) is stationary of order N, then y(¢) is stationary of order N.
2. If x(¢) is stationary in an interval, then y(¢) is stationary in the same interval.
3. If x(¢) is WSS stationary, then y(t) might not be stationary in any sense.

Square-law detector. A square-law detector is a memoryless system whose
output equals
¥(r) = x*(z)

We shall determine its first- and second-order densities. If y > 0, then the
system y =x* has the two solutions + y/y. Furthermore, y(x)= +2y/y;

hence
Fibvst) = ,‘/—[f + (=)

If y, > 0 and y, > 0, then the system

[NFNY

2 =
Yi=Xx1 Y. =X

has the four solutions (& /y,,+y/y,). Furthermore, its jacobian equals

:t4‘/y,y2; hence
1
yYaslp ) = —7—— s sl
[y vain 1) Hra Efx(:t Yis TyY2 54 2)

where the summation has four terms.

Note that, if x(¢) is SSS, then f.(x;t) = f.(x) is independent of ¢ and
flxy, x55 8, t,) = f(x, x5;7) depends only on =1, —t,. Hence f,(y) is
independent of ¢ and f,(y,, ,; 7) depends only on 7 =, — ¢,.

Example 10-15. Suppose that x(¢) is a normal stationary process with zero mean
and autocorrelation R (r). In this case, f,(x) is normal with variance R.(0).
If ¥(¢) = x3(1) (Fig. 10-6), then E{y(1)} = R, (0) and [see (5-8)]

1
KO = Ry

eV /AROI( y)
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filx) L)
x(1) y(1)
N /\ : i VoA
0 x SV AR = ‘o0 v
0. x
FIGURE 10-6
‘We shall show that
(10-68)

R,(7) = R%(0) + 2R3(7)

Proof. The RVs x(t + 7) and x(¢) are jointly normal with zero mean. Hence [see
(7-36)]
E[x:(l -+ .—)xl(t)] = E{xl(l + T)]E[Xz(l)] + 2E*x(1 + 7)x(1)})

and (10-68) results.
Note in particular that

E{y* (1)} =R, (0) =3RI(0) o’ =2R0)

Hard limiter. Consider a memoryless system with
ey 1 x>0 W
g(x) {~1 x <0 (10-69)

(Fig. 10-7). Its output y(¢) takes the values + 1 and
Ply(¢) = 1) = P{x(1).> 0} = 1 — F,(0)
Ply(1) = =1} = P{x(¢) < 0} = F,(0)

Hence
E{y(1)}) = 1 X Ply(t) =1) =1 x P{y(t) = =1} = 1 — 2F,(0)

The product y(t + 7)y(¢) equals 1 if x(r + 7)x(r) > 0 and its equals —1 other-

wise. Hence
(10-70)

R (7) = P(x(t + 7)x(1) > 0} — P{x(t + 7)x(1) < 0)

x(1) ¥4 ¥
aTEN = I

0~ oW [ o = ol [n [= | r
ST o el _1_ EIE S O

FIGURE 10-7

b
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Thus, in the probability plane of the RVs x(1 + 7) and x(1), R (7) equals

the masses in the first and third quadrants minus the masses in the second and
fourth quadrants.

Example 10-16. We shall show that if x(¢) is a normal stationary process, then the
autocorrelation of the output of a hard limiter equals

R.(7)
R (0)

5

R (7) = — arcsin (10-71)
™

This result is known as the aresine law

PROOF. The RVs x(r + 7) and x(¢) are jointly normal with zero mean, variance
R (0), and correlation coefficient R (7)/R (0). Hence [see (6-47)],

1 ]iR

Pix(r+ 2)x(t) > 0} = = +

] =

. R.(7)
sing = ——
R.(0)

P{x(t + 7)x(t) <0} =

{
T

Inserting in (10-70), we obtain

R,\A(f)=5+"7(l_i)=ﬁ

T
and (10-71) follows.
Example 10-17 Bussgang’s theorem. Using Price’s thcorem, we shall show that if
the input to a memoryless system y = g(x)is a zero-mean normal process x(1), the

cross-correlation of x(¢) with the resulting output ¥(1) = g[x(1)] is proportional to
R, L7):

R, (7) = KR (v) where K=E{g'[x(1)]} (10-72)
Proof. For a specific 7, the RVs x = x(¢) and z = x(+ + 7) arc jointly normal with
zero mean and covariance p = E{xz) = R, (7). With
I = E{zg(x)} = E{x(1 + 7)y(1)} = R (7)
it follows from (7-37) that

al 3% X
- =F{—[afr,(—”} - E(e/ X)) = K (10-73)

If £ =0, the RVs x(t + 7) and x(t) are independent; hence /= (). Integrating
(10-73) with respect to u, we obtain ['= Ku and (10-72) results.

11, L. Lawson and G, E. Uhlenbeck: Threshold Signals, McGraw-Hill Book Company, New York,

1950.
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Special cases.i (a) (Hard limiter) Suppose that g(x) = sgn x as in (10-69). In this
case, g'(x) = 28(x); hence

K = E(25(x)} = sz 5(x)f(x) dx = 2£(0)

where

1 %2
) = @ cxp{_ ZR“(O)}

is the first-order density of x(¢). Inserting into (10-72), we obtain

2
R (%) =R“(,-)1/m y(1) = senx(1) (10-74)

(b) (Limiter) Suppose next that y(¢) is the output of a limiter
e lx] <e¢ e fiz x| <¢
£(x) {c lx] > ¢ &'(x) {U x| >0
In this case,

(10-75)

K= f;f(x)dx = EB(ﬁ) i

Linear Systems

The notation
y(r) = L[x(1)] (10-76)

will indicate that y(¢) is the output of a linear ‘system with input x(z). This
.means that

Llax,(1) + a,x:(0)] = a,L[x,(0)] +a,L[xx(0)]  (10-77)

for any a,,a,,x,(t), x,(2).

The above is the familiar definition of linearity and it also holds if the
coefficients a; and a, are random variables because, as we have assumed, the
system is deterministic, that is, it operates only on the variable .

Note If a system is specified by its internal structure or by a differential equation, then
(10-77) holds only if ¥(¢) is the zero-state response. The response due to the initial
conditions (zero-input response) will not be considered.

‘A system is called time-invariant if its response to x(¢ + ¢) equals y(r + ¢).
We shall assume throughout that all linear systems under consideration are
time-invariant,

TH. E. Rowe, "M yless Nonlinearities with Gaussian Inputs,” BSTJ, vol, 67, no. 7, September
1982,
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It is well known that the output of a linear system is a convolution

¥(£) = x(t) «<h(r) = '[J x(r —e)h(a) da (10-78)

where
h(e) = L[8(t)]

in its impulse response. In' the following, most systems will be specified by
(10-78), However, we start our investigation using the operational notation
(10-76) to stress the fact that various results based on the next theorem also
hold for arbitrary linear operators involving one or more variables.

The following observations are immediate consequences of the linearity
and time invariance of the system.

If x(r) is a normal process, then y(t) is also a normal process. This is an
extension of the familiar property of linear transformations of normal RVs and
can be justified if we approximate the integral in (10-78) by a sum:

¥(7;) = Ex(f,‘ = “k)A(ﬂ)

k

If x(¢) is SSS; then y(1) is also S8S. Indeed, since y(r + ¢) = L{x(1 + ¢)]
for every ¢, we conclude that if the processes x(¢) and x(t + ¢) have the same
statistical properties, so do the processes y(r) and y(r + ¢). We show later [see
(10-133)] that if x(¢) is WSS, the processes x(1) and y(r) are jointly WSS,

Fundamental theorem. For any linear system
E(L[x(1)]) = L[ E{x(1)}] (10-79)

In other words; the mean 7,(1) of the output ¥(t) equals the response of the
system to the mean 7,(1) of the input (Fig. 10-8a)

ny(1) = L[n(1)] (10-80)

The above is a simple extension of the linearity of expected values to
arbitrary linear operators. In the context of (10-78) it can be deduced if we write
the integral as a limit of a sum. This yields

E{y(r)) = fj E(x(t —a)}h(e) da =n.(1)*h(1) (10-81)

x(1) ¥(0)

—— h(1) }—— hity) +- h(ty) >

7.(1) (1) Rty 12) Ryy(ty, 1) Rrv('l' 1)
(a) (b)

FIGURE 10-8
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Frequency interpretation At the ith trial the input to our system is a function x(z,¢)
yielding as output the function y(1,£;) = L[x(t, £)]. For large n,

¥(6,6) + < Av(t,8,)  Llx(.4)] + -0 +L[x(2, 8,)]

E(s(1)} = - - .

From the linearity of the system it follows that the last term above equals

; x(£,5) + o +x(1,4,)
1 n

This agrees with (10-79) because the fraction is nearly equal to E{x(1)).

Notes 1. From (10-80) it follows that if
2(t) =x(r) = n.(1)  ¥() = y(0) —m,(1)

then

LIx(1)] = L[x(1)] = L[7.(0)] = 5C1) (10-82)
Thus the response of a linear system to the centered input x(¢) equals the centered
output y(r).

2. Suppose that
x(1) = f(1)+w(t)  E{(t)} =0
In this case, E{x(¢)} = f(r); hence
n,(1) = f(1)= k(1)

Thus, if x(r) is the sum of a deterministic signal f(r) and a random component
v(2), then for the determination of the mean of the output we can ignore w(t) provided
that the system is linear and E{w(1)} = 0.

Theorem (10-79) can be used to express the joint moments of any order of
the output y(1) of a linear system in terms of the corresponding moments of the
input. The following special cases are of fundamental importance in the study of
linear systems with stochastic inputs.

OUTPUT AUTOCORRELATION. We wish to express the autocorrelation R (¢,
t,) of the output y(¢) of a linear system in terms of the autocorrelation
R, (¢}, t;) of the input x(¢). As we shall presently see, it is easier to find first the
cross-correlation R, (1, t,) between x(¢) and y(¢).
THEOREM
(a) R.n-(rh!z) =L2[Rn('|ar1)] (]0'83)
In the above notation; L, means that the system operates on the variable f5,
treating ¢, as a parameter. In the context of (10-78) this means that

R, (1,,15) =f R, (1,1, — a)h(a) da (10-84)

(b) Ry (tity) = Ll[R.u-("u-'z)] (10-85)
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In this case, the system operates on 1 :

R, (11,12) = j_vR,L,.(n = a, L) () da (10-86)

Proof. Multiplying (10-76) by x(¢,) and using (10-77), we obtain
x(r)y(e) =L [x(r,)x(r)]
where L, means that the system operates on 7. Hence [see (10-79)]
E{x(1,)y(1)} = L [E{x(r,)x(1)}]
and (10-83) follows with ¢ = r,. The proof of (10-85) is similar: We multiply
(10-76) by ¥(¢,) and use (10-79). This vields
E{y(0)¥(t;)) = L,[E{x(r)¥(,)}]

and (10-85) follows with t = z,.

The preceding theorem is illustrated in Fig. 10-8b: If R (¢,,1,) i the
input to the given system and' the system operates on f,, the output equals
R (e 15) 18 R, (2, ¢,) is the input and the system operates on, (, the output
equals R, (¢, ;).

Inserting (10-84) into (10-86), we abtain

Ryltrta) = [ 7 Rty = ayta = BYi(@) () dar dp

This expresses R, (1, 7;) directly in terms of R (1}, ;). However, conceptually
and operationally, it is preferable to find first R, (r;, 15).

Example 10-18, A stationary process w(Z) with autocorrclation R, (1) = gélz)
(white noise) is applied at ¢ = 0 to a linear system with

h(r) =e “U(1)
We shall show that the autocorrelation of the resulting output y(¢) equals

4 2 = e
Ry (1), 1) = Z(l == Rl R (10-87)

for0 <t <i1,.
Proof; We can use the preceding results if we assume that the input to the system
is the process

x(1) =w(0)U(t)
With this assumption, all correlations are 0 if £y <0 or t, < 0. For 7, > 0 and
1> 0,

R, (ty.15) = E{w(r)w(1;)) = ad(t), — 1)

Aswe'see from (10-83), R, (1, 1,) cquals the responsc of the system to galt, — ;)
considered as a function of 't,. Since 8(t; = £,) = 8(t; — 1)) and Llalts = 1))l =
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Ry (ty, 1)

FIGURE 10-9

h(t, — ;) (time invariance), we conclude that

R (1. 1;) = ah(ty — t;) = qe”“C"VU(t, — 1))
In Fig. 10-9, we show R, (1,,1,) as a function of ¢; and ;. Inserting into (10-86),
we obtain

1 5 L —
R,w(fn-fz}=¢f“'e‘“"" e 1 <ty

and (10-87) results.
Note that

E(A(0)) = Ryy(1) = 5=(1 = ¢*) = q () da

COROLLARY. The autocovariance C,(r,,,) of y(z) is the autocorrelation of
the process y(¢) = y(¢) — m,(¢) and, as we see from (10-82), ¥(#) equals LIx(1)).
Applying (10-84) and (10-86) to the centered processes X(¢) and ¥(r), we obtain
ny(rnfz) = C.u'({l’ 12) *h(!z)
C,,(t;,1;) = C, (1}, ;) = A(t})

where the convolutions are in ¢, and ¢, respectively.
Complex processes The preceding results can be readily extended to

complex processes and to systems with complex-valued A(r). Reasoning as in
the real case, we obtain

R (1, 15) = R, (11, 65)  h*(15)
R)’)‘(’I‘ll) = R.\_r(rlﬂ":’_)*h(tl)

(10-88)

(10-89)

Response to white noise. We shall determine the average intensity E{|ly(1)]%) of
the output of a system driven by white noise. This is a special case of (10-89),
howeyer, because of its importance it is stated as a theorem.

THEOREM. If the input to a linear system is white noise with autocorrelation

R (1. 15) = q(1;)8(1;, = 13)
then

E{ly(0)*) = q(r) *|h(1)]? = [_’ qlt —a)|h(a)Pda  (10-90)
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Proof. From (10-89) it follows that
R (15 12) = GU8,)8(t> — 0,) ¥hi*(t3) = a(t,)i*(15 — 1,)

R, (t115) = j_z a(ty — e«)h*[1; = (1, — a)]h(a) da

and with 1, =1, = 1, resulls.
Special cases (a) 1f x(r) is stationary white noise, then g(t) =g and
(10-90) yields

Efy*(1)} =gE  where E = fm [R(2)|? di

is the energy of A(?).
(b) If A(t) is of short duration relative to the variations of g(¢), then

EW3(0) = a(0) [ 1h(a)|*da = Ea(1) (10:91)

This relationship justifies the term average intensity used to describe the
function g(r).

(e) If R, (7) = qd(7) and w(z) is applied to the system at ¢ = 0, then
q(t) = qU(t) and (10-90) yields

Ey’ (D)) =af" Ih(a) | da

Example 10-19. The integral
)
= | v(a)da
y= ()

can be considered as the output of a lincar system with input x{(¢) = v(1)U(z) and
impulse response A(r) = Uz). If, therefore, wit) is white noise with average
intensity ¢(¢), then x(r) is white noise with average intensity g(e)U(r) and (10-90)
yields

E{y*(0)} = a(0)U(0) = U() = ['¢(a) da

Differentiators. A differentiator is a linear system whose output is the derivative
of the input

L[x()] = x'(¢)

We can, therefore, use the preceding results to find the mean and the autocor-
relation of x/(1).
From (10-80) it follows that

me(1) = L{m,(8)] = ni(1) (10-92)
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Similarly [see (10-83)]
IR, (1.15)
Ru"(lil"z) = L'.‘[R\\'(rI!’?)I i | ;_ (10-93)

it
because, in this case, L, means differentiation with respeet to (. Finally,
AR oty 15)

Rywltsty) = Li[ Ryt 02)] = — 2 —— (10-94)
1

Combining, we obtain
. R, (1. 15) (
] L) ———————— 10-95
\1(!Iv L) ﬂl|':“: L"")

Stationary processes 1f x(¢) is WSS, then n,(¢) is constant; hence

E{x'(1)} =0 (10-96)
Furthermore, since R, (f,, 1;) = R (7), we conclude with 7 = 7, — , that
IR, (1, = t5) dR, (1) PR, (it = 1y) d*R (7)
at, T dr Aty o, T de?
Hence
R.(7) = =R.u(7)  Ryp7) = —RL(7) (10-97)

Poisson impulses. If the input x(r) to a differentiator is a Poisson process, the
resulting output z(r) is a train of impulses (Eig. 10-10)

2(t) = Yo(e—t) (10-98)
‘We maintain that z(r) is a stationary process with mean
M. =A (10-99)
and autocorrelation
R_.(7) = 2> +A8(n) (10-100)

Ri:(t1: 1)

x(1) R..(7)
z(1) |
T S -
el Ll , i
0 t, 1 di 0 T 0ot =
(a) (b)

FIGURE 10-10
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Proof. The first equation follows from (10-91) because #,(¢) = Ar. To prove the
second, we observe that [see (10-14)]

R(tyy 13) = Notyty + Amin(ty;1,) (10-101)
And since z(t) = x'(t), (10-93) vields

IR (1 t5)
R (tyyty) = ———— = X1, + AU, — 1)
ary 4
This function is plotted in Fig. 10-105 where the independent variable is ¢,. As
we see; it is discontinuous for ¢, = ¢, and its derivative with respect to ¢,
contains the impulse A8(s; — ¢,). This vields [see (10-94)]
R, .(4,.1;)

R..(t,13) i = A4 A8t — 1)
I

DIFFERENTIAL EQUATIONS. A deterministic differential equation with random
excitation is an equation of the form

ﬂ”y(“”(f) T e +(1"_V(f) = x(,‘) (IU-IUZ)

where the coefficients a, are given numbers and the driver x(1) is a stochastic
process. We shall consider its solution y(r) under the assumption that the initial
conditions are 0. With this assumption, y(1) is unique (zero-state response) and
it satisfies the linearity condition (10-77). We can, therefore, interpret y(¢) as the
output of a linear system specified by (10-102).

In general, the determination of the complete statistics of y(r) is compli-
cated. In the following, we evaluate only its second-order moments using the
preceding results. The above system is an operator L specified as follows: Its
output y(#) is a process with zero initial conditions satisfying (10-102).

Mean. As we know [see (10-80)] the mean 7, (¢) of y(z) is the output of L with
input n,(r). Hence it satisfies the equation

) sy (0) = m () (10-103)
and the initial conditions
7,(0) = -+ == (0) =0 (10-104)
This result can be established directly: Clearly,
E{y”"(.’)] — TI(,-"’("-) (10-105)

Taking expected values of both sides of (10-102) and using the above, we obtain
(10-103). Equation (10-104) follows from (10-105) because yX0) = 0 by as-
sumption.
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Correlation. To determine R, (1, t;), we use (10-83)
ROt 15 )= Lo IR (7,50
In' this case, L, means that R, (t, 1,) satisfies the differential equation
"R, (1. 15)

= + - dagR (s 15) =R (1 15) (10-106)
ol

"

with the initial conditions
"R, (14,0)
R, (1,,0) = -+ :T:O (10-107)
Similarly, since [see (10-85)]
Ry (tint3) = L[ R (¢,.15)]
we conclude as above that
"R, (L5 t5)

{,HT + e R ) = Rt 6) (10-108)
"R (0,15)
Ry(0,0) = ++n = — 212 (10-100)
ks = (.H;'

The preceding results can be established directly: From (10-102) it follows
that

x(.’l)[a,,y“”(fz) 31 it ‘i’ﬂn."(fz)] = x(t)x(1,)
This yields (10-106) because [see (10-119)]
Efx(1,)y* (1)} = 8*R, (1. 1,) for3
Similarly, (10-108) is a consequence of the identity
[2,y(8)) + =+~ +agy(1,)]v(t2) = x(1,)¥(22)
because
Ely®2e, )y(e2)} = 05R (i, 1) L3
Finally, the expected values of
x(1 )y (0) =0 y*U0)¥(1,) =0
yield (10-107) and (10-109).
General moments. The moments of any order of the output y(7) of a lincar

system can be expressed in terms of the corresponding moments of the input
x(1). As an illustration, we shall determine the third-order moment

Rty ta55) = E{y\(0)w2(0)ya(1))
of y(t) in terms of the third-order moment R, (f,, £, 2) of x(r). Praceeding as
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in (10-83), we obtain
E{x(t)x(12)3(13)} = L[ E£{x(£)x(r2)x(15)}]

pe

:j Rt tst — y)h(y) dy  (10-1104)

E{x(t,)y(£:)3(2:)} = L[ E{x(,)x(£,)¥(4:)}]

/ R (tists, — Bt )h(BY dB (10-1108)

E{w(r)y(e2)v(6:)) = Ly [ E(x(1))v( )5 1)) ]

[ Rty — e toits)hi(e) da (10-110¢)

Note that for the evaluation of R, (¢, t,,13) for specific imes 1, 5. 15, the
function: R (1, 7,,13) must be known for every r,1,, 1.

sy

Vector Processes and Multiterminal Systems

We consider now systems with » inputs x,(¢) and r outputs y,(z). As a
preparation, we introduce the notion of autocorrelation and cross-correlation
for vector processes starting with a review of the standard matrix notation.
The expression A = [a,] will mean a matrix with elements a;,. The
notation
A= [a;] A*=[af] A= [a}

will mean the transpose, the conjugate, and the conjugate transpose of A,

A column vector will be identified by A = [4,]. Whether A is a vector or a
general matrix will be understood from the context. If A4 = [a,] and B = [b)]
are two vectors with m elements each, the product A'B = a\b, + - +a,.b, is
a number, and the product AB‘ = [a,hj] is an m X m matrix with elements
ab,.

A vector process X(¢) = [x,(r)] is a vector, the components of which are
stochastic processes. The mean (1) = E{X(¢)) = [,(¢)] of X() is a yector with
components n,(1) = E{x(1)). The autocorrelation R(z;,,) or R, (1,,15) of a
vector process X(1) is an m > m matrix

R(ty,t5) = EX(1 )X (1)} (10-111)
with elements E{x;(7,)x (1)}, We define similarly the cross-correlation matrix
Ry Gt ita) = E{XCH)Y(1,) ) (10-112)

of the vector processes
X(1) =[x (e)] i=1l...om  Y(&)=[y(0)] =l....r (10-113)

A multiterminal system with m inputs x,(¢) and » outputs y,(¢) is a rule for
assigning to an mi vector X(r) an r vector Y(¢). If the system is linear and
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time-invariant, it is specified in terms of its impulse response matrix, This is an
r X m matrix

H(t) = [h(1)] i=1....m j=1,..., r (10-114)

defined as follows: Its component /,(2) is the response of the jth output when
the ith input equals 6(r) and all other inputs equal 0. From this and the
linearity of the system, it follows that the response y;(¢) of the jth output to an
arbitrary input X(2) = [x,(2)] equals

y(0) = [ tle)xy(t —a)da+ -+ [ hy()x,(t - a) da
Hence

(1) = [ H(«)X(1 - a) da (10-115)

In the above, X(¢) and Y(¢) are column vectors and F(¢) is an r X m matrix.
We shall use this relationship to determine the autocorrelation R (r,,¢,) of
¥(1). Premultiplying the conjugate transpose of (10-115) by X(r,) and setting
t = t,, we obtain

X(e)¥' (1) = [ X(1)X'(1; — ) H'(a) dar
Hence
R, (ty,13) = fiR”(t,.rz = @) Hi{a)da (10-116a)
Postmultiplying (10-115) by Y'(¢,) and setting ¢ = t{, we obtain
R,,(ty 1) = f:H(a)R,,,(fl =)o (10-116b)
as in (10-89). These results can be used to express the cross-correlation of the

outputs of several scalar systems in terms of the cross-correlation of their
inputs: The next example is an illustration.

Example 10-20. In Fig. 10-11 we show two systems with inputs x,(¢), x5(1) and
outpuls

y,(:)=j:h,(a)x,(z—a}da va(t) =f_” ha(@)x,(t —a) da (10-117)

x(1) - ¥i(0)
empe
h3s
- R v (h12) A Riyilinata) i) Ry, (6. 12)
xa(e) L~ ¥a(0)

(a) (6)
FIGURE 1011
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These signals can be considered as the components of the output vector Y/(1) =
[y, (). v, (0)] of a 2 X 2 system with input veetor X'(r) = [x (1), x:(2)] and impulse
response matrix

o w0
”(')7[ 0 h:u)}

Inserting into (10-116), we obtain

Ry o2 83) Zf Ry oty b —a)hi(a) da
(10-118)
R, (typta) = [ hi(a)R,, (6 —a.15) da

Thus, to find R, | (1;, ), we usc R, (. 15) as the input to the conjugate h%(1)
of A1), operating on the variable (5. To find Ry | (1,.6,) we use R, | (1), 15) as
the input to 4 (¢) operating on the variable £, (Fig, 10-11). :

Example 10-21. The derivatives ¥i{t) = 20t and y5(r) = w!(1) of two processes
z(t) and w(r) can be considered as the responses of two differentiators with inputs
x,(£) = z(¢) and x,(r) = w(r). Applying (10-118) suitably interpreted; we conclude
that

ATTR (8 1)

E{z"(t yw™ (¢, =
G AR ) At{" de

(10-119)

10-3 THE POWER SPECTRUM

In signal theory, spectra are associated with Fourier transforms. For determinis-
tic signals, they are used to represent 4 function as a superposition of exponén-
tials. For random signals, the notion of a spectrum has two interpretations. The
first involves transforms of averages; it is thus essentially deterministic. The
second leads to the representation of the process under consideration as
superposition of expeonentials with random coefficients. In this section, we
introduce the first interpretation. The second is treated in Sec. 12-4. We shall
consider only stationary processes. For nonstationary processes the notion of a
spectrum is of limited interest.

DEFINITIONS, The pawer spectrum (or spectral density) of & WSS process x(¢),
real or compley, is the Fourier transform S(w) of its autocorrelation R(r) =
Efx(r + 7)x*(0)}:
=
S(w) = [ R(7)e T dr (10-120)

Since R(—7) = R*(7) it follows that S(w) is a real function of w.
From the Fourier inversion formula, it follows that

g
R(z) = 5= [ S(w)er do (10-121)
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TABLE 10-1
L[ S(w)e (@)= [ R()e"d
R(r) = Ef_ﬁS(w)e dw © S(w) = f_= T)e T

d(r) e 1 1« 276(w)
P o 2a5(w — B) cos Br < wdlw — B) + wélw + B)
2a 2 T 2
g—ain 7=y e e — g 4o
a® + &

a

@r (=B @i+ (w+p)

3 T 3 2
267 cos Br fhs [e=(@=BY /4a 4 4=l +B) 4m)
o

e~ leos Br o

{1 = Il! Il <7 4sin(eT/2)
1 e
Tw™
0 Ir| T
sin o7 1 lal <o
— &
TT 0 la| > o

If x(¢) is a real process, then R(7) is real and even; hence S(w) is also real
and even. In this case,

S(a) = fm R(7)cos wrdr = ZIER(r)cns wrdr
. o (10-122)
R(7) = F= _ws(w)coswrdw = ;-/1; S(w)cos wr dw

The. cross-power spectrum of two processes x(r) and y(¢) is the Fourier
transform S, (w) of their cross-correlation R, (r) = E{x(¢ + )y *(1)}:

= , 1l =
S, (@) = j_ R, (m)e ™ dr R, (r)= Ef_ Sy(@)e dw (10-123)

The function §, () is, in general, complex even when both processes x(¢) and
¥(t) are real. In all cases,

Sey(w) = 83(w) (10-124)

because R, (—7) = E{x(r — 7)y*(¢)) = R¥.(7).

In Table 10-1 we list a number of frequently used autocorrelations and the
corresponding spectra. Note that in all cases, S(w) is positive. As we shall soon
show, this is true for every spectrum.

Example 10-22. A random telegraph signal is a process x(1) taking the values +1
and —1 as in Example 10-6;

X(1) = 1 GRSt
=1 by <t <ty



10-3 1HE rowER sPECTRUM 321
where t, is a set of Poisson points with average density A. As we have shown in
(10-19), its autocorrelation equals e 27| Hence

4A

3 3

8 =—
(@) 44X + w*®

For most processes R(7) — n* where 7 = E(x(1)} (sce Sec. 12-4), If,
therefore, 7 # 0, then $(w) contains an impulse at w = 0. To avoid this, it is
‘often convenicnt to express the spectral properties of x(#) in terms of the
Fourier transform 5(w) of its autocovariance C(7). Since R(7) = C(7) + 72, it
follows that

S(w) = 8(w) + 2708 (w) (10-125)
The function S(w) is called the covariance spectrum of x(t).

Example 10-23. We have shown in (10-100) that the autocorrelation of the Poisson
impulses

d
z(t) = — Y U(r—t) = To(t—t,)
dt i i
equals R.(7) = A* + A8(7). From this it follows that
S(w)=A+270%8(w)  Si(w)=A
We shall show that given an arbitrary positive function S(w), we can find a

process x(¢) with power spectrum S(w).
(a) Consider the process

x(t) = ae/=i=% (10-126)

where g is a real constant, o is an RV with density f, (), and ¢ is an RV
independent of @ and uniform in the interval (0, 27). As we know, this process
is WSS with zero mean and autocorrelation

R (7) = B/} = a*[ f(w)e!" do

From this and the uniqueness property of Fourier transforms, it follows that
[see (10-121)] the power spectrum of x(t) equals

S.(w) =2ma’f (w) (10-127)
If, therefore,

1 =

= R do = R(0
2?2 ¢ 2m ‘NS(G)) ¢ (©)

then f (w) is a density and S, (w) = S(w). To complete the specification of :f(t).

it suffices to construct an RV w with density S(w)/27a® and insert it into

(10-126).



322 STOCHASTIC PROFERTIES

S({w)4 Emitted

Doppler effect spectrum

v —

[ — 0 wy w
1] \/A/ P S(w)4 Received
. spectrum
(OP)=r=ry+Vvi /\
l »
0 wy @

FIGURE 10-12

(b) We show next that if S(—w) = S(w), we can find a real process with

power spectrum S(w). To do so, we form the process

y(1) = acos(wr + ¢) (10-128)

In this case (see Example 10-14)

a’ a* =
Ry(7) = S E{cos wr) = Ef_ fw)cos wr dw

From this it follows that if f (w) = S(w)/mwa®, then S@) = S(w).

Example 10-24 Doppler effect. A harmonic oscillator located at point P of the x
axis (Fig. 10-12) moves in the x direction with velocity v. The emitted signal equals
e/“o! and the signal reccived by an observer located at point O equals

S(!) — aej""""'/r)

where ¢ is the velocity of propagation and r = r, + vr. We assume that v is an RV
with density f,(2). Clearly,

. v r
s(t) = ael@=9) g = wn(l - _) _ To%o
c c
hence the spectrum of the received signal is given by (10-127)
2ma’c o
S(w) = 27wa’f (w) = f,,[(l - —]c] (10-129)
wy wy

Note that if v = 0, then
(1) = el =e)  R(r) = gZeiwor S(w) =27a’s(w — w,)

This is the spectrum of the emitted signal. Thus the motion causes broadening of
the spectrum,

The above holds also if the motion forms an angle with the x axis proyided
that v is replaced by its projection v, on OP. The following cise is of special
interest. Suppose that the emitter is a particle in a gas of temperature 7. In this
case, the x component of its velocity is a normal RV with zero mean and variance
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-
"~
LFY)

kT /m (sce Prob. 8-5). Inserting into (10-129); we conclude that

S(w) = 2ma’c _ me? ; o\
T kT m sz( - ‘) }

- 2.2

kTwir=

— elwor
mc*

R(7) = a* cxp{ -

Line spectra. (¢) We have shown in Example 10-7 that the process
x(1) = Ec,e"""

is WSS if the RVs ¢; are uncorrelated with zero mean. From this and Table
10-1 it follows that

R(7) = Y olelv S(w) =27 Y. 0% (w — »,) (10-130)

i

where o = Efe?}. Thus S(w) consists of lines. In Sec. 14-2 we show that such a
process is predictable, that is, its present value is uniquely determined in terms

of its past.
(b) Similarly, the process

y(t) = ¥, (a;cos w;t + b;sin ;1)
i
is WSS iff the RVs a, and b, are uncorrelated with zero mean and Efaj) =
E{b?} = . In this case,
R(r) = Eofcosor  S(w) =7 Lo?[8(w - @) +6(w + )]
i

i
(10-131)

Linear systems. We shall express the autocorrelation R, () and power spec-
trum S, (@) of the response

y(1) = j_” x(t = a)h(a) de (10-132)

of a linear system in terms of the autocorrelation R, (7) and power spectrum
S, (@) of the input x(¢).
THEOREM
Ryy(7) =R (r)xh*(-7) R,(7)= Ry (7)*h(7) (10-133)
Suy = Su(@)H*(@)  Sy(w) =Sy(@)H(@)  (1043)

Proof. The two equations in (10-133) are special cases of (10-184)-and (19-1&}.5).
However, because of their importance they will be proved directly. Multiplying
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the conjugate of (10-132) by x(¢ + 7) and taking cxpected values, we obtain
E(x(1 + )y*(1)) = fiE{x(l + )t — )i (a) de
Since Elx(r + #)x*(t —a)} = R, (= + a), this yiclds
R, (7) = f:R,.(.- e de = f:R‘,(f _ B)R*(—B) dB
Proceeding similarly, we obtain

E{y(t)y*(v = 7)) = fz E{x(t — a)y*(t — 7))i(a) da

= fz R, (7—a)h(a)da
Equation (10-134) follows from (10-133) and the convolution theorem.
COROLLARY. Combining the two equations in (10-133) and (10-134). w¢ obtain
Ry} =R, (7)sh(z)rh*(=1) = R (7)*p(7) (10-135)
Si(@) =8, (0)H(w)H* () =S, (0)|H(w)]* (10-136)
where

p(7) = h(z)wh*(=7) = [ h(t+2)h*(1) dt & [H(w)[* (10-137)
Note, in particular, that if x(¢) is white noise with average power g, then

R (7) = qd(7) S (w) =q
S,(w) =qlH(w)|* R (7) =ap(7)

From (10-136) and the inversion formula (10-121), it follows that

(10-138)

1 T
E{ly(t)1?} = Ry, (0) = Ef_ Sy (w) H(w)Pdw = 0 (10-139)

This equation describes the filtering properties of a system when the input is a
random process. It shows, for example, that if H(w) =0 for |w| > w, and
S..(@) = 0 for |w]| < w,, then Ely*(1)} = 0.

Note The preceding results hold if all corrclations are replaced by the corresponding
covariances and all spectra by the corresponding covariance spectra. This follows from
the fact that the response to x(2) — m, equals y(r) — 5,. For example, (10-136) and
(10-142) yield

5 (w) =8 (o) 1 H(w)|? (10-140)

I = .
Vary(l-)=§f S¢ (@) [ H(w)] dw (10-141)
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x(1) ()4 ra)]
1l 1
2T 27

=T 0 T -7 0 T | —2T 0 2T 1

FIGURE 10-13

Example 10-25. (a) (Moving average) The integral
U e
y(r) = ? ,J ’l X(a) da
isithe average of the process x(t) in the interval (r — 7', £ + T'). Clearly, y(¢)is the
output of a system with input x(¢) and impulse response a rectangular pulse as in
Fig. 10-13. The corresponding p(7)'is a triangle, In this case,

sin T sin® 7w
; Syplw)i=8(0)—=—
Tw T w"

] o=
H(w) == [ e dr =

Thus H{w) takes significant values only in an interval of the order of 1 /T centered
at the origin. Hence the moving average suppresses the high-frequency components
of the input. Tt the thus a simple low-pass filter.

Since p(r)is a triangle, it follows from (10-135) that

i fee]
iz e SR e (10-142)
ul 2T/ oy 27 =

We shall' use this result to determine the variance of the integral

I .
= ﬁ}’7’?(;) di
Clearly, n; = y(0); hence
. D per el ! 10-143
Vara; = €, (0) =57 [ |1 - F)(.,(a)‘ﬂ (10-143)
(b) ( High-pass filter) The process z(¢) = x(2) — ¥(2) is the output of a system
with input x(¢) and system function
sin Tw
T(d

This function is nearly 0 in an interval of the order of 1 /7 centered at the un‘g_inv
and it approaches | for large w. It nets, therefore, as a high-pass Rlter suppressing
the low frequencies of the input.

H(w) =1~

Example 10-26 Derivatives. The derivative x'(r) of a process x(¢) can _hc
considered as the output of a lincar system with input x(¢) and system function jo.
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From this and (10-134), it follows that
(@) = —juS(0)  Spo(w) =S, ()
Hence
dR . (7) d’R,.(7)
R“-(T}‘—‘ *T R“.‘.(T)= —T

The nth derivative y(r) = x"{¢) of x(r) is the ontput of a system with input
x(t) and system function (jw)". Hence

Syw) = lfwl™ Ry, (r) = (=1)"R®"(r) (10-144)

Example 10-27. (@) The differential equation
yi(r) +ey(r) =x(¢) alle¢
specifies a linear system with input x(¢), output y(¢), and system function 1/(jw +

¢). We assume that x(¢) is white noise with R, (7)'= g8(r). Applying (10-136), we
obtain

Se(w q
2 s Ru() = e

q
S.(0) = e
H( ) wz +Cl m2+c"

Note that £{y*(1)} = R, (0) = g/2¢.
(b) Similarly, if

y(6) + by (t) + cy(r) =x(t) S..(w)=gq

then
q
Hig)y=——— — % o
(w) —w® + jbo + ¢ w(@) (c—w1)2+b3w2
To find R, (7), we shall consider three cases:
b* < 4c
Gl ey a b ;
R”,(r)=ae ”(cos,B'r+ESlnBIﬂ} a== attpi=c
b2 = 4¢
4 . b
Ryp(7) = g-e™ M1 +alrl) o= =
b* > 4¢

q
R, (1) = '4_3'?0-[(& Fy)etenil _ (o — .y)e—(nﬂt)lf)]

b
== a*—y*=¢

In all'cases, Ely*(1)) = q/2bc,
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FIGURE 10-14

Example 10-28 Hilbert transforms. A system with system function (Fig. 10-14)

5 =] w > () 5
H(w) = —jsgnw = {J ) 1 (10-145)
is called a quadrature filter. The corresponding impulse response equals | /¢
(Papoulis, 1977). Thus H(w) is all-pass with —90% phase shift; hence its response
to cos wi equals cos(w! — 90°) = sin wr and its response to sin wt equals sin(wt —
90%) = —cos wi.
The response of a quadrature filter to a real process x(2)'is denoted by %(r)
and it is called the Hilberr transform of x(t). Thus

© Xl(a)

x(!)—x(-‘)*——— de (10-146)
-l — @

From (10-134) and (10-124) it follows that (Fig. 10-14)
Sye(w) =S, (@)sgnw = —S;,(w)
Siilw) =8, (w)

(10-147)

The complex process
z(t) = x(1) +jx(1)

is called the analytic signal associated with x(¢). Clearly, z(¢) is the response of the
system

L +j(—isgnw) = 2U(w)
with input x(7). Hence [see (10-136)]
S, (w) =45, (@)U(w) =25, (@) + 2j8; (w) (10-148)
R.J(7) = 2R (7) + 2jR . (7) (10-149)

THE WIENER-KHINCHIN THEOREM. From (10-121) it follows that

E{x*(1)}) = R(0) = %I:‘S(w) dw =0 (10-150)



328  STOCHASTIC PROPERTIES

This shows that the arca of the power spectrum of any process is positive. We
shall show that

S(w) =0 (10-151)
for every w.
Proof. We form an ideal bandpass system with system function

1 w, <0<,
0 otherwise

H(w)={

and apply x(¢) to its input. From (10-139) it follows that the power spectrum

S,,(w) of the resulting output y(¢) equals
Sv;'(a’)= {S(w) e <w<<m2
' 0] otherwise
Hence

.l o 1 W
02 By ()} = 5= [ S,(w)do= o) S(w)do  (10-152)

Thus the area of S(w) in any interval is positive. This is possible only if
S(w) = 0 everywhere.

We have shown on page 321 that if S(w) is a positive function, then we
can find a process x(t) such that S, () = S(w). From this it follows that a
function S(w) is a power spectrum iff it is positive. In fact, we can find an
exponential with random frequency w as in (10-127) with power spectrum an
arbitrary positive function S(w).

We shall use (10-152) to express the power spectrum S(w) of a process
x(t) as the average power of another process y(z) obtained by filtering x(1).
Sellli;lg wy =w, +d and w, = w, — , we conclude that if & is sufficiently
small,

< &
Efy*(1)) = —S(w,) (10-153)
This shows the localization of the average power of x(z) on the frequency axis.

Integrated spectrum. In mathematics, the spectral properties of a process x(r)
are (zxpressed in terms of the integrated spectrum F(w) defined as the integral
of S(w):

Fw) = jism} da (10-154)

From thf: posili\_fity of_ S(w), it follows that F(w) is a nondecreasing function w.
Integrating the inversion formula (10-121) by parts, we can express the autocor-
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relation R(7) of x(1) as a Riemann-Stieltjes integral:
1 = JoT -
R(r) = ﬁfqe dF(w) (10-155)

This approach avoids the use of singularity functions in the spectral representa-
tion of R(7) even when S(w) contains impulses. If S(w) contains the terms
B;8(w — @), then Flw) is discontinuous at w, and the discontinuity jump
equals j3;.

The integrated covariance spectrum. F(w) is the integral of the covari-
ance spectrum. From (10-125) it follows that Flw) = F(w) + 271 Ulw).

Vector spectra. The vector process X(1) = [x,(¢)] is WSS if its components x,()
are jointly WSS. In this case. its autocorrelation matrix depends only on
7 =1, — f,. From this it follows that [see (10-116)]

Ryy(7) = j_’ Rolr+ @)H (@) da R, (7) = [ H()R, (7 - «) da
(10-156)

The power spectrum of a WSS vector process X(r) is a square matrix
S, w) =[S, (0)], the elements of which are the Fourier transforms S, (w) of
the elements R, (7) of its autocorrelation matrix R, (7). Defining similarly the
matrices S”,(m) and § (@), we conclude from (10-156) that

S, (0) =8, (0)H(0) 8,(w)=H(w)S, (0) (10-157)

where F(w) = [H,(w)] is an m X r matrix with elements the Fourier trans-
forms Hj(w) of the elements /;(t) of the impulse response matrix H(t). Thus

S, (w) = H(@)S. (0)H (o) (10-158)

This is the extension of (10-136) to a multiterminal system.

Example 10-29. The derivatives

(1) =27 wae) = W ()
(of two WSS processes z(1) and w(t) can be considered as the responses of two
differentiators with inputs z(1) and w(¢) and system functions H (@) = (jw)™ and

H,(w) = (jw)". Proceeding as in (10-119), we conclude that the cross-powcr
spectrum of z)(¢) and w"(¢) equals (jo)"(—jw)"S. (@). Hence

damt HR_-..-( 1,-)

N

Ef2"™(r + 7)2'"(1)} = (—1)" (10-159)

dz
PROPERTIES OF CORRELATIONS. If a function R(z) is the autocorrelation of a WSS
process x(1), then [see (10-151)] its Fourier transform S(w) is positive. Furthermore, if
Riz) is a function with positive Fourier transform, we can find a process x(£) as in
(10-126) with autocorrelation R(r). Thus a nccessary and sufficient condition for 4
function R(r) 1o be an autocorrclation is the positivity of its Fourier transform. The
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conditions for a function R(7) to be an autocorrelation can be expressed directly in
terms of R{7). We have shown in (10-84) that the autocorrelation R(7) of a process x(1)
is p.d., that is,
Y a,a¥R(m;—7) =0 (10-160)
L

for every a;, @, 7, and 7. It can be shown that the converse is also truet: If Riz)is a
‘p.d. function, then its Fourier transform is positive. Thus a function R(7) has a positive
Fourier transform iff it is p.d.

A sufficient condition. To establish whether R(7) is p.d., we must show cither
that it satisfies (10-160) or that its transform is positive. This is not, in general, a
simple task. The following is a simple sufficient condition.

Polya’s criterion. It can be shown that a function R(7)is p.d. if it is concave for
7> () and it tends to a finite limit as 7 — =,

Consider, for example, the function w(r) =e <" If 0 <¢ < 1, then
w(r) = 0 as 7 = = and w"(7) > 0 for 7 > 0; hence w(7) is p.d. because it
satisfies Polya’s criterion. Note, however, that it is p.d. also for 1 < ¢ < 2 even
though it does not satisfy this criterion.

Necessary conditions. The autocorrelation R(7) of any process x(1) is maximum
at the origin because [see (10-121)]

1
[R(7)] < E?L S(w) dw = R(0) (10-161)

We show next that if R(7) is not periodic, it reaches its maximum only at the
‘origin.
THEOREM. If R(r) = R(0) for some 7, # 0, then R(7) is periodic with period

T
R(7 + 7,) =R(r) forallz (10-162)

Proof. From Schwarz's inequality
E*(zw) < E{z*)E(w?) (10-163)

it follows that

EN[x(t + 7+ n,) —x(t + 7)]x(1)}

< E{[x(r + 7.+ 7)) = x(1 + )]} E{x?(1)}

Hence

[R(r + ) —R(7)]® < 2[R(0).— R({)] R(0) (10-164)
If R(r,) = R(0), then the right side is 0; hence the left side is also 0 for every 7.
This yields (10-162).

1S, Bocher: Lectures on Fourier Integrals, Princeton Univ. Press, Princeton, NJ, 1959,
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COROLEARY. If R(r,) = R(7,) = R(0) and the numbers 7, and 7, are noncom-
mensurate, that is; their ratio is irrational, then R(7) is constant.

Proof. From the theorem it follows that R(z) s periodic with periods 7, and 7,.
This is possible only if R(7) is constant. -

Continuity. If R(7) is continuous at the origin, it is continuous for every 7.

Proof. From the continuity of R(7) at = = 0 it follows that R(7,) = R(0); hence
the left side of (10-164) also tends to 0 for every 7 as 7, — 0.

Example 10-30. Using the theorem, we shall show that the truncated parabola

at - 72 7| <a
w(r) =
tr) {U |7l > a

is not an autocorrelation.
If w(r) is the autocorrelation of some process x(1), then [see (10-144)] the
function

|7l <a

)
) = =
(r) {u |7l > a

is the autocorrelation of x(¢). This is impossible because —w"(7) is continuous for
7 = 0:but not for 7 = a.

MS continuity and periodicity. We shall say that the process x(1) is MS
continuous if
E{[x(t +&) —x(1)]*) >0 as e—=0 (10-165)

Since E{([x(r + &) — x()]*} = 2[R(0) — R(g)), we conclude that if x(¢) is MS
continuous, R(0) — R(e) — 0 as £ — 0. Thus a WSS process x(¢)is MS continu-
ous iff its autocorrelation R(7) is continuous for all 7.

We shall say that the process x(¢) is MS periodic with period 7, if

E{[x(t + 7)) —x(1)]’} = 0 (10-166)

Since the left side equals 2[R(0) — R(#,)], we conclude that R(z,) = R(0);
hence [see (10-162)] R(7) is periodic. This leads to the conclusion that a WSS
process x(t) is MS periodic iff its autocorrelation is periodic.

Cross-correlation. Using (10-163), we shall show that the cross-correlation
R, (7) of two WSS processes x(1) and y(1) satisfies the inequality
R2,(7) <R, (0)R,,(0) (10-167)
Proof. From (10-163) it follows that
E2(x(t + 7)y*(1)} = E{Ix(z + 7) P}E{Iy(1)[?) = R (D) R,,(0)
and (10-167) results.
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COROLLARY. For any @ and b,

th”(w) dw

a

<[5, (w) dmf{"s,,‘.( &)/ (10-168)

a

Proof. Suppose that x(1) and y(¢) are the inputs to the ideal filters

1 a<w<hb

Hi(w) = H,(w) = {[) otherwise

Denoting by z(z) and w(r) respectively the resulting outputs, we conclude that

- i
R.(0) = — [S,(0) dos  R,,(0) = — [8,,(0) dw
Zim Uy 27ds

1 b
R_i(0) = 2—_[ S (@) da

and (10-168) follows because R2, (0) < R, (DR, (0).

10-4 DIGITAL PROCESSES

A digital (or discrete-time) process is a sequence x, or RVs. To avoid double
subscripts, we shall use also the notation x[n] where the brackets will indicate
that » is an integer. Most results involving analog (or continuous-time) pro-
cesses can be readily extended to digital processes. We outline the main
concepts.

The autocorrelation and autocovariance of x[n] are given by

Rlny,no] = E(x{n x*[m,])  Clngama] = Rng, ] = nlnJn*[na]
(10-169)

respectively where n[n] = E{x[nl]} is the mean of x[n].
A process x[#] is SSS if its statistical properties are invariant to a shift of
the origin. It is WSS if 5ln] = 5 = constant and

R[n +m,n] = E{(x[n + m]x*[n]} = R[m] (10-170)

. A pracess X[ ] is strictly white noise if the RVs x[n,] are independent. It is
white noise if the RVs x[n;] are uncorrelated. The autocorrelation of a white-
noise process with zero mean is thus given by

Rln,n,l =qln,16[n, —n. ={1 =10 )-171

[y 2] = qlnyJ8[n, —n,]  where d[n] 0 n 20 (10-171)
and gln] = E(x*[nl). If x[n] is also stationary, then Rlm] = gb[m]. Thus a WSS
white noise is ‘a sequence of i.i.d. RVs with variance q-

The delta response #fln] of a linear system is its response to the delta
sequence [nl. Its system function is the z transform of hlnl:

H(z) = f) h[n]z=" (10-172)

9o -
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If x[a] is the input to a digital system, the resulting output is the digital
convolution of x[n] with A[n):

@

Mal= ¥ x[n —kln[k] = x[n]+ kln] (10-173)
AT
From this it follows that n,[n] = 5 [n]# Aln). Furthermore,
Rylnynl = ¥ R, [ny,n, — klh*[k] (10-174)
k==m
Ry[nunl= X R [n,—r,n,]0[r] (10-175)

If x[n] is white noise with average intensity q[n] as in (10-171). then, [see
(10-90)],
E{y*[n]} = qla]=k[n]I? (10:176)
If x[n] is WSS, then y[n] is also WSS with 1, = 1, = H(1). Furthermore,
Rylml =R [ml«h*[-m] R, [m] =R, [m]+h[m]
= (10-177
R, [m] =R, [m]*plm] plm]l = % hlm + klh*[k] { )
k= —=
as in (10-133) and (10-135).

THE POWER SPECTRUM. Given a WSS process x[2], we form the z transform
S(z) of its autocorrelation R[m):

S(z) = i R[m]z"" (10-178)

The power spectrum of x[#] is the function
S(w) =8(e”) = Y R[m]e~m (10-179)

Thus S(e’”) is the DFT of R[m]. The function S(e’®) is periodic with period 27
and' Fourier series coefficients R[m]. Hence

0 ,
R[m] = -Z—Ffi_S(e"")e”""' dw (10-180)

1t suffices, therefore, to specify S(e’) for |w| < = only (see Fig. 10-15).
If x[n] is a real process, then R[—m] = R[m] and (10-179) yields

S(e/®) = R[0] + 2 ¥, R[m]cos maw (10-181)
m=0
This shows that the power spectrum of a real process is a function of cos @
because cos mw is a function of cos w.
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x[n] = x(nT)
0 n
S, (@) S(w)
T = 1 1 >
=17 0 T w - 0 m @
FIGURE 10-15
Example 10-31. If R[m] = a!™, then
s _El i -~ az z
_ —my=m —m_ 5
(=) m__ma mzoa “ l—az z-a

al-a

= (a='+a)—(z7'+2)

Hence

al—a

S(e™) =

a'+a-2cosw
Example 10-32. Proceeding as in the analog case, we can show that the process
x[n] = Leeln
i
is WSS iff the coefficients ¢; are uncorrelated with zero mean. In this case,
Rlm] = YaZelPim  §(w) =27 0%8(w - B,) lwl <= (10-182)
i i
where 2 = E(c}), w; = 2wk, + B, and |B;| < 7.

From (10-177) and the convolution theorem, it follows that if y[n] is the
output of a linear system with input x[], then

S,,(e™) =S (e’)H*(e™)
S,,(e™) = S, (e/)H(e™) (10-183)
S,,(e*) =S, (e)IH(e)|?
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(7
w
W

If A[n] is real, H*(e’*) = H(e ~*), In this case
S,,(z) = z)H(z)H(1/z) (10-184)
Example 10-33. The first difference
y[n] =x[n] —x[n - 1]

of a process x[n] can be Eunbldt.n,d aa the output of a linear system with input x{2]
and system function H(z) = 1 — z—!. Applying (10-184), we obtain

Syi(z) =S, () —z2"Y(1 - 2) =S _(2)2=2-2"Y
Ry [m]=—R, [m+ 1]+ 2R, [m] =R [m - 1]
If x[n] is white noise with § _(z) = g, then

S () = q(2 —e™ — e ) = 24(1 — cos w)

Example 10-34. The recursion equation
¥[n] —ayln — 1] = x[n]

specifies a linear system with input x[n] and system function H(z) = 1 /(1 — az ).
If S,,(z) = g, then (see Example 10-31)

q (1,
S = Ay olml = o
From (10-183) it follows that
E(Iy[n]) = R, [0] = o [ (&) H(e™) [Pdw  (10-185)

Using this identity, we shall show that the power spectrum of a process x[n] real
or complex is a positive function:

S,.(e) 20 (10-186)

Proof. We form an ideal bandpass filter with center frequency w, and band-
width 2A and apply (10-185). For small A,

1 wy+ A 5 A
2 - (4 Joy =, I Jarg
E{lstn)l®) = 57 [* Suule) do = S, (e)
and (10-186) results because E{y*[n]} = 0 and w,, is arbitrary.

SAMPLING. In many applications, the digital processes under consideration are
obtained by sampling various analog processes. We relate next the correspond-
ing correlations and spectra.

Given an analog process x(¢), we form the digital process

x[n] = x(nT)
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where 7" is a given constant. From this it follows that
nln] = n,(nT) Rlny,n:] = R, (n,T,n,T) (10-187)
where n,(¢) is the mean and R(t,,¢,) the autocorrelation of x(r). If x(r) is a
stationary process, then x[n] is also stationary with mean 5 = 7, and autocorre-
lation
R[m] = R, (mT)
From this it follows that the power spectrum of x[#] equals (Fig. 10-15)
= (a) + 27n

2 1
S(e*)= Y R, (mT)e '™ = T Y, S, T

me= —x fn=—mx
where S () is the power spectrum of x(¢). The above is 4 consequence of
Poisson’s sum formula [see (11A-1)].

(10-188)

Example 10-35. Suppose that x(¢) is a WSS process consisting of M exponentials
as in (10-130):

M M
X0)= Lo S(0) =27 L 05w - )

i=1 =1

where af = E(cf]. We shall determine the power spectrum S(e’“) of the process
x[n] = x(nT). From (10-188) it follows that

- M
S(e™) = Y Y oXw-w +2wn)

fl=—m = |

In the interval (—7, =), this consists of M lines:

M
S(e’®) = E(r,-zﬁ(w—,ﬂ‘) lw| < 7 1B;] <=

i=1

where g, are such that w; = 27n, + B,.

APPENDIX 10A
CONTINUITY, DIFFERENTIATION, INTEGRATION

In the earlier discussion, we routinely used various limiting operations involving
stochastic processes, with the tacit assumption that these operations hold for
every sample involved. This assumption is, in many cases, unnecessarily restric-
tive. To give some idea of the notion of limits ina more general case, we discuss
-next conditions for the existence of MS limits and we show that these conditions
can be phrased in terms of second-order moments (see also Sec. 8-4).

STOCHASTIC CONTINUITY. A process x(¢) is called MS continuous if
E{[x(r + &) =x()]*) — 0 (10A-1)
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THEOREM. We maintain that x(¢) is MS continuous if its autocorrelation is
continuous.
Proof. Clearly,

E{[x(t + &) = x(1)]*} =R(s + &,1 + &) — 2R(t + &,1) + R(1,1)

If, therefore, R(r,, ¢,) is continuous, then the right side tends to 0 as & — 0 and
(10A-1) results,

Note Suppose that (10A-1) holds for every ¢ in an interval /. From this it follows that
[see (10-1)] almost all samples of x(¢) will be continuous at a particular point of I It
does not follow, however, that these samples will be continuous for every point in /. We
mention as illustrations the Poisson process and the Wicner process. As we see from
(10-14) and (11-5), both: processes are MS continuous. However, the samples of the
Poisson process are discontinuous at the points t,, whereas almost all samples of the
Wiener process are continuous.

COROLLARY. If x(7) is MS continuous, then its mean is continuous

(1 +¢e) = n(t) e—0 (10A-2)
Proof. As we know
Ef[x(t + &) — x()]7) = EX{[x(¢ + &) — x(1)]}

Hence (10A-2) follows that (10A-1).
The above shows that

lim E(x(+ +£)] = E{me(: +¢)) (10A-3)

STOCHASTIC DIFFERENTIATION. A process x(¢) is MS differentiable if
x(1 + &) —x(r)
E £=()

x’(1) (10A-4)
in the MS sense, that is, if

E“M _ ,"(,)]"} —0 (10A-5)

e—)

THEOREM. The process x(¢) is MS differentiable if a*R(1,1,)/dt, dt, exists.

Proof. 1t suffices to show that (Cauchy criterion)
E{{x(r+e,)—x(l) x(t +&,) —x(1)

2
] } e 0 (10A-6)

We use this criterion because, unlike (10A-5), it does not involve the unknown

€ €2
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x’(r). Clearly,
E([x(r + &) — x(£)] [x(r + &) — x(1)]}
=R(t 4+ g,31 +8;) —R(t+e,t) = R(t,t + &,) + R(1,1)

The right side divided by &,e, tends to #°R(t,t)/drdt which, by assumption,
exists. Expanding the square in (10A-6), we conclude that its left side tends to

P*R(t,1) 7DW(I,:) a*R(1,t)
dr it = arot atar

COROLLARY. The above vyields
x(it:+ ) —x(2) .
—} - tim

) & Ei £ ]

SR =E{f‘i‘3 L{Mt

Note The autocorrelation of a Poisson process x(1) is discontinuous at the points t;
hence x'() does not exist at these points. However, as in the case of deterministic
signals, it is convenient to introduce random impulses and to interpret x'(1) as in (10-98).
STOCHASTIC INTEGRALS. A process x(¢) is MS integrable if the limit
b . "

f x(¢)di = lim Yx(1,) At (10A-7)

a Ar=00
exists in the MS sense.

THEOREM. The process x(¢) is MS integrable if

h
J IRy 1) | dy de, < (10A-8)
a “a

Proof. Using again the Cauchy criterion, we must show that

E{|Ex(:,) Ar,— ¥ox(r,) Aty
i k

} — . 5
Aty Aty =0
This follows if we expand the square and use the identity
E{ Tx(e) 84T x(1) At} = T R(1,,1,) Aty Aty
i k ik

because the right side tends to the integral of R(t,,t,) as Ar, and Az, tend to 0.

COROLLARY. From the above it follows that

i

2
fbx(z)dr } = f'bth(r,,rz)n!r,dr2 (10A-9)

as in (10-11).



APPENDIX 108 SHIFT OPERATORS AND STATIONARY PROCESSES 339

APPENDIX 10B
SHIFT OPERATORS AND STATIONARY PROCESSES

An SSS process can be generated by a succession of shifts Tx of a single RV x
where 7 is a one-to-one measure preserving transformation (mapping) of the
probability space . into itself. This difficult topic is of fundamental importance
in mathematics. In the following, we give a brief explanation of the underlying
concept, limiting the discussion to the discrete-time case.

A transformation T of . into itselfis a rule for assigning to each element
¢ of . another element of ~;

& =Ty (10B-1)
called the image of (. The images [, of all elements ¢, of a subset o/ of .~
form another subset

= Tt
of ./ called the image of o7,

We shall assume that the transformation T has the following properties.
P: It is one-to-one. This means that
if & #¢ then £ =
P,: It is measure preserving. This means that if % is an event, then its
image 27 is also an event and
P(7) = P(.2) (10B-2)
Suppose that x is an RV and that T is a transformation as above. The
expression Tx will mean another RV
y=Tx suchthat y(&)=x(¢) (10B-3)

where {; is the unique inverse of ;‘-i._This specifies y for every clement of .~
because (see P,) the set of elements £, equals ..
The expression z = T~ 'x will mean that x = 7'z. Thus

=T % iff a(¢) =x(._’,f)
We can define similarly 7%x = T(T'x) = Ty and
Try = T(T"-IX) = T—1(Tn+lx)

for any n positive or negative. =
From (10B-3) it follows that if, for some £, x(£,) < w, then y({;) = x({)) <
w. Hence the event {y < w} is the image of the event {x < w). This yields [see
(10B-2)]
Plx<w)=Plysw}] y=1Tx (10B-4)

for any w. We thus conclude that the RVs x and 7'x have the same distribution
F(x),
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Given an RV x and a transformation 7 as above, we form the random
process

Xy = X x, = T"x H=—o.. ., - (10B-3)

It follows from (10B-4) that the random variables x, so formed have the same
distribution. We can similarly show that their joint distributions of any order are
invariant to a shift of the origin. Hence the process x, so formed is SSS.

It can be shown that the converse is also true: Given an SSS process x,
we can find an RV x and a one-to-one measuring preserving transformation of
the space .~ into itself such that for all essential purposes, x, = 7"x. The
proof of this difficult result will not be given.

PROBLEMS

10-1. In the fair-com experiment, we define the process x(r) as follows: x(1) = sin ¢ if
heads shows, x(1) =2t if tails shows. (a) Find E{x(r)). (b) Find F(x, 1) for
t =025, r=05,and t = 1.

10-2. The process x(1) = ¢ is a family of exponentials depending on the RV a.
Express the mean n(#), the autocorrelation R(r,. t,), and the first-order density
SfCx, 1) of x(¢) in terms of the density f,(a) of a.

10-3. Suppose that x(r) is a Poisson process as in Fig. 10-3 such that E{x(9)) = 6.
(a) Find the mean and the variance of x(8). (b) Find P(x(2) < 3). (¢) Find
Plx(4) < 5[x(2) < 3).

10-4. The RV ¢ is uniform in the interval (0, 7). Find R (1, t,) if (@) x(2) = Ulr — c).
(b)Y x(t) = 6(¢r — c).

10-5, The RVs a and b are independent N(O;o) and p is the probability that the
process x(1) = a — bt crosses the ¢ axis in the interval (0, 7). Show that =p =
arctan T.

Hint: p = P{0 < a/b < T},

10-6. Show that if

R.(1),12) = q(1;)8(t, —15)
w1 = v(1)U(r) and w(0) = w(0) = 0, then

Efw=(1)} = f"'(l —7)a(7)dr

10-7. The process x(r) is real with autocorrelation R(r). (@) Show that

P(lx(e +7) = x(0)| = a) < 2[R(0) — R(=)]/a?
(b) Express P{Ix(++7) —x(1)] =a) in terms of the second-order density
JCx . x50 7) of x(e).
10-8. The process x(¢) is WSS and normal with E{x(1)} =0 and R(r) =4¢ .
(a) Find P{x(r) < 3). (b) Find E{[x(r + 1) — x(¢ — D).
10-9, Show that the process x(r) = cw(r) is WSS iff £fe) = 0 and w(z) = /= * 0,

10-10. The process x(r) is WSS and £(x(1)} = 0. Show that if z(¢) = x2(z), then C..(7)
= 2C; (7).
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10-12,

10-13.
10-14.

10-15.

10-16.

10-17.

10-18.

10-19.

10-20.
10-21.

10-22,

10-23.

10-24,
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Find Efp(0)). Ey (0}, and R, (+) if
yO(1) A+ dy(e) + 13y(1) = 26 + v(1) R,.(7) = 105(7)
Find P{y(¢) < 3)if w(1) is normal
Show that: If x(1) is a process with zero mean and autocorrelation [(¢,)f(e,hwie,
— £,)! then the process ¥(1)'= x(1) /f(¢) is WSS with autocorrelation wir). If x(t)
is white noise with autocorrelation g(r)), 8(r, — 15), then the process z(f) =
x(0)/ /g () is WSS white noise with autocorrelation 8(7).
Show that |R, ()] < 3[R, (0) + R, (0)],
Show that if the processes x(r),y(r) are WSS and E(|x(0) — w®0|°) = 0, then
Ry {r) = R ) = R (7).
Hint: Set z.= x(t + 1), w=x*1)) — y*(1) in (10-163),
Show that if x(¢) is a complex WSS process, then
E{Ix(t + 7) = x(1)[*} = 2Re[R(0) — R(7)]
Show that if ¢ is an RV with dA) = E{e’*7} and D(1) = D(2) =0, then the
process x(2) = cos(wi + ) is WSS. Find E{x(1)} and R (#)1if ¢ is uniform inthe
interval (=, 7).
Given a process x(¢) with orthogonal increments and such that x(0) = 0. show
that (@) R(¢,, 1) = R, 1) for ¢, < ¢,y and (b)if E(Ix(1,) — %1017} = glt; — ¢,
then the process ¥(1) = [x(r + &) — x(2)] /e is WSS and its autocorrelation is a
triangle with area g and base 2e.
Show that if R, (1. 1) =ql,)6(r, — ;) and y(1) = x(1)+ klt) then
Efx(1)y(e)) = h(0)q(r)
The process x(¢) is normal with 5, = 0 and R () = 4¢ . Find a memoryless
system  g(x) such that the first-order density f(y) of the resulting output
1) = g[x(1)] is uniform in the interval (6, 9).
Answer: g(x) = 3G(x/2) + 6.
Show that if x(2) is an SSS process and e is an RV independent of x(¢), then the
process y(r) = x{r — €) is SSS.
Show that if x(t) is a stationary process with derivative x’(r), then for a given
the RVs x(¢)and x'(r) are orthogonal and uncorrelated.

Given a normal process x(¢) with 1, =0 and R (r) = 4¢~ |, .we form the RVs
z=x(r + 1), w = x(r = 1), (a) find E{zw} and F{(z + w3, (b) find

fi(z)  Ple<i}  [fa(zw)

Show that if x(1) is normal with autoeorrelation R{7), then

a
P{x'(t) <a}) =G T“(ﬂ_)_]

Show that if x(¢) is a normal process with zero mean and y(¢) = sgnx(¢), then

)
=2 £ Hatom - vl e

where J,(x) is the Bessel function.
Hine: Expand the arcsine in (10-71) into a Fourier series.
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10-25.

10-26.

10-27.

10-28.

10-29.

10-30.

10-31.

10-32.

10-33.
10-34.
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Show that if x(¢) is a normal process with zero mean and y(r) = 7e“*"), then
)

7y == lcm{;’h(ﬂ)} R,(7) = I*exp[a*[R,(0) + R,(7)]]

Show that (a) if
y(1) = ax(ct) then R, (7)=a’R.(c7)
(6)if R(7) — 0 as r > «<and
2(1) = lim e x(&t) then R.(7) =¢gb(7) q=j R.(1)dr

b —
Show that if x(¢) is' white noise, h(t) = 0 outside the interval (0, T), and y(1) =
x(£)x h(¢) then R (1), ;) = O for [¢, — 15| > T.
Show that if

R (1, 15) = q(t)8(t, — t5) E{yl(:_)} =1(t)

and
(@)  ¥(1) = [h(t,@)x(a)da  then K1) = [h(t,a)q(a)da
0 0

(b) v'(1) +e(t)y(t) =x(r) then 7'(t) + 2c(0)i(t) = q(t)
Find B{y*(1)} (a) if R, (1) = 58(z) and
¥'(1) + 2v(r) = x(r) all ¢ (i)

(b) if (i) holds for ¢ > 0 only and y(1) = 0 for ¢ < 0.

Hint: Use (10-90).
The input to a linear system with A(f) = Ae “U(1) is a process x(r) with
R (7) = N&(7) applied at ¢ = 0 and disconnected at ¢ = 7. Find and sketch
Efy* ().

Hint: Use (10-90) with q(¢) = N for 0 < ¢ < T and 0 otherwise.
Show that if

10

s=f“mx(!)d1 then E{s%) =f_m(m — [7)R () d=

Find the mean and variance of s if E{x(¢)} = 8, R,(7) = 64 + 10"\
The process x(t) is WSS with R, (7) = 55(7) and

yO(e) -+ 2v(r) = x(1) Q)
Find ElyX (1), R, (1), 1), R, (¢, 1) (a) if (i) holds for all 1, () if (0) = 0 and
(i) holds for r > 0.
Find S(w) if (a) R(r) = ¢, (b) R(r) = ¢ " cos w7
Show that the power spectrum of an SSS process x(¢) equals

S(w) = fﬁ fs X x,G(x), x5 w) dyy dxy

where G(x;, x5; ) is the Fourier transform in the variable 7 of the second-order
density f(x, x,; 1) of x(1).
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10-35. Show that if ¥(r) = x(sr + &) — x(1 — a). then
R, (z)i=2R,(7) — R.(7 + 2a) — R /(7 — 2a) Sw) =48 (w)sin® aw
10-36. Using (10-122), show that
I
R(0) = R(7) = ?[R(U} =R(2"7)]
Hint:

1 —cos# = 2sin?

ra =

L, 8 1
> 2sin® s E(l — £0s20)

10-37. The process x(¢) is normal with zero mean and R (=) = Je “"l cos Br. Show that
it W(1) = x*(2); then C (7) = Pe™ (] + cos 2B7). Find § (@)

10-38. Show that if R(7) is the inverse Fourier transform of a function S{w) and
S(w) = 0, then, for any a,,

Y aaiR(m — ) =0
ik
Hint:
f S(w)}za,u"‘”“ dw >0
s >

10-39. Find R(7)'if (a) S(w) = L/1 + w®), (B) S(w) = 1 /{4 + w?).
10-40. Show that, for complex systems. (10-136) and (10-181) yield

S,,(s) = S..(H(H(=s%)  S,(2) = S, (2)H(z)H*(1/2*)
10-41. The process x(¢) is normal with zero mean. Show that if ¥(r) = x*(¢), then
Si(@) = 27RUMB (@) + 28 (w)= S (w)

Plot Sy (@) if S (w)is (@) ideal LP, (b) ideal BP.

10-42. The process x(¢) is WSS with E{x(1)) = S and R, [(7) = 25 + de "L 1f (1) =
2x(r) + 3x'(1), find m,, R ,(7), and §, (w).

10:43. The process x(t) is WSS and R, (7) = 55(r). (@) Find Efy*(1)} and §, (w) if
y/(£) + 3y(r) = x(1). (b) Find E{y*(1)) and R (¢,, ;) if y(¢) + 3y(1) = x(0)U(1).
Sketch the functions R, (2,¢,) and R, (t,,3).

10-44. Given a complex process x(¢) with autocorrelation R(7), show thatif [R(7))| = I,
then

R(r) = e w(r)  x(1) =el*y(t)
where w(z) is a periodic function with period =, and y(r) is an MS periodic
process with the same period.

10-45. Show that () E{x()x(r)} = 0, (b) x(¢) = —x(z).
10-46. (Srochastic resonance) The input to the system

iD= s
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is 2 WSS process x(1) with E{x*(1)} = 10. Find § () such that the average power
Ely*(1)) of the resulting output y(¢) is maximum,
Hint: |H(jo)| is maximum for o = V3.
10-47. Show that if R (1) = Ae’”™, then R, (7) = Be’*V for any. y(1).
Hine: Use (10-167).
10-48. Given a system H{w) with input x(¢) and output y(¢), show that (a) if x(r) is WSS
and R, (7) = &/*7, then

Ry (7) =eH(a) R, () =e"|H(a)l?
(B) if R, (1), 1) = e/“17F1) then
R, (ty,15) =/ "FPH(a) R, (4;1;) = " PRH(a) H*(B)
10-49. Show that if S, (#)S, (@) =0, then §, (o) = 0.
10-50. ‘Show that if x{n] is WSS and R, [1] = R [0), then R [m] = R [0] for every m.
10-51. Show that if Rlm] = E{x{n + mlx[n]), then
R[0]R[2] > 2R?*[1] — R?[0]

10-52. Given an RV w with density f(w) such that f(w) = 0'for |w| > , we form the
process x[n] = Ae!"™r. Show that § (w) = 274 f(w) for |w| < -

10-53. (a) Find E{y*(0)} if y(0) = y(0) = 0 and
y*(t) + Ty!(r) + 10y(¢) = x(¢) R (7) = 58(7)
(b) Find Ely*[n]} if y[= 1] = y{=2] = 0 -and
8y[n] — 6y[n — 1] + y[n — 2] = x[n] R [m] =58[m]
10-54. The process x[n] is WSS with R, [m] = 58[m] and
y[n] = 05y[n = 1] = x[#] (i)

Find E{y?*[n]), R Imy, m,) Ry [m,.m,] (a) if (i) holds for all n, (6)if y[—1] =0
and (i) holds for n = 0,
10:55. Show that (a) if R [m,, m,] = glm,18[m, — m,] and
N N
s= Y a,x[n] then E{s’}= Y alq[n]

n=0 n=0

(b) If R, (1, ¢:) = q(r,)5(1, —1,) and

s -=j:a(t)x(r)dr then E(s?) =fu"al(1)q(:)m



CHAPTER

11

BASIC
APPLICATIONS

11-1 RANDOM WALK, BROWNIAN MOTION,
AND THERMAL NOISE

We toss a fair coin every T seconds and after each toss we take instantly a step
of length s, to the right if heads shows, to the left if tails shows. The process
starts at ¢ = 0 and our location at time ¢ is a staircase function with discontinu-
ities at the points ¢ = nT (Fig. 11-1a). We have thus created a discrete-state
stochastic process x() whose samples x(t, £) depend on the particular sequence
of heads and tails. This process is called the random walk.

Suppose that at the first # tosses we observe k heads and n — k tails. In
this case, our walk consists of k steps to the right and n — k steps to the left.
Hence our position at time ¢ = aT is

x(nT) =ks —(n—k)s=ms m=2k-n

Thus x(nT') is an RV taking the values ms, where m equals n, or n = 2,..., or
—n. Furthermore,
m+tn

3 (11-1)

P{x(nT) =ms) = (2)% k=
This ‘is the probability of k heads in n tosses.
We note that x(n7T') can be written as a sum
x(nT) =% + -+ +x,
where x, equals the size of the ith step. Thus the RVs x; are independent
345
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x(f)4 Random walk w(r)4 Wiener process

;

(a) (&)
FIGURE 11-1

2

taking the values +s and Efx;} = 0, E(x}} = s%. From this it follows that

i

Ex(nT)} =0  E{x*aT)}=ns’ (11-2)

Large r. Aswe know, if # is large and k is in the \ﬁwa vicinity of np, then [see
(3-27)]

(") kquAk = 1 C-U.‘vnp):/l.-zprr
k V2mwnpg

From this and (11-1) it follows with p =g = 0.5 and m = 2k — n that

—m" /2n

P{x(nT) =ms) =

1
ynm/2 i
for m of the order of Vi . Hence

P{x(1) <ms) = G(m/n) T —T<t<ul (11-3)

where G(x) is the N(0, 1) distribution [see (3-34)].
Note that if n, < n, < n, < n,then the increments x(n, T) — x(n; T) and
x(n, T') — x(n, T) of x(¢) are independent.

The Wiener process. We shall now examine the limiting form of the random
walk as n — e or, equivalently, as T — 0. As we have shown

2

E{x*(6)} = ns’ = =

— t =nT
T
Hence, to obtain meaningful results, we shall assume that s tends to 0 as VT:
s*=al

The limit of x(¢).as T — 0 is then a continuous-state process (Fig. 11-1b)
w(t) = limx(t) T —0
known as the Wiener process.
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We shall show that the first-order density f(w. 1) of w(z) is normal with
zero mean and variance af:

1 :
1) = = w2 2 )
Ak Vemat (11-4)
Proof. If w =ms and = nT, then
m W/s W
i /T Vat

Inserting into (11-3), we conclude that

Plwle) = w) = G( ‘/:1 )

and (11-4) results.
We show next that the autocorrelation of wir) equals
R(t,,t;) = amin(t,1,) (11-5)

Indeed, if ¢, < {,, then the difference w(r,) — w(z,) is independent of wiz,).
Hence

E{[w(t3) — w(ty)]w(t,)} = E{[w(r;) — w(t)]) E{w(r,)}) =0
This yields

(53

. 1,s
E{w(t))w(t,)) = E{w?(1,)} = IT = al,
as in (11-5). The proof is similar if £, > t,.
Note finally that if 7, < t, <t; <1, then the increments wiry) — wii;)
and w(t,) — w(r,) of w(¢) are independent.

Generalized random walk. The random walk can be written as a sum
n
x(1) = ¥ cqU(t—kT) (n—1)T <t <nT (11-6)
k=1

where ¢, is a sequence of ii.d. RVs taking the values s and —s with equal
probability. In the generalized random walk, the RVs ¢, take the values s and
—5 with probability p and g respectively. In this case,

Bled = (p-a)s  Elel) =5 of = o
From this it follows that
E(x(t)) =nlp —q)s  Varx(1) = 4npgs® (11-7)

For large n, the process x(t) is nearly normal with

/) 4t 5
E(x(1)} = ?(p —q)s  Varx(t) = —pgs® (11-8)
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Brownian Motion

The term brownian motion is used to describe the movement of a particle in a
liquid, subjected to collisions and other forces. Macroscopically, the position
x(¢) of the particle can be modeled as a stochastic pracess satisfying a second-
order differential equation:

mx" (1) + fx'(t) +cx(t) = F(r) c>0 (11-9)
where F(r) is the collision force, m is the mass of the particle, [ is the
coefficient of friction, and ¢x(1).is an external force which we assume propor-
tional to x(¢r). On a macroscopic scale, the process F(¢) can be viewed as nommal
white noise with zero mean and power spectrum

Sp(w) = 2KTf (11-10)
where T is the absolute temperature of the medium and k = 1.37 x 102
Joule-degrees is the Boltzmann constant. We shall determine the statistical
properties of x(¢) for various cases.

Bound motion. We assume first that the restoring force ex(¢) is different from
0. For sufficiently large ¢, the position x(z) of the particle approaches a
stationary state with zero mean and power spectrum

2kTf

Sla)=——
(c —me?) + ffw*

(11-11)

To determine the statistical properties of x(¢), it suffices to find its autocorrela-
tion. We shall do so under the assumption that the roots of the equation
ms® + fs + ¢ = 0 are complex

B f T
Sia— —a = ash = —
12 ! 2m A m

Replacing b, ¢, and ¢ in Example 10-26b by f/m, ¢/m; and 2kTf/m*
respectively, we obtain

kT a
R ()= Te"“"'(cos BT + F sin BITI) (11-12)

Thus, for a specific ¢, x(t) is a normal RV with mean 0 and variance R (0) =
kT /e. Hence its density equals

C 2
filx) = \/ T o b (11-13)

The conditional density of x(¢) assuming x(t,) = X, is a normal curve with
mean ax, and variance P where (see Example 8-11)

_ Ry(n)
R.(0)

P=R(0)(1-a®) 7=1—1,
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FREE MOTION. We say that a particle is in free motion if the restoring force is
0. In this case. (11-9) yields

mx"(t) + fx'(t) =F(t) (11-14)

The solution of this equation is not a stationary process. We shall express its
properties in terms of the properties of the velocity v(¢) of the particle. With
v(1) = x'(¢), it follows from (11-17) that

mv*(t) + fv(t) = F(r) (11-15)
The steady state solution of this equation is a stationary process with
: 2kTf kT
S,(lu):m R (7) = ” @ inhem (11-16)

From the preceding, it follows that v(r) is a normal process with zero mean,
variance KT /m., and density

m

Fi(u)= 1‘/ K AR (11-17)

;
27 kT
The conditional density ‘'of v(z) assuming ¥(0) = v, i1s normal with mean
aty and variance P (see Example 8-11) where

R’(I) ~fim P kT ’) kT 1 =2f1/m
_R,.(O)_e : _F“_u‘ﬁ_( " )

m
In physics, (11-15) is called the Langevin equation, its solution the
Ornstein—Uhlenbeck process, and its spectrum lorenzian.
The position x(1) of the particle is the integral of its velocity:

a

x(1) =j"v(a;da (11-18)
0
From this and (10-11) it follows that
. L i kT i rt
e 2L = R A dg = — ,*flu—ﬂumd d
E(x*(1)) j;’j; JNa—B) dadp mfuf"z adp
Hence
2kT m m
Elx3(t))=—|t- =+ — "'/"') (11-19)
BH) =% ( 3T

Thus, the position of a particle in free motion is 4 nonstationary normal process
with zero mean and variance the right side of (11-19).
For t = m/f, (11-19) yields
2kT kT
E(x’(1)) = —t=2D* D*=— (11-20)
f f
The parameter D is the diffusion constant. This result will be presently
rederived.



350  STOCHASTIC PROCESSES

THE WIENER PROCESS. We now assume that the acceleration term mx"(1) of
a particle in free motion is small compared to the friction term fx‘(1); this is
the case if f = m/t. Neglecting the term mx"(t) in (11-14), we conclude that

1
fx!(r) = E(t) x(f)=?j;JF(cz)da

Because F(z) is white noise with spectrum 2kTf, it follows from (10-36) with
¥(t) = F(2)/f and (1) = 2kT/f that
2kT

f

Thus, x(¢) is a nonstationary normal process with density

= 2Dp?

(D) = et = ar
X\t = —FI=a o=
7

L
fx(l)("') = f—_-Z‘n'af it
We maintain that it is also a process with independent increments. Because it is
normal, it suffices to show that it is a process with orthogonal increments, that is
E{[x(25) — x(2,)] [x(2,) — x(15)]} =0 (11-21)
for t, <t, <ty < t,. This follows from the fact that x(¢,) — x(¢;) depends only
on the values of F(r) in the interval (r,, t;) and F(t) is white noise. Using this, we
shall show that
R.(t,,15) =amin(t,,t,) (11-22)
To do so, we observe from (11-21) that if ¢, < 1,, then
E{x(t;)x(1;)} = E{x(¢;)[x(1;) — x(t,) + x(t,)]} = E{x*(#,)} = at,

and (11-22) results. Thus the position of a particle in free motion with negligible
acceleration has the following properties:

It is normal with zero mean, variance ¢ and autocorrelation min(z, f,). It
is a process with independent increments.

A process with these properties is called the Wiener process. As we have
seen, it is the limiting form of the position of a particle in frec motion as  — =;
it is also the limiting form of the random walk process as n — =,

We note finally that the conditional density of x(r) assuming x(7,) = x, is
normal with mean ax, and variance P where (see Example 8-11)

Rx(r’rﬂ)
ﬂ=m=l P =R(1,1) —aR(t,ty) = al — at,
Hence
: 1 S
San(xIx(ty) = e~ G—xa) et (]1-23)

xU) - V2ma(t — rn)
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n. (0
R n,r) R
S,,_(w)=2kTR 5o (w)=2kTG FIGURE 11-2
Diffusion equations. The right side of (11-23) is a function depending on the

four parameters ¥, X, and {,. Denoting this function by w{x, x,;t,t,) we
conclude by repeated differentiation that

o o oy ks
= > = A (11-24
at ax* at ax; FLlen)

where D? = a /2. These equations are called diffision equations. They are
reestablished in Sec. 16-4 in the context of Markoff processes.

Thermal noise

Thermal noise is the distribution of voltages and currents in a network due to
the thermal electron agitation. In the following, we discuss the statistical
properties of thermal noise ignoring the underlying physics. The analysis is
based on a model consisting of noiseless reactive elements and noisy resistors.

A noisy resistor is modeled by a noiseless resistor R in series with a
voltage source n () or in parallel with a current source n(r) = n(t)/R as in
Fig. 11-2. It is assumed that n (1) is a normal process with zero mean and flat
spectrum

S" ( w)

S, (w) = 2kTR 5, (0) = == = 2kTG (11-25)
where % is the Boltzmann constant, T is the absolute temperature of the
resistor, and G = 1/R is its conductance. Furthermore, the noise¢ sources of the
various network resistors are mutually independent processes. Note the similar-
ity between the spectrum (11-25) of thermal noise and the spectrum (11-10) of
the collision forces in brownian motion.

Using the above and the properties of linear systems, we shall derive the
spectral properties of gencral network responses starting with an example.

Example 11-1, The circuit of Fig. 11-3 consists of a resistor R and a capacitor C.
We shall determine the spectrum of the voltage ¥(£) across the capacitor due 1o
thermal noise.

The voltage v(¢) can be considered as the output of a system with input the
noise voltage n (1) and system function

1
H($) = T35 Res
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a.(1) Z(s)
e -L f i z(n R.(7)
..|_ a(1) }
; 0 T 0 =
FIGURE 11-3
Applying (10-136), we obtain
2kTR

5,(@) =S, (@) |H(o)* = 1+ o?R2C2
(11-26)

i = L

The following consequences are illustrations of Nyquist's theorem to be
discussed presently: We denote by Z(s) the impedance across the terminals a, b
and by z(?) its inverse transform

_R_ z2(t) = le—uRCU(,)

1+ RCs C

The function z(t) is the voltage across C due to an impulse current 8(¢) (Fig.
11-3). Comparing with (11-26), we obtain

Z(s) =

S‘.‘.(m) = 2kT ReZ(jw) RcZ(iw) = m

R,(r) =kTz(r) +>0  R,(0)=kTz(0")
E{v* R,(0 2 . lim jwZ(j
(1 = e — =

{¥*(1)) =R(0) = & ¢ = bm jo (jo)
Given a passive, reciprocal network, we denote by v(r) the voltage across
two arbitrary terminals a, b and by Z(s) the impedance from a to b (Fig. 11-4).

NYQUIST THEOREM. The power spectrum of v(1) equals

S.(w) = 2kT ReZ( jw) (11-27)
Proof. We shall assume that there is only one resistor in the network. The

general case can be established similarly if we use the independence of the
‘noise sources. The resistor is represented by a noiseless resistor in parallel with

S [T e
v(e Z(s)  S.(w)=2kTRe Z(jw
T |— =

FIGURE 11-4



11-1 RANDOM WALK, BROWNIAN MOTION, AND THERMAL NOISE 353

T L T,

() ®)
S, (w) =287 H@ =Y Rezgiuy = TN

FIGURE 11-5

a current source n,(7) and the remaining network contains only reactive ele-
ments (Fig. 11-5a). Thus v(1) is the output of a system with input n,(t) and
system function H(w). From the reciprocity theorem it follows that H(w) =
Vw)/I(w) where I(w) is the amplitude of a sine wave from a to b (Fig. 11-5b)
and V(w) is the amplitude of the voltage across R. The input power equals
[[(w)]* Re|Z(jw) and the power delivered to the resistance equals |F(w)|*/R.
‘Since the connecting network is lossless by assumption, we conclude that

1% 2
[I(w)|* Re Z(jw) = h—(;il
Hence
V(w)? '
[H(w))? = T RReZ(jw)

and (11-27) results because

. 2kT
S.(0) = S, (@IHW)E  S,(0) = =

COROLLARY 1. The autocorrelation of v(t) equals
R (7) = kTz(7) >0 (11-28)

where z(r) is the inverse transform of 2(s).

Proof. Since Z(—jw) = Z*(jw), it follows from (11-27) that
S (@) = kT[Z(jw) + Z(—jw)]

and (11-28) results because the inverse of Z( —jw) equals z(—1) and z(—1) =0
for ¢ > 0.

COROLLARY 2. The average power of v(1) equals
kT 1
E{v*(1)) = < where i lim joZ(jw) (11-29)

| where C is the input capacity.
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Proof: As we know (initial value theorem)

z(07) = lim sZ(s) 5 = ®
and (11-29) follows from (11-28) because

Efv3(1)} = R,(0) = kTz(0")

Currents. From Thévenin's theorem it follows that, terminally, a noisy network
is equivalent to a noiseless network with impedance Z(s) in series with a voltage
source v(¢), The power spectrum S, (@) of ¥(¢) is the right side of (11-27). This
leads to the following version of Nyguist's theorem:

The power spectrum of the short-circuit current i(¢) from a to b due to
thermal noise equals

1
S/(w) = 2kT Re Y(jw) Y{5) = 20

3 (11-30)

Proof. From Thévenin’s theorem it follows that
5 2kT ReZ(jw)
S{w) =S () Y(jw)I" = ————5—

|Z(jw)l|

and (11-30) results.
The current version of the corollaries is left as an exercise.

11-2 POISSON POINTS AND SHOT NOISE

Given a set of Poisson points t, and a fixed point f,, we form the RV
z = t, — t, where t, is the first random point to the right of r, (Fig. 11-6). We
shall show that z has an exponential distribution:

filz) =he** FE(z)=1-=e** z>0 (11-31)
Proof. For a given z > 0, the function F.(z) equals the probability of the event

{z < z). This event occurs if t; < ¢, + z, that is, if there is at least one random
point in the interval (¢, t, + z). Hence

Fi(z) = Plz < 2} = P{n(ty, ty +2) > 0} = 1 — P{n(tg, 1, + 2) =0}

and (11-31) results because the probability that there are no points in the
interval (1, ¢, + z) equals e *%.

- X s
Al‘ E—x. X —»
w
Ay >
7Y a2 1 —— x \d
Ly 4y y 2 ti-y (" i

FIGURE I1-6
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wn

We can show similarly that if w = ¢, — t_, is the distance from 1, to the
first point t_, to the left of ¢, then

filw) = Ae 2 F(w)=1=¢* w> 0 (11-32)
We shall now show that the distance'x, = t, — 1, from 1, the nth random
point t, to the right of ¢; (Fig. 11-6) has an Erlang distribution;
X!

falx) = mﬁ"' tasds (11-33)

Proof. The event {x, <x} occurs if there are at least n points in the interval

=

(t, 1o + x). Henee

n=1 (Ax &
El(x) =Pfx;, <x} =1—P{n(tg,1,+x) <n)=1- ¥ ‘ k‘l)'

K=l

o M

Differentiating, we obtain (11-33).

Distance between random points. We show next that the distance

X=X, =X, =t, -t

between two consecutive points t, , and t, has an exponential distribution:

fix) = Ae ™ (11-34)

Proof. From (11-33) and (5-70) it follows that the moment function of x,, equals
| AY
?,(s) =(A—_s)i (11-35)
Furthermore, the RVs x and x,,_, are independent and x,, = x + x,,_;. Hence,
if ® (s) is the moment function of x, then

0"(5) = mx( S)mn - f(s)
Comparing with (11-35), we ebtain ®,(s) = A /(A — 5) and (11-34) results.

An apparent paradox. We should stress that the notion of the “distance x
between two consecutive points of a point process” is ambiguous. In Fig. 11-6,
we interpreted x as the distance between t, , and t, where t, was the ath
random point to the right of some fived point ¢,. This interpretation led to the
conclusion that the density of x is an exponential as in (11-34). The same density
is obtained if we interpret x as the distance between consecutive points to the
left of ¢,. Suppose, however, that x is interpreted as follows:

Given a fixed point ¢,, we denote by t; and t, the random points nearest (o
t, onits left and right respectively (Fig. 11-7a). We maintain that the density of
the distance x = t, — t, between these two points equals

f(x) = A’xe ** (11-36)
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FIGURE 11-7

Indeed the RVs
X, =t,—t and X, =t —t,

are independent with exponential density as in (11-31); furthermore, x = x, + x,.
This yields (11-36) because the convolution of two exponentials is the density in
(11-36).

Thus, although x is again the “‘distance between two consecutive points,”
its density is not an exponential. This apparent paradox is a consequence of the
ambiguity in the specification of the identity of random points. Suppose, for
example, that we identify the points t, by their order i, where the count starts
from some fixed point ¢,, and we observe that in one particular realization of
the point process; the point t;, defined as above, equals t,,. In other realizations
of the process, the RVs t, might equal some other point in this identification
(Fig. 11-7b). The same argument shows that the point t, does not coincide with
the ordered point t,, , ; for all realizations. Hence we should not expect that the
RV x =t, = t, has the same density as the RV t,,, — t

n*

CONSTRUCTIVE DEFINITION. Given a sequence w, of positive Li.d. (indepen-
dent, identically distributed) RVs with density

Flw) = ae™* (11-37)
we form a set of points t,, asin Fig. 11-8a where r = 0 is an arbitrary origin and
(11-38)

t, =Wy Wy b bW

n

We maintain that the points so formed are Poisson distributed with param-
eter A,
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(@) (B)

FIGURE 11-8

Proof. From the independence of the RVs w,, it follows that the RVs t, and
w, . are independent, the density f,(¢) of t, is given by (11-33)
A

1) = —————p=1p=M 3

ful1) =1 ¢ (11-39)
and the joint density of t, and w, ., equals the product f,(t)f(w). If t, < + and
t,+1 =t, +W, > 7 then there are exactly n points in the interval (0, 7). As
we see from Fig. 11-8b, the probability of this event equals

n

o= A
[ Aetn =2 test
( (n=1)!

L ASE

n /2 n
_ 'e—,\(rf.—) & Pl AT gy =L,-M(AT)
0 (n=1)1 !

Thus the points t,, so constructed have property £,. We can show similarly that
they have also property P,.

POISSON POINTS REDEFINED. Poisson points are realistic models for a large
class of point processes: photon count, electron emission, telephone calls, data
communication, visits to a doctor, arrivals at a park. The reason is that in these
and other applications, the properties of the underlying points can be derived
from certain general conditions that lead to Poisson distributions. As we show
next, these conditions can be stated in a variety of forms that are equivalent to
the two conditions used in Séc. 3-4 to specify random Poisson points (see page
59).

L If we place at random N points in an interval of length T where N = 1,
‘then the resulting point process is nearly Poisson with parameter N/T. This
is ‘exact in the limit as N and T tend to = [see (3-47)].

ILIf the distances w, between two consecutive points t, , and t, of a point
process are independent and exponentially distributed, as in (11-37), then
this process is Poisson.

The ‘above can be phrased in an equivalent form: If the distance w
from an arbitrary point ¢, to the next point of a point process is an RV
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whose density does not depend on the choice of t,, then the process is
Poisson. The reason for this equivalence is that this assumption leads to the
conclusion that
flwlw = 15) = flw — t,) (11-40)
and' the only function satisfying (11-40) is an exponential (sece Example
7-10). In queueing theory, the above is called the Markoff or memoryless
property.
111. If the number of points n(t, 7 + df) in an interval (¢, + dt) is such that:
(a) P{n(z,t + dt) = 1} is of the order of dt;
(b) P{n(t,t + dt) > 1) is of order higher than dr;
(¢) the above probabilities do not depend on the state of the point process
outside the interval (f, 1 + dt);
then the process is Poisson (see Sec. 16-4).
IV. Suppose, finally, that:
(a) P{n(a, b) = k) depends only on k and on the length of the interval
(a, b);
(b) if the intervals (a,, b;) are nonoverlapping, then the RVs n(a,, b,) are
independent;
(¢) Plnla, b) = =} = 0.
These conditions lead again to the conclusion that the probability
p(7) of having k points in any interval of length 7 equals

pu(7) = e~ (Ar)* /K1 (11-41)
The proof is omitted.

Linear interpolation. The process
x(@=u =€, <<t (11-42)

of Fig. 11-9 consists of straight line segments of slope 1 between two consecutive
random points t, and t, ;. For a specific ¢, x(7) equals the distancew =¢ = t,,
from ¢ to the nearest point t, to the left of ; hence the first-order distribution
of x(¢) is exponential as in (11-32). From this it follows that

1 2
E{X(I)} = I‘ E{XZ(I‘)] = ? (11-43)
) Xt +7)
£ 4 W & |
t, ' t (2

FIGURE 11-9
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THEOREM. The autocovariance of x(¢) equals
1
c(7)i= F“ + Al7] el (11-44)

Proof. We denote by t,, and t, the random points to the left of the points 1 + 7
and r respectively. Suppose first, that t,, = t,: in thiscase x(t + 7) = ¢ + + —
and x(t) = r — t,,. Hence [see (11-42))

“
% 7
W

C(7) =E{(r+7—t,)(t — t,)) = E{(¢r = t,)%} + 7E{t —it,) = -

Siippose, next, that t,, # t :in this case

1

C(r) = E{(t+7-t,)(r =)} = Elt + 7 = t,}E{r —t,) = —
Clearly, t,, = t, if there are no rdndom points in the interval (¢ + =, t); hence
Plt,=t)=c¢ A . Similarly, t,, # t, if there is .lt least one random point in the

intcl’val (l + 7,¢); hence P{t, = t,) = 1 — ¢ *". And since [see (4-48)]

R(7) = E{x(¢ + 7)x(1)]t,, = G} P{t,, = 1,}
+ E{x(t + 7)x(2)lt, # t,)Plt, #t,]

i

we conclude that
.

2 T _ 1 "
R(z) = (F + :)e"“ + F(] — g\

for 7 > 0. Subtracting 1/A%, we obtain (11-44).

Shot Noise

Given a set of Poisson points t; with average density A and a real function hie),
we form the sum

s(t) = L h(r—1t) (11-45)

This sum is an SSS process known as shot noise. In the following, we discuss its
second order properties. The general statistics are developed in Sec. 16-3.

From the definition it follows that s(r) can be represented as the output of
a linear system (Fig. 11-10) with impulse response A(z) and input the Poisson
impulses

2(t) = Y8(r —t;) (11-46)
i
This representation agrees with the generation of shot noise in physical prob-

lems: The process s(z) is the output of a dynamie system activated by a sequence
of impulses (particle emissions, for example) occurring at the random times t,.
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As we know, . = A; hence

E{s(1)) =:\fih(r)dr = AH(0) (11-47)
Furthermore, since (see Example 10-22)
8. () =27A%5(w) + A (11-48)
it follows from (10-136) that
S,(@) = 2mAH?*(0)3(w) + AlH(w)[* (11-49)
because |H(w)|*8(w) = H2(0)5(w). The inverse of the above yields
R, (7) = XH?(0) + Ap(7)  C,(7) = Ap(7) (11-50)

Campbell’s theorem. The mean m, and variance o of the shot-noise process
s(r) equal

1,3=,\[_’ h(t)de o2 = Ap(0) =Af K1) dt (11-51)

Proof. It follows from (11-50) because o = C,(0).

Example 11-2. If

W) = e U(1)  H(w) =

then

™~

>~ g‘l»

A
s = o Ty

2

27X A e
S,,(m) = 5 a(m) i1 m C_“(r) = 56’
Example 11-3  Electron transit. Suppose that 4(r) is a triangle as in Fig. 11-11a.
Since

23

j;rkrdrskTTZ IT“-’dt—
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Su(w)
A(r)
kT |-—
1 i~
0 iz 1 0 2 i
T
(a) (b) FIGURE 11-11
it follows from (11-51) that
AkT? L AKAT?
A= P
In this case
T L 2ksinwT /2
H(w) :f kte 1wt dp = e—iwT /2 = / = e’/m’,_
0 Jw© Jw

Inserting into (11-49), we obtain (Fig. 11-11b).

2

A
8(w) + —(2 — 2cos wT + w’T? — 20T sin wT)
w

S (w) = 2mn;

Generalized Poisson process and shot noise. Given a set of Poisson points t,
with average density A, we form the process

n(e)

x(t) = Xel(r—t)) = L (11-52)
i i=1

where c; is a sequence of i.i.d. RVs independent of the points t; with mean 7,
and variance ;2. Thus x(¢) is a staircase function as in Fig, 10-3 with jumps at
the points ¢, equal to ¢,. The process n(z) is the number of Poisson points in the
interval (0, ¢); hence E{n(z)} = At and E{n*(¢)} = A? + At. For a specific ¢, x(r)
is @ sum as in (8-46). From this it follows that

E(x(1)) = n,E{n(1)) = 7.At
E{x3(1)} = n2E{n*(1)) + a2E{n(1)) = n2(At + N1?) + alAt
Proceeding as in Example 10-5, we obtain
Cexlty,12) = (n? + o2 )Amin(t,, ;) (11-54)
We next form the impulse train

z(t) = x'(t) = Zc,—ﬁ(r -t) (11-55)

(11-53)
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From (11-54) it follows as in (10-100) that
d
Efz(1)} = EE(X(I)} =n.A (11-56)

#C (115 13)

= (52 3 a2)Aé(~ (11-5
i (nZ + a2)Ad(7) 7)

C..(ty, ) =

where 7 = 1, — t;. Convolving z(¢) with a function h(r), we obtain the general-
ized shot noise

s(r)=Ec,h(r—t,)zz(t)ssh(r) (11-58)
This yields '
E{s(1)) = E{z(t)) «h(r) = n{.Af:h(:) dr (11-59)
Colr) = C..(n)xh(7)*h{ —7) = (mf + a*)Ap(z)  (11-60)
Vars(e) = C,,(0) = (m2 + af),\j;hl(:) di (11-61)

The above is the extension of Campbell’s theorem to a shot-noise process with
random coefficients.

11-3 MODULATIONT

Given two real jointly WSS processes a(r) and b(r) with zero mean and a
constant w,, we form the process

x(1) = a(1)cos wyt — b(t)sin @t
= r(t)cos[wyt + o(1)] (11-62)
where

b
() = ya’(1) + b (1) tanq:(f)=%

This process is called modulated with amplitude modulation r(t) and phasé
modulation ¢(t).
We shall show that x(¢) is WSS iff the processes a(¢) and b(r) are such that

Ruu(7) = Ry (7) Ra(7) = =Ry (1) (11-63)

Proof. Clearly,
E{x(¢)) = Efa(t)}cos oyt — E{b(t)}sin wst =0

TA. Papoulis: *Random Modulation: A Review,” TEEE Transactions on Acoustics, Speech, and
Signal Processing, vol, ASSP-31, 1983.
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Furthermore,
x(# + 7)x(r) = [a(z + 7)cos wy(r + ) — (1 + 7)cos wylt +71)]
% [a(t)cos wyr — b(1)sin w,t]

Multiplying, taking expected values, and using appropriate trigonometric identi-
ties, we obtain

2E{x(t + 7)x(1)} = [R,,(7) + Ryp(7)]cos w,r + [R,,(7) — R,,(7)]sin wyr
+[Rau(7) = Ryp7)]cos wy(2f + 7)
=[Ryp(7) + Ry, (7)]sin wy(2¢ +7) (11-64)
If (11-63):is true, then the above yields
R, (7) = R, (7)cos wyr + R,,(7)sin w,r (11-65)

Conversely, if x(£) is WSS, then the second and third lines in (11-64) must be
independent of r. This is possible only if (11-63) is true.
We introduce the “dual” process

¥(2) = b(t)cos wgt + a(t)sin w,t (11-66)

This process is also WSS and
R, (7) =R (1) R, (7) = =R, A7) (11-67)
R, (7) = R,;(7)cos wyr — R, (7)sin wyr (11-68)

The above follows from (11-64) if we change one or both factors of the product
x(r + 7)x(r) with y(r + =) or y(1).

Complex representation. We introduce the processes
w(t) = a(t) +jb(r) = v(2)e/s

(11-69)

z(t) = x(1) +jy(t) =wlr)e
Thus

x(1) = Rez(1) = Re[w(r)e] (11-70)
and

a(t) +jb(t) = w(r) = z(1)e ot
This yields

a(r) = x(1)cos wgt + y(1)sin wyt A

b(1) = y(1)cos wyt — x(¢)sin @yt

Correlations and spectra. The autocorrelation of the complex process wit)
equals

R, (7) = E{[alt + 7) + jb(t +7)][alr) = jb(c)])
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Expanding and using (11-63), we obtain

Ryu(7) =2R,,(7) — 2iR,5(7) (11-72)
Similarly,
R_.(7) = 2R .(7) — 2iR,(7) (11-73)
We note, further, that
R..(7) =e“"R, . (7) (11-74)

General
S (w)

\/ 0 ax) i
B, (0) @
Single sideband
b(1)=a(i)
S (w)
— 0 ay ;
(b)
Rice’s representation i
yN=x(5)
Sunlw)
S lw)
Si(w)
!
—an) ( ay oy en L
}'SM(W‘
(c)

FIGURE 11-12
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From the above it follows that
Spnl@) = 28, (@) = 2j8,,(w)

e
S.(w) =28, () — 2j5, (w) (11-75)

S (w)=38, (e —a,) (11-76)

The functions §, (w) and §__(w) are redl and positive. Furthermore [see
(11-67)]

Roli=z} = =R, (—=z)'= =R (%)

This leads to the conclusion that the function —jS, (w) = B, () is real and
(Fig. 11-12a)

IB“_(wH <3S, (w) B . (-w)= -8B _(aw) (L1-77)

And since S, (—w) = §,,(w), we conclude from the second equation in (11-75)
that

48, (@) =5..(v) +S8.(—w)

-78
4jS, (@) = 8..(~w) — S..() UE-72)

Single sideband If b{t) = a(¢) is the Hilbert transform of a(z), then [see
(10-147)] the constraint (11-63) is satisfied and the first equation in (11-75) yields

Supl@) =45, (w)U(w)
(Fig. 11-12b) because
Suci( w) = jsun(m) SEn w

The resulting spectra arc shown in Fig. 11-126. We note, in particular, that
S lw) = 0tor |o| <oy

RICE'S REPRESENTATION. In (11-62) we assumed that the carrier frequency wg
and the processes a(#) and b{r) were given. We now consider the converse
problem: Given a WSS process x(¢) with zero mean, find a constant @ and two
processes a(z) and b(r) such that x(¢) can be written in the form (11-62). To do
s0, it suffices to find the constant w, and the dual process y(1) [see (1 1-71)]. This
shows that the representation of x(r) in the form (11-62) is not unique because,
not only w, is arbitrary, but also the process ¥(1) can be chosen arbitrarily
subject only to the constraint (11-67). The question then arises whether, among
all possible representations of x(¢), there is one that is optimum. The answer
depends, of course, on the optimality criterion. As we shall presently explain, if
(1) equals the Hilbert transform (1) of x(r), then (11-62) is optimum in the
sense of minimizing the ayerage rate of variation of the envelope of x(¢t).

Hilbert transforms. As we know [see (10-147)]
Riil7) = ReiT) R(7) = —R;(7) (11-79)
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FIGURE 11-13

We can, therefore, use x(¢) to form the processes

2(r) = x(1) +yx(1) = w(r)e’

, (11-80)
w(t) = i(t) +ja(t) =z(t)e~ "
as in (11-69) where now(Fig. 11-12¢)
y(r) =x(¢)  a(z) =i(z)  b(r) = a(s)
Inserting into.(11-62), we obtain
x(t) = i(r)cos wot — q(2)sin wgt (11-81)

This is known as Rice’s representation. The process i(f) is called the inphase
component and the process q(r) the quadrature component of x(t). Their
realization is shown in Fig. 11-13 [see (11-71)]. These processes depend, not only
on x(r), but also on the choice of the carrier frequency w;.

From (10-136) and (11-75) it follows that

S..(w) =45, (0)U(w) (11-82)

Bandpass processes. A process x() is called bandpass (Fig. 11-12¢) if its
spectrum S, (w) is 0 outside an interval (w;, ®,). It is called narrowband or
quasimonochromatic if its bandwidth w, — w, is small compared with the center
frequency. It is called monochromatic if S, (w) is an impulse function. The
process a cos wyt + bsin wyt is monochromatic.

The representations (11-62) or (11-81) hold for an arbitrary x(¢). However,
they are useful mainly if x(r) is bandpass. In this case, the complex envelope
w(r) and the processes i(r) and q(z) are low-pass because

Sww(w) = S:z(w + ")0)
Si(@) = 8,5(0) = 1[Syu(@) +5,.(-0)]

We shall show that if the process x(z) is bandpass and w; + @, = 2w, then the
inphase component (1) and the quadrature component g(¢) can be obtained as
responses of the system of Fig. 11-14a where the LP filters are ideal with cutoff

(11-83)
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2 08 il Demodulation

wir)=i(rn)+jq(r)

H(w)4 LP
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s Jal
________ -~
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wy=w, yO=%() q=i()
(c)
FIGURE 11-14

frequency w, such that

W, — Wy < W, W) —wy > —w, (11-84)

Proof. It suffices to show that (linearity) the response of the system of Fig.
11-14b equals w(z). Clearly,

2x(r) = z(1) +z*(1)  w*(1) =z*(1)e/"
Hence
2x( 1) e 720 = w(t) + w*(1)e 20

The spectra of the iprocesses w(z) and w*(r)e /*“o' equal S, (w) and
S,{—w — 2w,) respectively. Under the stated assumptions, the first is in the
band of the LP filter H(w) and the second outside the band. Therefore, the
response of the filter equals w(r).

We note, finally, that if w, < @, then §,, (@) = 0 for w < 0. In this case,

q(#) is the Hilbert transform of i(¢). Since w, — @, < 2w,, this is possible only
if w, < 3w,. In Fig. 11-14¢, we show the corresponding spectra for w, = w;:

Optimum envelope. We are given an arbitrary process x(z) and we wish to
determine a constant w, and a process y(r) so that, in the resulting representa-
tion (11-62), the complex envelope w() of x(z) is smooth in the sense of
minimizing £(|w'(1)|*). As we know, the power spectrum of w'(r) equals

w8, (@) = @*S..(0 + ;)
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Qur problem, therefore, is to minimize the integralt
3 = 2 _
M = 2wE{lw' () [’} = f (@ — wgy)”S..(w) dw (11-85)
subject to the constraint that 8, (w) is specified.

THEOREM. Rice’s representation (11-81) is optimum and the optimum carrier
frequency w, is the center of gravity @, of S, (w)U(w).

Proof. Suppose, first, that S, (@) is specified. In this case, M depends only on
w,. Differentiating the right side of (11-85) with respect to w,, we conclude that
M is minimum if w, equals the center of gravity

! f:ccuSu(w)dw : j:wB‘.y(w)dm "
Lfor= = = = ¥
[ Sel@)do  [5.(0)do

of §,.(w). The second equality above follows from (11-75) and (11-77). Inserting
(11-86) into (11-85), we obtain

M= f:(ml —a)SL{w)do = 2[_2(«;2 — 32)S,.(0) do (11-87)

We wish now to choose §..(w) so as to minimize M. Since §, (w) is given,
M is minimum if @, is maximum. As we see from (11-86), this is the case if
|B, ()| =S, (w)because |B, (w)| < S, (w). We thus conclude that —jS, (w)
= §. (w)sgn @ and (11-75) yields

S.(w) = 45, (0)U(w)

Instantaneous frequency. With ¢(t) as in (11-62), the process
w, (1) = oy + ¢'(t) (11-88)
is called the instantaneous frequency of x(z). Since

zZ= rei(wnr+-p) =x +jy

we have

2'z* = e’ + jriw; = (x' +jy)(x — jy) (11-89)

fL. _Maudul: “Complex Representation of Optical Fields in (Coherence Theory,” Journal of the
Optical Society of America, vol. 57, 1967. See also N. M. Blachman: Noise and lts Effect on
Communication, Krieger Publishing Comp Malabar, FL, 1982.
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This yields E(rr’} = 0 and

1 =
Efrw,) = T.f ©S. () dw (11-90)

because the cross-power spectrum of z/ and z equals JoS, (w).

The instantancous frequency of a process x(1) is not a uniquely defined
process because the dual process y(r) is not unique. In Rice’s representation
y = X, hence

W= ey ey (11-91)

In this case [see (11-82) and (11-86)] the optimum carrier frequency @, equals
the weighted average of w;:

E{rzml-}

E{r?}

Wy =

Frequency Modulation
The process

x(t) = cos[wyt + Ap(t) + @y] (1) = f'c(a) da  (11-92)

0
is FM with instantaneous frequency , + Ac(¢) and modulation index A. The
corresponding complex processes equal
w(t) = e/t 2(1) = w(r)e/ = ten (11-93)

We shall study their spectral properties.

THEOREM. If the process ¢(¢) is SSS and the RV ¢, is independent of c(1) and
such that

Efe’®) = E{e#1) = 0 (11-94)
then the process x(¢) is WSS with zero mean. Furthermore,
R.(7) =3ReR..(7)

A (11-95)
R_.(7) =R, (r)e™ ™ R, (7)=E{w(7))

Proof. From (11-94) it follows that E{x(1)} = 0 because
E{z(1)} = E{e!lea AeOlEfeion) =
Furthermore,
E{z(t 4 7)z(it)} = Efelleit+nraetsnitdeiy Bl o€} = ()

E{z(t + 7)z*(1)} = e"""'E{exp[fAj;lﬂc(a} da]} =e/MoElw(1)}
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The last equality is a consequence of the stationarity of the process ¢(r). Since
2x(tr) = z(¢) + z*(¢), we conclude from the above that

4E(x(t +7)x(1)) = R..(7) + R..(~7)

and (11-95) results because R,.(—7) = R&(7).
Definitions. A process x(1) is phase modulated if the statistics of ¢(1) are
known. In this case, its autocorrelation can simply be found because

E{w(1)) = E(e™) = &,(A,1) (11-96)

where @,(A, ) is the characteristic function of (7).

A process x(1) is frequency modulated if the statistics of (1) are known.
To determine $_(A, ), we must now find the statistics of the integral of c(r).
However, in general this is not simple. The normal case is an exception because
then @ (A, 1) can be expressed in terms of the mean and variance of (1) and,
as we know [see (10-143)]

E(e()) = [[E(e(a)} da = n.1
(11-97)

E{e?(1)) = 2]:R¢(a)(r — a) da

For the determination of the power spectrum S, (@) of x(t), we must find
the function Q)w(/\,z) and its Fourier transform. In general, this is difficult.
However, as the next theorem shows, if A is large, then S (w) can be expressed
directly in terms of the density f.(c) of e{t).

WOODWARD’S THEOREM. If the process c(t) is continuous and its density f.(c)
is bounded; then for large A:

Se(w) = %[fc[w ;m”) +f,( _m; ‘"”)] (11-98)

Proof. If 7 is sufficiently small, then ¢(r) = ¢(0), and
{
e(t) = j;'c(a) da=c(0)t |t] <7y (11-99)

Inserting into (11-96), we obtain

E(w(7)} = E(e™®) = @, (A7) |7l <7y (11-100)

1P. M. Woodward: “The Spectrum of Random Frequency Modulation,” Telecomynunications
Research, Great Malvern, Wores., England, Mema 666, 1952.
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where
B (n) = Efe/r<)
is the characteristic function of e(r). From this and (11-95) it follows that
R..(7) =& (ar)ef" |1 <7, (11-101)

If A is sufficiently large, then ®.(A7) = 0 for |7| > 7, because @.(1) — 0 as
w — . Hence (11-101) is Jsausfacmn approximation for every = in the region
where @.(A7) takes significant values. Transforming both sides of (11-101) and
using the inversion formula

I =
fle) = o [ @fp)e e dp

we obtain

= X 27
$.(w) = [ @(ar)eve s ar = =T

0 — @y
: )

A
and (11-98) follows from (11-78).

NORMAL PROCESSES. Suppose now that ¢(¢) is normal with zero mean. In this
case (1) is also normal with zero mean. Hence [see (11-97)]

D (A, 7) = cxp{* N (7)}
7 (11-102)
aZ(r) =2f"Rc(a)(r—a)da

In general, the Fourier transform of ®_(A,7) is found only numerically.
However, as we show next, explicit formulas can be obtained if A is large or
small. We introduce the “correlation time” 7, of o(z):

1 o
7.=—[ R(a)da p=R[(0) (11-103)
po
and we select two constants 7, and 7, such that
0 |zl > =,
R.(7) = {P 7l < 4

Inserting into (11-102), we obtain (Fig. 11-15)

o2(r) = { i i<z e

=pAr2 2

} =R, (7) (11-104)

—p AR
2p17, > 4R

1t is known from the asymptotic properties of Fourier transforms that the
behavior of R, () for small (large) 7 determines the behaviors of S, (w) for
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FIGURE 11-15

large (small) w. Since

o 1 [24 S
eqwr*/l o — o ZpA®
AV p
(11-105)
EfJT_J\:

—pRPr i oy

e e
w® + pir2at

we conclude ‘that S, (@) is lorenzian near the origin and it is asymptotically

o
normal as @ — «=. As we show next, these limiting cases give an adequate
description of §, (w) for large or small A.

Wideband FM. If A is such that
P’/\z"'l:; > 1
then R, (7) = 0for |7| > 7. This shows that we can use the upper approxima-
tion in (11-104) for every significant value of 7. The resulting spectrum equals
S oy e e (11-106)
] o —f — 20N = g [ — -106
@) = 5/ = e

in agreement with Woodward’s theorem. The last equality in (11-106) follows
because ¢(1) is normal with variance Efc?(¢)} = p.

Narrowband FM. If A is such that
pATyT, < 1

then Ry\(7) = 1 for [7| < 7,. This shows that we can use the lower approxima-
tion in (11-104) for every significant value of 7. Hence

Zpr A

Swal) = ———==
(@) w" + p‘r[.‘)l"

(11-107)



I1-4 cyolosTATIONARY PROCESSES 373

11-4 CYCLOSTATIONARY PROCESSESt

A process x(1) is called strict-sense cyclostationary (SSCS) with period T' if its
statistical properties are invariant to a shift of the origin by integral multiples of
T. or, equivalently, if

et EUREIITEL < oy L MY =X o s Xtk ey ) (11-108)

for every integer m.
Aprocess x(r) is called wide-sense cyclostationary (WSCS) if

n(t +mT) =x(t) R(1, + mT,t. +mT) = R(t,,t,) (11-109)

for every integer m.

It follows from the definition that if x(z) 18 SSCS, it is also WSCS. The
following theorems show the close connection between stationary and cyclosta-
tionary processes.

THEOREM 1. If x(¢) is an SSCS process and 8 is an RV uniform in the interval
(0, T) and independent of x(r). then the process
%(1) = x(t — 8) (11-110)

obtained by a random shift of the origin is SSS and its nth-order distribution
equals

= il =
B s Xty v was b ) = ?f“lﬂ"'l ...... oty = Gy ety — a)da

(11-111)
Proof. To prave the thearem, it suffices to show that the probability of the event

o= (i +c) =%, -, XL, +c) <%,

is independent of ¢ and it equals the right side of (11-11 1). As we know [see
4-62)]

S| =

P(as) = = ['P(718 = ) db (11-112)
0

Furthermore,
P(a210 = 8) = P(x(t; + ¢ — 8) < x,,...,x(1, + ¢ — 8) <x,[0}
And since 0 is independent of x(¢), we conclude that
PlaZ|0i= 0} = F(%;5e oy X350y € = 8,00y H6— 0)
Inserting into (11-112) and using (11-108), we abtain (11-111).

IEEE Transactions in Information Theory, vol. 1T-21, 1975.
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THEOREM 2. If x(¢) is a WSCS process, then the shifted process X(1) is WSS
with mean

1 =
N == 1) de 11-113
] _Tj; n(7) (11-113)
and autocorrelation

_ 1 .
R(r)=?]:]lR(t+r,r)d1 (11-114)

Proof. From (7-59) and the independence of 8 from x(1), it follows that
E{x(1 — 9)) = E(n(1 - )} ff a(t - 8) do
and (11-113) results because n(r) is periodic. Similarly,
E{x(t +7— 0)x(t — 08)) = E{(R(t +7 — 8,1 — 8)}

R +7—0,t—0)de
T() (t+7 ) ¢

This yields (11-114) because R(r + 7, ¢) is a periodic function of t.

Pulse-Amplitude Modulation (PAM)

An important example of a cyclostationary process is the random signal

o

x(t) = Y ¢, h(t—nT) (11-115)

n=—o
where h(t) is a given function with Fourier transform H(w) and ¢, is a
stationary sequence of RVs with autocorrelation R [m] = E{c, , ,¢,} and power
spectrum

S.(e’®) = E; R [m]e=" (11-116)

m= —x

THEOREM. The power spectrum §x(m) of the shifted process %(1) equals
- 1 )
S,(w) = ?Sf(e"")ll’i(m)l2 (11-117)

Proof. We form the impulse train
z(t) = Y, ¢,86(¢t—nT) (11-118)
Clearly, z(t) is the derivative of the process w(?) of Fig. 11-16:

«©

wit) = ¥ cU(t—nT) z(r) =w'(t) (11-119)

n=—=
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Pulse-amplitude modulation

wir) 2l1) xtt)

0 T 1 ‘% _141 2 rE

FIGURE 11-16

The process w(t) is cyclostationary with autocorrelation

R, (t1,t;) = X Y R.(n —r)U(t, = nT)U(1, = ¢T)

From (10-94) it follows that
PR (1), 1)
R.(t),t;) = — WD S YR [n —r1a(t, — aT)s(ts — rT)
J’lf:”l nor r
This yie!ds

o8

Rt+z,0)= Y, Rm] X 8[t+7— (m+r)T)8(r—rT] (11-120)

m=—=x r=—x

We shall find first the autocorrelation R.(r) and the power spectrum S.(w) of
the shifted proeess z(¢) = z(r — 8). Inserting (11-120) into (11-114) and using
the identity

fré‘[r + 71— (m+ r)T]8(t —rT)dt = 8(7 — mT)
o

we obtain
- Jit &
R.(7) = = Y R.Imls(z — mT) (11-121)
From this it follows that
_ 1. g% ; 1
S.(w) = ?"=):WRr[m]cfﬂ"Tm - F.S,‘(w) (11-122)

The process x(¢) is the output of a linear system with input z(t). Thus
x() = z(t)+h(r) X(t) = 2(t)#h(1)
Hence [see (11-122) and (10-136)] the power spectrum of the shifted PAM
process x(¢) is given by (11-117).
COROLLARY. If the process ¢, is white noise with S.(w) = g, then

§i(w) = %m(w)ﬁ B, (r) = %h(r)*h( —1)  (11-123)



376  STOCHASTIC PROCESSES

Binary transmission

x(N# Y(HT
1 1

1 0 1| J_—|v iy |
|_r

1 L
(a) (b)

FIGURE 11-17

Example 11-4. Suppose that i(r) is a pulse and ¢, is a white-noise process taking
the values + 1 with equal probability:

1 0<t<T «¢,=x(nT) R [m] =8[m]
h(t) = ‘
0 otherwise

The resulting process x(¢) is called binary transmission. It is SSCS taking the values

+ 1 in every interval (nT" — T, nT), the shifted process X(1) = x(t — 8) is stationary.
From (11-117) it follows that

= 4sin’(wT/2)
Siw) = ———

because S,(z) = 1. Hence R, (7) is a triangle as in Fig. 11-17.

11-5 BANDLIMITED PROCESSES AND
SAMPLING THEORY

A pracess x(t) is called bandlimited (abbreviated BL) if it has finite power and
its spectrum vanishes for |o| > o:

RO) <= S(w)=0 |ol>c (11-124)

In this section we establish various identities involving linear functionals of BL
processes. To do so, we express the two sides of each identity as responses of
linear systems. The underlying reasoning is based on the following:

THEOREM. Suppose that w(t) and w,(¢) are the responses of the systems T(«w)
and T,(w) to a BL process x(t) (Fig. 11-18). We shall show that if
T(w) = Th(w) for |w| <o (11-125)
then
w, (1) = w,y(1) (11-126)

Proof. The difference w (1) — w,(¢) is the response of the system 7\(w) — T (w)
to the input x(¢). Since S(w) =0 for |w| > o, we conclude from (10-139) and
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FIGURE 11-18

(11-125) that

5 1 o .
E{lw,(1) = wa()*) = ﬁf_ S(0)IT(w) = Ty(w)Pdw = 0
Hencei wy(t) = w,(r).

Taylor series. If x(1) is BL, then [see (10-121)]

1
R(7) = ﬁf S(w)e™ do (11-127)

In the above, the limits of integration are finite and the area 27 R(0) of S(w) is
also finite. We can therefore differentiate under the integral sign

l o
R"(7) = ﬁf (jw)"S(w)e! dw (11-128)
S =

This shows that the autocorrelation of a BL process is an entire function; that
is, it has derivatives of any order for every 7. From this it allows that x"(r)
exists for any n (see App. 10A).
We maintain that
£ T“
x(t+7)= 2 x‘"’(:)"—l (11-129)

n=0

Proof. We shall prove (11-129) using (11-126). As'we know
eloT = E (_’lm)"'r—' all w (11-130)
=0 n!

The processes x(¢ -+ 7) and x)(¢) are the responses of the systems e/*” and
(jw)" respectively to the input x(t). If, therefore, we use as systems 7)(w) and
Ty(@) in (11-125) the two sides of (11-130), the resulting responses will equal the
two sides of (11-129). And since (11-130) is true for all @, (11-129) follows from
(11-126).

FAIl identities in this section are interpreted in the MS sense.
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Bounds. Bandlimitedness is often associated with slow variation. The f{ollowing
is an analytical formulation of this association.
If x(¢) is BL, then

E([x(¢ + =) — x(1)]°} < a*7?R(0) (11-131)
or, equivalently,

2[R(0) = R(7)] < a*7*R(0) (11-132)

Proof. The familiar inequality |sin ¢| < |¢| yields
= T w T
1 —cusw.—=25in-7 = 2

Since S(w) > 0, it follows from the above and (10-122) that

R(0) — R(7) = :—ﬂ_fj S(w)(1 = coswr) dw

L o w'r? o2t o ) a7t
=< Zr_f‘US(w)wa = ?]7“5((0) dw =

> R(0)

as in (11-132).

Sampling Expansions

The sampling theorem for deterministic signals states that if f(z) < F(w) and
F(w) = 0 for |w| > o, then the function f(1) can be expressed in terms of its
samples f(nT) where T' = 7 /o is the Nyquist interval. The resulting expansion
applied to the autocorrelation R(7) of a BL process x(t) takes the following
form:

@ sina(7 — nT)
R = Rial)—————— 11-133
(7) ,,“E_‘,, (k) o(r—nT) ( )
We shall establish a similar expansion for the process x(¢).
THEOREM. If x(7) is a BL process, then
® sino(r — nT ™
t+7)= T x(r+nT)¥ T—— (11-134)
S a(r —nT) o

for every ¢ and 7. This is a slight extension of (11-133). This extension will
permit us to base the proof of the theorem on (11-126).

Proof. We consider the exponential e’*” as a function of w, viewing T as a
parameter. and we expand it into a Fourier series in the interval (= < @ < o)
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The coefficients of this expansion equal

1 o sino (T — nT)
a, = — Jwr,—inTa ey o =
4 ZUIA.yE 1 e o7 —nT)
Hence
. 2 sineg(7 — nT)
glut — E L,erTm— \wl iy (”.-135)

o o{7 = nT)
We denote by T(w) and T5(w) the left and right side respectively of (11-135).
Clearly, T\(w) is a delay line and its response w,(1) to x(¢) equals x(¢ + 7).
Similarly, the response w,(1) of T,(w) to x(t) equals the right side of (11-135).
Since: Ti(w) = Tx(w) for |w| < o, (11-134) follows from (11-126).

Past samples. A deterministic BL signal is determined only if all its samples,
past and future, are known. This is not necessary for random signals. We show
next that a BL process x(1) can be approximated arbitrarily closely by a sum
involving only its past sample x(nT,) provided that T, < 7. We illustrate first
with an example.t

Example 11-5. Consider the process
(1) = nx(t — Tp) — [:)x(t —OT) & e = (=1)'x(t = nTy) (11:136)
The difference
W) =x() —&(1) = E (~0*( Jxte = k10)
k=0
is the response of the system
{e ”n
H(w) = L (=1 (3o = (1= et
k=0
with input x(r). Since [H(w)| = [2sin(wT;,/2)|", we conclude from (10-36) that

E(y¥ ()} = ﬁ[fﬂs(w)(hin-‘iz—")‘ da (11-137)

If T, < /3¢, then 2sin(wT,/2) < 2sin(m/6) =1 for |w| <a. From this it
follows that the integrand in (11-137) tends to 0 as n — =. Therefore, Ely*(0)) — 0
-and

x(1) = x(1) as n—o=

: n .
Note that this holds only if T, < T/3; furthermore, the coefficients ( k) of &(1)

tend to o as n — =,

+1. A. Wainstein and V. Zubakoy: Extraction of Signals in Noise, ‘Prentice-Hall, Englewood Clifis,
NI, 1962,
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Plw)

Slw)

= 0 o o, W FIGURE 11-19

We show next that x(r) can be approximated arbitrarily closely by a sum
involving only its past samples x(z — kT})) where T}, is a number smaller than T
but otherwise arbitrary.

THEOREM. Given a number 7;, < 7 and a constant & > 0, we can find a set of
coefficients a;, such that

E(lx(1) —%()IF) <& (1) = T apx(r —kT,)  (11-138)
k=
where n is a sufficiently large constant.

Proof. The process X(1) is the response of the system

Plw) = ¥ age”* (11-139)
k=1

with input x(7). Hence

2 1 - 2
E{Ix(2) — &(0)|*) = ;j_ S(w)|l — Pw)|’ dw

1t suffices, therefore, to find a sum of exponentials with positive exponents only,
approximating 1 arbitrarily closely. This cannot be done for every |w| <oy =
@/ T}, because P(w) is periodic with period 2a;,. We can show, however, that if
oy > o, we can find P(w) such that the differences |1 — P(w)| can be made
arbitrarily small for |w| < ¢ as to Fig. 11-19. The proof follows from the
Weierstrass approximation theorem and the Fejer—Riesz factorization theorem;
the d_etaiIs, however, are not simple.}

Note that, as in Example 11-5, the coeflicients a, tend to = as & — 0. This
is based on the fact that we cannot find a sum P(w) of exponentials as in

FA, Papoulis: A Note on the Predictability of Band-Limited Processes,” Proceedings of the [EEE,
vol. 13, no. 8, 1985,
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(11-139) such that |1 — P(w)| = 0 for every w in an interval. This would violate

the Paley—Wiener condition (12-9).

THE PAPOULIS SAMPLING EXPANSION.7 The sampling expansion holds only if
T < 7 /a. The following theorem states that if we have aceess to the samples of
the outputs y(#),....¥5(1) of N linear systems H(w),..., Hylw) driven by
x(£) (Fig. 11-20), then we can increase the sampling interval from 7/¢ to

N /o,
We introduce the constants
20 27 _
C=— = —= T=NT
N 7
and the N functions
Byt sers 5 Pylw, 1)

defined as the solutions of the system

H )P (w.7)+ - +H ()P, 7

(11-140)

H(w .+ Ne — e)Pw, 1)+ -+ +H (o + Nc — c)Plw,7) = ol Wil

(11-141)

In the above, w takes all values in the interval (—e, — o + ¢)and 7 is arbitrary.

We next form the N functions

1 -+ <
pliT) = —f : Plw,7)e’ do 1<k <N (11-142)
5}

A, Papoulis; “New Results in Sampling Theory,” Hawaii Interi Conf. System Seiences, Januury
(See ulso Papoulis, 1968, pp. 132-137),
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THEOREM

x(l7) = E [y,(! +n'.7')p,('r —-HT) + 0yt + 'TT)I’,\(T = "T)] (11-143)

n=-—

Proof. The process y,(¢ + nT)is the response of the system H,(w)e™™ to the
input x(z). Therefore, if we use as systems T\(w) and T5(w) in Fig. 11-18 the two
sides of the identity

e = H(w) Y pi(7— nT)e”""T 4o +Hy(w) Y pylr — nT)ereT

n=—x n=—m

(11-144)

the resulting responses will equal the two sides of (11-143). To prove (11-143), it
suffices, therefore, to show that (11-144) is true for every |w| < o.

The coefficients H;(w + ke) of the system (11-141) are independent of 7
and the right side consists of periodie functions of = with period T = 27 /¢
because ¢’*<" = 1. Hence the solutions P,(w,7) are periodic

Pw,7— nT) = Pw,7)
From the above and (11-142) it follows that

| = 1 —o-He N —
Pl = nT) = —f P(w,7)e! =" dy
c

This shows that if we expand the function P (w,7)e’*” into a Fourier series in
the interval (=, — ¢ + ¢), the coefficient of the expansion will equal
Pz — nT). Hence

Pk(w,’r)ejf" E pu(r —nT e""'“‘f —o<w< —o+c (11-145)
K
= —t

‘Multiplying each of the equations in (11-141) by e’“" and using (11-145) and the
identity

e;’n(m +ke)T — e;an‘

‘we conclude that (11-144) is true for every w in the interval (—a, o).

Random Sampling

We wish to estimate the Fourier transform F(w) of a deterministic signal f(7)
in terms of a sum involving the samples of f(¢). If we approximate the integral
of f(r)e™" by its Riemann sum, we obtain the estimate

F(o) =Fy(w) = ¥ Tf(nT)e " (11-146)

n=—=

From the Poisson sum formula (11A-1), it follows that F, (w) equals the sum of
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F(w) and its displacements

Folw) = z Flw -+ 2no) o= ;

Hence F,(w) can be used as the estimate of F(w) in the interval ( —er, o) only
if Flw) is negligible outside this interval. The difference Flw) — F,.(w)is called
aliasing error. In the following, we replace in.(11-146) the equidistant samples
f(nT) of f(r) by its samples f(t;) at a random sct of points t, and we examine
the nature of the resulting error.t

We maintain that if t, is a Poisson point process with average density A,
then the sum

1
Plw) = — Yo f(t)e (11-147)
is-an unbiased estimate of F(w). Furthermore, if the energy
E= [ (1) di

of f()is finite, then P(w) — Flw) as A — =. To prove the above, it suffices to
show that

o

E{P(w)} = F(w) Oy = T (11-148)

Proof. Clearly,
f:f(z)e-fu"z_js(p —t)dr = Lf(t)e (11-149)
Comparing with (11-147), we obtain
Plw) = %‘f;f(t)z(r)e‘f‘”' dt  where z(r) = );6(: —t,) (11-150)

is as Poisson impulse train as in (10-98) with

Efz(t)} = A Co(1y,15) = A8(t; — 1) (11-151)

TE. Masry: “Poisson Samf:ﬂ{ng and Spectral Estimation of Coniy Timc.[’mcesses.“ IEEE
Transactions on Information: Theory, vol. 1T-24, 1978, See also F. 1. Beutler: “Alias ch. Randomly
Timed Sampling of Stochastic Pr » IEEE Transactions on Information Theory, vol. IT-16,
1970,
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Hence

1 =
E[P(w)} = ;\—[_mf(t)E{z(f)}e"“'dl = F(w)

1 = = Ii e =
oy =52 )_J F)F()A8(0 = 1) dtydty = - [ (1) dry

and (11-148) results.
From (11-148) it follows that, for a satisfactory estimate of F(w), A must

be such that
E
[E(@)] =y — (11-152)

Example 11-6. Suppose that f(z) is a sum of sine waves in the interval (—a, a):

(1) = Ycpe/ot £l <a
k

and it equals 0 for [t| > a. In this case,
sina(w — w 3
sinale ~ ) E=2aY || (11-153)

W — Wy k

Flw) = X 2¢,
3
where we negleeted cross-products in the evaluation of E. If a is sufficiently large,
then
F(w,) = 2ac,
This shows that if

YleF < 2ahlc,l?  then P(wy) = F(w;)

Thus with random sampling we can detect line spectra of any frequency even if the
average rate A is small, provided that the observation interval 2a is large.

11-6 DETERMINISTIC SIGNALS IN NOISE

A central problem in the applications of stochastic processes is the estimation of
a signal in the presence of noise. This problem has many aspects (see Chap. 14).
In the following, we discuss two cases that lead to simple solutions. In both
cases the signal is a deterministic function f(¢) and the noise is a random
process v(1) with zero mean,

The Matched Filter Principle

The following problem is typical in radar: A signal of known form is reflected
from a distant target. The received signal is a sum

x(2) = f(r) +w(r)  E{v(1)) =0

where f(r) is a shifted and scaled version of the transmitted signal and w(¢) is



s L e ——

L1-6 DETERMINISTIC S1GNALS v noIse 385

WSS process with known power spectrum. S(@). We assume that £(r) is known
and we wish to establish its presence and location. To do so. we apply the
process x(r) to a linear filter with impulse response fi(r) and system function
H{w). The resulting output ¥(£) = x(2) = A(t)is a sum

Y= f_:x(r — a)h(a)d(a) =y (1) +y,(1) (11-154)

where
x 1 =
v(2) ’f: flt — a)h(e) da = ?j F(w)H(w)e™ dw (11-155)

is the response due to the signal f{r). and y,(¢) is a random component with
average power

1 =
Efy} (1)) = ﬁf_ S(w)|H(w)>do (11-156)

Since y,(7) is due to v(r) and E{v(t)} = 0. we conclude that Ely, (1)} = 0'and
Efy (1)} = y/(1). Our objective is to find FH(w) so as to maximize the signal-to-
noise ratio

ly;(ty)]
—————— 11-157)
" VEN (1) P

at a specific time ¢,.

White noise. Suppose, first, that S(w) = §,. Applying Schwarz’s inequality
(11B-1) to the second integral in (11-155), we conclude that

[F(w)es | do [|H(0)[ do £
/ / i (11-158)

r- < 3
2175,,[!H(w)|2dw n

where E, = (1 /27) [|F(@))* dw is the energy of f(¢). The above is an equality
if [see (11B-2)]

H(w) = kF*(w)e ™o h(t) = kf(t,—1) (11-159)
This determines the optimum H(w) within a constant factor k. The system so

obtained is called the matched filter. The resulting signal-to-noise ratio is
maximum and it equals ‘/EI/S;,.

Colored noise. The solution is not so simple if S(w) is not a constant. In this
case, we use a trick, We first multiply and divide the integrand of (11-155) by
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VS(w) and then apply Schwarz's inequality. This yields

Flo
F2wy,(r..)ll:f‘/5_((_) VS(w H(w)(”’"”dm

IF(w)]?
<
< 56

dwf‘i'(ou) H(w)|*>dw
Inserting into (11-157), we obtain

flz(( ))l dcuf‘)(w)lh'(m)] do 5
r? < = —f——dm
27rf5(tu)|H(w)|z(1w

Equality holds if
7< ( w)e*]ul"u

fcu”w—k
Ve ) = ey

Thus the signal-to-noise ratio is maximum if
F*(w)

i ¢ lut (11-160)
(1}

H(w) =k

Tapped delay line. The matched filter is in general noncausal and difficult to
realize. A suboptimal but simpler solution results if H(w) is a tapped delay line:

H(w) =ay+ ae ™" + «-- +a,e/mT (11-161)
In this case,

m m
ye(to) = ¥ aflty — iT) v.(t) = Yap(t=il) (11-162)
i=0 i=0
and our problem is to find the m constants a; so as to maximize the resulting
signal-to-noise ratio. It can be shown that (see Prob. 11-28) the unknown
constants are the solutions of the system
”m
Y aR(nT —iT) =kf(ty—nT) n=0,,..,m (11-163)
i=0

where R(7) is the autocorrelation of w(r) and k is an arbitrary constant.

Smoothing

We wish to estimate an unknown signal f(r) in terms of the observed value of
the sum x(r) = f(r) + v(t). We assume that the noise »(r) is white with known
autocorrelation R(¢y, ;) = g(t,)8(1; — ¢,). Our estimator is again the response
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¥(1) of the filter #(s):

(1) = [ x(t—m)h(z) dr (11-164)

The estimator is biased with bias

b=y (1) —f(1) = fj f(t = 7)h(r) dr—f(r) (11-16%)

and variance [see (10-90)]

a'zzE{_v,.:(r)j =f qlt — 7)Y (7) dr (11-166)
Qur objective is to find A(¢) so as to minimize the MS error

e =E{[y(1) — f(1)]}} = 6%+ &

We shall assume that A(¢) is an even positive function of unit area and
finite duration:

w—t)=h(t) [Th(ydr=1 k(1) >0 (11-167)
_r

where T is a constant to be determined. If 7 is small, y (1) = f(¢), hence the
bias is small; however, the variance is large. As T increases, the variance
decreases but the bias increases. The determination of the optimum shape and
duration of /(t) is in general complicated. We shall develop a simple solution
under the assumption that the functions f(¢) and g(¢) are smooth in the sense
that f(r) can be approximated by a parabola and g(r) by a constant in any
interval of length 27. From this assumption it follows that (Taylor expansian)

flt — 1) = f(t) —of(2) + 1%f"(.{) q(t = 7) =q(t) (11-168)

for |7| < T. And since the interval of integration in (11-165) and (11-166) is
(=T, T), we conclude that

L neyae ot =atf)

because the function k(1) is even and its area equals 1. The resulting MS error
equals

T

b he(r)dr  (11-169)

e = M fr(1)]* + Ealt) (11-170)

where M = [T r2h(t)dt and E = [T h3(1) dr.
To separate the effects of the shape and the size of h(¢) on the MS error,
we introduce the normalized filter

wi(t) = Th(Tr) (11-171)
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‘.m

0 s T FIGURE 11-21

The function w(t) is of unit area and w(z) = 0 for [¢| > 1. With

W= T dr= & ! wie) de = 1E
— w(r)dr=—= B = A ST
W ) ]_ =
it follows from (11-167) and (11-170) that
T3 . Ey
b=—Mf(r) o*==Ta(r) (11-172)
] 3 5 2 [:.l\
e = M FU(O)" + —alt) (11-173)

Thus e depends on the shape of w(¢) and on the constant 7.

The two-fo-one rule.i We assume first that w(r) is specified. In Fig. 11-21 we
plot the bias b, the variance o*. and the MS error e as functions of 7. As T
increases. b increases, and ¢ decreases. Their sum e is minimum for

/5
E, q(t :
r-1,- (L) (11-174)
ML)
Inserting into (11-172), we conelude, omitting the simple algebra, that
a=2b (11-175)

Thus if w(r) is of specified shape and T is chosen 5o as to minimize the MS
error e, then the standard deviation of the estimation error equals twice its bias.

Moving average. A simple estimator of f(¢) is the moving average

I 1+T
W) = o [ x(7) d
2T Vi

tA Papoulis, Two-to-One Rule in Data Smoothing, IEEE Trans. Inf. Theory, September, 1977,
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of x(z). This is a'special case of (11-164) where the normalized filter w(z) equals
a pulse of width 2. In this case

W 1 1k 2 |
W‘ === t=di = = s = — = —
5 j_l ¢ 3 E, -l-l It!l >
Inserting into/(11-174), we obtain
"j Yq(1) . Sq(r)
T,,, = S T e=5h"= ——— 176
V20 ST,, R

The parabolic window. We 'wish now to determine the shape of w(1)'so as to
minimize the sum in (11-173). Since f(1) needs to be determined within a scale
factor. it suffices torassume that £, has a constant value, Thus our problem is to
find a positive even function w(r) vanishing for [¢] > 1 and such that its second
moment M, iS minimum. It can be shown that'(see page 388xn)

w(r) = {”‘7’“ LR R VIR
0 lf] > 1

Thus the optimum w(z)'is a truncated parabola. With w(r) so determined, the
optimum filter is

T,

m m

i 1 [
(1) = —w| =

I,
where 7, is the constant in (11-174). This filter is, of course, time varying
because the scaling factor T,, depends on .

m

11-7 BISPECTRA AND SYSTEM
IDENTIFICATION

Correlations and spectra are the most extensively used coneepts in the applica-
tions ‘of stochastic processes. These concepts involve only second-order mo-
ments, In certain applications, moments of higher order are also used. In the
following, we introduce the transform of the third-order moment

Roe (b s t3) = E(x(e;)x(e2)x(15)} (11-178)

of a process x(r) and we apply it to the phase problem in system identification.
We assume that x(7) is a real SSS process with zero mean. From the stationarity
of x(¢) it follows that the function R, (1, &>, {;) depends only on the differ-
ences

y —13= W ly =ty=#

1D R, Brillinger: *An' Introduction to Polyspectra,” Annals of Math Statistics, vol. 36, Also C. L
Nikiss and M, R. Raghuveer (1987): “Bispectrum Estimation: Digital Processing Framework,"
(EEE Proceedings, vol. 75, 1965,
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Setting 7y = ¢ in (11-178) and omitting subscripts, we obtain

Ry, t5,05) =R(p,v) = E{x(¢ + p)x(z + w)x(r)}  (11-179)

DEFINITION. The bispectrum S(u, v/) of the process x(¢) is the two-dimensional
Fourier transform of its third-order moment R(g, v):

S(u,0) = f[m R, v)e e dy dy (11-180)
The function R{u,v) is real; hence
S(—u, — o) = S*(u,v) (11-181)
If x(¢) is white noise then
Rp.v) = 06(p)s(v)  S(u.v) =0 (11-182)

Notes 1. The third-order moment of a normal process with zero mean is identically zero,
This'is a consequence of the fact that the joint density of three jointly normal RVs with
Zero mean is symmetrical with respect to the origin.

2. The autocorrelation of a white noise process with third-order moment as in
(11-182) is an impulse ¢é(z); in general, however, g # (. For example if x(1) is normal
white noise, then @ =0 but g # 0. Furthermore, whereas g > 0 for all nontrivial
processes, @ might be ncgative.

Symmetries. The function R(z,, t,, 1;) is invariant to the six permutations of the
numbers £y, f,, and f;. For stationary processes,

Iy =il =pun h—l3=v L=l =p—v

L] ttay 5| v Uy 4550 | = po—p+ v —u—o0v
2| il b5 | vy U, i S|ttty —wte,—p |ei-u=—u
3Gt —vp = | —u—b,u| 6]ttt | p—v,— ¥ U=t =0
n
o2
I e I
v CR |
0
6-
v 4.
5 VI
v

FIGURE 11-22



11-7 BISPECTRAAND SYSTEM IDENTIFCATION 391

This yields the identities
R(w,v) = R{w,p) = R(—v, = v) + R(=p: — p + v)

=R(—p + v, — p)=R(g — v, — u) (11-183)
Hence if we know the function R(g,») in any one of the six regions of Fig.
11-22, we can determine it everywhere.

From (11-180) and (11-183) it follows that
S(u,v) =S(v,u) =S(—u —e,u) =85(-u —v.0)
= 8{iy = — )= S, —u —u) (11-184)

Combining with (11-181), we conclude that if we know S(u, ¢') in any one of the
12 regions of Fig. 11-22, we can determine it everywhere,

Il

Linear Systems

We have shown in (10-110) that if x(¢) is the input to a linear system, the
third-order moment of the resulting output y(1) equals

Ry, (ttys 15)
= [[f Rty = avty = Bots = y)h(@)(BYA(Y) dacdB dy (11-185)

For stationary processes, R, (t; —a, 6, — B, t; = y)=R  (u+ty-—a, vty
— B); hence

Ry, v) = ff[,zR“’(P' +y—a,v+y—BYala)h(B)h(y) dadBdy
(11-186)
(e, ©) of y(2) in

yyy

Using this relationship, we shall express the bispectrum §
terms of the bispectrum S, (u, ) of x(z).

THEOREM
Sy, v) = 8, (uYH(u)H(e)H* (1 + ¢) (11-187)

Proof, Taking transformations of both sides of (11-185) and using the identity

f_[ Rx.u(l-'-+')’*“’-V"‘7“3,)&’7"-("“""{14.&('(0
—=

=8 (N L,)‘,ﬂu(yAnHerm]
xxx\

we obtain
8 (u,u) = 8, (u, u)”f ety =wr+etr=Mp( ) h( B)h(y) dadB dy

Expressing the above integral as a product of three one-dimensional integrals,
we obtain (11-187).

Example 11-7. Using (11-185), we shall determine the bispectrum of the shot noise

s(1) = Thle - t) =z(1)«h(r)  z(1) = Lot — 1)

where t, is a Poisson point process with average density A,
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To do so, we form the centered impulse train () = z(1) — A and the
centered shot noise §(¢) = Z(¢)= h(r). As we know (see Prob. 11-28)
Regz(p,v) = A8(p)d(v) hence S:::(u,v)=A
From this it follows that
9

s(u,v) = AH(u)H(uv)H*(u +0)
and since S;(w) = AlH(a)|?, we conelude from Prob. 11-27 with ¢ = E{s(1)) =
AH(0) that
Sy(uar) = AH(u)H(v)H*(u + v)
+ 22 2H(O) [ |H (@) %(v) + [H(0)P3(u) + |H(w) 5 (u + 1))

+ Am 2N HA(0)5(u)d(v)

System Identification

A linear system is specified terminally in terms of its system function

H(w) =A(w)e’™
System identification is the problem of determining H(w). This problem is
central in system theory and it has been investigated extensively. In the
following, we apply the notion of spectra and polyspectra in the determination
of A(w) and ¢(w).

Spectra. Suppose that the input to the system H(w) is a WSS process x(1) with
power spectrum S, (w). As we know,

Sey(w) =8, (0) H*(w) (11-188)

This relationship expresses H(w) in terms of the spectra §, (w) and S,,(w) or,
equivalently, in terms of the second-order moments R, (7) and R, (7). The
problem of estimating these functions is considered in Chap. 13. In a number of
applications, we cannot estimate R, (7) either because we do not have access o
the input x(¢) of the system or because we cannot form the product x(z + r)y(1)
in real time. In such cases, an alternative method is used based on the
assumption that x(¢) is white noise. With this assumption (10-136) yields

Syu(w) =S, (w)|H(w)|* = g4 (w) (11-189)

This relationship determines the amplitude A(w) of H(w) in terms of S, (w)
within 4 constant factor. It involves, however, only the estimation of the power
spectrum S, (w) of the output of the system. If the system is minimum phase
(see page 40), then H(w) is completely determined from (11-189) because, then,
@(w) can be expressed in terms of A(w). In general, however, this is not the
case. The phase of an arbitrary system cannot be determined in terms of
second-order moment of its input. It can, however, be determined if the
third-order moment of y(¢) is known.

Phase determination, We assume that x(¢) is an SSS white-noise process with
8, e, 0) = O. Inserting into (11-187), we obtain
8w, 6) = QH(u) H(e)H *(u + v) (11-190)
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The function §,, (u, v) is, in general, complex:

Syyu(i50) = B, 0) /20 (11-191)

Inserting (11-191) into (11-190) and equating amplitudes and phases, we obtain
B(u,v) = QA(u) A(v) A(u + v) (11-192)

0w, ) = @(u) + ¢(v) — @(u + v) (11-193)

We shall use these equations to express A(w) in terms of Blw.v) and
@(w) in terms of 6(u, v). Setting v = 0 in (11-192), we obtain

Q
A (w) = mB(w,o) A%(0) = 0B(0,0) (11-194)
Since O is in general unknown, A(w) can be determined only within a constant
factor. The phase ¢(w) can be determined only within a linear term because if it
satisfies (11-193), so does the sum @(w) + cw for any c. We can assume
therefore that ¢’(0) = 0. To find ¢(w), we differentiate (11-193) with respect to
v and we set v = 0. This yields

8,(u,0) = —o'(1) o(w)= 4£’£u8,(u,0)du (11-195)

where 8,(u, v) = 36(u, v)/dv. The above is the solution of (11-193).
In a numerical evaluation of ¢(w). we proceed as follows: Clearly, 6(u, 0)
= o(u) + o(0) — olu) = ©(0) = 0 for every u. From this it follows that

1
6,(u,0) = limzﬂ(u,A) asA—0

Hence 8 (u,0) = 8(u, A) /A for sufficiently small A. Inserting into (11-195), we
obtain the approximations

o) = —ij‘”a(u,a.)du o(nh) = — 3 8(kA, ) (11-19)
Ay k=1

This is the solution of the digital version
O(kA,rA) = @(kA) + o(rA) — o(kA + rA) (11-197)

of (11-193) where (kA, rA) are points in the sector I of Fig. 11-22. As we see
from (11-196) ¢(nA) is determined in terms of the values of #(kA, A) of 8(u, A)
on the horizontal line ¢ = A. Hence the system (11-197) is overdetermined. This
is used to improve the estimate of ¢(w) if 8(x, v) is not known exactly but it is
estimated in terms of a single sample of y(¢).f The corresponding problem of
spectral estimation is considered in Chap. 13.

1T. Matsuoka and T, J. Ulrych: ""Phase Estimation Using the Bispectrum,” [EEE Procecdings, vol.
72, 1984,
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FIGURE 11-23

Note If the bispectrum S(u, v) of a process x(1) equals the right side of (11-190) and
H(w) = 0'for |w| > o, then

S(u,v)=0 forlul>a or |u|>e¢ or lu+tvl>c
Thus, S(u, v) = 0 outside the hexagon of Fig. 11-23a. From this and the symmetries of

Fig. 11-22 it follows that S(u,v) is uniquely determined in terms of its values in the
triangle OAB of Fig. 11-23a.

Digital processes. The preceding concepts can be readily extended to digital
processes. We cite only the definition of bispectra.
Given an SSS digital process x[n], we form its third-order moment

R[/,r] = E{x[n + k]x[n + r]x[n]} (11-198)
The bispectrum of x[n] is the two-dimensional DFT of Rk, rl:
S(u,p) = Y X Rlk,rleituktun (11-199)
k=—%r=-x
This function is doubly periodic with period 2
S(u + 27m, v + 2mn) = S(u,v) (11-200)

It is therefore determined in terms of its values in the square |u| <, [v| =7
of Fig. 11-23b. Furthermore, it has the 12 symmetries of Fig. 11-22.

Suppose finally that the process x[n] equals the samples x(nT) of an
analog process x(t) with bispectrum §,(w, v). If §,(u, ¢) equals the right side of
(11-190), then, in the square of Fig. 11-234,

S(u,v) =0 forlul>7w or lvl>7 or slu+vl>m
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From this it follows that in this case, S(u, ¢) is uniquely determined in terms of
its values in the triangle OAB of Fig. 11-23b,

APPENDIX 10A
THE POISSON SUM FORMULA

If
F(u) = fm flx)e "= dx

is the Fourier transform of f(x) then for any ¢

ad i ® 27
Y, flx+nc)= = 3. F(nug)e!ntex Uy = 5 (11A-1)
e n=—w
Proof. Clearly
x 1 @
Y, 8(x+nc) = - Y eimox (11A-2)

because the left side is periodic and its Fourier series coefficients equal
1

2 . 1
—IC/ S(x)e ¥ dx = —
Cl—cr2 c

Furthermore, 8(x + nc)* f(x) = f(x + ne) and
elmtor x f(x) = fw eSO (o) da = e!™0%F (nuy)

Convolving both sides of (11A-2) with f(x) and using the above, we obtain
(11A-1).

APPENDIX 10B
THE SCHWARZ INEQUALITY

We shall show that

2
= fhlf(:r)l2 drflg(x)lzdx (11B-1)

‘f:f(x)s(r)dx

with equality iff
f(x) = kg*(x) (11B-2)
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Progf. Clearly

] b
|f’f(.r)gm ax| < [*]£Cx)|lg(x)|dx
a {x
Equality holds only if the product f(x)g(x)is real. This is the case if the angles
of f(x) and g(x) are opposite as in (11B-2). It suffices, thercfore, to assume
that the functions f(x) and g(x) are real. The quadratic

I(z) = fh[f(-\') — zg(x)]" dv
= 22 [ (xyde — 22 ["f(x)g(x) de+ [ (x) de

is nonnegative for every real z. Hence, its discriminant cannot be positive. This
vields (11B-1). If the discriminant of /(z) is zero, then I(z) has a real (double)
root z = k. This shows that I(k) = 0 and (11B-2) follows.

PROBLEMS

11-1. Find the first-order characteristic function (a) of a Paisson process, and (h) of 4
Wiener process. )
Answer: (a) @™ =1 prarat /2
11-2, (Two-dimensional randopm welk). The coordinates x(r) and y(¢) of a moving object
are two independent random-walk processes with the same s and 7 as in Fig.
11-la. Show that if 2(r) = 1/.‘:(1) + y2(t) is:the distance of the object from the
origin and t 3 T, then for z of the otder of year:

Z ; $
Wzt = —e = 28tz = —
fz0) == @) a==
11-3. In the circuit of Fig. P11-3, n (1) is the voltage due to thermal noise. Show that
2kTR 2kTR
Si(w) = ———— Si0) = s
(1 = w’LC) + w’R?C? R=+ w2l
and verily Nyquist's theorems (11-27) and (11-30).
n.(1) R -

i(1)

T

FIGURE P11-3

11-4. A particle in free motion satisfies the equation
mx"(t) + [x1(r) = E(r) Splw) = 2kTf
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11-6.

11-9.
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Show that if x(0) = x"(0) = 0, then

; : 31 \
E(x* (1)} — w—l: s

where D® = kT/f and a = f/2m.
Hine: Use (10-90) with

1
h(:)=?(1 — e~ () q(t) = 2kTfU(1)

The position of a particle in underdamped harmonic motion is a normal Process
with autocorrelation as in (11-12). Show that its conditional density assuming
x(0) = x, and x'(0) = ¥(0) = &, equals

1 g
Faintlxpaty)) = ——e Uit /2F
V2P

Find the constants @, b, and P.
Given a Wiener process w(z) with parameter «, we form the processes

x(0)=wl(e?)  w(0) =wi(t)  z(c) = Iw(1)]

Show that x(z)is normal with zero mean. Furthermore. if 1, < 1, then

R(t, 1) = at} Ry(1,.0,) = a’1i(21) +1t5)
2 o m
Ro(1y, t;) = — /125 (cosid + Osin @) sin @ = =

. The process s(¢) is shot noise with A = 3 as in (11-45) where h(s) =2 for

0 < ¢ < 10and A(r) = 0 otherwise. Find E{s(¢)}), E{s*(1)}, and Ps(7) = 0).

. The input to a real system H(w) is a WSS process x(r) and the output equals y(1).

Show that if
Relmi= Ri(z)s R (=m)i==R_{(7)

as in (11-67), then H(w) = jB(w) where B(a) is a unction taking only the values
+1and —1.

Special case: 1f y(t) = x(1), then Blw) = —sgnw.
Show that if %(¢) is the Hilbert transform of x(f) and

i(r) = x(1)cos wyt + X(r)sinwyt  q(L) = X(t)cos @yt — x(1)sin w!

then (Fig. P11-9)

Sw ! + su- i Sulw) = S)(=
_',"(‘,,) = Su(“") = M S,,,(w) = w

where S, (w) = 45 (0 + w)U(w + o).
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Sulw) Siw) 15 w)
S.(w)
day
— 0 w i} ay © (P\) @

FIGURE P11-9

11-10. Show that if w(¢) and w.(¢) are the complex envelopes of the processes x(1) and
x(t — 7) respectively, then w, (1) = wlz — 7)e /",
11-11. Show that if w(z) is the optimum complex envelope of x(¢) [see (11-85)], then

E{Iw/(£)I?} = —2[ R2(0) + 0 R (0)]

11-12, Show that if the process x(f)cos w? + y(¢)sin wt is normal and WSS, then its
statistical properties are determined in terms of the variance of the process
2(1) = x(r) + jyle).

11-13. Show that if 8 is an RV uniform in the interval (0. 7) and f(¢) is a periodic
function with period T, then the process x(¢) = f(¢ — 8) is stationary and

Ao 2 % S
= .= —jaot I
S (w) T j‘;f(l)c dt ,,.=E_=5(m 7 m)
11-14. Show that if
4 sinag(t — nT) ar
E~(1)=X(l) ‘"ENX("T)W Z== ?
then
1 . N sino(t—=nT) . -
2 e Jur e N Ly
E{e3 (1)) wa_mS(m) e "‘[_‘,N =) | e
and if S(w) = 0 for |w| > o, then E{e3 (1)} —» 0 as N - =
11-15. Show that if x(t) is BL as in (11-124), thent for |r| < 7 /0
72 : T2
—|R*0)] < RO) - R(x) < Z|R7(0)]
y 41 2
E([x(t +7) = x()]*} = ?E{[x‘(l)] }

Hint: 1f 0 < o < m/2 then 2¢ /7 < sing < ¢.
11-16. A WSS process x(1) is BL as in (11-124) and its samples x(n /o) are uncorre-
lated, Find S (w) if E{x(t)} = n and E(x*(1)} = I.
11-17. Find the power spectrum S(w) of a process x(¢) if S(w) = 0 for |w| > = and

E{x(n + m)x(n)} = N5[m]

TA. Papoulis: “An Estimation of the Variation of a Bandlimited process,” IEEE, PGIT, 1984,
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PROBLEMS 399
Show that if S(w) = 0 for 0| >, then
R(7) = R(M)cos ot for |7l <w/2¢
Show that if x(¢) is BL asin (11-124) and A = 27 /o, then

= x{nA ‘(nA
x(r)=4sir|1nr7 3 2EA) AP

-~
2 (ot — 2n7)° a(ot — 2n)

= —=

Hint: Use (11-143) with N = 2, H\(w) = |, Hy(w) = jo.
Find the mean and the variance of Plw,) it 1, is a Poisson point process and

1
P{w) = = Y, €os wt; cos wi; Iyl <a
i

Given a WSS process x(2) and a set of Poisson points t, with average density A,
we form the sum

X (@)= ¥ s(t,)e

Il <e

Show that if E{x(¢)} =0and R () - 0 as |z| — =, then for large ¢,
2

E(X ()] = 265 (w) + 'T"R_,(n)

We are given the data x(¢) = f(¢) + n(t) where R,(r)= N&(7) and E{n(s) = 0}.
We wish to estimate the integral

g(r) = '{“*j(u-) da

knowing that g(7) = 0. Show that if we use as the estimate of g(£) the process
wit) = 2(t) — 2(T)t/T where

t
z(.')=f'x(a)da then  E{w(t)) = g(1) mf=N!(l—?)
i
(Cauchy inequality) Show that

Z"’.‘b:
i

< ElalXlbf (i)

with equality iff a, = kb*.

The input to a system H(z) is the sum x{n] = f[n] + vin] where flalis a known
sequence with z transform F(z). We wish to find H(z) such that the ratio
Y}[(JJ/EG.?IHI} of the output yla] = y/ln] +y,[n] is maximum. Show that (q) ?I'
vin] is white noise, then H(z) = kF(z~ "), and (b) if H(z) is an FIR filter that is, if
H(z) =a, + ajz ' + -~ +ayz Y, then its weights a,, arc the solutions of the
system

iR,[nfm]am=kf[—n] =0, N

=1
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11-25.

11-26.

11-27.

11-28.

STOCHASTIC PROCESSES

If R (7) = Né(z)and

x(t) = Acoswyt + n(r) H(w) = ——
a + jw
y(r) = Beos(w, + 1+ @) + y,(1)
where y,(£) is the component of the output ¥(¢) due to n(r), find the value of &
that maximizes the signal-to-noise ratio
1B
E(33(1))
Answer: a = w.

In the detection problem of page 386, we apply the process x(1) = f(z) + v{1) to
the tapped delay line (11-161). Show that: (a) The S/N ratio # is maximum if the
coefficients a; satisfy (11-162); (5) the maximum r equals /v (1,)

Given an SSS process x(r) with zero mean, power spectrum S(w), and bispectrum
S(u, v), we form the process ¥(¢) = x(¢) + ¢. Show that

Syl 0) = 8(uv) + 2me[ S(u)a(e) + S(w)d(u) + S(u)s(u + )]
+ 4776 (u)d(v)

Given a Poisson process x(1), we form its centered process %(1) = x(1) — A¢ and
the centered Poisson impulses
dx(t)
(1) = = ). 8(t— =7
() === L=

Show that
E{&(t,)X(1)X(1;) = A min(r),1,,13)
E{z(4,)2(15)2( 1) = A6(1, — 13)3(1, — t5)
Hint Use (10-94) and the identity
min(?y, t5,4) = U(t, = 6,)U(s = 1) + U — 1)ULy — 1)
+ 83U(8 — )U(t; —t3)



CHAPTER

12

SPECTRAL
REPRESENTATION

12-1 FACTORIZATION AND INNOVATIONS

In this section, we consider the problem of representing a real WSS process x(1)
as the response of a minimum-phase system L(s) with input a white-noise
process i(2). The term minimum-phase has the following meaning: The system
L(s) is causal and its impulse response [(#) has finite energy; the system
I(s) = 1/L(s) is causal and its impulse response y(¢) has finite energy. Thus a
system L(s) is minimum-phase if the functions L(s) and 1 /L(s) are analytic in
the right-hand plane Re 5 > 0. A process x(¢) that can be so represented will be
called regular. From the definition it follows that x(¢) is a regular process if it is
linearly equivalent with a white-noise process i(¢) in the sensc that (see Fig.
12-1)

i() = j:-y(a)x(r —a)da  Ry(r) =8(r) (12-1)

x(r)=f:l(a)i(.'—a)da E[xZ(r)}=[u°°12(z)m<m (12-2)

The last equality follows from (10-91). The above shows that the power spec-
trum S(s) of a regular process can be written as a product

S(s) = L(s)L(—s) S(w) = [L(jo)I? (12-3)

where L{s) is a minimum-phase function uniquely determined in terms of S(w).
The function L(s) will be called the innovations filter of x(1) and its inverse (s)

401
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¥ (£) +*r(s) I{1)+>L(s

I (s): whitening filter

x(1) i(t) Xl) L($): innovations filter

FIGURE 12-1

the whitening filter of x(¢). The process i(¢) will be called the innovations of x(1),
It is the output of the filter L(s) with input x(¢).

The problem of determining the function L(s) can be phrased as follows:
Given a positive even function S(w) of finite area, find a minimum-phase
function L(s) such that |L(jw)|* = S(w). It can be shown that this problem has
a solution if S(w) satisfies the Paley—Wiener condition’y

= |In S(w)|
| o de < (12-4)

This condition is not satisfied if S(w) consists of lines, or, more generally, if it is
bandlimited. As we show later, processes with such spectra are predictable. In
general, the problem of factoring S(w) as in (12-3) is not simple. In the
following, we discuss an important special case.

Rational spectra. A rational spectrum is the ratio of two polynomials of w®
because S(—w) = S(w):

A(w?) : A(—=5%)
T N A T

This shows that if s is a root (zero or pole) of S(s), —s, is also a root.
Furthermore, all roots are either real or complex conjugate. From this it follows
that the roots of S(s) are symmetrical with respect to the jo axis (Fig. 12-2a).
Hence they can be separated into two groups: The “left” group consists of all
roots s; with Res; <0, and the “right” group consists of all roots with
Re 5, > 0. The minimum-phase factor L(s) of S(s) is a ratio of two polynomials
formed with the left roots of S(s):

S(w) (12-5)

_ N(s)N(-5) _ N(s) S
S) = Siobiosy MO =pry O =50)
Example 12-1. If S(w) = N/(a® + »?) then
N N W
s(s)=az—sz=(a+s)(a—s) L= s

1N, Wiener, R. E. A. C. Paley: Fourier Transforms in the Complex Domain, American Mathemati-
cal Soviety College, 1934 (see also Papoulis, 1962).
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S(s) L(s)
X X X
5 0 . 5 0
X X X

(a) (b)
FIGURE 12-2

Example 12-2. If S(w) = (49 + 250%) /(w* + 10w® + 9) then
49 — 2552 7+ 58

= LY =G e+

IF=s2)(d—'s%)
Example 12-3. If S(w) = 25/(»* + 1) then
8(s) 25 25 D 5
5) = = = —
sS4l (2 H2s 1) (P —V2s+ 1) (=) 24+ V2Zs+ 1

Digital Processes

‘A digital system is minimum-phase if its system function L(z) and its Inverse
(z) = 1/L(z) are analytic in the exterior [z| > 1 of the unit circle. A real WSS
digital process x{n] is regular if its spectrum S(z) can be written as a product

S(z) = L(z)L(1/z)  S(e*) = IL(e™)]? (12-6)

Denoting by /[n] and y[n] respectively the delta responses of L(z) and M(z), we
conclude that a regular process x[n] is linearly equivalent with a white-noise
process i[n] (see Fig. 12-3):

ifn] = T ylklsln— k] Rym] = 8lm] (127)
k=0
n]= XAkl —k]  Eiln)) = X Plk]l <= (128)
k=0 k=0

The process i[n] is the innovations of x[n] and the function L(z) its innovations
filter. The whitening filter of x[n] is the function I(z) = 1/L(z).

It can be shown that the power spectrum S(e/) of a process x(n] can be
factored as in (12-6) if it satisfies the Paley~Wiener condition

[ IinS(w) dol < (12:9)
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x[n] - i[n] - "]“‘I

s(2)4 L)t
X
i o (e 0 St
X
(a)
FIGURE 12-3

Rational spectra. The power spectrum S(e’) of a real process is a function of
cosw = (e’ + ¢*)/2 [see (10-180)]. From this it follows that S(z) is a
function of z + 1/z. If therefore, z; is a root of $(z), 1/z, is also a root. We
thus conclude that the roots of S(z) are symmetrical with respect to the unit
circle (Fig. 12-3); hence they can be separated into two groups: The “inside”
group consists of all roots z, such that |z, < 1 and the “outside™ group consists
of all roots such that |z,| > 1. The minimum-phase factor L(z) of S(z) is a ratio
of two polynomials consisting of the inside roots of S(z):

_ N(2)N(1/2) CNGE) L
)= Sopay U9 Dy LS
Example 12-4. If S(w) = (5 — 4cos w)/(10 — 6 cos w) then
== = = =% i
8(z) = 3=2(z+z7") _.2(2 1/2)(z = 2) L(z)=§;7:

10-3(z+27Y 3(z—-1/3)(z—23)

12-2 FINITE-ORDER SYSTEMS AND
STATE VARIABLES

In this section, we consider systems specified in terms of differential equations
or recursion equations. As a preparation, we review briefly the meaning of
finite-order systems and state variables starting with the analog case. The
systems under consideration are multiterminal with m inputs x,(r) and r
outputs (1) forming the column vectors X(¢) = [x,(¢)] and Y(r) = [y,(r)] as in
(10-113):

At a particular time t = ¢,, the output Y(¢) of a system is in general
specified only if the input X(¢) is known for every . Thus, to determine Y(¢) for
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nXm "xXn rxon
rl> A [
m 1 ulr) L-—S_ Z(0) ey
— A +
X(1) rxm Yit)
IR l
L~
D
FIGURE 12-4

t > ty, we must know X(r) for + >, and for t <,. For a certain class of
systems, this is not necessary. The values of Y(z) for 1 >r; are completely
specified if we know X(z) for ¢ > ¢, and, in addition, the values of a finite
number of parameters. These parameters specify the “state™ of the system at
time ¢ = t,, in the sense that their values determine the effect of the past ¢ <1,
of X(r) on the future r > ¢, of ¥(¢). The values of these parameters depend on
ty; they are, therefore, functions z;(¢) of f. These functions are called stare
variables. The number n of state variables is called the order of the system. The
vector

Z(er) = [z(0)] i=1,..., "
is called the state vector; this vector is not unique. We shall say that the system
is in zero state at t =ty if Z(1,) = 0.

‘We shall consider here only linear, time-invariant, real, causal systems.
Such systems are specified in terms of the following equations:

dZ(1)

= AZ(1) + BX(t) (12-10a)

Y(t) = Cz(t) + DX(¢) (12-10b)

In the above, A, B, C, and D are matrices with real constant elements, of order

n X n, n X m, rxn, and rx m respectively. In Fig. 12-4 we show a block

diagram of the system S specified terminally in terms of these equations. It

‘consists of a dynamic system $, with input U = BX(r) and output Z(1), and of

three memoryless systems (multipliers). If the input X(r) of the system § is
specified for every 1, or, if X(#)= 0 for ¢ <0 and the system is in zero state at
t = 0, then the response Y(r) of S for ¢ > 0 equals

¥(1) =f:h’(a)x(r—oz) da (12-11)

where H(t) is the impulse response matrix of S. This follows from (10-78) and
the fact that H(r) = 0 for ¢ < 0 (causality assumption).
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We shall determine the matrix FI(¢)starting with the system §,. As we see
from (12-10a), the output Z(¢) of this system satisfies the equaltion

dZ(r1)

dt
The impulse response of the system §, is an n X 'n matrix ®(1) = [¢ (1)] called
the fransition matrix ‘of 8. The function :p,-,-(r) equals the yvalue of the jth state

wvariable z,(¢):when the ith element u,(1) of the input U(r) of §, equals 6(¢) and
all other elements are 0. From this it follows that [see (10-115)]

—AZ(r) = U(¢) (12412)

Z(1) = j:tb(n:)l}(l — d) da = f:th{cx)BX(t = a)da (12-13)
Inserting into (12-106), we obtain
Y(1) = L’cqn(a)e'x(: - &) da + DX(1)
= [[ce(a)BX(1 - a) + 8() DX(1 ~ )] da  (12-14)

where :6(¢) is.the (scalar) impulse function. Comparing with (12-11), we con-
clude that the impulse response matrix of the system § equals

H(t) = C®(r)B + (1) D (12-15)
From the definition of ‘(1) it follows that
d®(t) :
o~ AB() = 3(1)1, (12-16)

where 1, is the identity matrix of order n. The Laplace transform @(s) of &(z)
15 the system function of the system ;. Taking transforms of both sides of
(12-16), we obtain

sO(s) —AG(s) =1,  ®(s) = (51, —A)~" (12-17)
Hence
D(1) = e >0 (12-18)

This is a direct generalization of the scalar case; however, the determination of
thqclemems @;(r) of @(t) is not trivial. Each elemient is a sum of exponentials
of the form

@ult) = Lo (e 150
k

where s, are the eigenvalues of the matrix 4 and p, (t) are polynomials in
of degree equal to the multiplicity of s,. There are several ‘methods for
determining these polynomials. For small n, it is simplest to replace (12-16) by
n systems of n scalar equations.
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Inserting ®(1) into (12-15), we obtain

H(t) = Ce*B + 5(¢)D
= (12:19)
H(s) = C(s1, —4)'B+D

Suppose now that the input to the system § is a WSS process X(r). We
shall comment briefly on the spectral properties of the resulting output, limiting
the discussion to the state vector Z(r). The system S, is a special case of §
obtained with B = C = 1, and D = 0, In this case, Z(z) = ¥(¢) and

dY(r)

= — AY(r) =X(t)  H(s)= (51, —A4)" (12-20)

Inserting into (10-157), we conclude that
S,,(s) = S, (s)(—s1, —A)~"
S,,(s) = (s1, = 4) 'S, ,(s) (12-21)
S,,(s) = (51, —4") 'S (s)(—s1, —A) !

Differential equations. The equation
y(m(,) a5 aly""'”(t) A vies "’“u)'(’) = x{.£) (12-22)

specifies a system S with input x(¢) and output y(1). This system is of finite
order because y(r) is determined for r > 0. in terms of the values of x() for
t > 0 and the initial conditions

¥(0),¥(0),...,y""~(0)
It is, in fact, a special case of the system of Fig. 12-4 if we set m = r = Lt

() =y(6)  z,(1) =y(1) - z,(1) =y (1)

0 1 0 0 0
a=( 0 0 e azecs
—@, Tp=i T3 T = 1

and D = (). Inserting the above inta (12-19), we conclude after some effort that
1
“.ll+alj.n*]+,_'+an

H(s) =
This result can be derived simply from (12-22). .
Multiplying both sides of (12-22) by x(r — +) and y(t + 7), we obtain
RUX7) + i RUD(r) + - +a,R, (1) = Ry(7)  (12:23)
RU(7) + a\RG(x) + » -+ +a,R, (1) = Ryy(7) (12-24)

for all . This is a special case of (10-133).
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Finite-ordér processes, We shall say that a process x(1) is of finite order if it
innovations filter L(s)/is a rational function of s:

bys® +bs"' S+ - 4B, N(s)
S A e e, D(s)

S(s) = L(IL(—s)  L(s) = (12:25)
where N(s) and D(s) are two Hurwitz polynomials. The process x(1) is the
response of the filter L(s) with input the shite-noise process i(¢):

() + axO O + o s +ax(e) = byi™ () + ¢ +b,i(r) (12:26)
The past x(r — ) of x(t) depends only on the past of i(¢); hence it is

orthogonal to the right side of (12-26) for every = > 0. From this it follows as in
(12-24) that

RO(7) + a R N(r) + -~ +a,R(z) =0 7>0  (12:27)

Assuming that the roots s, of D(s)are simple, we conclude from (12-27) that

n
R(z) = Y™  1>0
i=1
The coefficients a; can'be determined from the initial value theorem. Alterna-
tively, to find R(7), we expand S(s) into partial fractions:

n 7

i a;
= 2 =S + 97 -
S(s) E‘l-"-“; + igl e (s) +S7(s) (12-28)
The first sum is the transform of the causal part R*(7)'= R(p)U(z) of R(7) and
the second of its anticausal part R—(7) = R(#)U(—7). Since R(—7) = R(7),
this yields

R(7) = R*(17l) = & ae (1229)
=1

Example 12-5. If L(s) = 1/(s + a), then

1 1/2a 1/2a
(s+a)(—s+a) T yva * —s+a
‘Henee R(7) = (1/2a)e="1",

S(s) =

Example 12-6. The differential equation
®(1) + () + 2x(0) =i(t)  Ry(r) =8(7)
specifies a’process x(¢) with autocorrelation' R(z). From (12-27) it follows:that
R'(7)+ 3R(7) + 2R(7) =0 ‘hence R(#) =¢je "+ cae >’
for 7 > (. To find the constants ¢, and ¢,, we:shall determine R(0) and' R'(0).
Clearly,
1 s/ +1/4  —s/12+ 1/4

S(s) = ; — — = -
) (5% + 35 + 2)(s% — 35+ 2) 4342 | SR-35+2
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The first fraction on the right is the transform of R* (), hence
RY(0*) = [liﬂ.ys*(.w) =5 =1¢ + cy=R(0)
Similarly,
RI(0%) = Jlil'mis(ss‘(x) — %) =0=—¢, = 2c,
This yields R(r) = fe " — Le=2r,

Note finally that. R(7) can be expressed in terms of the impiilse response /(1)
of the innovations filter L(s):

R(x) = () +1(=7) = ["UIrl + @)i(a) da (12:30)

Digital Systems

The digital version of the system of Fig. 11-4 is a finite-order system S specified
by the equations:

Z[k + 1] = AZ[k] + BX[k] (12-31a)

Y[k] = CZ[k] + DX[k] (12-31b)

where k is the discrete time, X[k ] the input vector, Y[k] the output vector, and
Z[ k] the state vector. The system is stable if the cigenvalues z; of the n X n
matrix A are such that |z;] < 1. The preceding results can be readily extended

to digital systems. Note, in particular, that the system function of § is the z
transform

H(z) = €(z1, —4) 'B+D (12-32)
of the delta response matrix
H[k] = C®[k]B +8[k]D k=0 (12-33)

We shall discuss in some detail scalar systems driven by white noise. This
material is used in Sec. 13-3,

Finite-order processes. Consider a real digital process x[n] with innovations
filter L(z) and power spectrum S(z):

S(z) =L)L(/Z) L) = Dbl (1234)

n=0
where n is now the discrete time. If we know L(z), we can find the autocorrela-
tion R[m] of x{n] either from the inversion formula (10-179) or from the
convolution theorem
Rlm] = [m]*l[-m] = X ![|m| + k)I[k] (12-35)
k=0

We shall discuss the properties of R[] for the class of finite-order processes.
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The power spectrum S(w) of a finite-order process x[n] is a rationa)

function of ¢os w: hence ‘its innovations filter is'a rational function of z:

N(z) by + bz = 4 b,z

C D) U tbaz o Fagz N

(12-36)

To find its autocorrelation, we determine 1[z] and insert the result into (12-35).
Assuming that the roots z, of D(z) are simple and M < N, we obtain

‘y' ] n
L(:)=Erﬁ i[n] = Xyzlt[n]
Alternatively, we expand S(z):
n"l al nl
S(D=T— S+ L—— Riml=Taz (23)

Note that a; = y,L(1/z,).
The process x[n] satisfies the recursion equation

X[n] + apx[n = 1] # -+~ +ayx[n —N] =byiln] + -+ +byiln —m]
(12-38)

where i[n] is its innovations. We'shall use this equation to relate the coefficients
of L(z) to the sequence R[m] starting with two special cases.

Autoregressive processes. The process x[z] is called autoregressive (AR) if
bﬂ

ayz=" + s Hayz N

L(z) = (12-39)
In this case, (12-38) vields
X[n] +axln = 1]+ - +auxln - N] = b,i[n] (12-40)
~_ The past xin — m] of x[n] depends.only on the past ‘of i[n]; furthermore,
E(i*[n]) = 1. From this it follows/that E{x[nliln]} = by and Elx{r — mlilm]l =
0. Multiplying (12-40): by xln — m] and setting m = 0,1,..., we obtain the
equations
R[0] +a,R[1] + -+ +ayR[N] = b,
R[1] +a,R[0] + - +ayR[N ~ 1] =0 (12-41a)

RIN] +a, R[N = 1] + -+ +ayR[0] = 0
and
Rlm] +a;R[m = 1]+ - #ayR[m = N] =10 (12-41b)
for m > N. The first N + 1 of these are called the Yule—Walker equations.
They are used in Sec, 13-3 to express-the N + 1 parameters a, and by, in terms
of the first N + 1 values of Rim]. Conversely, if L(z) is known, we find R(m]
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for [m| = N solving the system (12-41a) and we determine Rlm) recursively
from (12-41b) for m > N.

Example 1-27. Suppose thit
x[n] —ax(n = 1] =v[n] R, [m] = bs[m)
This is a special case of (12-40) with D(z) = 1 —az ! and Z, = a. Hence

b
R[0] - aR[1] = b R{m] = aal @ -——

j = ”2
Line spectra. Suppose that x[z] satisfies the homogeneous equation
x[n] 4 ax[n = 1]+ - +ayx[n -N] =0 (12-42)
This is a special case of (12-40) if we set b, = 0. Solving for x[n], we obtain
X[n] =cyzj + <+ +eyzh D(z;) =0 (12-43)

If x[n] is ‘a stationary process, only the terms with z; =e/™ can appear.
Furthermore, their coefficients ¢, must be uncorrelated with zero mean, From
this it follows that if x[z] is a WSS process satisfying (12-42), its autocorrelation
must be a sum of exponentials as in Example 10-31:

Rlm] = Ya,em  §(w) =27 Y a,6(w —B) lwl < m (12:44)
where @, = Elc]} and B, = w, — 2wk, as in (10-182).
Moving average processes. A process x[n] is a moving average (MA)if
x[n] = byi[n] + -+ +byiln - M] (12-45)

In this case, L(z) is a polynomial and its inverse /[n] has a finite length (FIR
filter):

L(z) =bg+ byz™" + -+ +byz™™  i[n] =byd[n] + -+ +bybéln —M]

(12-46)
Since I[n] = 0 for n > m, (12-35) yields
M=m M-=m
R[m] — E "[m + k]’[k] = Z bkd‘mbk‘ (12-47)
k=0 k=0

for 0 < m < M and 0 for m > M. Explicitly,
R[0] = b3 + b} + +-+ +bF,
R[1] = bgb, + byby + - +by_ by

R[M] = boby
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Example 12-8. Suppose.that x[n]is the arithmetic average of the M values of ify)
i
x[n] = A—f{i[n] Filn = 1] + - #i[n =M 4+ 1])

In this case,

| Jli—3 M
SR S S R 21 L I e
L(=) M(' ' * ) Ml =z

1 AM=dsdml e =Tl 1 bl
= 1= =—[1-— lm| = M
R[m) e kgu M2 M( M ) Ll
_Muw
2 M _ M sint—
S(z) = L(z)L(1/2) = — = S(el) = —=_
M@ =z2"—=z) Mt

Autoregressive moving average. We shall say that x[n] is an ARMA progess if it
satisfics the equation
x[n] +ax[n— 1] + - +ayx[n — N] = byi[a] + =+ + byifn — M|
(12:48)
Its innovations filter L(z) is the fraction in (12-36). Again, i[,1] is whité noise:
hence
E{x[n —mliln —r]) =0 for m<r

Multiplying (12:48) by x[in — ] and using the above, we conclude: that

Rlm] + a;R[m =11+ =« +ayRlm —N]=0 m>M (12-49)

Note that; unlike the AR case, this is true only for 71 > M.

12:3 FOURIER SERIES AND

KARHUNEN-LOEVE EXPANSIONS

A process x(¢) is MS periodic with period 7 if £(|x(1 + T) — x(+)|*} = 0 for all
. A WSS process is MS periodic if its autocorrelation R(7) is periodic ‘with

period T = 2m/w, [see (10-165)). Expanding R(7) into Fourier series, we
obtain

=

0 .. )
R(F)= L yermor o = — ["R(z)eTodr  (12:50)
i T4y
Given a WSS periodic process x(1) with period 7., we form the sum
= il e
Re)= T, cqelret g = — f "x(t)e i dy (12-51)
Tty

T -—
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THEOREM. The above sum equals x(¢) in the MS sense

E{Ix(r) = ()% =0 (12-52)
Furthermore, the RVs ¢, are uncorrelated with zero mean for i # 0, and their
variance equals y,:

Blegh = {

Mx n =) Efe.ic*) = f‘r,, n=m
) \[i

2.5
0 s (G (12-53)

) n#m

Proof. We form the products

I

1 .y
¢, x*(a) T j:’; x(r)x* (e)e "ot dy

" i
e o¥ = —\fSic xq(e) et Mol gt
T/
and we take expected values, This yields

= % 1 -7
[:{r.‘,,x (a” = ?j R(t = a)e Mol gp— @~
0

1 e [ n=m
Ele ¢%) = f s Sinwgl gimant oy "
fenen) T L ¢ ‘ 10 n+m

and (12-53) results.
To prove (12-52), we observe, using the above, that
E{I&(0)P) = ¥ E{le,l?) = L v, = R(0) = E{Ix(1)]*}
E{x(0)x*(t)} = ¥ Efe,x*(1))e = Fuy, = E{x*(1)x(1))
and (12-51) follows readily.

Suppose now that the WSS process x(1) is not periodic. Selecting an
arbitrary constant T, we form again the sum %(1) as in (12-51), It can be shown
that (see Prob. 12-12) x(¢) equals x(1) not for all ¢, but only in the interval (0, 7):

E{Ix(r) —x(0)IF) =0  0<e<T (12-54)

Unlike the periodic case, however, the coefficients e, of this expansion arc not
orthogonal (they are nearly orthogonal for large n). In the following, we show
that an arbitrary process x(¢), stationary or not, can be expanded into a series
with orthogonal coefficients,

The Karhunen-Loeve Expansion
The Fourier series is a special case of the expansion of a process x(¢) into a
series of the form

x(t) = ic,,xp,,(r) 0<t<T (12-55)

n=1
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where ¢,(r) is a set of orthonormal functions in the interval (0, 7):
furcpn(r)qp;,‘;(l) dr = 8[n — m] (12-56)
and the coefficients ¢, are RVs given by
ehi= fnrx(r}w:(r) dt (12-57)

In the following, we consider the problem of determining a set of orthonormal
functions ,(¢) such that: (a) the sum in (12-55) equals x(r); (b) the coefficients

¢, are orthogonal.
To solve this problem, we form the integral equation

[TR(!“{z)w(r:)df:=/\zp(!,) 0<t,<T (12-58)
0

where R(t;, t,)is the autocorrelation of the process x(¢). It is well known from
the theory of integral equations that the eigenfunctions ¢,(1) of (12-58) are
orthonormal as in (12-56) and they satisfy the identity

R(t,t) = T Ale ()1 (12-39)

n=1

where A, are the corresponding eigenvalues. This is a consequence of the p.d.
character of R(¢, ;).

Using the above, we shall show that if ¢,(t) are the eigenfunctions of
(12-58) then

E{lx(1) = %()[*} =0 0<r<T (12-60)
and
E{c,cx} = A8ln —m] (12-61)
Praof. From (12-57) and (12-58) it follows that
Efe,x* () = ['R*(a, )¢ (1) dt = A3 (a)
0

Ele,ch) = An [ 0F(0)on(t) dt =2, 8[n —m]  (1262)
0
Hence

E(e,8(0)) = T Ele,ehlen(t) = Agr(0)

m=1

i A1) ek (1) = R(1,1)

n=1

Ez5(0)x(1)) = E{Ix(0)*} = E(1&(0)I*}

E{&(r)x*(r)}

and (12-60) results.
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It is of interest to note that the converse of the above is also true: If )
15 an orthonormal set of functions and

()= % ¢, @.(1) Efc,c*) = {m.' no=m
=1 0 n#in

then the functions ¢,(r) must satisfy (12-58) with A = o2,

Proof. From the assumptions it follows that ¢, is given by (12-57), Furthermore,

Elx(D)es) = T Efc,chlon(t) = ale,(1)

n=1
E(x(t)ef) = [TEXx(a))¢,(a) da = ["R(1, @) p(a) da
a
This completes the proof.

The sum in (12-55) is called the Karhunen-Lodve (K-L) expansion of the
process x(¢). In this expansion, x(¢) need not be stationary. If it is stationary,
then the origin can be chosen arbitrarily. We shall illustrate with two examples.

Example 12-9. Suppose that the process x(¢) is ideal low-pass with autocorrelation

sin ar

R(7) =

wT

We shall find its K-L expansion. Shifting the origin appropriately, we conclude
from (12-58) that the functions «,(r) must satisfy the integral equation

frﬂ sina(r —7)

e () dr = A1) (12-63)
~ry2 w(f—1)
The solutions of this equation arc known as prolate-spheroidal functions,t

Example 12-10. We shall determine the K-L expansion (12-55) of the Wiener
process wit) introduced in Sec, 11-1. In this case [see (11-5)]

afy 1, <ty

R(.‘,.lz)w-a:min(n.t,):{nrrl >0

Inserting into (12-58), we obtain
a [yt dty + m,j"pu:) dr; = Ap(l) (12-64)
n #

To solve the above integral equation, we evaluate the appropriate endpoint

1D, Slepian, H. J. Landau, and H. O. Pollack: “Proliate Spheroidal Wave Functions,” Bell Sysrem
Technical Jowrnal, vol. 40, 1961,
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conditions and differentiate twice. This yields
. T )
p() =0 af e(t) diy = Ae(1)
1

G(T)=0  Ag'(t) +ap(t) =0

Solving the last equation, we obtain

2 & @n+l)r
(1) = ?-smw,,t w, = V X: =T om

Thiss, in the interval (0, T), the Wiener process can be written as a sum of
sine waves

7 = [z
w(r) = = Y ¢, sinwd €, = \/? ‘/;T“'(')Sin Wyt df

where the coefficients ¢, are uncorrelated with variance Efc}) = A,

12-4 SPECTRAL REPRESENTATION OF
RANDOM PROCESSES

The Fourier transform of a stochastic process x(1) is a stochastic process X{w)
given by

X(@) = fw x()e e dt (12-65)

The integral is interpreted’as an MS limit. Reasoning as in (12-52), we can show
that (inversion formula)

x(e) = % f_:x( w)e’ dw (12-66)

in the MS sense. The properties of Fourier transforms :also hold for random
signals, For example, if ¥(r) is the output of a linear system with input x(¢) and
system function H(w), then ¥(w) = X(w)H(w).

The mean/of X{w) e¢quals the Fourier transform of the mean of x(r), We
shall express the autocorrelation of X(w) in terms of the two-dimensional
Fourier transform:

I(u, ) = jm f” R(ty,t5)e e dy, dr, (12-67)

of the autocorrelation R(z;, t;) of x(¢). Multiplying (12-65) by its conjugate and
{taking expected values, we obtain

E(X(u)X*(v)} = f f-" E{x(1,)x*(1,)} e 1=+ d dr,
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Hence
E(X(u)X*(v)) = I'(u, —v) (12-68)

Using (12-68), we shall show that, if x(¢) is nonstationary white noise with
average power g(t), then X(w) is a stationary process and its autocorrelation
equals the Fourier transform Q(w) of qlr):

THEOREM. If R(1,t,) = q(#,)6(¢; — t,), then
E{X(a +a)X*(a)) = 0(w) = ft a(e)e " dt (12-69)
Proof. From the identity

f f ql1,)8(t, = 1) e e e, di, = fm a(ty)e o dy,

-

it follows that T'(x, v) = Q(u + v). Hence [see (12-68)]

E{X(w + @)X*(a)) = (o +a, —a) = O(w)
Note that if the process x(t) is real, then

E(X(u)X(v)} = ['(u,v) (12-70)

Furthermore,

X(~w) = X*(w) I(=u,—v) = T*(u,v) (12-71)
Covariance of energy spectrum. To find the autocovariance of | X(w)|?, we must
know the fourth-order moments of X(w). However, if the process x(¢)is normal,

the results can be expressed in terms of the function I'(1, v). We shall assume
that the process x(¢) is real with

X(w) = A(w) +jB(w) D(u,v) = L(u,v) +jL(u,v) (12-72)
From (12-68) and (12-70) it follows that
2E(A(u)A(v)) = L (u,v) + T(u, —v)
2E{A(v)B(w)) = Ty(u,v) + [(u, —v)
2E(B(u)B(v)) = F{u,v) — I (u, —v)
2E(Au)B(0)) = Tj(u,0) = Ti(t, ~v)

(12-73)

THEOREM. If x(1) is a real normal process with zero mean, then

Cov{IX(u)1?, [X(v) 1} = T2(w, =) + T*(u,0) (1274)
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Proof. From the normality of x(¢) it follows that the processes Alw) and Blaw)
ate jointly normal with zero mean. Hence [see (7-36)]

E{IX(u) () 1) — E{ X () P} E(1X(0) 7}
~ E|[A%(u) + B3 ()] [A%(v) + B2()]}
— E{A2(it) + B2(w)}E[A%(v) + BX(u)]
= 2B {A(u)ALe)) + 2EH(B(1)B(1))
+ 2E2[A(1)B(v)} + 2EHA(0)B(u))
Inserting (12:73)/into the above. we obtain (12-74).
STATIONARY PROCESSES. Suppose that x(2) is a stationary process with auto-
correlation R{t,,1,) = R(t; — £;)and power spectrum S(w). We shall'show that
F(u,0) = 278(u)d(u + v) (12-75)

Proaf: With't, = t, + 7, it follows from (12-67) that the two-dimensional trans-
form of R(s, — 1,) equals

j.m J,au R([’ _ ‘E)E_J(mtﬂ.;,) {!‘I Li'f: =j ‘gf;(n-l r'pl:[ R('.’)L’"j“'_d'r dl;
—cod —20 =

Hence
I(u,0) = S(u)f= et dr,
This yields (12-74) because Je "'dt = 2m8lw).
From|(12-74) and.(12-68) it follows that
E(X()X*(v)) = 2mS(u)s(u —v) (12-76)

This shows that the Fourier transform of a stationary process is nonstationary
white noise with average power 27S(u). It ¢an be shown that the converse is
also true (see Prob, 12-12); The process x(¢) in (12-66) is WSS iff E(X(w)) =0
for @ # 0, and

E{X(u)X* (1)) = Q(1)8(u - v) (12:77)

Real processes. If x(r) is real, then A(—w) = A(w), B(—w) = B(w), and
‘ 1 1= .
x(1) = ;f“ A(w) cos w.fdm—;fu B(w)sin wtdw (12-78)

It suffices, therefore, to specify A(w) and B(w) for w = 0 only. From (12-68) and
(12-70) it follows that

E{[A(u) + /B(&)] [A(e) £iB{1)]) =0 w#+0v



12-4 SPECTRAL REPRESENTATION OF RANGOM PRoCESsEs 419

Equating real and imaginary parts, we obtain
E{A(r)A(v)) = E{A(u)B(v)} = E{B(u)B(v)} =0 for w#¢

(12-79a)
With « = @ and v = —w, (12-9) yields E{X(w)X{(w)} = 0 for «w # 0; hence
E{A*(0)) = E{B*(w)) E(A(w)B{w)) =0 (12-7956)

It can be shown that the converse is also true (sec Prob. 12-13). Thus a
real process x(¢) is WSS if the coefficients A(w) and B(w) of its expansion
(12-78) satisfy (12-79) and E{A(w)) = E{B(@)} = 0 for @ + 0.

Windows. Given a WSS process x(7) and a function w(r) with Fourier transform

W(w), we form the process y(r) = w(t)x(1). This process is nonstationary with
autocorrelation

R,-y(lx!’z) =w(it )w*(1;)R(1;, —t3)
The Fourier transform of R, (1,,1,) equals
L, (u.0) = fﬂ fz w(t)w(13) R(t, — ty)e =20 dy, dt,
Proceeding as in the proof of (12-75), we obtain
1 _
Ty(uv) = 5= [ Wlu=B)W*(=v—p)S(B)dp  (1280)

From (12-68) and the above it follows that the autocorrelation of the Fourier
transform

Y(w) = f;vv(r)x(r)e‘""'dr (12-81)
of ¥(t) equals
E{(Y(u)Y*(v)) =T, (u, —v) = ;;[:ww = B)W*(v - B)S(B) dp
Hence

E{I¥(w) %} = %f:‘IW(w — B)I’S(p) dB (12-82)

Example 12-11. The integral
Xr(w) = [ x(t)e = di
-7

is the transform of the segment x(t)p (1) of the process x(1). This is a special case
of (12-81) with w(t) = py(t) and W(w) = 2sin Tw/w. If. therefore, x(1) is a
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stationary process, then [see (12-82)]

- 2sin* Tw
E{|X (w)|*} = S(w)s ——— (12-83)

T

Fourier-Stieltjes Representation of WSS
Processest

We shall express the spectral representation of a WSS process x(1) in terms of
the integral

Ziw) = f”"'x( ) da (12-84)

We have shown that the Fourier transform X(w) of x(¢) is nonstationary white
noise with average power 2wS8(w) From (12-76) it follows that, Z(w) is a
process with orthogonal increments:

For any @; < w; < @y < wy!

E{|Z(w,) — Z(w))] [2*(w,) = Z*(ws)]} =0 (12-85a)
E(|Z(w;) - Z(w)IP)} = 27 [ "S(w) do (12:-85b)

Clearly,
dZ(w) = X(w) dw (12-86)

hence the inversion formula (12-66) can be written as a Fourier-Stieltjes
integral:

x(r) = zL— f :c"“' dZ(w) (12:87)
With @, = w, w, = u + du and w; = ¢, @, = v + dv, (12-85) yields
E{dZ(u)dZ*(v)) =0 e
E{ldZ(u) 17} = 278(u) du

The last equation can be used to define the spectrum S(w) of WSS process x(1)
in terms of the process Z(«w).

(12-88)

Il

‘WOLD’S DECOMPOSITION. Using (12-85), we shall show that an arbitrary WSS
process x(r) can be written as a sum;

x(#) =x,(r) +x,(r) (12-89)

where x,(¢) is a regular process.and x,(1) is a predictable process consisting of

FH. Cramer: Mathematical Methods' of Sratistics, Princeton Univ. Press, Princeton, N.I., 1846
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Ziw) Z{w) Z(w)
2¢
. / .
i 1
(1] w, w t (7] 1} w i)
FIGURE 12-5
exponentials:
X, (1) =co+ Tee'  E(c) =0 (12:90)

Furthermore, the two processes are orthogonal:
Elx,(t+ r)x¥(1)} =0 (12-91)

This expansion is called Wold's decomposition. In Sec. 14-2, we determine the
processes x (1) and x,(1) as the responses of two linear systems with/input x(¢).
We also show that x (1) is predictable in the sense that it is determined in terms
of its past; the process x,(1) is not predictable.

We shall prove (12-89) using the properties of the integrated transform
Z(@) of x(¢). The process Z(w) is a family of functions. In general, these
functions are ‘discontinuous at a set of points w; for almost every outcome. We
expand Z(w) as a sum (Fig. 12-5)

Z(w) = Z,(w) +Z,(w) (1292)

‘where Z,(w) is a continuous process for @ # 0 and Z (@) is a staircase function

with discontinuitics al w,. We denote by 277¢, the discontinuity jumps at w, # (.
These jumps equal the jumps of Z (w). We write the jump al @ =0 as a sum
27(q + ¢) where n = E{x(1)), and we associate the term 27m with Z (o).
Thus at @ = 0 the pl’ﬂl:t.SS Z (w)is discontinuous with jump-equal to Zmn. The
jump of Z (w) at w =0 cquuh 2ar¢;,. Inserting (12-92) into (12-87), we obtain
the decomposmon (12-89) of x(z) where x (t) and X, (1) are the components due
0 Z (w) and Z () respectively.

From (12-85) it follows that Z (w) and Z (w) are two processes with
orthogonal increments and such that
kS i=j

T (129)
i #

E(Z, (w)Z3 (1)} =0 Efc ) =
The first equation shows that the processes x,(t) and x (1) ar¢ orthogonal as in
(12-89); the second shows that the coefficients ¢, of x,(r) are orthogonal. This
also follows from the stationarity of x (/).
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We denote by § (w) and S, (w) the spectra and by ¥,(w) and F () the
integrated spectra of x (r) and x (1) réspectively. From/ (12-89) and (12-91) it
follows that

S(w) =S, (w) + S(@)  Flo)=F(a)+F(a) (12-94)
The term F(w) is continuous for w # 0; for w = 0 it is discontinuous with a

jump equal to 2% The term F(w)iis a staircase funetion, discontintious at
‘the points w, withjumps equal'to 274, Hence

S, (@) =2mkyd(w) + 27 L k80 = o)) (12-95)

The impulse at the origin of S(a) equals 27(k, + 1°)6(w).

Example 12-12. Consider the process
y(r) = ax(r) Efa}=10

where x(1)is a regular process independent of ‘a. We shall determine its Wold
decomposition.
Erom the assumptions it follows that

E¥(e)} =0 Ry (7) =E{a’x(f + 0)x(1)} = &R, (%)
The spectrum of x(¢) equals 8 (w) + 277 26(w). Hénce
Syy (@) =55 (@) + 2mani6(w)

From the regularity of x(#) it follows that its covariance spectrum 8¢ (w) has.no
impulses, Since p, = 0, we conclude from (12-95) that S (@) = 27k 5(w) where
key = 6202, This yields

yn(l) = M8 yr(') =Q[X(1)—ﬂ,]

DISCRETE-TIME PROCESSES, Given a discrete-time ‘process x[a], we form its
diserete Fourier transform (DFT)

X(w) = ) x[nle /= (12-96)
n= —o
This yields
] T -
x[n] = = ] X(w)e™ dw (12-97)

From the definition it follows that the process X(w)'is periodic with period 2.
It suffices; therefore, to study its properties for |w| < = only. The preceding
results properly modified also hold for discrete-time processes. We shall discuss
only the digital version of (12-76): :

If x[n] is:a WSS process'with power spectrum S(w), then its DFT X(w)'is
nonstationary white noise with 4utdcovariance

E(X(u)X*(v)) = 2mS(u)s(u —v) —a<u,v<w (12-98)
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Proof. The proof is based on the identity

=
Y e i = 2mé(w) |lw] < =

n= —x

Clearly,

E{X(u)X*(v)}

i

Y, 2 E{xln + mlx*[m])exp| —i[tm + n)u — nvl}

=0 - -

w
= E pintu—n)
-

and (12-98) results.

¥ Rlm]e=fm

m

BISPECTRA AND THIRD ORDER MOMENTS. Consider a real SSS process x(1)
with Fourier transform X(w) and third-order moment R(w,») [see (11-179)].
Generalizing (12-76), we shall express the third-order moment of X(w) in terms
of the bispectrum S(u, v) of x(1).

"THEOREM.

E{X(u)X(u)X*(w)} = 278(u,v)d(u + v — W) (12-99)
Proof. From (12-65) it follows that the left side of (12-99) equals

Jo T [ B )x(e)x(s)) e s dey iy
—g =0 -0

With i£, = t3 + u and 1, = 15 + v, the above yields

fm fx R ju,v)e ntivdy rlufﬂ g
and (12:99) results because the last integral equals Zmo(u + 0 — w).

We have thus shown that the third-order moment of X(w) is 0 everywhere
in the wpw space except on the plane w =u + 0 where it equals a surface
singularity with density 278, v). Using this result, we shall determine the
third-order moment of the increments

Lw,) - Uawy) = [ X(w) do (12-100)
g

of the integrated transforms Z(w) of x(¢).

THEOREM.
E{[2(w;) — Z(w))](Z(0,) —Z(@:)][2*(we) = 2*(ws)])

= 21rfnf5(u,u) dudv (12-101)
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‘where R is the set of points common to the three regions
wy < U< wy wy < U < wy ws < W < wg
(shaded in Fig, 12-6@a) of the uv plane.

Proof. From/(12:99) and (12-100) it follows that the left side of (12-101) ¢quals

fwzfu.f 2mS(u, U)dududw—va f S(u.u,)a‘udvf S(u + 0 — w) dw

w) Ty @) “wy
The last integral equals one for ws < u + v < wg and 0 otherwise. Hence the
right side equals the integral of 2w 8(i, ¢) in the set R as in (12-101)
COROLLARY. Consider the differentials

dZ(ug) = X(ug)du  dZ(vg) = X(vg)dv  dZ(wy) = X(w,) dw
We maintain that
E(dZ(ug) dZ(vy) dZ*(wy)) =278 (1, Ug) dudy (12-102)
if wy = uy + g and dw > du + du; it is zero if wg # uy + 0.
Proof, Setting
@) = Uy wy= Uy ‘Ws = Wy =1y + I
Wy = Uy du wy =g+ dv wg = Wy +di + du

into (12-101), we obtain (12-102) because the set R is the shaded rectangle of
Fig: 12-6b.

We conclude ‘with the ‘observation that equation (12-102) can be used to
define the bispectrum of a:SSS. process x(1) in terms of Z(w).
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PROBLEMS

12-1. Find R [m] and the whitening filter of x{a] if

cos2w + 1
S5 (w)=

12cos2w — 70cos w + 62
12-2. Find the innovations filter of the process x(1) if
w' + 64

12-3. Show that if /,[] is the delta response of the innovations filter of slal, then

Si(w) =

@

RJJ0] = X £[n]

n=0
12-4. The process x(¢) is WSS and
y'(t) + 3y'(2) + 2y(¢) = x(r)
Show that (a)
Ri(7) + 3R, (1) + 2R, (7) = R, (7)
Ry(7) + 3R}, (7) + 2R,,(7) = R, (7),
(b) If R, (7) = qb(z), then R,.(z) =0 for 7 < 0 and'for r > 0
Ry (7) + 3R, (7) + 2R, (v) =0 R, (0)=0 R} (0*)=gq

all =

q
Ryy(7) + 3R, (1) + 2R, /(1) =0 R;.(0) = 5 R; (0)=0

12-5. Show that if s[n] is AR and v[n] is white noise orthogonal to s{n), then the
process x[n] = s[n] + v{n]is ARMA. Find S (z)if R,[m] = 2"l and S (z) = 5.
12-6. Show that if x(¢) is a WSS process and
12 1 e sin® naT/2
— A e e
ks k);l X(KT)  then Efs?) 2’mzf_”s,(m) etz 4

12-7. Show that if R (r) = e 7| then the Karhunen-Loéve expansion of x(¢) in the
interval (—a, a) is the sum

=
%(1) = Y (B,b, cos @,r + Bibl sinwht)
n=1

where

c =C. -1/2 v sy 12
tanaw, = — cotaw,=— B, =(a+cd,) 72 Br={(a —=cA,)

@, @),

2¢ 2¢c
e P e

n= Ay 2 E[b?} = A, P

'

12-8. Show that if x(¢) is WSS and

a o
Nty = fj::zx(r)e_j”‘ di then E{ a—?-,rx.,(w)ﬁ} = [ Ry dr

E{bZ} =
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12-9.

12-10.

12-11.

12-12.

12-13.

12-14.

STOCHASTIC PROCESSES
Find the mean and the variance of the integral
a .
X(w) = f [Scos3r + v(e)]e ™/« dr
—a

if E{v(¢)) = 0.and R, (7) = 25(5).
Show that if

Efx,x;} =alln—k] Xw)= ¥ x,e /!

ne —x
and E{x,) = 0, then E{X(w)) = 0 and
E{X(u)X"(0)} = ) gleinu-urT
P—
Given a nonperiodic WSS process x(¢), we form the sum %(1) = Le e/ a5 in
(12-51). Show that (@) Efix(r) = (0)F) =0 for 0<t < T. (h) Elc,ct) =
/T B (de" ™= de where Bi(a) = (1/T)jIR(r — a)ei"i* 4o are the co-
efficients of the Fourier expansion of R(r — &) in the interval (0, 7). (¢) For large
T, Efc,e) = S(nwy)d(n — m).
Show that, if the process X(w) is white noise with zero mean and autocovariance
Qu)a(u — v), then its inverse Fourier transform x(t) is WSS with power spec-
trum Qlw) /2.
Given a real process x(¢) with Fourier transform X(w) = A(w) + jB(w), show that
if the processes A(w) and B(w) satisfy (12-79) and E{A(w)) = E{B(w))} = 0, then
x(r) is WSS.
We use as an estimate of the Fourier transform Fle) of a signal f(¢) the integral

Xe(w) = [T [£(0) + v(o)]e

where (1) is the measurement noise, Show that if S, (w) = g, then

inT(w —
B @) = [Py Vark o) - 20
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SPECTRAL
ESTIMATION

13-1 ERGODICITY

A central problem in the applications of stochastic processes is the estimation of
various statistical parameters in terms of real data. Most parameters can be
expressed as expected values of some functional of a process x(1). The problem
of estimating the mean of a given process x(¢) is, therefore, central in this
investigation. We start with this problem.

For a specific ¢, x(¢) is an RV; its mean n(t) = E{x(¢)) can, therefore, be
estimated as in Sec, 9-2: We observe n samples x(t,£;) of x(¢) and ‘use as the
point estimate of E{x(1)} the average

1
A1) = ~ (1.4

As we know, 7(#) is a consistent estimate of n(t); however, it can be used
only if a large number of realizations x(t,£) of x(1) are available. In many
applications, we know only a single sample of x(z). Can we then estimate n(1)in
terms of the time average of the given sample? This is not possible 1f Elx(1)

.depends on ¢. However, if x(¢) is a regular stationary process, its time average

tends to E(x(1)) as the length of the available sample tends to «. Ergodicity is a
topic dealing with the underlying theory.

427
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Mean-Ergodic Processes

We are given a real stationary process x(¢) and we wish to estimate its mean
1 = E{x(1)). For this purpose, we form the time average

I 7 : ;
N = ﬁj_,-“(”d" (13-1)
Clearly, m; is an RV with mean
1 7
Elng) = 57 [ E(x(0))dt=n

Thus m is an unbiased estimator of x. If its variance o — 0 as T — =, then
7 — 1 in'the MS sense. In this case, the time average n7({) computed from a
single realization of x(z) is close to n with probability close to L. If this is true,
we shall say that the process x(¢) is mean-ergodic. Thus a process x(¢) is
mean-ergodic if its time average m; lends to the ensemble average 7 as T — =,

To establish the ergodicity of a process, it suffices to find o, and to
examine the conditions under which oy — 0 as T — =, As the following
examples show, not all processes are mean-ergodic.

Example 13-1. Suppose that ¢ is-an RV with mean 7, and
x(r)=c  n=ERX(1))} =E{c} =n,

In'this case, x(¢) is a family of straight lines and w, = ¢. For a specific sample,
0 (&) =¢(Z) is a constant different from 7 if o) # 7. Hence x(1) is not
mean-crgodic.

Example 13-2. Given two mean-ergodic processes x,(r) and x,(r) with means 7,
and n,, we form the sum
xX(1) = x,(r) + exs(1)
where ¢ is an RV independent of x,(1) taking the values 0'and 1 with probability
0.5, Clearly,
E(x(1)} = E(x,(0)} + E(e}E{x(1)) = n, + 0.57;

If e(£) = 0 for a particular £, then x(1) = x,(¢) and m; = 7y as T — = If e({) = 1
for anather ¢, then x(r) = x (1) + x(¢#) and n; — n, + 7, as T — =. Hence x(1)
is not mean-ergodic.

VARIANCE. To determine the variance cr; of the time average n; of x(1), we
start with the observation that
1 t4T
Ny = w0 where w(t) = — x(a)d 13-2)
r=w(0) (0 =57 [ xa)da (
is_lhe moving average of x(r). As we know, w(1) is the output of a linear system
with input x(1) and with impulse response a pulse centered at ¢ = 0, Hence w(1)
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is stationary and its autocovariance equals

: L oz ( feel
Colr) = a] :_,C(T—(r)(-l " 37 do (13-3)
where C(7) is the autocovariance of x(r) [see (10-142)]. Since o
C,(0) and C(—a) = Cla), this yields

,‘ = Varw(()) =

2T

‘This fundamental result leads to the following conclusion: A process x(¢) with
autocovariance Clr) is mean-ergodic iff

5 1 2T ] 1, .27 ( o
o = = (((r)(l - ﬁ)d(r = ?jn (‘(r.-j(] 57 l da (13-4)

l[“((a)( ]m. ——0 (13-5)

The determination of the variance of x(r) is useful not only in establishing
the ergodicity of x(¢) but also in determining a eonfidence interval for the
estimate ny; of n. Indeed, from Tohebycheff’s inequality it follows that the
probability that the unknown 7 is.in the interval v, 4+ 10e, is larger than 0.99
[see (5-57)]. Hence =, is a satistactory estimate of » if T issuch that o, < 7.

Example 13-3. Suppose that Clz) = ge '™ as in (11-15). In this case,

.4y T q |l
2= — [Temrrll— = dr = =1 - ———
=7/ ( 27')' ! .-'r( 2eT )
Clearly, orp = 0 as 7 = = hence x(1) is mean-ergodic. If T = 1 /¢, then of =
q/cT.

Example 13-4, Suppose that x(¢) =5 + »(f) where »(6) is while noise with
R, (7) = qé(7). In this case, C(7) = R, () and (13-4) yiclds

2 20 T q
ap = 2—7,‘[721'45(1')(1 —~ E’) dr = o7

Hence x(1) is mean-crgodic,

It is clear from (13-5) that the ergodicily of a process depends on the
behavior of €(r) for large =. If C(r) = 0 for = > a, that is, if x(r)is g-depen-
dent and T == a, then

ai = irjo"cm( . )m = —[ C(7)dr < —c(u) —0

because [C(r)] < C(0); hence x(1) is mean-ergodic.

In many applications, the RVs x(¢ + 7) and x(¢)-are nearly uncorrelated
for large 7, that is, C(7) = 0 as 7 — =. The above suggests that if this is the
case, then x(r) is mean-crgodic and for large 7' the variance of =, can be
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approximated by
5 0y 1 = T -
of = [~ Clz) dr = ?j“ €(r) dr = —C(0) (13-6)

where 7. is the correlation time of x(r) defined in (10-49). This result will be
justified presently.

SLUTSKY’S THEOREM. A process x{t) is mean-ergodic iff

1 7,
?j; C(T)dTE’U (13-7)

Proof. (a) We show first that if &5 =0 as T = =, then (13-7) is trite. The
covariance of the RVs m; and x(0) equals

1 1
Cov[nz,x(0)] = E‘{Ef_;[x(r) — 2] [x(0) = ] dr} = E},TTC(” dt

But [see (7-9)]
Cov?[n,x(0)] = Var n, Varx(0) = 02C(0)
Hence (13-7) holds if o = 0.
o (b) We show next that if (13-7) is true, then o, =0 as T — «. From
(13-7)it follows that given & > 0, we can find a constant ¢ such that
1o
—f C(r)dr <e forevery ¢ > g (13-8)
tie
The variance of n, equals [see (13-4)]

T ]:‘T” Tf C(T( )dr

The integral from 0 to 27, is less than 27,C(0)/T because |C(r)| < C(0).
Hence

ZT l 27 T
2 < 2 000) + — ( - _]
of < —=C(0) Tj’mctf) i 24
But (see Fig. 13-1)
27 : 27 2T 2T 7t
| C(F)(2T — m)dr = (6 dtdr = C(r)drdt
i G S 0
From (13-8)'it follows that the inner integral on the right is less than ef; hence

a7-<—-C(D)+Tzf vt —— 2e

and sinee & is arbitrary, we conclude that o, — 0 as T > @,
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|
0 2T, ! 20 FIGURE 13:1

Example 13-5. Consider the process
x(1) = acosw! + bsinw? +¢

where a and b are two uncorrelated RVS with zero mean and equal variance. As
we know [see (10-55)], the process x(1) is WSS with mean ¢ and autocovariance
o % cos wr. We shall show that it is mean-ergodic. This follows from (13-7) and the

fact that
1 o 2
?LTC(r) dr = - nrcus wrdr = :u_T sin T ——— 0
Sufficient conditions. (a) If
[ c(r)dr <= (13-9)
0

then (13-7) holds; hence the process x(¢) is mean-ergodic.
(b) If R(z) » n? or, equivalently, if

C(r) =0 as 7= (13-10)
then x(¢) is mean-ergodic.

Proof. 1f (13-10) is true, then given & > 0, we can find a constant T, such that
|€(7)| < & for T > Ty;; hence

1

1 7
?fncmdf_?

Ty 1 -r
[o C(7) dr + ?an(f)df

_TU
—

T T—=

-—OCU +'5
<<
T (0)

and since e is arbitrary, we conclude that (13-7) is true.
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Condition (13-10) is satisfied if the RVs x(¢ + 7) and x(t) are uncorreluted
for large 7.

Note The time average m, is an unbiased estimator of 5; however, it is not best. An
estimator with smaller variance results if we use the weighted average

o :f"" w(t)x(r) de
i
and select the function w{t) appropriately (see also Example 8-4).

DISCRETE-TIME PROCESSES. We outline next, without elaboration, the dis-
crete-time version of the preceding results, We are given a real stationary
process x{n] with autocovariance C[m] and we form the time average

1 M
ny=— 2 x[xn] N=2M+ 1 (13-11)
Nn=fM

This is an unbiased estimator of the mean of x[x] and its variance equals

M
o-,f,z% P, C[m](l—%) (13-12)

m=—2M

The process x[n] is mean-ergodic if the right side of (13-12) tends to 0 as
M — =,

SLUTSKY'S THEOREM. The process x[#] is mean-ergodic iff

1 M
HmZ:OC[ni] — 0 (13'13)

nt—

We can show as in (13-10) that if C[m] — 0 as m — o, then x[n] is mean-
ergodic.
For large M,

M
Y. C[m] (13-14)

Example 13-6. () Suppose that the centered process &[n] = x[n] — 7 is white
noise with autocovariance P§[ni). In this case,

Clm) =Pom]  of=~ ¥ Pofm] = —
m] = Ps[m of = — m]=—
N m=—-M N

Thus x[n] is mean-ergodic and the variance of m,, equals P/N. This agrees with
(8-22): The RVs x[n] are i.i.d. with variance C[0] = P, and the time average m iS
their sample mean.
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(6) Suppose now that Clm] = Pa'™ as in Example 10:31. In this case,
(13-14) yields

P(1+ a)

01 o Palml-=
M L P N(1 —a)

Ny =2
Note that if we replace x[#] by white noise as in (a) with the same P and use as
estimate of 7 the time average of N; terms; the variance P/N, of the resulting
estimator will equal o if

]

N, =1
! Lita

Sampling, In a numerical estimate of the mean of a continuous-time process
x(t), the time-average ), is replaced by the average
1
Ny = N ¥ x(2,)
of the N samples x(r,) of x(¢). This is an unbiased estimate of 7 and its
variance equals

- 1
o3 =z Z T, ~ 1)
n ok

where C(7) is the autocovariance of x(¢). If the samples are equidistant, then
the RVs x(1,) = x(nT,) form a discrete-time pracess with autovariance ClmT).
In this case, the variance g of my is given by (13-12) if we replace Clm] by
c(mT,).

SPECTRAL INTERPRETATION OF ERGODICITY. We shall express the ergodicity
conditions in terms of the properties of the covariance spectrum
S(w) = S(w) — 27n%6(w)

‘of the process x(r). The variance n% of m; equals the variance of the moving
average w(t) of x(1) [see (13-2)]. As we know,

. . sin® Tw
St(w) = 8%(w) —T'Z‘(UT (13-15)
hence
1 e sin® Tw
e ¢ -16
o = 5- f_;g (0) 55w (13-16)

The fraction in (13-16) takes significant values only in an interval of the order of
1/T centered at the origin. The ergodicity conditions of x(t) depend, therefore,
only on the behavior of $%(w) near the origin.

Suppose first that the process x(¢) is regular. In this case, $°(w)does not
have an impulse at w = 0. If, therefore, T is sufficiently large, we can use the
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approximation $(w) = $9(0) in (13-16). This yiclds
§90) = sin® Tw S(0) s
e et St

of =

Hence x(1) is mean-ergodic.
‘Suppose now that

S€(w) = Si(a) + 2wk d(w)  SH0) < (13-18)

Inserting into (13-16), we conclude as in (13-17) that

1
= 551(0) +k > g

LI

Hence x(1) is not mean-ergodic. This case arises if in Wold's decomposition
(12-89) the constant term ¢, is different from 0, or, equivalently, if the Fourier
transform X(w) of x(¢) contains the impulse 2Z¢ 8(w).

Example 13-7. Consider the process
¥(0) =ax(t)  Efa)=0

where x(¢)is & mean-ergodic pracess independent of the RV a. Clearly, E{y{1)) =0
and

85(@) = ¢253,(w) + 2mainZs(w)

as/in Example 12-12. This shows that the process ¥(t) 1§ not mean-ergodic.

The preceding discussion leads to ithe following equivalent conditions for
mean ergodicity:

L gy must-tend to 0 as T — @,

2. In Wold’s decomposition (12-89)'the constant random term ¢, must be 0.
3. The integrated power spectrum F<(w) must be continuous:at the origin.

4. The integrated Fourier transform Z(w) must be continuous at the origin.

Analog estimators. The mean 7 of a process x(1) can be estimated by the
response of a physical'system with input x(£). ‘A simple example is a normalized
integrator of finite integration time. This is a linear device with impulse
response the rectangular pulse p(¢) of Fig, 13-2. For ¢ > T, the output of the
integrator equals

(I
y(t) = T f Tx(a) dea
(e

If 7}, is large compared to the correlation time . of x(¢), then the variance of
1) equals 27,C(0)/T,. This follows from (13-6) with T, = 2T.
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htr)

] plo)

1)

0 T a + FIGURE 132

Suppose now that x(¢) is the input to a system with impulse response h(¢)
of unit area and/energy E:

w(t) =fn'x(a)h(:—a-)da E= ]ﬁ‘nz(r)m

We assume that C(7) = 0 for 7+ > T, and h(1) =0 for ¢t > T, > T, as in Fig.

13-2. From these assumptions it follows that E{w(¢)} = n and o? = EC(0)r, for
t> T, If, therefore, EC(0)7, < 7 then w(1) = for ¢ > T, The above
conditions are satisfied if the system if low-pass, that is, if H(w)= 0 for
lo| < w, and w_ < 9°/C0)r,.

Covariance-Ergodic Processes

We shall now determine the conditions that an SSS process x(f) must satisfy
such that its autocovariance C(A) can be estimated as a time average. The
results are essentially the same for the estimates of the autocorrelation R(A)
of x(¢).

VARIANCE. We start with the estimate of the variance

v =C(0) = E{k(t) = nl*) = E{x>(0)} —7° (13-19)
of x(r).
Known mean. Suppose, first; that o is known, We can then assume, replacing
the process x(t) by its centered process x(z) — n, that

E(x()) =0 V=E{x}(n)}

Our problem is thus to estimate the mean I of the process x°(t). Proceeding as
in (13-1), we use as the estimate of V' the time average
A
— t)dt (13-20)
=/ 20 (
This estimate is unbiased and its variance is given by (13-4) where we replace

Vi =



436  SPECTRAL ESTIMATION

the function C(7) by the autocovariance
C.23(7) = Efx?(t +7)x3(1)}) — E*(x*(1)} (13:21)

of the process x*(£). Applying (13-7) to this process, we conclude that x(7) is
variance-ergodic iff

il o i
— [TE(3(1 + 1)x3(0) di —— C*(0) (1322
Ty 27

T

To test the validity of (13-22), we need the fourth-order moments of x(). If,
however, x(f) is a normal process, then [see (10-68)]

Caz(7) = 2C%(7) (13-23)

From this and (13-22) it follows that a normal process is variance-ergodic iff
| T
== (1) d= 32
T_[UC( )dr —— 0 (13-24)
Using the simple inequality (see Prob. 13-10)

I o7 e
Fj(;C(T)dT 57_[”(. (7) dr

we conclude with (13-7) and (13-24) that if a normal process is variance-ergodie,
it is also mean-ergodic. The converse, however, is not true. This theorem has
the following spectral interpretation: The process x(¢) is mean-ergodic iff $(w)
has no impulses at the origin; it is variance-ergodic iff $°(w) has no impulses
anywhere,
Example 13-8. Suppose that the process
x(1) = acoswt + bsinwr + 7

is normal and stationary. Clearly, x(1) is mean-ergodic because it does not contain
a random constant. However, it is not variance-ergodic because the square

k() =l = H(a? + b2) + L(acos 2wt — b2 cos2wt) + absin 2!
of x(¢) — m contains the random constant (a® + b2)/2.

Unknown mean. If 7 is unknown, we evaluate its estimator 7, from (13-1) and
form the average

$ Lo 2 1872 5 2
VT— E; _.T[X(I) _TlT] dt = ﬁ[_‘[x (l‘)d!*nv.

The determination of the statistical properties of f’-,v is difficult. The following
observations, however, simplify the problem, In general, V; is a biased estimator
of the variance I/ of x(¢). However, if T is large. the bias can be neglected in the
determination of the estimation error; furthermore, the variance of V, can be
approximated by the variance of the known-mean estimator V. In many cases;
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the MS error £{(V, — ¥)?] is smaller than E{(V,; — V')*} for moderate values of
7. It might thus be preferable to use V, as the estimator of V even when n is
known.

AUTOCOVARIANCE. We shall establish the ergodicity conditions for the auto-
covariance C(A) of the process x(#) under the assumption that [E(x(1)) = 0. We
can do so, replacing x(r) by x(¢) — 7 if 7 is known. If it is unknown, we replace
x(t) by x(¢) — m;. In this case, the results are approximately correct if T is
large.

For a specific A, the product x(r + A)x(¢r) is an SSS process with mean
C(A). We can; therefore, use as the estimate of C(A) the time average

L7
Cr(A) = ﬁf_y_z(l)dl 2(t) = x(r + A)x(r) (13-25)
This is an unbiased estimator of C(A) and its variance is given by (13-4) if we
replace the autocovariance of x(¢) by the autocovariance
C..(7) = E{x(t + A + 7)x(r + 7)x(2 + A)}x(¢)) — C3(r)

of the process z(r). Applying Slutsky’s theorem, we conclude that the process
x(1) is covariance-ergodic iff
1 .7

7, C_.(7)dr = 0 (13-26)

If x(r) is a normal process,
C.l7) =C(A +7)C(X —7) + C7) (13-27)
In this case, (13-6) yiclds
1 o2 5 :
VarC;(A) = = | C(r + 7)C(A —7) + C¥(x)] dr  (1328)
0

From (13-27) it follows that if C(z)'— 0, then C._(z) = 0-as 7 — %; hence x(¢)
is covariance-ergodic.

Cross-covariance, We comment briefly on the estimate of the cross-covariance
C,,(7) of two zero-mean processes x(¢) and y(r). As in (13-25), the time average

2 L
= — ; 13-29
Cy(r) = 5 [ W+ o)) de (13-29)
is:an unbiased cstimate of €, (7) and its variance is given by (13-4) if we rcpla_ce
C(7) by C, (7). We note, finally, that if both processes are variance-ergodic,

they are also cross-covariance-ergodic (sée Prob. 13-9).

NONLINEAR ESTIMATORS. The numerical evaluation of the estimate C(A) of
C(A) involves the evaluation of the integral of the product x(r + A)x(s) for
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various values of A. We show next that the computations can in certain cases be
simplified if we replace one or both factors of this product by some functiont of
x(1). We shall assume that the process x(1) is normal with zero mean

The arcsine law. We have shown in (10-71) that if y(¢) is the output of a hard
limiter with input x(z):

y({)=sgnx(r)={ﬁ: f{:;iﬁ
then
2 LG
Cylm)i= - arcsin m (13-30)
The estimate of C,,(7) is given by
A F p
C,,(7) = Ef_ngnx(z + 7)sgnx(t) dr (13-31)

This integral is simple to determine because the integrand equals + 1. Thus

where 7" is the total time that x(¢ + 7)x(¢) > 0. This yields the estimate
e o A ol s
Car() = €., (0)sin 3C,,(7)]

of C_ (7) within a factor,

Bussgang’s theorem. We have shown in (10-72) that the cross-covariance of the
processes x(r) and y(r) = sgnx(1) is proportional to C,(7):

2
Co(7) =KC,(7) K=/ =) (13-32)

To estimate C, (7), it suffices, therefore, ta estimate C,,(7). Using (13-29), we
obtain

.\ i 1 T

C..(7) = EC_U(T) = mfuTx(t + r)sgnx(¢) dr (13-33)
CORRELOMETERS AND SPECTROMETERS. A correlometer is a physical device
measuring the autocorrelation R(A) of a process x(7). In Fig. 13-3 we show two
correlometers. The first consists of a delay element, a multiplier, and a low-pass

+S. Cambanis and E. Masry: “On the Reconstruction of the Covariance of Siationary Gaussian
2_"0;:553’! Through Zero-Memory Nonlinearities,” IEEE Transactions on Information Theory, Vol.
-24, 1978.
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&
AT LP
x(1) | A x(t — 2 x(e) YUO=R(A)
(a)
a7 E
g = D > L LR ——p
x(1) o v (0 =2[R(0)+R(N)]
[xit—=2) % x(0)]*
(&)
FIGURE 13-3

(LP) filter. The input to the LP filter is the process x(r — A)x(1); the output y (1)
is the estimate of the mean R(A) of the input. The second consists of a delay
element, an adder, a square-law detector, and an LP filter. The input to the LP
filter is the process [x(z = A) + x(£)F; the output y,(¢) is the estimate or the
mean 2[R(0) + R(A)] of the input.

A spectrometer is a physical device measuring the Fourier transform S(w)
of R()). This device consists of a bandpass filter Blw) with input x(¢) and
output y(r), in series with a square-law detector and an LP filter (Fig, 13-4). The
input to the LP filter is the process y2(r); its output z(r) 1s the estimate of the
mean Efy2(¢)) of the input. Suppose that B(w) is a narrow-band filter of unit
energy with center frequency w, and bandwidth 2¢. If the function Slw) is
continuous at @y and ¢ is sufficiently small, then S(w) = S(w;) for | — wyl <€
hence [see (10-139)]

S(wy)

27

[ B () do = S(a,)

k=

1 e
ElyX(1)) = 5~ [ S(w)B*(w) do =

as in (10-153). This yields
z(t) = E{y*(1)} = 5(wy)

We give next the optical realization of the correlometer of Fig. 13-3b and
the spectrometer of Fig. 13-4

B(w)
— - > LP A .
x(1) l | I ¥(0) ¥ z(f)=S(wy)

0 &

FIGURE 13-4
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Michelson interferometer

Ax(i=1—A)

2

= ~ D 20 LP —7—*%
Ax(1=ry)

y(n= 2.»‘\-"[1?(!.)) +R(A))

x(1)

I

FIGURE 13-5

The Michelson interferometer. The device of Fig. 13-5 is an optical correlome-
ter. It consists of a light source S, a beam-splitting surface B, and two mirrors.
Mirror M, is in a fixed position and mirror M, is movable. The light from the
source S is a random signal x(¢) traveling with velocity ¢ and it reaches a
square-law detector D along paths 1 and 2 as shown. The lengths of these paths
equal [ and [ + 2d respectively, where d is the displacement of mirror M, from
its equilibrium position.
The signal reaching the detector is thus the sum

Ax(t — ty) +Ax(r — 1ty — A)
where A is the attenuation in each path, ¢, = I/c is the delay along path 1, and
A = 2d/c is the additional delay due to the displacement of mirror M,. The
detector output is the signal

2(1) = A*[x(t — 1 = ) + x(t = 1)]’

Clearly,

Efz(t)} = 24 R(0) + R(A)]

If, therefore, we use z(f) as the input to a low-pass filter, its output y(¢) will be
proportional to R(0) + R(A) provided that the process x(t) is correlation-ergodic
and the band of the filter is sufficiently narrow.

The Fabry-Pérot interferometer. The device of Fig. 13-6 is an optical spectrom-
eter. The bandpass filter consists of two highly reflective plates P, and P;
distance d apart and the input is a light beam x(¢) with power spectrum Slaw).
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Fubry-Perot intetferometer

[B(w) A ;

FIGURE 13-6

The frequency response of the filter is proportional to

1

I'2C =2ad /¢

B(tu)=1_ r=1

where r is the reflection coefficient of each plate and ¢ is the velocity of light in
the medium M between the plates. The function B(w) is shown in Fig. 10-10b.
It consists of a sequence of bands centered at

mhd

(4

whose bandwidth tends to 0'as r — 1. If only the mth band of B(w) overlaps
with $(w) and r = 1, then the output z(¢) of the LP filter is proportional to
S(w,,). To vary w,,, we can either vary the distance d between the plates or the
dielectric constant of the medium M.

Distribution-Ergodic Processes

Any parameter of a probabilistic model that can be expressed as the mean of
some function of an SSS process x(1) can be estimated by a time average. For a
specific x, the distribution of x(z) is the mean of the process y(¢) = Ulx — x(1)]:

x(t) <x

o Efy(r)} = P[x(1) <x} = F(x)

w0 = |,
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Hence F(x) can be estimated by the time average of y(¢). Inserting into (13-1),
we obtain the estimator

T F et

Fj.-(,t)=i T_v(t)dr= u

7). —_ZT (13-34)

where =, are the lengths of the time intervals during which x(¢) is less than x
(Fig. 13-7a).

To find the variance of F(x), we must first find the autocoyvariance of vl(t).
The produet ¥(r + 7)y(¢) equals 1 if x(r + 7) < x and x(¢) < x; otherwise, it
equals 0. Hence

R,(7) = P{x(t + 7) < x,x(¢) <=x) = F(x,x;7)

where F(x, x; 7)is the second-order distribution of x(). The variance of F (x)
is obtained from (13-4) if we replace C(z) by the autocovariance F(x, x;7) —
F?(x) of y(¢). From (13-7) it follows that a process x(t) is distribution-ergodic iff

1

?jUTF(x, x5 7) dr — F¥(x) (13-35)
A sufficient condition is obtained from (13-10): A process x(¢) is distribution-
ergodic if F(x, x:7) - F*(x) as 7 — . This is the case if the RVs x(f) and

x(t + 7) are independent for large 7.

Density. To estimate the density of x(1), we form the time intervals A7, during
which x(¢) is between x and x + Ax (Fig. 13-7b). From (13-34) it follows that

f(x) Ax = F(x + Ax) — F(x) = % ): A7

Thus f(x)Ax equals the percentage of time that a single sample of x(1) is
between xand ¥ + Ax. This can be used to design an analog estimator of f(x).
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13-2 SPECTRAL ESTIMATION

We wish to estimate the power spectrum S(w) of a real process x(¢) in terms of
a single realization of a finite segment

1 i< T
xp(1) =x(t)p(1) r(t ={ 13-3¢
7 7 pr(t) 0 ltl>T (13-36)
of x(): The spectrum S(w) is not the mean of some function of x(¢). It cannot,
therefore, be estimated directly as a time average. It is, however, the Fourier
transform of the autocorrelation

o= ef e+ Spo-3)

It will be determined in terms of the estimate of R(7). This estimate cannot be

computed from (13-25) because the product x(r + 7/2)x(t — 7/2) is available

only for t in the interval (=T + |7|/2, T — |z|/2) (Fig. 13-8). Changing 27 to
— |7l, we obtain the estimate

. T=|rl/2 T T

R(r (: 4y L ) (:— —)(11 1337

( ) 2T |T|f T+|71/2 2 2 ( )

This integral specifies R7(7) for |r| < 27 for |7| > 27 we set R7(r) = 0. The

above estimate is unbiased; however, its variance increases as |7| increases

because the length 2T — |7| of the integration interval decreases. Instead of
RY(7), we shall use the product

Ri(n) = 1 - —) (r) (13-38)

This estimator is biased; however, its variance is smaller than the variance of

17l g i |
{1 + T]_ GO x(l ]
7~ \
LN A I \
JI per4 /\/ I o
|
| } | Il
R ° pell T !

FIGURE 13.8
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R7(7). The main reason we use it is that its transform is proportional to the

energy spectrum of the segment x,(¢) of x(¢) [see (13-39)].

The periodogram

The periodogram of a process x(¢) is by definition the process

fi x(t)e 7 dt

-7

1
ST( w) = F)—T'

(13-39)

The above integral is the Fourier transform of the known segment x (1) of x(1):
1 ; T
Si(w) = 7= X (@) Xp(0) = f X(e)eerd
We shall express S;(w) in terms of the estimator R (+) of R(7).

THEOREM

Sr(w) = [

" Ryp(r)e 7 dr (13-40)
a7

Proof. The integral in (13-37) is the convolution of x,(r) with x,(—1) because
x7(1) = 0 for |t| > T. Hence

1
R(7) = 2_7‘-'3‘7'("')*3”(*7) (13-41)

Since x;(t) is real, the transform of x,(—¢) equals X}(w). This shows that
(convolution theorem) the transform of R,(7) equals the right side of (13-39).

In the early years of signal analysis, the spectral properties of random
processes were expressed in terms of their periodogram. This approach yielded
reliable results so long as the integrations were based on analog techniques of
limited accuracy. With the introduction of digital processing, the accuracy was
improved and, paradoxically, the computed spectra exhibited noisy behavior.
This apparent paradox can be readily explained in terms of the properties of the
periodogram: The integral in (13-40) depends on all values of R, (7) for = large
and small. The variance of R,(7) is small for small = only, and it increases as
7 — 2T. As a result, S(w) approaches a white-noise process with mean S(w) as
T increases [see (13-57)].

To overcome this behavior of S;{@), we can do one of two things: (1) We
replace in (13-40) the term R, () by the product w(r)R,(7) where w(z) is a
function (window) close to | near the origin, approaching 0 as 7 — 27. This
deemphasizes the unreliable parts of R,(7), thus reducing the variance of its
transform. (2) We convolve S;(w) with a suitable window as in (11-164).

We continue with the determination of the bias and the variance of S, ().
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Bias. From (13-38) and (13-40) it follows that

E(S;(w)} :fz (l = %)REI)E et dr

Since

i Il 2sin’ Tw
)P\ TR

we conclude that [see also (12-83)]

E(S. ” {:c sin® T w —}')S( v (
Y= e, (1) HL 13-42

d Y= wlT(w — )" b =
The above shows that the mean of the periodogram is a smoothed version of
S{w); however, the smoothing kernel sin® 7(w — y) /7T (w — v)* takes signifi-
cant values only in an interval of the order of 1/7 centered at y = w: If,
therefore, T is sufficiently large, we can set S(y) = S(w) in (13-42) for every
point of continuity of S(w). Hence for large T,

. = sin® T(w—y)
E{S;(w)} = S(w)j T dy = S(w) (13-43)

From this it follows that 8;(w) is asymptotically an unbiased estimator of S{w).

Data window. If S(w) is not nearly constant in an interval of the order of 1/7,
the periodogram is a biased estimate of S(w). To reduce the bias, we replace in
(13-39) ‘the process x(r) by ‘the product c(u)x(r). This vields the smodified
periodogram

1 L
Siw) = — jr e(t)x(t)e " dt (13-44)
7

The factor c(z) is called the data window. Denoting by C(w) its Fourier
transform, we conclude that [see (12-82)]

1
E{S(w)} = ms(w)*(f:(m) (13-45)

VARIANCE. For the determination of the variance of 8§;(w). knowledge of the
fourth-order moments of x(¢) is required. For normal processes, all moments.
‘can be expréssed in terms of R(r). Furthermore, as T — =, the fourth-order
moments of most processes approach the corresponding moments of a normal
process with the same autocorrelation (see Papoulis 1977). We can assume,
therefore, without essential loss of generality, that x(r) is normal with zero
mean,
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THEOREM. For large T

bty = i @ =0 (13-46)
’ 5*(w) lwl > 1/T

at every point of continuity of S(w).
Proof. The Fourier transform of the autocorrelation R(t, = 1) p () py(t,) of
the process x;(7) equals

» 2sinTasinT(u +v —a)

1) = S(u — dex 13-47
I(w,v) f_w i ) (u — a) da ( )

This follows from (12-80) with W{(w) = 2sin Tw /w. The fraction in (13-47) takes
significant values only if the terms .« and (u + v — )T are of the order of 1
hence, the entire fraction is negligible if [« + v| > 1/T. Setting u = v = w©, we
conclude that ['(w, @) = 0 and

= 2sin®* Ta
Mo, —w) = [_ T.S'(w —a)da
© 2sin® Ta
= S(m)f — — da =2TS(w) (13-48)

for |w| = 1/T and since [see (12-74)]
1
Var§;(w) = 4—7,2[1“2(01, —0) + IM(w,0)]

and I'(0,0) = S(0), (13-46) follows.

Note For a specific 7, no matter how large, the estimate R, (7) — R(r) as T — . Its
transform 8,(w), however, does not tend to S(w) as T — =. The reason is that the
convergence of R7(7) to R(7) is not uniform in 7, that is, given £ > 0, we cannot find a
constant T, independent of r such that |R, () — R(7)| < & for every 7, and every
T > Ty

~ Proceeding similarly, we can show that the variance of the spectrum S (w)
obtained with the data window c(¢) is essentially equal to the variance of S;(w).
This shows that use of data windows does not reduce the variance of the
estimate. To improve the estimation, we must replace in (13-40) the sample
autocorrelation R,(r) by the produect w(r)R (7), or, equivalently, we must
-smooth the periodogram S, (w).

Note Data windows might be useful if we smooth Sy(w) by an ensemble average:
S_uppuse that we have access to N independent samples x(z, £;) of x(¢), or, we divide a
single long sample into N essentially independent pieces, each of duration 27, We form
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the periodograms S;(w, £,) of each sample and their average

Si(w) =K!,.>:5r(‘”-é}) (13-49)
As we know,
= sin® T _ 1
E{S;(w)} = S(w) = ey VarS;(w) = Ff(_w) w# 0 (13-50)

If N is large, the variance of §(w) is small. However, its bias might be significant. Use
of data windows is in this case desirable.

Smoothed Spectrum

We shall assume as before that T is large and x(¢) is normal. To improve the
estimate, we form the smoothed spectrum

e
Su(w) = 5— [ Si(w - )W _v;d_r=j:jT.‘v(f)Rr(T)()-lw=(zT (13:51)
where

I cw )
w(r) = = W(w)e™' dw

— o

The function w(t) is called the lag window and its transform W(w) the
spectral window. We shall assume that W(—w) = W(w) and

I
w(0)=1=—[ Ww)de Ww)=0 (13-52)
2wl

Bias. From (13-42) it follows that

sin® Tw

1 1
E{Sw(w)} = ~2—T‘_E{Sr(w)] #W(w) = ES‘(M)* * W(w)

7 Tew®
Assuming that W(w) is nearly constant in any interval of length 1 /T, we obtain
the large T approximation
1
E(S, (@)} = —S(w)*W(o) (13-53)
27
Variance. We shall determine the variance of S,(w) using the identity [see
(12-74)]
1
41
This problem is in general complicated. We shall outline an apprmfimate
solution based on the following assumptions: The constant T' is la_rge in the
sense that the functions S(w) and W(w) are nearly constant in any interval of
length 1/7. The width of W(w), that is, the constant o such that W(w) = 0 for

Cov[Sr(u).§,(1)] = = [[2(w, =0) + D3(w,0)]  (1359)
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|| > e, is small in the sense that S(w) is nearly conistant in any interval of

length 2.
Reasoning as in the proof of (13-48), we conclude from (13-47) that

['(w,v) =0 for w +v > 1/T and

= 2sinT(u — v — a)sin Ta E < 2sin T(uw — v)
I'(u, =v) '-S(u)f A= da a = (u)§u_r

This is the generalization of (13-48). Inserting into (13-54), we obtain
sin® T'(u — v)
Cov[S(u),S7()] = ———5-5%(1) (1355)
THw =)

Equation (13-46) is a special case obtained with u = v = w.
THEOREM. For |o| > 1/T

Var S, (w) =

Tsl(w) (13-56)
where

1 e
E, = EEI_,W (@) do
Proof. The smoothed spectrum S, () equals the convolution of S,(w) with the
spectral window W(w)/2m. From this and (10-87) it follows mutatis mutandis
that the variance of S, (w) is a 'double convolution involving the covariance
of S;(w) and the window W(w). The fraction in (13-55) is negligible for
lu —v| > 1/T, In any interval of length 1/7, the function W(w) is nearly
constant by assumption. This leads to the conclusion that in the evaluation of
the variance of §, (@), the covariance of S, {(w) can be approximated by an
impulse of area equal to the area

s )f acsn;:!:;(ul = ;) e ;SZ(M)
of the right side of (13-55). This yields
Cov[8; (1), S(1)] = a(w)a(u —v) () = Z8Hw) (1357)
From the above and (10-91) it follows that

T Wi(y) $3(w) = WA(y)
VarSw(w)=?f_ §2(w —y) T dy = 5T U 2 .

and (13-56) results.

WINDOW SELECTION. The selection of the window pair w(t) « W(w) depends
on two conflicting requirements: For the variance of S, (w) to be small, the
energy E,, of the lag window w(z) must be small compared to 7. From this it
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follows that w(s) must approach 0 as ¢ — 27. We can assume, therefore.
without essential loss of generality that w() =0 for |t|] > M where M is a
fraction of 27" Thus

S (w) = fA:’W(f)R-,(J)c"‘”' dt  M<2T

The mean of S,(w) is a smoothed version of S(w). To reduce the effect of the
resulting bias, we must use a spectral window W(w) of short duration. This is in
conflict with the requirement that M be small (uncertainty principle). The final
choice of M is a compromise between bias and variance. The quality of the
estimate depends on M and on the shape of w(r). To separate the shape factor
from the size factor, we express w(¢) as a scaled version of a normalized window
w(t) of size 2:

w(r) = w“(lﬁ) < Wlw) = MW,(Mwo) (13-58)

where
wp(r) =0 for |t| > 1

The critical parameter in the selection of a window is the scaling factor M.
In the absence of any prior information, we have no way of determining the
optimum size of M. The following considerations, however, are useful: A
reasonable measure of the reliability of the estimation is the ratio

VarS,(w) E

w

ST (13-59)

For most windows in use, E,, is between 0.5M and 0.8M (see Table 13-1). If we
set a = 0.2 as the largest acceptable «, we must set M < T/2. If nothing is
known about S(w), we estimate it several times using windows of decreasing
size, We start with M = T/2 and observe the form of the resulting estimate
S, (w). This estimate might not be very reliable; however, it gives us some idea
of the form of S(w). If we see that the estimate is nearly constant in any interval
of the order of 1/M, we conclude that the initial choice M = T/2 is too large.
A reduction of M will not appreciably affect the bias but it will yield a smaller
variance. We repeat this process until we obtain a balance between bias and
variance. As we show later, for optimum balance, the standard deviation of the
estimate must equal twice its bias. The quality of the estimate depends. of
course, on the size of the available sample. If, for the given T, the resulting
S,(@) is not smooth for M = T/2, we conclude that 7' is not large enough for a
satisfactory estimate.

To complete the specification of the window, we must select the form of
w,(1). In this selection, we are guided by the following considerations:

1. The window W(w) must be positive and its area must equal 27 as in (13-32).
This ensures the positivity and consistency of the estimation.
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TABLE 13-1

wit) Wiw)

1. Bartlett

1= ||

2
ny=» B =3 n=2

2. Tukey

3(1 + cose)

ma=l— E,=3 n=3
3. Parzen 7
[ sin w4
[31 = 2{tDp (= [3(1 = 2]eDpy(0)] ;( )
w/4

my = 12 E, = 0539 n=4

4. Papoulist

1 , cos*(w/2)
—lsinarel + (1 = [tDeosart Emf————
(0 (re=10%)
my=m> E,=0587 n=4

FA. Papoulis: “Minimum Bias Windows for High Resolu-
tion Spectral Estimates,” [EEE Transactions on Informa-
tion Theory, vol, 1T-19, 1973,

2. For small bias, the “duration” of W(w) must be small. A measure of
duration is the second moment

Il

m, éf‘:.ﬁwm) dw (13-60)

3. The function W(w) must go to 0 rapidly as w increases (small sidelobes). This
reduces the effect of distant peaks in the estimate of S(w). As we know, the
asymptotic properties of W(w) depend on the continuity properties of its
inverse w(t), Since w(z) = 0 for |r| > M, the condition that W(w) — 0 as
A/w" as n — « leads to the requirement that the derivatives of w(r) of
order upito # — 1 be zero at the end-points +M of the lag window w(t):

W(EM) =w/(EM) = - =wt=D(£M) =0  (13-61)

4. The energy £, of w(s) must be small. This reduces the variance of the
estimate.

Over the years, a variety of windows have been proposed. They meet more
or less the stated requirements but most of them are selected empirically.
Optimality criteria leading to windows that do not depend on the form of the
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FIGURE 13-9

unknown S(w) are difficult to generate. However, as we show next, for high-res-
olution estimates (large T) the last example of Table 13-1 minimizes the bias. In
this table and in Fig. 13-9, we list the most common window pairs w(1) & W(w).
We also show the values of the second moment n1,, the energy E,, and the
exponent 2 of the asymptotic attenuation A/w” of W(w). In all cases, wir) = 0
for [t] > 1.

OPTIMUM WINDOWS. We introduce next three classes of windows. In all cases,

we assume that the data size T and the scaling factor M are large (high-resolu-

tion estimates) in the sense that we can use the parabolic approximation of

S(w — «) in the evaluation of the bias, This vields [see (11-168)]

S"(w)
47

1 = s _
—f S(w — a)W(a)da = S(w) + [ a*W(a)de (13-62)
27/ = -

Note that since W(w) > 0, the above is an equality if we replace the term S"(w)
by §'(w + &) where & is a constant in the region where W(w) takes significant
values.

Minimum bias data window. The modified periodogram S () obtained with
the data window e(t) is a biased estimator of S(w). Inserting (13-62) into
(13-45), we conclude that the bias equals

1

Bw) = 5 :s(w — «)C2(a) da — S(@)

) [ atc(a) da (13-63)
m —=

i
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FIGURE 13-10

We have thus expressed the bias as a product where the first factor depends
only on S(w) and the second depends only on Clw). This separation permits us
to find C(w) so as to minimize B.(w). To do so, it suffices to minimize the
second moment

U e T pians
M, = E[.x‘“'c (@) do = fql‘ (6)Pdt (13-64)
of C*(w) subject to the constraints
1 P
= Cw)do=1 C(-w)=C(o)

2m -

It can be shown thati the optimum data window is a truncated cosine (Fig.
13-10)%

1 T

= C0S —— < . cosTw

=g an . ST G e =T
m° — 4T ‘w*

0 [t] >T

(13-65)

The resulting second moment M, equals 1. Note that if no data window is used,
then ¢(#) = 1 and M, = 2. Thus the optimum data window yields a 50 percent
reduction of the bias.

Minimum bias spectral window. From (13-18) and (13-28) it follows that the
bias of 8§, (w) equals

i )
B(w) = o [ 5(0 - a)W(a) da — S(w) = %s"(w) (13-66)

where m, is the second moment of W{w)/2w. To minimize Blw), it suffices,

TA. Papoulis: “Apodization for Optimum Imaging of Smooth Objects”, J. Opt. Soc. Am., Vol. 62,
December, 1972,
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therefore, to minimize 71, subject to the constraints
1 =
W(w) =0 W(—w)=W(w) T] W(w) do =1 (13-67)

This is the same as the problem just considered if we replace 2T by M and we
sel

W(w) = C*(w) w(t) =c(t)=ec(—r)
This yields the pair (Fig. 13-11)

1. = : [t] T LT
wt) =4 7 S'"F| T H)“’S e =M E R
0 1> M
cos*(Maw/2) -
W(w) = 8M7? e (13:69)

(72— M)’

Thus the last window in Table 13-1 minimizes the bias in high-resolution
spectral estimates.

LMS spectral window. We shall finally select the spectral window W(w) so as to
minimize the MS estimation error

e = B*(w) + VarS, (w) (13-70)

We have shown that for sufficiently large values of 7. the periodogram S, (w)
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can be written asa sum. S(w) + v(w) where vlw) is a nonstationary white noise
process with autocorrelation w8*(u)8(u — ©)/T as in (13-57). Thus our prob-
lem is the estimation of a deterministic function S(w) in the presence of
additive noise w(w). This problem was considered in Sec. 11-6. We shall
reestablish the results in the context of spectral estimation.

We start with a rectangular window of size 2A and area 1. The resulting
estimate of S(w) is the moving average

1 .a
Sy(w) = ﬁf.L\ST(w — a) da (13-71)

of §;(w). The rectangular window was used first by Daniellf in the early years
of spectral estimation. It is ‘a special case of the spectral window W(w)/27.
Note that the corresponding lag window sin Af/27A¢ is not time-limited.

With' the familiar large-T" assumption, the periodogram S,(w) is an
unbiased estimator of S(w). Hence the bias of §,(w) equals

S"(ﬂ)) A Al
.21 = on mualy
T j:l_\y dy = S§"(w) 7

1
55/ So -y~ 5(a) =

and variance

75N ®) (a 78%(w)
4T ) ,Y° T Taar
This follows from (11-172) or directly from (13-46) where we replace the window
W(w)/27 by a rectangular window with energy w/A. This yields

. 78 (w) A , w8 (w)
VHTSA(L:)) = T e = % S"(m)]" -+ W (13-72)

Proceeding as in (11-176), we conclude that ¢ is minimum if

o 825 a) o
- ZT] S"(w)
Tt:e)result.ing bias equals twice the standard deviation of S,(w) (see two-to-one
rule),
Suppose finally that the spectral window is a function of unknown form,

}Nc wish 1o determine is shape so as to minimize the MS error e. Proceeding as
in (11-177), we can show that ¢ is minimum if the window is a truncated

TP ). Daniell: Discussion on “Symposium on Autocorrelation in Time Series,” J. Ray. Statist. Soc,
Suppl., 8, 1946,
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parabola:

3 G2 ) I8 e 40200 @
Sul@) = — [* 8w -w)|1- S|y &= L) e
4A 7y A 7 5"(w)

(13-73)

This, window was first suggested by Priestley.f Note that unlike the earlier
windows, it is frequency dependent and its size is a function of the unknown
spectrum S(w) and its second derivative. To determine S, (w + &) we must
therefore estimate first ot only S(w) but also S”(w). Using these estimates we
determine A for the next step,

13-3 EXTRAPOLATION AND
SYSTEM IDENTIFICATION

In the preceding discussion, we computed the estimate R,(7) of R(7) for
[7z] <M and used as the estimate of S(w) the Fourier transform S, (w) of the
product w(£)R;(1). The portion of R,(7) for |z| > M was not used. In this
section, we shall assume that S{w) belongs to a class of functions that can be
specified in terms of certain parameters, and we shall use the estimated part of
R(7)to determine these parameters. In our development, we shall not consider
the variance problem. We shall assume that the portion of R(7) for 7] <M is
known exactly. This is a realistic assumption if 7 > M because R, (1) — R(7)
for |7| < M as T — =, A physical problem leading to the assumption that R(7)
is known exactly but only for |7| < M is the Michelson interferometer. In this
example, the time of observation is arbitrarily large; however, R(r) can be
determined only for |r| < M where' M is a constant proportional to the
maximum displacement of the moving mirror (Fig. 13-5).

Our problem can thus be phrased as follows: We are given a finite
segment

R(7) =] <M

R =
w(7) 0 |7] > M

of the autocorrelation R(7) of a process x(1) and we wish to estimate its power
spectrum S(as). This is essentially a deterministic problem: We wish to find the
Fourier transform S(w) of a function R(7) knowing only the segment R, (7) of
R(7) and the fact that S(w) = 0. This problem does not have a unique solution.
Qur task then is to find a particular S(w) that is close in some sense to the
‘unknown spectrum. In the early years of spectral estimation, the function S(w)

M. B. Priestley: “'Basic Considerations in the Estimation of Power Spectra,” Technometrics, 4.
1962,
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was estimated with the method of windows (Blackman and Tukeyt). In this
method, the unknown R(7) is replaced by 0 and the known or estimated part is
tapered by a suitable factor wi(7). In recent years, a different approach has been
used: It is assumed that S(w) can be specified in terms of a finite number of
parameters (parametric extrapolation) and the problem is reduced to the
estimation of these parameters. In this section we concentrate on the extrapola-
tion method starting with brief coverage of the method of windows.

Method of windows. The continuous-time version of this method is treated in
the last section in the context of the bias reduction problem: We use as the
estimate of S(w) the integral
M : 1 =
S.(w) =[ w(T)R(7)e " dr = —f S(w = Q)W(a) da (13-74)
M 27 d
and we select w(z) so as to minimize in some sense the estimation error
S, (@) — S(w). If M is large in the sense that Slw — a) = S(w) for |a| < 1/M,
we can use the approximation [see (13-62)]

S.(w) = S(w) = %:’)] a*W(a) da

—®

This is minimum if

.
sin —7

M

The discrete-time version of this method is similar: We are given a finite
segment

1
w(z) = —

m

+ |1 s ki |7l < M
MCOSM. 7

_ R[m] [ml < L
Rylm] {0 el > L

of t_he autocorrelation R(m] = Ef{x[n + mx[n]} of a process x[n] and we wish to
estimate its power spectrum

(13-75)

S(w) = i R[m]e 7"

nm=—cx=

We use as the estimate of S(w) the DFT

L
S w)= ¥ wimlR[mle /™ = ﬁfj S(w — a)W(a) da (13-76)

m=—L

of the{ product wlm]R[m] where w[m] < W(w) is a DFT pair. The criteria for
selecting w[m] are the same as in the continuous-time case. In fact, if M is

tR. B. Blackmun and J.W. Tukey: The Measurement of Power Spectra, Dover, New York, 1959.
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large, we can choose for wlm] the samples
wlm] = w(Mm /L) =0 [ (13-77)

of an analog window w(r) where M is the size of w(z).

In ‘a real problem, the data R;[m] are not known exactly. They are
estimated in terms of the J samples of x{n]:

|
R;[m] = 7 Yoxln + mlx[x] (13-78)

The mean and variance of R, [/] can be determined as in the analog case. The
details, however, will not be given. In the following, we assume that R,[m] is
known exactly. This assumption is satistactory if J = L.

Extrapolation Method

The spectral estimation problem is essentially numerical. This involves digital
data even if the given process is analog. We shall, therefore, carry out the
analysis in digital form. In the extrapolation method we assume that S(z) is of
known form. We shall assume that it is rational

S(z) = L(z)L(1 Loy e Do B BT b e By N ()
(2) = UL/ U2) = o =
(13-79)

We select the rational model for the following reasons: The numerical evalua-
tion of its unknown parameters is relatively simple. An arbitrary spectrum can
be closely approximated by a rational model of sufficiently large order. Spectra
involving responses of dynamic systems are often rational.

System identification. The rational model leads directly to the solution of the
identification problem (see also Sec. 11-7): We wish to determine the system
function H(z) of a system driven by white noise in terms of the measurements of
its output x[n]. As we know, the power spectrum of the output is proportional
to H(z)H(1 /z). I, therefore, the system is of finite order and minimum phase,
then H(z) is proportional to L(z). To determine H(z), it suffices, therefore, to
determine the M + N + 1 parameters of L(z). We shall do so under the
assumption that R,[m] is known exactly for [m| <M + N + 1.

‘We should stress that the proposed madel is only an abstraction, In a real
problem, R[] is not known exactly. Furthermore, S(2) might not be rational;
even if it is, the constants M and N might not be known. However, the method
leads to reasonable approximations if R,[m] is replaced by its time-average
estimate R, [m] and L is large.

Autoregressive process. Our objective is to determine the M + N + 1 coeffi-
cients b, and a, specifying the spectrum S(z) in terms of the first M 4+ N + 1
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values R,[m] of R{m]. We start with the assumption that

VP Ve
L(z) = 2 — = “ (13-80)
L+az '+ +ayz ™ D(z)

This is a special case of (12-36) with M =0 and b, = /P, . As we know, the
process x[n] satisfies the equation

x[n] +ax[n—=1] + -+ +ayx[n — N] =e[n] (13-81)
where e[#z] is white noise with average power P. Our problem is to find the
N + 1 coefficients @, and Py. To do so, we multiply (13-81) by x[n — =] and

take expected values. With m =0, ..., N, this yields the Yule—Walker equations
R[0] + a,R[1] + --- +ayR[N] =P,
R[1] +a,R[0] + -+ +ay R[N — 1] =0 (13-82)

R[N]+aR[N—1] + -+ +ayR[0] =0
This is a system of N + 1 equations involving the N + 1 unknowns ag and Py,
and it hasa unigue solution if the determinant A, of the correlation matrix D,
of x[n] is strictly positive. We note, in particular, that
AN+1
Bys —— Ay >0 (13-83)
Ay

If Ay, =0, then Py =0 and ey[m]=0. In this case, the unknown S(w)
consists of lines [see (12-44)].

To find L(z), it suffices, therefore, to solve the system (12-82). This
involves the inversion of the matrix D,. The problem of inversion can be
simplified because the matrix Dy is Toeplitz; that is, it is symmetrical with
respect to its diagonal. We give later a simple method for determining a, and
Py based on this property (Levinson’s algorithm).

Moving average processes. If x[#] is an MA process, then

S(z) = L(z)L(1/2)  L(2) =bg+bz7' + -+ +b,z~M (13-84)

I[E th]js case, S(z) can be expressed directly in terms of the first M + | values of
Rlm]:

2

M
—jma
Z bm €

=0

M
S(z) = Y R[m]z=" §(ev) = (13-85)
M

M= =

In the identification problem, our objective is to find not the function S(z), but
the M + 1 coefficients b,, of L(z). One methad for doing so is the factorization
S(z) = L(z)L(1 /2) of S(z):as in Sec, 12-1. This method involves the determina-
tion of the roots of S(z), We discuss later a method that avoids factorization
(see page 470).
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N(z)
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FIGURE 13-12

ARMA processes.i We assume now that x[s] is an ARMA process:
by bzt - by zM N(2)
I+az"+ - +ayz ™  D(z)

)=

(13-86)

In this case, x[n] satisfies the equation
x[n] + ax[n — 1] + -+ +ayx[n = N] = byi[n] + -+ +byiln — M]
(13-87)
where i[n] is its innovations. Multiplying both sides of (13-87) by x{n — m] and
taking expected values, we conclude as in (12-49) that
Rlm] +aR[m— 1]+ -+ +ayR[m - N]=0 m>M (13-88)

Setting m =N+ 1,N+2,...,2N into (13-88), we obtain a system of N
equations. The solution of thls system yields the N unknowns a,,...,ay.

!

To complete the specification of L(z), it suffices to find the M + 1
constants by, ..., by. To do so, we form a filter with input x[n], and system
function (Fig. 13-12)

D(z) =1 +az" + -+ +ayz "

The resulting output y[n] is called the residual sequence. Inserting into (10-183),
we obtain

S,,(z) = S(z)D( 2)D(1/z) = N(z)N(1/z)
From this it follows that y[n]is an MA process, and its whitening filter equals
L,(z) = N(z) =by+ bz + o bz (13-89)

tM. Kaveh: “High Resolution Spectral Estimation: for (Noisy Signals,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-27. See also J. A Cadzow {1982.) “Spectral
Estimation: An Overdetermined Rational Model Equation Apy " IEEE Proceed: vol. 70,
1979,
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To determine the constants b,, it suffices, therefore, to find the autocorrelation
R, [m] for |m| < M. Since y[n] is the output of the filter D(z) with input x[#],
it follows from (12-47) with a; = 1 that

R, [m] = R[m]+=d[m]=d]—m] d[m] Z agdlm — k|
o k=0

This yields

N
R, [m]l= Y R[m—ilp[il] plm] = Z ay oty = pl=m] (13-90)
b i=-N k=m
for 0. < m < M and 0 for m > M. With R“_‘,[m] so determined, we proceed as
in the MA case.
The determination of the ARMA maodel involves thus the following steps:

Find the constants a; from (13-88); this yields D(z).
Find R).),[m] from (13-90).
Find the roots of the polynomial

M

S,,(z)= Y, R, Imlz""= N(z)N(1/z)

m=-M

Form the Hurwitz factor N(z) of S, (z).
Lattice filters and Levinson’s algorithm. An MA filter is a polvnomial in z ',
Such a filter is usually realized by a ladder structure as in Fig. 13-14a. A lattice
filter is an alternate realization of an MA filter in the form of Fig. 13-145b. In the
context of spectral estimation, lattice filters are used to simplify the solution of
the Yule—Walker equations and the factorization of polynomials. Furthermore,
as we show later, they are also used to give a convenient description of the
properties of extrapolating spectra. Related applications are developed in the
next chapter in the solution of the prediction problem.

The polynomial

D(z) =1—alfz™" = - N — Ea”-""

specifies an MA filter with H(z) = D(z). The superseript in «} identifies the
order of the filter. If the input to this filter is an AR process x[n] with L(z) as in
(13-80) and a) = —ay, then the resulting output

eln] =x[n] —alx[n—1] — - —a¥x[n — N] (13-91)

is_ white noise as in (13-81). The filter D(z) is usually realized by the ladder
structure of Fig, 13-14a. We shall show that the lattice filter of Fig. 13-14b is an
equivalent realization. We start with N = 1.
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FIGURE 13-13

In Fig. 13-13a we show the ladder realization of an MA filter of order 1
and its mirror image. The input to both systems is the process x[n}; the outputs
equal

yln] =x[n] +alx[n—1] z[n] = —alx[n] + x[n - 1]
The corresponding system functions equal
=

1—ajz —a} +z7!

In Fig. 13-135 we show a lattice filter of order 1. It has a single input x[n] and
two outputs

&,[n] ==x[n] — Kx[n - 11 &ln] = —Kx[n] +x[n - 1]
The corresponding system functions are
E,(z) =]—K;z7! E,(z‘)=—K,-i-z":z“é](l/z)

If K, = a} then the lattice filter of Fig. 13-13b is equivalent to the two MA
filters of Fig. 13-13a.

In Fig. 13-14b we show a lattice filter of order N formed by cascading N
first-order filters. The input to this filter is the process x[n]. The resulting
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x(n]
— z=! —_———— ] !
A
—all ol
—(F g e + > &,[n]
b =~ B
(a)
EN- 1["]
>0 £y(n]
x{n]
—— Ky
A
eyln)
(b)
FIGURE 13-14

outputs are denoted by €y[n] and £[r] and are called forward and backward
respectively. As we see from the diagram these signals satisfy the equations

Eyln] =&, ,[n] - Kyéy_y[n—1] (13-92a)
Eyln] = &y_i[n — 1] — Kyéy_,[n] (13-92b)

Denoting by EN(Z) and é,.,(z) the system functions from the input 4 to the
upper output B and lower output C respectively, we conclude that

En(z) = Ey_i(2) — Kz 'Ey_i(2) (13-934)
Ey(z) =2z7'Ey_\(2) - KyEy_(2) (13-93b)

where E_(2) and Ey_(2) are the forward and backward system functions of
the lattice of the first N — 1 sections. From (13-93) it follows by a simple
induction that

En(2) =z VEy(1/2) (13-94)

The lattice filter is thus specified in terms of the N constants K. These
constants are called reflection coefficients.
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Since Ef(z) =1 — Kz~ and Efz)= —K, +z7%, we mnc.ludu from
(13-93) that the functions E( ) and E,(z) are p(nlynon‘ml\ in z7" of the form
Ex(z) =1—afz=' — oo — iz~ (13-95)

N(z)ﬁ: '\kul\'-’\‘l—--'—u\ (13-96)

where af are N constants that are specified in terms of the reflection coefii-
cients K.

LEYINSON’S ALGORITHM.i We denote by a)Y~' the coefficients of the lattice
filter of the first N — 1 sections:
() =1- ﬂ;\fqz- I ... f“\7:~_(\ 1)

From (13-94) it follows that

z-'En_i(2) =27 VEy_(1/2)

Inserting into (13-93a) and equating coefficients of equal powers of z, we abtain
ay =a) "= KyaN-} o= 1, B N
ay =Ky

‘We have thus expressed the coeflicients a; of a lattice of order N in terms of

the coefficients @)~ and the last reflection coefficient K,. Starting with

a} = K, we can express recursively the N parameters a} in terms of the N

reflection coefficients K.

Conversely, if we know afY, we find K, using inverse recursion: The
coefficient Ky equals af. To find Ky_;, it suffices to find the polynomial

E,_(2). Multiplying (13-93b) by K, and subtracting from (13-93a), we obtain

(1 ~KE)En_i(2) = En(2) + Kyz""Ey(1/2) (13-98)

This expresses E_,(z) in terms uf E(2) because K, = aly. With EN (z) so
determined, we set Ky_, = ah_. Continuing this process, we find Ey_.(z)
and K, _, forevery k <N.

(13-97)

Minimum-phase properties. We shall relate the location of the roots z/¥ of the
polynomial E(z) to the magnitude of the reflection coefficients K.

THEOREM. If
|[Kyl <1 forallk <N  then [z¥] <1 foralli<N (13-99)

4N. Levinson: “The Wiener RMS Error Criterion in Filter Design and prcdiclion.'.' Journal of
Mathematics and- Physics, vol. 25, 1947. See also J. Durbin: “The Fitting of Time Secries Models,
Revue L' Institut Internationale de Statisque, vol. 28, 1960.
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Proof. By induction. The theorem istrue for N = 1 because El(z) =1—=K;z°"
hence |z!] = IK,| < 1. Suppose that |z¥~!| < 1 forall j <N — 1 where z*
are the roots of Ey_,(z). From this it follows that the function
z VEy_((1/2)

Ex_i(2)
is all-pass. Since IAEN(z,-N) = 0 by assumption, we conclude from (13-934) and
(13-94) that

Ay ()= (13-100)

érv( z;) = EN’~I(Zr) = KNZ—NE,-\'—l(l/:i) =0

Hence

1
N =
[AN—I(ZI )l — JKvl >1

This shows that [z¥] < 1 [see (13B-2)].

CONVERSE THEOREM. If
|z¥l <1 foralli<N  then |K,| <1 forallk <N (13-101)

Proof. The product of the roots of the polynomial l"EN(z) equals the last
coefficient afy. Hence

!

K= ian =z N e =<

Thus (13-100) is true for & = N. To show that it is true for k = N — 1, it suffices
to show that |z)¥=!| < 1 for j < N — 1. To do so, we form the all-pass function

zNE(1/2)

Ay(z) = &5 (13-102)
Since Ey_ (z¥~!) = 0 it follows from (13-98) that

ENEAIE J?Ll > 1

N

Hence [zV~'| <1 and |Ky_;| = [@¥=!] = |zN¥=" -~ z§=])| < 1. Proceeding
similarly, we conclude that |K,| < 1 for all & < N.
COROLLARY. If |[K,| < 1for k < N — 1 and |K,| = 1, then

[z =1 forall i <N (13-103)

Proof. From the theorem it follows that [zY~!| < 1 because |K| < 1 for all
k = N — 1. Hence the function A,_,(z) in (13-100) is all-pass and |4, _,(z)]
= 1/ |Kyl = 1. This leads to the conclusion that |z¥| = 1 [see (13B-2)].
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Lattice Ex(2)=1-(az""4 o +aff %)

>
s[n)

——
5[]

FIGURE 13:15

We have thus established the equivalence between a polynomial E-JZ)
and a set of N constants K,. We have shown further that the polynomial is
strictly Hurwitz, iff [K| < 1 for all k.

Inverse lattice realization of AR systems. An inverse lattice is a modification of
a lattice as in Fig. 13-15. In this modification, the input is at point B and the
outputs are at points A and C. Furthermore, the multipliers from the lower to
the upper line are changed from —K, to K;. Denoting by &,[#] the input at
point B and by £,_,[n] the resulting output at C, we observe from the figure
that
ey In] = gy[n] + Kyey_\[n—1] (13-104a)
exlnl = Eyiln — 1] = Kyey_y[n] (13-104b)

These equations are identical with the two equations in (13-92). From this it
follows that the system function from B to A equals

1 1
Eqlz). | l=dfz=! =i =ayz "

We have thus shown that an AR system can be realized by an inverse lattice.
The coefficients alf and K, satisfy Levinson’s algorithm (13-97).

Iterative solution of the Yule—~Walker equations, Consider an AR process x! )
with innovations filter L(z) = /Py /D(2) as in (13-80). We form the lattice
equivalent of the MA system D(z) with a}f = —a,, and use x[n] as its input. As
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we know [see (13-95)] the forward and backward responses are given by
eylin] = x[n] — afx[n — 1] — - —alx[n - N]
eyln]=x[n - N] —afx[n =N+ 1] — -+ — a¥x[n]

Denoting by Sy(2) and S, (z) the spectra of £,[n] and &,[#] respectively, we
conclude from (13-105) that

Sn(z) = S(2)EN(2)E(1/2) = P,
5y(z) = S(2)Ex(2)Ex(1/2) = Py

Erom this it follows that £,[n] and &y[n] are two white-noise processes and

(13-105)

E(g3[n]} = E(g5[n]} = P, (13-1064)
. By m =0
; - = i -10
E{x[n —m]éy[n]) {ﬂ A (13-1064)
. g 0 0<m<N-1 -
E{x[n —mley[n]} = {PN m= N (13-106¢)

These equations also hold for all filters of lower order. We shall use them to
express recursively the parameters a;" Ky, and Py in terms of the N + 1
constants R[0],..., R[IN].

For N = 1(13-82) yields

R[0] — alR[1] = P, R[1] — alR[0] = 0

Setting P, = R[0], we obtain
R[1] ,
L= m Fy= (1 = Ky

‘Suppose now that we know the N + 1 parameters apy ', Ky_, and Py. From
Levinson’s algorithm (13-97) it follows that we can determine af if K, is
known. To complete the iteration, it suffices, therefore, to find K v and Py. We
maintain that

)2y

a, =

N—1
Py_Ky=R[N] = ¥ a}~'R[N - k] (13-107)
k=1
Py=(1-KZ)Py_, (13-108)

The first equation yields K, in terms of the known parameters af ', Rlm],
and Py_ ;. With K, so determined, Py is determined from the second equa-
tion.
Proof. Multiplying (13-92a) by x[n — N] and using the identities
N-1
Efey_i[nlxln = N]) =RIN] = T af 'R[k]
k=1

E(éy[n)x[n]} = P, E{gy_[n = 1]x[n]}) = Py_,
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we obtain (13-107). From (13-924) and the identities
E{ex[nlxn]) =Py E{ey_,[n - 1x[n]} = P,

N-1
E{ey_i[n = 1x[n]) =RIN] = ¥ af ‘R[N - k] = Bk
k=i

it follows similarly that Py = Py_| — KZ P, _, and (13:108) results.
Since Py, = 0 for every k, it follows from (13-108) that

1Ky =<1 and Py=Py= =t = Pr=il (13:109)
If [Ky| = 1 but |[K.| <1 for all kK < N, then
Py>P > <+ >Py=0 (13-110)

As we show next this is the case if S(w) consists of lines,

Line spectra and hidden periodicities. If P, = 0, then eyln] = 0; hence the
process x[n] satisfies the homogeneous recursion equation

x[n] = afx[n = 1] + -+ +ax[n — N] (13-111)

This shows that x[a] is a predictable process, that is, it can be expressed in
terms of its N past values. Furthermore,

R[m] —alR[m—1] = --+ —a¥R[m —N]=0 (13-112)

As we know [see (13-103)] the roots z¥ of the characteristic polynomial Ev(z)
of this equation are on the unit circle: z¥ = e’. From this it follows that
N N
Rlm] = Y aiem  S(w)=27Y (o0 —- ) (13-113)
i=1 =1
And since S(w) = 0, we conclude that a, = 0.
Solving (13-111), we obtain

a; i=k

13-114
0 i#k ( )

N
x[n] = YXceld”  Efe) =0  Elcie,) = {
i=1
CARATHEODQRY'S THEOREM. We show next that if R[m] is a p.d. sequence

and its correlation matrix is of rank N, that is, if
Ay>10 Ay, =0 (13-115)

then R[m] is a sum of exponentials with positive coefficients:

N
Rlm] = ¥ a,e/®™  a,>0 (13-116)
i=1

Proof, Since R[m] is a p.d. sequence, we can construct a process x[n] with
autocorrelation R[m]. Applying Levinson’s algorithm, we obtain a sequénce of
constant K, and FPy. The iteration stops at the Nth step because Py =
Ay o1/Ay = 0. This shows that the process x[#n] satisfies the recursion equation
(13-111),
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Detection of hidden periodicities.t We shall use the above to solve the following
problem: We wish to determine the frequencies w, of a process x[n] consisting
of at most N exponentials as in (13-114). The available information is the sum

yln] =x[n] + »[n] E{vi[n]} =q (13-117)

where v[n] is white noise independent of x[n].
Using J samples of y[n], we estimate its autocorrelation

Ry [m] =R, [m] + 5[ m] (13-118)
as in (13-78). The correlation matrix Dy, of x[n] is thus given by
R”[(J] 0 q R”[l] - R\‘\-[‘\l]
DN*J _ Rv,\.-[]] Rn[“] -4 R_‘}[‘f\.flu ]] (13-119)
Ry, [N] [N 1] - R,[0] -

In this expression, R, [m] is known but ¢ is unknown. We know, however, that
Ay, = 0 because x[n] consists of N lines. Hence g is an eigenvalue of D, .
It is, in fact, the smallest eigenvalue g, because D, ., > 0 for g < g, With
R [m] so cletu'rmnud we proceed as before: Using Levinson's algorithm, we
find the coefficients ak and the roots ¢/ of the resulting polynomial E ()L 0f
gy 15 a simple eigenvalue, then all roots are distinct and x[n] is a sum of N
exponentials, If, however, ¢, is a multiple root with multiplicity N, then x[n]
consists of N' = N + 1 exponentials,
This analysis leads to the following extension of Caratheodory’s theorem:
The N + 1 values R[0],..., RIN] of a strictly p.d. sequence R[m] can be
expressed in the form
N
R[m] =q[m] + Y ae™ (13-120)

=1

where g, and «; are positive constants and o, are real frequencies.

Burg’s iteration.i Levinson's algorithm is used to determine recursively the
coefficients @y of the innovations filter L(2) of an AR process x[2] in terms of
Rlm]. In a real problem the data R[m] are not known exactly. They are
estimated from the J samples of x[n] and these estimates are inserted into
(13-107) and (13-108) yielding the estimates of K, and P,. The results are then
used to estimate a)’ from (13-97). A more direct approach suggested by Burg,
avoids the estimation of R[m]. It is based on the observation that Levinson's

V. F. Pisarenko: “The Retrieval of Harmonics,” Geophysical Journal of the Royal Astronomical
Society, 1973.

$1. P. Burg: Maximum entropy spectral analysis, presented at the International Meeting of the
Society for the Exploration of Geophysics, Orlando, FL, 1967,
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algorithm expresses recursively the coefficients a)) in terms of K, and P.,. The
3 . 2 .o £ v - =
estimates of these coefficients can, therefore, be oblained directly in terms of
the t‘:S!lmalCS of K, and P,. These estimates are based on the following
identities [see (13-106)):
Py Ky =Eley_y[n]ey_ [n - 1])

Py = 4E(E3 ] + Eyln])

Replacing expected values by time averages, we obtain the following iteration:
Start with

(13-121)

1 4
Py=5 L x’ln]l  &ln] = &ln] = x[n]
ne=}
BRI s Py g [ &, Set

)-‘f: m.ﬁ\,L[”]h |[" - 1]

Ky= = - 13-122
N PN 0 1 = ) ol
Py= (1 =K Ry=, (13-123)
aff =gl Tt —Kgak—y . k=1, .l
) (13-124)
ay =Ky
N=1
gofn] =x[n] = ¥ alx[n — k]
k=1
(13-125)

inin] =x[n—N] - i ak_ox[n = N+ k]
k=1

This completes the Nth iteration step, Note that
Kyl <1 Py =0

This follows readily if we apply Cauchy's inequality (see Prob. 11-23) to the
numerator of (13-122).

Levinson’s algorithm vields the correct spectrum S(z) only if xln]is an AR
process. If it is not, the result is only an approximation. 1f R[m] is known
exactly, the approximation improves as N increases. However, if Rlm] is
estimated as above, the error might increase because the number of terms in
(13-49) equals J — N — 1 and it decreases as N increases. The determination of
an optimum N is in general difficult.

FEJER-RIESZ THEOREM AND LEVINSON'S ALGORITHM, Given a positive
trigonometric polynomial

N
W(el) = T we =0 (13-126)
a==N
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we can find a Hurwitz polynomial

N
Yiz)= Y yz " (13-127)

n=0
such that W(e’”) = [Y(e/~)|*. This theorem has extensive applications. We used
it in Sec. 12-1 (Spectral factorization) and in the estimation of the spectrum of
an MA and an ARMA process. The construction of the polynomial ¥{(z)
involves the determination of the roots of W(z). This is not a simple problem
particularly if W(e’?) is known only as a function of w. We discuss next a
method for determining Y(z) involving Levinson's algorithm and Fourier series,

We compute, first, the Fourier series coefficients

R[m] = A ) 0<m=<N (13-128)

l m
ey
of the function S(e’*) = 1/W(e’®). The numbers R[m] so obtained are the
values of a p.d. sequence because S(e’“) = 0. Applying Levinson’s algorithm to
the numbers R[m] so computed, we obtain N + 1 constants a} and P,. This
yields

1 Py
W(e™) |1 =N aNe=n?

S(e’®) =
Hence

1 N
Y(z) = F(] = 2} a;:"ZA”]

as in (13-127). This method thus avoids the factorization problem.

The General Class of Extrapolating Spectrat

We consider now the following problem: We are given the N - 1 values (data)
R[0],...,R[N]

of the autocorrelation R[m] of a process x[n] and we wish to find all its p.d.
«extrapolations, that is, we wish to find the family C,, of spectra S(e/) = 0 such
that the first N + 1 coefficients of their Fourier series expansion equal the given
data, The sequences R[m] of the class Cy and their spectra will be called
admissible.

A member of the class €, is the AR spectrum

8(z) = L(2)L(1/z)  L(2) =Ey(2)/{Py

TA. Papoulis: “Levinson’s Algorithm, Wold's Decomposition, and Speetral Estimation," SIAM
Review, vol. 27, 1985,
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Data Extrapolating
Lattice - Lattice
€uln] -
’ —_—
L K,
1
xin] k<N k>N
——
£x(n]
FIGURE 13-16

where E(2) = Ey(z) is the forward filter of order A obtained from an N-step
Levinson -algorithm. The continuation of the corresponding R[m] is obtained
from (12-41b):

N
Rlm]l= Y aR[m-k] m>N

k=1

To find all members of the class C,. we continue the algorithm assigning
arbitrary values

K<l k=N+1,N+2,...

to the reflection coefficients. The resulting values of Rlm] are determined
recursively [see (13-107)]

m—1
Rlml= Y ap 'R[m — k] +P,_ K, (13-129)

k=1
This shows that the admissible values of R[m] at the mth iteration are in an
interval of length 2P,

71— 1"

m—1 m—1

Y ap~'R[m —k] - P,_; <Rlm] = ¥ ap~'R[m — k] + P, (13-130)
k=1 =1

because |K,,| < 1. At the endpoints of the interval, |K,,| = 15 in this case,
P,=0and A, ., = 0. As we have shown, the corresponding spectrum S(w)
consists of lines. If |K,, | <1 and K, = 0 for m >m,, then S(z) is an AR
spectrum of order m,. In Fig. 13-16, we show the iteration lattice. The first N
sections are uniquely determined in terms of the data. The remaining sections
form a four-terminal lattice specified in terms of the arbitrarily chosen reflection
coefficients Ky, Kyyos oo

Admissible spectra. The DFTs of the sequences generated by the preceding
iteration form the class €, of admissible spectra. We give next a simple
characterization of this class starting with regular spectra. Such spectra are the
transforms of all admissible sequences obtained with [K,,| < 1 for all m.
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We shall show that all regular spectra can be expressed in terms of the
forward and backward functions Ey(z) and z~~E ,(1/z) of the first NV sections,
the constant Py, and a reflection coefficient p(z) defined as follows:

A function p(z) is called a reflection coefficient if

D b(z)
a(z)
where a(z) and b(z) are two power series in z~' analytic for |z| = 1 and such
that a(ee) = 1, blee) = ().
It can be shown that the functions
1— |p(e)|?
'EN-( eiw) + e-ijEN( L,~;'m)p( e)‘u-) 12

lp(z)] <1 for |zl =1 (13-131)

p(z)

S(e®) = Py (13-132)

generate the class of all regular spectra of the class C, where p(z) is an
arbitrary reflection coefficient. The proof of this is based on the properties of
four-terminal lattices. The details, however, are involved (see page 470n).

We shall determine the innovations filter L(z) of a process with the above
spectrum. To do so, we must factor S(z). The denominator of S(z) is factored
readily. To factor the numerator, we observe that
a(z)a(l/z) —b(z)b(1/z)

a(z)a(l/z)
It suffices, therefore, to find the numerator. To do so, we determine a Hurwitz
polynomial y(z) such that
y(2)y(1/z) = a(z)a(l/z) — b(z)b(1/z)
With y(z) so determined, (13-132) yields
VPy ¥(z)
Ey(z)a(z) - z7VE(1/2)b(z)

If p(z)is a rational function, S(z) is an ARMA spectrum, If p(z) = 0, it is an
AR spectrum of order V. If y[z] = constant, S(z) is an AR spectrum of order
higher than N.

1= p(2)p(l/z) =

L(z) = (13-133)

Line spectra, If in the preceding algorithm |K,,| = 1 for m = m, > N, then the
iteration terminates and the resulting spectrum consists of m, lines. We can,
therefore, fit the N -+ 1 values R[m] of a p.d. sequence with the sum of my
exponentials where m, is any number larger than N. We can do so with N lines
only if Ay, =0.1f Ay, , >0, we obtain a spectrum consisting of N lines and
a constant:

N
S(w) =gy + 27 ¥ a;8(w — w) (13-134)

i=l
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where gq is the smallest eigenvalue of the matrix Dy . This is a consequence
of the modified form (13-120) of Caratheodory's theorem.

Maximum Entropy and Smoothness Conditions

In the preceding discussion we used as the parametric form of S(z) a rational
function of z. In the following we determine the parametric form of S(z) in
terms of certain smoothness conditions leading to the maximization of the
integral of some function of S(w). The method of maximum entrapy is 4 special
case. We repeat the problem: We are given the first N + 1 values of the p.d.
sequence R[m] and we wish to determine its spectrum

S(w) = Y, R[mlem*
m= =

To solve this problem, we introduce a nonlinear function G(8(w)) of S(w) and
we determine the unknown values of R[m] so as to maximize the integral

H= [ G(S(w)) da (13-135)
subject to the constraints
1 =
R[m] = —f S(w)e dw  |m| =N (13-136)
2
where R[m] are the given data.

The integral H depends on the unknown values of R[m]. It is, therefore,
maximum if

aH 7 d dS(w)
m-:f_’-EG(S(w))aR[—m]dw=0 lm| > N
With F(S(w)) = G'(S(w)) this yields
- : aS(w)
f;"F(S(w))e’-’m” dw =0 lm| >N because ﬁ[?] =g tme

From this it follows that the Fourier series coefficient of the function F(S(w))
must be 0 for |m| > M. In other words

N
ElS(e)) = X cpe (13-137)
Rsmi=p

The constants ¢, can, in principle, be determined in terms of the data R[m].
Indeed, from (13-136) and (13-137) it follows that

(- N
R[m]=;[_f‘"“( =,\:_che ““]dw [ml =N (13-138)
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where FU-Y is the inverse of F(s). This is a nonlinear system of 2N + 1
equations involving the 2N + 1 unknowns ¢,. Its solution is in gencral difficult.

The selection of the function G(S) depends on the applications. It might
be selected, for example, to emphasize the high or low values of S(w). The
following special case is of particular interest. It leads to a system that can be
simply solved and the result maximizes the uncertainty about the unknown

spectrum,

The method of maximum entropy.; We now assume that
G(S(w)) = InS(w)

In this case,
H= f” In §(w) do (13-139)

If S(w) is the power spectrum of a process x{#n], then H is the entropy rate of
x[n] [see (15-130)].
From (13-135) it follows that G(S(w)) = In S(w); hence

1 N
F(S(w)=——= ¥ ce*>0 (13-140)
S(w)  p="n
This shows that the spectrum S(w) is ARMA. It can, therefore, be written in

the form

Py

S(w) = ——————
(@) 1+ E}:’E,ake""’kl“

(13-141)
Hence its coefficients a;, and Py, can be determined recursively from Levinson’s
-algorithm.

We have thus shown that the estimation of S(w) based on the principle of

maximum entropy rate is equivalent to the assumption that the unknown S(w)
is AR.

APPENDIX 13A
MINIMUM-PHASE FUNCTIONS

A function

H(z) = i Bz

n=0

i5 called minimum-phase, if it is analytic and its inverse 1/H(z) is also analytic

TA. Papaulis: “Maximum Entropy and Spectral Estimation: A Review,” IEEE Transactions on
Acaustics, Speech, and Signal Processing, vol. ASSP-29, 1981,
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for |z| = 1. We shall show that if H(z) is minimum-phase, then
5 1 - ~
In h3 = ﬁf In [H(e%*) P de (13A-1)
Progf. Using the identity [H(e/?)? = H(e/?)H(e 7#), we conclude with e = z,
that
T 5 1
In |[H(e#)|"de = p—In[H(2)H(z "] dz
J_ InlH(e?)Pdp = §-in[H(2)H(= )] d

where the path of integration is the unit circle. We note further, changing z to
1/z, that

1 1
gS—lnH(z) dz = g’;- InH(z"") dz
2 Z
To prove (13A-1), it suffices, therefore, to show that
1 1
In/lhyl = 2—1”93? InH(z) dz

This follows readily because H(z) tends to /s, as z =« and the function
In H(z) is analytic for |z| = 1 by assumption.

APPENDIX 13B
ALL-PASS FUNCTIONS

The unit circle is the locus of points N such that (see Fig. 13-17a)

(NA) |e** —1/zF] 1 o
== - = — i
(NB) lef* = z)| [z

From this it follows that, if
et =
F(z) = — lz;l <1
2 —Zy

then |F(e’®)| = 1. Furthermore, |[F(z)| > 1 for |z| <1 and |F(z)| <1 for
|z| > 1 because F(z) is continuous and

IF(0)| = % 51 |F(=) = 27l <1

Multiplying N bilinear fractions of the above form, we conclude that, if

N * — 1 )
H(z) = T = 2l <1 (138-1)
=1 %= Z
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M:

Circle of Apollonius

(M A) _(NA)_ 1 (M. A)
S P = (1 ;
(MyB) (NB) |zl ~ (M. B)

(a)

All-pass filter

yln]= thn ~k] h|k]

——1  h|n| > hl=a) ——> k=t
x[n] yln] x[n] :
H(z) H(z ) x[n] = > yln+k] k]
(&)
FIGURE 13-17
then
> 1 |zl <1
[H(z)[{ =1 [z] =1 (13B-2)
<l [z]> 1

A system with system function H(z) as in (13B-1) is called all-pass. Thus
an all-pass system is stable, causal, and

[H(e™T)] =1

Furthermore,

1 Nz -3 N —z/z 1
. H(—) (13B-3)

H(z) =;=|zz,-*—1 3,]‘_1;2‘*—1/2 T
because if z; is a pole of H(z), then z* is also a pole,

From the above it follows that if A[n]is the delta response of an all-pass
system, then the delta response of its inverse is A[—n]:

[ . —h L = . n 2
H(z) = ’E:oh[rl]z el ");Uh[n]z (13B-4)

where both series converge in a ring containing the unit circle.
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PROBLEMS

13-1. Find the mean and variance of the RV

| T
ny = ?f I'.N(!)rh where  x(r) =10 + v(1)
for T'=5 and for T' = 100. Assume that E{w(1)) = 0, R.(7) = 25(7).

13-2. Show that if a process is normal and distribution-crgodic as in (13-35), then it is
also mean-ergodic.
13-3. Show that if x(¢) is normal with 7, = 0 and R (7) =0 for |7| > a. then it is
correlation-ergodic.
13-4, Show that the process ae/“**¥) s not eorrelation-ergadic.
13-5. Show that
o
R (A) = lim — x(r + A)y(t) dr
T—= 27 T
iff
im — 27 (1= 2L\ g ; :
Tl-nl 7)o\ 3F {x(t + A +7)y(t + z)x(r + A)y(r))idr = R2.(A)
13-6. The process x(¢) is cyclostationary with period T, mean n(z), and correlation
R(t),t3). Show that il R(z + 7.4) = 7°(¢) as |7| — =, then
1 e 1 o
lim — [ x(t)dt=— t)dr
O Z(‘f...-( )e T-In alt e

Hinr: The process X(r) = x(t — 8)/is mean-ergodic,
13-7. Show that if
C(t+7,8) —= 0

uniformly in ¢; then x(¢) is mean-ergodic,
13-8. The process x(¢) is normal with 0 mean and WSS. (a) Show that (Fig. P13-8a)
R(A)
R(0)

E{x(r + 1) |x(r) =x) =

(a) (5)

FIGURE P13-8
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13-9.

13-10.

13-11.

13-12,

13-13.

13-14.

SPECTRAL ESTIMATION

(b) Show that if ) is an arbitrary set of real numbers x; and % = E{x(1)|x(1) € D},
then (Fig. P13-85)

w Y] b R(A) _
E{x(t +)Ix(z) € D} = R(O)
(¢) Using the above, design an analog correlometer for normal pracesses

The processes x(¢) and y(z) are jointly normal with zero mean. Show that: (a) If
wit) = x(t + A)y(1), then

wa(f) = ny(/\ i 7)ny(’\ - ‘—) + C.t.l{'-)(-,\'i'(.'_)
(k) 1f the process x(t) and y(r) are variance ergodic, they are also'cross-variance

ergodic.
Using Schwarz's inequality (11B-1), show that

Ifbf(x)d..\"- < (b —a) () dx

We wish to estimate the mean 5 of a process x(r) = g + v(1) where R, () =
58(7). (@) Using (5-57), find the 0.95 confidence interval of n. (b) Improve the
estimate if v(r)is a normal process.

(a) Show that if we use as estimate of the power spectrum S(w) of a discrete-time
process x[#] the function
N
Su(@)= ¥ w,R[m]e~me"
m=—N
then
1 e N :
Su(0) = 5= [ SOIW (0 - ) dy  W(w) = T we "
g =

(b) Find W(w) if N = 10.and w, = 1 — [nl/11.
Show that if x(r) is zero-mean normal process with sample spectrum

T
Si(w) = ﬁlijx(l)e“‘"“ di

and S(w) is sufficiently smooth, then
EX(S;(0)) < VarS,(w) < 2E%(S;(w))
The right side is an equality if © = 0. The left side is an approximate equality if

T 1/w.
Hint: Use (12-74).

Show that the weighted sample spectrum

1 2
S.(w) = EY lffrc(l)x(l)e‘““' dt
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of a process x(¢) is the Fourier transform of the function
F—lzl/2 T T 7\ 7
R = = lele = = =ty =
<(7) 2rf S~ ( o* z)‘(' 1]‘(' . zj‘(’ ‘2)"'

13-15. Given a normal process x(v) with zero mean and power spectrum S(w), we form
its sample autocorrelation R4{(7) as in (13-38). Show that for large T,

VarR;(A) =

zﬂ,f_ln + ey S2( 1) du

)

is/the estimate of the autocorrelation R(7) of a zcro-mean normal process, then

13-16. Show that if

L crpeip2 T
S I
e 2T T-Ir1.'2x“ 22\

2] =

f"’T Izl
OR
r 217 2T +7l

) il + laf
[R*(a) + R(a + 7)R(a - T)l(‘ - zrd )d"

13-17. Show that in Levinson’s algorithm,
ai + K,y
1 — K2

NI

ay E(EN["]E.\:—I[" = 1]} =0

13-18. Show that if R[0] = 8 and R[1] = 4, then the MEM estimate of S(w) equals
Sin = —_—
aem(@) [ — 0.5e %

13-19. Find the maximum entropy estimate Sypu(w) and the line-spectral estimate
(13-111) of a process x[n] if

RI0]=13 R[11=5 R[2]=2



CHAPTER

14

MEAN
SQUARE
ESTIMATION

14-1 INTRODUCTION7

In this chapter, we consider the problem of estimating the value of a stochastic
process s(z) at a specific time in terms of the values (data) of another process
x(¢) specified for every £ in an interval @ < & < b of finite or infinite length. In
the digital case, the solution of this problem is a direct application of the
orthogonality principle (see Sec. 8-4). In the analog case, the linear estimator
(1) of s(¢) is not a sum. It is an integral

3(1) = E(s(0)|x(£), @ < € < b) = [‘h(a)x(e) da (14-1)
and our objective is to find A(«) so as to minimize the MS error
2
P= E{[s(r) - §(r)]2} = E{[s(z) — fbh(a)x(a) da] } (14-2)

The function /i(a) involves a noncountable number of unknowns, namely, its

TN. Wiener: {E..,: "_ Ji . Interpolation, and Smoothing of Stati y Time Series, MIT Press, 1950.
J. Makhoul: “Linear Prediction: A Tutorial Review,” Proceedings of the IEEE, val. 63, 1975. T.

Kailath: “A View of Three Decades of Linear Filtering Theory,” IEEE Transactions Information
Theary, vol. IT-20, 1974,

480
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values for every a in the interval (a, b). To determine Ala), we shall use the
following extension of the orthogonality principle:

THEOREM. Tjhc-: MS error P of the estimation of a process s(t) by the integral
in (14-1) is minimum if the data x(£) are orthogonal to the error s(t) — &(1):

b
E{[s(f)—fh(a)x(n]da]x(.f)} =0 a<é<h (14-3)
a
or, equivalently, if h{a) is the solution of the integral equation

R,,‘(t,f)=fb"r(n)R,.(m§)da a<t<bh (14-4)

Proof. We shall give a formal proof based on the approximation of the integral
in (14-1) by its Riemann sum, Dividing the interval (@, b) into m segments
(e, a, + Aa), we obtain
” b —a
§(t) = ¥ h(ay)x(a,) Aa Aa =
k=1

m
Applying (8-70) with @, = hla,) Ae, we conclude that the resulting MS error P
is minimum if
E{]:s(r) = E(ak)x(ak)Aa]x(.f,)} =) l<j<m
k=1
where £; is a point in.the interval (a;, a; + Aa). This yields the system

R (1.¢) = L hla)R, (o, &)Aa  j=1,....m (14-5)
k=1

The integral equation (14-4) is the limit of (14-5) as Aa — 0.
From (8-73) it follows that the LMS error of the estimation of s(¢) by the
integral in (14-1) equals

P= E{[s(:) = f:h(a)x(a) da]s(l)} =/R(0))= th(a)R,,,( t,a)da
(14-6)

In general, the integral equation (14-4) can only be solved numerically. In
fact, if we assign to the variable £ the values & and we approximate the integral
by a sum, we obtain the system (14-5). In this chapter, we consider various
special cases that lead to explicit solutions. Unless stated otherwise, it will be
assumed that all processes are WSS and real.

We shall use the following terminology:

If the time ¢ in (14-1)is in the interior of the data interval {a, b), then the
estimate §(z) of s(r) will be called smoothing.
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If ¢ is outside this interval and x(7) = s(¢) (no noise), then §(¢) is a
predictor of s(t). If ¢ > b, then 8(r) is a “forward predictor™; if ¢ <a, it is a
“hackward predictor.”

If 1 is outside the data interval and x(¢) # s(1), then the estimate is called
[filtering and prediction.

Simple Illustrations

In this section, we present a number of simple estimation problems involving a
finite number of data and we conclude with the smoothing problem when the
data x(¢) are available from (—, ). In this icase, the solution of the integral
equation (14-4) is readily obtained in terms of Fourier transforms,

Prediction. We wish to estimate the future value s(z + A) of a stationary
process s(7) in terms of its present value
82+ A) = E(s(r + A)Is(e)} = as(¢)
From (7-71) and (7-72) it follows with n = 1 that
R(A)
" R(0)
P = E{[s(t + A) — as(1)]s(t + A)} = R(0) — aR(A)
Special case 1f
R(7) = Ae =l then a =e

In this case, the difference s(z + A) — as(1) is orthogonal to s(t — &) for every
&= 0:

E([s(z +A) —as(t)]s(1)} =0 a

E{[s(¢ + ) —as(0)]s(t = £)} = R(A + £) — aR(£)
= Ae oA *E) — go—Apomat —

This shows that as(r) is the estimate of s(¢ + A) in terms of its entire past. Such
a process is called wide-sense Markoff of order 1.
We shall now find the estimate of s(+ + A) in terms of s(z) and s'(¢):

S(f + &) = a;s(1) + a,s/(1)
The orthogonality condition (8-70) yields
s(e4 A) = 8(r + ) Ls(r),s(1)
Using the identities
R(0)=0 R,(r)=—R(7) R..(7) = —R"(7)
we obtain
a3 =R(A)/R(0)  a; = R(A)/R"(0)
P =E{[s(t + A) —a,s(r) - a,s'(1)]s(2 + A)} = R(0) — a,R(A) + ay R'(A)
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_ s(1+A)
o h‘\ﬁrw/
A }h

t—NT 1 t+NT FIGURE 14-1

If A is small, then
R(A) = R(0) R'(A) = R'(0) + R"(0)A = R"(0)A

a; =1 a,=A S(r +A) =s(r) +As(1)

Filtering We shall estimate the present value of a process s(¢) in terms of the
present value of another process x(1):

8(1) = E(s(r)x(1)) = ax(1)
From (7-71) and (7-72) it follows that
E([s(t) = ax(t)]x(t)} =0 a =R (0)/R,,(0)
P = E{[s(¢) — ax(¢)]s(1)} = R,,(0) — aR,(0)

Interpolation We wish to estimate the value s(¢ + A) of a process s(f) at a
point ¢ + A in the interval (¢, ¢ + T), in terms of its 2N + 1 samples s(r + KT)
that are nearest to ¢ (Fig. 14-1)

N
§t+A)= Y as(t+kT) 0<A<T (14-7)
k==N

The orthogonality principle now yields

N
E{‘[s(f+p\) - ¥ a,,s(l+kT):|s(r+nT)} =0 Inl <N
k=—N
from which it follows that
N
Y @ R(KT —nT) = R(A - nT) —-N<n<N (14-8)
k=-N

This is a system of 2N + 1 equations and its solution yields the 2N + 1
unknowns a@,. The MS value P of the estimation error

en(t) =s(t+2) - f: as(t + kT) (14-9)
k=—-N
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cquals
N

P = Eley(£)s(r+ 1)) =R(0) = X aR(A—kT)  (14-10)
k=—N

Interpolation as deterministic approximation  The error e v(1) can be con-
sidered as the output of the system

N
Ey(w) = e — Y a,eiTe
k=—N

(error filter) ' with input s(¢). Denoting by S(w) the power spectrum of s(r), we
conclude from (10-139) that

1 = ‘ N I
P=Efek(1)) = ;[ S(w)|e’* = ¥ a, e dw (14-11)
— k=-N

This shows that the minimization of P is equivalent to the deterministic

problem of minimizing the weighted mean square error of the approximation of

the exponential ¢/ by a trigonometric polynomial (truncated Fourier series).
Quadrature  We shall estimate the integral

b
z= | s(t)dt
Jj*
of a process s(r) in terms of its N + 1 samples s(n7):

b
zZ=ays(0) +a,s(T) + -+ +ays(NT) T = 7

Applying (8-70), we obtain
E{[Es(r) dt— i]s(kT)} -0 0<k<N
Hence
j;'bR(t — kT) dt = agR(KT) + -+ +ayR(KT = NT) 0 <k <N

This is a system of N + 1 equations and its solution yields the coefficients a,.

Smoothing

We wish to estimate the present value of a process s(¢) in terms of the values
x(£) of the sum

x(r) = s(1) +v(t)
available for every & from —w to =. The desirable estimate
8(0) = Efs(t)Ix(¢), —= < & < )
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will be written in the form
§(f}=[7h(ﬂ)!(fk(ﬂ(.’(r (14-12)

In this notation, /() is independent of '+ and §(#) can be considered as the
output of a linear time-invarian! noncausal system with input x(1) and impulse
response A(r). Our problem is to find A(2).

Clearly,

s(¢) —8(r) L x(&) alll ¢
Setting £ =t — 7, we obtain

E{[S([) — f—t h{a)x(t —a) da}x(f - T)} =0 all. =

This yields
R,.(f)=f1 h(a)R, (7 —a)da all = (14-13)

Thus, to determine /A(z), we must solve the above integral equation. This
equation' can be solved easily because it holds for all 7 and the integral is a
convolution of h(7) with R, (7). Taking transforms of both sides, we obtain
S, (@) = H(w)S, (w). Hence

S (@)

S0 (14-14)

H(w) =

The resulting system is called the noncausal Wiener filter.
The MS estimation error P equals

P =E{[s(f) - fih(m)x(! = a) da]s(f)}

@ T
=R, (0) — j_wh(am”(a) da = gf_x[sﬂ(w) — H*(0)S,,(w)] dw

(14-15)
If the signal s(r) and the noise v(r) are orthogonal, then
S(w) =S8,(0) S (a)=5,(0)+S,(w)
Hence (Fig, 14-2)
S _‘(ﬁ}) ] = Su( M)Sl,.,(w) s
sl —e [y L T g (14e16)
o) =y + Suo) il T T )

If the speetra S, (@) and S,,(w) do not overlap, then H(w) = 1 in the band of
the signal and H{w) = 0iin the band of the noise. In this case, P = 0.
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Sy ()

H(w) H(w) —>—

—
x(1) §(0)
x(D=s(1)+v(1)

0 @

FIGURE 14-2

Example 14-1. If

0

N
Sy(@)=———= S.(a)=N S, (2)=0

a” +w”
then (14-16) yields
Ny Ny
H(w) = ————+ h(t) = ~pu
(@) Ny + N(a? + »?) () 2ﬁNe
I = N Ny 0™ ¥ 0
P=—/[ ——do=— 21—t —
2nf_m[32+w2 Ui pp et L T

DISCRETE-TIME PROCESSES. The noncausal estimate §[n] of a discrete-time
process in terms of the data

x[n] = s[n] + v[a]
is the output
8[n] = _i: h[k]x[n — k]

of a linear time-invariant noncausal system with input x[n] and delta response
hln). The orthogonality principle yields

E{(s{n] - ¥ h[k]x[n—k])x[n—m]} =0 al m
k=—=
Hence
R, [ml= ¥ hlk]R, [m—-k] all m (14-17)
k= —=
Taking transforms of both sides, we obtain
sd‘.((z)
S,.(2)

H(z) = (14-18)
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The resulting MS error equals

P=E{[s[n1 - i hlk]x[n — k] s[n]\

k=—= J

=R, (0) - E AKIR, [K] =

==

wI'_‘

[ [S.(w) = H(e Y8, ()] dw

o
Example 14-2. Suppose that s[n] is a first-order AR process and w[n] is white
noise orthogonal to s[n];
Ny
S,.(z) = m
In this case,
aN(1 = bz ")(1 = bz)

S.(z)=8 R L e e —
re(2) = 8(2) + B(1 — az=")(1 — az)

where
Ny
O<hb<ac<l b+b'=a+a '+ —
aN
Hence
bN, bN,
H(z) = :' hln] = b e et
aN(1 — bz ")(1 —bz) aN(1 —b%)
N, bN,
P= 1 - Y| = ——=
i [ “k_f:w(”') a(i - b9

14-2 PREDICTION

Prediction is the estimation of the future s(z + A) of a process s(z) in terms of
its past s(t — 7), r > 0. This problem has three parts: The past (data) is known
in the interval (=, 1); it is known in the interval (¢ — T, ¢) of finite length T+ it
is known in the interval (0, ¢) of variable length ¢. We shall develop all three
parts for digital processes only. The discussion of analog predictors will be

| limited to the first part. In the digital case, we find it more convenient to predict
the present s[n] of the given process in terms of its past sln — k], k = r.

Infinite Past
l We start with the estimation of a process s[n] is terms of its entire past
sln — k], k > 1:

§[n] = E{s[n]ls[n - k], k = 1) = k)ifdkls[" =kl AR

I This estimator will be called the one-step predictor of s(n]. Thus §ln] is the
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response of the predictor filter
H(z) = h[1)z=" + - +h[k]z7* + -~ (14-20)

to the input s{n] and our objective is to find the constants h[k] so as to
minimize the MS estimation error. From the orthogonality principle it follows
that the error e[n] = sln] — §[»] must be orthogonal to the data sln —ml:

E{(s[n] - ki]h[k]s[n = k]]s[n - m]} =] m=1 (14-21)

This yields

@
Rlm] — X alk)R[m —k]=0  m=>1 (14-22)
k=1
We have thus obtained a system of infinitely many equations expressing the
unknowns A[k] in terms of the autocorrelation R[m] of s[n]. These equations
are called Wiener—Hopf (digital form).

The Wiener—Hopf equations cannot be solved directly with z transforms
even though the right side equals the convolution of Alm] with R[m]. The
reason is that, unlike (14-17), the two sides of (14-22) are not equal for every m.
A solution based on the analytic properties of the z transforms of causal and
anticausal sequences can be found (see Prob. 14-12); however, the underlying
theory is not simple. We shall give presently a very simple solution based on the
concept of innovations. We comment first on a basic property of the estimation
‘error e[n] and of the error filter

E(z) =1-H(z)=1- ih[n]z*" (14-23)
k=1

The error €[n] is orthogonal to the data s[n — m] for every m = 1;
furthermore, e[n — m] is a linear function of s[n — m] and its past because €[]
is the response of the causal system E(z) to the input s[n]. From this it follows
that €[] is orthogonal to e[n — m] for every m > 1 and every n. Hence €[n] is
white noise:

R, [n] = E{e[n]e[n — m]} = Ps[m] (14-24)
where

P = E{e[nl} = E{(s[n] — slnD)sln]) = R[0) = % ALK]RIK]
k=1

is the LMS error. This error can be expressed in terms of the power spectrum
S(w) of s[nl; as we see from (10-139),

i
P= Ej_ﬁls(dm)ﬁsm) dw (14-25)

Using the abave, we shall show that the function E(z) has no 0’s outside
the unit circle.
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THEOREM. If

E(z;) =10 then |zl <1 {14-26)
Proof. We form the function

E= :AI/:"«
1

Ey(z) = E(z) T

This function is an error filter because it is causal and E (=) = E(x) = 1.
Furthermore, if |z;| > 1, then [see (13B-2)]

[Es(e’)] =

Iz [E(e’) | < |E(e’)]
=i
Inserting into (14-25), we conclude that if we use as the estimator filter the
function 1-E(z), the resulting MS error will be smaller than P. This, however,
is impossible because P is minimum; hence [z;| < 1.

Regular Processes

We shall solve the Wiener—Hopf equations (14-22) under the assumption that
the process s(n] is regular. As we have shown in Sec. 12-1, such a process is
linearly equivalent to a white-noise process i[n] in the sense that

s[n] = i [ kJi[n = k] (14-27)
k=0

ifn] = i ylk]s[n — k] (14-28)
k=0

From this it follows that the predictor $[n] of s[x] can be written as a linear sum
involving the past of i[n]:

§n] = X mlkliln — k] (14-29)
k=1
To find 8[n], it suffices, therefore, to find the constants k[k] and to express i[n]

in terms of s[n] using (14-28). To do so, we shall determine first the cross-corre-
lation of s[n] and i[n]. We maintain that

R, [m] = 1[m] (14-30)
Proof. We multiply (14-27) by i[n — m] and take expected values. This yields
E(s[a)iln —m]) = i [k)E([n = k]i[n —m]} = k):ﬂ![k]ﬁ{m — k]
=0 =

because R, [m] = 8[m], and (14-30) results.
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To find & [k], we apply the orthogonality principle:
E{(s[n] - i h[k]iln — k])i[n - m]} =0 m <1
k=1
This yields
R, [m] — i hlk]R[m — k] =R, [m] — é h[k]s[m—k]=0
k=1 k=1

and since the last sum equals /,[m], we conclude that /i[m] = R [m]. From
this and (14-30) ‘it follows that the predictor §{n], expressed in terms of its
innovations, equals

8[n] = ‘\i I[kli[n — k] (14-31)
(=1

We shall rederive this important result using (14-27). To do so, it suffices
to show that the difference s[n] — 8[n] is orthogonal to i[n — m] for every
m > 1. This is indeed the case because

eln]l = ¥ llkliln — k] = X i[kli[n — k] =1[0]i[n] (14-32)
k=10 k=1
and i[n] is white noise.
The sum in (14-31) is the response of the filter

Y l[klz % = L(z) - [[0]
k=1
to the input i[n]. To complete the specification of §[x], we must express i[n] in
terms of s[n]. Since i[n] is the response of the filter 1/L(z) to the input s[x], we
conclude, cascading as in Fig, 14-3, that the predictor filter of s{n] is the product
1 [[0]

H(Z) = E(L(Z) - 1[0]) =1-= H (14—33)

shown in Fig. 14-4. Thus, to obtain H(z), it suffices to factor S(z) as in (12-6).
The constant /[0] is determined from the initial value theorem:

(0] = lim L(z)

sfe] | M2 | ifn)

FIGURE 14-3
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1oJ 0 Hi)=1- 19

—— 2=

s(] i [ N a0 L@
L@ | ifa) [/é‘[”]

One-step predictor

FIGURE 14-4

Example 14-3, Suppose that

S(w) 5 —4dcosw 5 2z—1 2
(= 10— 6cosw (=)= 2=— 1 ’[U]ZE
as in Example 14-4, In this case, (14-33) yields
2 z=1 —z !

H(Z):lfixzz_l =(’“7: )

Note that §[n] can be determined recursively:

8[n] — 38[n — 1] = —3s[n — 1]

The Kolmogoroff-Szego MS error formulaf As we have seen from (14-32), the
MS estimation error equals

P = E{e*[n]} = I*[0]
Furthermore [see (13A-1)]

j— :
In12[0] = Ef, In|L(e™)|’ da

Since S(w) = |L(e®)[?, this yields the identity

1
P= exp{gjﬂrln S(w) dw} (14-34)
expressing P directly in terms of S(w).

Autoregressive processes. If s[n]is an AR process as in (12-39), then /0] = by,
and

N N
H(z) = —ajz-'— - =« —ayz ()
§[n) = —a;s[n=1] =+ —aysfn—N] P=1bj

The above shows that the predictor 3[x] of s[n] in terms of its entire past is the

same as the predictor in terms of the N most recent past values, This result can
be established directly: From (12-39) and (14-35) it follows that s[n] — 8[n] =

1U. Grenander und G. Szego: Toeplitz Forms.and Their Applications, Berkley University, Press, 1958
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byiln]. This is orthogonal to the past of s[n]; hence
B{s[n]ls[n — k], 1 <k <N} = E(s[n]ls[n — k], k = 1)

A process with this property is called wide-sense Markoff of order N.

THE r-STEP PREDICTOR. We shall determine the predictor
§,[n] = E{slnlls[n— k], k = r)

of s[n] in terms of s[n — r] and its past using innovations. We maintain that

§,[n] ZI[ Jiln — k] (14-36)

Proof. Tt suffices to show that the difference

=1

g[n] =s[n] = 5[n]l= X i[k]i[n — k]

k=1

is orthogonal to the data s{n — k], k = r. This is a consequence of the fact that
s[n — k] is linearly equivalent to i[n — k] and its past for k = r; hence it is
orthogonal to ifn — m]for 1 <m <r — 1.

The prediction error €,[(n) is the response of the MA filter /[0] + /[1]z
+ oo Hl[r = 1]z of Fig. 14-5 to the input i{n]. Cascading this filter with
1/L(z) as in Fig. 14-5, we conclude that the process §,[n] = s[n] — £, [n] is the
tesponse of the system

r=I
'-( ) k=0

to the inputs{a]. This is the r-=step predicror filter of s[n]. The resulting MS error

H(z) = = (14-37)

- 1 i[n]
s[a] L(z) =

10] i

r=step predictor

FIGURE 14-5
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equals
=i
P = E{el[n]} = ¥ 12[k] (14-38)
K=

Example 14-4. We are given a process s[#] with autocorrelation Rlml = o and
we wish'to determine its r-step predictor. In this case (see Example 10-30)

a'~a B2

S(z) = = .
(=) (¢ +a)=(z""+z2) (1 =az "1 -az)

b = | = q*

(‘7
L(Z)= ﬁ f[li]="u”(-'lll]

gz =i 8
Yo batzih=jafzt

H,(z) =1 -
h k=

r=1
§,[n] =a"s[n - r] Pl pENE R =] — g
k=1

ANALOG PROCESSES. We consider now the problem of predicting the future
value s(t + A) of a process s(r) in terms of its entire past s(t — 7), 7 = 0. In this
problem, our estimator is an integral:
§(t +A) = E(s(r + N)ls(r —7), 7= 0} = f h(a)s(t — a) de (14-39)
/]

and the problem is to find the function A(«). From the analog form (14-4) of the
orthogonality principle, it follows that

E{[s(r +2) — [ h(a)s(e (r)]s(! - r)} -0 120
0

This vields the Wiener—Hopf integral equation

R(z 4 M) = [ M@)R(r —a)da 720 (14-40)

0
The solution of this équation is the impulse response of the caisal Wiener filter
H(s) =f h(t)e " dr
(]

The corresponding MS error equals

P = E([s(t + A) = 8(¢ + A)])s(¢ +A)) =R(0) = f:h('a)R(r\ + o) da
(14-41)
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Equation (14-40) cannot be solved directly with transforms because the
two sides are equal for + = 0 only. A solution based on the analytic properties

of Laplace transforms is outlined in Prob. 14-11. We give next a solution using

innovations.
As we have shown in (12-8), the process s(f) is the response of its
innovations filter L(s) to the white-noise process i(¢). From this it follows that

s(t+A) = f:f(a)i(! +A—a)da (14-42)

We maintain that $(¢ + A) is the part of the above integral involving only the
past of i(¢):

§(t + A) =j:nl(a)i(t+/\ —a)da=[:z(a+,\)i(r-p)dﬁs (14-43)

Progf. The difference
s(t+A) —8(t + A) = [Ua)i(t + A ~ a) da (14-44)
0

depends only on the values of i(¢) in the interval (r,r + A); hence it is
orthogonal to the past of i(¢) and, therefore, it is also orthogonal to the past of
s(t).
The predictor 8(z + A) of s(¢) is the response of the system
Hi(s) = [ h(t)e™'de  h(t) = I(t + \)U(r) (14-45)
0

(Fig. 14-6) to the input i(¢). Cascading with 1/L(s), we conclude that §(r + A) is

I(r}l
¥(r)

0 A 7
: s(r+A)
| i) o e [
h.(-')}
0 1
His) = F(5)H (s) $(1:+A)
- H,(5) >

FIGURE 14-6
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the response of the system

Hf
S(s) = ) (14-46)

to the input:s(t). Thus, to determine the predictor filter H (s) of (1), proceed as
follows:

Factor the spectrum of s{r) as in (12-3): S(5) = L(s5)L(=35).

Find the inverse transform /(r) of L(s) and form the function /i.(¢) =
I(t + A)U(r). '

Find the transform H,(s) of 4,(z) and determine H(s) from (14-46).

The MS estimation error is determined from (14-44);

P=FE { }
Example 14-5, We are given a process s(1) with autocorrelation R(7) = 2ae "
and we wish to determine its predictor. In this problem,

f“t(a)i(_: + A = a)da

{{]

= "'\ll(a)([(z (14-47)
=0

1
——  L(s)=—— I(z) = e U(t)
=g a T+ 3§

S(s) =

= A

e

R (£) = e™**e™™U(r) H,(s) =

Qs
H(s) =e §(1 -+ A) = e "s(t)

This shows that the predictor of s(2 + A) in terms of its entire past is the same as
the predictor in terms of its present's(¢). In other words, if s(r) is specified, the
past has no effect on the linear prediction of the future.

The determination of H(s) is simple if s(r) has a rational spectrum.
‘Assuming that the poles of H(s) are simple, we obtain

() G _ o
ez =T

=

L(s) =

cietd  Ny(s)

Bty = Teemeru(t) M) =L o =y (1448
i U

and (14-46) yields H(s) = N(s)/N(s).
If N(s) = 1, then H(s) is a polynomial:

H(s) = Ni(s) = by +bys + + - +b,8"
and &(r + A) is'a linear sum of s(r) and its first 7 derivatives:
§(1 + A) = bys(0) + bys'(e) + - +b,s"(r)
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Example 14-6. We are given a process s(1) with
49 — 255° T+ 5s

W=t—me-a O ae
and we wish to estimate its future s(¢ + A) for A = In2. In this problem, ¢* = 2:
1 4 el 4p—3A §+2
Lo) =7 + 753 H'(S)zr+1+s+3=(.s+1)(.y+3)
By 2 h(t) = l5(:) + i_c‘""“[.’(l)
5847 5 25

Hence
E{s(t +A)ls(r — 7), 7> 0) = 0.25(z) + E(s(r + A)|s(t — 7), = > 0}
Notes 1. The integral
y(7)' = th(a)R(r — ) da
0
in'(14-40) is the response of the Wiener filter H(s) to the input R(7). From (14-40)
and (14-41) it follows that
y(z) =R(r +A) forr>0 and y(—A)=R(0)-P

2. In all MS estimation problems, only second-order moments are used. If,
therefore, two processes have the same autocorrelation, then their predictors are
identical. This suggests the following derivation of the Wiener—Hopf equation:
Suppose that w is an RV with density f(w) and z(1) = ¢/*', Clearly,

R::(T) = E{eim(r-b.']e—jlul} = f" f(w)f‘w?d""
From this it follows that the power spectrum of z(t) equals 27 f(w) [see also
(10-127)]. If, therefore, s(1) is a process with power spectritm S{w) = 27 f(w), then

its predictor A(r) will equal the predictor of z(t):

(1 + ) = B/ Mo, o > 0) = [“h(a)e™ ) da
{i]

= e/ [“h(a)e " da = e H(w)
0

And since z(t + A) — 2t + A) L z(t — 7), for 7 = 0, we conclude from the above
that
Ef [ efoutay el (w)]e U=} =0 720

Hence
fu flw)[e*D — e H(w)] do=0 720

This yields (14-40) because the inverse transform of flw)e’*"*A) equals R(r + A)
and the inverse transform of f(w)e/*"H(w) equals the integral in (14-40).
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Predicta'ble processes. 'We shall say that a process s{nlis predictabie if it equals
its predictor:

sfn] = X hlk]s[n — k] (14-49)
k=1
In this case [see (14-25)]
w2 .
P=a ],JE( e) [*S(w) dw = 0 (14-50)

Since S(w) = 0, the above integral is 0 if S(w) + 0 only in a region R of the w
axis where E(¢’?) = 0. It can be shown that this region consists of a countable
number of points w,—the proof is based on the Paley—Wiener condition (12-9).
From this it follows that
S(w) =27 Y, a0(@—w,) E(e™) =0 (14-51)
i=1
Thus a process s[#n] is predictable if it is a sum of exponentials as in (12-9):
slnl = X ee/t  EfeZ}=u, (14-52)
i=1
We maintain that the converse is also true: If s[n] i1s a sum of m
exponentials as in (14-52), then it is predictable and its predictor filter equals
1 — D(z) where

D(z) = (1 = ez <o (1 = elomz™") (14-53)

Proof. In this case, E(z) = D(z) and E(e’*) = 0; hence E(e’)S(w) = 0 be-
cause E(e/)6(w — w;) = E(¢/*)8(w — w;) = 0. From this it follows that P = 0.

Note The preceding result seems to be in conflict with the sampling expansion (11-138)
of a BL process s(#): This expansion shows that s(1) is predictable in the sense that it can
be approximated within an arbitrary error ¢ by a linear sum involving only its past
samples s(nTy). From this it follows that the digital process s[n] = s(rT,) is predictable
in the same sense. Such an expansion, however, does not violate (14-50). It is only an
approximation and its coefficients tend to = as & —.0.

GENERAL PROCESSES AND WOLD’S DECOMPOSITION| We show finally that.an
arbitrary process s[n] can be written as a sum

s[n] = s,[n] + s;[n] (14-54)

of a regular process s,[#] and a predictable process sa(n], that these processes arc

TA. Papoulis: F;udicwbic Processes and Wold's Decomposition: A Review. IEEE Transactions on
Acoustics, Speech, and Signal Processing, Val. 22, 1985,
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s[n) soln] .

= si(n) - | n)

> E(z) , w(z) H(z)
sln] elnl s,ln]

FIGURE 14-7

orthogonal, and that they have the same predictor filter, We thus reestablish construc-
tively Wold's decomposition (12-89) in the context of MS estimation.

As we know [see (14-24)], the crror e[n] of the one-step estimate of s[a] is a
white-noise process. We form the estimator s,[n] of s[a] in terms of e[n] and its past:

si[n] = .’::{s[n]ls[rl — k], k =1} = X wyeln — k] (14-35)
k=0
Thus s,[#] is the response of the system (Fig. 14-7)
W(z)= X wez*
k=0

to the input e[n]. The difference s,[n] = s[n] — s,[n] is the estimation error (Fig. 14-7).
Clearly (orthogonality principle)

so[n] Le[n—k] k=0 (14-56)
Note that if s[n] is a regular process, then [see (14-32)] e[n] = /[0]i[n]; in this case,
s,[n] = s[r].
THEOREM. (a) The processes s,[n] and s,[n] are orthogonal:
siln] Lsy[n—k] al k (14-57)

(b) s,[n] is a regular process.
(¢) s,[n] is a predictable process and its predictor filter is the sum in
(14-19);

s;[n] = }E hlk]ss[n — k] (14-58)
k=1

Proaf. (a) The process e[n] is orthogonal to s[n — k] for every k > 0. Further-
more, s;[n — k] is a linear function of s{n — k] and its past; hence s;[n — k] L
€[n] for k > 0. Combining with (14-56), we conclude that

so[n — k] Le[n] all k (14-59)

And since s,[n] depends linearly on &[n] and its past, (14-57) follows.
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(b) The process s,[#] is the response of the system W(z) to/the white noise
e[n]. To prove that it is regular, it suffices to show that

Y Wi < w (14-60)
k=0
From (14-54) and (14-55) it follows that
E[s*[n]} = E(s3[n]} + E(s3[n]} = Efsi[nl} = X w?
k=0

This yields (14-60) because E{s’[n]) = R(0) < c=.
(e) To prove (14-58), it suffices to show that the difference

z[n] = s,[n] - Z hlk]s,[n — k]
k=1

equals 0. From (14-59) it follows that z[n] 1 e[n — k] for all k. But 2[n] is the
response of the system 1 — H(z) = E(z) to the input s.[n] = s[n] — s,[n];
hence (see Fig. 14-8)

z[n] = e[n] — s,[n) + ¥ hlkls[n — k] (14-61)
k=1
‘This shows that z[n] is a linear function of €[] and its past. And since it is also
orthogonal to e[n], we conclude that z[n] = (.
Note finally that [see (14-61)]

s;[n] - i W[k]s\[n — k) =¢eln] Ls[n—m] m=1
k=1

Heénce the above sum is the predictor of s,[n]. We thus conclude that the sum
H(z) in (14-20) is the predictor filter of the processes s(n], s,[n], and s,[x].

s[a]

FIGURE 14-8
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FIR PREDICTORS. We shall find the estimate §,/[n] of a process s{#] in terms of
its N most recent past values:

N
Syln] = f[s[n]!s[n ~kl,l=k =N} = Y alsln—k] (14-62)
k=1

This estimate will be called the forward predictor of order N. The superscript
in @) identifies the order. The process §,[n] is the response of the forward
predictor filter
!\J
Hy(2) = X adz* (14-63)
k=1

to the input s[n]. Our object is to determine the constants aj so as o minimize
the MS value

Py = E{&[nl} = B((s[n] - 84[n)sln]) (14:64)
of the forward prediction error €y[n] = s[n] — §,[n]

The Yule—Walker equations. From the orthogonality principle it follows that

N
E{(s[rz] - Y als[n— k])s[n —-m]} =0 lsm<N
k=1
This yields the system
N
Rlm] - ¥ afR[m —k]=0 1<m=<N (14-65)
k=1

Solving, we obtain the coefficients af of the predictor filter Hy(z). The
resulting MS error equals [see (13-83)]
A,\’-+I

N
Py =R[0] = ¥ aYR[k] = R (14-66)
k=1 N

In Fig. 14-8 we show the ladder realization of H,(z) and the forward error filter
Ey(z) =1 = H(2).
As we have shown in Sec. 13-3, the error filter can be realized by the

lattice structure of Fig. 14-9. In that figure, the input is s[z] and the upper

€yln]
A
sln]

= c €yln]

FIGURE 14-9
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output £y[N]. The lower output ¢ ,[n] is the backward prediction error defined
as follows: The processes s[n] and s[—n] have the same autocorrelation: héncs
their predictor filters are identical. From this it follows that the haEkward
predictor §y[#], that is, the predictor of s{n] in terms of its N most recent
future values, equals

§uln] = E{s[n]ls[n + k1.1 <k < N) = i alsin + k]

k=1

The backward error
enfn) =s[n—N]—3y[n - N]
is the response of the filter
Ev(z) =z V(1 = afz— -+~ —aljz) = 27"Ey(1/2)

with input s[z#]. From this and (13-94) it follows that the lower output of the
lattice of Fig. 14-8 is €,[n].

In Sec. 13-3, we used the ladder-lattice equivalence to simplify the
solution of the Yule—Walker equations. We summarize next the main results in
the context of the prediction problem. We note that the lattice realization also
has the following advantage, Suppose that we have a predictor of order N and
we wish to find the predictor of order N + 1. In the ladder realization, we must
find a new set of N + 1 coefficients a*'. In the lattice realization, we need
only the new reflection coefficient K . ; the first N reflection coefficients K
donot change.

Levinson’s algorithm. We shall determine the constants ap, Ky, and Py
recursively. This involves the following steps: Start with
al =K, =R[1}/R0] P, = (1 - K})R[0]
Assume that the N -+ 1 constants af ', Ky_,, and Py_; are known.
Find K and P, from (13-107) and (13-108):

N-1
PN-iK.'«:R[N] - E “f_lR[N_ k] Py = (1 - Kﬁ')pf\bl (14-67)
k=1

Find a} from (13-97)
al =Ky af=a)"'-Kyaizt 1 <k<N-1 (14-68)
In Levinson’s algorithm, the order N of the iteration is finite but it can

continue indefinitely. We shall examine the prop.erties o_f the p{edictor and of_
the MS error Py as N — . It is obvious that P, is-a nonincreasing sequence o

positive numbers; hence it tends to a positive limit:
.PlEPz"'Zh’HI‘—;PZO (l4‘69)
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As we have shown in Sec. 12-3, the zeros z; of the error filter

N
EN) =1~ ¥ gia=k
k=1
are either all inside the unit circle or they are all on the unit circle:

If Py > 0, then |K,| <1 for every k <N and |z,| < 1 for every i [see
(13-99)].

If Py, >0and P, =0, then |K;| <1 for every k <N — 1, |K,| =1,
and |z,] = 1 for every i [see (13-101)]. In this case, the process s[n] is pre-
dictable and its spectrum consists of lines.

If P> 0, then |z,| < 1 for every i [see (14-26)]. In this case, the predictor
sy[nl of s[n] tends to the Wiener predictor §[n] as in (14-19). From this and
(14-34) it follows that

1 an AN +1

P= exp{—] In S(@) dw} = [0] = lim (14-70)
2wl N—ow [
This shows the connection between the LMS error P of the prediction of s[n] in
terms of its entire past, the power spectrum S(w) of s[n], the initial value /[0] of
the delta response {[n] of its innovations filter, and the correlation determinant
Ay
Suppose, finally, that P,,_, > Py, and

Bt "By = =P (14-71)

In this case, K; = 0 for |k| > M; hence the algorithm terminates at the Mth
step. From this it follows that the Mth order predictor §,,[n] of s[n] equals its
Wiener predictor:

s ln]= 3 E‘{s[nus{n s % =) = T el = K s 1}
k=1

k=1

In other words, the process s[n] is wide-sense Markoff of order M. This leads to
the conelusion that the prediction error &,,[n] = s[z] — §,/[n] is white noise
with average power P [see (14-24)]:

M
s[n] - kE afsln —k] =2&,[n]  E{&}[n]) =P
=1

and it shows that s[n] is an AR process. Conversely, if s[n] is AR, then it is also
wide-sense Markoff.

Autoregressive processes and maximum entropy. Suppose that s[n] is an AR
process of order M with autocorrelation R[m] and §[n] is a general process with
autocorrelation R[m] such that

R[m] = R[m] for [m| <M
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The predictors of these processes of order M are identical because they depend
on the values of R[m] for |m| <M only. From this it follows ‘that the
corresponding prediction errors P, and F,, are equal. As we have noted
Py, = P for the AR process s{n]and P,, > P for the general process 3[n] l

Consider now the class C,, of processes with identical autocorrelations
(data) for |m| < M. Each Rlm] is a p.d. extrapolation of the given data. W;:
have shown in Sec. 13-3 that the extrapolating scquence \lhl::incd with the
maximum entropy (ME) method is the autocorrelation of an AR process [see
(13-141)). This leads to' the following relationship between MS estimation and
maximum entropy: The ME extrapolation is the autocorrelation of a process
s[n] in' the class C, the predictor of which maximizes the minimum MS error
2. In this sense, the ME method maximizes our uncertainty about the values of
Rlm] for |m| > M.

Causal Data

We wish to estimate the present value of a regular process s{n] in terms of its
finite past, starting from some origin. The data are now available from 0 to
n — 1 and the desired estimate is given by
n
§,[n] = E{slnllsln — k], 1 <k <n) = ¥ ais[n - k] (14-72)
k=1

Unlike the fixed length N of the FIR predictor §,[n] considered in (14-62), the
length n of this estimate is not constant. Furthermore, the values af of the
coefficients of the filter specified by (14-72) depend on n. Thus the estimator of
the process s[#] in terms of its causal past is a linear tme-varying filter. 1f it is
realized by a tapped-delay line as in Fig. 14-8, the number of the taps increases
and the values of the weights change as n increases.

The coefficients a} of §,[n] can be determined recursively from Levinson’s
algorithm where now N = n. Introducing the backward estimate $[#] of s[x] in
terms of its n most recent future values, we conclude from (13-92) that

§,[n] =5, ,[n] + K,(s[0] — &, ,[0])
3,[0] =3, ,[0] + K,(s[n] — §,_:[~])

In Fig. 14-10, we show the normalized lattice realization of the error filter
E,(z) where we use as upper output the process

ifn] = %—E,,[n] E(i*[n]} = 1 (14-74)

(14-73)

The filter is formed by switching “on” successively a new lattice section starting
from the left. This filter is again time-varying; however, unlike the tapped-delay
line realization, the elements of each section remain unchanged as n increases.
We should point out that whereas &[] is the value of the upper response of
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>0 56—
s[n+1)

FIGURE 14-10

the kth section at time n, the process i[#] does not appear at a fixed position. It
is the output of the last section that is switched “on” and as n increases, the
point where i[n] is observed changes.

We conclude with the observation that if the process s[n] is AR of order
M [see (13-81)], then the lattice stops increasing for n > M, realizing, thus, the
time invariant system E,(z)/ m The corresponding inverse lattice (see Fig.
13-15) realizes the all-pole system
Py

d

E(z)

We shall now show that the output i[n] of the normalized lattice is white
noise

R, [m] = 8[m] (14-75)

Indeed, as we know, £,[n] L s[n — k] for 1 < k < n, Furthermore; &,_,[n — r]
depends linearly only on s[n — r] and its past values. Hence

gln) L&, [n-1] (14-76)
This yields (14-75) because P, = E{e2[n]}.
Note In a lattice of fixed length, the output &yln] is not white noise and it is not

?rthogonal 10 &y_[n]. However for a specific n, the random variables &,[n] and
&y 4ln = 1] are orthogonal,
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KALM:AN INNOVATIONSt. The output i[n] of the time-varying lattice of Fig.
14-10 is an orthonormal process that depends linearly on s[n — k] Denoting by
¥ the response of the lattice at time n to the input sln] = 8[n — k|, we obtain

i[0] = ¥{s[0]
i[1] = Y(IIS[U] + yis[1] (14-77)

if[n] = yis[0] + <+~ +y7s[k] + - - +y/'s[n]

or in vector form

Yo ')'(1| 1./|’1I

1 e n

l!l+1:Sllb|rn+l L en= 24 d:
0 st na

A

where S, ; and I, are row vectors with components
s[0],...,s[#n] and  i[0],...,i[n]

respectively,
From the above it follows that if

sln] =8[n—k] then i[n]l=v] nxk

This shows: that to determine the delta response of the lattice of Fig. 14-10, we
use as input the delta sequence 8[n — k] and we observe the moving output i[n]
for n > k.

The elements y; of the triangular matrix I, ., can be expressed in terms
of the weights af of the causal predictor §,[n]. Since

En[”] = s[n] - §u[n] = JE][”]
it follows from (14-72) that
1 : =4
Ya = B Yn—k = —‘/P=ﬂ.;-

The inverse of the lattice of Fig. 14-10 is obtained by reversing the flow
direction of the upper line and the sign of the upward weights — K, as in Fig.
13-15. The turn-on switches close again in succession starting from the left, and
the input i[n] is applied at the terminal of the section that is connected last. The

+T. Kailath, A. Vieira, and M. Morf: “Inverses of Toeplitz Operators, Innovations, and Orthogonal
Polynomials,” STAM Review, vol. 20, no. 1, 1978,
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output at A is thus given by
s[0] = /gli[0]
s[1] = 15i[0] + £i[1] Spar=L, .15, (14-78)
s[n] =15[0] + - -+ +1ti[n] L=t
From this it follows that if
ifn] =8[n—k] then s[n]=1! n>k

Thus, to determine the delta response [}/ of the inverse lattice, we use as moving
input the delta sequence &[n — k] and we observe the left output s[n] for
n=k.

From the preceding discussion it follows that the random vector S, is
linearly equivalent to the orthonormal vector I,,. Thus Egs. (14-77) and (14-78)
correspond to the Gram-Schmidt orthonormalization equations (8-88) and
(8-91) of Sec. 8-3. Applying the terminology of Sec. 12-1 to causal signals, we
shall call the process i[n] the Kalman innovations of s[n] and the lattice filter
and its inverse Kalman whitening and Kalman innovations filters respectively,
These filters are sime-varying and their transition matrices equal I, and L,
respectively. Their elements can be expressed in terms of the parameters K,
and P, of Levinson’s algorithm because these parameters specify completely the
filters.

Cholesky factorization We maintain that the correlation matrix R, and
its inverse can be written as products

= R'=TL.T! (14-79)

n=n n=n

where I, and L, are the triangular matrices introduced earlier. Indeed, from
the orthonormality of I, and the definition of R, it follows that

E{I:alnl = ]n E{S;Sn] = Rn
where 1, is the identity matrix. Since I, = S,T, and §, = I,L,, the above
yields

LR, =1, L1,L, =R,

and (14-79) results.

Autocorrelation as lattice response, We shall determine the autocorrelation

R[.mI of the process s[n] in terms of the Levinson parameters K ~ and Py, For

this purpose, we form a lattice of order N, and we denote by gylm]and g, [m]

respectively its upper and lower responses (14-11¢) to the input R{m]. As we
see from the figure

Gy-ilm] = gyIm] + Kydy_,[m - 1] (14-80a)

dylm] = dy_\[m = 1] - Kyéy_,[m] (14-80b)

én[m] = é(lIm] = R[”’] (14-80¢)
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anlm)

y

qulm) G [m]=0

n=0\_.___-_

qilm]

qnlm] Gy, [m]

FIGURE 14-11

Using the above, we shall show that R[] can be determined as the
response of the inverse lattice of Fig. 14-11b provided that the following
boundary and initial conditions are satisfied: The input to the system (point B)
is identically 0:

Gym]l=0 all m (14-81)
The initial conditions of all delay elements except the first are (:
gy[0]=0 N>0 (14-82)
The first delay element is connected' to the system at m =0 and its initial
condition equals R[0]:
d,[0] = R[0] (14-83)
From the above and (14-81) it follows that
gyll=0 N>1
We maintain that under the stated conditions, the left output of the

inverse lattice (point A) equals R[m] and the right output of the mth scction
equals the MS error P,

glm] =Rlm]  du.[m]=F, (14-84)

fE. A. Robinson and S, Treitel: ““Maximum Entrapy and the Relationship of the Partial :‘\llic!corre-
lation to the Reflection Coefficients of a Layered System,” IEEE Transactions on Acoustics, Speech,
and Signal Process, vol. ASSP-28, no. 2, 1980.
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‘Proof. The proof is based on the fact that the responses of the lattice of Fig.
14-10a satisfy the equations (see Prob. 14-24)

Gulm] = dgylm] =0 l<sm<N-1 (14-85)

GnIN] =Py (14-86)
From (14-80) it follows that, if we know gy[m] and g,_,[m — 1], then we can
find gy-[m] and gy[m]. By a 