Tutorial 1: Dynkin systems 1

1. Dynkin systems

Definition 1 A dynkin system on a set § is a subset D of the
power set P(Q), with the following properties:

(7) QeD

(iiy) A BeD,ACB = B\Ae€D
—+o0

(iii) A €D, A CAppi,n>1 = | JA €D
n=1

Definition 2 A o-algebra on a set Q is a subset F of the power
set P(Q2) with the following properties:
(7) QeF

(i) AeF = A°2Q\AerF
“+oo
(i) ApeFn>1 = |JAneF

n=1
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EXERCISE 1. Let F be a c-algebra on Q. Show that () € F, that
if AAB € F then AUB € F and also AN B € F. Recall that
B\ A= Bn A and conclude that F is also a dynkin system on {2.

EXERCISE 2. Let (D;);e; be an arbitrary family of dynkin systems

on Q, with I # (). Show that D 2 Nier D; is also a dynkin system on
Q.

EXERCISE 3. Let (F;);er be an arbitrary family of o-algebras on €,
with I # (). Show that F 2 Nier Fi is also a o-algebra on .

EXERCISE 4. Let A be a subset of the power set P(2). Define:
D(A) 2 {D dynkin system on Q: A C D}

Show that P(£) is a dynkin system on 2, and that D(.A) is not empty.
Define:
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Show that D(A) is a dynkin system on 2 such that A C D(A), and
that it is the smallest dynkin system on  with such property, (i.e. if
D is a dynkin system on  with A C D, then D(A) C D).

Definition 3 Let A C P(Q). We call dynkin system generated
by A, the dynkin system on ), denoted D(A), equal to the intersection
of all dynkin systems on 2, which contain A.

EXERCISE 5. Do exactly as before, but replacing dynkin systems by
o-algebras.

Definition 4 Let A C P(Q). We call o-algebra generated by
A, the o-algebra on ), denoted o(A), equal to the intersection of all
o-algebras on §, which contain A.

Definition 5 A subset A of the power set P(2) is called a m-system
on 2, if and only if it is closed under finite intersection, i.e. if it has
the property:

A Be A = AnBecA
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EXERCISE 6. Let A be a m-system on 2. For all A € D(A), we define:
I'(A) £ {BeD(A): ANB e DA)}
. If A€ A, show that A CT'(A)

—_

2. Show that for all A € D(A), I'(A) is a dynkin system on €.
Show that if A € A, then D(A) CT'(A).

- W

Show that if B € D(A), then A CT'(B).
5. Show that for all B € D(A), D(A) C T'(B).

6. Conclude that D(A) is also a m-system on §.

EXERCISE 7. Let D be a dynkin system on ) which is also a w-system.

1. Show that if A, B € D then AU B € D.
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2. Let A, € D,n > 1. Consider B, £ U, A;. Show that
Ut A4, =UtxB,.

3. Show that D is a o-algebra on .

EXERCISE 8. Let A be a m-system on . Explain why D(A) is a
o-algebra on Q, and o(A) is a dynkin system on 2. Conclude that
D(A) = o(A). Prove the theorem:

Theorem 1 (dynkin system) Let C be a collection of subsets of
which is closed under pairwise intersection. If D is a dynkin system
containing C then D also contains the o-algebra o(C) generated by C.
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2. Caratheodory’s Extension

In the following, 2 is a set. Whenever a union of sets is denoted W as
opposed to U, it indicates that the sets involved are pairwise disjoint.

Definition 6 A semi-ring on Q is a subset S of the power set P(2)
with the following properties:

(i) hesS
(i) A BeS = ANBeS

) ABeS = In>0, 34, €S: A\B=[H 4,

i=1

The last property (iii) says that whenever A, B € S, there is n > 0
and Aj,..., A, in § which are pairwise disjoint, such that A\ B =
A W...WA,. If n =0, it is understood that the corresponding union
is equal to @, (in which case A C B).
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Definition 7 A ring on Q) is a subset R of the power set P(2) with
the following properties:
(i) heRrR

(i4) A BeER = AUBEeR

(vi1) A BeR = A\BeR
EXERCISE 1. Show that AN B = A\ (4\ B) and therefore that a
ring is closed under pairwise intersection.
EXERCISE 2.Show that a ring on €2 is also a semi-ring on 2.

EXERCISE 3.Suppose that a set  can be decomposed as Q = A; ¥
Ao W Az where A, Ao and Az are distinct from () and . Define

S1 2 {0, Ay, Ay, A3, Q) and Sy 2 {0, A1, Ay W A3, Q). Show that S;
and Sy are semi-rings on 2, but that S; N Sy fails to be a semi-ring
on €.

EXERCISE 4. Let (R;)ier be an arbitrary family of rings on 2, with
I # (). Show that R 2 Nier R; is also a ring on .
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EXERCISE 5. Let A be a subset of the power set P(€2). Define:

R(A) 2 {Rringon Q: AC R}
Show that P(f2) is a ring on , and that R(A) is not empty. Define:
RAE N R
RER(A)

Show that R(A) is a ring on € such that A C R(A), and that it is
the smallest ring on Q with such property, (i.e. if R is a ring on Q
and A C R then R(A) C R).

Definition 8 Let A C P(Q2). We call ring generated by A, the
ring on 2, denoted R(A), equal to the intersection of all rings on €2,
which contain A.

EXERCISE 6.Let S be a semi-ring on 2. Define the set R of all finite
unions of pairwise disjoint elements of S, i.e.

= {A: A=W} A, for somen >0,A4; €S}
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(where if n = 0, the corresponding union is empty, i.e. ) € R). Let
A=wp A and B=W,_B; € R:

1. Show that AN B =W, ;(A; N B;) and that R is closed under
pairwise intersection.

2. Show that if p > 1 then A\ B = n_, (W, (A; \ Bj)).
3. Show that R is closed under pairwise difference.

4. Show that AU B = (A \ B) W B and conclude that R is a ring
on .

5. Show that R(S) = R.
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EXERCISE 7. Everything being as before, define:
R 2 {A: A=U" A, for somen >0, 4; € S}

(We do not require the sets involved in the union to be pairwise dis-
joint). Using the fact that R is closed under finite union, show that
R’ C R, and conclude that R' =R = R(S).

Definition 9 Let A C P(Q) with § € A. We call measure on A,
any map p: A — [0, 400] with the following properties:

@ w0 =0
+oo

+oo
(ii) AcA A, e Aand A= 4 A, = p(A) = p(A)
n=1 n=1
The W indicates that we assume the A,’s to be pairwise disjoint in

the Lh.s. of (i7). It is customary to say in view of condition (i7) that
a measure is countably additive.
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EXERCISE 8.If A is a o-algebra on  explain why property (i7) can
be replaced by:

+oo “+o0
(ii) Ap€ Aand A= [H A, = p(A) =) u(A,)
n=1 n=1

EXERCISE 9. Let A C P(Q) with § € A and p : A — [0,+00] be a
measure on A.

1. Show that if Ay,..., A, € A are pairwise disjoint and the union
A=Wl A liesin A, then u(A) = p(41) + ...+ u(Ay).

2. Show that if A, B € A, A C B and B\ A € Athen u(A4) < u(B).
EXERCISE 10. Let S be a semi-ring on €, and p: § — [0,4+00] be a

measure on S. Suppose that there exists an extension of p on R(S),
i.e. a measure fi : R(S) — [0, +oc] such that fijs = p.
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1. Let A be an element of R(S) with representation A = W' ; A;
as a finite union of pairwise disjoint elements of S. Show that

(A) = 3202y (A

2. Show that if 7’ : R(S) — [0,+0oc] is another measure with
ﬂis = u, i.e. another extension of p on R(S), then i/ = fi.

EXERCISE 11. Let S be a semi-ring on  and p: S — [0, +00] be a
measure. Let A be an element of R(S) with two representations:

-

as a finite union of pairwise disjoint elements of S.

H
H Cﬁ

L. Fori=1,...,n, show that u(4;) = 3_%_, (A N By)

2. Show that 321", u(4;) = ZJ 1 H(B;j)
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3. Explain why we can define a map i : R(S) — [0, +o0] as:
_ A
AA) = D u(As)
i=1

4. Show that (@) = 0.

EXERCISE 12. Everything being as before, suppose that (Ay),>1 is
a sequence of pairwise disjoint elements of R(S), each A,, having the

representation:
Pn

Ap=1H AL, n>1
k=1

as a finite union of disjoint elements of S. Suppose moreover that
A =W A, is an element of R(S) with representation A = w_, Bj,
as a finite union of pairwise disjoint elements of S.
1. Show that for j = 1,...,p, B; = U!> Ub~, (AF N B;) and
explain why B; is of the form B; = W, C,, for some sequence
(Cpn)m>1 of pairwise disjoint elements of S.
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2. Show that u(B;) = 3025 Sope, u(Ak N By)
3. Show that forn > 1and k= 1,...,p,, AF = &J?Zl(Aﬁ N Bj)
4. Show that u(A*) = . w(Ak N B;))

5. Recall the definition of i of exercise (11) and show that it is a
measure on R(S).

EXERCISE 13.Prove the following theorem:

Theorem 2 Let S be a semi-ring on Q. Let p: S — [0,+00] be a
measure on S. There exists a unique measure fi : R(S) — [0, +oc]
such that fijs = p.
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Definition 10 We define an outer-measure on ) as being any
map 1* : P(Q) — [0, +00] with the following properties:

(i) p* (@) =0
(i7) ACB = p'(A) <p'(B)

+o0 +00
(i) p* (U An> <> (A

n=1 n=1
EXERCISE 14. Show that p*(AU B) < p*(A) + p*(B), where p* is
an outer-measure on {2 and A, B C €.
Definition 11 Let p* be an outer-measure on 2. We define:

S(u*) E{ACQ: w(T) = ' (TNA)+p"(TNA) , VT C 0}

We call ¥(u*) the o-algebra associated with the outer-measure ji*.

Note that the fact that X(u*) is indeed a o-algebra on 2, remains to
be proved. This will be your task in the following exercises.
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EXERCISE 15. Let p* be an outer-measure on €. Let ¥ = X(u*) be
the o-algebra associated with p*. Let A, B € ¥ and T'C

1.

2.

- w

Show that 2 € ¥ and A° € X.

Show that u*(TNA) = pu*(TNANB) +p*(T'NANB°)
Show that TN A°=TnN(ANB)°N A°

Show that TNANB*=TN(ANB)*NA

Show that p*(T'NA®) + p*(TNANB®) = pu*(T'N (AN B)°)

. Adding p*(TN(ANDB)) on both sides 5., conclude that ANB € X.

Show that AU B and A\ B belong to X.

EXERCISE 16. Everything being as before, let A,, € 3, n > 1. Define

B =

Ay and By = Apt1 \ (A1 U...UA,). Show that the B,,’s are

pairwise disjoint elements of ¥ and that U}> A,, = &> B,,.
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EXERCISE 17. Everything being as before, show that if B,C' € ¥ and
BN C =0, then p*(TN(BWAC)) = p*(T NB)+ p*(T'NC) for any
TCQ.

EXERCISE 18.Everything being as before, let ( n)n>1 be a sequence
of pairwise disjoint elements of 3, and let B2 U+°° B,. Let N > 1.

1. Explain why w_, B, € ¥

2. Show that p*(T'N (WN_,B,)) = S0 p*(T'N By)

3. Show that p*(T'N B¢) < p*(T N (W, B,)°)

4. Show that p*(T N B®) + 3% u*(T N B,) < p*(T), and:

5. 1°(T) < j*(TAB®)+4* (TNB) < p* (TNB)+ X4 u* (T1B,)
6. Show that B € ¥ and p*(B) = 32,25 p*(By).

7. Show that ¥ is a o-algebra on 2, and /‘\*2 is a measure on X.
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Theorem 3 Let p* : P(2) — [0,400] be an outer-measure on €.
Then %(u*), the so-called o-algebra associated with p*, is indeed a
o-algebra on  and “\*E(u*)’ is a measure on L(u*).

EXERCISE 19. Let R be a ring on Q and p : R — [0,400] be a
measure on R. For all T' C €, define:

+oo
w(T) 2 inf {Z,u(An) , (Ay) is an R-cover of T}
n=1
where an R-cover of T' is defined as any sequence (A4, ),>1 of elements
of R such that T' C U,‘Z’iAn. By convention inf ) = + oo0.
1. Show that p*(0) = 0.
2. Show that if A C B then p*(A) < p*(B).

3. Let (A,,)n>1 be a sequence of subsets of Q, with u*(A,) < +oo
for all n > 1. Given e > 0, show that for all n > 1, there exists



Tutorial 2: Caratheodory’s Extension 14

an R-cover (AP)P=1 of A,, such that:

+00
S H(AR) < " (An) + /2"

p=1
Why is it important to assume p*(4,) < +oo.
4. Show that there exists an R-cover (Rj) of U > A,, such that:

+o00 +oo

+oo
D u(Re) =D p(AR)
k=1 n—1p=1

5. Show that p* (U= A,) < e+ S27°5 p*(An)

6. Show that p* is an outer-measure on §2.



Tutorial 2: Caratheodory’s Extension 15

EXERCISE 20. Everything being as before, Let A € R. Let (Ay)n>1
be an R-cover of A and put By = A1 N A, and:

Bri1 2 (Ani1 NA)\ (A1 NA)U... U (A, N A))
1. Show that p*(A) < p(A).

2. Show that (B )n>1 is a sequence of pairwise disjoint elements
of R such that A = &> B,,.

3. Show that pu(A) < p*(A) and conclude that pjz = p.

EXERCISE 21. Everything being as before, Let A € R and T' C Q.
1. Show that p*(T) < p*(T'N A) + p* (T N A°).

2. Let (T},) be an R-cover of T'. Show that (7,,NA) and (T}, N A°)
are R-covers of T'N A and T' N A€ respectively.

3. Show that p*(T'NA) + pu*(T' N A°) < u*(T).
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4. Show that R C X(pu*).
5. Conclude that o(R) C X(pu*).

EXERCISE 22.Prove the following theorem:

Theorem 4 (caratheodory’s extension) Let R be a ring on )
and p1 : R — [0,400] be a measure on R. There exists a measure
p' 2 o(R) — [0,+00] such that pij = p.

EXERCISE 23. Let S be a semi-ring on €. Show that o(R(S)) = o(S).

EXERCISE 24.Prove the following theorem:

Theorem 5 Let S be a semi-ring on  and p: S — [0,+00] be a
measure on S. There exists a measure p' : o(S) — [0, +00] such that

s = M-
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3. Stieltjes-Lebesgue Measure

Definition 12 Let A C P(Q) and p: A — [0,400] be a map. We
say that u is finitely additive if and only if, given n > 1:

AcAAie AA=HA = pA) =) )

=1 i=1

We say that i is finitely sub-additive if and only if, given n > 1 :

Ac A A e AAC A = p(A) <) p(A)
i=1

i=1
EXERCISE 1. Let S 2 {la,b] , a,b € R} be the set of all intervals
la, b], defined as Ja,b] = {x € R,a < z < b}.
1. Show that |a, b]N]c,d] =]a V ¢,b A d]
2. Show that Ja, b]\]c,d] =]a,b A c]U]a V d, b]
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3. Show that c<d = bAc<aVd.

4. Show that S is a semi-ring on R.

EXERCISE 2. Suppose S is a semi-ring in 2 and pu : S — [0, +0o0] is
finitely additive. Show that p can be extended to a finitely additive
map /i : R(S) — [0, +-o0], with fijs = p.

EXERCISE 3. Everything being as before, Let A € R(S), A; € R(S),
A C U™, A; wheren > 1. Define By = AjNAandfori=1,...,n—1:

Biv1 2 (Aip1nA)\ (A1 NA)U...U(A; N A)

1. Show that Bj,..., B, are pairwise disjoint elements of R(S)
such that A =W} | B;.

2. Show that for all i = 1,...,n, we have (B;) < fi(4;).
3. Show that [ is finitely sub-additive.

4. Show that p is finitely sub-additive.
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EXERCISE 4. Let F: R — R be a right-continuous, non-decreasing
map. Let S be the semi-ring on R, § = {]a,b] , a,b € R}. Define the
map p: S — [0, +oc] by p(@) =0, and:

Va<b. p(la.b]) 2 F(b)~ Fla) M

Let a<banda; <b; fori=1,...,nand n > 1, with :

n

}av b] = L"j}aiv bl]

i=1
1. Show that there is i1 € {1,...,n} such that a;;, = a.
2. Show that }bzl,b] = &Jie{l,m,n}\{il}]aia bz]

3. Show the existence of a permutation (i1,...,4,) of {1,...,n}
such that a = a;;, <b;, =a;, <...<b;, =b.

4. Show that p is finitely additive and finitely sub-additive.
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EXERCISE 5. p being defined as before, suppose a < b and a,, < b,

for n > 1 with:
“+ o0

]a’7 b] = H_J ]anv bn]

Given N > 1, let (i1,...,in) be z::plermutation of {1,..., N} with:
a<a;y <b, <ap, <...<b,y <b
1. Show that Sp, F(b;,) — F(ay,) < F(b) — F(a).
2. Show that 327 yi(Jan, bs)) < p(la, b))
3. Given € > 0, show that there is n €]0,b — a[ such that:
0< F(a+n)—F(a)<e
4. For n > 1, show that there is 1, > 0 such that:

0 < F(bn +nn) — F(bn )SQ—n
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5. Show that [a +n,b] € U3 ]an, by + 1.
6. Explain why there exist p > 1 and integers n1, ..., n, such that:
Ja+n,0] C Ui_ylan, bny + 10, ]

7. Show that F(b) — F(a) < 2e+ 3. F(b,) — F(an)

8. Show that p: S — [0, 400] is a measure.

Definition 13 A topology on Q is a subset T of the power set
P(Q), with the following properties:
(i) Q0eT
(i) A BeT = AnBeT
(iid) AieTViel = (JAieT
iel
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Property (iit) of definition (13) can be translated as: for any family
(A;)icr of elements of T, the union U;crA; is still an element of T.
Hence, a topology on 2, is a set of subsets of €} containing €2 and
the empty set, which is closed under finite intersection and arbitrary
union.

Definition 14 A topological space is an ordered pair (Q,7T ), where
Q is a set and T is a topology on €.

Definition 15 Let (2,7) be a topological space. We say that A C
is an open set in ), if and only if it is an element of the topology T .
We say that A C Q) is a closed set in €, if and only if its complement
AC is an open set in €.

Definition 16 Let (2,7) be a topological space. We define the
borel o-algebra on Q, denoted B(Q2), as the o-algebra on Q, gener-
ated by the topology T . In other words, B(QY) = o(7T)
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Definition 17 We define the usual topology on R, denoted Tr,
as the set of all U C R such that:

VeeU, 3Je>0, Jx—ex+e[CU

EXERCISE 6.Show that 7r is indeed a topology on R.

EXERCISE 7. Consider the semi-ring S 2 {la,b] , a,b € R}. Let Tr
be the usual topology on R, and B(R) be the borel g-algebra on R.

1. Let a < b. Show that Ja,b] = Nf>]a, b+ 1/n].
2. Show that o(S) C B(R).

3. Let U be an open subset of R. Show that for all z € U, there
exist a,, b, € Q such that x €]a,,b,] CU.

4. Show that U = Uzev]ag, by

5. Show that the set I 2 {Jag,bs] , x € U} is countable.
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6. Show that U can be written U = U;c; A; with A; € S.
7. Show that o(S) = B(R).

Theorem 6 Let S be the semi-ring S = {]a,b], a,b € R}. Then,
the borel o-algebra B(R) on R, is generated by S, i.e. B(R) = o(S).

Definition 18 A measurable space is an ordered pair (Q, F) where
Q is a set and F is a o-algebra on Q.

Definition 19 A measure space is a triple (Q, F, n) where (Q,F)
is a measurable space and p : F — [0, +00] is a measure on F.
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EXERCISE 8.Let (2, F,u) be a measure space. Let (A4,),>1 be a
sequence of elements of F such that A,, C A, for alln > 1, and let
A= UI?&An (we write A,, T A). Define By = Ay and for all n > 1,
Bn+1 = An+1 \An

1. Show that (B,,) is a sequence of pairwise disjoint elements of F
such that A = W™ B,,.

2. Given N > 1 show that Ay = Eclfylen.
3. Show that u(An) — u(A) as N — +oo
4. Show that u(A,) < p(Apy1) for all n > 1.

Theorem 7 Let (2, F, ) be a measure space. Then if (Ay)n>1 is a
sequence of elements of F, such that A, T A, we have u(A,) T p(A)*.

li.e. the sequence (u(An)),>1 is non-decreasing and converges to p(A).
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EXERCISE 9.Let (2, F,u) be a measure space. Let (A4,),>1 be a
sequence of elements of F such that A,,+1 C A, for alln > 1, and let
A =Nt A, (we write A, | A). We assume that p(A;) < +o0.

—_

N ek N

. Define B, 2 A, \ A, and show that B, € F, B, T A; \ A.

Show that pu(B,) T u(A41\ A)

Show that u(A,) = p(Ar) — (4 \ Ap)

Show that u(A) = u(Ar) — u(A; \ A)

Why is u(A;1) < +oo important in deriving those equalities.
Show that u(A,) — u(A) as n — 400
(Ap+1) < p(Ap) for all n > 1.

Show that p

Theorem 8 Let (Q,F, i) be a measure space. Then if (An)n>1 is
a sequence of elements of F, such that A, | A and (A1) < +o00, we
have j1(Ay) | pu(A).
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EXERCISE 10.Take 2 = R and F = B(R). Suppose p is a measure
on B(R) such that p(]a,b]) = b — a, for a < b. Take A,, =]n, +ool.

1. Show that A4,, | 0.
2. Show that pu(A,) = 400, for all n > 1.

3. Conclude that p(A,) | u(0) fails to be true.

EXERcCISE 11. Let F: R — R be a right-continuous, non-decreasing
map. Show the existence of a measure p : B(R) — [0, +00] such that:

Va,be R, a <b, p(la,b]) = F(b) — F(a) (2)

EXERCISE 12.Let py, p2 be two measures on B(R) with property (2).
For n > 1, we define:

D, £ {BE€BR) . u(Br] —n.n]) = pa(B] - n,n))}

1. Show that D,, is a dynkin system on R.
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2. Explain why p1(] — n,n]) < +oo and pz(] — n,n]) < +oo is
needed when proving 1.

3. Show that S 2 {]a,b] , a,b € R} C D,.
4. Show that B(R) C D,,.
5. Show that p1 = po.
6. Prove the following theorem.
Theorem 9 Let F': R — R be a right-continuous, non-decreasing
map. There exists a unique measure p : B(R) — [0, +00] such that:
Va,be R, a <b, p(la,b]) = F(b) — F(a)
Definition 20 Let F': R — R be a right-continuous, non-decreasing

map. We call stieltjes measure on R associated with F', the unique
measure on B(R), denoted dF, such that:

Va,be R, a <b, dF(]a,b]) = F(b) — F(a)
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Definition 21 We call lebesgue measure on R, the unique mea-
sure on B(R), denoted dx, such that:

Va,be R, a <b, dz(la,b]) =b—a
EXERCISE 13. Let F: R — R be a right-continuous, non-decreasing
map. Let o € R.

1. Show that the limit F(zo—) = limy<gy0—ao F () exists and is
an element of R.

2. Show that {z¢} = N> ]w0 — 1/n, z0).
3. Show that {zo} € B(R)
4. Show that dF ({zo}) = F (o) — F(x0—)
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EXERCISE 14.Let F' : R — R be a right-continuous, non-decreasing
map. Let a <b.

1. Show that Ja,b] € B(R) and dF(Ja,b]) = F(b) — F(a)

2. Show that [a,b] € B(R) and dF([a,b]) = F(b) — F(a—)
3. Show that Ja, bl B(R) and dF (Ja,b[) = F(b—) — F(a)
4. Show that [a, b€ B(R) and dF([a,b[) = F(b—) — F(a—)

EXERCISE 15. Let A be a subset of the power set P(Q). Let Q' C Q.
Define: R
Ao ={ANQ", Ac A}

1. Show that if A is a topology on €2, Ao/ is a topology on €2".

2. Show that if A is a o-algebra on Q, Ao/ is a o-algebra on .
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Definition 22 Let Q be a set, and ¥ C Q. Let A be a subset of
the power set P(2). We call trace of A on €', the subset Ajq/ of the
power set P(Q) defined by:

A S{ANQ, Ac A}

Definition 23 Let (Q2,7) be a topological space and Q' C Q. We call
induced topology on )’, denoted 1|/, the topology on S’ defined

by:
T 2 {ANQ | Ac T}
In other words, the induced topology 1\qy is the trace of T on Q.

EXERCISE 16.Let A be a subset of the power set P(Q). Let Q' C Q,
and Ajo/ be the trace of A on . Define:

T2 {Aco(A), AN € o(Ag)}
where o(A|q) refers to the o-algebra generated by Ao on .
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1. Explain why the notation o(A|q/) by itself is ambiguous.

2. Show that A CT.

3. Show that I' is a o-algebra on .

4. Show that o(Ajq/) = o(A)or
Theorem 10 Let Q' C Q and A be a subset of the power set P(£2).
Then, the trace on Q’ of the o-algebra o(A) generated by A, is equal

to the o-algebra on Q’ generated by the trace of A on Q’. In other
words, 0(A)jo = o(Ajqy).

EXERCISE 17.Let (€2,7) be a topological space and Q' C Q with its
induced topology 7|q.

1. Show that B(2)jo = B(Y).

2. Show that if Q' € B(Q2) then B(Q') C B(Q).
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3. Show that B(R™) = {ANR* , A € BR)}.
4. Show that B(R™) C B(R).

EXERCISE 18.Let (Q, F, 1) be a measure space and Q' C Q
1. Show that (€', Fjo/) is a measurable space.
2. If Q' € F, show that Flor € F.
3. If O’ € F, show that (Q/,ﬂg/,,um/) is a measure space, where

pior is defined as o = H(F i) -

EXERCISE 19. Let I : RT — R be a right-continuous, non-decreasing
map with F'(0) > 0. Define:

= A 0 it <0
F<$)_{F(z) if x>0

1. Show that F': R — R is right-continuous and non-decreasing.
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2. Show that y : B(RT) — [0, +00] defined by 1 = dFgmr+), is a
measure on B(R™T) with the properties:

(@) wu({0}) = F(0)
(17) VO<a<b, u(a,b]) =F(b)— F(a)
EXERCISE 20. Define: C = {{0}} U {]a,b] , 0 < a < b}
1. Show that C C B(R™)

2. Let U be open in R*. Show that U is of the form:

U= U Nai, bi]

el

where [ is a countable set and a;,b; € R with a; < b;.
3. For all i € I, show that R™N]a;, b;] € o(C).
4. Show that o(C) = B(R™)
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EXERCISE 21.Let 1 and ps be two measures on B(R™) with:
(@) m(0}) = p2({0}) = F(0)
(it)  p(a,b]) = p2(la,b]) = F(b) — F(a)
for all 0 < a <b. For n > 1, we define:
Dp ={B € BR"), m(BN|0,n]) = p2(BNI0,n])}

1. Show that D,, is a dynkin system on RT with C C D,,, where
the set C is defined as in exercise (20).

2. Explain why £1([0,n]) < 400 and p2([0,n]) < +o0 is important
when proving 1.

3. Show that p1 = pe.

4. Prove the following theorem.
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Theorem 11 Let F: RT— R be a right-continuous, non-decreasing
map with F(0) > 0. There exists a unique p : B(RT) — [0, +o0]
measure on B(RT) such that:

(@) p({0}) = F(0)

(i7) Y0 <a<b, p(a,b]) =F(b)— F(a)

Definition 24 Let F' : R™— R be a right-continuous, non-decreasing
map with F(0) > 0. We call stieltjes measure on R" associated
with F, the unique measure on B(R™), denoted dF, such that:

(1) dF({0}) = F(0)
(i) VY0<a<b, dF(la,b]) = F(b) — F(a)
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4. Measurability

Definition 25 Let A and B be two sets, and f: A — B be a map.
Given A" C A, we call direct image of A’ by f the set denoted f(A'),
and defined by f(A") ={f(z) : x € A’}

Definition 26 Let A and B be two sets, and f : A — B be a map.
Given B’ C B, we call inverse image of B’ by [ the set denoted
f~YUB), and defined by f~1(B')={x : x € A, f(x) € B'}.

EXERCISE 1. Let A and B be two sets, and f : A — B be a bijection
from A to B. Let A’ C A and B’ C B.
1. Explain why the notation f~!(B’) is potentially ambiguous.

2. Show that the inverse image of B’ by f is in fact equal to the
direct image of B’ by f~1.

3. Show that the direct image of A’ by f is in fact equal to the
inverse image of A’ by f~!.
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Definition 27 Let (,7) and (S,7s) be two topological spaces. A
map [ :Q — S is said to be continuous if and only if:

VBeTs, fY(B)eT
In other words, if and only if the inverse image of any open set in S

is an open set in €.

We Write f: (Q,7) — (5,7s) is continuous, as a way of emphasizing
the two topologies 7 and 7g with respect to which f is continuous.

Definition 28 Let E be a set. A map d: E x E — [0, +00] is said
to be a metric on E, if and only if:
(4) Vr,y € E, dz,y) =0 & z=y
(i)  Ve,ye k£, d(z,y) =dy,x)
(u31) Vr,y,z € E, d(z,y) < d(z,z) +d(z,y)

Definition 29 A metric space is an ordered pair (E,d) where E
1 a set, and d is a metric on E.
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Definition 30 Let (E,d) be a metric space. For all x € E and
e > 0, we define the so-called open ball in E:

B(z,€) 2 {y 1 ye E, dx,y) < e}

We call metric topology on E, associated with d, the topology T}‘;j
defined by:

TE2{(UCE Vo €U 3> 0 B(z,e) C U}
EXERCISE 2. Let T}‘;j be the metric topology associated with d, where
(E,d) is a metric space.
1. Show that 72 is indeed a topology on E.

2. Given z € F and € > 0, show that B(x,¢€) is an open set in E.

EXERCISE 3. Show that the usual topology on R is nothing but the
metric topology associated with d(z,y) = |z — y|.
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EXERCISE 4. Let (E,d) and (F,0) be two metric spaces. Show that
amap f: E — F is continuous, if and only if for all z € E and € > 0,
there exists 7 > 0 such that for all y € E:

dz,y) <n = (f(2),fly) <e

Definition 31 Let (2,7) and (S,7s) be two topological spaces. A
map f:Q — S is said to be a homeomorphism, if and only if f is
a continuous bijection, such that f~1 is also continuous.

Definition 32 A topological space (2, T) is said to be metrizable,
if and only if there exists a metric d on €, such that the associated
metric topology coincides with T , i.e. T¢ =T.
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Definition 33 Let (E,d) be a metric space and F C E. We call
induced metric on F, denoted d|p, the restriction of the metric d
to F' x F, i.e. le = d\FXF'

EXERCISE 5.Let (E,d) be a metric space and F' C E. We define
Tpr = (Tg)|p as the topology on F' induced by the metric topology on

E. Let T, = Tlg'F be the metric topology on F' associated with the
induced metric d;r on F'.

1. Show that 7p C T}.

2. Given A € T/, show that A = (UgeaB(z,¢;)) N F for some
€; >0, x € A, where B(z,€,) denotes the open ball in E.

3. Show that 7/ C 7Tp.

Theorem 12 Let (E,d) be a metric space and F C E. Then, the

topology on F' induced by the metric topology, is equal to the metric
topology on F' associated with the induced metric, i.e. (Tg)‘p = T}j'F.
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EXERCISE 6. Let ¢ : R —] — 1, 1] be the map defined by:

A X
;o o) = EFS]

1. Show that [—1,0[ is not open in R.

Vr eR

2. Show that [—1,0] is open in [—1,1].
3. Show that ¢ is a homeomorphism between R and | — 1, 1].
4. Show that lim, 400 ¢(z) = 1 and lim, .o ¢(z) = —1.

EXERCISE 7. Let R = [—o00, +00] = RU{—00, +00}. Let ¢ be defined
as in exercise (6), and ¢ : R — [—1, 1] be the map defined by:
) p(z) if zeR
o(x) = 1 if =400
-1 if z=-00

Define:

{UCR, ¢(U) is open in [-1,1]}
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1. Show that ¢ is a bijection from R to [~1,1], and let ) = ¢~ 1.
2. Show that 7g is a topology on R.

Show that ¢ is a homeomorphism between R and [—1,1].

- w

Show that [—oo,2[, |3, +00], ]3, +0oc[ are open in R.

5. Show that if ¢ : R — [~1,1] is an arbitrary homeomorphism,
then U C R is open, if and only if ¢/(U) is open in [—1,1].

Definition 34 The usual topology on R is defined as:
T £ {UCR, ¢(U) is open in [—1,1]}
where ¢ : R — [—1,1] is defined by ¢(—o00) = —1, ¢(+00) = 1 and:

A xT
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EXERCISE 8. Let ¢ and ¢ be as in exercise (7). Define:

T 2 () 2{UNR, UcTr}
Recall why 7”7 is a topology on R.
Show that for all U C R, ¢(U NR) = ¢(U)N] — 1, 1[.
Explain why if U € 7Tg, ¢(U NR) is open in | — 1,1].
Show that 7' C Tgr, (the usual topology on R).

Let U € Tr. Show that ¢(U) is open in | — 1,1[ and [-1,1].

. Show that 7T C 7

Show that 7g = 77, i.e. that the usual topology on R induces
the usual topology on R.

. Show that B(R) = B(R)r = {BNR., B € B(R)}
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EXERCISE 9.Let d: R x R — [0, +00[ be defined by:

V(z,y) e RxR , d(z,y) = |p(x) — ¢(y)]

where ¢ is an arbitrary homeomorphism from R to [—1, 1].

1.
2.
3.

Show that d is a metric on R.
Show that if U € Tg, then ¢(U) is open in [—1,1]

Show that for all U € Tz and y € ¢(U), there exists € > 0 such
that:
Vze[-1,1], |z—y|<e = z€ ¢U)

. Show that Tg C Tﬁi.

. Show that for all U € TF—C{I and x € U, there is € > 0 such that:

Vye R, |¢(z) —¢(y)| <e = yeU

. Show that for all U € 7§, ¢(U) is open in [—1,1].
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7. Show that T C Tg

8. Prove the following theorem.

Theorem 13 The topological space (R, Tg) is metrizable.

Definition 35 Let (2, F) and (S,%) be two measurable spaces. A
map [ : Q2 — S is said to be measurable with respect to F and %, if
and only if:

vBeyx, ffYB)eF

We Write f: (Q,F) — (S,X) is measurable, as a way of emphasizing
the two o-algebra F and ¥ with respect to which f is measurable.

EXERCISE 10. Let (Q,F) and (S, %) be two measurable spaces. Let
S’ be a set and f: Q — S be a map such that f(2) C S C S. We
define ¥’ as the trace of ¥ on 5, i.e. ¥' = ¥jg/.

1. Show that for all B € X, we have f~*(B) = f~1(BnS’)
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2. Show that f : (,F) — (S,%) is measurable, if and only if
f:(Q,F) — (5,5 is itself measurable.
3. Let f:Q — R™T. Show that the following are equivalent:
(i) f:(Q,F) — (RT,B(R")) is measurable
) f:(Q,F) — (R,B(R)) is measurable
(#i1) f:(Q,F) — (R,B(R)) is measurable

EXERCISE 11. Let (2, F), (S,X), (S1,X1) be three measurable spaces.
let f:(Q,F) — (S,%) and ¢ : (S,%) — (51,%1) be two measurable

maps.
1. For all B C Sy, show that (go f)~Y(B) = f~Y(¢~Y(B))
2. Show that go f: (Q,F) — (51,%1) is measurable.
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EXERCISE 12.Let (92, F) and (S5,%) be two measurable spaces. Let
f:Q — 5 be amap. We define:

r2{Bex, [Y(B)eF
1. Show that f~1(S) = 0.
2. Show that for all B C S, f~1(B¢) = (f~1(B))°.
Show that if B,, C S,n > 1, then f~ (US> B,,) = U2 f~H(B,)

Show that I is a o-algebra on S.

A

Prove the following theorem.

Theorem 14 Let (2, F) and (S,X) be two measurable spaces, and
A be a set of subsets of S generating 3, i.e. such that ¥ = o(A).
Then f: (Q,F) — (S,X%) is measurable, if and only if:

VBeA , fYBeF
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EXERCISE 13. Let (©,7) and (S, 7s) be two topological spaces. Let
f:Q — S be amap. Show that if f: (Q,7) — (5, Zs) is continuous,
then f: (Q,B(Q)) — (S, B(S)) is measurable.

EXERCISE 14.We define the following subsets of the power set P(R):

¢ 2 {]-o00,d, ceR}
C; 2 {[-o0.c|, ceR}
Cs 2 {lc, 400, c€R}
. 2 {le+o], ceR}

1. Show that C2 and C4 are subsets of 7Tg.
2. Show that the elements of C; and Cs are closed in R.
3. Show that for all i = 1,2,3,4, 0(C;) C B(R).

4. Let U be open in R. Explain why U N R is open in R.
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5. Show that any open subset of R is a countable union of open
bounded intervals in R.

6. Let a < b, a,b € R. Show that we have:

+oo “+o0
Ja.b[= | J]a,b—1/n] = | J[a +1/n,b]

7. Show that for all i = 1,2, 3,4, ]a, b€ o(C;).
8. Show that for all i = 1,2,3,4, {{—o0},{+00}} C a(C;).
9. Show that for all i = 1,2,3,4, 0(C;) = B(R)

10. Prove the following theorem.
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Theorem 15 Let (Q, F) be a measurable space, and f : Q — R be
a map. The following are equivalent:
(i) f:(,F) — (R,B(R)) is measurable

) VBeBMR), {feB}yecF

) VeeR, {f<c}teF
(1v) VeeR, {f<c}teF

) VeeR, {c< f}eF

) VeeR, {c< fteF

EXERCISE 15. Let (Q,F) be a measurable space. Let (f,)n>1 be a
sequence of measurable maps f,, : (Q2,F) — (R, B(R)). Let g and h be
the maps defined by g(w) = inf,,>1 fr(w) and h(w) = sup,>q fn(w),
for all w € Q. -

1. Let ¢ € R. Show that {¢ < g} = N> {c < f.}.

2. Let ¢ € R. Show that {h < c} =NI2{f. <c}.
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3. Show that g,h: (9, F) — (R, B(R)) are measurable.

Definition 36 Let (v,,)n>1 be a sequence in R. We define:

AN A .
u = liminf v, = sup ( inf vg
n—-+oo n>1 >n

and:

AL JANN
w = limsupwv, = inf | supwvg
n——4o00 n>1 \g>n

Then, u,w € R are respectively called lower limit and upper limit
of the sequence (Vp)n>1-

EXERCISE 16. Let (v,)n>1 be a sequence in R. for n > 1 we define
Uy, = infy>, v and w, = SUDPj >, V- Let w and w be the lower limit
and upper limit of (vy,)n,>1, respectively.

1. Show that u, < up4+1 < wu, for alln > 1.
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- w

Show that w < wy41 < wy, for all n > 1.
Show that u,, — v and w,, — w as n — +oo.
Show that u,, < v, < w,, for all n > 1.

Show that u < w.

. Show that if u = w then (v,),>1 converges to a limit v € R,

with v =v = w.

Show that if a,b € R are such that u < a < b < w then for all
n > 1, there exist N1, Na > n such that vy, <a <b < ovp,.

. Show that if a,b € R are such that © < a < b < w then there

exist two strictly increasing sequences of integers (ng)g>1 and
(mp)g>1 such that for all k > 1, we have v, < a <b < Uy, .

. Show that if (v,),>1 converges to some v € R, then u = w.
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Theorem 16 Let (v,)n>1 be a sequence in R. Then, the following
are equivalent:

(4) lim inf v, = limsup v,
n—-+00 n—-+oo

(i) lim w, exists in R.
n—-+oo

i which case:
lim v, =liminfv, = limsupwv,

n—-+oo n—-+oo n—-+4o00

EXERCISE 17. Let f,g : (2, F) — (R,B(R)) be two measurable
maps, where (£, F) is a measurable space.

1. Show that {f < g} = Ureq({f <r}n{r <g}).

2. Show that the sets {f < g}, {f > g} {f =9}, {f <g}, {f = g}
belong to the o-algebra F.
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EXERCISE 18. Let (©,F) be a measurable space. Let (fn)n>1 be
a sequence of measurable maps f,: (2, F) — (R,B(R)). We define
g = liminf f,, and h = limsup f,, in the obvious way:

Yw e N, g(w) 2 liminffn(w)

Yw e Q, h(w) = lim sup f;, (w)

n—-+oo

1. Show that g,h: (2, F) — (R, B(R)) are measurable.
2. Show that g < h, ie. Yw € @, g(w) < h(w).
Show that {g = h} € F.

- w

Show that {w:w € Q, lim, 4o fn(w) exists in R} € F.

5. Suppose ©Q = {g = h}, and let f( ) = limy,— 1 fn(w), for all
w € Q. Show that f: (Q,F) — (R, B(R)) is measurable.
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EXERCISE 19. Let f,g : (,F) — (R,B(R)) be two measurable
maps, where (£, F) is a measurable space.

1.

Show that —f,|f[, f* = max(f,0) and f~ = max(—f,0) are
measurable with respect to F and B(R).

. Let a € R. Explain why the map a+ f may not be well defined.
. Show that (a+f) : (2, F) — (R, B(R)) is measurable, whenever

a € R.

. Show that (a.f) : (Q,F) — (R,B(R)) is measurable, for all

a € R. (Recall the convention 0.00 = 0).

. Explain why the map f + g may not be well defined.

. Suppose that f > 0 and g > 0, i.e. f(Q) C [0,+00] and also

g(€2) C [0, +oc]. Show that {erg < c} ={f <c—g}, for all
c € R. Show that f+g: (Q,F) — (R, B(R)) is measurable.
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7.

10.

11.

Show that f+g: (Q,F) — (R, B(R)) is measurable, in the case
when f and g take values in R.

. Show that 1/f: (2, F) — (R, B(R)) is measurable, in the case

when f(Q) C R\ {0}.

. Suppose that f is R-valued. Show that f defined by f(w) =

f(w) if f(w) # 0 and f(w) = L if f(w) = 0, is measurable with
respect to F and B(R).

Suppose f and g take values in R. Let f be defined as in 9.
Show that for all ¢ € R, the set {fg < ¢} can be expressed as:

{f>03n{g < c/fHe{f<0}n{g > ¢/fHe({f = 0}n{f < c})

Show that fg: (Q,F) — (R,B(R)) is measurable, in the case
when f and g take values in R.
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ExERCISE 20.Let f,g: (2, F) — (R, B(RD be two measurable maps,
where (2, F) is a measurable space. Let f, g, be defined by:

]?(w) A flw) if  flw) & {—o0,+o0}
1 if  f(w) € {—o0,+0}
g(w) being defined in a similar way. Consider the partitions of €,
Q = AlL‘HAQL‘HA3LﬂA4@A5 and Q = Blt*'JBQH'JB?,L‘HB;;HﬂB{;,
where Al - {f G]Oa +OO[}a A2 = {f E} - 0070[}7 A3 = {f = 0}7
A4 = {f = 700}, A5 = {f = +OO} and Bl,BQ,Bg,B4,B5 being‘
defined in a similar way with g. Recall the conventions 0 x (+00) = 0,
(—0) x (+00) = (—00), etc. ..
1. Show that f and g are measurable with respect to F and B(R)).
2. Show that all A;’s and B;’s are elements of F.

3. Show that for all B € B(R):
5
{fge B} = |H (AinB;n{fg € B}

4,g=1
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4. Show that A4; N B; N {fg € B} = A;N B; N {fg € B}, in the
case when 1 <7< 3and 1< j <3.

5. Show that A; N B; N{fg € B} is either equal to ) or A; N Bj,
in the case when ¢ > 4 or j > 4.

6. Show that fg: (9, F) — (R,B(R)) is measurable.
Definition 37 Let (2,7) be a topological space, and A C Q. We
call closure of A in ), denoted A, the set defined by:

AL{z€Q i 2ecUcT=>UNAAD}

ExXERCISE 21. Let (E,7) be a topological space, and A C E. Let A
be the closure of A.

1. Show that A C A and that A is closed.

2. Show that if B is closed and A C B, then 4 C B.
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3. Show that A is the smallest closed set in E containing A.
4. Show that A is closed if and only if A = A.
5. Show that if (F,7) is metrizable, then:

A={z€FE : Ve>0, B(z,e)NA#0}

where B(z, ) is relative to any metric d such that T2 = 7.

EXERCISE 22. Let (E,d) be a metric space. Let A C E. For all
z € E, we define:

d(z, A) & infld(z,y) : ye A} 2 D)
where it is understood that inf ) = +oc.
1. Show that for all x € E, d(z, A) = d(x, A).
2. Show that d(x, A) = 0, if and only if z € A.

3. Show that for all x,y € E, d(z, A) < d(z,y) + d(y, A).
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4. Show that if A # 0, |d(x, A) — d(y, A)| < d(z,y).

5. Show that ®, : (E,72) — (R, 7g) is continuous.

6. Show that if A is closed, then A = &, ({0})
EXERCISE 23.Let (€2, F) be a measurable space. Let (f,)n>1 be a
sequence of measurable maps f, : (Q, F) — (E, B(FE)), where (E,d) is

ametric space. We assume that for allw € €, the sequence (fy,(w))n>1
converges to some f(w) € E.

1. Explain why liminf f,, and limsup f,, may not be defined in an
arbitrary metric space F.

2. Show that f: (Q,F) — (E,B(F)) is measurable, if and only if
F7L(A) € F for all closed subsets A of E.

3. Show that for all A closed in E, f~'(A) = (®4 o f)~'({0}),
where the map ®4 : E — R is defined as in exercise (22).
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4. Show that ®4 0 f, : (2, F) — (R, B(R)) is measurable.
5. Show that f: (Q,F) — (E,B(F)) is measurable.

Theorem 17 Let (2, F) be a measurable space. Let (fn)n>1 be a
sequence of measurable maps f, : (Q,F) — (E,B(E)), where (E,d)
is a metric space. Then, if the limit f = lim f, exists on €2, the map
f:(QF) — (E,B(E)) is itself measurable.

Definition 38 The usual topology on C, the set of complex num-
bers, is defined as the metric topology associated with d(z,z") = |z—2'].

EXERCISE 24. Let f : (Q,F) — (C,B(C)) be a measurable map,
where (€2, F) is a measurable space. Let u = Re(f) and v = I'm(f).
Show that w,v,|f]: (Q,F) — (R, B(R)) are all measurable.

EXERCISE 25. Define the subset of the power set P(C):

C 2 {la,b[x]c,d[ , a,b,c,d € R}
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where it is understood that:
Ja,b[x]e,d[ £ {z =z +iy € C, (x,y) €la,b[x]c, d[}
1. Show that any element of C is open in C.
2. Show that o(C) C B(C).

3. Let z = x +1iy € C. Show that if |z| < n and |y| < n then we
have |z| < v/2.

4. Let U be open in C. Show that for all z € U, there are rational
numbers a,, b, ¢, d, such that z €]a,,b,[x]c,,d,[C U.

5. Show that U can be written as U = UZQAH where A,, € C.
6. Show that o(C) = B(C).

7. Let (2, F) be a measurable space, and u, v : (2, F)
be two measurable maps. Show that u+iv : (2, F)
is measurable.

(R, B(R))
(C,B(C))

—
—
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5. Lebesgue Integration
In the following, (2, F, i) is a measure space.

Definition 39 Let A C Q. We call characteristic function of A,
the map 14 : Q — R, defined by:

A 1 if weA
YweQ, 1a(w) = { 0 if wdA

EXERCISE 1. Given A C €, show that 14 : (Q,F) — (R,B(R)) is
measurable if and only if A € F.

Definition 40 Let (Q,F) be a measurable space. We say that a map
s:Q — RT is a simple function on (Q,F), if and only if s is of

the form :
n
s = Z ol a,
i=1

wheren > 1, a; € RT and A; € F, for alli=1,...,n.
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EXERCISE 2. Show that s : (2, F) — (RT,B(R")) is measurable,
whenever s is a simple function on (€2, F).

EXERCISE 3. Let s be a simple function on (2, F) with representation
s = Y." ;a;1s,. Consider the map ¢ : Q — {0,1}" defined by
d(w) = (1a,(w),...,14,(w)). For each y € s(?), pick one w, € N
such that y = s(w,). Consider the map ¢ : s(2) — {0,1}" defined by
b(y) = dlwy)-

1. Show that 9 is injective, and that s(Q) is a finite subset of R™.
2. Show that s = Zaes(m al{s—ay

3. Show that any simple function s can be represented as:

n
s = g ol a,
i=1

wheren > 1,0, e RT, A, € Fand Q =4, 6... 0 A,.
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Definition 41 Let (2, F) be a measurable space, and s be a simple
function on (Q, F). We call partition of the simple function s, any
representation of the form:

n
s = g ol a,
i=1

wheren>1, 0, ERT, A, € Fand Q=A1W... W A,.

EXERCISE 4. Let s be a simple function on (£2, ) with two partitions:
n m
N STTP ST
i=1 j=1

1. Show that s =", ;aila,np; is a partition of s.

2. Recall the convention 0 X (+00) = 0 and o x (+00) = +00
if « > 0. For all ay,...,a, in [0,+o0],p > 1 and = € [0, +o0],
prove the distributive property: z(a1+...+a,) = xai1+. . .+xay,.
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3. Show that Z?:l OéZ,U,(AZ) = Z;nzl ﬂJ,U,(BJ)
4. Explain why the following definition is legitimate.

Definition 42 Let (Q,F, 1) be a measure space, and s be a simple
function on (2, F). We define the integral of s with respect to p, as
the sum, denoted I*(s), defined by:

Z a;p(A;) € [0, 4+00)
where s =Y, a;la, is any partition of s.

EXERCISE 5. Let s, ¢ be two simple functions on (€2, F) with partitions
s=> i aila, and t =300 fBilp;. Let o € RY.
1. Show that s+ ¢ is a simple function on (2, F) with partition:

s+t= Z Z(ai + B)1a:nB;

i=1 j=1
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Show that I*(s +t) = I*(s) + I*(t).
Show that as is a simple function on (€2, F).
Show that I*(as) = alt(s).

Why is the notation I**(«s) meaningless if a = +00 or a < 0.

A

Show that if s < ¢ then I*(s) < I*(t).

EXERCISE 6. Let f : (Q,F) — [0,4+00] be a non-negative and mea-
surable map. For all n > 1, we define:

A n2"—1 k
Sn = Z il <r<iity Tl (1)
k=0
1. Show that s,, is a simple function on (€, F), for all n > 1.
2. Show that equation (1) is a partition s, for all n > 1.

3. Show that s, < s,41 < f, for all n > 1.
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4. Show that s, T f as n — +ool.

Theorem 18 Let f: (Q,F) — [0,400] be a non-negative and mea-
surable map, where (Q, F) is a measurable space. There exists a se-
quence (Sp)n>1 of simple functions on (2, F) such that s, T f.

Definition 43  Let f : (Q,F) — [0,+00] be a non-negative and
measurable map, where (Q, F, u) is a measure space. We define the
lebesgue integral of f with respect to p, denoted [ fdu, as:

/fd,u 2 sup{I*(s) : s simple function on (Q,F), s < f}

where, given any simple function s on (2, F), I*(s) denotes its inte-
gral with respect to .

Lie. for all w € Q, the sequence (sn(w)),>1 is non-decreasing and converges

to f(w) € [0, 400].
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EXERCISE 7. Let f: (Q,F) — [0,400] be a non-negative and mea-
surable map.

1.
2.
3.

Show that [ fdu € [0, 4oc].
Show that [ fdu = I*(f), whenever f is a simple function.

Show that [ gdu < [ fdu, whenever g : (Q,F) — [0,+o00] is
non-negative and measurable map with g < f.

. Show that [(cf)du = ¢ [ fdu, if 0 < ¢ < +o00. Explain why

both integrals are well defined. Is the equality still true for
c=0.

. Forn >1 put A, = {f > 1/n}, and s, = (1/n)1l4,. Show

that s, is a simple function on (2, F) with s, < f. Show that
Ap T{f >0}

. Show that [ fdu =0 = u({f > 0}) =0.
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7. Show that if s is a simple function on (2, F) with s < f, then
uw({f > 0}) =0 implies I*(s) = 0.

8. Show that [ fdu=0 < p({f>0})=0.

9. Show that [(+00)fdu = (+00) [ fdu. Explain why both inte-
grals are well defined.

10. Show that (+00)1{f—1o} < f and:
J 0N sy = (+o0)u((f = +o0))

11. Show that [ fdu < +oo = pu({f = +oo}) = 0.

12. Suppose that p(2) = 400 and take f = 1. Show that the
converse of the previous implication is not true.
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EXERCISE 8. Let s be a simple function on (€, F). let A € F.
1. Show that s14 is a simple function on (€2, F).
2. Show that for any partition s = Z?:l a;1a, of s, we have:
IM(sla) = Zai,u(Ai NA)
i=1

3. Let v : F — [0,400] be defined by v(A) = I*(s14). Show that
v is a measure on JF.

4. Suppose A, € F, A, T A. Show that I*(sla,) T I"(s1a).

EXERCISE 9. Let (f,)n>1 be a sequence of non-negative and measur-
able maps f, : (2, F) — [0, +oc], such that f, T f.

1. Recall what the notation f,, T f means.

2. Explain why f: (2, F) — (R, B(R)) is measurable.
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w

© »® N

10.

. Let v = sup,,>; [ fndp. Show that [ fndu T a.
. Show that a < [ fdpu.

. Let s be any simple function on (2, F) such that s < f. Let

¢ €]0,1[. For n > 1, define A,, = {¢s < f,}. Show that A4,, € F
and A, T Q.

Show that cI*(sla,) < [ fndp, for all n > 1.
Show that cI*(s) < a.

Show that I*(s) < a.

Show that [ fdu < a.

Conclude that [ fn,du 1 [ fdpu.

Theorem 19 (Monotone Convergence) Let (Q, F, pu) be a mea-
sure space. Let (fn)n>1 be a sequence of non-negative and measurable
maps fr, : (Q,F) — [0,+00] such that f, 1 f. Then [ fpdu 1 [ fdu.
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Exgrcise 10. Let f,g : (2,F) — [0, +00] be two non-negative and
measurable maps. Let a,b € [0, 4+00].

1. Show that if (fn)n>1 and (gn)n>1 are two sequences of non-
negative and measurable maps such that f, T f and g, T g,
then fr +gn 1 f+g.

2. Show that [(f + ¢)du= [ fdu+ [ gdpu.

3. Show that [(af +bg)dp=a [ fdu+b [ gdu.
EXERCISE 11. Let (f,)n>1 be a sequence of non-negative and mea-
surable maps f, : (Q,F) — [0, 400]. Define f = 3% fa.

1. Explain why f: (2, F) — [0, +oc] is well defined, non-negative
and measurable.

2. Show that [ fdu =372 [ fadp.
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Definition 44 Let (2, F, ) be a measure space and let P(w) be a
property depending on w € Q. We say that the property P(w) holds
p-almost surely, and we write P(w) p-a.s., if and only if:

AN eF, p(N)=0, Vw € N, P(w) holds
EXERCISE 12. Let P(w) be a property depending on w € €2, such that
{w € Q: P(w) holds} is an element of the o-algebra F.
1. Show that P(w) , p-a.s. < pu({w € Q:P(w) holds}®) =0

2. Explain why in general, the right-hand side of this equivalence
cannot be used to defined p-almost sure properties.

EXERCISE 13. Let (£, F, 1) be a measure space and (An)n>1 be a
sequence of elements of F. Show that u(U25A,) < 325 4(A,).

EXERCISE 14. Let (f,)n>1 be a sequence of maps f, : Q@ — [0, +0o0].

1. Translate formally the statement f, T f u-a.s.
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2. Translate formally f, — f p-a.s. and Vn, (f,, < fns1 p-a.s.)
3. Show that the statements 1. and 2. are equivalent.

EXERCISE 15. Suppose that f, g : (Q, F) — [0, +oc] are non-negative
and measurable with f = g p-a.s.. Let N € F, u(N) = 0 such that

f = g on N° Explain why [ fdu = [(fln)dp + [(flne)dp, all
integrals being well defined. Show that [ fdu = [ gdpu.

EXERCISE 16. Suppose (fn)n>1 is a sequence of non-negative and
measurable maps such that f,, T f p-a.s.. Let N € F, u(N) = 0, such
that f,, T f on N€ Define f,, = frlnec and f = flye.

1. Explain why f and the f,’s are non-negative and measurable.
2. Show that f, T f.
3. Show that [ fn.du 1 [ fdu.
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EXERCISE 17. Let (fn)n>1 be a sequence of non-negative and measur-
able maps f,, : (Q,F) — [0, 4+00]. Forn > 1, we define g, = infy>y, fx.

1. Explain why the g,’s are non-negative and measurable.

2. Show that g, T liminf f,.

3. Show that [ gndp < [ fndp, for all n > 1.

4. Show that if (u,),>1 and (v,),>1 are two sequences in R with
U, < v, for all n > 1, then liminf u,, < liminf v,

5. Show that [(liminf f,)dp < liminf [ f,du, and recall why all

integrals are well defined.

Theorem 20 (Fatou Lemma) Let (Q, F, 1) be a measure space,
and let (fn)n>1 be a sequence of non-negative and measurable maps
fn: (Q,F) — [0,+00]. Then:

/(liminf fn)dp < lim_‘i_nf/fnd,u
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EXERCISE 18. Let f: (©,F) — [0,400] be a non-negative and mea-
surable map. Let A € F.

1. Recall what is meant by the induced measure space (4, F| 4, 1) 4)-
Why is it important to have A € F. Show that the restriction
of fto A, fla: (A, Fla) — [0, +o0] is measurable.

2. We define the map pu* : F — [0, +oc] by p(E) = u(ANE), for
all E € F. Show that (Q,F, u?) is a measure space.

3. Consider the equalities:

Jriaan= [ rant = [aau. 2)

For each of the above integrals, what is the underlying measure
space on which the integral is considered. What is the map
being integrated. Explain why each integral is well defined.

4. Show that in order to prove (2), it is sufficient to consider the
case when f is a simple function on (2, F).
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5. Show that in order to prove (2), it is sufficient to consider the
case when f is of the form f = 15, for some B € F.

6. Show that (2) is indeed true.

Definition 45 Let f: (Q,F) — [0, +00] be a non-negative and mea-
surable map, where (0, F, 1) is a measure space. let A € F. We call
partial lebesgue integral of f with respect to i over A, the integral
denoted [, fdu, defined as:

/A fau 2 [ruadu= [ faut = [ (5

where p is the measure on (Q, F), p* = p(AnNe), fia is the restric-
tion of f to A and |4 is the restriction of u to F|a, the trace of F
on A.
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ExERCISE 19. Let f,g: (2,F) — [0,400] be two non-negative and
measurable maps. Let v : F — [0, +oc] be defined by v(A) = [, fdpu,
for all A € F.

1. Show that v is a measure on F.

/gdv :/gfdu

Theorem 21 Let f: (Q,F) — [0,+00] be a non-negative and mea-
surable map, where (Q, F, ) is a measure space. Let v : F — [0, +x]
be defined by v(A) = fA fdu, for all A € F. Then, v is a measure on
F, and for all g : (Q,F) — [0, +00] non-negative and measurable, we

have:
/ gdv = / gfdu

2. Show that:
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Definition 46 The L'-spaces on a measure space (0, F, ), are:

Ly (9, F, u)é{f:(Q,]:) — (R, B(R)) measurable, / |fldp < +oo}

L&(Q,F, u)é{f:(Q,]:) — (C,B(C)) measumble,/|f\du < +oo}

EXERCISE 20. Let f: (Q,F) — (C,B(C)) be a measurable map.

1.

- w

Explain why the integral [ |f|du makes sense.

Show that f: (2, F) — (R, B(R)) is measurable, if f(2) C R.

Show that Li (9, F,u) € LE(QL, F, ).

Show that Lk (2, F, 1) = {f € LL(.F,p) , f(2) C R}

Show that Lk (9, F, ) is closed under R-linear combinations.
( )

Show that L&(Q, F, u) is closed under C-linear combinations.
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Definition 47 Let u : Q — R be a real-valued function defined on a
set Q. We call positive part and negative part of u the maps ut
and u™ respectively, defined as ut = max(u,0) and v~ = max(—u,0).

EXERCISE 21. Let f € LE(Q, F, p). Let u = Re(f) and v = Im(f).

1.
2.
3.

Show that u = ut —u",v=v"—v™, f=uT—u" +i(vt —v7).
Show that |u| = ut +u™, [v] =vt + v~

Show that u™, u™,v*, 07, |f],u,v,|ul, |v] all lie in Lk (Q,F, u).

. Explain why the integrals [utdp, [u™du, [vTdu, [v™du are

all well defined.

. We define the integral of f with respect to p, denoted [ fdu, as

[ fdp= [uTdp— [u"dp+i(fvFdu— [v™dp). Explain why
| fdp is a well defined complex number.
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6. In the case when f(Q2) C CNJ0,+oc] = RT, explain why this
new definition of the integral of f with respect to p is consistent
with the one already known (43) for non-negative and measur-
able maps.

7. Show that [ fdp = [wudp+i [vdp and explain why all integrals
involved are well defined.

Definition 48 Let f = u +iv € L&(Q, F, u) where (Q, F, u) is a
measure space. We define the lebesgue integral of f with respect to
w, denoted [ fdu, as:

/fdué /u+dﬂ/udﬂ+i</v+du/vdﬂ>

EXERCISE 22. Let f =u+iv € LE(Q, F,pu) and A € F.
1. Show that f14 € LL(Q,F, ).
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2. Show that f € L&(Q,F, u?).

w

. Show that f|A € Lé(A,f]A,u‘A)
. Show that [(f1a)dp = ffd,uA :ff‘Adu‘A.
5. Show that 4. is: [, utdy — [, u=dp+i ([, v dp — [, v dp).

=

Definition 49 Let f € L§(Q,F, 1) , where (Q,F, 1) is a measure
space. let A € F. We call partial lebesgue integral of f with
respect to u over A, the integral denoted fA fdu, defined as:

[ gan 2 [(rradu= [ saut = [ (o

where p? is the measure on (Q, F), p* = p(AnNe), fla is the restric-
tion of f to A and |4 is the restriction of u to F|a, the trace of F
on A.
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EXERCISE 23. Let f,g € Lx(Q,F,p) andlet h = f+g¢
1. Show that:

/h+du+/f_d,u+/g_d,u:/h_du+/f+du+/g+du

2. Show that [ hdu = [ fdu+ [ gdu.

3. Show that [(—f)du = — [ fdu
4. Show that if & € R then [(af)dp = a [ fdu.
5. Show that if f < g then ffd,u < fgd,u

6. Show the following theorem.

Theorem 22 For all f,g € L§(Q, F,p) and a € C, we have:

/(af+9)du=a/fdu+/gdu
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EXERCISE 24. Let f,g be two maps, and (fn)n>1 be a sequence of
measurable maps f, : (Q,F) — (C,B(C)), such that:

(1) Yw e, nkrfm fa(w) = f(w) in C
(i)  Vnx=1, |fal <y
(iii) g€ Lp(Q,F,p)
Let (un)n>1 be an arbitrary sequence in R..
1. Show that f € L&(Q, F, u) and f,, € LE(Q, F, ) for all n > 1.

2. For n > 1, define h,, = 29 — |f, — f|- Explain why Fatou
lemma (20) can be applied to the sequence (hy)n>1.

Show that lim inf(—w,) = — lim sup u,,.
Show that if & € R, then liminf(a 4 u,,) = o + liminf u,,.

Show that u, — 0 as n — 400 if and only if limsup |u,| = 0.

Show that [(2g)dp < [(2g)dp —limsup [ |f, — fldp

S o e w
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7. Show that limsup [ |f, — f|du = 0.

8. Conclude that [ |f, — fldp — 0 as n — 4o0.
Theorem 23 (Dominated Convergence) Let (fn)n>1 be a se-
quence of measurable maps fn, : (Q,F) — (C,B(C)) such that f, — f

in C? . Suppose that there exists some g € Lk(Q, F,u) such that
|fnl < g for alln>1. Then f, f, € L&Y, F,pu) for all n > 1, and:

i [ 1fu— fldn =0

n—-+oo

EXERCISE 25. Let f € L5 (2, F,p) and put 2 = [ fdu. Let a € C,
be such that |a| =1 and az = |z|. Put u = Re(af).

1. Show that u € Lk (2, F, 1)
2. Show that u < |f|

2i.e. for all w € §, the sequence (fn(w)),>1 converges to f(w) € C
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3. Show that | [ fdu| = [(af)dp.
4. Show that [(af)dp = [ udp.

5. Prove the following theorem.

Theorem 24 Let f € LE(Q,F,u) where (2, F,u) is a measure

space. We have:
‘/fdu‘ S/\fldu
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6. Product Spaces

In the following, I is a non-empty set.

Definition 50 Let (;)icr be a family of sets, indexed by a non-
empty set I. We call cartesian product of the family (;):cr the
set, denoted 11;c1€2;, and defined by:

HQl é {w:]_)UiEIQi R w(z) e Q) , Vi EI}

iel
In other words, I;c1€); is the set of all maps w defined on I, with
values in U;e1Q;, such that w(i) € Q; for all i € I.

Theorem 25 (Axiom of choice) Let (Q;)ier be a family of sets,
indexed by a non-empty set I. Then, Il;c;8; is non-empty, if and
only if ; is non-empty for all i € I'.

1When T is finite, this theorem is traditionally derived from other axioms.
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EXERCISE 1.

1.

Let © be a set and suppose that Q; = Q.,Vi € I. We use the
notation Q! instead of IT;c1Q;. Show that Q! is the set of all
maps w : I — Q.

. What are the sets RR" ., RN, [0, )N, R®?

. Suppose I = N*. We sometimes use the notation H:i’i@n in-

stead of II,en+$,. Let S be the set of all sequences (z,,)n>1
such that x,, € Q, for all n > 1. Is S the same thing as the
product H+ 10,7

. Suppose I = N,, = {1,...,n}, n > 1. We use the notation

Q1 x ... xQ, instead of gy, n1 €2 Forw € Oy x...x Qy, it
is customary to write (w1, ...,wy) instead of w, where we have

w; = w( ). What is your guess for the definition of sets such as
R",R",Q",C".

. Let E, F, G be three sets. Define F x F' x G.
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Definition 51 Let I be a non-empty set. We say that a family of
sets (In)aen, where A # 0, is a partition of I, if and only if:

() VAEA, L #0
(i) YANEA, AAN =L NIy =0
(ZZZ) I = Ujxepln

EXERCISE 2. Let (£2;);er be a family of sets indexed by I, and (Iy)xea
be a partition of the set I.

1. For each A € A, recall the definition of Il;ey, €2;.

2. Recall the definition of ITxep (I;er, ).

3. Define a natural bijection @ : ;e — aep (e, ).

4. Define a natural bijection 1 : R” x R" — RP™ for all n,p > 1.



Tutorial 6: Product Spaces 4

Definition 52 Let (;)cr be a family of sets, indexed by a non-
empty set I. For all i € I, let & be a set of subsets of Q2;. We define
a rectangle of the family (&;)icr, as any subset A of ;c1Q;, of the
form A = e A; where A; € & U{Q;} for all i € I, and such that
A; = Q; except for a finite number of indices i € I. Consequently, the
set of all rectangles, denoted I;c1&;, is defined as:

H&' 2 {HAZ c A € EU{Q ), A £ Q; for finitely many i € I}

el iel

EXERCISE 3. (Q;)ier and (&;);er being as above:

1. Show that if I = N,, and ; € & for all « = 1,...,n, then
51H...H5n:{A1><...><An : AiGEi,ViGI}.

2. Let A be a rectangle. Show that there exists a finite subset J
of I such that: A = {w € ILie;Q; : w(j) € A; , Vj € J} for
some A;’s such that A; € &;, for all j € J.
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Definition 53 Let (4, F;)icr be a family of measurable spaces, in-
dexed by a non-empty set I. We call measurable rectangle , any
rectangle of the family (F;)icr. The set of all measurable rectangles
is given by 2:

H]?ié {HAZ A e Fi Ai#QiforﬁnitelymaninI}

i€l iel

Definition 54 Let (4, F;)icr be a family of measurable spaces, in-
dexed by a non-empty set I. We define the product o-algebra of
(Fi)ier, as the o-algebra on ;e €Y, denoted ®;c1Fi, and generated
by all measurable rectangles, i.e.

R F éa<]_[fi>

icl i€l

2Note that Q; € F; for all i € 1.
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EXERCISE 4.

1. Suppose I = N,,. Show that F; ® ... ® F,, is generated by all
sets of the form Ay X ...x A,,, where A; € F; foralli=1,...,n.

2. Show that B(R) ® B(R)® B(R) is generated by sets of the form
A x B x C where A, B,C € B(R).

3. Show that if (Q,F) is a measurable space, B(R") @ F is the
o-algebra on RT x Q generated by sets of the form B x F where
BeB(RT)and F € F.

EXERCISE 5. Let (£2;);cr be a family of non-empty sets and &; be a
subset of the power set P(Q;) for all i € I.

1. Give a generator of the o-algebra ®;c;0(&;) on ;e ;.

2. Show that:

o (]_[ &») c @ a(&)

icl el
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3. Let A be a rectangle of the family (0(&;))icr. Show that if A is
not empty, then the representation A = I;c1 A; with A; € o(&;)
is unique. Define J4 = {i € I : A; # Q;}. Explain why J4 is a
well-defined finite subset of I.

4. If A € Mer0(&;), Show that if A =10, or A # 0 and Ja = 0,
then A € O’(Hiejgi).

EXERCISE 6. Everything being as before, Let n > 0. We assume that
the following induction hypothesis has been proved:

Ac HU(&-),A #0,cardJa=n = A€o (H&)
iel icl
We assume that A is a non empty measurable rectangle of (0(&;))ier
with cardJa = n+ 1. Let J4 = {i1,...,in41} be an extension of Jy.
For all B C ();,, we define:

i1

AP 2 T] 4

icl
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where each A; is equal to A; except A;-l = B. We define the set:

re {BgQil : ABEU<H&>}
el

Show that A% £ (), cardJ o, = n and that Al ¢ iero(&).
Show that Q;, €I

Show that for all B C Q;,, we have A%1\B = A%\ AB,

i1

Show that BeT' =, \ BeT.

. Let B,, € Q;,, n > 1. Show that AYBr = U, 51 AP,

. Show that I' is a o-algebra on €;, .

Let B € &;,, and for i € I define B; = Q; for all i’s except
Bil = B. Show that AB = 1437"1 n (HiEIBi)-

. Show that o(&;,) CT.
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9. Show that A = A% and A € o(I1;c1&)).
10. Show that Hiela(gi) g O'(Hie[gi).
11. Show that U(Hie](c,’i) = ®ie]g<gi)~
Theorem 26 Let (€;);cr be a family of non-empty sets indexed by a
non-empty set I. For all i € I, let &; be a set of subsets of ;. Then,

the product o-algebra R;c10(E;) on the cartesian product ;1€ is
generated by the rectangles of (&;)icr, i.e. :

XoE) =0 (H &-)
i€l icl
EXERCISE 7. Let Tr denote the usual topology in R. Let n > 1.
1. Show that 7Tg II ... Il 7Tg = {Al X...x A, : A; ETR}.
2. Show that B(R)® ... B(R) =o(Tg II... Il TR).
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3.

4.
d.

Define Co = {Ja1,b1] X ... X]an,by] : a;,b; € R}. Show that
Co CSNT... IS, where § = {Ja,b] : a,b € R}, but that the

inclusion is strict.
Show that SII...IIS C o(C2).
Show that B(R)® ... ® B(R) = 0(Ca).

EXERCISE 8. Let  and €' be two non-empty sets. Let A be a subset
of Q such that ) # A # Q. Let £ ={A} CP(Q) and & =0 C P(Q).

1.

Show that o(&) = {0, A, A°,Q}.

2. Show that (&) = {0,Q'}.

3. Define C={Ex F, Ecé&,F e&'} and show that C = .
4.
)
6

Show that ETTE" = {A x Q,Q x '}

. Show that 0(§) @ o(£') = {0, A x ', A° x ', Q x Q'}.
. Conclude that o(&) ® (&) # o(C) = {0,Q x Q'}.
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EXERCISE 9. Let n > 1 and p > 1 be two positive integers.

1. Define F = B(R)®...® B(R), and ¢ = BR)®...® B(R).

n

p
Explain why F ® G can be viewed as a o-algebra on R™"P.

2. Show that F®g is generated by sets of the form Ay x...x A4, 4,
where 4; € B(R),i=1,...,n+p.

3. Show that:
BR)®...9BR)=(BR)®...9BR))(BR)®...0B[R))

n+p n P

EXERCISE 10. Let (Q;,F;)ier be a family of measurable spaces. Let
(In)xen, where A # 0, be a partition of I. Let Q = IL;c;€; and
Q/ = H)\GA(HiGIQ )

X

1. Define a natural bijection between P () and P(Q').
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2. Show that through such bijection, A = Il;c;A; C Q, where
A; € Q;, is identified with A" = Ixea (Ier, A;) € Q.

3. Show that HieI]:i = HAEA<H7;€I)\‘7:7:)'

4. Show that ®;c;F; = ®)\€A(®i€h]:i)~
Definition 55 Let Q) be set and A be a set of subsets of Q. We call
topology generated by A, the topology on ), denoted T (A), equal
to the intersection of all topologies on Q, which contain A.
EXERCISE 11. Let Q be a set and A C P(Q).

1. Explain why 7 (A) is indeed a topology on €.

2. Show that 7 (A) is the smallest topology 7 such that A C 7.

3. Show that the metric topology on a metric space (F,d) is gen-
erated by the open balls A= {B(x,¢) : x € E,e > 0}.
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Definition 56 Let (2;,7;)ic1 be a family of topological spaces, in-
dexed by a non-empty set I. We define the product topology of
(T2)icr1, as the topology on I;c1Q;, denoted ®;er7;, and generated by
all rectangles of (T;)icr, i-e.

On=T (]_[z)

icl i€l

EXERCISE 12. Let (£;,7;):cr be a family of topological spaces.
1. Show that U € ®;¢17;, if and only if:
VeeU, AV ellje7,, xe VU
2. Show that I;c;7; € ®ierZ;.
3. Show that ®,c1B(Q;) = o(ILie;T;).
4. Show that ®,c1B(Q;) C B(IL;c18;).
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EXERCISE 13. Let n > 1 be a positive integer. For all z,y € R", let:

n
AN
=1

and we put ||z|| = /(z, x).
1. Show that for all t € R, ||z + ty||? = ||z||* + 2|y ||* + 2t(x, y).
2. From ||z + ty||? > 0 for all ¢, deduce that |(x,y)| < ||z[.]|y]|-
3. Conclude that ||z + y| < ||z|| + [|y||-

EXERCISE 14. Let (21,71),..., (s, Zn), n > 1, be metrizable topo-
logical spaces. Let dy,...,d, be metrics on 4, ...,,, inducing the
topologies 71, ..., 7, respectively. Let Q = Oy x ... x Q,, and 7 be
the product topology on 2. For all z,y € (2, we define:
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1. Show that d: Q x Q@ — R* is a metric on Q.

2. Show that U C  is open in €2, if and only if, for all z € U there
are open sets Uy, ..., U, in 4, ...,€, respectively, such that:

zcelUy x...xU, CU
3. Let U € T and x € U. Show the existence of € > 0 such that:
Vi=1,....,ndi(z;,y;) <¢€) = yeU
4. Show that 7 C 7.
5. let U € 7§ and = € U. Show that existence of € > 0 such that:
x € B(x1,€) X ... X B(xp,e) CU
6. Show that ']‘él cT.

7. Show that the product topological space (€2, 7) is metrizable.
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8. For all z,y € €, define:

n

d(ry) = Zdi(%,yi)

i=1

d'(z,y) = max di(zi,y;)

1=1,...

Show that d’, d” are metrics on €.

9. Show the existence of o, 3, o” and 3" > 0, such that we have
o/d < d<p'd and o'd" < d < pB"d".

10. Show that d’ and d” also induce the product topology on £2.
EXERCISE 15. Let (Qy,, 7,,)n>1 be a sequence of metrizable topological

spaces. For all n > 1, let d,, be a metric on €2,, inducing the topology
T,. Let Q = I17>99),, be the cartesian product and 7 be the product
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topology on Q. For all z,y € 2, we define:

—+oo

A(w,9) 2 Y 5 (LA dafin, )

n=1
1. Show that for all a,b € R*, we have 1A (a+b) <1Aa+1Ab.
2. Show that d is a metric on 2.

3. Show that U C €2 is open in (2, if and only if, for all x € U, there
is an integer N > 1 and open sets Uy,..., Uy in Qy,...,Qn
respectively, such that:

+oo
relU; x...x Uy X H Q, CU
n=N+1

4. Show that d(z,y) < 1/2" = dp(Tn,yn) < 2™d(z,y).

5. Show that for all U € 7 and x € U, there exists € > 0 such that
d(r,y) <e = yeU.
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10.

Show that 7 C 7.¢.

Let U € 7¢ and = € U. Show the existence of ¢ > 0 and N > 1,
such that:

Al
Zz— (IAdy(zn,yn)) <e = yeU

. Show that for all U € 7§ and = € U, there is ¢ > 0 and N > 1

such that:

x € B(x1,€) X ...x By, € H 2, CU
n=N+1

. Show that 7¢ C 7.

Show that the product topological space (€2, 7) is metrizable.
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Definition 57 Let (2,7) be a topological space. A subset H of T
is called a countable base of (Q,7), if and only if H is at most
countable, and has the property:

VWeT,IHCH, U= ]V
VeH'

EXERCISE 16.

1.
2.

Show that H = {|r,q[: r,q € Q} is a countable base of (R, 7r).

Show that if (£2,7) is a topological space with countable base,
and Q' C , then the induced topological space (Q/,T‘Q/) also
has a countable base.

. Show that [—1,1] has a countable base.
. Show that if (€2, 7) and (5, 7s) are homeomorphic, then (2, 7)

has a countable base if and only if (S, 7g) has a countable base.

. Show that (R, 7g) has a countable base.
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EXERCISE 17. Let (Qy,7,)n>1 be a sequence of topological spaces
with countable base. For n > 1, Let {V,* : k € I,,} be a countable
base of (,,,7,,) where I, is a finite or countable set. Let Q =TI ,Q,,
be the cartesian product and 7 be the product topology on Q. For
all p > 1, we define:

+o00
Hpé {Vlklx___xvpkpx H Q, : (kl,,.,,kp)ellx...xlp}

n=p+1

and we put H = Up>1HP.
1. Show that for all p > 1, H? C 7.
2. Show that H C 7.

For all p > 1, show the existence of an injection j, : H? — NP?.

I

Show the existence of a bijection ¢5 : N? — N.

5. For p > 1, show the existence of an bijection ¢, : N¥ — N.
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6. Show that HP is at most countable for all p > 1.

7. Show the existence of an injection j : H — N2,

8. Show that H is a finite or countable set of open sets in €.

9. Let U € T and € U. Show that there is p > 1 and Uy, ..., U,
open sets in €y,...,Q, such that:

400
el x...xU,x H Q, CU
n=p+1

10. Show the existence of some V,, € ‘H such that x € V, C U.

11. Show that H is a countable base of the topological space (2, 7).
12. Show that ®>3B(Q,) C B(Q).

13. Show that H C ®,>B(£,).

14. Show that B(Q) = @2 B(Q,,)
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Theorem 27 Let (2, Tn)n>1 be a sequence of topological spaces
with countable base. Then, the product space (1120, ©F7,) has
a countable base and:

+o00 +o00
B (H Qn> =) B(2)
n=1 n=1
EXERCISE 18.

1. Show that if (€2, 7) has a countable base and n > 1:
BQ") =B(Q)®...0B(Q)

n

2. Show that B(R") = B(R) ®...® B(R).
3. Show that B(C) = B(R) ® B(R).
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Definition 58 We say that a metric space (E,d) is separable, if
and only if there exists a finite or countable dense subset of E, i.e.
a finite or countable subset A of E such that E = A, where A is the
closure of A in E.

EXERCISE 19. Let (E,d) be a metric space.

1. Suppose that (E, d) is separable. Let H = {B(xy,, %) in,p > 1},
where {z,, : n > 1} is a countable dense subset in E. Show that
'H is a countable base of the metric topological space (F, T}‘;j).

2. Suppose conversely that (E,Tg) has a countable base H. For
all V € H such that V # 0, take xyy € V. Show that the set
{zv : V€H, V #0D} is at most countable and dense in E.

3. For all z,y,2’,y’ € E, show that:
‘d(l’,y) - d(l’/,y/” < d(l’,l‘/) + d(yvy/)
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4.

Let T« g be the product topology on E x F. Show that the
map d: (E X E,Tpxg) — (R, Tg+) is continuous.

. Show that d: (E x E,B(E x E)) — (R, B(R)) is measurable.
. Show that d : (Ex E, B(E)®B(E)) — (R, B(R)) is measurable,

whenever (F,d) is a separable metric space.

Let (2, F) be a measurable space and f,g: (Q,F) — (E,B(FE))
be measurable maps. Show that ® : (2, F) — E x E defined by
D(w) = (f(w), g(w)) is measurable with respect to the product
o-algebra B(E) ® B(E).

. Show that if (E,d) is separable, then ¥ : (Q, F) — (R, B(R))

defined by ¥(w) = d(f(w), g(w)) is measurable.

. Show that if (E,d) is separable then {f = g} € F.
10.

Let (Ey,dy)n>1 be a sequence of separable metric spaces. Show
that the product space H:flEn is metrizable and separable.
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EXERCISE 20. Prove the following theorem.

Theorem 28 Let (4, F;)icr be a family of measurable spaces and
(Q, F) be a measurable space. For alli € I, let f; : Q@ — §; be a map,
and define f: Q — ;c1Q; by f(w) = (fi(w))ier- Then, the map:

f(Q,F) - (HQ“®E>
i€l el
is measurable, if and only if each f; : (Q,F) — (4, F;) is measurable.
EXERCISE 21.
1. Let ¢,9 : R? — R with ¢(z,y) = z 4+ y and ¥(z,y) = z.y.
Show that both ¢ and v are continuous.
2. Show that ¢, : (R?, B(R)®B(R))—(R, B(R)) are measurable.

3. Let (©2, F) be a measurable space, and f, g : (2, F) — (R, B(R))
be measurable maps. Using the previous results, show that f+g¢
and f.g are measurable with respect to F and B(R).
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7. Fubini Theorem

Definition 59 Let (1, F1) and (Q2, F2) be two measurable spaces.
Let E C ©Qq x Qs. For all wy € 1, we call wi-section of E in s,
the set:

B 2 {wz € Qg @ (w1,w2) € B}
EXERCISE 1. Let (1,F1) and (Q2,F2) be two measurable spaces.
Given wq € Qy, define:
[ 2 (ECQ xQy, B € F)
1. Show that for all wy € 0y, I'“" is a o-algebra on 2y x (2s.
2. Show that for all wy € Qq, Fy I Fp C I'*1,
3. Show that for all wy € Q1 and E € F; ® Fa, we have E“! € Fs.

4. Show that the map w — 1p(w1,w) is measurable with respect
to Fo and B(R), for allw; € Oy and F € F; @ Fa .
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5. Let s be a simple function on (21 x Qq, 1 ® F2). Show that for

all wy € Qq, the map w — s(w1,w) is measurable with respect
to Fy and B(R).

6. Let f: (1 x Qo, F1 ® Fa) — [0,+0c] be a non-negative, mea-
surable map. Show that for all w; € Q;, the map w — f(wi,w)

is measurable with respect to F» and B(R).

7. Let f: (1 x Q2, F1 ® F2) — (R, B(R)) be a measurable map.
Show that for all wy € 4, the map w — f(w1,w) is measurable
with respect to Fy and B(R).

8. Show the following theorem:

Theorem 29 Let (E,d) be a metric space, and (Q1,F1), (Qa,F2)
be two measurable spaces. Let f: (Q x Qa, F1 @ Fo) — (E, B(E)) be
a measurable map . Then for all w1 € Qq, the map w — f(w1,w) is
measurable with respect to Fo and B(E).
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EXERCISE 2. Let (€, F;)ier be a family of measurable spaces with
card] > 2. Let f : (ILie;Q, ®icrFi) — (E,B(E)) be a measurable
map, where (E,d) be a metric space. Let i1 € I. Put By = Q;,,
& = Fiyy B2 = iep (4,38, E2 = Qien (i Fi-

1. Explain why f can be viewed as a map defined on E; X Es.

2. Show that f: (Fy X F2,& ® &) — (F,B(F)) is measurable.

3. For all w;, € Q;,, show that the map w — f(w;,,w) defined on
e 14,192 is measurable w.r. to ®;ep fi,)F: and B(E).

Definition 60 Let (2, F, i) be a measure space. (Q, F, 1) is said to
be a finite measure space, or we say that p is a finite measure,
if and only if p(Q) < +oo.



Tutorial 7: Fubini Theorem 4

Definition 61 Let (Q,F,u) be a measure space. (2, F,u) is said
to be a o-finite measure space, or u a o-finite measure, if and
only if there exists a sequence (Qp)n>1 in F such that Q, 1 Q and
w(Qy) < +o0, for alln > 1.

EXERCISE 3. Let (Q,F, 1) be a measure space.

1. Show that (2, F, ) is o-finite if and only if there exists a se-
quence (€,,),>1 in F such that Q = w20, and u(Q,,) < +oo
for all n > 1.

2. Show that if (Q,F, i) is finite, then p has values in R™.
3. Show that if (Q, F, u) is finite, then it is o-finite.

4. Let F : R — R be a right-continuous, non-decreasing map.
Show that the measure space (R,B(R),dF) is o-finite, where
dF is the stieltjes measure associated with F'.
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EXERCISE 4. Let (21, F1) be a measurable space, and (Qg, Fa, p2) be
a o-finite measure space. For all £ € F; ® F» and w; € 1, define:

Bo(wn) & [ 1p(on o))
2

Let D be the set of subsets of 2; x 5, defined by:

D2 {E€c FioF : ®p:(Q,F1) — (R,B(R)) is measurable}

1. Explain why for all £ € F; ® F», the map ®g is well defined.

2. Show that F; II 75 C D.
Show that if po is finite, A, B € D and A C B, then B\ A € D.
Show that if £, € 71 ® Fa,n > 1 and E, T F, then &g T ®p.

Show that if o is finite then D is a dynkin system on 2; x €.

A

Show that if y1 is finite, then the map ® : (Qy, F1) — (R, B(R))
is measurable, for all £ € F; @ Fo.
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7. Let (923)n>1 in F2 be such that Qf 1 Q2 and p2(25) < +o0.
Define uf = u?z = ua(eNQY). For E € Fy ® Fa, we put:

A
Pp(wr) = / 1p(wi, x)dug ()
Q2
Show that ®7% : (1, F1) — (R, B(R)) is measurable, and:
Bpen) = [ oy (@)Le(or)dua(z)
Q2

Deduce that ®% 1 ®g.

8. Show that the map @ : (Q1,F1) — (R, B(R)) is measurable,
for all £ € F; ® Fo.

9. Let s be a simple function on (21 x Qq, F; ® F3). Show that
the map w — [, s(w,x)dpz(x) is well defined and measurable

with respect to F; and B(R).

10. Show the following theorem:
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Theorem 30 Let (21, F1) be a measurable space, and (Qa, Fa, j12)
be a o-finite measure space. Then for all non-negative and measurable
map f: (1 x Qa, F1 @ Fa) — [0, +00], the map:

w— [ fw,z)dus(z)
Qo

is measurable with respect to Fy and B(R).

EXERCISE 5. Let (£2;, F;)iesr be a family of measurable spaces, with
card] > 2. Let ig € I, and suppose that po is a o-finite measure
on (4, Fi,). Show that if f: (IcrQ, ®icrFi) — [0, 400] is a non-
negative and measurable map, then:

w — / fw, x)dpuo(x)
Qg

defined on Tle p\ (44} €2, is measurable w.r. to ®;ep 4,3F: and B(R).
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EXERCISE 6. Let (21, F1, p1) and (Qa, Fa, u2) be two o-finite measure
spaces. For all F € F; ® F», we define:

@ pa(E) & /Ql </QQ 1E(w,y)du2(y)> dp (z)

1. Explain why g1 ® po : F1 @ Fo — [0, +00] is well defined.
2. Show that p; ® g is a measure on F; ® Fo.
3. Show that if A x B € Fy II F», then:
p1 @ pa(A X B) = 1 (A)pa(B)
EXERCISE 7. Further to ex. (6), suppose that p: F; @ Fa — [0, +00]
is another measure on F; @ Fo with u(A x B) = uy(A)pe(B), for all
measurable rectangle A x B. Let (27),>1 and (3 ),>1 be sequences

in F; and F respectively, such that QF 7 Qq, Q5 T Qa, 11 (27) < 400
and u2(25) < 4o00. Define, for all n > 1:

JAN n n n n
Dy, ={FeFi@F: p(ENQ] xQ3)) =1 @ u2(EN(QF x Q5))}
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1. Show that for all n > 1, 7y I > C D,,.

2. Show that for all n > 1, D,, is a dynkin system on 7 x Q5.

3. Show that p = 1 ® pe.

4. Show that (1 xQo, F1®@Fa, 111 ® o) is a o-finite measure space.
5. Show that for all £ € F; ® Fa, we have:

p1 ® pa(E) = / </Ql 1E(w7y)du1(x)) dpa2(y)

Q2

EXERCISE 8. Let (Q1, F1, 1) -« (Qn, Fn,y i) be n o-finite measure
spaces, n > 2. Let ip € {1,...,n} and put By = Q;y, Ey = II;£;,Q;,
& = Fi, and & = ®iz4,F;. Put v1 = 4y, and suppose that vy is
a o-finite measure on (Fs, &) such that for all measurable rectangle
Hi;ﬁio Az € Hz;ﬁzo Fi, we have Vo (Hﬁélo Al) = Hz;ém,uz (Az)
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1. Show that 11 ® v, is a o-finite measure on the measure space
(% ... xQ,F1 ® ... ® F,) such that for all measurable
rectangles A; x ... x A,,, we have:

121 ®I/2(A1 X ... X An) = ,U,l(Al) .. [Ln(An)

2. Show by induction the existence of a measure pon F1 ®...QF,,
such that for all measurable rectangles A; x ... x A,,, we have:

,U,(Al X ... X An) = ,U,l(Al) .. [Ln(An)
3. Show the uniqueness of such measure, denoted 1 ® ... ® fiy.
4. Show that p1 ® ... ® uy, is o-finite.

5. Let ig € {1, . ,n}. Show that Mig @ (®i¢ioui) =1 Q... & .
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Definition 62 Let (Qq1, F1,11), .-« (R0, Fuy fin) be n o-finite mea-
sure spaces, with n > 2. We call product measure of 1, ..., fin,
the unique measure on F1 ®...QF,, denoted p1 & ... iy, such that
for all measurable rectangles Ay X ... x Ay, in Fi ... 11 F,, we have:

This measure is itself o-finite.

EXERCISE 9. Prove that the following definition is legitimate:

Definition 63 We call lebesgue measure in R", n > 1, the
unique measure on (R"™, B(R")), denoted dx, dz™ ordxy .. .dx,, such
that for all a; <b;, i =1,...,n, we have:

dx([al,bl} X ... X [an,bn]) = H(bl — ai)

i=1
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EXERCISE 10.
1. Show that (R", B(R"),dz™) is a o-finite measure space.

2. For n,p > 1, show that dz" P = dz" ® daP.

EXERCISE 11. Let (1, Fi, p1) and (Q2, Fa, pu2) be o-finite.
1. Let s be a simple function on (21 x Qq, F1 ® F3). Show that:

/ sdpg @ pa = / (/ Sd,ug) duy = / (/ sd,u1> dto
Ql XQQ Q1 QQ QQ Q1

2. Show the following:

Theorem 31 (Fubini) Let (4, F1, 1) and (Q2, Fa, p2) be two o-
finite measure spaces. Let f : (21 x Qo, F1 @ Fa) — [0,+00] be a
non-negative and measurable map. Then:

/lesz{dm o= /Ql </92 fdm) dp = /Q2 (/91 fdm) dpa
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EXERCISE 12. Let (Q, F1,11), - -+, (o, Fny i) be n o-finite measure
spaces, n > 2. Let f: (Q1 X ... xQ,, F1 ®...Q F,) — [0,+x] be a
non-negative, measurable map. Let ¢ be a permutation of N,,, i.e. a
bijection from N, to itself.

1. For all w € Tlj£q(1)$2;, define:

Ji(w) 2 /Q F (@, 2)dptor) ()

(1)
Explain why Ji @ (ILi£0(1) %, ®ize)Fi) — [0,400] is a well
defined, non-negative and measurable map.

2. Suppose Ji 1 (Wig(o1),....ok) 2is Qig{o(),....o(k)1 Fi) — [0, +00]
is a non-negative, measurable map, for 1 < k < n — 2. Define:

A
Jrr1(w) = / I (w, T)dpg (g1 ()
Q

o (k+1)

and show that:

Jir1  (iggoq),....o(k+1)} 2> ig{o(1),....0(k+1)}Fi) — [0, +00]
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is also well-defined, non-negative and measurable.

3. Propose a rigorous definition for the following notation:

/ ce / fdﬂa(l) ce d,ug(n)
Q Qo-(l)

o(n)

EXERCISE 13. Further to ex. (12), Let (f,)p>1 be a sequence of non-
negative and measurable maps:
fpi (U x. .. xQ,F1®...0F,) — [0,+00]
such that f, T f. Define similarly:
| ooy @)

a(1)

1>

@)

1>

I (W) /Q TP (w, x)dpo ey (x) , 1<k <n—2

o(k+1)

1. Show that J¥ 1 J;.
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2. Show that if J? T Jy, then JP, | 1 Jye1, 1 <k <n —2.

3. Show that:
/ / fpdﬂa dﬂa (n) T / / fd,ua(l dﬂa (n)
Qo(n) /) Qo(ny /)
4. Show that the map u: Fy @ ... ® F,, — [0, 400], defined by:

/ / 1Edlu/a(1 dﬂa(n)

Qo (n) Q1)
is a measure on F| ® .

5. Show that for all £ € F; ® ...® F,, we have:

(1@ ... ® (B / / Lgdjioq) - - ditg(n)

a(n) o‘(l)

6. Show the following:
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Theorem 32  Let (1, F1,p01)s-- -5 (Qn, Fo, i) be n o-finite mea-
sure spaces, withn > 2. Let f : (Q1x...XQy, F1®...0F,) — [0, 4]
be a non-negative and measurable map. let o be a permutation of N,,.
Then:

fd,u1®...®un:/ / fdugy - dibg(n
/le...xQn Q Qo1 . "

o(n)
EXERCISE 14. Let (2, F, 1) be a measure space. Define:
L'2{f:Q—R,3geLh(QF.u), f=gpas})
1. Show that if f € L1, then |f| < +o00, p-a.s.

2. Suppose there exists A C 2, such that A ¢ F and A C N for
some N € F with u(N) = 0. Show that 14 € L' and 14 is not
measurable with respect to F and B(R).

3. Explain why if f € L', the integrals [ |f|du and [ fdu may not
be well defined.
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4. Suppose that f : (2, F) — (R, B(R)) is a measurable map with
J|fldu < +o0c. Show that f € L.
5. Show that if f € L' and f = f; p-a.s. then f; € L',

6. Suppose that f € L' and g1,92 € L{(Q,F,u) are such that
f=g¢1 pas. and f = go p-a.s.. Show that [ gidp = [ gadp.

7. Propose a definition of the integral [ fdu for f € L' which
extends the integral defined on Lg (9, F, p).

EXERCISE 15. Further to ex. (14), Let (f,.)n>1 be a sequence in L*,
and f,h € L', with f, — f p-a.s. and for all n > 1, |f,| < h p-as..

1. Show the existence of Ny € F,u(Ny) = 0, such that for all
w e Nlca fn(w) - f(w)a and for all n > 1, |fn(w)| < h(w)

2. Show the existence of g,,g,h1 € Li{(Q,F,p) and Ny € F,
1(N2) = 0, such that for allw € N§, g(w) = f(w), h(w) = hi(w),
and for all n > 1, g, (w) = frn(w).
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3.

Show the existence of N € F, u(N) = 0, such that for all
w € N gp(w) — g(w), and for all n > 1, |gn(w)| < hy(w).

. Show that the Dominated Convergence Theorem can be applied

to gnlNc,glNc and hllNc.

. Recall the definition of [ |f, — f|du when f, f, € L.
. Show that [ |f, — f|du — 0.

EXERCISE 16. Let (Qq, F1, 11) and (2, Fa, p2) be two o-finite mea-
sure spaces. let f be an element of L%{(Ql X Qo F1 @ Fa, i1 @ fi2).

1.

2.
3.

Let A={wi € : [ [f(wi,2)]dps(z) < 400}, Show that
A e Fi and (A% = 0,

Show that f(wi,.) € Lix(Q2, Fa, u2) for all wy € A.

Show that I(w;) = sz fwi,x)dpsz(x) is well defined for all
wy € A. Let I be an arbitrary extension of I_, on Q.
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4. Define J = I1 4. Show that:

J(w) =1aw) ; fH(w, 2)dpa(z) — 1a(w) ; [~ (w, ) dps ()

5. Show that J is Fj-measurable and R-valued.
6. Show that J € L (1, F1, 1) and that J =T py-a.s.

7. Propose a definition for the integral:

/Ql < o, f (Ivy)dﬂz(y)> dyn ()

8. Show that [, (14 [q, fTduz)dpn = [ o, FTdu @ po.
9. Show that:

/91 < o f(x’y)dl‘?(y)> dpi(z) = /lefdm ® p2

10. Prove the following;:
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Theorem 33 Let (1, F1, 1) and (Qa, Fa, ua) be two o-finite mea-
sure spaces. Let [ € Llc(Ql X Qo, F1 @ Fa, 1 & u2). Then, the map:

wi — | f(wr,z)dpa(x)
Q

is p1-almost surely equal to an element of L& (Q, Fi, 1) and:

/Ql < Qs f<$’y)d'“2(y)> dp(z) = /leﬂfdul ® pi2

EXERCISE 17. Let (1, F1, p1),- - - o(Qny Fy i) be n o-finite measure
spaces, n > 2. Let f € LE(Q1 X ... X Qp, F1 @ ... QFpy 1 ® ... fin,).
Let o be a permutation of N,,.

1. For all w € Tlj£q(1)82;, define:

JAN

Ji(w) 2 /Q e @
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Explain why J; is well defined and equal to an element of
Llc(Hi;ﬁo(l)Qia Qito)Fis Dito(1)Hi); Dite(1)i-almost surely.

2. Suppose 1 < k < n — 2 and that Jj is well defined and equal to
an element of:

LEMig (o (1,000} > Qig{o(1),....o(k)} Fir @ig{o(1),....00k) } i)
®ig{o(1),....0(k)} Hi-almost surely. Define:

AN
Br@ 2 [ R o (@)
Qo (kt1)

What can you say about Jyy.

/ ce / fd,ug(l) ce d/,&a(n)
Q Qo-(l)

is a well defined complex number. (Propose a definition for it).

3. Show that:

o(n)
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4. Show that:

J

a(n)

. / fdﬂa(l) ce d,ug(n) = /
Qa(l) Q1 X...

X

22

fdpr @ ... @ pin
Q,
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8. Jensen inequality

Definition 64 Let a,b € R, with a < b. Let ¢ : ]a,b[— R be an
R-valued function. We say that ¢ is a convex function, if and only
if, for all x,y €la,b[ and t € [0, 1], we have:

p(tx + (1 —t)y) < to(z) + (1 — )o(y)

EXERCISE 1. Let a,b € R, with a < b. Let ¢ : ]a,b[— R be a map.

1. Show that ¢ : ]a, b|— R is convex, if and only if for all 1, ..., 2,
inJa,bl and aq,...,a, in RT with a1 +... 4+, =1, n > 1, we
have:

dlarzr + ..+ apxn) < ard(zr) + .. and(ay,)

2. Show that ¢ : ]Ja,b[— R is convex, if and ouly if for all z,y, 2
with @ < x <y < z < b we have:

o(y) < L) + L=4(2)

zZ—XT Z—X
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3. Show that ¢ : ]Ja,b[— R is convex if and only if for all z,y, z
with ¢ < x <y < z < b, we have:

oly) — o(z) _ () = ¢y)
y—xr —  z—y

4. Let ¢ : Ja,b|— R be convex. Let x¢ €]a, b], and u, v, v,v" €la, b|
be such that u < v’ < xg < v < v'. Show that for all x €]z, v]:
¢(w') — d(u) _ d(z) = dw0) _ ¢(v') — ¢(v)
u —u - T — Xg - v —w

and deduce that limg | |, ¢(x) = ¢(z0)

5. Show that if ¢ : ]a,b[— R is convex, then ¢ is continuous.

6. Define ¢ : [0,1] — R by ¢(0) = 1 and ¢(x) = 0 for all = €]0, 1].
Show that ¢(tz + (1 —t)y) < to(z) + (1 —t)d(y), Vz,y,t € [0,1],
but that ¢ fails to be continuous on [0, 1].
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Definition 65 Let (2,7) be a topological space. We say that (Q,T)
is a compact topological space if and only if, for all family (V;)icr
of open sets in ), such that Q = U;c1V;, there exists a finite subset
{i1,...yin} of I such that Q=V;; U...UV; .

In short, we say that (€,7) is compact if and only if, from any open
covering of {2, one can extract a finite sub-covering.

Definition 66 Let (2,7) be a topological space, and K C Q. We
say that K is a compact subset of 2, if and only if the induced
topological space (K, 7| ) is a compact topological space.
EXERCISE 2. Let (2,7) be a topological space.
1. Show that if (£2,7) is compact, it is a compact subset of itself.
2. Show that () is a compact subset of (2.

3. Show that if O’ C Q and K is a compact subset of €', then K
is also a compact subset of Q.
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4. Show that if (V;);cr is a family of open sets in  such that
K C UierVi, then K = Ui (Vi N K) and V; N K is open in K
for alli € I.

5. Show that K C Q is a compact subset of €, if and only if for any
family (V;)ier of open sets in Q such that K C U;e[V;, there is
a finite subset {i1,...,4,} of I such that K CV;, U...UV; .

6. Show that if (Q2,7) is compact and K is closed in 2, then K is

a compact subset of €.

EXERCISE 3. Let a,b € R, a < b. Let (V;);er be a family of open
sets in R such that [a,b] C U;c;V;. We define A as the set of all
x € [a,b] such that [a,z] can be covered by a finite number of V;’s.
Let ¢ = sup A.

1. Show that a € A.

2. Show that there is € > 0 such that a + ¢ € A.
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3.
4.

Show that a < ¢ < b.

Show the existence of ig € I and ¢/,c¢” with a < ¢ < ¢ < ¢”,
such that |¢/, "] C V.

. Show that [a, ¢'] can be covered by a finite number of V;’s.
. Show that [a, ¢”] can be covered by a finite number of V;’s.

5
6
7.
8

Show that b A ¢’ < ¢ and conclude that ¢ = b.

. Show that [a, ] is a compact subset of R.

Theorem 34 Let a,b € R, a < b. The closed interval [a,b] is a
compact subset of R.

Definition 67 Let (2,7) be a topological space. We say that (Q,7T)
1s a hausdorff topological space, if and only if for all x,y € Q
with x # y, there exists open sets U and V in €, such that:

relU,yeV,UnNnV=>0
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EXERCISE 4. Let (2,7) be a topological space.

1. Show that if (€2, 7) is hausdorff and Q" C Q, then the induced
topological space (€, 7o) is itself hausdorff.

2. Show that if (2, 7") is metrizable, then it is hausdorff.
3. Show that any subset of R is hausdorff.

4. Let (4, 7;):er be a family of hausdorff topological spaces. Show
that the product topological space IT;c;€2; is hausdorff.

EXERCISE 5. Let (Q,7) be a hausdorff topological space. Let K be
a compact subset of 2 and suppose there exists y € K°.

1. Show that for all x € K, there are open sets V,, W, in Q, such
that y € V,x € W, and V, N W, = (.

2. Show that there exists a finite subset {x1,...,2,} of K such
that K C WY where WY =W,, U...UW,_.
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w

. Let V¥ =V, N...NV,, . Show that V¥ is open and VYNWY¥ = ().
4. Show that y € V¥ C K°.
5. Show that K¢ = UycgVY

6. Show that K is closed in €.

Theorem 35 Let (2,7) be a hausdorff topological space. For all
K CQ, if K is a compact subset, then it is closed.

Definition 68 Let (E,d) be a metric space. For all A C E, we
call diameter of A with respect to d, the element of R denoted 6(A),
defined as 6(A) = sup{d(z,y) : z,y € A}, with the convention that
5(0) = —o0.

Definition 69 Let (E,d) be a metric space, and A C E. We say that
A is bounded, if and only if its diameter is finite, i.e. 6(A) < +o00.
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EXERCISE 6. Let (E,d) be a metric space. Let A C E.

1.
2.

Show that §(A4) = 0 if and only if A = {2} for some z € E.

Let ¢ : R — [~1,1] be an increasing homeomorphism. Define
d"(z,y) = |v —y| and d'(z,y) = [d(x) — d(y)|, for all 2,y € R.
Show that d’ is a metric on R inducing the usual topology on
R. Show that R is bounded with respect to d’ but not with
respect to d”.

. Show that if K C F is a compact subset of E, for all ¢ > 0,

there is a finite subset {x1,...,2,} of K such that:
K C B(x1,€) U...UB(2p,€)

. Show that any compact subset of any metrizable topological

space (2,7), is bounded with respect to any metric inducing
the topology 7.
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EXERCISE 7. Suppose K is a closed subset of R which is bounded
with respect to the usual metric on R.

1. Show that there exists M € R* such that K C [—M, M].
2. Show that K is also closed in [—M, M].

Show that K is a compact subset of [—M, M].

- w

Show that K is a compact subset of R.
5. Show that any compact subset of R is closed and bounded.
6. Show the following:

Theorem 36 A subset of R is compact if and only if it is closed,
and bounded with respect to the usual metric on R.
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EXERCISE 8. Let (€2,7) and (S, 7s) be two topological spaces. Let
f:(Q,7)— (5,75) be a continuous map.

1. Show that if (W;);cs is an open covering of f(£2), then the family
(f~Y(W;))ier is an open covering of €.

2. Show that if (Q,7) is a compact topological space, then f(£2)
is a compact subset of (5, 7g).

EXERCISE 9.
1. Show that (R, 7g) is a compact topological space.
2. Show that any compact subset of R is a compact subset of R.
3. Show that a subset of R is compact if and only if it is closed.

4. Let A be a non-empty subset of R, and let a = sup A. Show
that if @ # —oo, then for all U € Tg with o € U, there exists
0 € R with § < a and |3, a] C U. Conclude that o € A.
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5. Show that if A is a non-empty closed subset of R, then we have
sup A € A and inf A € A.

6. Consider A = {z € R, sin(z) = 0}. Show that A is closed in
R, but that sup A € A and inf A ¢ A.

7. Show that if A is a non-empty, closed and bounded subset of R,
then sup A € A and inf A € A.
EXERCISE 10. Let gQ, 7T) be a compact, non-empty topological space.
Let f:(2,7) — (R,7g) be a continuous map.

1. Show that if f(Q2) C R, the continuity of f with respect to Tg
is equivalent to the continuity of f with respect to 7gr.

2. Show the following:
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Theorem 37 Let f:(,7T) — (R,Tg) be a continuous map, where
(Q,7) is a non-empty topological space. Then, if (Q,T) is compact,
f attains its maximum and minimum, i.e. there exist T,,,xy € €2,
such that:

flem) = inf f(x), f(zar) = sup f(z)

zEQ 2€Q

EXERCISE 11. Let a,b € R, a < b. Let f : [a,b] — R be continuous
on [a,b], and differentiable on ]a, b, with f(a) = f(b).

1. Show that if ¢ €]a,b[ and f(c) = sup ey p) f(@), then f'(c) = 0.
2. Show the following:
Theorem 38 (Rolle) Let a,b € R, a <b. Let f : [a,b] = R

be
continuous on [a,b], and differentiable on ]a,b[, with f(a) = f(b).
Then, there exists ¢ €]a,b] such that f'(c) = 0.
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EXERCISE 12. Let a,b € R, a < b. Let f : [a,b] — R be continuous
on [a,b] and differentiable on |a, b[. Define:

nw) 2 1)~ (@ - ) 1O

1. Show that h is continuous on [a, b] and differentiable on ]a, b|.

2. Show the existence of ¢ €]a, b| such that:

f®) = f(a) = (b= a)f'(c)

EXERCISE 13. Let a,b € R, a < b. Let f : [a,b] — R be a map.
Let n > 0. We assume that f is of class C™ on [a, ], and that f(*+1)
exists on ]a, b[. Define:
N (b—2)" (b— )"
h@) = F0) = J(@) = 3 =M (@) - e Ty,

k=1

n

where « is chosen such that h(a) = 0.
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1. Show that h is continuous on [a, b] and differentiable on ]a, b].

2. Show that for all = €]a, b[:

b—a)"

Wiy = LD (o o)

n!

3. Prove the following:

Theorem 39 (Taylor-Lagrange) Leta,be R, a<b, andn > 0.
Let f : [a,b] — R be a map of class C™ on [a,b] such that f+D
exists on |a,b[. Then, there exists ¢ €]a,b| such that:

(b—a)"t!

(n+1)! f("+1)(c)

£0) - (o) = 32 L por )

k=1
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EXERCISE 14. Let a,b € R, a < b and ¢ : |a,b[— R be differentiable.
1. Show that if ¢ is convex, then for all 2,y €]a, b[, z < y, we have:
¢'(z) < ¢'(y)

2. Show that if z,y, z €]a, b with x < y < z, there are ¢1, c2 €]a, b],
with ¢; < ¢g and:

P(y) — ¢()
o(z) —dly) = ¢'(c)(z—y)

3. Show conversely that if ¢’ is non-decreasing, then ¢ is convex.

[
b
—
Q
8
=
<

|
&

4. Show that x — e* is convex on R.

5. Show that z — —In(x) is convex on ]0, +o0].
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Definition 70 we say that a finite measure space (2, F,P) is a
probability space, if and only if P(2) =1

Definition 71  Let (Q,F,P) be a probability space, and (S,%) be
a measurable space. We call random variable w.r. to (S,X), any
measurable map X : (Q,F) — (S, %).

Definition 72 Let (2, F, P) be a probability space. Let X be a non-
negative random wvariable, or an element of LE(Q,}", P). We call
expectation of X, denoted E[X], the integral:

/XdP
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EXERCISE 15. Let a,b € R, a < band ¢ : |a, b[— R be a convex map.
Let (Q,F, P) be a probability space and X € L% (Q, F, P) be such
that X () Cla, .

1.

S ok W

Show that ¢ o X : (2, F) — (R, B(R)) is measurable.

Show that ¢o X € L (2, F, P), if and only if E[|¢o X|] < +oc.
Show that if E[X] = a, then ¢ € R and X = a P-a.s.

Show that if E[X] =b, then b€ R and X = b P-a.s.

Let m = E[X]. Show that m €]a, b].

Define:
¢(m) — d(x)
z€la,m| m—-x
Show that 8 € R and that for all z €m, b[, we have:
¢(z) — ¢(m)

zZ—m

B <



Tutorial 8: Jensen inequality 18

7. Show that for all z €]a, b], we have ¢p(m) + S(z —m) < ¢(x).
8. Show that for all w € Q, ¢p(m) + S(X (w) —m) < P(X (w)).
9. Show that if p o X € LK (2, F, P) then ¢(m) < E[¢p o X].

Theorem 40 (Jensen inequality) Let (0, F,P) be a probability
space. Let a,b € R, a < b and ¢ : |a,b[— R be a convex map.
Suppose that X € LR(U,F,P) is such that X(Q2) Cla,b[ and such
that g o X € L{ (Q, F, P). Then:

P(E[X]) < E[¢ o X]
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9. LP-spaces, p € [1, +00]
In the following, (2, F, i) is a measure space.

EXERCISE 1. Let f,g : (Q,F) — [0,+00] be non-negative and mea-
surable maps. Let p,q € R, such that 1/p+1/q = 1.

1. Show that 1 < p < 400 and 1 < ¢ < +00.
2. For all « €]0,400[, we define ¢* : [0, +00] — [0, +00] by:

RN x* if rzeRT
¢(x){+oo if z=+o00

Show that ¢“ is a continuous map.

3. Define A = ([ fPdu)*/?, B = ([ ¢%du)'/? and C = [ fgdpu.
Explain why A, B and C' are well defined elements of [0, +oc].

4. Show that if A=0or B =0 then C < AB.
5. Show that if A = 400 or B = +o00 then C < AB.
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6. We assume from now on that 0 < A < +o0o0 and 0 < B < +00.
Define F' = f/A and G = g/B. Show that:

/de,u:/Gpduzl
Q Q

7. Let a,b €]0, +00[. Show that:

1 1
In(a) + In(d) < In <—ap + —bq>
p q

and: 1 1
ab < —aP 4+ -0
p q

Prove this last inequality for all a,b € [0, +00].

8. Show that for all w € 2, we have:

Fw)G(w) <
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9. Show that C < AB.

Theorem 41 (Holder’s inequality) Let (Q,F,u) be a measure
space and f,g: (2, F) — [0, 4+00] be two non-negative and measurable
maps. Let p,q € RT be such that 1/p+1/q= 1. Then:

e (o) ()

Theorem 42 (Cauchy-Schwarz’s inequality:first)
Let (,F, 1) be a measure space and f,g : (2, F) — [0,+00] be two
non-negative and measurable maps. Then:

oo (L) ([4)
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EXERCISE 2. Let f,g : (2,F) — [0,+00] be two non-negative and
measurable maps. Let p €]1,+o0o[. Define A = ([ fPdu)'/? and

B = ([ g"dp)"/? and C = ([(f + g)Pdp)'/7.
1. Explain why A, B and C are well defined elements of [0, +0o0].
2. Show that for all a,b €]0, +oo[, we have:
(a+Db)P < 2P~ 1(aP +bP)
Prove this inequality for all a,b € [0, +00].
3. Show that if A = 400 or B=+ococ or C =0 then C < A+ B.
4. Show that if A < +00 and B < 400 then C' < 4o0.

5. We assume from now that A, B € [0,+oo[ and C' €]0, +o0].
Show the existence of some ¢ € RT such that 1/p+1/q = 1.

6. Show that for all a,b € [0, 400], we have:
(a+b)? = (a+b).(a+b)P!
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7. Show that:
/f-(f+g)”*1du < ACH
Q

/ g-(f+9)"tdp < BCH
Q

8. Show that:
/(f +9)Pdp < C(A+ B)
Q
9. Show that C < A + B.
10. Show that the inequality still holds if we assume that p = 1.

Theorem 43 (Minkowski’s inequality) Let (Q,F,u) be a mea-
sure space and f,g: (Q,F) — [0,+00] be two non-negative and mea-
surable maps. Let p € [1, +oo[ Then:

(firvors) < (o) (L)
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Definition 73 The LP-spaces, p € [1,+oo[, on (2, F, n), are:
LR (L, F, p) 2 {f:(Q,F)H(R,B(R)) measumble,/ﬂ|f\pdu <+oo}

L% (Q, F, 1) 2 {f:(Q,F)H(C,B(C)) measumble,/ﬂ|f\pdu <+oo}

For all f € LL(Q, F, i), we put:

112 ([ 1rean)”
Q

EXERCISE 3. Let p € [1,+00[. Let f,g € LL(U F, p).
1. Show that LY (2, F, ) = {f € LB(Q.F,) , £(@) C R,
2. Show that L% (Q,F, ) is closed under R-linear combinations.

3. Show that L% (Q, F,n) is closed under C-linear combinations.
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4. Show that [|f + gllp < [lfllp + llgllp-

5. Show that ||f|l, =0 < f =0 p-as.

6. Show that for all a € C, ||af||, = ||| f]lp-

7. Explain why (f,g) — || — g|l, is not a metric on L%(Q, F, u)

Definition 74 For all f : (Q,F) — (C,B(C)) measurable, Let:
Ifllc & inf{M € R* , |f| < M p-as.}
The L>°-spaces on a measure space (Q, F, 1) are:
LE(Q,F, pn) 2 {[:(Q,F) = (R,B(R)) measurable, || f|lo < +o0}
LE(Q,F,p) 2 {f:(Q,F) = (C,B(C)) measurable, || f|lcc < +o0}
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EXERCISE 4. Let f,g € LE(Q, F, 1).

1.

oo W

®© N>

Show that LE (2, F,n) ={f € LZ(Q, F, 1), f(Q) CR}.
Show that |f]| < || f]leo p-a.s.

Show that [|f + glleo < [[fllec + ll9lloe-

Show that LE (2, F, u) is closed under R-linear combinations.
Show that LZ (2, F, u) is closed under C-linear combinations.
Show that || fllco =0 < f =0 p-as..

Show that for all « € C, ||af|lco = /.|| ]| co-

Explain why (f,9) — ||f — glloc is not a metric on LE (Q, F, i)
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Definition 75 Letp € [1,+o0]. Let K =R or C. For alle > 0 and
fe Ly (Q,F,n), we define the so-called open ball in L (Q, F, pn):

A
B(f.e) ={g9:9€ Lg(Q,F,p), |If — gllp <€}
We call usual topology in LY (Q, F, ), the set T defined by:
T2 {U:UCIE(QF, 1),¥f €U,3 > 0,B(f,¢) CU}

Note that if (f,g) — ||f — gll, was a metric, the usual topology in
LY (2, F, 1), would be nothing but the metric topology.

EXERCISE 5. Let p € [1,+00]. Suppose there exists N € F with
u(N)y=0and N#0. Put f=1y andg=0

1. Show that f,g € LL(Q, F,p) and f # g.
2. Show that any open set containing f also contains g.

3. Show that LL(Q, F, p) and LK (Q, F, i) are not Hausdorff.
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EXERCISE 6. Show that the usual topology on L% (2, F, u) is induced
by the usual topology on L%(Q, F, i), where p € [1, +o0].

Definition 76 Let (E,T) be a topological space. A sequence (xy)n>1

in E is said to converge to x € E, and we write x, KN x, if and only
if, for all U € T such that x € U, there exists ng > 1 such that:

n>ny = x, €U

When E = LL(Q,F,u) or E = LE(Q, F, 1), we write z,, 2.

EXERCISE 7. Let (F,7) be a topological space and ' C E. Let
7' = Tjp be the induced topology on E’. Show that if (z,),>1 is a

sequence in E' and z € E’, then z,, L ris equivalent to x, Z .
EXERCISE 8. Let f, g, (fn)n>1 be in LE(Q, F, p) and p € [1, +o0].

1. Recall what the notation f,, — f means.

2. Show that f, = f is equivalent to || f,, — f]l, — O.
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. L? L?
3. Show that if f, = f and f, = ¢ then f = g p-a.s.

EXERCISE 9. Let p € [1,400]. Suppose there exists some N € F such
that u(N) = 0 and N # (. Find a sequence (f,)n>1 in LE&(Q, F, 1)

and f,g in L%(Q, F, 1), f # g such that f, 25 f and f, 2 ¢.

Definition 77 Let (fn)n>1 be a sequence in LE(Q, F, p), where
(Q,F, 1) is a measure space and p € [1,400]. We say that (fn)n>1 1S
a cauchy sequence, if and only if, for all € > 0, there exists ng > 1
such that:

n,m>ng = ||fo— fmllp <€

EXERCISE 10. Let f,(fn)n>1 be in LEL(Q,F,p) and p € [1,400].

Show that if f, = f, then (fn)n>1 is a cauchy sequence.
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EXERCISE 11. Let p € [1, 400}, and (f,)n>1 be cauchy in L& (2, F, u).

1. Show the existence of n1; > 1 such that:

1

n>mng = anffnlnpg 5

2. Suppose we have found ny < ns < ... <ng, k> 1, such that:
. 1
Vie{l,... .k}, n>n; = |[fu— fo;llp < %

Show the existence of nyy1, ng < nk41 such that:
1
n>ngr1r = || fa = faallp < oFT

3. Show that there exists a subsequence (fy, )x>1 of (fn)n>1 with:

+oo
Z ||fnk+1 - fnkHP < +0o0
k=1
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EXERCISE 12. Let p € [1,400], and (f)n>1 be in LEL(Q, F, u), with:

+oo
> fatr = fallp < +o0

n=1

We define: .
A
9= > |fus1— ful
n=1

1. Show that g : (2, F) — [0, 4+0¢] is non-negative and measurable.
2. If p = 400, show that g < Z:ﬁ lfn+1 — fulloo p-a.s.

3. If p € [1,4+o0], show that for all N > 1, we have:

N —+o00
D lwrr=Fal || <D Ifnsr = fallo
n=1 n=1

P
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4. If p € [1,+o0], show that:

L tes
( / gpdu) < S W = Fully
Q n=1

5. Show that for p € [1,4+00], we have g < +00 p-a.s.

6. Define A = {g < +o0}. Show that for all w € A, (fn(w))n>1 is
a cauchy sequence in C. We denote z(w) its limit.

7. Define f: (2,F) — (C,B(C)), by:

w2 {7 § LE

Show that f is measurable and f, — f p-a.s.

8. if p = +o0, show that for all n > 1, | f,| < |f1] + g and conclude
that f € LE(Q, F, ).
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9. If p € [1,+o0], show the existence of ng > 1, such that:
n>ng = /Q|fnffn0|pdu§ 1
Deduce from Fatou’s lemma that f — fn, € LEL(Q, F, p).

10. Show that for p € [1,4+00], f € LEL(Q, F, p).

11. Suppose that f, € L% (Q,F,pn), for all n > 1. Show the exis-
tence of f € L{(Q, F, p), such that f, — f p-a.s.

EXERCISE 13. Let p € [1,4+00], and (fy)n>1 be in LL(Q, F, p), with:

—+oo
> fnt1 = fallp < +o0
n=1

1. Does there exist f € L (2, F, p) such that f, — f p-a.s.
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2. Suppose p = +o00. Show that for all n < m, we have:

|fms1 — fnl < Z I fe+1 — frlloo pra.s.

k=n

3. Suppose p = +o0o. Show that for all n > 1, we have:

+oo
1F = Falloo <D I frsr = filloo
k=n

4. Suppose p € [1, +o00[. Show that for all n < m, we have:

(/Q | fma1 — fnlpdu) ' < Z | frs1 — frllp
k=n

5. Suppose p € [1,+oo[. Show that for all n > 1, we have:

+oo
1F = Fallp <D I fern = frlly
k=n

16
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6. Show that for p € [1, +00], we also have f, =z I

7. Suppose conversely that g € LE(Q, F, p) is such that f, = g.
Show that f = ¢ p-a.s.. Conclude that f, — g p-a.s..

Theorem 44 Let (0, F,p) be a measure space. Let p € [1,400],
and (fn)n>1 be a sequence in L (Q, F, 1) such that:

—+o0o
> fnsr = fallp < +o0

n=1
Then, there exists [ € LE(Q, F, ) such that f,, — f p-a.s. Moreover,

for all g € LL(Q,F, 1), the convergence fn — g p-a.s. and fy = g
are equivalent.
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EXERCISE 14. Let f, (fn)n>1 be in LG (2, F, p) such that f, 4 f,
where p € [1, +00].

1. Show that there exists a sub-sequence (fy, Jk>1 of (fn)n>1, with:
+oo
Z ||fnk+1 - fnkHP < +0o0
k=1

2. Show that there exists g € Lg (2, F, ) such that f,, — g p-a.s.

3. Show that f,, = g and g = f p-a.s.

4. Conclude with the following:

Theorem 45 Let (fn)n>1 be in LL(Q,F, 1) and f € LG(Q, F, p)

such that fy, L f, where p € [1,400]. Then, we can extract a sub-
sequence (fn, )k>1 of (fu)n>1 such that fn, — [ p-a.s.
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EXERCISE 15. Prove the last theorem for L§ (2, F, p1).
EXERCISE 16. Let p € [1, +00], and (f5)n>1 be cauchy in Lg(Q, F, p).

1. Show that there exists a subsequence (fy, )k>1 of (fn)n>1 and
f belonging to L%(Q, F, i), such that f,, L f.

2. Using the fact that (fy,)n>1 is cauchy, show that f, = f.

Theorem 46 Let p € [1,400]. Let (fn)n>1 be a cauchy sequence in
L%(Q, F, ). Then, there exists f € LEL(Q,F,p) such that f, A f.

EXERCISE 17. Prove the last theorem for L% (Q, F, p1).
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10. Bounded Linear Functionals in L2

In the following, (2, F, i) is a measure space.

Definition 78 Let (z,)n>1 be a sequence in an arbitrary set. We
call subsequence of (z,)n>1, any sequence of the form (xg(n))n>1,
where ¢ : N* — N* is a strictly increasing map.

EXERCISE 1. Let (E,d) be a metric space, with metric topology 7.
Let (zp)n>1 be a sequence in E. For all n > 1, let F,, be the closure
of the set {z : k > n}.

1. Show that for all z € E, x, Lais equivalent to:
Ve>0, Ing>1,n>ng = da,,x) <e
2. Show that (F},),>1 is a decreasing sequence of closed sets in E.

3. Show that if F}, | 0, then (Ff),>1 is an open covering of E.
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4. Show that if (E,T) is compact then N> F, # 0.

5. Show that if (E,T) is compact, there exists = € F such that for
all n > 1 and € > 0, we have B(z,e) N {x , k >n} # 0.

6. By induction, construct a subsequence (2, )p>1 of (25 )n>1 such
that x,,, € B(z,1/p) for all p > 1.

7. Conclude that if (E,7) is compact, any sequence (z,)p>1 in E
has a convergent subsequence.

EXERCISE 2. Let (E,d) be a metric space, with metric topology 7.
We assume that any sequence (x,,),>1 in E has a convergent subse-
quence. Let (V;);cr be an open covering of E. For x € E, let:

r(x) 2 sup{r >0 : B(x,r) CV;, for some i€ I}
1. Show that Vx € E, 3i € I, Ir > 0, such that B(z,r) C V;.

2. Show that Vz € E, r(z) > 0.
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EXERCISE 3. Further to ex. (2), suppose inf,ecg r(x) = 0.
1. Show that for all n > 1, there is x,, € E such that r(z,) < 1/n.

2. Extract a subsequence (2, )r>1 of (zn)n>1 converging to some
x* € E. Let r* > 0 and ¢ € I be such that B(z*,r*) C V;. Show
that we can find some ko > 1, such that d(z*,z,, ) < r*/2 and
T(.’L‘nko) <r*/4.

3. Show that d(z*,z,, ) < r*/2 implies that B(xy,, ,r*/2) C V.
Show that this contradicts r(zn,,) < r*/4, and conclude that
infaegr(z) > 0.

EXERCISE 4. Further to ex. (3), Let ro with 0 < rg < infyepr(x).
Suppose that F cannot be covered by a finite number of open balls
with radius rq.

1. Show the existence of a sequence (z,,),>1 in E, such that for all
n>1, tpe1 € Bz, r0) U...UB(zy, r0).
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2. Show that for all n > m we have d(x,, T, ) > 7.
3. Show that (z,,)n>1 cannot have a convergent subsequence.

4. Conclude that there exists a finite subset {z1,...,z,} of E such
that E = B(x1,70) U...UB(Zy, o).

5. Show that for all € E, we have B(xz,r9) C V; for some i € I.
6. Conclude that (E,T) is compact.

7. Prove the following:

Theorem 47 Let (E,T) be a metrizable topological space. Then
(E,T) is compact, if and only if for every sequence (xn)p>1 in E,
there exists a subsequence (T, )k>1 of (Tp)n>1, and some x € F,

such that x,, R zT.
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EXERCISE 5. Let a,b € R ,a < b and (x,),>1 be a sequence in ]a, b|.
1. Show that (x,),>1 has a convergent subsequence.
2. Can we conclude that ]a, b[ is a compact subset of R?
EXERCISE 6. Let B =[-M,M] x ... x [-M,M] CR", where n > 1

and M € RT. Let Tr» be the usual product topology on R”, and
T = (Tr~)|E be the induced topology on E.

1. Let (z,)p>1 be a sequence in E. Let x € E. Show that z, ELp

. . Trn
is equivalent to z, = .

2. Propose a metric on R", inducing the topology 7gn.

3. Let (xp)p>1 be a sequence in R™. Let z € R". Show that

T n . . y T y .
xp, % xif and only if, ), = 2' for all i € N,,.
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EXERCISE 7. Further to ex. (6), suppose (zp)p>1 is a sequence in E.
1. Show the existence of a subsequence (z4(p))p>1 of (7p)p>1, such

1
that T )

T
M 21 for some z! € [ M, M].

2. Explain why the above convergence is equivalent to x;(p) 5 41

3. Suppose that 1 < k < n —1 and (yp)p>1 = (Tep))p>1 is a
subsequence of (z,)p>1 such that:

Vi=1,...,k, xi(p) I8 43 for some 27 € [—M, M|
Show the existence of a subsequence (yy(p))p>1 of (4p)p>1 such
that yfﬁpl) I8 2541 for some z*+1 € [~ M, M].
4. Show that ¢ o) : N* — N* is strictly increasing.

5. Show that (Zgoy(p))p>1 is a subsequence of (z,),>1 such that:

Vi=1,....k+1, x;w(p)i‘xje[—M,M]
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6.

7.

Show the existence of a subsequence (74(p))p>1 of (75)p>1, and

x € E, such that xg(,) ELpS

Show that (F,7g) is a compact topological space.

EXERCISE 8. Let A be a closed subset of R, n > 1, which is bounded
with respect to the usual metric of R".

1.
2.

Show that A C E = [-M, M]x...x[—M, M], for some M € R*.
Show from F'\ A = FE N A° that A is closed in E.

. Show (A, (7Tr~)|a) is a compact topological space.

Conversely, let A is a compact subset of R". Show that A is
closed and bounded.

Theorem 48 A subset of R, n > 1, is compact if and only if it is
closed and bounded (with respect to the usual metric).
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EXERCISE 9. Let n > 1. Consider the map:
) cn — R2n
¢: (a1 —l—ibl,...,an—i—ibn) — (al,bl,...,an,bn)

1. Recall the expressions of the usual metrics dg» and dgz2» of C”
and R?" respectively.

2. Show that for all z,z’ € C", don(z, 2') = drzn (¢(2), @(2")).
3. Show that ¢ is a homeomorphism from C" to R?".

4. Show that a subset K of C" is compact, if and only if ¢(K) is
a compact subset of R?".

5. Show that K is closed, if and only if ¢(K) is closed.
6. Show that K is bounded, if and only if ¢(K) is bounded.

7. Show that a subset K of C" is compact, if and only if it is closed
and bounded (with respect to the usual metric).
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Definition 79 Let (E,d) be a metric space. A sequence (xp)n>1 in
E, is said to be a cauchy sequence (relative to the metric d), if and
only if, for all € > 0, there exists ng > 1 such that:

n,m>ny = d(xn,Tm) <€

Definition 80 We say that a metric space (E,d) is complete, if
and only if, for all (xy)n>1 cauchy sequence in E, there exists x € E
such that (z,)n>1 converges to x.

EXERCISE 10.

1. Explain why strictly speaking, given p € [1, +o0], definition (77)
of Cauchy sequences in L (2, F, 1) is not a covered by defini-
tion (79).

2. Explain why Lg (2, F, p1) is not a complete metric space, despite
theorem (46) and definition (80).
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EXERCISE 11. Let (z)r>1 be a Cauchy sequence in C”, n > 1, with
respect to the usual metric d(z, z’) = ||z — 2’|, where:

A
Iz[l =

1. Show that the sequence (zj)r>1 is bounded, i.e. that there exists
M € R™" such that ||zx|| < M, for all k > 1.

2. Define B = {z € C", ||z]| < M}. Show that §(B) < +o0, and
that B is closed in C™.

3. Show the existence of a subsequence (2x,)p>1 of (2x)x>1 such

Ton
that zp, < 2 for some z € B.

4. Show that for all € > 0, there exists py > 1 and ng > 1 such
that d(z, zx,,) < €/2 and:

k>mno = d(z,2k,,) < €/2
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5. Show that zj Top z.

6. Conclude that C™ is complete with respect to its usual metric.

7. For which theorem of Tutorial 9 was the completeness of C used?

. Ton
EXERCISE 12. Let (zx)r>1 be a sequence in R" such that z;, =" 2,
for some z € C™.

1. Show that z € R".

2. Show that R™ is complete with respect to its usual metric.

Theorem 49 For alln > 1, C™ and R™ are complete with respect
to their usual metrics.
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EXERCISE 13. Let (E,d) be a metric space, with metric topology 7.
Let FF C E, and F denote the closure of F.

1.

2.

Explain why, for all z € F and n > 1, we have FNB(x,1/n) # (.

Show that for all z € F, there exists a sequence (Tn)n>1 In F,

such that z,, R xT.

. Show conversely that if there is a sequence (zy),>1 in F with

T —
r, — x, then x € F.

. Show that F' is closed if and only if for all sequence (xy,)n>1 in

F such that x,, Z, & for some z € FE, we have x € F.

. Explain why (F,7|p) is metrizable.

. Show that if F' is complete with respect to the metric d|pyr,

then F'is closed in E.
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7. Let dg be a metric on R, inducing the usual topology 7. Show
that d’ = (dg)rxr is a metric on R, inducing the topology 7r.

8. Find a metric on [—1, 1] which induces its usual topology.
9. Show that {—1,1} is not open in [—1, 1].

10. Show that {—o0, +-00} is not open in R.

11. Show that R is not closed in R.

12. Let dr be the usual metric of R. Show that d' = (dg)rxr
and dr induce the same topology on R, but that however, R
is complete with respect to dr, whereas it cannot be complete
with respect to d’.
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Definition 81 Let H be a K-vector space, where K =R or C. We
call inner-product on H, any map (-,-) : H x H — K with the
following properties:

(4) Ve,y e H, (z,y) = (y,z)

(i7) Ve,y,z€H, (x+2,y) = (z,y) + (z,y)

(#41) Vr,y € H,Va e K, {(ax,y) = alz,y)

(1v) VeeH, (z,z) >0

(v) VeeH, (z,2) =0 & x=0)

where for all z € C, Z denotes the complex conjugate of z. For all

x € H, we call norm of x, denoted ||x||, the number defined by:

lz]| 2 /(z, )

EXERCISE 14. Let (-,-) be an inner-product on a K-vector space H.

1. Show that for all y € H, the map = — (z,y) is linear.
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2. Show that for all x € H, the map y — (x,y) is linear if K = R,
and conjugate-linear if K = C.

EXERCISE 15. Let (-,-) be an inner-product on a K-vector space H.
Let 2,y € H. Let A = ||z||?, B = |(x,9)| and C = ||y||*>. let « € K
be such that |a| = 1 and:

B = ofz,y)
1. Show that 4, B,C € R*.
2. For all t € R, show that (x — tay, > — tay) = A — 2tB + t2C.
3. Show that if C'= 0 then B* < AC.

4. Suppose that C' # 0. Show that P(t) = A — 2tB + t*C has a
minimal value which is in R*, and conclude that B? < AC.

5. Conclude with the following:
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Theorem 50 (Cauchy-Schwarz’s inequality:second) Let H be
a K-vector space, where K = R or C, and (-,-) be an inner-product
on H. Then, for all x,y € H, we have:

[{z y)| < [l 1y

EXERCISE 16. For all f,g € LL(Q, F, i), we define:

(f.9) 2 / fady
Q

1. Use the first cauchy-schwarz inequality (42) to prove that for all
f,9 € LE(Q, F, ), we have fg € LE(Q, F,u). Conclude that
(f,g) is a well-defined complex number.

2. Show that for all f € LEL(Q, F, u), we have | f|l2 = /(f, f)-

3. Make another use of the first cauchy-schwarz inequality to show
that for all f,g € LE(Q,F,n), we have:

[(F 9 < N1 l12-lgll2 (1)
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4. Go through definition (81), and indicate which of the proper-
ties (i) — (v) fails to be satisfied by (-,-). Conclude that (,-)
is not an inner-product on L%(€2, F, u), and therefore that in-
equality (*) is not a particular case of the second cauchy-schwarz
inequality (50).

5. Let f,g € LE(Q, F, ). By considering [(|f|+t|g|)?du fort € R,
imitate the proof of the second cauchy-schwarz inequality to
show that:

() ()

6. Let f,g:(Q,F) — [0, +o0] non-negative and measurable. Show
that if [ f2dp and [ g*dp are finite, then f and g are p-almost
surely equal to elements of L% (€, F, u). Deduce from 5. a new
proof of the first Cauchy-Schwarz inequality:

oo (L)’ ()
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EXERCISE 17. Let (-, -) be an inner product on a K-vector space H.

1. Show that for all z,y € H, we have:
lz +ylI? = [l + Iyl + (. y) + (2. y)
2. Using the second cauchy-schwarz inequality (50), show that:
lz 4+ yll < llzll + [yl

3. Show that d(. y(z,y) = ||z — yl| defines a metric on H.
Definition 82 Let H be a K-vector space, where K = R or C,
and {-,-) be an inner-product on H. We call norm topology on H,
denoted 7,. .y, the metric topology associated with d. y(z,y) = ||z —yl|.
Definition 83 We call hilbert space (over K), where K = R
or C, any ordered pair (H,(-,-)), where H is a K-vector space, and
(-,-) is an inner product on H for which the metric space (H,dy. .y) is
complete, where d;. .y(x,y) = ||z —y|.

Yy
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EXERCISE 18. Let (H,(-,-)) be a hilbert space over K and let M
be a closed linear subspace of H, (closed with respect to the norm

topology 7;...y). Define [,-] = (-, ) pmxm-
1. Show that [-,-] is an inner-product on the K-vector space M.
2. With obvious notations, show that di. | = (d(..y)|mx-

3. Deduce that 71 j = (7(..y)|m-
EXERCISE 19. Further to ex. (18), Let (x,)n>1 be a cauchy sequence
in M, with respect to the metric d|. .

e

1. Show that (2,)n>1 is a cauchy sequence in H.

T .
2. Explain why there exists = € H such that z,, L0 g,

w

. Explain why = € M.

T,
4. Explain why we also have z,, g,
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5.

Explain why (M, (-, )| mxa) is a hilbert space over K.

EXERCISE 20. For all 2,2’ € C™, n > 1, we define:

n
(z,2") 2 Z zizi
i=1

. Show that (-,-) is an inner-product on C™.

Show that the metric d,. .y is equal to the usual metric of C".
Conclude that (C™,(-,-)) is a hilbert space over C.
Show that R"™ is a closed subset of C".

Show however that R" is not a linear subspace of C".

. Show that (R", (-, -)|grnxr~) is a hilbert space over R.
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Definition 84 Let K = R or C. The usual inner-product in
K", denoted {-,-), is defined as:

Vz,y € K", (2,y) szyl

Theorem 51 The spaces C™ and R™, n > 1, together with their
usual inner-products, are hilbert spaces over C and R respectively.

Definition 85 Let H be a K-vector space, where K =R or C. Let
C C'H. We say that C is a convex subset or H, if and only if, for
all z,y € C and t € [0, 1], we have tx + (1 —t)y € C.
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EXERCISE 21. Let (H, (-, -)) be a hilbert space over K. Let C C H be
a non-empty closed convex subset of H. Let xg € H. Define:

Smin 2 inf{||lz — x| : z€C}

1. Show the existence of a sequence (x,,),>1 in C such that
Hxn - IOH - 5min-

2. Show that for all z,y € H, we have:

lz =yl = 2]|=|* + 2]lyll* — 4

r+y 2
2

3. Explain why for all n,m > 1, we have:

Ty + T

5 10

6min =

4. Show that for all n,m > 1, we have:
2

min

lzn = 2mll® < 2l|zn — 0]l + 2llzm — 20]|* — 48
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© o N o

10.

11.

..
Show the existence of some z* € H, such that z, L g,

Explain why z* € C
Show that for all z,y € H, we have | ||z| — ||y| | < ||z — y]|.
Show that ||z, — xo|| — ||z* — x0]|.
Conclude that we have found * € C such that:
|l — o] = inf{||lx — x| : = €C}
Let y* be another element of C with such property. Show that:
lz* =y |1 < 2la* — @ol|* + 2[|y" — wol|* — 46710

Conclude that z* = y*.
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Theorem 52 Let (H,(-,-)) be a hilbert space over K, where K = R
or C. Let C be a non-empty, closed and convex subset of H. For all
xo € H, there exists a unique x* € C such that:

|l* — 2ol = inf{|lx — 0| : z€C}

Definition 86 Let (H, (-,-)) be a hilbert space over K, where K = R
or C. Let G CH. We call orthogonal of G, the subset of H denoted
Gt and defined by:

gLé{er s zy)=0,Vyeg}

EXERCISE 22. Let (H, (-, -)) be a hilbert space over K and G C H.
1. Show that G is a linear subspace of H, even if G isn’t.
2. Show that ¢, : H — K defined by ¢,(x) = (z,y) is continuous.
3. Show that G+ = Nyege, ' ({0}).
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4. Show that G+ is a closed subset of ‘H, even if G isn’t.
5. Show that 0+ = {0}+ = H.
6. Show that H* = {0}.

EXERCISE 23. Let (H, (-,-)) be a hilbert space over K. Let M be a
closed linear subspace of H, and zo € H.

1. Explain why there exists 2* € M such that:
|2* — zo|| = inf{ ||z — xo| : € M}
2. Define y* = o — ™ € ‘H. Show that for all y € M and a € K:
ly*I1” < ly* — ayll?
3. Show that for all y € M and o € K, we have:
0< —afy,y*) — aly.y*) +lal* [ly|®
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4. For all y € M\ {0}, taking o = (y, y*)/||y||?, show that:

*\ |2
o< I
1yl
5. Conclude that z* € M, y* € M+ and 2o = z* + y*.
6. Show that M N M+ = {0}

7. Show that z* € M and y* € M+ with zg = 2* +y*, are unique.

Theorem 53 Let (H,(-,-)) be a hilbert space over K, where K =R
or C. Let M be a closed linear subspace of H. Then, for all o € H,
there is a unique decomposition:

xOZI*+y*

where z* € M and y* € M*.
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Definition 87 Let H be a K-vector space, where K = R or C.
We call linear functional, any map A : H — K, such that for all
z,y € H and a € K:

Az + ay) = M) + ai(y)

EXERCISE 24. Let A be a linear functional on a K-hilbert! space H.

1. Suppose that A is continuous at some point zy € H. Show the
existence of nn > 0 such that:

VeeH, |z —xoll <n = [AMz) = Alzo)| <1
Show that for all € H with = # 0, we have |A(nz/||z|])| < 1.
2. Show that if X is continuous at xq, there exits M € R, with:
Ve et , [Ax)| < M| (2)

1Norm vector spaces are introduced later in these tutorials.
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3. Show conversely that if (2) holds, A is continuous everywhere.

Definition 88 Let (H,(-,-)) be a hilbert®> space over K = R or C.
Let X\ be a linear functional on H. Then, the following are equivalent:

(1) A (H,T.y) — (K, Tk) is continuous
(i4) M eRY | Ve eH , |A(z)| < M.||z|

In which case, we say that \ is a bounded linear functional.
EXERCISE 25. Let (H, (-,-)) be a hilbert space over K. Let A be a

bounded linear functional on H, such that A(z) # 0 for some x € H,
and define M = A\"1({0}).

1. Show the existence of zy € H, such that zg & M.

2. Show the existence of * € M and y* € M* with 29 = z* +y*.

2Norm vector spaces are introduced later in these tutorials.
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- W

. Show that for all « € K\ {0} and x € H, we have:
Alz)

«

(z,az) = N(x)

5. Show that in order to have:
VeeH, MNz) = (z,az)
it is sufficient to choose a € K\ {0} such that:
Ve eH, Lg_c)z —rzeM
@
6. Show the existence of y € H such that:
VeeH, MNz) = (z,y)

7. Show the uniqueness of such y € H.

. Deduce the existence of some z € M~ such that ||z|| = 1.

29
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Theorem 54 Let (H,(-,-)) be a hilbert space over K, where K = R
or C. Let X\ be a bounded linear functional on H. Then, there exists
a unique y € H such that: Yo € H , Az) = (z,y).

Definition 89 Let K =R or C. We call K-vector space, any set
‘H, together with operators & and ® for which there exits an element
01 € 'H such that for all z,y,z € H and o, 8 € K, we have:

(i Oy D=z

(i1 —z)eH, (—z) Bz =0x
(idi 1O Ydz)=(zDy) D2
(iv ThYy=ydzx

a®(Ber)=(af) o
(@+P)@r=(a@z)o (o)

)
)
)
)
(v) 1@e==x
)
)
) a®(@oy)=(e®2)®(axy)
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EXERCISE 26. For all f € L% (Q,F, u), define:

HE(U] : feLk@F )}
where [f] = {g € Lk (Q, F,p) : g = f,p-a.s.}. Let 04 = [0], and for
all [f],[g] € H, and a € K, we define:
[f1&[g] [f + 9]

a®|[f] [af]
We assume f, f’,g and g’ are elements of L (Q, F, u).

> e

1. Show that for f = g p-a.s. is equivalent to [f] = [g].
2. Show that if [f] = [f] and [g] = [], then [f +g] = [/’ + g']
Conclude that @ is well-defined.

- w

Show that ® is also well-defined.

5. Show that (H,®,®) is a K-vector space.
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EXERCISE 27. Further to ex. (26), we define for all [f], [¢] € H:

YH = /fgdﬂ

1. Show that (-, )3 is well-defined.
2. Show that (-, -)# is an inner-product on H.

3. Show that (H, (-,)#) is a hilbert space over K.

4. Why is (f, g) 2 Jo fgdp not an inner-product on L (2, F, y1)?

EXERCISE 28. Further to ex. (27), Let A : L% (2, F,u) — K be a
continuous linear functional®. Define A : H — K by A([f]) = A(f).

3As defined in these tutorials, L%(Q,]—', 1) is not a hilbert space (not even a
norm vector space). However, both L%(Q,f, w) and K have natural topologies
and it is therefore meaningful to speak of continuous linear functional. Note
however that we are slightly outside the framework of definition (88).
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1. Show the existence of M € Rt such that:
Vf e Lg(Q,F,p) , A < M. £l
2. Show that if [f] = [g] then A(f) = A(g).
3. Show that A is a well defined bounded linear functional on H.
4. Conclude with the following:
Theorem 55 Let \: L (Q, F,u) — K be a continuous linear func-

tional, where K = R or C. Then, there exists g € L (Q, F, ) such
that:

V€ L, F ) /fgdu
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11. Complex Measures
In the following, (€2, F) denotes an arbitrary measurable space.

Definition 90 Let (a,)n>1 be a sequence of complex numbers. We
say that (an)p>1 has the permutation property if and only if, for
all bijections o : N* — N*, the series Z:j Ag(k) CONVETYES in C!

EXERCISE 1. Let (an)n>1 be a sequence of complex numbers.

1. Show that if (ay),>1 has the permutation property, then the
same is true of (Re(an))n>1 and (Im(ay))n>1.

2. Suppose a, € R for all n > 1. Show that if Z;ﬁ‘i ay converges:
+o00 +o00 +o00
Z|ak\ =400 = Zaz :Za; = +o0
k=1 k=1 k=1

Iwhich excludes +oo as limit.
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EXERCISE 2. Let (an)n>1 be a sequence in R, such that the series
SF2 a4y, converges, and 3°14%5 |ax| = +o00. Let A > 0. We define:

Nt 2{k>1:a>0} , N~2{k>1: a,<0}
1. Show that N1t and N~ are infinite.

2. Let ¢7 : N* — NT and ¢~ : N* — N~ be two bijections. Show
the existence of k1 > 1 such that:

k1
> agem = A
k=1

3. Show the existence of an increasing sequence (k,)p>1 such that:

kp

Z et (k) > A

k:k‘p71+1

for all p > 1, where kg = 0.
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4. Consider the permutation o : N* — N* defined informally by:
(07 (1), 07 (1), ., 0" (K1), 07 (2),¢T (k1 +1),..., 0" (ka),..)

representing (o(1),0(2),...). More specifically, define k§ = 0
and k% = k, 4 p for all p > 1. For all n € N* and p > 1 with: *

ky oy <n<k; (1)
we define:
[ o (p) it n=4ky_;+1
o ={ S0, E AT
Show that o : N* — N* is indeed a bijection.

5. Show that if Z:j ag (k) converges, there is N > 1, such that:
n-+p

Z Qo (k)

k=n-+1

n>N,p>1 = < A

2Given an integer n > 1, there exists a unique p > 1 such that (1) holds.
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6. Explain why (a,)n>1 cannot have the permutation property.

7. Prove the following theorem:

Theorem 56 Let (an)n>1 be a sequence of complexr numbers such
that for all bijections o : N* — N*, the series Zz:; Ag(k) CONVETYES.
Then, the series sz ax converges absolutely, i.e.

—+oo

Z lak| < +00

k=1

Definition 91 Let (2, F) be a measurable space and E € F. We
call measurable partition of E, any sequence (Ey)n>1 of pairwise
disjoint elements of F, such that E = Wp>1E,.
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Definition 92 We call complex measure on a measurable space
(Q,F) any map p : F — C, such that for all E € F and (Ep)p>1
measurable partition of E, the series Z:Z w(Ey) converges to u(E).
The set of all complex measures on (2, F) is denoted M*(Q, F).

Definition 93 We call signed measure on a measurable space
(Q,F), any complex measure on (Q, F) with values in R.?

EXERCISE 3.
1. Show that a measure on (€2, ) may not be a complex measure.
2. Show that for all p € M(Q,F) , u(®) =0.

3. Show that a finite measure on (2, F) is a complex measure with
values in R*, and conversely.

3In these tutorials, signed measure may not have values in {—o0, +00}.
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4. Let p € MY(Q,F). Let E € F and (
partition of E. Show that:

Z |14(En)| < 400
5. Let u be a measure on (2, F) and f € L§(Q,F, n). Define:

VE€F, V(E)é/fdu
E

Show that v is a complex measure on (Q, F).

E,)n>1 be a measurable

Definition 94 Let p be a compler measure on a measurable space

(Q,F). We call total variation of p, the map |u| : F — [0, +o0],
defined by:

VE € F, |ul[(E

SUPZ e

where the ‘sup’ is taken over all measurable partztwns (Ep)n>1 of E.
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EXERCISE 4. Let p be a complex measure on (€2, F).
1. Show that for all E € F, |u(E)| < |u|(E).
2. Show that |u|(0) = 0.

EXERCISE 5. Let p be a complex measure on (2, F). Let F € F and
(Ey)n>1 be a measurable partition of E.

1. Show that there exists (¢,)n,>1 in R, with ¢, < |u|(E,) for all n.

2. Show that for all n > 1, there exists a measurable partition
(E?)p>1 of E, such that:

+oo
tn < > |u(ER)]
p=1

3. Show that (E?), p>1 is a measurable partition of E.

4. Show that for all N > 1, we have 22;1 tn < |u|(E).
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5. Show that for all N > 1, we have:
N
D lul(Bn) < |ul(B)
n=1

6. Suppose that (A,),>1 is another arbitrary measurable partition
of . Show that for all p > 1:

+oo
lu(4p)| < Z [1(Ap N Ey)|

n=1

7. Show that for all n > 1:
+o00

Z ‘M(Ap N En)l < |//«‘(En)

p=1

8. Show that:
“+oo “+oo
D oI(Ap) <D [ul(B)
p=1 n=1
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9. Show that || : F — [0, 400] is a measure on (£2, F).
EXERCISE 6. Let a,b € R,a < b. Let F € C'([a,b];R), and define:
Vz € [a,b] , H(z) 2 /w F'(t)dt

1. Show that H € C'([a,b];R) and H' = F’.

2. Show that: ,
F(b) — Fla) = / F(t)dt
3. Show that:
1 [t/ 1
— cos 0df = —
21 ) _x)2 T

4. Let u € R" and 7, : R™ — R" be the translation 7, (z) = 2+ u.
Show that the Lebesgue measure dz on (R™, B(R™)) is invariant
by translation 7, i.e. de({m, € B}) = dz(B) for all B € B(R").
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5. Show that for all f € L&(R", B(R"),dx), and u € R":

flz+u)dx = f(x)dx
Rn R'VL
6. Show that for all & € R, we have:
+m +rT—
/ cos (o — 0)df = / cos™ 0db

—T —T—x

7. Let @« € R and k € Z such that k < o/27 < k + 1. Show:

—m—a< 2kr—nm<rm—a<2kr+m

8. Show that:

—2km—m —2km+m
/ cosT 0dl = / cosT 0do

—TmT— —

10
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9. Show that:
+r—a —2km+m +m
/ cos™ 0df = / cos™ 0df = / cos™ 0do
—T— —2km—1 -

10. Show that for all o € R:

1ot 1
— cost (o — 0)df = —
2 J_, us
EXERCISE 7. Let 21,...,2x be N complex numbers. Let a € R be

such that z; = |zgx|e’®*, for all k = 1,...,N. For all § € [—7, +7], we
define S(0) ={k=1,...,N : cos(ay — 0) > 0}.

1. Show that for all § € [—m, +], we have:

Z 21| = Z e 0| > Z |zk| cos(ax — 0)

keS(0) keS(9) keS(9)
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2. Define ¢ : [—m,+7] — R by ¢(0) = Z,]fv:l |21 | cost (ag — 0).
Show the existence of 6y € [—m, +| such that:

@(0o) = sup  &(0)
oc[—m,+m]

3. Show that:
1 [T

o) o0 Z\Zk\
4. Conclude that:

|
;Z|Zk|§ Z 2k
k=1

keS(00)
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EXERCISE 8. Let u € M(Q,F). Suppose that |u|(E) = +oo for
some E € F. Define t = (1 + [u(E)|) € RT.

1. Show that there is a measurable partition (E,,),>1 of E, with:
+oo
t< > |uE
n=1
2. Show the existence of N > 1 such that:

N
t< > |u(E
n=1

3. Show the existence of S C {1,..., N} such that:

Zlu <> u(En

nes
4. Show that |pu(A)| > ¢/m, where A =W, csFy.
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5. Let B = E '\ A. Show that |u(B)| > |u(A)| — |u(E)|.
6. Show that F = AW B with |pu(A)] > 1 and |u(B)| > 1.

7. Show that |u|(A4) = +oo or |u|(B) = +o0.

EXERCISE 9. Let u € M(Q, F). Suppose that |u|(Q) = +o0.

1. Show the existence of Ay,B, € F, such that Q = A; W By,
[1(A1)] > 1 and |p[(B1) = +oo0.

2. Show the existence of a sequence (A, ),>1 of pairwise disjoint
elements of F, such that |u(4,)| > 1 for all n > 1.

3. Show that the series "7 u(A,) does not converge to u(A)
where A = &> A,,.

4. Conclude that |u|(2) < +o0.
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Theorem 57 Let p be a complex measure on a measurable space
(Q,F). Then, its total variation |u| is a finite measure on (€, F).

EXERCISE 10. Show that M!(Q2, F) is a C-vector space, with:

A
A+u)(E) = AME)+p(E)
(@\(E) 2 a\E)
where \,u € M1(Q,F), a € C, and E € F.
Definition 95 Let H be a K-vector space, where K =R or C. We
callnorm on H, any map N : H — R™T, with the following properties:
(1) VeeH, (Nz)=0 & x=0)
(i) Ve e H,Va e K, N(az) = |a|N(x)
(u31) Ve,y e H, Nz +y) < N(z)+ N(y)
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EXERCISE 11.

1. Explain why ||.|[, may not be a norm on L (Q, F, u).

2. Show that ||-|| = \/(-, ) is anorm, when (-, -) is an inner-product.

3. Show that [|u|| 2 |p|(Q) defines a norm on M (Q, F).

EXERCISE 12. Let u € M1(Q,F) be a signed measure. Show that:
A

+

1
J E(Iu\ + 1)

1

>

1
5 ul = p)
are finite measures such that:

p=pt—pm , ful=pt +u
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EXERCISE 13. Let € M*(Q, F) and I : R> — R be a linear map.
1. Show that [ is continuous.
2. Show that [ o y is a signed measure on (£, F). 4
3. Show that all 4 € M'(Q,F) can be decomposed as:
p= i1 — p2 +i(ps — pia)

where 1, po, pi3, pta are finite measures.

4] o p refers strictly speaking to I(Re(u), Im(i)).
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12. Radon-Nikodym Theorem

In the following, (€2, F) is an arbitrary measurable space.

Definition 96 Let p and v be two (possibly complex) measures on
(Q,F). We say that v is absolutely continuous with respect to p,
and we write v << p, if and only if, for all E € F:

wE)=0 = v(E)=0
EXERCISE 1. Let u be a measure on (£, F) and v € M(2, F). Show
that v << p is equivalent to |v| << p.
EXERCISE 2. Let 1 be a measure on (9, F) and v € MY(Q,F). Let

€ > 0. Suppose there exists a sequence (Ey,),>1 in F such that:

1

E = limswE, £ () | B

nzl n>1k>n

V(E,)| > €
Define:
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1. Show that:

p(E) = lim p kL>J By | =0

2. Show that:

W) = tm vl | | By ] >e

k>n

3. Let A be a measure on (2, F). Can we conclude in general that:

AE)= lm X | E

n—-+oo
k>n

4. Prove the following:
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Theorem 58 Let 1 be a measure on (2, F) and v be a complex
measure on (Q, F). The following are equivalent:
(4) v << [t

(i) vl <<mp

(i)  VYe>0,30>0,YE € F,u(E) <6 = [(E)| < ¢
EXERCISE 3. Let p be a measure on (Q,F) and v € M*(£, F) such
that v << p. Let vy = Re(v) and vy = Im(v).

1. Show that 11 << p and vy << p.

2. Show that v]", v ,vs,v; are absolutely continuous w.r. to .

EXERCISE 4. Let p be a finite measure on (2, F) and f € L§(Q, F, p).
Let S be a closed subset of C. We assume that for all £ € F such

that p(E) > 0, we have:
7,
— | fdu € S
w(E) Jg
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1. Show the existence of a sequence (D,,) of closed discs in C with:
+o00
5S¢ = U D,
n=1
Let o, € C, 1, > 0 be such that D,, = {2 € C: |z—ay,| < r,}.

2. Suppose p(E,) > 0 for some n > 1, where E, = {f € D,}.

Show that:
‘ ! / fd < ! / lf |du <
—_— w— oy < ——— —apldp <y
M(En) E. M(En) E.

3. Show that for all n > 1, u({f € D,}) = 0.

4. Prove the following:
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Theorem 59 Let u be a finite measure on (Q,F), f € L§(Q,F, p).
Let S be a closed subset of C such that for all E € F with u(E) > 0,

we have: )
—— [ fdu € S
n(E) /E

Then, f €S p-a.s.

EXERCISE 5. Let p be a o-finite measure on (2, F). Let (E,),>1 be
a sequence in F such that E,, T Q and p(E,) < 400 for all n > 1.
Define w : (Q, F) — (R, B(R)) as:
+oo
A 1 1
wES ——— 1
; 2 1+ p(E,) ™
1. Show that for allw € Q, 0 < w(w) < 1.

2. Show that w € L (Q, F, u).
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EXERCISE 6. Let p be a o-finite measure on (€2, F) and v be a finite
measure on (£, F), such that v << p. Let w € L (Q,F, 1) be such
that 0 < w < 1. We define i = [ wdy, i.e.

VEeF, i(E) 2 /wd,u
E
1. Show that i is a finite measure on (2, F).
2. Show that ¢ = v+ [i is also a finite measure on (2, F).

3. Show that for all f € LE(Q,F,¢), we have f € L&(Q, F,v),
fw € LE(Q, F,p), and:

/ fdo = / fdv+ / fdy

4. Show that for all f € LL(Q, F, ¢), we have:

/sz'f‘d”ﬁ/ﬂ\fldcﬁﬁ </Qf|2d¢>é(¢(ﬂ))%
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5. Show that L& (Q, F,¢) C L&(Q, F,v), and for f € LE(Q, F, ¢):
[ 1] < va@ise
6. Show the existence of g € LE(2, F, ¢) such that:

VfeLs(Q,F, ), dv = d 1
f e L9, F.0) /qu /Qfgqb (1)

7. Show that for all E € F such that ¢(F) > 0, we have:
7,
[ gdo € [0,1
o) Jp 000 < 0
8. Show the existence of g € LE(2, F, ¢) such that g(w) € [0,1]
for all w € Q, and (1) still holds.

9. Show that for all f € LEL(Q, F, ¢), we have:

/fl— dv—/fgwdu
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10.

11.

12.

13.
14.

Show that for allm > 1 and F € F,
FEA+g+...+gMp e LL(QF, ¢)

Show that for allm > 1 and F € F,

/(1fg"+1)duz/g(l+g+...+gn)wdu
E E

Define:
A RS
h = gw (Z g”)
n=0
Show that if A= {0 < g < 1}, then for all E € F:

V(ENA) = /Ehdu

Show that {h = +o00} = A° and conclude that p(A°) =0
Show that for all E € F, we have v(E) = [}, hdp.
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15. Show that if u is o-finite on (£, F), and v is a finite measure
on (€, F) such that v << p, there exists h € L (2, F, u), such
that h > 0 and:

VE € F, u(E):/hdu
E

16. Prove the following:

Theorem 60 (Radon-Nikodym:1) Let u be a o-finite measure on
(Q,F). letv be a complex measure on (0, F) such that v << p. Then,
there exists some h € L& (Y, F, ) such that:

VEeF, V(E):/hdu
E

If v is a signed measure on (2, F), we can assume h € Lk (2, F, ).
If v is a finite measure on (Q,F), we can assume h > 0.
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EXERCISE 7. Let f = u+iv € L§(Q, F, u), such that:
VE e F, / fdp =0

where p is a measure on (Q, F).

/u+du:/ udp
Q {u>0}

2. Show that f =0 p-a.s.

1. Show that:

3. State and prove some uniqueness property in theorem (60).

EXERCISE 8. Let p and v be two o-finite measures on (£2, F) such
that v << p. Let (E,)n>1 be a sequence in F such that E, T Q and
v(E,) < 400 for all n > 1. We define:

A E

Yn>1, v, =v ”éy(Enﬂ-)
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1. Show that there exists h,, € Lk (2, F, ) with h, > 0 and:

VE € F , un(E) = / ol @)
E
for all n > 1.

2. Show that for all £ € F,

/ hndps < / hsrd
E E

3. Show that for all n,p > 1,
1
p({hn = hngr > 5}) =0

4. Show that h,, < h,41 p-a.s.

5. Show the existence of a sequence (hy,),>1 in Lk (Q,F,u) such
that 0 < h,, < hyqq for all n > 1 and with (2) still holding.
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6. Let h = sup,,> hpn. Show that:

VEcF , v(E)= /Ehdu (3)

7. Show that for all n > 1, [, hdu < +oc.
8. Show that h < 400 p-a.s.
9. Show there exists h : (2, F) — RT measurable, while (3) holds.

10. Show that for all n > 1, h € L (Q, F, uPn).

Theorem 61 (Radon-Nikodym:2) Let p and v be two o-finite
measures on (Q,F) such that v << p. There exists a measurable
map h: (Q,F) — (R, B(R")) such that:

VEeF, V(E):/hdu
E
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EXERCISE 9. Let h,h’ : (2, F) — [0, +00] be two non-negative and
measurable maps. Let u be a o-finite measure on (2, F). We assume:

VE € F, /hd,u:/h’du
E E

Let (Ey)n>1 be a sequence in F with E,, 1 Q and u(E,) < +oo for
all n > 1. We define F,, = E, N{h <n} for all n > 1.

1.

2.

W

Show that for all n and E € F, [, hdu™ = [ h'du*™ < +oc.
Show that for all n,p > 1, u(F, N{h > 1 +1/p}) =0.

Show that for all n > 1, u({F, N{h #h’'}) =0.

Show that u({h # h'} N {h < +o0}) = 0.

Show that h = b/ u-a.s.

. State and prove some uniqueness property in theorem (61).
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EXERCISE 10. Take Q = {x} and F = P(Q) = {0,{+}}. Let u be
the measure on (2, F) defined by p(0) = 0 and u({+}) = +o00. Let
hyh' o (Q,F) — [0,+00] be defined by h(x) =1 # 2 = h/(x). Show

that we have:
VE € F, /hd,u:/h’du
E E

Explain why this does not contradict the previous exercise.

EXERCISE 11. Let p be a complex measure on (£, F).
1. Show that pu << |pu|.

2. Show the existence of some h € L§(Q, F, |u|) such that:

VE € F ulE) = [ bl
E

3. If u is a signed measure, can we assume h € Ly (0, F, |u])?
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EXERCISE 12. Further to ex. (11), define A, = {|h| < r} for all r > 0.

1. Show that for all measurable partition (F),)p>1 of A,:

Zlu )| < rlul(Ay)

2. Show that |u|(A,) =0 for all 0 < r < 1.
3. Show that |h| > 1 |ul|-a.s.

4. Suppose that E € F is such that |u|(E) > 0. Show that:

e J e <

5. Show that |h| <1 |ul|-a.s.

6. Prove the following:
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Theorem 62 For all complex measure p on (Q,F), there exists h
belonging to LE(Q, F, |u|) such that |h| =1 and:

vEe £, u(E) = [ bl
E

If w is a signed measure on (Q, F), we can assume h € L (Q, F, |pul).

EXERCISE 13. Let A € F, and (A,,),>1 be a sequence in F.
1. Show that if A, T A then 14, T 14.
2. Show that if A, | Athen 14, | 14.
3. Show that if 14, — 14, then for all u € M(Q, F):

pd) = lm u(An)
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EXERCISE 14. Let p be a measure on (2, F) and f € LE(Q, F, p).
1. Show that v = [ fdu € M*(Q, F).

2. Let h € L(Q, F,|v]) be such that |h| = 1 and v = [ hd|v|.
Show that for all £, F € F:

/ Flpdu = / hlpdv|
E E
3. Show thatif g : (2, F) — (C, B(C)) is bounded and measurable:
VE € F /fgdu:/ hgd|v|
E E

4. Show that:
VEeF, v|[(E /fhd,u

5. Show that for all £ € F,

/Re(fﬁ)d,uZO , /Im(fﬁ)duzo
E E
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6. Show that fh € R p-a.s.
7. Show that fh = |f| p-a.s.

8. Prove the following:

Theorem 63 Let pu be a measure on (0, F) and f € L§(Q,F,pn).
Then, v = [ fdu defined by:

VEeF, v(E)2 /fd,u
E

is a complex measure on (Q, F) with total variation:

VE € F, v|(E) = /E Fldu
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EXERCISE 15. Let u € MY(Q, F) be a signed measure. Suppose that
h € Li(,F,|pn|) is such that |h| = 1 and p = [ hd|u|. Define
A={h=1}and B={h=-1}.

1. Show that for all E € F, p™(E) = [, 2(1+ h)d|p|.
2. Show that for all E € F, p=(E) = [, 3(1 — h)d|pul.
3. Show that ut = pu? = (AN -).
4. Show that u= = —pu® = —u(BnN -).
Theorem 64 (Hahn Decomposition) Let u be a signed measure

on (2, F). There exist A,B € F, such that ANB =0, Q=AWB
and for all E € F, u™(E) = w(ANE) and p~ (E) = —pu(BN E).
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Definition 97 Let p be a complex measure on (2, F). We define:

A
Lo F,p) = Le(Q, F, |ul)
and for all f € LE(Q, F, 1), the lebesgue integral of f with respect

to u, is defined as:
A
/fdﬂ = /fhdlu\

where h € LE(Q, F, |u]) is such that |h| =1 and p = [ hd|pu|.

EXERCISE 16. Let u be a complex measure on (2, F).
1. Show that for all f: (Q,F) — (C, B(C)) measurable:
feLb@Fmw & [ Ifidul < oo

2. Show that for f € L& (2, F, i), [ fdp is unambiguously defined.
3. Show that for all E € F, 1g € L§(Q, F, pu) and [ 1gdu = p(E).



Tutorial 12: Radon-Nikodym Theorem 21

4. Show that if p is a finite measure, then |u| = p

5. Show that if 4 is a finite measure, definition (97) of integral
and space L&(S2,F,u) is consistent with that already known
for measures.

6. Show that L&(Q, F, u) is a C-vector space and that:

/(f+a9)dM=/fdu+a/gdu

for all f,g € L§(Q,F,p) and a € C.
7. Show that for all f € L&(Q2, F, i), we have:

[ sau| < [1siaa
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EXERCISE 17. Let pu,v € MY(Q,F), let a € C.

1.
2.
3.

Show that |av| = |al.|V]
Show that |p 4 v| < |u| + [v]
Show that L&(Q, F,u) N LE(Q, F,v) C LE(Q, F,pu+ av)

. Show that for all £ € F:

/lEd(quou/):/lEdqua/lEdu

. Show that for all f € L5(Q,F,n) N LE(Q,F,v):

/fdu—i—au /fdu—i—a/fdu

22
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EXERCISE 18. Let u = pu1 +ips € MY(Q, F).
1. Show that [u1] < || and |ue2| < |pl.
2. Show that [u] < [pa |+ [pal.
3. Show that L&(Q, F, ) = LE(Q, F, 1) N LE(Y, F, pz).

4. Show that:
L& F, ) = Le(F,uf) N Le(Q,F, uy)
L6 Fopa) = Le(LF,pud) N Le(Q,F, pg)

5. Show that for all f € L&(Q,F, u):

[ tin= [ saut - | fdu1+2</ faus - [ fdug)
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EXERCISE 19. Let € M'(Q2, F). Let A€ F. Let h € L&(SU, F, |u])
be such that |h| =1 and g = [ hd|u|. Recall that up = u(AN -) and
A = pi(F ,) Where Fla ={ANE, E€ F} C F.

1.
2.
3.

Show that we also have Fj4 ={EF: E € F, EC A}
Show that p# € MY (Q,F) and pj4 € M (A, Fa).

Let E € F and (E),),>1 be a measurable partition of E. Show:

Z W (Bn)| < |l (B)

. Show that we have |p?| < |u|?.

. Let E € F and (E,)n,>1 be a measurable partition of AN E.

Show that:

Zlu )| < (AN E)
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10.

11.
12.

. Show that |u?|(A°) =0

Show that |u?| = |u|4.

. Let E € F4 and (E),)n>1 be an F|4-measurable partition of £.

Show that:

Z [a(En)| < [plja(E)

. Show that 4| < |pla-

Let E € Fj4 C F and (E,),>1 be a measurable partition of E.
Show that (En),>1 is also an F|4-measurable partition of F,
and conclude:

ZIM )< lpyal(E)

Show that |pa| = |p]ja-
Show that u?t = [ hd|u?|.
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13. Show that h‘A S Lé(A,}—‘A, |,U\AD and WA= fh\AdLU\A‘
14. Show that for all f € L& (2, F, 1), we have:
flA € LE(Q7‘7:7M) ) f € LE(Q7‘7:?MA) ’ f\A € Lé<Aa]:|A7M\A)

and:
[ 1adu= [ gat = [ fads

Definition 98 Let f € L&(Q, F, ) , where p is a complex measure
on (,F). let A€ F. We call partial lebesgue integral of f with
respect to p over A, the integral denoted fA fdu, defined as:

[ ran 2 [rian= [ faet = [(adna

where p? is the complex measure on (Q,F), u* = p(AnN ), fla is
the restriction of f to A and jua is the restriction of p to F|a, the
trace of F on A.
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EXERCISE 20. Prove the following:

Theorem 65 Let f € L&(Q2,F, u), where p is a complexr measure
n (Q,F). Then, v = [ fdu defined as:

VEeF, uE) 2 /fd,u
E
is a complex measure on (Q, F), with total variation:
VB € (E) = [ Ifldu

Moreover, for all measurable map g : (Q,F) — (C,B(C)), we have:
9€Le(QF,v) & gf € Le(Q,F,p)

and when such condition is satisfied:

/gdv: /gfdu
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ExERCISE 21. Let (1,71),...,(Q, Frn) be n measurable spaces,
where n > 2. Let u3 € MY(Qq,F1), ..., pn € MY (Qy,F,). For
all i € N,,, let h; belonging to L&(€, Fi, |ui|) be such that |h;| = 1
and p; = [ hid|p;|. For all E € Fy @ ...® F,, we define:

A
E

1. Show that € M1(; x ... x ), F1 ®...® F,)

2. Show that for all measurable rectangle A1 X ... x A,:
,U,(Al X ... X An) = ,U,1<A1) .. Mn(An)

3. Prove the following:
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Theorem 66 Let py, ..., 1, be n complex measures on measurable
spaces (1, F1)y ..., (QUn, Fn) respectively, where n > 2. There exists
a unique complex measure 1 Q. ..y on (A X. .. XAy, F1®...QF,)
such that for all measurable rectangle A1 X ... xX A,, we have:

EXERCISE 22. Further to theorem (66),
1. Show that |1 ®@ ... ® pin]| = |p1| ® ... @ |-
2. Show that ||p1 @ ... & wnll = llpeall - - - lienl|-
3. Show that for all F € Fi ®...Q Fp:

u1®...®,un(E):/hl...hnd|u1®...®,un\
E
4. Let fELE(Q1 X .. X Qpy F1 ® .. Q@ Fpy i1 ® ... @ ). Show:

/fdu1®...®,un:/fhl...hnd|pl|®...®\,un\
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5. let o be a permutation of {1,...,n}. Show that:

/fd,u1®...®un:/ fd,ufo(l)---d,ua(n)
Qo (n) Qo1

30
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13. Regular Measure
In the following, K denotes R or C.

Definition 99 Let (Q, F) be a measurable space. We say that a map
s:Q — C is a complex simple function on (Q, F), if and only if

it is of the form:
n
s = Z aila,
i=1

where n > 1, a; € C and A; € F for all i € N,,. The set of all
complex simple functions on (2, F) is denoted Sc(€2, F). The set of
all R-valued complex simple functions in (2, F) is denoted Sr (2, F).

Recall that a simple function on (€, F), as defined in (40), is just a
non-negative element of Sgr (€2, F).
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EXERCISE 1. Let (2, F, 1) be a measure space and p € [1, 400].

1. Suppose s : ) — C is of the form

n
s = E a;la,
i=1

where n > 1, a; € C, A; € F and pu(A;) < +oo for all i € N,,.
Show that s € L% (Q, F, ) N Sc(Q, F).

2. Show that any s € Sc(£2, F) can be written as:

5:20%'1141-
i=1
where n > 1, a; € C\ {0}, 4, € Fand A;NA; =0 for i # j.
3. Show that any s € L%(Q, F, u) N Sc(2, F) is of the form:

n
s = g aila,
i=1
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where n > 1, a; € C, 4A; € F and u(4;) < 400, for all i € N,,.
4. Show that LE(Q, F, 1) N Sc(Q, F) = Sc(Q, F).
EXERCISE 2. Let (2, F, 1) be a measure space and p € [1,+oo[. Let
f be a non-negative element of L (2, F, p).

1. Show the existence of a sequence (s,),>1 of non-negative func-
tions in LR (2, F, ) N Sr (2, F) such that s,, T f.

2. Show that:
li n— fIPdp =
,Jim /\5 fIPdp =0

3. Show that there exists s € LZ(Q,F,p) N Sr(Q,F) such that
lf—sll, <e forall e > 0.

4. Show that L3 (Q, F, ) N Sk (Q, F) is dense in L (2, F, ).
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EXERCISE 3. Let (92, F,u) be a measure space. Let f be a non-
negative element of L (2, F, ). For all n > 1, we define:
A n2"—1 k
Sn = Z Q_nl{k/2"§f<(k+1)/2”} +nlinsyy
k=0

1. Show that for all n > 1, s, is a simple function.
2. Show there exists ng > 1 and N € F with p(N) = 0, such that:
Yw e N, 0< f(w) <no

3. Show that for all n > ng and w € N¢, we have:

0< F(&) ~ 5ule) < o

4. Conclude that:
11:1_1 [f = snllc =0

5. Show the following:
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Theorem 67 Let (Q,F,u) be a measure space and p € [1,400].
Then, Ly (Q,F,pn) NSk (Q,F) is dense in Ly (Q, F, p).

EXERCISE 4. Let (2,7) be a metrizable topological space, and u be
a finite measure on (Q, B(€2)). We define ¥ as the set of all B € B(2)
such that for all € > 0, there exist F' closed and G open in 2, with:

FCBCG, p(G\F)<e
Given a metric d on (€, 7) inducing the topology 7, we define:
d(z, A) 2 inf{d(z,y): ye A}
forall A C Q and z € Q.
1. Show that z — d(z, A) from © to R is continuous for all A C Q.

2. Show that if F' is closed in 2, « € F' is equivalent to d(z, F') = 0.
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EXERCISE 5. Further to exercise (4), we assume that F' is a closed
subset of 2. For all n > 1, we define:

Gu 2 freQ: dwF) < 1)
1. Show that G,, is open for all n > 1.
2. Show that G,, | F.
Show that F' € X.
Was it important to assume that p is finite?
5. Show that € 3.
6. Show that if B € ¥, then B® € X.
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EXERCISE 6. Further to exercise (5), let (By)n>1 be a sequence in X.
Define B = U> B,, and let € > 0.

1. Show that for all n, there is F}, closed and G,, open in ), with:
Fo© By € Gy plGn\ Fy) < 5

2. Show the existence of some N > 1 such that:

“+o00 N
n=1 n=1
3. Define G = U:SGH and F = U)_, F,,. Show that F is closed,
G isopen and F'C B C G.
4. Show that:

+o0 +o0
G\FCQG\ (U Fn> W (U Fn> \ F

n=1 n=1



Tutorial 13: Regular Measure 8

5. Show that:
+oo +oo
G\<U1%>§LJQAFh
n=1 n=1

6. Show that u(G'\ F) < 2e.

7. Show that ¥ is a g-algebra on €2, and conclude that ¥ = B(1Q).

Theorem 68 Let (2, 7) be a metrizable topological space, and p be
a finite measure on (Q,B(Q2)). Then, for all B € B(2) and ¢ > 0,
there exist F' closed and G open in  such that:

FCBCG, p(G\F)<e

Definition 100 Let (Q,7) be a topological space. We denote Cg(Q)
the K-vector space of all continuous, bounded maps ¢ : Q@ — K,
where K =R or K = C.
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EXERCISE 7. Let (£2,7) be a metrizable topological space with some
metric d. Let p be a finite measure on (Q,B(2)) and F be a closed
subset of Q. For all n > 1, we define ¢, : 2 — R by:

Vz€Q, dn(z) 21—1A (nd(z, F))
1. Show that for all p € [1, +o0], we have C% (Q) C L (2, B(Q), u).
2. Show that for all n > 1, ¢,, € C% ().
3. Show that ¢,, — 1p.

4. Show that for all p € [1,4o00[, we have:

lim /|¢n —1p[Pdp =0

n—-+oo

5. Show that for all p € [1,+oc[ and € > 0, there exists ¢ € C% ()
such that ||¢ — 1r||, <.
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6. Let v € M1(Q, B(2)). Show that C4(Q) C L&(Q, B(2),v) and:
= 1l nd
[ dua
7. Prove the following:

Theorem 69 Let (2,7) be a metrizable topological space and p, v
be two complex measures on (2, B(Q)) such that:

Vo € CL (D / bdp = / pdv
Then = v.

EXERCISE 8. Let (©,7) be a metrizable topological space and p be
a finite measure on (2, B(2)). Let s € Sc(Q2,B(2)) be a complex

simple function:
n
s = g aila,
i=1
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where n > 1, o; € C, A; € B(Q) for all i € N,,. Let p € [1,400][.

1. Show that given € > 0, for all « € N,, there is a closed subset F;
of Q such that F; C A; and p(A; \ F;) <e. Let:

n
S/ é Zailpi
i=1
2. Show that:
n
1
Ibswp§<§:ai>@
i=1

3. Conclude that given € > 0, there exists ¢ € C4(Q) such that:
I —sllp < e

4. Prove the following:
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Theorem 70 Let (Q,7) be a metrizable topological space and 1 be
a finite measure on (Q,B(2)). Then, for all p € [1,4+o0[, C%(Q) is
dense in LY (Q, B(Q2), p).

Definition 101 A topological space (2, T) is said to be o-compact
if and only if, there exists a sequence (Kp)n>1 of compact subsets of

Q such that K, T €.

EXERCISE 9. Let (£2,7) be a metrizable and o-compact topological
space, with metric d. Let €’ be open in Q. For all n > 1, we define:
F,2{zeQ: d, ()°) >1/n}

Let (K, )n>1 be a sequence of compact subsets of € such that K,, T Q.

1. Show that for all n > 1, F,, is closed in €.

2. Show that F,, T Q.
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3. Show that F,, N K,, T .
4. Show that F,, N K, is closed in K, for all n > 1.
5. Show that F,, N K, is a compact subset of ' for all n > 1

6. Prove the following:

Theorem 71 Let (Q,7) be a metrizable and o-compact topological
space. Then, for all ' open subset of Q, the induced topological space
(', Tj) is itself metrizable and o-compact.

Definition 102 Let (Q,7) be a topological space and p be a measure
on (2, B(Q)). We say that u is locally finite, if and only if, every
x € Q has an open neighborhood of finite u-measure, i.e.

VeeQ,0eT,zeclU, ulU) <+
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Definition 103 Let p be a measure on a topological space (2, 7).
We say that 1 is inner-regular, if and only if, for all B € B(Q):

w(B) =sup{u(K): K C B, K compact}
We say that p is outer-regular, if and only if, for all B € B(Q):
w(B) =inf{u(G): BC G, G open}
We say that p is regular if it is both inner and outer-regular.
ExERrcise 10. Let (2,7) be a topological space and p be a locally
finite measure on (€, B(2)). Let K be a compact subset of 2.

1. Show the existence of open sets Vi, ..., V, with u(V;) < +oo for
allie N, and K C Vi U...UV,, where n > 1.

2. Conclude that p(K) < 4o0.
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EXERCISE 11. Let (2,7) be a metrizable and o-compact topological
space. Let p be a finite measure on (£2,8(f2)). Let (K,,)n,>1 be a
sequence of compact subsets of  such that K,, T Q. Let B € B(Q).
We define o = sup{p(K): K C B, K compact}.

1.

- w

Show that given e > 0, there exists F' closed in 2 such that
FCBand u(B\F) <e.

. Show that F'\ (K, NF) | 0.

Show that K, N F is closed in K,,.
Show that K, N F' is compact.

Conclude that given € > 0, there exists K compact subset of 2
such that K C F and u(F\ K) <e.

. Show that u(B) < pu(K) + 2.

Show that u(B) < « and conclude that p is inner-regular.
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EXERCISE 12. Let (2,7) be a metrizable and o-compact topological
space. Let u be a locally finite measure on (2, 5(€2)). Let (K,,)n>1 be
a sequence of compact subsets of  such that K,, T Q. Let B € B(Q2),
and « € R be such that o < p(B).

1.

2.

Show that (K, N B) T u(B).

Show the existence of K C Q compact, with o < u(K N B).

. Let p® = p(K N -). Show that pf is a finite measure, and

conclude that u (B) = sup{u®(K*): K* C B, K* compact}.

. Show the existence of a compact subset K* of {2, such that

K*C Band a < pu(KNK*).

. Show that K™ is closed in €.
. Show that K N K™* is closed in K.

Show that K N K* is compact.
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8. Show that a < sup{p(K’) : K’ C B, K’ compact}.
9. Show that u(B) < sup{u(K’): K'C B, K’ compact}.

10. Conclude that p is inner-regular.

EXERCISE 13. Let (2,7) be a metrizable topological space.

1. Show that (€, 7) is separable if and only if it has a countable
base.

2. Show that if (Q,7) is compact, for all n > 1, £ can be covered
by a finite number of open balls with radius 1/n.

3. Show that if (Q,7) is compact, then it is separable.
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EXERCISE 14. Let (2,7) be a metrizable and o-compact topological
space with metric d. Let (K,,),>1 be a sequence of compact subsets
of  such that K,, T Q.

1. For all n > 1, give a metric on K, inducing the topology 7|, .

2. Show that (K,,, 7|k, ) is separable. Let (2% ),>1 be a countable
dense family of (K, 7|k, ).

3. Show that (), p>1 is a countable dense family of (2,7), and
conclude with the following:

Theorem 72 Let (Q,7) be a metrizable and o-compact topological
space. Then, (2, 7T) is separable and has a countable base.

EXERCISE 15. Let (2,7) be a metrizable and o-compact topological
space. Let u be a locally finite measure on (2, 5(f2)). Let H be a
countable base of (Q,7). We define H' ={V e H: pu(V) < +oo}.
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1. Show that for all U open in 2 and x € U, there is U, open in
Q such that z € U, C U and p(U,) < +o0.

2. Show the existence of V,, € H such that x € V, C U,.
3. Conclude that H’ is a countable base of (2, 7).

4. Show the existence of a sequence (V},),>1 of open sets in 2 with:
+oo
Q= Va, (Vo) <400, ¥n>1

n=1

EXERCISE 16. Let (2,7) be a metrizable and o-compact topological
space. Let u be a locally finite measure on (€2, 8(€2)). Let (V,,)n>1 a
sequence of open subsets of €2 such that:
+oo
Q=|J Vo, u(Va) <+o0, ¥n>1
n=1

Let B € B(Q2) and a = inf{p(G): BC G, G open}.
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1. Given € > 0, show that there exists G,, open in  such that
B C G, and ¥ (G, \ B) < ¢/2", where u"» = u(V,, N -).

2. Let G = U2 (VN Gy,). Show that G is open in 2, and B C G.
3. Show that G\ B = UV, N (G, \ B).
4. Show that u(G) < u(B) + e.
5. Show that o < p(B).
6. Conclude that is p outer-regular.
7. Show the following;:
Theorem 73 Let pu be a locally finite measure on a metrizable and
o-compact topological space (2, T). Then, u is regular, i.e.:

w(B) = sup{w(K): KC B, K compact}

= inf{u(G): BC G, G open}

for all B € B(Q).
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EXERCISE 17. Show the following:

Theorem 74 Let Q be an open subset of R"™, where n > 1. Any
locally finite measure on (Q, B(Y)) is regular.

Definition 104 We call strongly o-compact topological space, a
topological space (2, T), for which there exists a sequence (V,,)p>1 of
open sets with compact closure, such that V,, T §2.

Definition 105 We call locally compact topological space, a topo-
logical space (2, T), for which every x € Q has an open neighborhood
with compact closure, i.e. such that:

VeeQ,WeT: xcU, Uis compact



Tutorial 13: Regular Measure 22

EXERCISE 18. Let (2,7) be a o-compact and locally compact topo-
logical space. Let (K,),>1 be a sequence of compact subsets of €
such that K, T €.

1. Show that for all n > 1, there are open sets V\", ..., V. , p, > 1,
such that K, C V" U... UV and Vi ‘_/p’; are compact
subsets of ().

2. Define Wy, = Vj"U... .UV and V,, = Up_, Wy, for n > 1. Show
that (V,,)n>1 is a sequence of open sets in Q with V,, T Q.

3. Show that W,, = V" U...U ‘_/p’; for all n > 1.
4. Show that W, is compact for all n > 1.
5. Show that Vj, is compact for all n > 1

6. Conclude with the following:
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Theorem 75 A topological space (2, T) is strongly o-compact, if
and only if it is o-compact and locally compact.

EXERCISE 19. Let (€2,7) be a topological space and Q' be an open
subset of Q. Let A C Q. We denote A_Q the closure of A in the
induced topological space (£, T\ ), and A its closure in €.

1. Show that A C Q' N A.

2. Show that ' N A is closed in €.

3. Show that AY C Q' N A.

4. Let x € Q' N A. Show that if z € U’ € 7)o/, then ANU’ # 0.

5. Show that A% = Q' N A.
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EXERCISE 20. Let (€2, d) be a metric space.

1. Show that for all x € Q2 and € > 0, we have:
B(z,e) C{y €Q: d(z,y) < ¢}

[\

Take Q = [0,1/2[U{1}. Show that B(0,1) = [0,1/2[.
3. Show that [0,1/2[ is closed in €.

4. Show that B(0,1) = [0,1/2].

5. Conclude that B(0,1) # {y € Q: |y <1} =Q.

EXERCISE 21. Let (£2,d) be a locally compact metric space. Let Q
be an open subset of . Let 2 € .

1. Show there exists U open with compact closure, such that =z € U.

2. Show the existence of € > 0 such that B(x,e) CUNQ'.
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3.
4

ot

Ne]

Show that B(z,€/2

. Show that B(x,€/2) is closed in U.

Bz, ¢/2)
B(z,¢/2)
B(z,¢/2)
B(z,¢/2)

) €
)
Show that B(z,€/2) is a compact subset of €.
)
nQ

. Show that B(xz,¢/2) C Q.

Let U' = B(x,¢€/2) B(r,¢/2). Show x € U’ € T/, and:

U = B(z,€/2)

. Show that the induced topological space € is locally compact.

. Prove the following:

Theorem 76 Let (2,7) be a metrizable and strongly o-compact
topological space. Then, for all ' open subset of Q, the induced topo-
logical space (£, Tiqv) is itself metrizable and strongly o-compact.
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Definition 106 Let (2,7) be a topological space, and ¢ : Q@ — C be
a map. We call support of ¢, the closure of the set {¢ # 0}, i.e.:

supp(9) = {w € Qs d(w) £ 0}

Definition 107 Let (2, 7) be a topological space. We denote Cg ()
the K-vector space of all continuous map with compact support
¢:Q — K, where K=R or K=C.
EXERCISE 22. Let (©2,7) be a topological space.

1. Show that 0 € C% ().

2. Show that Cg(€) is indeed a K-vector space.

3. Show that Cg(Q) C CL ().

EXERCISE 23. let (€2,d) be a locally compact metric space. let K be
a compact subset of 2, and G be open in ), with K C G.
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1.

I

Show the existence of open sets Vi, ..., V,, such that:
KCWViu...uV,

and Vi,...,V, are compact subsets of €.

Show that V = (V1U...UV,)NG is open in Q, and K CV C G.

Show that VC V4 U...UV,,.

Show that V is compact.

We assume K # () and V # Q, and we define ¢ : Q — R by:
N d(x,V°)
Ve € Q =

e O G Ve e )

. Show that ¢ is well-defined and continuous.
. Show that {¢ #0} = V.
. Show that ¢ € C{(2).
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9. Show that 1x < ¢ < 14.
10. Show that if K = (), there is ¢ € C&(Q) with 1x < ¢ < 1¢.
11. Show that if V' = Q then  is compact.
12. Show that if V' = Q, there ¢ € Cg(Q) with 1x < ¢ < 1¢.

Theorem 77 Let (Q,7) be a metrizable and locally compact topolog-
ical space. Let K be a compact subset of 2, and G be an open subset
of Q such that K C G. Then, there exists ¢ € Ci (), real-valued
continuous map with compact support, such that:

Ik <9 <lg
EXERCISE 24. Let (2,7) be a metrizable and strongly o-compact

topological space. Let p be a locally finite measure on (€2, 5(£2)). Let
B € B(Q) be such that u(B) < +o0. Let p € [1,400].

1. Show that Cg () C Ly (2, B(Q), ).
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2. Let € > 0. Show the existence of K compact and G open, with:
KCBCG, fG\K)<e

3. Where did you use the fact that u(B) < 4o00?

4. Show the existence of ¢ € C{(Q2) with 1x < ¢ < 1g.

5. Show that:
/|¢ —1pPdp < (G \ K)

6. Conclude that for all € > 0, there exists ¢ € C§ () such that:

o —1pllp <€

7. Let s € Sc(Q, B(2)) N L& (2, B(2), ). Show that for all € > 0,
there exists ¢ € C&(€2) such that ¢ — s||, <e.

8. Prove the following:



Tutorial 13: Regular Measure 30

Theorem 78 Let (2,7) be a metrizable and strongly o-compact
topological space'. Let u be a locally finite measure on (Q,B(Q)).
Then, for all p € [1,+00[, the space Cg () of K-valued, continuous

maps with compact support, is dense in LY (2, B(Q), u).

EXERCISE 25. Prove the following:

Theorem 79 Let Q be an open subset of R", where n > 1. Then,
for any locally finite measure p on (2, B(Q2)) and p € [1,+o0[, Cg(2)
is dense in Ly (Q, B(Q), ).

li.e. a metrizable topological space for which there exists a sequence (Vi )n>1

of open sets with compact closure, such that V;, T Q.
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14. Maps of Finite Variation
Definition 108 We call total variation of a map b: Rt — C the
map |b| : RT — [0, +00] defined as:

A n

Ve RE () £ [b(0)] + sup D [b(t:) — blti )
i=1
where the ‘sup’ is taken over all finite to < ... <t, in [0,t], n > 1.
We say that b is of finite variation, if and only if:
vt e Rt [b](t) < +o0

We say that b is of bounded variation, if and only if:

sup [b|(t) < +o0

teRT

Warning: The notation |b| can be misleading: it can refer to the map
t — |b(t)|(modulus), or to the map ¢t — |b|(¢) (total variation).
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EXERCISE 1. Let a : RT — R™ be non-decreasing with a(0) > 0.
1. Show that |a| = a and a is of finite variation.
2. Show that the limit a(00) = lim;_ 4 a(t) exists in R.

3. Show that a is of bounded variation if and only if a(c0) < +oc.

EXERCISE 2. Let b = by +ibs : RT — C be a map.
1. Show that [by| < |b] and |ba| < |b].
2. Show that [b] < |by| + |b2].
3. Show that b is of finite variation if and only if by, by are.
4. Show that b is of bounded variation if and only if by, by are.

5. Show that [](0) = [b(0)].
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EXERCISE 3. Let b : RT — R be continuous and differentiable, such
that b’ is bounded on each compact interval. Show that b is of finite
variation.

EXERCISE 4. Show that if b : RY — C is of class C!, i.e. continu-
ous and differentiable with continuous derivative, then b is of finite
variation.

EXERCISE 5. Let f: (RT, B(RT)) — (C, B(C)) be a measurable map,
with fot |f(s)|ds < 400 for all t € RT. Let b: RT — C defined by:

vte R, b(t / [1,qds
1. Show that b is of finite variation and:
vt e R, [b|(t) / 1 (s)|ds

2. Show that f € LE(RT, B(R™),ds) = bis of bounded variation.
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EXERCISE 6. Show that if b,0' : Rt — C are maps of finite variation,
and o € C, then b+ ab’ is also a map of finite variation. Prove the
same result when the word ’finite’ is replaced by "bounded’.

EXERCISE 7. Let b : Rt — C be a map. For all t € R™, let S(¢t)
be the set of all finite subsets A of [0,¢], with cardA > 2. For all
A € S(t), we define:

S(4) £ ﬁjb(ti) —b(ti)]

where it is understood that tg,...,t, are such that:
to <ty <...<tpand A={to,...,tn} C[0,¢]
1. Show that for all t € R, if s < ... < s, (p > 1) is a finite

sequence in [0, t], then if:

§2 D7 Ib(sg) = bls-)
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either S =0 or S = S(A) for some A € S(t).

2. Conclude that:
Vi e RT, |b|(t) =1b(0)| +sup{S(A) : A€ S(t)}

3. Let A € §(t) and s € [0,t]. Show that S(A) < S(AU {s}).

4. Let A, B € S(t). Show that:
ACB = S(A) <S(B)

5. Show that if tg < ... <t,,n>1,and so < ... <55, p > 1, are
finite sequence in [0, ¢] such that:
{t07~-~7tn} g {80,...781,}
then:

n

D 1bE) = bti-1)| <

i=1 J

-

b(s5) — b(sj-1)]

1
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EXERCISE 8. Let b : RT™ — C be of finite variation. Let s, € RT,
with s < t. We define:

6= sup Y [bts) — b(ti))|
=1

where the ’sup’ is taken over all finite tg < ... <t,, n>1,1in [s,t].

1. let s < ... <s,and ty < ... <, be finite sequences in [0, s]
and [s, t] respectively, where n,p > 1. Show that:

n

S 1b(s3) = bsi-)| + [b(to) = b(sy)] + D [b(t:) — bltin)

i=1
is less or equal than |b|(t) — |b(0)].
2. Show that § < [b|(t) — |b](s).

3. Let tg < ... <t, be a finite sequence in [0, ¢], where n > 1, and
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suppose that s =t; for some 0 < j < n. Show that:
Zlb = b(ti—1)| < [bl(s) — b(0)[ + 6 (1)

4. Show that inequality (1) holds, for all tg < ... <, in [0,¢].

5. Prove the following:

Theorem 80 Letb: RT — C be a map of finite variation. Then,
for all s,t € RY, s <t, we have:

[b[(t) — [b](s fSUPZ\b ~1)]
where the ‘sup’ is taken over all finite to < ... <t,, n>1, in [s,t].

EXERCISE 9. Let b : RT — C be a map of finite variation. Show that
|b| is non-decreasing with [b[(0) > 0, and ||b|| = |b].



Tutorial 14: Maps of Finite Variation

Definition 109 Let b: RT — R be a map of finite variation. Let:

1>

1
bt & (bl +b)

1>

b 2 (bl -b)

|bIT, |b|~ are respectively the positive, negative variation of b.

EXERCISE 10. Let b: R™ — R be a map of finite variation.
1. Show that [b] = |[b|T + |b|~ and b = |b|" — |b] ™.
2. Show that [b]*(0) = bT(0) > 0 and |b|~(0) = b~ (0) > 0.
3. Show that for all s, € RT, s <t, we have:

[b() — b(s)| < [b](2) — [b](s)

. Show that |b]* and |b|~ are non-decreasing.

N
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EXERCISE 11. Let b : RT — C be of finite variation. Show the
existence of by, by, b3, by : RT — RT, non-decreasing with b;(0) > 0,
such that b = by — by +i(bs — by). Show conversely that if b: RT — C
is a map with such decomposition, then it is of finite variation.

EXERCISE 12. Let b : RT — C be a right-continuous map of finite
variation, and o € RT.

1. Show that |b|(zo+) = limy) |4, |0](t) = inf, <¢ |0](2) € R.

2. Show that |b|(zo) < |b](xo+).

3. Given € > 0, show the existence of 59 € R, 2y < 10, such that:
u €lxo,yo] = |b(u) — b(xo)| < €/2
u €lzo,yo] = [bl(yo) — [bl(u) < €/2
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ExERCISE 13. Further to exercise (12), let tg < ... <t,, n > 1, be
a finite sequence in [0, yo], such that zo = ¢; for some 0 < j < n — 1.
We choose j to be the maximum index satisfying this condition, so
that zg < tj+1 < Yo.

1.

2.

Show that S>7_ [b(t;) — b(ti—1)| < [b](x0) — [b(0)].
Show that |b(t;+1) — b(t;)| < €/2.

- Show that 31 ., [b(t:) — b(ti—1)] < [b](yo) — [b](tj41) < €/2.

. Show that for all finite sequence to < ... <t,, n>1,1in [0,yo):

n

D Ib(ti) = b(ti1)] < [bl(wo) — [6(0)] +

i=1

. Show that |b|(yo) < [b|(xg) + €.

. Show that |b|(xo+) < |b|(zo) and that |b| is right-continuous.
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EXERCISE 14. Let b : RT — C be a left-continuous map of finite
variation, and let zo € R™ \ {0}.

1. Show that [b|(zo—) = limyt1s, [b](t) = sup,,, [b|(t) € R.
2. Show that |b|(xo—) < |b|(z).
3. Given e > 0, show the existence of yy €]0, zo[, such that:

u € [yo,wo| = |b(zo) —b(u)| <e¢/2
u € [yo,wol = [bl(u) —[bl(yo) < €/2

EXERCISE 15. Further to exercise (14), let ¢t < ... <t,, n > 1, be
a finite sequence in [0, o], such that yo = ¢; for some 0 < j < n —1,
and xg = t,. We denote k = max{i: j<i, t; <xo}.

1. Show that j <k <n—1 and t; € [yo,x0[.

2. Show that S0, [b(t;) — b(ti—1)] < [bl(yo) — [b(0)].
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3. Show that ° L [b(t:) — blti1)| < [bl(t) — bl(wo) < €/2,
where if j = k, the corresponding sum is zero.

4. Show that 7" . [b(t;) — b(ti—1)| = [b(zo) — b(tx)] < €/2.
5. Show that for all finite sequence tg < ... <t,, n > 1, in [0, z¢):

Z\b ) = b(ti—1)| < [bl(yo) — [b(0)] + €

6. Show that |b](z0) < |b|(yo) + €.
7. Show that |b|(xo) < |b](x0—) and that |b] is left-continuous.

8. Prove the following:

Theorem 81 Letb:RT — C be a map of finite variation. Then:
b is right-continuous = |b| is right-continuous
b is left-continuous = |b| is left-continuous

b is continuous = |b| is continuous



Tutorial 14: Maps of Finite Variation 13

EXERCISE 16. Let b : RT — R be an R-valued map of finite variation.
1. Show that if b is right-continuous, then so are |b|™ and |b|~.

2. State and prove similar results for left-continuity and continuity.

EXERCISE 17. Let b : RT™ — C be a right-continuous map of finite
variation. Show the existence of by, by, b3,b4 : RT — RT, right-
continuous and non-decreasing maps with b;(0) > 0, such that:

b= by — by +i(bs — by)

EXERCISE 18. Let b : Rt — C be a right-continuous map. Let
t € R*. For all p > 1, we define:

2P

[B(0)] + Y b(kt/27) — b((k — 1)t/27)|

k=1

1. Show that for all p > 1, S, < .S,41 and define S = SUp,>1 Sp.

II>

Sp
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2. Show that S < |b|(t).
EXERCISE 19. Further to exercise (18), let tg < ... < t, be a finite
sequence of distinct elements of [0,¢]. Let € > 0.

1. Show that for all i =0, ..., n, there exists p; > 1 and
gi € {0,1,...,2Pi} such that:

qot qt dnt
O§t0§%<t1§27<...<tn§ opm <t
and:
b(t;) — bgit/2P)| < e, ¥i=0,...,n
2. Show the existence of p > 1, and ko, ..., k, € {0,...,2P} with
kot kit knt
0§t0§2—p<t1§2—p<...<tn§—p§t

and:
|b(t;) — b(kit/2P)| <e, Vi=0,...,n
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3. Show that:
> Ib(kit/27) = b(ki—1t/2")| < S, — [b(0)]
i=1
4. Show that:
Z ‘b(tz) — b(ti—l)l < S - ‘b(0)| + 2ne
i=1
5. Show that:
Z|b —b(ti—1)] <5 —[b(0)]
6. Conclude that |b|(t) < S

7. Prove the following;:

15
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Theorem 82 Let b: Rt — C be right-continuous or left-continuous.
Then, for all t € RT:

on

[b](t) = [b(0)| + HEIEOOZ [b(Kt/2") = b((k — 1)t/2")]
k=1
EXERCISE 20. Let b: RT — R™ be defined by b = 1g+. Show that:
=[bl(1) # lim Z [b(k/2") — b((k —1)/2")| =0

EXERCISE 21. b: R — C is right-continuous of bounded variation.

1. Let b = by + ibs. Explain Why d|bl|+,d|bl|7,d‘b2‘+ and d|bg|7
are all well-defined measures on (R*, B(R™")).

2. Is this still true, if b is right-continuous of finite variation?

3. Show that d|by|T,d|b1|~,d|bz|T and d|be|~ are finite measures.
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4. Let db = d|by|* — djby|~ +i(d|be|* — d|be|"). Show that db is a

well-defined complex measure on (R*, B(R™)).

Show that db({0}) = b(0).

Show that for all s,t € RT, s <t, db(]s, t]) = b(t) — b(s).

Show that lim;_, 4o b(t) exists in C. We denote b(oco) this limit.

Show that db(R™) = b(c0).

© % X = o

Proving the uniqueness of db, justify the following:

Definition 110 Let b : Rt — C be a right-continuous map of
bounded wvariation. There exists a unique complexr measure db on

(RT,B(RY)), such that:

(@) db({0}) = b(0)
(i1) Vs,t € RT s <t, db(]s,t]) = b(t) — b(s)

db is called the complex stieltjes measure associated with b.
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EXERCISE 22. Show that if ¢ : R™ — R™ is right-continuous, non-
decreasing with a(0) > 0 and a(c0) < 400, then definition (110) of
da coincide with the already known definition (24).

EXERCISE 23. b: RT — C is right-continuous of finite variation.

1. Let b = by + ibs. Explain Why d|bl|+,d|bl|7,d‘b2‘+ and d|bg|7
are all well-defined measures on (R*, B(R™")).

2. Why is it in general impossible to define:
db = dba|* — d|br|” + i(d]ba|* — dlba|7)

Warning: it does not make sense to write something like ’db’, unless
b is either right-continuous, non-decreasing and b(0) > 0, or b is a
right-continuous map of bounded variation.

EXERCISE 24. Let b : RT — C be a map. For all T € RT, we define
b : Rt — Cas bI(t)=b(T At) forall t € RT.

1. Show that for all T € R*, [bT| = |b|T.
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2.

Show that if b is of finite variation, then for all T € R™*, b7 is
of bounded variation, and we have |bT'|(c0) = |b|(T) < +o0.

. Show that if b is right-continuous and of finite variation, for all

T € Rt, dbT is the unique complex measure on R*, with:

(1) db™ ({0}) = b(0)
(1) Vs,t e R, s <t, db”(]s,1]) =b(T At) —b(T A s)

. Show that if b is R-valued and of finite variation, for all 7' € R™,

we have [T |t = (|b|")T and [bT|~ = (|b|7)7T.

. Show that if b is right-continuous and of bounded variation, for

all T € R, we have db” = dbl>") = ab([0, T N -)

. Show that if b is right-continuous, non-decreasing with 5(0) > 0,

for all T € R*, we have db” = db>T) = ab([0,T] N -)
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EXERCISE 25. Let i, v be two finite measures on R*, such that:

(@) wu({0}) <v({0})

(44) Vs,t e R, s <t, p(]s,t]) <wv(s,t])
We define a,c: RT — R* by a(t) = u([0,t]) and c(t) = v([0,]).

1. Show that a and ¢ are right-continuous, non-decreasing with
a(0) > 0 and ¢(0) > 0.

2. Show that da = p and dc = v.
3. Show that a < c.

4. Define b : Rt — Rt by b = ¢ — a. Show that b is right-
continuous, non-decreasing with b(0) > 0.

5. Show that da + db = dc.

6. Conclude with the following:
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Theorem 83 Let u,v be two finite measures on (R, B(R™)) with:

(1) n({0}) < v({0})
(i) Vs,t e RY, s <t u(ls, t]) <v(s,t])

Then u < v, i.e. for all B € B(RT), u(B) < v(B).

EXERCISE 26. b: RT — C is right-continuous of bounded variation.

—_

. Show that |db|({0}) = |b(0)] = d|b|({0}). Let s,t € R+, s < t.

)

2. Let tg < ... <, be a finite sequence in [s,t]. Show:

Zlb ) = b(ti-1)| < [db[(]s,1])

w

. Show that [b](t) — [b|(s) < |db](]s, t]).

=

. Show that d|b| < |db|.
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10.

11.
12.

5. Show that L(RT, B(RT),|db]) C L&(RT, B(R™),d|b]).

6. Show that R* is metrizable and strongly o-compact.

7.

8. Let h € L&(RT, B(R™),|db|). Given € > 0, show the existence

Show that C&(RT), C&(R*) are dense in LG (R*, B(R*), |db)).

of ¢ € C&(RT) such that [ |¢ — hl|db| < e.
Show that | [ hdb| < | [ ¢db| + e.
Show that:

' [1otani - [ h|d|b\ < [1o~nlani < [ 16 nlao

Show that [ |¢|d|b| < [ |h|d|b] + €.

For all n > 1, we define:

n2™—1

JAN n
¢ = G(0) 1oy + > b(k/2") ko (ks1)/20]
k=0
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13.
14.
15.
16.

17.
18.
19.
20.

Show there is M € R, such that |¢,(z)] < M for all z and n.
Using the continuity of ¢, show that ¢,, — ¢.

Show that lim [ ¢,db = [ ¢db.

Show that lim [ én|d[b] = [ [¢|d]b).

Show that for all n > 1:

n2"—1

/¢ndb = $(0)b(0) + Y d(k/2")(b((k +1)/2") — b(k/2"))
k=0

Show that | [ ¢ndb| < [ |¢n|d|b| for all n > 1.

Show that | [ ¢db| < [ |6|dJbl.

Show that | [ hdb| < [ |h|d|b| + 2.

Show that | [ hdb| < [ |h|d]b] for all h € LL(R*, BR™), |db]).
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21. Let B € B(R") and h € Lg(R*,B(R™),|db|) be such that
|h| =1 and db = fh|db|. Show that |db|(B) = fB hdb.
22. Conclude that |db| < d|b|.

EXERCISE 27. b: RT — C is right-continuous of finite variation.
1. Show that for all ' € R*, |dbT| = d|bT| and d|bT| = d|b|*.
2. Show that d|b|T = d|b|!%T] = d|b|([0,T] N -), and conclude:

Theorem 84 Ifb: Rt — C is right-continuous of bounded varia-
tion, the total variation of its associated complex stieltjes measure, is
equal to the stieltjes measure associated with its total variation, i.e.

db| = dlp|

If b : RY — C is right-continuous of finite variation, then for all
T € RY, bT defined by bT (t) = b(T At), is right-continuous of bounded
variation, and we have |dbT| = d|b|([0,T]N -).
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Definition 111 Let b: RT — E be a map, where E is a topological
space. We say that b is cadlag with respect to E, if and only if b is
right-continuous, and the limit:

b(t—) = llTrTnt b(s)

ewists in E, for all t € RY\ {0}. In the case when E = C, given b
cadlag, we define b(0—) =0, and for allt € RT:

Ab(t) 2 b(t) — b(t—)
EXERCISE 28. Let b : RT — E be cadlag, where E is a topological
space. Suppose b has values in £/ C E.
1. Explain why b may not be cadlag with respect to E’.
2. Show that b is cadlag with respect to E’.

3. Show that b: RT — R is cadlag < it is cadlag w.r. to C.



Tutorial 14: Maps of Finite Variation 26

EXERCISE 29.

1.

Show that if b : RT™ — C is cadlag, then b is continuous with
b(0) = 0 if and only if Ab(t) =0 for all t € RT.

. Show that if @ : Rt — R is right-continuous, non-decreasing

with a(0) > 0, then a is cadlag (w.r. to R) with Aa > 0.

. Show that any linear combination of cadlag maps is itself cadlag.

. Show that if b : RT — C is a right-continuous map of finite

variation, then b is cadlag.

Let a : Rt — RT be right-continuous, non-decreasing with
a(0) > 0. Show that da({t}) = Aa(t) for all t € R*.

. Let b : RT — C be a right-continuous map of bounded varia-

tion. Show that db({t}) = Ab(t) for all t € RT.
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7. Let b : RT — C be a right-continuous map of finite variation.
Let T € R™. Show that:

b(t—) if ¢<T
—+ Tiy \ _ =~
VEERT, bt )_{ WT) if T <t

Show that AbT = (Ab)1jo 7y, and db” ({t}) = Ab(t)110.11(2)-

EXERCISE 30. Let b: RT™ — C be a cadlag map and T' € R™T.

1. Show that if ¢ — b(t—) is not bounded on [0, 7], there exists a
sequence (t,)n>1 in [0, 7] such that |b(t,)] — +oc.

2. Suppose from now on that b is not bounded on [0, T]. Show the
existence of a sequence (t,)n>1 in [0,7], such that ¢, — ¢ for
some t € [0,T], and |b(t,,)| — +o0.

3. Defme R={n>1: t<t,tand L={n>1: ¢, <t}. Show
that R and L cannot be both finite.
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4. Suppose that R is infinite. Show the existence of n; > 1, with:
tn, € [t,t+ 1[N[0,T]
5. If R is infinite, show there is n; < ny < ... such that:

1
o € bt 4+ 2[00,T], Yk > 1

6. Show that |b(tn, )| /4 +oo.

7. Show that if L is infinite, then ¢ > 0 and there is an increasing
sequence n; < ng < ..., such that:

1
tu, €t = 2. 400,T], Vk > 1

8. Show that: |b(tn, )| 7/ +oc.

9. Prove the following:



Tutorial 14: Maps of Finite Variation 29

Theorem 85 Let b: Rt — C be a cadlag map. Let T € R*. Then
b and t — b(t—) are bounded on [0,T], i.e. there exists M € R such
that:

[b(t)| V b(t—)| < M , Vt €[0,T]
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15. Stieltjes Integration

Definition 112 b: R™ — C is right-continuous of finite variation.
The stieltjes L'-spaces associated with b are defined as:

L&(b) 2 {f Rt - C measumble,/\f|d|b\ < +oo}

2

t
Léloc(b) {f Rt - C measumble,/o |f]d|b] < 400,V € R+}

Warning : In these tutorials, fot ... refers to f[o ERRE i.e. the domain
of integration is always [0, t], not ]0,¢], [0, ¢[, or |0, ¢[.

EXERCISE 1. b: RT — C is right-continuous of finite variation.
1. Propose a definition for Ly (b) and Lﬁloc(b).
2. Is L&(b) the same thing as LG (R, B(R™),d|b])?
3. Is it meaningful to speak of L§(R™, B(R™), |db|)?
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4. Show that LL(b) = L& (|b]) and LE¢(b) = LE°°(jb).
5. Show that L&(b) C L51°¢(b).

EXERCISE 2. Let a : RT™ — R™ be right-continuous, non-decreasing
with a(0) > 0. For all f € Léloc(a)7 we define f.a: Rt — C as:

t
fa(t) 2 / fda , Vt € Rt
0

1. Explain why f.a : RT — C is a well-defined map.

2. Let t € R, (t,)n>1 be a sequence in R* with ¢, || t. Show:

lim /fl[owtn]da:/fl[owt]da

n—-+oo

3. Show that f.a is right-continuous.
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4. Lett € RT and tg < ... < t, be a finite sequence in [0, ¢]. Show:

i d
Z|fa ~ falt 1)</Mf|a

5. Show that f.a is a map of finite variation with:

\F.al(t) /mda vt e R*

EXERCISE 3. Let a : R™ — R be right-continuous, non-decreasing
with a(0) > 0. Let f € L&(a).

1. Show that f.a is a right-continuous map of bounded variation.
2. Show d(f.a)([0,t]) = v([0,¢]), for all t € R", where v = [ fda.

3. Prove the following:
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Theorem 86 Leta: Rt — R™T be right-continuous, non-decreasing
with a(0) > 0. Let f € Lg(a). The map f.a : RT — C defined by:

fa(t) 2 /t fda , ¥t € R*
0

18 a right-continuous map of bounded variation, and its associated
complex stieltjes measure is given by d(f.a) = ffda i.e.

d(f.a)(B /fda VB € B(R™)

EXERCISE 4. Let a : RT™ — R™ be right-continuous, non-decreasing
with a(0) > 0. Let f € Lﬁloc(a), f=0.

1. Show f.a is right-continuous, non-decreasing with f.a(0) > 0.
2. Show d(f.a)([0,t]) = n([0,t]), for all t € RT, where u = [ fda.
3. Prove that d(f.a)([0,7)N ) = pu([0,T]N -), for all T € RT.
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4. Prove with the following:

Theorem 87 Leta:R'T — R™T be right-continuous, non-decreasing

with a(0) > 0. Let f € Laloc(a), f>0. The map f.a: RT — RT
defined by:

t
)é/fda,wem
0

is right-continuous, non-decreasing with (f.a)(0) > 0, and its associ-
ated stieltjes measure is given by d(f.a) ffda i.e.

d(f.a)(B) :/dea , VB € B(RT)

EXERCISE 5. Let a : RT™ — R™ be right-continuous, non-decreasing
with a(0) > 0. Let f € Léloc(a) and T € RT.

1. Show that [|f|lj rjda = [ |f|dal®T! = [|f|da™.
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2. Show that flj 7 € Li(a) and f € L (a”).

3. Show that (f.a)" = f.(a¥) = (f1jo,))-a-
4. Show that for all B € B(R™):

d(f.a)"(B) = /B fda” = /B flo.rda

5. Explain why it does not in general make sense to write:
d(f.a)" = d(f.a)([0,T] N -)
6. Show that for all B € B(R™):
dta)1(B) = [ |Mpnda . VB € BRY)

7. Show that |d(f.a)T| = d|f.al([0,T] N -)
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8.

10.
11.

12.

13.

14.

Show that for all t € RT

Fal(®) = (If].a) / flda

. Show that f.a is of bounded variation if and only if f € Li(a).

Show that A(f.a)(0) = f£(0)Aa(0).

Let t > 0, (tn)n>1 be a sequence in R* with ¢, 11 ¢. Show:

i [ f1ig.da= [ f10,da

Show that A(f.a)(t) = f(t)Aa(t) for all t € RT.

Show that if a is continuous with a(0) = 0, then f.a is itself
continuous with (f.a)(0) = 0.

Prove with the following:
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Theorem 88 Leta: Rt — R™T be right-continuous, non-decreasing
with a(0) > 0. Let f € Léloc(a). The map f.a : RY — C defined by:

fa(t) 2 /t fda , ¥t € R*
0

is right-continuous of finite variation, and we have |f.a| = |f|.a, i.e.

t
faltty = [ 1slda, vt e Re

In particular, f.a is of bounded variation if and only if f € L&(a).
Furthermore, we have A(f.a) = fAa.

EXERCISE 6. Let a : RT™ — R™ be right-continuous, non-decreasing
with a(0) > 0. Let b : RT — C be right-continuous of finite variation.

1. Prove the equivalence between the following:

() dp| <<da
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(i) |db"| << da , VT € R*
(iid) db" << da , VT € R*

2. Does it make sense in general to write db << da?

Definition 113 Leta:R* —R™T be right-continuous, non-decreasing
with a(0) > 0. Let b: R™ — C be right-continuous of finite variation.
We say that b is absolutely continuous with respect to a, and we
write b << a, if and only if, one of the following holds:

(1) dlb| << da
(i) |db"| << da , VT € R*
(iii) db" << da , VT € R
In other words, b is absolutely continuous w.r. to a, if and only if the

stieltjes measure associated with the total variation of b is absolutely
continuous w.r. to the stieltjes measure associated with a.
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EXERCISE 7. Let a : RT™ — R be right-continuous, non-decreasing
with a(0) > 0. Let b : RT — C be right-continuous of finite variation,
absolutely continuous w.r. to a, i.e. with b << a.

1. Show that for all T € R™, there exits fr € Li(a) such that:
v (B / frda , VB € B(R")
2. Suppose that T,7" € RT and T < T". Show that:
/ deCL :/ fT/da 5 VB € B(RJr)
B BN[0,T]

3. Show that fr = fr/1j9 1) da-a.s.

4. Show the existence of a sequence (f,)n>1 in L(a), such that
forall 1 <n <p, fn = fpln, and:

Vn>1, d"(B / foda , VB € B(RY)
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5. We define f : (RT,B(R")) — (C,B(C)) by:
Vte RY, f(t) 2 folt) forany n > 1: t € [0,n]
Explain why f is unambiguously defined.
6. Show that for all B € B(C), {f € B} = U/>[0,n] N {f. € B}.
7. Show that f: (RT,B(R")) — (C,B(C)) is measurable.

8. Show that f € Léloc(a) and that we have:
t
mo:/fm,w63+
0

9. Prove the following:
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Theorem 89 Leta:RtT — R™T be right-continuous, non-decreasing
with a(0) > 0. Let b : RT — C be a right-continuous map of finite
variation. Then, b is absolutely continuous w.r. to a, i.e. d|b| << da,

if and only if there exists f € L& loc( ) such that b= f.a, i.e.

:/ fda , Vt € R+
0

If b is R-valued, we can assume that f € Ly loc( ).

If b is non-decreasing with b(0) > 0, we can assume that f > 0.

EXERCISE 8. Let a : RT™ — R be right-continuous, non-decreasing
with a(0) > 0. Let f,g € Lé’loc(a) be such that f.a = g.a, i.e.:

t t
fda:/ gda , Vt € RT
0 0
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1. Show that for all T € Rt and B € B(R™"):
d(raf'B) = [ Nomda= [ gionda
B B

2. Show that for all T € R*, flio 1) = gljo, 1] da-a.s.
3. Show that f = g da-a.s.

EXERCISE 9. b: RT — C is right-continuous of finite variation.

1. Show the existence of h € Léloc(|b\) such that b = h.|b|.
2. Show that for all B € B(RT) and T € R*:

de(B):/ hd\b|T:/ h|dbT |
B B

3. Show that |h| =1 |dbT|-a.s. for all T € R™.
4. Show that for all T € R, d|p|((0,T] N {|h] £ 1}) = 0.
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5. Show that |h| =1 d|b|-a.s.

6. Prove the following:

Theorem 90 Letb: RT — C be right-continuous of finite variation.
There exists h € Lé’loc(|b\) such that |h| =1 and b = h.|b], i.e.

t
b(t) :/ hdlb| , vt € R*
0

Definition 114 b: RT — C is right-continuous of finite variation.
For all f € LE(b), the stieltjes integral of f with respect to b, is

defined as:
/fdb 2 /fhd|b\

where h € Léloc(\b|) is such that |h] =1 and b = h.|b|.
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Warning : the notation [ fdb of definition (114) is controversial and
potentially confusing: ’db’ is not in general a complex measure on R,
unless b is of bounded variation.

EXERCISE 10. b: Rt — C is right-continuous of finite variation.

1.
2.

Show that if f € Lg(b), then [ fhd|b| is well-defined.
Explain why, given f € L&(b), [ fdb is unambiguously defined.

Show that if b is right-continuous, non-decreasing with b(0) > 0,
definition (114) of [ fdb coincides with that of an integral w.r.
to the stieltjes measure db.

Show that if b is a right-continuous map of bounded variation,
definition (114) of [ fdb coincides with that of an integral w.r.
to the complex stieltjes measure db.
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EXERCISE 11. Let b : Rt — C be a right-continuous map of finite
variation. For all f € Léloc(b), we define f.b: RT — C as:

A

fot) = /Ot fdb, vt e R

1. Explain why f.b: RT — C is a well-defined map.

2. If b is right-continuous, non-decreasing with b(0) > 0, show this
definition of f.b coincides with that of theorem (88).

3. Show f.b = (fh).|b|, where h € L51°¢(b]), |a| = 1, b = h.]b].

4. Show that f.b: RT — C is right-continuous of finite variation,
with | f.b] = |f].|b], i.e.

£b)(t) = / fldlel , vt € R

5. Show that f.b is of bounded variation if and only if f € L&(b).
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6. Let t > 0, (t,)n>1 be a sequence in R such that ¢,, 17 ¢. Show:
i [ bt dpl = [ frdp

7. Show that A(f.b) = fAD.

8. Show that if b is continuous with b(0) = 0, then f.b is itself
continuous with (f.b)(0) = 0.

9. Prove the following:
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Theorem 91 Letb: RT — C be right-continuous of finite variation.
For all f € Léloc(b), the map f.b: RT — C defined by:

Fh(t) 2 /t fdb , Vt € R*
0

is right-continuous of finite variation, and we have |f.b] = |f|.|b], i.e.

£bl(t) = / Fldlel , vt e R

In particular, f.b is of bounded variation if and only if f € Lg(b).
Furthermore, we have A(f.b) = fAb.

EXERCISE 12. Let b : Rt — C be right-continuous of finite variation.
Let f € L5°(b) and T € R+

1. Show that [|f|1jrd|b| = [ |f|d[b]®T] = [|f|d[bT].
2. Show that fl 7 € Lg(b) and f € Lg(bT).



Tutorial 15: Stieltjes Integration 19

3.
4. Show that (f.b)T :f.(b ) = (flor)) b

ot

Show b7 = h.[bT|, where h € LEC(b]), |h| = 1, b = h.b].

Show that d|f.b|(B) = [5|f]d|b| for all B € B(RY).

. Let g : Rt — C be a measurable map. Show the equivalence:

ge Léloc(f-b) & gf € Léloc(b)

Show that d(f.b)T(B) = [, fhd|bT| for all B € B(R").

. Show that db” = [ hd\bT| and conclude that:

d(f.0)T( /fde VB € B(R")

. Let g € LEC(£.b). Show that g € LL((f.b)T) and:

/gl[owt]d(f.b)T = /gfl[o,t]de , Vt e R*
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10. Show that g. ((f.b)T) = (gf).(b7).
11. Show that (g.(f.b))T = ((gf).b)T.
12. Show that g.(f.b) = (¢9f).b

13. Prove the following:

Theorem 92 Letb: RT — C be right-continuous of finite variation.

For all f € Léloc(b) and g : (RT,B(R")) — (C,B(C)) measurable
map, we have the equivalence:

g€ LE°(1b) & gf € L5 @)
and when such condition is satisfied, g.(f.b) = (fg).b, i.e.

/Otgd(f.b) :/Otgfdb, vt e Rt
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EXERCISE 13. Let b : RT — C be right-continuous of finite variation.
let f,g € L5°C(b) and a € C. Show that f + ag € L5°C(b), and:

(f +ag)b=fb+agb

EXERCISE 14. Let b,c : Rt — C be two right-continuous maps of
finite variations. Let f € Léloc(b) N Léloc(c) and a € C.

1.
2.
3.

Show that for all T € R, d(b+ ac)” = db” + adc”.
Show that for all T € RT, d|b+ ac|T < d|b|* + |ald|c|*.

Show that d|b + ac| < d|b| + |«|d|c|.

. Show that f € L5°%(b + ac).
. Show d(f.(b+ ac))"(B) = [, fd(b+ ac)” for all B € B(R™).
. Show that d(f.(b+ ac))T = d(f.b)T + ad(f.c)T.
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7. Show that (f.(b+ ac))T = (f.b)T + a(f.c)T

8. Show that f.(b+ ac) = f.b+ a(f.c).

EXERCISE 15. Let b : RT — C be right-continuous of finite variation.
1. Show that d|b| < d|bi| + d|b2|, where b = by + ibs.
2. Show that d|b:| < d|b| and d|bs| < d|b.
3. Show that f € Lé’.loc(b)7 if and only if:

e LEOC(Iba| ) N LEO(Jby|) 0 LEOC(Jba| ) 0 LE(Jba] )

4. Show that if f € L5%(b), for all t € R*:

[ o= [gavse= [ samgi ([ rapatt - [ rae-)
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EXERCISE 16. Let a : RT — R™ be right-continuous, non-decreasing
with a(0) > 0. We define ¢ : RT — [0, +00] as:

ot) 2 inf{s e R*: t<a(s)}, Vt € R*

where it is understood that inf ) = +oo. Let s, € R™T.

1.

W

Show that ¢t < a(s) = c(t) <s.
Show that c(t) < s = t < af(s).

Show that c¢(t) <s = t<a(s+¢), Ve > 0.
Show that c(t) <s = t <af(s).

Show that c(t) < 400 & t < a(00).

Show that c is non-decreasing.

Show that if t¢ € [a(o0), 400, ¢ is right-continuous at tg.
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8.

10.
11.

12.

13.
14.

15.

Suppose tg € [0,a(c0)[. Given € > 0, show the existence of
s € RT, such that c(tg) < s < c(tp) + € and ¢y < a(s).

. Show that ¢ € [to,a(s)][ = c(to) < c(t) < c(to) + €.

Show that ¢ is right-continuous.

Show that if a(cc) = 400, then ¢ is a map ¢ : R — R* which
is right-continuous, non-decreasing with ¢(0) > 0.

We define a(s) = inf{t € RT : s < ¢(t)} for all s € RT. Show
that for all s, € RT, s <c(t) = a(s) <t.

Show that a < a.
Show that for all s, € RT and € > 0:

a(s+e€) <t = s<s+e<c)

Show that for all s, € RT and ¢ >0, a(s+¢) <t = a(s) <t.
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16. Show that a < a and conclude that:
a(s)=inf{t e RT : s <c(t)}

EXERCISE 17. Let f : Rt — R be a non-decreasing map. Let o € R.
We define:

w0 2 sup{z e R : f(z) < a}
1. Explain why 29 = —oo if and only if {f < a} = 0.
2. Show that xg = +o0 if and only if {f < a} =R™.
We assume from now on that zg # 40co. Show that zo € R™T.
Show that if f(zg) < a then {f < a} = [0, z0].
5. Show that if v < f(zp) then {f < a} = [0, z].
6. Conclude that f: (R, B(R")) — (R, B(R)) is measurable.
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EXERCISE 18. Let a : RT — R™ be right-continuous, non-decreasing
with a(0) > 0. We define ¢ : RT — [0, +00] as:

c(t) 2 inf{se R": t<a(s)}, VteR"

1. Let f: Rt — [0, +0cc] be non-negative and measurable. Show
(f 0 ¢)1{ccqooy is well-defined, non-negative and measurable.

2. Let t,u € R™, and ds be the lebesgue measure on R™. Show:

a(t)

/0 (Ljo,u] © )1 {cctoords < /l[O,a(t/\u)]l{c<+oo}dS
3. Show that:
a(t)
/ (1[0#] o c)l{c<+oo}d5 <a(tAu)
0

4. Show that:

a(t) a(t)
a(t N u) = /0 1[07a(u)[d5 = /0 1[07a(u)[1{c<+oo}d8
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5. Show that:
a(t)
a(t AN u) < / (l[O,u] o C)l{c<+oo}d8
0

6. Show that:

t a(t)

/ Ljo,uda = / (Ljo,u) © €)1 {e< 100} ds

0 0

7. Define:

A t a(t)
Dy =<BeBR"): / 1pda = / (1o c)lfecyocyds
0 0

Show that Dy is a dynkin system on RT, and D; = B(R™).

8. Show that if f: RT — [0, +oc] is non-negative measurable:

t a(t)
/ fda:/ (foe)lfectoords , Yt € RT
0 0
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9. Let f : Rt — C be measurable. Show that (f o ¢)l{cciooy is
itself well-defined and measurable.

10. Show that if f € Léloc(a)7 then for all t € R, we have:
(f 0 ) lfectootl0a() € Le(RT, B(RY), ds)

and furthermore:

t a(t)
| rda= [ (F o0 cimds
0 0

11. Show that we also have:

/ot fda = /(f 0 ¢)10,a(t)(ds

12. Conclude with the following:
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Theorem 93 Leta:RtT — R™T be right-continuous, non-decreasing
with a(0) > 0. We define ¢ : RT — [0, +00] as:

c(t) 2 inf{se RT: t<a(s)}, VteRT

Then, for all f € Lé’loc(a), we have:

t a(t)
/ fda = / (foc)lfecqoords , Vt € RT
0 0

where ds is the lebesque measure on R™T.
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16. Differentiation

Definition 115 Let (2, 7) be a topological space. A map f:Q — R
is said to be lower-semi-continuous (l.s.c), if and only if:

YAe R, {A< [} is open
We say that [ is upper-semi-continuous (u.s.c), if and only if:

VAe R, {f <A} is open

EXERCISE 1. Let f : © — R be a map, where Q is a topological space.
1. Show that f is Ls.c if and only if {\ < f} is open for all A € R.
2. Show that f is w.s.c if and only if {f < A} is open for all A € R.
3. Show that every open set U in R can be written:

U=Vruv-ulJla, s
el
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© »® N

10.

for some index set I, a;, 3 € R, VT = 0 or VT =]a, +o0],
(eeR)and V- =0 or V- =[-0c0,8], (B € R).

. Show that f is continuous if and only if it is both L.s.c and u.s.c.

CLetu:Q —>Randv:Q — R. Let A € R. Show that:

A<u+v}= U (M <uyn{dg < v}
(A1, X2) € R?
A+ A=A

Show that if both v and v are l.s.c, then u + v is also L.s.c.
Show that if both u and v are u.s.c, then u + v is also u.s.c.
Show that if f is L.s.c, then af is Ls.c, for all « € R*.
Show that if f is u.s.c, then af is u.s.c, for all « € R™T.

Show that if f is l.s.c, then —f is u.s.c.
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11. Show that if f is u.s.c, then —f is Ls.c.
12. Show that if V is open in €2, then f = 1y is Ls.c.
13. Show that if F'is closed in €, then f = 1p is u.s.c.
EXERCISE 2. Let (f;)ier be an arbitrary family of maps f; : @ — R,
defined on a topological space §2.
1. Show that if all f;’s are Ls.c, then f = sup,c; fi is Ls.c.

2. Show that if all f;’s are u.s.c, then f =inf;c; f; is u.s.c.

EXERCISE 3. Let (£2,7) be a metrizable and o-compact topological
space. Let u be a locally finite measure on (€2, 5(£2)). Let f be an
element of € L (2, B(Q2), u), such that f > 0.

1. Let (sp)n>1 be a sequence of simple functions on (£2, B(£2)) such
that s, T f. Define t; = s; and t,, = s,, — s,—1 for all n > 2.
Show that ¢, is a simple function on (2, B(Q2)), for all n > 1.
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2. Show that f can be written as:

+oo
f = Z anlAn
n=1
where a,, € R\ {0} and A,, € B(Q), for all n > 1.
3. Show that p(A,) < +oo, for all n > 1.
4. Show that there exist K,, compact and V,, open in 2 such that:
€

forall e >0 and n > 1.

5. Show the existence of N > 1 such that:
—+00

> anp(4n) <

n=N+1

N
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6. Define u = 22;1 anlg, . Show that u is u.s.c.
7. Define v = 3% a1y, . Show that v is Ls.c.
8. Show that we have 0 < u < f < v.

9. Show that we have:

—+o0 —+o0
v=u+ g onlg, + E anly\k,
n=N+1 n=1

10. Show that [wvdu < [udp + e < +oo.

11. Show that u € L (2, B(£2), u).

12. Explain why v may fail to be in Lg (2, B(2), u).

13. Show that v is p-a.s. equal to an element of Lk (2, B(Q), ).
14. Show that [(v—u)dp <e.
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15. Prove the following:

Theorem 94 (Vitali-Caratheodory) Let (Q,7) be a metrizable
and o-compact topological space. Let v be a locally finite measure
on (Q,B(Q)) and f be an element of Ly (Y, B(Y),u). Then, for all
e > 0, there exist maps u,v : Q — R, which are p-a.s. equal to
elements of L, (9, B(Q), 1), such that u < f < wv, u is u.s.c, v is L.s.c,
and furthermore:

Jo-wdu<e

Definition 116 We call connected topological space, a topolog-
ical space (Q,T), for which the only subsets of 0 which are both open
and closed, are Q and (.
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EXERCISE 4. Let (2,7) be a topological space.

1. Show that (£2,7) is connected if and only if whenever Q = AW B
where A, B are disjoint open sets, we have A = () or B = ().

2. Show that (£2,7) is connected if and only if whenever Q = AWB
where A, B are disjoint closed sets, we have A = () or B = ().

Definition 117 Let (Q2,7) be a topological space, and A C Q. We

say that A is a connected subset of €, if and only if the induced

topological space (A,74) is connected.

EXERCISE 5. Let A be open and closed in R, with A # () and A¢ # 0.
1. Let x € A°. Show that ANz, 4+o00] or AN]— o0, z] is non-empty.

2. Suppose B = AN [z, +o00[# 0. Show that B is closed and that
we have B = AN|xz, +oo[. Conclude that B is also open.
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3. Let b = inf B. Show that b € B (and in particular b € R).
4. Show the existence of € > 0 such that |b —€,b+ ¢[C B.

5. Conclude with the following:

Theorem 95 The topological space (R, TRr) is connected.

EXERCISE 6. Let (22,7) be a topological space and A C Q be a
connected subset of . Let B be a subset of € such that A C B C A.
We assume that B = Vi WV, where Vi, Vs are disjoint open sets in B.

1. Show there is Uy, Us open in 2, with Vi = BNUy, Vo = BNUs.
2. Show that ANU; =0 or ANUs = ().

w

. Suppose that AN U; = ). Show that A C U¥f.
4. Show then that V; = BNU; = 0.
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5. Conclude that B and A are both connected subsets of Q.

EXERCISE 7. Prove the following:

Theorem 96 Let (Q,7), (2',7") be two topological spaces, and f
be a continuous map, f: Q — Q' . If (Q,7) is connected, then f(Q)
is a connected subset of €.

Definition 118 Let A C R. We say that A is an interval, if and
only if for all z,y € A with x <y, we have [x,y] C A, where:

e,y 2{z€R : 2 <2<y}

EXERCISE 8. Let A C R.

1. If A is an interval, and a = inf A, § = sup A, show that:
Ja, B[C A C o, 5]
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. Show that A is an interval if and only if, it is of the form [«, /],

[a, B, ], B] or ], B], for some «, 5 € R.

. Show that an interval of the form ] — oo, af, where a € R, is

homeomorphic to | — 1, &/[, for some o/ € R.

. Show that an interval of the form Ja, +oo[, where a@ € R, is

homeomorphic to |a/, 1], for some o’ € R.

Show that an interval of the form |a, 8], where o, 5 € R and
a < 3, is homeomorphic to | — 1, 1[.

Show that ] — 1, 1[ is homeomorphic to R.
Show an non-empty open interval in R, is homeomorphic to R.
Show that an open interval in R, is a connected subset of R.

Show that an interval in R, is a connected subset of R.
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EXERCISE 9. Let A C R be a non-empty connected subset of R, and
a=1inf A, B = sup A. We assume there exists xg € A°N]a, .

1. Show that ANz, +ool or AN] — oo, x| is empty.
2. Show that if AN|xg, +oo[= 0, then 8 cannot be sup A.
3. Show that ], G5[C A C [o, (]

4. Show the following:

Theorem 97 For all A C R, A is a connected subset of R, if and
only if A is an interval.

EXERCISE 10. Prove the following:

Theorem 98 Let f : Q — R be a continuous map, where (Q,7)

b

is a connected topological space. Let a,b € Q such that f(a) < f(b).
Then, for all z € [f(a), f(b)], there exists x € Q such that z = f(x).
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EXERCISE 11. Let a,b € R, a < b, and f : [a,b] — R be a map such
that f/(z) exists for all z € [a, b].

1. Show that f": ([a,b],B([a,b])) — (R, B(R)) is measurable.
2. Show that f’ € Lk ([a,b], B([a,b]),dz) is equivalent to:

b
/ |f/(t)]dt < +oo

3. We assume from now on that f’ € Lk ([a,b], B([a,b]),dz). Given
€ > 0, show the existence of g : [a,b] — R, almost surely equal
to an element of Lk ([a,b], B([a,b]), dx), such that f’ < g and g
is l.s.c, with:

/abg(t)dt < /ab f(t)dt + €

4. By considering g + a for some a > 0, show that without loss of
generality, we can assume that f’ < g with the above inequality
still holding.
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5. We define the complex measure v = [ gdz € M*([a,b], B([a,b])).
Show that:
Ve >0, 35 >0, VE € B([la,b]) , dz(E) <6 = |v(E)| <€

6. For all n > 0 and = € [a, b], we define:

A x
Fya) 2 [ g0t~ £@) + f@) + 1l )
Show that F, : [a,b] — R is a continuous map.

7. 7 being fixed, let = sup F,"'({0}). Show that x € [a,b] and
F,(xz) = 0.

8. We assume that = € [a,b]. Show the existence of § > 0 such
that for all ¢ €]z, z + §[N[a, b], we have:

f(t) = f(=)

— <['@+n

f'(@) < g(t) and
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9.
10.
11.
12.

13.

Show that for all t €]z, z+d[N]a, b], we have F,(t) > F,(z) = 0.
Show that there exists ¢y such that <ty < b and F,(t9) > 0.
Show that if F},(b) < 0 then x cannot be sup F, ' ({0}).

Conclude that F,,(b) > 0, even if 2 = .

Show that f(b) — f(a) < f; f/(t)dt, and conclude:

Theorem 99 (Fundamental Calculus) Leta,b € R, a < b, and
f:]a,b] — R be a map which is differentiable at every point of [a,b],
and such that:

b
/ |f/(t)]dt < +oo

Then, we have:

b
F(b) — f(a) = / o
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EXERCISE 12. Let a > 0, and ko : R™ — R" defined by kq(x) = ax.
1. Show that k, : (R",B(R")) — (R", B(R")) is measurable.
2. Show that for all B € B(R"), we have:

dx({ke € B}) = aindx(B)

3. Show that for all e > 0 and z € R™:
dx(B(z,€)) = €"dx(B(0,1))

Definition 119 Let u be a complex measure on (R™, B(R™)), n > 1,
with total variation |p|. We call maximal function of u, the map
Mup:R"™ — [0,400], defined by:

B N [pl(B(;€))
Vo e R" , (Mp)(z) = 0 dx(B(z,e))

where B(x,€) is the open ball in R", of center x and radius €, with
respect to the usual metric of R™.
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EXERCISE 13. Let u be a complex measure on (R™, B(R™)).

1.
2.

Let A € R. Show that if A < 0, then {\ < Mpu} =R".

Show that if A = 0, then {\A < Mu} = R" if u # 0, and
{\ < Mu} is the empty set if u = 0.

. Suppose A > 0. Let € {\ < Mu}. Show the existence of € > 0

such that |u|(B(z,€)) = tdz(B(z,€)), for some t > A.

. Show the existence of § > 0 such that (e + 0)™ < €"t/\.
. Show that if y € B(z,d), then B(x,€) C B(y,e+ ).
. Show that if y € B(x,d), then:

n

KBy, +8)) 2 g de(Bly, e +0) > Ma(Bly,e + )
Conclude that B(z,0) C {\ < Mpu}, and that the maximal

function My : R"™ — [0, +00] is L.s.c, and therefore measurable.
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EXERCISE 14. Let B; = B(x;,¢;), i = 1,...,N, N > 1, be a finite
collection of open balls in R". Assume without loss of generality that
en < ... < e;. We define a sequence (Ji) of sets by Jo = {1,...,N}
and for all £ > 1:

A{ka{j:jmk,BmBik@} if Jp—1 #
=9 s

Tk i Ty

0
0
where we have put 4, = min Jy_1, whenever J,_1 # 0.

1. Show that if Jx_1 # 0 then J;, C Ji—1 (strict inclusion), k& > 1.
Let p = min{k > 1: J; = 0}. Show that p is well-defined.
Let S = {i1,...,4p}. Explain why S is well defined.
Suppose that 1 < k < k/ < p. Show that iy € Jj.

Show that (B;)ies is a family of pairwise disjoint open balls.

I A o

Let i € {1,...,N}\ S, and define ky to be the minimum of the
set {k € N, : ¢ € Ji}. Explain why k¢ is well-defined.
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7.
8.
9.
10.

11.

Show that ¢ € Ji,—1 and i, <.
Show that Bl n Biko 7é @
Show that Bl Q B(I’iko , 367;790 )

Conclude that there exists a subset S of {1,..., N} such that
(Bi)ics is a family of pairwise disjoint balls, and:

N

U (24, €;) UB Xy 3€;)

i=1 €S

Show that:

N
dx (U B(zi, €;) ) < 3"de (24,€))

€S
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EXERCISE 15. Let p be a complex measure on R"™. Let A > 0 and K
be a non-empty compact subset of {\ < Mpu}.

1. Show that K can be covered by a finite collection B; = B(x;, €;),
i=1,...,N of open balls, such that:

Vi=1,...,N, Mz(B;) < |u|(B;)
2. Show the existence of S C {1,..., N} such that:
de(K) < 3"\ 7Yyl (U B(mi,ei)>
€S
3. Show that da(K) < 3"A71| ]

4. Conclude with the following:

Theorem 100 Let pu be a complex measure on (R", B(R")), n > 1,
with mazimal function Mu. Then, for all A € RT\ {0}, we have:

de({X < Mp}) < 3" X7 1|yl
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Definition 120 Let f € L&(R",B(R"),dx), and p be the complex
measure p = [ fdz on R", n > 1. We call maximal function of f,
denoted M f, the mazimal function M of .

EXERCISE 16. Let f € LE(R", B(R"),dz), n > 1.

1. Show that for all z € R":

1
(Mf)(w) = sup B o) /BW) fldz

2. Show that for all A > 0, dz({\ < M f}) < 3"A71| 1.

Definition 121 Let f € L&(R",B(R"),dx), n > 1. We say that
z € R" is a lebesgue point of f, if and only if we have:

. 1 -
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EXERCISE 17. Let f € L&(R", B(R"),dx), n > 1.

1. Show that if f is continuous at € R", then = is a Lebesgue
point of f.
2. Show that if z € R" is a Lebesgue point of f, then:

. 1
f(x) = Eﬁ% T (B.0) /B(m’e) f(y)dy

EXERCISE 18. Let n > 1 and f € L§(R", B(R"),dz). For all € > 0
and r € R", we define:

A 1

TN Ty o, S0~ FEldy
and we put, for all z € R™:
AN

(Tf)(x) £ limsup(T.f)(z) £ inf sup (T.f)(x)
€l 10 €>04,€]0,¢
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1. Given 1 > 0, show the existence of g € C&(R™) such that:
If =gl <n

2. Let h = f — g. Show that for all ¢ > 0 and z € R™:

1
TG S i fy, e+ )

3. Show that Th < Mh + |hl.

4. Show that for all € > 0, we have T. f < T.g + T¢h.

5. Show that T'f < Tg+ Th.

Using the continuity of g, show that T'g = 0.

Show that T'f < Mh + |h|.

Show that for all @ > 0, {20 < T'f} C{a < Mh}U{a < |h|}.

© »® N >

Show that dz({a < |h]}) < a7t |h]];.



Tutorial 16: Differentiation 23

10.

11.

12.
13.
14.

Conclude that for all a > 0 and n > 0, there is N, € B(R")
such that {2a < Tf} C Nq, and dz(Na,,) < 7.

Show that for all & > 0, there exists N, € B(R") such that
{20 < Tf} C N, and dz(N,) = 0.

Show there is N € B(R"), dz(N) = 0, such that {T'f > 0} C N.
Conclude that Tf =0, dx—a.s.

Conclude with the following:

Theorem 101 Let f € L&(R",B(R"),dx), n > 1. Then, dz-almost
surely, any x € R"™ is a lebesque points of f, i.e.

1
dx-a.s. , lim

c110 dz(B(z,€)) /B(M) |f(y) — f(x)ldy =0
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EXERCISE 19. Let (£, F,u) be a measure space and ' € F. We
define ' = Flo and ' = pyz. For all map f : Q" — [0, +00] (or C),
we define f: Q — [0, 400] (or C), by:

oo flw if wed
f<“’)_{o it owg o

1. Show that F C F and conclude that p' is therefore a well-
defined measure on (Q', F”).

2. Let A € F' and 1’y be the characteristic function of A defined
on . Let } 4 be the characteristic function of A defined on €.
Show that 1, = 14.

3. Let f : (Q,F') — [0,+00] be a non-negative and measurable
map. Show that f: (2, F) — [0, +o0] is also non-negative and
measurable, and that we have:

/Q/fdu’=/ﬂfdu
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4. Let f e LE(Y,F',i'). Show that f € LE(2, F,u), and:

[ i = /Q fiu

Definition 122 Letb: Rt — C be a right-continuous map of finite
variation. We say that b is absolutely continuous, if and only if it
is absolutely continuous with respect to a(t) = t.

EXERCISE 20. Let b : RT — C be right-continuous of finite variation.

1. Show that b is absolutely continuous, if and only if there is
f € LE%(t) such that b(t) = [ f(s)ds, for all t € RF.

2. Show that b absolutely continuous = b continuous with 5(0) = 0.
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EXERCISE 21. Let b : Rt — C be an absolutely continuous map.

Let f € Léloc(t) be such that b = f.t. For all n > 1, we define
fn: R — C by:

i +
& { {00 28

1. Let n > 1. Show f, € L§(R, B(R),dz) and for all t € [0, n]:
t
b(t) = / fndx
0

2. Show the existence of N,, € B(R) such that dz(N,) = 0, and
for all t € N§, t is a Lebesgue point of f,,.

3. Show that for all ¢ € R, and € > 0:

1 2

t+e
] e - nols <

€ W/B(m |fn(s) = fu(t)|ds
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4. Show that for all t € NS, we have:

hm/ fals)ds = fu(t)

ell0 €

5. Show similarly that for all ¢ € NS, we have:

lim - / Fa(s)ds = fu(t)

ell0 €

(=2

. Show that for all t € N¢ N [0,n], b'(t) exists and V'(t) = f(t).!
7. Show the existence of N € B(R™), such that dz(N) = 0, and:
Vt € N¢, b/ (t) exists with b'(t) = f(t)

8. Conclude with the following:

19’ (0) being a r.h.s derivative only.
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Theorem 102 A map b: RT — C is absolutely continuous, if and
only if there exists [ € Lé’loc(t) such that:

Ve RT, bt) = /0 " H(s)ds

in which case, b is almost surely differentiable with b’ = f dz-a.s.
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17. Image Measure

In the following, K denotes R or C. We denote M, (K), n > 1,
the set of all n x n-matrices with K-valued entries. We recall that
for all M = (m;;) € M,(K), M is identified with the linear map
M : K" — K" uniquely determined by:

n
. A
V] :1,...,77,, Mej = Zmijei
i=1

i
. . . . A =
where (eq,...,e,) is the canonical basis of K", i.e. ¢; = (0,., 1,.,0).

EXERCISE 1. For all @ € K, let H, € M,,(K) be defined by:
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ie. by Hoer = aer, Hoe; = e, for all j > 2. For k,l € {1,...,n},
we define the matrix Xy € M, (K) by Sgier = e, Xpe; = e and
Yue; = ej, for all j € {1,....,n}\ {k,l}. If n > 2, we define the
matrix U € M, (K) by:

1>
— =
(an) _ O

1
ie. by Uey =e1+eg, Uej =ejforall j >2. If n=1, weput U =1.
We define NV,,(K) = {Hy : a € K}U{Zy: kl=1,...,n}U{U},
and M/, (K) to be the set of all finite products of elements of N, (K):
A .
M, (K)={MeM,(K):M =Q;..... Qp.p>1,Q; e Npy(K), Vj}
We shall prove that M,,(K) = M/
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1. Show that if a € K\ {0}, H, is non-singular with H ' = Hy ,
2. Show that if k.l =1,...,n, Xy is non-singular with El;ll =Y.

3. Show that U is non-singular, and that for n > 2:

4. Let M = (m;;) € M, (K). Let Ry, ..., R, be the rows of M:
Ry

ME R,2

R,
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Show that for all o € K:

Conclude that multiplying M by H, from the left, amounts to
multiplying the first row of M by a.

5. Show that multiplying M by H, from the right, amounts to
multiplying the first column of M by «.

6. Show that multiplying M by Xy from the left, amounts to swap-
ping the rows R; and Ry,.

7. Show that multiplying M by Xy, from the right, amounts to
swapping the columns C; and Cj.
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8. Show that multiplying M by U~ from the left (n > 2), amounts
to subtracting Ry to R, i.e.:

R Ry
oo | B Ry — R
R, R,

9. Show that multiplying M by U~' from the right (for n > 2),
amounts to subtracting Cy to C1.

10. Define U’ = ¥12.U 1312, (n > 2). Show that multiplying M
by U’ from the right, amounts to subtracting C; to Cs.

11. Show that if n = 1, then indeed we have M;(K) = M/ (K).
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EXERCISE 2. Further to exercise (1), we now assume that n > 2, and
make the induction hypothesis that M,,_1(K) = M/ _; (K).

n—1

1. Let O,, € M,,(K) be the matrix with all entries equal to zero.
Show the existence of Q,...,Q), € Nu—1(K), p > 1, such that:

On1=0Q. ... Q,
2. For k=1,...,p, we define Q; € M, (K), by:
0
Or £ Q% :
0
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Show that Q) € N,,(K), and that we have:
1 0 ... 0

Zln.Ql ..... Qp.Zln =

3. Conclude that O,, € M/ (K).

4. We now consider M = (m;;) € M,(K), M # O,. We want to
show that M € M/ (K). Show that for some k,l € {1,...,n}:

1 *x ... =x
3

H ' S MYy, =

*

5. Show that if Hn_mil-zthle e M/ (K), then M € M! (K).
Conclude that without loss of generality, in order to prove that
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M lies in M/ (K) we can assume that mi; = 1.

6. Let i = 2,...,n. Show that if m;; # 0, we have:

1 * L.k
-1 =1 -1 _ *
Hp = Yo,.U .Zgl.Hl/mﬂ.Mf 0 —i
*

7. Conclude that without loss of generality, we can assume that
m;1 = 0 for all i > 2, i.e. that M is of the form:

1 * ... %

8. Show that in order to prove that M € M/ (K), without loss of



Tutorial 17: Image Measure 9

generality, we can assume that M is of the form:

10 ... 0

0
M =

: M’

0

9. Prove that M € M/ (K) and conclude with the following:

Theorem 103 Given n > 2, any n X n-matriz with values in K is
a finite product of matrices Q of the following types:

(7) Qer=aer, Qej=¢; ,¥ji=2,...,n, (0 € K)
(4i) Qer=ep, Qexy=e, Qej=e¢; , Vj#k,, (k1 €N,)
(ZZZ) Qer=ei+e, Qej=¢; ,Vj=2,...,n

where (e1,...,e,) is the canonical basis of K™.
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Definition 123 Let X : (Q,F) — (', F') be a measurable map,
where (Q, F) and (', F') are two measurable spaces. Given a measure
u (possibly complex) on (Q,F), we call distribution of X under pu,
or law of X under u, or image measure of u by X, the measure
(possibly complex) denoted u or X () on (', F'), defined by:

VBeF ., uX(B) £ u({X € BY) = w(X~\(B))

EXERCISE 3. Let X : (Q,F) — (', F') be a measurable map, where
(2, F) and (Q',F') are two measurable spaces.

1. Show that if p is a measure on (Q,F), u~ is a well-defined
measure on (Q, F7).

2. Show that if 4 is a complex measure on (Q, F), u*

defined complex measure on (Q', F’).

is a well-

3. Let B € F'. Show that if (E,),>1 is a measurable partition of
B, then (X ~Y(E,))n>1 is a measurable partition of X ~!(B).
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4. Show that if ;1 is a complex measure on (Q, F), then || < |u|X.

5. Let Y : (Q,F) — (Q",F") be a measurable map, where
(", F") is another measurable space. Show that for all (possi-
bly complex) measure p on (2, F), we have:

Y(X(w) = (Y o X) () = ()" = p¥=0)

Definition 124 Let p1 be a measure (possibly complex) on R™, n > 1.
We say that p is invariant by translation, if and only if for all
a € R", and associated translation mapping 7, : R™ — R defined by
To(x) = a + x, we have T,(1) = p.

EXERCISE 4. Let i be a measure (possibly complex) on (R™, B(R")).

1. Show that 7, : (R", B(R")) — (R", B(R")) is measurable.

2. Show 7, () is therefore a well-defined (possibly complex) mea-
sure on (R", B(R")), for all a € R".
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3. Show that 7,(dz) = dx for all a € R".

4. Show the lebesgue measure on R" is invariant by translation.

EXERCISE 5. Let ko : R" — R" be defined by kq(x) = ax, a > 0.
1. Show that k. : (R",B(R")) — (R", B(R")) is measurable.
2. Show that k,(dz) = o "dx.

EXERCISE 6. Show the following:

Theorem 104 (Integral Projection 1) Let X:(Q,F) — (', F")
be a measurable map, where (0, F), (', F') are measurable spaces.
Let i be a measure on (2, F). Then, for all f: (¥, F") — [0, +]
non-negative and measurable, we have:

[ roxan= [ fax
Q Q
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EXERCISE 7. Show the following:

Theorem 105 (Integral Projection 2) Let X:(Q,F) — (', F)
be a measurable map, where (0, F), (', F') are measurable spaces.
Let pu be a measure on (Q, F). Then, for all f: (Q,F') — (C,B(C))

measurable, we have the equivalence:
foXeLo(F.p) & feLo(@,F X ()

i which case, we have:

[ rexdu= [ sax)
Q Q7

EXERCISE 8. Further to theorem (105), suppose p is in fact a complex
measure on (2, F). Show that:

FldIX ()] < / 1 o X|dlyl (1)
Q Q

Conclude with the following:
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Theorem 106 (Integral Projection 3) Let X:(Q,F) — (', F)
be a measurable map, where (Q,F), (Q',F') are measurable spaces.

Let p be a complex measure on (2, F). Then, for all measurable map
f:(Q,F) — (C,B(C)), we have:

foX Lo F.p) = feLo(@ F . X(1)
and when the left-hand side of this implication is satisfied:

[ rexdu= [ sax)

Q 1%

EXERCISE 9. Let X : (2,F) — (R",B(R")) be a measurable map
);

with distribution p = X (P), where (9, F, P) is a probability space.

1. Show that X is integrable, if and only if:

+oo
[ lalduto) < +oc

— 00
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2. Show that if X is integrable, then:
—+o0
BX) = [ wdula)
3. Show that: o
E[X?] :/ w2 du(x)

— 00

EXERCISE 10. Let p be a locally finite measure on (R", B(R")), which
is invariant by translation. For alla = (ay,...,a,) € (RT)", we define
Qa = [0,a1[x ... x [0,a,], and in particular Q = Q... 1) = [0, 1[".

1. Show that u(Q,) < +oo for all a € (R*)", and u(Q) < +oo.
2. Let p= (p1,...,pn) where p; > 1 is an integer for all ¢’s. Show:

Q, = 4 [k1, k1 + 1[X ... X [kny kn + 1]

k= (ki k)
0<ki<ps
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3. Show that p(Qp) = p1...Pui(Q).
4. Let q1,...,q, > 1 be n positive integers. Show that:
k1]01 (kl + 1)]71 knpn (kn + l)pn
QP: H_J [q—l’T[XX[q ) q [
k:(kla"'7kn) " "
0<ki<g

5. Show that g Qp) %M(Q(pl/ql ----- pn/qn))
Show that u(Q,) = S rap(Q), for all e (QT)™.

(

(
Show that u(Qa)

(

capp(Q), for all a € (RT)™.

® N o

Show that u(B) = u(Q)dz(B), for all B € C, where:
C 2 {la, bi[X ... X [an,bu| , ai,bi €R , a; < b; , Vi € N"}

9. Show that B(R") = o(C).
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10. Show that pu = u(Q)dz, and conclude with the following:

Theorem 107 Let i be a locally finite measure on (R™, B(R"™)). If
1 is invariant by translation, then there exists « € RY such that:

w= adzx

EXERCISE 11. Let T': R™ — R be a linear bijection.
1. Show that T and T~ are continuous.

2. Show that for all B C R", the inverse image T~!(B) = {T € B}
coincides with the direct image:

T-4B) 2 {y: y=T""(x) for some z € B}

3. Show that for all B C R", the direct image T'(B) coincides with
the inverse image (T-1)~}(B) = {T~! € B}.

4. Let K C R" be compact. Show that {T € K} is compact.
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10.
11.

. Show that T'(dz) is a locally finite measure on (R", B(R")).

. Let 7, be the translation of vector a € R". Show that:
Totp-1q) =TaoT

Show that T'(dx) is invariant by translation.

. Show the existence of a € RT, such that T'(dz) = adr. Show
that such constant is unique, and denote it by A(T').

. Show that Q@ =T([0,1]™) € B(R"™) and that we have:
A(T)dz(Q) = T(dz)(Q) = 1
Show that A(T) # 0.
Let 71,7 : R™ — R" be two linear bijections. Show that:
(Ty 0 Tp)(dx) = A(T1)A(T%)dx
and conclude that A(Ty o Ty) = A(Th)A(Th).
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EXERCISE 12. Let o« € R\ {0}. Let H, : R" — R" be the linear
bijection uniquely defined by H,(e1) = ae1, Hy(e;) = e; for j > 2.

1. Show that Ho(dz)([0,1]") = |a|~".
2. Conclude that A(H,) = |det H, |7t

ExERCISE 13. Let k,I € Nyand ¥ : R™ — R” be the linear bijection
uniquely defined by X(ex) = e;, X(e;) = ex, X(ej) = e;, for j # k, 1.

1. Show that X(dz)([0,1]") = 1.
2. Show that ¥.¥ = I,,. (Identity mapping on R").
3. Show that |det X| = 1.

N

. Conclude that A(X) = |det 3|7

EXERCISE 14. Let n > 2 and U : R" — R" be the linear bijection
uniquely defined by U(e1) = e1 + ez and U(e;) = e; for j > 2. Let
Q=1[0,1[".
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1. Show that:
U Q) ={zcR": 0<a1+aa<1,0<m <1, Vi#2}

2. Define:

1>

N U H@Q)n{zeR": x5 >0}
Qo U Q) n{zeR": zy <0}
Show that 4,0, € B(R").

1>

3. Let 7., be the translation of vector e3. Draw a picture of @, €,
Qo and 7., (22) in the case when n = 2.

4. Show that if x € Qq, then 0 < x5 < 1.
5. Show that 7 C Q.
6. Show that if = € 7.,(Q2), then 0 < x5 < 1.

7. Show that 7,(22) C Q.
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8. Show that if x € Q and z1 + xo < 1 then x € Q.
9. Show that if x € Q and z1 + 22 > 1 then x € 7,(02).
10. Show that if = € 7., (2) then x1 + x2 > 1.
11. Show that 7., (Q2) NQ; = 0.
12. Show that Q = Q1 W7, (Qa).
13. Show that dz(Q) = dz(U~1(Q)).
14. Show that A(U) = 1.
15. Show that A(U) = |det U|~1.

EXERCISE 15. Let T': R™ — R" be a linear bijection, (n > 1).

1. Show the existence of linear bijections Q1,...,Q, : R" — R",
p>1,withT = Qq0...0Q,, A(Q;) = |det Q;| ! for alli € N,,.
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2. Show that A(T) = |det T|~1.

3. Conclude with the following:

Theorem 108 Letn > 1 and T : R" — R" be a linear bijection.
Then, the image measure T (dx) of the lebesque measure on R" is:

T(dz) = |detT| ‘dz

EXERCISE 16. Let f: (R? B(R?)) — [0, 400] be a non-negative and
measurable map. Let a,b,¢,d € R such that ad — bc # 0. Show that:

flaz + by, cx + dy)dxdy = |ad — be|™* / [z, y)dzdy
R? R?

EXERCISE 17. Let T : R™ — R" be a linear bijection. Show that for
all B € B(R"), we have T'(B) € B(R") and:

dx(T(B)) = | det T'|dx(B)
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ExERCISE 18. Let V be a linear subspace of R" and p = dim V. We
assume that 1 <p <n—1. Let uy,...,up, be an orthonormal basis of
V, and upy1,...,u, be such that uq,...,u, is an orthonormal basis
of R". For i € N,,, Let ¢; : R" — R be defined by ¢;(z) = (u;, x).

1.

2.

Show that all ¢;’s are continuous.

Show that V' =(7_ ., ¢; " ({0}).

. Show that V is a closed subset of R".

. Let Q@ = (¢ij) € M,(R) be the matrix uniquely defined by

Qe; = u; for all j € N, where (e1,...,e,) is the canonical
basis of R". Show that for all i,7 € N,

UZ,’U/] Z%ng

. Show that QT.Q = Q.QT = I,, and conclude that |det Q| = 1.
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6. Show that de({Q € V}) = dx(V).
7. Show that {Q € V} = span(ey,...,ep,)."

8. For all m > 1, we define:

n—1

En 2

Show that dz(E,,) = 0 for all m > 1.

[-m,m] x ... x [=m,m] x{0}
9. Show that dz(span(es,...,en—1)) =0.
10. Conclude with the following:

Theorem 109 Let n > 1. Any linear subspace V' of R" is a closed
subset of R™. Moreover, if dimV <n — 1, then dz(V) = 0.

li.e. the linear subspace of R™ generated by eq,...,ep.
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18. The Jacobian Formula
In the following, K denotes R or C.

Definition 125 We call K-normed space, an ordered pair (E, N),
where E is a K-vector space, and N : E — R is a norm on E.

See definition (89) for vector space, and definition (95) for norm.

EXERCISE 1. Let (H, (-,-)) be a K-hilbert space, and || - || = /(- ).
1. Show that || - || is a norm on H.

2. Show that (H, || - ||) is a K-normed space.

EXERCISE 2. Let (E, | - ||) be a K-normed space:
1. Show that d(z,y) = ||z — y|| defines a metric on E.

2. Show that for all z,y € E, we have | ||z] — |ly||| < |lz —y|
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Definition 126 Let (E,| - ||) be a K-normed space, and d be the
metric defined by d(x,y) = ||z —y||. We call norm topology on E,
denoted 7., the topology on E associated with d.

EXERCISE 3. Let F, F' be two K-normed spaces, and [ : ¥ — F be a
linear map. Show that the following are equivalent:

(i
(i

(i1

) [ is continuous (w.r. to the norm topologies)
) [ is continuous at = = 0.

)  3JKeRT ,VzeE, |i(x)| < K|z

(iv)  sup{|i(@)]|: z € B, [z =1} < +oo

Definition 127 Let E, F' be K-normed spaces. The K-vector space
of all continuous linear maps [ : E — F is denoted Lx(E, F).

EXERCISE 4. Show that Lk (F, F') is indeed a K-vector space.
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EXERCISE 5. Let E, F' be K-normed spaces. Givenl € Lk (F, F), let:
A
1] = sup{[[i(z)[| : =€ £, |lz]| =1} < 400
1. Show that:
1] = sup{[li(z)]| - z € E, |z <1}

171l zsup{( ﬁ rr ekl :c;éO}

3. Show that [|I(z)|| < ||I]l.|], for all z € E.

2. Show that:

4. Show that ||I]| is the smallest K € RT, such that:
Vee B, [i(z)] < Kl

5. Show that I — ||I|| is a norm on Lk (E, F).

6. Show that (Lx(E,F),| -|) is a K-normed space.
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Definition 128 Let E, F be R-normed spaces and U be an open
subset of E. We say that a map ¢ : U — F is differentiable at
some a € U, if and only if there exists | € Lr(FE, F) such that, for all
€ > 0, there exists 6 > 0, such that for all h € E:

[l <6 = a+heU and |[¢(a+h)—¢(a) —I(h)] < €|
EXERCISE 6. Let E, F be two R-normed spaces, and U be open in E.
Let ¢ : U — F be amap and a € U.

1. Suppose that ¢ : U — F is differentiable at a € U, and that
li,ls € Lr(E,F) satisfy the requirement of definition (128).
Show that for all € > 0, there exists § > 0 such that:

Vhe E, |[h]| <& = [ll(h) = la2(h)]] < el

2. Conclude that ||I; — l2|| = 0 and finally that I; = lo.
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Definition 129 Let E, F be R-normed spaces and U be an open
subset of E. Let ¢ : U — F be a map and a € U. If ¢ is differentiable
at a, we call differential of ¢ at a, the unique element of Lr(E, F),
denoted dg(a), satisfying the requirement of definition (128). If ¢ is
differentiable at all points of U, the map d¢ : U — Lr(E,F) is also
called the differential of ¢.

Definition 130 Let E, F be R-normed spaces and U be an open
subset of E. A map ¢ : U — F is said to be of class C, if and only
if dp(a) exists for all a € U, and the differential dp : U — Lr(E, F)
1S a continuous map.

EXERCISE 7. Let E, F be two R-normed spaces and U be open in E.
Let ¢ : U — F be a map, and a € U.
1. Show that ¢ differentiable at @ = ¢ continuous at a.

2. If ¢ is of class C", explain with respect to which topologies the
differential d¢ : U — Lr(F, F) is said to be continuous.
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3. Show that if ¢ is of class C!, then ¢ is continuous.

4. Suppose that £ = R. Show that for all a € U, ¢ is differentiable
at a € U, if and only if the derivative:

d)/ (a) é lim ¢(a + t) — ¢(a)

t#£0,t—0 t
exists in F, in which case d¢(a) € Lr (R, F) is given by:
Vt e R, dp(a)(t) = t.¢'(a)
In particular, ¢/(a) = dé(a)(1).

EXERCISE 8. Let E, F, G be three R-normed spaces. Let U be open
in Fand V beopenin F. Let ¢ : U — F and ¢ : V — G be two maps
such that ¢(U) C V. We assume that ¢ is differentiable at a € U,
and we put:

Iy £ dg(a) € Lr(E, F)
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We assume that 1) is differentiable at ¢(a) € V, and we put:

N
Iy = dy(¢(a)) € Lr(F,G)
. Explain why ¢ o ¢ : U — G is a well-defined map.

—_

2. Given € > 0, show the existence of 7 > 0 such that:
n(n+ Ll + lli2)) < e

3. Show the existence of do > 0 such that for all hy € F with
|ha|| < 02, we have ¢(a) + hy € V and:

[¥(p(a) + ha) — 1 o d(a) — l2(h2)|| < nllhe||
4. Show that if he € F and || he|| < 02, then for all h € E, we have:
|[¥(d(a) +h2) —od(a)—lzoli(h)|| < nlha||+||l2]].||h2 — 1L (R)]

5. Show the existence of 6 > 0 such that for all h € E with ||h] <4,
we have a+h € U and ||[¢(a+h)—d(a)—11(h)]| < n||h|], together
with [[¢(a + h) — ¢(a)]| < 2.
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6. Show that if h € F is such that ||h|| < J, then a + h € U and:

|1 0 ¢(ath) =4 o p(a) =l o L1 (h) || <nllp(ath)—d(a) [+nlll=]|. | Al
<n(n+ [l + D[]
<e|hll
7. Show that ls 0 ly € Lr(FE,G)

8. Conclude with the following:

Theorem 110 Let E, F,G be three R-normed spaces, U be open in
E and 'V be open in F. Let ¢ : U — F and ¥ : V — G be two maps
such that ¢(U) C V. Let a € U. Then, if ¢ is differentiable at a € U,

and ) is differentiable at ¢(a) € V, then o o ¢ is differentiable at
a € U, and furthermore:

d(¥ 0 ¢)(a) = dip(¢(a)) o dp(a)
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EXERCISE 9. Let F, F,G be three R-normed spaces. Let U be open
in £ and V be openin F. Let ¢ : U — F and ¢ : V — G be two
maps of class C* such that ¢(U) C V.

1. For all (I1,12) € Lr(F,G) x Lr(E, F), we define:

N

Ni(l,l2) = ([l + ]l
A

No(li,lz) = Ll + (|2
A

Noo(li,l2) = max(||iz]], [[L=]])

Show that N7, N3, N are all norms on Lr(F,G) x Lr(E, F).
2. Show they induce the product topology on Lgr (F, G)xLr (E, F).
3. We define the map H : Lr(F,G) x Lr(E,F) — Lr(E,G) by:
V(i o) € Lr(F,G) x Lr(E,F) , H(l1,l2) 2 110l
Show that ||H (I1,12)] < |[11]]-]|i2]], for all I, ls.



Tutorial 18: The Jacobian Formula 10

4. Show that H is continuous.
5. We define K : U — Lr(F,G) x Lr(E, F) by:
VaeU , K(a) = (d(¢(a)), dd(a))
Show that K is continuous.
6. Show that v o ¢ is differentiable on U.
7. Show that d(¢ o) = Ho K.

8. Conclude with the following:

Theorem 111 Let E, F,G be three R-normed spaces, U be open in
E andV be open in F. Let ¢ : U — F and ¢ : V — G be two maps
of class C* such that ¢(U) C V. Then, o ¢ : U — G is of class CL.
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EXERCISE 10. Let E be an R-normed space. Let a,b € R, a < b.
Let f:[a,b] = E and g : [a,b] — R be two continuous maps which
are differentiable at every points of |a,b[. We assume that:

vt €la, b, [f' (Bl < g'(t)

1. Given € > 0, we define ¢, : [a,b] — R by:
A
¢e(t) = [IF(t) = f(@)] — g(t) + g(a) — €(t —a)
for all ¢ € [a,b]. Show that ¢, is continuous.
2. Define E. = {t € [a,b] : ¢(t) < €}, and ¢ = sup E.. Show that:
¢ € [a,b] and ¢.(c) <€

3. Show the existence of h > 0, such that:

Yt € [a,a+ h[N]a,b] , ¢e(t) <€

4. Show that ¢ €]a, b].
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5.

© o N>

10.
11.

Suppose that ¢ €]a, b[. Show the existence of ty €], b] such that:
f(to) — f(c) 9(to) —g(c)
t() —C

< Il + /2 and o' () < L2

+¢/2

Show that ||/ (to) — f(0)]] < g(to) — g(c) + e(to — ).
Show that [|£(¢) — £(a)]| < g(c) — g(a) + e(c — a) + €.
Show that [[f(to) — f(a)|| < g(to) — g(a) + e(to — a) +«.
Show that ¢ cannot be the supremum of F, unless ¢ = b.
Show that || £(b) — £(a)]| < g(b) — g(a) + e(b— a) + €.

Conclude with the following:
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Theorem 112 Let E be an R-normed space. Let a,b € R, a < b.
Let f : [a,b] — E and g : [a,b] — R be two continuous maps which
are differentiable at every point of Ja,b[, and such that:

vt €la, b, [f'O <9'(t)

Then:
1£(b) = f(a)ll < g(b) — g(a)

Definition 131 Let n > 1 and U be open in R"™. Let ¢ : U — FE

be a map, where E is an R-normed space. For all © = 1,...,n, we

say that ¢ has an ith partial derivative at a € U, if and only if the
A

it 99 o(a + he:) — ¢(a)
. a -+ he;) —ola
0x; (a) = h;élol,li?—)o h
exists in E, where (e1,...,e,) is the canonical basis of R"™.
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EXERCISE 11. Let n > 1 and U be open in R". Let ¢: U — E be a
map, where F is an R-normed space.

1. Suppose ¢ is differentiable at a € U. Show that for all 1 € N,,:

| [6(a+ hei) — d(a) — dp(a)(hes)]| = 0

lim
h#0,h—0 Hhe |

2. Show that for all i € N,,, %‘i(a) exists, and:

0
o (a) = dofa)(e:)

3. Conclude with the following:

Theorem 113 Let n > 1 and U be open in R"™. Let ¢ : U — E be
a map, where E is an R-normed space. Then, if ¢ is differentiable at
acU, foralli=1,...,n, %(a) exists and we have:
9¢
ox;

Yh 2 (hy,... hn) €R" | d(a)(h) = i

=1

(a)h;
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EXERCISE 12. Let n > 1 and U be open in R". Let ¢ : U — E be a
map, where F is an R-normed space.

1. Show that if ¢ is differentiable at a,b € U, then for all i € N,,:

e >H < [1d6(®) — do(a)|

Joe-

2. Conclude that if ¢ is of class C' on U, then % exists and is
continuous on U, for all i € IN,,.

EXERCISE 13. Let n > 1 and U be open in R". Let ¢ : U — E be a
map, where F is an R-normed space. We assume that Bf exists on
U, and is continuous at a € U, for all i € N,,. We define [ : R" — F

by:

Vh 2 (hi,... hy) €R", | éz

1. Show that I € Ly (R", E).
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2. Given € > 0, show the existence of > 0 such that for all h € R"
with ||| <, we have a + h € U, and:

¢
Ox;

09
Ox;

Vi=1,...,n, (a+h)— ()ng

3. Let h = (h1,...,hy) € R" be such that ||h]| < n. (e1,...,€n)
being the canonical basis of R", we define kg = a and for ¢ € N,,:

ki é a + Z hie;
j=1
Show that kg, ..., k, € U, and that we have:
- 0
p(a+h)—¢(a)—=1(h) :; (¢(ki1 + hiez’)éb(kiﬁhia—Z(a))
4. Let i € N,,. Assume that h; > 0. We define f; : [0, h;] — E by:

Ve [0,h], filt) 2 Shio1 +tes) — (ki) — aaf< )
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Show f; is well-defined, f/(t) exists for all ¢ € [0, h;], and:

Vi€ [0,h] 1) = (s + o) — 52 (a)

5. Show f; is continuous on [0, h,], differentiable on ]0, h;[, with:
vt €]0, hil, Ifi)] <€

6. Show that:

‘¢(ki1 + hiei) — o(ki—1) — hi gj

(a)

< €|h|

%

7. Show that the previous inequality still holds if h; < 0.
8. Conclude that for all h € R" with ||h|] < n, we have:
[é(a+h) —¢(a) — I(R)|| < ev/n][h]|

9. Prove the following:
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Theorem 114 Let n > 1 and U be open in R"™. Let ¢ : U — E be
a map, where E is an R-normed space. If, for all i € N, % erists
on U and is continuous at a € U, then ¢ is differentiable at a € U.

EXERCISE 14. Let n > 1 and U be open in R". Let ¢ : U — E be a
map, where F is an R-normed space. We assume that for all i € N,
% exists and is continuous on U.

1. Show that ¢ is differentiable on U.
2. Show that for all a,b € U and h € R™:

1/2
<d¢<b>—d¢<a>><h>s<z 2200 - 520 ) I
3. Show that for all a,b € U:
n 9 1/2
lda(t) - ||<(Z 2200 - 22 (@) )
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4. Show that d¢ : U — Lr(R", E) is continuous.

5. Prove the following:

Theorem 115 Letn > 1 and U be open in R"™. Let ¢ : U — E be
a map, where E is an R-normed space. Then, ¢ is of class C' on U,

if and only if for alli=1,...,n, % exists and is continuous on U.

EXERCISE 15. Let E, F be two R-normed spaces and [ € Lg(E, F).
Let U be open in E and [y be the restriction of [ to U. Show that
ljy is of class C' on U, and that we have:

VeeU, dljy)(z) =1



Tutorial 18: The Jacobian Formula 20

EXERCISE 16. Let Ey,...,Ep,, (p > 1), be p R-normed spaces. Let
E=FE x...xEy. Forall x = (z1,...,2p) € E, we define:

P
> Nl
i=1

p
Dl
i=1

A
oo 2 max [
1=1,..

EEREE)

[l

A
el =

1. Show that [|.||1,]|.]|]2 and ||.||s are all norms on E.
2. Show ||.]|1, -]z and ||.||sc induce the product topology on E.

3. Conclude that F is also an R-normed space, and that the norm
topology on F is exactly the product topology on E.
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EXERCISE 17. Let E, F,...,Fp,, (p > 1) be p + 1 R-normed spaces,
Ubeopenin E, FF=F; x...x I}, and ¢ : U — F be a map.

1.

For i =1,...,p, let p; : F — F; be the canonical projection.
Show that p; € Lr(F, F;). We put ¢; = p; o ¢.

. Fori=1,...,p, let u; : F; — F be defined by:

7

Vo, € F; ul(xz) é(0,...,f.’l/ti\,...,O)

Show that w; € Lr(F;, F) and ¢ = Y%, u; o ;.

. Show that if ¢ is differentiable at a € U, then for alli =1,...,p,

¢; - U — F; is differentiable at a € U and d¢;(a) = p; o dp(a).

. Show that if for all ¢ = 1,...,p, ¢; is differentiable at a € U,

then ¢ is differentiable at a € U and:

do(a) = Z u; o deps(a)
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5. Suppose that ¢ is differentiable at a,b € U. We assume that F'
is given the norm ||(z1,...,2,)|2 = P llz:]|>. Show that
for all ¢ € Ny

[ds(b) — di(a)|| < [|[dp(b) — de(a)]

6. Show that:

1d(b) — do(a)l| < Z 1di(b) — doi(a)|?

7. Show that ¢ is of class C' & ¢; is of class C? for all i € N,,.

8. Explain why this conclusion would still hold, if F' were given the
norm |.||1 or |||l instead of |[|.||2.

9. Conclude with theorem (116)
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Theorem 116 Let E,F,...,Fp,, (p > 1), be p+1 R-normed spaces

and U be open in E. Let F' be the R-normed space F' = Fy X ... X F,

and ¢ = (¢1,...,¢p) : U — F be a map. Then, ¢ is differentiable at

a € U, if and only if dp;(a) exists for all i € N, in which case:
Vhe E, dp(a)(h) = (dp1(a)(h), ..., doy(a)(h))

Also, ¢ is of class C' on U & ¢; is of class C* on U, for all i € N,,.

Theorem 117 Let ¢ = (¢1,...,¢n) : U — R" be a map, where
n > 1 and U is open in R"™. We assume that ¢ is differentiable at

a€U. Then, foralli,j=1,...,n, gf? (a) exists, and we have:
J
2] 1 9 1
Sa) ... $%(a)
de(a) = : :
Adn 9Pn
() ... 32(a)

Moreover, ¢ is of class C* on U, if and only if for all i,j =1,...,n,

gi_ exists and is continuous on U.
J
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EXERCISE 18. Prove theorem (117)

Definition 132 Let ¢ = (¢1,...,¢,) : U — R"™ be a map, where
n > 1 and U is open in R"™. We assume that ¢ is differentiable at
a € U. We call jacobian of ¢ at a, denoted J(p)(a), the determinant
of the differential dp(a) at a, i.e.

g%(a) g%(a)
J(¢)(a) = det : :
Bo(a) ... 522(a)

Definition 133 Let n > 1 and Q, Q' be open in R"™. A bijection
¢ :Q — Q is called a C*-diffeomorphism between Q and ', if and
only if ¢: QA — R™ and ¢~ : ' — R"™ are both of class C.



Tutorial 18: The Jacobian Formula 25

EXERCISE 19. Let  and €' be open in R™. Let ¢ : Q@ — Q be a
C'-diffeomorphism, ) = ¢!, and I,, be the identity mapping of R".

1.

S ok W

Explain why J(¢) : Q' — R and J(¢) :  — R are continuous.
Show that d¢ (i (z)) o dip(z) = I, for all x € Q.

Show that di(é(z)) o dp(x) = I, for all x € Q.

Show that J(¢)(z) # 0 for all x € .

Show that J(¢)(z) # 0 for all x € Q.
)=

Show that J() = 1/(J(#) o ) and J(#) = 1/(J(¥) o 6).

Definition 134 Letn >1 and Q € B(R"), be a borel set in R™. We
define the lebesgue measure on (), denoted dx|q, as the restriction

to B(2) of the lebesgue measure on R", i.e the measure on (£, B(S2))
defined by:

VB € B(Q) , drjo(B) £ dx(B)
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EXERCISE 20. Show that dzq is a well-defined measure on (€2, B(€2)).

EXERCISE 21. Let n > 1 and €2, Q' be open in R". Let ¢ : Q — Q'
be a C'-diffeomorphism and ¢ = ¢~ '. Let a € . We assume that
dv(a) = I, (identity mapping on R"), and given ¢ > 0, we denote:

Bla,e) 2 {z e R": |la— 2| < ¢}
where ||.|| is the usual norm in R".
1. Why are dx|q/, ¢(dz|q) well-defined measures on (€', B(£2')).
2. Show that for € > 0 sufficiently small, B(a,¢) € B(Q').

3. Show that it makes sense to investigate whether the limit:

¢(dzj0)(B(a,¢€))
el dxjo(B(a,e))

does exists in R.
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4. Given r > 0, show the existence of €; > 0 such that for all
h € R" with ||h]| < €1, we have a + h € ', and:

[4(a+ h) —p(a) — || <Al

5. Show for all h € R"™ with [|h|| < €1, we have a + h € ', and:
[P(a+h) = P(a)]| < (L+r)[|A]

6. Show that for all € €]0, €[, we have B(a,¢) C ', and:
U(B(a,€)) € B(i(a), (1 + 7))

7. Show that d(¥(a)) = L.

8. Show the existence of €2 > 0 such that for all & € R" with
lk|| < €2, we have ¥(a) + k € Q, and:

[6(¢(a) + k) —a — K[| < |kl
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9. Show for all k € R"™ with ||k|| < e2, we have ¢(a) + k € £, and:
[o((a) + k) —af < (1 +7)|]
10. Show for all € €]0, e2(1 + 7)[, we have B(¢(a), 1) € ©Q, and:

B(i(a), ) €{¢ € Ba,e)}

.
T+
11. Show that if B(a,e) C ', then ¥)(B(a,¢€)) = {¢ € B(a,¢)}.
12. Show if 0 < € < €g = €1 A €2(1 + 1), then B(a,e) C ', and:

B(¢(a), ) €{¢ € Bla,e)} € B(¢(a),e(1 +7))

T
13. Show that for all € €]0, ¢:
() de(BO@), ) = (14 1) dr (B, )
(i) dz(B(y(a),e(1+7))) = (1 +7)"dro (B(a, €))

(iii)  de({¢ € Bla,€)}) = d(dxia)(B(a,¢€))
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14. Show that for all € €]0, €[, B(a,e) C €', and:

0 Bldno)(Blo,e)

) < o (B(a, )

<(AQ+r"

15. Conclude that:

L Bldrie)(B(a,0)

=1
ello dxo(B(a,€))

EXERCISE 22. Let n > 1 and Q, Q' be open in R”. Let ¢ : 2 — Q' be
a Cl-diffeomorphism and ¢ = ¢=1. Let a € '. We put A = di)(a).

1. Show that A : R™ — R" is a linear bijection.

2. Define Q" = A71(Q). Show that this definition does not depend
on whether A=1(Q) is viewed as inverse , or direct image.

3. Show that " is an open subset of R".
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4.

We define ¢ : Q" — Q' by ¢(z) = ¢ o A(z). Show that ¢ is a
C!-diffeomorphism with ¢ = ¢=! = A=1 01,

. Show that di(a) = I,,

. Show that:

e )(Ba,0)
ell0 dI‘Q/ (B(a,e))

Let € > 0 with B(a,e) C Q. Justify each of the following steps:
Bz ) (Blar€)) = drio ({6 € Bla, ) 1

— d2({$ € B(a,e)}) 2
= de({r € Q": GoA() € B(a,d)}) (3

)

(2)

3)

do({z € Q" : A(x) € 97" (B(a.€))}) (4)
()

(6)

(7)

dr({x € R" : A(x) € ¢~ (B(a,€)}) (5
= A(dz)({¢ € B(a,€)})
= |det A|"*dz({¢ € B(a,€)})

6
7
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= |det A" 'dzjo({¢ € Bla,€)}) (8)
= [det A|"'¢(dx)n)(B(a,¢)) (9)
8. Show that: o(dri) (Bla, o)

z|0 a,€)) _ .
10 dz|o(B(a,€)) |det 4

9. Conclude with the following:

Theorem 118 Letn > 1 and Q, Q' be open in R". Let ¢ : Q — Q'
be a C'-diffeomorphism and 1 = ¢~. Then, for all a € ', we have:
. ¢(dz0)(B(a,¢))
lim ————— = |J(¥)(a
ello dxo(B(a,€)) QIO
where J(¢)(a) is the jacobian of 1 at a, B(a,¢€) is the open ball in R",

and dx|q, dx|q: are the lebesgue measures on () and Q' respectively.
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EXERCISE 23. Let n > 1 and €, Q' be open in R". Let ¢ : Q —
be a C!-diffeomorphism and 1) = ¢~ 1.

1. Let K C Q' be a compact subset of Q' such that da | (K) = 0.
Given € > 0, show the existence of V open in ', such that
KCVC, and drio (V) < e

2. Explain why V is also open in R".
3. Show that M = sup,cx ||di(z)] < +o0.

4. For all z € K, show there is €, > 0 such that B(z,e,;) C V, and
for all h € R™ with ||h|| < 3e,, we have x + h € ', and:

[(z + h) —¢()]| < (M + 1)[R]
5. Show that for all x € K, B(z,3¢,) C Q', and:
Y(B(z,3€2)) € B(Y(x),3(M + 1)eq)

6. Show that (B(z,3¢;)) = {¢ € B(x,3¢,)}, for all z € K.
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7. Show the existence of {z1,...,2,} C K, (p > 0), such that:
K C B(x1,€x,)U...UB(xp,€,,)

8. Show the existence of S C {1,...,p} such that the B(z;,¢€s,)’s
are pairwise disjoint for ¢ € S, and:

K C | Bwi,3ex,)
€S
9. Show that {¢ € K} C Uies B(1h(x;),3(M + 1)ey,).
10. Show that ¢(dz))(K) < X e g 3™(M + 1)"dz(B (i, €x,))-
11. Show that ¢(dzo)(K) < 3"(M + 1)"dz(V).
12. Show that ¢(dz)(K) < 3"(M + 1)
13. Conclude that ¢(dzo)(K) =

14. Show that ¢(dx|q) is a locally finite measure on (Q', B(Q')).
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15. Let B € B(Q') be such that dz)o/(B) = 0. Show that:
#(dx)o)(B) = sup{¢(dr)o)(K) : K € B, K compact }

16. Show that ¢(dz|q)(B) = 0.

17. Conclude with the following:

Theorem 119 Letn > 1, Q, € be open in R™, and ¢ : Q@ — Q' be
a C'-diffeomorphism. Then, the image measure o(dx)q), by ¢ of the
lebesgue measure on 2, is absolutely continuous with respect to dxq,
the lebesque measure on S, i.e.:

(]5<d$m) << d.’E‘Q/
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EXERCISE 24. Let n > 1 and Q, € be open in R™. Let ¢ : Q —
be a C!-diffeomorphism and 1) = ¢~ 1.

1.

A S A

Explain why there exists a sequence (V},),>1 of open sets in ',
such that V, T ' and for all p > 1, the closure of V}, in ' i.e.

Vpﬂl, is compact.

Show that each V), is also open in R", and that Vpﬂl = Vp.
Show that ¢(dx)q)(V,) < +oo, for all p > 1.

Show that dz|o and ¢(dx|) are two o-finite measures on €',

Show there is h: (', B(Q)) — (R*, B(R")) measurable, with:

VB e BQ) . ¢(drin)(B) :/Bhdxm,

. For all p > 1, we define hy, = hly,, and we put:

hy(z) if zeQ

n 3 A
Ve e R ,hp(x):{o it o2
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Show that:
/ hyda: :/ hpdz)gr = ¢(dz)0)(V,) < +00
n Q/

and conclude that h, € L (R™, B(R"), dz).

7. Show the existence of some N € B(R™), such that de(N) =0
and for all x € N¢ and p > 1, we have:

N 1 ~
h,(x) =lim ———— h,dx
o) = I B @ 9) /B(m P
8. Put N’ = NN €. Show that N’ € B(Q) and dao (N’) = 0.

9. Let x € Q' and p > 1 be such that z € Vp. Show that if e > 0 is
such that B(x,e) CV,, then dz(B(z,¢€)) = dr)o (B(x,€)), and:

/ ilpd.”[?:/ 1B(x’e)l~lpd$=/ 1B(x,e)hpd33|9’
B(x,e€) R Q/
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10. Show that:
/Q 1B(m,e)hpdx\§2’ :/Q 1B(x,e)hdx\§2’ = qb(dxm)(B(x,e))

. ow that for all x € , we have:
11. Sh hat for all Q'\ N’ h

- dlday) (B, o)
M) = B (B, )

12. Show that h = [J(¢)| dz|o-a.s. and conclude with the following:
Theorem 120 Letn > 1 and Q, Q' be open in R"™. Let ¢ : Q —
be a C'-diffeomorphism and ¢ = ¢~'. Then, the image measure by ¢

of the lebesque measure on 2, is equal to the measure on (', B(Q))
with density |J(1)| with respect to the lebesque measure on ', i.e.:

odz) = [ 110l doro
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EXERCISE 25. Prove the following:

Theorem 121 (Jacobian Formula 1) Letn >1 and ¢ : Q2 — Q'
be a C'-diffeomorphism where Q, ' are open in R". Let ¢ = ¢~ 1.
Then, for all f: (Q',B()) — [0, +0c] non-negative and measurable:

/ fopdeg = / F17 ()|
Q Q7
and:

[ ool = [ fine

EXERCISE 26. Prove the following:
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Theorem 122 (Jacobian Formula 2) Letn >1 and ¢ : Q2 — Q'
be a C'-diffeomorphism where 1, ' are open in R"™. Let ¢ = ¢~ 1.
Then, for all measurable map f : (', B(Y)) — (C,B(C)), we have
the equivalence:

fod e Le(Q.B(Q),drjo) & flJ(¥)| € Le(,B(Q), drjor)

i which case:
[ tesdng= [ sl
Q Q

and, furthermore:

(fod)lJ(9)] € Lo(,B(Q), drjn) & f € Lo(?, B(Y), drjer)

i which case:

[ ool = [ fine
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EXERCISE 27. Let f:R?—=[0, +oc], with f(z,y) = exp(— (22 +y?)/2).

1. Show that:
+oo 5 2
/ f(z,y)dady = </ e /Qdu>
R? —oo
2. Define:
A 2 {(z,y)) eR*: 2>0, y >0}
A, 2 {(z,y)) eR*: 2<0, y>0}

and let Az and A4 be the other two open quarters of R, Show:

/ £, y)dzdy = / £, y)dedy
R?2 A

1U.LUAY

3. Let Q : R? — R? be defined by Q(z,y) = (—x,y). Show that:

f(z,y)dzdy = /A foQ Nz, y)dudy

Ay
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4. Show that:

/ flz,y)dedy =4 | f(z,y)dzdy
R2 Aq

5. Let Dy =]0,4+00[x]0,7/2[C R?, and define ¢ : D; — A by:
v(r.0) € D1, ¢(r,0) = (
Show that ¢ is a bijection and that ¢ = ¢~ is given by:

V(z,y) € A1, Y(z,y) = (Vo2 + y?, arctan(y/r))

6. Show that ¢ is a C'-diffeomorphism, with:

(1. 0) € Dy , do(r, ) = ( cosf —rsind >

rcosf,rsind)

sinf  rcosf

and:

4 Yy
V(m,y) S Al y d’l/J(.’E,y) = ( \/Ij;ry2 \/mierQ )

x24y? 22 4y?

41
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7. Show that J(¢)(r,0) = r, for all (r,0) € D;.

8. Show that J(¢)(x,y) = 1/(y/2? + y?), for all (z,y) € A;.

9. Show that:

i
f(z,y)dedy = B
Ay

10. Prove the following:

Theorem 123 We have:

1 +oo 29
— e "/ du=1
V 2 /—oo

42
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19. Fourier Transform

EXERCISE 1. We define the maps ¢ : R> — C and ¢ : R — C:

V(u,2) € R? | p(u,z) = e/

N e
Yue R, ¢(u) = U(u, z)dx

1. Show that for all u € R, the map z — ¥ (u, z) is measurable.

2. Show that for all u € R, we have:

+o00
/ 4 (u, z)|dz = V21 < +o0

— 00

and conclude that ¢ is well defined.

3. Let u € R and (un)n>1 be a sequence in R converging to w.
Show that ¢(un) — ¢(u) and conclude that ¢ is continuous.
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+oo 5
/ xe T/ 2dy =1
0

5. Show that for all © € R, we have:
+oo o

[m 6—15(%33)

6. Let a,b € R, a < b. Show that:

b
et — et = / 1e"*dx
a

7. Let a,b € R, a < b. Show that:
|eib _eial S |b—a|

4. Show that:

8. Let a,b € R, a # b. Show that for all z € R:

‘1/} (b,x) —Y(a,x)

b—a < Jale="/?

dr =2 < 400
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9. Let w € R and (un)n>1 be a sequence in R converging to u,
with u, # u for all n. Show that:

lim lun) = &(u) /+°° a—w(u,x)dx

n—+o0o Uy — U ou

— 00

10. Show that ¢ is differentiable with:

VueR, ¢'(u) = / —(u, z)dx

— 00

11. Show that ¢ is of class C'.

12. Show that for all (u,2) € R?, we have:

(Z_z(uax) = 77”/}(11’755) - Zg_i}(uvx)

13. Show that for all u € R:
+oo o
[ |G

— 00

dr < 400




Tutorial 19: Fourier Transform

14. Let a,b € R, a < b. Show that for all u € R:

b
0
v b) = v = [ w0y

15. Show that for all u € R:

+oo o
/ a—f(u,x)dx =0

— 00

16. Show that for all u € R
¢’ (u) = —up(u)

EXERCISE 2. Let S be the set of functions defined by:
S21{h: he C'R,R), Vue R, I (u) = —uh(u)}
1. Let ¢ be as in ex. (1). Show that Re(¢) and Im(¢) lie in S.
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2. Given h € §, we define g : R — R, by:
Vue R, gu) 2 h(u)e”/?
Show that g is of class C! with ¢’ = 0.
3. Let a,b € R, a < b. Show the existence of ¢ €]a, b[, such that:
9(b) = g(a) = g'(c)(b - a)
4. Conclude that for all h € S, we have:
Vue R, h(u) = h(0)e /2

5. Prove the following:

Theorem 124 For all u € R, we have:

I R, 2 s
et —a /2 g0 U
V 2 [oo
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Definition 135 Let 1, ..., j, be complex measures on R™,' where
n,p > 1. We call convolution of p1, ..., 1y, denoted 11 ... x iy, the
image measure of the product measure j1n ®...® [, by the measurable
map S : (R")? — R" defined by:

A
S(@1,. . mp) =14+ ...+ 1

In other words, 1 *...xu, is the complex measure on R", defined by:
A
Pk ok =S @ ... @ pp)

EXERCISE 3. Let u, v be complex measures on R".

1. Show that for all B € B(R"):

wxv(B) = /R 1p(z +y)dp @ v(z,y)

nxR”™

L An obvious shortcut to saying ’complex measures on (R™, B(R™))’.
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2. Show that for all B € B(R"):

1% v(B) :/n (/n 1B(x+y)du(w)> dv(y)

3. Show that for all B € B(R"):

1% v(B) :/n (/n 1B(x+y)dV(w)> du(y)

4. Show that p*xv =vx pu.
5. Let f: R" — C be bounded and measurable. Show that:

| gawsv= [ fespaus vy

n xR
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EXERCISE 4. Let pu,v be complex measures on R". Given B C R"
and x € R", we define B—ax={yeR" , y+x € B}.

1. Show that for all B € B(R") and z € R", B —z € B(R").
2. Show z — u(B—x) is measurable and bounded, for B € B(R").
3. Show that for all B € B(R"):
prv(B) = [ (B - 2l
Rn
4. Show that for all B € B(R"):

perlB) = [ (B = 2)dulz)
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EXERCISE 5. Let uq, 2, ug be complex measures on R".

1. Show that for all B € B(R"):

11 (jiz 5 1) (B) = /R (a4 9)d (2 # i) 0.)
’VLX n

2. Show that for all B € B(R") and z € R":

/ L (z + y)dpuz % pa(y) = / Ln(e 4y + 2)dua © pa(y, 2)
n R”XR"’

3. Show that for all B € B(R"):

pia x (pz * pi3) (B) :/ 1p(z +y+ 2)du @ pe ® ps(x,y, 2)
R7»xR"xR™

4. Show that M1 * (,LLQ *'LL3) = 1 K Mo x U3 = ('LLl *'LLQ) * (3
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Definition 136 Letn > 1 anda € R". We define §,:B(R")—R™":
VB € B(R") , 6.(B) £ 15(a)

04 18 called the dirac probability measure on R", centered in a.

EXERCISE 6. Let n > 1 and a € R".
1. Show that J, is indeed a probability measure on R".

2. Show for all f: R" — [0, +00] non-negative and measurable:

fdba = f(a)

R”

3. Show if f: R" — C is measurable, f€ LL(R", B(R"),d,) and:

fdfsa = f(a)
Rn
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4. Show that for any complex measure g on R™:
pk O = 0o * fb = f

5. Let 7,(x) = a+a define the translation of vector a in R™. Show
that for any complex measure 1 on R™:

px O = Og * i = Ta(ﬂ)
EXERCISE 7. Let n > 1 and p, v be complex measures on R". We

assume that v << dx, i.e. that v is absolutely continuous with respect
to the lebesgue measure on R".

1. Show there is f € L (R", B(R"), dx), such that v = [ fdux.
2. Show that for all B € B(R"), we have:

- :/Ru — 2)dp(x)

n
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3. Show that for all B € B(R") and z € R™:

/ 15(y —x)dy

4. Show that for all B € B(R") the map:

(z,y) = 1Y) fly — x)
lies in LL(R™ x R"™, B(R") @ B(R™), 1t @ dy).

5. Show that for all B € B(R"), we have:
wrrtB) = [ ([ 1= 0pute)) ay
B \JR"
6. Given y € R", we define:

gy) = fly — z)du(z)

R

Show that g(y) is well-defined for dy-almost all y € R".

12
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7. Define an element g of Lg(R", B(R"),dz), with g = § dv —a.s.

8. Show that p % v is absolutely continuous w.r. to the lebesgue
measure on R", with density g.

Theorem 125 Let pu,v be two complex measures on R", n > 1. If
v << dx, i.e. v is absolutely continuous with respect to the lebesgue
measure on R", with density f€ L&(RYB(R"),dx), then the convo-
lution pxv = v p is itself absolutely continuous with respect to the
lebesgue measure on R™, with density:

9(y) = fly —x)du(z) , dy — a.s.
Rn

In other words, pxv =v*pu= [ gdx.

EXERCISE 8. Further to theorem (125), show that if 4 = [ hdz for
some h € L(R", B(R"),dz), then:

g(y) = fly —x)h(x)dz , dy — a.s.
Rn
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Definition 137 Let u be a complex measure on (R™, B(R™)), n > 1.
We call fourier transform of u, the map Fu : R" — C defined by:

Yu e R" , Fu(u) 2 / e dyy ()

n

where (-,-) is the usual inner-product in R™.

EXERCISE 9. Further to definition (137):

1. Show that Fpu is well-defined.
Show that Fu € C4(R™), i.e Fpu is continuous and bounded.
Show that for all a,u € R", we have Vu € R"™ , Fd,(u) = e {",

L

Let p be the probability measure on (R, B(R)) defined by:
A 1 2
VB e B(R), w(B :—/e_g”/de
®) . up) s = [

Show that Fpu(u) = e~*"/2, for all u € R.
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EXERCISE 10. Let 1, ..., it be complex measures on R", n,p > 1.

1. Show that for all u € R", we have:

Flpak. . .xpp)(u) = / eI A @ @ (T, Tp)
(R

n)p
2. Show that F(uy ... % pp) = T_ Fpy.
EXERCISE 11. Let n > 1, 0 > 0 and ¢, : R” — R defined by:
1
2 1 lel?/2e?

Ve e R" | go(x) = @) %o

1. Show that:
/ 9o (x)der =1

2. Show that for all u € R", we have:

/ G ()60 gy = o= Iul*/2
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3. Show that P, = [ g,dz is a probability on R" with fourier
transform:

YueR", FP,(u) = e Iul*/2

4. Show that for all x € R", we have:

1 ilz,u)—o?||ul|?
g0 (x) = (%)n/ pilwa)—o?ul2/2 g,

EXERCISE 12. Further to ex. (11), let 1 be a complex measure on R".

1. Show that p P, = [ ¢,dx where:
00(0) = [ gule—y)duty) . do—as.

2. Show that we also have:

bo () = / ; 9oy — x)duly) , dx — a.s.
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3. Show that:

1 i(y—ax,u)—o?||ul|?
do(x) = W/ (/ ey—zu)=olul /Zdu> du(y) , dx — a.s.

4. Show that:

x) = ! e_i<$7“>_‘72\|u|\2/2 wdu
%0 (@) = Gy / . (Fp) (w)d

5. Show that if u, v are two complex measures on R" such that
Fu = Fr, then for all o > 0, we have ux P, = v * P,.

Definition 138 Let (2,7) be a topological space. Let (pr)r>1 be a
sequence of complex measures on (2, B(2)). We say that the sequence
(1 )k>1 narrowly converges to a complex measure p on (2, B()),
and we write ui — p narrowly, if and only if:

vfech@ . tm_ [ fdu = [ fau
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EXERCISE 13. Further to definition (138):

1. Show that pui — wp narrowly, is equivalent to:
vreck@, tm_ [ fdn = [ sau

2. Show that if (€2, 7) is metrizable and v is a complex measure on
(Q,B(Q)) such that pup — p and pr — v narrowly, then p = v.

Theorem 126 On a metrizable topological space, the narrow limit
when it exists, of any sequence of complex measures, is unique.
EXERCISE 14.

1. Show that on (R, B(R)), we have d;/, — do narrowly.

2. Show there is B € B(R), such that d,/,(B) # do(B).
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EXERCISE 15. Let n > 1. Given o > 0, let P, be the probability
measure on (R",B(R™)) defined as in ex. (11). Let (oy)k>1 be a
sequence in RT such that o, > 0 and o3, — 0.

1. Show that for all f € C(R"), we have:

[ @) @) = !

(2m)% JRro

2. Show that for all f € C(R"), we have:

Flopz)e =17 /2 4y

lim f(x)go, (x)dz = f(0)

k——+oco R"”

3. Show that P,, — ¢ narrowly.
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EXERCISE 16. Let u, v be two complex measures on R". Let (v4)r>1
be a sequence of complex measures on R", which narrowly converges

tov. Let f € Cx(R™), and ¢ : R" — R be defined by:

VyeR", ¢y) 2 [ fla+y)du()

Rn
1. Show that:
fawsvi= [ Sl y)dusnie)
Rn RTIrXR’VL
2. Show that:
fduxvg = ¢dvy,
R" R"
3. Show that ¢ € C&(R™).

=

. Show that:

lim odvy, = odv
k—-4o00 R Rn
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5. Show that:

lim fduxv, = fduxv
k—"'rOO R R”

6. Show that p* v — p* v narrowly.

Theorem 127 Let u,v be two complex measures on R™, n > 1. Let
(Vk)k>1 be a sequence of complex measures on R"™. Then:

Vv — UV narrowly = [x Vg — [Lx UV narrowly

EXERCISE 17. Let p, v be two complex measures on R", such that
Fu = Fv. For all ¢ > 0, let P, be the probability measure on
(R",B(R")) as defined in ex. (11). Let (0x)r>1 be a sequence in R
such that o > 0 and o — 0.

1. Show that p* P, =v«*P,,, forall k > 1.

2. Show that p* P,, — p* do narrowly.
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3. Show that (u* P, )r>1 narrowly converges to both p and v.

4. Prove the following:

Theorem 128 Let p,v be two complex measures on R™. Then:
Fu=Fv = p=v

i.e. the fourier transform is an injective mapping on M*(R", B(R")).

Definition 139 Let (Q, F, P) be a probability space. Given n > 1,
and a measurable map X : (Q,F) — (R",B(R")), the mapping ¢x
defined as:

VueR", px(u) 2 EleiX)]

is called the characteristic function? of the random variable X .

2Do not confuse with the characteristic function 14 of a set A, definition (39).



Tutorial 19: Fourier Transform 23

EXERCISE 18. Further to definition (139):
1. Show that ¢x is well-defined, bounded and continuous.

2. Show that we have:

Vu € R" | ¢x(u) = / el dX (P)(x)

3. Show ¢x is the fourier transform of the image measure X (P).
4. Show the following:
Theorem 129 Let X|Y : (2,F) — (R",B(R")), n > 1, be two

random variables on a probability space (Q,F,P). If X and Y have
the same characteristic functions, i.e.

Yu e R" , E[ewX)] = Elef®Y))
then X andY have the same distributions, i.e.

VB e BR"), P({X € B}) = P({Y € B})
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Definition 140 Letn > 1. Given o = (a1,...,a,) € N™, we define
the modulus of «, denoted ||, by |a| = a1 + ...+ ay,. Given z € R"
and o« € N", we put:

= it
where it is understood that =’ = 1 whenever oj = 0. Given a map
f U — C, where U is an open subset of R", we denote 0“f the

|a|-th partial derivative, when it exists:
N olelf
Ozt ... 0z
Note that 0 f = f, whenever |a| = 0. Given k > 0, we say that f is

of class C*, if and only if for all o € N™ with |a| < k, 0°f exists
and is continuous on U.

(0203
n

o0 f

EXERCISE 19. Explain why def. (140) is consistent with def. (130).
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EXERCISE 20. Let p be a complex measure on R", and o € N™, with:
[ e ldlul(@) < +oc 0
Rn
Let z®u the complex measure on R" defined by 2 = [ 2%dp.
1. Explain why the above integral (1) is well-defined.

2. Show that z%u is a well-defined complex measure on R".

3. Show that the total variation of %y is given by:
VB € BR") , |a"l(B) = [ [o*ldlul(e
4. Show that the fourier transform of z%u is given by:

Vu e R", F(z®w)(u) :/ 22N dy ()
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EXERCISE 21. Let 1 be a complex measure on R"™. Let § € N™ with
|8 =1, and:

| e ldlul(a) < +o0

Rn

Let 27 be the complex measure on R™ defined as in ex. (20).
1. Show that there is j € N,, with 27 = x; for all z € R™.
2. Show that for all u € R", %}-Tf(u) exists and that we have:

OF 1
8u]'

(u) = z/ x5e ) dp ()

3. Conclude that §°Fpu exists and that we have:
OPFu=iF(z’p)

4. Explain why 9% Fpu is continuous.
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EXERCISE 22. Let 1 be a complex measure on R". Let k > 0 be an
integer. We assume that for all « € N", we have:

o<k = [ faldlul(o) < +o0 &)
RTI,
In particular, if |a] < k, the measure x®u of ex. (20) is well-defined.
We claim that for all « € N™ with |a| < k, 0*Fpu exists, and:
9 Fp = il F (2 )

1. Show that if £ = 0, then the property is obviously true. We
assume the property is true for some k > 0, and that the above
integrability condition (2) holds for k + 1.

2. Let o/ € N" be such that |o/| < k4 1. Explain why if |o/| < &,
then 0% Fu exists, with:

0" Fu = i‘allj’:(xa/,u)

3. We assume that |o/| = k + 1. Show the existence of o, f € N"
such that o+ 8 =&/, |a] = k and |5] = 1.
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4.

10.

Explain why 0%Fu exists, and:
O Fpu =il F(ap)

. Show that:

/ 2P |d] ] () < +o0
R’n.

. Show that 9P F(x®u) exists, with:

O F (2% p) = iF (2" (2 p))
Show that 0°(0%Fu) exists, with:
07 (0°Fp) = il F(2f (2 p))

. Show that zf(z*p) = z* p.

. Conclude that the property is true for k + 1.

Show the following:
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Theorem 130 Let pu be a complex measure on R", n > 1. Let k > 0
be an integer such that for all o € N™ with || < k, we have:

[ e ldlul(@) < +oc
R’n.

Then, the fourier transform Fu is of class C* on R™, and for all
a € N™ with |a| < k, we have:

Vu e R" , 0%Fu(u) = ila‘/ 2N dy(z)

n

In particular:

/ ) 2dp(x) = i1 Fpu(0)
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20. Gaussian Measures
M, (R) is the set of all n x n-matrices with real entries, n > 1.

Definition 141 A matriz M € M, (R) is said to be symmetric,
if and only if M = M?'. M is orthogonal, if and only if M is
non-singular and M~' = M*. If M is symmetric, we say that M is
non-negative, if and only if:

Yu e R" | (u,Mu) >0

Theorem 131 Let ¥ € M, (R), n > 1, be a symmetric and non-
negative real matriz. There exist A\1,..., A, € RT and P € M, (R)
orthogonal matrixz, such that:

Al 0
=P . P!
0 An
In particular, there exists A € M, (R) such that ¥ = A.A*.
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As a rare exception, theorem (131) is given without proof.
EXERCISE 1. Given n > 1 and M € M,,(R), show that we have:
Vu,v € R" | (u, Mv) = (M"u,v)

EXERCISE 2. Let n > 1 and m € R". Let ¥ € M,,(R) be a symmetric
and non-negative matrix. Let p; be the probability measure on R:

1 2
VB e B(R), ui(B) = E/ e 2dx
B

Let 4 = p11 ®...® g be the product measure on R". Let A € M, (R)
be such that ¥ = A.A’. We define the map ¢ : R® — R" by:

Ve e R", ¢(z) 2 Az+m
1. Show that u is a probability measure on (R", B(R")).
2. Explain why the image measure P = ¢(u) is well-defined.
3. Show that P is a probability measure on (R", B(R")).
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4. Show that for all u € R™:
FP(u) = / eXwP@) dy(x)
5. Let v = A*u. Show that for all uw € R™:
FP(u) = eilum)—|v)|?/2
6. Show the following:
Theorem 132 Letn > 1 and m € R". Let ¥ € M, (R) be a sym-

metric and non-negative real matriz. There exists a unique complex
measure on R", denoted N, (m,X), with fourier transform:

FN,(m, %) (u) 2 / BT AN, (m, 2 (z) = ei{uwm) =3 (u,Bu)

n

for all w € R™. Furthermore, Ny(m,X) is a probability measure.
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Definition 142 Let n > 1 and m € R". Let ¥ € Mu,(R) be
a symmetric and non-negative real matriz. The probability measure
N,(m,X) on R" defined in theorem (132) is called the n-dimensional
gaussian measure or normal distribution, with mean m € R"
and covariance matriz 3.

EXERCISE 3. Let n > 1 and m € R". Show that N,,(m,0) = §,,.

EXERCISE 4. Let m € R". Let ¥ € M,(R) be a symmetric and
non-negative real matrix. Let A € M, (R) be such that ¥ = A.A".
A map p: R" — C is said to be a polynomial, if and only if, it is a
finite linear complex combination of maps x — z%,! for a € N".

1. Show that for all B € B(R), we have:

1
Ni(0,1)(B) = —— i e 24y

ISee definition (140).
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2. Show that: o
[l < o

— 00

3. Show that for all integer k > 1:

1 e k41 2/2 k e k—1 2/2
\/?/ ¥ e I odr = —2 ¥ e Pdx
m™Jo ™ Jo

4. Show that for all integer k > 0:

+o00
/ 2N (0, 1)(z) < +o00

5. Show that for all o € N™:

/ 22 JdNL(0,1) ® . .. ® N1(0,1)() < +oo
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6.

11.
12.
13.

Let p: R" — C be a polynomial. Show that:
/ (@) AN (0,1) ® ... © N1 (0, 1)(z) < +00

Let ¢ : R™ — R" be defined by ¢(z) = Ax + m. Explain why
the image measure ¢(N1(0,1) ®...® N1(0,1)) is well-defined.

. Show that ¢(N1(0,1) ®...® N1(0,1)) = N,(m,X).
. Show if 3 € N™ and |3| = 1, then x — ¢(z)? is a polynomial.
10.

Show that if o/ € N™ and |o/| = k+1, then ¢(x)* = ¢(z)*¢(x)?
for some a, 8 € N™ such that |a| = k and |5] = 1.

Show that the product of two polynomials is a polynomial.
Show that for all « € N”, x — ¢(x)® is a polynomial.
Show that for all a € N":

/ ) |p(2)*|dN1(0,1) ® ... @ N1(0,1)(x) < +00
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14. Show the following:

Theorem 133 Letn > 1 and m € R". Let ¥ € M, (R) be a sym-
metric and non-negative real matrixz. Then, for all « € N", the map
x — x® is integrable with respect to the gaussian measure N, (m,X):

/n || d Ny (m, X)(x) < 400

EXERCISE 5. Let m € R". Let ¥ = (0y;) € M, (R) be a symmetric
and non-negative real matrix. Let j,k € N,. Let ¢ be the fourier
transform of the gaussian measure N,,(m,X), i.e

Vu € R , ¢(U) é ei(u,m)7%<u,2u>

1. Show that:

[ it @) =7 52 0)
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2. Show that:
[ wsdam D)) = m,
3. Show that:
9%¢
2xdN,, (m, 2)(r) =i 2 =———(0
[ N m D)@ = 72520 0)
4. Show that:
/ ;xR dNy(m, X)(z) = oji — mjmy
5. Show that:

[ @ = ms)(on — m)dNa(m 2)(a) = o
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Theorem 134 Letn > 1 and m € R". Let ¥ = (0y5) € M,(R)
be a symmetric and non-negative real matriz. Let Np(m,X) be the
gaussian measure with mean m and covariance matriz Y. Then, for
all j,k € N,,, we have:

/n xjdN,(m, ) (x) = m,
and:
[ @ = = ma)dNa(m, @) = o

Definition 143 Let n > 1. Let (2, F, P) be a probability space. Let
X (,F) — R",BR")) be a measurable map. We say that X
1s an n-dimensional gaussian or normal vector, if and only if its
distribution is a gaussian measure, i.e. X(P) = N,(m,X) for some
meR" and ¥ € M, (R) symmetric and non-negative real matriz.

EXERCISE 6. Show the following:
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Theorem 135 Letn > 1. Let (0, F, P) be a probability space. Let
X : (Q,F) = R" be a measurable map. Then X is a gaussian vector,
if and only if there exist m € R™ and ¥ € M, (R) symmetric and
non-negative real matrix, such that:

Vu e R, E[ewX)] = gilwm) =3 (w3

where (-,-) is the usual inner-product on R".

Definition 144 Let X : (Q,F) — R (or C) be a random variable
on a probability space (Q, F, P). We say that X is integrable, if and
only if we have E[|X|] < +00. We say that X is square-integrable,
if and only if we have E[|X|?] < +oo.
EXERCISE 7. Further to definition (144), suppose X is C-valued.

1. Show X is integrable if and only if X € L§(Q,F, P).

2. Show X is square-integrable, if and only if X € LE(Q,F, P).
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EXERCISE 8. Further to definition (144), suppose X is R-valued.

1. Show that X is integrable, if and only if X is P-almost surely
equal to an element of Lk (Q, F, P).

2. Show that X is square-integrable, if and only if X is P-almost
surely equal to an element of L% (Q, F, P).

EXERCISE 9. Let X,Y : (Q,F) — (R, B(R)) be two square-integrable
random variables on a probability space (2, F, P).

1. Show that both X and Y are integrable.
2. Show that XY is integrable

3. Show that (X —FE[X])(Y —E[Y]) is a well-defined and integrable.
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Definition 145 Let XY : (Q,F) — (R,B(R)) be two square-
integrable random variables on a probability space (0, F,P). We de-
fine the covariance between X and Y, denoted cov(X,Y), as:

cov(X,Y) £ E[(X — E[X))(Y — E[Y])]
We say that X andY are uncorrelated if and only if cov(X,Y) = 0.
If X =Y, cov(X,Y) is called the variance of X, denoted var(X).
EXERCISE 10. Let X, Y be two square integrable, real random variable
on a probability space (2, F, P).
1. Show that cov(X,Y) = E[XY] — E[X]E[Y].
2. Show that var(X) = E[X?] — E[X]%
3. Show that var(X +Y) = var(X) + 2cov(X,Y) + var(Y)
4. Show that X and Y are uncorrelated, if and only if:
var(X +Y) = var(X) + var(Y)
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EXERCISE 11. Let X be an n-dimensional normal vector on some
probability space (2, F, P), with law N, (m,Y), where m € R" and
Y = (i) € M, (R) is a symmetric and non-negative real matrix.

1. Show that each coordinate X, : (Q, F) — R is measurable.

2. Show that E[|X%|] < 400 for all « € N™.

3. Show that for all j =1,...,n, we have E[X;] = m,.

4. Show that for all j,k=1,...,n, we have cov(X;, Xi) = oji.
Theorem 136 Let X be an n-dimensional normal vector on a prob-

ability space (Q, F, P), with law N,(m,%). Then, for all « € N", X
1s integrable. Moreover, for all j,k € N,,, we have:

E[X;] =m;
and:
cov(X;, Xi) = oji
where (0;;) = X.
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EXERCISE 12. Show the following:

Theorem 137 Let X : (Q,F) — (R,B(R)) be a real random vari-
able on a probability space (2, F,P). Then, X is a normal random
variable, if and only if it is square integrable, and:

YueR , E[eiX] = ¢iuBlX]-tuvar(x)

EXERCISE 13. Let X be an n-dimensional normal vector on a prob-
ability space (2, F, P), with law N, (m,X). Let A € My,,(R) be an
d x n real matrix, (n,d >1). Let b€ R" and Y = AX +b.

1. Show that Y : (2, F) — (R% B(R%)) is measurable.
2. Show that the law of Y is Ng(Am + b, A.3X.A")

3. Conclude that Y is an R%valued normal random vector.
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Theorem 138 Let X be an n-dimensional normal vector with law
N,(m,X) on a probability space (Q,F,P), (n > 1). Let d > 1 and
Ace Md,n(R) be an d x n real matriz. Letb € RY. Then, Y = AX +b
1s an d-dimensional normal vector, with law:

Y (P) = Ng(Am + b, A.5. A

EXERCISE 14. Let X : (Q,F) — (R",B(R")) be a measurable map,
where (2, F, P) is a probability space. Show that if X is a gaussian
vector, then for all w € R", (u, X) is a normal random variable.

EXERCISE 15. Let X : (Q,F) — (R",B(R")) be a measurable map,
where (Q, F, P) is a probability space. We assume that for all u € R",
(u, X) is a normal random variable.

1. Show that for all j =1,...,n, X; is integrable.
2. Show that for all j =1,...,n, X, is square integrable.

3. Explain why given j,k =1,...,n, cov(X;, X;) is well-defined.
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4. Let m € R" be defined by m; = E[X;], and u € R". Show:
El(u, X)] = (u,m)
5. Let ¥ = (cov(X;, X;)). Show that for all u € R", we have:
var((u, X)) = (u, Xu)
6. Show that ¥ is a symmetric and non-negative n x n real matrix.

7. Show that for all u € R"™:

E[ei(u,X)} _ eiE[(u,X)]—%vaTHu,X))

8. Show that for all u € R™:

E[62<u,X>] _ 6i<u,m>7 1 (u,Su)

9. Show that X is a normal vector.

10. Show the following;:
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Theorem 139 Let X : (Q,F) — (R",B(R"™)) be a measurable map
on a probability space (Q, F, P). Then, X is an n-dimensional normal
vector, if and only if, any linear combination of its coordinates is itself
normal, or in other words (u, X) is normal for all u € R".

EXERCISE 16. Let (Q,F) = (R* B(R?)) and p be the probability
n (R,B(R)) defined by p = %((50 +41). Let P = N1(0,1) ® p, and

Y : (Q,F) — (R,B(R)) be the canonical projections defined by
X(z,y) =z and Y (z,y) = y.

1. Show that P is a probability measure on (Q, F).
2. Explain why X and Y are measurable.

3. Show that X has the distribution N1(0,1).

4. Show that P({Y =0}) =P{Y =1}) =3

5. Show that P(XY) = p.
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6. Show for all ¢ : (R* B(R?)) — C measurable and bounded:
1
Blo(X,Y)] = 5 (Ele(X, 0)] + E[¢(X, 1)])

7. Let X1 = X and X5 be defined as:
X, £ Xly=0y — Xly=1}
Show that E[e™X2] = ¢=%"/2 for all u € R.
8. Show that X;(P) = X5(P) = N1(0,1).
9. Explain why cov(X1, X32) is well-defined.
10. Show that X; and X5 are uncorrelated.

11. Let Z = $(X; + X3). Show that:

: 1 2
Vu € R, E[e?] = 5(1+€7U /2)
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12. Show that Z cannot be gaussian.

13. Conclude that although X, X5 are normally distributed, (and
even uncorrelated), (X1, X2) is not a gaussian vector.

EXERCISE 17. Let n > 1 and m € R". Let ¥ € M,(R) be a
symmetric and non-negative real matrix. Let A € M, (R) be such
that ¥ = A.A*. We assume that X is non-singular. We define
pmyx : R" — RT by:

1>
—

Vz e R", pps(z) 2 — ¢ sle=mE " (@=—m))
Pnx(®) = o i)

1. Explain why det(X2) > 0.

2. Explain why y/det(3) = | det(A

3. Explain why A is non-singular.
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4. Let ¢ : R™ — R" be defined by:
Ve e R", ¢(z) 2 ANz —m)

Show that for all z € R, (x —m, X" (z —m)) = ||¢(z)]?.

5. Show that ¢ is a C!-diffeomorphism.
6. Show that ¢(dz) = | det(A)|dx.
7. Show that:
/ Pm.x(x)dr =1

8. Let = [ pm sdx. Show that:

1 .
Vu €R" Fulu) = s / il Az tm)—2l?/2 g

V3

9. Show that the fourier transform of p is therefore given by:

1

Yu S Rn R f’u(u) — 6i<u,m>72<u,2u)

20
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10. Show that u = Ny (m,X).
11. Show that N, (m,¥) << dx, i.e. that N,(m,) is absolutely

continuous w.r. to the lebesgue measure on R".

EXERCISE 18. Let n > 1 and m € R". Let ¥ € M,,(R) be a sym-
metric and non-negative real matrix. We assume that X is singular.
Let u € R" be such that Yu = 0 and u # 0. We define:

BE{zeR", (uz)=(um))}
Given a € R", let 7, : R" — R be the translation of vector a.
1. Show B = 77—} (ut), where u™ is the orthogonal of u in R".

2. Show that B € B(R").

w

. Explain why dx(ul) = 0. Is it important to have u # 07
4. Show that dz(B) = 0.
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10.

11.

. Show that ¢ : R" — R defined by ¢(z) = (u, z), is measurable.
. Explain why ¢(N,(m, X)) is a well-defined probability on R.

Show that for all & € R, we have:

Fo(Nu(m, 2))(a) = / ¢ N (m, B) ()

n

. Show that ¢(N,(m,X)) is the dirac distribution on (R, B(R))

centered on (u,m), i.e. ¢(Nyp(m, X)) = ¢y m)-

. Show that N,(m,X)(B) = 1.

Conclude that N, (m,X) cannot be absolutely continuous with
respect to the lebesgue measure on (R™, B(R™)).

Show the following:
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Theorem 140 Letn > 1 and m € R". Let ¥ € M,(R) be a
symmetric and non-negative real matriz. Then, the gaussian measure
N, (m, X) is absolutely continuous with respect to the lebesgue measure
n (R",B(R")), if and only if 3 is non-singular, in which case for
all B € B(R"™), we have:
N,(m,%)(B) =

67% z—m, " N z— m)>df£

2n\/ﬁ/
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