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1. Dynkin systems
Definition 1 A dynkin system on a set Ω is a subset D of the
power set P(Ω), with the following properties:

(i) Ω ∈ D
(ii) A,B ∈ D, A ⊆ B ⇒ B \A ∈ D

(iii) An ∈ D, An ⊆ An+1, n ≥ 1 ⇒
+∞⋃
n=1

An ∈ D

Definition 2 A σ-algebra on a set Ω is a subset F of the power
set P(Ω) with the following properties:

(i) Ω ∈ F

(ii) A ∈ F ⇒ Ac
4
= Ω \A ∈ F

(iii) An ∈ F , n ≥ 1 ⇒
+∞⋃
n=1

An ∈ F
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Exercise 1. Let F be a σ-algebra on Ω. Show that ∅ ∈ F , that
if A,B ∈ F then A ∪ B ∈ F and also A ∩ B ∈ F . Recall that
B \A = B ∩Ac and conclude that F is also a dynkin system on Ω.

Exercise 2. Let (Di)i∈I be an arbitrary family of dynkin systems

on Ω, with I 6= ∅. Show that D 4= ∩i∈I Di is also a dynkin system on
Ω.

Exercise 3. Let (Fi)i∈I be an arbitrary family of σ-algebras on Ω,

with I 6= ∅. Show that F 4= ∩i∈I Fi is also a σ-algebra on Ω.

Exercise 4. Let A be a subset of the power set P(Ω). Define:

D(A)
4
= {D dynkin system on Ω : A ⊆ D}

Show that P(Ω) is a dynkin system on Ω, and that D(A) is not empty.
Define:

D(A)
4
=

⋂
D∈D(A)

D
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Show that D(A) is a dynkin system on Ω such that A ⊆ D(A), and
that it is the smallest dynkin system on Ω with such property, (i.e. if
D is a dynkin system on Ω with A ⊆ D, then D(A) ⊆ D).

Definition 3 Let A ⊆ P(Ω). We call dynkin system generated
by A, the dynkin system on Ω, denoted D(A), equal to the intersection
of all dynkin systems on Ω, which contain A.

Exercise 5. Do exactly as before, but replacing dynkin systems by
σ-algebras.

Definition 4 Let A ⊆ P(Ω). We call σ-algebra generated by
A, the σ-algebra on Ω, denoted σ(A), equal to the intersection of all
σ-algebras on Ω, which contain A.

Definition 5 A subset A of the power set P(Ω) is called a π-system
on Ω, if and only if it is closed under finite intersection, i.e. if it has
the property:

A,B ∈ A ⇒ A ∩B ∈ A
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Exercise 6. Let A be a π-system on Ω. For all A ∈ D(A), we define:

Γ(A)
4
= {B ∈ D(A) : A ∩B ∈ D(A)}

1. If A ∈ A, show that A ⊆ Γ(A)

2. Show that for all A ∈ D(A), Γ(A) is a dynkin system on Ω.

3. Show that if A ∈ A, then D(A) ⊆ Γ(A).

4. Show that if B ∈ D(A), then A ⊆ Γ(B).

5. Show that for all B ∈ D(A), D(A) ⊆ Γ(B).

6. Conclude that D(A) is also a π-system on Ω.

Exercise 7. Let D be a dynkin system on Ω which is also a π-system.

1. Show that if A,B ∈ D then A ∪B ∈ D.
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2. Let An ∈ D, n ≥ 1. Consider Bn
4
= ∪ni=1 Ai. Show that

∪+∞
n=1An = ∪+∞

n=1Bn.

3. Show that D is a σ-algebra on Ω.

Exercise 8. Let A be a π-system on Ω. Explain why D(A) is a
σ-algebra on Ω, and σ(A) is a dynkin system on Ω. Conclude that
D(A) = σ(A). Prove the theorem:

Theorem 1 (dynkin system) Let C be a collection of subsets of Ω
which is closed under pairwise intersection. If D is a dynkin system
containing C then D also contains the σ-algebra σ(C) generated by C.
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2. Caratheodory’s Extension
In the following, Ω is a set. Whenever a union of sets is denoted ] as
opposed to ∪, it indicates that the sets involved are pairwise disjoint.

Definition 6 A semi-ring on Ω is a subset S of the power set P(Ω)
with the following properties:

(i) ∅ ∈ S
(ii) A,B ∈ S ⇒ A ∩B ∈ S

(iii) A,B ∈ S ⇒ ∃n ≥ 0, ∃Ai ∈ S : A \B =
n⊎
i=1

Ai

The last property (iii) says that whenever A,B ∈ S, there is n ≥ 0
and A1, . . . , An in S which are pairwise disjoint, such that A \ B =
A1 ] . . .]An. If n = 0, it is understood that the corresponding union
is equal to ∅, (in which case A ⊆ B).
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Definition 7 A ring on Ω is a subset R of the power set P(Ω) with
the following properties:

(i) ∅ ∈ R
(ii) A,B ∈ R ⇒ A ∪B ∈ R

(iii) A,B ∈ R ⇒ A \B ∈ R

Exercise 1. Show that A ∩ B = A \ (A \ B) and therefore that a
ring is closed under pairwise intersection.

Exercise 2.Show that a ring on Ω is also a semi-ring on Ω.

Exercise 3.Suppose that a set Ω can be decomposed as Ω = A1 ]
A2 ] A3 where A1, A2 and A3 are distinct from ∅ and Ω. Define
S1
4
= {∅, A1, A2, A3,Ω} and S2

4
= {∅, A1, A2 ] A3,Ω}. Show that S1

and S2 are semi-rings on Ω, but that S1 ∩ S2 fails to be a semi-ring
on Ω.

Exercise 4. Let (Ri)i∈I be an arbitrary family of rings on Ω, with

I 6= ∅. Show that R 4= ∩i∈I Ri is also a ring on Ω.
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Exercise 5. Let A be a subset of the power set P(Ω). Define:

R(A)
4
= {R ring on Ω : A ⊆ R}

Show that P(Ω) is a ring on Ω, and that R(A) is not empty. Define:

R(A) 4=
⋂

R∈R(A)

R

Show that R(A) is a ring on Ω such that A ⊆ R(A), and that it is
the smallest ring on Ω with such property, (i.e. if R is a ring on Ω
and A ⊆ R then R(A) ⊆ R).

Definition 8 Let A ⊆ P(Ω). We call ring generated by A, the
ring on Ω, denoted R(A), equal to the intersection of all rings on Ω,
which contain A.

Exercise 6.Let S be a semi-ring on Ω. Define the set R of all finite
unions of pairwise disjoint elements of S, i.e.

R 4= {A : A = ]ni=1Ai for some n ≥ 0, Ai ∈ S}



Tutorial 2: Caratheodory’s Extension 4

(where if n = 0, the corresponding union is empty, i.e. ∅ ∈ R). Let
A = ]ni=1Ai and B = ]pj=1Bj ∈ R:

1. Show that A ∩ B = ]i,j(Ai ∩ Bj) and that R is closed under
pairwise intersection.

2. Show that if p ≥ 1 then A \B = ∩pj=1(]ni=1(Ai \Bj)).

3. Show that R is closed under pairwise difference.

4. Show that A ∪ B = (A \ B) ] B and conclude that R is a ring
on Ω.

5. Show that R(S) = R.
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Exercise 7. Everything being as before, define:

R′ 4= {A : A = ∪ni=1Ai for some n ≥ 0, Ai ∈ S}
(We do not require the sets involved in the union to be pairwise dis-
joint). Using the fact that R is closed under finite union, show that
R′ ⊆ R, and conclude that R′ = R = R(S).

Definition 9 Let A ⊆ P(Ω) with ∅ ∈ A. We call measure on A,
any map µ : A → [0,+∞] with the following properties:

(i) µ(∅) = 0

(ii) A ∈ A, An ∈ A and A =
+∞⊎
n=1

An ⇒ µ(A) =
+∞∑
n=1

µ(An)

The ] indicates that we assume the An’s to be pairwise disjoint in
the l.h.s. of (ii). It is customary to say in view of condition (ii) that
a measure is countably additive.



Tutorial 2: Caratheodory’s Extension 6

Exercise 8.If A is a σ-algebra on Ω explain why property (ii) can
be replaced by:

(ii)′ An ∈ A and A =
+∞⊎
n=1

An ⇒ µ(A) =
+∞∑
n=1

µ(An)

Exercise 9. Let A ⊆ P(Ω) with ∅ ∈ A and µ : A → [0,+∞] be a
measure on A.

1. Show that if A1, . . . , An ∈ A are pairwise disjoint and the union
A = ]ni=1Ai lies in A, then µ(A) = µ(A1) + . . .+ µ(An).

2. Show that if A,B ∈ A, A ⊆ B and B\A ∈ A then µ(A) ≤ µ(B).

Exercise 10. Let S be a semi-ring on Ω, and µ : S → [0,+∞] be a
measure on S. Suppose that there exists an extension of µ on R(S),
i.e. a measure µ̄ : R(S)→ [0,+∞] such that µ̄|S = µ.
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1. Let A be an element of R(S) with representation A = ]ni=1Ai
as a finite union of pairwise disjoint elements of S. Show that
µ̄(A) =

∑n
i=1 µ(Ai)

2. Show that if µ̄′ : R(S) → [0,+∞] is another measure with
µ̄′|S = µ, i.e. another extension of µ on R(S), then µ̄′ = µ̄.

Exercise 11. Let S be a semi-ring on Ω and µ : S → [0,+∞] be a
measure. Let A be an element of R(S) with two representations:

A =
n⊎
i=1

Ai =
p⊎
j=1

Bj

as a finite union of pairwise disjoint elements of S.

1. For i = 1, . . . , n, show that µ(Ai) =
∑p

j=1 µ(Ai ∩Bj)

2. Show that
∑n
i=1 µ(Ai) =

∑p
j=1 µ(Bj)
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3. Explain why we can define a map µ̄ : R(S)→ [0,+∞] as:

µ̄(A)
4
=

n∑
i=1

µ(Ai)

4. Show that µ̄(∅) = 0.

Exercise 12. Everything being as before, suppose that (An)n≥1 is
a sequence of pairwise disjoint elements of R(S), each An having the
representation:

An =
pn⊎
k=1

Akn , n ≥ 1

as a finite union of disjoint elements of S. Suppose moreover that
A = ]+∞

n=1An is an element of R(S) with representation A = ]pj=1Bj ,
as a finite union of pairwise disjoint elements of S.

1. Show that for j = 1, . . . , p, Bj = ∪+∞
n=1 ∪

pn
k=1 (Akn ∩ Bj) and

explain why Bj is of the form Bj = ]+∞
m=1Cm for some sequence

(Cm)m≥1 of pairwise disjoint elements of S.
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2. Show that µ(Bj) =
∑+∞
n=1

∑pn
k=1 µ(Akn ∩Bj)

3. Show that for n ≥ 1 and k = 1, . . . , pn, Akn = ]pj=1(Akn ∩Bj)

4. Show that µ(Akn) =
∑p

j=1 µ(Akn ∩Bj)

5. Recall the definition of µ̄ of exercise (11) and show that it is a
measure on R(S).

Exercise 13.Prove the following theorem:

Theorem 2 Let S be a semi-ring on Ω. Let µ : S → [0,+∞] be a
measure on S. There exists a unique measure µ̄ : R(S) → [0,+∞]
such that µ̄|S = µ.



Tutorial 2: Caratheodory’s Extension 10

Definition 10 We define an outer-measure on Ω as being any
map µ∗ : P(Ω)→ [0,+∞] with the following properties:

(i) µ∗(∅) = 0
(ii) A ⊆ B ⇒ µ∗(A) ≤ µ∗(B)

(iii) µ∗

(
+∞⋃
n=1

An

)
≤

+∞∑
n=1

µ∗(An)

Exercise 14. Show that µ∗(A ∪ B) ≤ µ∗(A) + µ∗(B), where µ∗ is
an outer-measure on Ω and A,B ⊆ Ω.

Definition 11 Let µ∗ be an outer-measure on Ω. We define:

Σ(µ∗)
4
= {A ⊆ Ω : µ∗(T ) = µ∗(T ∩A) + µ∗(T ∩Ac) , ∀T ⊆ Ω}

We call Σ(µ∗) the σ-algebra associated with the outer-measure µ∗.

Note that the fact that Σ(µ∗) is indeed a σ-algebra on Ω, remains to
be proved. This will be your task in the following exercises.
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Exercise 15. Let µ∗ be an outer-measure on Ω. Let Σ = Σ(µ∗) be
the σ-algebra associated with µ∗. Let A,B ∈ Σ and T ⊆ Ω

1. Show that Ω ∈ Σ and Ac ∈ Σ.

2. Show that µ∗(T ∩A) = µ∗(T ∩A ∩B) + µ∗(T ∩A ∩Bc)

3. Show that T ∩Ac = T ∩ (A ∩B)c ∩Ac

4. Show that T ∩A ∩Bc = T ∩ (A ∩B)c ∩A

5. Show that µ∗(T ∩Ac) + µ∗(T ∩A ∩Bc) = µ∗(T ∩ (A ∩B)c)

6. Adding µ∗(T∩(A∩B)) on both sides 5., conclude thatA∩B ∈ Σ.

7. Show that A ∪B and A \B belong to Σ.

Exercise 16. Everything being as before, let An ∈ Σ, n ≥ 1. Define
B1 = A1 and Bn+1 = An+1 \ (A1 ∪ . . .∪An). Show that the Bn’s are
pairwise disjoint elements of Σ and that ∪+∞

n=1An = ]+∞
n=1Bn.
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Exercise 17. Everything being as before, show that if B,C ∈ Σ and
B ∩ C = ∅, then µ∗(T ∩ (B ] C)) = µ∗(T ∩ B) + µ∗(T ∩ C) for any
T ⊆ Ω.

Exercise 18.Everything being as before, let (Bn)n≥1 be a sequence

of pairwise disjoint elements of Σ, and let B
4
= ]+∞

n=1 Bn. Let N ≥ 1.

1. Explain why ]Nn=1Bn ∈ Σ

2. Show that µ∗(T ∩ (]Nn=1Bn)) =
∑N
n=1 µ

∗(T ∩Bn)

3. Show that µ∗(T ∩Bc) ≤ µ∗(T ∩ (]Nn=1Bn)c)

4. Show that µ∗(T ∩Bc) +
∑+∞

n=1 µ
∗(T ∩Bn) ≤ µ∗(T ), and:

5. µ∗(T ) ≤ µ∗(T∩Bc)+µ∗(T∩B) ≤ µ∗(T∩Bc)+
∑+∞
n=1 µ

∗(T∩Bn)

6. Show that B ∈ Σ and µ∗(B) =
∑+∞
n=1 µ

∗(Bn).

7. Show that Σ is a σ-algebra on Ω, and µ∗|Σ is a measure on Σ.
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Theorem 3 Let µ∗ : P(Ω) → [0,+∞] be an outer-measure on Ω.
Then Σ(µ∗), the so-called σ-algebra associated with µ∗, is indeed a
σ-algebra on Ω and µ∗|Σ(µ∗), is a measure on Σ(µ∗).

Exercise 19. Let R be a ring on Ω and µ : R → [0,+∞] be a
measure on R. For all T ⊆ Ω, define:

µ∗(T )
4
= inf

{
+∞∑
n=1

µ(An) , (An) is an R-cover of T

}
where an R-cover of T is defined as any sequence (An)n≥1 of elements

of R such that T ⊆ ∪+∞
n=1An. By convention inf ∅ 4= +∞.

1. Show that µ∗(∅) = 0.

2. Show that if A ⊆ B then µ∗(A) ≤ µ∗(B).

3. Let (An)n≥1 be a sequence of subsets of Ω, with µ∗(An) < +∞
for all n ≥ 1. Given ε > 0, show that for all n ≥ 1, there exists
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an R-cover (Apn)p≥1 of An such that:
+∞∑
p=1

µ(Apn) < µ∗(An) + ε/2n

Why is it important to assume µ∗(An) < +∞.

4. Show that there exists an R-cover (Rk) of ∪+∞
n=1An such that:

+∞∑
k=1

µ(Rk) =
+∞∑
n=1

+∞∑
p=1

µ(Apn)

5. Show that µ∗(∪+∞
n=1An) ≤ ε+

∑+∞
n=1 µ

∗(An)

6. Show that µ∗ is an outer-measure on Ω.
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Exercise 20. Everything being as before, Let A ∈ R. Let (An)n≥1

be an R-cover of A and put B1 = A1 ∩A, and:

Bn+1
4
= (An+1 ∩A) \ ((A1 ∩A) ∪ . . . ∪ (An ∩A))

1. Show that µ∗(A) ≤ µ(A).

2. Show that (Bn)n≥1 is a sequence of pairwise disjoint elements
of R such that A = ]+∞

n=1Bn.

3. Show that µ(A) ≤ µ∗(A) and conclude that µ∗|R = µ.

Exercise 21. Everything being as before, Let A ∈ R and T ⊆ Ω.

1. Show that µ∗(T ) ≤ µ∗(T ∩A) + µ∗(T ∩Ac).

2. Let (Tn) be an R-cover of T . Show that (Tn ∩A) and (Tn ∩Ac)
are R-covers of T ∩A and T ∩Ac respectively.

3. Show that µ∗(T ∩A) + µ∗(T ∩Ac) ≤ µ∗(T ).
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4. Show that R ⊆ Σ(µ∗).

5. Conclude that σ(R) ⊆ Σ(µ∗).

Exercise 22.Prove the following theorem:

Theorem 4 (caratheodory’s extension) Let R be a ring on Ω
and µ : R → [0,+∞] be a measure on R. There exists a measure
µ′ : σ(R)→ [0,+∞] such that µ′|R = µ.

Exercise 23. Let S be a semi-ring on Ω. Show that σ(R(S)) = σ(S).

Exercise 24.Prove the following theorem:

Theorem 5 Let S be a semi-ring on Ω and µ : S → [0,+∞] be a
measure on S. There exists a measure µ′ : σ(S) → [0,+∞] such that
µ′|S = µ.
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3. Stieltjes-Lebesgue Measure
Definition 12 Let A ⊆ P(Ω) and µ : A → [0,+∞] be a map. We
say that µ is finitely additive if and only if, given n ≥ 1:

A ∈ A, Ai ∈ A, A =
n⊎
i=1

Ai ⇒ µ(A) =
n∑
i=1

µ(Ai)

We say that µ is finitely sub-additive if and only if, given n ≥ 1 :

A ∈ A, Ai ∈ A, A ⊆
n⋃
i=1

Ai ⇒ µ(A) ≤
n∑
i=1

µ(Ai)

Exercise 1. Let S 4= {]a, b] , a, b ∈ R} be the set of all intervals
]a, b], defined as ]a, b] = {x ∈ R, a < x ≤ b}.

1. Show that ]a, b]∩]c, d] =]a ∨ c, b ∧ d]

2. Show that ]a, b]\]c, d] =]a, b ∧ c]∪]a ∨ d, b]
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3. Show that c ≤ d ⇒ b ∧ c ≤ a ∨ d.

4. Show that S is a semi-ring on R.

Exercise 2. Suppose S is a semi-ring in Ω and µ : S → [0,+∞] is
finitely additive. Show that µ can be extended to a finitely additive
map µ̄ : R(S)→ [0,+∞], with µ̄|S = µ.

Exercise 3. Everything being as before, Let A ∈ R(S), Ai ∈ R(S),
A ⊆ ∪ni=1Ai where n ≥ 1. Define B1 = A1∩A and for i = 1, . . . , n−1:

Bi+1
4
= (Ai+1 ∩A) \ ((A1 ∩A) ∪ . . . ∪ (Ai ∩A))

1. Show that B1, . . . , Bn are pairwise disjoint elements of R(S)
such that A = ]ni=1Bi.

2. Show that for all i = 1, . . . , n, we have µ̄(Bi) ≤ µ̄(Ai).

3. Show that µ̄ is finitely sub-additive.

4. Show that µ is finitely sub-additive.
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Exercise 4. Let F : R → R be a right-continuous, non-decreasing
map. Let S be the semi-ring on R, S = {]a, b] , a, b ∈ R}. Define the
map µ : S → [0,+∞] by µ(∅) = 0, and:

∀a ≤ b , µ(]a, b])
4
= F (b)− F (a) (1)

Let a < b and ai < bi for i = 1, . . . , n and n ≥ 1, with :

]a, b] =
n⊎
i=1

]ai, bi]

1. Show that there is i1 ∈ {1, . . . , n} such that ai1 = a.

2. Show that ]bi1 , b] = ]i∈{1,...,n}\{i1}]ai, bi]

3. Show the existence of a permutation (i1, . . . , in) of {1, . . . , n}
such that a = ai1 < bi1 = ai2 < . . . < bin = b.

4. Show that µ is finitely additive and finitely sub-additive.
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Exercise 5. µ being defined as before, suppose a < b and an < bn
for n ≥ 1 with:

]a, b] =
+∞⊎
n=1

]an, bn]

Given N ≥ 1, let (i1, . . . , iN) be a permutation of {1, . . . , N} with:

a ≤ ai1 < bi1 ≤ ai2 < . . . < biN ≤ b

1. Show that
∑N
k=1 F (bik)− F (aik) ≤ F (b)− F (a).

2. Show that
∑+∞
n=1 µ(]an, bn]) ≤ µ(]a, b])

3. Given ε > 0, show that there is η ∈]0, b− a[ such that:

0 ≤ F (a+ η)− F (a) ≤ ε

4. For n ≥ 1, show that there is ηn > 0 such that:

0 ≤ F (bn + ηn)− F (bn) ≤ ε

2n
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5. Show that [a+ η, b] ⊆ ∪+∞
n=1]an, bn + ηn[.

6. Explain why there exist p ≥ 1 and integers n1, . . . , np such that:

]a+ η, b] ⊆ ∪pk=1]ank , bnk + ηnk ]

7. Show that F (b)− F (a) ≤ 2ε+
∑+∞

n=1 F (bn)− F (an)

8. Show that µ : S → [0,+∞] is a measure.

Definition 13 A topology on Ω is a subset T of the power set
P(Ω), with the following properties:

(i) Ω, ∅ ∈ T
(ii) A,B ∈ T ⇒ A ∩B ∈ T

(iii) Ai ∈ T , ∀i ∈ I ⇒
⋃
i∈I

Ai ∈ T
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Property (iii) of definition (13) can be translated as: for any family
(Ai)i∈I of elements of T , the union ∪i∈IAi is still an element of T .
Hence, a topology on Ω, is a set of subsets of Ω containing Ω and
the empty set, which is closed under finite intersection and arbitrary
union.

Definition 14 A topological space is an ordered pair (Ω, T ), where
Ω is a set and T is a topology on Ω.

Definition 15 Let (Ω, T ) be a topological space. We say that A ⊆ Ω
is an open set in Ω, if and only if it is an element of the topology T .
We say that A ⊆ Ω is a closed set in Ω, if and only if its complement
Ac is an open set in Ω.

Definition 16 Let (Ω, T ) be a topological space. We define the
borel σ-algebra on Ω, denoted B(Ω), as the σ-algebra on Ω, gener-
ated by the topology T . In other words, B(Ω) = σ(T )
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Definition 17 We define the usual topology on R, denoted TR,
as the set of all U ⊆ R such that:

∀x ∈ U , ∃ε > 0 , ]x− ε, x+ ε[⊆ U

Exercise 6.Show that TR is indeed a topology on R.

Exercise 7. Consider the semi-ring S 4= {]a, b] , a, b ∈ R}. Let TR
be the usual topology on R, and B(R) be the borel σ-algebra on R.

1. Let a ≤ b. Show that ]a, b] = ∩+∞
n=1]a, b+ 1/n[.

2. Show that σ(S) ⊆ B(R).

3. Let U be an open subset of R. Show that for all x ∈ U , there
exist ax, bx ∈ Q such that x ∈]ax, bx] ⊆ U .

4. Show that U = ∪x∈U ]ax, bx].

5. Show that the set I
4
= {]ax, bx] , x ∈ U} is countable.
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6. Show that U can be written U = ∪i∈IAi with Ai ∈ S.

7. Show that σ(S) = B(R).

Theorem 6 Let S be the semi-ring S = {]a, b] , a, b ∈ R}. Then,
the borel σ-algebra B(R) on R, is generated by S, i.e. B(R) = σ(S).

Definition 18 A measurable space is an ordered pair (Ω,F) where
Ω is a set and F is a σ-algebra on Ω.

Definition 19 A measure space is a triple (Ω,F , µ) where (Ω,F)
is a measurable space and µ : F → [0,+∞] is a measure on F .
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Exercise 8.Let (Ω,F , µ) be a measure space. Let (An)n≥1 be a
sequence of elements of F such that An ⊆ An+1 for all n ≥ 1, and let
A = ∪+∞

n=1An (we write An ↑ A). Define B1 = A1 and for all n ≥ 1,
Bn+1 = An+1 \An.

1. Show that (Bn) is a sequence of pairwise disjoint elements of F
such that A = ]+∞

n=1Bn.

2. Given N ≥ 1 show that AN = ]Nn=1Bn.

3. Show that µ(AN )→ µ(A) as N → +∞

4. Show that µ(An) ≤ µ(An+1) for all n ≥ 1.

Theorem 7 Let (Ω,F , µ) be a measure space. Then if (An)n≥1 is a
sequence of elements of F , such that An ↑ A, we have µ(An) ↑ µ(A)1.

1i.e. the sequence (µ(An))n≥1 is non-decreasing and converges to µ(A).
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Exercise 9.Let (Ω,F , µ) be a measure space. Let (An)n≥1 be a
sequence of elements of F such that An+1 ⊆ An for all n ≥ 1, and let
A = ∩+∞

n=1An (we write An ↓ A). We assume that µ(A1) < +∞.

1. Define Bn
4
= A1 \An and show that Bn ∈ F , Bn ↑ A1 \A.

2. Show that µ(Bn) ↑ µ(A1 \A)

3. Show that µ(An) = µ(A1)− µ(A1 \An)

4. Show that µ(A) = µ(A1)− µ(A1 \A)

5. Why is µ(A1) < +∞ important in deriving those equalities.

6. Show that µ(An)→ µ(A) as n→ +∞

7. Show that µ(An+1) ≤ µ(An) for all n ≥ 1.

Theorem 8 Let (Ω,F , µ) be a measure space. Then if (An)n≥1 is
a sequence of elements of F , such that An ↓ A and µ(A1) < +∞, we
have µ(An) ↓ µ(A).



Tutorial 3: Stieltjes-Lebesgue Measure 11

Exercise 10.Take Ω = R and F = B(R). Suppose µ is a measure
on B(R) such that µ(]a, b]) = b− a, for a < b. Take An =]n,+∞[.

1. Show that An ↓ ∅.

2. Show that µ(An) = +∞, for all n ≥ 1.

3. Conclude that µ(An) ↓ µ(∅) fails to be true.

Exercise 11. Let F : R→ R be a right-continuous, non-decreasing
map. Show the existence of a measure µ : B(R)→ [0,+∞] such that:

∀a, b ∈ R , a ≤ b , µ(]a, b]) = F (b)− F (a) (2)

Exercise 12.Let µ1, µ2 be two measures on B(R) with property (2).
For n ≥ 1, we define:

Dn
4
= {B ∈ B(R) , µ1(B∩]− n, n]) = µ2(B∩]− n, n])}

1. Show that Dn is a dynkin system on R.
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2. Explain why µ1(] − n, n]) < +∞ and µ2(] − n, n]) < +∞ is
needed when proving 1.

3. Show that S 4= {]a, b] , a, b ∈ R} ⊆ Dn.

4. Show that B(R) ⊆ Dn.

5. Show that µ1 = µ2.

6. Prove the following theorem.

Theorem 9 Let F : R → R be a right-continuous, non-decreasing
map. There exists a unique measure µ : B(R)→ [0,+∞] such that:

∀a, b ∈ R , a ≤ b , µ(]a, b]) = F (b)− F (a)

Definition 20 Let F : R→ R be a right-continuous, non-decreasing
map. We call stieltjes measure on R associated with F , the unique
measure on B(R), denoted dF , such that:

∀a, b ∈ R , a ≤ b , dF (]a, b]) = F (b)− F (a)
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Definition 21 We call lebesgue measure on R, the unique mea-
sure on B(R), denoted dx, such that:

∀a, b ∈ R , a ≤ b , dx(]a, b]) = b− a

Exercise 13. Let F : R→ R be a right-continuous, non-decreasing
map. Let x0 ∈ R.

1. Show that the limit F (x0−) = limx<x0,x→x0 F (x) exists and is
an element of R.

2. Show that {x0} = ∩+∞
n=1]x0 − 1/n, x0].

3. Show that {x0} ∈ B(R)

4. Show that dF ({x0}) = F (x0)− F (x0−)
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Exercise 14.Let F : R → R be a right-continuous, non-decreasing
map. Let a ≤ b.

1. Show that ]a, b] ∈ B(R) and dF (]a, b]) = F (b)− F (a)

2. Show that [a, b] ∈ B(R) and dF ([a, b]) = F (b)− F (a−)

3. Show that ]a, b[∈ B(R) and dF (]a, b[) = F (b−)− F (a)

4. Show that [a, b[∈ B(R) and dF ([a, b[) = F (b−)− F (a−)

Exercise 15. Let A be a subset of the power set P(Ω). Let Ω′ ⊆ Ω.
Define:

A|Ω′
4
= {A ∩ Ω′ , A ∈ A}

1. Show that if A is a topology on Ω, A|Ω′ is a topology on Ω’.

2. Show that if A is a σ-algebra on Ω, A|Ω′ is a σ-algebra on Ω’.
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Definition 22 Let Ω be a set, and Ω′ ⊆ Ω. Let A be a subset of
the power set P(Ω). We call trace of A on Ω’, the subset A|Ω′ of the
power set P(Ω′) defined by:

A|Ω′
4
= {A ∩ Ω′ , A ∈ A}

Definition 23 Let (Ω, T ) be a topological space and Ω′ ⊆ Ω. We call
induced topology on Ω’, denoted T|Ω′ , the topology on Ω’ defined
by:

T|Ω′
4
= {A ∩ Ω′ , A ∈ T }

In other words, the induced topology T|Ω′ is the trace of T on Ω’.

Exercise 16.Let A be a subset of the power set P(Ω). Let Ω′ ⊆ Ω,
and A|Ω′ be the trace of A on Ω’. Define:

Γ
4
= {A ∈ σ(A) , A ∩ Ω′ ∈ σ(A|Ω′ )}

where σ(A|Ω′ ) refers to the σ-algebra generated by A|Ω′ on Ω’.
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1. Explain why the notation σ(A|Ω′) by itself is ambiguous.

2. Show that A ⊆ Γ.

3. Show that Γ is a σ-algebra on Ω.

4. Show that σ(A|Ω′) = σ(A)|Ω′

Theorem 10 Let Ω′ ⊆ Ω and A be a subset of the power set P(Ω).
Then, the trace on Ω’ of the σ-algebra σ(A) generated by A, is equal
to the σ-algebra on Ω’ generated by the trace of A on Ω’. In other
words, σ(A)|Ω′ = σ(A|Ω′).

Exercise 17.Let (Ω, T ) be a topological space and Ω′ ⊆ Ω with its
induced topology T|Ω′ .

1. Show that B(Ω)|Ω′ = B(Ω′).

2. Show that if Ω′ ∈ B(Ω) then B(Ω′) ⊆ B(Ω).
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3. Show that B(R+) = {A ∩R+ , A ∈ B(R)}.

4. Show that B(R+) ⊆ B(R).

Exercise 18.Let (Ω,F , µ) be a measure space and Ω′ ⊆ Ω

1. Show that (Ω′,F|Ω′) is a measurable space.

2. If Ω′ ∈ F , show that F|Ω′ ⊆ F .

3. If Ω′ ∈ F , show that (Ω′,F|Ω′ , µ|Ω′) is a measure space, where
µ|Ω′ is defined as µ|Ω′ = µ|(F|Ω′).

Exercise 19. Let F : R+ → R be a right-continuous, non-decreasing
map with F (0) ≥ 0. Define:

F̄ (x)
4
=
{

0 if x < 0
F (x) if x ≥ 0

1. Show that F̄ : R→ R is right-continuous and non-decreasing.
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2. Show that µ : B(R+) → [0,+∞] defined by µ = dF̄|B(R+), is a
measure on B(R+) with the properties:

(i) µ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , µ(]a, b]) = F (b)− F (a)

Exercise 20. Define: C = {{0}} ∪ {]a, b] , 0 ≤ a ≤ b}

1. Show that C ⊆ B(R+)

2. Let U be open in R+. Show that U is of the form:

U =
⋃
i∈I

(R+∩]ai, bi])

where I is a countable set and ai, bi ∈ R with ai ≤ bi.

3. For all i ∈ I, show that R+∩]ai, bi] ∈ σ(C).

4. Show that σ(C) = B(R+)
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Exercise 21.Let µ1 and µ2 be two measures on B(R+) with:

(i) µ1({0}) = µ2({0}) = F (0)
(ii) µ1(]a, b]) = µ2(]a, b]) = F (b)− F (a)

for all 0 ≤ a ≤ b. For n ≥ 1, we define:

Dn = {B ∈ B(R+) , µ1(B ∩ [0, n]) = µ2(B ∩ [0, n])}

1. Show that Dn is a dynkin system on R+ with C ⊆ Dn, where
the set C is defined as in exercise (20).

2. Explain why µ1([0, n]) < +∞ and µ2([0, n]) < +∞ is important
when proving 1.

3. Show that µ1 = µ2.

4. Prove the following theorem.
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Theorem 11 Let F : R+→ R be a right-continuous, non-decreasing
map with F (0) ≥ 0. There exists a unique µ : B(R+) → [0,+∞]
measure on B(R+) such that:

(i) µ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , µ(]a, b]) = F (b)− F (a)

Definition 24 Let F : R+→R be a right-continuous, non-decreasing
map with F (0) ≥ 0. We call stieltjes measure on R+ associated
with F , the unique measure on B(R+), denoted dF , such that:

(i) dF ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , dF (]a, b]) = F (b)− F (a)
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4. Measurability
Definition 25 Let A and B be two sets, and f : A → B be a map.
Given A′ ⊆ A, we call direct image of A′ by f the set denoted f(A′),
and defined by f(A′) = {f(x) : x ∈ A′}.

Definition 26 Let A and B be two sets, and f : A → B be a map.
Given B′ ⊆ B, we call inverse image of B′ by f the set denoted
f−1(B′), and defined by f−1(B′) = {x : x ∈ A , f(x) ∈ B′}.

Exercise 1. Let A and B be two sets, and f : A→ B be a bijection
from A to B. Let A′ ⊆ A and B′ ⊆ B.

1. Explain why the notation f−1(B′) is potentially ambiguous.

2. Show that the inverse image of B′ by f is in fact equal to the
direct image of B′ by f−1.

3. Show that the direct image of A′ by f is in fact equal to the
inverse image of A′ by f−1.



Tutorial 4: Measurability 2

Definition 27 Let (Ω, T ) and (S, TS) be two topological spaces. A
map f : Ω→ S is said to be continuous if and only if:

∀B ∈ TS , f−1(B) ∈ T
In other words, if and only if the inverse image of any open set in S
is an open set in Ω.

We Write f : (Ω, T )→ (S, TS) is continuous, as a way of emphasizing
the two topologies T and TS with respect to which f is continuous.

Definition 28 Let E be a set. A map d : E × E → [0,+∞[ is said
to be a metric on E, if and only if:

(i) ∀x, y ∈ E , d(x, y) = 0 ⇔ x = y

(ii) ∀x, y ∈ E , d(x, y) = d(y, x)
(iii) ∀x, y, z ∈ E , d(x, y) ≤ d(x, z) + d(z, y)

Definition 29 A metric space is an ordered pair (E, d) where E
is a set, and d is a metric on E.
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Definition 30 Let (E, d) be a metric space. For all x ∈ E and
ε > 0, we define the so-called open ball in E:

B(x, ε)
4
= {y : y ∈ E , d(x, y) < ε}

We call metric topology on E, associated with d, the topology T dE
defined by:

T dE
4
= {U ⊆ E , ∀x ∈ U, ∃ε > 0, B(x, ε) ⊆ U}

Exercise 2. Let T dE be the metric topology associated with d, where
(E, d) is a metric space.

1. Show that T dE is indeed a topology on E.

2. Given x ∈ E and ε > 0, show that B(x, ε) is an open set in E.

Exercise 3. Show that the usual topology on R is nothing but the
metric topology associated with d(x, y) = |x− y|.
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Exercise 4. Let (E, d) and (F, δ) be two metric spaces. Show that
a map f : E → F is continuous, if and only if for all x ∈ E and ε > 0,
there exists η > 0 such that for all y ∈ E:

d(x, y) < η ⇒ δ(f(x), f(y)) < ε

Definition 31 Let (Ω, T ) and (S, TS) be two topological spaces. A
map f : Ω→ S is said to be a homeomorphism, if and only if f is
a continuous bijection, such that f−1 is also continuous.

Definition 32 A topological space (Ω, T ) is said to be metrizable,
if and only if there exists a metric d on Ω, such that the associated
metric topology coincides with T , i.e. T dΩ = T .
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Definition 33 Let (E, d) be a metric space and F ⊆ E. We call
induced metric on F , denoted d|F , the restriction of the metric d
to F × F , i.e. d|F = d|F×F .

Exercise 5.Let (E, d) be a metric space and F ⊆ E. We define
TF = (T dE )|F as the topology on F induced by the metric topology on

E. Let T ′F = T d|FF be the metric topology on F associated with the
induced metric d|F on F .

1. Show that TF ⊆ T ′F .

2. Given A ∈ T ′F , show that A = (∪x∈AB(x, εx)) ∩ F for some
εx > 0, x ∈ A, where B(x, εx) denotes the open ball in E.

3. Show that T ′F ⊆ TF .

Theorem 12 Let (E, d) be a metric space and F ⊆ E. Then, the
topology on F induced by the metric topology, is equal to the metric
topology on F associated with the induced metric, i.e. (T dE )|F = T d|FF .
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Exercise 6. Let φ : R→]− 1, 1[ be the map defined by:

∀x ∈ R , φ(x)
4
=

x

|x|+ 1

1. Show that [−1, 0[ is not open in R.

2. Show that [−1, 0[ is open in [−1, 1].

3. Show that φ is a homeomorphism between R and ]− 1, 1[.

4. Show that limx→+∞ φ(x) = 1 and limx→−∞ φ(x) = −1.

Exercise 7. Let R̄ = [−∞,+∞] = R∪{−∞,+∞}. Let φ be defined
as in exercise (6), and φ̄ : R̄→ [−1, 1] be the map defined by:

φ̄(x) =

 φ(x) if x ∈ R
1 if x = +∞
−1 if x = −∞

Define:
TR̄

4
= {U ⊆ R̄ , φ̄(U) is open in [−1, 1]}
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1. Show that φ̄ is a bijection from R̄ to [−1, 1], and let ψ̄ = φ̄−1.

2. Show that TR̄ is a topology on R̄.

3. Show that φ̄ is a homeomorphism between R̄ and [−1, 1].

4. Show that [−∞, 2[, ]3,+∞], ]3,+∞[ are open in R̄.

5. Show that if φ′ : R̄ → [−1, 1] is an arbitrary homeomorphism,
then U ⊆ R̄ is open, if and only if φ′(U) is open in [−1, 1].

Definition 34 The usual topology on R̄ is defined as:

TR̄
4= {U ⊆ R̄ , φ̄(U) is open in [−1, 1]}

where φ̄ : R̄→ [−1, 1] is defined by φ̄(−∞) = −1, φ̄(+∞) = 1 and:

∀x ∈ R , φ̄(x)
4
=

x

|x|+ 1
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Exercise 8. Let φ and φ̄ be as in exercise (7). Define:

T ′ 4= (TR̄)|R
4
= {U ∩R , U ∈ TR̄}

1. Recall why T ′ is a topology on R.

2. Show that for all U ⊆ R̄, φ(U ∩R) = φ̄(U)∩] − 1, 1[.

3. Explain why if U ∈ TR̄, φ(U ∩R) is open in ]− 1, 1[.

4. Show that T ′ ⊆ TR, (the usual topology on R).

5. Let U ∈ TR. Show that φ̄(U) is open in ]− 1, 1[ and [−1, 1].

6. Show that TR ⊆ TR̄
7. Show that TR = T ′, i.e. that the usual topology on R̄ induces

the usual topology on R.

8. Show that B(R) = B(R̄)|R = {B ∩R , B ∈ B(R̄)}
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Exercise 9.Let d : R̄× R̄→ [0,+∞[ be defined by:

∀(x, y) ∈ R̄× R̄ , d(x, y) = |φ(x) − φ(y)|

where φ is an arbitrary homeomorphism from R̄ to [−1, 1].

1. Show that d is a metric on R̄.

2. Show that if U ∈ TR̄, then φ(U) is open in [−1, 1]

3. Show that for all U ∈ TR̄ and y ∈ φ(U), there exists ε > 0 such
that:

∀z ∈ [−1, 1] , |z − y| < ε ⇒ z ∈ φ(U)

4. Show that TR̄ ⊆ T dR̄.

5. Show that for all U ∈ T d
R̄

and x ∈ U , there is ε > 0 such that:

∀y ∈ R̄ , |φ(x) − φ(y)| < ε ⇒ y ∈ U

6. Show that for all U ∈ T d
R̄

, φ(U) is open in [−1, 1].
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7. Show that T d
R̄
⊆ TR̄

8. Prove the following theorem.

Theorem 13 The topological space (R̄, TR̄) is metrizable.

Definition 35 Let (Ω,F) and (S,Σ) be two measurable spaces. A
map f : Ω→ S is said to be measurable with respect to F and Σ, if
and only if:

∀B ∈ Σ , f−1(B) ∈ F

We Write f : (Ω,F)→ (S,Σ) is measurable, as a way of emphasizing
the two σ-algebra F and Σ with respect to which f is measurable.

Exercise 10. Let (Ω,F) and (S,Σ) be two measurable spaces. Let
S′ be a set and f : Ω → S be a map such that f(Ω) ⊆ S′ ⊆ S. We
define Σ′ as the trace of Σ on S′, i.e. Σ′ = Σ|S′ .

1. Show that for all B ∈ Σ, we have f−1(B) = f−1(B ∩ S′)
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2. Show that f : (Ω,F) → (S,Σ) is measurable, if and only if
f : (Ω,F)→ (S′,Σ′) is itself measurable.

3. Let f : Ω→ R+. Show that the following are equivalent:

(i) f : (Ω,F)→ (R+,B(R+)) is measurable
(ii) f : (Ω,F)→ (R,B(R)) is measurable

(iii) f : (Ω,F)→ (R̄,B(R̄)) is measurable

Exercise 11. Let (Ω,F), (S,Σ), (S1,Σ1) be three measurable spaces.
let f : (Ω,F) → (S,Σ) and g : (S,Σ) → (S1,Σ1) be two measurable
maps.

1. For all B ⊆ S1, show that (g ◦ f)−1(B) = f−1(g−1(B))

2. Show that g ◦ f : (Ω,F)→ (S1,Σ1) is measurable.
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Exercise 12.Let (Ω,F) and (S,Σ) be two measurable spaces. Let
f : Ω→ S be a map. We define:

Γ
4
= {B ∈ Σ , f−1(B) ∈ F}

1. Show that f−1(S) = Ω.

2. Show that for all B ⊆ S, f−1(Bc) = (f−1(B))c.

3. Show that if Bn ⊆ S, n ≥ 1, then f−1(∪+∞
n=1Bn) = ∪+∞

n=1f
−1(Bn)

4. Show that Γ is a σ-algebra on S.

5. Prove the following theorem.

Theorem 14 Let (Ω,F) and (S,Σ) be two measurable spaces, and
A be a set of subsets of S generating Σ, i.e. such that Σ = σ(A).
Then f : (Ω,F)→ (S,Σ) is measurable, if and only if:

∀B ∈ A , f−1(B) ∈ F
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Exercise 13. Let (Ω, T ) and (S, TS) be two topological spaces. Let
f : Ω→ S be a map. Show that if f : (Ω, T )→ (S, TS) is continuous,
then f : (Ω,B(Ω))→ (S,B(S)) is measurable.

Exercise 14.We define the following subsets of the power set P(R̄):

C1
4
= {[−∞, c] , c ∈ R}

C2
4
= {[−∞, c[ , c ∈ R}

C3
4
= {[c,+∞] , c ∈ R}

C4
4
= {]c,+∞] , c ∈ R}

1. Show that C2 and C4 are subsets of TR̄.

2. Show that the elements of C1 and C3 are closed in R̄.

3. Show that for all i = 1, 2, 3, 4, σ(Ci) ⊆ B(R̄).

4. Let U be open in R̄. Explain why U ∩R is open in R.
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5. Show that any open subset of R is a countable union of open
bounded intervals in R.

6. Let a < b, a, b ∈ R. Show that we have:

]a, b[=
+∞⋃
n=1

]a, b− 1/n] =
+∞⋃
n=1

[a+ 1/n, b[

7. Show that for all i = 1, 2, 3, 4, ]a, b[∈ σ(Ci).

8. Show that for all i = 1, 2, 3, 4, {{−∞}, {+∞}} ⊆ σ(Ci).

9. Show that for all i = 1, 2, 3, 4, σ(Ci) = B(R̄)

10. Prove the following theorem.
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Theorem 15 Let (Ω,F) be a measurable space, and f : Ω → R̄ be
a map. The following are equivalent:

(i) f : (Ω,F)→ (R̄,B(R̄)) is measurable
(ii) ∀B ∈ B(R̄) , {f ∈ B} ∈ F

(iii) ∀c ∈ R , {f ≤ c} ∈ F
(iv) ∀c ∈ R , {f < c} ∈ F
(v) ∀c ∈ R , {c ≤ f} ∈ F

(vi) ∀c ∈ R , {c < f} ∈ F

Exercise 15. Let (Ω,F) be a measurable space. Let (fn)n≥1 be a
sequence of measurable maps fn : (Ω,F)→ (R̄,B(R̄)). Let g and h be
the maps defined by g(ω) = infn≥1 fn(ω) and h(ω) = supn≥1 fn(ω),
for all ω ∈ Ω.

1. Let c ∈ R. Show that {c ≤ g} = ∩+∞
n=1{c ≤ fn}.

2. Let c ∈ R. Show that {h ≤ c} = ∩+∞
n=1{fn ≤ c}.
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3. Show that g, h : (Ω,F)→ (R̄,B(R̄)) are measurable.

Definition 36 Let (vn)n≥1 be a sequence in R̄. We define:

u
4
= lim inf

n→+∞
vn
4
= sup

n≥1

(
inf
k≥n

vk

)
and:

w
4
= lim sup

n→+∞
vn
4
= inf

n≥1

(
sup
k≥n

vk

)
Then, u,w ∈ R̄ are respectively called lower limit and upper limit
of the sequence (vn)n≥1.

Exercise 16. Let (vn)n≥1 be a sequence in R̄. for n ≥ 1 we define
un = infk≥n vk and wn = supk≥n vk. Let u and w be the lower limit
and upper limit of (vn)n≥1, respectively.

1. Show that un ≤ un+1 ≤ u, for all n ≥ 1.
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2. Show that w ≤ wn+1 ≤ wn, for all n ≥ 1.

3. Show that un → u and wn → w as n→ +∞.

4. Show that un ≤ vn ≤ wn, for all n ≥ 1.

5. Show that u ≤ w.

6. Show that if u = w then (vn)n≥1 converges to a limit v ∈ R̄,
with u = v = w.

7. Show that if a, b ∈ R are such that u < a < b < w then for all
n ≥ 1, there exist N1, N2 ≥ n such that vN1 < a < b < vN2 .

8. Show that if a, b ∈ R are such that u < a < b < w then there
exist two strictly increasing sequences of integers (nk)k≥1 and
(mk)k≥1 such that for all k ≥ 1, we have vnk < a < b < vmk .

9. Show that if (vn)n≥1 converges to some v ∈ R̄, then u = w.
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Theorem 16 Let (vn)n≥1 be a sequence in R̄. Then, the following
are equivalent:

(i) lim inf
n→+∞

vn = lim sup
n→+∞

vn

(ii) lim
n→+∞

vn exists in R̄.

in which case:

lim
n→+∞

vn = lim inf
n→+∞

vn = lim sup
n→+∞

vn

Exercise 17. Let f, g : (Ω,F) → (R̄,B(R̄)) be two measurable
maps, where (Ω,F) is a measurable space.

1. Show that {f < g} = ∪r∈Q({f < r} ∩ {r < g}).

2. Show that the sets {f < g}, {f > g}, {f = g}, {f ≤ g}, {f ≥ g}
belong to the σ-algebra F .
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Exercise 18. Let (Ω,F) be a measurable space. Let (fn)n≥1 be
a sequence of measurable maps fn : (Ω,F) → (R̄,B(R̄)). We define
g = lim inf fn and h = lim sup fn in the obvious way:

∀ω ∈ Ω , g(ω)
4
= lim inf

n→+∞
fn(ω)

∀ω ∈ Ω , h(ω)
4
= lim sup

n→+∞
fn(ω)

1. Show that g, h : (Ω,F)→ (R̄,B(R̄)) are measurable.

2. Show that g ≤ h, i.e. ∀ω ∈ Ω , g(ω) ≤ h(ω).

3. Show that {g = h} ∈ F .

4. Show that {ω : ω ∈ Ω , limn→+∞ fn(ω) exists in R̄} ∈ F .

5. Suppose Ω = {g = h}, and let f(ω) = limn→+∞ fn(ω), for all
ω ∈ Ω. Show that f : (Ω,F)→ (R̄,B(R̄)) is measurable.
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Exercise 19. Let f, g : (Ω,F) → (R̄,B(R̄)) be two measurable
maps, where (Ω,F) is a measurable space.

1. Show that −f, |f |, f+ = max(f, 0) and f− = max(−f, 0) are
measurable with respect to F and B(R̄).

2. Let a ∈ R̄. Explain why the map a+f may not be well defined.

3. Show that (a+f) : (Ω,F)→ (R̄,B(R̄)) is measurable, whenever
a ∈ R.

4. Show that (a.f) : (Ω,F) → (R̄,B(R̄)) is measurable, for all
a ∈ R̄. (Recall the convention 0.∞ = 0).

5. Explain why the map f + g may not be well defined.

6. Suppose that f ≥ 0 and g ≥ 0, i.e. f(Ω) ⊆ [0,+∞] and also
g(Ω) ⊆ [0,+∞]. Show that {f + g < c} = {f < c − g}, for all
c ∈ R. Show that f + g : (Ω,F)→ (R̄,B(R̄)) is measurable.
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7. Show that f+g : (Ω,F)→ (R̄,B(R̄)) is measurable, in the case
when f and g take values in R.

8. Show that 1/f : (Ω,F)→ (R̄,B(R̄)) is measurable, in the case
when f(Ω) ⊆ R \ {0}.

9. Suppose that f is R-valued. Show that f̄ defined by f̄(ω) =
f(ω) if f(ω) 6= 0 and f̄(ω) = 1 if f(ω) = 0, is measurable with
respect to F and B(R̄).

10. Suppose f and g take values in R. Let f̄ be defined as in 9.
Show that for all c ∈ R, the set {fg < c} can be expressed as:

({f >0}∩{g < c/f̄})]({f <0}∩{g > c/f̄})]({f = 0}∩{f < c})

11. Show that fg : (Ω,F) → (R̄,B(R̄)) is measurable, in the case
when f and g take values in R.
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Exercise 20.Let f, g : (Ω,F)→ (R̄,B(R̄)) be two measurable maps,
where (Ω,F) is a measurable space. Let f̄ , ḡ, be defined by:

f̄(ω)
4
=
{
f(ω) if f(ω) 6∈ {−∞,+∞}

1 if f(ω) ∈ {−∞,+∞}
ḡ(ω) being defined in a similar way. Consider the partitions of Ω,
Ω = A1 ] A2 ] A3 ] A4 ] A5 and Ω = B1 ] B2 ] B3 ] B4 ] B5,
where A1 = {f ∈]0,+∞[}, A2 = {f ∈] − ∞, 0[}, A3 = {f = 0},
A4 = {f = −∞}, A5 = {f = +∞} and B1, B2, B3, B4, B5 being
defined in a similar way with g. Recall the conventions 0× (+∞) = 0,
(−∞)× (+∞) = (−∞), etc. . .

1. Show that f̄ and ḡ are measurable with respect to F and B(R̄).

2. Show that all Ai’s and Bj ’s are elements of F .

3. Show that for all B ∈ B(R̄):

{fg ∈ B} =
5⊎

i,j=1

(Ai ∩Bj ∩ {fg ∈ B})



Tutorial 4: Measurability 23

4. Show that Ai ∩ Bj ∩ {fg ∈ B} = Ai ∩ Bj ∩ {f̄ ḡ ∈ B}, in the
case when 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

5. Show that Ai ∩ Bj ∩ {fg ∈ B} is either equal to ∅ or Ai ∩ Bj ,
in the case when i ≥ 4 or j ≥ 4.

6. Show that fg : (Ω,F)→ (R̄,B(R̄)) is measurable.

Definition 37 Let (Ω, T ) be a topological space, and A ⊆ Ω. We
call closure of A in Ω, denoted Ā, the set defined by:

Ā
4
= {x ∈ Ω : x ∈ U ∈ T ⇒ U ∩A 6= ∅}

Exercise 21. Let (E, T ) be a topological space, and A ⊆ E. Let Ā
be the closure of A.

1. Show that A ⊆ Ā and that Ā is closed.

2. Show that if B is closed and A ⊆ B, then Ā ⊆ B.
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3. Show that Ā is the smallest closed set in E containing A.

4. Show that A is closed if and only if A = Ā.

5. Show that if (E, T ) is metrizable, then:

Ā = {x ∈ E : ∀ε > 0 , B(x, ε) ∩A 6= ∅}
where B(x, ε) is relative to any metric d such that T dE = T .

Exercise 22. Let (E, d) be a metric space. Let A ⊆ E. For all
x ∈ E, we define:

d(x,A)
4
= inf{d(x, y) : y ∈ A} 4= ΦA(x)

where it is understood that inf ∅ = +∞.

1. Show that for all x ∈ E, d(x,A) = d(x, Ā).

2. Show that d(x,A) = 0, if and only if x ∈ Ā.

3. Show that for all x, y ∈ E, d(x,A) ≤ d(x, y) + d(y,A).
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4. Show that if A 6= ∅, |d(x,A) − d(y,A)| ≤ d(x, y).

5. Show that ΦA : (E, T dE )→ (R̄, TR̄) is continuous.

6. Show that if A is closed, then A = Φ−1
A ({0})

Exercise 23.Let (Ω,F) be a measurable space. Let (fn)n≥1 be a
sequence of measurable maps fn : (Ω,F)→ (E,B(E)), where (E, d) is
a metric space. We assume that for all ω ∈ Ω, the sequence (fn(ω))n≥1

converges to some f(ω) ∈ E.

1. Explain why lim inf fn and lim sup fn may not be defined in an
arbitrary metric space E.

2. Show that f : (Ω,F) → (E,B(E)) is measurable, if and only if
f−1(A) ∈ F for all closed subsets A of E.

3. Show that for all A closed in E, f−1(A) = (ΦA ◦ f)−1({0}),
where the map ΦA : E → R̄ is defined as in exercise (22).



Tutorial 4: Measurability 26

4. Show that ΦA ◦ fn : (Ω,F)→ (R̄,B(R̄)) is measurable.

5. Show that f : (Ω,F)→ (E,B(E)) is measurable.

Theorem 17 Let (Ω,F) be a measurable space. Let (fn)n≥1 be a
sequence of measurable maps fn : (Ω,F) → (E,B(E)), where (E, d)
is a metric space. Then, if the limit f = lim fn exists on Ω, the map
f : (Ω,F)→ (E,B(E)) is itself measurable.

Definition 38 The usual topology on C, the set of complex num-
bers, is defined as the metric topology associated with d(z, z′) = |z−z′|.

Exercise 24. Let f : (Ω,F) → (C,B(C)) be a measurable map,
where (Ω,F) is a measurable space. Let u = Re(f) and v = Im(f).
Show that u, v, |f | : (Ω,F)→ (R̄,B(R̄)) are all measurable.

Exercise 25. Define the subset of the power set P(C):

C 4= {]a, b[×]c, d[ , a, b, c, d ∈ R}
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where it is understood that:

]a, b[×]c, d[
4
= {z = x+ iy ∈ C , (x, y) ∈]a, b[×]c, d[}

1. Show that any element of C is open in C.

2. Show that σ(C) ⊆ B(C).

3. Let z = x + iy ∈ C. Show that if |x| < η and |y| < η then we
have |z| <

√
2η.

4. Let U be open in C. Show that for all z ∈ U , there are rational
numbers az, bz, cz, dz such that z ∈]az , bz[×]cz, dz [⊆ U .

5. Show that U can be written as U = ∪+∞
n=1An where An ∈ C.

6. Show that σ(C) = B(C).

7. Let (Ω,F) be a measurable space, and u, v : (Ω,F)→ (R,B(R))
be two measurable maps. Show that u+iv : (Ω,F)→ (C,B(C))
is measurable.
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5. Lebesgue Integration
In the following, (Ω,F , µ) is a measure space.

Definition 39 Let A ⊆ Ω. We call characteristic function of A,
the map 1A : Ω→ R, defined by:

∀ω ∈ Ω , 1A(ω)
4
=
{

1 if ω ∈ A
0 if ω 6∈ A

Exercise 1. Given A ⊆ Ω, show that 1A : (Ω,F) → (R̄,B(R̄)) is
measurable if and only if A ∈ F .

Definition 40 Let (Ω,F) be a measurable space. We say that a map
s : Ω → R+ is a simple function on (Ω,F), if and only if s is of
the form :

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ R+ and Ai ∈ F , for all i = 1, . . . , n.
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Exercise 2. Show that s : (Ω,F) → (R+,B(R+)) is measurable,
whenever s is a simple function on (Ω,F).

Exercise 3. Let s be a simple function on (Ω,F) with representation
s =

∑n
i=1 αi1Ai. Consider the map φ : Ω → {0, 1}n defined by

φ(ω) = (1A1(ω), . . . , 1An(ω)). For each y ∈ s(Ω), pick one ωy ∈ Ω
such that y = s(ωy). Consider the map ψ : s(Ω)→ {0, 1}n defined by
ψ(y) = φ(ωy).

1. Show that ψ is injective, and that s(Ω) is a finite subset of R+.

2. Show that s =
∑

α∈s(Ω) α1{s=α}

3. Show that any simple function s can be represented as:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ R+, Ai ∈ F and Ω = A1 ] . . . ]An.
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Definition 41 Let (Ω,F) be a measurable space, and s be a simple
function on (Ω,F). We call partition of the simple function s, any
representation of the form:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ R+, Ai ∈ F and Ω = A1 ] . . . ]An.

Exercise 4. Let s be a simple function on (Ω,F) with two partitions:

s =
n∑
i=1

αi1Ai =
m∑
j=1

βj1Bj

1. Show that s =
∑

i,j αi1Ai∩Bj is a partition of s.

2. Recall the convention 0 × (+∞) = 0 and α × (+∞) = +∞
if α > 0. For all a1, . . . , ap in [0,+∞], p ≥ 1 and x ∈ [0,+∞],
prove the distributive property: x(a1+. . .+ap) = xa1+. . .+xap.
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3. Show that
∑n
i=1 αiµ(Ai) =

∑m
j=1 βjµ(Bj).

4. Explain why the following definition is legitimate.

Definition 42 Let (Ω,F , µ) be a measure space, and s be a simple
function on (Ω,F). We define the integral of s with respect to µ, as
the sum, denoted Iµ(s), defined by:

Iµ(s) 4=
n∑
i=1

αiµ(Ai) ∈ [0,+∞]

where s =
∑n

i=1 αi1Ai is any partition of s.

Exercise 5. Let s, t be two simple functions on (Ω,F) with partitions
s =

∑n
i=1 αi1Ai and t =

∑m
j=1 βj1Bj . Let α ∈ R+.

1. Show that s+ t is a simple function on (Ω,F) with partition:

s+ t =
n∑
i=1

m∑
j=1

(αi + βj)1Ai∩Bj
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2. Show that Iµ(s+ t) = Iµ(s) + Iµ(t).

3. Show that αs is a simple function on (Ω,F).

4. Show that Iµ(αs) = αIµ(s).

5. Why is the notation Iµ(αs) meaningless if α = +∞ or α < 0.

6. Show that if s ≤ t then Iµ(s) ≤ Iµ(t).

Exercise 6. Let f : (Ω,F) → [0,+∞] be a non-negative and mea-
surable map. For all n ≥ 1, we define:

sn
4
=

n2n−1∑
k=0

k

2n
1{ k2n≤f<k+1

2n }
+ n1{n≤f} (1)

1. Show that sn is a simple function on (Ω,F), for all n ≥ 1.

2. Show that equation (1) is a partition sn, for all n ≥ 1.

3. Show that sn ≤ sn+1 ≤ f , for all n ≥ 1.
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4. Show that sn ↑ f as n→ +∞1.

Theorem 18 Let f : (Ω,F)→ [0,+∞] be a non-negative and mea-
surable map, where (Ω,F) is a measurable space. There exists a se-
quence (sn)n≥1 of simple functions on (Ω,F) such that sn ↑ f .

Definition 43 Let f : (Ω,F) → [0,+∞] be a non-negative and
measurable map, where (Ω,F , µ) is a measure space. We define the
lebesgue integral of f with respect to µ, denoted

∫
fdµ, as:∫

fdµ
4
= sup{Iµ(s) : s simple function on (Ω,F) , s ≤ f}

where, given any simple function s on (Ω,F), Iµ(s) denotes its inte-
gral with respect to µ.

1 i.e. for all ω ∈ Ω, the sequence (sn(ω))n≥1 is non-decreasing and converges
to f(ω) ∈ [0,+∞].
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Exercise 7. Let f : (Ω,F) → [0,+∞] be a non-negative and mea-
surable map.

1. Show that
∫
fdµ ∈ [0,+∞].

2. Show that
∫
fdµ = Iµ(f), whenever f is a simple function.

3. Show that
∫
gdµ ≤

∫
fdµ, whenever g : (Ω,F) → [0,+∞] is

non-negative and measurable map with g ≤ f .

4. Show that
∫

(cf)dµ = c
∫
fdµ, if 0 < c < +∞. Explain why

both integrals are well defined. Is the equality still true for
c = 0.

5. For n ≥ 1, put An = {f > 1/n}, and sn = (1/n)1An. Show
that sn is a simple function on (Ω,F) with sn ≤ f . Show that
An ↑ {f > 0}.

6. Show that
∫
fdµ = 0 ⇒ µ({f > 0}) = 0.
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7. Show that if s is a simple function on (Ω,F) with s ≤ f , then
µ({f > 0}) = 0 implies Iµ(s) = 0.

8. Show that
∫
fdµ = 0 ⇔ µ({f > 0}) = 0.

9. Show that
∫

(+∞)fdµ = (+∞)
∫
fdµ. Explain why both inte-

grals are well defined.

10. Show that (+∞)1{f=+∞} ≤ f and:∫
(+∞)1{f=+∞}dµ = (+∞)µ({f = +∞})

11. Show that
∫
fdµ < +∞ ⇒ µ({f = +∞}) = 0.

12. Suppose that µ(Ω) = +∞ and take f = 1. Show that the
converse of the previous implication is not true.
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Exercise 8. Let s be a simple function on (Ω,F). let A ∈ F .

1. Show that s1A is a simple function on (Ω,F).

2. Show that for any partition s =
∑n

i=1 αi1Ai of s, we have:

Iµ(s1A) =
n∑
i=1

αiµ(Ai ∩A)

3. Let ν : F → [0,+∞] be defined by ν(A) = Iµ(s1A). Show that
ν is a measure on F .

4. Suppose An ∈ F , An ↑ A. Show that Iµ(s1An) ↑ Iµ(s1A).

Exercise 9. Let (fn)n≥1 be a sequence of non-negative and measur-
able maps fn : (Ω,F)→ [0,+∞], such that fn ↑ f .

1. Recall what the notation fn ↑ f means.

2. Explain why f : (Ω,F)→ (R̄,B(R̄)) is measurable.
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3. Let α = supn≥1

∫
fndµ. Show that

∫
fndµ ↑ α.

4. Show that α ≤
∫
fdµ.

5. Let s be any simple function on (Ω,F) such that s ≤ f . Let
c ∈]0, 1[. For n ≥ 1, define An = {cs ≤ fn}. Show that An ∈ F
and An ↑ Ω.

6. Show that cIµ(s1An) ≤
∫
fndµ, for all n ≥ 1.

7. Show that cIµ(s) ≤ α.

8. Show that Iµ(s) ≤ α.

9. Show that
∫
fdµ ≤ α.

10. Conclude that
∫
fndµ ↑

∫
fdµ.

Theorem 19 (Monotone Convergence) Let (Ω,F , µ) be a mea-
sure space. Let (fn)n≥1 be a sequence of non-negative and measurable
maps fn : (Ω,F)→ [0,+∞] such that fn ↑ f . Then

∫
fndµ ↑

∫
fdµ.
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Exercise 10. Let f, g : (Ω,F) → [0,+∞] be two non-negative and
measurable maps. Let a, b ∈ [0,+∞].

1. Show that if (fn)n≥1 and (gn)n≥1 are two sequences of non-
negative and measurable maps such that fn ↑ f and gn ↑ g,
then fn + gn ↑ f + g.

2. Show that
∫

(f + g)dµ =
∫
fdµ+

∫
gdµ.

3. Show that
∫

(af + bg)dµ = a
∫
fdµ+ b

∫
gdµ.

Exercise 11. Let (fn)n≥1 be a sequence of non-negative and mea-
surable maps fn : (Ω,F)→ [0,+∞]. Define f =

∑+∞
n=1 fn.

1. Explain why f : (Ω,F)→ [0,+∞] is well defined, non-negative
and measurable.

2. Show that
∫
fdµ =

∑+∞
n=1

∫
fndµ.
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Definition 44 Let (Ω,F , µ) be a measure space and let P(ω) be a
property depending on ω ∈ Ω. We say that the property P(ω) holds
µ-almost surely, and we write P(ω) µ-a.s., if and only if:

∃N ∈ F , µ(N) = 0 , ∀ω ∈ N c,P(ω) holds

Exercise 12. Let P(ω) be a property depending on ω ∈ Ω, such that
{ω ∈ Ω : P(ω) holds} is an element of the σ-algebra F .

1. Show that P(ω) , µ-a.s.⇔ µ({ω ∈ Ω : P(ω) holds}c) = 0.

2. Explain why in general, the right-hand side of this equivalence
cannot be used to defined µ-almost sure properties.

Exercise 13. Let (Ω,F , µ) be a measure space and (An)n≥1 be a
sequence of elements of F . Show that µ(∪+∞

n=1An) ≤
∑+∞
n=1 µ(An).

Exercise 14. Let (fn)n≥1 be a sequence of maps fn : Ω→ [0,+∞].

1. Translate formally the statement fn ↑ f µ-a.s.
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2. Translate formally fn → f µ-a.s. and ∀n, (fn ≤ fn+1 µ-a.s.)

3. Show that the statements 1. and 2. are equivalent.

Exercise 15. Suppose that f, g : (Ω,F)→ [0,+∞] are non-negative
and measurable with f = g µ-a.s.. Let N ∈ F , µ(N) = 0 such that
f = g on N c. Explain why

∫
fdµ =

∫
(f1N)dµ +

∫
(f1Nc)dµ, all

integrals being well defined. Show that
∫
fdµ =

∫
gdµ.

Exercise 16. Suppose (fn)n≥1 is a sequence of non-negative and
measurable maps such that fn ↑ f µ-a.s.. Let N ∈ F , µ(N) = 0, such
that fn ↑ f on N c. Define f̄n = fn1Nc and f̄ = f1Nc .

1. Explain why f̄ and the f̄n’s are non-negative and measurable.

2. Show that f̄n ↑ f̄ .

3. Show that
∫
fndµ ↑

∫
fdµ.
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Exercise 17. Let (fn)n≥1 be a sequence of non-negative and measur-
able maps fn : (Ω,F)→ [0,+∞]. For n ≥ 1, we define gn = infk≥n fk.

1. Explain why the gn’s are non-negative and measurable.

2. Show that gn ↑ lim inf fn.

3. Show that
∫
gndµ ≤

∫
fndµ, for all n ≥ 1.

4. Show that if (un)n≥1 and (vn)n≥1 are two sequences in R̄ with
un ≤ vn for all n ≥ 1, then lim inf un ≤ lim inf vn.

5. Show that
∫

(lim inf fn)dµ ≤ lim inf
∫
fndµ, and recall why all

integrals are well defined.

Theorem 20 (Fatou Lemma) Let (Ω,F , µ) be a measure space,
and let (fn)n≥1 be a sequence of non-negative and measurable maps
fn : (Ω,F)→ [0,+∞]. Then:∫

(lim inf
n→+∞

fn)dµ ≤ lim inf
n→+∞

∫
fndµ
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Exercise 18. Let f : (Ω,F)→ [0,+∞] be a non-negative and mea-
surable map. Let A ∈ F .

1. Recall what is meant by the induced measure space (A,F|A, µ|A).
Why is it important to have A ∈ F . Show that the restriction
of f to A, f|A : (A,F|A)→ [0,+∞] is measurable.

2. We define the map µA : F → [0,+∞] by µA(E) = µ(A∩E), for
all E ∈ F . Show that (Ω,F , µA) is a measure space.

3. Consider the equalities:∫
(f1A)dµ =

∫
fdµA =

∫
(f|A)dµ|A (2)

For each of the above integrals, what is the underlying measure
space on which the integral is considered. What is the map
being integrated. Explain why each integral is well defined.

4. Show that in order to prove (2), it is sufficient to consider the
case when f is a simple function on (Ω,F).
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5. Show that in order to prove (2), it is sufficient to consider the
case when f is of the form f = 1B, for some B ∈ F .

6. Show that (2) is indeed true.

Definition 45 Let f : (Ω,F)→ [0,+∞] be a non-negative and mea-
surable map, where (Ω,F , µ) is a measure space. let A ∈ F . We call
partial lebesgue integral of f with respect to µ over A, the integral
denoted

∫
A
fdµ, defined as:∫
A

fdµ
4
=
∫

(f1A)dµ =
∫
fdµA =

∫
(f|A)dµ|A

where µA is the measure on (Ω,F), µA = µ(A∩ •), f|A is the restric-
tion of f to A and µ|A is the restriction of µ to F|A, the trace of F
on A.
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Exercise 19. Let f, g : (Ω,F) → [0,+∞] be two non-negative and
measurable maps. Let ν : F → [0,+∞] be defined by ν(A) =

∫
A
fdµ,

for all A ∈ F .

1. Show that ν is a measure on F .

2. Show that: ∫
gdν =

∫
gfdµ

Theorem 21 Let f : (Ω,F)→ [0,+∞] be a non-negative and mea-
surable map, where (Ω,F , µ) is a measure space. Let ν : F → [0,+∞]
be defined by ν(A) =

∫
A
fdµ, for all A ∈ F . Then, ν is a measure on

F , and for all g : (Ω,F)→ [0,+∞] non-negative and measurable, we
have: ∫

gdν =
∫
gfdµ
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Definition 46 The L1-spaces on a measure space (Ω,F , µ), are:

L1
R(Ω,F , µ)

4
=
{
f : (Ω,F)→ (R,B(R)) measurable,

∫
|f |dµ < +∞

}
L1

C(Ω,F , µ)
4
=
{
f : (Ω,F)→ (C,B(C)) measurable,

∫
|f |dµ < +∞

}

Exercise 20. Let f : (Ω,F)→ (C,B(C)) be a measurable map.

1. Explain why the integral
∫
|f |dµ makes sense.

2. Show that f : (Ω,F)→ (R,B(R)) is measurable, if f(Ω) ⊆ R.

3. Show that L1
R(Ω,F , µ) ⊆ L1

C(Ω,F , µ).

4. Show that L1
R(Ω,F , µ) = {f ∈ L1

C(Ω,F , µ) , f(Ω) ⊆ R}

5. Show that L1
R(Ω,F , µ) is closed under R-linear combinations.

6. Show that L1
C(Ω,F , µ) is closed under C-linear combinations.
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Definition 47 Let u : Ω→ R be a real-valued function defined on a
set Ω. We call positive part and negative part of u the maps u+

and u− respectively, defined as u+ = max(u, 0) and u− = max(−u, 0).

Exercise 21. Let f ∈ L1
C(Ω,F , µ). Let u = Re(f) and v = Im(f).

1. Show that u = u+−u−, v = v+−v−, f = u+−u−+ i(v+−v−).

2. Show that |u| = u+ + u−, |v| = v+ + v−

3. Show that u+, u−, v+, v−, |f |, u, v, |u|, |v| all lie in L1
R(Ω,F , µ).

4. Explain why the integrals
∫
u+dµ,

∫
u−dµ,

∫
v+dµ,

∫
v−dµ are

all well defined.

5. We define the integral of f with respect to µ, denoted
∫
fdµ, as∫

fdµ =
∫
u+dµ−

∫
u−dµ+ i

(∫
v+dµ−

∫
v−dµ

)
. Explain why∫

fdµ is a well defined complex number.
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6. In the case when f(Ω) ⊆ C ∩ [0,+∞] = R+, explain why this
new definition of the integral of f with respect to µ is consistent
with the one already known (43) for non-negative and measur-
able maps.

7. Show that
∫
fdµ =

∫
udµ+i

∫
vdµ and explain why all integrals

involved are well defined.

Definition 48 Let f = u + iv ∈ L1
C(Ω,F , µ) where (Ω,F , µ) is a

measure space. We define the lebesgue integral of f with respect to
µ, denoted

∫
fdµ, as:∫

fdµ
4
=
∫
u+dµ−

∫
u−dµ+ i

(∫
v+dµ−

∫
v−dµ

)

Exercise 22. Let f = u+ iv ∈ L1
C(Ω,F , µ) and A ∈ F .

1. Show that f1A ∈ L1
C(Ω,F , µ).
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2. Show that f ∈ L1
C(Ω,F , µA).

3. Show that f|A ∈ L1
C(A,F|A, µ|A)

4. Show that
∫

(f1A)dµ =
∫
fdµA =

∫
f|Adµ|A.

5. Show that 4. is:
∫
A u

+dµ−
∫
A u
−dµ+ i

(∫
A v

+dµ−
∫
A v
−dµ

)
.

Definition 49 Let f ∈ L1
C(Ω,F , µ) , where (Ω,F , µ) is a measure

space. let A ∈ F . We call partial lebesgue integral of f with
respect to µ over A, the integral denoted

∫
A fdµ, defined as:∫

A

fdµ
4
=
∫

(f1A)dµ =
∫
fdµA =

∫
(f|A)dµ|A

where µA is the measure on (Ω,F), µA = µ(A∩ •), f|A is the restric-
tion of f to A and µ|A is the restriction of µ to F|A, the trace of F
on A.
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Exercise 23. Let f, g ∈ L1
R(Ω,F , µ) and let h = f + g

1. Show that:∫
h+dµ+

∫
f−dµ+

∫
g−dµ =

∫
h−dµ+

∫
f+dµ+

∫
g+dµ

2. Show that
∫
hdµ =

∫
fdµ+

∫
gdµ.

3. Show that
∫

(−f)dµ = −
∫
fdµ

4. Show that if α ∈ R then
∫

(αf)dµ = α
∫
fdµ.

5. Show that if f ≤ g then
∫
fdµ ≤

∫
gdµ

6. Show the following theorem.

Theorem 22 For all f, g ∈ L1
C(Ω,F , µ) and α ∈ C, we have:∫

(αf + g)dµ = α

∫
fdµ+

∫
gdµ
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Exercise 24. Let f, g be two maps, and (fn)n≥1 be a sequence of
measurable maps fn : (Ω,F)→ (C,B(C)), such that:

(i) ∀ω ∈ Ω , lim
n→+∞

fn(ω) = f(ω) in C

(ii) ∀n ≥ 1 , |fn| ≤ g
(iii) g ∈ L1

R(Ω,F , µ)

Let (un)n≥1 be an arbitrary sequence in R̄.

1. Show that f ∈ L1
C(Ω,F , µ) and fn ∈ L1

C(Ω,F , µ) for all n ≥ 1.

2. For n ≥ 1, define hn = 2g − |fn − f |. Explain why Fatou
lemma (20) can be applied to the sequence (hn)n≥1.

3. Show that lim inf(−un) = − lim supun.

4. Show that if α ∈ R, then lim inf(α+ un) = α+ lim inf un.

5. Show that un → 0 as n→ +∞ if and only if lim sup |un| = 0.

6. Show that
∫

(2g)dµ ≤
∫

(2g)dµ− lim sup
∫
|fn − f |dµ



Tutorial 5: Lebesgue Integration 24

7. Show that lim sup
∫
|fn − f |dµ = 0.

8. Conclude that
∫
|fn − f |dµ→ 0 as n→ +∞.

Theorem 23 (Dominated Convergence) Let (fn)n≥1 be a se-
quence of measurable maps fn : (Ω,F)→ (C,B(C)) such that fn → f
in C2 . Suppose that there exists some g ∈ L1

R(Ω,F , µ) such that
|fn| ≤ g for all n ≥ 1. Then f, fn ∈ L1

C(Ω,F , µ) for all n ≥ 1, and:

lim
n→+∞

∫
|fn − f |dµ = 0

Exercise 25. Let f ∈ L1
C(Ω,F , µ) and put z =

∫
fdµ. Let α ∈ C,

be such that |α| = 1 and αz = |z|. Put u = Re(αf).

1. Show that u ∈ L1
R(Ω,F , µ)

2. Show that u ≤ |f |
2i.e. for all ω ∈ Ω, the sequence (fn(ω))n≥1 converges to f(ω) ∈ C
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3. Show that |
∫
fdµ| =

∫
(αf)dµ.

4. Show that
∫

(αf)dµ =
∫
udµ.

5. Prove the following theorem.

Theorem 24 Let f ∈ L1
C(Ω,F , µ) where (Ω,F , µ) is a measure

space. We have: ∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dµ
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6. Product Spaces
In the following, I is a non-empty set.

Definition 50 Let (Ωi)i∈I be a family of sets, indexed by a non-
empty set I. We call cartesian product of the family (Ωi)i∈I the
set, denoted Πi∈IΩi, and defined by:∏

i∈I
Ωi
4
= {ω : I → ∪i∈IΩi , ω(i) ∈ Ωi , ∀i ∈ I}

In other words, Πi∈IΩi is the set of all maps ω defined on I, with
values in ∪i∈IΩi, such that ω(i) ∈ Ωi for all i ∈ I.

Theorem 25 (Axiom of choice) Let (Ωi)i∈I be a family of sets,
indexed by a non-empty set I. Then, Πi∈IΩi is non-empty, if and
only if Ωi is non-empty for all i ∈ I1.

1When I is finite, this theorem is traditionally derived from other axioms.
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Exercise 1.

1. Let Ω be a set and suppose that Ωi = Ω, ∀i ∈ I. We use the
notation ΩI instead of Πi∈IΩi. Show that ΩI is the set of all
maps ω : I → Ω.

2. What are the sets RR+
, RN , [0, 1]N , R̄R?

3. Suppose I = N∗. We sometimes use the notation Π+∞
n=1Ωn in-

stead of Πn∈N∗Ωn. Let S be the set of all sequences (xn)n≥1

such that xn ∈ Ωn for all n ≥ 1. Is S the same thing as the
product Π+∞

n=1Ωn?

4. Suppose I = Nn = {1, . . . , n}, n ≥ 1. We use the notation
Ω1× . . .×Ωn instead of Πi∈{1,...,n}Ωi. For ω ∈ Ω1× . . .× Ωn, it
is customary to write (ω1, . . . , ωn) instead of ω, where we have
ωi = ω(i). What is your guess for the definition of sets such as
Rn, R̄n

,Qn,Cn.

5. Let E,F,G be three sets. Define E × F ×G.
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Definition 51 Let I be a non-empty set. We say that a family of
sets (Iλ)λ∈Λ, where Λ 6= ∅, is a partition of I, if and only if:

(i) ∀λ ∈ Λ , Iλ 6= ∅
(ii) ∀λ, λ′ ∈ Λ , λ 6= λ′ ⇒ Iλ ∩ Iλ′ = ∅

(iii) I = ∪λ∈ΛIλ

Exercise 2. Let (Ωi)i∈I be a family of sets indexed by I, and (Iλ)λ∈Λ

be a partition of the set I.

1. For each λ ∈ Λ, recall the definition of Πi∈IλΩi.

2. Recall the definition of Πλ∈Λ(Πi∈IλΩi).

3. Define a natural bijection Φ : Πi∈IΩi → Πλ∈Λ(Πi∈IλΩi).

4. Define a natural bijection ψ : Rp×Rn → Rp+n, for all n, p ≥ 1.
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Definition 52 Let (Ωi)i∈I be a family of sets, indexed by a non-
empty set I. For all i ∈ I, let Ei be a set of subsets of Ωi. We define
a rectangle of the family (Ei)i∈I , as any subset A of Πi∈IΩi, of the
form A = Πi∈IAi where Ai ∈ Ei ∪ {Ωi} for all i ∈ I, and such that
Ai = Ωi except for a finite number of indices i ∈ I. Consequently, the
set of all rectangles, denoted qi∈IEi, is defined as:∐
i∈I
Ei
4
=

{∏
i∈I

Ai : Ai ∈ Ei ∪ {Ωi} , Ai 6= Ωi for finitely many i ∈ I
}

Exercise 3. (Ωi)i∈I and (Ei)i∈I being as above:

1. Show that if I = Nn and Ωi ∈ Ei for all i = 1, . . . , n, then
E1 q . . .q En = {A1 × . . .×An : Ai ∈ Ei , ∀i ∈ I}.

2. Let A be a rectangle. Show that there exists a finite subset J
of I such that: A = {ω ∈ Πi∈IΩi : ω(j) ∈ Aj , ∀j ∈ J} for
some Aj ’s such that Aj ∈ Ej , for all j ∈ J .
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Definition 53 Let (Ωi,Fi)i∈I be a family of measurable spaces, in-
dexed by a non-empty set I. We call measurable rectangle , any
rectangle of the family (Fi)i∈I . The set of all measurable rectangles
is given by 2:∐

i∈I
Fi
4
=

{∏
i∈I

Ai : Ai ∈ Fi , Ai 6= Ωi for finitely many i ∈ I
}

Definition 54 Let (Ωi,Fi)i∈I be a family of measurable spaces, in-
dexed by a non-empty set I. We define the product σ-algebra of
(Fi)i∈I , as the σ-algebra on Πi∈IΩi, denoted ⊗i∈IFi, and generated
by all measurable rectangles, i.e.⊗

i∈I
Fi
4
= σ

(∐
i∈I
Fi

)
2Note that Ωi ∈ Fi for all i ∈ I.
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Exercise 4.

1. Suppose I = Nn. Show that F1 ⊗ . . . ⊗ Fn is generated by all
sets of the form A1× . . .×An, where Ai ∈ Fi for all i = 1, . . . , n.

2. Show that B(R)⊗B(R)⊗B(R) is generated by sets of the form
A×B × C where A,B,C ∈ B(R).

3. Show that if (Ω,F) is a measurable space, B(R+) ⊗ F is the
σ-algebra on R+×Ω generated by sets of the form B×F where
B ∈ B(R+) and F ∈ F .

Exercise 5. Let (Ωi)i∈I be a family of non-empty sets and Ei be a
subset of the power set P(Ωi) for all i ∈ I.

1. Give a generator of the σ-algebra ⊗i∈Iσ(Ei) on Πi∈IΩi.

2. Show that:

σ

(∐
i∈I
Ei

)
⊆
⊗
i∈I

σ(Ei)
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3. Let A be a rectangle of the family (σ(Ei))i∈I . Show that if A is
not empty, then the representation A = Πi∈IAi with Ai ∈ σ(Ei)
is unique. Define JA = {i ∈ I : Ai 6= Ωi}. Explain why JA is a
well-defined finite subset of I.

4. If A ∈ qi∈Iσ(Ei), Show that if A = ∅, or A 6= ∅ and JA = ∅,
then A ∈ σ(qi∈IEi).

Exercise 6. Everything being as before, Let n ≥ 0. We assume that
the following induction hypothesis has been proved:

A ∈
∐
i∈I

σ(Ei), A 6= ∅, cardJA = n ⇒ A ∈ σ
(∐
i∈I
Ei

)
We assume that A is a non empty measurable rectangle of (σ(Ei))i∈I
with cardJA = n+ 1. Let JA = {i1, . . . , in+1} be an extension of JA.
For all B ⊆ Ωi1 , we define:

AB
4
=
∏
i∈I

Āi
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where each Āi is equal to Ai except Āi1 = B. We define the set:

Γ
4
=

{
B ⊆ Ωi1 : AB ∈ σ

(∐
i∈I
Ei

)}

1. Show that AΩi1 6= ∅, cardJ
A

Ωi1 = n and that AΩi1 ∈ qi∈Iσ(Ei).

2. Show that Ωi1 ∈ Γ.

3. Show that for all B ⊆ Ωi1 , we have AΩi1\B = AΩi1 \AB .

4. Show that B ∈ Γ⇒ Ωi1 \B ∈ Γ.

5. Let Bn ⊆ Ωi1 , n ≥ 1. Show that A∪Bn = ∪n≥1A
Bn .

6. Show that Γ is a σ-algebra on Ωi1 .

7. Let B ∈ Ei1 , and for i ∈ I define B̄i = Ωi for all i’s except
B̄i1 = B. Show that AB = AΩi1 ∩ (Πi∈I B̄i).

8. Show that σ(Ei1) ⊆ Γ.
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9. Show that A = AAi1 and A ∈ σ(qi∈IEi).

10. Show that qi∈Iσ(Ei) ⊆ σ(qi∈IEi).

11. Show that σ(qi∈IEi) = ⊗i∈Iσ(Ei).

Theorem 26 Let (Ωi)i∈I be a family of non-empty sets indexed by a
non-empty set I. For all i ∈ I, let Ei be a set of subsets of Ωi. Then,
the product σ-algebra ⊗i∈Iσ(Ei) on the cartesian product Πi∈IΩi is
generated by the rectangles of (Ei)i∈I , i.e. :⊗

i∈I
σ(Ei) = σ

(∐
i∈I
Ei

)

Exercise 7. Let TR denote the usual topology in R. Let n ≥ 1.

1. Show that TR q . . .q TR = {A1 × . . .×An : Ai ∈ TR}.

2. Show that B(R)⊗ . . .⊗ B(R) = σ(TR q . . .q TR).
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3. Define C2 = {]a1, b1] × . . .×]an, bn] : ai, bi ∈ R}. Show that
C2 ⊆ S q . . . q S, where S = {]a, b] : a, b ∈ R}, but that the
inclusion is strict.

4. Show that S q . . .q S ⊆ σ(C2).

5. Show that B(R)⊗ . . .⊗ B(R) = σ(C2).

Exercise 8. Let Ω and Ω′ be two non-empty sets. Let A be a subset
of Ω such that ∅ 6= A 6= Ω. Let E = {A} ⊆ P(Ω) and E ′ = ∅ ⊆ P(Ω′).

1. Show that σ(E) = {∅, A,Ac,Ω}.

2. Show that σ(E ′) = {∅,Ω′}.

3. Define C = {E × F , E ∈ E , F ∈ E ′} and show that C = ∅.

4. Show that E q E ′ = {A× Ω′,Ω× Ω′}.

5. Show that σ(E)⊗ σ(E ′) = {∅, A× Ω′, Ac × Ω′,Ω× Ω′}.

6. Conclude that σ(E)⊗ σ(E ′) 6= σ(C) = {∅,Ω× Ω′}.
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Exercise 9. Let n ≥ 1 and p ≥ 1 be two positive integers.

1. Define F = B(R)⊗ . . .⊗ B(R)︸ ︷︷ ︸
n

, and G = B(R)⊗ . . .⊗ B(R)︸ ︷︷ ︸
p

.

Explain why F ⊗ G can be viewed as a σ-algebra on Rn+p.

2. Show that F⊗G is generated by sets of the form A1× . . .×An+p

where Ai ∈ B(R), i = 1, . . . , n+ p.

3. Show that:

B(R)⊗. . .⊗B(R)︸ ︷︷ ︸
n+p

= (B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
n

⊗(B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
p

Exercise 10. Let (Ωi,Fi)i∈I be a family of measurable spaces. Let
(Iλ)λ∈Λ, where Λ 6= ∅, be a partition of I. Let Ω = Πi∈IΩi and
Ω′ = Πλ∈Λ(Πi∈IλΩi).

1. Define a natural bijection between P(Ω) and P(Ω′).
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2. Show that through such bijection, A = Πi∈IAi ⊆ Ω, where
Ai ⊆ Ωi, is identified with A′ = Πλ∈Λ(Πi∈IλAi) ⊆ Ω′.

3. Show that qi∈IFi = qλ∈Λ(qi∈IλFi).

4. Show that ⊗i∈IFi = ⊗λ∈Λ(⊗i∈IλFi).

Definition 55 Let Ω be set and A be a set of subsets of Ω. We call
topology generated by A, the topology on Ω, denoted T (A), equal
to the intersection of all topologies on Ω, which contain A.

Exercise 11. Let Ω be a set and A ⊆ P(Ω).

1. Explain why T (A) is indeed a topology on Ω.

2. Show that T (A) is the smallest topology T such that A ⊆ T .

3. Show that the metric topology on a metric space (E, d) is gen-
erated by the open balls A = {B(x, ε) : x ∈ E, ε > 0}.
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Definition 56 Let (Ωi, Ti)i∈I be a family of topological spaces, in-
dexed by a non-empty set I. We define the product topology of
(Ti)i∈I , as the topology on Πi∈IΩi, denoted �i∈ITi, and generated by
all rectangles of (Ti)i∈I , i.e.⊙

i∈I
Ti
4
= T

(∐
i∈I
Ti

)

Exercise 12. Let (Ωi, Ti)i∈I be a family of topological spaces.

1. Show that U ∈ �i∈ITi, if and only if:

∀x ∈ U , ∃V ∈ qi∈ITi , x ∈ V ⊆ U

2. Show that qi∈ITi ⊆ �i∈ITi.

3. Show that ⊗i∈IB(Ωi) = σ(qi∈ITi).

4. Show that ⊗i∈IB(Ωi) ⊆ B(Πi∈IΩi).
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Exercise 13. Let n ≥ 1 be a positive integer. For all x, y ∈ Rn, let:

(x, y)
4
=

n∑
i=1

xiyi

and we put ‖x‖ =
√

(x, x).

1. Show that for all t ∈ R, ‖x+ ty‖2 = ‖x‖2 + t2‖y‖2 + 2t(x, y).

2. From ‖x+ ty‖2 ≥ 0 for all t, deduce that |(x, y)| ≤ ‖x‖.‖y‖.

3. Conclude that ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Exercise 14. Let (Ω1, T1), . . . , (Ωn, Tn), n ≥ 1, be metrizable topo-
logical spaces. Let d1, . . . , dn be metrics on Ω1, . . . ,Ωn, inducing the
topologies T1, . . . , Tn respectively. Let Ω = Ω1 × . . . × Ωn and T be
the product topology on Ω. For all x, y ∈ Ω, we define:

d(x, y)
4
=

√√√√ n∑
i=1

(di(xi, yi))2
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1. Show that d : Ω× Ω→ R+ is a metric on Ω.

2. Show that U ⊆ Ω is open in Ω, if and only if, for all x ∈ U there
are open sets U1, . . . , Un in Ω1, . . . ,Ωn respectively, such that:

x ∈ U1 × . . .× Un ⊆ U

3. Let U ∈ T and x ∈ U . Show the existence of ε > 0 such that:

(∀i = 1, . . . , n di(xi, yi) < ε) ⇒ y ∈ U

4. Show that T ⊆ T dΩ .

5. let U ∈ T dΩ and x ∈ U . Show that existence of ε > 0 such that:

x ∈ B(x1, ε)× . . .×B(xn, ε) ⊆ U

6. Show that T dΩ ⊆ T .

7. Show that the product topological space (Ω, T ) is metrizable.
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8. For all x, y ∈ Ω, define:

d′(x, y)
4
=

n∑
i=1

di(xi, yi)

d′′(x, y)
4
= max

i=1,...,n
di(xi, yi)

Show that d′, d′′ are metrics on Ω.

9. Show the existence of α′, β′, α′′ and β′′ > 0, such that we have
α′d′ ≤ d ≤ β′d′ and α′′d′′ ≤ d ≤ β′′d′′.

10. Show that d′ and d′′ also induce the product topology on Ω.

Exercise 15. Let (Ωn, Tn)n≥1 be a sequence of metrizable topological
spaces. For all n ≥ 1, let dn be a metric on Ωn inducing the topology
Tn. Let Ω = Π+∞

n=1Ωn be the cartesian product and T be the product
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topology on Ω. For all x, y ∈ Ω, we define:

d(x, y)
4
=

+∞∑
n=1

1
2n

(1 ∧ dn(xn, yn))

1. Show that for all a, b ∈ R+, we have 1∧ (a+ b) ≤ 1∧ a+ 1 ∧ b.

2. Show that d is a metric on Ω.

3. Show that U ⊆ Ω is open in Ω, if and only if, for all x ∈ U , there
is an integer N ≥ 1 and open sets U1, . . . , UN in Ω1, . . . ,ΩN
respectively, such that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

4. Show that d(x, y) < 1/2n ⇒ dn(xn, yn) ≤ 2nd(x, y).

5. Show that for all U ∈ T and x ∈ U , there exists ε > 0 such that
d(x, y) < ε ⇒ y ∈ U .
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6. Show that T ⊆ T dΩ .

7. Let U ∈ T dΩ and x ∈ U . Show the existence of ε > 0 and N ≥ 1,
such that:

N∑
n=1

1
2n

(1 ∧ dn(xn, yn)) < ε ⇒ y ∈ U

8. Show that for all U ∈ T dΩ and x ∈ U , there is ε > 0 and N ≥ 1
such that:

x ∈ B(x1, ε)× . . .×B(xN , ε)×
+∞∏

n=N+1

Ωn ⊆ U

9. Show that T dΩ ⊆ T .

10. Show that the product topological space (Ω, T ) is metrizable.
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Definition 57 Let (Ω, T ) be a topological space. A subset H of T
is called a countable base of (Ω, T ), if and only if H is at most
countable, and has the property:

∀U ∈ T , ∃H′ ⊆ H , U =
⋃
V ∈H′

V

Exercise 16.

1. Show that H = {]r, q[ : r, q ∈ Q} is a countable base of (R, TR).

2. Show that if (Ω, T ) is a topological space with countable base,
and Ω′ ⊆ Ω, then the induced topological space (Ω′, T|Ω′) also
has a countable base.

3. Show that [−1, 1] has a countable base.

4. Show that if (Ω, T ) and (S, TS) are homeomorphic, then (Ω, T )
has a countable base if and only if (S, TS) has a countable base.

5. Show that (R̄, TR̄) has a countable base.
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Exercise 17. Let (Ωn, Tn)n≥1 be a sequence of topological spaces
with countable base. For n ≥ 1, Let {V kn : k ∈ In} be a countable
base of (Ωn, Tn) where In is a finite or countable set. Let Ω = Π∞n=1Ωn
be the cartesian product and T be the product topology on Ω. For
all p ≥ 1, we define:

Hp 4=
{
V k1

1 × . . .× V kpp ×
+∞∏

n=p+1

Ωn : (k1, . . . , kp) ∈ I1 × . . .× Ip

}
and we put H = ∪p≥1Hp.

1. Show that for all p ≥ 1, Hp ⊆ T .

2. Show that H ⊆ T .

3. For all p ≥ 1, show the existence of an injection jp : Hp → Np.

4. Show the existence of a bijection φ2 : N2 → N.

5. For p ≥ 1, show the existence of an bijection φp : Np → N.
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6. Show that Hp is at most countable for all p ≥ 1.

7. Show the existence of an injection j : H → N2.

8. Show that H is a finite or countable set of open sets in Ω.

9. Let U ∈ T and x ∈ U . Show that there is p ≥ 1 and U1, . . . , Up
open sets in Ω1, . . . ,Ωp such that:

x ∈ U1 × . . .× Up ×
+∞∏

n=p+1

Ωn ⊆ U

10. Show the existence of some Vx ∈ H such that x ∈ Vx ⊆ U .

11. Show that H is a countable base of the topological space (Ω, T ).

12. Show that ⊗+∞
n=1B(Ωn) ⊆ B(Ω).

13. Show that H ⊆ ⊗+∞
n=1B(Ωn).

14. Show that B(Ω) = ⊗+∞
n=1B(Ωn)
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Theorem 27 Let (Ωn, Tn)n≥1 be a sequence of topological spaces
with countable base. Then, the product space (Π+∞

n=1Ωn,�+∞
n=1Tn) has

a countable base and:

B
(

+∞∏
n=1

Ωn

)
=

+∞⊗
n=1

B(Ωn)

Exercise 18.

1. Show that if (Ω, T ) has a countable base and n ≥ 1:

B(Ωn) = B(Ω)⊗ . . .⊗ B(Ω)︸ ︷︷ ︸
n

2. Show that B(R̄n) = B(R̄)⊗ . . .⊗ B(R̄).

3. Show that B(C) = B(R)⊗ B(R).
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Definition 58 We say that a metric space (E, d) is separable, if
and only if there exists a finite or countable dense subset of E, i.e.
a finite or countable subset A of E such that E = Ā, where Ā is the
closure of A in E.

Exercise 19. Let (E, d) be a metric space.

1. Suppose that (E, d) is separable. Let H = {B(xn, 1
p ) : n, p ≥ 1},

where {xn : n ≥ 1} is a countable dense subset in E. Show that
H is a countable base of the metric topological space (E, T dE ).

2. Suppose conversely that (E, T dE ) has a countable base H. For
all V ∈ H such that V 6= ∅, take xV ∈ V . Show that the set
{xV : V ∈ H , V 6= ∅} is at most countable and dense in E.

3. For all x, y, x′, y′ ∈ E, show that:

|d(x, y) − d(x′, y′)| ≤ d(x, x′) + d(y, y′)
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4. Let TE×E be the product topology on E × E. Show that the
map d : (E × E, TE×E)→ (R+, TR+) is continuous.

5. Show that d : (E × E,B(E × E))→ (R̄,B(R̄)) is measurable.

6. Show that d : (E×E,B(E)⊗B(E))→ (R̄,B(R̄)) is measurable,
whenever (E, d) is a separable metric space.

7. Let (Ω,F) be a measurable space and f, g : (Ω,F)→ (E,B(E))
be measurable maps. Show that Φ : (Ω,F)→ E×E defined by
Φ(ω) = (f(ω), g(ω)) is measurable with respect to the product
σ-algebra B(E)⊗ B(E).

8. Show that if (E, d) is separable, then Ψ : (Ω,F) → (R̄,B(R̄))
defined by Ψ(ω) = d(f(ω), g(ω)) is measurable.

9. Show that if (E, d) is separable then {f = g} ∈ F .

10. Let (En, dn)n≥1 be a sequence of separable metric spaces. Show
that the product space Π+∞

n=1En is metrizable and separable.
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Exercise 20. Prove the following theorem.

Theorem 28 Let (Ωi,Fi)i∈I be a family of measurable spaces and
(Ω,F) be a measurable space. For all i ∈ I, let fi : Ω→ Ωi be a map,
and define f : Ω→ Πi∈IΩi by f(ω) = (fi(ω))i∈I . Then, the map:

f : (Ω,F)→
(∏
i∈I

Ωi,
⊗
i∈I
Fi

)
is measurable, if and only if each fi : (Ω,F)→ (Ωi,Fi) is measurable.

Exercise 21.

1. Let φ, ψ : R2 → R with φ(x, y) = x + y and ψ(x, y) = x.y.
Show that both φ and ψ are continuous.

2. Show that φ, ψ : (R2,B(R)⊗B(R))→(R̄,B(R̄)) are measurable.

3. Let (Ω,F) be a measurable space, and f, g : (Ω,F)→ (R,B(R))
be measurable maps. Using the previous results, show that f+g
and f.g are measurable with respect to F and B(R).
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7. Fubini Theorem
Definition 59 Let (Ω1,F1) and (Ω2,F2) be two measurable spaces.
Let E ⊆ Ω1 × Ω2. For all ω1 ∈ Ω1, we call ω1-section of E in Ω2,
the set:

Eω1 4= {ω2 ∈ Ω2 : (ω1, ω2) ∈ E}

Exercise 1. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces.
Given ω1 ∈ Ω1, define:

Γω1 4= {E ⊆ Ω1 × Ω2 , E
ω1 ∈ F2}

1. Show that for all ω1 ∈ Ω1, Γω1 is a σ-algebra on Ω1 × Ω2.

2. Show that for all ω1 ∈ Ω1, F1 qF2 ⊆ Γω1 .

3. Show that for all ω1 ∈ Ω1 and E ∈ F1⊗F2, we have Eω1 ∈ F2.

4. Show that the map ω → 1E(ω1, ω) is measurable with respect
to F2 and B(R̄), for all ω1 ∈ Ω1 and E ∈ F1 ⊗F2 .
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5. Let s be a simple function on (Ω1×Ω2,F1⊗F2). Show that for
all ω1 ∈ Ω1, the map ω → s(ω1, ω) is measurable with respect
to F2 and B(R̄).

6. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0,+∞] be a non-negative, mea-
surable map. Show that for all ω1 ∈ Ω1, the map ω → f(ω1, ω)
is measurable with respect to F2 and B(R̄).

7. Let f : (Ω1 × Ω2,F1 ⊗ F2)→ (R̄,B(R̄)) be a measurable map.
Show that for all ω1 ∈ Ω1, the map ω → f(ω1, ω) is measurable
with respect to F2 and B(R̄).

8. Show the following theorem:

Theorem 29 Let (E, d) be a metric space, and (Ω1,F1), (Ω2,F2)
be two measurable spaces. Let f : (Ω1 ×Ω2,F1 ⊗F2)→ (E,B(E)) be
a measurable map . Then for all ω1 ∈ Ω1, the map ω → f(ω1, ω) is
measurable with respect to F2 and B(E).
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Exercise 2. Let (Ωi,Fi)i∈I be a family of measurable spaces with
cardI ≥ 2. Let f : (Πi∈IΩi,⊗i∈IFi) → (E,B(E)) be a measurable
map, where (E, d) be a metric space. Let i1 ∈ I. Put E1 = Ωi1 ,
E1 = Fi1 , E2 = Πi∈I\{i1}Ωi, E2 = ⊗i∈I\{i1}Fi.

1. Explain why f can be viewed as a map defined on E1 × E2.

2. Show that f : (E1 × E2, E1 ⊗ E2)→ (E,B(E)) is measurable.

3. For all ωi1 ∈ Ωi1 , show that the map ω → f(ωi1 , ω) defined on
Πi∈I\{i1}Ωi is measurable w.r. to ⊗i∈I\{i1}Fi and B(E).

Definition 60 Let (Ω,F , µ) be a measure space. (Ω,F , µ) is said to
be a finite measure space, or we say that µ is a finite measure,
if and only if µ(Ω) < +∞.
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Definition 61 Let (Ω,F , µ) be a measure space. (Ω,F , µ) is said
to be a σ-finite measure space, or µ a σ-finite measure, if and
only if there exists a sequence (Ωn)n≥1 in F such that Ωn ↑ Ω and
µ(Ωn) < +∞, for all n ≥ 1.

Exercise 3. Let (Ω,F , µ) be a measure space.

1. Show that (Ω,F , µ) is σ-finite if and only if there exists a se-
quence (Ωn)n≥1 in F such that Ω = ]+∞

n=1Ωn, and µ(Ωn) < +∞
for all n ≥ 1.

2. Show that if (Ω,F , µ) is finite, then µ has values in R+.

3. Show that if (Ω,F , µ) is finite, then it is σ-finite.

4. Let F : R → R be a right-continuous, non-decreasing map.
Show that the measure space (R,B(R), dF ) is σ-finite, where
dF is the stieltjes measure associated with F .
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Exercise 4. Let (Ω1,F1) be a measurable space, and (Ω2,F2, µ2) be
a σ-finite measure space. For all E ∈ F1 ⊗F2 and ω1 ∈ Ω1, define:

ΦE(ω1)
4
=
∫

Ω2

1E(ω1, x)dµ2(x)

Let D be the set of subsets of Ω1 × Ω2, defined by:

D 4= {E ∈ F1 ⊗F2 : ΦE : (Ω1,F1)→ (R̄,B(R̄)) is measurable}

1. Explain why for all E ∈ F1 ⊗F2, the map ΦE is well defined.

2. Show that F1 q F2 ⊆ D.

3. Show that if µ2 is finite, A,B ∈ D and A ⊆ B, then B \A ∈ D.

4. Show that if En ∈ F1 ⊗F2, n ≥ 1 and En ↑ E, then ΦEn ↑ ΦE .

5. Show that if µ2 is finite then D is a dynkin system on Ω1 ×Ω2.

6. Show that if µ2 is finite, then the map ΦE : (Ω1,F1)→(R̄,B(R̄))
is measurable, for all E ∈ F1 ⊗F2.
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7. Let (Ωn
2 )n≥1 in F2 be such that Ωn2 ↑ Ω2 and µ2(Ωn2 ) < +∞.

Define µn2 = µ
Ωn2
2 = µ2(• ∩ Ωn2 ). For E ∈ F1 ⊗F2, we put:

ΦnE(ω1)
4
=
∫

Ω2

1E(ω1, x)dµn2 (x)

Show that ΦnE : (Ω1,F1)→ (R̄,B(R̄)) is measurable, and:

ΦnE(ω1) =
∫

Ω2

1Ωn2
(x)1E(ω1, x)dµ2(x)

Deduce that ΦnE ↑ ΦE .

8. Show that the map ΦE : (Ω1,F1) → (R̄,B(R̄)) is measurable,
for all E ∈ F1 ⊗F2.

9. Let s be a simple function on (Ω1 × Ω2,F1 ⊗ F2). Show that
the map ω →

∫
Ω2
s(ω, x)dµ2(x) is well defined and measurable

with respect to F1 and B(R̄).

10. Show the following theorem:
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Theorem 30 Let (Ω1,F1) be a measurable space, and (Ω2,F2, µ2)
be a σ-finite measure space. Then for all non-negative and measurable
map f : (Ω1 × Ω2,F1 ⊗F2)→ [0,+∞], the map:

ω →
∫

Ω2

f(ω, x)dµ2(x)

is measurable with respect to F1 and B(R̄).

Exercise 5. Let (Ωi,Fi)i∈I be a family of measurable spaces, with
cardI ≥ 2. Let i0 ∈ I, and suppose that µ0 is a σ-finite measure
on (Ωi0 ,Fi0). Show that if f : (Πi∈IΩi,⊗i∈IFi) → [0,+∞] is a non-
negative and measurable map, then:

ω →
∫

Ωi0

f(ω, x)dµ0(x)

defined on Πi∈I\{i0}Ωi, is measurable w.r. to ⊗i∈I\{i0}Fi and B(R̄).
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Exercise 6. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure
spaces. For all E ∈ F1 ⊗F2, we define:

µ1 ⊗ µ2(E)
4
=
∫

Ω1

(∫
Ω2

1E(x, y)dµ2(y)
)
dµ1(x)

1. Explain why µ1 ⊗ µ2 : F1 ⊗F2 → [0,+∞] is well defined.

2. Show that µ1 ⊗ µ2 is a measure on F1 ⊗F2.

3. Show that if A×B ∈ F1 q F2, then:

µ1 ⊗ µ2(A×B) = µ1(A)µ2(B)

Exercise 7. Further to ex. (6), suppose that µ : F1 ⊗F2 → [0,+∞]
is another measure on F1 ⊗ F2 with µ(A× B) = µ1(A)µ2(B), for all
measurable rectangle A×B. Let (Ωn1 )n≥1 and (Ωn

2 )n≥1 be sequences
in F1 and F2 respectively, such that Ωn1 ↑ Ω1, Ωn2 ↑ Ω2, µ1(Ωn1 ) < +∞
and µ2(Ωn2 ) < +∞. Define, for all n ≥ 1:

Dn
4
= {E ∈ F1 ⊗F2 : µ(E ∩ (Ωn

1 × Ωn2 )) = µ1 ⊗ µ2(E ∩ (Ωn
1 × Ωn2 ))}
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1. Show that for all n ≥ 1, F1 q F2 ⊆ Dn.

2. Show that for all n ≥ 1, Dn is a dynkin system on Ω1 × Ω2.

3. Show that µ = µ1 ⊗ µ2.

4. Show that (Ω1×Ω2,F1⊗F2, µ1⊗µ2) is a σ-finite measure space.

5. Show that for all E ∈ F1 ⊗F2, we have:

µ1 ⊗ µ2(E) =
∫

Ω2

(∫
Ω1

1E(x, y)dµ1(x)
)
dµ2(y)

Exercise 8. Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite measure
spaces, n ≥ 2. Let i0 ∈ {1, . . . , n} and put E1 = Ωi0 , E2 = Πi6=i0Ωi,
E1 = Fi0 and E2 = ⊗i6=i0Fi. Put ν1 = µi0 , and suppose that ν2 is
a σ-finite measure on (E2, E2) such that for all measurable rectangle
Πi6=i0Ai ∈ qi6=i0Fi, we have ν2 (Πi6=i0Ai) = Πi6=i0µi(Ai).
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1. Show that ν1 ⊗ ν2 is a σ-finite measure on the measure space
(Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) such that for all measurable
rectangles A1 × . . .×An, we have:

ν1 ⊗ ν2(A1 × . . .×An) = µ1(A1) . . . µn(An)

2. Show by induction the existence of a measure µ on F1⊗. . .⊗Fn,
such that for all measurable rectangles A1 × . . .×An, we have:

µ(A1 × . . .×An) = µ1(A1) . . . µn(An)

3. Show the uniqueness of such measure, denoted µ1 ⊗ . . .⊗ µn.

4. Show that µ1 ⊗ . . .⊗ µn is σ-finite.

5. Let i0 ∈ {1, . . . , n}. Show that µi0 ⊗ (⊗i6=i0µi) = µ1 ⊗ . . .⊗ µn.
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Definition 62 Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite mea-
sure spaces, with n ≥ 2. We call product measure of µ1, . . . , µn,
the unique measure on F1⊗ . . .⊗Fn, denoted µ1⊗ . . .⊗µn, such that
for all measurable rectangles A1× . . .×An in F1q . . .qFn, we have:

µ1 ⊗ . . .⊗ µn(A1 × . . .×An) = µ1(A1) . . . µn(An)

This measure is itself σ-finite.

Exercise 9. Prove that the following definition is legitimate:

Definition 63 We call lebesgue measure in Rn, n ≥ 1, the
unique measure on (Rn,B(Rn)), denoted dx, dxn or dx1 . . . dxn, such
that for all ai ≤ bi, i = 1, . . . , n, we have:

dx([a1, b1]× . . .× [an, bn]) =
n∏
i=1

(bi − ai)
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Exercise 10.

1. Show that (Rn,B(Rn), dxn) is a σ-finite measure space.

2. For n, p ≥ 1, show that dxn+p = dxn ⊗ dxp.

Exercise 11. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite.

1. Let s be a simple function on (Ω1 × Ω2,F1 ⊗F2). Show that:∫
Ω1×Ω2

sdµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

sdµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

sdµ1

)
dµ2

2. Show the following:

Theorem 31 (Fubini) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-
finite measure spaces. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0,+∞] be a
non-negative and measurable map. Then:∫

Ω1×Ω2

fdµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

fdµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

fdµ1

)
dµ2
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Exercise 12. Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite measure
spaces, n ≥ 2. Let f : (Ω1 × . . .× Ωn,F1 ⊗ . . .⊗Fn)→ [0,+∞] be a
non-negative, measurable map. Let σ be a permutation of Nn, i.e. a
bijection from Nn to itself.

1. For all ω ∈ Πi6=σ(1)Ωi, define:

J1(ω)
4
=
∫

Ωσ(1)

f(ω, x)dµσ(1)(x)

Explain why J1 : (Πi6=σ(1)Ωi,⊗i6=σ(1)Fi) → [0,+∞] is a well
defined, non-negative and measurable map.

2. Suppose Jk : (Πi6∈{σ(1),...,σ(k)}Ωi,⊗i6∈{σ(1),...,σ(k)}Fi) → [0,+∞]
is a non-negative, measurable map, for 1 ≤ k < n− 2. Define:

Jk+1(ω)
4
=
∫

Ωσ(k+1)

Jk(ω, x)dµσ(k+1)(x)

and show that:

Jk+1 : (Πi6∈{σ(1),...,σ(k+1)}Ωi,⊗i6∈{σ(1),...,σ(k+1)}Fi)→ [0,+∞]
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is also well-defined, non-negative and measurable.

3. Propose a rigorous definition for the following notation:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

Exercise 13. Further to ex. (12), Let (fp)p≥1 be a sequence of non-
negative and measurable maps:

fp : (Ω1 × . . .× Ωn,F1 ⊗ . . .⊗Fn)→ [0,+∞]

such that fp ↑ f . Define similarly:

Jp1 (ω)
4
=

∫
Ωσ(1)

fp(ω, x)dµσ(1)(x)

Jpk+1(ω)
4
=

∫
Ωσ(k+1)

Jpk (ω, x)dµσ(k+1)(x) , 1 ≤ k < n− 2

1. Show that Jp1 ↑ J1.
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2. Show that if Jpk ↑ Jk, then Jpk+1 ↑ Jk+1, 1 ≤ k < n− 2.

3. Show that:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fpdµσ(1) . . . dµσ(n) ↑
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

4. Show that the map µ : F1 ⊗ . . .⊗Fn → [0,+∞], defined by:

µ(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n)

is a measure on F1 ⊗ . . .⊗Fn.

5. Show that for all E ∈ F1 ⊗ . . .⊗Fn, we have:

µ1 ⊗ . . .⊗ µn(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n)

6. Show the following:
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Theorem 32 Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite mea-
sure spaces, with n ≥ 2. Let f : (Ω1×. . .×Ωn,F1⊗. . .⊗Fn)→ [0,+∞]
be a non-negative and measurable map. let σ be a permutation of Nn.
Then:∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

Exercise 14. Let (Ω,F , µ) be a measure space. Define:

L1 4= {f : Ω→ R̄ , ∃g ∈ L1
R(Ω,F , µ) , f = g µ-a.s.}

1. Show that if f ∈ L1, then |f | < +∞, µ-a.s.

2. Suppose there exists A ⊆ Ω, such that A 6∈ F and A ⊆ N for
some N ∈ F with µ(N) = 0. Show that 1A ∈ L1 and 1A is not
measurable with respect to F and B(R̄).

3. Explain why if f ∈ L1, the integrals
∫
|f |dµ and

∫
fdµ may not

be well defined.
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4. Suppose that f : (Ω,F)→ (R̄,B(R̄)) is a measurable map with∫
|f |dµ < +∞. Show that f ∈ L1.

5. Show that if f ∈ L1 and f = f1 µ-a.s. then f1 ∈ L1.

6. Suppose that f ∈ L1 and g1, g2 ∈ L1
R(Ω,F , µ) are such that

f = g1 µ-a.s. and f = g2 µ-a.s.. Show that
∫
g1dµ =

∫
g2dµ.

7. Propose a definition of the integral
∫
fdµ for f ∈ L1 which

extends the integral defined on L1
R(Ω,F , µ).

Exercise 15. Further to ex. (14), Let (fn)n≥1 be a sequence in L1,
and f, h ∈ L1, with fn → f µ-a.s. and for all n ≥ 1, |fn| ≤ h µ-a.s..

1. Show the existence of N1 ∈ F , µ(N1) = 0, such that for all
ω ∈ N c

1 , fn(ω)→ f(ω), and for all n ≥ 1, |fn(ω)| ≤ h(ω).

2. Show the existence of gn, g, h1 ∈ L1
R(Ω,F , µ) and N2 ∈ F ,

µ(N2) = 0, such that for all ω ∈ N c
2 , g(ω) = f(ω), h(ω) = h1(ω),

and for all n ≥ 1, gn(ω) = fn(ω).
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3. Show the existence of N ∈ F , µ(N) = 0, such that for all
ω ∈ N c, gn(ω)→ g(ω), and for all n ≥ 1, |gn(ω)| ≤ h1(ω).

4. Show that the Dominated Convergence Theorem can be applied
to gn1Nc , g1Nc and h11Nc .

5. Recall the definition of
∫
|fn − f |dµ when f, fn ∈ L1.

6. Show that
∫
|fn − f |dµ→ 0.

Exercise 16. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite mea-
sure spaces. let f be an element of L1

R(Ω1 × Ω2,F1 ⊗ F2, µ1 ⊗ µ2).

1. Let A = {ω1 ∈ Ω1 :
∫

Ω2
|f(ω1, x)|dµ2(x) < +∞}. Show that

A ∈ F1 and µ1(Ac) = 0.

2. Show that f(ω1, .) ∈ L1
R(Ω2,F2, µ2) for all ω1 ∈ A.

3. Show that Ī(ω1) =
∫

Ω2
f(ω1, x)dµ2(x) is well defined for all

ω1 ∈ A. Let I be an arbitrary extension of Ī, on Ω1.
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4. Define J = I1A. Show that:

J(ω) = 1A(ω)
∫

Ω2

f+(ω, x)dµ2(x) − 1A(ω)
∫

Ω2

f−(ω, x)dµ2(x)

5. Show that J is F1-measurable and R-valued.

6. Show that J ∈ L1
R(Ω1,F1, µ1) and that J = I µ1-a.s.

7. Propose a definition for the integral:∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x)

8. Show that
∫

Ω1
(1A

∫
Ω2
f+dµ2)dµ1 =

∫
Ω1×Ω2

f+dµ1 ⊗ µ2.

9. Show that:∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x) =

∫
Ω1×Ω2

fdµ1 ⊗ µ2

10. Prove the following:
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Theorem 33 Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite mea-
sure spaces. Let f ∈ L1

C(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2). Then, the map:

ω1 →
∫

Ω2

f(ω1, x)dµ2(x)

is µ1-almost surely equal to an element of L1
C(Ω1,F1, µ1) and:∫

Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x) =

∫
Ω1×Ω2

fdµ1 ⊗ µ2

Exercise 17. Let (Ω1,F1, µ1),. . . ,(Ωn,Fn, µn) be n σ-finite measure
spaces, n ≥ 2. Let f ∈ L1

C(Ω1× . . .×Ωn,F1⊗ . . .⊗Fn, µ1⊗ . . .⊗µn).
Let σ be a permutation of Nn.

1. For all ω ∈ Πi6=σ(1)Ωi, define:

J1(ω)
4
=
∫

Ωσ(1)

f(ω, x)dµσ(1)(x)
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Explain why J1 is well defined and equal to an element of
L1

C(Πi6=σ(1)Ωi,⊗i6=σ(1)Fi,⊗i6=σ(1)µi), ⊗i6=σ(1)µi-almost surely.

2. Suppose 1 ≤ k < n− 2 and that J̄k is well defined and equal to
an element of:

L1
C(Πi6∈{σ(1),...,σ(k)}Ωi,⊗i6∈{σ(1),...,σ(k)}Fi,⊗i6∈{σ(1),...,σ(k)}µi)

⊗i6∈{σ(1),...,σ(k)}µi-almost surely. Define:

Jk+1(ω)
4
=
∫

Ωσ(k+1)

J̄k(ω, x)dµσ(k+1)(x)

What can you say about Jk+1.

3. Show that: ∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

is a well defined complex number. (Propose a definition for it).
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4. Show that:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n) =
∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn
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8. Jensen inequality
Definition 64 Let a, b ∈ R̄, with a < b. Let φ : ]a, b[→ R be an
R-valued function. We say that φ is a convex function, if and only
if, for all x, y ∈]a, b[ and t ∈ [0, 1], we have:

φ(tx + (1− t)y) ≤ tφ(x) + (1− t)φ(y)

Exercise 1. Let a, b ∈ R̄, with a < b. Let φ : ]a, b[→ R be a map.

1. Show that φ : ]a, b[→ R is convex, if and only if for all x1, . . . , xn
in ]a, b[ and α1, . . . , αn in R+ with α1 + . . .+αn = 1, n ≥ 1, we
have:

φ(α1x1 + . . .+ αnxn) ≤ α1φ(x1) + . . . αnφ(xn)

2. Show that φ : ]a, b[→ R is convex, if and only if for all x, y, z
with a < x < y < z < b we have:

φ(y) ≤ z − y
z − xφ(x) +

y − x
z − xφ(z)
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3. Show that φ : ]a, b[→ R is convex if and only if for all x, y, z
with a < x < y < z < b, we have:

φ(y)− φ(x)
y − x ≤ φ(z)− φ(y)

z − y

4. Let φ : ]a, b[→ R be convex. Let x0 ∈]a, b[, and u, u′, v, v′ ∈]a, b[
be such that u < u′ < x0 < v < v′. Show that for all x ∈]x0, v[:

φ(u′)− φ(u)
u′ − u ≤ φ(x) − φ(x0)

x− x0
≤ φ(v′)− φ(v)

v′ − v
and deduce that limx↓↓x0 φ(x) = φ(x0)

5. Show that if φ : ]a, b[→ R is convex, then φ is continuous.

6. Define φ : [0, 1]→ R by φ(0) = 1 and φ(x) = 0 for all x ∈]0, 1].
Show that φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y), ∀x, y, t ∈ [0, 1],
but that φ fails to be continuous on [0, 1].
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Definition 65 Let (Ω, T ) be a topological space. We say that (Ω, T )
is a compact topological space if and only if, for all family (Vi)i∈I
of open sets in Ω, such that Ω = ∪i∈IVi, there exists a finite subset
{i1, . . . , in} of I such that Ω = Vi1 ∪ . . . ∪ Vin .

In short, we say that (Ω, T ) is compact if and only if, from any open
covering of Ω, one can extract a finite sub-covering.

Definition 66 Let (Ω, T ) be a topological space, and K ⊆ Ω. We
say that K is a compact subset of Ω, if and only if the induced
topological space (K, T|K) is a compact topological space.

Exercise 2. Let (Ω, T ) be a topological space.

1. Show that if (Ω, T ) is compact, it is a compact subset of itself.

2. Show that ∅ is a compact subset of Ω.

3. Show that if Ω′ ⊆ Ω and K is a compact subset of Ω′, then K
is also a compact subset of Ω.
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4. Show that if (Vi)i∈I is a family of open sets in Ω such that
K ⊆ ∪i∈IVi, then K = ∪i∈I(Vi ∩K) and Vi ∩K is open in K
for all i ∈ I.

5. Show that K ⊆ Ω is a compact subset of Ω, if and only if for any
family (Vi)i∈I of open sets in Ω such that K ⊆ ∪i∈IVi, there is
a finite subset {i1, . . . , in} of I such that K ⊆ Vi1 ∪ . . . ∪ Vin .

6. Show that if (Ω, T ) is compact and K is closed in Ω, then K is
a compact subset of Ω.

Exercise 3. Let a, b ∈ R, a < b. Let (Vi)i∈I be a family of open
sets in R such that [a, b] ⊆ ∪i∈IVi. We define A as the set of all
x ∈ [a, b] such that [a, x] can be covered by a finite number of Vi’s.
Let c = supA.

1. Show that a ∈ A.

2. Show that there is ε > 0 such that a+ ε ∈ A.
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3. Show that a < c ≤ b.

4. Show the existence of i0 ∈ I and c′, c′′ with a < c′ < c < c′′,
such that ]c′, c′′] ⊆ Vi0 .

5. Show that [a, c′] can be covered by a finite number of Vi’s.

6. Show that [a, c′′] can be covered by a finite number of Vi’s.

7. Show that b ∧ c′′ ≤ c and conclude that c = b.

8. Show that [a, b] is a compact subset of R.

Theorem 34 Let a, b ∈ R, a < b. The closed interval [a, b] is a
compact subset of R.

Definition 67 Let (Ω, T ) be a topological space. We say that (Ω, T )
is a hausdorff topological space, if and only if for all x, y ∈ Ω
with x 6= y, there exists open sets U and V in Ω, such that:

x ∈ U , y ∈ V , U ∩ V = ∅



Tutorial 8: Jensen inequality 6

Exercise 4. Let (Ω, T ) be a topological space.

1. Show that if (Ω, T ) is hausdorff and Ω′ ⊆ Ω, then the induced
topological space (Ω′, T|Ω′) is itself hausdorff.

2. Show that if (Ω, T ) is metrizable, then it is hausdorff.

3. Show that any subset of R̄ is hausdorff.

4. Let (Ωi, Ti)i∈I be a family of hausdorff topological spaces. Show
that the product topological space Πi∈IΩi is hausdorff.

Exercise 5. Let (Ω, T ) be a hausdorff topological space. Let K be
a compact subset of Ω and suppose there exists y ∈ Kc.

1. Show that for all x ∈ K, there are open sets Vx,Wx in Ω, such
that y ∈ Vx, x ∈ Wx and Vx ∩Wx = ∅.

2. Show that there exists a finite subset {x1, . . . , xn} of K such
that K ⊆W y where W y = Wx1 ∪ . . . ∪Wxn .
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3. Let V y = Vx1∩. . .∩Vxn . Show that V y is open and V y∩W y = ∅.

4. Show that y ∈ V y ⊆ Kc.

5. Show that Kc = ∪y∈KcV y

6. Show that K is closed in Ω.

Theorem 35 Let (Ω, T ) be a hausdorff topological space. For all
K ⊆ Ω, if K is a compact subset, then it is closed.

Definition 68 Let (E, d) be a metric space. For all A ⊆ E, we
call diameter of A with respect to d, the element of R̄ denoted δ(A),
defined as δ(A) = sup{d(x, y) : x, y ∈ A}, with the convention that
δ(∅) = −∞.

Definition 69 Let (E, d) be a metric space, and A ⊆ E. We say that
A is bounded, if and only if its diameter is finite, i.e. δ(A) < +∞.
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Exercise 6. Let (E, d) be a metric space. Let A ⊆ E.

1. Show that δ(A) = 0 if and only if A = {x} for some x ∈ E.

2. Let φ : R̄ → [−1, 1] be an increasing homeomorphism. Define
d′′(x, y) = |x − y| and d′(x, y) = |φ(x) − φ(y)|, for all x, y ∈ R.
Show that d′ is a metric on R inducing the usual topology on
R. Show that R is bounded with respect to d′ but not with
respect to d′′.

3. Show that if K ⊆ E is a compact subset of E, for all ε > 0,
there is a finite subset {x1, . . . , xn} of K such that:

K ⊆ B(x1, ε) ∪ . . . ∪B(xn, ε)

4. Show that any compact subset of any metrizable topological
space (Ω, T ), is bounded with respect to any metric inducing
the topology T .
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Exercise 7. Suppose K is a closed subset of R which is bounded
with respect to the usual metric on R.

1. Show that there exists M ∈ R+ such that K ⊆ [−M,M ].

2. Show that K is also closed in [−M,M ].

3. Show that K is a compact subset of [−M,M ].

4. Show that K is a compact subset of R.

5. Show that any compact subset of R is closed and bounded.

6. Show the following:

Theorem 36 A subset of R is compact if and only if it is closed,
and bounded with respect to the usual metric on R.
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Exercise 8. Let (Ω, T ) and (S, TS) be two topological spaces. Let
f : (Ω, T )→ (S, TS) be a continuous map.

1. Show that if (Wi)i∈I is an open covering of f(Ω), then the family
(f−1(Wi))i∈I is an open covering of Ω.

2. Show that if (Ω, T ) is a compact topological space, then f(Ω)
is a compact subset of (S, TS).

Exercise 9.

1. Show that (R̄, TR̄) is a compact topological space.

2. Show that any compact subset of R is a compact subset of R̄.

3. Show that a subset of R̄ is compact if and only if it is closed.

4. Let A be a non-empty subset of R̄, and let α = supA. Show
that if α 6= −∞, then for all U ∈ TR̄ with α ∈ U , there exists
β ∈ R with β < α and ]β, α] ⊆ U . Conclude that α ∈ Ā.
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5. Show that if A is a non-empty closed subset of R̄, then we have
supA ∈ A and inf A ∈ A.

6. Consider A = {x ∈ R , sin(x) = 0}. Show that A is closed in
R, but that supA 6∈ A and inf A 6∈ A.

7. Show that if A is a non-empty, closed and bounded subset of R,
then supA ∈ A and inf A ∈ A.

Exercise 10. Let (Ω, T ) be a compact, non-empty topological space.
Let f : (Ω, T )→ (R̄, TR̄) be a continuous map.

1. Show that if f(Ω) ⊆ R, the continuity of f with respect to TR̄
is equivalent to the continuity of f with respect to TR.

2. Show the following:
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Theorem 37 Let f : (Ω, T )→ (R̄, TR̄) be a continuous map, where
(Ω, T ) is a non-empty topological space. Then, if (Ω, T ) is compact,
f attains its maximum and minimum, i.e. there exist xm, xM ∈ Ω,
such that:

f(xm) = inf
x∈Ω

f(x) , f(xM ) = sup
x∈Ω

f(x)

Exercise 11. Let a, b ∈ R, a < b. Let f : [a, b] → R be continuous
on [a, b], and differentiable on ]a, b[, with f(a) = f(b).

1. Show that if c ∈]a, b[ and f(c) = supx∈[a,b] f(x), then f ′(c) = 0.

2. Show the following:

Theorem 38 (Rolle) Let a, b ∈ R, a < b. Let f : [a, b] → R be
continuous on [a, b], and differentiable on ]a, b[, with f(a) = f(b).
Then, there exists c ∈]a, b[ such that f ′(c) = 0.
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Exercise 12. Let a, b ∈ R, a < b. Let f : [a, b] → R be continuous
on [a, b] and differentiable on ]a, b[. Define:

h(x)
4
= f(x)− (x− a)

f(b)− f(a)
b − a

1. Show that h is continuous on [a, b] and differentiable on ]a, b[.

2. Show the existence of c ∈]a, b[ such that:

f(b)− f(a) = (b− a)f ′(c)

Exercise 13. Let a, b ∈ R, a < b. Let f : [a, b] → R be a map.
Let n ≥ 0. We assume that f is of class Cn on [a, b], and that f (n+1)

exists on ]a, b[. Define:

h(x)
4
= f(b)− f(x)−

n∑
k=1

(b − x)k

k!
f (k)(x)− α (b − x)n+1

(n+ 1)!

where α is chosen such that h(a) = 0.
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1. Show that h is continuous on [a, b] and differentiable on ]a, b[.

2. Show that for all x ∈]a, b[:

h′(x) =
(b − x)n

n!
(α− f (n+1)(x))

3. Prove the following:

Theorem 39 (Taylor-Lagrange) Let a, b ∈ R, a < b, and n ≥ 0.
Let f : [a, b] → R be a map of class Cn on [a, b] such that f (n+1)

exists on ]a, b[. Then, there exists c ∈]a, b[ such that:

f(b)− f(a) =
n∑
k=1

(b− a)k

k!
f (k)(a) +

(b − a)n+1

(n+ 1)!
f (n+1)(c)
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Exercise 14. Let a, b ∈ R̄, a < b and φ : ]a, b[→ R be differentiable.

1. Show that if φ is convex, then for all x, y ∈]a, b[, x < y, we have:

φ′(x) ≤ φ′(y)

2. Show that if x, y, z ∈]a, b[ with x < y < z, there are c1, c2 ∈]a, b[,
with c1 < c2 and:

φ(y)− φ(x) = φ′(c1)(y − x)
φ(z)− φ(y) = φ′(c2)(z − y)

3. Show conversely that if φ′ is non-decreasing, then φ is convex.

4. Show that x→ ex is convex on R.

5. Show that x→ − ln(x) is convex on ]0,+∞[.
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Definition 70 we say that a finite measure space (Ω,F , P ) is a
probability space, if and only if P (Ω) = 1.

Definition 71 Let (Ω,F , P ) be a probability space, and (S,Σ) be
a measurable space. We call random variable w.r. to (S,Σ), any
measurable map X : (Ω,F)→ (S,Σ).

Definition 72 Let (Ω,F , P ) be a probability space. Let X be a non-
negative random variable, or an element of L1

C(Ω,F , P ). We call
expectation of X, denoted E[X ], the integral:

E[X ]
4
=
∫

Ω

XdP
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Exercise 15. Let a, b ∈ R̄, a < b and φ : ]a, b[→ R be a convex map.
Let (Ω,F , P ) be a probability space and X ∈ L1

R(Ω,F , P ) be such
that X(Ω) ⊆]a, b[.

1. Show that φ ◦X : (Ω,F)→ (R,B(R)) is measurable.

2. Show that φ◦X ∈ L1
R(Ω,F , P ), if and only if E[|φ◦X |] < +∞.

3. Show that if E[X ] = a, then a ∈ R and X = a P -a.s.

4. Show that if E[X ] = b, then b ∈ R and X = b P -a.s.

5. Let m = E[X ]. Show that m ∈]a, b[.

6. Define:

β
4
= sup

x∈]a,m[

φ(m) − φ(x)
m− x

Show that β ∈ R and that for all z ∈]m, b[, we have:

β ≤ φ(z)− φ(m)
z −m
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7. Show that for all x ∈]a, b[, we have φ(m) + β(x −m) ≤ φ(x).

8. Show that for all ω ∈ Ω, φ(m) + β(X(ω)−m) ≤ φ(X(ω)).

9. Show that if φ ◦X ∈ L1
R(Ω,F , P ) then φ(m) ≤ E[φ ◦X ].

Theorem 40 (Jensen inequality) Let (Ω,F , P ) be a probability
space. Let a, b ∈ R̄, a < b and φ : ]a, b[→ R be a convex map.
Suppose that X ∈ L1

R(Ω,F , P ) is such that X(Ω) ⊆]a, b[ and such
that φ ◦X ∈ L1

R(Ω,F , P ). Then:

φ(E[X ]) ≤ E[φ ◦X ]
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9. Lp-spaces, p ∈ [1,+∞]

In the following, (Ω,F , µ) is a measure space.

Exercise 1. Let f, g : (Ω,F) → [0,+∞] be non-negative and mea-
surable maps. Let p, q ∈ R+, such that 1/p+ 1/q = 1.

1. Show that 1 < p < +∞ and 1 < q < +∞.

2. For all α ∈]0,+∞[, we define φα : [0,+∞]→ [0,+∞] by:

φα(x)
4
=
{

xα if x ∈ R+

+∞ if x = +∞
Show that φα is a continuous map.

3. Define A = (
∫
fpdµ)1/p, B = (

∫
gqdµ)1/q and C =

∫
fgdµ.

Explain why A,B and C are well defined elements of [0,+∞].

4. Show that if A = 0 or B = 0 then C ≤ AB.

5. Show that if A = +∞ or B = +∞ then C ≤ AB.
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6. We assume from now on that 0 < A < +∞ and 0 < B < +∞.
Define F = f/A and G = g/B. Show that:∫

Ω

F pdµ =
∫

Ω

Gpdµ = 1

7. Let a, b ∈]0,+∞[. Show that:

ln(a) + ln(b) ≤ ln
(

1
p
ap +

1
q
bq
)

and:
ab ≤ 1

p
ap +

1
q
bq

Prove this last inequality for all a, b ∈ [0,+∞].

8. Show that for all ω ∈ Ω, we have:

F (ω)G(ω) ≤ 1
p

(F (ω))p +
1
q

(G(ω))q
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9. Show that C ≤ AB.

Theorem 41 (Hölder’s inequality) Let (Ω,F , µ) be a measure
space and f, g : (Ω,F)→ [0,+∞] be two non-negative and measurable
maps. Let p, q ∈ R+ be such that 1/p+ 1/q = 1. Then:∫

Ω

fgdµ ≤
(∫

Ω

fpdµ

) 1
p
(∫

Ω

gqdµ

) 1
q

Theorem 42 (Cauchy-Schwarz’s inequality:first)
Let (Ω,F , µ) be a measure space and f, g : (Ω,F) → [0,+∞] be two
non-negative and measurable maps. Then:∫

Ω

fgdµ ≤
(∫

Ω

f2dµ

) 1
2
(∫

Ω

g2dµ

) 1
2
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Exercise 2. Let f, g : (Ω,F) → [0,+∞] be two non-negative and
measurable maps. Let p ∈]1,+∞[. Define A = (

∫
fpdµ)1/p and

B = (
∫
gpdµ)1/p and C = (

∫
(f + g)pdµ)1/p.

1. Explain why A,B and C are well defined elements of [0,+∞].

2. Show that for all a, b ∈]0,+∞[, we have:

(a+ b)p ≤ 2p−1(ap + bp)

Prove this inequality for all a, b ∈ [0,+∞].

3. Show that if A = +∞ or B = +∞ or C = 0 then C ≤ A+B.

4. Show that if A < +∞ and B < +∞ then C < +∞.

5. We assume from now that A,B ∈ [0,+∞[ and C ∈]0,+∞[.
Show the existence of some q ∈ R+ such that 1/p+ 1/q = 1.

6. Show that for all a, b ∈ [0,+∞], we have:

(a+ b)p = (a+ b).(a+ b)p−1
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7. Show that: ∫
Ω

f.(f + g)p−1dµ ≤ AC
p
q∫

Ω

g.(f + g)p−1dµ ≤ BC
p
q

8. Show that: ∫
Ω

(f + g)pdµ ≤ C
p
q (A+B)

9. Show that C ≤ A+B.

10. Show that the inequality still holds if we assume that p = 1.

Theorem 43 (Minkowski’s inequality) Let (Ω,F , µ) be a mea-
sure space and f, g : (Ω,F)→ [0,+∞] be two non-negative and mea-
surable maps. Let p ∈ [1,+∞[. Then:(∫

Ω

(f + g)pdµ
) 1
p

≤
(∫

Ω

fpdµ

) 1
p

+
(∫

Ω

gpdµ

) 1
p
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Definition 73 The Lp-spaces, p ∈ [1,+∞[, on (Ω,F , µ), are:

LpR(Ω,F , µ)
4
=
{
f : (Ω,F)→(R,B(R)) measurable,

∫
Ω

|f |pdµ <+∞
}

LpC(Ω,F , µ)
4
=
{
f : (Ω,F)→(C,B(C)) measurable,

∫
Ω

|f |pdµ <+∞
}

For all f ∈ LpC(Ω,F , µ), we put:

‖f‖p
4
=
(∫

Ω

|f |pdµ
) 1
p

Exercise 3. Let p ∈ [1,+∞[. Let f, g ∈ LpC(Ω,F , µ).

1. Show that LpR(Ω,F , µ) = {f ∈ LpC(Ω,F , µ) , f(Ω) ⊆ R}.

2. Show that LpR(Ω,F , µ) is closed under R-linear combinations.

3. Show that LpC(Ω,F , µ) is closed under C-linear combinations.
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4. Show that ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

5. Show that ‖f‖p = 0 ⇔ f = 0 µ-a.s.

6. Show that for all α ∈ C, ‖αf‖p = |α|.‖f‖p.

7. Explain why (f, g)→ ‖f − g‖p is not a metric on LpC(Ω,F , µ)

Definition 74 For all f : (Ω,F)→ (C,B(C)) measurable, Let:

‖f‖∞
4
= inf{M ∈ R+ , |f | ≤M µ-a.s.}

The L∞-spaces on a measure space (Ω,F , µ) are:

L∞R (Ω,F , µ)
4
= {f : (Ω,F)→ (R,B(R)) measurable, ‖f‖∞ < +∞}

L∞C (Ω,F , µ)
4
= {f : (Ω,F)→ (C,B(C)) measurable, ‖f‖∞ < +∞}
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Exercise 4. Let f, g ∈ L∞C (Ω,F , µ).

1. Show that L∞R (Ω,F , µ) = {f ∈ L∞C (Ω,F , µ) , f(Ω) ⊆ R}.

2. Show that |f | ≤ ‖f‖∞ µ-a.s.

3. Show that ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

4. Show that L∞R (Ω,F , µ) is closed under R-linear combinations.

5. Show that L∞C (Ω,F , µ) is closed under C-linear combinations.

6. Show that ‖f‖∞ = 0 ⇔ f = 0 µ-a.s..

7. Show that for all α ∈ C, ‖αf‖∞ = |α|.‖f‖∞.

8. Explain why (f, g)→ ‖f − g‖∞ is not a metric on L∞C (Ω,F , µ)
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Definition 75 Let p ∈ [1,+∞]. Let K = R or C. For all ε > 0 and
f ∈ LpK(Ω,F , µ), we define the so-called open ball in LpK(Ω,F , µ):

B(f, ε)
4
= {g : g ∈ LpK(Ω,F , µ), ‖f − g‖p < ε}

We call usual topology in LpK(Ω,F , µ), the set T defined by:

T 4= {U : U ⊆ LpK(Ω,F , µ), ∀f ∈ U, ∃ε > 0, B(f, ε) ⊆ U}

Note that if (f, g) → ‖f − g‖p was a metric, the usual topology in
LpK(Ω,F , µ), would be nothing but the metric topology.

Exercise 5. Let p ∈ [1,+∞]. Suppose there exists N ∈ F with
µ(N) = 0 and N 6= ∅. Put f = 1N and g = 0

1. Show that f, g ∈ LpC(Ω,F , µ) and f 6= g.

2. Show that any open set containing f also contains g.

3. Show that LpC(Ω,F , µ) and LpR(Ω,F , µ) are not Hausdorff.
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Exercise 6. Show that the usual topology on LpR(Ω,F , µ) is induced
by the usual topology on LpC(Ω,F , µ), where p ∈ [1,+∞].

Definition 76 Let (E, T ) be a topological space. A sequence (xn)n≥1

in E is said to converge to x ∈ E, and we write xn
T→ x, if and only

if, for all U ∈ T such that x ∈ U , there exists n0 ≥ 1 such that:

n ≥ n0 ⇒ xn ∈ U

When E = LpC(Ω,F , µ) or E = LpR(Ω,F , µ), we write xn
Lp→ x.

Exercise 7. Let (E, T ) be a topological space and E′ ⊆ E. Let
T ′ = T|E′ be the induced topology on E′. Show that if (xn)n≥1 is a

sequence in E′ and x ∈ E′, then xn
T→ x is equivalent to xn

T ′→ x.

Exercise 8. Let f, g, (fn)n≥1 be in LpC(Ω,F , µ) and p ∈ [1,+∞].

1. Recall what the notation fn → f means.

2. Show that fn
Lp→ f is equivalent to ‖fn − f‖p → 0.
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3. Show that if fn
Lp→ f and fn

Lp→ g then f = g µ-a.s.

Exercise 9. Let p ∈ [1,+∞]. Suppose there exists some N ∈ F such
that µ(N) = 0 and N 6= ∅. Find a sequence (fn)n≥1 in LpC(Ω,F , µ)

and f, g in LpC(Ω,F , µ), f 6= g such that fn
Lp→ f and fn

Lp→ g.

Definition 77 Let (fn)n≥1 be a sequence in LpC(Ω,F , µ), where
(Ω,F , µ) is a measure space and p ∈ [1,+∞]. We say that (fn)n≥1 is
a cauchy sequence, if and only if, for all ε > 0, there exists n0 ≥ 1
such that:

n,m ≥ n0 ⇒ ‖fn − fm‖p ≤ ε

Exercise 10. Let f, (fn)n≥1 be in LpC(Ω,F , µ) and p ∈ [1,+∞].

Show that if fn
Lp→ f , then (fn)n≥1 is a cauchy sequence.
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Exercise 11. Let p ∈ [1,+∞], and (fn)n≥1 be cauchy in LpC(Ω,F , µ).

1. Show the existence of n1 ≥ 1 such that:

n ≥ n1 ⇒ ‖fn − fn1‖p ≤
1
2

2. Suppose we have found n1 < n2 < . . . < nk, k ≥ 1, such that:

∀j ∈ {1, . . . , k} , n ≥ nj ⇒ ‖fn − fnj‖p ≤
1
2j

Show the existence of nk+1, nk < nk+1 such that:

n ≥ nk+1 ⇒ ‖fn − fnk+1‖p ≤
1

2k+1

3. Show that there exists a subsequence (fnk)k≥1 of (fn)n≥1 with:
+∞∑
k=1

‖fnk+1 − fnk‖p < +∞
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Exercise 12. Let p ∈ [1,+∞], and (fn)n≥1 be in LpC(Ω,F , µ), with:

+∞∑
n=1

‖fn+1 − fn‖p < +∞

We define:

g
4
=

+∞∑
n=1

|fn+1 − fn|

1. Show that g : (Ω,F)→ [0,+∞] is non-negative and measurable.

2. If p = +∞, show that g ≤
∑+∞

n=1 ‖fn+1 − fn‖∞ µ-a.s.

3. If p ∈ [1,+∞[, show that for all N ≥ 1, we have:∥∥∥∥∥
N∑
n=1

|fn+1 − fn|
∥∥∥∥∥
p

≤
+∞∑
n=1

‖fn+1 − fn‖p
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4. If p ∈ [1,+∞[, show that:(∫
Ω

gpdµ

) 1
p

≤
+∞∑
n=1

‖fn+1 − fn‖p

5. Show that for p ∈ [1,+∞], we have g < +∞ µ-a.s.

6. Define A = {g < +∞}. Show that for all ω ∈ A, (fn(ω))n≥1 is
a cauchy sequence in C. We denote z(ω) its limit.

7. Define f : (Ω,F)→ (C,B(C)), by:

f(ω)
4
=
{
z(ω) if ω ∈ A

0 if ω 6∈ A
Show that f is measurable and fn → f µ-a.s.

8. if p = +∞, show that for all n ≥ 1, |fn| ≤ |f1|+ g and conclude
that f ∈ L∞C (Ω,F , µ).
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9. If p ∈ [1,+∞[, show the existence of n0 ≥ 1, such that:

n ≥ n0 ⇒
∫

Ω

|fn − fn0 |pdµ ≤ 1

Deduce from Fatou’s lemma that f − fn0 ∈ L
p
C(Ω,F , µ).

10. Show that for p ∈ [1,+∞], f ∈ LpC(Ω,F , µ).

11. Suppose that fn ∈ LpR(Ω,F , µ), for all n ≥ 1. Show the exis-
tence of f ∈ LpR(Ω,F , µ), such that fn → f µ-a.s.

Exercise 13. Let p ∈ [1,+∞], and (fn)n≥1 be in LpC(Ω,F , µ), with:

+∞∑
n=1

‖fn+1 − fn‖p < +∞

1. Does there exist f ∈ LpC(Ω,F , µ) such that fn → f µ-a.s.
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2. Suppose p = +∞. Show that for all n < m, we have:

|fm+1 − fn| ≤
m∑
k=n

‖fk+1 − fk‖∞ µ-a.s.

3. Suppose p = +∞. Show that for all n ≥ 1, we have:

‖f − fn‖∞ ≤
+∞∑
k=n

‖fk+1 − fk‖∞

4. Suppose p ∈ [1,+∞[. Show that for all n < m, we have:(∫
Ω

|fm+1 − fn|pdµ
) 1
p

≤
m∑
k=n

‖fk+1 − fk‖p

5. Suppose p ∈ [1,+∞[. Show that for all n ≥ 1, we have:

‖f − fn‖p ≤
+∞∑
k=n

‖fk+1 − fk‖p
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6. Show that for p ∈ [1,+∞], we also have fn
Lp→ f .

7. Suppose conversely that g ∈ LpC(Ω,F , µ) is such that fn
Lp→ g.

Show that f = g µ-a.s.. Conclude that fn → g µ-a.s..

Theorem 44 Let (Ω,F , µ) be a measure space. Let p ∈ [1,+∞],
and (fn)n≥1 be a sequence in LpC(Ω,F , µ) such that:

+∞∑
n=1

‖fn+1 − fn‖p < +∞

Then, there exists f ∈ LpC(Ω,F , µ) such that fn → f µ-a.s. Moreover,

for all g ∈ LpC(Ω,F , µ), the convergence fn → g µ-a.s. and fn
Lp→ g

are equivalent.
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Exercise 14. Let f, (fn)n≥1 be in LpC(Ω,F , µ) such that fn
Lp→ f ,

where p ∈ [1,+∞].

1. Show that there exists a sub-sequence (fnk)k≥1 of (fn)n≥1, with:
+∞∑
k=1

‖fnk+1 − fnk‖p < +∞

2. Show that there exists g ∈ LpC(Ω,F , µ) such that fnk → g µ-a.s.

3. Show that fnk
Lp→ g and g = f µ-a.s.

4. Conclude with the following:

Theorem 45 Let (fn)n≥1 be in LpC(Ω,F , µ) and f ∈ LpC(Ω,F , µ)

such that fn
Lp→ f , where p ∈ [1,+∞]. Then, we can extract a sub-

sequence (fnk)k≥1 of (fn)n≥1 such that fnk → f µ-a.s.
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Exercise 15. Prove the last theorem for LpR(Ω,F , µ).

Exercise 16. Let p ∈ [1,+∞], and (fn)n≥1 be cauchy in LpC(Ω,F , µ).

1. Show that there exists a subsequence (fnk)k≥1 of (fn)n≥1 and

f belonging to LpC(Ω,F , µ), such that fnk
Lp→ f .

2. Using the fact that (fn)n≥1 is cauchy, show that fn
Lp→ f .

Theorem 46 Let p ∈ [1,+∞]. Let (fn)n≥1 be a cauchy sequence in

LpC(Ω,F , µ). Then, there exists f ∈ LpC(Ω,F , µ) such that fn
Lp→ f .

Exercise 17. Prove the last theorem for LpR(Ω,F , µ).
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10. Bounded Linear Functionals in L2

In the following, (Ω,F , µ) is a measure space.

Definition 78 Let (xn)n≥1 be a sequence in an arbitrary set. We
call subsequence of (xn)n≥1, any sequence of the form (xφ(n))n≥1,
where φ : N∗ → N∗ is a strictly increasing map.

Exercise 1. Let (E, d) be a metric space, with metric topology T .
Let (xn)n≥1 be a sequence in E. For all n ≥ 1, let Fn be the closure
of the set {xk : k ≥ n}.

1. Show that for all x ∈ E, xn
T→ x is equivalent to:

∀ε > 0 , ∃n0 ≥ 1 , n ≥ n0 ⇒ d(xn, x) ≤ ε

2. Show that (Fn)n≥1 is a decreasing sequence of closed sets in E.

3. Show that if Fn ↓ ∅, then (F cn)n≥1 is an open covering of E.
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4. Show that if (E, T ) is compact then ∩+∞
n=1Fn 6= ∅.

5. Show that if (E, T ) is compact, there exists x ∈ E such that for
all n ≥ 1 and ε > 0, we have B(x, ε) ∩ {xk , k ≥ n} 6= ∅.

6. By induction, construct a subsequence (xnp)p≥1 of (xn)n≥1 such
that xnp ∈ B(x, 1/p) for all p ≥ 1.

7. Conclude that if (E, T ) is compact, any sequence (xn)n≥1 in E
has a convergent subsequence.

Exercise 2. Let (E, d) be a metric space, with metric topology T .
We assume that any sequence (xn)n≥1 in E has a convergent subse-
quence. Let (Vi)i∈I be an open covering of E. For x ∈ E, let:

r(x)
4
= sup{r > 0 : B(x, r) ⊆ Vi , for some i ∈ I}

1. Show that ∀x ∈ E, ∃i ∈ I, ∃r > 0, such that B(x, r) ⊆ Vi.

2. Show that ∀x ∈ E, r(x) > 0.
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Exercise 3. Further to ex. (2), suppose infx∈E r(x) = 0.

1. Show that for all n ≥ 1, there is xn ∈ E such that r(xn) < 1/n.

2. Extract a subsequence (xnk)k≥1 of (xn)n≥1 converging to some
x∗ ∈ E. Let r∗ > 0 and i ∈ I be such that B(x∗, r∗) ⊆ Vi. Show
that we can find some k0 ≥ 1, such that d(x∗, xnk0

) < r∗/2 and
r(xnk0

) ≤ r∗/4.

3. Show that d(x∗, xnk0
) < r∗/2 implies that B(xnk0

, r∗/2) ⊆ Vi.
Show that this contradicts r(xnk0

) ≤ r∗/4, and conclude that
infx∈E r(x) > 0.

Exercise 4. Further to ex. (3), Let r0 with 0 < r0 < infx∈E r(x).
Suppose that E cannot be covered by a finite number of open balls
with radius r0.

1. Show the existence of a sequence (xn)n≥1 in E, such that for all
n ≥ 1, xn+1 6∈ B(x1, r0) ∪ . . . ∪B(xn, r0).
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2. Show that for all n > m we have d(xn, xm) ≥ r0.

3. Show that (xn)n≥1 cannot have a convergent subsequence.

4. Conclude that there exists a finite subset {x1, . . . , xn} of E such
that E = B(x1, r0) ∪ . . . ∪B(xn, r0).

5. Show that for all x ∈ E, we have B(x, r0) ⊆ Vi for some i ∈ I.

6. Conclude that (E, T ) is compact.

7. Prove the following:

Theorem 47 Let (E, T ) be a metrizable topological space. Then
(E, T ) is compact, if and only if for every sequence (xn)n≥1 in E,
there exists a subsequence (xnk)k≥1 of (xn)n≥1, and some x ∈ E,
such that xnk

T→ x.
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Exercise 5. Let a, b ∈ R , a < b and (xn)n≥1 be a sequence in ]a, b[.

1. Show that (xn)n≥1 has a convergent subsequence.

2. Can we conclude that ]a, b[ is a compact subset of R?

Exercise 6. Let E = [−M,M ]× . . .× [−M,M ] ⊆ Rn, where n ≥ 1
and M ∈ R+. Let TRn be the usual product topology on Rn, and
TE = (TRn)|E be the induced topology on E.

1. Let (xp)p≥1 be a sequence in E. Let x ∈ E. Show that xp
TE→ x

is equivalent to xp
TRn→ x.

2. Propose a metric on Rn, inducing the topology TRn .

3. Let (xp)p≥1 be a sequence in Rn. Let x ∈ Rn. Show that

xp
TRn→ x if and only if, xip

TR→ xi for all i ∈ Nn.
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Exercise 7. Further to ex. (6), suppose (xp)p≥1 is a sequence in E.

1. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, such

that x1
φ(p)

T[−M,M]→ x1 for some x1 ∈ [−M,M ].

2. Explain why the above convergence is equivalent to x1
φ(p)

TR→ x1.

3. Suppose that 1 ≤ k ≤ n − 1 and (yp)p≥1 = (xφ(p))p≥1 is a
subsequence of (xp)p≥1 such that:

∀j = 1, . . . , k , xjφ(p)

TR→ xj for some xj ∈ [−M,M ]

Show the existence of a subsequence (yψ(p))p≥1 of (yp)p≥1 such

that yk+1
ψ(p)

TR→ xk+1 for some xk+1 ∈ [−M,M ].

4. Show that φ ◦ ψ : N∗ → N∗ is strictly increasing.

5. Show that (xφ◦ψ(p))p≥1 is a subsequence of (xp)p≥1 such that:

∀j = 1, . . . , k + 1 , xjφ◦ψ(p)

TR→ xj ∈ [−M,M ]
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6. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, and

x ∈ E, such that xφ(p)
TE→ x

7. Show that (E, TE) is a compact topological space.

Exercise 8. Let A be a closed subset of Rn, n ≥ 1, which is bounded
with respect to the usual metric of Rn.

1. Show that A ⊆ E = [−M,M ]×. . .×[−M,M ], for some M ∈ R+.

2. Show from E \A = E ∩Ac that A is closed in E.

3. Show (A, (TRn)|A) is a compact topological space.

4. Conversely, let A is a compact subset of Rn. Show that A is
closed and bounded.

Theorem 48 A subset of Rn, n ≥ 1, is compact if and only if it is
closed and bounded (with respect to the usual metric).
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Exercise 9. Let n ≥ 1. Consider the map:

φ :
{

Cn → R2n

(a1 + ib1, . . . , an + ibn) → (a1, b1, . . . , an, bn)

1. Recall the expressions of the usual metrics dCn and dR2n of Cn

and R2n respectively.

2. Show that for all z, z′ ∈ Cn, dCn(z, z′) = dR2n(φ(z), φ(z′)).

3. Show that φ is a homeomorphism from Cn to R2n.

4. Show that a subset K of Cn is compact, if and only if φ(K) is
a compact subset of R2n.

5. Show that K is closed, if and only if φ(K) is closed.

6. Show that K is bounded, if and only if φ(K) is bounded.

7. Show that a subset K of Cn is compact, if and only if it is closed
and bounded (with respect to the usual metric).



Tutorial 10: Bounded Linear Functionals in L2 9

Definition 79 Let (E, d) be a metric space. A sequence (xn)n≥1 in
E, is said to be a cauchy sequence (relative to the metric d), if and
only if, for all ε > 0, there exists n0 ≥ 1 such that:

n,m ≥ n0 ⇒ d(xn, xm) ≤ ε

Definition 80 We say that a metric space (E, d) is complete, if
and only if, for all (xn)n≥1 cauchy sequence in E, there exists x ∈ E
such that (xn)n≥1 converges to x.

Exercise 10.

1. Explain why strictly speaking, given p ∈ [1,+∞], definition (77)
of Cauchy sequences in LpC(Ω,F , µ) is not a covered by defini-
tion (79).

2. Explain why LpC(Ω,F , µ) is not a complete metric space, despite
theorem (46) and definition (80).
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Exercise 11. Let (zk)k≥1 be a Cauchy sequence in Cn, n ≥ 1, with
respect to the usual metric d(z, z′) = ‖z − z′‖, where:

‖z‖ 4=

√√√√ n∑
i=1

|zi|2

1. Show that the sequence (zk)k≥1 is bounded, i.e. that there exists
M ∈ R+ such that ‖zk‖ ≤M , for all k ≥ 1.

2. Define B = {z ∈ Cn , ‖z‖ ≤ M}. Show that δ(B) < +∞, and
that B is closed in Cn.

3. Show the existence of a subsequence (zkp)p≥1 of (zk)k≥1 such

that zkp
TCn→ z for some z ∈ B.

4. Show that for all ε > 0, there exists p0 ≥ 1 and n0 ≥ 1 such
that d(z, zkp0

) ≤ ε/2 and:

k ≥ n0 ⇒ d(zk, zkp0
) ≤ ε/2
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5. Show that zk
TCn→ z.

6. Conclude that Cn is complete with respect to its usual metric.

7. For which theorem of Tutorial 9 was the completeness of C used?

Exercise 12. Let (xk)k≥1 be a sequence in Rn such that xk
TCn→ z,

for some z ∈ Cn.

1. Show that z ∈ Rn.

2. Show that Rn is complete with respect to its usual metric.

Theorem 49 For all n ≥ 1, Cn and Rn are complete with respect
to their usual metrics.
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Exercise 13. Let (E, d) be a metric space, with metric topology T .
Let F ⊆ E, and F̄ denote the closure of F .

1. Explain why, for all x ∈ F̄ and n ≥ 1, we have F∩B(x, 1/n) 6= ∅.

2. Show that for all x ∈ F̄ , there exists a sequence (xn)n≥1 in F ,

such that xn
T→ x.

3. Show conversely that if there is a sequence (xn)n≥1 in F with

xn
T→ x, then x ∈ F̄ .

4. Show that F is closed if and only if for all sequence (xn)n≥1 in
F such that xn

T→ x for some x ∈ E, we have x ∈ F .

5. Explain why (F, T|F ) is metrizable.

6. Show that if F is complete with respect to the metric d|F×F ,
then F is closed in E.
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7. Let dR̄ be a metric on R̄, inducing the usual topology TR̄. Show
that d′ = (dR̄)|R×R is a metric on R, inducing the topology TR.

8. Find a metric on [−1, 1] which induces its usual topology.

9. Show that {−1, 1} is not open in [−1, 1].

10. Show that {−∞,+∞} is not open in R̄.

11. Show that R is not closed in R̄.

12. Let dR be the usual metric of R. Show that d′ = (dR̄)|R×R

and dR induce the same topology on R, but that however, R
is complete with respect to dR, whereas it cannot be complete
with respect to d′.
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Definition 81 Let H be a K-vector space, where K = R or C. We
call inner-product on H, any map 〈·, ·〉 : H × H → K with the
following properties:

(i) ∀x, y ∈ H , 〈x, y〉 = 〈y, x〉
(ii) ∀x, y, z ∈ H , 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉

(iii) ∀x, y ∈ H, ∀α ∈ K , 〈αx, y〉 = α〈x, y〉
(iv) ∀x ∈ H , 〈x, x〉 ≥ 0
(v) ∀x ∈ H , (〈x, x〉 = 0 ⇔ x = 0)

where for all z ∈ C, z̄ denotes the complex conjugate of z. For all
x ∈ H, we call norm of x, denoted ‖x‖, the number defined by:

‖x‖ 4=
√
〈x, x〉

Exercise 14. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that for all y ∈ H, the map x→ 〈x, y〉 is linear.
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2. Show that for all x ∈ H, the map y → 〈x, y〉 is linear if K = R,
and conjugate-linear if K = C.

Exercise 15. Let 〈·, ·〉 be an inner-product on a K-vector space H.
Let x, y ∈ H. Let A = ‖x‖2, B = |〈x, y〉| and C = ‖y‖2. let α ∈ K
be such that |α| = 1 and:

B = α〈x, y〉

1. Show that A,B,C ∈ R+.

2. For all t ∈ R, show that 〈x− tαy, x− tαy〉 = A− 2tB + t2C.

3. Show that if C = 0 then B2 ≤ AC.

4. Suppose that C 6= 0. Show that P (t) = A − 2tB + t2C has a
minimal value which is in R+, and conclude that B2 ≤ AC.

5. Conclude with the following:
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Theorem 50 (Cauchy-Schwarz’s inequality:second) Let H be
a K-vector space, where K = R or C, and 〈·, ·〉 be an inner-product
on H. Then, for all x, y ∈ H, we have:

|〈x, y〉| ≤ ‖x‖.‖y‖

Exercise 16. For all f, g ∈ L2
C(Ω,F , µ), we define:

〈f, g〉 4=
∫

Ω

f ḡdµ

1. Use the first cauchy-schwarz inequality (42) to prove that for all
f, g ∈ L2

C(Ω,F , µ), we have f ḡ ∈ L1
C(Ω,F , µ). Conclude that

〈f, g〉 is a well-defined complex number.

2. Show that for all f ∈ L2
C(Ω,F , µ), we have ‖f‖2 =

√
〈f, f〉.

3. Make another use of the first cauchy-schwarz inequality to show
that for all f, g ∈ L2

C(Ω,F , µ), we have:

|〈f, g〉| ≤ ‖f‖2.‖g‖2 (1)
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4. Go through definition (81), and indicate which of the proper-
ties (i) − (v) fails to be satisfied by 〈·, ·〉. Conclude that 〈·, ·〉
is not an inner-product on L2

C(Ω,F , µ), and therefore that in-
equality (*) is not a particular case of the second cauchy-schwarz
inequality (50).

5. Let f, g ∈ L2
C(Ω,F , µ). By considering

∫
(|f |+t|g|)2dµ for t ∈ R,

imitate the proof of the second cauchy-schwarz inequality to
show that: ∫

Ω

|fg|dµ ≤
(∫

Ω

|f |2dµ
) 1

2
(∫

Ω

|g|2dµ
) 1

2

6. Let f, g : (Ω,F)→ [0,+∞] non-negative and measurable. Show
that if

∫
f2dµ and

∫
g2dµ are finite, then f and g are µ-almost

surely equal to elements of L2
C(Ω,F , µ). Deduce from 5. a new

proof of the first Cauchy-Schwarz inequality:∫
Ω

fgdµ ≤
(∫

Ω

f2dµ

) 1
2
(∫

Ω

g2dµ

) 1
2
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Exercise 17. Let 〈·, ·〉 be an inner product on a K-vector space H.

1. Show that for all x, y ∈ H, we have:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈x, y〉

2. Using the second cauchy-schwarz inequality (50), show that:

‖x+ y‖ ≤ ‖x‖+ ‖y‖

3. Show that d〈·,·〉(x, y) = ‖x− y‖ defines a metric on H.

Definition 82 Let H be a K-vector space, where K = R or C,
and 〈·, ·〉 be an inner-product on H. We call norm topology on H,
denoted T〈·,·〉, the metric topology associated with d〈·,·〉(x, y) = ‖x−y‖.

Definition 83 We call hilbert space (over K), where K = R
or C, any ordered pair (H, 〈·, ·〉), where H is a K-vector space, and
〈·, ·〉 is an inner product on H for which the metric space (H, d〈·,·〉) is
complete, where d〈·,·〉(x, y) = ‖x− y‖.
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Exercise 18. Let (H, 〈·, ·〉) be a hilbert space over K and let M
be a closed linear subspace of H, (closed with respect to the norm
topology T〈·,·〉). Define [·, ·] = 〈·, ·〉|M×M.

1. Show that [·, ·] is an inner-product on the K-vector space M.

2. With obvious notations, show that d[·,·] = (d〈·,·〉)|M×M.

3. Deduce that T[·,·] = (T〈·,·〉)|M.

Exercise 19. Further to ex. (18), Let (xn)n≥1 be a cauchy sequence
in M, with respect to the metric d[·,·].

1. Show that (xn)n≥1 is a cauchy sequence in H.

2. Explain why there exists x ∈ H such that xn
T〈·,·〉→ x.

3. Explain why x ∈ M.

4. Explain why we also have xn
T[·,·]→ x.
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5. Explain why (M, 〈·, ·〉|M×M) is a hilbert space over K.

Exercise 20. For all z, z′ ∈ Cn, n ≥ 1, we define:

〈z, z′〉 4=
n∑
i=1

ziz̄i
′

1. Show that 〈·, ·〉 is an inner-product on Cn.

2. Show that the metric d〈·,·〉 is equal to the usual metric of Cn.

3. Conclude that (Cn, 〈·, ·〉) is a hilbert space over C.

4. Show that Rn is a closed subset of Cn.

5. Show however that Rn is not a linear subspace of Cn.

6. Show that (Rn, 〈·, ·〉|Rn×Rn) is a hilbert space over R.
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Definition 84 Let K = R or C. The usual inner-product in
Kn, denoted 〈·, ·〉, is defined as:

∀x, y ∈ Kn , 〈x, y〉 =
n∑
i=1

xiȳi

Theorem 51 The spaces Cn and Rn, n ≥ 1, together with their
usual inner-products, are hilbert spaces over C and R respectively.

Definition 85 Let H be a K-vector space, where K = R or C. Let
C ⊆ H. We say that C is a convex subset or H, if and only if, for
all x, y ∈ C and t ∈ [0, 1], we have tx+ (1 − t)y ∈ C.
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Exercise 21. Let (H, 〈·, ·〉) be a hilbert space over K. Let C ⊆ H be
a non-empty closed convex subset of H. Let x0 ∈ H. Define:

δmin
4
= inf{‖x− x0‖ : x ∈ C}

1. Show the existence of a sequence (xn)n≥1 in C such that
‖xn − x0‖ → δmin.

2. Show that for all x, y ∈ H, we have:

‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − 4
∥∥∥∥x+ y

2

∥∥∥∥2

3. Explain why for all n,m ≥ 1, we have:

δmin ≤
∥∥∥∥xn + xm

2
− x0

∥∥∥∥
4. Show that for all n,m ≥ 1, we have:

‖xn − xm‖2 ≤ 2‖xn − x0‖2 + 2‖xm − x0‖2 − 4δ2
min
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5. Show the existence of some x∗ ∈ H, such that xn
T〈·,·〉→ x∗.

6. Explain why x∗ ∈ C

7. Show that for all x, y ∈ H, we have | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.

8. Show that ‖xn − x0‖ → ‖x∗ − x0‖.

9. Conclude that we have found x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

10. Let y∗ be another element of C with such property. Show that:

‖x∗ − y∗‖2 ≤ 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4δ2
min

11. Conclude that x∗ = y∗.
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Theorem 52 Let (H, 〈·, ·〉) be a hilbert space over K, where K = R
or C. Let C be a non-empty, closed and convex subset of H. For all
x0 ∈ H, there exists a unique x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

Definition 86 Let (H, 〈·, ·〉) be a hilbert space over K, where K = R
or C. Let G ⊆ H. We call orthogonal of G, the subset of H denoted
G⊥ and defined by:

G⊥ 4= { x ∈ H : 〈x, y〉 = 0 , ∀y ∈ G }

Exercise 22. Let (H, 〈·, ·〉) be a hilbert space over K and G ⊆ H.

1. Show that G⊥ is a linear subspace of H, even if G isn’t.

2. Show that φy : H → K defined by φy(x) = 〈x, y〉 is continuous.

3. Show that G⊥ = ∩y∈Gφ−1
y ({0}).
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4. Show that G⊥ is a closed subset of H, even if G isn’t.

5. Show that ∅⊥ = {0}⊥ = H.

6. Show that H⊥ = {0}.

Exercise 23. Let (H, 〈·, ·〉) be a hilbert space over K. Let M be a
closed linear subspace of H, and x0 ∈ H.

1. Explain why there exists x∗ ∈M such that:

‖x∗ − x0‖ = inf{ ‖x− x0‖ : x ∈M }

2. Define y∗ = x0 − x∗ ∈ H. Show that for all y ∈ M and α ∈ K:

‖y∗‖2 ≤ ‖y∗ − αy‖2

3. Show that for all y ∈M and α ∈ K, we have:

0 ≤ −α〈y, y∗〉 − α〈y, y∗〉+ |α|2.‖y‖2
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4. For all y ∈M \ {0}, taking α = 〈y, y∗〉/‖y‖2, show that:

0 ≤ −|〈y, y
∗〉|2

‖y‖2

5. Conclude that x∗ ∈ M, y∗ ∈ M⊥ and x0 = x∗ + y∗.

6. Show that M∩M⊥ = {0}

7. Show that x∗ ∈ M and y∗ ∈M⊥ with x0 = x∗+y∗, are unique.

Theorem 53 Let (H, 〈·, ·〉) be a hilbert space over K, where K = R
or C. Let M be a closed linear subspace of H. Then, for all x0 ∈ H,
there is a unique decomposition:

x0 = x∗ + y∗

where x∗ ∈ M and y∗ ∈ M⊥.
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Definition 87 Let H be a K-vector space, where K = R or C.
We call linear functional, any map λ : H → K, such that for all
x, y ∈ H and α ∈ K:

λ(x + αy) = λ(x) + αλ(y)

Exercise 24. Let λ be a linear functional on a K-hilbert1 space H.

1. Suppose that λ is continuous at some point x0 ∈ H. Show the
existence of η > 0 such that:

∀x ∈ H , ‖x− x0‖ ≤ η ⇒ |λ(x) − λ(x0)| ≤ 1

Show that for all x ∈ H with x 6= 0, we have |λ(ηx/‖x‖)| ≤ 1.

2. Show that if λ is continuous at x0, there exits M ∈ R+, with:

∀x ∈ H , |λ(x)| ≤M‖x‖ (2)

1Norm vector spaces are introduced later in these tutorials.
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3. Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let (H, 〈·, ·〉) be a hilbert2 space over K = R or C.
Let λ be a linear functional on H. Then, the following are equivalent:

(i) λ : (H, T〈·,·〉)→ (K, TK) is continuous
(ii) ∃M ∈ R+ , ∀x ∈ H , |λ(x)| ≤M.‖x‖

In which case, we say that λ is a bounded linear functional.

Exercise 25. Let (H, 〈·, ·〉) be a hilbert space over K. Let λ be a
bounded linear functional on H, such that λ(x) 6= 0 for some x ∈ H,
and define M = λ−1({0}).

1. Show the existence of x0 ∈ H, such that x0 6∈ M.

2. Show the existence of x∗ ∈M and y∗ ∈M⊥ with x0 = x∗+ y∗.
2Norm vector spaces are introduced later in these tutorials.
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3. Deduce the existence of some z ∈M⊥ such that ‖z‖ = 1.

4. Show that for all α ∈ K \ {0} and x ∈ H, we have:

λ(x)
ᾱ
〈z, αz〉 = λ(x)

5. Show that in order to have:

∀x ∈ H , λ(x) = 〈x, αz〉

it is sufficient to choose α ∈ K \ {0} such that:

∀x ∈ H ,
λ(x)z
ᾱ
− x ∈M

6. Show the existence of y ∈ H such that:

∀x ∈ H , λ(x) = 〈x, y〉

7. Show the uniqueness of such y ∈ H.
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Theorem 54 Let (H, 〈·, ·〉) be a hilbert space over K, where K = R
or C. Let λ be a bounded linear functional on H. Then, there exists
a unique y ∈ H such that: ∀x ∈ H , λ(x) = 〈x, y〉.

Definition 89 Let K = R or C. We call K-vector space, any set
H, together with operators ⊕ and ⊗ for which there exits an element
0H ∈ H such that for all x, y, z ∈ H and α, β ∈ K, we have:

(i) 0H ⊕ x = x

(ii) ∃(−x) ∈ H , (−x)⊕ x = 0H
(iii) x⊕ (y ⊕ z) = (x⊕ y)⊕ z
(iv) x⊕ y = y ⊕ x
(v) 1⊗ x = x

(vi) α⊗ (β ⊗ x) = (αβ) ⊗ x
(vii) (α+ β)⊗ x = (α⊗ x)⊕ (β ⊗ x)

(viii) α⊗ (x⊕ y) = (α ⊗ x)⊕ (α⊗ y)
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Exercise 26. For all f ∈ L2
K(Ω,F , µ), define:

H 4= { [f ] : f ∈ L2
K(Ω,F , µ) }

where [f ] = {g ∈ L2
K(Ω,F , µ) : g = f, µ-a.s.}. Let 0H = [0], and for

all [f ], [g] ∈ H, and α ∈ K, we define:

[f ]⊕ [g]
4
= [f + g]

α⊗ [f ]
4
= [αf ]

We assume f, f ′, g and g′ are elements of L2
K(Ω,F , µ).

1. Show that for f = g µ-a.s. is equivalent to [f ] = [g].

2. Show that if [f ] = [f ′] and [g] = [g′], then [f + g] = [f ′ + g′].

3. Conclude that ⊕ is well-defined.

4. Show that ⊗ is also well-defined.

5. Show that (H,⊕,⊗) is a K-vector space.
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Exercise 27. Further to ex. (26), we define for all [f ], [g] ∈ H:

〈[f ], [g]〉H
4
=
∫

Ω

f ḡdµ

1. Show that 〈·, ·〉H is well-defined.

2. Show that 〈·, ·〉H is an inner-product on H.

3. Show that (H, 〈·, ·〉H) is a hilbert space over K.

4. Why is 〈f, g〉 4=
∫

Ω
f ḡdµ not an inner-product on L2

K(Ω,F , µ)?

Exercise 28. Further to ex. (27), Let λ : L2
K(Ω,F , µ) → K be a

continuous linear functional3. Define Λ : H → K by Λ([f ]) = λ(f).

3As defined in these tutorials, L2
K(Ω,F , µ) is not a hilbert space (not even a

norm vector space). However, both L2
K(Ω,F , µ) and K have natural topologies

and it is therefore meaningful to speak of continuous linear functional. Note
however that we are slightly outside the framework of definition (88).
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1. Show the existence of M ∈ R+ such that:

∀f ∈ L2
K(Ω,F , µ) , |λ(f)| ≤M.‖f‖2

2. Show that if [f ] = [g] then λ(f) = λ(g).

3. Show that Λ is a well defined bounded linear functional on H.

4. Conclude with the following:

Theorem 55 Let λ : L2
K(Ω,F , µ)→ K be a continuous linear func-

tional, where K = R or C. Then, there exists g ∈ L2
K(Ω,F , µ) such

that:
∀f ∈ L2

K(Ω,F , µ) , λ(f) =
∫

Ω

f ḡdµ
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11. Complex Measures
In the following, (Ω,F) denotes an arbitrary measurable space.

Definition 90 Let (an)n≥1 be a sequence of complex numbers. We
say that (an)n≥1 has the permutation property if and only if, for
all bijections σ : N∗ → N∗, the series

∑+∞
k=1 aσ(k) converges in C1

Exercise 1. Let (an)n≥1 be a sequence of complex numbers.

1. Show that if (an)n≥1 has the permutation property, then the
same is true of (Re(an))n≥1 and (Im(an))n≥1.

2. Suppose an ∈ R for all n ≥ 1. Show that if
∑+∞
k=1 ak converges:

+∞∑
k=1

|ak| = +∞ ⇒
+∞∑
k=1

a+
k =

+∞∑
k=1

a−k = +∞

1which excludes ±∞ as limit.
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Exercise 2. Let (an)n≥1 be a sequence in R, such that the series∑+∞
k=1 ak converges, and

∑+∞
k=1 |ak| = +∞. Let A > 0. We define:

N+ 4= {k ≥ 1 : ak ≥ 0} , N−
4
= {k ≥ 1 : ak < 0}

1. Show that N+ and N− are infinite.

2. Let φ+ : N∗ → N+ and φ− : N∗ → N− be two bijections. Show
the existence of k1 ≥ 1 such that:

k1∑
k=1

aφ+(k) ≥ A

3. Show the existence of an increasing sequence (kp)p≥1 such that:

kp∑
k=kp−1+1

aφ+(k) ≥ A

for all p ≥ 1, where k0 = 0.



Tutorial 11: Complex Measures 3

4. Consider the permutation σ : N∗ → N∗ defined informally by:

(φ−(1), φ+(1), . . . , φ+(k1)︸ ︷︷ ︸, φ−(2), φ+(k1 + 1), . . . , φ+(k2)︸ ︷︷ ︸, . . .)
representing (σ(1), σ(2), . . .). More specifically, define k∗0 = 0
and k∗p = kp + p for all p ≥ 1. For all n ∈ N∗ and p ≥ 1 with: 2

k∗p−1 < n ≤ k∗p (1)

we define:

σ(n) =
{
φ−(p) if n = k∗p−1 + 1
φ+(n− p) if n > k∗p−1 + 1 (2)

Show that σ : N∗ → N∗ is indeed a bijection.

5. Show that if
∑+∞
k=1 aσ(k) converges, there is N ≥ 1, such that:

n ≥ N , p ≥ 1 ⇒
∣∣∣∣∣
n+p∑
k=n+1

aσ(k)

∣∣∣∣∣ < A

2Given an integer n ≥ 1, there exists a unique p ≥ 1 such that (1) holds.
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6. Explain why (an)n≥1 cannot have the permutation property.

7. Prove the following theorem:

Theorem 56 Let (an)n≥1 be a sequence of complex numbers such
that for all bijections σ : N∗ → N∗, the series

∑+∞
k=1 aσ(k) converges.

Then, the series
∑+∞

k=1 ak converges absolutely, i.e.

+∞∑
k=1

|ak| < +∞

Definition 91 Let (Ω,F) be a measurable space and E ∈ F . We
call measurable partition of E, any sequence (En)n≥1 of pairwise
disjoint elements of F , such that E = ]n≥1En.
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Definition 92 We call complex measure on a measurable space
(Ω,F) any map µ : F → C, such that for all E ∈ F and (En)n≥1

measurable partition of E, the series
∑+∞

n=1 µ(En) converges to µ(E).
The set of all complex measures on (Ω,F) is denoted M1(Ω,F).

Definition 93 We call signed measure on a measurable space
(Ω,F), any complex measure on (Ω,F) with values in R.3

Exercise 3.

1. Show that a measure on (Ω,F) may not be a complex measure.

2. Show that for all µ ∈M1(Ω,F) , µ(∅) = 0.

3. Show that a finite measure on (Ω,F) is a complex measure with
values in R+, and conversely.

3In these tutorials, signed measure may not have values in {−∞,+∞}.
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4. Let µ ∈ M1(Ω,F). Let E ∈ F and (En)n≥1 be a measurable
partition of E. Show that:

+∞∑
n=1

|µ(En)| < +∞

5. Let µ be a measure on (Ω,F) and f ∈ L1
C(Ω,F , µ). Define:

∀E ∈ F , ν(E)
4
=
∫
E

fdµ

Show that ν is a complex measure on (Ω,F).

Definition 94 Let µ be a complex measure on a measurable space
(Ω,F). We call total variation of µ, the map |µ| : F → [0,+∞],
defined by:

∀E ∈ F , |µ|(E)
4
= sup

+∞∑
n=1

|µ(En)|

where the ’sup’ is taken over all measurable partitions (En)n≥1 of E.
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Exercise 4. Let µ be a complex measure on (Ω,F).

1. Show that for all E ∈ F , |µ(E)| ≤ |µ|(E).

2. Show that |µ|(∅) = 0.

Exercise 5. Let µ be a complex measure on (Ω,F). Let E ∈ F and
(En)n≥1 be a measurable partition of E.

1. Show that there exists (tn)n≥1 in R, with tn < |µ|(En) for all n.

2. Show that for all n ≥ 1, there exists a measurable partition
(Epn)p≥1 of En such that:

tn <

+∞∑
p=1

|µ(Epn)|

3. Show that (Epn)n,p≥1 is a measurable partition of E.

4. Show that for all N ≥ 1, we have
∑N

n=1 tn ≤ |µ|(E).
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5. Show that for all N ≥ 1, we have:
N∑
n=1

|µ|(En) ≤ |µ|(E)

6. Suppose that (Ap)p≥1 is another arbitrary measurable partition
of E. Show that for all p ≥ 1:

|µ(Ap)| ≤
+∞∑
n=1

|µ(Ap ∩ En)|

7. Show that for all n ≥ 1:
+∞∑
p=1

|µ(Ap ∩ En)| ≤ |µ|(En)

8. Show that:
+∞∑
p=1

|µ(Ap)| ≤
+∞∑
n=1

|µ|(En)
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9. Show that |µ| : F → [0,+∞] is a measure on (Ω,F).

Exercise 6. Let a, b ∈ R, a < b. Let F ∈ C1([a, b]; R), and define:

∀x ∈ [a, b] , H(x)
4
=
∫ x

a

F ′(t)dt

1. Show that H ∈ C1([a, b]; R) and H ′ = F ′.

2. Show that:

F (b)− F (a) =
∫ b

a

F ′(t)dt

3. Show that:
1

2π

∫ +π/2

−π/2
cos θdθ =

1
π

4. Let u ∈ Rn and τu : Rn → Rn be the translation τu(x) = x+u.
Show that the Lebesgue measure dx on (Rn,B(Rn)) is invariant
by translation τu, i.e. dx({τu ∈ B}) = dx(B) for all B ∈ B(Rn).
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5. Show that for all f ∈ L1
C(Rn,B(Rn), dx), and u ∈ Rn:∫

Rn

f(x+ u)dx =
∫

Rn

f(x)dx

6. Show that for all α ∈ R, we have:∫ +π

−π
cos+(α− θ)dθ =

∫ +π−α

−π−α
cos+ θdθ

7. Let α ∈ R and k ∈ Z such that k ≤ α/2π < k + 1. Show:

−π − α ≤ −2kπ − π < π − α ≤ −2kπ + π

8. Show that: ∫ −2kπ−π

−π−α
cos+ θdθ =

∫ −2kπ+π

π−α
cos+ θdθ
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9. Show that:∫ +π−α

−π−α
cos+ θdθ =

∫ −2kπ+π

−2kπ−π
cos+ θdθ =

∫ +π

−π
cos+ θdθ

10. Show that for all α ∈ R:

1
2π

∫ +π

−π
cos+(α− θ)dθ =

1
π

Exercise 7. Let z1, . . . , zN be N complex numbers. Let αk ∈ R be
such that zk = |zk|eiαk , for all k = 1, . . . , N . For all θ ∈ [−π,+π], we
define S(θ) = {k = 1, . . . , N : cos(αk − θ) > 0}.

1. Show that for all θ ∈ [−π,+π], we have:∣∣∣∣∣∣
∑

k∈S(θ)

zk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈S(θ)

zke
−iθ

∣∣∣∣∣∣ ≥
∑

k∈S(θ)

|zk| cos(αk − θ)
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2. Define φ : [−π,+π] → R by φ(θ) =
∑N

k=1 |zk| cos+(αk − θ).
Show the existence of θ0 ∈ [−π,+π] such that:

φ(θ0) = sup
θ∈[−π,+π]

φ(θ)

3. Show that:
1

2π

∫ +π

−π
φ(θ)dθ =

1
π

N∑
k=1

|zk|

4. Conclude that:
1
π

N∑
k=1

|zk| ≤

∣∣∣∣∣∣
∑

k∈S(θ0)

zk

∣∣∣∣∣∣
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Exercise 8. Let µ ∈ M1(Ω,F). Suppose that |µ|(E) = +∞ for
some E ∈ F . Define t = π(1 + |µ(E)|) ∈ R+.

1. Show that there is a measurable partition (En)n≥1 of E, with:

t <

+∞∑
n=1

|µ(En)|

2. Show the existence of N ≥ 1 such that:

t <

N∑
n=1

|µ(En)|

3. Show the existence of S ⊆ {1, . . . , N} such that:

N∑
n=1

|µ(En)| ≤ π
∣∣∣∣∣∑
n∈S

µ(En)

∣∣∣∣∣
4. Show that |µ(A)| > t/π, where A = ]n∈SEn.
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5. Let B = E \A. Show that |µ(B)| ≥ |µ(A)| − |µ(E)|.

6. Show that E = A ]B with |µ(A)| > 1 and |µ(B)| > 1.

7. Show that |µ|(A) = +∞ or |µ|(B) = +∞.

Exercise 9. Let µ ∈M1(Ω,F). Suppose that |µ|(Ω) = +∞.

1. Show the existence of A1, B1 ∈ F , such that Ω = A1 ] B1,
|µ(A1)| > 1 and |µ|(B1) = +∞.

2. Show the existence of a sequence (An)n≥1 of pairwise disjoint
elements of F , such that |µ(An)| > 1 for all n ≥ 1.

3. Show that the series
∑+∞

n=1 µ(An) does not converge to µ(A)
where A = ]+∞

n=1An.

4. Conclude that |µ|(Ω) < +∞.
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Theorem 57 Let µ be a complex measure on a measurable space
(Ω,F). Then, its total variation |µ| is a finite measure on (Ω,F).

Exercise 10. Show that M1(Ω,F) is a C-vector space, with:

(λ+ µ)(E)
4
= λ(E) + µ(E)

(αλ)(E)
4
= α.λ(E)

where λ, µ ∈M1(Ω,F), α ∈ C, and E ∈ F .

Definition 95 Let H be a K-vector space, where K = R or C. We
call norm on H, any map N : H → R+, with the following properties:

(i) ∀x ∈ H , (N(x) = 0 ⇔ x = 0)
(ii) ∀x ∈ H, ∀α ∈ K , N(αx) = |α|N(x)

(iii) ∀x, y ∈ H , N(x+ y) ≤ N(x) +N(y)
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Exercise 11.

1. Explain why ‖.‖p may not be a norm on LpK(Ω,F , µ).

2. Show that ‖·‖ =
√
〈·, ·〉 is a norm, when 〈·, ·〉 is an inner-product.

3. Show that ‖µ‖ 4= |µ|(Ω) defines a norm on M1(Ω,F).

Exercise 12. Let µ ∈M1(Ω,F) be a signed measure. Show that:

µ+ 4
=

1
2

(|µ|+ µ)

µ−
4
=

1
2

(|µ| − µ)

are finite measures such that:

µ = µ+ − µ− , |µ| = µ+ + µ−
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Exercise 13. Let µ ∈M1(Ω,F) and l : R2 → R be a linear map.

1. Show that l is continuous.

2. Show that l ◦ µ is a signed measure on (Ω,F). 4

3. Show that all µ ∈M1(Ω,F) can be decomposed as:

µ = µ1 − µ2 + i(µ3 − µ4)

where µ1, µ2, µ3, µ4 are finite measures.

4l ◦ µ refers strictly speaking to l(Re(µ), Im(µ)).
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12. Radon-Nikodym Theorem
In the following, (Ω,F) is an arbitrary measurable space.

Definition 96 Let µ and ν be two (possibly complex) measures on
(Ω,F). We say that ν is absolutely continuous with respect to µ,
and we write ν << µ, if and only if, for all E ∈ F :

µ(E) = 0 ⇒ ν(E) = 0

Exercise 1. Let µ be a measure on (Ω,F) and ν ∈M1(Ω,F). Show
that ν << µ is equivalent to |ν| << µ.

Exercise 2. Let µ be a measure on (Ω,F) and ν ∈ M1(Ω,F). Let
ε > 0. Suppose there exists a sequence (En)n≥1 in F such that:

∀n ≥ 1 , µ(En) ≤ 1
2n

, |ν(En)| ≥ ε

Define:
E
4
= lim sup

n≥1
En

4
=
⋂
n≥1

⋃
k≥n

Ek
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1. Show that:

µ(E) = lim
n→+∞

µ

⋃
k≥n

Ek

 = 0

2. Show that:

|ν|(E) = lim
n→+∞

|ν|

⋃
k≥n

Ek

 ≥ ε
3. Let λ be a measure on (Ω,F). Can we conclude in general that:

λ(E) = lim
n→+∞

λ

⋃
k≥n

Ek


4. Prove the following:
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Theorem 58 Let µ be a measure on (Ω,F) and ν be a complex
measure on (Ω,F). The following are equivalent:

(i) ν << µ

(ii) |ν| << µ

(iii) ∀ε > 0, ∃δ > 0, ∀E ∈ F , µ(E) ≤ δ ⇒ |ν(E)| < ε

Exercise 3. Let µ be a measure on (Ω,F) and ν ∈ M1(Ω,F) such
that ν << µ. Let ν1 = Re(ν) and ν2 = Im(ν).

1. Show that ν1 << µ and ν2 << µ.

2. Show that ν+
1 , ν

−
1 , ν

+
2 , ν

−
2 are absolutely continuous w.r. to µ.

Exercise 4. Let µ be a finite measure on (Ω,F) and f ∈ L1
C(Ω,F , µ).

Let S be a closed subset of C. We assume that for all E ∈ F such
that µ(E) > 0, we have:

1
µ(E)

∫
E

fdµ ∈ S
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1. Show the existence of a sequence (Dn) of closed discs in C with:

Sc =
+∞⋃
n=1

Dn

Let αn ∈ C, rn > 0 be such that Dn = {z ∈ C : |z−αn| ≤ rn}.

2. Suppose µ(En) > 0 for some n ≥ 1, where En = {f ∈ Dn}.
Show that:∣∣∣∣ 1

µ(En)

∫
En

fdµ− αn
∣∣∣∣ ≤ 1

µ(En)

∫
En

|f − αn|dµ ≤ rn

3. Show that for all n ≥ 1, µ({f ∈ Dn}) = 0.

4. Prove the following:
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Theorem 59 Let µ be a finite measure on (Ω,F), f ∈ L1
C(Ω,F , µ).

Let S be a closed subset of C such that for all E ∈ F with µ(E) > 0,
we have:

1
µ(E)

∫
E

fdµ ∈ S

Then, f ∈ S µ-a.s.

Exercise 5. Let µ be a σ-finite measure on (Ω,F). Let (En)n≥1 be
a sequence in F such that En ↑ Ω and µ(En) < +∞ for all n ≥ 1.
Define w : (Ω,F)→ (R,B(R)) as:

w
4
=

+∞∑
n=1

1
2n

1
1 + µ(En)

1En

1. Show that for all ω ∈ Ω, 0 < w(ω) ≤ 1.

2. Show that w ∈ L1
R(Ω,F , µ).
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Exercise 6. Let µ be a σ-finite measure on (Ω,F) and ν be a finite
measure on (Ω,F), such that ν << µ. Let w ∈ L1

R(Ω,F , µ) be such
that 0 < w ≤ 1. We define µ̄ =

∫
wdµ, i.e.

∀E ∈ F , µ̄(E)
4
=
∫
E

wdµ

1. Show that µ̄ is a finite measure on (Ω,F).

2. Show that φ = ν + µ̄ is also a finite measure on (Ω,F).

3. Show that for all f ∈ L1
C(Ω,F , φ), we have f ∈ L1

C(Ω,F , ν),
fw ∈ L1

C(Ω,F , µ), and:∫
Ω

fdφ =
∫

Ω

fdν +
∫

Ω

fwdµ

4. Show that for all f ∈ L2
C(Ω,F , φ), we have:∫

Ω

|f |dν ≤
∫

Ω

|f |dφ ≤
(∫

Ω

|f |2dφ
) 1

2

(φ(Ω))
1
2
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5. Show that L2
C(Ω,F , φ) ⊆ L1

C(Ω,F , ν), and for f ∈ L2
C(Ω,F , φ):∣∣∣∣∫

Ω

fdν

∣∣∣∣ ≤√φ(Ω).‖f‖2

6. Show the existence of g ∈ L2
C(Ω,F , φ) such that:

∀f ∈ L2
C(Ω,F , φ) ,

∫
Ω

fdν =
∫

Ω

fgdφ (1)

7. Show that for all E ∈ F such that φ(E) > 0, we have:

1
φ(E)

∫
E

gdφ ∈ [0, 1]

8. Show the existence of g ∈ L2
C(Ω,F , φ) such that g(ω) ∈ [0, 1]

for all ω ∈ Ω, and (1) still holds.

9. Show that for all f ∈ L2
C(Ω,F , φ), we have:∫

Ω

f(1− g)dν =
∫

Ω

fgwdµ
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10. Show that for all n ≥ 1 and E ∈ F ,

f
4
= (1 + g + . . .+ gn)1E ∈ L2

C(Ω,F , φ)

11. Show that for all n ≥ 1 and E ∈ F ,∫
E

(1 − gn+1)dν =
∫
E

g(1 + g + . . .+ gn)wdµ

12. Define:

h
4
= gw

(
+∞∑
n=0

gn

)
Show that if A = {0 ≤ g < 1}, then for all E ∈ F :

ν(E ∩A) =
∫
E

hdµ

13. Show that {h = +∞} = Ac and conclude that µ(Ac) = 0.

14. Show that for all E ∈ F , we have ν(E) =
∫
E
hdµ.
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15. Show that if µ is σ-finite on (Ω,F), and ν is a finite measure
on (Ω,F) such that ν << µ, there exists h ∈ L1

R(Ω,F , µ), such
that h ≥ 0 and:

∀E ∈ F , ν(E) =
∫
E

hdµ

16. Prove the following:

Theorem 60 (Radon-Nikodym:1) Let µ be a σ-finite measure on
(Ω,F). let ν be a complex measure on (Ω,F) such that ν << µ. Then,
there exists some h ∈ L1

C(Ω,F , µ) such that:

∀E ∈ F , ν(E) =
∫
E

hdµ

If ν is a signed measure on (Ω,F), we can assume h ∈ L1
R(Ω,F , µ).

If ν is a finite measure on (Ω,F), we can assume h ≥ 0.
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Exercise 7. Let f = u+ iv ∈ L1
C(Ω,F , µ), such that:

∀E ∈ F ,

∫
E

fdµ = 0

where µ is a measure on (Ω,F).

1. Show that: ∫
Ω

u+dµ =
∫
{u≥0}

udµ

2. Show that f = 0 µ-a.s.

3. State and prove some uniqueness property in theorem (60).

Exercise 8. Let µ and ν be two σ-finite measures on (Ω,F) such
that ν << µ. Let (En)n≥1 be a sequence in F such that En ↑ Ω and
ν(En) < +∞ for all n ≥ 1. We define:

∀n ≥ 1 , νn
4
= νEn

4
= ν(En ∩ ·)
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1. Show that there exists hn ∈ L1
R(Ω,F , µ) with hn ≥ 0 and:

∀E ∈ F , νn(E) =
∫
E

hndµ (2)

for all n ≥ 1.

2. Show that for all E ∈ F ,∫
E

hndµ ≤
∫
E

hn+1dµ

3. Show that for all n, p ≥ 1,

µ({hn − hn+1 >
1
p
}) = 0

4. Show that hn ≤ hn+1 µ-a.s.

5. Show the existence of a sequence (hn)n≥1 in L1
R(Ω,F , µ) such

that 0 ≤ hn ≤ hn+1 for all n ≥ 1 and with (2) still holding.
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6. Let h = supn≥1 hn. Show that:

∀E ∈ F , ν(E) =
∫
E

hdµ (3)

7. Show that for all n ≥ 1,
∫
En
hdµ < +∞.

8. Show that h < +∞ µ-a.s.

9. Show there exists h : (Ω,F)→ R+ measurable, while (3) holds.

10. Show that for all n ≥ 1, h ∈ L1
R(Ω,F , µEn).

Theorem 61 (Radon-Nikodym:2) Let µ and ν be two σ-finite
measures on (Ω,F) such that ν << µ. There exists a measurable
map h : (Ω,F)→ (R+,B(R+)) such that:

∀E ∈ F , ν(E) =
∫
E

hdµ
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Exercise 9. Let h, h′ : (Ω,F) → [0,+∞] be two non-negative and
measurable maps. Let µ be a σ-finite measure on (Ω,F). We assume:

∀E ∈ F ,

∫
E

hdµ =
∫
E

h′dµ

Let (En)n≥1 be a sequence in F with En ↑ Ω and µ(En) < +∞ for
all n ≥ 1. We define Fn = En ∩ {h ≤ n} for all n ≥ 1.

1. Show that for all n and E ∈ F ,
∫
E hdµ

Fn =
∫
E h
′dµFn < +∞.

2. Show that for all n, p ≥ 1, µ(Fn ∩ {h > h′ + 1/p}) = 0.

3. Show that for all n ≥ 1, µ({Fn ∩ {h 6= h′}) = 0.

4. Show that µ({h 6= h′} ∩ {h < +∞}) = 0.

5. Show that h = h′ µ-a.s.

6. State and prove some uniqueness property in theorem (61).
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Exercise 10. Take Ω = {∗} and F = P(Ω) = {∅, {∗}}. Let µ be
the measure on (Ω,F) defined by µ(∅) = 0 and µ({∗}) = +∞. Let
h, h′ : (Ω,F) → [0,+∞] be defined by h(∗) = 1 6= 2 = h′(∗). Show
that we have:

∀E ∈ F ,

∫
E

hdµ =
∫
E

h′dµ

Explain why this does not contradict the previous exercise.

Exercise 11. Let µ be a complex measure on (Ω,F).

1. Show that µ << |µ|.

2. Show the existence of some h ∈ L1
C(Ω,F , |µ|) such that:

∀E ∈ F , µ(E) =
∫
E

hd|µ|

3. If µ is a signed measure, can we assume h ∈ L1
R(Ω,F , |µ|)?
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Exercise 12. Further to ex. (11), define Ar = {|h| < r} for all r > 0.

1. Show that for all measurable partition (En)n≥1 of Ar:
+∞∑
n=1

|µ(En)| ≤ r|µ|(Ar)

2. Show that |µ|(Ar) = 0 for all 0 < r < 1.

3. Show that |h| ≥ 1 |µ|-a.s.

4. Suppose that E ∈ F is such that |µ|(E) > 0. Show that:∣∣∣∣ 1
|µ|(E)

∫
E

hd|µ|
∣∣∣∣ ≤ 1

5. Show that |h| ≤ 1 |µ|-a.s.

6. Prove the following:
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Theorem 62 For all complex measure µ on (Ω,F), there exists h
belonging to L1

C(Ω,F , |µ|) such that |h| = 1 and:

∀E ∈ F , µ(E) =
∫
E

hd|µ|

If µ is a signed measure on (Ω,F), we can assume h ∈ L1
R(Ω,F , |µ|).

Exercise 13. Let A ∈ F , and (An)n≥1 be a sequence in F .

1. Show that if An ↑ A then 1An ↑ 1A.

2. Show that if An ↓ A then 1An ↓ 1A.

3. Show that if 1An → 1A, then for all µ ∈M1(Ω,F):

µ(A) = lim
n→+∞

µ(An)
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Exercise 14. Let µ be a measure on (Ω,F) and f ∈ L1
C(Ω,F , µ).

1. Show that ν =
∫
fdµ ∈M1(Ω,F).

2. Let h ∈ L1
C(Ω,F , |ν|) be such that |h| = 1 and ν =

∫
hd|ν|.

Show that for all E,F ∈ F :∫
E

f1Fdµ =
∫
E

h1Fd|ν|

3. Show that if g : (Ω,F)→ (C,B(C)) is bounded and measurable:

∀E ∈ F ,

∫
E

fgdµ =
∫
E

hgd|ν|

4. Show that:
∀E ∈ F , |ν|(E) =

∫
E

fh̄dµ

5. Show that for all E ∈ F ,∫
E

Re(fh̄)dµ ≥ 0 ,

∫
E

Im(fh̄)dµ = 0
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6. Show that fh̄ ∈ R+ µ-a.s.

7. Show that fh̄ = |f | µ-a.s.

8. Prove the following:

Theorem 63 Let µ be a measure on (Ω,F) and f ∈ L1
C(Ω,F , µ).

Then, ν =
∫
fdµ defined by:

∀E ∈ F , ν(E)
4
=
∫
E

fdµ

is a complex measure on (Ω,F) with total variation:

∀E ∈ F , |ν|(E) =
∫
E

|f |dµ
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Exercise 15. Let µ ∈M1(Ω,F) be a signed measure. Suppose that
h ∈ L1

R(Ω,F , |µ|) is such that |h| = 1 and µ =
∫
hd|µ|. Define

A = {h = 1} and B = {h = −1}.

1. Show that for all E ∈ F , µ+(E) =
∫
E

1
2 (1 + h)d|µ|.

2. Show that for all E ∈ F , µ−(E) =
∫
E

1
2 (1− h)d|µ|.

3. Show that µ+ = µA = µ(A ∩ · ).

4. Show that µ− = −µB = −µ(B ∩ · ).

Theorem 64 (Hahn Decomposition) Let µ be a signed measure
on (Ω,F). There exist A,B ∈ F , such that A ∩ B = ∅, Ω = A ] B
and for all E ∈ F , µ+(E) = µ(A ∩ E) and µ−(E) = −µ(B ∩ E).
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Definition 97 Let µ be a complex measure on (Ω,F). We define:

L1
C(Ω,F , µ)

4
= L1

C(Ω,F , |µ|)
and for all f ∈ L1

C(Ω,F , µ), the lebesgue integral of f with respect
to µ, is defined as: ∫

fdµ
4
=
∫
fhd|µ|

where h ∈ L1
C(Ω,F , |µ|) is such that |h| = 1 and µ =

∫
hd|µ|.

Exercise 16. Let µ be a complex measure on (Ω,F).

1. Show that for all f : (Ω,F)→ (C,B(C)) measurable:

f ∈ L1
C(Ω,F , µ) ⇔

∫
|f |d|µ| < +∞

2. Show that for f ∈ L1
C(Ω,F , µ),

∫
fdµ is unambiguously defined.

3. Show that for all E ∈ F , 1E ∈ L1
C(Ω,F , µ) and

∫
1Edµ = µ(E).
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4. Show that if µ is a finite measure, then |µ| = µ.

5. Show that if µ is a finite measure, definition (97) of integral
and space L1

C(Ω,F , µ) is consistent with that already known
for measures.

6. Show that L1
C(Ω,F , µ) is a C-vector space and that:∫

(f + αg)dµ =
∫
fdµ+ α

∫
gdµ

for all f, g ∈ L1
C(Ω,F , µ) and α ∈ C.

7. Show that for all f ∈ L1
C(Ω,F , µ), we have:∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |d|µ|
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Exercise 17. Let µ, ν ∈M1(Ω,F), let α ∈ C.

1. Show that |αν| = |α|.|ν|

2. Show that |µ+ ν| ≤ |µ|+ |ν|

3. Show that L1
C(Ω,F , µ) ∩ L1

C(Ω,F , ν) ⊆ L1
C(Ω,F , µ+ αν)

4. Show that for all E ∈ F :∫
1Ed(µ+ αν) =

∫
1Edµ+ α

∫
1Edν

5. Show that for all f ∈ L1
C(Ω,F , µ) ∩ L1

C(Ω,F , ν):∫
fd(µ+ αν) =

∫
fdµ+ α

∫
fdν
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Exercise 18. Let µ = µ1 + iµ2 ∈M1(Ω,F).

1. Show that |µ1| ≤ |µ| and |µ2| ≤ |µ|.

2. Show that |µ| ≤ |µ1|+ |µ2|.

3. Show that L1
C(Ω,F , µ) = L1

C(Ω,F , µ1) ∩ L1
C(Ω,F , µ2).

4. Show that:

L1
C(Ω,F , µ1) = L1

C(Ω,F , µ+
1 ) ∩ L1

C(Ω,F , µ−1 )
L1

C(Ω,F , µ2) = L1
C(Ω,F , µ+

2 ) ∩ L1
C(Ω,F , µ−2 )

5. Show that for all f ∈ L1
C(Ω,F , µ):∫

fdµ =
∫
fdµ+

1 −
∫
fdµ−1 + i

(∫
fdµ+

2 −
∫
fdµ−2

)
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Exercise 19. Let µ ∈ M1(Ω,F). Let A ∈ F . Let h ∈ L1
C(Ω,F , |µ|)

be such that |h| = 1 and µ =
∫
hd|µ|. Recall that µA = µ(A∩ · ) and

µ|A = µ|(F|A) where F|A = {A ∩ E , E ∈ F} ⊆ F .

1. Show that we also have F|A = {E : E ∈ F , E ⊆ A}.

2. Show that µA ∈M1(Ω,F) and µ|A ∈M1(A,F|A).

3. Let E ∈ F and (En)n≥1 be a measurable partition of E. Show:
+∞∑
n=1

|µA(En)| ≤ |µ|A(E)

4. Show that we have |µA| ≤ |µ|A.

5. Let E ∈ F and (En)n≥1 be a measurable partition of A ∩ E.
Show that:

+∞∑
n=1

|µ(En)| ≤ |µA|(A ∩E)
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6. Show that |µA|(Ac) = 0.

7. Show that |µA| = |µ|A.

8. Let E ∈ F|A and (En)n≥1 be an F|A-measurable partition of E.
Show that:

+∞∑
n=1

|µ|A(En)| ≤ |µ||A(E)

9. Show that |µ|A| ≤ |µ||A.

10. Let E ∈ F|A ⊆ F and (En)n≥1 be a measurable partition of E.
Show that (En)n≥1 is also an F|A-measurable partition of E,
and conclude:

+∞∑
n=1

|µ(En)| ≤ |µ|A|(E)

11. Show that |µ|A| = |µ||A.

12. Show that µA =
∫
hd|µA|.
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13. Show that h|A ∈ L1
C(A,F|A, |µ|A|) and µ|A =

∫
h|Ad|µ|A|.

14. Show that for all f ∈ L1
C(Ω,F , µ), we have:

f1A ∈ L1
C(Ω,F , µ) , f ∈ L1

C(Ω,F , µA) , f|A ∈ L1
C(A,F|A, µ|A)

and: ∫
f1Adµ =

∫
fdµA =

∫
f|Adµ|A

Definition 98 Let f ∈ L1
C(Ω,F , µ) , where µ is a complex measure

on (Ω,F). let A ∈ F . We call partial lebesgue integral of f with
respect to µ over A, the integral denoted

∫
A
fdµ, defined as:∫

A

fdµ
4
=
∫

(f1A)dµ =
∫
fdµA =

∫
(f|A)dµ|A

where µA is the complex measure on (Ω,F), µA = µ(A ∩ · ), f|A is
the restriction of f to A and µ|A is the restriction of µ to F|A, the
trace of F on A.
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Exercise 20. Prove the following:

Theorem 65 Let f ∈ L1
C(Ω,F , µ), where µ is a complex measure

on (Ω,F). Then, ν =
∫
fdµ defined as:

∀E ∈ F , ν(E)
4
=
∫
E

fdµ

is a complex measure on (Ω,F), with total variation:

∀E ∈ F , |ν|(E) =
∫
E

|f |d|µ|

Moreover, for all measurable map g : (Ω,F)→ (C,B(C)), we have:

g ∈ L1
C(Ω,F , ν) ⇔ gf ∈ L1

C(Ω,F , µ)

and when such condition is satisfied:∫
gdν =

∫
gfdµ
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Exercise 21. Let (Ω1,F1), . . . , (Ωn,Fn) be n measurable spaces,
where n ≥ 2. Let µ1 ∈ M1(Ω1,F1), . . ., µn ∈ M1(Ωn,Fn). For
all i ∈ Nn, let hi belonging to L1

C(Ωi,Fi, |µi|) be such that |hi| = 1
and µi =

∫
hid|µi|. For all E ∈ F1 ⊗ . . .⊗Fn, we define:

µ(E)
4
=
∫
E

h1 . . . hnd|µ1| ⊗ . . .⊗ |µn|

1. Show that µ ∈M1(Ω1 × . . .× Ωn,F1 ⊗ . . .⊗Fn)

2. Show that for all measurable rectangle A1 × . . .×An:

µ(A1 × . . .×An) = µ1(A1) . . . µn(An)

3. Prove the following:
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Theorem 66 Let µ1, . . . , µn be n complex measures on measurable
spaces (Ω1,F1), . . . , (Ωn,Fn) respectively, where n ≥ 2. There exists
a unique complex measure µ1⊗. . .⊗µn on (Ω1×. . .×Ωn,F1⊗. . .⊗Fn)
such that for all measurable rectangle A1 × . . .×An, we have:

µ1 ⊗ . . .⊗ µn(A1 × . . .×An) = µ1(A1) . . . µn(An)

Exercise 22. Further to theorem (66),

1. Show that |µ1 ⊗ . . .⊗ µn| = |µ1| ⊗ . . .⊗ |µn|.

2. Show that ‖µ1 ⊗ . . .⊗ µn‖ = ‖µ1‖ . . . ‖µn‖.

3. Show that for all E ∈ F1 ⊗ . . .⊗Fn:

µ1 ⊗ . . .⊗ µn(E) =
∫
E

h1 . . . hnd|µ1 ⊗ . . .⊗ µn|

4. Let f ∈ L1
C(Ω1 × . . .×Ωn,F1 ⊗ . . .⊗Fn, µ1 ⊗ . . .⊗ µn). Show:∫
fdµ1 ⊗ . . .⊗ µn =

∫
fh1 . . . hnd|µ1| ⊗ . . .⊗ |µn|
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5. let σ be a permutation of {1, . . . , n}. Show that:∫
fdµ1 ⊗ . . .⊗ µn =

∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)
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13. Regular Measure
In the following, K denotes R or C.

Definition 99 Let (Ω,F) be a measurable space. We say that a map
s : Ω → C is a complex simple function on (Ω,F), if and only if
it is of the form:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C and Ai ∈ F for all i ∈ Nn. The set of all
complex simple functions on (Ω,F) is denoted SC(Ω,F). The set of
all R-valued complex simple functions in (Ω,F) is denoted SR(Ω,F).

Recall that a simple function on (Ω,F), as defined in (40), is just a
non-negative element of SR(Ω,F).
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Exercise 1. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞[.

1. Suppose s : Ω→ C is of the form

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C, Ai ∈ F and µ(Ai) < +∞ for all i ∈ Nn.
Show that s ∈ LpC(Ω,F , µ) ∩ SC(Ω,F).

2. Show that any s ∈ SC(Ω,F) can be written as:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C \ {0}, Ai ∈ F and Ai ∩Aj = ∅ for i 6= j.

3. Show that any s ∈ LpC(Ω,F , µ) ∩ SC(Ω,F) is of the form:

s =
n∑
i=1

αi1Ai
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where n ≥ 1, αi ∈ C, Ai ∈ F and µ(Ai) < +∞, for all i ∈ Nn.

4. Show that L∞C (Ω,F , µ) ∩ SC(Ω,F) = SC(Ω,F).

Exercise 2. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞[. Let
f be a non-negative element of LpR(Ω,F , µ).

1. Show the existence of a sequence (sn)n≥1 of non-negative func-
tions in LpR(Ω,F , µ) ∩ SR(Ω,F) such that sn ↑ f .

2. Show that:
lim

n→+∞

∫
|sn − f |pdµ = 0

3. Show that there exists s ∈ LpR(Ω,F , µ) ∩ SR(Ω,F) such that
‖f − s‖p ≤ ε, for all ε > 0.

4. Show that LpK(Ω,F , µ) ∩ SK(Ω,F) is dense in LpK(Ω,F , µ).
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Exercise 3. Let (Ω,F , µ) be a measure space. Let f be a non-
negative element of L∞R (Ω,F , µ). For all n ≥ 1, we define:

sn
4
=

n2n−1∑
k=0

k

2n
1{k/2n≤f<(k+1)/2n} + n1{n≤f}

1. Show that for all n ≥ 1, sn is a simple function.

2. Show there exists n0 ≥ 1 and N ∈ F with µ(N) = 0, such that:

∀ω ∈ N c , 0 ≤ f(ω) < n0

3. Show that for all n ≥ n0 and ω ∈ N c, we have:

0 ≤ f(ω)− sn(ω) <
1
2n

4. Conclude that:
lim

n→+∞
‖f − sn‖∞ = 0

5. Show the following:
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Theorem 67 Let (Ω,F , µ) be a measure space and p ∈ [1,+∞].
Then, LpK(Ω,F , µ) ∩ SK(Ω,F) is dense in LpK(Ω,F , µ).

Exercise 4. Let (Ω, T ) be a metrizable topological space, and µ be
a finite measure on (Ω,B(Ω)). We define Σ as the set of all B ∈ B(Ω)
such that for all ε > 0, there exist F closed and G open in Ω, with:

F ⊆ B ⊆ G , µ(G \ F ) ≤ ε

Given a metric d on (Ω, T ) inducing the topology T , we define:

d(x,A)
4
= inf{d(x, y) : y ∈ A}

for all A ⊆ Ω and x ∈ Ω.

1. Show that x→ d(x,A) from Ω to R̄ is continuous for all A ⊆ Ω.

2. Show that if F is closed in Ω, x ∈ F is equivalent to d(x, F ) = 0.
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Exercise 5. Further to exercise (4), we assume that F is a closed
subset of Ω. For all n ≥ 1, we define:

Gn
4
= {x ∈ Ω : d(x, F ) <

1
n
}

1. Show that Gn is open for all n ≥ 1.

2. Show that Gn ↓ F .

3. Show that F ∈ Σ.

4. Was it important to assume that µ is finite?

5. Show that Ω ∈ Σ.

6. Show that if B ∈ Σ, then Bc ∈ Σ.
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Exercise 6. Further to exercise (5), let (Bn)n≥1 be a sequence in Σ.
Define B = ∪+∞

n=1Bn and let ε > 0.

1. Show that for all n, there is Fn closed and Gn open in Ω, with:

Fn ⊆ Bn ⊆ Gn , µ(Gn \ Fn) ≤ ε

2n

2. Show the existence of some N ≥ 1 such that:

µ

((
+∞⋃
n=1

Fn

)
\
(

N⋃
n=1

Fn

))
≤ ε

3. Define G = ∪+∞
n=1Gn and F = ∪Nn=1Fn. Show that F is closed,

G is open and F ⊆ B ⊆ G.

4. Show that:

G \ F ⊆ G \
(

+∞⋃
n=1

Fn

)
]
(

+∞⋃
n=1

Fn

)
\ F
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5. Show that:

G \
(

+∞⋃
n=1

Fn

)
⊆

+∞⋃
n=1

Gn \ Fn

6. Show that µ(G \ F ) ≤ 2ε.

7. Show that Σ is a σ-algebra on Ω, and conclude that Σ = B(Ω).

Theorem 68 Let (Ω, T ) be a metrizable topological space, and µ be
a finite measure on (Ω,B(Ω)). Then, for all B ∈ B(Ω) and ε > 0,
there exist F closed and G open in Ω such that:

F ⊆ B ⊆ G , µ(G \ F ) ≤ ε

Definition 100 Let (Ω, T ) be a topological space. We denote CbK(Ω)
the K-vector space of all continuous, bounded maps φ : Ω → K,
where K = R or K = C.
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Exercise 7. Let (Ω, T ) be a metrizable topological space with some
metric d. Let µ be a finite measure on (Ω,B(Ω)) and F be a closed
subset of Ω. For all n ≥ 1, we define φn : Ω→ R by:

∀x ∈ Ω , φn(x)
4
= 1− 1 ∧ (nd(x, F ))

1. Show that for all p ∈ [1,+∞], we have CbK(Ω) ⊆ LpK(Ω,B(Ω), µ).

2. Show that for all n ≥ 1, φn ∈ CbR(Ω).

3. Show that φn → 1F .

4. Show that for all p ∈ [1,+∞[, we have:

lim
n→+∞

∫
|φn − 1F |pdµ = 0

5. Show that for all p ∈ [1,+∞[ and ε > 0, there exists φ ∈ CbR(Ω)
such that ‖φ− 1F ‖p ≤ ε.
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6. Let ν ∈M1(Ω,B(Ω)). Show that CbC(Ω) ⊆ L1
C(Ω,B(Ω), ν) and:

ν(F ) = lim
n→+∞

∫
φndν

7. Prove the following:

Theorem 69 Let (Ω, T ) be a metrizable topological space and µ, ν
be two complex measures on (Ω,B(Ω)) such that:

∀φ ∈ CbR(Ω) ,
∫
φdµ =

∫
φdν

Then µ = ν.

Exercise 8. Let (Ω, T ) be a metrizable topological space and µ be
a finite measure on (Ω,B(Ω)). Let s ∈ SC(Ω,B(Ω)) be a complex
simple function:

s =
n∑
i=1

αi1Ai
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where n ≥ 1, αi ∈ C, Ai ∈ B(Ω) for all i ∈ Nn. Let p ∈ [1,+∞[.

1. Show that given ε > 0, for all i ∈ Nn there is a closed subset Fi
of Ω such that Fi ⊆ Ai and µ(Ai \ Fi) ≤ ε. Let:

s′
4
=

n∑
i=1

αi1Fi

2. Show that:

‖s− s′‖p ≤
(

n∑
i=1

|αi|
)
ε

1
p

3. Conclude that given ε > 0, there exists φ ∈ CbC(Ω) such that:

‖φ− s‖p ≤ ε

4. Prove the following:
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Theorem 70 Let (Ω, T ) be a metrizable topological space and µ be
a finite measure on (Ω,B(Ω)). Then, for all p ∈ [1,+∞[, CbK(Ω) is
dense in LpK(Ω,B(Ω), µ).

Definition 101 A topological space (Ω, T ) is said to be σ-compact
if and only if, there exists a sequence (Kn)n≥1 of compact subsets of
Ω such that Kn ↑ Ω.

Exercise 9. Let (Ω, T ) be a metrizable and σ-compact topological
space, with metric d. Let Ω′ be open in Ω. For all n ≥ 1, we define:

Fn
4
= {x ∈ Ω : d(x, (Ω′)c) ≥ 1/n}

Let (Kn)n≥1 be a sequence of compact subsets of Ω such that Kn ↑ Ω.

1. Show that for all n ≥ 1, Fn is closed in Ω.

2. Show that Fn ↑ Ω′.
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3. Show that Fn ∩Kn ↑ Ω′.

4. Show that Fn ∩Kn is closed in Kn for all n ≥ 1.

5. Show that Fn ∩Kn is a compact subset of Ω′ for all n ≥ 1

6. Prove the following:

Theorem 71 Let (Ω, T ) be a metrizable and σ-compact topological
space. Then, for all Ω′ open subset of Ω, the induced topological space
(Ω′, T|Ω′) is itself metrizable and σ-compact.

Definition 102 Let (Ω, T ) be a topological space and µ be a measure
on (Ω,B(Ω)). We say that µ is locally finite, if and only if, every
x ∈ Ω has an open neighborhood of finite µ-measure, i.e.

∀x ∈ Ω , ∃U ∈ T , x ∈ U , µ(U) < +∞
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Definition 103 Let µ be a measure on a topological space (Ω, T ).
We say that µ is inner-regular, if and only if, for all B ∈ B(Ω):

µ(B) = sup{µ(K) : K ⊆ B , K compact}
We say that µ is outer-regular, if and only if, for all B ∈ B(Ω):

µ(B) = inf{µ(G) : B ⊆ G , G open}
We say that µ is regular if it is both inner and outer-regular.

Exercise 10. Let (Ω, T ) be a topological space and µ be a locally
finite measure on (Ω,B(Ω)). Let K be a compact subset of Ω.

1. Show the existence of open sets V1, . . . , Vn with µ(Vi) < +∞ for
all i ∈ Nn and K ⊆ V1 ∪ . . . ∪ Vn, where n ≥ 1.

2. Conclude that µ(K) < +∞.
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Exercise 11. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let µ be a finite measure on (Ω,B(Ω)). Let (Kn)n≥1 be a
sequence of compact subsets of Ω such that Kn ↑ Ω. Let B ∈ B(Ω).
We define α = sup{µ(K) : K ⊆ B , K compact}.

1. Show that given ε > 0, there exists F closed in Ω such that
F ⊆ B and µ(B \ F ) ≤ ε.

2. Show that F \ (Kn ∩ F ) ↓ ∅.

3. Show that Kn ∩ F is closed in Kn.

4. Show that Kn ∩ F is compact.

5. Conclude that given ε > 0, there exists K compact subset of Ω
such that K ⊆ F and µ(F \K) ≤ ε.

6. Show that µ(B) ≤ µ(K) + 2ε.

7. Show that µ(B) ≤ α and conclude that µ is inner-regular.
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Exercise 12. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let µ be a locally finite measure on (Ω,B(Ω)). Let (Kn)n≥1 be
a sequence of compact subsets of Ω such that Kn ↑ Ω. Let B ∈ B(Ω),
and α ∈ R be such that α < µ(B).

1. Show that µ(Kn ∩B) ↑ µ(B).

2. Show the existence of K ⊆ Ω compact, with α < µ(K ∩B).

3. Let µK = µ(K ∩ · ). Show that µK is a finite measure, and
conclude that µK(B) = sup{µK(K∗) : K∗ ⊆ B , K∗ compact}.

4. Show the existence of a compact subset K∗ of Ω, such that
K∗ ⊆ B and α < µ(K ∩K∗).

5. Show that K∗ is closed in Ω.

6. Show that K ∩K∗ is closed in K.

7. Show that K ∩K∗ is compact.
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8. Show that α < sup{µ(K ′) : K ′ ⊆ B , K ′ compact}.

9. Show that µ(B) ≤ sup{µ(K ′) : K ′ ⊆ B , K ′ compact}.

10. Conclude that µ is inner-regular.

Exercise 13. Let (Ω, T ) be a metrizable topological space.

1. Show that (Ω, T ) is separable if and only if it has a countable
base.

2. Show that if (Ω, T ) is compact, for all n ≥ 1, Ω can be covered
by a finite number of open balls with radius 1/n.

3. Show that if (Ω, T ) is compact, then it is separable.
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Exercise 14. Let (Ω, T ) be a metrizable and σ-compact topological
space with metric d. Let (Kn)n≥1 be a sequence of compact subsets
of Ω such that Kn ↑ Ω.

1. For all n ≥ 1, give a metric on Kn inducing the topology T|Kn .

2. Show that (Kn, T|Kn) is separable. Let (xpn)p≥1 be a countable
dense family of (Kn, T|Kn).

3. Show that (xpn)n,p≥1 is a countable dense family of (Ω, T ), and
conclude with the following:

Theorem 72 Let (Ω, T ) be a metrizable and σ-compact topological
space. Then, (Ω, T ) is separable and has a countable base.

Exercise 15. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let µ be a locally finite measure on (Ω,B(Ω)). Let H be a
countable base of (Ω, T ). We define H′ = {V ∈ H : µ(V ) < +∞}.
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1. Show that for all U open in Ω and x ∈ U , there is Ux open in
Ω such that x ∈ Ux ⊆ U and µ(Ux) < +∞.

2. Show the existence of Vx ∈ H such that x ∈ Vx ⊆ Ux.

3. Conclude that H′ is a countable base of (Ω, T ).

4. Show the existence of a sequence (Vn)n≥1 of open sets in Ω with:

Ω =
+∞⋃
n=1

Vn , µ(Vn) < +∞ , ∀n ≥ 1

Exercise 16. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let µ be a locally finite measure on (Ω,B(Ω)). Let (Vn)n≥1 a
sequence of open subsets of Ω such that:

Ω =
+∞⋃
n=1

Vn , µ(Vn) < +∞ , ∀n ≥ 1

Let B ∈ B(Ω) and α = inf{µ(G) : B ⊆ G , G open}.
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1. Given ε > 0, show that there exists Gn open in Ω such that
B ⊆ Gn and µVn(Gn \B) ≤ ε/2n, where µVn = µ(Vn ∩ · ).

2. Let G = ∪+∞
n=1(Vn∩Gn). Show that G is open in Ω, and B ⊆ G.

3. Show that G \B = ∪+∞
n=1Vn ∩ (Gn \B).

4. Show that µ(G) ≤ µ(B) + ε.

5. Show that α ≤ µ(B).

6. Conclude that is µ outer-regular.

7. Show the following:

Theorem 73 Let µ be a locally finite measure on a metrizable and
σ-compact topological space (Ω, T ). Then, µ is regular, i.e.:

µ(B) = sup{µ(K) : K ⊆ B , K compact}
= inf{µ(G) : B ⊆ G , G open}

for all B ∈ B(Ω).
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Exercise 17. Show the following:

Theorem 74 Let Ω be an open subset of Rn, where n ≥ 1. Any
locally finite measure on (Ω,B(Ω)) is regular.

Definition 104 We call strongly σ-compact topological space, a
topological space (Ω, T ), for which there exists a sequence (Vn)n≥1 of
open sets with compact closure, such that Vn ↑ Ω.

Definition 105 We call locally compact topological space, a topo-
logical space (Ω, T ), for which every x ∈ Ω has an open neighborhood
with compact closure, i.e. such that:

∀x ∈ Ω , ∃U ∈ T : x ∈ U , Ū is compact
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Exercise 18. Let (Ω, T ) be a σ-compact and locally compact topo-
logical space. Let (Kn)n≥1 be a sequence of compact subsets of Ω
such that Kn ↑ Ω.

1. Show that for all n ≥ 1, there are open sets V n1 , . . . , V
n
pn , pn ≥ 1,

such that Kn ⊆ V n1 ∪ . . . ∪ V npn and V̄ n1 , . . . , V̄
n
pn are compact

subsets of Ω.

2. Define Wn = V n1 ∪ . . .∪V npn and Vn = ∪nk=1Wk, for n ≥ 1. Show
that (Vn)n≥1 is a sequence of open sets in Ω with Vn ↑ Ω.

3. Show that W̄n = V̄ n1 ∪ . . . ∪ V̄ npn for all n ≥ 1.

4. Show that W̄n is compact for all n ≥ 1.

5. Show that V̄n is compact for all n ≥ 1

6. Conclude with the following:
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Theorem 75 A topological space (Ω, T ) is strongly σ-compact, if
and only if it is σ-compact and locally compact.

Exercise 19. Let (Ω, T ) be a topological space and Ω′ be an open
subset of Ω. Let A ⊆ Ω′. We denote ĀΩ′ the closure of A in the
induced topological space (Ω′, T|Ω′), and Ā its closure in Ω.

1. Show that A ⊆ Ω′ ∩ Ā.

2. Show that Ω′ ∩ Ā is closed in Ω′.

3. Show that ĀΩ′ ⊆ Ω′ ∩ Ā.

4. Let x ∈ Ω′ ∩ Ā. Show that if x ∈ U ′ ∈ T|Ω′ , then A ∩ U ′ 6= ∅.

5. Show that ĀΩ′ = Ω′ ∩ Ā.
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Exercise 20. Let (Ω, d) be a metric space.

1. Show that for all x ∈ Ω and ε > 0, we have:

B(x, ε) ⊆ {y ∈ Ω : d(x, y) ≤ ε}

2. Take Ω = [0, 1/2[∪{1}. Show that B(0, 1) = [0, 1/2[.

3. Show that [0, 1/2[ is closed in Ω.

4. Show that B(0, 1) = [0, 1/2[.

5. Conclude that B(0, 1) 6= {y ∈ Ω : |y| ≤ 1} = Ω.

Exercise 21. Let (Ω, d) be a locally compact metric space. Let Ω′

be an open subset of Ω. Let x ∈ Ω′.

1. Show there exists U open with compact closure, such that x ∈ U .

2. Show the existence of ε > 0 such that B(x, ε) ⊆ U ∩ Ω′.
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3. Show that B(x, ε/2) ⊆ Ū .

4. Show that B(x, ε/2) is closed in Ū .

5. Show that B(x, ε/2) is a compact subset of Ω.

6. Show that B(x, ε/2) ⊆ Ω′.

7. Let U ′ = B(x, ε/2) ∩ Ω′ = B(x, ε/2). Show x ∈ U ′ ∈ T|Ω′ , and:

Ū ′Ω
′

= B(x, ε/2)

8. Show that the induced topological space Ω′ is locally compact.

9. Prove the following:

Theorem 76 Let (Ω, T ) be a metrizable and strongly σ-compact
topological space. Then, for all Ω′ open subset of Ω, the induced topo-
logical space (Ω′, T|Ω′) is itself metrizable and strongly σ-compact.
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Definition 106 Let (Ω, T ) be a topological space, and φ : Ω→ C be
a map. We call support of φ, the closure of the set {φ 6= 0}, i.e.:

supp(φ)
4
= {ω ∈ Ω : φ(ω) 6= 0}

Definition 107 Let (Ω, T ) be a topological space. We denote CcK(Ω)
the K-vector space of all continuous map with compact support
φ : Ω→ K, where K = R or K = C.

Exercise 22. Let (Ω, T ) be a topological space.

1. Show that 0 ∈ CcK(Ω).

2. Show that CcK(Ω) is indeed a K-vector space.

3. Show that CcK(Ω) ⊆ CbK(Ω).

Exercise 23. let (Ω, d) be a locally compact metric space. let K be
a compact subset of Ω, and G be open in Ω, with K ⊆ G.
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1. Show the existence of open sets V1, . . . , Vn such that:

K ⊆ V1 ∪ . . . ∪ Vn
and V̄1, . . . , V̄n are compact subsets of Ω.

2. Show that V = (V1∪ . . .∪Vn)∩G is open in Ω, and K ⊆ V ⊆ G.

3. Show that V̄ ⊆ V̄1 ∪ . . . ∪ V̄n.

4. Show that V̄ is compact.

5. We assume K 6= ∅ and V 6= Ω, and we define φ : Ω→ R by:

∀x ∈ Ω , φ(x)
4
=

d(x, V c)
d(x, V c) + d(x,K)

6. Show that φ is well-defined and continuous.

7. Show that {φ 6= 0} = V .

8. Show that φ ∈ CcR(Ω).
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9. Show that 1K ≤ φ ≤ 1G.

10. Show that if K = ∅, there is φ ∈ CcR(Ω) with 1K ≤ φ ≤ 1G.

11. Show that if V = Ω then Ω is compact.

12. Show that if V = Ω, there φ ∈ CcR(Ω) with 1K ≤ φ ≤ 1G.

Theorem 77 Let (Ω, T ) be a metrizable and locally compact topolog-
ical space. Let K be a compact subset of Ω, and G be an open subset
of Ω such that K ⊆ G. Then, there exists φ ∈ CcR(Ω), real-valued
continuous map with compact support, such that:

1K ≤ φ ≤ 1G

Exercise 24. Let (Ω, T ) be a metrizable and strongly σ-compact
topological space. Let µ be a locally finite measure on (Ω,B(Ω)). Let
B ∈ B(Ω) be such that µ(B) < +∞. Let p ∈ [1,+∞[.

1. Show that CcK(Ω) ⊆ LpK(Ω,B(Ω), µ).
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2. Let ε > 0. Show the existence of K compact and G open, with:

K ⊆ B ⊆ G , µ(G \K) ≤ ε

3. Where did you use the fact that µ(B) < +∞?

4. Show the existence of φ ∈ CcR(Ω) with 1K ≤ φ ≤ 1G.

5. Show that: ∫
|φ− 1B|pdµ ≤ µ(G \K)

6. Conclude that for all ε > 0, there exists φ ∈ CcR(Ω) such that:

‖φ− 1B‖p ≤ ε

7. Let s ∈ SC(Ω,B(Ω)) ∩ LpC(Ω,B(Ω), µ). Show that for all ε > 0,
there exists φ ∈ CcC(Ω) such that ‖φ− s‖p ≤ ε.

8. Prove the following:
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Theorem 78 Let (Ω, T ) be a metrizable and strongly σ-compact
topological space1. Let µ be a locally finite measure on (Ω,B(Ω)).
Then, for all p ∈ [1,+∞[, the space CcK(Ω) of K-valued, continuous
maps with compact support, is dense in LpK(Ω,B(Ω), µ).

Exercise 25. Prove the following:

Theorem 79 Let Ω be an open subset of Rn, where n ≥ 1. Then,
for any locally finite measure µ on (Ω,B(Ω)) and p ∈ [1,+∞[, CcK(Ω)
is dense in LpK(Ω,B(Ω), µ).

1i.e. a metrizable topological space for which there exists a sequence (Vn)n≥1

of open sets with compact closure, such that Vn ↑ Ω.
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14. Maps of Finite Variation
Definition 108 We call total variation of a map b : R+ → C the
map |b| : R+ → [0,+∞] defined as:

∀t ∈ R+ , |b|(t) 4= |b(0)|+ sup
n∑
i=1

|b(ti)− b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn in [0, t], n ≥ 1.
We say that b is of finite variation, if and only if:

∀t ∈ R+ , |b|(t) < +∞

We say that b is of bounded variation, if and only if:

sup
t∈R+

|b|(t) < +∞

Warning: The notation |b| can be misleading: it can refer to the map
t→ |b(t)|(modulus), or to the map t→ |b|(t) (total variation).
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Exercise 1. Let a : R+ → R+ be non-decreasing with a(0) ≥ 0.

1. Show that |a| = a and a is of finite variation.

2. Show that the limit a(∞) = limt→+∞ a(t) exists in R̄.

3. Show that a is of bounded variation if and only if a(∞) < +∞.

Exercise 2. Let b = b1 + ib2 : R+ → C be a map.

1. Show that |b1| ≤ |b| and |b2| ≤ |b|.

2. Show that |b| ≤ |b1|+ |b2|.

3. Show that b is of finite variation if and only if b1, b2 are.

4. Show that b is of bounded variation if and only if b1, b2 are.

5. Show that |b|(0) = |b(0)|.
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Exercise 3. Let b : R+ → R be continuous and differentiable, such
that b′ is bounded on each compact interval. Show that b is of finite
variation.

Exercise 4. Show that if b : R+ → C is of class C1, i.e. continu-
ous and differentiable with continuous derivative, then b is of finite
variation.

Exercise 5. Let f : (R+,B(R+))→ (C,B(C)) be a measurable map,
with

∫ t
0
|f(s)|ds < +∞ for all t ∈ R+. Let b : R+ → C defined by:

∀t ∈ R+ , b(t)
4
=
∫

R+
f1[0,t]ds

1. Show that b is of finite variation and:

∀t ∈ R+ , |b|(t) ≤
∫ t

0

|f(s)|ds

2. Show that f ∈ L1
C(R+,B(R+), ds) ⇒ b is of bounded variation.
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Exercise 6. Show that if b, b′ : R+ → C are maps of finite variation,
and α ∈ C, then b + αb′ is also a map of finite variation. Prove the
same result when the word ’finite’ is replaced by ’bounded’.

Exercise 7. Let b : R+ → C be a map. For all t ∈ R+, let S(t)
be the set of all finite subsets A of [0, t], with cardA ≥ 2. For all
A ∈ S(t), we define:

S(A)
4
=

n∑
i=1

|b(ti)− b(ti−1)|

where it is understood that t0, . . . , tn are such that:

t0 < t1 < . . . < tn and A = {t0, . . . , tn} ⊆ [0, t]

1. Show that for all t ∈ R+, if s0 ≤ . . . ≤ sp (p ≥ 1) is a finite
sequence in [0, t], then if:

S
4
=

p∑
j=1

|b(sj)− b(sj−1)|
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either S = 0 or S = S(A) for some A ∈ S(t).

2. Conclude that:

∀t ∈ R+ , |b|(t) = |b(0)|+ sup{S(A) : A ∈ S(t)}

3. Let A ∈ S(t) and s ∈ [0, t]. Show that S(A) ≤ S(A ∪ {s}).

4. Let A,B ∈ S(t). Show that:

A ⊆ B ⇒ S(A) ≤ S(B)

5. Show that if t0 ≤ . . . ≤ tn, n ≥ 1, and s0 ≤ . . . ≤ sp, p ≥ 1, are
finite sequence in [0, t] such that:

{t0, . . . , tn} ⊆ {s0, . . . , sp}
then:

n∑
i=1

|b(ti)− b(ti−1)| ≤
p∑
j=1

|b(sj)− b(sj−1)|
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Exercise 8. Let b : R+ → C be of finite variation. Let s, t ∈ R+,
with s ≤ t. We define:

δ
4
= sup

n∑
i=1

|b(ti)− b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn, n ≥ 1, in [s, t].

1. let s0 ≤ . . . ≤ sp and t0 ≤ . . . ≤ tn be finite sequences in [0, s]
and [s, t] respectively, where n, p ≥ 1. Show that:

p∑
j=1

|b(sj)− b(sj−1)|+ |b(t0)− b(sp)|+
n∑
i=1

|b(ti)− b(ti−1)|

is less or equal than |b|(t)− |b(0)|.

2. Show that δ ≤ |b|(t)− |b|(s).

3. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], where n ≥ 1, and
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suppose that s = tj for some 0 < j < n. Show that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(s)− |b(0)|+ δ (1)

4. Show that inequality (1) holds, for all t0 ≤ . . . ≤ tn in [0, t].

5. Prove the following:

Theorem 80 Let b : R+ → C be a map of finite variation. Then,
for all s, t ∈ R+, s ≤ t, we have:

|b|(t)− |b|(s) = sup
n∑
i=1

|b(ti)− b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn, n ≥ 1, in [s, t].

Exercise 9. Let b : R+ → C be a map of finite variation. Show that
|b| is non-decreasing with |b|(0) ≥ 0, and ||b|| = |b|.
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Definition 109 Let b : R+ → R be a map of finite variation. Let:

|b|+ 4
=

1
2

(|b|+ b)

|b|− 4
=

1
2

(|b| − b)

|b|+, |b|− are respectively the positive, negative variation of b.

Exercise 10. Let b : R+ → R be a map of finite variation.

1. Show that |b| = |b|+ + |b|− and b = |b|+ − |b|−.

2. Show that |b|+(0) = b+(0) ≥ 0 and |b|−(0) = b−(0) ≥ 0.

3. Show that for all s, t ∈ R+, s ≤ t, we have:

|b(t)− b(s)| ≤ |b|(t)− |b|(s)

4. Show that |b|+ and |b|− are non-decreasing.
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Exercise 11. Let b : R+ → C be of finite variation. Show the
existence of b1, b2, b3, b4 : R+ → R+, non-decreasing with bi(0) ≥ 0,
such that b = b1− b2 + i(b3− b4). Show conversely that if b : R+ → C
is a map with such decomposition, then it is of finite variation.

Exercise 12. Let b : R+ → C be a right-continuous map of finite
variation, and x0 ∈ R+.

1. Show that |b|(x0+) = limt↓↓x0 |b|(t) = infx0<t |b|(t) ∈ R.

2. Show that |b|(x0) ≤ |b|(x0+).

3. Given ε > 0, show the existence of y0 ∈ R+, x0 < y0, such that:

u ∈]x0, y0] ⇒ |b(u)− b(x0)| ≤ ε/2
u ∈]x0, y0] ⇒ |b|(y0)− |b|(u) ≤ ε/2
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Exercise 13. Further to exercise (12), let t0 ≤ . . . ≤ tn, n ≥ 1, be
a finite sequence in [0, y0], such that x0 = tj for some 0 < j < n− 1.
We choose j to be the maximum index satisfying this condition, so
that x0 < tj+1 ≤ y0.

1. Show that
∑j
i=1 |b(ti)− b(ti−1)| ≤ |b|(x0)− |b(0)|.

2. Show that |b(tj+1)− b(tj)| ≤ ε/2.

3. Show that
∑n
i=j+2 |b(ti)− b(ti−1)| ≤ |b|(y0)− |b|(tj+1) ≤ ε/2.

4. Show that for all finite sequence t0 ≤ . . . ≤ tn, n ≥ 1, in [0, y0]:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(x0)− |b(0)|+ ε

5. Show that |b|(y0) ≤ |b|(x0) + ε.

6. Show that |b|(x0+) ≤ |b|(x0) and that |b| is right-continuous.
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Exercise 14. Let b : R+ → C be a left-continuous map of finite
variation, and let x0 ∈ R+ \ {0}.

1. Show that |b|(x0−) = limt↑↑x0 |b|(t) = supt<x0
|b|(t) ∈ R.

2. Show that |b|(x0−) ≤ |b|(x0).

3. Given ε > 0, show the existence of y0 ∈]0, x0[, such that:

u ∈ [y0, x0[ ⇒ |b(x0)− b(u)| ≤ ε/2
u ∈ [y0, x0[ ⇒ |b|(u)− |b|(y0) ≤ ε/2

Exercise 15. Further to exercise (14), let t0 ≤ . . . ≤ tn, n ≥ 1, be
a finite sequence in [0, x0], such that y0 = tj for some 0 < j < n− 1,
and x0 = tn. We denote k = max{i : j ≤ i , ti < x0}.

1. Show that j ≤ k ≤ n− 1 and tk ∈ [y0, x0[.

2. Show that
∑j
i=1 |b(ti)− b(ti−1)| ≤ |b|(y0)− |b(0)|.
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3. Show that
∑k

i=j+1 |b(ti) − b(ti−1)| ≤ |b|(tk) − |b|(y0) ≤ ε/2,
where if j = k, the corresponding sum is zero.

4. Show that
∑n
i=k+1 |b(ti)− b(ti−1)| = |b(x0)− b(tk)| ≤ ε/2.

5. Show that for all finite sequence t0 ≤ . . . ≤ tn, n ≥ 1, in [0, x0]:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(y0)− |b(0)|+ ε

6. Show that |b|(x0) ≤ |b|(y0) + ε.

7. Show that |b|(x0) ≤ |b|(x0−) and that |b| is left-continuous.

8. Prove the following:

Theorem 81 Let b : R+ → C be a map of finite variation. Then:

b is right-continuous ⇒ |b| is right-continuous
b is left-continuous ⇒ |b| is left-continuous

b is continuous ⇒ |b| is continuous
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Exercise 16. Let b : R+ → R be an R-valued map of finite variation.

1. Show that if b is right-continuous, then so are |b|+ and |b|−.

2. State and prove similar results for left-continuity and continuity.

Exercise 17. Let b : R+ → C be a right-continuous map of finite
variation. Show the existence of b1, b2, b3, b4 : R+ → R+, right-
continuous and non-decreasing maps with bi(0) ≥ 0, such that:

b = b1 − b2 + i(b3 − b4)

Exercise 18. Let b : R+ → C be a right-continuous map. Let
t ∈ R+. For all p ≥ 1, we define:

Sp
4= |b(0)|+

2p∑
k=1

|b(kt/2p)− b((k − 1)t/2p)|

1. Show that for all p ≥ 1, Sp ≤ Sp+1 and define S = supp≥1 Sp.
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2. Show that S ≤ |b|(t).

Exercise 19. Further to exercise (18), let t0 < . . . < tn be a finite
sequence of distinct elements of [0, t]. Let ε > 0.

1. Show that for all i = 0, . . . , n, there exists pi ≥ 1 and
qi ∈ {0, 1, . . . , 2pi} such that:

0 ≤ t0 ≤
q0t

2p0
< t1 ≤

q1t

2p1
< . . . < tn ≤

qnt

2pn
≤ t

and:
|b(ti)− b(qit/2pi)| ≤ ε , ∀i = 0, . . . , n

2. Show the existence of p ≥ 1, and k0, . . . , kn ∈ {0, . . . , 2p} with:

0 ≤ t0 ≤
k0t

2p
< t1 ≤

k1t

2p
< . . . < tn ≤

knt

2p
≤ t

and:
|b(ti)− b(kit/2p)| ≤ ε , ∀i = 0, . . . , n
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3. Show that:
n∑
i=1

|b(kit/2p)− b(ki−1t/2p)| ≤ Sp − |b(0)|

4. Show that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ S − |b(0)|+ 2nε

5. Show that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ S − |b(0)|

6. Conclude that |b|(t) ≤ S.

7. Prove the following:
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Theorem 82 Let b : R+ → C be right-continuous or left-continuous.
Then, for all t ∈ R+:

|b|(t) = |b(0)|+ lim
n→+∞

2n∑
k=1

|b(kt/2n)− b((k − 1)t/2n)|

Exercise 20. Let b : R+ → R+ be defined by b = 1Q+ . Show that:

+∞ = |b|(1) 6= lim
n→+∞

2n∑
k=1

|b(k/2n)− b((k − 1)/2n)| = 0

Exercise 21. b : R+ → C is right-continuous of bounded variation.

1. Let b = b1 + ib2. Explain why d|b1|+, d|b1|−, d|b2|+ and d|b2|−
are all well-defined measures on (R+,B(R+)).

2. Is this still true, if b is right-continuous of finite variation?

3. Show that d|b1|+, d|b1|−, d|b2|+ and d|b2|− are finite measures.
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4. Let db = d|b1|+ − d|b1|− + i(d|b2|+ − d|b2|−). Show that db is a
well-defined complex measure on (R+,B(R+)).

5. Show that db({0}) = b(0).

6. Show that for all s, t ∈ R+, s ≤ t, db(]s, t]) = b(t)− b(s).

7. Show that limt→+∞ b(t) exists in C. We denote b(∞) this limit.

8. Show that db(R+) = b(∞).

9. Proving the uniqueness of db, justify the following:

Definition 110 Let b : R+ → C be a right-continuous map of
bounded variation. There exists a unique complex measure db on
(R+,B(R+)), such that:

(i) db({0}) = b(0)
(ii) ∀s, t ∈ R+ s ≤ t , db(]s, t]) = b(t)− b(s)

db is called the complex stieltjes measure associated with b.
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Exercise 22. Show that if a : R+ → R+ is right-continuous, non-
decreasing with a(0) ≥ 0 and a(∞) < +∞, then definition (110) of
da coincide with the already known definition (24).

Exercise 23. b : R+ → C is right-continuous of finite variation.

1. Let b = b1 + ib2. Explain why d|b1|+, d|b1|−, d|b2|+ and d|b2|−
are all well-defined measures on (R+,B(R+)).

2. Why is it in general impossible to define:

db
4
= d|b1|+ − d|b1|− + i(d|b2|+ − d|b2|−)

Warning: it does not make sense to write something like ’db’, unless
b is either right-continuous, non-decreasing and b(0) ≥ 0, or b is a
right-continuous map of bounded variation.

Exercise 24. Let b : R+ → C be a map. For all T ∈ R+, we define
bT : R+ → C as bT (t) = b(T ∧ t) for all t ∈ R+.

1. Show that for all T ∈ R+, |bT | = |b|T .
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2. Show that if b is of finite variation, then for all T ∈ R+, bT is
of bounded variation, and we have |bT |(∞) = |b|(T ) < +∞.

3. Show that if b is right-continuous and of finite variation, for all
T ∈ R+, dbT is the unique complex measure on R+, with:

(i) dbT ({0}) = b(0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t)− b(T ∧ s)

4. Show that if b is R-valued and of finite variation, for all T ∈ R+,
we have |bT |+ = (|b|+)T and |bT |− = (|b|−)T .

5. Show that if b is right-continuous and of bounded variation, for
all T ∈ R+, we have dbT = db[0,T ] = db([0, T ] ∩ · )

6. Show that if b is right-continuous, non-decreasing with b(0) ≥ 0,
for all T ∈ R+, we have dbT = db[0,T ] = db([0, T ] ∩ · )
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Exercise 25. Let µ, ν be two finite measures on R+, such that:

(i) µ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , µ(]s, t]) ≤ ν(]s, t])

We define a, c : R+ → R+ by a(t) = µ([0, t]) and c(t) = ν([0, t]).

1. Show that a and c are right-continuous, non-decreasing with
a(0) ≥ 0 and c(0) ≥ 0.

2. Show that da = µ and dc = ν.

3. Show that a ≤ c.

4. Define b : R+ → R+ by b = c − a. Show that b is right-
continuous, non-decreasing with b(0) ≥ 0.

5. Show that da+ db = dc.

6. Conclude with the following:
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Theorem 83 Let µ, ν be two finite measures on (R+,B(R+)) with:

(i) µ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , µ(]s, t]) ≤ ν(]s, t])

Then µ ≤ ν, i.e. for all B ∈ B(R+), µ(B) ≤ ν(B).

Exercise 26. b : R+ → C is right-continuous of bounded variation.

1. Show that |db|({0}) = |b(0)| = d|b|({0}). Let s, t ∈ R+, s ≤ t.

2. Let t0 ≤ . . . ≤ tn be a finite sequence in [s, t]. Show:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |db|(]s, t])

3. Show that |b|(t)− |b|(s) ≤ |db|(]s, t]).

4. Show that d|b| ≤ |db|.
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5. Show that L1
C(R+,B(R+), |db|) ⊆ L1

C(R+,B(R+), d|b|).

6. Show that R+ is metrizable and strongly σ-compact.

7. Show that CcC(R+), CbC(R+) are dense in L1
C(R+,B(R+), |db|).

8. Let h ∈ L1
C(R+,B(R+), |db|). Given ε > 0, show the existence

of φ ∈ CbC(R+) such that
∫
|φ− h||db| ≤ ε.

9. Show that |
∫
hdb| ≤ |

∫
φdb|+ ε.

10. Show that:∣∣∣∣∫ |φ|d|b| − ∫ |h|d|b|∣∣∣∣ ≤ ∫ |φ− h|d|b| ≤ ∫ |φ− h||db|
11. Show that

∫
|φ|d|b| ≤

∫
|h|d|b|+ ε.

12. For all n ≥ 1, we define:

φn
4
= φ(0)1{0} +

n2n−1∑
k=0

φ(k/2n)1]k/2n,(k+1)/2n]
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Show there is M ∈ R+, such that |φn(x)| ≤M for all x and n.

13. Using the continuity of φ, show that φn → φ.

14. Show that lim
∫
φndb =

∫
φdb.

15. Show that lim
∫
|φn|d|b| =

∫
|φ|d|b|.

16. Show that for all n ≥ 1:∫
φndb = φ(0)b(0) +

n2n−1∑
k=0

φ(k/2n)(b((k + 1)/2n)− b(k/2n))

17. Show that |
∫
φndb| ≤

∫
|φn|d|b| for all n ≥ 1.

18. Show that |
∫
φdb| ≤

∫
|φ|d|b|.

19. Show that |
∫
hdb| ≤

∫
|h|d|b|+ 2ε.

20. Show that |
∫
hdb| ≤

∫
|h|d|b| for all h ∈ L1

C(R+,B(R+), |db|).
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21. Let B ∈ B(R+) and h ∈ L1
C(R+,B(R+), |db|) be such that

|h| = 1 and db =
∫
h|db|. Show that |db|(B) =

∫
B
h̄db.

22. Conclude that |db| ≤ d|b|.

Exercise 27. b : R+ → C is right-continuous of finite variation.

1. Show that for all T ∈ R+, |dbT | = d|bT | and d|bT | = d|b|T .

2. Show that d|b|T = d|b|[0,T ] = d|b|([0, T ] ∩ · ), and conclude:

Theorem 84 If b : R+ → C is right-continuous of bounded varia-
tion, the total variation of its associated complex stieltjes measure, is
equal to the stieltjes measure associated with its total variation, i.e.

|db| = d|b|
If b : R+ → C is right-continuous of finite variation, then for all
T ∈ R+, bT defined by bT (t) = b(T ∧t), is right-continuous of bounded
variation, and we have |dbT | = d|b|([0, T ] ∩ · ).
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Definition 111 Let b : R+ → E be a map, where E is a topological
space. We say that b is cadlag with respect to E, if and only if b is
right-continuous, and the limit:

b(t−) = lim
s↑↑t

b(s)

exists in E, for all t ∈ R+ \ {0}. In the case when E = C, given b
cadlag, we define b(0−) = 0, and for all t ∈ R+:

∆b(t)
4
= b(t)− b(t−)

Exercise 28. Let b : R+ → E be cadlag, where E is a topological
space. Suppose b has values in E′ ⊆ E.

1. Explain why b may not be cadlag with respect to E′.

2. Show that b is cadlag with respect to Ē′.

3. Show that b : R+ → R is cadlag ⇔ it is cadlag w.r. to C.
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Exercise 29.

1. Show that if b : R+ → C is cadlag, then b is continuous with
b(0) = 0 if and only if ∆b(t) = 0 for all t ∈ R+.

2. Show that if a : R+ → R+ is right-continuous, non-decreasing
with a(0) ≥ 0, then a is cadlag (w.r. to R) with ∆a ≥ 0.

3. Show that any linear combination of cadlag maps is itself cadlag.

4. Show that if b : R+ → C is a right-continuous map of finite
variation, then b is cadlag.

5. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. Show that da({t}) = ∆a(t) for all t ∈ R+.

6. Let b : R+ → C be a right-continuous map of bounded varia-
tion. Show that db({t}) = ∆b(t) for all t ∈ R+.
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7. Let b : R+ → C be a right-continuous map of finite variation.
Let T ∈ R+. Show that:

∀t ∈ R+ , bT (t−) =
{
b(t−) if t ≤ T
b(T ) if T < t

Show that ∆bT = (∆b)1[0,T ], and dbT ({t}) = ∆b(t)1[0,T ](t).

Exercise 30. Let b : R+ → C be a cadlag map and T ∈ R+.

1. Show that if t → b(t−) is not bounded on [0, T ], there exists a
sequence (tn)n≥1 in [0, T ] such that |b(tn)| → +∞.

2. Suppose from now on that b is not bounded on [0, T ]. Show the
existence of a sequence (tn)n≥1 in [0, T ], such that tn → t for
some t ∈ [0, T ], and |b(tn)| → +∞.

3. Define R = {n ≥ 1 : t ≤ tn} and L = {n ≥ 1 : tn < t}. Show
that R and L cannot be both finite.
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4. Suppose that R is infinite. Show the existence of n1 ≥ 1, with:

tn1 ∈ [t, t+ 1[∩[0, T ]

5. If R is infinite, show there is n1 < n2 < . . . such that:

tnk ∈ [t, t+
1
k

[∩[0, T ] , ∀k ≥ 1

6. Show that |b(tnk)| 6→ +∞.

7. Show that if L is infinite, then t > 0 and there is an increasing
sequence n1 < n2 < . . ., such that:

tnk ∈]t− 1
k
, t[∩[0, T ] , ∀k ≥ 1

8. Show that: |b(tnk)| 6→ +∞.

9. Prove the following:
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Theorem 85 Let b : R+ → C be a cadlag map. Let T ∈ R+. Then
b and t→ b(t−) are bounded on [0, T ], i.e. there exists M ∈ R+ such
that:

|b(t)| ∨ |b(t−)| ≤M , ∀t ∈ [0, T ]
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15. Stieltjes Integration
Definition 112 b : R+ → C is right-continuous of finite variation.
The stieltjes L1-spaces associated with b are defined as:

L1
C(b)

4
=

{
f : R+ → C measurable,

∫
|f |d|b| < +∞

}
L1,loc

C (b)
4
=

{
f : R+ → C measurable,

∫ t

0

|f |d|b| < +∞, ∀t ∈ R+

}
Warning : In these tutorials,

∫ t
0 . . . refers to

∫
[0,t] . . ., i.e. the domain

of integration is always [0, t], not ]0, t], [0, t[, or ]0, t[.

Exercise 1. b : R+ → C is right-continuous of finite variation.

1. Propose a definition for L1
R(b) and L1,loc

R (b).

2. Is L1
C(b) the same thing as L1

C(R+,B(R+), d|b|)?

3. Is it meaningful to speak of L1
C(R+,B(R+), |db|)?
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4. Show that L1
C(b) = L1

C(|b|) and L1,loc
C (b) = L1,loc

C (|b|).

5. Show that L1
C(b) ⊆ L1,loc

C (b).

Exercise 2. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. For all f ∈ L1,loc

C (a), we define f.a : R+ → C as:

f.a(t)
4
=
∫ t

0

fda , ∀t ∈ R+

1. Explain why f.a : R+ → C is a well-defined map.

2. Let t ∈ R+, (tn)n≥1 be a sequence in R+ with tn ↓↓ t. Show:

lim
n→+∞

∫
f1[0,tn]da =

∫
f1[0,t]da

3. Show that f.a is right-continuous.
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4. Let t ∈ R+ and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]. Show:
n∑
i=1

|f.a(ti)− f.a(ti−1)| ≤
∫

]0,t]

|f |da

5. Show that f.a is a map of finite variation with:

|f.a|(t) ≤
∫ t

0

|f |da , ∀t ∈ R+

Exercise 3. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let f ∈ L1

C(a).

1. Show that f.a is a right-continuous map of bounded variation.

2. Show d(f.a)([0, t]) = ν([0, t]), for all t ∈ R+, where ν =
∫
fda.

3. Prove the following:
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Theorem 86 Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let f ∈ L1

C(a). The map f.a : R+ → C defined by:

f.a(t)
4
=
∫ t

0

fda , ∀t ∈ R+

is a right-continuous map of bounded variation, and its associated
complex stieltjes measure is given by d(f.a) =

∫
fda, i.e.

d(f.a)(B) =
∫
B

fda , ∀B ∈ B(R+)

Exercise 4. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let f ∈ L1,loc

R (a), f ≥ 0.

1. Show f.a is right-continuous, non-decreasing with f.a(0) ≥ 0.

2. Show d(f.a)([0, t]) = µ([0, t]), for all t ∈ R+, where µ =
∫
fda.

3. Prove that d(f.a)([0, T ] ∩ · ) = µ([0, T ] ∩ · ), for all T ∈ R+.
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4. Prove with the following:

Theorem 87 Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let f ∈ L1,loc

R (a), f ≥ 0. The map f.a : R+ → R+

defined by:

f.a(t)
4
=
∫ t

0

fda , ∀t ∈ R+

is right-continuous, non-decreasing with (f.a)(0) ≥ 0, and its associ-
ated stieltjes measure is given by d(f.a) =

∫
fda, i.e.

d(f.a)(B) =
∫
B

fda , ∀B ∈ B(R+)

Exercise 5. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let f ∈ L1,loc

C (a) and T ∈ R+.

1. Show that
∫
|f |1[0,T ]da =

∫
|f |da[0,T ] =

∫
|f |daT .
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2. Show that f1[0,T ] ∈ L1
C(a) and f ∈ L1

C(aT ).

3. Show that (f.a)T = f.(aT ) = (f1[0,T ]).a.

4. Show that for all B ∈ B(R+):

d(f.a)T (B) =
∫
B

fdaT =
∫
B

f1[0,T ]da

5. Explain why it does not in general make sense to write:

d(f.a)T = d(f.a)([0, T ] ∩ · )

6. Show that for all B ∈ B(R+):

|d(f.a)T |(B) =
∫
B

|f |1[0,T ]da , ∀B ∈ B(R+)

7. Show that |d(f.a)T | = d|f.a|([0, T ] ∩ · )
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8. Show that for all t ∈ R+

|f.a|(t) = (|f |.a)(t) =
∫ t

0

|f |da

9. Show that f.a is of bounded variation if and only if f ∈ L1
C(a).

10. Show that ∆(f.a)(0) = f(0)∆a(0).

11. Let t > 0, (tn)n≥1 be a sequence in R+ with tn ↑↑ t. Show:

lim
n→+∞

∫
f1[0,tn]da =

∫
f1[0,t[da

12. Show that ∆(f.a)(t) = f(t)∆a(t) for all t ∈ R+.

13. Show that if a is continuous with a(0) = 0, then f.a is itself
continuous with (f.a)(0) = 0.

14. Prove with the following:
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Theorem 88 Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let f ∈ L1,loc

C (a). The map f.a : R+ → C defined by:

f.a(t)
4
=
∫ t

0

fda , ∀t ∈ R+

is right-continuous of finite variation, and we have |f.a| = |f |.a, i.e.

|f.a|(t) =
∫ t

0

|f |da , ∀t ∈ R+

In particular, f.a is of bounded variation if and only if f ∈ L1
C(a).

Furthermore, we have ∆(f.a) = f∆a.

Exercise 6. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let b : R+ → C be right-continuous of finite variation.

1. Prove the equivalence between the following:

(i) d|b| << da
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(ii) |dbT | << da , ∀T ∈ R+

(iii) dbT << da , ∀T ∈ R+

2. Does it make sense in general to write db << da?

Definition 113 Let a :R+→R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let b : R+ → C be right-continuous of finite variation.
We say that b is absolutely continuous with respect to a, and we
write b << a, if and only if, one of the following holds:

(i) d|b| << da

(ii) |dbT | << da , ∀T ∈ R+

(iii) dbT << da , ∀T ∈ R+

In other words, b is absolutely continuous w.r. to a, if and only if the
stieltjes measure associated with the total variation of b is absolutely
continuous w.r. to the stieltjes measure associated with a.
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Exercise 7. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let b : R+ → C be right-continuous of finite variation,
absolutely continuous w.r. to a, i.e. with b << a.

1. Show that for all T ∈ R+, there exits fT ∈ L1
C(a) such that:

dbT (B) =
∫
B

fTda , ∀B ∈ B(R+)

2. Suppose that T, T ′ ∈ R+ and T ≤ T ′. Show that:∫
B

fTda =
∫
B∩[0,T ]

fT ′da , ∀B ∈ B(R+)

3. Show that fT = fT ′1[0,T ] da-a.s.

4. Show the existence of a sequence (fn)n≥1 in L1
C(a), such that

for all 1 ≤ n ≤ p, fn = fp1[0,n] and:

∀n ≥ 1 , dbn(B) =
∫
B

fnda , ∀B ∈ B(R+)
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5. We define f : (R+,B(R+))→ (C,B(C)) by:

∀t ∈ R+ , f(t)
4
= fn(t) for any n ≥ 1 : t ∈ [0, n]

Explain why f is unambiguously defined.

6. Show that for all B ∈ B(C), {f ∈ B} = ∪+∞
n=1[0, n] ∩ {fn ∈ B}.

7. Show that f : (R+,B(R+))→ (C,B(C)) is measurable.

8. Show that f ∈ L1,loc
C (a) and that we have:

b(t) =
∫ t

0

fda , ∀t ∈ R+

9. Prove the following:
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Theorem 89 Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let b : R+ → C be a right-continuous map of finite
variation. Then, b is absolutely continuous w.r. to a, i.e. d|b| << da,

if and only if there exists f ∈ L1,loc
C (a) such that b = f.a, i.e.

b(t) =
∫ t

0

fda , ∀t ∈ R+

If b is R-valued, we can assume that f ∈ L1,loc
R (a).

If b is non-decreasing with b(0) ≥ 0, we can assume that f ≥ 0.

Exercise 8. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. Let f, g ∈ L1,loc

C (a) be such that f.a = g.a, i.e.:∫ t

0

fda =
∫ t

0

gda , ∀t ∈ R+
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1. Show that for all T ∈ R+ and B ∈ B(R+):

d(f.a)T (B) =
∫
B

f1[0,T ]da =
∫
B

g1[0,T ]da

2. Show that for all T ∈ R+, f1[0,T ] = g1[0,T ] da-a.s.

3. Show that f = g da-a.s.

Exercise 9. b : R+ → C is right-continuous of finite variation.

1. Show the existence of h ∈ L1,loc
C (|b|) such that b = h.|b|.

2. Show that for all B ∈ B(R+) and T ∈ R+:

dbT (B) =
∫
B

hd|b|T =
∫
B

h|dbT |

3. Show that |h| = 1 |dbT |-a.s. for all T ∈ R+.

4. Show that for all T ∈ R+, d|b|([0, T ] ∩ {|h| 6= 1}) = 0.



Tutorial 15: Stieltjes Integration 14

5. Show that |h| = 1 d|b|-a.s.

6. Prove the following:

Theorem 90 Let b : R+ → C be right-continuous of finite variation.
There exists h ∈ L1,loc

C (|b|) such that |h| = 1 and b = h.|b|, i.e.

b(t) =
∫ t

0

hd|b| , ∀t ∈ R+

Definition 114 b : R+ → C is right-continuous of finite variation.
For all f ∈ L1

C(b), the stieltjes integral of f with respect to b, is
defined as: ∫

fdb
4
=
∫
fhd|b|

where h ∈ L1,loc
C (|b|) is such that |h| = 1 and b = h.|b|.
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Warning : the notation
∫
fdb of definition (114) is controversial and

potentially confusing: ’db’ is not in general a complex measure on R+,
unless b is of bounded variation.

Exercise 10. b : R+ → C is right-continuous of finite variation.

1. Show that if f ∈ L1
C(b), then

∫
fhd|b| is well-defined.

2. Explain why, given f ∈ L1
C(b),

∫
fdb is unambiguously defined.

3. Show that if b is right-continuous, non-decreasing with b(0) ≥ 0,
definition (114) of

∫
fdb coincides with that of an integral w.r.

to the stieltjes measure db.

4. Show that if b is a right-continuous map of bounded variation,
definition (114) of

∫
fdb coincides with that of an integral w.r.

to the complex stieltjes measure db.
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Exercise 11. Let b : R+ → C be a right-continuous map of finite
variation. For all f ∈ L1,loc

C (b), we define f.b : R+ → C as:

f.b(t)
4
=
∫ t

0

fdb , ∀t ∈ R+

1. Explain why f.b : R+ → C is a well-defined map.

2. If b is right-continuous, non-decreasing with b(0) ≥ 0, show this
definition of f.b coincides with that of theorem (88).

3. Show f.b = (fh).|b|, where h ∈ L1,loc
C (|b|), |h| = 1, b = h.|b|.

4. Show that f.b : R+ → C is right-continuous of finite variation,
with |f.b| = |f |.|b|, i.e.

|f.b|(t) =
∫ t

0

|f |d|b| , ∀t ∈ R+

5. Show that f.b is of bounded variation if and only if f ∈ L1
C(b).
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6. Let t > 0, (tn)n≥1 be a sequence in R+ such that tn ↑↑ t. Show:

lim
n→+∞

∫
fh1[0,tn]d|b| =

∫
fh1[0,t[d|b|

7. Show that ∆(f.b) = f∆b.

8. Show that if b is continuous with b(0) = 0, then f.b is itself
continuous with (f.b)(0) = 0.

9. Prove the following:
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Theorem 91 Let b : R+ → C be right-continuous of finite variation.
For all f ∈ L1,loc

C (b), the map f.b : R+ → C defined by:

f.b(t)
4
=
∫ t

0

fdb , ∀t ∈ R+

is right-continuous of finite variation, and we have |f.b| = |f |.|b|, i.e.

|f.b|(t) =
∫ t

0

|f |d|b| , ∀t ∈ R+

In particular, f.b is of bounded variation if and only if f ∈ L1
C(b).

Furthermore, we have ∆(f.b) = f∆b.

Exercise 12. Let b : R+ → C be right-continuous of finite variation.
Let f ∈ L1,loc

C (b) and T ∈ R+.

1. Show that
∫
|f |1[0,T ]d|b| =

∫
|f |d|b|[0,T ] =

∫
|f |d|bT |.

2. Show that f1[0,T ] ∈ L1
C(b) and f ∈ L1

C(bT ).
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3. Show bT = h.|bT |, where h ∈ L1,loc
C (|b|), |h| = 1, b = h.|b|.

4. Show that (f.b)T = f.(bT ) = (f1[0,T ]).b

5. Show that d|f.b|(B) =
∫
B |f |d|b| for all B ∈ B(R+).

6. Let g : R+ → C be a measurable map. Show the equivalence:

g ∈ L1,loc
C (f.b) ⇔ gf ∈ L1,loc

C (b)

7. Show that d(f.b)T (B) =
∫
B
fhd|bT | for all B ∈ B(R+).

8. Show that dbT =
∫
hd|bT | and conclude that:

d(f.b)T (B) =
∫
B

fdbT , ∀B ∈ B(R+)

9. Let g ∈ L1,loc
C (f.b). Show that g ∈ L1

C((f.b)T ) and:∫
g1[0,t]d(f.b)T =

∫
gf1[0,t]db

T , ∀t ∈ R+



Tutorial 15: Stieltjes Integration 20

10. Show that g.
(
(f.b)T

)
= (gf).(bT ).

11. Show that (g.(f.b))T = ((gf).b)T .

12. Show that g.(f.b) = (gf).b

13. Prove the following:

Theorem 92 Let b : R+ → C be right-continuous of finite variation.
For all f ∈ L1,loc

C (b) and g : (R+,B(R+)) → (C,B(C)) measurable
map, we have the equivalence:

g ∈ L1,loc
C (f.b) ⇔ gf ∈ L1,loc

C (b)

and when such condition is satisfied, g.(f.b) = (fg).b, i.e.∫ t

0

gd(f.b) =
∫ t

0

gfdb , ∀t ∈ R+
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Exercise 13. Let b : R+ → C be right-continuous of finite variation.
let f, g ∈ L1,loc

C (b) and α ∈ C. Show that f + αg ∈ L1,loc
C (b), and:

(f + αg).b = f.b + αg.b

Exercise 14. Let b, c : R+ → C be two right-continuous maps of
finite variations. Let f ∈ L1,loc

C (b) ∩ L1,loc
C (c) and α ∈ C.

1. Show that for all T ∈ R+, d(b+ αc)T = dbT + αdcT .

2. Show that for all T ∈ R+, d|b+ αc|T ≤ d|b|T + |α|d|c|T .

3. Show that d|b+ αc| ≤ d|b|+ |α|d|c|.

4. Show that f ∈ L1,loc
C (b+ αc).

5. Show d(f.(b + αc))T (B) =
∫
B fd(b + αc)T for all B ∈ B(R+).

6. Show that d(f.(b+ αc))T = d(f.b)T + αd(f.c)T .
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7. Show that (f.(b+ αc))T = (f.b)T + α(f.c)T

8. Show that f.(b+ αc) = f.b+ α(f.c).

Exercise 15. Let b : R+ → C be right-continuous of finite variation.

1. Show that d|b| ≤ d|b1|+ d|b2|, where b = b1 + ib2.

2. Show that d|b1| ≤ d|b| and d|b2| ≤ d|b|.

3. Show that f ∈ L1,loc
C (b), if and only if:

f ∈ L1,loc
C (|b1|+) ∩ L1,loc

C (|b1|−) ∩ L1,loc
C (|b2|+) ∩ L1,loc

C (|b2|−)

4. Show that if f ∈ L1,loc
C (b), for all t ∈ R+:∫ t

0

fdb =
∫ t

0

fd|b1|+−
∫ t

0

fd|b1|−+i
(∫ t

0

fd|b2|+ −
∫ t

0

fd|b2|−
)
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Exercise 16. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. We define c : R+ → [0,+∞] as:

c(t)
4
= inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

where it is understood that inf ∅ = +∞. Let s, t ∈ R+.

1. Show that t < a(s) ⇒ c(t) ≤ s.

2. Show that c(t) < s ⇒ t < a(s).

3. Show that c(t) ≤ s ⇒ t < a(s+ ε) , ∀ε > 0.

4. Show that c(t) ≤ s ⇒ t ≤ a(s).

5. Show that c(t) < +∞ ⇔ t < a(∞).

6. Show that c is non-decreasing.

7. Show that if t0 ∈ [a(∞),+∞[, c is right-continuous at t0.
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8. Suppose t0 ∈ [0, a(∞)[. Given ε > 0, show the existence of
s ∈ R+, such that c(t0) ≤ s < c(t0) + ε and t0 < a(s).

9. Show that t ∈ [t0, a(s)[ ⇒ c(t0) ≤ c(t) ≤ c(t0) + ε.

10. Show that c is right-continuous.

11. Show that if a(∞) = +∞, then c is a map c : R+ → R+ which
is right-continuous, non-decreasing with c(0) ≥ 0.

12. We define ā(s) = inf{t ∈ R+ : s < c(t)} for all s ∈ R+. Show
that for all s, t ∈ R+, s < c(t) ⇒ a(s) ≤ t.

13. Show that a ≤ ā.

14. Show that for all s, t ∈ R+ and ε > 0:

a(s+ ε) ≤ t ⇒ s < s+ ε ≤ c(t)

15. Show that for all s, t ∈ R+ and ε > 0, a(s+ ε) ≤ t ⇒ ā(s) ≤ t.
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16. Show that ā ≤ a and conclude that:

a(s) = inf{t ∈ R+ : s < c(t)}

Exercise 17. Let f : R+ → R̄ be a non-decreasing map. Let α ∈ R.
We define:

x0
4
= sup{x ∈ R+ : f(x) ≤ α}

1. Explain why x0 = −∞ if and only if {f ≤ α} = ∅.

2. Show that x0 = +∞ if and only if {f ≤ α} = R+.

3. We assume from now on that x0 6= ±∞. Show that x0 ∈ R+.

4. Show that if f(x0) ≤ α then {f ≤ α} = [0, x0].

5. Show that if α < f(x0) then {f ≤ α} = [0, x0[.

6. Conclude that f : (R+,B(R+))→ (R̄,B(R̄)) is measurable.
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Exercise 18. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. We define c : R+ → [0,+∞] as:

c(t)
4
= inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

1. Let f : R+ → [0,+∞] be non-negative and measurable. Show
(f ◦ c)1{c<+∞} is well-defined, non-negative and measurable.

2. Let t, u ∈ R+, and ds be the lebesgue measure on R+. Show:∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds ≤
∫

1[0,a(t∧u)]1{c<+∞}ds

3. Show that: ∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds ≤ a(t ∧ u)

4. Show that:

a(t ∧ u) =
∫ a(t)

0

1[0,a(u)[ds =
∫ a(t)

0

1[0,a(u)[1{c<+∞}ds
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5. Show that:

a(t ∧ u) ≤
∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds

6. Show that: ∫ t

0

1[0,u]da =
∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds

7. Define:

Dt
4
=

{
B ∈ B(R+) :

∫ t

0

1Bda =
∫ a(t)

0

(1B ◦ c)1{c<+∞}ds

}
Show that Dt is a dynkin system on R+, and Dt = B(R+).

8. Show that if f : R+ → [0,+∞] is non-negative measurable:∫ t

0

fda =
∫ a(t)

0

(f ◦ c)1{c<+∞}ds , ∀t ∈ R+



Tutorial 15: Stieltjes Integration 28

9. Let f : R+ → C be measurable. Show that (f ◦ c)1{c<+∞} is
itself well-defined and measurable.

10. Show that if f ∈ L1,loc
C (a), then for all t ∈ R+, we have:

(f ◦ c)1{c<+∞}1[0,a(t)] ∈ L1
C(R+,B(R+), ds)

and furthermore:∫ t

0

fda =
∫ a(t)

0

(f ◦ c)1{c<+∞}ds

11. Show that we also have:∫ t

0

fda =
∫

(f ◦ c)1[0,a(t)[ds

12. Conclude with the following:
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Theorem 93 Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. We define c : R+ → [0,+∞] as:

c(t)
4
= inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

Then, for all f ∈ L1,loc
C (a), we have:∫ t

0

fda =
∫ a(t)

0

(f ◦ c)1{c<+∞}ds , ∀t ∈ R+

where ds is the lebesgue measure on R+.
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16. Differentiation
Definition 115 Let (Ω, T ) be a topological space. A map f : Ω→ R̄
is said to be lower-semi-continuous (l.s.c), if and only if:

∀λ ∈ R , {λ < f} is open

We say that f is upper-semi-continuous (u.s.c), if and only if:

∀λ ∈ R , {f < λ} is open

Exercise 1. Let f : Ω→ R̄ be a map, where Ω is a topological space.

1. Show that f is l.s.c if and only if {λ < f} is open for all λ ∈ R̄.

2. Show that f is u.s.c if and only if {f < λ} is open for all λ ∈ R̄.

3. Show that every open set U in R̄ can be written:

U = V + ∪ V − ∪
⋃
i∈I

]αi, βi[
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for some index set I, αi, βi ∈ R, V + = ∅ or V + =]α,+∞],
(α ∈ R) and V − = ∅ or V − = [−∞, β[, (β ∈ R).

4. Show that f is continuous if and only if it is both l.s.c and u.s.c.

5. Let u : Ω→ R and v : Ω→ R̄. Let λ ∈ R. Show that:

{λ < u+ v} =
⋃

(λ1, λ2) ∈ R2

λ1 + λ2 = λ

{λ1 < u} ∩ {λ2 < v}

6. Show that if both u and v are l.s.c, then u+ v is also l.s.c.

7. Show that if both u and v are u.s.c, then u+ v is also u.s.c.

8. Show that if f is l.s.c, then αf is l.s.c, for all α ∈ R+.

9. Show that if f is u.s.c, then αf is u.s.c, for all α ∈ R+.

10. Show that if f is l.s.c, then −f is u.s.c.
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11. Show that if f is u.s.c, then −f is l.s.c.

12. Show that if V is open in Ω, then f = 1V is l.s.c.

13. Show that if F is closed in Ω, then f = 1F is u.s.c.

Exercise 2. Let (fi)i∈I be an arbitrary family of maps fi : Ω → R̄,
defined on a topological space Ω.

1. Show that if all fi’s are l.s.c, then f = supi∈I fi is l.s.c.

2. Show that if all fi’s are u.s.c, then f = infi∈I fi is u.s.c.

Exercise 3. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let µ be a locally finite measure on (Ω,B(Ω)). Let f be an
element of ∈ L1

R(Ω,B(Ω), µ), such that f ≥ 0.

1. Let (sn)n≥1 be a sequence of simple functions on (Ω,B(Ω)) such
that sn ↑ f . Define t1 = s1 and tn = sn − sn−1 for all n ≥ 2.
Show that tn is a simple function on (Ω,B(Ω)), for all n ≥ 1.
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2. Show that f can be written as:

f =
+∞∑
n=1

αn1An

where αn ∈ R+ \ {0} and An ∈ B(Ω), for all n ≥ 1.

3. Show that µ(An) < +∞, for all n ≥ 1.

4. Show that there exist Kn compact and Vn open in Ω such that:

Kn ⊆ An ⊆ Vn , µ(Vn \Kn) ≤ ε

αn2n+1

for all ε > 0 and n ≥ 1.

5. Show the existence of N ≥ 1 such that:
+∞∑

n=N+1

αnµ(An) ≤ ε

2
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6. Define u =
∑N

n=1 αn1Kn . Show that u is u.s.c.

7. Define v =
∑+∞
n=1 αn1Vn . Show that v is l.s.c.

8. Show that we have 0 ≤ u ≤ f ≤ v.

9. Show that we have:

v = u+
+∞∑

n=N+1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

10. Show that
∫
vdµ ≤

∫
udµ+ ε < +∞.

11. Show that u ∈ L1
R(Ω,B(Ω), µ).

12. Explain why v may fail to be in L1
R(Ω,B(Ω), µ).

13. Show that v is µ-a.s. equal to an element of L1
R(Ω,B(Ω), µ).

14. Show that
∫

(v − u)dµ ≤ ε.
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15. Prove the following:

Theorem 94 (Vitali-Caratheodory) Let (Ω, T ) be a metrizable
and σ-compact topological space. Let µ be a locally finite measure
on (Ω,B(Ω)) and f be an element of L1

R(Ω,B(Ω), µ). Then, for all
ε > 0, there exist maps u, v : Ω → R̄, which are µ-a.s. equal to
elements of L1

R(Ω,B(Ω), µ), such that u ≤ f ≤ v, u is u.s.c, v is l.s.c,
and furthermore: ∫

(v − u)dµ ≤ ε

Definition 116 We call connected topological space, a topolog-
ical space (Ω, T ), for which the only subsets of Ω which are both open
and closed, are Ω and ∅.
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Exercise 4. Let (Ω, T ) be a topological space.

1. Show that (Ω, T ) is connected if and only if whenever Ω = A]B
where A,B are disjoint open sets, we have A = ∅ or B = ∅.

2. Show that (Ω, T ) is connected if and only if whenever Ω = A]B
where A,B are disjoint closed sets, we have A = ∅ or B = ∅.

Definition 117 Let (Ω, T ) be a topological space, and A ⊆ Ω. We
say that A is a connected subset of Ω, if and only if the induced
topological space (A, T|A) is connected.

Exercise 5. Let A be open and closed in R, with A 6= ∅ and Ac 6= ∅.

1. Let x ∈ Ac. Show that A∩ [x,+∞[ or A∩]−∞, x] is non-empty.

2. Suppose B = A ∩ [x,+∞[6= ∅. Show that B is closed and that
we have B = A∩]x,+∞[. Conclude that B is also open.
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3. Let b = inf B. Show that b ∈ B (and in particular b ∈ R).

4. Show the existence of ε > 0 such that ]b− ε, b+ ε[⊆ B.

5. Conclude with the following:

Theorem 95 The topological space (R, TR) is connected.

Exercise 6. Let (Ω, T ) be a topological space and A ⊆ Ω be a
connected subset of Ω. Let B be a subset of Ω such that A ⊆ B ⊆ Ā.
We assume that B = V1 ]V2 where V1, V2 are disjoint open sets in B.

1. Show there is U1, U2 open in Ω, with V1 = B ∩U1, V2 = B ∩U2.

2. Show that A ∩ U1 = ∅ or A ∩ U2 = ∅.

3. Suppose that A ∩ U1 = ∅. Show that Ā ⊆ U c1 .

4. Show then that V1 = B ∩ U1 = ∅.
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5. Conclude that B and Ā are both connected subsets of Ω.

Exercise 7. Prove the following:

Theorem 96 Let (Ω, T ), (Ω′, T ′) be two topological spaces, and f
be a continuous map, f : Ω → Ω′ . If (Ω, T ) is connected, then f(Ω)
is a connected subset of Ω′.

Definition 118 Let A ⊆ R̄. We say that A is an interval, if and
only if for all x, y ∈ A with x ≤ y, we have [x, y] ⊆ A, where:

[x, y]
4
= {z ∈ R̄ : x ≤ z ≤ y}

Exercise 8. Let A ⊆ R̄.

1. If A is an interval, and α = inf A, β = supA, show that:

]α, β[⊆ A ⊆ [α, β]
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2. Show that A is an interval if and only if, it is of the form [α, β],
[α, β[, ]α, β] or ]α, β[, for some α, β ∈ R̄.

3. Show that an interval of the form ] − ∞, α[, where α ∈ R, is
homeomorphic to ]− 1, α′[, for some α′ ∈ R.

4. Show that an interval of the form ]α,+∞[, where α ∈ R, is
homeomorphic to ]α′, 1[, for some α′ ∈ R.

5. Show that an interval of the form ]α, β[, where α, β ∈ R and
α < β, is homeomorphic to ]− 1, 1[.

6. Show that ]− 1, 1[ is homeomorphic to R.

7. Show an non-empty open interval in R, is homeomorphic to R.

8. Show that an open interval in R, is a connected subset of R.

9. Show that an interval in R, is a connected subset of R.
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Exercise 9. Let A ⊆ R be a non-empty connected subset of R, and
α = inf A, β = supA. We assume there exists x0 ∈ Ac∩]α, β[.

1. Show that A∩]x0,+∞[ or A∩]−∞, x0[ is empty.

2. Show that if A∩]x0,+∞[= ∅, then β cannot be supA.

3. Show that ]α, β[⊆ A ⊆ [α, β].

4. Show the following:

Theorem 97 For all A ⊆ R, A is a connected subset of R , if and
only if A is an interval.

Exercise 10. Prove the following:

Theorem 98 Let f : Ω → R be a continuous map, where (Ω, T )
is a connected topological space. Let a, b ∈ Ω such that f(a) ≤ f(b).
Then, for all z ∈ [f(a), f(b)], there exists x ∈ Ω such that z = f(x).
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Exercise 11. Let a, b ∈ R, a < b, and f : [a, b]→ R be a map such
that f ′(x) exists for all x ∈ [a, b].

1. Show that f ′ : ([a, b],B([a, b]))→ (R,B(R)) is measurable.

2. Show that f ′ ∈ L1
R([a, b],B([a, b]), dx) is equivalent to:∫ b

a

|f ′(t)|dt < +∞

3. We assume from now on that f ′ ∈ L1
R([a, b],B([a, b]), dx). Given

ε > 0, show the existence of g : [a, b] → R̄, almost surely equal
to an element of L1

R([a, b],B([a, b]), dx), such that f ′ ≤ g and g
is l.s.c, with: ∫ b

a

g(t)dt ≤
∫ b

a

f ′(t)dt+ ε

4. By considering g + α for some α > 0, show that without loss of
generality, we can assume that f ′ < g with the above inequality
still holding.
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5. We define the complex measure ν =
∫
gdx ∈M1([a, b],B([a, b])).

Show that:

∀ε′ > 0 , ∃δ > 0 , ∀E ∈ B([a, b]) , dx(E) ≤ δ ⇒ |ν(E)| < ε′

6. For all η > 0 and x ∈ [a, b], we define:

Fη(x)
4
=
∫ x

a

g(t)dt− f(x) + f(a) + η(x− a)

Show that Fη : [a, b]→ R is a continuous map.

7. η being fixed, let x = supF−1
η ({0}). Show that x ∈ [a, b] and

Fη(x) = 0.

8. We assume that x ∈ [a, b[. Show the existence of δ > 0 such
that for all t ∈]x, x + δ[∩[a, b], we have:

f ′(x) < g(t) and
f(t)− f(x)

t− x < f ′(x) + η
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9. Show that for all t ∈]x, x+ δ[∩[a, b], we have Fη(t) > Fη(x) = 0.

10. Show that there exists t0 such that x < t0 < b and Fη(t0) > 0.

11. Show that if Fη(b) < 0 then x cannot be supF−1
η ({0}).

12. Conclude that Fη(b) ≥ 0, even if x = b.

13. Show that f(b)− f(a) ≤
∫ b
a
f ′(t)dt, and conclude:

Theorem 99 (Fundamental Calculus) Let a, b ∈ R, a < b, and
f : [a, b]→ R be a map which is differentiable at every point of [a, b],
and such that: ∫ b

a

|f ′(t)|dt < +∞

Then, we have:

f(b)− f(a) =
∫ b

a

f ′(t)dt
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Exercise 12. Let α > 0, and kα : Rn → Rn defined by kα(x) = αx.

1. Show that kα : (Rn,B(Rn))→ (Rn,B(Rn)) is measurable.

2. Show that for all B ∈ B(Rn), we have:

dx({kα ∈ B}) =
1
αn

dx(B)

3. Show that for all ε > 0 and x ∈ Rn:

dx(B(x, ε)) = εndx(B(0, 1))

Definition 119 Let µ be a complex measure on (Rn,B(Rn)), n ≥ 1,
with total variation |µ|. We call maximal function of µ, the map
Mµ : Rn → [0,+∞], defined by:

∀x ∈ Rn , (Mµ)(x)
4
= sup

ε>0

|µ|(B(x, ε))
dx(B(x, ε))

where B(x, ε) is the open ball in Rn, of center x and radius ε, with
respect to the usual metric of Rn.
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Exercise 13. Let µ be a complex measure on (Rn,B(Rn)).

1. Let λ ∈ R. Show that if λ < 0, then {λ < Mµ} = Rn.

2. Show that if λ = 0, then {λ < Mµ} = Rn if µ 6= 0, and
{λ < Mµ} is the empty set if µ = 0.

3. Suppose λ > 0. Let x ∈ {λ < Mµ}. Show the existence of ε > 0
such that |µ|(B(x, ε)) = tdx(B(x, ε)), for some t > λ.

4. Show the existence of δ > 0 such that (ε+ δ)n < εnt/λ.

5. Show that if y ∈ B(x, δ), then B(x, ε) ⊆ B(y, ε+ δ).

6. Show that if y ∈ B(x, δ), then:

|µ|(B(y, ε + δ)) ≥ εnt

(ε + δ)n
dx(B(y, ε + δ)) > λdx(B(y, ε + δ))

7. Conclude that B(x, δ) ⊆ {λ < Mµ}, and that the maximal
function Mµ : Rn → [0,+∞] is l.s.c, and therefore measurable.
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Exercise 14. Let Bi = B(xi, εi), i = 1, . . . , N , N ≥ 1, be a finite
collection of open balls in Rn. Assume without loss of generality that
εN ≤ . . . ≤ ε1. We define a sequence (Jk) of sets by J0 = {1, . . . , N}
and for all k ≥ 1:

Jk
4
=
{
Jk−1 ∩ {j : j > ik , Bj ∩Bik = ∅} if Jk−1 6= ∅
∅ if Jk−1 = ∅

where we have put ik = minJk−1, whenever Jk−1 6= ∅.

1. Show that if Jk−1 6= ∅ then Jk ⊂ Jk−1 (strict inclusion), k ≥ 1.

2. Let p = min{k ≥ 1 : Jk = ∅}. Show that p is well-defined.

3. Let S = {i1, . . . , ip}. Explain why S is well defined.

4. Suppose that 1 ≤ k < k′ ≤ p. Show that ik′ ∈ Jk.

5. Show that (Bi)i∈S is a family of pairwise disjoint open balls.

6. Let i ∈ {1, . . . , N} \ S, and define k0 to be the minimum of the
set {k ∈ Np : i 6∈ Jk}. Explain why k0 is well-defined.
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7. Show that i ∈ Jk0−1 and ik0 ≤ i.

8. Show that Bi ∩Bik0
6= ∅.

9. Show that Bi ⊆ B(xik0
, 3εik0

).

10. Conclude that there exists a subset S of {1, . . . , N} such that
(Bi)i∈S is a family of pairwise disjoint balls, and:

N⋃
i=1

B(xi, εi) ⊆
⋃
i∈S

B(xi, 3εi)

11. Show that:

dx

(
N⋃
i=1

B(xi, εi)

)
≤ 3n

∑
i∈S

dx(B(xi, εi))
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Exercise 15. Let µ be a complex measure on Rn. Let λ > 0 and K
be a non-empty compact subset of {λ < Mµ}.

1. Show that K can be covered by a finite collection Bi = B(xi, εi),
i = 1, . . . , N of open balls, such that:

∀i = 1, . . . , N , λdx(Bi) < |µ|(Bi)

2. Show the existence of S ⊆ {1, . . . , N} such that:

dx(K) ≤ 3nλ−1|µ|
(⋃
i∈S

B(xi, εi)

)

3. Show that dx(K) ≤ 3nλ−1‖µ‖

4. Conclude with the following:

Theorem 100 Let µ be a complex measure on (Rn,B(Rn)), n ≥ 1,
with maximal function Mµ. Then, for all λ ∈ R+ \ {0}, we have:

dx({λ < Mµ}) ≤ 3nλ−1‖µ‖
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Definition 120 Let f ∈ L1
C(Rn,B(Rn), dx), and µ be the complex

measure µ =
∫
fdx on Rn, n ≥ 1. We call maximal function of f ,

denoted Mf , the maximal function Mµ of µ.

Exercise 16. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1.

1. Show that for all x ∈ Rn:

(Mf)(x) = sup
ε>0

1
dx(B(x, ε))

∫
B(x,ε)

|f |dx

2. Show that for all λ > 0, dx({λ < Mf}) ≤ 3nλ−1‖f‖1.

Definition 121 Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. We say that

x ∈ Rn is a lebesgue point of f , if and only if we have:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = 0
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Exercise 17. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1.

1. Show that if f is continuous at x ∈ Rn, then x is a Lebesgue
point of f .

2. Show that if x ∈ Rn is a Lebesgue point of f , then:

f(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

f(y)dy

Exercise 18. Let n ≥ 1 and f ∈ L1
C(Rn,B(Rn), dx). For all ε > 0

and x ∈ Rn, we define:

(Tεf)(x)
4
=

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy

and we put, for all x ∈ Rn:

(Tf)(x)
4
= lim sup

ε↓↓0
(Tεf)(x)

4
= inf

ε>0
sup
u∈]0,ε[

(Tuf)(x)
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1. Given η > 0, show the existence of g ∈ CcC(Rn) such that:

‖f − g‖1 ≤ η

2. Let h = f − g. Show that for all ε > 0 and x ∈ Rn:

(Tεh)(x) ≤ 1
dx(B(x, ε))

∫
B(x,ε)

|h|dx+ |h(x)|

3. Show that Th ≤Mh+ |h|.

4. Show that for all ε > 0, we have Tεf ≤ Tεg + Tεh.

5. Show that Tf ≤ Tg + Th.

6. Using the continuity of g, show that Tg = 0.

7. Show that Tf ≤Mh+ |h|.

8. Show that for all α > 0, {2α < Tf} ⊆ {α < Mh} ∪ {α < |h|}.

9. Show that dx({α < |h|}) ≤ α−1‖h‖1.
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10. Conclude that for all α > 0 and η > 0, there is Nα,η ∈ B(Rn)
such that {2α < Tf} ⊆ Nα,η and dx(Nα,η) ≤ η.

11. Show that for all α > 0, there exists Nα ∈ B(Rn) such that
{2α < Tf} ⊆ Nα and dx(Nα) = 0.

12. Show there is N ∈ B(Rn), dx(N) = 0, such that {Tf > 0} ⊆ N .

13. Conclude that Tf = 0 , dx−a.s.

14. Conclude with the following:

Theorem 101 Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. Then, dx-almost

surely, any x ∈ Rn is a lebesgue points of f , i.e.

dx-a.s. , lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = 0
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Exercise 19. Let (Ω,F , µ) be a measure space and Ω′ ∈ F . We
define F ′ = F|Ω′ and µ′ = µ|F ′ . For all map f : Ω′ → [0,+∞] (or C),
we define f̃ : Ω→ [0,+∞] (or C), by:

f̃(ω)
4
=
{
f(ω) if ω ∈ Ω′

0 if ω 6∈ Ω′

1. Show that F ′ ⊆ F and conclude that µ′ is therefore a well-
defined measure on (Ω′,F ′).

2. Let A ∈ F ′ and 1′A be the characteristic function of A defined
on Ω′. Let 1A be the characteristic function of A defined on Ω.
Show that 1̃′A = 1A.

3. Let f : (Ω′,F ′) → [0,+∞] be a non-negative and measurable
map. Show that f̃ : (Ω,F) → [0,+∞] is also non-negative and
measurable, and that we have:∫

Ω′
fdµ′ =

∫
Ω

f̃dµ
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4. Let f ∈ L1
C(Ω′,F ′, µ′). Show that f̃ ∈ L1

C(Ω,F , µ), and:∫
Ω′
fdµ′ =

∫
Ω

f̃dµ

Definition 122 Let b : R+ → C be a right-continuous map of finite
variation. We say that b is absolutely continuous, if and only if it
is absolutely continuous with respect to a(t) = t.

Exercise 20. Let b : R+ → C be right-continuous of finite variation.

1. Show that b is absolutely continuous, if and only if there is
f ∈ L1,loc

C (t) such that b(t) =
∫ t

0 f(s)ds, for all t ∈ R+.

2. Show that b absolutely continuous⇒ b continuous with b(0) = 0.
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Exercise 21. Let b : R+ → C be an absolutely continuous map.
Let f ∈ L1,loc

C (t) be such that b = f.t. For all n ≥ 1, we define
fn : R→ C by:

fn(t)
4
=
{
f(t)1[0,n](t) if t ∈ R+

0 if t < 0

1. Let n ≥ 1. Show fn ∈ L1
C(R,B(R), dx) and for all t ∈ [0, n]:

b(t) =
∫ t

0

fndx

2. Show the existence of Nn ∈ B(R) such that dx(Nn) = 0, and
for all t ∈ N c

n, t is a Lebesgue point of fn.

3. Show that for all t ∈ R, and ε > 0:

1
ε

∫ t+ε

t

|fn(s)− fn(t)|ds ≤ 2
dx(B(t, ε))

∫
B(t,ε)

|fn(s)− fn(t)|ds
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4. Show that for all t ∈ N c
n, we have:

lim
ε↓↓0

1
ε

∫ t+ε

t

fn(s)ds = fn(t)

5. Show similarly that for all t ∈ N c
n, we have:

lim
ε↓↓0

1
ε

∫ t

t−ε
fn(s)ds = fn(t)

6. Show that for all t ∈ N c
n ∩ [0, n[, b′(t) exists and b′(t) = f(t).1

7. Show the existence of N ∈ B(R+), such that dx(N) = 0, and:

∀t ∈ N c , b′(t) exists with b′(t) = f(t)

8. Conclude with the following:

1b′(0) being a r.h.s derivative only.
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Theorem 102 A map b : R+ → C is absolutely continuous, if and
only if there exists f ∈ L1,loc

C (t) such that:

∀t ∈ R+ , b(t) =
∫ t

0

f(s)ds

in which case, b is almost surely differentiable with b′ = f dx-a.s.
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17. Image Measure
In the following, K denotes R or C. We denote Mn(K), n ≥ 1,
the set of all n × n-matrices with K-valued entries. We recall that
for all M = (mij) ∈ Mn(K), M is identified with the linear map
M : Kn → Kn uniquely determined by:

∀j = 1, . . . , n , Mej
4
=

n∑
i=1

mijei

where (e1, . . . , en) is the canonical basis of Kn, i.e. ei
4
= (0, .,

i︷︸︸︷
1 , ., 0).

Exercise 1. For all α ∈ K, let Hα ∈ Mn(K) be defined by:

Hα
4
=


α

1 0

0
. . .

1


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i.e. by Hαe1 = αe1, Hαej = ej , for all j ≥ 2. For k, l ∈ {1, . . . , n},
we define the matrix Σkl ∈ Mn(K) by Σklek = el, Σklel = ek and
Σklej = ej , for all j ∈ {1, . . . , n} \ {k, l}. If n ≥ 2, we define the
matrix U ∈Mn(K) by:

U
4
=


1 0
1 1 0

0
. . .

1


i.e. by Ue1 = e1 + e2, Uej = ej for all j ≥ 2. If n = 1, we put U = 1.
We define Nn(K) = {Hα : α ∈ K} ∪ {Σkl : k, l = 1, . . . , n} ∪ {U},
andM′n(K) to be the set of all finite products of elements of Nn(K):

M′n(K)
4
= {M ∈Mn(K) :M = Q1. . . . .Qp , p ≥ 1 , Qj ∈ Nn(K) , ∀j}

We shall prove that Mn(K) =M′n(K).
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1. Show that if α ∈ K \ {0}, Hα is non-singular with H−1
α = H1/α

2. Show that if k, l = 1, . . . , n, Σkl is non-singular with Σ−1
kl = Σkl.

3. Show that U is non-singular, and that for n ≥ 2:

U−1 =


1 0
−1 1 0

0
. . .

1


4. Let M = (mij) ∈Mn(K). Let R1, . . . , Rn be the rows of M :

M
4
=


R1

R2

...
Rn


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Show that for all α ∈ K:

Hα.M =


αR1

R2

...
Rn


Conclude that multiplying M by Hα from the left, amounts to
multiplying the first row of M by α.

5. Show that multiplying M by Hα from the right, amounts to
multiplying the first column of M by α.

6. Show that multiplying M by Σkl from the left, amounts to swap-
ping the rows Rl and Rk.

7. Show that multiplying M by Σkl from the right, amounts to
swapping the columns Cl and Ck.
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8. Show that multiplying M by U−1 from the left ( n ≥ 2), amounts
to subtracting R1 to R2, i.e.:

U−1.


R1

R2

...
Rn

 =


R1

R2 −R1

...
Rn


9. Show that multiplying M by U−1 from the right (for n ≥ 2),

amounts to subtracting C2 to C1.

10. Define U ′ = Σ12.U
−1.Σ12, (n ≥ 2). Show that multiplying M

by U ′ from the right, amounts to subtracting C1 to C2.

11. Show that if n = 1, then indeed we haveM1(K) =M′1(K).
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Exercise 2. Further to exercise (1), we now assume that n ≥ 2, and
make the induction hypothesis that Mn−1(K) =M′n−1(K).

1. Let On ∈ Mn(K) be the matrix with all entries equal to zero.
Show the existence of Q′1, . . . , Q

′
p ∈ Nn−1(K), p ≥ 1, such that:

On−1 = Q′1. . . . .Q
′
p

2. For k = 1, . . . , p, we define Qk ∈ Mn(K), by:

Qk
4
=


0

Q′k
...
0

0 . . . 0 1





Tutorial 17: Image Measure 7

Show that Qk ∈ Nn(K), and that we have:

Σ1n.Q1. . . . .Qp.Σ1n =


1 0 . . . 0
0
... On−1

0


3. Conclude that On ∈ M′n(K).

4. We now consider M = (mij) ∈ Mn(K), M 6= On. We want to
show that M ∈M′n(K). Show that for some k, l ∈ {1, . . . , n}:

H−1
mkl .Σ1k.M.Σ1l =


1 ∗ . . . ∗
∗
... ∗
∗


5. Show that if H−1

mkl
.Σ1k.M.Σ1l ∈ M′n(K), then M ∈ M′n(K).

Conclude that without loss of generality, in order to prove that
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M lies in M′n(K) we can assume that m11 = 1.

6. Let i = 2, . . . , n. Show that if mi1 6= 0, we have:

H−1
mi1 .Σ2i.U

−1.Σ2i.H
−1
1/mi1

.M =


1 ∗ . . . ∗
∗
0 ← i ∗
∗


7. Conclude that without loss of generality, we can assume that
mi1 = 0 for all i ≥ 2, i.e. that M is of the form:

M =


1 ∗ . . . ∗
0
... ∗
0


8. Show that in order to prove that M ∈ M′n(K), without loss of
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generality, we can assume that M is of the form:

M =


1 0 . . . 0
0
... M ′

0


9. Prove that M ∈ M′n(K) and conclude with the following:

Theorem 103 Given n ≥ 2, any n× n-matrix with values in K is
a finite product of matrices Q of the following types:

(i) Qe1 = αe1 , Qej = ej , ∀j = 2, . . . , n , (α ∈ K)
(ii) Qel = ek , Qek = el , Qej = ej , ∀j 6= k, l , (k, l ∈ Nn)

(iii) Qe1 = e1 + e2 , Qej = ej , ∀j = 2, . . . , n

where (e1, . . . , en) is the canonical basis of Kn.
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Definition 123 Let X : (Ω,F) → (Ω′,F ′) be a measurable map,
where (Ω,F) and (Ω′,F ′) are two measurable spaces. Given a measure
µ (possibly complex) on (Ω,F), we call distribution of X under µ,
or law of X under µ, or image measure of µ by X, the measure
(possibly complex) denoted µX or X(µ) on (Ω′,F ′), defined by:

∀B ∈ F ′ , µX(B)
4
= µ({X ∈ B}) = µ(X−1(B))

Exercise 3. Let X : (Ω,F)→ (Ω′,F ′) be a measurable map, where
(Ω,F) and (Ω′,F ′) are two measurable spaces.

1. Show that if µ is a measure on (Ω,F), µX is a well-defined
measure on (Ω′,F ′).

2. Show that if µ is a complex measure on (Ω,F), µX is a well-
defined complex measure on (Ω′,F ′).

3. Let B ∈ F ′. Show that if (En)n≥1 is a measurable partition of
B, then (X−1(En))n≥1 is a measurable partition of X−1(B).
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4. Show that if µ is a complex measure on (Ω,F), then |µX | ≤ |µ|X .

5. Let Y : (Ω′,F ′) → (Ω′′,F ′′) be a measurable map, where
(Ω′′,F ′′) is another measurable space. Show that for all (possi-
bly complex) measure µ on (Ω,F), we have:

Y (X(µ)) = (Y ◦X)(µ) = (µX)Y = µ(Y ◦X)

Definition 124 Let µ be a measure (possibly complex) on Rn, n ≥ 1.
We say that µ is invariant by translation, if and only if for all
a ∈ Rn, and associated translation mapping τa : Rn → Rn defined by
τa(x) = a+ x, we have τa(µ) = µ.

Exercise 4. Let µ be a measure (possibly complex) on (Rn,B(Rn)).

1. Show that τa : (Rn,B(Rn))→ (Rn,B(Rn)) is measurable.

2. Show τa(µ) is therefore a well-defined (possibly complex) mea-
sure on (Rn,B(Rn)), for all a ∈ Rn.
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3. Show that τa(dx) = dx for all a ∈ Rn.

4. Show the lebesgue measure on Rn is invariant by translation.

Exercise 5. Let kα : Rn → Rn be defined by kα(x) = αx, α > 0.

1. Show that kα : (Rn,B(Rn))→ (Rn,B(Rn)) is measurable.

2. Show that kα(dx) = α−ndx.

Exercise 6. Show the following:

Theorem 104 (Integral Projection 1) Let X : (Ω,F)→ (Ω′,F ′)
be a measurable map, where (Ω,F), (Ω′,F ′) are measurable spaces.
Let µ be a measure on (Ω,F). Then, for all f : (Ω′,F ′) → [0,+∞]
non-negative and measurable, we have:∫

Ω

f ◦Xdµ =
∫

Ω′
fdX(µ)



Tutorial 17: Image Measure 13

Exercise 7. Show the following:

Theorem 105 (Integral Projection 2) Let X : (Ω,F)→ (Ω′,F ′)
be a measurable map, where (Ω,F), (Ω′,F ′) are measurable spaces.
Let µ be a measure on (Ω,F). Then, for all f : (Ω′,F ′)→ (C,B(C))
measurable, we have the equivalence:

f ◦X ∈ L1
C(Ω,F , µ) ⇔ f ∈ L1

C(Ω′,F ′, X(µ))

in which case, we have:∫
Ω

f ◦Xdµ =
∫

Ω′
fdX(µ)

Exercise 8. Further to theorem (105), suppose µ is in fact a complex
measure on (Ω,F). Show that:∫

Ω′
|f |d|X(µ)| ≤

∫
Ω

|f ◦X |d|µ| (1)

Conclude with the following:
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Theorem 106 (Integral Projection 3) Let X : (Ω,F)→ (Ω′,F ′)
be a measurable map, where (Ω,F), (Ω′,F ′) are measurable spaces.
Let µ be a complex measure on (Ω,F). Then, for all measurable map
f : (Ω′,F ′)→ (C,B(C)), we have:

f ◦X ∈ L1
C(Ω,F , µ) ⇒ f ∈ L1

C(Ω′,F ′, X(µ))

and when the left-hand side of this implication is satisfied:∫
Ω

f ◦Xdµ =
∫

Ω′
fdX(µ)

Exercise 9. Let X : (Ω,F) → (Rn,B(Rn)) be a measurable map
with distribution µ = X(P ), where (Ω,F , P ) is a probability space.

1. Show that X is integrable, if and only if:∫ +∞

−∞
|x|dµ(x) < +∞
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2. Show that if X is integrable, then:

E[X ] =
∫ +∞

−∞
xdµ(x)

3. Show that:

E[X2] =
∫ +∞

−∞
x2dµ(x)

Exercise 10. Let µ be a locally finite measure on (Rn,B(Rn)), which
is invariant by translation. For all a = (a1, . . . , an) ∈ (R+)n, we define
Qa = [0, a1[× . . .× [0, an[, and in particular Q = Q(1,...,1) = [0, 1[n.

1. Show that µ(Qa) < +∞ for all a ∈ (R+)n, and µ(Q) < +∞.

2. Let p = (p1, . . . , pn) where pi ≥ 1 is an integer for all i’s. Show:

Qp =
⊎

k = (k1, . . . , kn)
0 ≤ ki < pi

[k1, k1 + 1[× . . .× [kn, kn + 1[
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3. Show that µ(Qp) = p1 . . . pnµ(Q).

4. Let q1, . . . , qn ≥ 1 be n positive integers. Show that:

Qp =
⊎

k = (k1, . . . , kn)
0 ≤ ki < qi

[
k1p1

q1
,

(k1 + 1)p1

q1
[× . . .× [

knpn
qn

,
(kn + 1)pn

qn
[

5. Show that µ(Qp) = q1 . . . qnµ(Q(p1/q1,...,pn/qn))

6. Show that µ(Qr) = r1 . . . rnµ(Q), for all r ∈ (Q+)n.

7. Show that µ(Qa) = a1 . . . anµ(Q), for all a ∈ (R+)n.

8. Show that µ(B) = µ(Q)dx(B), for all B ∈ C, where:

C 4= {[a1, b1[× . . .× [an, bn[ , ai, bi ∈ R , ai ≤ bi , ∀i ∈ Nn}

9. Show that B(Rn) = σ(C).
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10. Show that µ = µ(Q)dx, and conclude with the following:

Theorem 107 Let µ be a locally finite measure on (Rn,B(Rn)). If
µ is invariant by translation, then there exists α ∈ R+ such that:

µ = αdx

Exercise 11. Let T : Rn → Rn be a linear bijection.

1. Show that T and T−1 are continuous.

2. Show that for all B ⊆ Rn, the inverse image T−1(B) = {T ∈ B}
coincides with the direct image:

T−1(B)
4
= {y : y = T−1(x) for some x ∈ B}

3. Show that for all B ⊆ Rn, the direct image T (B) coincides with
the inverse image (T−1)−1(B) = {T−1 ∈ B}.

4. Let K ⊆ Rn be compact. Show that {T ∈ K} is compact.



Tutorial 17: Image Measure 18

5. Show that T (dx) is a locally finite measure on (Rn,B(Rn)).

6. Let τa be the translation of vector a ∈ Rn. Show that:

T ◦ τT−1(a) = τa ◦ T

7. Show that T (dx) is invariant by translation.

8. Show the existence of α ∈ R+, such that T (dx) = αdx. Show
that such constant is unique, and denote it by ∆(T ).

9. Show that Q = T ([0, 1]n) ∈ B(Rn) and that we have:

∆(T )dx(Q) = T (dx)(Q) = 1

10. Show that ∆(T ) 6= 0.

11. Let T1, T2 : Rn → Rn be two linear bijections. Show that:

(T1 ◦ T2)(dx) = ∆(T1)∆(T2)dx

and conclude that ∆(T1 ◦ T2) = ∆(T1)∆(T2).
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Exercise 12. Let α ∈ R \ {0}. Let Hα : Rn → Rn be the linear
bijection uniquely defined by Hα(e1) = αe1, Hα(ej) = ej for j ≥ 2.

1. Show that Hα(dx)([0, 1]n) = |α|−1.

2. Conclude that ∆(Hα) = | detHα|−1.

Exercise 13. Let k, l ∈ Nnand Σ : Rn → Rn be the linear bijection
uniquely defined by Σ(ek) = el, Σ(el) = ek, Σ(ej) = ej , for j 6= k, l.

1. Show that Σ(dx)([0, 1]n) = 1.

2. Show that Σ.Σ = In. (Identity mapping on Rn).

3. Show that | det Σ| = 1.

4. Conclude that ∆(Σ) = | det Σ|−1.

Exercise 14. Let n ≥ 2 and U : Rn → Rn be the linear bijection
uniquely defined by U(e1) = e1 + e2 and U(ej) = ej for j ≥ 2. Let
Q = [0, 1[n.
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1. Show that:

U−1(Q) = {x ∈ Rn : 0 ≤ x1 + x2 < 1 , 0 ≤ xi < 1 , ∀i 6= 2}

2. Define:

Ω1
4
= U−1(Q) ∩ {x ∈ Rn : x2 ≥ 0}

Ω2
4
= U−1(Q) ∩ {x ∈ Rn : x2 < 0}

Show that Ω1,Ω2 ∈ B(Rn).

3. Let τe2 be the translation of vector e2. Draw a picture of Q, Ω1,
Ω2 and τe2(Ω2) in the case when n = 2.

4. Show that if x ∈ Ω1, then 0 ≤ x2 < 1.

5. Show that Ω1 ⊆ Q.

6. Show that if x ∈ τe2(Ω2), then 0 ≤ x2 < 1.

7. Show that τe2(Ω2) ⊆ Q.
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8. Show that if x ∈ Q and x1 + x2 < 1 then x ∈ Ω1.

9. Show that if x ∈ Q and x1 + x2 ≥ 1 then x ∈ τe2(Ω2).

10. Show that if x ∈ τe2(Ω2) then x1 + x2 ≥ 1.

11. Show that τe2(Ω2) ∩ Ω1 = ∅.

12. Show that Q = Ω1 ] τe2 (Ω2).

13. Show that dx(Q) = dx(U−1(Q)).

14. Show that ∆(U) = 1.

15. Show that ∆(U) = | detU |−1.

Exercise 15. Let T : Rn → Rn be a linear bijection, (n ≥ 1).

1. Show the existence of linear bijections Q1, . . . , Qp : Rn → Rn,
p ≥ 1, with T = Q1◦ . . .◦Qp, ∆(Qi) = | detQi|−1 for all i ∈ Np.
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2. Show that ∆(T ) = | detT |−1.

3. Conclude with the following:

Theorem 108 Let n ≥ 1 and T : Rn → Rn be a linear bijection.
Then, the image measure T (dx) of the lebesgue measure on Rn is:

T (dx) = | detT |−1dx

Exercise 16. Let f : (R2,B(R2)) → [0,+∞] be a non-negative and
measurable map. Let a, b, c, d ∈ R such that ad− bc 6= 0. Show that:∫

R2
f(ax+ by, cx+ dy)dxdy = |ad− bc|−1

∫
R2
f(x, y)dxdy

Exercise 17. Let T : Rn → Rn be a linear bijection. Show that for
all B ∈ B(Rn), we have T (B) ∈ B(Rn) and:

dx(T (B)) = | detT |dx(B)
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Exercise 18. Let V be a linear subspace of Rn and p = dimV . We
assume that 1 ≤ p ≤ n− 1. Let u1, . . . , up be an orthonormal basis of
V , and up+1, . . . , un be such that u1, . . . , un is an orthonormal basis
of Rn. For i ∈ Nn, Let φi : Rn → R be defined by φi(x) = 〈ui, x〉.

1. Show that all φi’s are continuous.

2. Show that V =
⋂n
j=p+1 φ

−1
j ({0}).

3. Show that V is a closed subset of Rn.

4. Let Q = (qij) ∈ Mn(R) be the matrix uniquely defined by
Qej = uj for all j ∈ Nn, where (e1, . . . , en) is the canonical
basis of Rn. Show that for all i, j ∈ Nn :

〈ui, uj〉 =
n∑
k=1

qkiqkj

5. Show that QT .Q = Q.QT = In and conclude that | detQ| = 1.
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6. Show that dx({Q ∈ V }) = dx(V ).

7. Show that {Q ∈ V } = span(e1, . . . , ep).1

8. For all m ≥ 1, we define:

Em
4
=

n−1︷ ︸︸ ︷
[−m,m]× . . .× [−m,m]×{0}

Show that dx(Em) = 0 for all m ≥ 1.

9. Show that dx(span(e1, . . . , en−1)) = 0.

10. Conclude with the following:

Theorem 109 Let n ≥ 1. Any linear subspace V of Rn is a closed
subset of Rn. Moreover, if dim V ≤ n− 1, then dx(V ) = 0.

1i.e. the linear subspace of Rn generated by e1, . . . , ep.
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18. The Jacobian Formula
In the following, K denotes R or C.

Definition 125 We call K-normed space, an ordered pair (E,N),
where E is a K-vector space, and N : E → R+ is a norm on E.

See definition (89) for vector space, and definition (95) for norm.

Exercise 1. Let (H, 〈·, ·〉) be a K-hilbert space, and ‖ · ‖ =
√
〈·, ·〉.

1. Show that ‖ · ‖ is a norm on H.

2. Show that (H, ‖ · ‖) is a K-normed space.

Exercise 2. Let (E, ‖ · ‖) be a K-normed space:

1. Show that d(x, y) = ‖x− y‖ defines a metric on E.

2. Show that for all x, y ∈ E, we have | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.
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Definition 126 Let (E, ‖ · ‖) be a K-normed space, and d be the
metric defined by d(x, y) = ‖x− y‖. We call norm topology on E,
denoted T‖·‖, the topology on E associated with d.

Exercise 3. Let E,F be two K-normed spaces, and l : E → F be a
linear map. Show that the following are equivalent:

(i) l is continuous (w.r. to the norm topologies)
(ii) l is continuous at x = 0.

(iii) ∃K ∈ R+ , ∀x ∈ E , ‖l(x)‖ ≤ K‖x‖
(iv) sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

Definition 127 Let E, F be K-normed spaces. The K-vector space
of all continuous linear maps l : E → F is denoted LK(E,F ).

Exercise 4. Show that LK(E,F ) is indeed a K-vector space.
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Exercise 5. Let E,F be K-normed spaces. Given l ∈ LK(E,F ), let:

‖l‖ 4= sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

1. Show that:

‖l‖ = sup{‖l(x)‖ : x ∈ E , ‖x‖ ≤ 1}

2. Show that:

‖l‖ = sup
{
‖l(x)‖
‖x‖ : x ∈ E , x 6= 0

}
3. Show that ‖l(x)‖ ≤ ‖l‖.‖x‖, for all x ∈ E.

4. Show that ‖l‖ is the smallest K ∈ R+, such that:

∀x ∈ E , ‖l(x)‖ ≤ K‖x‖

5. Show that l→ ‖l‖ is a norm on LK(E,F ).

6. Show that (LK(E,F ), ‖ · ‖) is a K-normed space.
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Definition 128 Let E,F be R-normed spaces and U be an open
subset of E. We say that a map φ : U → F is differentiable at
some a ∈ U , if and only if there exists l ∈ LR(E,F ) such that, for all
ε > 0, there exists δ > 0, such that for all h ∈ E:

‖h‖ ≤ δ ⇒ a+ h ∈ U and ‖φ(a+ h)− φ(a) − l(h)‖ ≤ ε‖h‖

Exercise 6. Let E,F be two R-normed spaces, and U be open in E.
Let φ : U → F be a map and a ∈ U .

1. Suppose that φ : U → F is differentiable at a ∈ U , and that
l1, l2 ∈ LR(E,F ) satisfy the requirement of definition (128).
Show that for all ε > 0, there exists δ > 0 such that:

∀h ∈ E , ‖h‖ ≤ δ ⇒ ‖l1(h)− l2(h)‖ ≤ ε‖h‖

2. Conclude that ‖l1 − l2‖ = 0 and finally that l1 = l2.
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Definition 129 Let E,F be R-normed spaces and U be an open
subset of E. Let φ : U → F be a map and a ∈ U . If φ is differentiable
at a, we call differential of φ at a, the unique element of LR(E,F ),
denoted dφ(a), satisfying the requirement of definition (128). If φ is
differentiable at all points of U , the map dφ : U → LR(E,F ) is also
called the differential of φ.

Definition 130 Let E,F be R-normed spaces and U be an open
subset of E. A map φ : U → F is said to be of class C1, if and only
if dφ(a) exists for all a ∈ U , and the differential dφ : U → LR(E,F )
is a continuous map.

Exercise 7. Let E,F be two R-normed spaces and U be open in E.
Let φ : U → F be a map, and a ∈ U .

1. Show that φ differentiable at a ⇒ φ continuous at a.

2. If φ is of class C1, explain with respect to which topologies the
differential dφ : U → LR(E,F ) is said to be continuous.
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3. Show that if φ is of class C1, then φ is continuous.

4. Suppose that E = R. Show that for all a ∈ U , φ is differentiable
at a ∈ U , if and only if the derivative:

φ′(a)
4
= lim

t6=0,t→0

φ(a+ t)− φ(a)
t

exists in F , in which case dφ(a) ∈ LR(R, F ) is given by:

∀t ∈ R , dφ(a)(t) = t.φ′(a)

In particular, φ′(a) = dφ(a)(1).

Exercise 8. Let E,F,G be three R-normed spaces. Let U be open
in E and V be open in F . Let φ : U → F and ψ : V → G be two maps
such that φ(U) ⊆ V . We assume that φ is differentiable at a ∈ U ,
and we put:

l1
4
= dφ(a) ∈ LR(E,F )
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We assume that ψ is differentiable at φ(a) ∈ V , and we put:

l2
4
= dψ(φ(a)) ∈ LR(F,G)

1. Explain why ψ ◦ φ : U → G is a well-defined map.

2. Given ε > 0, show the existence of η > 0 such that:

η(η + ‖l1‖+ ‖l2‖) ≤ ε

3. Show the existence of δ2 > 0 such that for all h2 ∈ F with
‖h2‖ ≤ δ2, we have φ(a) + h2 ∈ V and:

‖ψ(φ(a) + h2)− ψ ◦ φ(a)− l2(h2)‖ ≤ η‖h2‖

4. Show that if h2 ∈ F and ‖h2‖ ≤ δ2, then for all h ∈ E, we have:

‖ψ(φ(a)+h2)−ψ ◦φ(a)− l2 ◦ l1(h)‖ ≤ η‖h2‖+‖l2‖.‖h2− l1(h)‖

5. Show the existence of δ > 0 such that for all h ∈ E with ‖h‖ ≤ δ,
we have a+h ∈ U and ‖φ(a+h)−φ(a)−l1(h)‖ ≤ η‖h‖, together
with ‖φ(a+ h)− φ(a)‖ ≤ δ2.
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6. Show that if h ∈ E is such that ‖h‖ ≤ δ, then a+ h ∈ U and:

‖ψ ◦ φ(a+h)−ψ ◦ φ(a)−l2 ◦ l1(h)‖≤η‖φ(a+h)−φ(a)‖+η‖l2‖.‖h‖
≤ η(η + ‖l1‖+ ‖l2‖)‖h‖
≤ ε‖h‖

7. Show that l2 ◦ l1 ∈ LR(E,G)

8. Conclude with the following:

Theorem 110 Let E,F,G be three R-normed spaces, U be open in
E and V be open in F . Let φ : U → F and ψ : V → G be two maps
such that φ(U) ⊆ V . Let a ∈ U . Then, if φ is differentiable at a ∈ U ,
and ψ is differentiable at φ(a) ∈ V , then ψ ◦ φ is differentiable at
a ∈ U , and furthermore:

d(ψ ◦ φ)(a) = dψ(φ(a)) ◦ dφ(a)
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Exercise 9. Let E,F,G be three R-normed spaces. Let U be open
in E and V be open in F . Let φ : U → F and ψ : V → G be two
maps of class C1 such that φ(U) ⊆ V .

1. For all (l1, l2) ∈ LR(F,G) × LR(E,F ), we define:

N1(l1, l2)
4
= ‖l1‖+ ‖l2‖

N2(l1, l2)
4
=

√
‖l1‖2 + ‖l2‖2

N∞(l1, l2)
4
= max(‖l1‖, ‖l2‖)

Show that N1, N2, N∞ are all norms on LR(F,G) × LR(E,F ).

2. Show they induce the product topology on LR(F,G)×LR(E,F ).

3. We define the map H : LR(F,G) × LR(E,F )→ LR(E,G) by:

∀(l1, l2) ∈ LR(F,G) × LR(E,F ) , H(l1, l2)
4
= l1 ◦ l2

Show that ‖H(l1, l2)‖ ≤ ‖l1‖.‖l2‖, for all l1, l2.
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4. Show that H is continuous.

5. We define K : U → LR(F,G) × LR(E,F ) by:

∀a ∈ U , K(a)
4
= (dψ(φ(a)), dφ(a))

Show that K is continuous.

6. Show that ψ ◦ φ is differentiable on U .

7. Show that d(ψ ◦ φ) = H ◦K.

8. Conclude with the following:

Theorem 111 Let E,F,G be three R-normed spaces, U be open in
E and V be open in F . Let φ : U → F and ψ : V → G be two maps
of class C1 such that φ(U) ⊆ V . Then, ψ ◦ φ : U → G is of class C1.
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Exercise 10. Let E be an R-normed space. Let a, b ∈ R, a < b.
Let f : [a, b] → E and g : [a, b] → R be two continuous maps which
are differentiable at every points of ]a, b[. We assume that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

1. Given ε > 0, we define φε : [a, b]→ R by:

φε(t)
4
= ‖f(t)− f(a)‖ − g(t) + g(a)− ε(t− a)

for all t ∈ [a, b]. Show that φε is continuous.

2. Define Eε = {t ∈ [a, b] : φε(t) ≤ ε}, and c = supEε. Show that:

c ∈ [a, b] and φε(c) ≤ ε

3. Show the existence of h > 0, such that:

∀t ∈ [a, a+ h[∩[a, b] , φε(t) ≤ ε

4. Show that c ∈]a, b].
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5. Suppose that c ∈]a, b[. Show the existence of t0 ∈]c, b] such that:∥∥∥∥f(t0)− f(c)
t0 − c

∥∥∥∥ ≤ ‖f ′(c)‖+ ε/2 and g′(c) ≤ g(t0)− g(c)
t0 − c

+ ε/2

6. Show that ‖f(t0)− f(c)‖ ≤ g(t0)− g(c) + ε(t0 − c).

7. Show that ‖f(c)− f(a)‖ ≤ g(c)− g(a) + ε(c− a) + ε.

8. Show that ‖f(t0)− f(a)‖ ≤ g(t0)− g(a) + ε(t0 − a) + ε.

9. Show that c cannot be the supremum of Eε unless c = b.

10. Show that ‖f(b)− f(a)‖ ≤ g(b)− g(a) + ε(b− a) + ε.

11. Conclude with the following:
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Theorem 112 Let E be an R-normed space. Let a, b ∈ R, a < b.
Let f : [a, b] → E and g : [a, b] → R be two continuous maps which
are differentiable at every point of ]a, b[, and such that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

Then:
‖f(b)− f(a)‖ ≤ g(b)− g(a)

Definition 131 Let n ≥ 1 and U be open in Rn. Let φ : U → E
be a map, where E is an R-normed space. For all i = 1, . . . , n, we
say that φ has an ith partial derivative at a ∈ U , if and only if the
limit:

∂φ

∂xi
(a)

4
= lim

h 6=0,h→0

φ(a+ hei)− φ(a)
h

exists in E, where (e1, . . . , en) is the canonical basis of Rn.
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Exercise 11. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space.

1. Suppose φ is differentiable at a ∈ U . Show that for all i ∈ Nn:

lim
h 6=0,h→0

1
‖hei‖

‖φ(a+ hei)− φ(a) − dφ(a)(hei)‖ = 0

2. Show that for all i ∈ Nn, ∂φ
∂xi

(a) exists, and:

∂φ

∂xi
(a) = dφ(a)(ei)

3. Conclude with the following:

Theorem 113 Let n ≥ 1 and U be open in Rn. Let φ : U → E be
a map, where E is an R-normed space. Then, if φ is differentiable at
a ∈ U , for all i = 1, . . . , n, ∂φ

∂xi
(a) exists and we have:

∀h 4= (h1, . . . , hn) ∈ Rn , dφ(a)(h) =
n∑
i=1

∂φ

∂xi
(a)hi



Tutorial 18: The Jacobian Formula 15

Exercise 12. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space.

1. Show that if φ is differentiable at a, b ∈ U , then for all i ∈ Nn:∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥ ≤ ‖dφ(b)− dφ(a)‖

2. Conclude that if φ is of class C1 on U , then ∂φ
∂xi

exists and is
continuous on U , for all i ∈ Nn.

Exercise 13. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space. We assume that ∂φ

∂xi
exists on

U , and is continuous at a ∈ U , for all i ∈ Nn. We define l : Rn → E
by:

∀h 4= (h1, . . . , hn) ∈ Rn , l(h)
4
=

n∑
i=1

∂φ

∂xi
(a)hi

1. Show that l ∈ LR(Rn, E).
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2. Given ε > 0, show the existence of η > 0 such that for all h ∈ Rn

with ‖h‖ < η, we have a+ h ∈ U , and:

∀i = 1, . . . , n ,
∥∥∥∥ ∂φ∂xi (a+ h)− ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

3. Let h = (h1, . . . , hn) ∈ Rn be such that ‖h‖ < η. (e1, . . . , en)
being the canonical basis of Rn, we define k0 = a and for i ∈ Nn:

ki
4
= a+

i∑
j=1

hiei

Show that k0, . . . , kn ∈ U , and that we have:

φ(a+h)−φ(a)−l(h)=
n∑
i=1

(
φ(ki−1 + hiei)−φ(ki−1)−hi

∂φ

∂xi
(a)
)

4. Let i ∈ Nn. Assume that hi > 0. We define fi : [0, hi]→ E by:

∀t ∈ [0, hi] , fi(t)
4
= φ(ki−1 + tei)− φ(ki−1)− t ∂φ

∂xi
(a)
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Show fi is well-defined, f ′i(t) exists for all t ∈ [0, hi], and:

∀t ∈ [0, hi] , f ′i(t) =
∂φ

∂xi
(ki−1 + tei)−

∂φ

∂xi
(a)

5. Show fi is continuous on [0, hi], differentiable on ]0, hi[, with:

∀t ∈]0, hi[ , ‖f ′i(t)‖ ≤ ε

6. Show that:∥∥∥∥φ(ki−1 + hiei)− φ(ki−1)− hi
∂φ

∂xi
(a)
∥∥∥∥ ≤ ε|hi|

7. Show that the previous inequality still holds if hi ≤ 0.

8. Conclude that for all h ∈ Rn with ‖h‖ < η, we have:

‖φ(a+ h)− φ(a)− l(h)‖ ≤ ε
√
n‖h‖

9. Prove the following:
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Theorem 114 Let n ≥ 1 and U be open in Rn. Let φ : U → E be
a map, where E is an R-normed space. If, for all i ∈ Nn

∂φ
∂xi

exists
on U and is continuous at a ∈ U , then φ is differentiable at a ∈ U .

Exercise 14. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space. We assume that for all i ∈ Nn,
∂φ
∂xi

exists and is continuous on U .

1. Show that φ is differentiable on U .

2. Show that for all a, b ∈ U and h ∈ Rn:

‖(dφ(b)− dφ(a))(h)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

‖h‖

3. Show that for all a, b ∈ U :

‖dφ(b)− dφ(a)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥2
)1/2
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4. Show that dφ : U → LR(Rn, E) is continuous.

5. Prove the following:

Theorem 115 Let n ≥ 1 and U be open in Rn. Let φ : U → E be
a map, where E is an R-normed space. Then, φ is of class C1 on U ,
if and only if for all i = 1, . . . , n, ∂φ

∂xi
exists and is continuous on U .

Exercise 15. Let E,F be two R-normed spaces and l ∈ LR(E,F ).
Let U be open in E and l|U be the restriction of l to U . Show that
l|U is of class C1 on U , and that we have:

∀x ∈ U , d(l|U )(x) = l
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Exercise 16. Let E1, . . . , Ep, (p ≥ 1), be p R-normed spaces. Let
E = E1 × . . .× Ep. For all x = (x1, . . . , xp) ∈ E, we define:

‖x‖1
4
=

p∑
i=1

‖xi‖

‖x‖2
4
=

√√√√ p∑
i=1

‖xi‖2

‖x‖∞
4
= max

i=1,...,p
‖xi‖

1. Show that ‖.‖1, ‖.‖2 and ‖.‖∞ are all norms on E.

2. Show ‖.‖1, ‖.‖2 and ‖.‖∞ induce the product topology on E.

3. Conclude that E is also an R-normed space, and that the norm
topology on E is exactly the product topology on E.
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Exercise 17. Let E,F1, . . . , Fp, (p ≥ 1) be p + 1 R-normed spaces,
U be open in E, F = F1 × . . .× Fp and φ : U → F be a map.

1. For i = 1, . . . , p, let pi : F → Fi be the canonical projection.
Show that pi ∈ LR(F, Fi). We put φi = pi ◦ φ.

2. For i = 1, . . . , p, let ui : Fi → F be defined by:

∀xi ∈ Fi , ui(xi)
4
= (0, . . . ,

i︷︸︸︷
xi , . . . , 0)

Show that ui ∈ LR(Fi, F ) and φ =
∑p

i=1 ui ◦ φi.

3. Show that if φ is differentiable at a ∈ U , then for all i = 1, . . . , p,
φi : U → Fi is differentiable at a ∈ U and dφi(a) = pi ◦ dφ(a).

4. Show that if for all i = 1, . . . , p, φi is differentiable at a ∈ U ,
then φ is differentiable at a ∈ U and:

dφ(a) =
p∑
i=1

ui ◦ dφi(a)
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5. Suppose that φ is differentiable at a, b ∈ U . We assume that F
is given the norm ‖(x1, . . . , xp)‖2 =

√∑p
i=1 ‖xi‖2. Show that

for all i ∈ Np:

‖dφi(b)− dφi(a)‖ ≤ ‖dφ(b)− dφ(a)‖

6. Show that:

‖dφ(b)− dφ(a)‖ ≤

√√√√ p∑
i=1

‖dφi(b)− dφi(a)‖2

7. Show that φ is of class C1 ⇔ φi is of class C1 for all i ∈ Np.

8. Explain why this conclusion would still hold, if F were given the
norm ‖.‖1 or ‖.‖∞ instead of ‖.‖2.

9. Conclude with theorem (116)
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Theorem 116 Let E,F1, . . . , Fp, (p ≥ 1), be p+1 R-normed spaces
and U be open in E. Let F be the R-normed space F = F1 × . . .×Fp
and φ = (φ1, . . . , φp) : U → F be a map. Then, φ is differentiable at
a ∈ U , if and only if dφi(a) exists for all i ∈ Np, in which case:

∀h ∈ E , dφ(a)(h) = (dφ1(a)(h), . . . , dφp(a)(h))

Also, φ is of class C1 on U ⇔ φi is of class C1 on U , for all i ∈ Np.

Theorem 117 Let φ = (φ1, . . . , φn) : U → Rn be a map, where
n ≥ 1 and U is open in Rn. We assume that φ is differentiable at
a ∈ U . Then, for all i, j = 1, . . . , n, ∂φi

∂xj
(a) exists, and we have:

dφ(a) =


∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn
∂x1

(a) . . . ∂φn
∂xn

(a)


Moreover, φ is of class C1 on U , if and only if for all i, j = 1, . . . , n,
∂φi
∂xj

exists and is continuous on U .
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Exercise 18. Prove theorem (117)

Definition 132 Let φ = (φ1, . . . , φn) : U → Rn be a map, where
n ≥ 1 and U is open in Rn. We assume that φ is differentiable at
a ∈ U . We call jacobian of φ at a, denoted J(φ)(a), the determinant
of the differential dφ(a) at a, i.e.

J(φ)(a) = det


∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn
∂x1

(a) . . . ∂φn
∂xn

(a)



Definition 133 Let n ≥ 1 and Ω, Ω′ be open in Rn. A bijection
φ : Ω→ Ω′ is called a C1-diffeomorphism between Ω and Ω′, if and
only if φ : Ω→ Rn and φ−1 : Ω′ → Rn are both of class C1.
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Exercise 19. Let Ω and Ω′ be open in Rn. Let φ : Ω → Ω′ be a
C1-diffeomorphism, ψ = φ−1, and In be the identity mapping of Rn.

1. Explain why J(ψ) : Ω′ → R and J(φ) : Ω→ R are continuous.

2. Show that dφ(ψ(x)) ◦ dψ(x) = In, for all x ∈ Ω′.

3. Show that dψ(φ(x)) ◦ dφ(x) = In, for all x ∈ Ω.

4. Show that J(ψ)(x) 6= 0 for all x ∈ Ω′.

5. Show that J(φ)(x) 6= 0 for all x ∈ Ω.

6. Show that J(ψ) = 1/(J(φ) ◦ ψ) and J(φ) = 1/(J(ψ) ◦ φ).

Definition 134 Let n ≥ 1 and Ω ∈ B(Rn), be a borel set in Rn. We
define the lebesgue measure on Ω, denoted dx|Ω, as the restriction
to B(Ω) of the lebesgue measure on Rn, i.e the measure on (Ω,B(Ω))
defined by:

∀B ∈ B(Ω) , dx|Ω(B)
4
= dx(B)
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Exercise 20. Show that dx|Ω is a well-defined measure on (Ω,B(Ω)).

Exercise 21. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1. Let a ∈ Ω′. We assume that
dψ(a) = In, (identity mapping on Rn), and given ε > 0, we denote:

B(a, ε)
4
= {x ∈ Rn : ‖a− x‖ < ε}

where ‖.‖ is the usual norm in Rn.

1. Why are dx|Ω′ , φ(dx|Ω) well-defined measures on (Ω′,B(Ω′)).

2. Show that for ε > 0 sufficiently small, B(a, ε) ∈ B(Ω′).

3. Show that it makes sense to investigate whether the limit:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

does exists in R.
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4. Given r > 0, show the existence of ε1 > 0 such that for all
h ∈ Rn with ‖h‖ ≤ ε1, we have a+ h ∈ Ω′, and:

‖ψ(a+ h)− ψ(a)− h‖ ≤ r‖h‖

5. Show for all h ∈ Rn with ‖h‖ ≤ ε1, we have a+ h ∈ Ω′, and:

‖ψ(a+ h)− ψ(a)‖ ≤ (1 + r)‖h‖

6. Show that for all ε ∈]0, ε1[, we have B(a, ε) ⊆ Ω′, and:

ψ(B(a, ε)) ⊆ B(ψ(a), ε(1 + r))

7. Show that dφ(ψ(a)) = In.

8. Show the existence of ε2 > 0 such that for all k ∈ Rn with
‖k‖ ≤ ε2, we have ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k)− a− k‖ ≤ r‖k‖
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9. Show for all k ∈ Rn with ‖k‖ ≤ ε2, we have ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k)− a‖ ≤ (1 + r)‖k‖

10. Show for all ε ∈]0, ε2(1 + r)[, we have B(ψ(a), ε
1+r ) ⊆ Ω, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)}

11. Show that if B(a, ε) ⊆ Ω′, then ψ(B(a, ε)) = {φ ∈ B(a, ε)}.

12. Show if 0 < ε < ε0 = ε1 ∧ ε2(1 + r), then B(a, ε) ⊆ Ω′, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)} ⊆ B(ψ(a), ε(1 + r))

13. Show that for all ε ∈]0, ε0[:

(i) dx(B(ψ(a),
ε

1 + r
)) = (1 + r)−ndx|Ω′ (B(a, ε))

(ii) dx(B(ψ(a), ε(1 + r))) = (1 + r)ndx|Ω′(B(a, ε))
(iii) dx({φ ∈ B(a, ε)}) = φ(dx|Ω)(B(a, ε))
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14. Show that for all ε ∈]0, ε0[, B(a, ε) ⊆ Ω′, and:

(1 + r)−n ≤
φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

≤ (1 + r)n

15. Conclude that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

Exercise 22. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω→ Ω′ be
a C1-diffeomorphism and ψ = φ−1. Let a ∈ Ω′. We put A = dψ(a).

1. Show that A : Rn → Rn is a linear bijection.

2. Define Ω′′ = A−1(Ω). Show that this definition does not depend
on whether A−1(Ω) is viewed as inverse , or direct image.

3. Show that Ω′′ is an open subset of Rn.
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4. We define φ̃ : Ω′′ → Ω′ by φ̃(x) = φ ◦ A(x). Show that φ̃ is a
C1-diffeomorphism with ψ̃ = φ̃−1 = A−1 ◦ ψ.

5. Show that dψ̃(a) = In.

6. Show that:

lim
ε↓↓0

φ̃(dx|Ω′′)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

7. Let ε > 0 with B(a, ε) ⊆ Ω′. Justify each of the following steps:

φ̃(dx|Ω′′ )(B(a, ε)) = dx|Ω′′ ({φ̃ ∈ B(a, ε)}) (1)

= dx({φ̃ ∈ B(a, ε)}) (2)
= dx({x ∈ Ω′′ : φ ◦A(x) ∈ B(a, ε)}) (3)
= dx({x ∈ Ω′′ : A(x) ∈ φ−1(B(a, ε))}) (4)
= dx({x ∈ Rn : A(x) ∈ φ−1(B(a, ε))})(5)
= A(dx)({φ ∈ B(a, ε)}) (6)
= | detA|−1dx({φ ∈ B(a, ε)}) (7)
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= | detA|−1dx|Ω({φ ∈ B(a, ε)}) (8)

= | detA|−1φ(dx|Ω)(B(a, ε)) (9)

8. Show that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= | detA|

9. Conclude with the following:

Theorem 118 Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω→ Ω′

be a C1-diffeomorphism and ψ = φ−1. Then, for all a ∈ Ω′, we have:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

= |J(ψ)(a)|

where J(ψ)(a) is the jacobian of ψ at a, B(a, ε) is the open ball in Rn,
and dx|Ω, dx|Ω′ are the lebesgue measures on Ω and Ω′ respectively.
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Exercise 23. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1.

1. Let K ⊆ Ω′ be a compact subset of Ω′ such that dx|Ω′ (K) = 0.
Given ε > 0, show the existence of V open in Ω′, such that
K ⊆ V ⊆ Ω′, and dx|Ω′(V ) ≤ ε.

2. Explain why V is also open in Rn.

3. Show that M = supx∈K ‖dψ(x)‖ < +∞.

4. For all x ∈ K, show there is εx > 0 such that B(x, εx) ⊆ V , and
for all h ∈ Rn with ‖h‖ ≤ 3εx, we have x+ h ∈ Ω′, and:

‖ψ(x+ h)− ψ(x)‖ ≤ (M + 1)‖h‖

5. Show that for all x ∈ K, B(x, 3εx) ⊆ Ω′, and:

ψ(B(x, 3εx)) ⊆ B(ψ(x), 3(M + 1)εx)

6. Show that ψ(B(x, 3εx)) = {φ ∈ B(x, 3εx)}, for all x ∈ K.
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7. Show the existence of {x1, . . . , xp} ⊆ K, (p ≥ 0), such that:

K ⊆ B(x1, εx1) ∪ . . . ∪B(xp, εxp)

8. Show the existence of S ⊆ {1, . . . , p} such that the B(xi, εxi)’s
are pairwise disjoint for i ∈ S, and:

K ⊆
⋃
i∈S

B(xi, 3εxi)

9. Show that {φ ∈ K} ⊆ ∪i∈SB(ψ(xi), 3(M + 1)εxi).

10. Show that φ(dx|Ω)(K) ≤
∑

i∈S 3n(M + 1)ndx(B(xi, εxi)).

11. Show that φ(dx|Ω)(K) ≤ 3n(M + 1)ndx(V ).

12. Show that φ(dx|Ω)(K) ≤ 3n(M + 1)nε.

13. Conclude that φ(dx|Ω)(K) = 0.

14. Show that φ(dx|Ω) is a locally finite measure on (Ω′,B(Ω′)).
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15. Let B ∈ B(Ω′) be such that dx|Ω′(B) = 0. Show that:

φ(dx|Ω)(B) = sup{φ(dx|Ω)(K) : K ⊆ B , K compact }

16. Show that φ(dx|Ω)(B) = 0.

17. Conclude with the following:

Theorem 119 Let n ≥ 1, Ω, Ω′ be open in Rn, and φ : Ω → Ω′ be
a C1-diffeomorphism. Then, the image measure φ(dx|Ω), by φ of the
lebesgue measure on Ω, is absolutely continuous with respect to dx|Ω′ ,
the lebesgue measure on Ω′, i.e.:

φ(dx|Ω) << dx|Ω′
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Exercise 24. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1.

1. Explain why there exists a sequence (Vp)p≥1 of open sets in Ω′,
such that Vp ↑ Ω′ and for all p ≥ 1, the closure of Vp in Ω′, i.e.
V̄ Ω′

p , is compact.

2. Show that each Vp is also open in Rn, and that V̄ Ω′

p = V̄p.

3. Show that φ(dx|Ω)(Vp) < +∞, for all p ≥ 1.

4. Show that dx|Ω′ and φ(dx|Ω) are two σ-finite measures on Ω′.

5. Show there is h : (Ω′,B(Ω′))→ (R+,B(R+)) measurable, with:

∀B ∈ B(Ω′) , φ(dx|Ω)(B) =
∫
B

hdx|Ω′

6. For all p ≥ 1, we define hp = h1Vp , and we put:

∀x ∈ Rn , h̃p(x)
4
=
{
hp(x) if x ∈ Ω′

0 if x 6∈ Ω′
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Show that:∫
Rn

h̃pdx =
∫

Ω′
hpdx|Ω′ = φ(dx|Ω)(Vp) < +∞

and conclude that h̃p ∈ L1
R(Rn,B(Rn), dx).

7. Show the existence of some N ∈ B(Rn), such that dx(N) = 0
and for all x ∈ N c and p ≥ 1, we have:

h̃p(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

h̃pdx

8. Put N ′ = N ∩ Ω′. Show that N ′ ∈ B(Ω′) and dx|Ω′(N ′) = 0.

9. Let x ∈ Ω′ and p ≥ 1 be such that x ∈ Vp. Show that if ε > 0 is
such that B(x, ε) ⊆ Vp, then dx(B(x, ε)) = dx|Ω′ (B(x, ε)), and:∫

B(x,ε)

h̃pdx =
∫

Rn

1B(x,ε)h̃pdx =
∫

Ω′
1B(x,ε)hpdx|Ω′
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10. Show that:∫
Ω′

1B(x,ε)hpdx|Ω′ =
∫

Ω′
1B(x,ε)hdx|Ω′ = φ(dx|Ω)(B(x, ε))

11. Show that for all x ∈ Ω′ \N ′, we have:

h(x) = lim
ε↓↓0

φ(dx|Ω)(B(x, ε))
dx|Ω′(B(x, ε))

12. Show that h = |J(ψ)| dx|Ω′ -a.s. and conclude with the following:

Theorem 120 Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω→ Ω′

be a C1-diffeomorphism and ψ = φ−1. Then, the image measure by φ
of the lebesgue measure on Ω, is equal to the measure on (Ω′,B(Ω′))
with density |J(ψ)| with respect to the lebesgue measure on Ω′, i.e.:

φ(dx|Ω) =
∫
|J(ψ)|dx|Ω′
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Exercise 25. Prove the following:

Theorem 121 (Jacobian Formula 1) Let n ≥ 1 and φ : Ω → Ω′

be a C1-diffeomorphism where Ω, Ω′ are open in Rn. Let ψ = φ−1.
Then, for all f : (Ω′,B(Ω′))→ [0,+∞] non-negative and measurable:∫

Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′

and: ∫
Ω

(f ◦ φ)|J(φ)|dx|Ω =
∫

Ω′
fdx|Ω′

Exercise 26. Prove the following:
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Theorem 122 (Jacobian Formula 2) Let n ≥ 1 and φ : Ω → Ω′

be a C1-diffeomorphism where Ω, Ω′ are open in Rn. Let ψ = φ−1.
Then, for all measurable map f : (Ω′,B(Ω′)) → (C,B(C)), we have
the equivalence:

f ◦ φ ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f |J(ψ)| ∈ L1

C(Ω′,B(Ω′), dx|Ω′ )

in which case: ∫
Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′

and, furthermore:

(f ◦ φ)|J(φ)| ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f ∈ L1

C(Ω′,B(Ω′), dx|Ω′)

in which case: ∫
Ω

(f ◦ φ)|J(φ)|dx|Ω =
∫

Ω′
fdx|Ω′
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Exercise 27. Let f :R2→[0,+∞], with f(x, y) = exp(−(x2 + y2)/2).

1. Show that: ∫
R2
f(x, y)dxdy =

(∫ +∞

−∞
e−u

2/2du

)2

2. Define:

∆1
4
= {(x, y) ∈ R2 : x > 0 , y > 0}

∆2
4
= {(x, y) ∈ R2 : x < 0 , y > 0}

and let ∆3 and ∆4 be the other two open quarters of R2. Show:∫
R2
f(x, y)dxdy =

∫
∆1∪...∪∆4

f(x, y)dxdy

3. Let Q : R2 → R2 be defined by Q(x, y) = (−x, y). Show that:∫
∆1

f(x, y)dxdy =
∫

∆2

f ◦Q−1(x, y)dxdy
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4. Show that: ∫
R2
f(x, y)dxdy = 4

∫
∆1

f(x, y)dxdy

5. Let D1 =]0,+∞[×]0, π/2[⊆R2, and define φ : D1 → ∆1 by:

∀(r, θ) ∈ D1 , φ(r, θ)
4
= (r cos θ, r sin θ)

Show that φ is a bijection and that ψ = φ−1 is given by:

∀(x, y) ∈ ∆1 , ψ(x, y) = (
√
x2 + y2, arctan(y/x))

6. Show that φ is a C1-diffeomorphism, with:

∀(r, θ) ∈ D1 , dφ(r, θ) =
(

cos θ −r sin θ
sin θ r cos θ

)
and:

∀(x, y) ∈ ∆1 , dψ(x, y) =

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
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7. Show that J(φ)(r, θ) = r, for all (r, θ) ∈ D1.

8. Show that J(ψ)(x, y) = 1/(
√
x2 + y2), for all (x, y) ∈ ∆1.

9. Show that: ∫
∆1

f(x, y)dxdy =
π

2

10. Prove the following:

Theorem 123 We have:

1√
2π

∫ +∞

−∞
e−u

2/2du = 1
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19. Fourier Transform

Exercise 1. We define the maps ψ : R2 → C and φ : R→ C:

∀(u, x) ∈ R2 , ψ(u, x)
4
= eiux−x

2/2

∀u ∈ R , φ(u)
4
=
∫ +∞

−∞
ψ(u, x)dx

1. Show that for all u ∈ R, the map x→ ψ(u, x) is measurable.

2. Show that for all u ∈ R, we have:∫ +∞

−∞
|ψ(u, x)|dx =

√
2π < +∞

and conclude that φ is well defined.

3. Let u ∈ R and (un)n≥1 be a sequence in R converging to u.
Show that φ(un)→ φ(u) and conclude that φ is continuous.
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4. Show that: ∫ +∞

0

xe−x
2/2dx = 1

5. Show that for all u ∈ R, we have:∫ +∞

−∞

∣∣∣∣∂ψ∂u (u, x)
∣∣∣∣ dx = 2 < +∞

6. Let a, b ∈ R, a < b. Show that:

eib − eia =
∫ b

a

ieixdx

7. Let a, b ∈ R, a < b. Show that:

|eib − eia| ≤ |b− a|

8. Let a, b ∈ R, a 6= b. Show that for all x ∈ R:∣∣∣∣ψ(b, x)− ψ(a, x)
b− a

∣∣∣∣ ≤ |x|e−x2/2
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9. Let u ∈ R and (un)n≥1 be a sequence in R converging to u,
with un 6= u for all n. Show that:

lim
n→+∞

φ(un)− φ(u)
un − u

=
∫ +∞

−∞

∂ψ

∂u
(u, x)dx

10. Show that φ is differentiable with:

∀u ∈ R , φ′(u) =
∫ +∞

−∞

∂ψ

∂u
(u, x)dx

11. Show that φ is of class C1.

12. Show that for all (u, x) ∈ R2, we have:

∂ψ

∂u
(u, x) = −uψ(u, x)− i∂ψ

∂x
(u, x)

13. Show that for all u ∈ R:∫ +∞

−∞

∣∣∣∣∂ψ∂x (u, x)
∣∣∣∣ dx < +∞
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14. Let a, b ∈ R, a < b. Show that for all u ∈ R:

ψ(u, b)− ψ(u, a) =
∫ b

a

∂ψ

∂x
(u, x)dx

15. Show that for all u ∈ R:∫ +∞

−∞

∂ψ

∂x
(u, x)dx = 0

16. Show that for all u ∈ R:

φ′(u) = −uφ(u)

Exercise 2. Let S be the set of functions defined by:

S 4= {h : h ∈ C1(R,R) , ∀u ∈ R , h′(u) = −uh(u)}

1. Let φ be as in ex. (1). Show that Re(φ) and Im(φ) lie in S.
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2. Given h ∈ S, we define g : R→ R, by:

∀u ∈ R , g(u)
4
= h(u)eu

2/2

Show that g is of class C1 with g′ = 0.

3. Let a, b ∈ R, a < b. Show the existence of c ∈]a, b[, such that:

g(b)− g(a) = g′(c)(b − a)

4. Conclude that for all h ∈ S, we have:

∀u ∈ R , h(u) = h(0)e−u
2/2

5. Prove the following:

Theorem 124 For all u ∈ R, we have:

1√
2π

∫ +∞

−∞
eiux−x

2/2dx = e−u
2/2
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Definition 135 Let µ1, . . . , µp be complex measures on Rn,1 where
n, p ≥ 1. We call convolution of µ1, . . . , µp, denoted µ1 ?. . .?µp, the
image measure of the product measure µ1⊗ . . .⊗µp by the measurable
map S : (Rn)p → Rn defined by:

S(x1, . . . , xp)
4
= x1 + . . .+ xp

In other words, µ1 ?. . .?µp is the complex measure on Rn, defined by:

µ1 ? . . . ? µp
4
= S(µ1 ⊗ . . .⊗ µp)

Exercise 3. Let µ, ν be complex measures on Rn.

1. Show that for all B ∈ B(Rn):

µ ? ν(B) =
∫

Rn×Rn

1B(x+ y)dµ⊗ ν(x, y)

1An obvious shortcut to saying ’complex measures on (Rn,B(Rn))’.
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2. Show that for all B ∈ B(Rn):

µ ? ν(B) =
∫

Rn

(∫
Rn

1B(x+ y)dµ(x)
)
dν(y)

3. Show that for all B ∈ B(Rn):

µ ? ν(B) =
∫

Rn

(∫
Rn

1B(x+ y)dν(x)
)
dµ(y)

4. Show that µ ? ν = ν ? µ.

5. Let f : Rn → C be bounded and measurable. Show that:∫
Rn

fdµ ? ν =
∫

Rn×Rn

f(x+ y)dµ⊗ ν(x, y)
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Exercise 4. Let µ, ν be complex measures on Rn. Given B ⊆ Rn

and x ∈ Rn, we define B − x = {y ∈ Rn , y + x ∈ B}.

1. Show that for all B ∈ B(Rn) and x ∈ Rn, B − x ∈ B(Rn).

2. Show x→ µ(B−x) is measurable and bounded, for B ∈ B(Rn).

3. Show that for all B ∈ B(Rn):

µ ? ν(B) =
∫

Rn

µ(B − x)dν(x)

4. Show that for all B ∈ B(Rn):

µ ? ν(B) =
∫

Rn

ν(B − x)dµ(x)
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Exercise 5. Let µ1, µ2, µ3 be complex measures on Rn.

1. Show that for all B ∈ B(Rn):

µ1 ? (µ2 ? µ3)(B) =
∫

Rn×Rn

1B(x+ y)dµ1 ⊗ (µ2 ? µ3)(x, y)

2. Show that for all B ∈ B(Rn) and x ∈ Rn:∫
Rn

1B(x+ y)dµ2 ? µ3(y) =
∫

Rn×Rn

1B(x+ y + z)dµ2 ⊗ µ3(y, z)

3. Show that for all B ∈ B(Rn):

µ1 ? (µ2 ? µ3)(B) =
∫

Rn×Rn×Rn

1B(x+ y + z)dµ1 ⊗ µ2 ⊗ µ3(x, y, z)

4. Show that µ1 ? (µ2 ? µ3) = µ1 ? µ2 ? µ3 = (µ1 ? µ2) ? µ3
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Definition 136 Let n ≥ 1 and a ∈ Rn. We define δa :B(Rn)→R+:

∀B ∈ B(Rn) , δa(B)
4
= 1B(a)

δa is called the dirac probability measure on Rn, centered in a.

Exercise 6. Let n ≥ 1 and a ∈ Rn.

1. Show that δa is indeed a probability measure on Rn.

2. Show for all f : Rn → [0,+∞] non-negative and measurable:∫
Rn

fdδa = f(a)

3. Show if f : Rn → C is measurable, f ∈L1
C(Rn,B(Rn), δa) and:∫

Rn

fdδa = f(a)
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4. Show that for any complex measure µ on Rn:

µ ? δ0 = δ0 ? µ = µ

5. Let τa(x) = a+x define the translation of vector a in Rn. Show
that for any complex measure µ on Rn:

µ ? δa = δa ? µ = τa(µ)

Exercise 7. Let n ≥ 1 and µ, ν be complex measures on Rn. We
assume that ν << dx, i.e. that ν is absolutely continuous with respect
to the lebesgue measure on Rn.

1. Show there is f ∈ L1
C(Rn,B(Rn), dx), such that ν =

∫
fdx.

2. Show that for all B ∈ B(Rn), we have:

µ ? ν(B) =
∫

Rn

ν(B − x)dµ(x)
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3. Show that for all B ∈ B(Rn) and x ∈ Rn:

ν(B − x) =
∫

Rn

1B(y)f(y − x)dy

4. Show that for all B ∈ B(Rn) the map:

(x, y)→ 1B(y)f(y − x)

lies in L1
C(Rn ×Rn,B(Rn)⊗ B(Rn), µ⊗ dy).

5. Show that for all B ∈ B(Rn), we have:

µ ? ν(B) =
∫
B

(∫
Rn

f(y − x)dµ(x)
)
dy

6. Given y ∈ Rn, we define:

g(y)
4
=
∫

Rn

f(y − x)dµ(x)

Show that g(y) is well-defined for dy-almost all y ∈ Rn.
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7. Define an element ḡ of L1
C(Rn,B(Rn), dx), with g = ḡ dx−a.s.

8. Show that µ ? ν is absolutely continuous w.r. to the lebesgue
measure on Rn, with density g.

Theorem 125 Let µ, ν be two complex measures on Rn, n ≥ 1. If
ν << dx, i.e. ν is absolutely continuous with respect to the lebesgue
measure on Rn, with density f∈ L1

C(Rn,B(Rn), dx), then the convo-
lution µ ? ν = ν ? µ is itself absolutely continuous with respect to the
lebesgue measure on Rn, with density:

g(y) =
∫

Rn

f(y − x)dµ(x) , dy − a.s.

In other words, µ ? ν = ν ? µ =
∫
gdx.

Exercise 8. Further to theorem (125), show that if µ =
∫
hdx for

some h ∈ L1
C(Rn,B(Rn), dx), then:

g(y) =
∫

Rn

f(y − x)h(x)dx , dy − a.s.



Tutorial 19: Fourier Transform 14

Definition 137 Let µ be a complex measure on (Rn,B(Rn)), n ≥ 1.
We call fourier transform of µ, the map Fµ : Rn → C defined by:

∀u ∈ Rn , Fµ(u)
4
=
∫

Rn

ei〈u,x〉dµ(x)

where 〈·, ·〉 is the usual inner-product in Rn.

Exercise 9. Further to definition (137):

1. Show that Fµ is well-defined.

2. Show that Fµ ∈ CbC(Rn), i.e Fµ is continuous and bounded.

3. Show that for all a, u ∈ Rn, we have ∀u ∈ Rn , Fδa(u) = ei〈u,a〉.

4. Let µ be the probability measure on (R,B(R)) defined by:

∀B ∈ B(R) , µ(B)
4
=

1√
2π

∫
B

e−x
2/2dx

Show that Fµ(u) = e−u
2/2, for all u ∈ R.
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Exercise 10. Let µ1, . . . , µp be complex measures on Rn, n, p ≥ 1.

1. Show that for all u ∈ Rn, we have:

F(µ1?. . .?µp)(u) =
∫

(Rn)p
ei〈u,x1+...+xp〉dµ1⊗. . .⊗µp(x1, . . . , xp)

2. Show that F(µ1 ? . . . ? µp) = Πp
j=1Fµj .

Exercise 11. Let n ≥ 1, σ > 0 and gσ : Rn → R+ defined by:

∀x ∈ Rn , gσ(x)
4
=

1
(2π)

n
2 σn

e−‖x‖
2/2σ2

1. Show that: ∫
Rn

gσ(x)dx = 1

2. Show that for all u ∈ Rn, we have:∫
Rn

gσ(x)ei〈u,x〉dx = e−σ
2‖u‖2/2
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3. Show that Pσ =
∫
gσdx is a probability on Rn with fourier

transform:
∀u ∈ Rn , FPσ(u) = e−σ

2‖u‖2/2

4. Show that for all x ∈ Rn, we have:

gσ(x) =
1

(2π)n

∫
Rn

ei〈x,u〉−σ
2‖u‖2/2du

Exercise 12. Further to ex. (11), let µ be a complex measure on Rn.

1. Show that µ ? Pσ =
∫
φσdx where:

φσ(x) =
∫

Rn

gσ(x − y)dµ(y) , dx − a.s.

2. Show that we also have:

φσ(x) =
∫

Rn

gσ(y − x)dµ(y) , dx − a.s.
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3. Show that:

φσ(x) =
1

(2π)n

∫
Rn

(∫
Rn

ei〈y−x,u〉−σ
2‖u‖2/2du

)
dµ(y) , dx− a.s.

4. Show that:

φσ(x) =
1

(2π)n

∫
Rn

e−i〈x,u〉−σ
2‖u‖2/2(Fµ)(u)du

5. Show that if µ, ν are two complex measures on Rn such that
Fµ = Fν, then for all σ > 0, we have µ ? Pσ = ν ? Pσ.

Definition 138 Let (Ω, T ) be a topological space. Let (µk)k≥1 be a
sequence of complex measures on (Ω,B(Ω)). We say that the sequence
(µk)k≥1 narrowly converges to a complex measure µ on (Ω,B(Ω)),
and we write µk → µ narrowly, if and only if:

∀f ∈ CbR(Ω) , lim
k→+∞

∫
fdµk =

∫
fdµ
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Exercise 13. Further to definition (138):

1. Show that µk → µ narrowly, is equivalent to:

∀f ∈ CbC(Ω) , lim
k→+∞

∫
fdµk =

∫
fdµ

2. Show that if (Ω, T ) is metrizable and ν is a complex measure on
(Ω,B(Ω)) such that µk → µ and µk → ν narrowly, then µ = ν.

Theorem 126 On a metrizable topological space, the narrow limit
when it exists, of any sequence of complex measures, is unique.

Exercise 14.

1. Show that on (R,B(R)), we have δ1/n → δ0 narrowly.

2. Show there is B ∈ B(R), such that δ1/n(B) 6→ δ0(B).
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Exercise 15. Let n ≥ 1. Given σ > 0, let Pσ be the probability
measure on (Rn,B(Rn)) defined as in ex. (11). Let (σk)k≥1 be a
sequence in R+ such that σk > 0 and σk → 0.

1. Show that for all f ∈ CbR(Rn), we have:∫
Rn

f(x)gσk(x)dx =
1

(2π)
n
2

∫
Rn

f(σkx)e−‖x‖
2/2dx

2. Show that for all f ∈ CbR(Rn), we have:

lim
k→+∞

∫
Rn

f(x)gσk(x)dx = f(0)

3. Show that Pσk → δ0 narrowly.
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Exercise 16. Let µ, ν be two complex measures on Rn. Let (νk)k≥1

be a sequence of complex measures on Rn, which narrowly converges
to ν. Let f ∈ CbR(Rn), and φ : Rn → R be defined by:

∀y ∈ Rn , φ(y)
4
=
∫

Rn

f(x+ y)dµ(x)

1. Show that:∫
Rn

fdµ ? νk =
∫

Rn×Rn

f(x+ y)dµ⊗ νk(x, y)

2. Show that: ∫
Rn

fdµ ? νk =
∫

Rn

φdνk

3. Show that φ ∈ CbC(Rn).

4. Show that:
lim

k→+∞

∫
Rn

φdνk =
∫

Rn

φdν
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5. Show that:

lim
k→+∞

∫
Rn

fdµ ? νk =
∫

Rn

fdµ ? ν

6. Show that µ ? νk → µ ? ν narrowly.

Theorem 127 Let µ, ν be two complex measures on Rn, n ≥ 1. Let
(νk)k≥1 be a sequence of complex measures on Rn. Then:

νk → ν narrowly ⇒ µ ? νk → µ ? ν narrowly

Exercise 17. Let µ, ν be two complex measures on Rn, such that
Fµ = Fν. For all σ > 0, let Pσ be the probability measure on
(Rn,B(Rn)) as defined in ex. (11). Let (σk)k≥1 be a sequence in R+

such that σk > 0 and σk → 0.

1. Show that µ ? Pσk = ν ? Pσk , for all k ≥ 1.

2. Show that µ ? Pσk → µ ? δ0 narrowly.
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3. Show that (µ ? Pσk)k≥1 narrowly converges to both µ and ν.

4. Prove the following:

Theorem 128 Let µ, ν be two complex measures on Rn. Then:

Fµ = Fν ⇒ µ = ν

i.e. the fourier transform is an injective mapping on M1(Rn,B(Rn)).

Definition 139 Let (Ω,F , P ) be a probability space. Given n ≥ 1,
and a measurable map X : (Ω,F) → (Rn,B(Rn)), the mapping φX
defined as:

∀u ∈ Rn , φX(u)
4
= E[ei〈u,X〉]

is called the characteristic function2 of the random variable X.

2Do not confuse with the characteristic function 1A of a set A, definition (39).
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Exercise 18. Further to definition (139):

1. Show that φX is well-defined, bounded and continuous.

2. Show that we have:

∀u ∈ Rn , φX(u) =
∫

Rn

ei〈u,x〉dX(P )(x)

3. Show φX is the fourier transform of the image measure X(P ).

4. Show the following:

Theorem 129 Let X,Y : (Ω,F) → (Rn,B(Rn)), n ≥ 1, be two
random variables on a probability space (Ω,F , P ). If X and Y have
the same characteristic functions, i.e.

∀u ∈ Rn , E[ei〈u,X〉] = E[ei〈u,Y 〉]

then X and Y have the same distributions, i.e.

∀B ∈ B(Rn) , P ({X ∈ B}) = P ({Y ∈ B})
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Definition 140 Let n ≥ 1. Given α = (α1, . . . , αn) ∈ Nn, we define
the modulus of α, denoted |α|, by |α| = α1 + . . .+ αn. Given x ∈ Rn

and α ∈ Nn, we put:
xα
4
= xα1

1 . . . xαnn

where it is understood that xαjj = 1 whenever αj = 0. Given a map
f : U → C, where U is an open subset of Rn, we denote ∂αf the
|α|-th partial derivative, when it exists:

∂αf
4
=

∂|α|f

∂xα1
1 . . . ∂xαnn

Note that ∂αf = f , whenever |α| = 0. Given k ≥ 0, we say that f is
of class Ck, if and only if for all α ∈ Nn with |α| ≤ k, ∂αf exists
and is continuous on U .

Exercise 19. Explain why def. (140) is consistent with def. (130).
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Exercise 20. Let µ be a complex measure on Rn, and α ∈ Nn, with:∫
Rn

|xα|d|µ|(x) < +∞ (1)

Let xαµ the complex measure on Rn defined by xαµ =
∫
xαdµ.

1. Explain why the above integral (1) is well-defined.

2. Show that xαµ is a well-defined complex measure on Rn.

3. Show that the total variation of xαµ is given by:

∀B ∈ B(Rn) , |xαµ|(B) =
∫
B

|xα|d|µ|(x)

4. Show that the fourier transform of xαµ is given by:

∀u ∈ Rn , F(xαµ)(u) =
∫

Rn

xαei〈u,x〉dµ(x)
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Exercise 21. Let µ be a complex measure on Rn. Let β ∈ Nn with
|β| = 1, and: ∫

Rn

|xβ |d|µ|(x) < +∞

Let xβµ be the complex measure on Rn defined as in ex. (20).

1. Show that there is j ∈ Nn with xβ = xj for all x ∈ Rn.

2. Show that for all u ∈ Rn, ∂Fµ∂uj
(u) exists and that we have:

∂Fµ
∂uj

(u) = i

∫
Rn

xje
i〈u,x〉dµ(x)

3. Conclude that ∂βFµ exists and that we have:

∂βFµ = iF(xβµ)

4. Explain why ∂βFµ is continuous.
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Exercise 22. Let µ be a complex measure on Rn. Let k ≥ 0 be an
integer. We assume that for all α ∈ Nn, we have:

|α| ≤ k ⇒
∫

Rn

|xα|d|µ|(x) < +∞ (2)

In particular, if |α| ≤ k, the measure xαµ of ex. (20) is well-defined.
We claim that for all α ∈ Nn with |α| ≤ k, ∂αFµ exists, and:

∂αFµ = i|α|F(xαµ)

1. Show that if k = 0, then the property is obviously true. We
assume the property is true for some k ≥ 0, and that the above
integrability condition (2) holds for k + 1.

2. Let α′ ∈ Nn be such that |α′| ≤ k + 1. Explain why if |α′| ≤ k,
then ∂α

′Fµ exists, with:

∂α
′Fµ = i|α

′|F(xα
′
µ)

3. We assume that |α′| = k + 1. Show the existence of α, β ∈ Nn

such that α+ β = α′, |α| = k and |β| = 1.
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4. Explain why ∂αFµ exists, and:

∂αFµ = i|α|F(xαµ)

5. Show that: ∫
Rn

|xβ |d|xαµ|(x) < +∞

6. Show that ∂βF(xαµ) exists, with:

∂βF(xαµ) = iF(xβ(xαµ))

7. Show that ∂β(∂αFµ) exists, with:

∂β(∂αFµ) = i|α|+1F(xβ(xαµ))

8. Show that xβ(xαµ) = xα
′
µ.

9. Conclude that the property is true for k + 1.

10. Show the following:
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Theorem 130 Let µ be a complex measure on Rn, n ≥ 1. Let k ≥ 0
be an integer such that for all α ∈ Nn with |α| ≤ k, we have:∫

Rn

|xα|d|µ|(x) < +∞

Then, the fourier transform Fµ is of class Ck on Rn, and for all
α ∈ Nn with |α| ≤ k, we have:

∀u ∈ Rn , ∂αFµ(u) = i|α|
∫

Rn

xαei〈u,x〉dµ(x)

In particular: ∫
Rn

xαdµ(x) = i−|α|∂αFµ(0)
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20. Gaussian Measures
Mn(R) is the set of all n× n-matrices with real entries, n ≥ 1.

Definition 141 A matrix M ∈ Mn(R) is said to be symmetric,
if and only if M = M t. M is orthogonal, if and only if M is
non-singular and M−1 = M t. If M is symmetric, we say that M is
non-negative, if and only if:

∀u ∈ Rn , 〈u,Mu〉 ≥ 0

Theorem 131 Let Σ ∈ Mn(R), n ≥ 1, be a symmetric and non-
negative real matrix. There exist λ1, . . . , λn ∈ R+ and P ∈ Mn(R)
orthogonal matrix, such that:

Σ = P.

 λ1 0
. . .

0 λn

 . P t

In particular, there exists A ∈ Mn(R) such that Σ = A.At.
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As a rare exception, theorem (131) is given without proof.

Exercise 1. Given n ≥ 1 and M ∈ Mn(R), show that we have:

∀u, v ∈ Rn , 〈u,Mv〉 = 〈M tu, v〉

Exercise 2. Let n ≥ 1 and m ∈ Rn. Let Σ ∈Mn(R) be a symmetric
and non-negative matrix. Let µ1 be the probability measure on R:

∀B ∈ B(R) , µ1(B) =
1√
2π

∫
B

e−x
2/2dx

Let µ = µ1⊗ . . .⊗µ1 be the product measure on Rn. Let A ∈ Mn(R)
be such that Σ = A.At. We define the map φ : Rn → Rn by:

∀x ∈ Rn , φ(x)
4
= Ax+m

1. Show that µ is a probability measure on (Rn,B(Rn)).

2. Explain why the image measure P = φ(µ) is well-defined.

3. Show that P is a probability measure on (Rn,B(Rn)).
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4. Show that for all u ∈ Rn:

FP (u) =
∫

Rn

ei〈u,φ(x)〉dµ(x)

5. Let v = Atu. Show that for all u ∈ Rn:

FP (u) = ei〈u,m〉−‖v‖
2/2

6. Show the following:

Theorem 132 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a sym-
metric and non-negative real matrix. There exists a unique complex
measure on Rn, denoted Nn(m,Σ), with fourier transform:

FNn(m,Σ)(u)
4
=
∫

Rn

ei〈u,x〉dNn(m,Σ)(x) = ei〈u,m〉−
1
2 〈u,Σu〉

for all u ∈ Rn. Furthermore, Nn(m,Σ) is a probability measure.
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Definition 142 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be
a symmetric and non-negative real matrix. The probability measure
Nn(m,Σ) on Rn defined in theorem (132) is called the n-dimensional
gaussian measure or normal distribution, with mean m ∈ Rn

and covariance matrix Σ.

Exercise 3. Let n ≥ 1 and m ∈ Rn. Show that Nn(m, 0) = δm.

Exercise 4. Let m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric and
non-negative real matrix. Let A ∈ Mn(R) be such that Σ = A.At.
A map p : Rn → C is said to be a polynomial, if and only if, it is a
finite linear complex combination of maps x→ xα,1 for α ∈ Nn.

1. Show that for all B ∈ B(R), we have:

N1(0, 1)(B) =
1√
2π

∫
B

e−x
2/2dx

1See definition (140).
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2. Show that: ∫ +∞

−∞
|x|dN1(0, 1)(x) < +∞

3. Show that for all integer k ≥ 1:

1√
2π

∫ +∞

0

xk+1e−x
2/2dx =

k√
2π

∫ +∞

0

xk−1e−x
2/2dx

4. Show that for all integer k ≥ 0:∫ +∞

−∞
|x|kdN1(0, 1)(x) < +∞

5. Show that for all α ∈ Nn:∫
Rn

|xα|dN1(0, 1)⊗ . . .⊗N1(0, 1)(x) < +∞
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6. Let p : Rn → C be a polynomial. Show that:∫
Rn

|p(x)|dN1(0, 1)⊗ . . .⊗N1(0, 1)(x) < +∞

7. Let φ : Rn → Rn be defined by φ(x) = Ax + m. Explain why
the image measure φ(N1(0, 1)⊗ . . .⊗N1(0, 1)) is well-defined.

8. Show that φ(N1(0, 1)⊗ . . .⊗N1(0, 1)) = Nn(m,Σ).

9. Show if β ∈ Nn and |β| = 1, then x→ φ(x)β is a polynomial.

10. Show that if α′ ∈ Nn and |α′| = k+1, then φ(x)α
′

= φ(x)αφ(x)β

for some α, β ∈ Nn such that |α| = k and |β| = 1.

11. Show that the product of two polynomials is a polynomial.

12. Show that for all α ∈ Nn, x→ φ(x)α is a polynomial.

13. Show that for all α ∈ Nn:∫
Rn

|φ(x)α|dN1(0, 1)⊗ . . .⊗N1(0, 1)(x) < +∞
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14. Show the following:

Theorem 133 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a sym-
metric and non-negative real matrix. Then, for all α ∈ Nn, the map
x→ xα is integrable with respect to the gaussian measure Nn(m,Σ):∫

Rn

|xα|dNn(m,Σ)(x) < +∞

Exercise 5. Let m ∈ Rn. Let Σ = (σij) ∈ Mn(R) be a symmetric
and non-negative real matrix. Let j, k ∈ Nn. Let φ be the fourier
transform of the gaussian measure Nn(m,Σ), i.e.:

∀u ∈ Rn , φ(u)
4
= ei〈u,m〉−

1
2 〈u,Σu〉

1. Show that: ∫
Rn

xjdNn(m,Σ)(x) = i−1 ∂φ

∂uj
(0)
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2. Show that: ∫
Rn

xjdNn(m,Σ)(x) = mj

3. Show that: ∫
Rn

xjxkdNn(m,Σ)(x) = i−2 ∂2φ

∂uj∂uk
(0)

4. Show that: ∫
Rn

xjxkdNn(m,Σ)(x) = σjk −mjmk

5. Show that:∫
Rn

(xj −mj)(xk −mk)dNn(m,Σ)(x) = σjk
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Theorem 134 Let n ≥ 1 and m ∈ Rn. Let Σ = (σij) ∈ Mn(R)
be a symmetric and non-negative real matrix. Let Nn(m,Σ) be the
gaussian measure with mean m and covariance matrix Σ. Then, for
all j, k ∈ Nn, we have:∫

Rn

xjdNn(m,Σ)(x) = mj

and: ∫
Rn

(xj −mj)(xk −mk)dNn(m,Σ)(x) = σjk

Definition 143 Let n ≥ 1. Let (Ω,F , P ) be a probability space. Let
X : (Ω,F) → (Rn,B(Rn)) be a measurable map. We say that X
is an n-dimensional gaussian or normal vector, if and only if its
distribution is a gaussian measure, i.e. X(P ) = Nn(m,Σ) for some
m ∈ Rn and Σ ∈ Mn(R) symmetric and non-negative real matrix.

Exercise 6. Show the following:
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Theorem 135 Let n ≥ 1. Let (Ω,F , P ) be a probability space. Let
X : (Ω,F)→ Rn be a measurable map. Then X is a gaussian vector,
if and only if there exist m ∈ Rn and Σ ∈ Mn(R) symmetric and
non-negative real matrix, such that:

∀u ∈ Rn , E[ei〈u,X〉] = ei〈u,m〉−
1
2 〈u,Σu〉

where 〈·, ·〉 is the usual inner-product on Rn.

Definition 144 Let X : (Ω,F) → R̄ (or C) be a random variable
on a probability space (Ω,F , P ). We say that X is integrable, if and
only if we have E[|X |] < +∞. We say that X is square-integrable,
if and only if we have E[|X |2] < +∞.

Exercise 7. Further to definition (144), suppose X is C-valued.

1. Show X is integrable if and only if X ∈ L1
C(Ω,F , P ).

2. Show X is square-integrable, if and only if X ∈ L2
C(Ω,F , P ).
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Exercise 8. Further to definition (144), suppose X is R̄-valued.

1. Show that X is integrable, if and only if X is P -almost surely
equal to an element of L1

R(Ω,F , P ).

2. Show that X is square-integrable, if and only if X is P -almost
surely equal to an element of L2

R(Ω,F , P ).

Exercise 9. Let X,Y : (Ω,F)→ (R,B(R)) be two square-integrable
random variables on a probability space (Ω,F , P ).

1. Show that both X and Y are integrable.

2. Show that XY is integrable

3. Show that (X−E[X ])(Y −E[Y ]) is a well-defined and integrable.
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Definition 145 Let X,Y : (Ω,F) → (R,B(R)) be two square-
integrable random variables on a probability space (Ω,F , P ). We de-
fine the covariance between X and Y , denoted cov(X,Y ), as:

cov(X,Y )
4
= E[(X − E[X ])(Y − E[Y ])]

We say that X and Y are uncorrelated if and only if cov(X,Y ) = 0.
If X = Y , cov(X,Y ) is called the variance of X, denoted var(X).

Exercise 10. Let X,Y be two square integrable, real random variable
on a probability space (Ω,F , P ).

1. Show that cov(X,Y ) = E[XY ]− E[X ]E[Y ].

2. Show that var(X) = E[X2]− E[X ]2.

3. Show that var(X + Y ) = var(X) + 2cov(X,Y ) + var(Y )

4. Show that X and Y are uncorrelated, if and only if:

var(X + Y ) = var(X) + var(Y )
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Exercise 11. Let X be an n-dimensional normal vector on some
probability space (Ω,F , P ), with law Nn(m,Σ), where m ∈ Rn and
Σ = (σij) ∈ Mn(R) is a symmetric and non-negative real matrix.

1. Show that each coordinate Xj : (Ω,F)→ R is measurable.

2. Show that E[|Xα|] < +∞ for all α ∈ Nn.

3. Show that for all j = 1, . . . , n, we have E[Xj ] = mj .

4. Show that for all j, k = 1, . . . , n, we have cov(Xj , Xk) = σjk.

Theorem 136 Let X be an n-dimensional normal vector on a prob-
ability space (Ω,F , P ), with law Nn(m,Σ). Then, for all α ∈ Nn, Xα

is integrable. Moreover, for all j, k ∈ Nn, we have:

E[Xj] = mj

and:
cov(Xj , Xk) = σjk

where (σij) = Σ.
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Exercise 12. Show the following:

Theorem 137 Let X : (Ω,F) → (R,B(R)) be a real random vari-
able on a probability space (Ω,F , P ). Then, X is a normal random
variable, if and only if it is square integrable, and:

∀u ∈ R , E[eiuX ] = eiuE[X]− 1
2u

2var(X)

Exercise 13. Let X be an n-dimensional normal vector on a prob-
ability space (Ω,F , P ), with law Nn(m,Σ). Let A ∈ Md,n(R) be an
d× n real matrix, (n, d ≥ 1). Let b ∈ Rn and Y = AX + b.

1. Show that Y : (Ω,F)→ (Rd,B(Rd)) is measurable.

2. Show that the law of Y is Nd(Am+ b, A.Σ.At)

3. Conclude that Y is an Rd-valued normal random vector.
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Theorem 138 Let X be an n-dimensional normal vector with law
Nn(m,Σ) on a probability space (Ω,F , P ), (n ≥ 1). Let d ≥ 1 and
A ∈ Md,n(R) be an d×n real matrix. Let b ∈ Rd. Then, Y = AX+b
is an d-dimensional normal vector, with law:

Y (P ) = Nd(Am+ b, A.Σ.At)

Exercise 14. Let X : (Ω,F) → (Rn,B(Rn)) be a measurable map,
where (Ω,F , P ) is a probability space. Show that if X is a gaussian
vector, then for all u ∈ Rn, 〈u,X〉 is a normal random variable.

Exercise 15. Let X : (Ω,F) → (Rn,B(Rn)) be a measurable map,
where (Ω,F , P ) is a probability space. We assume that for all u ∈ Rn,
〈u,X〉 is a normal random variable.

1. Show that for all j = 1, . . . , n, Xj is integrable.

2. Show that for all j = 1, . . . , n, Xj is square integrable.

3. Explain why given j, k = 1, . . . , n, cov(Xj , Xk) is well-defined.
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4. Let m ∈ Rn be defined by mj = E[Xj ], and u ∈ Rn. Show:

E[〈u,X〉] = 〈u,m〉

5. Let Σ = (cov(Xi, Xj)). Show that for all u ∈ Rn, we have:

var(〈u,X〉) = 〈u,Σu〉

6. Show that Σ is a symmetric and non-negative n×n real matrix.

7. Show that for all u ∈ Rn:

E[ei〈u,X〉] = eiE[〈u,X〉]− 1
2var(〈u,X〉)

8. Show that for all u ∈ Rn:

E[ei〈u,X〉] = ei〈u,m〉−
1
2 〈u,Σu〉

9. Show that X is a normal vector.

10. Show the following:
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Theorem 139 Let X : (Ω,F)→ (Rn,B(Rn)) be a measurable map
on a probability space (Ω,F , P ). Then, X is an n-dimensional normal
vector, if and only if, any linear combination of its coordinates is itself
normal, or in other words 〈u,X〉 is normal for all u ∈ Rn.

Exercise 16. Let (Ω,F) = (R2,B(R2)) and µ be the probability
on (R,B(R)) defined by µ = 1

2 (δ0 + δ1). Let P = N1(0, 1) ⊗ µ, and
X,Y : (Ω,F) → (R,B(R)) be the canonical projections defined by
X(x, y) = x and Y (x, y) = y.

1. Show that P is a probability measure on (Ω,F).

2. Explain why X and Y are measurable.

3. Show that X has the distribution N1(0, 1).

4. Show that P ({Y = 0}) = P ({Y = 1}) = 1
2 .

5. Show that P (X,Y ) = P .
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6. Show for all φ : (R2,B(R2))→ C measurable and bounded:

E[φ(X,Y )] =
1
2

(E[φ(X, 0)] +E[φ(X, 1)])

7. Let X1 = X and X2 be defined as:

X2
4
= X1{Y=0} −X1{Y=1}

Show that E[eiuX2 ] = e−u
2/2 for all u ∈ R.

8. Show that X1(P ) = X2(P ) = N1(0, 1).

9. Explain why cov(X1, X2) is well-defined.

10. Show that X1 and X2 are uncorrelated.

11. Let Z = 1
2 (X1 +X2). Show that:

∀u ∈ R , E[eiuZ ] =
1
2

(1 + e−u
2/2)
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12. Show that Z cannot be gaussian.

13. Conclude that although X1, X2 are normally distributed, (and
even uncorrelated), (X1, X2) is not a gaussian vector.

Exercise 17. Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a
symmetric and non-negative real matrix. Let A ∈ Mn(R) be such
that Σ = A.At. We assume that Σ is non-singular. We define
pm,Σ : Rn → R+ by:

∀x ∈ Rn , pm,Σ(x)
4
=

1
(2π)

n
2
√

det(Σ)
e−

1
2 〈x−m,Σ

−1(x−m)〉

1. Explain why det(Σ) > 0.

2. Explain why
√

det(Σ) = | det(A)|.

3. Explain why A is non-singular.
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4. Let φ : Rn → Rn be defined by:

∀x ∈ Rn , φ(x)
4
= A−1(x−m)

Show that for all x ∈ Rn, 〈x −m,Σ−1(x −m)〉 = ‖φ(x)‖2.

5. Show that φ is a C1-diffeomorphism.

6. Show that φ(dx) = | det(A)|dx.

7. Show that: ∫
Rn

pm,Σ(x)dx = 1

8. Let µ =
∫
pm,Σdx. Show that:

∀u ∈ Rn , Fµ(u) =
1

(2π)
n
2

∫
Rn

ei〈u,Ax+m〉−‖x‖2/2dx

9. Show that the fourier transform of µ is therefore given by:

∀u ∈ Rn , Fµ(u) = ei〈u,m〉−
1
2 〈u,Σu〉
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10. Show that µ = Nn(m,Σ).

11. Show that Nn(m,Σ) << dx, i.e. that Nn(m,Σ) is absolutely
continuous w.r. to the lebesgue measure on Rn.

Exercise 18. Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a sym-
metric and non-negative real matrix. We assume that Σ is singular.
Let u ∈ Rn be such that Σu = 0 and u 6= 0. We define:

B
4
= {x ∈ Rn , 〈u, x〉 = 〈u,m〉}

Given a ∈ Rn, let τa : Rn → Rn be the translation of vector a.

1. Show B = τ−1
−m(u⊥), where u⊥ is the orthogonal of u in Rn.

2. Show that B ∈ B(Rn).

3. Explain why dx(u⊥) = 0. Is it important to have u 6= 0?

4. Show that dx(B) = 0.
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5. Show that φ : Rn → R defined by φ(x) = 〈u, x〉, is measurable.

6. Explain why φ(Nn(m,Σ)) is a well-defined probability on R.

7. Show that for all α ∈ R, we have:

Fφ(Nn(m,Σ))(α) =
∫

Rn

eiα〈u,x〉dNn(m,Σ)(x)

8. Show that φ(Nn(m,Σ)) is the dirac distribution on (R,B(R))
centered on 〈u,m〉, i.e. φ(Nn(m,Σ)) = δ〈u,m〉.

9. Show that Nn(m,Σ)(B) = 1.

10. Conclude that Nn(m,Σ) cannot be absolutely continuous with
respect to the lebesgue measure on (Rn,B(Rn)).

11. Show the following:
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Theorem 140 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a
symmetric and non-negative real matrix. Then, the gaussian measure
Nn(m,Σ) is absolutely continuous with respect to the lebesgue measure
on (Rn,B(Rn)), if and only if Σ is non-singular, in which case for
all B ∈ B(Rn), we have:

Nn(m,Σ)(B) =
1

(2π)
n
2
√

det(Σ)

∫
B

e−
1
2 〈x−m,Σ

−1(x−m)〉dx
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