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And I wish the Reader also ro take notice, that in writing of it I
have made myself a recreation of a recreation; and that it might
prove so to him, and not read dull and tediously, T have in sev-
eral places mixt (not any scurrility, but) some innocent, harmless
mirth; of which, if thou be a severe, sowre-complexion’d man,
then I here disallow thee to be a competent judge; for Divines
say, There are offences given, and offences not given but taken.

Izaak Wolton in “The Compleat Angler”
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Preface

This book will take you on a journey whose final destination is the celebrated
Rivest, Shamir, and Adleman (RSA) public key cryptosystem. But it will be
a leisurely journey, with many stops to appreciate the scenery and contemplate
sites of historical interest.

In fact, the book is more concetned with mathematics than with cryptogra-
phy. Although the working of the RSA cryptosystem is described in detail, we
will not be concerned with details of its implementation. Instead, we concen-
trate on the mathematical problems it poses, which are related to the factorization
of integers, and to determining whether a given integer is prime or composite.
These are, in fact, among the oldest questions in the area of mathematics known
as number theory, which has been a wonderful source of very challenging prob-
lems since antiquity. Among the mathematicians that worked in the theory of
numbers we find Euclid, Fermat, Euler, Lagrange, Legendre, Gauss, Riemann,
and, in more recent times, Weil, Deligne, and Wiles.

The way number theory is presented in this book differs in some important
respects from the classical treatment of most older books. Thus we emphasize
the algorithmic aspects everywhere, not forgetting to give complete mathematical
proofs of all the algorithms that appear in the book. Of course number theory
has been permeated by algorithms since the time of Euclid, but these had been,
until very recently, somewhat out of fashion. We take the algorithmic approach
very seriously. Hence, Euclid's proof of the infinity of primes is preceded by
a discussion of the primorial formula for primes, and the existence of primitive
roots modulo a prime number is proved using the algorithm Gauss invented for
computing the roots.

Hence, this is really a book about algorithmic number theory and its appli-
cations to RSA cryptography. But, although the book has a very sharp focus,
the presentation is by no means narrow. Indeed, we have not always followed
the most direct path, but chosen instead the one that promised to throw most
light onto the subject. Hence the introduction of groups, which allow us to give
a unified treatment of several factorization methods and primality tests in Chap-
ters 9 and 10. Our excursion into group theory will take us as far as Lagrange's
theorem, and includes a discussion of groups of symmetry.

This book grew out of lecture notes aimed at first-year students of computer
science. Some of the features of the book are really a consequence of the poor

il



xiv Preface

background knowledge of the students. Thus very little previous knowledge
of mathematics is required. Indeed, we never use anything beyond geometrical
progressions and the binomial theorem. Also, although the book is mainly con-
cerned with algorithms, no knowledge of programming is assumed. However,
given the subject matter of the book, it is to be expected that many readers will
be computer literate. Thus every chapter ends with some (optional) programming
exercises that illustrate the algorithms presented in the text. Many of these are
aimed at generating numerical data to be compared with some known conjecture
or formula of number theory. Thus they are of the sort that is sometimes called
a mathematical experiment.

A comment on style: Books on mathematics are sometimes written as a
dry sequence of definitions, theorems, and proofs. This style goes back to
Euclid’s Elements, and it became the standard way to present mathematics in
the late twentieth century. But we should not forget that this marmoreal style did
not prevail even among the Greek mathematicians. Thus Archimedes tells his
readers of his difficulties and wrong turns, and he even warns his readers against
propositions that he used and then discovered to be false. In this book I prefer
to follow Archimedes’ example rather than Buclid’s. This choice affected the
style of the exposition in many respects. First, the historical comments are part
of the text, and not isolated notes, and range from the origins of group theory to
mere tales of eccentricity. Second, the algorithms are described as instructions in
plain English, and I made no effort to optimize them, unless that would promote
understanding. Five years of teaching this material have convinced me that
this is no obstacle to programming the algorithms for those with the necessary
background.

Another characteristic of the book that should be mentioned is that the
most important theorems and algorithms arc referred to by name. Most of these
names are classical, and have been used to identify the results for decades, even
centuries. Where a name wasn’t already available I made one up. Some, like the
primitive root theorem, will be immediately identified by those who are familiar
with the subject; some may be harder to identify. Since this makes dipping in
more difficult, I have provided a separate index of all the main theorems and
algorithms, which also includes a short description of their content. The results
that do not have special names are referred to by the chapter and section where
they can be found.

This is a revised version of a book first published in Portuguese in 1997, and
it grew out of my lecture notes for the first-year students of computer science at
the Federal University of Rio de Janeiro. I owe more to the students who took
the course during these last five years than I can possibly thank them for. They
influenced both the style of the presentation and its content, and their suggestions
and criticism helped me in correcting mistakes and simplifying the presentation
of many proofs.

I am especially grateful to Jonas de Miranda Gomes. It was he who first
thought that the book deserved an English version, and he also made all the
necessary contacts. This book wouldn’t even have been conceived if it weren’t
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for him. Many thanks also to Amilcar Pacheco and Martin Holland for their
suggestions and comments.

Finally, I wish to thank all the people at A K Peters I have been in contact
with as the book developed. Their support and patience, even at the times when
1 felt most discouraged, helped me carry the work forward to its conclusion.

Rio de Janeiro, July 18, 1998



Introduction

The main character of the story this book tells is the public key cryptosystem
known as RSA. All the mathematics that we will study is, directly or indirectly,
concerned with it. The introduction contains a brief (and somewhat incomplete)
description of the RSA, and a short history of the area of mathematics that serves
as its foundation: number theory.

1. Cryptography

In Greek, cryptos means “secret, hidden”. Cryptography is the art of dis-
guising a message so that only its legitimate recipient can understand it. There
are two sides to this process. The first is the procedure by which the original

or plaintext, is disguised. This is called encryption, and the encrypted
message is known as a cryptogram The legitimate recipient of the message
must know an inverse process by which the cryptogram is translated back into
the original message. This is called decryption.

Many of us played with simple ciphers when we were children. The most
common of these consists of replacing each letter of the alphabet by the one
that follows it, and replacing Z by A. This is essentially the kind of cipher that
Caesar used to exchange secret messages with the Roman generals throughout
Europe.

Cryptography has a twin sister, called cryptoanalysis, which is the art of
breaking a cipher. Of course, to “break” a cipher is to find a way to decrypt
it when one does not hold the decryption key; that’s what eavesdroppers have
to do. Ciphers like Caesar’s are very easy to break. Indeed any encryption
procedure that works by the systematic substitution of the letters of the aiphabet
with other symbols suffers from the same weakness. This is due to the fact that
the average frequency of each letter in a given language is more or less the same.
For example, the most frequently used letters in English are E, T, and A. Thus
it is possible to guess the letters that correspond to the most often used symbols
in a cryptogram that was encrypted with a substitution cipher. Moreover, the
most frequently used words in English are the and and. So the groups of three
characters that appear most often in the cryptogram will probably correspond to
one of these words. And so on. This strategy is known as frequency analysis.

Note that these comments assume that the message is reasonably long, One
can always write a short message whose letter and word counts are as unlikely
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as one wishes. However, this is almost impossible with a long message, because
the frequency counts are a characteristic of the language itself.

Cryptoanalysis has other uses besides breaking ciphers, and in these, fre-
quency analysis is also very important. One of these applications is to the
decipherment of ancient inscriptions. The most famous is probably that of the
Egyptian hieroglyphs by F.-F. Champollion in 1822. The key to the decipherment
was the Rosetta Stone, a block of black basalt found in 1799, that is now at the
British Museum in London. The stone contains the same text written in three
ditferent scripts: hieroglyphic, demotic, and Greek.

In Champollion’s time it was widely believed that the Egyptian hicroglyphs
were a logographic system of writing. In these systems every symbol corresponds
to an idea. Of the writing systems still in use, Chinese comes closest to being
logographic. The sages of Champollion’s time had good reason for believing the
logographic theory. After all, the oldest detailed discussion of the the nature of
the hieroglyphs assumed that they were a form of pictorial writing. This work
was compiled by one Horapollo of Nilopolis in the fourth or fifth century A.D., a
time when the knowledge of how to read and write the old script was essentially
extinct.

Champollion decided to check Horapollo’s assumption by performing a fre-
quency analysis in the texts of the Rosetta Stone. First he counted the words in
the Greek text, and found that there were 486 of them, Thus, if each hieroglyph
corresponded to an idea (or word), there ought to be about that many symbols
in the hieroglyphic text. But Champollion’s count revealed 1419 characters,
far more than expected. Thus the hieroglyphs did not constitute a logographic
system after all.

Champollion’s work did not stop at that, and by 1822 he had finally found
the key to deciphering of the writing system of the Ancient Egyptians. We
now know that the system is quite complex. It is essentially logo-syllabic, so
that a symbol stands either for a word or for the syllable with which that word
begins. But that’s not all. A symbol can also be used as a determinative. For
example, after the name of a person, the Egyptians could add a male or female
figure, which allowed the scribe to tell whether the name belonged to a man or
a woman. For more details on the hieroglyphic system and on the history of the
decipherment, see Davies 1987.

Of course frequency analysis can be considerably sped up with the use of a
computer. This is why many of the old methods of encryption have now become
obsolete. Let’s not forget that some of the first computers were built 1o break
the German codes used during the Second World War.

Nowadays, the communication between computers using the Internet is pos-
ing new challenges to cryptographers. Since the messages are sent through
telephone lines, it is necessary to encrypt them if they contain any sensitive in-
formation. That need not be a great government secret; it could be just your
credit card number! Imagine that a company does its bank transactions in this
way. Two problems immediately come to the fore. First, it is necessary to make
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sure it will not be possible to read the message if it is intercepted by an eaves-
dropper. Second, the bank must have some way of knowing that the message
has originated with a legitimate user at the company. In other words, it must be
possible to sign an electronic message.

Many of the ciphers that are used in this new environment are of the kind
known as public key cryptosystem. These were introduced in 1976 by W. Diffie
and M. E. Hellman of Stanford and independently by R. C. Merkle of the Univer-
sity of California. In a public key cryptosystem the fact that one knows how to
encrypt a message does not mean that it can be easily decrypted. So anyone can
be told how a message that will be sent to a certain bank is to be encrypted—that
does not put at risk the security of the system. This has obvious advantages for
commercial transactions.

At first this may seem an impossible idea. For example, consider the cipher
that consists of replacing each letter by the one that follows it. In this case, a
cryptogram is decrypted by replacing each of its letters with the one that comes
before it in the alphabet. Thus, for this cipher, knowledge of the encryption
process immediately gives access to the decryption procedure. Unlike this cipher,
the public key cryptosystems have a “trapdoor”, that is, an operation that is easy
to perform, but difficult to undo. An example of a trapdoor is considered in
the next section, where we give a rough description of the most popular of the
_public key cryptosystems, the RSA.

2. The RSA cryptosystem

The best known and one of the most widely used of the public key cryp-
tosystems is the RSA. It was invented in 1978 by R. L. Rivest, A. Shamir, and
L. Adleman at MIT (see Adleman et al. 1978). A detailed description of the
RSA will be given only in the last chapter, because it depends on the ideas and
techniques that will be developed throughout the book. However, it is convenient
to have some understanding of the reason why knowledge of the encryption pro-
cedure of the RSA does not give one immediate access to the decryption process.
This is an example of the concept of a trapdoor, mentioned at the end of the
previous section.

Suppose that we want to implement the RSA cryptosystem for a given user.
The basic ingredients are two distinct odd prime numbers that we will call pand
g. Let n be the product of these primes; thus n = pg. The public or encryption
key of this user of the RSA is the number n (and another number that we need
not worry about now). The secret or decryption key consists essentially in the
primes p and q. Thus every user has a personal pair of primes that must be kept
Secret. However, the product of these primes (the number n) is made public.
Thus, if a bank uses RSA, anyone can send it an encrypted message, because its
encryption key is known to all.

Why, then, is it difficult to break the RSA? After all, one need only factor
7 to find p and g. However, if the primes have more than 100 digits each, the
time and resources required to factor n are such that the system becomes very



hard to break. Thus the trapdoor of the RSA lies in the fact that it is easy
to multiply p and g to get n, while factoring n to get p and ¢ can be next to
impossible. In other words, although it is conceptually quite easy to describe
how one breaks the RSA, it can be almost impossible to do it in practice. But one
must not forget that the obstacle is essentially of a technological kind. In other
words, it is conceivable that advances in hardware, and better methods for the
factorization of integers, could one day render the RSA obsolete. This point was
dramatically illustrated when the RSA-129 was broken. This was a test message
encrypted by the inventors of RSA in 1977, and it got its name from the fact that
the encryption key had 129 digits. It was calculated that with the methods then
available, it would take 40 quadrillion years to factor the key and decrypt the
message. The combination of advances in hardware, new factorization methods,
and the advent of the Internet led to the factorization of this 129-digit number in
1986. This was done after eight months of work, during which the computers
of 600 volunteers in 25 countries were used. Each computer worked on a little
piece of the problem during idle computer cycles. All the pieces were later put
together using a supercomputer. The advances in this area have been such that
the larger RSA-130, factored in 1996, took only 15 percent of the computer time
required to factor RSA-129.
Summing up the previous discussion, we conclude that

(1) to implement RSA we need two large prime numbers p and ¢;

(2) to encrypt a message using RSA we use n = pg;

(3) to decrypt an RSA cryptogram we must know p and ¢; and

(4) the security of RSA depends on the fact that it is difficult to factor n,
and find p and g, because these are very large numbers.

‘When we finally come to a complete understanding of RSA in Chapter 11, you’ll
see that this is not totally accurate, even though it touches on all the main points.

Have you noticed that (1) and (4) above seem to contradict each other? In-
deed, the security of the RSA cryptosystem depends on the difficulty of factoring
n. Now n is difficult to factor because it is very large. But n = pq is large when
p and q are large. However, we need to prove that the latter numbers are prime,
and a prime number is one that does not have any factors except 1 and itself.
Thus to prove that p is prime we need to apply to p a factorization algorithm,
and make sure that no factors are found, except 1 and p. But don’t we then run
into the same problem we had with respect to n? If a factorization algorithm
will take too long to factor n, won’t it take too long to prove that p is prime?

That’s indeed the case, but it doesn’t mean that we have no way of proving
that large numbers are prime. That’s because we do not prove primality by trying
to factor a number. There are methods for checking whether a number is prime
or composite without ever attempting to factor the number. For example, we
know that 22 + 1 is composite, but none of its factors are known. This is not
surprising, since this is a number of 4933 digits. Indirect methods for testing
primality and compositeness are discussed in Chapters 6 and 10.

5

The previous discussion makes clear that in order to explain and implement
the RSA cryptosystem, one needs a good knowledge of the properties of the
integers. Two problems are especially relevant:

e How does one factor a given integer efficiently?

e How does one prove that an integer is prime?

As we have seen, although these problems are closely related, the second is not
a consequence of the first. The area of mathematics that is concerned with the
properties of the integers is called number theory. It is one of the oldest areas of
mathematics, and the problems mentioned above are some of the earliest number
theoretic problems considered by humankind.

There is a question of a more practical nature that we must address before
we discuss number theory in more detail. The public key used by the RSA
cryptosystem is a very large number; in practical applications this number has
more than 200 digits. How does one compute with such large numbers? Of
course one needs a computer; however, most programming languages will not
allow one to deal directly with such huge numbers. The easiest way out is to
use a computer algebra system.

3. Computer algebra

Computer algebra is concerned with exact computations with numbers, such
as very large integers and fractions, and with symbolic computations with func-
tions, such as polynomials, sines, and cosines. By “exact computation” we mean
that the system does not use floating point arithmetic, unless told to do so. For
example, in computer algebra, fractions are tepresented in the form numerator
over denominator, and calculations with fractions are done just as with pencil
and paper.

From our point of view, the most important feature of a computer algebra
system is that it allows one to compute with very large integers. For most of this
book we will simply assume that such calculations are possible. In fact, it is not
possible to go into the detailed implementation of the methods for representing
and calculating with large numbers within the limits of an elementary book like
ﬂli§ one. On the other hand, one ought not to be completely in the dark about this
point, since it is really behind most of what we will be doing. In this section we
take the middle ground: We explain how large positive integers are represented,
and discuss how the computer can be programmed to add two such numbers.

This is one of the few places in the book where it will be assumed that
you are familiar with computer programming. Since the results of this section
are not used anywhere else in the book, you may skip the rest of it with a clear
conscience.

. Most computer languages allow you to write programs that calculate with
Integers. The snag is that these integers cannot exceed a certain size. In other
words, the standard programming languages behave as if the set of integers
were finite and, indeed, rather small. Of course this won’t do for our purposes.
We must be able to compute with very large integers; moreover, we have no
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way of knowing in advance what the maximum size of these numbers will
be. We get around this problem by writing special software for representing
and calculating with large integers. This software will be written in one of
the standard programming languages. Thus we will assume that we have a
computer that can represent and calculate with integers up to a certain upper
bound, which depends on the language we are using. These are called single
precision integers. The software we want to write will use the operations with
single precision integers to represent and calculate with integers of indeterminate
size, called multiple precision integers.

Needless to say, all computers have finite memory, so the size of the integers
that they can handle is always limited. Thus, when we talk of integers of
“indeterminate size”, what we really mean is that the program can handle big
enough integers so that for all practical purposes this upper limit can be ignored.

Recall that we are assuming we have a computer that runs a programming
language that can handle integers in single precision. Let b be the largest power
of 10 supported as a single precision integer by this language. Then b is the
base of the number system we will use to represent multiple precision integers.
If n > 0 is an integer, then there exist unique integers ag, a1, ..., ax between 0
and b — 1, such that

n=ag-b 4+ +ag-b2+a-b4ag.
The positional representation of n. in base b is
n=(ak...a1ap)p.

The integers ao, . . ., ax are the digits of the representation of n in base b. Inside
the computer, 7 corresponds to a list, each node of which stores a base b digit of
n. Recall that these digits are single precision integers, so the computer already
knows how to calculate with them. The number of nodes of the list will depend
on the size of n.

Of course, we do not want only to represent large integers in the computer;
we want to calculate with them. The addition of integers written in base b can
be carried out just as the addition of integers written in the decimal system. The
only thing we have to worry about is the carry.

Suppose that we wish to add two positive integers

C:(Ck,...,cl,CO)b and d:(dk,...,dl,d())b.

In other words, we want to find the base b digits s, s1,... of the base b
representation of their sum. We first compute co + dp, which is only a sum of
two single precision integers. Now, the least significant digit sy of ¢+ d will be
the remainder of the division of co + do by b. If co +dy < b, there is no carry,
and we can proceed to the next digit. Suppose, however, that ¢y +dy > b. Since
both cg and dgy are smaller than &, it follows that

co+do < 26—2 < B2,

In particular, the quotient of the division of ¢y + dg by b cannot be greater than
1. Thus the carry, if it is not 0, is always 1. To compute s; we proceed in a
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similar fashion, but we must not forget the carry from the sum of the previous
base b digits. Thus s, is the remainder of the division by b of ¢; + d + carry.
Moreover, if ¢ +dy + carry > b, then there will be a carry of 1 when we come
to compute s2. And so on, until all the base b digits have been added up.

It is very easy to write software that uses lists to implement the posi-
tional representation and the addition of integers in base 5. The multiplication
also closely follows the usual pencil and paper method. The division, how-
ever, presents some interesting problems that are briefly discussed in Chapter 1,
section 2.

You should also be aware that writing good software to compute with inte-
gers is not restricted to programming procedures for doing arithmetic operations,
Consider what happens when we multiply two integers, The usual method pro-
duces many intermediate numbers that are really not needed after the product
has been obtained. Unless we spot and delete them, they’ll remain in the com-
puter, occupying precious memory space. If the numbers are large, the growing
accumulation of such “rubbish” can quickly draw the system to a halt. Thus we
must have a way of automatically finding and deleting unnecessary numbers.

These comments only touch a very important and rapidly growing area in the
interface between computer science and mathematics. For a thorough study of the
methods used in the computation with large integers, see Knuth 1981. A shorter
account, which also includes a more detailed discussion of the representation of
integers as lists, can be found in Akritas 1989.

4. The Greeks and the integers

A knowledge of the integers, and of their fundamental operations, was com-
mon to all of the ancient civilizations. Their knowledge was of an almost purely
heuristic kind, but it was sufficient since they used numbers mostly for counting
and keeping accounts. The Greeks, who had a more philosophical bent, began
to consider the integers as independent entities with a life of their own, and not
as a mere aid to counting. This led them to distinguish between logistics and
arithmetic. The former was “the science which deals with numbered things, not
numbers”; the latter aimed at seeing “the nature of numbers with the mind only”.
The second quote is from Plato’s Republic, where we also read that

arithmetic has a very great and elevating effect, compelling the

soul to reason about abstract number, and rebelling against the

introduction of visible or tangible objects into the argument.
See Plato 1982, vii.525. Ironically, we now use the word arithmetic to describe
what the Greeks called logistic. But their arithmetic is not dead; it has been
transmuted into our theory of numbers.

Among the number theoretic problems that the Greeks studied, we have

e the method for computing the greatest common divisor of two integers;

e the method for finding the positive primes smaller than a given number;

and

e the existence of infinitely many prime numbers.
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These problems are discussed in detail in the most famous mathematical book
the Greeks bequeathed to us, Buclid's Elements, written in Alexandria around
300 B.C.

The Elements are divided into 13 books. Three of these deal with number
theory; the other books are concerned with plane and solid geometry, and the
construction and properties of real numbers. The discussion of number theoretic
problems begins in Book VIL In it we find the definitions of prime and com-
posite numbers, and the method for computing the greatest common divisor by
successive divisions. Book VIII is mainly concemed with geometric progres-
sions. Book IX contains the proof that there are infinitely many primes, which
we discuss in Chapter 3, section 5; and a formula for perfect numbers, which
can be found in the exercises of Chapter 2.

Many other Greek mathematicians studied problems of a number theoretic
nature. The most important of these was Diophantus. In his Arithmeric, written
about A.D. 250, he considers in detail the problem of solving indeterminate
equations with integer coefficients; see Chapter 4, section 6, for more details.
After Diophantus, Greek mathematics moved away from number theory, and
although there were many good mathematicians among the Arabs, Indians, and in
the Europe of the Renaissance, none of them was directly concerned with number
theory. Indeed, the subject was more or less dormant until it was rediscovered,
directly from the Greek source, in the seventeenth century.

5. Fermat, Euler, and Gauss

The Renaissance was a time when the works of many Greek authors were
rediscovered, edited, and published; but this wasn't true of many of the Greek
mathematicians., For example, it was only in 1621 that Bachet published the orig-
inal text of Diophantus’ Arithmetica, together with a Latin translation. Sometime
before 1636, Pierre de Fermat, a councillor in the Toulouse High Court, acquired
a copy of this book. Fermat studied mathematics in his free time, and he read and
carefully annotated his copy of Bachet's edition. The ideas prompted in Fermat's
mind by Diophantus’ work mark the rebirth of number theory in Europe.

Fermat was born in 1601, and he wasn't a professional mathematician.
Indeed, few people made a living from mathematics at that time. It was also
difficult to make one's ideas known to other mathematicians, because there
were no specialist journals. The first journal totally dedicated to mathematics
appeared only in 1794. However, as Fermat's contemporary Pascal said, perhaps
with some exaggeration, mathematicians “are so few in number as to be unique
among a whole people and over a long period of time”. Thus it was possible
for the mathematicians of the time to communicate their ideas more or less
effectively through their correspondence. This was made easier by the fact that
some people played the role of intermediaries; as soon as they were told the
latest news, they passed it on to their correspondents. In Fermat's time the
most famous of these intermediaries was Father Marin Mersenne. His circle

P. de Fermat (1601-1665).

correspondents included, besides Fermat himself, such luminaries as Pascal,
: e, and Roberval,

It was in the form of letters to Mersenne and other mathematicians of the
ne that most of Fermat's work reached us. After Fermat's death, his son
imuel collected whatever he could find of his father's papers with a view to
blishing them. The first published volume was Bachet's edition of Diophantus,

ding all the margin annotations by Fermat. The most famous of all these
notations concerns the statement that later became known as Fermat's Last
rem. In modern parlance it says that if x, y, z, and n are integers such that
+y" = 2" and n > 3, then zyz = 0. In his note, Fermat claims to have a
arvellous proof” of this result but adds that “the margin is not large enough
write it in". Fermat's Last Theorem was finally proved in 1995—more than
D years after it was first stated. For more details, and references, see Chapter
section 8.

Fermat's work in mathematics is not limited to number theory. He also made
contributions to analytic geometry and the integral and differential calculus.
over, with Pascal, he is codiscoverer of the calculus of probability. Although
at was in love with number theory, he had no success in his attempts to
est his contemporaries. His heir in this respect was Leonard Euler, who was
in 1707, 42 years after Fermat's death.
- Euler was one of the most prolific mathematicians of all time, and he con-
buted to most of the areas of pure and applied mathematics that existed in
ighteenth century. Unlike Fermat, he was paid to work as a research math-
atician, and he held posts in the academies of Berlin and St. Petersburg.
academies were in fact research institutions, whose memoirs published
contributions of their members.
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L. Euler (1707-1783).

Euler's interest in number theory was a result of his correspondence with
Christian Goldbach. Like Mersenne before him, Goldbach wasn't a great math-
ematician; mathematics was his hobby. However, it was through him that Euler
came to Fermat's work in number theory. In his first letter to Euler, dated 1729,
Golidbach adds the follawing postséript:

1s Fermat's observation known to you, that all numbers 2*” + 1

are prime? He said he could not prove it; nor has anyone clse
done so to my knowledge.

Euler’s immediate reaction was one of skepticism, and he doesn’t scem to
show much interest; but Goldbach insists, and, in 1730, Euler begins to read
Fermat's work. In the coming years he would prove and extend a good part of
the results stated by Fermat. In Chapter 9 we will study the method by which
Euler settled (in the negative!) the question raised by Goldbach. More details
of the history of the numbers of the form 22" + 1 can be found in Chapter 3,
section 3.

After Euler's work, number theory became far more popular than it had
been hitherto. But its systematic development began only with the Disquisitiones
arithmeticee of C. F. Gauss, published in 1801, The influence of Gauss's book
was enormous, and is witnessed by the fact that most books on the subject,
including this one, still follow his approach. Many of the results and techniques
that we will study come directly from the Disquisitiones.

Gauss was the son of a manual worker, but he was a child prodigy, and his
mathematical ability was noticed very early. His contributions to mathematics
extend far and wide, and include such diverse ficlds as differential geometry
and celestial mechanics. He also made important contributions to geodesy and

1"

Such was the importance of his work that he earned from his contem-
the title “prince of mathematicians™.

Fermat, Euler, and Gauss are the heroes of this book. Most of the ideas we
‘study originated either in Ancient Greece or in the work of one of these

he problems of number theory

~ We cannot finish our introduction to number theory without at least trying
ain what makes it so captivating that Gauss declared it the “queen of
ics”, The best way to give an idea of the attractions of this area is to
ome of ils pmbll:ms. these often combine a very simple statement with
that is both i mgenmus and ol' great technical virtuosity.
We list a few b below. After reading them you
try to guess which are the most difficult to solve, and which the easiest.

(1) If p is a prime number, docs p always divide 27~ — 17

(2) Is there a prime p such that g divides 2¢=! — 17

Is each even integer greater than 2 a sum of two primes?

W 4) Are there two consecutive integers, apart from 8 and 9, which are powers

_ ofm{egv:rs?

(5) Can every odd prime number be written as a sum of two squares of

 integers?

(6) Are there infinitely many pairs of prime numbers of the form p, p + 27
(7) Are there infinitely many prime numbers p for which 2¢ — 1 is also a

prime?

- Questions (1) and (2) are very similar, Comparing them, one may even come

conclusion that (2) should be easier than (1), Afier all, to settle (2) one

only find one prime satisfying a certain property; but to prove (1) one must
that a very similar property holds for every prime. The truth, however, is

the answer to (1) has been known to be yes since the seventeenth century,

it was proved by meu while (2) is still an open question.
The third ion is a fi j of Goldbach, and though it has
armndformoreihan?ﬂOyemnuonehasyumanagedmmvew

ion (4) is known as Catalan's conjecture and is also an open question.

y it is known that if the difference between a cube and a square is +1,

1 the cube is 8 and the square is 9. This was shown by Euler, and the proof

IS not very difficult. For more details on Catalan’s conjecture see Ribenboim

The answer to question (5) is no. If an odd prime p leaves remainder 3
en it is divided by 4, then it is not possible to find integers = and y such
‘z® + y* = p. This was shown by Fermat, and the proof can be found in
rcise 13 of Chapter 4. However, Fermat also showed that if the prime leaves
nder 1 when divided by 4, then the question has an affirmative answer.



12 Introduction

More details can be found in exercise 14 of Chapler 5. The history of this
problem is discussed in Weil 1987, Chapter 11, section VIIL.

Problem (6) is the famous rwin-primes conjecrure, and it is not known
whether it is true or false. Of course the fact that there are infinitely many
primes was known to Euclid, and his proof of it can be found in Chapter 3,
section 5. It is also known that if @ and r are integers whose greatest common
divisor is 1, then there are infinitely many primes of the form a + kr, where k
is a positive integer. This was proved by L. Dirichlet in 1837. A very particular
case of this result is proved in exercises 3 to 7 of Chapter 3. Another related
conjecture asks whether there are infinitely many primes p for which p+ 2 and
p+ 6 are also prime; in this case too the answer is not known. However, there
is only one prime p for which p-+ 2 and p+ 4 are also prime; see exercise 9 of
Chapter 3.

The last question is also an open problem. The numbers of the form 2" — 1
are called Mersenne numbers for a reason that is explained in Chapter 3, section
2. If the exponent n is composite, then so is the number 2" — 1. However, if
the exponent is prime, the corresponding Mersenne number can be either prime
or composite. In Chapter 9, section 4, we will study a very efficient primality
test for Mersenne numbers. The largest known prime numbers are of this form,
and their primality was established using this very test.

7. Theorems and proofs

As we have said, the aim of this book is to cover in detail the mathematics
at the basis of the RSA cryptosystem. The theoretical backbone was developed
by the mathematicians of Ancient Greece, and by Fermat, Euler, and Gauss, and
was ready by the end of last century. However, most of the applications were
unkown 20 years ago, and some of the results we will mention were proved only
a few years back.

Many results in this book won't be new to you. These include the method for
computing the greatest common divisor by successive divisions, and the simplest
procedures for the factorization of integers into primes. The approach, however,
may be new, because we propose to prove every result in the book from first
principles, including the procedures to perform computations.

In Ancient Egypt and Mesopotamia, mathematics was a collection of rules
of thumb that were used to solve practical problems. It was ils association
with Greek philosophy that made mathematics the theoretical science it is today.
Indeed, the first Greck mathematicians were also famous philosophers like Thales
and Pythagoras. The notion that a mathematical fact can be proved grew out of
this interaction with philosophy. After all, a proof is just an argument to show
how a certain fact follows from something we know already. And arguing was
surely something the Greek philosophers were fond of!

Around 400 B.C., the Greek mathematicians felt the need to spell out, in
a more or less systematic way, the hypotheses that served as the foundation of
their work. Thus Euclid begins his Elements by explicitly stating the definitions

axioms on which his proofs will be based. For example, at the beginning of
1 he defines what he means by point, straight line, plane, surface, and so
he states the axioms, which heassumeslubese[f—ewdmmmhs The
explain how the previ pls are interce d. Then he proceeds to
‘how far more complex facts about these notions can be reduced, by logical
1o these axioms. The great advantage of this approach is that it adds
to the whole enterprise. By making the foundations more consistent, one
higher without running the risk of having the whole edifice collapse
own weight.

‘A mathematical fact is usually called a theorem. This is a Greek word,

originally meant “spectacle, speculation, theory”. The present sense of “a
to be proved” is at least as old as Euclid's Elements. The statement
theorem often takes the form of a conditional proposition:

If some hypothesis holds, then follows the conclusion.

of such atl is a logical arg that explains how the conclusion
from the hypothesis. Here's an example:

1. If a is an even integer, then a® is also even.

this case, the hypothesis is a is an even integer, and the conclusion is
an even integer. Of course, to show that the conclusion follows from
ppothesis we have to use the basic properties of the integers. To make our
really watertight, it would be necessary to list all these properties in detail.
2ss to say, this would have been impossible in an clementary book like this
Instead, we will simply pretend that these “basic properties” are the very
flary ones that you already know. These include the rules for adding and
plying integers, and the fact that between any two given numbers there are

a® = (2b)% = 48* = 2. (2%).
e a’ is also a multiple of 2. In other words a? is even, which is the
usion of the theorem.

nt B implies A. Thus the converse of theorem 1 is If a® is an even
w then a is an even integer. Note that the fact a statement is true does not
-anything about the truth of its converse. For example, the converse of If
er is a multiple of 4, then it is even is false: 6 is even but it is not a
litiple of 4. When both A implies B and B implies A are true, we say that A
B are equivalent. This is usually stated in the form A holds if and only if
holds. Thus we are led to our second theorem.
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Theorem 2. The integer a is even if and only if a* is also even.

We have already proved that if a is even, then a” is even. We must now
prove its converse. Before we do that, there is one point of logic we must deal
with. Denote the negative of the statement P by not-P. For example, if P is “a is
even”, then not-P is “a is not even”. Suppose now that you have two statements
P and Q. The proposition not-Q) implies not-P is called the contrapositive of
P implies Q. Moreover, a statement is true if and only if ils contrapositive is
true. This only seems odd because it is couched in an unfamiliar language. But
consider the following story. Upon being invited to a party, a friend tells you,
“my car is broken, but if it is fixed in time, then I'll go to your party”. Now
if your friend doesn’t come to the party, you will conclude that the car wasn't
fixed in time—which is just the contrapositive of your friend’s statement. Let’s
go back 1o the proof of theorem 2.

Proof of theorem 2. We have already seen that if a is cven, then a® is even; we
must now show that if a® is even, then a is even, Instead, we will prove its
contrapositive, which is, If a is not even, then a? is not even. But if an integer
is not even, then it is odd. Moreover, an odd integer is always of the form
“even + 1". Thus, if a is odd, then there must exist another integer b such that
@ = 2b+ 1. Squaring both sides of this formula, we have
a® = (2b+1)2 = 4P +4b+1=2-(28° +2H) +1,

which is also odd. Thus the contrapositive of the statement that we wanted (o
prove is true. Since the contrapositive is true if and only if the original statement
is true, we have proved that if a® is even, then a is even.

We stated theorem 1 in the form If a is even, then a® is even, Note that what
this-mﬂymnsi&thumemmdewqminwwiseven.Inoumwmds,
we are saying that this statement holds for all even numbers, Now consider the
statement, Every even number is a multiple of 4. Once again we are claiming
that something holds for all even numbers; only this time the claim is false.
Why? Because 6, for example, is even, but it is not a multiple of 4. Thus, if
someone claims that a property holds for all the elements of & certain set, and
we find one element of the set for which it does not hold, then the claim is false.
Such an element is called a counterexample to the truth of the claim.

The statement of a theorem does not always take the conditional form dis-
cussed shove. Sometimes it just says that an “object”, with certain properties,
exists. Fwexample.givenamlnmrhrz.mmisalwaysanimgcrnsmh
that 1 > z. The most obvious way to prove such a statement is to give an
explicit method for finding the object. In the example above, if m is the integer
partofz.dwnm+1isminwgerbigguﬁmz;thusmmny:akenzm+l.
Now, assuming that the decimal expansion of 2 is known, we can easily use this
method to find . However, one might also prove a statement of this kind without
giving any method for constructing the object; this is called a non-constructive
existential proof. This is not as weird as it seems. Thus we know that any
set of 400 persons must always include two with the same birthday, because

~ 365. Although we see that this argument is correct, it does not give us a
adure to find these two persons; thus this is a a non-constructive existential

Most books on number theory make ample use of non-constructive argu-
ents. even when a constructive one is available. This is not just a matter of
Constructive proofs are often more awkward to explain than their purely
counterparts, and mathematicians are as fond of elegance as artists. In
however, we will avoid non-constructive proofs as much as possible.
n is mainly that we are concerned with applications to cryptography.
for example, it is not really satisfactory merely to know that a composite
‘has a factor; we must be able to find it.

e brief notes should be enough to allow you to start reading the book.
have more to say about methods of proof later on, especially in Chapter
7 and Chapter 5, section 2. But you must realize from the start that
1o prove theorems needs to be carefully cultivated, and the best way to

is to practice it often. When Ptolomeus, King of Egypt, asked Euclid
= wasn’t an easier way 1o learn geometry than by reading the Elements,
ematician replied, “There is no royal road to geometry”. It was true at
e of Euclid, and it is still true today.




-undamental algorithms

are two fundamental algorithms: the division algorithm and the Euclidean
Both were known to the math icians of Ancient Greece. Indeed,
~appear in Euclid’s Elements, written around 300 B.C. The division algo-
s used to compute the quotient and the remainder in the division of two

5. The Euclidean algorithm is used to compute the greatest common di-

of two integers. That they are truly fundamental you will realize as you
this book.

orithms

‘The sense in which the word algorithm is used in this book is defined by
‘Oxford English Dictionary as follows:
A process, or set of rules, usually one expressed in algebraic
notation, now used especially in computing, machine translation,
and linguistics.
less roundabout way, we can say that an algorithm is essentially a recipe to
‘e a certain kind of problem.
This suggests that we begin by analyzing a simple recipe in some detail.
we want to make a cake. In a good cookbook, the name of the cake is
followed by the list of the ingredients to be used. Then come instructions
you what to do with the ingredients in order to make the cake. These are
like sift, mix, beat, and bake. Finally, there is the end result: the cake,
to be eaten,
_Every algorithm follows a similar pattern. Thus, when describing an al-
i we must state its input and its ourput. The input corresponds to the
dients of the recipe. The output is the task we want to get done; in the
ple above, it is the cake we want to make. The algorithm proper is the set
nstructions that tell us what to do to the input in order to get the output.
 Suppose we have followed the cake recipe with due care. OF course, upon
ng the oven, we expect to find a cake, not a roast beef or a biscuit. We
‘assume, as we choose the recipe, that it will be possible to have the cake
dy after a finite time, preferably a short time. Similarly, we expect of any
thm that it will produce a result compatible with the announced output.
also expect the algorithm to stop in a finite time, preferably a short time. OF
¢ there are sets of instructions that will run forever. Here is a simple one:
€n an integer (the input), add 1 to it, then add 1 to the resulting number,

17
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and so on. Since there are infinitely many integers, a program based on these
instructions will run forever. Of course, we have no use for a set of instructions
like this.

On the other hand, an algorithm may be very slow, but still quite useful.
Perhaps no faster algorithm is known; or perhaps the rules are simple, and are
used to show that a certain problem has a solution. Of course, it is nor true
that every problem can be solved by following a set of instructions. More sur-
prisingly, there are mathematical problems that cannol be solved algorithmically.
Unfortunately, even a brief discussion of this would take us too far from our
intended course. For details see Davis 1980.

From an algorithm we may derive a fact, or theorem: Given such and such
an input, there is a way (the algorithm) to get a certain output. A theorem
is often stated in the form “If such and such hypotheses hold, then follows
the conclusion”, For the theorem associated with an algorithm, the input of
the algorithm corresponds to the hypotheses of the theorem, the output to the
conclusion.

Don’t worry if these comments sound a little vague; we are only setting up
the terminology. It will all become clearer when we come (o the applications.
Summing up, an algorithm is a recipe, a set of instructions, that turns some
ingredients (the input) into a certain product (the output). Suppose we are given
a set of instructions. How do we decide if it is an algorithm? First of all, we
can assume that we are being told what the input and output of this purported
algorithm are. Thus, the questions we have to ask are

* When we perform the instructions, do we always arrive at a result after
some finite time?

® I5 il the expected result?

Having carried the recipe metaphor this far, we should face the fact that
one cannot really expect to answer these two questions with respect to a cake
recipe. That's because we expect to be able to prove that both questions have
an affirmative answer, before we declare that a given sequence of instructions
is an algorithm. OFf course the word that gives the game away is proof. By that
we mean a logical reasoning whose starting point is some basic facts, or axioms,
that have been previously agreed upon. For most of our algorithms, these axioms
will consist of the well-known elementary properties of the integers. Needless
to say, one cannot really prove that a cake recipe works in this sense.

The etymology of the word algorithm is so peculiar that it deserves our
attention, Originally the word was written algorism, which comes form the La-
tinized form of the Arabic Al-Khowarazmi. This means “native of Khowarazm",
and was the surname of the ninth-century Arab mathematician Abu J'afar Mo-
hamed Ben Musa. It was through his book Al-jabr wa'l mugabalah that Ara-
bic numerals became generally known in Europe. Thus algorism essentially
meant “number”, which in Greek is “arithmos”™. The two words were then
“learnedly confused”, as the Oxford English Dictionary nicely puts it, giving
rise to algorithm.
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‘not clear how algorithm came to mean a “recipe for doing a calculation™,
s meaning seems to be quite recent. In English it appears for the first
nd 1812. However, one can see that the word was already taking on a
ral meaning in the seventeenth century. We have seen that, originally,
meant “number”, but, by extension, it was also used in the sense of
on with numbers.

‘The mathematician and philosopher G. W. Leibniz seems to have been the
to push the use of the word beyond arithmetic. In his first presentation of
ulus, published in 1684, Leibniz refers to the rules of the new calculus as
thm. A century later, the word had acquired its present meaning, Gauss,
in Latin, uses algoritmus many times in his Disquisitiones arithmeticae
referring to a set of formulae that constitute a method for finding a solution
arithmetic problem.

n Musa was responsible for at least one more contribution to the termi-
of mathematics: The word algebra comes from the title of his famous

t us analyze the division algorithm with respect to the scheme set up in
vious section. We are i d in the division of integers, so our task
s of finding the quotient and the remainder in the division of two positive
To most of us, “quotients and remainders”™ bring to mind a picture like

22
54[T234
108
134
108
a6

this example we are dividing 1234 by 54 and we have found the quotient
2 and the remainder to be 46. In the terminology of section 1, the
rithm has the dividend and the divisor as its input; in the example these are,
ively, 1234 and 54. The output consists of the quotient and the remainder,
h, in the example, are 22 and 46, respectively.

In general, the inpur of the division algorithm consists of two positive inte-
a and b. The algorithm will compute the division of a by b, and the output
be two integers g and r, which are related to a and b as follows:

a=bg+r and 0<r<b
ourse g is the quotient, and r is the remainder of the division. This has a
le interpretation that one should alway ber. Suppose that we wish to

a chocolate bar of length a into pieces of length b. The algorithm tells us
‘we will end up with g pieces of length b, and a smaller piece of length . It
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is a good idea to have this in mind even when applying the theorem in a purely
mathematical context.

Indeed the chocolate bar is the inspiration for the simplest algorithm for
finding ¢ and r, when a and b are given. Although very simple, this algorithm
is extremely inefficient.

Division algorithm

Input: positive integers a and b. ;

Output: non-negative integers g and r such that a = bg+ r,and 0 < r < b
Step 1 Begin by setting @ = 0 and R = a.

Step 2 If R < b, write “the quotient is € and the remainder is R" and stop;
otherwise, go to step 3.

Step 3 If R > b, subtract b from R, increase @ by 1, and go back to step 2.

Throughout this book, algorithms will often be presented in the form above.
To read the instructions correctly one must abide by some simple conventions.
Note that the algorithm makes use of two variables () and R. The variables
have been so named because when the algorithm finally stops, they will have
taken values that correspond to the quotient and remainder of the division of a
by b. In order to compute these numbers we will have to repeat the instructions
of steps 2 and 3 several times. This is called a loop. Al the end of each loop the
variables @@ and R will have different values. Indeed, that's why they are called
variables! The variables change their value in a loop when step 3 is performed.
The instruction subtract b from R actually means the variable R will now take
a new value that is equal to its value at the end of the previous loop minus b.
Similarly, increase € by 1 should be taken to mean @ will have a new value
that will be equal to the value it had at the end of the previous loop plus 1.

Suppose, for example, that a > b. Then, having gone once through step 3,
wehave @ =1and R =a—b. If a — b > b, then according to the algorithm,
we must apply step 3 one more time. Having done that, we obtain @ = 2 and
R =a—2b And so on. Why doesn't it go on forever? In other words, why
does the algorithm stop? Note that applying step 3 several times, once for cach
loop, we get the following sequence of values for the variable R:

Initial value  1stloop  2nd loop  3rd loop
a a—b a—2b a—3b

This is a decreasing sequence of integers. Since there are only finitely many
integers between a and 0, the sequence must eventually reach a number that is
smaller than b. When that happens, step 2 instructs us to stop and display the
values of R and Q. Thus the algorithm always stops.

We must now see why the end result of the algorithm corresponds to numbers
that satisfy the properties specified in the output. First note that if g and r are
the numerical values that the variables ) and R have taken when the algorithm
stops, then clearly r = a — bg and r < b. The first equation immediately gives
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<+ r. We have only to show that r > 0. We are assuming that the
m has stopped in the gth loop, so in the previous loop (which is the
, we have a — b(g — 1) > b. Otherwise we wouldn’t have subtracted
re time before we stopped. Now, subtracting b from both sides of
) = b, we get r = a — bg > 0, which is what we wanted to prove.
algorithm computes whole numbers just like the ones specified in its

s clear that the algorithm presented above is very slow. The number of
‘have to go through is equal 10 the quotient. Thus we will be in trouble
a is a lot bigger than b. The usual method of long division offers
way to speed up the process. However, implementing an algorithm
n it is not as straightforward as one might think.
e best way to understand why this is so is to go through the division at
ing of the section step by step. First of all, we choose the smallest
formed by the digits of 1234 (from left to right), that is bigger than
number is 123. We now ask, how many times does 54 goes into 1237
is with this question that the problem lies. If the numbers are small, a
of trials are enough to lead us to the correct answer. If the numbers are
‘have a problem, because doing it by trial and error may be practically
There is a way out of this dilemma, but to explain it in detail would
on a long detour; for details see Knuth 1981, section 4.3.
ally, let us consider a problem of a more practical nature. Most of the
in this book are interesting only when applied to “large integers”—large
to make division with pencil and paper impracticable. Moreover, we will
have to calculate a dozen divisions when solving a problem. OF course,
always use a computer algebra system, but a good electronic calculator
in many cases. However, when we divide a by b using an electronic
we get the decimal expansion of the fraction a/b—not the quotient
! that we need. But consider what we would do if we wanted to
decimal expansion of a/b using pencil and paper. We would divide the
until we reached the remainder. Then we would place a decimal point
‘quotient, add zeroes to the remainder, and carry on the division. In other
the quetient of the division of a by b is the integer part of the decimal
on of a/b. Let us call it g. To find the remainder we compute a — by,
is very easy to do with a good electronic calculator.

ivision theorem

section 1 we said that to every algorithm there corresponds a theorem.
state the theorem that corresponds to the division algorithm.

ion theorem. Let a and b be positive integers. There exist unique non-
e integers q and r such that

a=bg+r and 0<r<bh

Note that the statement says two things about g and r: They always exist,
 they are unique. We already know that, given a and b, there exist g and r
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as above. We even know how to compute them. But the unigueness is new.
What does it mean to say that g and r are unique? Suppose that we chi
two integers a and b, and hand them over to several people, asking them to
compute integers ¢ and r so that the of the t} are satisfied. Note
that we are only asking people to compute the numbers; we are not telling them
any method by which they should do so. The uniqueness of the quotient and
the remainder means that every one of these people will find the same pair
of numbers. In particular, it does not matter which algorithms we choose to
compute g and r; they all give the same results. OF course, this is a very useful
piece of information.

Let us see why this is true. Suppose we have chosen two positive integers
a and b, which we give to two people, Karl and Sofya, and ask them to find
quotient and remainder satisfying the conditions stated in the theorem, Karl finds
g and r, and Sofya ¢’ and r'. We know only that

a=bg+r and O0<r<b

and that
a=by'+7 and 0<r'<bh

Does this imply that r = v’ and g = ¢'? Since r and r' are integers, one of them
is greater than or equal to the other one. Say r > /. From Karl's equation, we
have r = a — by, and from Sofya's we have r' = a — by'. Subtracting them we
have

r—7'=(a—bg) —(a—bg) =bg' —q).

On the other hand, both r and r' are smaller than b. Since we are also assuming
thatr = v, wehave 0 < r —+' < b. But r — ' = b(g’ — g), so that

0<b(g —q)<b.
Since b is a positive integer, it can be canceled from this equation. Hence
0<q —qg<1. But g - qis an integer, so these inequalities hold if and only if
g' — g = 0. In other words, g = ¢', which implies that r = r', and this proves
the uniqueness of the quotient and the remainder.

Summing up, we have seen that the division algorithm gives rise to a theorem
that says rwe things: The quotient and remainder of the division of two integers
always exist, and they are unigue. Many other theorems that will be discussed
in this book also state the existence and uniqueness of some property. The most
important of them is the unique factorization theorem of Chapter 2.

4. The Euclidean algorithm

The Euclidean algorithm is used to compute the greatest common divisor of
two integers, and we begin this section by carefully going through the definition
of the greatest common divisor.

First of all, we say that an integer b divides another integer a if there exists
a third integer ¢ such that o = be. In this case we also say that b is a divisor, or
a factor, of a, and also that a is a mulriple of b. These are only different ways

val aigorithms 2

g the same thing. The number ¢ in the definition above is called the
- of b in a. OF course, we find out whether b divides a by computing
sinder of the division and checking that it is zero. The co-factor is then
nt of the division of a by b.

se that we have two positive integers a and b. The greatest common
of a and b is the greatest positive integer d that divides both a and b.
the greatest common divisor of a and b, we write d = ged(a,b), If
= 1, then a and b are said to be co-prime.

: definition of the greatest common divisor suggests the following algo-
Given integers a and b, find all the positive divisors of a and all the
~divisors of b Check which numbers are common to both sets, and
the largest of them; it is the greatest common divisor. This is quite sim-
as we will see in the next chapter, it is disastrously inefficient if a or b
The problem is that no quick factoring algorithm is known for integers.
y, there is another way to compute the greatest common divisor that
very efficient. It was described by Euclid in propositions 1 and 2 of
11 of his Elements. This is why it is called the Euclidean algorithm,
sh it may have been known before Euclid.

us assume, once again, that a and b are positive integers, and that a > b,
1o find the greatest common divisor of a and b. The Euclidean algorithm
eds as follows. First divide a by b; call the remainder of this division r;.
0, then divide b by ry; let o be the remainder of this second division.
if vy 5 0, divide ry by r3 to get a remainder r3. Thus the ith loop
rithm consists essentially of one division in which the dividend is the
computed in loop i — 2, and the divisor is the remainder computed in
1. This is repeated until we get a zero remainder; the smallest non-zero
is the greatest common divisor of a and b,

5 use the Euclidean algorithm to compute the greatest common divisor
and 54. The divisions are as follows:

1234 = 54 .22 4+ 46
M4=46-1+8
46=8-5+6
8=6-1+2
6=2-3+0
non-zero remainder is 2, so that ged(1234,54) = 2. Note that the

nts are not directly used in the computation of the greatest common divisor.
now describe the algorithm following the model established in sections 1

in algorithm

positive integers a = b
3 the greatest common divisor of a and b
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Step 1 Begin by setting A=aand R=B=b.

Step 2 Replace the value of R by the remainder of the division of A by B, and
g0 to step 3.

Step 3 If R = (0, write “the greatest common divisor of a and b is B” and stop;
otherwise, go to step 4.

Step 4 Replace the value of A with that of B, and the value of B with that of
R; return to step 2.

Therefore, to compute the greatest common divisor we have only to calculate
a few divisions. But why does the greatest common divisor coincide with the last
non-zero remainder in this sequence of divisions? Indeed, why is zero always a
remainder in this sequence? Note that if no zero remainder ever came up, the
procedure would never stop.

We begin with the second question. Thus we shall prove first that the
algorithm always stops. Suppose that, to find the greatest common divisor of a
and b, we compute the divisions below:

a=by+r and
b=rig+ra
ry="Tags+ T3
T2 =T3qs+ 74

0<r <b
and O<ra<rm

and 0<ry<m

and 0<m<my

Forget the left-hand column for the moment. In the right-hand column we have
a sequence of remainders. Note that any given remainder is smaller than the
previous one and also that all remainders are greater than or equal to zero.
Writing the inequalities one after the other we get

(4.1) be>r>r>rg>---20

Since there are only finitely many integers between b and 0, this sequence cannot
go on forever. But it will come to an end only if one of the remainders is zero,
which means that the algorithm always stops.

We can use the argument of the previous paragraph to get an upper bound
on the number of divisions we have to calculate in order to compute the greatest
common divisor. Let us go back to (4.1). Each number in the sequence is strictly
smaller than the previous one. Hence the largest possible remainder of a certain
division equals the previous one minus 1. If that could happen in each division,
we would have to compute b divisions 1o get (o a zero remainder. That is clearly
the worst possible case. Hence, when we apply the Euclidean algorithm to a = b,
the number of divisions is bounded above by b.

Actually it is not difficult to show that the number of divisions is always
smaller than b, unless b < 3. It is better to state the problem in the following
way: What are the smallest co-prime integers a and b for which n divisions are
required in order to find ged(a, b)? Note that for the numbers a and b to be as
small as possible, the quotients of each division must be as small as possible.

b algorithms 28
suming that the divisor is smaller than the dividend, the smallest possible
in the division of two integers is clearly 1. Suppose that n divisions are
before we get zero as a remainder. The sequence of remainders is
beri>r>ra>rg--2>0.

have already seen that, in the worst possible case, the g are all 1.
now write the divisions, beginning with the last one. Since the numbers

n—-1= 1
Tn-3=Tn-2+1+1
Thnoqd =Tn-3+1+74_2

a=b-1+nr
10, we get the following sequence of remainders (written in decreasing

34,21, 13,8, 5,3,2, 1, 1, 0.

: the smallest co-prime integers a and b for which 10 divisions are necessary
calculate ged(a, b) are a = 34 and b = 21. Note that although b = 21
nallest possible value, it is bigger than n = 10. The sequence above is
Fibonacci e. It will reappear in ise 6.

oof of the Euclidean algorithm

‘have seen that the algorithm always stops. Indeed, it will never have

ate more divisions than the smallest of the two numbers whose greatest
on divisor we want to find. But why is the last non-zero remainder exactly
st common divisor? To understand this we need an auxiliary result,
mathematicians call a lemma. The word comes from the Ancient Greek,
-means “something that one assumes” in order to prove a theorem.

Let a and b be positive integers. Suppose that there exist integers g
h that a = by + 5. Then ged(a, b) = ged(b, 5).

must show that the result stated in the lemma is true. But before we
let us use the lemma to prove that the last non-zero remainder in the
algorithm is indeed equal to the greatest common divisor. Applying
rithm to integers a > b > 0, and assuming that the remainder is zero
n divisions, we have

a=bp+r, and 0<r <b
b=riga+m and 0<m<n



O<ra<m
0<ri<rs

T =rags+r3

ra=rags+ry and

Th-d4 =Tn-30n-2+7Th-2 and O0<ru_no <ry_g
Tn-3=Tn-20n-1+Tm-1 and 0<r1, 3 <7y
Th-2=Tn-1Gn and 1, =0

This time we can ignore the right-hand column and consider only what happens
in the left-hand column. The last division tells us that r,_, divides r,_q.
Hence the greatest common divisor of these two numbers is r,._;. In other
words, ged(rn_2,Tn-1) = Tn-1.

Now the lemma comes into action. Applying the lemma to the second-to-last
division, we conclude that

ged(ra—a,mn_2) = ged(rn_2,mn—1),

which, we have seen, is equal to r,_;. Applying the lemma again, this time to
the antepenultimate division, we have
EOd {rﬂ -4y Tn —3} = sc‘d'(rrl&:h rn—?)u

which we know equals r,,_;. Going on like this all the way to the top of the
column, we get ged(a, b) = rn—y, which is what we wanted to prove,

The proof will be complete once we have proved the lemma. Recall that it
says, assuming a, b, g and s to be related by a = bg + s, then it should follow
that ged(a, b) = ged(b, s). It will be easier to explain the proof if we write

dy = ged(a, b) dy = ged(b, ).

Of course we have not done anything; we have only given special names to the
greatest common divisors of a and b and of b and s. What we want to prove is
that d; = dy. We will do this in two steps. First we show that d; < d», and
then that dy < dy. The equality of d; and dy follows immediately from these
iwo inegualities.

Let us show that d; < do; the other inequality is proved by a similar
argument and will be left as an exercise. Recall that dy = ged(a, b). Thus d,
divides a, and d; divides b. This means that there exist integers u and v such
that

and

a=du and b=ﬂ'.1l.'.
Replacing a and b in @ = bg + 5 respectively by dyu and dov, we get diju =
dyug + s. In other words,

s = dyu — dyvg = di(u —vg).

But this means that d; divides s.
Summing up, we have by hypothesis that d; = ged(a, b), so d; divides b.
But the calculations above show that d; also divides s, Hence d; is a common
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of b and s. However, dy is the greatest common divisor of b and s.
dy < dq, which is the inequality we wanted to prove.

that the proof makes essential use of the relation a = bg + s, which is
1o the relation in the division theorem. However, we need not know
s less than b; indeed, it need not even be positive. Hence the fact that
er is less than the divisor is not used to show that the last non-zero
is the greatest common divisor, but only to show that the algorithm

ed Euclidean algorithm

is a still more powerful version of the Euclidean algorithm than the
cribed in the previous section. In this case, powerful does not mean
It means that the greatest common divisor is only one of the elements of
ut. Suppose, once again, that a and b are positive integers, and let d be
common divisor. The extended Euclidean algorithm will calculate
also two integers « and J, such that

aat+fB-b=d.

il (except in some trivial cases), we will always have that, if « is positive,
is negative, and vice versa.

best way to compute these integers is to add some extra calculations
traditional Euclidean algorithm, so that d, @, and 8 will be found at the
This explains why the resulting procedure is known as the extended
an algorithm. The version of the algorithm we present here is the creation
Knuth, author of the famous book The Art of Computer Programming.
thm can be found in volume 2 of the series; see Knuth 1981, section
gorithm X.

that the Euclidean algorithm proceeds by computing a sequence of
The greatest common multiple is the last non-zero remainder in this
€. Thus we have to find a way of writing the last non-zero remainder as

e idea behind Knuth's algorithm is that we should not wail to arrive at
remainder; instead we should find a way of writing each remainder, from
0 last, in the required way. This apparently means that we have to do a lot
unnecessary work. That's not really true, as we will see later on in this

se that, in order to compute the greatest common divisor of a and b,
through the sequence of divisions (5.1). Let us write them here together
 the special formulae for the remainders that we expect to find.

and 1y =ar +by
and rz=az;+byp

a=by +m
b=rigr+tra



ri=raqa+ra and r3=ary+ by
Ta=Taqa+re and 74 =axy+ by
Th—3=Tn-20n—1 +Tn-1 and rq_y = aZn_1 + bya—y
Th-2 =Tn_10n . and 7, =0.
The numbers &1,...,Zn—1 and yy,..., Y,y are the integers that we want to
determine. It is convenient to ize the inf ion we require from (6.2)
in a table.
remainders | quotients | = ¥
a * zo | y=t
b * To Yo
L L1 I n
T3 q2 T2 Y2
T3 3 Z3 Ya
Tn-2 Qn-2 Tn-3 | Un-2
Tn-1 Gn-1 Tn-1 | Yn-1

The first thing to note is that the table begins with two rows that “legally”
should not be there. Indeed the numbers that appear in the first column of these
rows are not really remainders of any divisions. Let us call these the (—1)th and
the (Oth rows, thus emphasizing their “outlaw” character. Soon we will see why
they are necessary.

What, then, do we want to do? We want to find out how to fill in columns
z and y. Suppose, for a moment, that we have received the table filled in up to
a certain row, say the (j — 1)th row. The first thing we have to do in order to fill
in the jth-row is to divide r; 5 by r;_;. This gives r; and g;, which fill in the
first and second positions of this row. Let us not forget that Tj-2 =Tj_1qj+T;
and 0 < rj < rj-q1. Thus,
(6.3) T3 =T =T

Now, in rows j —1 and j — 2, we find the values of Zj_2, 21, Yj—2 and y;_;.
So we can write
Tj—3 =azj_a+by;—g and

Inserting these values in (6.3), we obtain

Tj-1= azrj- + by,;_i.

rj = (az;_a+by;_a) —(azi +by;_1)gs

a(zj-2 — qi25-1) + b(yj—2 — q;y;-1)-

Tj=2j-2—qTi-1  and Y = Yj-2 —QiYi-1.

to compute z; and y; we have only used the quotient g; and data
two rows that immediately precede row j. This explains why Knuth's
is so efficient. In order to fill in a certain row we need only the two
immediately precede it; all the other rows can now be deleted from
of the computer.

we have a recursive process; all we have to do is find out how to give
This is why we need the two “illegal” rows that we introduced at the
of the table. The reason o introduce them is that it is very easy to
te the values of = and y for these rows. Interpreting = and y just as we
the other rows, we must have that

a=az_j+by_; and
s that we choose

b= ax + byo.

z-1=1y-1=0,20=0 and yp=1,
is enough to give the initial push to the procedure.
ing gone through the divisions, we know that ged(a, b) = r,,_;, and we
mputed integers x,_; and y,—; such that

d=Tn-1 = a1+ byn—1:
= Tp-1 and § = yn—_1. Note that if we know o and d = ry_, then
n find 3 by the formula

A= (d - aa)/b.

we need only compute the first three rows of the table.
is a numerical example. If @ = 1234 and b = 54, then the (full) table

quotients T ¥
hd 1 0
* 0 1
22 1-22-0=1 0-—-22-1=-22
1 0-11=-1 1-1-(-22)=23

5 |1-5:(-1)=6| —22-5.283=-137

1 -1-1:-6=-7|23-1-(-137) =160
3 : i
ﬁ:lﬁ().nnd

. (=7)+1234 4 16054 = 2.

It is time to find out why the algorithm works, and why it stops. As the
lme suggests, this is the Euclidean algorithm of the previous section with some
instructions added for the calculation of = and y. Thus it stops, and the
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greatest common divisor is part of its output, because this is true of the E
algorithm. Moreover, the numbers in the columns = and y of each row
equation like (6.1), with d replaced by the remainder of that row. In
(6.1) holds if we choose for o and 3 the numbers in the columns = ar
the row corresponding to the last non-zero remainder. The extended
algorithm gives rise to the following theorem.

Theorem. Let a and b be positive integers, and let d be the greatest con
divisor of a and b. There exist integers a and [3 such that
a-a+fB-b=d

Note that the numbers & and @ are not unigue. Indeed, there are i
many possible choices of integers o and 8 for which (6.1) is satisfied.
example, let k be an integer, and suppose that ¢ and 3 are such that a-a+G-h =
Then

compule the quotient in each case; the result follows from the
Use exercise 4 to compute ged(2%” +1,22" +1).
mdhmmSquhapw3

ce 1,1,2,3,5,8,13. .., each number is the sum of the two
‘it. Denoting by fn the nth number in the sequence, we

In=fa=1+ fa-2,

it common divisor of two ive terms of the Fib

ns are required to compute ged(fr, fn-1)?

a method that can be used to find the integer solutions

= ¢, where a,b,c € Z. In other words, we want cither to

satisfy the equation or to prove that they do not exist. Let

= da’ and b = di, for some integers o and b'. Hence,
e=azr+by=da'z +by).

n has an integer solution, then d divides ¢.

: let & = de’ and consider the reduced equation a'z + by = ¢.
of the original equation is also a solution of the reduced equation,

(a+kb)-a+ (3 —ka)-b=d,

as one immediately checks.

Having gone through all this cffort in order to calculate o and 3,
reasonable to ask, What are these numbers good for? The best way to find o
the answer is to keep reading the book. Many of the most important re
later chapters will depend on the knowledge of these numbers, and this in
the choice of keys of the RSA cryptosystem in Chapter 11.
ufthnmpnalewaumitisemshmsolvelbewduwd

7. Exercises ' P e Briciidedh algsajtuii 1o Soay
5 «t-.d h=1 Shnwthat.lnlhlsca.sc.mereducedaqummhis

1. For each pair a, b of integers given below, compute the greatest ¢,

find integers c, 7 such that ged(a,b) = a-a -+ G- b,
(1) 14 and 35 exercise 7 to wrile a program 1o solve the equation ax + by = ¢
(2) 252 and 180 be the coefficients a, b, and e. The output will be either an

(3) 6643 and 2873

n.u wamagemwngttmmchasolutlonmmeuiu
(4) 272,828,282 and 3242 '

of an i of the ded Es

2. Let n be an integer greater than 1. Show that
(1) ged(n,2n+1) =1
(2) ged(2n+1,3n+ 1) =L
(3) ged(n!+ 1, (n+ 1)1+ 1) =1L

is to find out experi Ily what p ion of randoml
kenmsedurcmpmpsirs Thcinmufﬂwmgrmwﬂl
the total number of random pairs to be generated. The program
algorithm to these pairs, find their greatest common divisors,
f these equal 1. The output will be the quotient
total number of co-prime pairs

m

of the probability that a randomly chosen pair of integers is
apply the program to large values of m in order to get a good
lity. Run the program ten times with m = 10, What were
ity is 6/7%; see Knuth 1981, section 4.5.2, Theorem D. How
‘value compare with this number?

- o Showmmlt'n.bandnbﬂmimwtlm
B —a" = (b—a)(b" + 6" Ta+ 6" e+ ba" 0"

4. Let n > m be positive integers and let r be the remainder of the division of 1 DY ¥
(1) Show that the remainder of the division of 2" — 1 by 2™ — 1is 2" — 1.
(2) Show that if r is even, then the remainder of the division of 2" + 1 by 27 %

527+ 1




ique factorization

and conquer” is a very common strategy in science. For example, any
e can be broken into its constituent parts, the atoms. Moreover, if the
of the atoms are known in sufficient detail, that tells us a lot about
es that are made of them.

ething similar happens with the integers. In this case the role of atoms
d by the prime numbers, and every integer can be written as a product of
This decomposition is a crucial ingredient in the proof of many properties
integers. However, it is not always easy to compute the decomposition of a
integer. If the number is large, factorization can be a very time-consuming
‘making heavy demands of computer power.

que factorization theorem

us begin by carefully defining the main characters. An integer p is
be prime if p # +1 and its only divisors are +1 and +p. Hence 2,
—T are prime numbers, but 45 = 5- 9 is not. Notwithstanding the
n, we will use the word “prime” as shorthand for “positive prime” almost
in the book. An integer, different from +1, that is not prime is said
posite. Thus, if n is composite, there exist integers a and b such that
< n and n = ab. Hence 45 is composite.

Note that the numbers 1 are neither composite nor prime. They belong to
d category: They are the only integers to have a multiplicative inverse. At
d of this section we will be able to explain in 2 more convincing way why
imbers should be left out of the set of primes.

factorization theorem. An integer n > 2 can be uniquely written

i

n=pit...pt

<P <pp <ps< - < pare prime numbers, and ey, ... e are

integers.

s theorem is s0 important that it is sometimes called the fundamental

of arithmetic. It was first stated in this form by C. F. Gauss in section
i i arithmeticee. That, however, did not stop earlier mathe-

ans from using the theorem implicitly. Indeed, as Hardy and Wright write
book on number theory, “Gauss was the first to develop arithmetic as a
natic science”; see Hardy and Wright 1994, p. 10.

a3



The exponents ey,..., e are called the multiplicities of the primes in the
factorization of n. In other words, the multiplicity of py in the factorization of n
is the largest integer e, such that pi* divides n. Note also that n has k distiner
prime factors, but the roral number of prime factors is e; + -+ + g

The statement of the theorem says two different things. First, every integer
can be written as the product of powers of prime numbers. Second, there is only
one possible choice of primes and exponents for the decomposition of a given
integer. Thus, we have two things to prove: that the factorization exists, and
that it is unique. They will be proved separately. As we will see, it is easier 10
prove that the factorization exists. The uniqueness is far more subtle.

Having stated the unique factorization theorem, we are in a better position
to explain why =£1 should not be counted among the primes. If we had defined
primes so as to include these numbers, then the factorization of integers into
primes would no longer be unique. Indeed, if 1 is prime, then 2 and 12 - 2 are
two different factorizations of 2 in powers of primes. Playing the same game
with higher powers of 1 (or —1), we would have infinitely many different fac-
torizations for every integer. Thus, to avoid these pseudo-factorizations (infinite
in number, but quite worthless) we exclude 1 from the definition of prime
number.

Finally, we come across an interesting etymological question: How did prime
numbers get their name? The mathematicians of Ancient Greece classified whole
numbers as primary or indecomposable, and secondary or composite. The Greek
for primary was translated as “primus” in Latin, which in turn became prime in
English.

2. Existence of the factorization

We show in this section that, given an integer n > 2, it can be written as a
product of primes. We do this by describing an algorithm that has as its input an
integer 2 > 2, and as its output the prime factors of n and their multiplicities.
As a preliminary stage to this algorithm, we consider another one whose output
is a single prime factor of n.

The simplest algorithm to find prime factors is the following. Suppose the
input is an integer n > 2. Try to divide . by the integers from 2 to n— 1. If one
of these integers divides n, then n is composite, and we have found its smallest
factor. Otherwise, n is prime. Moreover, if 1 is composite, the factor we found
must be prime.

m‘sseewhymmlmsmmtmm Let f be an integer such that
2= f <n—1. Suppose that f is the smallest factor of n, and let f' > 1 be
a factor of f. By the definition of divisibility, there exist integers a and b such
that

n=f-a and f=f"-b

Hence n = f'-ab. Thus f' is also a factor of n. Since f is the smallest factor
of n, we must have f < f'. But [’ is a factor of f, so f* < f. From these

it follows that f = f’. Therefore, we have proved that if f* # 1
then f' = f. In other words, f is prime.

is something else we ought to note before we describe the algorithm
have seen that all the algorithm does is search for factors among
ntegers. How far do we have to carry this search? It is obvious
d not go beyond n — 1; an integer cannot have a factor bigger than
can do better. Indeed, it is not necessary to look for factors bigger
Once again this depends on the fact that the algorithm actually finds
¢ factor of n, greater than 1. Thus, all we have to show is that if n
e and f > 1 is the smallest factor of n, then f < /7.

claim is easily checked. Let a be the co-factor of f in n; thus
e f > 1 is the smallest factor of n, we have f < a. Note that this
true if n were not composite, Now a =n/f, and so f < n/f. But
that f2 < n. In other words, f < /i, which is what we wanted to

on can be summed up as follows. The algorithm consists of a
ors, beginning with 2 and moving through the integers up to /fi.
ite, its smallest factor greater than or equal to 2 will be found.
is necessanily prime. If no factor is found in this search, then n itself

2 is onc final point of a practical nature. Denote by [a] the integer part
a. In other words, [a] is the greatest integer smaller than or
=3 and [v2] = 1. Note that if r is an integer, and r < q,
a]. Thus, to use the factorization algorithm described above we need
v [v/7i]. A procedure for doing this can be found in section 1 of the

will write the factorization algorithm according to the canon of
In order to do this with a minimum of fuss, we will assume that we
@ computer that can determine the integer part of /7.

n by trial division

fnu/F is an integer, write “F is a factor of n"" and stop; otherwise go

rease F' by one, and go to step 4.
> [y/n] write “n is prime” and stop; otherwise return 1o step 2,

~an integer n > 2, we have found a method to determine whether n
which also finds a factor of n if it is composite. Of course, if n is
have already found its factorization. However, if n is composite, we
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wish to find all its prime factors with their respective multiplicities. In order to
do this it is enough to apply the above algorithm several times.

Suppose that, having applied the algorithm to n, we found a factor g;.
Hence gy is the smallest prime factor of n, Next we apply the algorithm to the
co-factor n/q;. Suppose that n/q; is composite and that its smallest prime factor
is ga. Clearly g2 > 1. But note that they could be equal. That would happen
if qf divided n. Carrying on in the same fashion, we would have to apply the
algorithm to /(g1 g2), and so on. This method generates an increasing sequence
of primes,

BS@gas - <,

each one of which is a factor of n. To this there mid

one, the sequence of co-factors
n._.n n
e = i
o T2 (1920

Note that this is a strictly decreasing sequence of positive integers, each of which
corresponds to an application of the trial division algorithm to n, Since there are
only finitely many positive integers smaller than n, the complete factorization of
n will be found after a finite number of steps. It is not difficult to check that
the last number in the sequence of co-factors is always 1, which gives a simple
clue that it is time to stop.

Now suppose we want to write the factorization of n in the form that appears
in the statement of the unique factorization theorem, We have the prime factors;
all we need are their multiplicities. To find them, it is enough to count how
many times each prime appears in the sequence of primes above. Of course, it
is better to count the primes as we carry on the process.

Let us see how this works in an example. Suppose we want to find the
factorization of n = 450. Applying the trial division algorithm, we find that
the smallest factor of 450 is 2. Applying the same algorithm again, this time
to the co-factor 450/2 = 225, we find the factor 3. Thus, 3 is a factor of 225,
and so also a factor of 450. Next, apply the algorithm to 225/3 = 75, Once
again the smallest factor is 3. Hence, 3? divides 450. Two more applications
of the trial division algorithm allow us to show that 5 divides 25, and has 1 as
its co-factor. Hence, we have found the complete factorization of 450, which is
450=2.3%.5%

3. Efficiency of the trial division algorithm

The algorithms described in the previous section are easy to understand
and to program, but they are very inefficient. Since the algorithm used to find
the complete factorization of an integer works by repeated application of the
trial division algorithm, it is enough to discuss the efficiency of the latter. We
illustrate the point with a simple, but quite dramatic, calculation.

If we apply the trial division algorithm to an integer n > 2, then the worst
possible case occurs when n is prime. In that case the algorithm will repeat

p [v/7i] times before it stops. So, to keep the calculations simple, let us
at we have a prime number n with 100 digits or more. How long
1o certify that i is prime with the trial division algorithm?
> assuming that n > 10'%%, so /i > 10°. Thus, we have to repeat
1 the algorithm at least 10°° times. In order to find out how long it
do this, let us suppose that our computer calculates 10'° divisions
Note that in doing this, we are pretending that the only operation
r has (o perform in a loop is division. Of course, this is far from
let that pass. Dividing the numbers, we find that the computer would
seconds to prove that n is prime. A simple calculation shows that
pproximately equal to 10*! years. This is far too large a number by
standards. To put it in perspective, we might compare it with the age
se. Present calculations indicate that the Big Bang occurred some
 ago. Surely no additional comment is required; the numbers make
clear.
that mean this factorization algorithm is useless? Of course not. Per-
the number we wish to factor has a small prime factor, say, smaller than
that case the trial division algorithm would find it quickly. On the other
f have reasons to think that a given large number is prime, then the
on algorithm is not the best way to go about proving it.
are many other algorithms for the factorization of integers, which
> or less efficient depending on the kind of integer one wants to factor.
algorithm of section 2 is quite good for integers with small factors. In
section we will study Fermat's algorithm, which is most efficient for
that have a (not necessarily prime) factor not much bigger than /fi.
- should not forget that there is no algorithm that is efficient for the
1 of any randomly chosen integer. Otherwise the RSA cryptosystem
be truly secure. What is not clear is whether such an algorithm does
or whether we just haven't been clever enough to discover one,

s factorization algorithm

algorithm of section 2 is efficient only if the integer n that we wish to
divisible by a small prime. How “small” will depend on the computer. In
on weswdymalgmimmlhuiseﬂ'wientwhmnhasa(mmaﬁly
factor not much bigger than /n. This algorithm was conceived by
and it is a ot more ingenious than the trial division algorithm.

start with, suppose that n is odd. If it were even, 2 would be one of
The idea behind the algorithm is to try to find non-negative integers
such that n = z% — . If we assume that these numbers have been

n=x—y? = (z-y)z+y)

— y and x + y are factors of n.

order to describe the algorithm with a minimum of fuss, we will assume
‘¢ are using a computer that can determine the integer part of |/n.
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The easiest case of Fermat’s algorithm occurs when n is a perfect square.
That is, when n = r? for some integer r. Then r is a factor of n. Note that, in
the notation above, in this case we have ¢ = r and y = 0.

On the other hand, if y > 0, then

z=+/n+y?>/n.

This suggesis the following strategy for finding = and .

input n is composite, and when it is prime. In the first case we must
there exists an integer z such that [y7] < = < (n+1)/2, and vZT —n
This means that if n is composite, then the algorithm always finds
smaller than n before  becomes equal to (n+1)/2. Now if n is prime,
1o check that v/zZ —n is never an integer for = < (n + 1)/2.

that n can be factored in the form n = ab, where a < b. We wish
rs z and y such that n = 2® — y?. In other words,

n=ab=(z—y)(z+y) =2 -1

Fermat's factorization algorithm 4 3
Input: a positive odd integer n & —y < z+y, we can try the choice a = 2 —y and b=z +y. Solving
Output: a factor of n, or a message stating that n is prime of equations in two unknowns, we get

Step 1 Begin with z = [\/n]. If n = %, then z is a factor of n, and we can e EE D y=__b‘°,

stop; otherwise increase z by 1 and go to step 2. ! Sl 2

Step 2 If z = (n + 1)/2, then n is prime and we can stop; otherwise compute simple calculation shows that

y=vr?i-n. b+a\? b—a)\?

Step 3 If y is an integer (that is, if [y]* = 2% — n) then n has factors z +y and =) —|=5") =o=n

— y and we can stop; otherwise increase 1 and go to 2
P e » ARy uep since z and y must be integers, both (b -+ a) and (b — a) need to be
bers. This is why n has to be odd. For a and b are factors of n, so
also be odd; thus a+ band b—a are even. If n is even, the algorithm

 work properly. For example, if n = 2k and k is odd, the algorithm will

is prime, the only possible choices for a and bare a = 1 and b= n.
= (11+1)/2, and this is the smallest = for which vZZ — n is an integer.
| now consider what happens when n is composite. If a = b, then the
n finds a factor in step 1. Thus, we may that n is composil
it is not a perfect square. In other words, 1 < a < b < n. We claim

The algorithm is very easy to use, as the following example shows, Let
7= 1342127 be the number we want to factor. The variable  is initialized as
the integer part of \/n. In this example this gives z = 1158, However,

2% = 1158° = 1,340,964 < 1,342, 127.
Thus we must increase by 1. We will keep on doing so until vZZ — 7 is an
integer, or x = (n + 1)/2, whichever comes first. Nole that, in this example,
(n+1)/2 = 67,1064. The values of the variables z and y at the various loops
are easily summed up in a table.

T |Vet-n a+b _n+1

1159 | 33.97 MA<S=s;

1160 | 58.93 the inequalities first,

16| 7611 inequality on the right says that a + b < n + 1. Replacing n by ab,

162] 90.00 acting b+ 1 from both sides, we get a —1 < ab—b. Buta > 1,
' cancel a — 1 from both sides of the inequality. Having done so, we

1163 | 102.18 dithat 1 < b. This argument shows that the inequality 1 < b is equivalent

1164 [ 113 £b < n+1 Since 1 < a < b holds by hypothesis, we have shown that

Thus, we have found an integer in the sixth loop. Hence = = 1164 and
y = 113 are the numbers we want, The corresponding factors are

z+y=1277 and z-y=105L

5. Proof of Fermat's algorithm

We must now prove that Fermat's algorithm works, and that it always stops.
In doing so, it is convenient to ider sep ly the behavior of the algorithm

V] < \/n, it is enough to prove that /i < (a + b)/2. Clearly this last
lity holds if and only if n < (a + b)*/4. However, by (5.1)

4 e R
is always non-negative. Hence we have proved that (a+ b)?/4 —n > 0,
¢h is equivalent to the inequality we began with.




Let's go back to the algorithm. Recall that the variable 2 is initialized with
the value [y/R], and then increased by 1 at each loop. Hence it follows from
(5.2) that, if n is composite, the algorithm will reach (a + b)/2 before it arrives
at (n+ 1)/2. However, when = = (a+ b)/2, we get

a+ b)! _ (b= a)z
(%) -n-= ( =L
Thus, having reached this value of z, the algorithm stops, and the output will
be the factors a and b. Therefore, if n is composite, the algorithm always stops
for some = < (n+ 1)/2, having computed two factors of n.

Note that given a composite integer n, it may be possible to factor n in
many different ways in the form n = ab, with 1 < a < b < n. Which of these
is the one Fermat's algorithm will find? The algorithm begins its search for =
at [y/n], increasing z at each loop. Thus the factors a and b that the algorithm
will find are those for which

-

a+tb
2

~[val

is as small as possible.

This algorithm has something very important to tell us about the RSA cryp-
tosystem. Recall that the security of the RSA depends on the difficulty of
factoring an integer n, which is the product of two primes. If we can factor n,
we can break the code. The trial division algorithm might give the illusion that
by choosing big primes we can make sure that n cannot be easily factored. But
this is mor true. If the primes are big but their difference is small, then n will
be very easily factored by Fermat's algorithm. We shall return to this question
in Chapter 11.

6. A fundamental property of primes

In order to prove that the prime factorization of an integer is unique, we need

a fundamental property of prime numbers. In this section we prove this property,
and in sections 7 and & we will study some of its applications. We begin with &
lemma, which will be our first application of the extended Fuclidean algorithm.
Lemma. Ler a, b, and ¢ be positive integers, and assume that a and b are
co-prime.

(1) If b divides the product ac, then b divides c.

(2) If a and b divide ¢, then the product ab divides c.

Let's prove (1) first. We have, by hypothesis, that a and b are co-prime;
that is, ged(a, b) = 1. It follows by the extended Euclidean algorithm that there
exist integers o and 7 such that

aa+ Gb=1.

~ Chaptor 2
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1o the “abracadabra” of this proof: Multiply both sides of the
This gives

aac+ fcb=c.
d term on the lefi-hand side is clearly divisible by b, but so is the first
d, it is divisible by ae, which is a multiple of b, by hypothesis. Thus
i side of (6.1) is itself a multiple of b. Since it is equal to ¢, we have

we use (1) to prove (2). If a divides ¢, then there exists an integer ¢
= at. But b also divides ¢. Since a and b are co-prime, it follows
and ¢ = at that b must divide t. Thus ¢ = bk for some integer k.

¢ = at = a(bk) = (ab)k

e by ab, which is the conclusion of (2).

emma will be used very often, beginning with a proof of a property of
e numbers that is found in Euclid’s Elements as proposition 30 of Book
is @ very important property, so it is convenient to give it a name. We
it the fundamental property of prime numbers.

property of prime numbers. Let p be a prime number and
positive integers. If p divides the product ab, then p divides a or p

the lemma to prove the property. By hypothesis, p divides ab. If
‘a, the proof is complete. Suppose that p does not divide a. But p
50 its only factors are 1 and p. Thus ged(a,p) = 1. Applying the
conclude that, since p divides ab, and p and a are co-prime, then p

Greeks and the irrational

s section we consider an application of the fundamental property of
‘numbers, proved in section 6. We show that if p is prime, then /F is
nal number. This is the first of many proofs that we will do using the
wn as proof by contradiction.
a behind the method is very simple, and we often use it in everyday
is a rather simple-minded example. You need a computer file that you
one of two disks, one of which is blue, the other red. Unfortunately,
't remember which one, and neither of them has a label. What do you
u put one of the disks in the computer—the blue disk, say—and look at
. If the file you want is not there, then it is on the red disk. A more
ut way to explain what you did is to say that you assumed your file
¢ blue disk. Upon finding that it was not there, you realized that your
L n was wrong, and that the file was really on the red disk.

e reason why we expect such a strategy to work is we know that a certain
be true and false at the same time. Thus, if a file is on one of the



two disks, and if it is not on the blue disk, then it must be on the red disk. Of

course, in the world of everyday life, things are rarely, if ever, that clear-cut,

Thus, you might be completely mistaken about the file being on one of the two

disks, or worse, you might have deleted it from the disk and not even realized
you'd done so. Luckily, in mathematics, things are often not so messy.

Let us see how this strategy can be applied in order to prove that /5 is
irrational. But first, what does “irrational” mean in this context? Sometimes
one hears that an irrational number is one that cannot be understood. But not
rational here does not mean “impossible to understand™; it means “not a ratio”,
According to the Oxford English Dictionary, a ratio is

a quantitative relation between two similar magnitudes determined

by the number of times one contains the other.
This is almost the same as Euclid's definition 3 of Book V of the Elements.
Unfortunately, this is the kind of definition that will not help you identify a
ratio, unless you already know what a ratio is. In this respect it is much like
Euclid’s famous definition of a point as “that which has no part”. Luckily all we
need to know is that an irrational number is a real number that is not a fraction.
Thus, we have a question to which we can quite easily apply the method of
proof by contradiction. Do we want to prove that \/f is not a fraction? All we
need to do is assume that it is a fraction, and try to deduce a contradiction from
that. If we succeed, our assumption was wrong, and we have proved that /7 is
irrational.

We must take care in setting up the proof. Recall that we will be assuming
(in the hope of arriving at a contradiction) that /p is a fraction. In other words,
we are supposing that there exist integers a and b such that

(.1) =3

Moreover, we can assume that the fraction is in reduced form; that is, ged(a, b) =

1. Every fraction can be written in this form: Just cancel the greatest common

divisor of the and the d It is imp to assume that a/b

is reduced, because this will make it easier to spot the expected contradiction.
In order to work with integers, let us square both sides of equation (7.1).

We get

(7.2) p=a®/t?, thatis, b .p=d®

Hence p divides a®. By the fundamental property of prime numbers this implies

that p divides a. Hence there exists an integer ¢ such that a = pe. Replacing «

by pe in (7.2), we have

Bop=p*-c
Canceling p from both sides, we see that p must divide b*. Using the fundamental
property of prime numbers again, we conclude that p divides b. Thus, we have

seen that p divides a, and that p divides b. But this cannot happen, since
ged(a, b) = 1. Hence we have the expected contradiction, which means that /7

is not a fraction. Theref: tional number.

VP isani
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ce of irrational numbers is a problem with a long and colorful
g to the Greek historian Herodotus, geometry originated in
 pharaoh distributed land to the people in rectangular plots on
levied an annual tax. If the Nile swept away part of the plot, the
had to be called in to calculate how much land had been lost. The
plot was then eligible to a reduction of tax proportional to the area
lost.
Egyptians, interested only in practical measurements of area and
ns, all numbers were implicitly assumed to be fractions. It was
ment of the more theoretical aspects of geometry in Ancient Greece
the irrational numbers to the fore.
ery of the irrationals is believed to have happened in the school
y (or sect) founded by Pythagoras. The Pythagoreans were very
in the development of geometry because they believed that the numbers
h they meant integers and fractions) were the essence of the universe.
can imagine how horrified they must have felt when they realized that
e ratios of magnitudes that did not correspond to any fraction. It is said
s of Metapontum was expelled from the sect for making public this
he Pythagoreans, however, felt that this wasn’t quite enough, so they
tomb, because for them he was already dead!
y, the discovery of irrationals soon became common knowledge
philosophers. Plato, in his dialogue Theaeretus, says that Theodorus of
proved that the numbers v/3, ... ., /17 were irrational. Unfortunately,
ot say anything about this purported proof.
of given above for the irrationality of \/F was known to the Greeks,
23 of Book I of his Prior Analytics, Aristotle says that
e diagonal of the square is incommensurate with the side, be-
odd numbers are equal to even if it is supposed to be com-
urate

condensed form of the proof that v/2 is irrational, A more detailed

by contradiction, that there exist positive integers greater than 2
more than one factorization, in the form of the theorem of section 1.
e the smallest positive integer with two, or more, different factorizations.

n=prep = a0

iy < - < peand q < oo < gy are primes, and €q,..., €k, T, .0 Ty
itive integers. Moreover, we are assuming that these two factorizations



aa

are different. Note that this could happen for two different reasons. First, there
could be primes in one of the factorizations that were not present in the other
one. Second, even if the primes were the same in the two factorizations, the
multiplicities could be different. Luckily, it does not matter which of these two

possibilities actually occurs in (8.1).
We conclude, by inspection of the factorization on the left-hand side, lh:u
P divides n. But n = qj'...q}*. Repeated appli of the fund,

pmpmyqunmsmtbu'swllsusﬂntm must divide one of the factors of

% ...gf*. Ultimately this means that p; must divide one of the gs. But a prime
can only divide another prime if they are equal. Therefore, p; has to be equal
to one of the gs; say, py = g;, where 1 < j < s.

Thus we can replace g; by p in the factorization on the right-hand side of

(8.1):

s

=g
S S e A
Now py can be canceled, because it appears as a prime factor with positive
multiplicity in both factorizations. Doing this, we obtain
Pq"l...p;"=q’{‘-..ﬂ’_] g,
which are two factorizations of a positive integer, which we will call m. But
these factorizations cannot be different. Indeed, n was assumed to be the smallest
positive integer with two distinct factorizations, but m = n/p; < n. If the
factorizations are equal, then we have, first of all, j = 1; s0 p; = g;, and also
k = s. Furthermore,

n=pp..

=@ P3=0g, and  pp =g
and each prime must have the same multiplicity, so that
eg—1l=r-1 e=r;, and e =T

But these equalities imply that the factorizations in (8.1) are equal, which is a
contradiction. Thus, the factorization in the form of the theorem of section 1 is
indeed unique.

Having gone through all this trouble to prove the uniqueness of the fac-
torization, we ought to face the fact that most people cannot even imagine a
factorization that is not unique. So, once again, this seems to be one of those
instances of mathematicians proving something that to everyone else is patently
obvious.

The truth is quite otherwise. The only reason why we think the uniqueness
of the factorization of integers is obvious is that this is the factorization we learn
abmnﬁm,andveryeadymmuhm So all our intuition about factorizations
is built up entirely from this one—and it is unique. It is a little like saying that
Euclidean geometry is obviously the only correct one. This is simply not so, and
in these times of relativity theory and black holes, no educated person would
make such a stalement.
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ook at the history of mathematics in the last hundred years, you will
it is chock-full of examples of “number systems” whose elements
factorization into irreducible elements. Except that usually, this factor-

This refers to the statement made by Fermat that if three integers z,

| 1 large enough to contain it.
‘most obvious strategy, in trying to prove this result, is to factor the
1 2™ — y" completely. In order to do this we must introduce complex
=y = -y)e—Cy) (2= My),
= cos(2m/n)+isin(2m/n). It turns out that the set of complex numbers
p with behaves very much like the integers. Every element of this set can
as a product of powers of irreducible elements; that is, clements that
themselves be factored. However, for most values of n the factorization
ique. This turns out to be the main obstacle for a simple proof along

been suggested that Fermat's “proof” of the theorem could have been
y one hinted at above. In this case Fermat would have been trapped
ing that the factorization in the set of complex numbers he was using
e, a fact we know to be false. It would not be surprising if Fermat
m to this error. As we noted in section 1, it was only with Gauss that
factorization theorem for the integers was spelled out in the explicit
use today. Even after Gauss's Disquisitiones, E. Kummer proposed
like the one suggested above, not realizing that there was a problem,
mistake was pointed out to him by a fellow mathematician. Not letting
be defeated, Kummer went on to develop a method that bypassed the
niqueness in the factorization. This allowed him to prove Fermat's Last
for many more primes than had been possible before.

*s Last Theorem was finally proved in 1995 by A. Wiles. He followed
h that had been developed only in the preceding 10 years, and that
of the theory of elliptic curves, about which he is an expert. For the
"rthemmmpnwtothat.mﬁdmrds 1977, For a good elementary
tion to the ideas behind Wiles’s proof, see Gouvea 1994,

_rcises
there positive integers x, y, and z such that 27 - 3 . 26¥ = 30%7
Let k > 1 be an integer. Show that

kl+2 k43,0, k4 k
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be a positive integer, and let S(n) be the sum of all the factors of n, including

mnﬁmmpuhaﬂw&kmmﬂﬁ.mmhmhpmigmwmm'
‘Show that r is a prime number if and only if S(r) = r + L.

w that n is a perfect number if and only if S(n) = 2n.

by and by be two co-prime positive integers. Show that d is a factor of byby
and only if d = dyda, where di = ged(d, b1) and dy = ged(d, ba).

Ise (3) to show that if by and b are co-prime, then S(byba) = S(b1)S(b2).

3. Use Fermat’s algorithm to find factors for the following integers: 175,557; 455,621;
and 731,021,

4. Which of the claims below are true, and which are false?
(1) V8 is irrational,
(2) The sum of an imational number and a fraction is always irrational,
(3) The sum of two irrational bers is always irrational
(4) The number v/Z + +/3 is rational.

s an even perfect number, then it can be written in the form n = 2°f, where
t is odd.

n by 2°t in the formula S{n) = 2n and use exercise 9(4) to show that
1 must divide S(t).

m (1) we have S(t) = 2**'q for some positive integer g. Show that ¢t =
T—1)q.

‘want (o prove, by contradiction, that ¢ = 1. Suppose that g > 1. It follows
(2) that t has at least three different factors, namely 1, g, and ¢. Hence
1) = 1+ g+t Show that S(¢) = 2**'g = ¢ + ¢, and find the expected

5. Show that if n is composite, then

R{n) = 10" -1

=111...11
. times
is also composite. These numbers are called rep-units,
Hint: If k is a factor of n, then R(k) is a factor of R(n).
n (3) we have g = 1. Inserting this in the previous formulac, we obtain
=2"1 1 and S(t) = 2'*', Thus S(t) = t+ 1, and it follows from exercise
1) that ¢ is a prime number. '
all this together to show that n = 2*(2"! — 1), where the second factor is

6. Let n > 0 be a composite integer and let p be its smallest prime factor. Find all
possible values of n for which

(1) p = /m; and

(2) p—4 divides ged(6n + 7,3n 4+ 2).

7. Let a and b be positive integers; their least ltiple is the smallest positive
integer that is a multiple of both a and b. Now let
a=pi'pP...pf* and b=ppp...p,

where oy < p2 < - < px arc prime numbers and the exponents e;,... e and
T1y.-+4 Tk are greater than or equal to zero. Note that we are not assuming that the

7 be a positive integer. Denote by d(n) the number of positive divisors of n, A
is called highly composite if d(m) < d(n) for all m < n. Write a program
a positive integer r as input, finds all highly composite numbers smaller than
program to list all highly composite numbers smaller than 5000. What do you
the prime factors of these numbers from an inspection of the factorizations

same primes come up in bath factorizations; for example, if py divides a, but not b, then inymrljst'x‘_llighly posil ‘ were i " 1 and studied by
1 = 0. Show that the only primes in the factorizations of ged(a, b) and lem(a, b) are Indian mathematician Srinivasa R ujan; see R tfjan 1927, p. 78,
P1yo -y i, and find their multiplicities in each of these factorizations. ap that impl Fermat's factorization algorithm. The program

| as input any positive integer smaller than 2%, and should output two of its

Or & message stating that the number is prime. Remember that Fermat's algorithm
- work properly if the input is even, so you must check that first, This is the first
: of a sequence that ends with exercise 8 of Chapter 11,

8. Aposlﬂwmmunisapedacmumhrifﬂnmu!’aﬂhsfwm[imludingland
n) is 2n. For example, 6 and 28 are perfect numbers. Suppose that s is a positive integer
for which 2°*1 — 1 is a prime number,

(1) Show that the factors of 2*(2'"" — 1) form two geometric progressions whose

ratio is 2, the first beginning with 1, the second with 2°1 — |,

(2) Compute the sum of these factors and show that 2°(2**" — 1) is a perfect number.
The above result is proposition 36 of Book IX of Euclid’s Elements. These perfect
numbers are sometimes called Euclidean.

The purpose of exercises 9 and 10 is to show that all even perfect numbers arc
Euclidean, that is, of the form 2°(2**' — 1), where 2°*" — 1 is a prime number. This
was proved by L. Euler, but the paper was published only in 1849, long afier his death.
The proof described below can be found in Dickson 1952, Chapter 1. It is interesting to
note that all known perfect numbers are even, hence of the type already known to Euclid.
It has been shown that if an odd perfect number exists, then it must be bigger than 1092,
and it must have at least eight prime factors. 3



115 chapter. First we consider primes obtained from

vhat a “formula for primes"” should be is encoded in
A function f : N — N is a formula for primes if f(m)
‘€ E. As we will see in this chapter, this is really
e for primes” we will search for formulae that
simplest possible formulae are of the polynomial
g, Are there polynomial formulae for primes?

on above that a polynomial

+aq_y 2" oo b agr 4 ag,

1, -« - @1, @0, gIVes rise to a formula for primes
positive integer m. Let's experiment with the poly-
e begin by computing f(x) for a few positive integral
recorded in the table on page 50.

then f(x) is even. Thus f(z) is always even and
, except when x = 1, because then f(1) = 2.
prime, then = must be even. However, if f(z)
then the polynomial f(2z) would be a formula for
 not true either; for example, f(8) = 65, which is
polynomial f(z) = z* + 1 is not a formula for
d above. Of course this is only one example, so we

49
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z [ f(@) | Prime? | uality is equivalent o
21, : y": 2amh + aph® + bh > 0,
3| 10 [no h is positive by hypothesis, this last inequality holds only if
44| AT o —b -2
5| 2 :? 2am+aph+b6>0 thatis, if h> —— o,
e s —9am can be & positive number. This will Kappen if b is nogative
71 80 |no 2
S8 = have we proved? We showed that if f(z) = az® + bz +cisa
% 82 |no ith integer coefficients (and a > 0), and if f(m) = p is prime,
10| 101 | yes -hp) is composite whenever h > (—b—2am)/ap. In particular, there

many positive integers = such that f(z) is composite.
have already said, a similar proof works for polynomials of any
e. Of course, the computation of f(m + ph) is not so neat, but the
plication concerns the lower bound for h. Since we had a quadratic
he bound was obtained by solving a linear inequality, which is easily
neral, if we begin with a polynomial of degree n, the lower bound
come from an inequality involving a polynomial of degree . — 1, This
d in exercise 1, where the case of a cubic polynomial is considered.
mial is of degree greater than 3, there will be no simple formula
bound of h. Thus, in this case, we will be content to show that
nd exists, even if we cannot write down an explicit formula for it.
a little elementary calculus; the details can be found in Ribenboim
3, section IL
cm means that the question we began with has a negative answer.
we have considered only polynomials in one variable. Surprisingly,
polynomials in several variables, all of whose positive values are
he hitch is that these are polynomials in many indeterminates, so that
to find primes is not very practical. For some examples see Riben-
Chapter 3, section IIL

ial formulae: Mersenne numbers

are two exponential formulae of great historical importance. Both
{ icians of th and eighteenth centuries,

may just have been unlucky in our choice of polynomial. Unfortunately, as the
next result shows, this is not the case. [ |

Theorem. Given a polynomial f(x) with integer coefficients, there are infin-
itely many positive integers m for which f(m) is composite.

We will prove the theorem only for polynomials of degree 2. The general
case is dealt with similarly, except that the formulae are more complicated, and
‘in the effort to understand them one might easily lose sight of the key ideas.

Let f(z) = az® + bx + ¢ be a polynomial whose coefficients a, b, and ¢ are
integers. We may assume that a > 0. This means that f(z) is always positive
for large enough values of z. If f(z) is composite for every positive integer =,
then there is nothing to prove. Note that this can actually happen, for example
if f(z) =dx. Thus we may suppose that there exists a positive integer m such
that f(m) is prime.

Let h be any positive integer. We will compute f(m + hp). A reasonable
question is, Where did m + hp come from? The best answer to this question
seems to be the calculation below. We wish to find

J(m+ hp) = a(m + hp)® + b(m + hp) +c.
Expanding the square and collecting the terms that contain p, we get
f(m + hp) = (am® + bm + ¢) + p(2amh + aph? + bh).

chlhalﬂuexpmssiuhwilhinﬂ\eﬁmbmcmiuqmlwﬂm). But f(m) = p,
50 that

(1.1) F(m+ hp) = p(1 + 2amh + aph® + bh).

Looking at (1.1), we might be tempied to conclude that f(m + hp) is
compasite; after all, it is equal to p times an integer. That, of course, would
mark the end of the proof. Unfortunately there is a gap in this argument. For

J(m + hp) to be composite, the expression in brackets on the right-hand side of
(1.1) cannot be equal to 1. Thus we must find the values of h for which

1+ 2amh + aph® 4+ bh > 1.

t Greek mathematicians, In Pythagorean mysticism a number was
if it was equal to half the sum of its positive factors. For example,
s of 6 are 1, 2, 3, and 6. Adding them up we get

1+24+34+6=12=2.6.
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test, it was shown in January 1998
is prime. It has 1,819,050 digits, and
" this writing.

Hence 6 is a perfect number.

Euclid knew that 2°~1(2" — 1) is perfect when 2" — 1 is prim
difficult to show that all even perfect numbers are of this form, b
only proved by Euler in the eighteenth century. The proofs of
can be found in exercises 8, 9, and 10 of Chapter 2. Euclid’s form
ﬂwpmb!emoffmﬁmgevenpurfsctnumbw:mﬂmofﬁudmgm
numbers,

Related as it is to obscure Pythagorean mysticism, thpmhtom
pufeﬂnumbmnuymnutwﬂymelemwmmehvingm e
tieth century. However, the fact remains that this problem has
2500ym andnsh]l 's_not been sausfaclmlysulvnd.

Ot‘nmrse,th:msk solvmgsodda
urmsuble dullengetothose who love numbers. Moreover, the
pmblan:ssod:iﬁnﬂlmﬂdmnthu:usmmedmdup
integers, Th;swuddmalaeltwmmmmpomm&nmﬂle
point of view.

As we mentioned in the introduction, Marin Mersenne was & pe
mmnrmmema&cmofﬂmmmnthm

ve_anenmmdwfacmrlhmnmnhmbya
on Mersenne numbers. If he had, he would
yosite. That's essentially what Euler did a
udy Euler's method in Chapter 9, section 2.
did not spot Fermat's mistake. After all,
factor Mersenne numbers. He wasn’t by any
s clout, but the tone of their correspondence
| very pleased to find a mistake in Fermat's
have agreed with Fermat on the likely truth of

= 23571317!9316?12?md257 &

'l'heﬁrst ﬂnngmnotnsﬂmMersenne considered mlypnme
Indeed, if n is composite, so is M(n); supposing that n = rs,
s < n, then

ich have proved to be a rich source of large
are known. Indeed, the only known primes
., F'(4), which were known to Fermat him-
Mn)=2"—1=2""—1= (2~ 1)(2rla=D porte=2y ... 1 to calculate Fermat numbers for “large” values
Hence, if r divides n, then M(r) divides M(n). The second thing to - describes these numbers is doubly exponential;
that the converse s false. In other words, if 1 is prime, then M(n) 1 b )
prime. We see from Mersenne’s list that M (11) should be compo ‘we have explored a little of the history of the
easily checks that by exponential formulae. The proofs of the
ve 0 wail until Chapter 9. [For the moment

M{(11) = 2047 = 23 89.
As often happened at that time, Mersenne did not provide a p
statement. In 1732, Euler claimed that M (41) and M (47) were pri
numbers are not in Mersenne's list, but in this case it was Euler who ¥
The first mistake in the list was found by Pervusin and Seelhof in |
discovered that M(61) is prime, though it is not on the list. O
were found in later years. We now know that besides M(61), the list
primes M (89) and M(107), and includes the composite numbers
M(257).
When Fermat wanted to show that a Mersenne number was
semchedfurfmsusmganmhodthalwem]ldescn‘bemal

out that Fermat's method for finding factors of
'to explain, and not that much harder to prove.
himself would find congenial requires only
Bressoud 1989, Chapter 3. Notwithstanding this,
‘of Fermat’s method until Chapter 9. By then we
‘basic notions and theorems of group theory, which
more transparent proof of Fermat's method.
that the same ideas can then be used in a number

which is Euler's method for finding factors of
tion 1. ;



85

One of the fundamental principles of progress in mathematics d p* 41 is itself prime, then the problem

portant special problems are often solved only after the development ver of this form is called a primorial prime.
methods and abstract theories that bring to the fore similarities @,ﬁﬂgﬁspnmdnymedshysysmum]ly
that were previously thought to have little in common. These 'WMAsmmmeapmz section
turn, often point to unexpected applications of the new methods. An for testing primality that is

generalize, to understand better and thus reach further, L of the form p* + 1 will be studied in Chapter 10,
J [ s have been found, the largest of which
_ 4. The primorial formula

| 0,387 t_ligil.sT Thus, the primorial formula
The factorial of an integer n > 0 is the product of all the positive [l e, thac's noLits only use.

less than or equal to n. Similarly, we define the primorial p* of a py

to be the product of all primes smaller than or equal to p. For examp

and 5! = 2.3 .5 = 30. Note that if p is the prime that comes after

P =d'p.

We wish to consider numbers of the form p* -+ 1. To understand
a look at the table below.

1ave gone into so much detail about the primo-
to give a very quick proof of the following

’2’ g Fla ; L can be found in Euclid's Elements as proposition
3| 6 7 contradiction. Suppose that there are only finitely
5| 30 31 that there exists a biggest prime; let’s call it p.
7| 210 | 211 g that all numbers bigger than p are composite.
11 | 2310 | 2311 5 section, the number p +1 cannot have prime

al p- Taken together, these last two stalements imply
! But that contradicts the unique factorization
infinitely many prime numbers.

infinity of primes have been found. Euler's proof of
‘was the seed from which many later developments
Like Euclid's proof, this is also a proof by
it there are only finitely many primes, and let p be
' consider the product

=) () (=)

each prime number. Of course, this product is equal
. Moreover, by carefully multiplying the terms of

All the numbers in the third column of the table are prime!
merely a coincidence? If the question is meant to convey the
numbers of the form p* + 1 are prime, then you ought to know that
stop at 11 for nothing. Indeed,

13* +1 = 30,031 = 59 . 500

s composite.

iction. Suppmelhmp'+lhasaprmefacqu<p Since
product of all the positive primes up to p, it follows that g also divi

q divides
F+1)-p=1
Hence g = 1, which contradicts the fact that it is prime. We conclude £
smallest factor of pf + 1 has to be bigger than p.
This might suggest the following algorithm for finding large prime
pose we know all primes up to p. Compute pf + 1. If it is prime, we &
If not, find its smallest prime factor; this will have to be larger than
way, we have found a prime larger than p. This is a bad approach
reasons. The most obvious of these is the need to factor p* + 1. Even
small values of p the primorial p! will be a huge number.

i 5 s e

AT R
and for each positive integer. This follows from the
, but we will omit the proof of this equality since
of infinite series; see Hardy 1963, section 202
¥ many summands, their sum could still be a finite
infinite sum 1+ 1/2 +1/22 4 1/2% +1/2% 4 ... is
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sults, many of which were stated without proof.

consumption seven years later, never having had

of his proofs. This task was undertaken by

T Taaiand

d’s effort to fill up the gaps left by Riemann

ime number theorem. This theorem says that
i TEegz _

S xSm g

f o to base e. This result is even older than
iginally been conjectured by Gauss. It was proved in

Hadamard and C. J. de la Vallé-Poussin,

: number theorem says that if « is very large,

equal to z/log(z). But the approximation will onl
B. Riemann (1826-1866). . p'u.p{a;i([e_)i”:mm. ok 1

z
equal to 2. But it is not difficult to see that the sum corresponding t m] = 7,804,289,844,303

be equal to any real number. First note that e
de of 10'%. Since in this case 7/ log  is of the

.I.+l‘zg.l=l arge error. There are many other simple functions
11 i’ ‘; ‘i‘ f ns for 7(z) when = is large. One of these is studied
e = For a detailed discussion of the distribution of
e T 8 2 and Wright 1994, Chapter XXII, and Ingham 1932,
number theorem see Bateman and Diamon 1996.
4 gt Ll
S S T
Therefore, nes is the oldest known method for finding primes,
: e S BN ¢ 1 ) e n the previous sections, it does not use any special
S S telel e =g Greek mathematician born around 284 B.C. He was

ranches of knowledge, but his contemporaries believed
ialy eminent position in any of them. So they nicknamed
etter of the Greek alphabet) and “Pentatlos”. That a
rk has survived for 2300 years could have been known
measure of the greatness of the mathematics of Ancient

for any given integer n > 0. Thus P is bigger than any given numbe
cannot be a real number. This contradiction shows that there must be

many prime numbers. For more details see Ingham 1932, theorem Lp
Hardy and Wright 1994, Chapter XXII, section 22.1,

blished around A.D. 100, Nicomachus of Gerasa intro-
as follows:

‘obtaining these [the prime numbers] is called

& sieve, since we take the odd numbers mixed
criminate, and out of them by this method, as

ment or sieve, we separate the prime and
 themselves, and the secondary and composite

in number poses many i £
tion like? As we move toward bigger and bigger num!
primes increase or decrease? [

bers, does the “d

Mention the distribution primes to a mathematician, and you'll'
the name Riemann. Building on the ideas unleashed by Euler's
infinity of primes, B. Riemann wrote what was (o become the sen

" m Nicomachus on the sieve see Thomas 1991, p. 101.
on m(x) and related questions. This paper, published in 1859, contait

IS name because, when it is applied to a list of positive



integers, the composite numbers pass through, but the primes are reta
senhowuwm’ks

form the sieve with pe Imdpaperwepmoeedasfollm
list of all odd integers between 3 and n. The reason we leave the
out is that the only even prime is 2,

Now we begin 10 sieve the list. The first number in the list is 3. B

at the next number in the list (which is 5), we cross out every third nj
the list. Having done this, we will have crossed out all the multiples
than 3 itself, that were listed.

Now pick the smallest number in the list, bigger than 3, that

crossed out. It is 5, and the number next to it is 7. We then cross
fifth number from the list beginning at 7. That way, all multiples ol

crossed out. We carry on this procedure until we get to n and stop.

we are about to cross out every pth number from the list, then we al /ays

counting from p + 2, even when this number has already been
previous loop of the sieve.
For example, if n = 41, the list of odd integers is

3hoNE! 1) SH T 13 1N F17 19 12
23 25 27 29 31 33 35 37T 39 4L

Having crossed out every third number beginning with 5, we have

3 5 7 1113 P 17 19 %N
23 25 27 29 31 33 35 37 3/ 4l

Now we cross out every fifth number beginning with 7, thus getting

3 & 7,8 1113 1 17 19. 9N
23 256 20 29 31 3B 3 37T P 41

We would now have to cross out every seventh number beginning
if we do that, no further numbers will be crossed out. Next, we wo
cross out every eleventh number beginning with 13, but once again
effect on the list. Indeed, none of the numbers left in the list will be
at any later stage of the sieving process. Thus the positive odd pri
than 41 are

E e 0 R 3

13 17 19 23 29 31 37 4l

Thete are a couple of things to notice in this example. First, though
that one should go on sieving up to the upper limit » (41 in the example
already gotten rid of all composite numbers by the time we sieved the
of 5. All the sieving done afier that was redundant. Second, some nurm
crossed out more than once. This is the case with 15, for example. It We

crossed out when we sieved for multiples of 3. But it is also a multi
it was crossed out again when we sieved for multiples of 5.

 improve the efficiency of the sieve in light
“deal first with the second of the above remarks;
so that every number is crossed out only once?
there is no efficient way of doing so. However,

sieve for the multiples of a prime p. According
sieve, we should cross out every pth number
ber next to p in the list. A simple improvement is
n p+ 2, but from the smallest multiple of p thar is
smaller than p. Let's find this number. The positive
the form kp, where k is a positive integer. If
liple of a number smaller than p, namely k. Thus,
not a multiple of a prime smaller than p is p*. So it
pth number beginning with p®. However, we must
, even after this imp t, there are b

1 once.

Can we stop sieving before we reach n? This time
s from what we have just done. For example,
o cross out every pth number. As we have just seen,
cross out is p®. However, if p* > n, this number
‘can forget about it. Thus we need only cross out
15 p < /n. Since p is an integer, this is equivalent
above, [v41] = 6. This explains why sieving for
h to catch all composite numbers in the list.

10 program the sieve in a computer. The list of
by a vector (or array). Remember that there are two
entry of a vector. One of the numbers is the value
the position of this entry in the vector. This last
position. For example, in the vector

G el d e feig )
|

by the arrow is b, and its index is 2 since it is the

of Erathostenes. Suppose we wish to find all
odd integer n. We must first construct a vector
each odd integer between 3 and n. Thus the
s to the odd integer 2j + 1. The cntries will have
1 or 0. If the value of an entry is 0, then the odd
been crossed out at some previous stage of the sieving
ment we start the sieve, each entry is initialized with
'vbeenmmduutyet. To “cross out” the number
g with a 0 the 1 that was the original value of
.Ofmmmlsmnymldhmbeenmede



a previous loop of the sieve. Tn that case its value is already 0 and wilj
changed when we perform any later loop. -

We now give a more or less detailed version of the algorithm for
of Erathostenes that was described above. This version includes
improvements previously discussed. Thus every pth number is c
ginning with p?, and the algorithm stops when p > /.

with a > 0, and consider the polynomial f(x) =
ose that there exists a positive integer m such that
e integer values of h for which f(m + hp) is

m of Chapter 2, section 2, find all prime factors of
Sieve of Erathostenes

Input: an odd positive integer n

m dn -+ 1 or of the form 4
Output: the list of all 0dd positive primes less than o equal to 1 4 i e

ion of an odd prime by 4 are 1 or 3. For example,
4n + 3, while 5 and 13 are of the form 4n + 1. The
give a proof that there are infinitely many prime
true that there are infinitely many primes of the
gﬂmwdmy:itmbefoundinﬂwym

Step 1 Begin by creating a vector v with (n — 1)/2 entries, each of
be initialized with 1, and letting P = 3.
Step 2 If P2 > n, write the list of numbers 2j + 1 for which the j
the vector v is 1 and stop; otherwise go to step 3,

Step 3 If the entry indexed by (P — 1)/2 of the vector v is 0, increase F
and return to step 2; otherwise go to siep 4.

Step 4 Give to a new variable T the value P?; replace with 0 the
entry indexed by (T — 1)/2 of the vector v and increase T by 2P;
two steps until T > n, then increase P by 2 and return 1o step 2.

of the form 4n + 1 is of the form 4n + 1.
7 is cither of the form 4n + 1 or of the form 4n + 3.
of the form 4n + 3 also a number of the form 4n + 37
are primes of the form 4n + 3. Using exercise 3,
divisible by a prime of the form 47 + 3 that does not
Note that in the last step we increased 1" by 2P instead of P, whicl
you may have expected. We did this because the veclor v represents
odd numbers so that both T and P are odd. Thus, if we are crossing o
Pth number, then the number that will be crossed out after T is 7'+
It may have occurred to you that there is a simple change in the p
above that will clearly speed up the algorithm. The way we have been ge
of the unwanted composite numbers in the vector consists in marking th
tion with a 0 instead of a 1. However, since we don't really care for c
numbers, why don't we simply delete them from the vector? Unfo
cannot do that. The trouble is, the way we know that the value of
the vector v is a multiple of p depends on its position. In other words, I
of p oceur at every pth position in the vector, If we delete some numb
the list, that will cease to hold, and the algorithm that we have

that there exist infinitely many primes of the form

5, that if n > m are positive integers, then ged(F(n),
distinct Fermat numbers cannot have a common factor.
that there are infinitely many primes,

o+ 4 are all positive primes, then p = 3,
] nial. Write a program to find the integer values of n,
() is prime. The input of the program will be the coeffi-
flz) = az® + bz +c. These coefficients are integers
The program will compute f(n) for all non-negative
find which of these are prime. To do this we must first
 find all the primes smaller than max{| £(0)], |f(100)(}.
impose limits on the size of |al, |b, and |e], otherwise
- . “gmmﬂmbyuwmmmwymm
that th pnrposeofthealsmlhm:smfmdnﬂpmmsmalluthm 3 T £ 1oe tollowing polyomisls
upper bound. Thansc]wlyuotfmihlelflhcboundmmolm 3 897 + 123]

Keepmswthshmmmbﬂm we_not 3

7681
& variant of a famous example published by L. Euler



11. We mentioned in section 5 that there are several formulae that give an ap
for 7(x), the number of primes smaller than or equal to z. For example, as 3 ¢
of the prime number theorem, we have that 2/ log = is approximately equal 1o
x is large. But in this case, = has to be truly enormous for the error to be
exercise we study experimentally another formula that gives a better app

x is small. The formula is

S(x) = -os— (I+ Ll_zztu[loglogzj ]_”‘) ] metic

where log denotes the logarithm to the base e, and
ag = 229, 168.50747380, a3 = —429,449.7206839, a; = 199,330

a3 = 28,226.22040280 a¢=0,a5 =0, a;=—34,T12.818
ar =0, as=33,820.10886105, ay = —25,370.82656580,

ajo = 8,386.14042034, aj; = —1,360.44512548, a1z = 8O.1.

Use the sieve of Erathostenes as the base for a program that, taking an
0 s input, computes w(z), Use this program to compute w(z) — S
11; 100; 1000; 2000; 3000; ...; 9000; and 10,000. Compare with the
values of 7(z) — z/log z. What do you conclude?

12. We have seen that an odd prime is either of the form 4n + 1 or of the for
Moreover, it follows from exercise 7 that there are infinitely many primes o
4n + 8. It is also true that there are infinitely many primes of the form 4n
the proof is more difficultl—see the comments before exercise 3. The p
exercise is to study experimentally the relative frequency of these two
Let x be a positive real number. Let 71(z) be the number of positive primes ¢
4n + 1 smaller than or equal to z, and let 7a(z) be the corresponding numbe
of the form 4n + 3. Write a program, based on the sieve of Erathostenes,
m1(z) and ms(x) when the input z is a positive integer. Use the program I
mi(z), wa(z) and mi(z)/ms(z) for = = 100k and 1 < k < 10°. It is kng
lims o my(x)/ma(z) = 1. Do your data support this result? 1

13. Adapt the program of exercise 12 to determine the smallest positive
which m1(z) > malz).

The numerical data available at the beginning of the century led some m
to the conclusion that, except for small values of z, the inequality m1(z) <
always hold. The truth emerged in 1914, when J. E. Littlewood showed
infinite sequences T, a,... and g1, ya,... of positive real numbers such

Jim (7)) —malzi)) =c0 and  lim (mi(w) —ma(vi)) =
The moral is clear: It is d to lize from ical data.

previous chapters prove divisibility by performing
ﬂwﬂnmmdensm Now it has been shown,

study in Chapter 9, that 5 - 223473 1 1 s a factor of

ers are very large, we expect that even checking
will take a very long time. So far, so good; but how
ve? Using logarithms, it is easy to show that it
! Thus, I°(23,471) has more digits than there are
. Needless to say, we will not be able to show
f 1(23,471) by performing the division, How is

ima is to use modular arithmetic, which is the
the basic technique for dealing with questions of
ul for calculations related to periodic phclgwnma.

 of modular arithmetic had been around for some
systematically by Gauss at the very beginning
a; see Gauss 1986. Nowadays the subject is
point of view of equivalence relations, a topic we
n 1.

modular arithmetic is by using equivalence re-
will play an important role here and elsewhere in
1o go through the basic concepts in some detail.
set, which may be finite or infinite. A relation in X
w the elements of this set are to be compared. This is
it is quite satisfactory for our purposes. Note that in
‘must say what the subjacent set is; in other words,
which elements are to be compared.

nples. In the set of integers, there are many simple
less than, and less than or equal to. In a set
the relation same color. The latter is a very good
because it is very concrete. By the way, we are
0 the set has been painted one color only—multicolored
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y. You immediately conclude that the bag contains
balls of B. It couldn’t be easier!

+ X with the equivalence relation ~, The basic
’ ufﬂmeqmalmclmofz,thm&le
Xandy €7 thenT=7.

properties used to define an equivalence re-
finition of an equivalence class, we must have
implies that z ~ y. But if z € 7, then we also
ve property, = ~ y. Thus z € 7. We have
ument proves that 7 C 7. It may all seem a little

Equivalence relations are relations of a very special kind, Going
general setup, suppose that X is a set in which a relation has been
is convenient to have a symbol to denote this relation; let's call it ~_
an equivalence relation if, for every x,y, = € X, the following pro

(1) 2~z

(2) fz~y, then y ~ .

(3) fz~yand y ~ z, then x ~ =.

The first property is called the reflexive property. It says that w
an equivalence relation, we can always compare an element with
holds for the equality of integers: Every integer is equal to itself. B
not hold for the relation <. Hence < in Z is not an equivalence

The second property is called the symmetric property. The relatig
set of integers is not symmetric. Indeed, 2 < 3, but it is not true th
Note that the relation < in the set Z is reflexive, but nor symmetric,

The third is the fransitive property. In the set of integers,
“equality”, “less than”, and “less than or equal 10" are all transifi
inequality of integers is not transitive. Indeed, 2 # 3 and 3 # 2
that 2 5 2. Note that # is symmetric, but not reflexive. )

We have been careful to give examples of relations for which
erties are false because this is the only way to understand what
really mean. It is familiarity with exam Ies(bmhpmandcan} th
omnfmablemhmd!m

B4 ci:w what the principle really means—and
nce of the definition of an equivalence rela-
have you realized that the reflexive property

ed o an important property of equivalence rela-
with an equivalence relation ~; then
‘equivalence classes with respect to ~; and

that are different cannot have a common element.
from the fact, already mentioned, that the equiv-
contains z itself. To prove the second property,
that z € TN 7. Since z €7, it follows that T = F
» T =T7. SoT=7. Note that (1) and (2) allow
t subsets, the equivalence classes. This is called

it is an equi o, Th m"sameoolm"mnsctof
i8 3 molhammplemdveqmmtcumphﬁxamplesmasu
include the relations “same number of sides” and “same area”,
Equivalence relations are used to classify elements of a given
similar properties by grouping them into subsets, The natural subdi uivalence classes of X' with respect to the equiva-
set produced by an equivalence relation are called equivalence cld ial name: the quotient set of X by ~. Note that the
let X be a set, and suppose that ~ is an equivalence relarion defined subsets of X. Therefore the quotient set is not
z be an element of X. The equivalence class of x is the subset of al source of much puzzlement, so beware,
of X that are equivalent to  under ~. Denoting the equivalence clas h an example in which the true nature of fractions
F, we have fractions made of? When you look at a fraction,
one of which (the denominator) must be non-zero.
of that as a quotient. But if you are pressed, you
Here is a simple example. Let B be a set of colored balls with the ‘way out and say thal a fraction is indeed a pair of
relation "samemlrx" The equivalence class of a red ball in B is is non-zero. However, that cannot be correct.
mdba!ts contained in 5. ! : rs are equal if they have the same first elements and
2 o : th : So the pairs (2,4) and (1,2) are not equal. But the
qual; so fractions are not pairs of integers after all.
They are elements of a quotient set. Consider
rs (a,b), with b # 0. In the usual jargon, @ =
(a,b) and (a’, '), are now said to be equivalent if
s that this is an equivalence relation. A fraction is
‘with respect 1o this relation. Hence a/b stands not

T={yeX:y~z}

 if you know one element of an equivalence class, you can
reconstruct the whole class. This is obvious if we consider the set
balls with the relation “same color”. Suppose you are told that
contains the el of an equivalence class of B. You ask to see

words
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for the pair (a, b), but for the infinite set of all pairs in @ equival
Thus the set @ of rational numbers is the guotient set of Q by the
relation just defined.

Imagine for a moment that you have never heard of fractions b
you have to go on is the description above. If you are now told
have to calculate with fractions, you may feel you have good
After all, you have just learned that a fraction is an infinite set.
adding an infinite set to another infinite set does seem rather v ! ummmlwlmodlﬂos.hmdmmmm
the point where the basic principle of equivalence classes comes to ol because 21 — 1_29;,“"“"]“ of’?

You needn't carry the burden of the whole infinite set; all you need h
an element of this set. This element tells you all you need to know ahg _checknwemustshowlhm:fmsmymnegu
whole equivalence class. Moreover, any element of the class will d ill be true if a — Mummpluf

Thus, you may calculate with 1/2 as you always did, just as f q
pair of integers. You are only reminded that a fraction is an equiy
of pairs when, in the midst of a calculation, you realize that you
fraction. Atﬂmmmmmwphmngammwof e e

mﬂ& If n = 5 is the modulus, then
and 14=24 (mod 5).
say n = T; in this case
(7) and 14=0 (mod.?)

ppose (mndn}fu'som
Mn~b kn for some integer k. Multiplying

a=—(a—b)=(~kn,
Thus'bsa(mudn).anﬂwehavepmveddw
mmetric.

property: Suppose that a = b (mod n) and b =
are integers. By definition, these congruences say
Itiples of n. But if we add up multiples of n, we
b +(b—c)=(a—2¢) 1samulnplcol‘n
n)aswcwlsindmshow a7

an equivalence relation in the set Z, and the quotient set of this

play an absolutely fundamental role in this book. Just as with
equivalence classes will be infinite sets—and we will have to ca
them. But now you know that there is no cause for worry.

2. The congruence relation

Let’s analyze the familiar 24-hour clock in the framework of th
section. First, when someone says “one o'clock” we cannot tell
person means that time today, yesterday, or tomorrow. Thus “one o’clt

a moment in time; it is an equivalence class of such moments. Let! i i 3 yr.hedeﬁmmol’ths
explicit. First divide the time continuum into equal intervals, called fia _ msubsels of Z, ﬂmmﬂ

define an equivalence relation: Two momenis that differ by 24 of We ese classes.
intervals are equivalent. Now one o’clock is an equivalence class of 5 : 1 that b
this special equivalence relation. This may sound like complicating
but it can be quite useful if you are dealing with cyclic phenomena.
We will now consider a similar equivalence relation defined in
integers. Choose a positive integer n that will be fixed from now on.
the period or modulus of the relation that we are about to define.
Now we construct an equivalence relation in the set of in !
ﬂnsby declaring that every nth integer (begmnms with 0) is u ?simniMym clemen

_ kn, for some k € Z. Thus we may
of a by

- d@={a+kn:keZ}.
multiples of n, and that every one of these equivalence

all of which 200d

eanswuis;
a by n. Let r be the remainder and ¢ the quotient of

ng+r and 0<r<n-1.
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Hence a — r = ng is a multiple of n. Therefore @ = r (mod n). The number

7 is called the residue of a modulo n.

We have acwally proved more than we bargained for. Indeed, we have
shqv.vnlhntan iven integer is congruent to an inte between 0 and n— 1. In
mum
‘To make sure that there ¥ n distinct equivalence classes modu]onwe.
mustshwmmmmofﬂmmbsequal. But each congruence class can
beremvsqnudbyanm-mgaﬁveimswmaﬂermnnn. If they were equal,
their representatives would have to be congruent modulo 1, In other words,

ﬂaediﬂ'eremeoftwonmquﬁveinmmﬂluﬂmnwomdhavewbe
& multiple of n. That cannot happen, so the classes 0,...,7 =T are indeed

distinct. Hence

Aneqnivﬂmclassﬁisaﬁdmbewﬁ&ninmdwedﬁmifosa(n—l.

Asin}he.caseofﬁ'xﬁm. it is always omvmimwmpmemaoon}unc
clm';smmduwdfum There are two reasons for this, First, it is obviously
casier 10 choose a smaller representative for a class than a bigger one. Second,
:fmdmminudtmd-rwm,&mitismmymdwidcwhﬂhulheym
equalurnm:?huyuﬁuheequaliraadmiyirﬂuirrmmmﬁmmqual.
Of course this is nor true if the classes are not in reduced form.
- Tldsis;a;llvuyweﬂ.butilmqtﬁnabmnmhwwldhegmdwluwn
nice geometric picture, a way of drawing the set Z,,. Let's start by recalling the
! mmmmammz.mmmuammmmuammuor
_ points equally spaced along an infinite straight line. Somewhere along the line
'amwo.'mﬁmwe-mﬂnmﬁwimmlotﬁeleﬁofiund:hn
posi?\'emlegﬂ_sloﬂlerigﬂt, Nw.ﬂwcmgummudulonidmﬂﬁenvery
.nﬂa:mw.mthuwhenmmmnw-mwaanyhebukmn.

If you think of the integer line as being flexible, you could perhaps pick
the point marked n and glue it at 0. That would give a circle. If you keep on
Wugﬂnlhwmmdlhkcimh.m'llmdm_mmbws;hummmt
uuﬂ;ﬂonwiﬂomupymumpuinmmﬂucmmuofuucim So
z,hwb:picmeduammmmndwhkhﬂnnwwmchms
are marked at regular intervals. §

3. Modular arithmetic

. _m;aqnwﬁcpicm_descﬁbedmunmdofmﬁmzhdpsugiw:s
@phdeampﬁunnfaddiﬁminzmmnkofﬂwﬂequivaknuclmufzn
_gdtt:eymdwhmmrhedmd:efawofachck. Let's assume that 0 is
. ﬂygppqnmmminﬂncﬁclc(thelzo'claekmk).wﬁjletbeaﬂmchm

;cn disposed hm;.lmkmsem. ‘mmnd_thec&c]éalmg'ul_ar intervals. This clock will

¢ one Y, at the center of the circle, so that we i
e . can point it to
We want to make this “clock” into a machine for calculating sums in Z
Arguably the “clock” is to modular arithmetic as finger-reckoning is to “norma]"‘

————
arithmetic

tic. The latter, by the way, has a long and distinguished history. Tt was
at the convent schools in the Middle Ages, and one of the first English
. on arithmetic, Robert Recorde's The Grounde of Artes, had a whole section
ning “the arte of Numbrynge by the hande”. So we are in very good
y.
 So, suppose we want 10 add @ and b, two classes of Z,. We will assume
at both classes are in reduced form, so a and b are non-negative and smaller
n. To find @+ b proceed as follows. Place the hand of the “clock” at the
it marked @, then move it b places in the clockwise direction. The hand will
be pointing to the result of the sum 7 + b,
~ Here's a numerical example, Suppose we want to add 5 to T in Zg. First
e hand of the “clock” at 5. Now move it clockwise four places. When
that, the hand goes past 0 and stops at T. Hence 3+ 5 =T in Zs.
The problem with our machine is that it is impracticable if n is big. Thus, a
mathematical way of calculating sums in Z,, is required. It is quite simple,
y. Let @ and b be the classes of Z,, that we want to add up. Then the
is defined by the formula

i+b=a+h.

ne care is needed in interpreting this formula. On the left-hand side we have
sum of two classes of Z,; on the right-hand side we have the class that
nds to the sum of two integers. Thus the addition of classes is defined
of an operation that we already know, the addition of integers.

s go back to the example of addition in Z that we calculated using the
ne. We wish to add 5 to 4. According to the formula, we add the integers
5 first; since their sum is 9, it follows that 5+ T = U, This seems to give

ample points to an important problem.

ciple of section 1. But to add two classes we first add their representatives,
then take the corresponding class. How can we be sure that if different
entatives are chosen, the resulting classes will still be the same? Just to
sure that you got the point, consider one more time the sum of 5 and 7 in
Following the rule set up before, we found that this sum was equal to 3.

er, 13 = 5 and 12 = 1, But the formula says that if we add T3 to 12, we
25. Thus it may seem at first that, by choosing different representatives for
classes, we get a different sum. But this is only apparently so, because in
act 25 — 9 = 16 is a multiple of 8. So 25 =3 in Zs.

One way to solve the problem would be to write the classes in reduced
rm before we add them up. This is impractical and wholly unnecessary. As
example above suggests, the result of the sum is always the same no matter
ch representatives are chosen for the classes. This is very important and must
checked in detail. Let @ and b be two classes in Zn. Suppose that @ = a’ and

. We wish to show that a + b= a’ + /. But @ = a’ means that a — a’ is
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so that
10% = (-1)* (mod 11)
is either 1 (if k is even) or —1 (if k is odd). Thus
a=an(=1)"+an_1(~1)" "+t g —a;+a9 (mod 11).

In plain En_glish the criterion says that a number is divisible by 11 if and only if
the alternating sum of its digits is divisible by 11. For example, 3443 is divisible

by 11 bﬁcmase3-—4+4-—3=0i®divisihleby11.

:I‘he divisibility criteria for 2 and 5 are too obvious to require further justi-
fication. Thus we have found simple divisibility criteria for all prime numbers
between 2 and 11, except 7. Let's find out what happens if we apply the same

approach to 7.

Wen]madyknmw,&umlhepmdmsemnples.ﬂmﬂmpaﬂoﬂheﬂmum:
u:asdepmds-mlhemuduloislhewmpumﬁmnhhepnmnfm Now 10 =3
(mod 7), and powers of 3 are not quite so simple to compute as powers of 1 or
—1. Let's try some examples. All congruences below are taken to be modulo 7.

102=32=2

1°=10-102=3.2=6= -1

10°=10-10* = (-1)-3=4

10°=10-10*=3.4=5

10°=10.10°=3.5=1
Nutelhanllelustfcsidueahoveisequalmlﬂﬂ=1.'!‘hismeansﬂmﬂ1emsiduﬂs
m:ﬂ@tmpmwdmcycluofﬁ.mcalmhﬁmsaboveshowlhmlhedivisibility
mlenfmfor?wi[[bsa!olmmedifﬁcuulnmbarﬂmﬂwmforsm
1_1. S:noe_we‘vcoom:_ this far, we may as well explicitly state the criterion in a
mhm§uppoumua=agm’+a1m+ao,whmusm.al.azsa
Umnglhamduespruwmoﬂﬂcalwlmdabme,whnw

a.‘—:anlb’+allﬂ+aos2az+3al+aq (mod 7).

Thus a is divisible by 7 if and only if 2a5 + 3a; + ag is divisible by 7. For
example, 231 is divisible by 7 because 2-2 +3-3+ 1 = 14 is divisible by 7.

5. Powers
Inmmynpq:ﬁeatimsweuﬁﬂbe&ceduﬁﬂnﬂwfuﬂowingmﬂmlﬂa,
k, and n be positive integers: find the inder of the division of a* by n. If

kisvuylnrge.ilmymmbcposﬁbhmmmmﬂndigiisofa",asin
dnemmlsalmebeginningﬁfﬂwchlpm However, we can get around this
problem using modular arithmetic.

lﬂ'sbeﬁnwithasimplemmple. Suppose that we want to find the
remainder of the division of 1013 by 7, We have seen in the previous section
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=1 (mod 7). Dividing 135 by 6, we find that 135 = 6 .22 4+ 3. Thus
the following congruences modulo 7:

1078 = (10%2 . 10° = (1)® - 103 = 6.
remainder of the division of 10 by 7 is 6.

not always this easy. For example, what is the remainder of the division
17 Calculating a few powers of 3 modulo 31, we quickly find that
mod 31). Instead of computing higher powers in the hope that one
will turn out to be 1, let’s make use of the information we already have,
- 3- 21 + 1, we obtain the following congruences modulo 31:

3% = (35" 3= (-4 .3=-(2)2 3.

yet obtained the remainder, but it is only a power of 2 that lies
us and our aim. Luckily, 2° = 1 (mod 31). Since 42 =8 -5+ 2, we

- M =—(2)2.3=-(2°%-22.3=~-12 (mod31).

= 19 (mod 31), so the remainder of the division of 3% by 31 is 19.

uld the calculations have turned out to be easier if we had pressed on

computation of the powers of 3 until we got to 1? The answer is no,
realize if you try to find the smallest positive integer r for which

1 (mod 31).

we now want to find the remainder of the division of 6°* by 16.
il is no use trying to find the smallest power of 6 that is congruent
0 16, because this power does not exist. Indeed,

6'=2'.3"=0.3"=0 (mod 16),

6 =6'.6" =0 (mod 16).

e examples illustrate some of the tricks we use to simplify the calcu-
the residues of powers modulo n. More tricks will be found in the
chapters. Of course a computer does not require any tricks. That's
that computers do not use modular arithmetic for such calculations;
they do. A very fast algorithm for calculating powers modulo n can be
section 2 of the Appendix. This algorithm can be used to show that
+ 1 is a factor of F(23,471), thus achicving what at first seemed an
ible task.

phantine equations

we use congruences to show that certain diophantine equations do
solutions. A diophantine equation is a polynomial equation in several
s, with integer coefficients. Examples are 3z — 2y = 1, % + ¢ = 27,
~117y* = 5. When we talk of finding solutions of diophantine equations,
ally mean integer solutions. These equations derived their name from the
mathematician Diophantus of Alexandria, who lived around A.D. 250. In




n

teturn to the problem of division of classes in Z,,. But first let
same question in a more familiar setting. Let a and b be real
way to divide a by b is to multiply a by 1/b. The number 1/b is
nverse of b, and it is uniquely defined as the solution of the equation
‘From a practical point of view, this is not really an improvement
d 1/, we still have to divide 1 by b. However, from a conceptual
it is sometimes better to talk about inverses than about division.
exists only if & # 0, because the equation 0 - = = 1 does not have a
h this in mind, we now tum to Z,,.

n is a fixed positive integer, and suppose that @ € Z,,.. We say
, is the inverse of @ if the equation @-@ = T holds in Z,. It is
“does not have an inverse in Z,. Unfortunately, 0 may not be the
of Z, that does not have an inverse. We must consider this point

‘his Arithmetic, Diophantus discusses in detail the problem of finding solutions
to indeterminate equations. However, he looked for rational solutions rather thap.
integer solutions, as we usually do today.
Shummmuquaﬁominmalmmeymntheinﬁmwy nany
integer solutions. For example, for any integer k, the numbers = = 1 + 2k ang
¥ = 1+ 3k satisfy the equation 3z — 2y = 1. The equation 2 + % = 3 is 5
particular case of Fermat's Last Theorem, referred to in the introduction and g
mm&&mz&mhmm'ﬂx.y.mdzmimumaﬁsf!
this equation, then one of them must be zero. This special case of the theorem
was first proved by L. Euler in 1770 You may recall that it was in the margin
dﬁwdﬁ@mfddm&mmmm&mm;
The equation z* — 117y = 5 has a more recent and humble history. In 4
Paper writien in 1969, D. J. Lewis showed that this equation could not have more
than 18 integer solutions. Two years later, R. Finkelstein and H. London proved
that the equation does not have any integer solutions after all. Their proof
is short—it fills only page 111 of volume 14 of the Canadian Mathematical
Bulletin—but it is not elementary, However, in 1973, . Halter-Koch and V. $t.
Udresco independently gave a proof that the equation has no solution that uses

@ € Z,, has an inverse @, and let's see what we get from this.

only congruence modulo 9. We will describe this proof in detail. a.a=T,

The proof is by contradiction. Suppose that the equation z° — 117 = 5 jows that ac — 1 is divisible by n. In other words,
has an integer solution. This means that there exist integers zo and yo such that : S . yn.kn )
ao 4+ =

2 — 117y = 5. Since all these numbers are integers, we may reduce this last
equation modulo 9. But 117 is divisible by 9, so that
=25 —11Ty8 =5 (mod 9).
Hence, if the given equation has integer solutions zo and yo, then 2} = 5
(mod 9). Is this possible? To find out, recall that every integer modulo O has a.
residue between () and 8. Thus, it will be enough to compute the cube modulo
9 of each one of these residues.

classes modulo 9 |G |T |23 [T 5|6 [7[F
cubes modulo 9 |0 [T |8[D|T[E[T[T[F %qmt'mniseqtﬁmlwlto

A simple inspection of the table shows that the cube of an integer modulo
9 must have 0, 1, or 8 as its residue. In particular, there cannot be an integer
2o such that 2 = 5 (mod 9). Therefore, z° — 117y* = 5 cannot have integer
solutions, as we wanted to prove. -

We may draw a moral from the history of this example: The first proof of a
theorem is ofien neither the simplest nor the most elegant. This happens because
the first proof is usually found by the explorer, who is breaking new ground.
With time, the connections between the new methods and neighboring arcas
ﬁm.cmmmmitmibhmﬁndsshmnamsimpla
and more direct than the first one. The example we have given is a rather naive
one, but of course that doesn’t invalidate the conclusion we have drawn. As the
mmhmﬂehnA.S.Bedcoﬁwhmsaid.“AMmﬁcim’supuuﬁnnm
on the number of bad proofs he has given”.

ger k. Nole that it follows from (7.1) that ged(a, n) = 1. Thus we
if @ has an inverse in Z,, then ged(a,n) = 1.
e converse of this last statement true? To find out, suppose that a is an

i-g=1
Hence the class @ computed with the help of the extended Euclidean
is the inverse of @ in Z,. Therefore, if ged(a,n) = 1, then @ is
e in Z,. We sum it up in a theorem.

theorem. The class @is invertible in T, if and only if the integers
are co-prime.

~argument above is a constructive proof of the invertibility theorem, in
e that it gives a procedure for checking whether the inverse exists and
it, if it does. Of course, this procedure is just a straightforward
of the extended Euclidean algorithm. For example, does 3 have an
Z32? 1f so, what is it? Applying the extended Euclidean algorithm to










thpﬂm(l)mmﬂmonlymlq)discofwmamhnﬁﬁduuy
gi\mntilm.Ofmseﬂmomsmimswmudmhemcpmblmimmblcifm'
did not have the extra peg B,
Itisagoudideatouytoso!veﬂwpuxzbfmmself.iumtogetuu-,
hang of it. Mﬂipmﬁuonemdoilfaiﬂyqnickly But the question we wisl
mposesocsbeymdMCanmﬁndafmmulafwmeuﬁnimumnunmerof-
moves required to shift a tower of n discs from A to C? Of course, we are
assuming that the discs will be moved according to the rules.
'I‘hispmblemhasaveryimpumntapplicaﬁun;lhuis.solungusyaum.
prepared to believe the following tale. Under the great dome of a temple in
Indiaﬂ:mamﬂ:mdinmﬂwedlex,_emhasmickasﬂnbodyohbm. Al the
momenlnfc:mﬁm.ﬁodplaepdmmeoﬁhmmuﬂesﬂdiscsofpumgold,:
meﬁmmuhhmm.mmumfmgawwuuﬁmmmlm
disc on top. Tulheprieslsmpuuideatﬁmtemplcﬂcgaveﬂnmkofmoviug
the discs according to the rules we have stated above. When the whole tower
ofﬁ-tdiscsﬁmﬂymmmdlomeafﬂnuherwedles.ﬁudwﬂlmmand.
wiﬁahng.pmanmdmlhewudd.Thus.mﬁnduutwhm!hewwldwi]lcnd
ai]wehaw.-todnissolvcthepmhlemn!’lheminhnmnilmbctofmfoﬂhc
64 discs.
Seﬁngmmmmmhofﬂumlmla'smmme
wumlensdwebemwilh.lflbcs&hnﬂon!ymedisc.ilwnuﬁdheemghm E .
move it from A to C.-%hm't-hnhnmymles.mdthcpm]eisso]ved. Pupil: How do we then move the n — 1 smaller discs to q.solhatlhai(
So-mmmh-mmin'ﬂdsmNowsuppmeﬂmmhavetwndiscs. lbmlwﬁmn?imm“mmwwﬁmsm"_
First we move the smaller disc to peg B; now the bigger disc can be moved 1o , 50 that we move them (one by one?) from B to C?
C; finally, the smaller disc is moved to C, so that it rests on top of the bigger r: It may take a long time, but that's the way it is done. Note that
disc.‘Ihusﬂmemamm-moughmsolvelhe‘puzzle-withtwudism If you had to solve the puzzle with n — 1 discs rwice. First we moved the top
haveasct.itmuybeagoodichmcnuntlhemovesasyuutrytommaInwr discs from A to B (using C as intermediary). This leaves no disc on top
with four and then with five discs. Then we move disc n to C. Next we play the n — 1 discs one more time,
ht'smwdealwithﬂmgﬁmmﬂmeofnmmhwimndism The argument to C (using A as intermediary). Having done that, all the n discs got
willbeeasimtadigestifwedew'ibeilinﬂwfmmofadialnguebetweenpupél on peg C and none of the rules were broken.
and teacher. i Ugh

Teacher: Let's assume that the discs have been numbered 1, 2, ... ) T ; Tt is not finished!
ﬁomtopmbouomSuﬂmsma!leudiwisuumbul(mdsiBmthelop}md 3 i
the biggest (the one on the bottom of the stack) is number 7. What do we have Pupil: Isn’tit? Oh, dear.
to do in order to be able to move disc n? Teacher: We want to find out the minimum number of moves we have had
0 | , don"t we?

Pupil: Huh?

Teacher: Wewmwmmdiscmbm-we'huannmdiscssiningan Pupil: T guess we still do.
SRS N doivs v dol Teacher: To make the argument easier to follow, let’s call 7'(n) the min-
number of moves required to solve the puzzle with n discs. But we've

il: Remove all the ones that of i 2o 4
i o e .t.ha mon:l.np__uf:t? i . seen that to move disc n we have first to shift the n — 1 discs that lie
Teacher: That's it, so we have to remove the n — 1 discs that Tie above it. of it. How many moves to have them out of the way?

lzt‘snutfmwthalwemtlommaulhadims-mpeg C, and disc n will . 5
have to be the one at the bottom of the stack. Where would you rather move the Pupil: To get them to peg B we had to solve the puzzle with n — 1
idn't we? So I guess we made at least T(n — 1) moves,

other n — 1 discs to?

cher: The rules. By rule (1) we can only move one disc at a time; by
the n — 1 discs must be stacked in decreasing order of size in peg B.
o we have to do to shift the n — 1 smaller discs from A to B?

: We have to move one disc at a time, without breaking the rules.
More precisely?

It would be like solving the puzzle with n — 1 discs, I guess. T
shifting the tower of n — 1 discs to B, instead of C.

: What about the intermediary peg?

: Might it be C?

er: That's it. Sumnﬁngup:Wehnvnmmmd:is:‘.n_w C.Bluw:e
ly do that if we first remove to Blhcn—l_disi:sllmli_e;uhbv_eil._m
by playing the n — 1 smaller discs using C as intermediary. Thus the
tack of 7 — 1 discs gets shifted from A to B. Having done that, we are
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Teacher:  Since we moved the n — 1 smaller discs to peg B, that means
that peg C has no discs on it. So we can now move disc n to C. How many

maves 1o get there?
Pupil: One?

Teacher: 1 mean on the whole; how many moves since we began to play?

Pupil: Oh, T(n—1)+1?
Teacher: What next?

Pupil: We still have to move the n — 1 smaller discs from B, where they

now are, to C, where they'll be on top of disc .
Teacher: That's it. And how many moves to reach that goal?

Pupil: Not less than T'(n — 1), surely, because that's the minimum number

of moves for the puzzle with n — 1 discs.

Teacher:  So we see thal, from the moment we began to play, we have

made a total of T'(n— 1) + 1+ T(n — 1) = 2I'(n — 1) + 1 moves. Moreover,
if we look carefully at the way we've been arguing, we realize that we couldn’t
possibly complete the puzzle with fewer moves. So what is T(n)?

Pupil:  The minimum number of moves required to solve the puzzle with
n discs and get the tower shifted from A o C.

Teacher: Yes, but how do we compute T'(n), assuming that we already
know T'(n —1)?

Pupil: T(n) = 2T(n—1)+1?

Teacher: That's it. So we can now find the minimum number of moves
required if we are to solve the puzzle with six discs.

The final outcome of the dialogue is the formula T'(n) =2T(n—1)+1.
Note that this formula does nor tell us directly what T(n) is. To find out
T(n), we must first compute T(n — 1). Thus, T(n) is calculated by repeated
application of the formula. For example, to compute T(6) we must first find
T(1),7(2),...,T(6). Since, as we've already seen, T(1) = 1, it follows that

T(@2)=2T(1)+1=3.
Going on like this, we have
T(3) =1, T(4) = 15, T(5) = 31, and T(6) = 63.
Hence to solve my puzzle, whichhassixdixs,lhnwtomheatleasl&mmrﬁ.
What about the puzzle in the temple in India? To solve it we have to compute
T(64), a rather dire task.

The formula T(n) = 2T (n—1)+1 is an example of a recursive formula. In
other words, to find 7'(n) it is necessary to apply the formula several times, each
time using as input the output of the previous calculation. You may be asking,
How is this formula proved? The is that the dialogue above is a proof of

~ Chaplers

1. Admittedly, it is couched in a form that may seem rather exotic for
g that claims (o be a mathematical proof. That’s easy enough to cure;
ave to do is extract the main points of the proof from the dialogue and
n the usual mathematical jargon.

fact that we obtained only a recursive formula does not stop us from
of finding a closed formula for T'(n). That's a formula from which
obtained by a simple substitution of the value of the variable n, If you
lly at the values of T(n) we computed above, you will guess what
a ought o be. Once a closed formula has been guessed, we are faced
‘new task: We must prove that it works for all values of n. Note that
 guessed the formula by inspection of a table of numbers, all we can be
of is that it holds for the numbers in the table—no more, In order to
- formula we introduce the method of proof by finite induction.

may be thinking, Why bother to find another formula, closed or not?
s wrong with this recursive formula? Those are reasonable questions.
1o find T(n) for a given n all we have to do is compute 7(0),. .., T'(n)
he recursive formula. A computer will do that very fast. Isn't that
This is perhaps a point at which mathematics and computer science
different directions.

erating a little, we could say that computer science aims at making a
approach work as efficiently as possible; mathematics, on the other

d mwaysofmhing&mgmlmmauﬁuimmu{mlcuhﬁm& of

these are really two faces of the same coin. In the real world, it is usually
ination of mathematics and computation that solves the problem. So the
ts rarely compete; most often they cooperate.

nite induction

e word induction is used in mathematics with a very special technical
sometimes qualified by the adjective finite, as in the name of this
‘But the word also has a host of other meanings, 12 of which are listed
Oxford English Dictionary. The mathematical use of the word induction
ved from its traditional use in logic, which is also close to its everyday
ccording to the Oxford English Dictionary, induction in this sense is

- the process of inferring a general law or principle from the ob-
servation of particular instances.

when guessing the closed formula for T(n) using the values of

Fn)=2%" +1
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belong to one of the following families:
(u+1)(:=§+1) for 3<k<9, or (u+1)(ku+1) for 5<k<29

nemfwmhmmkmuﬂmemmymmmpmﬁm
in&wsefmﬁliesfcrthebumnmdmsundmdbythesymm(see%mmmq

al. 1980). However, the composite number
12,530,759,607,784,496,010,584,573,923

is identified as composite by Maple V.2. The smallest prime factor of this number
is 286,472,803. The primality test has been modified in more recent versions of

Maple, so that the number above is now correctly identified as composite.

Axiom 1.1* has a different strategy: 1t adjusts the number of bases to be

used depending on the number that is going to be tested. It has been shown
that the test used by Axiom 1.1 always detects primality correctly for numbers
smaller than 341,550,071,728,321 (see Jaeschke 1993). For numbers greater
than this bound, the Axiom 1.1 test uses the smallest 10 positive prime numbers
as bases for Miller's test. Like Maple, the system also does some further checks

for numbers that are considered to be especially troublesome. Once again the

test is not perfect; it is defeated by a composite number of 56 digits.
Atﬁrsumnﬁghlulinkﬂmdnmmymmformmmummld
give a “perfect” test if only we could choose enough bases. But the truth is that

this is not even theoretically possible. One of the consequences of the work of

M'Mﬂhmmm-m(hrmkhmlnmmismfoﬂming:
Given any finite number of bases, there exist infinitely many
Carmichael numbers that are strong pseudoprimes for all these
bases,

Thusoneshouldalwa;sbumofclnjmiugﬂwiawmbuisprimnunﬂm
bnsiéofhﬁller‘smstappliedloaﬁxedpumbuufbasm One possible way out
has been implemented in Axiom 2.2. The system now increases the number of
bases to be chosen according to the size of the number that one wants to test.
For a number of 2k decimal digits, the system chooses approximately k bases,
thus increasing the accuracy of the test,

More details about how these systems test primality, and examples of the
numbers that defeat each test can be found in Arnault 1995, In Chapter 10 we
ﬂmuﬂudymmmwmwchimwhhmﬁntym”umherispﬂm,
As might be expected, these tests are neither as efficient nor as easy to use as
Miller's test.

5. Exercises

1. Which of the following numbers are | P
Which are pseudoprimes to base 3? Which are primes?

r

to base 2: 645, 567, and 7017

Axiom is a regi o

k of NAG (N Group), Ltd.
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that if n is a pseudoprime to bases a and ab, then n is also a pscudoprime to

be a positive integer, and set ;1 = 6n+ 1, pr = 12n+ 1, and p3 = 180+ 1.
iLif p1, p2 and py are primes, then the product pypaps is a Carmichael number.
ow that these conditions are satisfied if n = 1, 6, and 35. Which Carmichael numbers
ned for each of these values of n?

r 20,341 and show that it is a Carmichacl number,

1 < p: be two odd primes. Write n = pyp; and assume that p; — 1 and
| divide n — 1. Show thatn—1=py — 1 (mod pz — 1) and use this to obtain a
lion. Conclude that a Carmichacl number cannol have only two prime factors.

Which of the following integers are strong pseudoprimes to base 2: 645, 2047, and
- Which are strong pseudoprimes to base 3? Which are primes?

that if a positive odd integer n is a stromg pseudoprime to base b, then it is a
to this base.

! amwmmﬂnddjhpwﬂnpimwbnmzmdaﬂmuemﬂm
Recall that n is a pseudoprime to bases 2 and 3 if it is odd and compasite and

2"'=1 (modn) and 3"'=1 (mod n).

a program to find all Carmichael with d prime factors, all of which
er than 10°, The main problem is that, even for rather small values of d, some
Carmichael numbers will be quite large. Thus it is V 1o use

that p — 1 divides n — 1, when p is a prime factor of n. Moreover, if the
has generated the number n = pipa ... . pa, then the residue of n modulo p, — 1
ated multiplying the factors of n one at a time and reducing each product modulo
L. Since all the prime factors are smaller than 10%, this keeps the numbers within
ibilities of the programming language. Use the program to find all Carmichael
ers with d factors smaller than 10° for 3 < d < 8. It isn't necessary to muliiply
hie factors; just list them for each number the program has obtained.

Write a program to find the smallest strong pseudoprime for each given base, The
fiput will be an integer b > 2. The program should apply Miller's test (to base b) to all

composite odd integers until it finds one whose output is “inconclusive test”. This
be the smallest strong pseudoprime to base b. Of course the search will be restricted
umbers smaller than the largest positive integer K supported by the programming
you have chosen. Thus the program can have one of two possible outputs: the
strong pseudoprime to base b or the message “there is no strong pseudoprime
b smaller than A™. To find the odd composite numbers smaller than K you can
the sieve of Erathostenes. Use the program to find the smallest strong pseudoprime
%2, 3,5 and 7.
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Groups

In this chapter we introduce groups and subgroups, and prove Lagrange’s theo-
rem. Groups are one of the “taxonomic classes” we use to classify mathematical
structures that have common characteristics. As with any category in a classi-
- fication scheme, we will only be able to understand what a group is if we are
- familiar with many particular examples. The examples discussed in this chapter
include the groups of symmetries of polygons, and the group of invertible in-
tegers modulo n2. This last example 1s the key to the applications of groups to
number theory in Chapters 9 and 10.

1. Definitions and examples

A group has two basic ingredients: a set and an operation defined in this set.
Let’s denote the set by G and the operation by *. By operation we understand
a rule for combining any two elements a and b of (G to get another element of
(&, which we denote by a * b.

It 1s often the case in mathematics that a set comes equipped with an opera-
tion. Familiar examples include the natural numbers with addition, the integers
with addition, the rational numbers with multiplication, and vectors in 3-space
with the vector product.

However, not every set with an operation is a group. A set G with an
operation, denoted by %, is a group if this operation satisfies the following
properties:

e Associativity: Given any elements a, b, ¢ € (¢, we have
a*(bxc)= (axb)*c.

e |dentity element: There exists an element ¢ € G such that, for all
a € G,

axe=exa=ad.
e Inverse: Given any a € G, there exists an element a’ € (G, called the
inverse of a, such that
axa =a xa=e.

The reason why groups are defined like this is that sets with operations that
satisfy these properties are ubiquitous and have some very nice properties. Thus
groups are so defined, not by divine dispensation, but for purely pragmatical
reasons.
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Note that we are not requiring the operation to be commutative. In other
words, it need not be true that a x b = b * a for every a,b € (. Once again,
the reason for this choice is purely a matter of convenience: There are many
interesting groups whose operations are not commutative. When the operation
of a group is commutative, we say that the group is abelian.

There are many sets with an operation that are not groups. For example, the
addition of natural numbers is associative and has zero as its identity element.
However, the only natural number that has an inverse is 0, because negative
numbers are not in the set N,

An even more dramatic example is the set of vectors in 3-space with the
vector product. The set i1s not a group because the vector product is not an
associative operation. By the way, the inner product of vectors is not an operation
at all, in our sense of the word, because it combines two vectors to produce a
number, not a vector.

On the other hand, groups abound among the most familiar sets with op-
erations. For example, Z, O, R, and C are groups with respect to addition.
Since the only integers with multiplicative inverses are =1, the set Z is not a
group under multiplication; nor are @, R, and C, because division by zero is not
possible. However, if 0 is removed, these last three sets become groups. Thus
Q\ {0}, R\ {0}, and C\ {0} are groups with respect to multiplication.

For any positive integer n, the set Z, is a group under the operation of
addition. The set of square n X n matrices with real coefficients is a group under
the addition of matrices, while the invertible matrices (those whose determinant is
non-zero) form a group under the multiplication of matrices. Note that the latter
1S not an abelian group, because multiplication of matrices is not commutative.

The number of elements of a group is its order. The groups mentioned
above are all infinite, with the exception of Z,,, which has order 7. Another
well-known finite group is {—1,1} under the multiplication of integers; it has
order 2. Notice that we have been saying “group” when we really mean the
underlying set. That’s the common usage, and we will go along with it whenever
possible. We will study more interesting examples of finite groups in the next
two sections.

One final comment on terminology: Many of the results in this chapter will
refer to a “general” group. Thus, to avoid confusion, it is convenient to go on
using a neutral symbol like » for the operation of a general group. However, we
will still say “multiply” and “multiplying” even though the operation is + and
not multiplication. The reason is that the neologisms “star”” and “starring” are
far too ugly to contemplate.

2. Symmetries

One of the most important applications of groups is to the study of sym-
metries. One could even say that groups are the translation of the concept of
symmetry in the language of mathematics. Thus, not surprisingly, they play a
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key role in many disciplines where symmetries are fundamental, like geometry,
crystallography, and physics.

Having said that, we must face the fact that our general concept of symmetry
is very elusive. In geometry a symmetry of a figure is a transformation that,
when applied to the points of the figure, does not alter its appearance. A better
way of putting this might be as follows. Imagine that you are looking at a

geometric figure, say, a polygon. Now close your eyes while someone applies a

transformation to the figure. If, when you open your eyes, you are unable to tell
whether or not anything has been done to the figure, then that transformation is
a symmetry. This may still seem very vague, but it is good enough to handle
the simple examples of this chapter. For a thorough discussion of symmetry in
science and art see Weyl 1982.

Let’s try to find all the symmetries of an equilateral triangle. First of all,
we have three counterclockwise rotations, of 120°, 240°, and 360°. The last
one coincides with the rotation of 0°. There are also three reflections. Each
of these has as its axis (or mirror) one of the lines that bisects an angle of
the triangle. It 1s clear that these six transformations satisfy the criterion of the
previous paragraph, so they are symmetries of the equilateral triangle. Moreover,
it can be shown that these are all the symmetries of an equilateral triangle—we
will have more to say about this at the end of the section.

We have the set, but the operation is missing. If we think of the symmetries
as transformations of the set of points that form the triangle, then the operation
1s the composition of symmetries. Since the composition of maps is always
associative, the first property of the operation of a group is clearly satisfied. The
role of the identity element is played by the rotation of 0°, which is really the
transformation that consists of not doing anything to the triangle at all.

What about the inverses? The inverse of a rotation of 120° is the rotation
of 240°, and vice versa. The reason is that 120 + 240 = 360, and a rotation
of 360° is essentially the same as a rotation of 0°. Each reflection is clearly its
own 1nverse. Hence all the symmetries described above have an inverse, and the
set of symmetries of an equilateral triangle, with the composition of symmetries,
1S a group of order 6 usually denoted by Ds.

Let’s attach numbers to the vertices of the equilateral triangle: 1 and 2 will
be the vertices of the base, and 3 the top vertex, as shown in the figure.

1 2
An equilateral triangle.
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We can now describe the symmetries of the triangle as permutations of the
vertices. For example, the rotation of 120° takes each vertex to the place of
its adjacent vertex in the counterclockwise direction. There is a very practical
notation for describing this permutation:

1273
Ml

This is the transformation that, when applied to the triangle, moves vertex 1 to
the place where vertex 2 originally was, vertex 2 to the place where 3 originally
was, and 3 to the place where 1 originally was. On the top row we always write
1, 2, and 3 in order; on the bottom row we write the place where each vertex
ended up after the transformation was applied to the triangle. Note that a place
1s named after the vertex that occupied it before we applied the transformation.
Here 1s another example. The reflection about the line that bisects vertex 3 is
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If p is a rotation of 120°, then

p° = pp

is a rotation of 240°, and p® = e is the identity element—a rotation of 360°. If
is any one of the reflections, then o = e. We wish to identify the symmeitry that
corresponds to ap. Note that op cannot be equal to p*. Indeed, “multiplying”
op = p* on the right-hand side by p? and using p® = e, we have o = p, which
1s a contradiction. Similarly, we can show that op # e and that op # p. Hence
op cannot be a rotation, and op must be a reflection. However, op # &, since
ogp = o implies that p = e, another contradiction. Therefore, op must be a
reflection different from o.

Let's denote by o3 the reflection that does not move vertex 3, which we
described above. Then p moves vertex 1 to the position of vertex 2, while o3
moves vertex 2 to the position of 1. Thus o3p(1) = 1; in other words, vertex 1
stays put under os3p. We will denote the reflection that does not move vertex 1
by o1. Therefore, a3p = o;.

We could also have computed o3p using the notation introduced above: thus

ey LS W Mg Mg
3 =la S B B g 8y |

Before we carry out the calculation, note that o3p(1) means that p is applied to
1 before o3, so that

(et

i e BRRE B IR I DY
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Using only the basic properties of a group, we can compute several other
relations between the elements of D3 taking o3p = oy as a starting point. For

Hence

Groups 125

example, let G be a group, and let x be its operation. If z,y € G, then the
inverse of zxy is ¢/ *2z’. To check that this is the case, it is enough to multiply
these two elements; so,

(zxy)*x W xz)=zx(yxy)xz' =zxexz' =z*x2' =e.

Using this simple fact and continuing to use a dash to denote the inverse of an
element, we have

(a3p) = p’os.

But we have seen that o3p = oy. Since o7 = e, we conclude that p?cs = o;.

Therefore,

L VCTE 29
O3p = 01 = P 03 # po3.

In particular, D3 is not an abelian group.

There are many other relations that follow from o3p = ¢;. Multiplying it
on the left by o3 and using o4 = e, we have p = 030y ; while multiplying it on
the right by p? we have o3 = o p?. Note that since the operation of D3 1s not
commutative, we must specify which of the two sides of the equation is to be
multiplied by the given element.

Carrying these calculations far enough, we can fill in the multiplication table
of Ds. In general, the multiplication table of a finite group is a table whose rows
and columns are indexed by the elements of the group. If the group operation
1S %, then the entry of the cell in the intersection of the row indexed by z with
the column indexed by 4 is ¢ x y. The multiplication table of the group D3 is
as follows:

e P | P g1 | 02 | O3
e|le| p|p®|oi|on]|os
p|lp|p|e|os|o|o:
,O2 ,02 € 2o 1'ge 1okl g

Note that there are no repeated elements in either row or column of this
table. This is a general fact, which is true for the multiplication table of any
group. To prove it, suppose that we have a group G whose operation is . The
entries of the row indexed by a € (G are of the form a*xx for some 2 € G. Now,
if there exist z,y € G such that a xz = a x v, then

r=a x(axz)=a x(axy) =1,

where a’ is the inverse of a in (G, Thus, the entries a * 2 and a % y are equal
only if they belong to the same column. In particular, the entries of a given row




|
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of the multiplication table of a group G must be distinct. A similar argument
proves the corresponding result for columns.

In general, the symmetry group of a regular polygon of n sides, denoted by
Dy, has order 2n and is generated by the rotation p of 360/n degrees and by
any one of the reflections. If ¢ is a reflection, then

n—1

gp =0 i

This group is called the dihedral group of order 2n. To show that this description
corresponds to the whole group of symmetries of a regular polygon it is necessary
to use linear algebra; you will find the details in Artin 1991, Chapter 5.

3. Interlude

The theory of groups is a relatively recent branch of mathematics that grew
out of the theory of polynomial equations. Quadratic equations were routinely
solved by the Babylonians more than a thousand years before Christ. The Greeks,
more interested in geometry, did not contribute much to this subject. The interest
in equations was revived by the Arabs, who looked for ways of solving polyno-
mial equations of the third degree, or cubics. The real breakthrough, however,
came only in Renaissance Italy.

The history of the discovery of the formulae for solving polynomial equations
of degrees 3 and 4 is rife with intrigue and betrayal. It all began with Scipione
del Ferro, a professor at the University of Bologna, one of the oldest of the
Medieval universities. It is not known when del Ferro discovered the solution
of the cubic, but before his death around 1526, he explained the method to his
student, Antonio Maria Fior.

This was a time when competitions among the learned were common, and
Fior decided to challenge Niccold Tartaglia (“the stutterer’), a professor of math-
ematics at Venice. The contest would consist of 30 questions, and the loser
would pay for 30 banquets. Close to the day when the allotted time was to
expire, Tartaglia had an inspiration: He discovered on his own the method for
finding the roots of cubic equations, and solved within hours all the proposed
problems. Fior did not fare so well, and was unable to solve most of the prob-
lems posed by his adversary. Thus Tartaglia was declared the winner and, in
a gentlemanly fashion, renounced the 30 banquets—the honor of winning was
enough for him.

Tartagha’s triumph led to an invitation to visit Gerolamo Cardano, who was
famous as a doctor, mathematician, and astrologer. He told Cardano the details
of his solution of the cubic, but made Cardano swear that he would keep it secret.
Cardano extended the method and finally published it in his Ars magna in 1545.
Besides the solution of the cubic, the book contained a method for reducing
the solution of a biquadratic equation to that of a cubic. This last result was
obtained by Lodovico Ferrari, Cardano’s friend and secretary.

Needless to say, Tartaglia was incensed. He accused Cardano of perjury, and
even published the whole story, including the complete text of the oath. What
had happened, however, was that Cardano had in the meantime found out that

—— ———
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del Ferro had discovered the same results before Tartaglia. This, in his view,
left him free to publish the results. In the book he states clearly that the solution
of the cubic had first been found by del Ferro, and had later been rediscovered
by Tartaglia.

For the next 300 years mathematicians searched in vain for similar methods
for solving equations of degree greater than 4. What they wanted was a way

to find the roots by a sequence of operations applied to the coefficients of the

polynomial equation. However, only the operations of addition, subtraction,
multiplication, division, and extraction of roots were to be allowed. This is

known in the trade as solving equations by radicals.

The truth is that these restrictions make the problem insoluble. The first
complete proof of this fact was given by the Norwegian mathematician N. H.
Abel in 1824. Abel contributed to many areas of mathematics, notably analysis
and algebraic geometry, so that now we talk of abelian groups, abelian functions,

and Abel’s theorem on the convergence of series. His achievement is all the more

surprising because he died of consumption before his twenty-seventh birthday.
So great 1s his fame that a statue in his honor has been raised in the Royal Park
in the center of Oslo.

The complete answer to the problem of solving polynomial equations by
radicals was found by Abel’s contemporary, E. Galois. He showed that to each
polynomial equation there corresponds a finite group, which completely deter-
mines whether or not the equation can be solved by radicals. Since the group is
finite, this can, at least in principle, be turned into an algorithm.

Galois’s life was even more tragic than Abel’s. His father committed suicide
for political reasons; his work was considered incomprehensible by the members
of the Académie des Sciences de Paris; and he did not manage to pass the
entrance examination of the Ecole Polytechnique. In fact, he was so furious
at the stupidity of the Polytechnique examiners that he threw the blackboard
eraser at one of them! Since he needed financial assistance, he’ decided to
enter the Ecole Préparatoire, a teacher training college. Galois was also ardently
republican at a time when France was a monarchy, and his political activities
finally led to his expulsion from the Ecole Préparatoire.

He was in prison for his political activities when, during a cholera epidemic
in 1832, he was transferred to a hospital. There he fell in love with a girl, but
little is known of the affair. The fact is that soon thereafter he was challenged to a
duel. The reasons why the duel was fought are not clear. A recent reconstruction
suggests that, depressed by the failure of his affair and by lack of recognition
for his work, he may have offered to die for the republican cause. The idea
was to pretend that he had been killed by loyalists, and use that as a reason
for starting an uprising during his funeral. Even there, tragedy struck. During
the funeral the leaders heard of the death of General Lamarque. A larger crowd
would gather for the funeral of the famous general, and it was quickly decided
that it would be better to delay the uprising until then. Thus nothing happened
at Galois’s funeral.
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E. Galois (1811-1832).

The night before the duel, aware that death was near, Galois wrote a last-
minute letter to his friend, Auguste Chevalier. In this letter, after reviewing his
discoveries, he concluded:

Ask Gauss or Jacobi publicly to give their opinion, not as to the
truth, but as to the importance of these theorems. Later on there
will be, I hope, people who will find some profit in sorting out
this mess.

Mortally wounded, Galois was abandoned on the field of honor. Only hours
later a passing peasant took him to a hospital. The only person of his family to
be notified before his impending death was his younger brother; on the brink of
death, Galois still found strength to tell him, “Don’t cry; I need all my courage
to die at twenty.”

Joseph Liouville was the person who finally “sorted out the mess” and
revealed to the world the wonderful results that had been lying dormant in
Galois’s estate. In 1846, Liouville published all the mathematical papers left by
Galois, including the last letter—a mere 64 printed pages. H. Weyl, one of the
greatest mathematicians of the twentieth century, described the letter to Chevalier
in these words:

This letter, if judged by the novelty and profundity of ideas it
contains, is perhaps the most substantial piece of writing in the
whole literature of mankind.

No wonder that Galois is now considered to be one of the founders of modern
algebra. It was through his work that the concept of group (which he named)
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grew to the importance it now has in mathematics. More details about the work
of Galois can be found in Edwards 1984, which closely follows Galois’s own
approach to the theory of equations. For a modern approach to the same material,
see Artin 1991. More details about the history of the theory of polynomial
equations can be found in van der Waerden 1985. The latest biography of
Galois, which contains a detailed account of the duel, is Rigatelli 1996.

4. Arithmetic groups

We must not lose sight of the fact that we are ultimately interested in prime
numbers and the factorization of integers. These are arithmetic properties related
to the multiplicative structure of the integers. In this section we introduce the
groups that will help us in the study of these properties.

Let n be a positive integer. Recall from Chapter 4, section 7, that U(n) is
the set of invertible elements of Z,,: that is,

U(n) ={a € Zy, : ged(a,n) = 1}.

Let’s show that this set is a group for the operation of multiplication of classes
N Z,,.

First of all, we know that the product of two elements of Z,, is an element
of Z,. Does the same hold for elements of U(n)? In other words, is it true
that the product of two elements of U(n) is an element of U(n)? If not, the
multiplication of classes will not be an operation of U(n) in the sense of section
1

In other words, we must check whether the product of two invertible classes
of Z,, is also an invertible class of Z,,. We have already done this in Chapter
4, section 7, but the argument is so simple, and the result so important, that we
may as well repeat it here. Suppose that @ and b are elements of U(n) and that
their inverses are a’ and ¥/, respectively. Then ab is invertible and its inverse is
a’t/. To check that this is so, it is enough to multiply the two elements

ab-a'tl = aa’ - bb = 1.

Now we have a set U(n), where an operation is defined, multiplication
of classes modulo n. We must show that this operation satisfies the required
properties. Associativity is easy, because we already know that multiplication in
Zy, is associative. The identity element is 1. It is an invertible element of Z,,,
so it belongs to U(n). That every element of U(n) has an inverse follows from
the definition of U(n). So the set U(n) under the operation of multiplication is
indeed a group.

That the group U (n) has finite order is clear; it is a subset of Z,,, which is
a set of n elements. But for the applications in later chapters we need to know
the order of U(n) exactly. Indeed, the order of U(n) is so ubiquitous that it has
a special name: ¢(n). Thus we have a function ¢ that, to each positive integer
n, associates the number of elements of the set U(n). This is called Euler’s
function or the fotient function.



130 Chai::uter 8

We want to find a general formula for ¢(n), but we begin with some special
cases. Suppose that p is a positive prime. Then every positive integer smaller
than p is prime to p. Hence

U(p) = Z, \ {0}

has p — 1 elements. Thus ¢(p) = p — 1.

It is also easy to compute ¢(p~), where p is a positive prime. All we have to
do is count the non-negative integers, smaller than p*, whose greatest common
divisor with p* is 1. But p is prime, so ged(a, pk) = 1 if and only if p does not
divide a. Hence, it is enough to count the non-negative integers smaller than p*
that are not divisible by p. Howeuver, it is easier to count those that are divisible,
Indeed, if 0 < a < p” is divisible by p, then

a=pb where 0<b<p L.
Thus, there are pJC ~! non-negative integers, smaller than p"®, that are divisible
by p. Since there are p® non-negative integers smaller than p*, we conclude that
there are p* — p*~! whole numbers in the same interval that are not divisible by
p. Therefore,

p(p") =p* —p* T =p" - 1).
In order to get the general formula we must prove the following result.

Theorem. If m and n are positive integers such that ged(m,n) = 1, then

d(mn) = ¢(m)p(n).

Before we go into the proof, it should be noted that the hypothesis that m
and n are co-prime is necessary. For example, if m = n = p, then

d(mn) = ¢p(p*) =plp—1)  but  d(m)o(n) = ¢(p)* = (p— 1)

The proof of the theorem uses the geometric interpretation of the Chinese
remainder theorem; that is, the table in Chapter 7, section 3; let’s recall how it is
constructed. We begin with two positive integers m and n such that ged(m, n) =
1. Next, we draw a table with m columns and n rows. Each column is indexed
by a non-negative integer smaller than m, and each row by a non-negative
integer smaller than n. We will think of these numbers as classes in Z,,, and
Zum,, Tespectively. Thus we have a table with mn cells. The entry of the cell in
the imtersection of column a and row b will be the integer z that satisfies

r=a (modm)

z=b (modn),
and 0 < z < mn — 1. The integers a and b are the coordinates of z. Since
m and . are co-prime, it follows from the Chinese remainder theorem that the

entry of every cell is uniquely defined by the conditions above. We will think
of x as a class 1n Z,».

Proof of the theorem. Suppose that T € Zyn, where 0 < 2z < mn — 1. Let
a and b be the coordinates of z in the table constructed above. We begin by

proving the following claim.

Claim: Z € U(mn) if and only if @ € U(m) and b € U(n).

Suppose first that T € U(mn). Then T has inverse T' € U(mn), so that
zz' =1 (mod mn). But this congruence holds if and only if 2z’ —1 is divisible
by mmn. In particular, 2z’ — 1 must be divisible by m; hence zz’ = 1 (mod m).
But, by definition, z = a (mod m). Thus az’ = 1 (mod m), so that @ is
invertible in Z,,. A similar argument shows that b is invertible in Z,,.

In order to prove the converse, suppose that Z is an element of Z,,,,, whose
coordinates satisfy @ € U(m) and b € U(n). We wish to show that T is an
invertible element of Z,,. By hypothesis, @ has an inverse a/ in Z,, and b

has an 1nverse &/ in Z,,. It T € Z,,, has an inverse, then it must be found

somewhere in the table. What are its coordinates? It is reasonable to expect

that the coordinates will be the classes a’ and ¥, which have just been defined.

Thus, let 0 < 4y < mn — 1 be an integer such that
y=dada (mod m)
y=b (mod n).

Let’s prove that § € Z,,, is the inverse of Z. Since 2 = a (mod m) and y = d
(mod m), we have

zy=aa’' =1 (mod m).

Hence zy—1 is divisible by m. A similar argument shows that zy—1 is divisible
by n. But ged(m,n) = 1, so, by the lemma of Chapter 2, section 6, zy — 1 is
divisible by mmn. In other words,

sl 8 Lo

which concludes the proof of the claim.

Using the claim, it is easy to prove the theorem. We want to compute ¢(mn.).
By definition this is equal to the number of elements of U(mn). Hence, by the
claim, we must count the number of entries in the table whose first coordinate
belongs to U(m) and whose second coordinate belongs to U(n). But U(m) has
@(m) elements, and U (n) has ¢(n) elements. So the number of those entries is
@(m)p(n). Therefore, p(mn) = ¢(m)@(n), and the theorem is proved.

We are now ready to find a formula for ¢(n) for any given positive integer
n. First of all, we must tactor n:

T ps AN DY
where 0 < p; < - -+ < pg are distinct primes. By the theorem
¢(n) = ¢(pt*) - .. (pr*).

Using the formula for ¢ of a prime power, deduced above, we obtain
B(n) =t = 1) . (D — 1),
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For example, if n = 120 =8 -3 - 5, then
$(120) = 2°(2 - 1)(3 - 1)(5 — 1) = 32.

Note that in order to apply the formula we must first be able to factor n
completely. This is bad news, if we really need to know ¢(n) for a large integer
n. However, as we will see in Chapter 11, it is just this difficulty that makes
the RSA cryptosystem secure.

5. Subgroups

It a group H 1s a subset of a group G and if they share the same operation,
we say that H 1s a subgroup of G. Since this definition is very important to
what follows, we will carefully dissect it below.

Let G be a group, and denote its operation by x. A non-empty subset /] of
GG is a subgroup of G if

(1) axb e H, whenever a,b € H:;
(2) the identity element of G belongs to I7; and
(3) if a € H, then its inverse a’ is also an element of 7.

In the terminology of section 1, condition (1) says that x (which is the operation
for () is also an operation for the set 1.

Let’s begin with an example in the group Z with addition. Let n be a
positive integer, and denote by N the set of all multiples of n, both positive and
negative. Is NV a subgroup of Z? First, if two integers are multiples of n, so is
their sum; so (1) 1s verified. The identity element of Z is 0, which is a multiple
of n; s0 0 € N. Finally, —a-n = (—a) -n € N. So the inverse of any element
of IV also belongs to IV. Thus NV is indeed a subgroup of Z. This example will
reappear in section 8.

Among the examples of section 1 there are several subgroups. Thus, under
addition, Z is a subgroup of @, which is a subgroup of R, which is a subgroup
of €. Under multiplication, the set of non-zero rational numbers is a subgroup
of the set of non-zero real numbers, which is a subgroup of the set of non-zero
complex numbers. Note that any group has at least two subgroups: the whole
group, and the subgroup whose only element is the identity element.

On the other hand, @\ {0} is a group under multiplication, and it is contained
in Q, which is a group under addition. However, in this case we do not say that
Q \ {0} is a subgroup of Q, because they do not share the same operation.

Finite groups are very interesting. The fact that a finite set is a group
implies that there exist many unexpected relations between their orders. These
make it easier to find the subgroups of a group. We will study the simplest of
these relations, called Lagrange’s theorem. By the way, J. L. Lagrange died a
year after Galois was born, and his work on the theory of polynomial equations
greatly influenced Galois’s own work on the subject. Lagrange also contributed
to various other branches of mathematics, such as number theory and mechanics.

Lagrange’s theorem. In a finite group, the order of any subgroup divides
the order of the whole group.
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Let’s make clear what Lagrange’s theorem says and especially what it does
not say. Suppose that G is a finite group and let H be a subset of G. Then,
clearly H has fewer elements than (7. Lagrange’s theorem says that, if, moreover,
H 1s a subgroup of G, then the order of H actually divides the order of G.
This severely restricts those subsets that can be subgroups. However, it is not

true that if k 1s a divisor of the order of &, then G must have a subgroup of

order G.

The proof of this theorem will be given in section 8. We must first under-
stand the full import of the theorem, and this can only be gauged by looking at
some applications. Let’s look at D3, the group of symmetries of an equilateral

triangle, which has order 6. Thus, by Lagrange’s theorem, it can only have sub-

groups of orders 1, 2, 3, and 6, which are the factors of 6. Since every subgroup
must contain the identity element, the only possible subgroup with one element
is {e}. It is also clear that the only possible subgroup of order 6 of D is D
itself. Thus we are left with the task of finding the subgroups of orders 2 and 3
of D3. This will be done after the next section, where we consider a systematic
way of computing subgroups of a group.

6. Cyclic subgroups

Let G be a finite group, and denote by « its operation. Let a be an element
of G. We write

oF=axax---*xa (k times).

This is the kth power of a. Now consider the set of powers of a:
Hi=etalacsar e, )

Apparently this is an infinite set. We say apparently because H C @, and G
is a finite set, so H must also be finite. But this can happen only if there exist
powers of a that are equal, even though their exponents are different. In other
words, there must be positive integers n > m, such that ™ = a”.

Let o’ be the inverse of a in . Multiplying both sides of a™ = a” with
(a’)™, we obtain a”~™ = e, the identity element. Hence, given an element
a € (@ there exists a positive integer k such that «* = e. Thus

kO e

so the inverse of a is a*~!, which is also a power of a. In particular, the inverse

of a belongs to H. Since in multiplying two powers of a we obtain a power of
a, we already know enough to conclude that H is a subgroup of G

What's the order of H? Suppose that k is the smallest positive integer for
which ¢® = e. If n > k, then we can divide n by &, so that n = kg -+ r and
0 <r < k — 1. Therefore,

ol =k =i(a*)2 % ar.
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But a® = e, so a” = a”. In other words, every power of a whose exponent is
greater than k£ 1s equal to a power to a smaller exponent. Thus

H =elg o a1

Moreover, all these elements are distinct. For if r < s < k and a” = a®, then
a’ " = e. Since s —r < k, we must have s — r» = 0; thatis, r = 5. We
conclude that the order of I is k.

Thus we have a simple method for constructing subgroups of a given finite
group (G: Choose any element a € G, then

e The set H of the powers of a in G is a subgroup of G.
e The order of H is equal to the smallest positive integer £ for which
G5 =

It is convenient to introduce the following terminology. If the subgroup 1 is
equal to the set of powers of an element a, then H 1s a e¢yclic subgroup of G,
and a is a generator of H. The smallest positive integer k for which a* = e is
the order of a. From the discussion above we conclude that the order of a is
equal to the order of the cyclic subgroup generated by a.

As a simple application, we can determine the structure of a group G whose
order is a prime number p. An example of such a group is Z,, with the operation
of addition. Suppose that H is any subgroup of G. By Lagrange’s theorem, the
order of H must divide the order of (G, which is p. Since p is prime, the order
of H is either 1 or p. In the first case, H = {e}, in the second H = G. Thus
we have found all the subgroups of G. Now choose a # e in (G and let H be the
cyclic subgroup generated by a. Since e # a € H, it follows from the argument
above that H = G. In particular, G is cyclic and any element of G, apart from
e, 1s a generator. These results are summed up in the next theorem.

Theorem (groups of prime order). If GG is a group of prime order, then
e (7 is cyclic;
e (& has only two subgroups, G itself and {e}; and
e every element of G, except e, generates the whole group.

Thus every group of prime order is cyclic, but the converse is not true. For
example, U(5) has order ¢(5) = 4, but it is cyclic, and 2 is one of its generators,
We will return to this example in Chapter 10, where we prove the primitive root
theorem.

Although we have only discussed in detail cyclic subgroups, it is not true
that every subgroup of a group is cyclic. This will be clear from the examples
of the next section.

7. Finding subgroups

Let’s apply the results of the previous section to find all the subgroups of
D3. We saw 1n section 5 that it is enough to determine the subgroups of orders
2 and 3 of 3. But 2 and 3 are prime numbers, so these subgroups must be
cyclic by the theorem of section 6. Moreover, a cyclic subgroup is completely
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determined by its generator. Thus it is enough to find which elements of Dj
have order 2, and which have order 3.
Since p® # e and p° = e, it follows that p has order 3. We also have

() =p’p=p and (0P =(%) =e,

so p? also has order 3. Since each reflection is its own inverse, the three
reflections must have order 2. The cyclic subgroup generated by p is

Ri=1le n p),

and 1t coincides with the cyclic subgroup generated by p*. Hence R is the only
subgroup of order 3 of Dz, which is generated by both p and p?. Each reflection
gives rise to a subgroup of D3 of order 2, namely

{e,o1}, {e,o2} and {e, o3).

Thus we have proved that, apart from {e} and Dj itself, these are the only
subgroups of Ds. Does it follow that D3 has only cyclic subgroups? Not really,
because the group Dj itself is not cyclic. Indeed, if D3 were cyclic, its generator
would have to be an element of order 6. But as we have seen, every element of
D3 has order 1, 2, or 3. However, it is true that every proper subgroup of Dj is
cyclic—a subgroup H of a group G is proper if H # G.

Next, we want an example of a group that is not cyclic, which also contains
a proper non-cyclic subgmup. The group we consider is

with multiplication modulo n. This group has order qﬁ(lﬁ) = 8. By Lagrange’s
theorem it can only have subgroups of order 1, 2, 4, or 8. The subgroups of
order 1 and 8 are {1} and U(16), respectively.

To find the cyclic subgroups of orders 2 and 4, we must compute the order
of each element of U(16). One quickly finds that 7, 9, and 15 have order 2,
and that 3, 5, 11, and 13 have order 4. Thus U(16) has no element of order 8.
In particular, it is not a cyclic group.

Are all proper subgroups of U(16) cyclic? Recall that a subgroup of prime
order must be cyclic. Thus the order of a non-cyclic proper subgroup of U(16)
must be a composite number smaller than 8 that is also a divisor 8. Hence, if
such a subgroup exists, its order must be 4. Moreover, if the subgroup is not
cyclic, then it cannot have an element of order 4. By Lagrange’s theorem, this
implies that, apart from 1, all the elements of such a subgroup must have order 2.
But UJ(16) has exactly three elements of order 2 that, together with the identity
element, produce a set of four elements, namely

{1,7,9,15}.
One easily checks that this is a subgroup of U(16). Thus U(16) has a proper
non-cyclic subgroup of order 4.

We can also use the results of the previous section to generalize Fermat’s
theorem to non-prime moduli.
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Euler’s theorem. Let n and a be two integers. If n > 0 and ged(a,n) = 1,
then

a®™ =1 (mod n).

The proof is an immediate consequence of Lagrange’s theorem. Since @ and
n are co-prime, it follows that @ € U(n). By Lagrange’s theorem, the order of
@ divides the order of U(n), which is ¢(n). Denoting by k the order of @, we
have ¢(n) = kr for some positive integer r. Thus

@ T

which 1s equivalent to the congruence of Euler’s theorem.

8. Lagrange’s theorem
Recall the statement of the theorem.

Lagrange’s theorem. [n a finite group, the order of any subgroup divides
the order of the whole group.

We begin by defining the equivalence relation used in the proof of the
theorem. Let & be a group with operation x and let H be a subgroup of G. Two
elements z and y of GG are congruent modulo H if

zxy € H,

where y’ is the inverse of y in G. If this is the case, we write z = y (mod H).

An example of this relation is the congruence modulo 7 defined in Chapter
4. Let G be the group Z with addition, and let H be the set of all multiples of n
(both positive and negative multiples). Since the operation in Z is addition, we
have y' = —y. Thus, by definition, z = y (mod H) if and only if z —y € H,
which means that z — y is a multiple of n. Therefore, in this example, z = v
(mod H) is equivalent to z = y (mod n).

Let’s now return to the general case of the congruence modulo I/ in a
group G; we must check that it satisfies the three properties that characterize an
equivalence relation. Let z,7, 2 € G.

Reflexive property: We must show that z = 2 (mod H). However, by defi-
nition, this holds if z x ' € H, which, in its turn, follows from the facts that
x +xx' = e and that H is a subgroup.

Symmetric property: If z = y (mod H), then, by definition, z x v’ € H. But
the inverse of an element of a subgroup also belongs to that subgroup. Thus
y x x', the inverse of = x ¢/, belongs to H. However, y x 2’ € H implies that
y =z (mod H), which shows that the property holds.

Transitive property: Suppose that z =y (mod H) and that y = z (mod H).
These two congruences are equivalent to 2y’ € H and yxz' € H, respectively.
Since I is a subgroup,

zxz =(@x*xy)*x(yx2) € H.
Thus z = z (mod H), and the property is proved.
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Thus, the congruence modulo H is reflexive, symmetric, and transitive, so
it 1s an equivalence relation. Note that there 1S an exact correspondence between

the conditions that make H a subgroup of (G and the properties that make the

congruence modulo /7 an equivalence relation. Lagrange’s theorem depends on

the subtle balance of all these facts.

Now that we know the congruence modulo H is an equivalence relation,

let’s find the equivalence class of an element z € (G under this relation. By

definition, the equivalence class of z is
{fyeG:y=2 (mod H)}.

But y = z (mod H) is the same as y x 2’ € H. Thus y = h x z for some
h € H. Therefore, the equivalence class of 2 can be written in the form

{hxx:he H}.
This suggests the notation H xz for this class. Note that the class of the identity
element e 1s H 1itself. We are now ready to prove Lagrange’s theorem.

Proof of Lagrange’s theorem. Let G be a finite group, and denote by * its op-
eration. Let I be a subgroup of G. We must first count the elements of an
equivalence class modulo H. If z € G, its equivalence class is

Hxz={hxx:he H}

We will show that H x xz has as many elements as F/. Since the elements of
H * x are obtained by multiplying the elements of I/ by a fixed element z of

G, it is clear that H % 2 cannot have more elements than H. Now suppose that

hi,ho € H. If hy xz = ho x z, then
N (h1 1"::[:)?«":.1'3Ir = (hg*:ﬂ)*ﬂjf = hao,

where 2 is the inverse of x. It follows that distinct elements of H give rise to
distinct elements of H % z, when multiplied by z on the right-hand side. Thus
the number of elements of H x z is the same as that of H.

The proof is obtained by putting together these various facts in a coordinated
fashion. First, since the congruence modulo f is an equivalence relation, G is the
union of the equivalence classes. Suppose that we are considering only distinct
classes when we speak of this union. Since distinct classes are necessarily
disjoint, it follows that the order of (G is equal to the sum of the number of
elements of each class. But all the classes have the same number of elements,
namely, the order of H. Thus the order of G equals the order of H times the
number of (distinct) equivalence classes. In particular, the order of H divides
the order of G.

One last comment. As we remarked in section 5, the converse of Lagrange’s
theorem 1is false. In other words, if (G is a group of order n, and k is a factor of
n, then it is not necessarily true that G has a subgroup of order k. For example,
the symmetry group of a regular tetrahedron has order 12, but it does not have
a subgroup of order 6; for a proof see exercises 20, 21, and 22. However, if &k
is a prime that divides the order of 7, then G must have a subgroup of order £.
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This 1s called Cauchy’s theorem, and it 1s proved, for instance, in Rotman 1984,
theorem 4.2, p. 56.

9. Exercises

1. The group D4 of symmetries of the square has order 8.

(1) Write each element of D4 as a permutation of the vertices of the square.

(2) Find the inverses of each element of [j.

(3) Let p be the counterclockwise rotation of 90° and ¢ one of the reflections of the
square. Show that op = p°0.

(4) Compute the multiplication table of Dj.

2. Let GG be a group. Show that if the square of every element of & is equal to the
identity element, then the group is abelian. i

3. Compute ¢(125), ¢(16200), and ¢(10!).

4. Let n be a positive integer and let p be a prime factor of 7.

(1) Show that p — 1 always divides ¢(n).
(2) Show that p need not divide ¢(n).
(3) Show that . > ¢(n).

5. Find the values of n for which ¢(n) = 18. Do the same for ¢(n) = 10 and
¢(n) = 14.

6. Show that if cj}(ﬂ) is a prime number, then n = 3, 4, or 6.

7. Let k be a positive integer. As one can see from exercises S and 6, solving the equation
¢(n) = k can be very time-consuming. However, there is a relatively simple algorithm
for solving n¢(n) = k, which we now describe. Let k = n¢(n), and suppose that p is
the largest prime that divides k. Show that

(1) the largest prime factor of n is less than or equal to p;
(2) the multiplicity of p in the factorization of n¢(n) must be odd.

It follows from (2) that if the multiplicity of p in the factorization of k is even, then k =
ng(n) does not have a solution. Suppose that p has odd multiplicity in the factorization of
k. Assuming that a solution to the equation exists, and that n = p®e, with ged(e, p) = 1,
we have

k=nd(n) =p** " (p— 1)eo(e).

This last equation can be used to compute e, since we know the multiplicity of p in the
factorization of k. Once e is found, we can write

k
p?e—1(p—1) = c¢(c).

The same method can now be used to find the largest prime that divides ¢, and so on.
Why does this procedure stop?

8. Show that if n is a positive integer and ¢(n) = n — 1, then n is prime.

9. Writing 7 in the form n = 2*r, where 7 is an odd number, show that if ¢(n) = n/2,
then n 1S a power of 2.
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10. Show that if m divides 7, then ¢(mmn) = mae(n).

11. Find all the subgroups of the group D4 of symmetries of the square.
12. Show that U(2) and U (4) are cyclic groups, but that [J(8) is not cyclic.

13. Suppose that G is a finite cyclic group of order n. Show that if 7 divides n, then

(G has an element of order m. Explain why this implies that the converse of Lagrange’s
theorem holds for cyclic groups.

14. Consider the group U(20).

(1) Compute the order of U(20).

(2) Compute the order of each element of U(20).
(3) Show that U(20) is not cyclic.

(4) Find all the subgroups of order 4 of U/(20).
(5) Find a non-cyclic subgroup of U/(20).

15. Let G be a finite group and let S; and S5 be two subgroups of G. Show that;

(1) S1 N S; is a subgroup of G. |
(2) If the orders of S; and S are co-prime, then S; N .S2 = {e}.
(3) S1 U S2 need not be a subgroup of G.

Hint: To prove (2) recall that S; N S is a subgroup of S; and of S2; use Lagrange’s

theorem and the fact that the orders are co-prime to show that S; N S2 = {e}. To prove

(3) it is enough to give an example in which the union of subgroups is not a subgroup;

try G = Ds,

16. Let n be an odd, composite, positive integer. Consider the following subset of U(n).

H(n) = {b € U(n) : n is a pseudoprime to base b}

Which of the following statements are true, and which are false?

(1) H(n) is a subgroup of U(n).
(2) H(n) cannot be equal to U(n) because n is composite.
(3) U(n) cannot have an element of order . — 1 because n is composite.

17. Compute the residue of 7°°"® modulo 60, and that of 3%7:°°* modulo 125.

18. Let p > 0 be a prime number and let » be a positive integer. Applying Euler’s theorem
to p”, show that p” is a pseudoprime to base b if and only if b*~" = 1 (mod p").

19. Use the previous exercise to show that 1093 is a pseudoprime to base 2.

20. Let GG be a finite group and let H be a subgroup of GG. Suppose that the quotient of
the order of & by the order of H is 2, and let g be an element of & that is not in H.

(1) Show that g° & H x g.
(2) Explain why G is the disjoint union of [ and H * g.
(3) Show that g% € H.

21. Let T be the group of symmetries of the regular tetrahedron. This is a group of
order 12.

(1) Find all the elements of T.
(2) How many elements of order 3 are there in 17
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22. Let T be the group of symmetries of the regular tetrahedron. The purpose of
this exercise is to give a proof that this group does not have any subgroup of order 6.
The proof will be by contradiction, so suppose that H is a subgroup of order 6 of T.
Show that /1 contains all the elements of order 3 of T, and obtain a contradiction using
exercise 21.

Hint: If @ is an element of order 3 of T, then (a®)* = «
exercise 20.

o = « belongs to H by

23. Write a program, based on exercise 18, to compute the pseudoprimes to base 2 of
the form p*, where p < 5 - 10* is a prime number; see exercise 11 of Chapter 6.

24. Write a program that, having as input an integer k& > 0, computes ¢(k). The
program will consist essentially of an algorithm to compute the complete factorization
of k into primes. Use this algorithm to find all positive integers k smaller than 10° for
which ¢(k) = ¢(k + 1). It is not known whether there are infinitely many k such that

¢(k) = o(k +1).

25. An integer k£ > 0 is a forient if the equation ¢(n) = k has a solution. Write a
program that implements the algorithm of exercise 7. Which positive integers smaller
than 10° can be shown to be totients using this algorithm?

2,

Mersenne and Fermat

In the first two sections of this chapter we study the classic methods for finding
factors of Mersenne numbers and Fermat numbers. However, instead of follow-
ing the original approach of Fermat and Euler, we make full use of the language
and results of the theory of groups, developed in Chapter 8. In this way we can
deal with these problems in a simple and elegant fashion. The same methods
are applied in section 4 to prove a very efficient primality test for Mersenne
numbers,

1. Mersenne numbers

One of the best ways to produce very large primes is to use exponential
formulae. The oldest exponential formula for primes is the one named after
Mersenne. Let n be a positive integer. Recall that the nth Mersenne number is

M(n) =2" — 1.

We have seen that if n is a composite, then M (n) is also composite. For if
n = r8, then

o =127 =1 (af Sy (AreEbIB o= RER oot 1),

Hence M(r) is a factor of M(n) = M(rs). Of course, M(s) is also a factor
of M(n).

Thus, if we wish to find primes among Mersenne numbers, we need only
look among those of the form M (p), where p is prime. However, it is not true
that M (p) is prime for every prime p. In this section we describe a method that
can be used to find factors of Mersenne numbers when the exponent is prime,
but not too large. The key to the method is a general formula for the factors of
M (p) discovered by Fermat. In order to prove this formula we need one more
general result about groups.

Key lemma. Let G be a finite group and denote by « its operation. Let a € G.
A positive integer t satisfies a* = e if and only if L is divisible by the order of
a.

Proof. Let s > 0 be the order of a. If s divides ¢, then ¢ = sr for some positive
integer r, and

gt )i=e
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To prove the converse, suppose that a® = e. Since the order of a is the smallest
positive integer s such that a® = e, then s < {. Dividing ¢ by s, we obtain

B=3gi-kr owiere Qi o=

Thus
e=a =i(a)ix0 =g
because a® = e. Since r < s, this can only happen if r = 0.

Let’s now return to Mersenne numbers. Suppose that p # 2 is a prime
number, and that ¢ is a prime factor of M (p) = 2P — 1. Then

2 =1 (mod g).

We will consider this congruence as an equation in the group U(q) = Z, \ {0},
namely
=T,

What is the order of 2 as an element of U(q)? It follows from the key lemma
and the previous equation that the order of 2 divides p. But p is a prime, so that
9 must have order 1 or p. However, 2 = 1 implies that T = 0, a contradiction.
Thus 2 has order p in U(g). Since, by hypothesis, p # 2, it follows that 2 has
order p. On the other hand, by Fermat’s theorem,

STt Ulg),

Once again, the key lemma implies that the order of 2 divides g — 1. Since 2
has order p, it follows that there exists an integer £ such that ¢ — 1 = kp.

But we can go further. Indeed, M(p) = 2P — 1 is an odd integer, so its
prime factors must also be odd. In particular, g is odd. Hence ¢ — 1 is even.
Since p is odd, we conclude that, in the formula for ¢ — 1, the number k£ must
be even. Hence ¢ — 1 = 2rp for some integer . We have proved the following

result.

Fermat’s method. Let p # 2 be a prime, and let q be a prime factor of M (p).
Then q = 1 + 2rp for some positive integer T.

Let’s use this method to find a factor of M(11) = 2047. By the formula,

any prime factor of M (11) is of the form ¢ = 1 + 22r. We must now compute
g when r = 1,2,... and find which (if any) of these numbers are factors of

M (11). Before we begin, it is helpful to determine how far we have to go
with this search. Recall from Chapter 2, section 2, that if M (p) is a composite
number, and ¢ = 1 + 2rp is its smallest prime factor, then

vV M(p) =2 g=1+ 2rp.
Since /M (p) < 27/, it follows that
2P/% — 1
ek

T
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When p = 11 we obtain » < 2. Thus, the only possible values for 7 in this case
are 1 and 2. Inserting 7 = 1 in the formula g = 1+ 22r gives ¢ = 23. A simple
division shows that this is indeed a factor of M(11) = 2047. The other prime
factor 1s 89 = 1+4-22-4. It is interesting to consider what would have happened
if we had tried to factor M (11) by trial division using the algorithm of Chapter
2, section 2. In that case we would have had to try to divide M(11) by each
odd prime smaller than 23 before we could stop. There are 8 such primes.

The history of Mersenne numbers is a mine of curious and eccentric sto-
ries. One of the best tells of . N. Cole’s talk at a meeting of the American
Mathematical Society in 1903. He proved that

M(67) = 193,707,721 - 761,838,257,287

by multiplying the two numbers in total silence. The audience applauded enthu-
siastically! To this day no one knows how to arrive at these factors in a simple
way.

As we mentioned in Chapter 3, many of the largest known primes are
Mersenne numbers. Of course there are far better methods than Fermat’s to
check that a given Mersenne number is prime. The most often used of these is
the Lucas—Lehmer test, which we will explain in section 4.

2. Fermat numbers

We have seen that if M (n) = 2™ — 1 is prime, then n must also be prime.
This suggests that we should try to determine the values of n for which 27 + 1
is prime. Now, if we assume that p = 2" + 1 is prime, then

(2.1) D =T W Ul(p):
Therefore
2" =T in Ulp).

Thus, by the key lemma, the order of 2 as an element of U(p) divides 2n. We
must now compute this order exactly. Note that it follows from equation (2.1)
that the order of 2 can be neither n nor a divisor of n. Since it divides 27, the
order must be a multiple of 2. Thus there exists a positive integer r such that

the order of 2 is 2r. Clearly r divides n. Now 2°" =1 in U(p) implies that
=gl T T =N )
In Zp. Since we are assuming that p is prime, we conclude that
2"=1 (modp) or 2"=-1 (mod p).

Hence p divides 2" +1 or 2" — 1. But p=2"+1 and n > 7, so we have a
contradiction unless r = n, and 2 has order 2n in U(p).
Since p — 1 = 2", it follows from Fermat’s theorem that
2" =1 in. U(p).
Hence the order of 2 (which is 2n) divides 27, In particular, » must be a power
of 2. Summing up, if 2" + 1 is prime, then 72 is a power of 2.
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This is the reason why, when looking for primes, we need only consider
numbers of the form 22" - 1; that 1s, Fermat numbers. As we saw in Chapter
3, Fermat believed that these numbers were always prime. It is true that F(k)
is prime when 0 < k < 4, but F'(5) is composite. This was shown by Euler in
1'730. Ironically, his method closely follows Fermat’s own method for finding

factors of Mersenne numbers, described in section 1. Let’s see how Euler’s
method works.

Suppose that g i1s a prime factor of F (k). Then
— k': el
2.2) 5 =-T in U(qg)
and 1t follows, by the key lemma, that the order of 2 divides 2**!. But equation
(2.2) also implies that this order cannot be a power of 2 smaller than 2F+!
Hence, the order of 2 in U(g) is 2°*'. However, by Fermat’s theorem, the order
of 2 divides g — 1; thus g — 1 = 2k+1p

Euler’s method. If q is a prime factor of F(k), then there exists a positive
infeger r such that g = 1 4 28ty

We will use Euler’s method to find a factor of F(5) = 232 + 1. First of
all, any prime factor of F(5) must be of the form ¢ = 1 + 64r. Thus we
must determine if there is some ¢ < /232 4+ 1 < 66,000, of the form above,
that divides F'(5). The upper bound on ¢ gives 7 < 1031, an uncomfortably
large number. The smallest value of r for which g 18 prime is r = 3, which
corresponds to g = 193. A computation shows that

22 = (2%)* = 63* =108 (mod 193).

Hence 193 is not a factor of F'(5). For 7 = 4 we have g = 257, which is also
prime, but

2 =1 (mod 257),

so that 257 1s not a factor either. The next value of 7 for which ¢ is prime is
r = 7, and it gives q = 449. But

2% = (2192 = 4312 = 324 (mod 449)

and 449 is not a factor. The next prime is ¢ = 577, which corresponds to 7 = 9.
In this case,

2%2 = 287 (mod 577),

S0 that 577 is not a factor of F'(5). Finally, when » = 10, we have g = 641,
which is a factor of F'(5).

Luckily, the factor is relatively small, so it could be found using Euler’s
method and an electronic calculator; Euler, of course, did all these calculations
by hand. Unfortunately, one is not often so lucky. The problem is that F(k)
is a doubly exponential function. Thus, even for relatively small values of k,
it 1S necessary to search among so many possible candidates that it is almost
impossible to find a factor by Euler’s method. However, if you want to find
a factor of a given Fermat number, there are far better methods than Euler’s:

L ———— - e T — - p—— el e e i S
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see Lenstra et al. 1993 and Pomerance 1996. More surprisingly, there is a
very efficient test that determines whether a given Fermat number is prime or
composite, as we will see in the next chapter.

A lot 1s known about Fermat numbers. For example, complete factorizations
are known for all Fermat numbers with £ < 9, and also for F'(11). Moreover,
at least one prime factor of F'(k) is known when k < 32, except for k =
14, 20,22, 24, 28, and 31. Actually, the only Fermat numbers we know to be
prime are F'(0),...,F(4), and there is some heuristic evidence that these are
the only ones.

Why is there so much interest in Fermat numbers? There are several reasons,
but certainly their long and eventful history is one of them. They are also a good
source of numbers that are large and difficult to factor. This makes them a good
target on which to test the power of new algorithms. Factorization algorithms,
in turn, often require the computer to carry out simple arithmetic and logic
operations a great many times. Thus running them is often a very effective way
of detecting bugs in newly designed computers.

There 1s a more theoretical reason why Fermat numbers are interesting. In
1801, Gauss showed that 1f a regular polygon of n sides can be constructed using
a ruler and compass, then n equals a power of 2 times a prime Fermat number.
Thus a regular polygon of 17 sides can be so constructed, because 17 = [(2),
but not a regular heptagon, because 7 is not a Fermat number. For more details

see Artin 1991, Chapter 13, section 4.

3. Fermat, again

The largest Fermat number for which a factor is known is 7(23,471); the
factor is 5 - 223473 L 1, Tt is also the largest Fermat number we know to be
composite. This 1s a huge number, and you may be wondering what wonderful
algorithm is this that allows one to factor it. The answer is easy. It is the method
of Euler described in the previous section. However, instead of using the methoc
as Euler did, we turn it upside-down. Euler began with a given Fermat number
and tried to find a factor. We will begin with a number that has a chance of
being the factor of some F'(m), and try to find m.

The algorithm begins by choosing two positive integers £ and n, the first of
which must be odd. Then the number g = k - 2" + 1 is constructed. It follows
from Euler’s method that if this number divides F'(m), then m <n — 1. But g
divides F'(m) if and only if

9¢ = I mod )

To work with as large a number as the one mentioned above, we need a
very efficient way of computing the congruences. Since only powers of 2 come
into play, this can be done rather easily because

(2%)2 = 22,

Now we proceed as follows. First, let r = 92° and i = 5. The variable 7 is used
to keep track of the exponent. We begin with ¢ = 5 because F/(¢) is prime for
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i < 5. The core of the algorithm consists of replacing r by the residue of 72
modulo ¢ and increasing ¢ by 1 at each loop. The algorithm stops when either
r = q—1 or 4= n. In the first case, q divides F'(%); in the second, g is not a
factor of any F'(¢). Recall that if ¢ = k - 2" + 1 divides F'(3), then ¢ < n — 1.

This method, with several clever improvements, was used by G. B. Gostin
to find factors of F'(15), F(25), F'(27), and F'(147) (see Gostin 1995). His
algorithm was written in C and assembler, with some routines being parallelized.
The program first generates several million possible values of g. Next, the values
that are divisible by small primes are eliminated. The surviving values are tested
in the congruences, as explained above.

Reproduced below 1s part of a table found in Gostin 1995, p. 394. It
consists of the values of m, k, and n, for which k- 2" + 1 is a factor of F'(m).

m k n
15 | 17,753,925,353 | 17
64 | 17,853,630 | 67
353 | 18,908,555 | 355
885 | 16,578,999 | 887
1082 | 82,165 1084
1225 79,707 1231

1451 13,143 1454

3506 501 3508
6390 303 6393
6909 6021 6912

4. The Lucas—Lehmer test

In this section we present a very good primality test for Mersenne numbers
that was first conceived by E. Lucas (of Tower of Hanoi fame) in 1878. The test
was improved by D. H. Lehmer in 1932, and it is now called the Lucas—Lehmer
test.

The key ingredient of the Lucas-Lehmer test is the sequence of positive
integers Sp, 51,99, . .., defined recursively by

S[] =4 and Sk_|_1 = S_% — 2.

We will show first that the integers of this sequence can be written as sums of
powers of irrational numbers; see exercise 4 of Chapter 5. Let w = 2+ v/3 and
w = 2 — /3. We will prove by induction on n > 0 that

4.1) w? +w? =8,
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Clearly w + w = Sy. Suppose that w?"  + w@?" = §,_;. Squaring both
sides, we obtain

o o 2(&?@)2”"1 Lepd = ge
Since ww = 1, it follows that
w2 fom? = 82D
which is equal to S,, by definition.

The Lucas—Lehmer test. Let p be a positive prime. The Mersenne number
M((p) is prime if and only if S,_s = 0 (mod M(p)).

We will prove only that the condition 1s necessary; the proof of sufficiency
is beyond the means of this book. The proof we present originally appeared in
Bruce 1993. Although elementary, it uses irrational numbers in a way that is
difficult to justify heuristically. Once one accepts the irrational numbers, the rest
of the proof closely follows the pattern of the proofs in the previous sections. To
understand where the irrational numbers come from, see Bressoud 1989, chapters
10 and 11.

The proof of the Lucas—Lehmer test will be couched in the language of group
theory, but the group in question is far more exotic than U(p). The starting point
is the subset Z[v/3] of numbers of the form a + by/3, where a, b € Z. These are
real numbers, so they can be added and multiplied. The sum and product of two
numbers in Z[+/3] also belong to Z[v/3]. Moreover, like Z, the set Z[+/3] is a
group under addition, but not under multiplication. These facts are very easily
checked. Note that every a € Z can be written in the form a = a + 0v/3, so
that Z C Z[/3].

Now let g > 0 be a prime integer, and write

I(q) = {go : @ € Z[V3]}.

Clearly 0 = Oq € I(q). Since qa + q8 = q(a + ), it follows that the sum of
two numbers in I(g) is also in I(g). Moreover, for any o € Z[v/3], both go and
—qa belong to I(g). Thus I(q) is a subgroup of the additive group Z[v/3].

Now, the relation congruence modulo I(q) is an equivalence relation in
7[+/3], as shown in Chapter 8, section 8. Recall that if o, 8 € Z[v/3], then
o = [ (mod I(q)) when @ — 3 € I(q). See also exercises 10 and 11 of
Chapter 4.

Now if a € Z[v/3], then a = a; + as+/3, where a1,as € Z. Dividing a;
and ag by g, we have a; = gb; + 71 and ap = gbs + 72, with 0 < 71,715 < q.
Writing p = ry + 724/3, it follows that

a—p=q(bs +b2v3).

So @ = p (mod I(g)). The number p is called the reduced form of o modulo
I(q). Since the remainder of the division of integers is unique, each element of
Z[+/3] has only one reduced form modulo I(g). Note that there are exactly ¢
distinct reduced forms modulo I(g) in Z[v/3].
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Now each equivalence class of Z[+/3] modulo I(g) can be represented by
an element in reduced form. Moreover, two classes represented by elements
whose reduced forms are different must be distinct. Thus the set Z,[+/3], of
equivalence classes modulo I(g), must have g2 elements.

The equivalence class of « € Z[v/3] modulo /(g) will be denoted by &. We
can define a multiplication in Z,[v/3] by

af = ap.
The proof that this definition is independent of the choice of the representatives
of the classes is like that of the corresponding result for modular arithmetic; see

Chapter 4, section 3. Ifma = ay + ag\/g and 3 = by + bsv/3, then a simple
calculation shows that a3 is represented by

(a1b1 + 3agbs) + (a1by + aghi) V3.

One readily checks that this multiplication is associative, commutative, and
has T as its identity element. However, Z,[\/3] is not a group under this operation
(see exercise 9). As in the case of modular arithmetic, we get around this
difficulty by considering the set V (q) of invertible elements of Zq[x/?_)]. This 1s
a group, because the product of invertible elements in Z,[v/3] is again invertible,
as one easily checks; see Chapter 8, section 4. Note that since

V() € Zg[v3] \ {0},

it follows that the order of V(q) is necessarily smaller than g?. Note also that,
since www = 1, then both w and w belong to V (¢). We are now ready to prove
the Lucas—Lehmer test.

Proof of the Lucas—Lehmer fest. Suppose that, for some prime p, the Mersenne
number M(p) divides S,_o. By (4.1), there exists an integer 7 such that

W 4w =rM(p).

Multiplying this equation by wzpﬂz, and recalling that wto = 1, we obtain

4.2) W 1 = e M(p)w? .

Suppose now that M (p) is composite and that ¢ is its smallest prime factor,
and let’s aim at a contradiction. Since g divides M (p), it follows from (4.2) that

Ngiﬂ“1 o

(4.3) W = —1
in Z4[v/3]. Squaring (4.3), we get
~0F o
w* =1.

Now it follows from the key lemma that the order of @ divides 2P, but equation
(4.3) also tells us that this order cannot be a power of 2 smaller than 2P. Hence,
the order of w in V(q) is 2P. But, by Lagrange’s theorem, the order of & divides
the order of V (g). Since V(q) has an order smaller than or equal to ¢ — 1, we
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have 2P < ¢? — 1. But q is the smallest prime divisor of M (p), so g% < M(p).
Thus

DR | et i SOB ]

which is a contradiction. Thus, if M(p) divides 5, 2, then M (p) is prime.
This shows that the condition is necessary. For a proof of the sufficiency see

Bressoud 1989, theorem 11.10, p. 175.

Although the test is hard to prove, it is very easy to use and implement. In
1978 two high school students, Laura Nickel and Curt Noll, used the Lucas—

Lehmer test in their local university mainframe to show that M (21,701) is prime.

Their feat made its way to the front page of the New York Times. This test is
also the basis of GIMPS, the Great Internet Mersenne Prime Search', which
offers free software (and source code) through the Web, so that any owner of a
personal computer can enter the search for big prime numbers. The largest known
Mersenne prime, the 909, 526-digit number M (3,021,377), was discovered using
the GIMPS software in January 1998.

5. Exercises

1. Let p,q be prime numbers. Show that if the congruence z¥ = 1 (mod g) has a
solution z # 1 (mod g), then ¢ =1 (mod p).

2. Find all solutions of the congruence z'" = 1 (mod 43).

3. Find the generators of the cyclic group U(17). Use them to solve the congruence
7" =6 (mod 17).

4. Use Fermat’s method to find prime factors of the Mersenne numbers M (23) and
M (29), and to show that M (7) is prime.

5. Use Euler’s method to show that /(4) is a prime number.

6. Let k > 2 be an integer, and o = 22 (22" " — 1). Let p be a prime factor of
F(k) = 22° + 1. Show that

(1) o =2 (mod p),

(2) « has order 2512 modulo p, and

(3) p=2""2r 4+ 1, where  is a positive integer.
Note that this result makes the search for factors by Euler’s method a little more efficient.

7. Find the Fermat number F'(k) of which 7 - 2'* + 1 is a prime factor.

8. In 1640, Frenicle asked Fermat, through Mersenne, if there were any perfect num-
bers between 10%° and 10°°. We know that Frenicle meant even (or Euclidean) perfect
numbers; see Chapter 2, exercises 8, 9, and 10. The purpose of this exercise is to give
Fermat’s proof that there are no even perfect numbers in this range. Recall that we
showed in the exercises of Chapter 2 mentioned above that every even perfect number is
of the form 2" ' (2™ — 1), with 2" — 1 a Mersenne prime.

“You will find the GIMPS software on The Prime Page at http://www.utm.edu/research/primes/.
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(1) Show that if n > 2, then —1 < log(1 — 27") < 0, where log stands for
logarithms to base 10, and conclude that

nlog2 — 1 <log(2" — 1) < nlog?2.
(2) Applying logarithms to the inequality
L0 < AT ) = 128

and using (1), show that 35 < n < 37. Don’t forget that 7 is an integer.
(3) Show that M (n) is never a prime when 35 < n < 37,

For more details see Weil 1987, Chapter II, section IV.

9. Let ¢ > 0 be a prime number and denote by V(g) the set of invertible elements of
Zq[V/3].

(1) Show that 0 & V/(q).

(2) Show that, if a is an integer that is not divisible by g, then

a, aV3 € V(q).
(3) Find all the elements of V/(5).

10. Program Fermat’s method to find factors of Mersenne numbers. The input of the
program will be a prime p > 0, and its output will be the smallest prime factor of
M(p) = 27 — 1, or a message stating that M (p) is prime. The program consists
basically of an application of the algorithm presented in section 2 of the Appendix for
the computation of the residue of 2" modulo ¢, where ¢ = 7 - 2! 4 1, for some
0 < r < [(27/% — 1)/2p]. If the residue is 1. then g is a factor of M (p). If no factor
q is found in the given range, then M (p) is prime. Note that it does not pay to find out
whether a given ¢ is or is not prime before calculating the residue. Use this program
to find the primes p, between 2 and 300, for which M(p) is prime (see Chapter 3,
section 2).

11. Program the algorithm of section 3. It must have as input a prime p, and must search
for the value of m for which p divides F((m). Of course, you must take into account that
such an mm may not exist. Note that if p = k- 2™ + 1, then m < n. This gives an upper
bound beyond which we can be sure that the search will fail. Use this program to find
the Fermat numbers that are divisible by 37 - 26 + 1 and 11,131 . 212 + 1, respectively.
Note that it would not be possible to find these numbers with a home computer if we had
to calculate all the digits of the corresponding Fermat numbers,

10
Primality tests and primitive roots

In this chapter we prove Gauss’s famous theorem that U(p) is a cyclic group
when p is prime. This is the inspiration for a test that, unlike those of Chapter
6, can be used to prove that a given integer is prime. It is with this test that we
begin the chapter.

1. Lucas’s test

Suppose that we wish to determine whether a given positive odd integer n is
prime. A possible strategy is to try to show that U (n) has order n — 1: in other
words, that ¢(n) = n — 1. This implies that every positive a < 7 is co-prime to
n, so n must be prime. At first sight, this seems a hopeless task. How can one
count the elements of U(n) when n is large? The light at the end of the tunnel
is provided by the following theorem, which will be proved in section 5.

Primitive root theorem. If p is prime, then U(p) is a cyclic group.

It follows from the theorem that if p is prime, then there exists an element
b € U(p), whose order is p — 1. In other words,

Bl b £T

if 7 < p — 1. This suggests the following strategy. Suppose that an odd integer

n > 0 1s given, and that we somehow find b € U(n) with order n — 1. By
Lagrange’s theorem the order of b must divide the order of U (n). Hence n — 1
must divide ¢(n). However, ¢(n) < n — 1, so that ¢(n) = n — 1. Thus 7 is
prime. According to the primitive root theorem, such a b always exists if n is
prime. But this is not to say that it is going to be easy to find it; for that we
will need a good deal of luck.

In order to apply this strategy to test the primality of an integer n, we need
a simple way of checking that a given element of U(n) has order n — 1. The
statement of the test given below was proposed by D. H. Lehmer in 1927, and
was based on a slightly weaker test first suggested by E. Lucas.

Lucas’s test. Let n be an odd positive integer, and let b be an integer such
that 2 < b < n — 1. If, for each prime factor p of n — 1, we have

(1) "~ =1 (mod n) and
(2) B=1/P £ 1 (mod n),

then n is prime.
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Note that it would not be possible to find these numbers with a home computer if we had
to calculate all the digits of the corresponding Fermat numbers,

10
Primality tests and primitive roots

In this chapter we prove Gauss’s famous theorem that U(p) is a cyclic group
when p is prime. This is the inspiration for a test that, unlike those of Chapter
6, can be used to prove that a given integer is prime. It is with this test that we
begin the chapter.

1. Lucas’s test

Suppose that we wish to determine whether a given positive odd integer n is
prime. A possible strategy is to try to show that U (n) has order n — 1: in other
words, that ¢(n) = n — 1. This implies that every positive a < 7 is co-prime to
n, so n must be prime. At first sight, this seems a hopeless task. How can one
count the elements of U(n) when n is large? The light at the end of the tunnel
is provided by the following theorem, which will be proved in section 5.

Primitive root theorem. If p is prime, then U(p) is a cyclic group.

It follows from the theorem that if p is prime, then there exists an element
b € U(p), whose order is p — 1. In other words,

Bl b £T

if 7 < p — 1. This suggests the following strategy. Suppose that an odd integer

n > 0 1s given, and that we somehow find b € U(n) with order n — 1. By
Lagrange’s theorem the order of b must divide the order of U (n). Hence n — 1
must divide ¢(n). However, ¢(n) < n — 1, so that ¢(n) = n — 1. Thus 7 is
prime. According to the primitive root theorem, such a b always exists if n is
prime. But this is not to say that it is going to be easy to find it; for that we
will need a good deal of luck.

In order to apply this strategy to test the primality of an integer n, we need
a simple way of checking that a given element of U(n) has order n — 1. The
statement of the test given below was proposed by D. H. Lehmer in 1927, and
was based on a slightly weaker test first suggested by E. Lucas.

Lucas’s test. Let n be an odd positive integer, and let b be an integer such
that 2 < b < n — 1. If, for each prime factor p of n — 1, we have

(1) "~ =1 (mod n) and
(2) B=1/P £ 1 (mod n),

then n is prime.
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Proof. Let k be the order of b in U(n). We want to show that k = n— 1. Since
S e s
b = 1, 1t follows from the key lemma that k£ divides n — 1. Thus there exists

an integer ¢t > 1 such that n — 1 = kf. We must show that ¢t = 1.

Suppose, by contradiction, that ¢ > 1. Then ¢ is divisible by some prime
g. But if g divides t, then ¢ divides n — 1. Thus, (n — 1)/q and t/q are whole
numbers. Moreover, from

we conclude that £ divides (n — 1)/q. Using the key lemma again, we deduce

that 5"~ "/? — T: and this contradicts that hypotheses. Therefore, £ = 1, and so
k = n — 1. Now, by Lagrange’s theorem, the order of b must divide the order of
U(n). Hence n — 1 divides ¢(n) < n—1, so ¢(n) =n — 1 and n is prime.

The previous tests detected with certainty only that a number was composite.
Lucas’s test detects with certainty only that a number is prime. Note that to be
successful in applying this test we must be able to factor » — 1 completely.
Luckily, this is often easy to do for certain families of numbers; for example,
factors of Fermat numbers. One must also be lucky in the choice of the base b,
or the test will have an inconclusive output even though the number is prime.

Let’s use Lucas’s test to prove a primality test for Fermat numbers first
proposed by Jean Francois Théophile Pepin (1826-1904).

Pepin’s test. The Fermat number F(k) is prime for some k > 1 if and only if
suEEStlie = (U [(mod K(k)).

Suppose first that the congruence above is satisfied, and note that F'(k) — 1
has 2 as its only prime factor. Since 5(F(*)=1)/2 = _1 £ 1 (mod F(k)), while

58—l = (5(FR-1/22 = (_1)2 =1 (mod F(k)),

it follows that F'(k) is prime by Lucas’s test. The converse is harder to prove; it
depends on the law of quadratic reciprocity, and we will not prove it here. See

Hardy and Wright 1994, Chapter VI, for a proof.
Let’s show that F'(4) is prime using Pepin’s test. We have
F(4) -1
2

= 215
but
52" = 592768 = 65536 = —1 (mod F(4)).

Thus the condition of the test is verified, and F'(4) is prime. Pepin’s test is easy
to apply because one has only to compute squares modulo F(k), and that can

be done quite rapidly.
As a second example, let’s prove that the rep-unit
Fo(19 Y= 1A A T S S
‘—,.-——__1

19

Primality tests and primitive roots 153

is prime. In order to apply Lucas’s test we must first find the complete factor-
ization of R(19) — 1, which is

R(19) —1=2-3%.5-7-11-13-19-37-52,579 - 333,667.

Qur first choice will be b = 2. Using a computer algebra system, if is easy to
show that

g )=t = f(nod R (19)):
But, unfortunately,
W=/ A= (o d R(19)).

Thus condition (2) of Lucas’s test fails for b = 2 and p = 2. Hence 2 is not a
good choice of base.
Next we choose b = 3. Using a computer algebra system, we find that

3R(19-1 =1 (mod R(19)),

so that condition (1) of Lucas’s test holds. We must now find the residues of
3(R(19)-1)/p

modulo R(IQ) for each one of the primes p that appear in the factorization of
R(19)—1. These residues, computed with the help of a computer algebra system,
are displayed in the table below.

Prime factor p | Residue of 3(2(19)=1/P modulo R(19)
5 R(19) — 1
3 933,000,903,779,960,656
5! 97,919,522,321,038,174
7 742,392,324,159,673,027
11 920,873,402,5657,886,6283
13 114,592,042,672,083,983
19 10"
37 397,724,716,798,816,350
02,079 760,105,763,664,485,871
333,607 559,602,369,615,218,524

Thus condition (2) of Lucas’s test holds for each one of the prime factors of |

R(19) — 1. Hence R(19) is indeed a prime number. '
Only five prime rep-units are known. The first, of course, is R(2) = 11,

and R(19) is the second one; the other ones are 12(23), R(317), and R(1031).

It 1s not difficult to prove that R(23) is prime using the improved version of ’

Lucas’s test that we describe in the next section (see exercise 4).
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2. Another primality test

A simple example will bring to light one of the most obvious difficulties one
faces in applying Lucas’s test. Suppose we want to show that 7 = 41 is prime
using the test. First, we must factor n — 1 = 40, which gives n — 1 = 23 . 5
Thus, it is necessary to find an integer b such that 2 < b < 40, which also
satisfies the congruences

b*° =1 (mod 41)
b 21 (mod 41)
b®* #1 (mod 41).

We begin trying b = 2, but we soon find that 2°° = 1 (mod 41). Next we try
b = 3, but although 3%° = 40 (mod 41), it turns out that 3% = 1 (mod 41).
To make things even more frustrating, 2° = 10 (mod 41). Thus different bases
satisfy the congruences that come from different prime factors of 7 — 1. The
trouble is that Lucas’s test requires that one base be used in all the congruences.
For n = 41, the smallest such base is 7.

In 1975, Brilhart, Lehmer, and Selfridge realized that one could rework
Lucas’s test so that different bases could be chosen for different prime factors,
This makes the test a lot easier to use.

Primality test. Let n > 0 be an odd integer so that

=l =ipteosap t,
where py < --- < p, are positive prime numbers. If, for eachi=1,....r there
exist integers b; (2 < b; < n — 1) such that

"' =1 (modn) and
55 D/% 21 (mod ).
then n is prime.

Note that the b;s need not be all distinct.

Proof. Let i = 1; the same argument applies to 4 = 2, ..., r. First, we must
compute the order of b in U(n); let’s denote it by s;. It follows from the key
lemma and from equation b7 ' = 1 (mod n) that s; divides 7 — 1. Hence, the
primes that appear in the factorization of s; are among the primes py, ..., .

Thus

. kl k-r
S1 _p], cos Py

whereie] = i« kb < B
On the other hand, we know that bg”ﬁl)’{ PL 2 1 (mod n). Therefore,
(n —1)/p1 is not divisible by s;. But

61—1 €9 e

(n—=1)/p1 =p7' " P52 ...p5".

Comparing the factorizations of $; and (n — 1)/p;, and keeping in mind that s;
does not divide (n—1)/p;, we see that k; = e;. In other words, pi* divides s;.
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Recall that s; is the order of by in U(n). By Lagrange’s theorem, s; divides
the order of U(n). Thus s; divides ¢(n). Since pit divides sy, it follows that
pit divides ¢(n).

A similar argument can be used for 7 = 2,...,r, so the congruences of
the test imply that pi*, p5?, ..., pgr divide ¢p(n). These are pairwise co-prime,

because they are powers of distinct primes. Thus, by the lemma of Chapter 6,
section 2, the product

ey Cy .-
Pq "'prr_'n'_"l

also divides ¢(n). Since ¢(n) < n—1, we must have that ¢(n) = n— 1. Hence
n 1S prime.

Finally, putting together results from various chapters, we end up with an
efficient strategy for testing primality. Suppose that a large odd integer n > 0 is
given. To check whether n is prime we can proceed as follows:

(1) Check whether n is divisible by primes smaller than 5000.

(2) Assuming that n is not divisible by any of these primes, apply Miller’s
test to n using as bases the first 20 primes.

(3) Assuming that the output of Miller’s test to all these bases was “incon-
clusive”, apply the test above to n.

3. Carmichael numbers

We have seen that it is possible to characterize Carmichael numbers in
terms of their factorizations into primes. This is Korselt’s theorem, a result for
which we gave an incomplete proof in Chapter 6, section 2. Since the missing
ingredient was the primitive root theorem, we can now complete the proof of
Korselt’s theorem. First, let’s recall the statement of the theorem.

Korselt’s theorem. An odd integer n > 0 is a Carmichael number if and
only if the following conditions hold for each prime factor p of n:

(1) p? does not divide n, and
(2) p—1 divides n — 1.

In Chapter 6, section 2, we saw that if (1) and (2) hold, then 7 is 2
Carmichael number. We also showed that if 7 is a Carmichael number, then (1)
must hold. To complete the proof we need only show that, if 7 is a Carmichael
number, then (2) also holds. This is where we use the primitive root theorem.

Suppose that n is a Carmichael number. By definition, " = b (mod n) for
every integer b. Let p be a prime factor of nn. By the primitive root theorem the
group U(p) is cyclic, generated by some class a.

Since n is a Carmichael number, a™ — a is divisible by 7. Since p divides
n, it follows that p also divides a™ — a. Thus ¢™ = a (mod p). But p is a
prime that does not divide a, so a is invertible modulo p. Therefore, a»~! = 1
(mod p), and it follows from the key lemma that the order of @ divides 7 — 1.
However, the order of @ is p— 1, because it is a generator of U(p). Hence, p— 1
divides n — 1, and the proof is complete.

R ETE—
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4. Preliminaries

In this section we prove a result about the orders of elements in an abelian
group that is an important ingredient in the proof of the primitive root theorem.

Lemma. If an abelian group G has elements of orders r and s, then G has an
element whose order is the least common multiple of v and s.

The proof of the primitive root theorem in the next section will be algorith-
mic. Thus the proof of the lemma will be as important as its statement, because
it 1s not enough to know that the element exists; we must have a method for
finding it.

Proof. As usual, we denote the operation of G by x. Suppose that a and b are
elements of (7 of orders r and s, respectively. We must first factor 7 and s in
terms of prime powers, say

ppn i ik W and szpfl ...p;’;’“,

where p1, ..., p are distinct primes. Note that we have written the same primes
in the two factorizations. This does not mean that we are assuming that r and
s have the same prime factors. If, for instance, one of the primes is not a factor
of r, then its multiplicity in the factorization will be zero.

Note also that we will not abide by the previous convention that the primes
be listed in increasing order. For the purposes of this proof it is better to assume
that the primes have been arranged so that, for some 1 < g < k, we have

E}_Efl,..-,es}uzﬁq} bUt Eg_]_]_ {:fg"‘f"lﬁ"'?ek{fk'

Now write

e e e T — pg*'fl_ﬁl ...pik.
Note that the prime factors of 7’ and s’ are all distinct, so that ged(r/, s') = 1. On
the other hand, 7's’ is the product of powers of the primes p;, .. ., pr. Moreover,
the multiplicity of p; is the largest of the numbers e; and f;. Thus, r’s’ is the
least common multiple of 7 and s.

Since ' divides r and s’ divides s, there exist positive integers u and v
such that 7 = r'u and s = s’v. We wish to show that if @ € G has order r, and
if b € G has order s, then ¢ = a% % b¥ is an element of (@ whose order is the
least common multiple of 7 and s.

Before we prove this, recall that one of the hypotheses of the lemma is that
the group must be abelian. This is necessary because we need to know that, if
z,y € G, then

(b xy)ie=ind » e,

and this is not true if % is not commutative. Indeed, the result of the lemma
does not hold if the group is not abelian. This is illustrated by an example at
the end of this section.
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Let m be the least common multiple of 7 and s, and let n be the order of
¢. Thus both r and s divide m. Suppose that m = rt = sq for positive integers
t and q. Then

e’ — ([I.u *bv)m = a*t.am *bum el (a?‘)ut % (b.ﬂ)ﬂq —

and it follows from the key lemma that » must divide m.
On the other hand, since n is the order of ¢,

o {.:?1. :aitn*bvﬂ'

‘Hence

e (aun *bvn)*r" M) (ﬂr"u)n 4 bvm" o= bvnr’

because r'u = 7 is the order of a. Thus, by the key lemma, the order of b
(which is s) must divide vnr’. Since s = s'v, it follows that s’ divides nr’.
However, r* and s’ are co-prime. Therefore, by the lemma of Chapter 2, section
6, s’ divides n.

A similar argument shows that »* divides 7. But 7/ and s’ are co-prime.
Thus by the lemma of Chapter 2, section 6, 7’'s’ divides n. However, r's’ is
the least common multiple of 7 and s, so m divides n. The first part of the
argument showed that n divides m, so m = n, and ¢ is an element whose order
is the least common multiple of 7 and s.

One deduces from the proof of the lemma that if » and s are co-prime, then
we can choose ' = r and s’ = s. Thus w = v = 1, and ¢ = a + b has order 7s.
In general, it is enough to know a and b, and the factorizations of r and s, 1o
compute c.

Finally, we should give an example to show that the hypothesis that (G is
abelian cannot be removed from the statement of the lemma. We give an example
in the group Ds. Recall that this is the group of symmetries of an equilateral
triangle, and that it is not abelian. Consider the reflection o and the rotation
p. The order of oy is 2, and the order of p is 3. If the lemma were true for
non-abelian groups, then D3 would have an element of order 6. But such an
element does not exist. Note that if we ignore the fact that D5 is not abelian
and write the element constructed in the proof of the lemma for this example,
we get a1 p = o3, which has order 2.

5. Primitive roots

Let p > 3 be a prime number. The order of U(p) is ¢(p) = p — 1, an even
composite number. However, U(p) is a cyclic group. A generator of U(p) is
also called a primitive root. The use of the word root in this context may seem
somewhat peculiar, but it is easy to justify. By Fermat’s theorem the elements
of U(p) are the roots of the polynomial equation 22~ — T = 0 with coefficients
in Zp. A generator of U(p) is a primitive root because all the other roots can
be obtained as powers of a primitive root. The same phenomenon is present
when we solve equations with complex coefficients. For example, the equation
x? — 1 = 0 has primitive root cos(27/p) + isin(27/p).
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The proof of the existence of a primitive root that we give is constructive.
In other words, it actually provides an algorithm to compute a primitive root
modulo p. The existence of primitive roots for prime moduli was divined by L.
Euler, but the first correct proof of their existence was given by C. E Gauss in
his Disquisitiones arithmeticee; see Gauss 1986, sections 73 and 74.

Primitive root theorem. If p is a prime, then U(p) is a cyclic group.

Proof. We can assume that p > 5, because the theorem is obviously true for
p = 2 or 3. Choose an element @7 € U(p), where 1 < a; < p— 1. Since the
choice is arbitrary, we can always begin with a; = 2. Let k; be the order of @y.
If k; = p— 1, we have already found a generator of U(p).

Thus we can assume that k; < p— 1. The class @7 is a solution of z** — 1
in Z,. Since p is prime, it follows from the theorem of Chapter 5, section 4,
that this polynomial equation cannot have more than k; distinct solutions. On
the other hand, all the elements of

H= Ay )

are solutions of z*t — 1. Since H has k; distinct elements, it must contain all
the roots of ¥t — 1. But k; < p— 1, thus there exists an element b € U(p) that
does not belong to . In particular, b is not a solution of z¥* — 1, Therefore,
by the key lemma, the order of b does not divide k; .

Denote by 7 the order of b. There are two possible cases. If » = p—1, then
b generates U(p), and we have proved the theorem. Hence we can assume that
r < p— 1. By the lemma of section 4, there exists an element @; whose order
ko is the least common multiple of £; and 7.

Since 7 does not divide k;, 1t follows that ko > ki. Now we need only carry
on like this until we obtain an element of order p — 1. Note that this process
must come to a stop, thus producing the required generator. If it didn’t, it would
be possible to construct an infinite sequence of positive integers k1 < kg < k3 <
..., each of which is the order of an element of U(p). However, these integers
would have to be smaller than p — 1, and this leads to a contradiction.

Primality tests and primitive roots 159

U(p). Let’s assume that we know the complete factorization of p — 1.

p—1=dqi"...q7,

where ¢; < -+ < ¢, are primes and ey, ..., e, are positive integers. Note that
if we cannot factor p — 1, then we cannot apply Gauss’s method anyway. Since
k divides p — 1, there exist non-negative integers 71,..., 7, such that

T‘I".I"L

k=g ... g

00 (=177 = @1, oy NS ineia )

Thus, in order to find k it is enough to compute ry,...7,. Let’s see how
the process works for 71; the other exponents are calculated by the same method.
First, compute the sequence

ap=! gp=D/a gle-1)/ai gp=1)/a)}

modulo p. Note that, by Fermat’s theorem, the first element of the sequence is
always 1. Suppose that w is the biggest non-negative integer such that

(6.1) aP—1/ar =1 (mod p).
Then, either w = e; or
(6.2) a®P=D/5" £ 1 (mod p).
It follows from the key lemma and from (6.1) that k& divides (p — 1)/g}”. On
the other hand, we have from (6.2) that k does not divide (p — 1) /g’ *.
In other words, k = ¢i* ... g, divides
Gt e e = (= 1) /g,
but does not divide
g7 T Teg i = (p = 1) /g
This can happen only if 71 = e; — w, which gives us an algorithmic way to

compute 7.
Now let’s return to the example. As mentioned in the proof of the primitive
root theorem, it is convenient to choose 2 as the starting point for the application

7P =P =T0£T.

|

\

‘ This method produces, in a systematic way, a generator of U(p), but not of Gauss’s method. We must first compute the order of 2. In order to use the

‘ necessarily its smallest generator. Note that the converse of the theorem i1s false. algorithm described above, we will factor the order of U(41), which gives

| For example, U(4) is cyclic, even though 4 is composite. Thus the fact that b(41) = 40 = 23 - 5
U(n) is cyclic does not imply that n is prime. Indeed, it can be shown that '
U(n) is cyclic if and only if 7 is equal to 1, 2, 4, p*, or 2p*, where p is an odd Next we compute

‘ prime number. For a proof of this result see Giblin 1993, Chapter 8. 540/2 _ 520 _ 7

‘ 6. Computing orders and also

' . =40/2° 10 - , =

| In this section we apply Gauss’s method, described in section 5, to find a 2 = = 40 # 1.
generator of U(41). But first we must find a simple way to compute the order Thus the exponent of 2 in the order of 2 is 3 — 1 = 2. Let’s turn to the prime
of an element of U (p). 5. A simple calculation shows that

| Let p be an odd prime, and @ € U(p). We want to compute the order & of

| a. By Lagrange’s theorem, k£ must divide ¢(p) = p — 1, which is the order of |
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Therefore the exponent of 5 in the order of 2 is 1 — 0 = 1, and 2 has order
22 .5 = 20. In particular, 2 is not a generator of U(41).

Hence we must choose another element of U(41), say 3. Once again it is
necessary to compute its order, but
TR A0AT  andsnd =T
From the first equation we deduce that 8 divides the order of 3; from the second
that 5 does not divide the order of 3. Hence, 3 has order &.

Next we must factor 7 = 20 (the order of 2) and s = 8 (the order of 3)
in the form of section 4. Since r = 22 .5 and s = 23, we can choose ' = 5
and s/ = 2. This gives, in the notation of section 4, u = 2% and v = 1. Now,
following the steps of the proof of the lemma in section 4, we construct the
element

c=2".3"=2".3 =7

of U(41) that has order r’s’ = 40. Thus 7 is a generator of U(41).

7. Exercises

1. Use the primality test of section 2 to show that 991 is a prime number.

2. Demonstrate that if n > 0 is an odd integer, and if 4 does not divide n — 1, then
(n —1)*"Y/2 =1 (mod n).

3. Use the test of section 2 to show that M (7) = 27 — 1 is prime.
Hint: If p =27 — 1, then 2" = 1 (mod p).

4. Use the test of section 2 and a computer algebra system to show that R(23) is prime.

5. Let p be a prime number and let n = 2p + 1. Suppose that 2"~ = 1 (mod n) and
that n is not divisible by 3.

(1) Show that if g is a prime factor of n, then 4 has order p in U(q).

(2) Show that ¢ is of the form ¢ = kp + 1 for some integer k > 0.

(3) Show that since g < n, then k£ = 1.

(4) Combine these facts to show that n» must be prime.
Hint for (1): 2" ' = 4P, Hence, by hypothesis, 4 =1 (mod n). If ¢ is a prime factor
of n, this congruence also holds for modulo g.

0. Show that:

(1) If b is a prime number and £ > 3 is an integer, then bt
(2) U(2F) is not a cyclic group when k > 3.
Hint for (1): Use induction on k, beginning with k£ = 3.

1 (mod 2F).

7. The purpose of this exercise is to describe another primality test. It is based on
Wilson’s theorem, stated in (3) below.

(1) Let G be a finite abelian group with an operation we will call multiplication.
Show that the product of all the elements of GG is equal to the product of those
elements of (G whose order is 2.

(2) Let p be a prime. Show that the only element of order 2 of U(p) is —1 =p — 1.
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(3) Use (1) and (2) to show that (p — 1)! = —1 (mod p). This result is known as
Wilson's theorem.

(4) Show that if n is composite, then (n — 1)! = 0 (mod n).

(5) Combining (3) and (4), we obtain the following primality test: A positive integer
n is prime if and only if (n — 1)! = —1 (mod n). Why isn’t this an efficient
way to test primality?

8. Use Gauss’s method to find a generator for U(73). This example is calculated by
Gauss in section 74 of the Disquisitiones arithmeticce.

9. Let p > 0 be an odd prime number.

(1) Show that if a is odd and @ generates U(p), then the class of a is a generator of

U(2p).

(2) Show that if a is even and @ generates U (p), then the class of a+-p is a generator
of U(2p).

(3) Show that U(2p) is a cyclic group.

10. Let (G be a finite cyclic group of order n generated by g. Let k& be a positive integer.

(1) Show that g"’ is a generator of (¢ if and only if k is co-prime to n.
(2) Use (1) to show that G has ¢(n) generators.
(3) How many generators does U(p) have when p is prime?

11. Write a program to implement Pepin’s test. The input will be the exponent n = 0;
the output will be a message stating whether F'(n) is prime or composite. Note that
the program will consist essentially of an implementation of the algorithm described in
section 2 of the Appendix for computing powers in modular arithmetic. What 1s the
biggest n for which your program can be used?

12. Write a program to implement the primality test of exercise 7. The program will
consist essentially of an algorithm to find the residue of (7 — 1)! modulo n. If you first
compute (n — 1)! and then reduce it modulo n, the program will be applicable only to
very small values of n. Instead, reduce modulo n at every step of the recursion that
calculates (n — 1)!. How long does it take for the program to stop when it is applied to
the biggest prime smaller than 10* for k = 1,...,6? Extrapolating from these results,
try to determine how long your program would take to show that a number of 100 digits
1S prime.
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The RSA cryptosystem

It 1s time to describe the RSA cryptosystem. Besides explaining how the system
works, we must discuss its security in more detail; in other words, why is it so
difficult to break a message encrypted using the RSA?

1. On first and last things

In order to 1mplement the RSA cryptﬂsystem for one user, ﬂt is H@E’&s&aﬁft@ y

Ichoose two distinct prime numbers p and q, and Gﬁmpﬂtﬂ n = pg. The primes

'p and g must be kept Sﬁcg#f the integer 7 vnll be a part of fﬁe public key. T
section 5 we will discuss in detail a method for chmsmg these primes, and also
how their choice is related to the security of the system.

Now, a message is encrypted by raising it to a power modulo n. So first
we must find a way of representing the “plaintext” message as a set of classes
modulo n. This is not really part of the encryption process; it is merely a way
to prepare the message so that it can be encrypted.

To keep things as simple as possible, we will assume that the “plaintext”
message contains only words written in uppercase letters. Thus the message
is ultimately a sequence of letters and blank spaces. The first step consists of

replacing each letter of the mﬂsqage by a number, using the following correspon-

dence:
AN R E N Iy SR e |G ST S TS T e g T RN
10 |11 | 120 130 141 45 | 161l 7: |18 s 9! | 200521 |22
N[O R | O SRE S (T LT | VR RS X S Y
23 124 | 25 | 26127 112829 | 30| 311824 33 |34 |35

The blank space between words is replaced by 99. Having done that, we obtain
a number, possibly a very large one, if the message is long. However, it is not
a number we want, but rather classes moc dulo i/ Therefore, We must hrﬂak the
numerical rﬂprﬂﬁfmiﬁtwn of ﬂl&- 'ﬂagﬁ into a Smﬂﬂnﬂﬁ ﬁaf p@sitwe; mmgérs ' 4

"each smaller than 7 These are called the blocks of the message.
For example, the numerical representation of the motto “Know thyself” is

202,324,329,929,173,428,142,115.
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If we choose the primes p = 149 and ¢ = 157, then n = 23.,393. Thus
the numerical representation of the message above must be broken into blocks
smaller than 23,393. One way to do this is as follows:

20,232 — 4329 — 9291 — 7342 — 8142 — 115. -

Of course, the choice of blocks 1s not unique, but neither is it entirely arbitrary.
For example, we cannot have blocks beginning with zero in order to avoid
ambiguity at the decryption stage.

When an RSA-encrypted message is decrypted, one obtains a sequence of
blocks. The blocks are then joined together to give the numerical representation
of the message. It is only after replacing the numbers by letters, according to
the table above, that one obtains the original message.

Note that we have made each letter correspond to a fwo-digit number in
order to avoid ambiguities. For suppose that we had numbered the letters so
that A corresponded to 1, B to 2, and so on. Then we wouldn’t be able to tell
whether 12 stood for AB or for the letter L, which is the twelfth letter of the
alphabet. Of course, any convention that is unambiguous can be used instead
‘of the one above. For example, one might prefer to use ASCII code, since the
conversion of characters is automatically done by the computer.

2. Encryption and decryption

A message that has been prepared using the method of section 1 consists of
a sequence of blocks, each one a number smaller than n. We must now explain
how each block is encrypted. In order to do this we need 7, the product of the
wo primes, and also another positive integer e, which must be invertible modulo
@(n). In other words, ged(e, p(n)) = 1" Note that it is easy to compute ¢(n) if
p and ¢ are known; indeed,

Pn)=(p—1)(g—1).

The pair (n,e) is the public or encryption key of the RSA cryptosystem we

are implementing. Let b be a block of the message: thus b is an integer and

0 €06 £ n—1. We will denote the block of the encrypted message that

corresponds to b by E(b). The recipe for computing E(b) is the following:
'E(b) = residue of ° modulo n. -

Note that each block of the message is encrypted separately. Thus the
encrypted message is really a sequence of encrypted blocks. Moreover, we
cannot reunite the blocks of the encrypted message into a number. If we do so,
we will not be able to decrypt the message correctly. We will soon see why this
1S SO,

Let’s return to the example we considered in section 1. We chose p = 149
and ¢ = 137, so that n. = 23,393 and ¢(n) = 23,088. We must now choose
e. Recall that e must be co-prime to ¢(n). Since the smallest prime that does
not divide 23,088 is 5, we can choose e = 5. Thus to encode the first block
of the message of section 1 we must compute the residue of 20,232° modulo
23,393. With the help of a computer algebra system we find that the residue is

|
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20,036; hence E(20,232) = 20,036. Encrypting the whole message, we have
the following sequence of blocks:

20,036 — 23,083 — 11,646 — 4827 — 4446 — 13,152

Let’s see how a block of the encrypted message is decrypted. In order to
apply the decryption procedure we must know 7n and the inverse of ¢ modulo
¢(n).' This last number is a positive integer we will denote by d. The pair
(n, d) is called the private or decryption key of the RSA cryptosystem we are
implamentmg If @ is a block of the encrypted message, then D(a) stands for
the corresponding block of the decrypted message:

«D(a) = residue of ad modulo 7.
Some comments are necessary before we return to the example. First, it

‘18 very easy to compute d when ¢(n) and e are known. Indeed, it is a simple +
?appTlcatmn of the extended Euclidean algﬂrlthm Secnnd if b 1s a block of the

original message, then we expect that D(E(b)) = b. In other words, decrypting
a block of the encrypted message, we expect to find the corresponding block
of the original message. Since this is not immediately obvious from the recipes
given above, we give a detailed proof in the next section.

Finally, we have claimed in the introduction, and elsewhere in this book,

" that to break the RSA cryptosystem one needs to factor 72, because it is necessary
‘to know p and ¢ in order to decrypt a message. I—Iavmg described in detail how
‘the system works, we have to face the fact that this claim is not. quite correct.

Besides n itself, we need only know d, the inverse of e modulo ¢(n), to be

able to apply the decryption procedure. Thus to break the system it is enough

to compute d, when 7-and e are known. It turns out that this is equivalent to
factoring n, as we will see in section 4.

In the example we have been discussing, n = 23,393 and e = 5. To compute
d we apply the extended Euclidean algorithm to ¢(n) = 23,088 and 5.

remainders | quotients | x Y
23,088 % 1 0
9 i 0 1
3 4617 1 | —4617"
2 1 =il 4618
1 1 2 9285

Thus 23,088 - 2 + 5 - (—9235) = 1. Hence the inverse of 5 modulo 23,088
is —9235, and d = 23,088 — 9235 = 13,853, which is the smallest positive
number congruent to —9235 modulo 23,088. Therefore, to decrypt the blocks
of the encrypted message, we must raise them to the 13,853rd power modulo
23,393. In the example, the first encrypted block is 20,036. Calculating the
residue of 20,036"%:%° modulo 23,088, we conclude that D(20,036) = 20,232.
Note that even for such small numbers, the computations required to decrypt an
RSA cryptogram are beyond the scope of most pocket electronic calculators.
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3. Why does it work?

"As we have already observed, the steps described abﬂvﬂ will constitute a
’practmal cryptosystem only if, by applying the dmryptmn prﬂcedure to a block of
the encrypted message, we get the corresponding block of the original message,
Suppose that we are considering an implementation of the RSA cryptosystem
with encryption key (n,e) and decryption key (n,d). In the notation of section
2-we must show that if b is an integer and if 0 < b <n — 1, then DE(b) =ihy
Actually, it is enough to prove that DE(b) = b (mod n). To understand
why, note that both DE(b) and b are non-negative integers smaller than 7. IThLIS‘

if they are congruent modulo n, they must be equal. This explains why we need.

to break the numerical representation of the message into numbers smaller than
n. It also explains why the blocks of the encoded message must be kept separate,
otherwise the argument above will break down.

Now it follows from the recipes for encryption and decryption that

(3.1) DE(b) = (b°)? = b** (mod n).

However, d is the inverse of e modulo ¢(n). Hence, there exists an integer k
such that ed = 1 + k¢(n). Note that since e and d are integers greater than 2,
and ¢(n) > 0, then k > 0. Replacing ed by 1 4 k¢(n) in (3.1), we obtain

bed =itk = (B2 ONER (mod'n).

Now Euler’s theorem comes to our aid. Since b¢(™) = 1 (mod n), we have
b¢¢ = b (mod n). Thus

DE(b) =b (mod n),

and the proof would be complete if it weren’t for the fact that it is not quite
correct.

If you reread the argument above with care, you will notice that we haven't
taken into account the hypothesis of Euler’s theorem. Iﬂd&ﬁd in order to apply
the theorem we mnst know that n and b are co-prime. éThlS §qqms to imply that
whan breaking the message into blocks, we should make sure that the blncks
are co-prime to 7. ‘Luckily this is not reaily necessary, because the congruence
holds for any block. It is not the result we want to prove that is false, it is just
that our proof of it is defective. The correct approach applies the argument used
in the proof of Korselt's theorem in Chapter 6.

Recall that n = pq, where p and q are distinct positive primes. We will
compute the residue of ¢ modulo p and modulo g. The computations are
similar for both primes, so we will work out the details only for p. We have

seen that
ed=14+kdn)=1+k(p—1)(qg—1)
for some integer £ > 0. Theretore

pod = (PR (mod p).
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We want to apply Fermat’s theorem, but we can only do this if p does not divide
b. Suppose this is the case; then bP~' = 1 (mod p), and we conclude that
b¢¢ = b (mod p).

We have used Fermat's theorem instead of Euler’s, but apparently we have
the same problem as before: The congruence holds for some but not for all
blocks. However, the blocks that have been left out are the ones divisible by
p. Now if p divides b, then both b and b%¢ are congruent to 0 modulo p. Thus
the congruence holds in this case, too. Hence b*¢ = b (mod p) holds for any
integer b. Note that we could not have used a similar argument when we applied
Euler’s theorem to 2. Indeed, ged(n, b) # 1 does not imply that b = 0 (mod n),
because n 1s composite.

Thus we have proved that b*¢ = b (mod p). A similar argument shows
that 6°¢ = b (mod ¢). In other words, b — b is divisible by p and by q. But
p and g are distinct primes, so ged(p,g) = 1. Thus, by the lemma of Chapter
2, section 6, pg divides b** — b. Since n = pg, we have b* = b (mod n) for
any integer b. In other words, DE(b) = b (mod n). As we pointed out at the
beginning of the section, this is enough to prove that DE(b) = b because both
sides of the equality are non-negative integers smaller than n. This shows that
the recipes of the previous section give rise to a practical cryptosystem; we must
now consider whether it is secure.

4. Why is it secure?
Recall that the RSA 1s a public key cryptosystem. The public key consists

~of n. = pg, where p and g are distinct positive primes, and of another positive
“integer e, which is invertible modulo ¢(n). Let’s consider in detail what one
“has to do to break the RSA if all one knew was the pair (n, e).

In order to decrypt an RSA-encrypted block, we need to know d > 0, the
inverse of e modulo ¢(n). The problem is that, in practice, the only known way
to do this is to apply the extended Euclidean algorithm to e and e?f:l(n) However,

to r:ﬂmpute ¢(n) by the formula of Chapter 8, section 4, we must know p and
q, which confirms the ﬂngmal claim that to break the RSA we must factor .

Since this problem is, in general, very difficult, the RSA is secure.
However, we are free to imagine that someday, someone will invent an

-algorithm to compute d that does not require the knowledge of the factors of n

For example, What would l]appen if someone came up with an efficient algﬂnﬂ'uﬁ'

to find ¢(n) directly from n and e? This, it turns out, is just'a disguised way

of factoring n. In other words, if

n=pq and ¢(n)=(p—1)(g—-1)

are known, then we can easily compute p and g. This is very easy to prove.
Note first that

pn)=m@—-1)(g—-1)=pg—(p+q) +1=n—(p+q) +1,
so that p+qg =n — ¢(n) + 1 is known. However,
(p+q)* —4n = (p* +¢* +2pq) — 4pg = (p — q)*,
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so that p — g = 1/(p+ q)% — 4n is also known. But once we know p + ¢ and
p — q, we can easily find p and g; thus we have factored n.

Therefore an algorithm to compute ¢(n) is in fact an algorithm to factor n,
and we are back at square One. Hnwevcr that S ncat the end of it We may gﬂ
from n ami e But F'd =1 (mud gﬁ(n)) Thus if we know 1, e and d then
‘we know a multiple of ¢(n). This is also enough to allow us to factor n. A
probabilistic algorithm that does just this can be found in Koblitz 1987a, p. 91.
In exercise 7 you will find a similar (but simpler) algorithm for factoring n,

assuming that one can break Rabin’s cryptosystem. This will give you an idea

of what a probabilistic algorithm is like.

.There is one last possibility: a method for finding the block b directly from
the I'{":Sldue of b¢ modulo n. 'If n is large enough, a systematic search for b
‘among all possible candidates is out of the question, and no one has yet come
up with any better idea. This is why it 1s widely believed that breaking the RSA
cryptosystem is equivalent to factoring n, even though a proof of this fact is still
lacking.

‘5. Choosing the prim&é':

There is more to the security of the RSA than is apparent from the previous

discussion, (Dne 1n1p@rtant point has to do with the choice of the primes p and

|

lg. Of course, if they are small, the 5ystem 1s easy to break. But it is not even

enough to choose large primes. Indeed, if p and g are Iarge but the difference
|p — ql| is very small, then it is easy to factor n = pq using Fermat’s algorithm

(see Chapter 2, section 4).

This is not 1dle talk. In 1995 two students of an American university broke
a version of the RSA that was in public use. This was possible because of an
unsuitable choice of primes for the system. On the other hand, the RSA has
been in use for a long time and, if the primes are carefully chosen, it has proved

to be very secure indeed. Thus an Bﬂfﬁ:i&m method for choosing good primes is.

‘essential to the toolbox of anyone who intends to program the RSA.

Suppose we want to implement the RSA cryptosystem with a public key
(7, ¢), such that n_is an integer with approximately r digits. ‘To construct 7,
choose the prime p with between 4r/10 and 457/100 digits, and then choose ¢
close to 107 /p. d;At present the recommeqdﬂd key size for persﬁnal use is 768
bits, which means that n will have approximately 231 digits. To construct such
an n. we will need two primes of, say, 104, and 127 digits. Note that these primes
are far enough apart to make factoring n by Fermat’s algorithm impracticable.
‘However, we must also make sure that the numbers p—1, g—1, p+ 1, and q+1
“do not have ﬂnly small factors, because this would make 7 easy prey to some
well-known faatﬂnzatmn alg@nthms (see Riesel 1994, chapter 6, pp. 174-77).
Let’s now consider a method by which such large primes can be found.

First, however, we need a simple result on the distribution of primes. Recall
that *:r(m) stands for the number of positive primes less than or equal to x.

R RRRRRRRRRRRRRREEOD—ZHSHSFF . EEEEEEERRRR———— - e
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According to the prime number theorem, 1f 2 1s large, then 7(z ) jé appmmmately,

fequal to 2/logz, where log denotes the logarithm to base e; see Chapter 3.

section 5. Now let z be a very large number and let € be a positive number.
We want an approximate value for the number of primes between = and x + ¢;

that 1s, for w(z + €) — (). It follows from the prime number theorem and the
properties of logarithms that w(z + €¢) — () is approximately equal to
T4 € r
logz + log(l+2—t¢) loga

Assuming that ' ¢ is very small, we can replace log(1 + z~'¢) by zero and

still get a reasonable approximation to ?T(:I: + €) — m(z). We ¢onclude that the |

;.:]llII'IIbE:I' of primes between z and z + € is appmxunately equal to ¢/ logzy Of
course the bigger x is and the smaller € is, the better the approximation. For

a more detailed discussion see Hardy and Wright 1994, Chapter XXII, section
22.19:

Now suppose that we want to choose a prime near an integer . For the
sake of concreteness, suppose that z is of the order of magnitude 10'%7, We will
search for this prime in the interval  to 2+ 10%. It would be helpful to know in
advance how many primes are likely to be found in this interval. That’s where
the result of the previous paragraph comes to our aid. Note that, in this example,
2~ e is of the order of magnitude 10~'23, which is indeed quite small. Thus,
using the formula above, we conclude that in the interval z to x + 10% there are
approximately

[10%/ log(10*%7)] = 34

primes. At the end of Chapter 10, section 2, we sketched a strategy for proving
that a given odd number n is prime. It consists of three steps:

(1) Check whether n is divisible by a prime smaller than 5000.
(2) Assuming that n is not divisible by any of these primes, apply Miller’s
test to n using as bases the first 10 primes.

(3) Assuming that the output of'Miller’s test to all these bases was “incon-
clusive”, apply the primality test of Chapter 10, section 2, to n.

We will adapt this strategy to find a prime in the interval z to z + 10%. First,
we sieve the odd numbers in the given interval using the primes smaller than
5-10%. Next, we apply (2) and (3) to each of the numbers left after sieving,
until a prime 1s found.

To find out how much labor this entails, let’s try to determine approximately
how many integers will be left after the interval is sieved with the primes smaller
than 5 - 103, Let m be a positive integer. If z < km < z 4+ 10%, then

z -+ 104
=] sk < [=—]
Thus there are
T 4+ 10% i

| I

T 1

|
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- multiples of m in the interval z to z + 10*. This is approximately equal to
[10% /m)], which is also the number of positive multiples of 7 smaller than 10%.

This 1mplies that the number of integers that are multiples of positive primes
smaller than 5 - 10° in the intervals [z, z + 10%] and [0,10%] is approximately
the same. It is not difficult to compute the latter number. First, note that a
composite number smaller than 10* must be a multiple of a prime smaller than
V104 = 100. Thus an integer in the interval [0,10%] is a multiple of a prime
smaller than 5- 102 if it is composite or if it is itself a prime smaller than 5- 102,
Taking into account that 2 is the only even prime, we have that the number of
odd composite integers smaller than 104 is 5000 — 7(10%) + 1. Hence, the total
number of odd integers left after sieving the interval z to z - 10* with the primes
smaller than 5 - 102 is approximately equal to

5000 — (5000 — (m(10%) — 1)) — (7 (5 - 10%) — 1) = 560.

Note that 7(10%) and 7(5-102) are easily computed using the sieve of Erathostenes.

Thus we would expect to find, on average, 34 primes among a lotal of 560
integers left after the sieving process is applied to the given interval.

6. Signhatures

If a company does its bank transactions by computer, it is clear that both
the company and the bank will require that the information be encrypted before
it 1s transferred between the computers. But this is not really enough. The bank
must have some way of making sure that the message originated with a legitimate
user at the company. The problem is that the bank’s encryption key is public,
so anyone can send the bank an encrypted message telling it, for instance, to
transfer all the company’s funds to the person’s own account. How can the bank
be sure that the message it has received i1s genuine? In other words, how can an
electronic message be signed?

"The methgd by which an electronic message. is signed is quite simple and

‘works for any public key cryptosystem. 'Let E, and D, be the company’s
'encryptmn and decryption functions, and let E; and D; be the corresponding
functions for the bank. Let a be a block of the message the company wishes to
send the bank. We have seen that to make sure the message cannot be read by
an eavesdropper, the company must send the bank the encrypted block Ey(a).
To make sure that the message is also signed, the company will send the bank
the block Ey(D.(a)). /In other words, the message is first encrypted using the
company’s prwata key, and the result is then encrypted again, this time with the
bank’s public key. '

Having received the block Ei(D.(a)), the bank will apply its decryption
function to get D.(a), and to this block it will then apply the company’s en-
cryption function to get a, the block of the original message. Note that E,. is
public, and thus known to the bank.

Why is this enough to make sure that the message couldn’t have originated
outside the company? The bank must apply to the message it receives the
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sequence of functions
E.D,;.

If the resulting message makes sense, the blocks of the original message must
have been encrypted with the sequence

E,D..
However, D, is the decryption function of the company; thus it is secret, and 1ts

| access is restricted to those employees who have the rlght of trausacung busmess '

for the company. Needless to say, if a message is decrypted using E.D; and
makes sense, the probability that it has been encrypted using a function other
than E;D. is negligible.

There 1s one small drawback to applying the above method. Let (n., e.) be
the public key of the company, and (n;, e;) that of the bank. If a is a block of
the original message, then 0 < D.(a) < n.. Suppose now that 2 < n.. In this
case, we have no way to know in advance whether D.(a) will be smaller than
np. If 1t 15 bigger, it will be necessary to subdivide D,(a) into blocks smaller
than n;, before we apply Dy, to it. If one does not do that, it is impossible to
decrypt the resulting message correctly. This is called reblocking.

A simple way to avoid this problem is the following. Since both n; and 7,
are public, we can decide in advance which of them is smaller, If . < np, then
we sign a message by encrypting its blocks using E;D.. However, if n; < Thess
then we reverse the two functions and encrypt the blocks using D.E;. That

way, the function corresponding to the smallest value of n always comes first,
so that reblocking is unnecessary.

7. EXxercises

1. Suppose that n = 3,552,377 is the product of two distinct primes, and that ¢(n) =
3,548,580; factor n.

2. The public key used by a bank in Toulouse to encode its messages using the RSA
cryptosystem is n = 10,403 and e = 8743. Recently the computers at the bank received,
from an unidentified source, the following message:

4746 — 8214 — 3913 — 9038 — 8293 — 8402
What does the message say?

3. The message

4199 — 215 — 355 — 1389

was encrypted using the RSA cryptosystem with public key n = 7597 and e = 4947.

Moreover, it is known that ¢(n) = 7420, Decrypt the message.

4. Let p and g be odd primes, and suppose that we have an implementation of the RSA
with public key (n, ¢), where n = pg. Now, a block b can be encrypted as itself under
this implementation; in other words, it could happen that E(b) = b. Such a block is said
to be fixed under the RSA with key (n, ). Determine how many blocks are fixed under
the RSA when p =3, ¢ > 3 and e = 3.
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Hint: If b is fixed under the RSA with public key (n, e), then b = b (mod n). Thus
b* = b (mod p) and b = b (mod q). Solve each one of these equations when p = 3,
g > 3, and e = 3, and use the Chinese remainder theorem.

5. Another well-known public key cryptosystem is the El Gamal. To construct this system
it is necessary to choose a large prime p and a primitive root ¢ modulo p. These will be
common to all the users of a given implementation of the system. Now each user chooses
a non-negative integer smaller than p — 1. This number must be kept secret, because
it will be the decryption key of that user. The public key of a user, whose decryption
key is a, will be g%. Let b be a block of the message to be encrypted; we must have
1 < b< p— 1. To encrypt b, choose a random integer k and send the pair (", bg**).

(1) Why is it easy to decrypt the message when both a and g are known?
(2) What is required to break this cryptosystem?

The answer to (2) is known as the discrete logarithm problem. 1t is believed that this
problem is as difficult to solve as that of factoring a large integer.

6. The cryptosystem invented by Michael Rabin in 1979 is very similar to the RSA. To
begin, choose two distinct odd primes p and g, and let n = pg. Let b be a block of the
message we want to encrypt; we must have 0 < b < n. The block b is encrypted as the
residue of b* modulo n. If a is a block of the encrypted message, then we decrypt it by
solving the equation z° = a (mod n). Let u = (p?=! — ¢?™1).

(1) Show that u* =1 (mod ¢) and «* = 1 (mod p).

(2) Show that u* = 1 (mod n).

(3) Show that, if o is a solution of z* = a (mod n), then —z9, uzro and —uzo

are also solutions of the same equation.

Thus each block a of the cryptogram can be decrypted in four different ways, which is
clearly a disadvantage.

7. Let n = pg, where p and g are distinct odd primes. We saw in section 4 that breaking
the RSA is probably equivalent to factoring n. We will now prove that if one can find an
algorithm that breaks Rabin’s cryptosystem, then we have a probabilistic procedure for
factoring n (see section 4). In other words, we want to show that if we have a machine
that, having an integer a as input, outputs a solution of z° = a (mod n), then we can
easily factor n and find p and ¢. First choose a random integer b and compute b* modulo
n. Then use the machine to find a solution of z* = a (mod n). Since there are four
solutions, there is one chance in two that the machine will find a solution  such that
x % +b (mod n). Show that, in this case, gcd (2, b) must be either p or g. This means
that, if we had a machine like this, we would expect to factor n after only two random
choices of b.

8. Let p and g be primes that leave remainder 3 when divided by 4, and let n = pg.
Suppose that a is a block of a message encrypted using Rabin’s cryptosystem with public
key n. Write a program that, having a and n as input, decrypts a using the method
explained in exercise 6. In order to do this, the program will have to

(1) factor n to find p and ¢, and
(2) solve the equation z* = a (mod n).

Both stages have been the subject of previous exercises; namely, exercises 12 of Chapter
2, 19 of Chapter 5, and exercise 10 of Chapter 7. Use your program to decrypt the
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message below, which was encrypted using Rabin’s cryptosystem with the public key
n = 20,490,901:

2,220,223 — 18,957,657 — 11,291,133 — 2,180,507 — 41,1224,784

You’ll obtain 4° = 1024 possible decryptions, but only one of them will make sense.



Coda

In his Principles of Human Knowledge, published in 1710, George Berkeley had
the following to say about number theory and its practitioners:

The opinion of the pure and intellectual nature of numbers in
abstract, hath made them in esteem with those philosophers, who
seem to have affected an uncommon fineness and elevation of
thought. It hath set a price on the most tritling numerical specu-
lations which in practice are of no use, but serve only for amuse-
ment ...

A few lines later, he adds

we may perhaps entertain a low opinion of those high flights and
abstractions, and look on all enquiries about numbers, only as
SO many difficiles nugae, so far as they are not subservient to
practice, and promote the benefit of life.

By the way, the Latin expression difficiles nugae means “difficult trivialities”.

Berkeley’s opinion that number theory was the most useless of all types of
mathematics survived into the twentieth century. Thus G. H. Hardy, after noting
that science may be used for good or evil ends, says,

both Gauss and lesser mathematicians may be justified in rejoic-
ing that there is one science at any rate, and that their own, whose
very remoteness from ordinary human activities should keep it
gentle and clean.

The quotation is from Hardy’s famous A Mathematician’s Apology (Hardy 1988,
p- 120). But we ought not to forget that it was written during the Second World
War by one who always remained a confirmed pacifist. How Hardy would have
reacted to the applications of number theory described in this book we can only
guess. But one thing is certain: Modern cryptography completely changed our
views toward the applicability of number theory.

There is no better way to finish this book than by pointing to topics of both
number theory and cryptography that have not been discussed in this book, and
that may serve as directions for further study.

An obvious absence in the book is a serious discussion of the cryptoanalysis
of the RSA'In other words, of the ways by which one can go about breaking’ .
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a given implementation of the ’Sﬁ cryptosystem. Most of the research in this
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area is related to methods for factoring the public k&y “Moreover, in recent

years, 'some spectacular factorization algﬁnthms have been dlﬂﬂ:{ﬁfﬁl’ﬂd among
them Lensrra s elliptic curve algorithm, the quadratic sieve, and the number

field sieve.

An elhpnc curve 1s a nonsingular plane cubic curve; that is, a curve de-
scribed by a polynomial equation of degree 3 in two variables that has a well-
defined tangent at each of its points. For example, the points (z, ) of the plane
that satisfy the equation y* = 2° + 17 form an elliptic curve. As a consequence
of the fundamental theorem of algebra, most lines drawn through two points of
an elliptic curve will intersect the curve into a third point. Using this fact, one
can define an operation, called addition, on the points of the curve. Furthermore,
the points of the curve form a group under this addition.

Let’s assume from now on that the elliptic curves we are considering are
defined by polynomials with integer coefficients. A rational point of such a
curve is a point of the plane that belongs to the curve and whose coordinates are
rational numbers. Thus (—1,4) is a rational point of the elliptic curve whose
equation is y? = x° + 17. One can prove that the set of rational points of an
elliptic curve is a subgroup of the group of points of the whole curve. Thus,
given two rational points of an elliptic curve, we can obtain another one by
adding them up.

The problem of finding rational points on elliptic curves is closely related
to the diophantine problems discussed in this book. This problem has been
studied by many famous mathematicians, and it has been at the forefront of
developments in number theory., Elllpnc curyes are also central to A. Wiles’s
‘solution of Fermat's Last Theorem. In fact, what Wiles proved was a famous
conjecture about elliptic curves that had been shown to imply Fermat’s statement
(see Gouvea 1994).

‘In a paper pubhshed in 1987, H. W. Lenstra showed that the group properties
of an elliptic curve can be used to factor large numbersf Lenstra’s algorithm is
most effective for integers that are difficult to factor by trial division, but that

havc ]u;'s than 30 dlglls Lucklly a masterful but truly elamenlary, mtrc}ductmn

ﬁalgﬂrithm ﬂt is Sllverman and Tﬂte 3 Rﬂu{mal Pﬂm!&' on Elliptic Curves ( 1 992)
Bressoud 1989 and in Cassels 1991.

| The second factorization algorithm mentioned above, the quadratic sieve,
1s best used for numbers too large to be tackled by Lenstra’s algorithm. The
quadratic sieve was the algorithm used to factor the public key of the RSA-129
challenge mentioned in section 2 of the Introduction. This algorithm has the
great advantage of making it very easy to distribute the task of factoring to many
computers. Thus people can volunteer the idle time of their personal computers
for use 1n these mammoth factorization efforts. Of course, none of this would
be possible, at least on the scale on which it was done for the RSA-129, before
the advent of the internet.

Lenstra’s algorithm appearec:i originally in Lenstra 1987; it is also discussed in.
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‘The quadratic sieve grew out of an enhancement of Fermat’s algorithm
proposed by M. Kraitchik in the 1920s. It makes use of the ideas and methods”

related to a ﬂi@;a,x;m that is surely a great favorite of all number theﬂry lovers, the

law- of quadratic reciprocity, proved by Gauss in 1796. Many mathematicians
suggested improvements to Kraitchick’s method, and these led to C. Pomerance’s
proposal of the quadratic sieve in 1981. The word sieve is not used here for
nothing. Indeed, Pomerance’s key idea to speed up the method was to use a
sieve very similar to Erathostenes’.

An elementary approach to the quadratic sieve can be found in Bressoud
1989. It includes all the necessary prerequisites, and a proof of the law of
quadratic reciprocity to boot. The story of the sieve is told by Pomerance himself
in Pomerance 1996.

The number field sieve brings us into the world of quadratic number fields,
a less elementary topic than the ones mentioned hitherto. The original idea was
circulated in a letter of J. Pollard in 1988. The first big prize collected by this
algorithm was the factorization of the ninth Fermat number, a 155-digit number,
in 1990; see Lenstra et al. 1993, This paper contains a description of the number
field sieve, which 1s also discussed in Pomerance 1996. The factorization of the
RSA-130 in April 1996 was done with a further improvement to this algorithm.
For details on quadratic number fields sce Ireland and Rosen 1990, Chapter 13.

" Before we move on to topics beynnd the RSA, let’s make it clear that, in
practice, breaking this cryptﬂsystem is not the same as fac:tﬁrmg the public ke«ey
The best evidence of this fact to date was provided in 1995 by P. Kocher, an
independent security consultant who had just obtained an undergraduate degree
in biology. He showed that it is possible to break some versions of the RSA’
by using information about the length of time it takes a legitimate recipient of

- the message to decrypt if; see Kocher 1996. This shows that the security of the

RSA, and of other cryptosystems, is not merely a question of developing better
algorithms and more powerful computers.

As we saw 1n Chapter 11, the RSA is not the only cryptosystem suggested
by number theoretic problems that are hard to solve. One of the examples
mentioned, the El Gamal system, has also been used. Another system of the
same vintage was mvented by N. Koblitz in 1987. In it, the computation of
multiples of a point in an elliptic curve replaces the exponentiation modulo n
that occurs in both RSA and El Gamal. For Koblitz’s original proposal see
Koblitz 1987b. |

Finally, number theory still thrives on the beautiful and mostly useless results
so harshly condemned by George Berkeley. Tha most treasured elementary book

~on number theory is surely Hardy and Wright’s classic Introduction to the Theory
of Numbers. In it you’ll find a proof of Gauss’s law of quadratic reciprocity,

a study of partitions of integers, a proof of Fermat’s Last Theorem for n = 3.
a lot of information on quadratic fields, and many elementary facts about the
distribution of primes.

Many people have learned number theory from the above book. The math-
ematical physicist Freeman Dyson, who won the book as a prize at age 14, was
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one. Here is what he had to say about Hardy and Wright in a 1994 interview
(see Albers 1994, p. 7):

' It’s a marvelous book. It’s the finest book I know on number the-

ory. It’s not a textbook, but it’s an enormously readable account

of the subject, written with such style that it’s probably the best
introduction to mathematics that has ever been written.

A more modern introduction to number theory is Ireland and Rosen’s Clas-
sical Introduction to Modern Number Theory. It contains very recent develop-
ments, but you’ll need to have a good grasp of modern algebra (groups, fields,
and rings) to read even the more elementary chapters.

Finally, for those with a very strong historical bent, there is A. Weil’s Num-
ber Theory: An Approach through History. Written by an acknowledged master
of number theory, who is also well known for his work on the history of mathe-
matics, it deals with the contributions of Fermat, Euler, Lagrange, and Legendre.
This is a fascinating book, and one you’ll probably often go back to for the sheer
delight in the feast it offers.

Appendix

Roots and powers

In this Appendix we describe two algorithms required for the implementation of
the factorization algorithms and primality tests presented in this book. The algo-
rithm of section 1 computes the integer part of the square root of a given positive
integer; the algorithm of section 2 computes powers in modular arithmetic.

1. Square roots

Both of the factorization algorithms in Chapter 2 require the computation of
square roots. In this section we describe a procedure that can be used to compute
the integer part of the square root of a positive integer. This is exactly what is
required for the trial division algorithm of Chapter 2, section 2. However, in the
case of Fermat’s algorithm, what 1s needed 1s a procedure to determine whether
a given positive integer n. is a perfect square. But n 1s a perfect square if and
only if n— [/n]? = 0. So the algorithm of this section can also be used to settle
this question.

The procedure consists of computing a decreasing sequence of positive in-
tegers

LOy L1y L2yens

such that, if zx = zx1 for some k& > 0, then zx = [\/n]. The sequence is
defined recursively by

T2+ n
2:1?1'

Litl = [

for 2 > 0. The idea is that, starting at (n + 1)/2, the sequence will decrease
until it reaches [y/n]. Now consider the following statements:

(1) [(n+1)/2] = [vnl;

(2) if zr > [v/n| then 2 > zxy1; and
(3) if 25 = 241 then zx = [v/7l.

Thus each z; is a positive integer bounded above by (n + 1)/2. Hence there
can be only finitely many distinct elements in the sequence. In particular, there

must be some 7 for which z, = .11, and (3) then implies that z,, = [y/n].
Therefore, we need only prove the three statements above. Note that if

y > x are real numbers, then [y] > [z]. Thus (1) follows if we prove that
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(n+1)/2 > /n. But this last inequality is an immediate consequence of

(n+1)? n2+2n+1_
5 = 5 T

To prove (2) recall that, by definition, 25,1 = [(iEE + n)/2xy). Since i is an
integer, it follows from z; > [\/n] that z; > /n. Squaring both sides of the
inequality, we have z% > n. Hence 2z > z2 + n, so that

To prove (3), suppose that zp = [(z3 + n)/2x,]. This is equivalent to

i+ n

0 < T

—9:,:,;#{1,

which implies
0<n—a2 <2

Thus n > 27 and n < z2 + 2zx. But from this last inequality it follows that
n < (zx + 1)?. Therefore

rio<n<)(xp 1),

which implies that z = [\/n], thus proving (3).
This method of finding the integer part of the square root is easily imple-
mented in the following algorithm.

Square root algorithm

Input: an integer n > 2

Qutput: the integer part of the square root of 7

Step 1 Begin by setting X =n and Y = [(n+ 1)/2], and go to step 2.
Step 2 If X =Y, stop and write X; otherwise go to step 3.

Step 3 Replace the value of X by that of Y, and the value of ¥ by [(X2 +
n)/2X|, and return to step 2.

2. Power algorithm

Suppose that we have three positive integers a, e, and 7. In this section we
describe an algorithm to find the residue of a® modulo n. This algorithm uses
the binary expansion of the exponent to compute the power in a very efficient
way. It 1s also very easy to implement.

Suppose that

&= bn2™ 4+ + by 2 + by,

where the coefficients bg, by, ..., b, are either 0 or 1. Thus we have

rn—1
at = (aﬁ)bn? trotba2+by | Sbo

Roots and powers 181

Note that ab® can be 1 (if bg = 0) or a (if by = 1). If P, = a0, then
= (ﬂr‘i)bﬂ2ﬂ—2+...+b32+b2 ) (ﬂg)blp_l ;

Now let P, = (a?)°1 P;; thus

#e — (aa)bﬂﬁﬂ"3+---+b42+b3 . (aé)bgp}

Continuing this, we obtain a sequence of integers I, Is, ... F,,, where P, —
Of course, if we are computing in Z,,, we will reduce each product modulo n
at every step of the calculation.

Note that, at every step, either we square a number or we compute the
product a? P; fori = 1,2,...,n. Moreover, if at step 2 we have b; = (0, then it
1S not necessary to compute az B,

In practice the algorithm finds the binary expansion of e whlle it 1S com-

puting the power. Thus, if e is odd, then by = 1; if e is even, then by = 0. We
can find by by applying a similar procedure to

b 0BT s o9l by

Note that this last number is equal to ¢/2, if e is even, and to (e — 1)/2, if e is
odd. And so on. The algorithm is the following.

Power algorithm

Input: integers a, e, and n, where a,n > 0 and ¢ > ()

Output: the residue of a® modulo n

Step 1 Begin by setting A =a, P=1, and F = e.

Step 2 If £ = 0, write “a® = P (mod n)”; otherwise go to step 3.

Step 3 if £ is odd, then give P the value of the residue of A - P modulo n and
E the value (E — 1)/2, and go to step 5; otherwise go to step 4.

Step 4 If E is even, then give E the value £/2 and go to step 5.

Step 5 Replace the present value of A by the residue of A% modulo 7 and go
to step 2.
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Index of the main algorithms

Algorithm Aim Page
Division algorithm Computes quotient and remainder 20
Euclidean algorithm Computes greatest common divisor 23
Extended Euclidean algorithm | Computes greatest common divisor

and coefficients of the linear combination 27, 30
Factorization by trial division | computes smallest factor of a given

positive integer 35
Fermat’s algorithm Computes a factor of a given integer 38
Sieve of Erathostenes Finds all primes smaller than a given

bound 60
Miller’s test Determines whether a number is composite 101
Chinese remainder algorithm | Solves linear systems of congruences 110, 113
Fermat’s method Finds a factor of a Mersenne number

with prime exponent 142
Euler’s method Finds a factor of a Fermat number 144
Lucas-Lehmer test Determines whether a given Mersenne

number is prime or composite 147
Lucas’s test Determines whether a given number

1§ prime 151
Pepin’s test Determines whether a given Fermat

number is prime or composite 152
Primality test Determines whether a given number

is prime 154
Gauss’s method Finds a primitive root modulo a prime p 158
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Index of the main results

Algorithm Content Page
Division theorem Existence and uniqueness of quotient

and remainder 21
Unique factorization theorem Every integer can be uniquely

written as a product of prime powers 33
Fundamental property of primes | If a prime divides a product, then

it divides one of the factors 41
Invertibility theorem Existence of inverses modulo 7 75
Principle of finite induction Method of proof 84, 90
Fermat’s theorem If p is prime, then a” = a (mod p) 86, 88
Korselt’s theorem Characterization of Carmichael numbers 99
Chinese remainder theorem Solution of linear systems of

congruences 111, 114
LLagrange’s theorem The order of a subgroup divides the

order of the group 132, 136
Euler’s theorem o™ =1 (mod n) if

ged(a,n) = 1 135
Key lemma a® = e in a group if and only if the

order of a divides k 141
Primitive root theorem If p is prime, then the group U(p)

is cyclic 151/158
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Abel, N. H., 127
Addition, 6

modulo 72, 69

in elliptic curve, 176
Adleman, L., 3
Alford, W. R., 100, 104
Algebra, 19
Algorithm, 17, 19

probabilistic, 168, 172
Al jabr w’al mugabalah, see Ben Musa
Al Khorwarazmi, see Ben Musa
Aristotle, 43
Arthmetic, 7, 8
Array, 59
Ars Margna, see Cardano, G.
Art of Computer Programming, The,

see Knuth, D, E.

Aryabhatiya, 118
ASCII, 164
Associativity, 121
Astronomy, 108
Axiom, 13

Bachet, C. G, 8, 9
Base, 6, 96, 100-101
Basic principle (of equivalence classes),
64, 69

Ben Musa, 18, 19
Berkeley, G., 175, 177
Bertelsen, N. P, 97
Besicovitch, A. S., 74
Bhaskara, 110
Big Bang, 37
Binomial theorem, 87
Block, 163

fixed, 171
Brilhart, J., 154

Caesar, 1
Calculus, 9, 19
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Cardano, G., 126
Carmichael, R. D., 97, 100
numbers, 97-100, 102-105
Carry (of addition), 6
Catalan’s conjecture, 11
Cauchy’s theorem, 137
Champollion, J. E, 2
Chevalier, A., 128
Chinese remainder
algorithm, 110, 113-114, 116, 119
theorem, 111-112, 114-117, 119, 172
Chocolate bar, 19-20
Cipher, 1-2
Clock, 69
Co-factor, 23
Cole, E N., 143
Complex number, 45, 157
Compositeness test, 95
Composite number, 33
consecutive, 46
Composition (of symmetries), 123
Computer algebra, 5
Computer algebra system, 5, 95, 96, 153,
160, 164
Axiom, 104
Maple, 103-104
Congruence
in E[\/ﬁ} 78, 147-148
linear, 7677
modulo a subgroup, 136-137, 147
modulo n, 66-68
Contrapositive, 14
Converse
of statement, 13
of Lagrange’s theorem, 137
Coordinates (of table), 111, 130
Counter-example, 14
Co-prime numbers, 23, 31
pairwise, 114

Index

Cryptoanalysis, 1, 175
Cryptogram, 1
Cryptography, 1
Cubic equation, 126
Cubic curve, 176

Decryption, 1, 165
Decryption key, 3, 165, 172
Diffie, W., 3
Diophantus, 8-9, 45, 73-74
Diophantine equation, 73-74, 176
Dirichlet, L., 12
Discrete logarithm problem, 172
Disquisitiones Arithmetice, see Gauss, C. F.
Distributive property, 70
Dividend, 19
Divisibility criteria, 71-72
Division

algorithm, 17

modulo n, 75-77

theorem, 21
Divisor, 19, 22-23
Dyson, E 1., 177

Eletronic calculator, 21, 144, 165
Electronic signature, 3, 170
Elements, see Euclid
El Gamal cryptosystem, 172
Elliptic curve, 176
algorithm, 176
Encryption, 1
Encryption key, 3, 164
Equilateral trniangle, 123
group of symmetries of, 123-125, 133
Equivalence class, 6468
modulo n, 67-68
modulo a subgroup, 137
Erathostenes, 57
Euclid, 8, 12-13, 15, 17, 23, 41-43, 52, 55
Euclidean
algorithm, 17, 22-23, 47
perfect number, 47, 149
Euler, L., 9-10, 47, 51-53, 55-56, 61, 73,
84, 93, 141, 144, 158, 178
function, see Phi function
method, 144-145, 149
theorem, 135, 139, 166-167
Exponential formulae (for prime numbers),
51-54
Extended Euclidean algorithm, 27, 31, 40,
41, 75, 76, 108, 111, 1635, 167

Factor, 22
Factorial, 54
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last theorem, 9, 45, 73, 176177
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Fundamental theorem of arithmetic, 33
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conjecture, 11
Gostin, G. B., 146
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Group, 121, 176
abelian, 122, 127, 138, 156-157, 160
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