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PREFACE

This book is addressed to those readers who have been through Rotman' (or its
equivalent), possess a wellthumbed copy of Spanier, and have a good background in
algebra and general topology.

Granted these prerequisites, my intention is to provide at the core a state of the art
treatment of the homotopical foundations of algebraic topology. The depth of coverage is
substantial and I have made a point to include material which is ordinarily not included,
for instance, an account of algebraic K-theory in the sense of Waldhausen. There is also
a systematic treatment of ANR theory (but, reluctantly, the connections with modern
geometric topology have been omitted). However, truly advanced topics are not considered
(e.g., equivariant stable homotopy theory, surgery, infinite dimensional topology, étale K-
theory, ... ). Still, one should not get the impression that what remains is easy: There
are numerous difficult technical results that have to be brought to heel.

Instead of laying out a synopsis of each chapter, here is a sample of some of what is
taken up.

(1) Nilpotency and its role in homotopy theory.

(2) Bousfield’s theory of the localization of spaces and spectra.

(3) Homotopy limits and colimits and their applications.

(4) The James construction, symmetric products, and the Dold-Thom theorem.

(5) Brown and Adams representability in the setting of triangulated categories.

(6) Operads and the May-Thomason theorem on the uniqueness of infinite loop
space machines.

(7) The plus construction and theorems A and B of Quillen.

(8) Hopkins’ global picture of stable homotopy theory.

(9) Model categories, cofibration categories, and Waldhausen categories.

(10) The Dugundji extension theorem and its consequences.

A book of this type is not meant to be read linearly. For example, a reader wishing
to study stable homotopy theory could start by perusing §12 and §15 and then proceed
to §16 and §17 or a reader who wants to learn the theory of dimension could immediately
turn to §19 and §20. One could also base a second year course in algebraic topology on

§3—5§11. Many other combinations are possible.

t An Introduction to Algebraic Topology, Springer Verlag (1988).

t Algebraic Topology, Springer Verlag (1989).



Structurally, each § has its own set of references (both books and articles). No attempt
has been made to append remarks of a historical nature but for this, the reader can do no
better than turn to Dieudonne’. Finally, numerous exercises and problems (in the form of
“examples” and “facts”) are scattered throughout the text, most with partial or complete

solutions.

t A History of Algebraic and Differential Topology 1900-1960, Birkhiuser (1989); see also, Adams,
Proc. Sympos. Pure Math. 22 (1971), 1-22 and Whitehead, Bull. Amer. Math. Soc. 8 (1983), 1-29.
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60. CATEGORIES AND FUNCTORS

In addition to establishing notation and fixing terminology, background material from
the theory relevant to the work as a whole is collected below and will be referred to as the
need arises.

Given a category C, denote by Ob C its class of objects and by Mor C its class of
morphisms. If X, Y € ObC is an ordered pair of objects, then Mor (X,Y’) is the set of
morphisms (or arrows) from X to Y. An element f € Mor (X,Y) is said to have domain
X and codomain Y. One writes f: X — Y or X 1y, Functors preserve the arrows, while
cofunctors reverse the arrows, i.e., a cofunctor is a functor on COP, the category opposite
to C.

Here is a list of frequently occurring categories.

(1) SET, the category of sets, and SET,, the category of pointed sets. If
X,Y € ObSET, then Mor (X,Y) = F(X,Y), the functions from X to Y, and if (X, zg),
(Y,y0) € Ob SET,, then Mor ((X, xo), (Y, yo)) = F(X,x0;Y,y0), the base point preserving
functions from X to Y.

(2) TOP, the category of topological spaces, and TOP,, the category of pointed
topological spaces. If X, Y € ObTOP, then Mor (X,Y) = C(X,Y), the continuous
functions from X to Y, and if (X, z¢), (Y,y0) € ObTOP,, then Mor ((X, xp), (Y, yo)) =
C(X, z0;Y,yo), the base point preserving continuous functions from X to Y.

(3) SET?, the category of pairs of sets, and SET?, the category of pointed
pairs of sets. If (X, A), (Y, B) € ObSET?, then Mor ((X, A), (Y, B)) = F(X, A;Y, B), the
functions from X to Y that take A to B, and if (X, A, xo), (Y, B,yo) € ObSET?, then
Mor ((X,A,a:o), (Y,B,yo)) = F(X,A, x0;Y,B,yp), the base point preserving functions
from X to Y that take A to B.

(4) TOP?, the category of pairs of topological spaces, and TOPz, the category of
pointed pairs of topological spaces. If (X, A), (Y, B) € Ob TOP?, then Mor ((X, A), (Y, B))
= C(X, A;Y, B), the continuous functions from X to Y that take A to B, and if (X, A4, xy),
(Y, B,yo) € ObTOP?Z, then Mor ((X, A, 7o), (Y, B,yo)) = C(X, A, x0;Y, B, yo), the base
point, preserving continuous functions from X to Y that take A to B.

(5) HTOP, the homotopy category of topological spaces, and HTOP,, the ho-
motopy category of pointed topological spaces. If X, Y € Ob HTOP, then Mor (X,Y) =
[X,Y], the homotopy classes in C(X,Y), and if (X, z¢),(Y,y0) € Ob HTOP,, then
Mor ((X, zg), (Y, yo)) = [X,z0;Y, yo], the homotopy classes in C(X, xo;Y, yo).

(6) HTOP?, the homotopy category of pairs of topological spaces, and HTOP?Z,
the homotopy category of pointed pairs of topological spaces. If (X, A), (Y, B)eOb HTOP?,
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then Mor ((X, A), (Y, B)) = [X, A;Y, B], the homotopy classes in C(X, A;Y, B), and if
(X, A, x0), (Y, B,yo) € Ob HTOP?, then Mor ((X, A, z0), (Y, B,y0)) = [X, A, z0; Y, B, yo),
the homotopy classes in C'(X, A, z¢;Y, B, yo).

(7) HAUS, the full subcategory of TOP whose objects are the Hausdorff spaces
and CPTHAUS, the full subcategory of HAUS whose objects are the compact spaces.

(8) IIX, the fundamental groupoid of a topological space X.

(9) GR, AB, RG (A-MOD or MOD-A), the category of groups, abelian
groups, rings with unit (left or right A-modules, A € ObRGQG).

(10) 0, the category with no objects and no arrows. 1, the category with one
object and one arrow. 2, the category with two objects and one arrow not the identity.

A category is said to be discrete if all its morphisms are identities. Every class is the

class of objects of a discrete category.

[Note: A category is small if its class of objects is a set; otherwise it is large. A

category is finite (countable) if its class of morphisms is a finite (countable) set.]

In this book, the foundation for category theory is the “one universe” approach taken by Herrlich-
Strecker and Osborne (referenced at the end of the §). The key words are “set”, “class”, and “conglomer-
ate”. Thus the issue is not only one of size but also of membership (every set is a class and every class is
a conglomerate). Example: {Ob SET} is a conglomerate, not a class (the members of a class are sets).

[Note: A functor F': C — D is a function from Mor C to Mor D that preserves identities and respects
composition. In particular: F is a class, hence {F} is a conglomerate.]

A metacategory is defined in the same way as a category except that the objects and the morphisms
are allowed to be conglomerates and the requirement that the conglomerate of morphisms between two
objects be a set is dropped. While there are exceptions, most categorical concepts have metacategorical
analogs or interpretations. Example: The “category of categories” is a metacategory.

[Note: Every category is a metacategory. On the other hand, it can happen that a metacategory
is isomorphic to a category but is not itself a category. Still, the convention is to overlook this technical

nicety and treat such a metacategory as a category.]

T:A—C
S:B—-C’
X eObA
Y e ObB

and whose morphisms (X, f,Y) — (X', f/,Y’) are the pairs (¢, ) : {

the comma category |T, S| is

Given categories A, B, C and functors {

& f € Mor (TX, SY)

¢ € Mor (X, X')
Y € Mor (Y,Y”)

the category whose objects are the triples (X, f,Y) : {

for
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rx L sy
which the square T¢ | 5% commutes. Composition is defined componentwise
X" — SY'
and the identity attached tof (X, f,Y) is (idx,idy).
(A\C) Let A € Ob C and write K4 for the constant functor 1 — C with value
A—then A\C = |K 4,id¢| is the category of objects under A.
(C/B) Let B € Ob C and write Kp for the constant functor 1 — C with value
B—then C/B = |idc, K| is the category of objects over B.

Putting together A\C & C/B leads to the category of objects under A and over B:
A\C/B. The notation is incomplete since it fails to reflect the choice of the structural
morphism A — B. Examples: (1) )\TOP/x = TOP; (2) «*\TOP/+x = TOP,; (3)
A\TOP/+ = A\TOP; (4) )\ TOP/B = TOP/B; (5) B\TOP/B = TOP(B), the

“exspaces” of James (with structural morphism idp).

The arrow category C(—) of C is the comma category |idc,idc|. Examples: (1)
TOP? is a subcategory of TOP(—); (2) TOP? is a subcategory of TOP, (—).

[Note: There are obvious notions of homotopy in TOP(—) or TOP,(—), from which
HTOP(—) or HTOP, (—).]

The comma category |K 4, Kp| is Mor (A, B) viewed as a discrete category.

A morphism f: X — Y in a category C is said to be an isomorphism if there exists
a morphism g : Y — X such that go f = idx and fog = idy. If g exists, then g is
unique. It is called the inverse of f and is denoted by f~!. Objects X,Y € Ob C are said
to be isomorphic, written X ~ Y, provided that there is an isomorphism f : X — Y. The

relation “isomorphic to” is an equivalence relation on Ob C.

The isomorphisms in SET are the bijective maps, in TOP the homeomorphisms, in HTOP the

homotopy equivalences. The isomorphisms in any full subcategory of TOP are the homeomorphisms.

be functors—then a natural transformation = from F to G is a

F:C—D
Let { G:C—D
function that assigns to each X € ObC an element Ex € Mor (FX,GX) such that

FX =5 @x
for every f € Mor (X,Y) the square Ff| |ef commutes, = being termed a
FY — GY

=y
natural isomorphism if all the Zx are isomorphisms, in which case F' and G are said to be

naturally isomorphic, written F' ~ G.
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]()j , the functor category [C,D] is the metacategory whose ob-
jects are the functors F' : C — D and whose morphisms are the natural transformations
Nat(F,G) from F to G. In general, [C, D] need not be isomorphic to a category, although

this will be true if C is small.

Given categories

[Note: The isomorphisms in [C, D] are the natural isomorphisms.]
K:A—-C
L :D—B’

[K,D]: [C,D]

[C,L]:[C,D]

D and functors {

. . C
Given categories { there are functors {

— [A, D] precomposition - . =K
L [C.B] defined by postecomposition” If 2 € Mor ([C, D)), then we shall write 1=
in place of { %g’ ?E ,80 L(EK) = (LE)K.

There is a simple calculus that governs these operations:

{ E(K o K') = (EK)K' { (L' o L)E = L'(LE
(= L(E' 0 E) = (LE') o (LE)

A functor F : C — D is said to be faithful (full) if for any ordered pair X,Y € Ob C,
the map Mor (X,Y) — Mor (FX, FY) is injective (surjective). If F is full and faithful,

then F'is conservative, i.e., f is an isomorphism iff F'f is an isomorphism.

A category C is said to be concrete if there exists a faithful functor U : C — SET. Example: TOP
is concrete but HTOP is not.

[Note: A category is concrete iff it is isomorphic to a subcategory of SET.]

Associated with any object X in a category C is the functor Mor (X,—) € Ob [C, SET]
and the cofunctor Mor (—, X) € Ob[C°F,SET]. If F € Ob[C,SET] is a functor or if
F € Ob[CPF,SET] is a cofunctor, then the Yoneda lemma establishes a bijection tx
between Nat(Mor (X,—), F') or Nat(Mor (—, X), F) and FX, Viz'oé'X(E) = Ex(idx).
i(( : 11\\/[/1311: EX’,X)) lead to functors { g . [_é([)(pj: ggﬂ that
are full, faithful, and injective on objects, the Yoneda embeddings. One says that F' is

representable (by X) if F' is naturally isomorphic to Mor (X,—) or Mor (—, X). Repre-

Therefore the assignments {

senting objects are isomorphic.

The forgetful functors TOP — SET, GR — SET, RG — SET are representable. The power set

cofunctor SET — SET is representable.
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A functor F': C — D is said to be an isomorphism if there exists a functor G : D — C
such that Go F' = idc and F oG = idp. A functor is an isomorphism iff it is full, faithful,
and bijective on objects. Categories C and D are said to be isomorphic provided that
there is an isomorphism F': C — D.

[Note: An isomorphism between categories is the same as an isomorphism in the

“category of categories”.]

The full subcategory of TOP whose objects are the A spaces is isomorphic to the category of ordered
sets and order preserving maps (reflexive + transitive = order).

[Note: An A space is a topological space X in which the intersection of every collection of open sets
is open. Each z € X is contained in a minimal open set U; and the relation z < y iff x € Uy is an order
on X. On the other hand, if < is an order on a set X, then X becomes an A space by taking as a basis

the sets Uy = {y:y < z} (z € X).]

A functor F': C — D is said to be an equivalence if there exists a functor G : D — C
such that G o F' =~ id¢ and F o G =~ idp. A functor is an equivalence iff it is full, faithful,
and has a representative image, i.e., for any Y € Ob D there exists an X € Ob C such that

FX is isomorphic to Y. Categories C and D are said to be equivalent provided that there
is an equivalence F' : C — D. The object isomorphism types of equivalent categories are
in a one-to-one correspondence.

[Note: If F' and G are injective on objects, then C and D are isomorphic (categorical

“Schroeder-Bernstein”).|

The functor from the category of metric spaces and continuous functions to the category of metrizable
spaces and continuous functions which assigns to a pair (X,d) the pair (X,74), 74 the topology on X
determined by d, is an equivalence but not an isomorphism.

[Note: The category of metric spaces and continuous functions is not a subcategory of TOP.]

A category is skeletal if isomorphic objects are equal. Given a category C, a skeleton
of C is a full, skeletal subcategory C for which the inclusion C — C has a representative
image (hence is an equivalence). Every category has a skeleton and any two skeletons of a

category are isomorphic. A category is skeletally small if it has a small skeleton.

The full subcategory of SET whose objects are the cardinal numbers is a skeleton of SET.

A morphism f : X — Y in a category C is said to be a monomorphism if it is left

cancellable with respect to composition, i.e., for any pair of morphisms u,v : Z — X such

that fowu = f owv, there follows u = v.
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A morphism f : X — Y in a category C is said to be an epimorphism if it is right
cancellable with respect to composition, i.e., for any pair of morphisms u,v : Y — Z such
that wo f = v o f, there follows u = v.

A morphism is said to be a bimorphism if it is both a monomorphism and an epimor-
phism. FEvery isomorphism is a bimorphism. A category is said to be balanced if every
bimorphism is an isomorphism. The categories SET, GR, and AB are balanced but the
category TOP is not.

In SET, GR, and AB, a morphism is a monomorphism (epimorphism) iff it is injective (surjective).
In any full subcategory of TOP, a morphism is a monomorphism iff it is injective. In the full subcategory
of TOP., whose objects are the connected spaces, there are monomorphisms that are not injective on the
underlying sets (covering projections in this category are monomorphisms). In TOP, a morphism is an
epimorphism iff it is surjective but in HAUS, a morphism is an epimorphism iff it has a dense range. The
homotopy class of a monomorphism (epimorphism) in TOP need not be a monomorphism (epimorphism)

in HTOP.

Given a category C and an object X in C, let M(X) be the class of all pairs (Y, f),
where f : Y — X is a monomorphism. Two elements (Y, f) and (Z,g) of M(X) are
deemed equivalent if there exists an isomorphism ¢ : Y — Z such that f = go¢p. A

representative class of monomorphisms in M (X) is a subclass of M (X) that is a system

of representatives for this equivalence relation. C is said to be wellpowered provided that
each of its objects has a representative class of monomorphisms which is a set.

Given a category C and an object X in C, let E(X) be the class of all pairs (Y, f),
where f : X — Y is an epimorphism. Two elements (Y, f) and (Z,g) of E(X) are
deemed equivalent if there exists an isomorphism ¢ : Y — Z such that ¢ = ¢o f. A

representative class of epimorphisms in F(X) is a subclass of E(X) that is a system of

representatives for this equivalence relation. C is said to be cowellpowered provided that

each of its objects has a representative class of epimorphisms which is a set.

SET, GR, AB, TOP (or HAUS) are wellpowered and cowellpowered. The category of ordinal

numbers is wellpowered but not cowellpowered.

A monomorphism f: X — Y in a category C is said to be extremal provided that in
any factorization f = ho g, if g is an epimorphism, then g is an isomorphism.
An epimorphism f : X — Y in a category C is said to be extremal provided that in

any factorization f = h o g, if h is a monomorphism, then A is an isomorphism.
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In a balanced category, every monomorphism (epimorphism) is extremal. In any
category, a morphism is an isomorphism iff it is both a monomorphism and an extremal

epimorphism iff it is both an extremal monomorphism and an epimorphism.

In TOP, a monomorphism is extremal iff it is an embedding but in HAUS, a monomorphism is
extremal iff it is a closed embedding. In TOP or HAUS, an epimorphism is extremal iff it is a quotient

map.

A source in a category C is a collection of morphisms f; : X — X; indexed by a set [
and having a common domain. An n-source is a source for which #(I) = n.
A sink in a category C is a collection of morphisms f; : X; — X indexed by a set [

and having a common codomain. An n-sink is a sink for which #(I) = n.

A diagram in a category C is a functor A : I — C, where I is a small category, the
indexing category. To facilitate the introduction of sources and sinks associated with A,
we shall write A; for the image in ObC of i € Ob1.

(lim) Let A : I — C be a diagram—then a source {f; : X — A;} is said to be
natural if for each § € MorI, say igj, Ad o f; = f;. A limit of A is a natural source
{¢; : L — A;} with the property that if {f; : X — A;} is a natural source, then there
exists a unique morphism ¢ : X — L such that f; = £; o ¢ for all + € ObI. Limits are

essentially unique. Notation: L = limg A (or lim A).

(colim) Let A : I — C be a diagram—then a sink {f; : A; — X} is said to be
natural if for each 6 € MorI, say iij, fi = fj o Ad. A colimit of A is a natural sink
{€; : A; — L} with the property that if {f; : A; — X} is a natural sink, then there exists a
unique morphism ¢ : I — X such that f; = ¢ o4; for all © € ObI. Colimits are essentially
unique. Notation: L = colimy A (or colim A).

There are a number of basic constructions that can be viewed as a limit or colimit of

a suitable diagram.

Let I be a set; let I be the discrete category with ObI = I. Given a collection
{X; :i € I} of objects in C, define a diagram A: I —- Cby A, = X; (i € I).

(Products) A limit {¢; : L — A;} of A is said to be a product of the Xj.
Notation: L = [[X; (or X! if X; = X for all 4), ¢; = pr;, the projection from [] X; to
X;. Briefly put:Z Products are limits of diagrams with discrete indexing categorlies. In
particular, the limit of a diagram having 0 for its indexing category is a final object in C.

[Note: An object X in a category C is said to be final if for each object Y there is

exactly one morphism from Y to X.]
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(Coproducts) A colimit {¢/; : A; — L} of A is said to be a coproduct of the
X;. Notation: L =][X; (or I - X if X; = X for all i), ¢; = in;, the injection from X; to

7
[] X;. Briefly put: Coproducts are colimits of diagrams with discrete indexing categories.

3
In particular, the colimit of a diagram having 0 for its indexing category is an initial object
in C.

[Note: An object X in a category C is said to be initial if for each object Y there is

exactly one morphism from X to Y]

In the full subcategory of TOP whose objects are the locally connected spaces, the product is the
product in SET equipped with the coarsest locally connected topology that is finer than the product
topology. In the full subcategory of TOP whose objects are the compact Hausdorff spaces, the coproduct
is the Stone-Cech compactification of the coproduct in TOP.

a,

Let I be the category 1 e = @ 2. Given a pair of morphisms u,v : X — Y in C, define
b
a diagram A : I — C by {i;z);; & {ig:g
(Equalizers) An equalizer in a category C of a pair of morphisms u,v: X — Y
is a morphism f : Z — X with wo f = v o f such that for any morphism f’': 72’ — X
with uwo f' = wvo f’ there exists a unique morphism ¢ : Z' — Z such that f' = f o ¢. The
2-source X & 7"V is a limit of A iff Z %5 X is an equalizer of u,v : X — Y. Notation:
Z = eq(u,v).
[Note: Every equalizer is a monomorphism. A monomorphism is regular if it is an
equalizer. A regular monomorphism is extremal. In SET, GR, AB, TOP (or HAUS),

an extremal monomorphism is regular.]

(Coequalizers) A coequalizer in a category C of a pair of morphisms u,v : X — Y

is a morphism f : Y — Z with fou = f o v such that for any morphism f’ : Y — 7’

with f’ ou = f’ ov there exists a unique morphism ¢ : Z — Z’ such that f' = ¢ o f. The

2-sink ¥ 5 74" X is a colimit of A iff Y 25 Z is a coequalizer of u,v : X — Y. Notation:
7 = coeq(u,v).

[Note: Every coequalizer is an epimorphism. An epimorphism is regular if it is a

coequalizer. A regular epimorphism is extremal. In SET, GR, AB, TOP (or HAUS),

an extremal epimorphism is regular.]

There are two aspects to the notion of equalizer or coequalizer, namely: (1) Existence of f and
(2) Uniqueness of ¢. Given (1), (2) is equivalent to requiring that f be a monomorphism or an epimor-

phism. If (1) is retained and (2) is abandoned, then the terminology is weak equalizer or weak coequalizer.
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For example, HTOP. has neither equalizers nor coequalizers but does have weak equalizers and weak

coequalizers.
a b . . f:X—>7Z .
Let I be the category 1 e — . + ¢ 2. Given morphisms { 1Y =7 in C, define a
A =X B
diagram A: I —-Cby ¢ Ay =Y & {iz:f
As=2 —J P Ly
(Pullbacks) Given a 2-sink X ENy A Y, a commutative diagram ¢ L9 s
X 7> A

said to be a pullback square if for any 2-source X &P Y with fo&’ = gon’ there exists a
unique morphism ¢ : P’ — P such that ¢’ = £o¢ and n’ = no¢. The 2-source X Eply
is called a pullback of the 2-sink X i> Z &Y. Notation: P = X x5 Y. Limits of A are

pullback squares and conversely.

a b . . f 14— X .
Let I be the category 1 e < . — o 2. Given morphisms { 0 7Y in C, define a
Ay =X B
diagram A: T —-Cby < A=Y & {i‘;:f
As=Z —J 7 Ly
(Pushouts) Given a 2-source X Lz Y, a commutative diagram f ! n
X ? P

is said to be a pushout square if for any 2-sink X 5 P LY with & o f =1 og there exists
a unique morphism ¢ : P — P’ such that £ = ¢o& and ' = pon. The 2-sink X Sply
is called a pushout of the 2-source X L 7%y, Notation: P = X % Y. Colimits of A are

pushout squares and conversely.

The result of dropping uniqueness in ¢ is weak pullback or weak pushout. Examples are the com-

mutative squares that define fibration and cofibration in TOP.

Let I be a small category, A : I°° xI—>Ca diagram.

(Ends) A source {f; : X — A;;} is said to be dinatural if for each § € MorI,
say iij, A(id,0) o f; = A(d,id) o f;. An end of A is a dinatural source {e; : E — A;;}
with the property that if {f; : X — A;;} is a dinatural source, then there exists a unique
morphism ¢ : X — F such that f; = e; 0 ¢ for all i € ObI. Every end is a limit (and every

limit is an end). Notation: F = /Ai,i (or /A.
i I
(Coends) A sink {f; : A;; — X} is said to be dinatural if for each § € Morl,
say iij, fioA(6,id) = fj o A(id, ). A coend of A is a dinatural sink {e; : A;; — E}
with the property that if {f; : A;; — X} is a dinatural sink, then there exists a unique
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morphism ¢ : E — X such that f; = ¢ oe; for all i € ObI. Every coend is a colimit (and
i I
every colimit is a coend). Notation: E = / A (or/ A).

F:I1->C o o oP
Let o c be functors—then the assignment (¢, j) — Mor (F'i, Gj) defines a diagram IV* xI —
I —

SET and Nat(F, G) is the end /Mor (Fi,Gi).

2

INTEGRAL YONEDA LEMMA Let I be a small category, C a complete and cocomplete

%
category—then for every F in [I°F, C], / Mor (—,i) - Fix F ~ /FiMor(i’).

2

Let I # 0 be a small category—then I is said to be filtered if
(F1) Given any pair of objects 4, j in I, there exists an object k& and morphisms
i =k
jg—k’

a morphism c¢: j — k such that coa =cob.

(F3) Given any pair of morphisms a,b: i — j in I, there exists an object k and

Every nonempty directed set (I, <) can be viewed as a filtered category I, where

ObI =TI and Mor (7, j) is a one element set when i < j but is empty otherwise.

Example: Let [N] be the filtered category associated with the directed set of non-
negative integers. Given a category C, denote by FIL(C) the functor category [[N], C]—
then an object (X,f) in FIL(C) is a sequence {X,, f,}, where X,, € ObC & f, €
Mor (X,,, Xy 41), and a morphism ¢ : (X, f) — (Y, g) in FIL(C) is a sequence {¢, }, where
¢n € Mor (X,,,Y) & gn 0 by = Pppy1 0 fin-

(Filtered Colimits) A filtered colimit in C is the colimit of a diagram A : T — C,
where I is filtered.
(Cofiltered Limits) A cofiltered limit in C is the limit of a diagram A : I — C,
where I is cofiltered.
[Note: A small category I # 0 is said to be cofiltered provided that I°F is filtered.]

A Hausdorff space is compactly generated iff it is the filtered colimit in TOP of its compact subspaces.

Every compact Hausdorff space is the cofiltered limit in TOP of compact metrizable spaces.

Given a small category C, a path in C is a diagram o of the form Xy — X; .- —
Xon_1 ¢+ Xop, (n > 0). One says that o begins at Xy and ends at Xa,. The quotient of
Ob C with respect to the equivalence relation obtained by declaring that X’ ~ X" iff there



0-11

exists a path in C which begins at X’ and ends at X" is the set mo(C) of components of
C, C being called connected when the cardinality of mo(C) is one. The full subcategory of
C determined by a component is connected and is maximal with respect to this property.
If C has an initial object or a final object, then C is connected.

[Note: The concept of “path” makes sense in any category.]

Let I # 0 be a small category—then I is said to be pseudofiltered if
. . . aii—=7 . . . .
(PF1) Given any pair of morphisms in I, there exists an object £ and morphisms
b:i—>k

d:k—1¢
(PF2) Given any pair of morphisms a,b: ¢ — j in I, there exists a morphism c : 7 — k such

c:j—4
such that coa = d o b;

that coa =cob.

I is filtered iff I is connected and pseudofiltered. I is pseudofiltered iff its components are filtered.

Given small categories a functor V : J — I is said to be final provided that for

I
3o
every i € ObI, the comma category |K;, V| is nonempty and connected. If J is filtered
and V : J — I is final, then I is filtered.

[Note: A subcategory of a small category is final if the inclusion is a final functor.]

Let V : J — I be final. Suppose that A : I — C is a diagram for which colim A o V
exists—then colim A exists and the arrow colimA oV — colim A is an isomorphism.
Corollary: If ¢ is a final object in I, then colim A ~ A;.

[Note: Analogous considerations apply to limits so long as “final” is replaced through-

out by “initial”.]
Let I be a filtered category—then there exists a directed set (J, <) and a final functor V : J — L

Limits commute with limits. In other words, if A : I x J — C is a diagram, then

under the obvious assumptions
limy limy A ~ limyy g3 A ~ limy«1 A ~ limy limg A.

Likewise, colimits commute with colimits. In general, limits do not commute with co-
limits. However, if A : I x J — SET and if I is finite and J is filtered, then the arrow
colimy limy A — limy colimy A is a bijection, so that in SET filtered colimits commute
with finite limits.

[Note: In GR, AB or RG, filtered colimits commute with finite limits. But, e.g.,

filtered colimits do not commute with finite limits in SETCF ]

In AB (or any Grothendieck category), pseudofiltered colimits commute with finite limits.
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A category C is said to be complete (cocomplete) if for each small category I, every
A € Ob[I, C] has a limit (colimit). The following are equivalent.

(1) C is complete (cocomplete).
(2) C has products and equalizers (coproducts and coequalizers).
(3) C has products and pullbacks (coproducts and pushouts).
(4) C has a final object and multiple pullbacks (initial object and multiple
pushouts).
[Note: A source {&; : P — X;} (sink {& : X; — P}) is said to be a multiple pullback

(multiple pushout) of a sink {f; : X; — X} (source {f; : X — X;}) provided that

fio& = fjo& (&iofi =& of)V {; and if for any source {¢, : P’ — X} (sink

{& Xy — P'}) with fio&; = fjo&i (§fofi=¢&of;)V {;, there exists a unique

morphism ¢ : P — P (¢ : P — P’) such that V i, £ = 0 ¢ (¢ = ¢ 0&;). Every multiple
pullback (multiple pushout) is a limit (colimit).]

The categories SET, GR, and AB are both complete and cocomplete. The same is true of TOP
and TOP. but not of HTOP and HTOP...

[Note: HAUS is complete; it is also cocomplete, being epireflective in TOP.]

A category C is said to be finitely complete (finitely cocomplete) if for each finite

category I, every A € Ob[I, C| has a limit (colimit). The following are equivalent.
(1) C is finitely complete (finitely cocomplete).
(2) C has finite products and equalizers (finite coproducts and coequalizers).
(3) C has finite products and pullbacks (finite coproducts and pushouts).
(4) C has a final object and pullbacks (initial object and pushouts).

The full subcategory of TOP whose objects are the finite topological spaces is finitely complete and
finitely cocomplete but neither complete nor cocomplete. A nontrivial group, considered as a category,

has multiple pullbacks but fails to have finite products.

If C is small and D is finitely complete and wellpowered (finitely cocomplete and

cowellpowered), then [C, D] is wellpowered (cowellpowered).

SET(—),GR(—),AB(—), TOP(—) (or HAUS(—)) are wellpowered and cowellpowered.

[Note: The arrow category C(—) of any category C is isomorphic to [2, C].]

Let F': C — D be a functor.
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(a) F is said to preserve a limit {¢; : L — A;} (colimit {¢; : A; — L}) of a
diagram A : I — Cif {F¢; : FL — FA;} ({F¢; : FA; — FL}) is a limit (colimit) of the
diagram FFoA:1I— D.

(b) F' is said to preserve limits (colimits) over an indexing category I if F' pre-
serves all limits (colimits) of diagrams A : T — C.

(c) F is said to preserve limits (colimits) if F' preserves limits (colimits) over all

indexing categories I.

The forgetful functor TOP — SET preserves limits and colimits. The forgetful functor GR — SET
preserves limits and filtered colimits but not coproducts. The inclusion HAUS — TOP preserves limits
and coproducts but not coequalizers. The inclusion AB — GR preserves limits but not colimits.

Mor (X, —)

Mor (—, X) with respect to

There are two rules that determine the behavior of {

limits and colimits.

(1) The functor Mor (X,—) : C — SET preserves limits. Symbolically, there-
fore, Mor (X, lim A) = lim(Mor (X, —) o A).

(2) The cofunctor Mor (—, X) : C — SET converts colimits into limits. Sym-
bolically, therefore, Mor (colim A, X') ~ lim(Mor (—, X) o A).

REPRESENTABLE FUNCTOR THEOREM Given a complete category C, a functor
F : C — SET is representable iff F' preserves limits and satisfies the solution set condition:
There exists a set {X;} of objects in C such that for each X € ObC and each y € FX,
there is an i, a y; € FX;, and an f: X; — X such that y = (F f)y;.

Take for C the category opposite to the category of ordinal numbers—then the functor C — SET

defined by @ — * has a complete domain and preserves limits but is not representable.

Limits and colimits in functor categories are computed “object by object”. So, if C is
a small category, then D (finitely) complete = [C, D] (finitely) complete and D (finitely)
cocomplete = [C, D] (finitely) cocomplete.

Given a small category C, put C= [COP, SET|—then C is complete and cocomplete.
The Yoneda embedding Yo : C — C preserves limits; it need not, however, preserve finite
colimits. The image of C is “colimit dense” in 6, i.e., every cofunctor C — SET is a

colimit of representable cofunctors.

An indobject in a small category C is a diagram A : I — C, where I is filtered.
Corresponding to an indobject A, is the object La in C defined by La = colim(Yg o A).
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The indcategory IND(C) of C is the category whose objects are the indobjects and whose
morphisms are the sets Mor (A/, A”) = Nat(Las, La»). The functor L : IND(C) — C
that sends A to La is full and faithful (although in general not injective on objects), hence
establishes an equivalence between IND(C) and the full subcategory of C whose objects
are the cofunctors C — SET which are filtered colimits of representable cofunctors. The
category IND(C) has filtered colimits; they are preserved by L, as are all limits. Moreover,
in IND(C), filtered colimits commute with finite limits. If C is finitely cocomplete, then
IND(C) is complete and cocomplete. The functor K : C — IND(C) that sends X
to Kx, where Kx : 1 — C is the constant functor with value X, is full, faithful, and
injective on objects. In addition, K preserves limits and finite colimits. The composition
CgIND(C) % C is the Yoneda embedding Yo. A cofunctor F € ObC is said to be
indrepresentable if it is naturally isomorphic to a functor of the form Lx, A € ObIND(C).

An indrepresentable cofunctor converts finite colimits into finite limits and conversely,
provided that C is finitely cocomplete.
[Note: The procategory PRO(C) is by definition IND(C°F)OP, Its objects are the

proobjects in C, i.e., the diagrams defined on cofiltering categories.]

The full subcategory of SET whose objects are the finite sets is equivalent to a small category. Its
indcategory is equivalent to SET and its procategory is equivalent to the full subcategory of TOP whose
objects are the totally disconnected compact Hausdorff spaces.

[Note: There is no small category C for which PRO(C) is equivalent to SET. This is because in

SET, cofiltered limits do not commute with finite colimits.]

F:C—D

Given categories G-D-—C

functors { are said to be an adjoint pair if the func-

C
D ?
Mor o (FOF xidp) oP . P,
tors { Mor o (idgor x G) from C7" x D to SET are naturally isomorphic, i.e., if it is
X eObC
Y eObD

Mor (X, GY') which is functorial in X and Y. When this is so, F' is a left adjoint for G
and G is a right adjoint for F. Any two left (right) adjoints for G (F') are naturally

isomorphic. Left adjoints preserve colimits; right adjoints preserve limits. In order that

possible to assign to each ordered pair a bijective map =x y : Mor (F X,Y) —

(F,G) be an adjoint pair, it is necessary and sufficient that there exist natural transfor-

. p € Nat(idg, G o F) : (Gv) o (pG) = idg i
mations {1/ € Nat(F o G, idp) subject to (WF) o (Fp) = idp The data (F,G, p,v) is
p:idg - GoF

v:FoG —idp POM8

referred to as an adjoint situation, the natural transformations {

the arrows of adjunction.
(UN) Suppose that G has a left adjoint F—then for each X € ObC, each
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Y € ObD, and each f : X — GY, there exists a unique g : FX — Y such that f = Ggoux.

[Note: When reformulated, this property is characteristic.]

The forgetful functor TOP — SET has a left adjoint that sends a set X to the pair (X, 1), where 7
is the discrete topology, and a right adjoint that sends a set X to the pair (X, ), where 7 is the indiscrete

topology.

Let I be a small category, C a complete and cocomplete category. Examples: (1) The constant
diagram functor K : C — [I,C] has a left adjoint, viz. colim : [I,C] — C, and a right adjoint, viz.
lim : [I,C] = C; (2) The functor C — [IOF x I, C] that sends X to (i,7) — Mor (4,4) - X is a left adjoint

for end and the functor that sends X to (4,7) — XM°r (39 is a right adjoint for coend.

GENERAL ADJOINT FUNCTOR THEOREM Given a complete category D, a func-
tor G : D — C has a left adjoint iff G preserves limits and satisfies the solution set
condition: For each X € Ob C, there exists a source {f; : X — GY;} such that for every
f: X = GY, thereisan ¢ and a g : Y; — Y such that f = Ggo f;.

The general adjoint functor theorem implies that a small category is complete iff it is cocomplete.

KAN EXTENSION THEOREM Given small categories a complete (cocomplete)

C
D bl
category S, and a functor K : C — D, the functor [K,S]| : [D,S] — [C, S| has a right
(left) adjoint ran (lan) and preserves limits and colimits.

[Note: If K is full and faithful, then ran (lan) is full and faithful.]

Suppose that S is complete. Let T' € Ob[C,S|—then ranT is called the right Kan
extension of T along K. In terms of ends, (ranT)Y = /TXMor(Y’KX). There is a

X
“universal” arrow (ranT)o K — T. It is a natural isomorphism if K is full and faithful.

Suppose that S is cocomplete. Let T' € Ob[C, S]—then lanT is called the left Kan
X

extension of T" along K. In terms of coends, (lanT)Y = / Mor (KX,Y) - TX. There is

a “universal” arrow T'— (lanT) o K. It is a natural isomorphism if K is full and faithful.

Application: If C and D are small categories and if F': C — D is a functor, then the
precomposition functor D — C has a lef adjoint F:C—>Dand Fo Yex=YpoF.
[Note: One can always arrange that FoYoc=Ypo F]

The construction of the right (left) adjoint of [K, S] does not use the assumption that

D is small, its role being to ensure that [D,S] is a category. For example, if C is small
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and S is cocomplete, then taking K = Y¢, the functor [Yg,S] : [C,S] — [C, S] has a left

adjoint that sends T € Ob[C,S] to I'r € Ob[C,S], where 't o Yo = T. On an object
X b'e

F e 6, I'rF = / Nat(Yc X, F) -TX = / FX -TX. I'r is the realization functor; it
is a left adjoint for the singular functor Sz, the composite of the Yoneda embedding S —
[SOP,SET] and the precomposition functor [S°F, SET] — [C°F, SET], thus (S7Y)X =
Mor (TX,Y).

[Note: The arrow of adjunction I'r o Sp — idg is a natural isomorphism iff Sy is full
and faithful.]

CAT is the category whose objects are the small categories and whose morphisms
are the functors between them: C,D € ObCAT = Mor(C,D) = Ob[C,D]. CAT is
concrete and complete and cocomplete. 0 is an initial object in CAT and 1 is a final
object in CAT.

Let mg : CAT — SET be the functor that sends C to mo(C), the set of components of C; let
dis : SET — CAT be the functor that sends X to disX, the discrete category on X; let ob : CAT — SET
be the functor that sends C to Ob C, the set of objects in C; let grd : SET — CAT be the functor that
sends X to grd X, the category whose objects are the elements of X and whose morphisms are the elements
of X x X—then mg is a left adjoint for dis, dis is a left adjoint for ob, and ob is a left adjoint for grd.

[Note: mp preserves finite products; it need not preserve arbitrary products.]

GRD is the full subcategory of CAT whose objects are the groupoids, i.e., the small

categories in which every morphism is invertible. Example: The assignment
IT: TOP = GRD is a functor
X - IOX '

Let iso : CAT — GRD be the functor that sends C to iso C, the groupoid whose objects are those
of C and whose morphisms are the invertible morphisms in C—then iso is a right adjoint for the inclusion
GRD — CAT. Let m : CAT — GRD be the functor that sends C to 71 (C), the fundamental groupoid
of C, i.e., the localization of C at Mor C—then w1 is a left adjoint for the inclusion GRD — CAT.

A is the category whose objects are the ordered sets [n] = {0,1,...,n} (n > 0)
and whose morphisms are the order preserving maps. In A, every morphism can be
written as an epimorphism followed by a monomorphism and a morphism is a monomor-
phism (epimorphism) iff it is injective (surjective). The face operators are the monomor-
phisms 6 : [n — 1] — [n] (n > 0,0 < ¢ < n) defined by omitting the value i. The
degeneracy operators are the epimorphisms o : [n 4+ 1] — [n] (n > 0,0 < i < n) de-
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fined by repeating the value i. Suppressing superscripts, if a € Mor ([m], [n]) is not the
identity, then o has a unique factorization a = (d;, o-+-00d; ) o (g, o---00j ), where
n>i>>10,>0,0<7j; <+ <j,<m,and m+p=n+gq. BEach a € Mor ([m], [n])
determines a linear transformation R™*' — R"™*! which restricts to a map A® : A™ —
A™. Thus there is a functor A? : A — TOP that sends [n] to A" and « to A®. Since the
objects of A are themselves small categories, there is also an inclusion ¢« : A — CAT.
Given a category C, write SIC for the functor category [AOP, C] and COSIC for the
functor category [A, C]—then by definition, a simplicial object in C is an object in SIC

and a cosimplicial object in C is an object in COSIC. Example: YA = A is a cosimplicial
object in A.
Specialize to C = SET—then an object in SISET is called a simplicial set and a

morphism in SISET is called a simplicial map. Given a simplicial set X, put X,, = X ([n]),

so for a: [m] — [n], Xa: X,, = X, If { gll B ?gi’ , then d; and s; are connected by the
simplicial identities:

g i Sj—10d; (4 <)
dzOd]_d]—lodz (Z<])’ diOSj: id (i:jori:j—i-l).
$;085 = 8541085 (ZS]) . .

Sjodi—l (Z>j+1)

The simplicial standard n-simplex is the simplicial set A[n] = Mor (—, [n]), i.e., A[n] is

the result of applying A to [n], so for a: [m] — [n], Ala] : A[m] — A[n]. Owing to the
Yoneda lemma, if X is a simplicial set and if z € X,,, then there exists one and only one
simplicial map A, : A[n] — X that takes idp,) to . SISET is complete and cocomplete,
wellpowered and cowellpowered.

Let X be a simplicial set—then one writes z € X when one means z € |J X,,. With
n

this understanding, an x € X is said to be degenerate if there exists an epimorphism

a #id and a y € X such that z = (X a)y; otherwise, z € X is said to be nondegenerate.

The elements of Xy (= the vertexes of X) are nondegenerate. Every x € X admits a
unique representation z = (Xa)y, where « is an epimorphism and y is nondegenerate.
The nondegenerate elements in A[n]| are the monomorphisms « : [m] — [n] (m < n).

A simplicial subset of a simplicial set X is a simplicial set Y such that Y is a subfunctor

of X, ie., Y, C X, for all n and the inclusion ¥ — X is a simplicial map. Notation:
Y C X. The n-skeleton of a simplicial set X is the simplicial subset X(™ (n > 0) of
X defined by stipulating that XI()") is the set of all x € X, for which there exists an
epimorphism « : [p] — [¢] (¢ < n) and a y € X, such that x = (Xa)y. Therefore
ngn) = X, (p < n); furthermore, X0 c XMW ¢ ... and X = colimX™. A proper

simplicial subset of A[n] is contained in A[n]"=1), the frontier A[n] of A[n]. Of course,
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AJ0] = 0. X© is isomorphic to Xy - A[0]. In general, let X# be the set of nondegenerate
elements of X,,. Fix a collection {A[n], : * € X#} of simplicial standard n-simplexes

indexed by X#—then the simplicial maps A, : Aln] = X (z € X}) determine an arrow
X#. An] — X0

X#.Aln] - X™ and the commutative diagram | | is a pushout
X#.An] — X
square. Note too that A[n] is a coequalizer: Consider the diagram

H A[n—2]i,j%§ H A[n_l]ia

0<i<j<n 0<i<n

where u is defined by the A[&?_‘ll] and v is defined by the A[57*~']—then the A[6?] define a

simplicial map f : [[ A[n—1]; = A[n] that induces an isomorphism coeq(u, v) — A[n).
0<i<n

Call A,, the full subcategory of A whose objects are the [m] (m < n). Given a category C, denote
by SIC,, the functor category [ASP, C]. The objects of SIC,, are the “n-truncated simplicial objects”
in C. Employing the notation of the Kan extension theorem, take for K the inclusion A,(L)P — AP and
write tr(™) in place of [K, C], so tr(") ; SIC — SIC,,. If C is complete (cocomplete), then tr(") has a left
(right) adjoint sk(™) (cosk(™). Put sk(™) = sk(™ o tr(") (the n-skeleton), cosk(™ = cosk(™ o tr(") (the
n-coskeleton). Example: Let C = SET—then for any simplicial set X, sk(") X ~ X (1)

(Geometric Realizations) The realization functor 'z is a functor SISET —

TOP such that ['x» o A = A?. It assigns to a simplicial set X a topological space
[n]
| X| = X, - A™, the geometric realization of X, and to a simplicial map f: X — Y

a continuous function |f| : |X| — |Y|, the geometric realization of f. In particular,
|An]| = A™ and |Ala]| = A®. There is an explicit description of |X|: Equip X, with
the discrete topology and X,, x A™ with the product topology—then |X| can be identified

with the quotient [[ X, x A™/~, the equivalence relation being generated by writing

n
(Xa)z,t) ~ (z, A%t). These relations are respected by every simplicial map f: X — Y.
Denote by [z, t] the equivalence class corresponding to (x,t). The projection (x,t) — [z, ]
of [T X, x A™ onto | X| restricts to a map [[ X7 x A — | X| that is in fact a set theoretic
n n

bijection. Consequently, if we attach to each x € X the subset e, of |X| consisting
of all [z,t] (t € &"), then the collection {e;, : * € X# (n > 0)} partitions |X|. Tt
follows from this that a simplicial map f: X — Y is injective (surjective) iff its geometric
realization |f| : |X| — |Y] is injective (surjective). Being a left adjoint, the functor

|?7] : SISET — TOP preserves colimits. So, e.g., by taking the geometric realization of
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the diagram
[T ar-21i;= [ AR- 1,
0<i<j<n Y 0<i<n
and unraveling the definitions, one finds that |A[n]| can be identified with A™.

[Note: It is also true that the arrow |A[m] x A[n]| — |A[m]| x |A[n]| associated with
Pm @ A[m] x A[n] — Am)]
pn @ Alm] x Aln] — Aln]
morphism but this is not an a priori property of |?].]

(Singular Sets) The singular functor Sp- is a functor TOP — SISET that
assigns to a topological space X a simplicial set sin X, the singular set of X : sin X ([n]) =
sin, X = C(A™, X). |?] is a left adjoint for sin. The arrow of adjunction X — sin|X|
sends z € X,, to |A,| € C(A™,|X]), where |A.|(t) = [z,t]; it is a monomorphism. The

arrow of adjunction |sin X| — X sends [z, ] to z(t); it is an epimorphism.

the geometric realization of the projections is a homeo-

There is a functor T from SIAB to the category of chain complexes of abelian groups: Take an X
and let TX be Xo & X1 & Xo& .-, where 8 = i(—l)idi (di : Xn — Xp—1). That &0 8 = 0 is implied
by the simplicial identities. One can then apply t(l)le homology functor H. and end up in the category of
graded abelian groups. On the other hand, the forgetful functor AB — SET has a left adjoint Fap that
sends a set X to the free abelian group FaopX on X. Extend it to a functor Fag : SISET — SIAB. In

this terminology, the singular homology H.(X) of a topological space X is H«(TFapg(sin X)).

(Categorical Realizations) The realization functor I, is a functor SISET —
[n]
CAT such that I',oA = .. It assigns to a simplicial set X a small category c¢X = / Xy [n]

called the categorical realization of X. In particular, cA[n] = [n]. In general, ¢X can be

represented as a quotient category CX/~. Here, CX is the category whose objects are
the elements of X and whose morphisms are the finite sequences (z1,... ,z,) of elements
of X3 such that dox; = dix;4+1. Composition is concatenation and the empty sequences
are the identities. The relations are sox = id, (z € Xo) and (doz) o (doz) = d1z (z € X3).

(Nerves) The singular functor S, is a functor CAT — SISET that assigns to
a small category C a simplicial set ner C, the nerve of C : ner C(|n]) = ner,,C, the set of
all diagrams in C of the form X E>X1—> o= X1 f5>1 X,,. Therefore, nereC = Ob C
and ner;C = Mor C. c is a left adjoint for ner. Since ner is full and faithful, the arrow of

adjunction c o ner — idgaT is a natural isomorphism. The classifying space of C is the

geometric realization of its nerve: BC = |ner C|. Example: BC ~ BC°F.

The composite II = w1 o ¢ is a functor SISET — GRD that sends a simplicial set X to its

fundamental groupoid I1X. Example: If X is a topological space, then IIX = II(sin X).
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Let C be a small category. Given a cofunctor F' : C — SET, the Grothendieck
construction on F' is the category grocF whose objects are the pairs (X, x), where X is an
object in C with z € FX, and whose morphisms are the arrows f : (X, z) — (Y, y), where
f: X — Y is a morphism in C with (F'f)y = x. Denoting by g the projection grocF' —
C, if S is cocomplete, then for any T € Ob[C,S], I'tF ~ colim(groCFECAS). In
particular: F = colim(grogF' =5 C g C).

[Note: The Grothendieck construction on a functor F' : C — SET is the category
groc F' whose objects are the pairs (X, x), where X is an object in C with x € F X, and
whose morphisms are the arrows f : (X,z) — (Y,y), where f : X — Y is a morphism in
C with (F f)z = y. Example: grocMor (X,—) ~ X\C.]

Let v : C — CAT be the functor that sends X to C/X—then the realization functor I'y assigns to

each F in C its Grothendieck construction, i.e., I'yF = grocF.

A full, isomorphism closed subcategory D of a category C is said to be a reflective
(coreflective) subcategory of C if the inclusion D — C has a left (right) adjoint R, a

reflector (coreflector) for D.

[Note: A full subcategory D of a category C is isomorphism closed provided that

every object in C which is isomorphic to an object in D is itself an object in D.]

SET has precisely three (two) reflective (coreflective) subcategories. TOP has two reflective sub-
categories whose intersection is not reflective. The full subcategory of GR whose objects are the finite

groups is not a reflective subcategory of GR.

Let D be a reflective subcategory of C, R a reflector for D—then one may attach
to each X € ObC a morphism rx : X — RX in C with the following property: Given
any Y € ObD and any morphism f : X — Y in C, there exists a unique morphism
g: RX — Y in D such that f = gorx. If the rx are epimorphisms, then D is said to be
an epireflective subcategory of C.

[Note: If the rx are monomorphisms, then the rx are epimorphisms, so “monoreflec-
tive” = “epireflective”.]

A reflective subcategory D of a complete (cocomplete) category C is complete (co-
complete).

[Note: Let A : I — D be a diagram in D.

(1) To calculate a limit of A, postcompose A with the inclusion D — C and let
{€; - L — A;} be its limit in C—then L € ObD and {/; : L — A;} is a limit of A.
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(2) To calculate a colimit of A, postcompose A with the inclusion D — C and
let {¢; : A; — L} be its colimit in C—then {ry o ¥; : A; — RL} is a colimit of A.]

EPIREFLECTIVE CHARACTERIZATION THEOREM If a category C is complete,
wellpowered, and cowellpowered, then a full, isomorphism closed subcategory D of C is
an epireflective subcategory of C iff D is closed under the formation in C of products and
extremal monomorphisms.

[Note: Under the same assumptions on C, the intersection of any conglomerate of

epireflective subcategories is epireflective.]

A full, isomorphism closed subcategory of TOP (HAUS) is an epireflective subcat-
egory iff it is closed under the formation in TOP (HAUS) of products and embeddings
(products and closed embeddings).

(hX) HAUS is an epireflective subcategory of TOP. The reflector sends X to

its maximal Hausdorff quotient hX.

(crX) The full subcategory of TOP whose objects are the completely regular
Hausdorff spaces is an epireflective subcategory of TOP. The reflector sends X to its

complete regularization crX.

(8X) The full subcategory of HAUS whose objects are the compact spaces is an
epireflective subcategory of HAUS. Therefore the category of compact Hausdorff spaces
is an epireflective subcategory of the category of completely regular Hausdorff spaces and
the reflector sends X to X, the Stone-Cech compactification of X.

[Note: If X is Hausdorff, then S(crX) is its compact reflection.]

(vX) The full subcategory of HAUS whose objects are the R-compact spaces is
an epireflective subcategory of HAUS. Therefore the category of R-compact spaces is an
epireflective subcategory of the category of completely regular Hausdorff spaces and the
reflector sends X to vX, the R-compactification of X.

[Note: If X is Hausdorff, then v(crX) is its R-compact reflection. ]

A full, isomorphism closed subcategory of GR or AB is an epireflective subcategory iff it is closed
under the formation of products and subgroups. Example: AB is an epireflective subcategory of GR,, the

reflector sending X to its abelianization X/[X, X].

If C is a full subcategory of TOP (HAUS), then there is a smallest epireflective
subcategory of TOP (HAUS) containing C, the epireflective hull of C. If X is a topo-
logical space (Hausdorff topological space), then X is an object in the epireflective hull of




0-22

C in TOP (HAUS) iff there exists a set {X;} € ObC and an extremal monomorphism

The epireflective hull in TOP (HAUS) of [0, 1] is the category of completely regular Hausdorff spaces
(compact Hausdorff spaces). The epireflective hull in TOP of [0, 1]/[0, 1] is the full subcategory of TOP
whose objects satisfy the T separation axiom. The epireflective hull in TOP (HAUS) of {0, 1} (discrete
topology) is the full subcategory of TOP (HAUS) whose objects are the zero dimensional Hausdorff
spaces (zero dimensional compact Hausdorff spaces). The epireflective hull in TOP of {0,1} (indiscrete
topology) is the full subcategory of TOP whose objects are the indiscrete spaces.

[Note: Let E be a nonempty Hausdorff space—then a Hausdorff space X is said to be E-compact
provided that X is in the epireflective hull of E in HAUS. Example: A Hausdorff space is N-compact iff
it is Q-compact iff it is P-compact. There is no E such that every Hausdorff space is E-compact. In fact,
given E, there exists a Hausdorff space Xg with #(Xg) > 1 such that every element of C(Xg, E) is a

constant.]

A morphism f : A — B and an object X in a category C are said to be orthogonal
(fLX) if the precomposition arrow f* : Mor (B, X) — Mor (A, X) is bijective. Given a
class S C Mor C, S+ is the class of objects orthogonal to each f € S and given a class
D c ObC, D% is the class of morphisms orthogonal to each X € D. One then says that
a pair (9, D) is an orthogonal pair provided that S = D+ and D = S+. Example: Since
L1ll=1, for any S, (St+,S81) is an orthogonal pair, and for any D, (D*, D+1) is an

orthogonal pair.

[Note: Suppose that (S, D) is an orthogonal pair—then (1) S contains the isomor-
phisms of C; (2) S is closed under composition; (3) S is cancellable, i.e., go f € S &

A — A
feS=geSandgofeS&geS=fecS. Inaddition, if fi if’ is a
B — B

pushout square, then f € S = f' € S, and if 2 € Nat(A, A’), where A, A’ : T — C, then
;€S (Vi)=colimE € S (if coim A, colim A’ exist).]

Every reflective subcategory D of C generates an orthogonal pair. Thus, with R :
C — D the reflector, put T = 1 o R, where + : D — C is the inclusion, and denote
by € : idg — T the associated natural transformation. Take for S C Mor C the class
consisting of those f such that T'f is an isomorphism and take for D C Ob C the object
class of D, i.e., the class consisting of those X such that ex is an isomorphism—then (S, D)

is an orthogonal pair.

A full, isomorphism closed subcategory D of a category C is said to be an orthogonal subcategory
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of C if ObD = S+ for some class S C Mor C. If D is reflective, then D is orthogonal but the converse is
false (even in TOP).

[Note: Let (S, D) be an orthogonal pair. Suppose that for each X € Ob C there exists a morphism
ex : X > TX in S, where TX € D—then for every f: A — B in S and for every g : A — X there exists
a unique t : B — TX such that ex og =to f. So, for any arrow X — Y, there is a commutative diagram

x X rx

i i , thus T defines a functor C — C and € : idg — T is a natural transformation. Since
Y — TY

€y
€T = Te is a natural isomorphism, it follows that S+ = D is the object class of a reflective subcategory of

C.

(k-DEF) Fix a regular cardinal k—then an object X in a cocomplete category
C is said to be k-definite provided that V regular cardinal " > x, Mor (X,—) preserves
colimits over [0, x[, so for every diagram A : [0, k'[— C, the arrow colim Mor (X, A,) —
Mor (X, colim A,) is bijective.

Given a group G, there is a k for which G is k-definite and all finitely presented groups are w-definite.

REFLECTIVE SUBCATEGORY THEOREM Let C be a cocomplete category. Sup-
pose that Sy C Mor C is a set with the property that for some k, the domain and codomain

of each f € Sy are s-definite—then S3- is the object class of a reflective subcategory of C.

(P-Localization) Let P be a set of primes. Let Sp ={1}U{n>1:pe P =

is bijective V n € Sp.

pfn}—then a group G is said to be P-local if the map {5: C;:
GRp, the full subcategory of GR whose objects are the P-local groups, is a reflective

subcategory of GR. In fact, Ob GRp = S3, where now Sp stands for the set of homo-

morphisms { 217 (n € Sp). The reflector Lp : { GR = GRp is called P-localization.

1—n G—)Gp

P-localization need not preserve short exact sequences. For example, 1 — Az — S3 — S3/A3 — 1,

when localized at P = {3}, gives1 - A3 -1 —1 — 1.

A category C with finite products is said to be cartesian closed provided that each of
the functors —xY : C — C has a right adjoint Z — Z¥, so Mor (X xY, Z) ~ Mor (X, ZY).

The object ZY is called an exponential object. The evaluation morphism evy,z is the

morphism Z¥ x Y — Z such that for every f: X xY — Z there is a unique g : X — ZY
such that f =evy z o (g x idy).
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In a cartesian closed category:
ny;
(1) XVX7 5 (XYY (3 X0 =0

(3

(2) (I Xi)" ~TI(X); (4) X x(IIY:) = [I(X x Y3).

7 7 7

SET is cartesian closed but SETOF is not cartesian closed. TOP is not cartesian closed but does
have full, cartesian closed subcategories, e.g., the category of compactly generated Hausdorff spaces.

[Note: If C is cartesian closed and has a zero object, then C is equivalent to 1. Therefore neither
SET. nor TOP, is cartesian closed.]

CAT is cartesian closed: Mor (C x D,E) ~ Mor (C, EP), where EP = [D, E]. SISET is cartesian
closed: Nat(X x Y, Z) = Nat(X, ZY), where ZY ([n]) = Nat(Y x Aln], Z).

[Note: The functor ner : CAT — SISET preserves exponential objects.]

A monoidal category is a category C equipped with a functor ® : C x C — C (the

multiplication) and an object e € Ob C (the unit), together with natural isomorphisms R,
Rx : X®e—> X
Lx:e®@X — X
to the following assumptions.

(MC;) The diagram

L, and A, where { and Axyz: X® (Y ®Z) - (X®Y)Q® Z, subject

X®(Y®(Z®W))L(X@Y)@(Z@W)L((X@Y)@Z)®W

| [ 4sia

Xo(YoZ)oW) » (XY ®2)W

commutes.
(MCyz) The diagram

A
X@EY) ——(X®e) @Y

| [ et

X®Y XQ®Y

commutes.
[Note: The “coherency” principle then asserts that “all” diagrams built up from in-
stances of R, L, A (or their inverses), and id by repeated application of ® necessarily

commute. In particular, the diagrams

A A
eR(XY) — (e®X)8Y XY ®e) — (X QY)®e

1 s | I

X®Y X®Y XY XQ®Y
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commute and L, = R.: e ®@ e — e.]

Any category with finite products (coproducts) is monoidal: Take X @ Y tobe X II' Y (X IIY) and
let e be a final (initial) object. The category AB is monoidal: Take X ® Y to be the tensor product and
let e be Z. The category SET . is monoidal: Take X ® Y to be the smash product X#Y and let e be the

two point set.

A symmetry for a monoidal category C is a natural isomorphism T, where Txy :
XQY - Y®X, such that TY,XOTX,Y X QY - X®Y is the identity, Rx = LXOTX’S,

and the diagram

A T
X@Y®2Z) —(X0Y)9Z——Z®(XQY)

l [+

X@(Z0Y)——(X82)9Y ——(Z8X)8Y
®1

commutes. A symmetric monoidal category is a monoidal category C endowed with a

symmetry T. A monoidal category can have more than one symmetry (or none at all).
[Note: The “coherency” principle then asserts that “all” diagrams built up from in-
stances of R, L, A, T (or their inverses), and id by repeated application of ® necessarily

commute.]

Let C be the category of chain complexes of abelian groups; let D be the full subcategory of C whose

objects are the graded abelian groups. C and D are both monoidal: Take X ® Y to be the tensor product

X = {Xp}

and let e = {e,} be the chain complex defined by eg = Z and e, = 0 (n # 0). If { and if

= Yq
r € Xp ) XY Y X )
, then the assignment is a symmetry for C and there are no others.
y €Yy @y — (=) (y @ z)
. . XY Y ®X
By contrast, D admits a second symmetry, namely the assignment .
QU —>yYRx

A closed category is a symmetric monoidal category C with the property that each
of the functors —® Y : C — C has a right adjoint Z — hom(Y, Z), so Mor (X ® Y, 7) ~
Mor (X, hom(Y, Z)). The functor hom : COP x C — C is called an internal hom functor.
The evaluation morphism evy, z is the morphism hom(Y, Z) ® Y — Z such that for every
f:X®Y — Z there is a unique g : X — hom(Y, Z) such that f = evy z o (¢ ® idy).
Agreeing to write U, for the functor Mor (e,—) (which need not be faithful), one has
Ueohom =~ Mor. Consequently, X ~ hom(e, X) and hom(X®Y, Z) ~ hom (X, hom(Y, Z)).
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A cartesian closed category is a closed category. AB is a closed category but is not

cartesian closed.

TOP admits, to within isomorphism, exactly one structure of a closed category. For let X and Y

be topological spaces—then their product X ® Y is the cartesian product X X Y supplied with the final

{z} XY > X xY
topology determined by the inclusions (r € X,y €Y), the unit being the one point
X x{y}=>XxY

space. The associated internal hom functor hom(X,Y) sends (X,Y) to C(X,Y), where C(X,Y) carries

the topology of pointwise convergence.

Given a monoidal category C, a monoid in C is an object X € Ob C together with
morphisms m : X ® X — X and € : e - X subject to the following assumptions.
(MO;) The diagram

A mEid
XXX —(X0X)8X — > X®X

l [

XX s X

commutes.
(MO3) The diagrams

e®id id®e
eRX — XX XX +— X ®e
| [ | |m
X X X X

commute.
MONCc is the category whose objects are the monoids in C and whose morphisms
(X,m,e) = (X',m/ €) are the arrows f : X — X' such that fom = m' o (f ® f) and

foe=¢.
MONggT is the category of semigroups with unit. MION ppg is the category of rings with unit.

Given a monoidal category C, a left action of a monoid X in C on an object Y € Ob C

is a morphism [ : X ® Y — Y such that the diagram

A m®id e®id
XRXQY)—— (X®X)®Y —— XQY +—— eY

l L &

X®Y >y Y Y
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commutes.
[Note: The definition of a right action is analogous.]

LACTY is the category whose objects are the left actions of X and whose morphisms
(Y,1) — (Y',l") are the arrows f : Y — Y’ such that fol =10 (id ® f).

If X is a monoid in SET, then LACTx is isomorphic to the functor category [X,SET], X the

category having a single object * with Mor (x, %) = X.

A triple T = (T, m,€) in a category C consists of a functor T : C — C and natural
m € Nat(T o T, T)
¢ € Nat(idc, T)

(T1) The diagram

transformations { subject to the following assumptions.

mT
ToTol ——ToT

J &

ToT —— T

commutes.
(T2) The diagrams
eT Te
T—ToT ToT+—T
J{ J{m l lid

commute.

[Note: Formally, the functor category [C, C] is a monoidal category: Take F ® G to
be F'oG and let e be idg. Therefore a triple in C is a monoid in [C, C] (and a cotriple in
C is a monoid in [C, C]°T), a morphism of triples being a morphism in the metacategory
MON ¢ ¢.]

Given a triple T = (T, m,¢) in C, a T-algebra is an object X in C and a morphism
¢ : TX — X subject to the following assumptions.

(TA;) The diagram

T
T(TX)——TX

l Js

TX — X
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commutes.
(TAs) The diagram
X =, 7rx

Ll

X:X

commutes.

T-ALG is the category whose objects are the T-algebras and whose morphisms
(X, &) — (Y,n) are the arrows f : X — Y such that fof =noTf.

[Note: If T = (T, m,¢) is a cotriple in C, then the relevant notion is T-coalgebra and
the relevant category is T-COALG.]

Take C = AB. Let A € ObRG. Define T: AB - ABby TX = A® X, m € Nat(T o T,T) by

AR(A®RX) > AR X X >A®X
mx : , € € Nat(idap,T) by €x : —then T-ALG is isomorphic
a® (bzx) > ab®x

r—>1Qx
to A-MOD.

Every adjoint situation (F, G, u, v) determines a triple in C, viz. (G o F, GvF, i) (and
a cotriple in D, viz. (F oG, FuG,v)). Different adjoint situations can determine the same
triple. Conversely, every triple is determined by at least one adjoint situation, in general by
many. One realization is the construction of Eilenberg-Moore: Given a triple T = (T, m, ¢)
in C, call Fr the functor C — T-ALG that sends X Ly to (TX,mx) T—((TY, my ), call
Gt the functor T-ALG — C that sends (X, §)i>(Y, n) to X1>Y, put pux = ex, and

vix,¢) = {—then Fr is a left adjoint for G and this adjoint situation determines T.

Suppose that C = SET, D = MONggT. Let FF : C — D be the functor that sends X to the
free semigroup with unit on X—then F is a left adjoint for the forgetful functor G : D — C. The triple
determined by this adjoint situation is T = (T, m,¢€), where T : SET — SET assigns to each X the set

[e.9)
TX =|JX", mx : T(TX) — TX is defined by concatenation and ex : X — TX by inclusion. The

0
corresponding category of T-algebras is isomorphic to MONggT.

Let (F,G, u,v) be an adjoint situation. If T = (G o F,GVF,u) is the associated
triple in C, then the comparison functor ® is the functor D — T-ALG that sends Y to
(GY,Gry) and g to Gg. It is the only functor D — T-ALG for which ® o F = Fr and
Grod=40G.

Consider the adjoint situation produced by the forgetful functor TOP — SET—then T-ALG =
SET and the comparison functor TOP — SET is the forgetful functor.
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IC) , a functor G : D — C is said to be monadic (strictly monadic)
provided that GG has a left adjoint F' : C — D and the comparison functor ® : D — T-ALG

is an equivalence (isomorphism) of categories.

Given categories

In order that G be monadic, it is necessary that G be conservative. So, e.g., the forgetful functor
TOP — SET is not monadic. If D is the category of Banach spaces and linear contractions and if
G : D — SET is the “unit ball” functor, then G has a left adjoint and is conservative, but not monadic.
Theorems due to Beck, Duskin and others lay down conditions that are necessary and sufficient for a
functor to be monadic or strictly monadic. In particular, these results imply that if D is a “finitary
category of algebraic structures”, then the forgetful functor D — SET is strictly monadic. Therefore the
forgetful functor from GR, RG, ..., to SET is strictly monadic.

[Note: No functor from CAT to SET can be monadic.]

Among the possibilities of determining a triple T = (T, m,¢€) in C by an adjoint
situation, the construction of Eilenberg-Moore is “maximal”. The “minimal” construction
is that of Kleisli: KL(T) is the category whose objects are those of C, the morphisms
from X to Y being Mor (X, TY) with ex € Mor (X, T X) serving as the identity. Here, the

xLry
composition of ¢ y- - in KL(T) is mzoTgof (calculated in C). If Kt : C — KL(T)

g
is the functor that sends X %Y to X 3 TV and if L : KL(T) — C is the functor that

sends X 5TV to T X ™3 TY, then Kt is a left adjoint for Lt with arrows of adjunction
€x,1drx and this adjoint situation determines T.

[Note: Let G : D — C be a functor—then the shape of G is the metacategory
S whose objects are those of C, the morphisms from X to Y being the conglomerate
Nat(Mor (Y, G—), Mor (X, G—)). While ad hoc arguments can sometimes be used to show
that S¢g is isomorphic to a category, the situation is optimal when G has a left adjoint
F : C — D since in this case Sg is isomorphic to KL(T), T the triple in C determined
by F and G]

Consider the adjoint situation produced by the forgetful functor GR — SET—then KL(T) is

isomorphic to the full subcategory of GR whose objects are the free groups.

A triple T = (T, m,¢) in C is said to be idempotent provided that m is a natural
isomorphism (hence €' = m~! = Te). If T is idempotent, then the comparison functor
KL(T) — T-ALG is an equivalence of categories. Moreover, Gt : T-ALG — C is full,

faithful, and injective on objects. Its image is a reflective subcategory of C, the objects
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being those X such that ex : X — TX is an isomorphism. On the other hand, every
reflective subcategory of C generates an idempotent triple. Agreeing that two idempotent
triples T and T" are equivalent if there exists a natural isomorphism 7 : T — T” such that
¢/ = 17 oe (thus also 7om = m' o 7T" o TT), the conclusion is that the conglomerate of
reflective subcategories of C is in a one-to-one correspondence with the conglomerate of
idempotent triples in C modulo equivalence.

[Note: An idempotent triple T = (T, m, €) determines an orthogonal pair (S, D). Let
f X — Y be a morphism—then f is said to be T-localizing if there is an isomorphism
¢ : TX — Y such that f = ¢ oex. For this to be the case, it is necessary and sufficient
that f € S and Y € D. If C' is a full subcategory of C and if T/ = (T',m’,¢’) is an
idempotent triple in C’, then T (or T) is said to extend T' (or T") provided that S’ C S

and D' C D (in general, (S")t > D D (D)1, where orthogonality is meant in C).]

Let (F,G,pu,v) be an adjoint situation—then the following conditions are equivalent: (1) (G o
F,GvF,u) is an idempotent triple; (2) puG is a natural isomorphism; (3) (F o G, FuG,v) is an idem-
potent cotriple; (4) vF is a natural isomorphism. And: (1), ... ,(4) imply that the full subcategory C, of
C whose objects are the X such that px is an isomorphism is a reflective subcategory of C and the full
subcategory D, of D whose objects are the Y such that vy is an isomorphism is a coreflective subcategory

of D.

[Note: C,, and D, are equivalent categories.]

Given a category C and a class S C Mor C, a localization of C at S is a pair (S~!C,

Ls), where S71C is a metacategory and Lg : C — S~!C is a functor such that V s € S,
Lgs is an isomorphism, (S7'C, Lg) being initial among all pairs having this property,
i.e., for any metacategory D and for any functor F' : C — D such that V s € S, F's is
an isomorphism, there exists a unique functor F/ : S™'C — D such that F = F’ o Lg.
S—LC exists, is unique up to isomorphism, and there is a representative that has the same
objects as C itself. Example: Take C = TOP and let S C Mor C be the class of homotopy
equivalences—then S~1C = HTOP.

[Note: If S is the class of all morphisms rendered invertible by Lg (the saturation of
S), then the arrow S~1C — S 'Cisan isomorphism. |

Fix a class I which is not a set. Let C be the category whose objects are X, Y, and {Z; : ¢ € I} and
whose morphisms, apart from identities, are f; : X — Z; and g; : Y — Z;. Take S = {g; : ¢ € I}—then
S—1C is a metacategory that is not isomorphic to a category.

[Note: The localization of a small category at a set of morphisms is again small.]



0-31

Let C be a category and let S C Mor C be a class containing the identities of C and

closed with respect to composition—then S is said to admit a calculus of left fractions if

(LF1) Given a 2-source X' & X Ly (s € 5), there exists a commutative square
x Loy
g Lt, where ¢ € S;
X' — Y

(LF3) Given f,g: X - Y and s: X' — X (s € S) such that fos =gos,
there exists t : Y — Y’ (t € S) such that to f =tog.

[Note: Reverse the arrows to define “calculus of right fractions”.]

Let S C Mor C be a class containing the identities of C and closed with respect to composition such

that V (s,t) :tos € S & s € S = t € S—then S admits a calculus of left fractions if every 2-source
f

X — Y
X'EX i)Y (s € S) can be completed to a weak pushout square i lt, where t € S. For an
Xl ) Yl
fl

illustration, take C = HTOP and consider the class of homotopy classes of homology equivalences.

Let C be a category and let S C Mor C be a class admitting a calculus of left fractions.
Given X,Y € ObS~!C,Mor(X,Y) is the conglomerate of equivalence classes of pairs

(s, f) : XLY’@Y, two pairs {(s, 1) being equivalent iff there exist u,v € Mor C :

(t,9)

{zz: €9, withuos =votand uo f = vog. Every morphism in S™!C can be

represented in the form (Lss) 'Lgf and if Lgf = Lsg, then there is an s € S such that

sof=so0g.
[Note: S~1C is a metacategory. To guarantee that S~1C is isomorphic to a category,

it suffices to impose a solution set condition: For each X € Ob C, there exists a source
{s; : X = X[} (s; € S) such that for every s : X — X' (s € S), there is an 7 and a
u : X' — X/ such that uwos = s;. This, of course, is automatic provided that X\S, the
full subcategory of X\C whose objects are the s : X — X' (s € ), has a final object.]

If C is the full subcategory of HTOP. whose objects are the pointed connected CW complexes and
if S is the class of pointed homotopy classes of pointed n-equivalences, then S admits a calculus of left

fractions and satisfies the solution set condition.

Let (F,G, u,v) be an adjoint situation. Assume: G is full and faithful or, equivalently,
that v is a natural isomorphism. Take for S C Mor C the class consisting of those s such

that F's is an isomorphism (so F' = F' o Lg)—then {ux} C S and S admits a calculus
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of left fractions. Moreover, S is saturated and satisfies the solution set condition (in
fact, V X € ObC, X\S has a final object, viz. ux : X — GFX). Therefore S~1C is
isomorphic to a category and Lg : C — S~1C has a right adjoint that is full and faithful,
while F’ : S~1C — D is an equivalence.

[Note: Suppose that T = (T,m,e€) is an idempotent triple in C. Let D be the
corresponding reflective subcategory of C with reflector R : C — D, so T = 1 o R, where
t : D — C is the inclusion. Take for S C Mor C the class consisting of those f such
that T'f is an isomorphism—then S is the class consisting of those f such that Rf is an
isomorphism, hence S admits a calculus of left fractions, is saturated, and satisfies the
solution set condition. The Kleisli category of T is isomorphic to S~'C and T factors as

C — S71C —» D — C, the arrow S~'C — D being an equivalence.]

e S ={px} CMorC s-tc .
Let (F,G,u,v) be an adjoint situation. Put —then are isomor-

T ={vy} C MorD
F':S7'C—-T-'D
G :T7'D-> S 1c

G'oF' ~id
F'oG' ~id

s—1lc

F
phic to categories and { o induce functors { such that { , thus

T-1p
s-tc . . . . . . .
L are equivalent. In particular, when G is full and faithful, S—1C is equivalent to D (the saturation
T-'D
of S being the class consisting of those s such that F's is an isomorphism, i.e., S is the “S” considered

above).

Given a category C, a set U of objects in C is said to be a separating set if for every

I
pair X =Y of distinct morphisms, there exists a U € U and a morphism o : U — X such
g

that foo # goo. An object U in C is said to be a separator if {U} is a separating set, i.e.,
if the functor Mor (U,—) : C — SET is faithful. If C is balanced, finitely complete, and
has a separating set, then C is wellpowered. Every cocomplete cowellpowered category
with a separator is wellpowered and complete. If C has coproducts, then a U € ObC is a
separator iff each X € Ob C admits an epimorphism [[U — X.

[Note: Suppose that C is small—then the representable functors are a separating set
for [C,SET].]

Every nonempty set is a separator for SET. SET x SET has no separators but the set {(0, {0}), ({0},
@)} is a separating set. Every nonempty discrete topological space is a separator for TOP (or HAUS).
Z is a separator for GR and AB, while Z[t] is a separator for RG. In A-MOD, A (as a left A-module)

is a separator and in MOD-A, A (as a right A-module) is a separator.

Given a category C, a set U of objects in C is said to be a coseparating set if for
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S
every pair X XY of distinct morphisms, there exists a U € U and a morphism o : ¥ —
g

U such that o0 o f # 0 0g. An object U in C is said to be a coseparator if {U} is
a coseparating set, i.e., if the cofunctor Mor (—,U) : C — SET is faithful. If C is
balanced, finitely cocomplete, and has a coseparating set, then C is cowellpowered. Every
complete wellpowered category with a coseparator is cowellpowered and cocomplete. If C

has products, then a U € Ob C is a coseparator iff each X € Ob C admits a monomorphism
X —][U.

Every set with at least two elements is a coseparator for SET. Every indiscrete topological space
with at least two elements is a coseparator for TOP. Q/Z is a coseparator for AB. None of the categories

GR, RG, HAUS has a coseparating set.

SPECIAL ADJOINT FUNCTOR THEOREM Given a complete wellpowered category
D which has a coseparating set, a functor G : D — C has a left adjoint iff G preserves

limits.

A functor from SET,AB or TOP to a category C has a left adjoint iff it preserves limits and a

right adjoint iff it preserves colimits.

Given a category C, an object P in C is said to be projective if the functor Mor (P,—) :
C — SET preserves epimorphisms. In other words: P is projective iff for each epimor-
phism f : X — Y and each morphism ¢ : P — Y, there exists a morphism g : P — X
such that fog = ¢. A coproduct of projective objects is projective.

A category C is said to have enough projectives provided that for any X € ObC

there is an epimorphism P — X, with P projective. If a category has enough projectives
and a separator, then it has a projective separator. If a category has coproducts and a

projective separator, then it has enough projectives.

The projective objects in the category of compact Hausdorff spaces are the extremally disconnected
spaces. The projective objects in AB or GR are the free groups. The full subcategory of AB whose
objects are the torsion groups has no projective objects other than the initial objects. In A-MOD or
MOD-A4, an object is projective iff it is a direct summand of a free module (and every free module is a

projective separator).

Given a category C, an object @ in C is said to be injective if the cofunctor Mor (—, Q) :

C — SET converts monomorphisms into epimorphisms. In other words: () is injective
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iff for each monomorphism f : X — Y and each morphism ¢ : X — (), there exists a
morphism g : Y — @ such that g o f = ¢. A product of injective objects is injective.
A category C is said to have enough injectives provided that for any X € Ob C, there

is a monomorphism X — @, with @ injective. If a category has enough injectives and
a coseparator, then it has an injective coseparator. If a category has products and an

injective coseparator, then it has enough injectives.

The injective objects in the category of compact Hausdorff spaces are the retracts of products
I1[0,1]. The injective objects in the category of Banach spaces and linear contractions are, up to iso-
morphism, the C(X), where X is an extremally disconnected compact Hausdorff space. In AB, the
injective objects are the divisible abelian groups (and Q/Z is an injective coseparator) but the only injec-
tive objects in GR or RG are the final objects. The module Homz(A, Q/Z) is an injective coseparator
in A-MOD or MOD-A.

A zero object in a category C is an object which is both initial and final. The cat-
egories TOP,, GR, and AB have zero objects. If C has a zero object Oc (or 0), then
for any ordered pair X,Y € ObC there exists a unique morphism X — 0c — Y, the

zero morphism Oxy (or 0) in Mor (X,Y). It does not depend on the choice of a zero ob-

ject in C. An equalizer (coequalizer) of an f € Mor (X,Y) and Oxy is said to be a kernel
(cokernel) of f. Notation: ker f (coker f).

[Note: Suppose that C has a zero object. Let {X; : i € I'} be a collection of objects in
C for which [[ X; and [ ] X; exist. The morphisms d;; : X; — X; defined by { id, (i - j).

i i Ox,x,; (i # J)
then determine a morphism ¢ : [T X; — [[ X; such that pr; ot oin; = §;;. Example: Take
#(I) = 2—then this morphism can be a monomorphism (in TOP,), an epimorphism (in
GR), or an isomorphism (in AB).]

A pointed category is a category with a zero object.

Let C be a category with a zero object. Assume that C has kernels and cokernels.

Given a morphism f: X — Y, an image (coimage) of f is a kernel of a cokernel (cokernel

of a kernel) for f. Notation: imf (coim f). There is a commutative diagram

f
ker f > X »Y » coker f

Lo

coimf ——— imf,
f

where f is the morphism parallel to f. If parallel morphisms are isomorphisms, then C is

said to be an exact category.
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[Note: In general, f need be neither a monomorphism nor an epimorphism and f can
be a bimorphism without being an isomorphism.]

A category C that has a zero object is exact iff every monomorphism is the kernel
of a morphism, every epimorphism is the cokernel of a morphism, and every morphism
admits a factorization: f = g o h (g a monomorphism, h an epimorphism). Such a fac-
torization is essentially unique. An exact category is balanced; it is wellpowered iff it is
cowellpowered. Every exact category with a separator or a coseparator is wellpowered and
cowellpowered. If an exact category has finite products (finite coproducts), then it has

equalizers (coequalizers), hence is finitely complete (finitely cocomplete).

AB is an exact category but the full subcategory of AB whose objects are the torsion free abelian

groups is not exact. Neither GR nor TOP. is exact.

Let C be an exact category.
dn— L .
(EX) A sequence - -+ — X,,_1 = X, dn X1 — -+ is said to be exact provided
that imd,,_1 =~ ker d,, for all n.

[Note: A short exact sequence is an exact sequence of the form 0 - X' - X — X" —

0.]
(Ker-Coker Lemma) Suppose that the diagram

Xy Xo X3 0
| |£2 £
0 Y1 Ys Y3

is commutative and has exact rows—then there is a morphism ¢ : ker f3 — coker f;, the

connecting morphism, such that the sequence

ker fi — ker fo — ker f3 2 coker f1 — coker fo — coker f3

is exact. Moreover, if X; — X2 (Y2 — Y3) is a monomorphism (epimorphism), then
ker fi — ker fa (coker fo — coker f3) is a monomorphism (epimorphism).

(Five Lemma) Suppose that the diagram

X X5 X3 Xy X5
| |1 £ 41 I
Y1 Y Y3 Y, Ys

is commutative and has exact rows.
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(1) If fo and fy4 are epimorphisms and f5 is a monomorphism, then f3 is an
epimorphism.

(2) If fo and f4 are monomorphisms and f; is an epimorphism, then f3 is a
monomorphism.

(Nine Lemma) Suppose that the diagram

0 0 0
0 X' X X" 0
0 Y’ Y Y" 0
0 A A Z" 0
0 0 0

is commutative, has exact columns, and an exact middle row—then the bottom row is

exact iff the top row is exact.

In an exact category C, there are two short exact sequences associated with each morphism f : X —
. 0—>kerf—>X —coimf—0
Y, viz.

0—>imf—>Y—>c0kerf—>O.

An additive category is a category C that has a zero object and which is equipped with

a function 4 that assigns to each ordered pair f,g € Mor C having common domain and
codomain, a morphism f + ¢ with the same domain and codomain satisfying the following

conditions.
(ADD;) On each morphism set Mor (X, Y'), + induces the structure of an abelian

group.
folg+h)=(feog)+(foh)
(g+h)ok=(gok)+ (hok)’
(ADD3) The zero morphisms are identities with respect to +: 0+ f = f+0 = f.

(ADD2) Composition is distributive over + : {

An additive category has finite products iff it has finite coproducts and when this is

so, finite coproducts are finite products.

[Note: If C is small and D is additive, then [C, D] is additive.]
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AB is an additive category but GR is not. Any ring with unit can be viewed as an additive
category having exactly one object (and conversely). The category of Banach spaces and continuous linear

transformations is additive but not exact.

An abelian category is an exact category C that has finite products and finite co-

products. Every abelian category is additive, finitely complete, and finitely cocomplete.
A category C that has a zero object is abelian iff it has pullbacks, pushouts, and ev-

ery monomorphism (epimorphism) is the kernel (cokernel) of a morphism. In an abelian
n n
category, t : [[ X; — [] X is an isomorphism.

i=1 i=1
[Note: If C is small and D is abelian, then [C, D] is abelian.]

AB is an abelian category, as is its full subcategory whose objects are the finite abelian groups but

there are full subcategories of AB which are exact and additive, yet not abelian.

A Grothendieck category is a cocomplete abelian category C in which filtered colimits

commute with finite limits or, equivalently, in which filtered colimits of exact sequences
are exact. Every Grothendieck category with a separator is complete and has an injective
coseparator, hence has enough injectives (however there exist wellpowered Grothendieck
categories that do not have enough injectives). In a Grothendieck category, every fil-
tered colimit of monomorphisms is a monomorphism, coproducts of monomorphisms are

monomorphisms, and ¢ : [[ X; — [[ X; is a monomorphism.

[Note: If C is small and D is Grothendieck, then [C, D] is Grothendieck.]

AB is a Grothendieck category but its full subcategory whose objects are the finitely generated
abelian groups, while abelian, is not Grothendieck. If A is a ring with unit, then A-MOD and MOD-A

are Grothendieck categories.

]C) , a functor F': C — D is said to be left exact (right exact)
if it preserves kernels (cokernels) and exact if it is both right and left exact. F' is left exact

Given exact categories

(right exact) iff for every short exact sequence 0 — X’ — X — X" — 0 in C, the sequence
0—-FX - FX - FX" (FX' 5 FX - FX" — 0) is exact in D. Therefore F' is exact
iff F' preserves short exact sequences or still, iff F' preserves arbitrary exact sequences.

[Note: F'is said to be half exact if for every short exact sequence 0 — X' — X —
X" — 0 in C, the sequence FX' — FX — FX" is exact in D.]

The projective (injective) objects in an abelian category are those for which Mor (X,—)(Mor (—, X))
is exact. In AB, X ® — is exact iff X is flat or here, torsion free. If I is small and filtered and if C is

Grothendieck, then colim : [I, C] — C is exact.
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Given additive categories { g , a functor F' : C — D is said to be additive if for all

X,Y € ObC, the map Mor (X,Y) — Mor (F X, FY) is a homomorphism of abelian groups.
Every half exact functor between abelian categories is additive. An additive functor be-
tween abelian categories is left exact (right exact) iff it preserves finite limits (finite co-

limits). The additive functor category [C, D]* is the full submetacategory of [C, D] whose

Cc°" - [C,AB]t
oP + - If

C - [C”",AB]

C and D are abelian categories with C small, if K : C — D is additive, and if S is a

complete (cocomplete) abelian category, then there is an additive version of Kan extension
C,S)*

D, S]* -
forgetting the additive structure.

objects are the additive functors. There are Yoneda embeddings

applicable to { The functors produced need not agree with those obtained by

Let A be a ring with unit viewed as an additive category having exactly one object—then A-MOD
is isomorphic to [A, AB]T and MOD-A4 is isomorphic to [A°F, AB]+.
[Note: A right A-module X and a left A-module Y define a diagram A°F x A — AB (tensor product

A
over Z) and the coend / X®Y is X ®4Y, the tensor product over A.]

If C is small and additive and if D is additive, then
(1) D finitely complete and wellpowered (finitely cocomplete and cowellpowered)
= [C, D]* wellpowered (cowellpowered);
(2) D (finitely) complete = [C, D]* (finitely) complete and D (finitely) cocom-
plete = [C, D] " (finitely) cocomplete;
(3) D abelian (Grothendieck) = [C, D] abelian (Grothendieck).
[Note: Suppose that C is small. If C is additive, then [C, AB|" is a complete
Grothendieck category and if C is exact and additive, then [C, AB]T has a separator
which as a functor C — AB is left exact.]

Given a small abelian category C and an abelian category D, write LEX(C, D) for the

full, isomorphism closed subcategory of [C, D]* whose objects are the left exact functors.

DERIVED FUNCTOR THEOREM If C is a small abelian category and if D is
a wellpowered Grothendieck category, then LEX(C,D) is a reflective subcategory of
[C,D]*. As such, it is Grothendieck. Moreover, the reflector is an exact functor.

[Note: The reflector sends F' to its zeroth right derived functor RF.]

If C is a small abelian category, then LEX(C, AB) is a Grothendieck category with
a separator. Therefore LEX(C, AB) has enough injectives. Every injective object in
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LEX(C, AB) is an exact functor. The Yoneda embedding C°F — [C, AB|* is left exact.
It factors through LEX(C, AB) and is then exact.

[Note: Since C is abelian, every object in [C, AB|T is a colimit of representable
functors and every object in LEX(C, AB) is a filtered colimit of representable functors.
Thus LEX(C, AB) is equivalent to IND(C®?) and so LEX(C, AB)°F is equivalent to
PRO(C).]

The full subcategory of AB whose objects are the finite abelian groups is equivalent to a small
category. Its procategory is equivalent to the opposite of the full subcategory of AB whose objects are

the torsion abelian groups.

Given an abelian category C, a nonempty class C C Ob C is said to be a Serre class
provided that for any short exact sequence 0 — X’ — X — X” — 0in C, X € C iff
X' X7
X” X//
X eC.

[Note: Since C is nonempty, C contains the zero objects of C.]

€ C or, equivalently, for any exact sequence X’ — X — X" in C, { €eC =

Given an abelian category C with a separator and a Serre class C, let S¢ C Mor C
be the class consisting of those s such that ker s € C and coker s € C—then S¢ admits a
calculus of left and right fractions and S¢ = S¢, i.e., Sc is saturated. The metacategory
S 1C is isomorphic to a category. As such, it is abelian and Ls. : C — Sg 1C is exact
and additive. An object X in C belongs to C iff Lg, X is a zero object. Moreover, if D is
an abelian category and F' : C — D is an exact functor, then F' can be factored through
Lg, iff all the objects of C are sent to zero objects by F'.

[Note: Suppose that C is a Grothendieck category with a separator U—then for any
Serre class C, Lg, : C — S, 1C has a right adjoint iff C is closed under coproducts, in

which case S; 'C is again Grothendieck and has Ls,U as a separator.]

Take C = AB and let C be the class of torsion abelian groups—then C is a Serre class and SCTlC is
equivalent to the category of torsion free divisible abelian groups or still, to the category of vector spaces

over Q.

Given a Grothendieck category C with a separator, a reflective subcategory D of C

is said to be a Giraud subcategory provided that the reflector R : C — D is exact. Every

Giraud subcategory of C is Grothendieck and has a separator. There is a one-to-one
correspondence between the Serre classes in C which are closed under coproducts and the

Giraud subcategories of C.
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[Note: The Gabriel-Popescu theorem says that every Grothendieck category with a
separator is equivalent to a Giraud subcategory of A-MOD for some A.]

Attached to a topological space X is the category OP(X) whose objects are the open subsets of X
and whose morphisms are the inclusions. The functor category [OP(X)OF AB] is the category of abelian
presheaves on X. Tt is Grothendieck and has a separator. The full subcategory of [OP(X)°F, AB] whose

objects are the abelian sheaves on X is a Giraud subcategory.

Fix a symmetric monoidal category V—then a V-category M consists of a class
O (the objects) and a function that assigns to each ordered pair X, Y € O an object
HOM(X,Y) in V plus morphisms Cx y z : HOM(X,Y) ® HOM(Y, Z) — HOM(X, Z2),
Ix : e - HOM(X, X) satisfying the following conditions.
(V-caty) The diagram

HOM(X,Y) ® (HOM(Y, Z) ® HOM(Z, W)) —42< L HOM(X,Y) ® HOM(Y, W)

A
(HOM(X,Y) @ HOM(Y, 7)) ® HOM(Z, W) c
C®id
HOM(X, Z) @ HOM(Z, W) 5 HOM(X, W)
commutes.
(V-cate) The diagram
e® HOM(X,Y) —% — S HOM(X,Y) «—& — HOM(X,Y)®e

I®idt H ‘/id@[

HOM(X, X) ® HOM(X,Y) —— HOM(X,Y) «+—— HOM(X,Y) ® HOM(Y,Y)

commutes.

[Note: The opposite of a V-category is a V-category and the product of two V-
categories is a V-category.]

The underlying category UM of a V-category M has for its class of objects the class O,
Mor (X, Y") being the set Mor (e, HOM(X,Y')). Composition Mor (X,Y’) x Mor (Y, Z) —
Mor (X, Z) is calculated from e ~ e ® efﬂHOM(X, Y) ® HOM(Y, Z) — HOM(X, Z),
while I'x serves as the identity in Mor (X, X).

[Note: A closed category V can be regarded as a V-category (take HOM(X,Y) =
hom(X,Y)) and UV is isomorphic to V]
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Every category is a SET-category and every additive category is an AB-category.

A morphism F : V — W of symmetric monoidal categories is a functor F' : V — W, a morphism

€:e — Fe, and morphisms Tx y : FX ® FY — F(X @ Y) natural in X, Y such that the diagrams

T

Fe® FX —X— F(e ® X) FX®Fe —X S F(X®e)
e®id)l\ ‘/FL id®€‘ ‘/FR
c® FX ———— FX FX®e———— FX
FX®(FY® FZ) —2— (FX®FY)® FZ
idT T®id
FX®F(Y ® Z) F(X®Y)®FZ
T T

F(X®(Y®Z) TF((X RY)R® Z)
commute with FTx yoTxy =Ty,x o T Fx,Fy-
Example: Given a symmetric monoidal category V, the representable functor Mor (e, —) determines
a morphism V — SET of symmetric monoidal categories.
Let FF: V — W be a morphism of symmetric monoidal categories. Suppose that M is a V-category.
Definition: FyM is the W-category whose object class is O, the rest of the data being FHOM(X,Y),
FHOM(X,Y)® FHOM(Y, Z) 5 F(HOM(X, Y)®9HOM(Y, 2)) =5 FHOM(X, Z), e -5 Fe S FHOM(X, X).

[Note: Take W = SET and F = Mor (e,—) to recover UM.]

Fix a symmetric monoidal category V. Suppose given V-categories M, N—then a
V-functor F' : M — N is the specification of a rule that assigns to each object X in M an
object F'X in N and the specification of a rule that assigns to each ordered pair X, Y € O
a morphism Fxy : HOM(X,Y) - HOM(FX, FY) in V such that the diagram

HOM(X,Y) ® HOM(Y, Z) ——<— - HOM(X, Z)
FX,Y®FY,Z‘/ ‘/Fx,z

HOM(FX, FY) @ HOM(FY, FZ) —=— HOM(FX, FZ)

commutes with Fx x o Ix = Irx.
[Note: The underlying functor UF : UM — UN sends X to FX and f : e —

HOM(X,Y) to Fx,y o f.]
Example: HOM : MOF x M — V is a V-functor if V is closed.
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A V-category is small if its class of objects is a set; otherwise it is large. V-CAT,

the category of small V-categories and V-functors, is a symmetric monoidal category.

(13 Pk

Take V = AB—then an additive functor between additive categories “is” a V-functor.

Fix a symmetric monoidal category V. Suppose given V-categories M, N and V-

—

functors F,G : M — N—then a V-natural transformation = from F' to G is a class of
morphisms Zx : e - HOM(F X, GX) for which the diagram

e ® HOM(X, V) 2229, HOM(FX, GX) ® HOM(GX, GY)

L=t C
HOM(X, Y) HOM(FX, GY)
R~! c

HOM(X,Y) ® e ——=— HOM(F X, FY) ® HOM(FY, GY)

commutes.

Assume that V is complete and closed. Let M, N be V-categories with M small—then the category

V[M, N] whose objects are the V-functors M — N and whose morphisms are the V-natural transfor-

mations is a V-category if HOM(F,G) = /HOM(FX,GX), the equalizer of || HOM(FX,GX)3
X Xeo
[[ hom(HOM(X', X"),HOM(FX',GX")).
XI,XHEO

Let C be a category with pullbacks—then an internal category (or a category object)
in C consists of an object M, an object O, and morphisms s : M — O, t : M — O,

e: 0 — M, c: MxoM — M satisfying the usual category theoretic relations (here,
MxoM — M
i it) Notation: M = (M, O, s, t, e, c).
M — O
[Note: Tﬁere are obvious notions of internal functor and internal natural transforma-

tion.]

An internal category in SET is a small category. An internal category in SISET is a simplicial
object in CAT.

An internal category in CAT is a (small) double category.

[Note: Spelled out, such an entity consists of objects X,Y, ..., horizontal morphisms f,g,..., ver-

tical morphisms ¢, 1, ..., and bimorphisms (represented diagramatically by squares). The objects and
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h
the horizontal morphisms form a category with identities X X X. The objects and the vertical mor-
X

phisms form a category with identities “XJ{ . The bimorphisms have horizontal and vertical laws of

X
° — e
e —3 o —3 e l l
composition l l l e —— e under which they form a category with identities
e — o —3 l l
° — e
e — o —> o
X hi> X x Ly l l l
6| idy |#,vx| idy [vv . Inthesituation ¢ —3 e —3 e, the result of composing
Y ? Y X T> Y l l l

. — e — e
horizontally and then vertically is the same as the result of composing vertically and then horizontally.

Furthermore, horizontal composition of vertical identities gives a vertical identity and vertical compo-
sition of horizontal identities gives a horizontal identity. Finally, the horizontal and vertical identities

h h
X = X X = x

vx| idey  |vx, x| idny  |"X  coincide.]
X — X X — X
hx hx
Example: Let C be a small category—then db C is the double category whose objects are those of
C, whose horizontal and vertical morphisms are those of C, and whose bimorphisms are the commutative

squares in C. All sources, targets, identities, and compositions come from C.

Let C be a category with pullbacks. Given an object O in C, an O-graph is an object
A and a pair of morphisms s,t : A — O. O-GR is the category whose objects are the
O-graphs and whose morphisms (A, s,t) — (A’,s’,t') are the arrows f : A — A’ such that

Axpo Al — A
s=sof,t=tof. If Axp A" is defined by the pullback square l lt' and
A — O

if the structural morphisms are A xp A" — A’ LN 0, AxpA'— A N O, then A xp A’ is an
O-graph. Therefore O-GR . is a monoidal category: Take A ® A’ to be A xp A’ and let e

be (0,idp,idp). A monoid M in O-GR is an internal category in C with object element
0.
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Let C be a category with pullbacks. Given an internal category M in C, the nerve
ner M of M is the simplicial object in C defined by neroM = O, neryM = M, ner, M =

M xo -+ Xxo M (n factors). At the bottom, {ZO : neryM — nergM is i, while
1

higher up, in terms of the underlying projections, dy = (71,... ,Tn-1), dn = (T2,... , Tn),

di = (m1,...,c0 (Tp—i,Tn—it1),---,Tn) (0 < i < n), and at the bottom, sp : nerpM —

ner;M is e, while higher up, s; = e; o g;, where o; inserts O at the n — ¢+ 1 spot and e; is
id Xp -+ Xp e XxXp -+ X0 id placed accordingly (0 < i < n).
[Note: An internal functor M — M’ induces a morphism ner M — ner M’ of simplicial

objects.]

Suppose that C is a small category. Consider ner C—then an element f of ner, C is a diagram of

oo
the form Xo 8 X1 = -+ — Xp_1 "3 X,, and

fiofi—1 .
d;f = Xo— > X1 Xiy1 == Xy (O<z<n),

Xo—> = Xp1 (i=n)

idy .
sif=Xo—--—X; —5X; > --- = X,. The abstract definition thus reduces to these formulas since

f corresponds to the n-tuple (frn—1,..., fo).

Let C be a category with pullbacks. Given an internal category M in C, a left M-object
is an object T : Y — O in C/O and a morphism A : M xo Y — Y such that

MXOMXOYﬂMXOYMOXOY

MXOY%Y: Y

MxoY 25 Y
and l lT commute, where M X Y is defined by the pullback square
M - 0]
MxpY — Y
J, l,T . Example: Take C = SET—then M is a small category and the
M — 0]
category of left M-objects is equivalent to the functor category [M, SET].
[Note: A right M-object is an object S : X — O in C/O and a morphism p :
X Xo M — X such that the analogous diagrams commute, where X xo M is defined
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XXoM — M

by the pullback square | It Example: Take C = SET—then M is a
small category and the category of right M-objects is equivalent to the functor category
MO SET].]

Let C be a category with pullbacks. Given an internal category M in C and a
left M-object Y, the translation category tranY of Y is the category object My =

(My,Oy,sy,ty,ey,cy) in C, where My = M Xo Y,Oy = Y,sy is the projection
M xpoY =Y, ty isthe action \: M xpo Y — Y, and ey, cy are derived frome: O — M,
c: MxpoM — M. Example: Take C = SET, let M be a small category, and suppose that
G : M — SET is a functor—then G determines a left M-object Y and the translation
category of Yg can be identified with the Grothendieck construction on G.

Let G be a semigroup with unit, G the category having a single object * with Mor (*,*) = G.
Suppose that Y is a left G-set, i.e., an object in LACT¢g or still, a left G-object. The translation
category of Y is (G x Y,Y,sy,ly,ey,cy), where sy (g,y) =y, ty(9,¥) = 9-y, exy (v) = (&,y), cy (92, y2),
(91,y1)) = (9291, y1). Specialize and let Y = G—then the objects of the translation category of G are the
elements of G and Mor (g1, 92) ~ {g: 991 = g2}.

Let C be a category with pullbacks. Given an internal category M in C, and a
right M-object X and a left M-object Y, the bar construction bar(X;M;Y) on (X,Y)
is the simplicial object in C defined by bar,(X;M;Y) = X xo ner, M xo Y. Note that
p appears only in d,, and A appears only in dy. The translation category tran(X,Y’) of

(X,Y) is the category object Mxy = (Mx,y,Ox,y,sx,y,txy,ex,y,cx,y) in C, where
Mxy = X xXoM xo0Y,Oxy = X X0 Y,sxy = p xo idy,txy = idx xo Aexy &
cxy being definable in terms of e & c. Therefore bar(X; M;Y) ~ ner Mx y. Example:
O can be viewed as a right M-object via O X ME M50 and as a left M-object via
M xo O Emt O, and M can be viewed as a right M-object via M xo M -5 M = O and
as a left M-object via M XOM—C>Mi>O, so bar(O; M; O), bar(O; M; M), bar(M; M; O),
bar(M;M; M) are meaningful.

Let G be a group, G the groupoid having a single object * with Mor (x,%*) = G. View G as a
left G-set—then bar(x; G; G) is isomorphic to the nerve of grdG. In fact, the objects of grdG are the
elements of G and the morphisms of grdG are the elements of G x G (s(g,h) = g, t(g,h) = h, idg = (g,9),
(h,k)o(g,h) = (g, k)), thus ner,, grdG = Gx---xG (n+1 factors) and d;(go, .- »gn) = (90> -+ » Gir+ -+ Gn)s
3i(goy--- ,9n) = (90y--- ,9i,gis--- ,gn). On the other hand, bar(x; G; G) is the nerve of the translation
category of G. The functor tranG — grdG which is the identity on objects and sends a morphism (g, h)
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in tranG to the morphism (h, g - h) in grdG induces an isomorphism ner tranG — ner grdG of simplicial

sets. For (go,...,9n) = (9n,9n—19n,..- 90" gn) is the arrow ner, tranG — nerp grdG, its inverse
being (go,.-. s gn) — (gng;il,gn_lg;iw ... ,90). Both nertranG and ner grdG are simplicial right G-
sets, viz. (go,.--,9n) -9 = (go,-.- ,9ng) and (go,..- ,9n) - 9 = (gog,--- ,gng), and the isomorphism

ner tranG — ner grdG is equivariant.

Let T = (T, m,¢€) be a triple in a category C—then a right T-functor in a category V

is a functor F' : C — V plus a natural transformation p : F'oT — F' such that the diagrams
FoToT L For F- e . For

Fm l l p, \lp commute and a left T-functor in a category U is
F

FOT 7} F

a functor G : U — C plus a natural transformation A : T'o G — G such that the diagrams

ToToG 5 ToG _—C.Toq

m@ | I, \lx commute. The bar construction bar(F';T;G) on

ToG T> G e
(F,G) is the simplicial object in [U, V]| defined by bar,(F;T;G) = F oT™ o G, where
do = pT" G, d; = FT* " 'mT""1G (0 <i < n), d, = FT" ')\, and s5; = FT'eT™"'@.
In particular: bary(F; T;G) = FoToG, barg(F; T;G) = FoG, and dy,dy : FoToG — FoG
are pG, FA, while so: FoG — FoT oG is FeQ.

Example: If X is a T-algebra in C with structural morphism & : TX — X, then X

determines a left T-functor G : 1 — C and one writes bar(F’; T; X) for the associated bar

construction.

Take V=C, F =T, p=m, and put 7 = €I'G (thus 7 : ToG — T oT o G). There is a commutative

diagram
ToG A G
\ ‘y
ToToG’LToG’
‘/mG )\\
ToG G

A

from which it follows that A : T o G — G is a coequalizer of (do,d1) = (mG,TA). Consider the string
d . d A, eG E

of arrows To TP 0 GI3T oT" 1 0G = -+ 3 ToToGI3ToGSGSEToG3ToToG — -+ —

ToT" 1oG8ToToG. Viewing G as a constant simplicial object in [AOP, [C, V]], there are simplicial

morphisms G — bar(T; T; G), bar(T; T;G) = G, viz. s{oeG : G = ToT" oG, Aod} : ToT" oG — G, and

the composition G — bar(T; T; G) — G is the identity. On the other hand, if h; : ToT™" oG — ToT"t1oG
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is defined by h; = s} (eT™~*T1G)di (0 < i < n), thendpoho =id, dp41 0 hn = s} 0eGoXodl, and

hj—1odi (i <j)
diohj: d;oh;_1 (i:j>0)a5ioh_j:

{hj+108i (i <J)
hjodi_l (i>j+1)

hjosic1 (i>])

[Note: Take instead U = C, G =T, A = m—then with 7 = FTe, p: FoT — F is a coequalizer of

(d1,do) = (F'm, pT) and the preceding observations dualize.]
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1. COMPLETELY REGULAR HAUSDORFF SPACES

The reader is assumed to be familiar with the elements of general topology. Even so,
I think it best to provide a summary of what will be needed in the sequel. Not all terms
will be defined; most proofs will be omitted.

Let X be a locally compact Hausdorff space (LCH space).

PROPOSITION 1 A subspace of X is locally compact iff it is locally closed, i.e., has
the form A N U, where A is closed and U is open in X.

The class of nonempty LCH spaces is closed under the formation in TOP of finite products and
arbitrary coproducts.
[Note: An arbitrary product of nonempty LCH spaces is a LCH space iff all but finitely many of the

factors are compact.]

In practice, various additional conditions are often imposed on a LCH space X. The

connections among the most common of these can be summarized as follows:

/ metrizable paracompact —— normal

compact metrizable

compact o-compact

\Lindeléf /

EXAMPLE Let Q be the first uncountable ordinal and consider [0, Q] (in the order topology)—
then [0, Q] is Hausdorff. And: (i) [0,€] is compact but not metrizable; (ii) [0, Q[ is locally compact and

normal but not paracompact; (iii) [0, Q] x [0, [ is locally compact but not normal.

Here are some important points to keep in mind.

(LCH;) X is completely regular, i.e., X has enough real valued continuous func-
tions to separate points and closed sets in the sense that for every point z € X and for every
closed subset A C X not containing z, there exists a continuous function ¢ : X — [0, 1]
such that ¢(z) =1, ¢|A = 0.

(LCH2) X is o-compact iff X possesses a sequence of exhaustion, i.e., an in-

creasing sequence {U, } of relatively compact open sets U,, C X such that U, C Un+1 and
X =UU,.
n
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(LCHj3) X is paracompact iff X admits a representation X = [] X;, where the
i

X, are pairwise disjoint nonempty open o-compact subspaces of X.
(LCHy4) X is second countable iff X is o-compact and metrizable.
(a) If X is metrizable, then X is completely metrizable.

(b) If X is metrizable and connected, then X is second countable.

Let X be a topological space—then a collection S = {S} of subsets of X is said to be:

point finite if each x € X belongs to at most finitely many S € S;

neighborhood finite if each x € X has a neighborhood meeting at most finitely many
S eSs;

discrete if each x € X has a neighborhood meeting at most one S € S.
point finite
A collection which is the union of a countable number of ¢ neighborhood finite
discrete

subcollections is said to be
o-point finite
o-neighborhood finite
o-discrete.

A collection S = {S} of subsets of X is said to be closure preserving if for every subcollection Sy C S,

UEO = USU’ So the collection {S: S € Sp}.

A collection which is the union of a countable number of closure preserving subcollections is said to

be o-closure preserving.

Every neighborhood finite collection of subsets of X is closure preserving but the converse is certainly
false since any collection of subsets of a discrete space is closure preserving. A point finite closure preserving
closed collection is neighborhood finite. However, this is not necessarily true if “closed” is replaced by

“open” as can be seen by taking X =[0,1], S = {]0,1/n[: n € N}.

Let S = {S} be a collection of subsets of X. The order of a point z € X with respect
to S, written ord(z, S), is the cardinality of {S € S : x € S}. S is of finite order if ord(S) =

sup ord(z,S) < w. The star of a subset Y C X with respect to S, written st(Y,S), is the
zeX
set J{S€S:5NY #0}. Sis star finite if V Sp € S: #{S € S: SN Sy # 0} < w.

Suppose that U = {U; : i € I} is a covering of X—then a covering V = {V; : j € J}

of X is a refinement (star refinement) of U if each V; (st(V},V)) is contained in some U;

and is a precise refinement of U if I = .J and V; C U; for every i. If U admits a point finite

(open) or a neighborhood finite (open, closed) refinement, then & admits a precise point

finite (open) or neighborhood finite (open, closed) refinement.
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To illustrate the terminology, recall that if X is metrizable, then every open covering
of X has an open refinement that is both neighborhood finite and o-discrete.
Let X be a completely regular Hausdorff space (CRH space).
(C) X is compact iff every open covering of X has a finite (neighborhood finite,
point finite) subcovering.
(P) X is paracompact iff every open covering of X has a neighborhood finite
open (closed) refinement.
(M) X is metacompact iff every open covering of X has a point finite open

refinement.

The following conditions are equivalent to paracompactness.
(P1) Every open covering of X has a closure preserving open refinement.
(P2) Every open covering of X has a o-closure preserving open refinement.
(P3) Every open covering of X has a closure preserving closed refinement.
)

(P4) Every open covering of X has a closure preserving refinement.

PROPOSITION 2 A LCH space X is paracompact iff every open covering of X has
a star finite open refinement.

[Suppose that X is paracompact. Given an open covering U = {U;} of X, choose a
relatively compact open refinement V = {V;} of U such that each Vj is contained in some

U;—then every neighborhood finite open refinement of V is necessarily star finite.|

A collection S = {S} of subsets of a CRH space X is said to be directed if for all S1, S2 € S, there
exists S3 € S such that S1 U S2 C S3.

The following condition is equivalent to metacompactness.

(M)p Every directed open covering of X has a closure preserving closed refinement.

Given an open covering U of X, denote by U the collection whose elements are the unions of the finite
subcollections of /—then UF is directed and refines U if U itself is directed. So the above characterization
of metacompactness can be recast:

(M)r For every open covering U of X, Ur has a closure preserving closed refinement.

It is therefore clear that a LCH space X is metacompact iff X admits a representation X = UKi’

2
where {K;} is a closure preserving collection of compact subsets of X.

A CRH space X is said to be subparacompact if every open covering of X has a

o-discrete closed refinement.
[Note: This definition is partially suggested by the fact that X is paracompact iff

every open covering of X has a o-discrete open refinement.|
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Suppose that X is subparacompact. Let &/ = {U} be an open covering of X —then U

has a closed refinement A = | J A,,, where each A,, is discrete. Every A € A,, is contained

in some Uy € U. The collectign
Vi ={Ua—(UA, —A): Ac A} U{U —UA, : U € U}
is an open refinement of «f and V z € X I n, : ord(z,V,,) = 1.

FACT X is subparacompact iff every open covering of X has a o-closure preserving closed refinement.

A CRH space X is said to be submetacompact if for every open covering 4 of X there

exists a sequence {V,,} of open refinements of ¢ such that V x € X In, : ord(z,V,,) < w.

FACT X is submetacompact iff every directed open covering of X has a o-closure preserving closed

refinement.

These properties are connected by the implications:

metacompact ——— submetacompact
compact —— paracompact

subparacompact

Each is hereditary with respect to closed subspaces and, apart from compactness,
each is hereditary with respect to F,-subspaces (and all subspaces if this is so of open

subspaces).

EXAMPLE (The Thomas Plank) Let Lo = {(2,0) : 0 < £ < 1} and for n > 1, let L, =
(e.9)
{(z,1/n) : 0 <z < 1}. Put X = |JL,. Topologize X as follows: For n > 1, each point of Ly except

for (0,1/n) is isolated, basic neighboorhoods of (0,1/n) being subsets of L, containing (0,1/n) and having
finite complements, while for n = 0, basic neighborhoods of (z,0) are sets of the form {(z,0)}U{(z,1/m) :
m >n} (n=1,2,...). X is a LCH space. Moreover, X is metacompact: Every open covering of X has
an open refinement consisting of one basic neighborhood for each x € X and any such refinement is point
finite since the order of each x € X with respect to it is at most three. But X is not paracompact. In
fact, X is not even normal: A = {(0,1/n) : n = 1,2,...} and B = Lg are disjoint closed subsets of X
and every neighborhood of A contains all but countably many points of Ej L,,, while every neighborhood

1
o]

of B contains uncountably many points of U Ly. Finally, X is subparacompact. This is because X is a

1
countable union of closed paracompact subspaces.



1-5

EXAMPLE (The Burke Plank) Take X = [0,QF[x[0,QF[—{(0,0)}, QT the cardinal successor of
Q. For 0 < a < Q7F, put

Hy = [0,Q7[x{a}
Vo = {a} x [0,Q7F].
Topologize X as follows: Isolate all points except those on the vertical or horizontal axis, the basic neigh-

(0, ) . H . . 0,a) . .

being the subsets of containing and having finite complements.
(a,0) Va (a,0)
X is a metacompact LCH space. But X is not subparacompact. To see this, first observe that if S and

borhoods of {

T are subsets of X such S N H, and T NV, are countable for every a@ < Q7F, then X # SUT. Let
U={Ha:0<a<QT}U{Vs:0<a<QFT} Uis an open covering of X and the claim is: U does not
have a o-discrete closed refinement V = UVn. To get a contradiction suppose that such a V does exist.

n
Let S, and Ty, be the elements of V,, which are contained in {Hy : 0 < a < QF} and {V, : 0 < a < Q1},

) ) S=uUsS, Sn = USn .
respectively—then V,, = S, U Tp,. Write n , where . Since the V), are

discrete, S N Hy and T N V, are countable for ev%ry a < QF, thus X # SUT = UV and so V does not
cover X.
[Note: Why does one work with QT rather than Q? Reason: In general, if the weight of X is < €,

then X is subparacompact iff X is submetacompact.]

EXAMPLE (Isbell-Mréwka Space) Let D be an infinite set. Choose a maximal infinite collection S

of almost disjoint countably infinite subsets of D, almost disjoint meaning that V S1 # S2 € S, #(S1NS2) <
w. Observe that S is uncountable. Put ¥(D) = S U D. Topologize ¥(D) as follows: Isolate the points of
D and take for the basic neighborhoods of a point S € S all sets of the form {S} U (S — F), F a finite
subset of S. ¥(D) is a LCH space. In addition: S is closed and discrete, while D is open and dense.
Specialize and let D = N—then X = ¥(N) is subparacompact, being a Moore space (cf. p. 1-17), but is
not metacompact. In fact, since S is uncountable, the open covering {N}U{{S}US : S € S} cannot have
a point finite open refinement.

[Note: The Isbell-Mréwka space ¥(N) depends on S. Question: Up to homeomorphism how many

distinct U(IN) are there? Answer: 22w.]

The coproduct of the Burke plank and the Isbell-Mréwka space provides an example of a submeta-

compact X that is neither metacompact nor subparacompact.

EXAMPLE (The van Douwen Line) The object is to equip X = R with a first countable, separable

topology that is finer than the usual topology (hence Hausdorff) and under which X = R is locally compact
but not submetacompact. Given x € R, choose a sequence {gn(z)} C Q such that |z — gn(z)| < 1/n.
Next, let {Cy : @ < 2¢} be an enumeration of the countable subsets C of R with #(Cy) = 2¢. For
a<2¥ N=0,1,2,..., pick inductively a point

:CaNGﬁa—(QU{xﬂM:ﬁ<a0r,8:aandM<N}).
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So ={Ta0 1 a < 2¥}
SN ={zan :a<2¥ and Cy C So} (N =1,2,...)

o
and write S in place of R — U Sn. Observe that QU Sg C S and that the Sx are pairwise disjoint. Given

1
r==zon € R— S, choose a sequence {ecm(z)} C Co(C So C S) such that |z — cm(z)| < 1/m. Topologize

res—
X = R as follows: Isolate the points of Q and take for the basic neighborhoods of Q the
reR-S
sets
{ Ki(w) = {2} U{an(e) : n > ) o)
Ki(z) = {z} U{cm(z) : m >k} U {qn(cm(z)) : m > k,n > m} Y

This prescription defines a first countable, separable topology on the line that is finer than the usual
topology. And, since the K} are compact, it is a locally compact topology. However, it is not a sub-

metacompact topology. Thus let Uy = S U Sy—then Uy is open and U = {Un} is an open covering

of X. Consider any sequence {Vjs} of open refinements of Y. For M = 1,2,..., and N = 1,2,..., let
Wun = U{V EVrm:VNSN # @} and form Wy = Sp N n WyunN = So — U (So — WMN)- Since
M,N M,N

#(So) = 2¥ and since the So — Wisn are countable, Wy is nonempty. But any zo in Wy necessarily
belongs to infinitely many distinct elements of Vys (M = 1,2,...). Consequently, the topology is not

submetacompact.

JONES’ LEMMA If a Hausdorff space X contains a dense set D and a closed discrete subspace
S with #(S) > 2#(P) then X is not normal.

Application: The van Douwen line is not normal.

[In fact, each Sy is closed and discrete with #(Sn) = 2“.]

Let X be a LCH space. Under what conditions is it true that X metacompact = X
paracompact? For example, is it true that if X is normal and metacompact, then X is
paracompact? This is an open question. There are no known counterexamples in ZFC or
under any additional set theoretic assumptions. Two positive results have been obtained.

(1) (Daniels') A normal LCH space X is paracompact provided that it is bound-

edly metacompact, i.e., every open covering of X has an open refinement of finite order.

(2) (Gruenhage*) A normal LCH space X is paracompact provided that it is

locally connected and submetacompact.

Suppose that X is normal and metacompact—then on general grounds all that one can say is this.

Consider any open covering U of X: By metacompactness, U has a point finite open refinement V which,

t Canad. J. Math. 35 (1983), 807-823; see also Topology Appl. 28 (1988), 113-125.
¥ Topology Proc. 4 (1979), 393-405.
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by normality, has a precise open refinement W with the property that W is a precise closed refinement of

V.

FACT Let X be a CRH space. Suppose that X is submetacompact—then X is normal iff every

open covering of X has a precise closed refinement.

A Hausdorff space X is said to be perfect if every closed subset of X is a GG5. The
Isbell-Mréwka space W(IN) is perfect; however, it is not normal (cf. p. 1-12).

A Hausdorff space X is said to be perfectly normal if it is perfect and normal. The

ordinal space [0, 2], while normal, is not perfectly normal since the point {Q} is not a Gs.
On the other hand, X metrizable = X perfectly normal. Every perfectly normal LCH
space X is first countable.
[Note: The assumption of perfect normality can be used to upgrade the strength of a
covering property.
(1) (Arhangel’skii’) Let X be a LCH space. If X is perfectly normal and meta-
compact, then X is paracompact.
(2) (Bennett-Lutzer') Let X be a LCH space. If X is perfectly normal and
submetacompact, then X is subparacompact.]
A CRH space X is said to be countably paracompact if every countable open covering

of X has a neighborhood finite open refinement. The ordinal space [0, [ is countably para-
compact (being countably compact) and normal, whereas the ordinal space [0, Q] x [0, [ is
countably paracompact (being compact x countably compact = countably compact) but
not normal. On the other hand, X perfectly normal = X countably paracompact.

To recapitulate:

paracompact

—

metrizable normal countably paracompact

| _—

perfectly normal
FACT Suppose that X is normal—then X is countably paracompact iff every countable open
covering of X has a o-discrete closed refinement.

So: In the presence of normality, X subparacompact = X countably paracompact. This implication

is strict since the ordinal space [0, is normal and countably paracompact; however, it is not even

" Soviet Math. Dokl. 13 (1972), 517-520.
t General Topology Appl. 2 (1972), 49-54.
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submetacompact (cf. p. 1-12). On the other hand: (i) The ordinal space [0, 2] x [0, Q[ is nonnormal and
countably paracompact but not subparacompact; (ii) The Isbell-Mréwka space ¥(IN) is nonnormal and
subparacompact but not countably paracompact (cf. p. 1-12).

[Note: To verify that X = [0,9Q] x [0,Q[ is not subparacompact, let A = {(Q,a) : « < Q} and
B = {(o,a) : @ < Q}—then A and B are disjoint closed subsets of X. Therefore X = U UV, where
U=X-Aand V=X — B. Since the open covering {U, V} has no o-discrete closed refinement, X is not

subparacompact.]

Is every normal LCH space countably paracompact? This question is a reinforcement
of the “Dowker problem”. Dropping the supposition of local compactness, a Dowker space
is by definition a normal Hausdorff space which fails to be countably paracompact or,
equivalently, whose product with [0, 1] is not normal. Do such spaces exist? The answer is
“yes”, the first such example within ZFC being a construction due to M.E. Rudinf. Her
example is not locally compact and only by imposing assumptions beyond ZFC has it been

possible to produce locally compact examples.

The ordinal space [0, 2] x [0, Q] is neither first countable nor separable. Can one construct an example

4

of a nonnormal countably paracompact LCH space with both of these properties? The answer is “yes”.

Let S and T be subsets of N. Write S < T if #(S—T) < w; write S < T if S < T and #(T —S5) = w.
. . St={Sf:a<q} .
LEMMA (Hausdorfl) There exist collections of subsets of N with the
ST ={85 :a< Q}
following properties:
() Va:#(N-(STuUSy)) =w.
2)Va,VB:B<a=S5F <S5 and S5 <S5.
B)Va:#(SFnsy) <w.
(HVaVneN: #{B:8<a& SFNS; CFa}<w (Fo={L...,n}).
There is then no H C N such that V o : S7 < H and S; <N — H.
[We shall establish the existence of ST and S~ by constructing their elements via induction on a.
Start by setting SS’ =0 and S; = 0. Given S} and Sy, decompose N — (ST U S5) into three infinite

pairwise disjoint sets N, N5, and Ny. Put

{SL4:SJUN§

(= N— (St , US>, ,) D Ny).
Sqt1 =Sa UNy ot “

a+1

Then this definition handles the successor ordinals < . Suppose now that 0 < A < Q is a limit ordinal.
Choose a strictly increasing sequence {a;} C [0,Q[: a1 = 0, supa; = A. Fix n; € N such that S,i'i N

t Pund. Math. 73 (1971), 179-186; see also Balogh, Proc. Amer. Math. Soc. 124 (1996), 2555-2560.
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U sa ; C Frn; and write Ty for U(S+ — Fy;). Note that Vo < A: ST < T and Vi : #(T NSq;) <w.
1<t

L ={a:a; <a<aq & TA ﬂSa CFi}andifI = UIZ', then each I; is finite and so I N[0, af is
%

finite for every a < A. Assign to each nonzero a € I; the infinite set S, — U{S;j : aj < a} and denote

by n(a) its minimum element in N — F;. Relative to this data, define Sj\' = TI U{n(a):a eI (a#0)}.

Then it is not difficult to verify that

Va<A:SE<StandVi:#(S{nSy)<w
VneN:#{a:a<A& SINS; CF}<w.

As for S, observe that (N — S+ U S . is infinite, thus there exists an infinite set Ly C (N — Sj{)

71<i
such that Ly N S, is finite for every i. Defining Sy = N — (Sj\' U Ly), we have

Va<A:S; <Sy
STNSy =0,#(N—(Sfusy)) =w,

which completes the induction. There remains the assertion of nonseparation. To deal with it, assume
that there exists an H C N such that Si’ — H and S5 N H are both finite for every a < . Choose an
n€N:W={a:S5; NH C F,} is uncountable. Fix an @ € W with the property that W N[0, o[ is
infinite. If ST — H C Fy,, then {8: 8 < a & SI N S5 C Frax(m,n)} contains W N [0,af. Contradiction.]

EXAMPLE (van Douwen Space) Let

{X"‘ = {+1}x]0, Q]
X~ ={-1}x]0,Q]

and put X = X+t U X~ UN. Topologize X as follows: Isolate the points of N and take for the basic

: . J#La)ex?
neighborhoods of a point all sets of the form
(-l,a) e X~

{ K(+La:8,F)={(+1,7): <y <a}U((S§ - S}) - F)
K(-La:8,F)={(-1,7): <y <a}U((Sa —S5) - F),

where 8 < @ and F C N is finite. Since the K(+1,« : 8, F) are compact, X is a LCH space. Obviously,
X is first countable and separable; in addition, X is countably paracompact, X+ being a copy of 10, Q.
Still, X is not normal.

[Suppose that the disjoint closed sets X+ and X~ can be separated by disjoint open sets Ut and
U~. Given a € ]0,9Q[, select an ordinal f(a) < « and a finite subset F(a) C N such that K(+1,« :
f(a), F(a)) C U%. Choose a k < Q and a cofinal K C [0, Q[ such that f|K = & (by “pressing down”, i.e.,

Fodor’s lemma). Put
Ht = (ST U(NNnUT)) -
H- =(S; UNNU™)) - S,
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Then HY NH~ = . Let a < Q be arbitrary. Using the cofinality of K and the relation f|IC = k, one finds
that S5 < HE. Contradiction.]

A CRH space X is said to be countably compact if every countable open covering

of X has a finite subcovering or, equivalently, if every neighborhood finite collection of
nonempty subsets of X is finite. The ordinal space [0, 2] is countably compact but not

compact. The van Douwen space is not countably compact but is countably paracompact.

Associated with this ostensibly simple concept are some difficult unsolved problems. Sample: Within
ZFC, does there exist a first countable, separable, countably compact LCH space X that is not compact?
This is an open question. But under CH, e.g., such an X does exist (cf. p. 1-17). Consider the asser-
tion: Every perfectly normal, countably compact LCH space X is compact. While innocent enough, this

statement is undecidable in ZFC (Ostaszewskif, Weiss?).

PROPOSITION 3 X is countably compact iff every point finite open covering of X
has a finite subcovering.

[Suppose that X is countably compact. Let U be a point finite open covering of X—
then, on general grounds, ¢/ admits an irreducible subcovering V. This minimal covering
must be finite: For otherwise there would exist an infinite subset S C X such that each
x € X has a neighborhood containing exactly one point of S, an impossibility.

Suppose that X is not countably compact—then there exists a countably infinite
discrete closed subset D C X, say D = {z,}. Choose a sequence {U,} of nonempty
open sets whose closures are pairwise disjoint such that V n : z,, € U,. The collection

{X — D,U,U,,...} is a point finite open covering of X which has no finite subcovering.]

A CRH space X is said to be pseudocompact if every countable open covering of X

has a finite subcollection whose closures cover X or, equivalently, if every neighborhood
finite collection of nonempty open subsets of X is finite. The Isbell-Mréwka space W(IN)

is pseudocompact but not countably compact (cf. p. 1-12).

PROPOSITION 4 X is pseudocompact iff every real valued continuous function on
X is bounded.
[Suppose that X is not pseudocompact—then there exists a countably infinite neigh-

borhood finite collection {U,} of nonempty open subsets of X. Choose a point x,, € U,,.

t J. London Math. Soc. 14 (1976), 505-516.
t Canad. J. Math. 30 (1978), 243-249.
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Since X is completely regular, there exists a continuous function f, : X — [0, n] such that
fo(xy) =n, ful X —=U, =0. Put f = fu: f is continuous and unbounded.]

A CRH space X is said to be countably metacompact if every countable open covering

of X has a point finite open refinement. The ordinal space [0, [ is countably metacompact
but not metacompact (cf. p. 1-12). Every perfect X is countably metacompact.

The relative position of these conditions is shown by:

compact paracompact metacompact

| |

countably compact —— countably paracompact —— countably metacompact

pseudocompact

FACT X is countably metacompact iff for every countable open covering U of X there exists a
sequence {V,} of open refinements of U such that V z € X 3 ng : ord(z, Vpn, ) < w.

[The point here is to show that the stated condition forces X to be countably metacompact. Enu-
merate the elements of U : Uy, (n =1,2,...). Write Wy, for the set of all z € Uy, such that Vm <n 3V €
Vm:z €V andV ¢ |J U;. Then W = {W,} is a point finite open refinement of U = {Uy}. ]

i<n

So: X submetacompact = X countably metacompact. The van Douwen line is not countably

metacompact (inspect the argument used to establish nonsubmetacompactness). The Tychonoff plank is

countably metacompact but is neither submetacompact nor countably paracompact (cf. p. 1-12).

PROPOSITION 5 If X is pseudocompact and either normal or countably paracom-
pact, then X is countably compact.

[Suppose that X is normal. If X is not countably compact, then there exists a count-
ably infinite discrete closed subset D C X, say D = {x,,}. By the Tietze extension the-
orem, there exists a continuous function f : X — R such that f(z,) =n (n =1,2,...).
Contradiction.

Suppose that X is countably paracompact. If X is not countably compact, then there
exists a countable open covering {U,} of X that cannot be reduced to a finite covering.
Let {V,,} be a precise neighborhood finite open refinement of {U,, }—then there exists a
finite subset F' C N such that V,, # 0 iff n € F. But |JV,, = X. Contradiction.]

n
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EXAMPLE The Isbell-Mréwka space ¥(IN) is not countably compact. However, ¥(N) is pseudo-
compact so, by the above, it is neither normal nor countably paracompact.

[Put X = ¥(N) and suppose that f: X — R is continuous but unbounded. Since VS € S, {S} U S
is compact, f|S is bounded. This means that there exists a sequence {x,} of distinct points in X such
that (i) |f(zn)| > nand (i) VS € S, #({zn} N S) < w. The maximality of S then implies that {z,} € S.

Contradiction.]

EXAMPLE (The Tychonoff Plank) Let X = [0, Q] X [0,w] — {(Q,w)}. X is not countably compact

(consider {(©2,n): 0 < n < w}). However, X is pseudocompact so, by the above, it is neither normal nor
countably paracompact.

[Suppose that f : X — R is continuous—then it suffices to show that f extends continuously to
{(Q,w)}. Because every real valued continuous function on [0, Q[ is constant on some tail [a, Q[, Vn < w,
there exists an ay, < Q and a constant rp such that f(a,n) = rp V a > an. Put ag = sup ap—then

ag < . One can therefore let f(Q,w) =ry.]

PROPOSITION 6 If X is countably compact and submetacompact, then X is com-
pact.

[Let U be an open covering of X. Let {V,,} be a sequence of open refinements of U
such that V z € X 3 ng: ord(z,V,,) < w. Write A,,, for {z : ord(z,V,) < m}—then
Apn is a closed subspace of X, hence is countably compact, and V,, is point finite on A,,,,.
Proposition 3 therefore implies that A,,, can be covered by finitely many elements of V,,.
Every x € X is in some A,,,, so there is a countable open covering of X made up of

elements from the sequence {V,,}. This covering has a finite subcovering, thus so does U.]

Consequently, the ordinal space [0,Q[ is not submetacompact. It then follows from this that the

Tychonoff plank is not submetacompact (since [0, Q[ sits inside it as a closed subspace).

Let X be a CRH space. A m-basis for X is a collection P of nonempty open subsets
of X such that if O is a nonempty open subset of X, then for some P € P, P C O.

LEMMA Suppose that X is Baire. Let U be a point finite open covering of X—then
there exists a m-basis P for X such that VP € P and VU € U, either P C U or PNU = ().
[For n =1,2,..., denote by X,, the subset of X consisting of those points that are in
at most n elements of #. Each X, is closed and X = [J X,,. Let O be a nonempty open

subset of X. Since O = JO N X,,, there will be an n such that O N X,, has a nonempty

n
interior. Let n(O) be the smallest such n. Let Up C ON X, 0y be a nonempty open subset
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of X. Choose an zp € Up that belongs to exactly n(O) elements of U and write P for
their intersection with Up—then P = {P} is a m-basis for X with the stated properties.]

Suppose that X is pseudocompact—then X is Baire. To see this, let {O,} be a
decreasing sequence of dense open subsets of X. Let U be a nonempty open subset of
X. Inductively choose nonempty open sets V,, : Vi = U & Vn+1 cUno,nV,. By
pseudocompactness, (| V,, # 0, hence U N (N Oy,) # 0.

n n

PROPOSITION 7 If X is pseudocompact and metacompact, then X is compact.

[Let O be an open covering of X. Let & = {U} be a point finite open refinement of
O with the property that i = {U} refines O. Use the lemma to determine a 7-basis P for
X per U. Fix Py € P. Consider {U e U : UN Py # (}. Since UNP; # () = P; C U and
since U is point finite, it is clear that this is a finite set. If X = m, then finitely
many elements of O cover X and we are done. Otherwise, proceed inductively and, using
the fact that P is a m-basis for X, given n € N choose a P,,;; € P such that

Pop1 C X — | st(Pn.U).

m<n

We claim that the process terminates, from which the result. Suppose the opposite—then,
due to the pseudocompactness of X, { P, } cannot be neighborhood finite. Therefore there
exists ¢ € U, € U with U, N P, # () for infinitely many n, contrary to construction.]

One cannot replace “metacompact” by “submetacompact” in the preceding result: The Isbell-Mréwka,
space ¥(IN) is pseudocompact and submetacompact but not compact. However, the argument does go

through under the weaker condition: Every open covering of X has a o-point finite open refinement.

PROPOSITION 8 If X is normal and countably metacompact, then X is countably

paracompact.

One can check:
(CP) X is countably paracompact iff for every decreasing sequence {A,} of

closed sets such that () A,, = ), there exists a decreasing sequence {U,} of open sets with
n

A,, C U, for every n and such that U, = .

(CM) X is countably metacompact iff for every decreasing sequence {A4,} of

closed sets such that () A,, = ), there exists a decreasing sequence {U,} of open sets with

A, C U, for every n and such that U, = 0.
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It remains only to note that for normal X, CP < CM

If X is the Tychonoff plank, then X = Y U Z, where Y = [ J [0,Q] X {n} and Z = [0, Q[x{w}. Since
n<w
Y is an open paracompact subspace of X and Z is a closed countably compact subspace of X, it is clear

that X is countably metacompact. Because X is not countably paracompact, Proposition 8 allows one to

infer once again that X is not normal (cf. Proposition 5).

A Hausdorff space X is said to be collectionwise normal if for every discrete collection

{A; i € I} of closed subsets of X there exists a pairwise disjoint collection {U; : i € I} of
open subsets of X such that VieI: A; C U;.

Of course, X collectionwise normal = X normal. On the other hand, X normal and
countably compact = X collectionwise normal. So, the ordinal space [0, Q[ is collectionwise
normal. However, it is not perfectly normal since the set of all limit ordinals a < €2, while

closed, is not a G5. Rudin’s Dowker space is collectionwise normal.

LEMMA Suppose that X is collectionwise normal. Let {A; : i € I} be a discrete
collection of closed subsets of X—then there exists a discrete collection {O; : i € I} of
open subsets of X such that Vie I: A; C O;.

[Let {U; : i € I} be a pairwise disjoint collection of open subsets of X such that
Viel:A; CU. Choose an open set U subject to | JA; C U C U C |JU; and then put

0;,=U;NU.]

Suppose that X is normal. Let { A, } be a countable discrete collection of closed subsets
of X—then there exists a countable pairwise disjoint collection {U, } of open subsets of X
such that V n : A, C U,. In fact, given n € N, choose a pair (O, P,) of disjoint open
subsets of X such that O, D A,, P, O |J A and then put U, =0, N (| Pn.

m#n m<n

PROPOSITION 9 If X is paracompact, then X is collectionwise normal.

[Let {A; : i € I} be a discrete collection of closed subsets of X. Put O; = X —
U A;—then the collection {O; : i € I} is an open covering of X, hence, in view of the
J#i
paracompactness of X, has a precise neighborhood finite closed refinement {C; : i € I}. If
Uy=X—|JCCj, then {U; : i € I} is a pairwise disjoint collection of open subsets of X

i

such that Vi € I : A; C U;. Therefore X is collectionwise normal.]

PROPOSITION 10 If X is collectionwise normal and metacompact, then X is para-

compact.
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[It is enough to prove that a given point finite open covering O = {O} of X has a
o-discrete open refinement U = | JU,,. Put A,, = {z : ord(z, O) < n}—then A, is a closed

subspace of X and X = JA,. Assign to each x € X the open set O, = [J{O € O :

n
x € O}. Using the O,, we shall construct the U,, by induction. To start off, observe that
{0, N Ay : x € Ay} is a discrete collection of closed subsets of X covering A;. So, by
collectionwise normality, there exists a discrete collection U; of open subsets of X covering

Aj such that each element of U/; is contained in some element of O. Proceeding, suppose
n

that |J U, is a covering of A,, by open subsets of X, each of which is contained in some
m=1

element of O, with U,,, discrete. Let U,, = | J{U : U € Uy, 1 < m < n}—then U,, D A,, and
{0:N(Ap41—Upy) 1z € Ay — U, } is a discrete collection of closed subsets of X covering
Apy1—U,. Once again, by collectionwise normality, there exists a discrete collection Uy, 41

of open subsets of X covering A, 11 — U, such that each element of U, is contained in
n+1

some element of O. And A, 11 C U Upn.]
m=1

Trifling modifications in the preceding argument allow one to replace “metacompact” by “submeta-
compact” and still arrive at the same conclusion.
Kemoto! has shown by very different methods that if a normal LCH space X is submetacompact,

then X is subparacompact. Example: The Burke plank is not normal.

Let X be a LCH space. Does the chart

paracompact —— collectionwise normal —— normal

perfectly normal

admit any additional arrows? We do know that there exists a paracompact X that is not

perfectly normal and a collectionwise normal X that is not paracompact.

(Q,) Is every normal LCH space X collectionwise normal?
[There are counterexamples under MA +- CH (cf. p. 1-18). Consistency has been
established modulo the consistency of the existence of a supercompact cardinal.]
(Qp) Is every perfectly normal LCH space X collectionwise normal?

[This is undecidable in ZFC.]
(Qc¢) Is every perfectly normal LCH space X paracompact?

t Fund. Math. 132 (1989), 163-169.
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[The Kunen line under CH and the rational sequence topology over a CUE-set under
MA +- CH are counterexamples. However, under ZFC alone, the issue has not been
resolved. |

These questions (and many others) are discussed by Watson'.

The construction of topologies by transfinite recursion is an important technique that can be used to

produce a variety of illuminating examples.

EXAMPLE [Assume CH] (The Kunen Line) The object is to equip X = R with a first countable,

separable topology that is finer than the usual topology (hence Hausdorff) and under which X = R is
locally compact and perfectly normal but not Lindel6f, hence not paracompact (since paracompact +
separable = Lindelof). It will then turn out that the resulting topology is even hereditarily separable and
collectionwise normal.

Let {zq : & < Q} be an enumeration of R and put Xo = {zg : # < a},s0 Xqg = R.. Let {Co : @ < Q}
be an enumeration of the countable subsets of R such that V o : Co C Xn. We shall now construct by
induction on a <  a collection {7 : @ < Q}, where 7 is a topology on X, (with closure operator cly)
subject to:

(a) V a : 1o is a first countable, zero dimensional, locally compact topology on X, that is finer
than the usual topology on X, (as a subspace of R) and, if a < , is metrizable.
(b) VB < a:(Xg,73) is an open subspace of (Xa, 7).
(c)Vy< B <a: Ifzg € clg(Cy), then zg € cla(Cr).
First, take 7o discrete if o < w. Assume next that w < a < Q. If « is a limit ordinal, take for 7

the topology on X, generated by U 7g. If o is a successor ordinal, say o = 8 + 1, then the problem is
<o
to define 7o on Xo = Xg U {xg} and for that we distinguish two cases.

(*) If there is no v < B such that z3 € clg(Cy), isolate g and take for 7, the topology
generated by 73 and {zg}.

—(x) Let {yn} enumerate {y < 8 : g € clr(C,)}, each «y being listed w times. Put I, =
lzg—1/n,23+1/n[ and pick a sequence {yn } of distinct points y, € C,,, NI,. Choose a discrete collection
{Kn,p} of 7g-clopen compact sets Ky g : yn € Ky g C In. To complete the induction, take for 74 the
topology generated by 73 and the sets {zg} U U Knp(n=12...).

m>n
It follows that R or still, Xg = U Xq is a first countable, LCH space under Tg. Because each X,
a<l)
is Tq-open, Xq is not Lindelof. Every x € X has a countable clopen neighborhood.

Claim: Let S C R—then #(clg(S) — clq(9)) < w.

t In: Open Problems in Topology, J. van Mill and G. Reed (ed.), North Holland (1990), 37-76.
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[Fix a countable subset C' C S such that clr(C) = clr(S). Write C = Cq, (some ap < Q). If
a > ap and if 4 € clg(C), then z4 € clg(C). Therefore clg (S) — clo(S) C {za : a < ap}.]

The fact that Xq is hereditarily separable is thus immediate. To establish perfect normality, suppose
that A C Xgq is closed—then it is a question of finding a sequence {U,} C 7q such that A = ﬂUn =

n

ﬂ clo(Uy). Since R is perfectly normal, there exists a sequence {On} of R-open sets such that clg(A) =

n
(YOn = [\ clr(On). From the claim, clg(A) — A can be enumerated: {an}. Each an € Xg — 4, so

n n
I K, €1 an € Ky, C Xq — A, Ky, clopen. Bearing in mind that 7q is finer than the usual topology on
R, we then have

A={)0On N ﬂ(XQ—Kn):ﬂ%l(On) N N(Xa - Kn).

n

The final point is collectionwise normality. But as CH is in force, Jones’ lemma implies that X, being
separable and normal, has no uncountable closed discrete subspaces.
[Note: Xgq is not metacompact (cf. Proposition 10). However, Xq is countably paracompact (being

perfectly normal).]

Retaining the assumption CH and working with

Xao =NU ({0} x [0,9])
{Xa =NU{(0,8): 8 <o},
one can employ the foregoing methods and construct an example of a first countable, separable, countably
compact, noncompact LCH space (cf. p. 1-10). Recursive techniques can also be used in conjunction with

set theoretic hypotheses other than CH to manufacture the same type of example.

A CRH space X is said to be a Moore space if it admits a development.

[Note: A development for X is a sequence {U,} of open coverings of X such that
Ve X: {st(x,U,)} is a neighborhood basis at z.]

Every Moore space is first countable and perfect. Any first countable X that is
expressible as a countable union of closed discrete subspaces X,, is Moore, so, e.g., the
Isbell-Mréwka space ¥(N) is Moore.

FACT Suppose that X is a Moore space—then X is subparacompact.
[Let © = {O; : ¢ € I} be an open covering of X—then the claim is that O has a o-discrete closed
refinement. Fix a development {U,} for X. Equip I with a well ordering < and put

Ai,n =X - St(X - Oz;un) U U Oj C O;.
Jj<i
Each A; , is closed and their totality A covers X. Denote by Ay, the collection {A; , : ¢ € I}—then A,

is discrete, so A = U An is a o-discrete closed refinement of O.]

n
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The metrization theorem of Bing says: X is metrizable iff X is a collectionwise normal
Moore space. Equivalently: X is metrizable iff X is a paracompact Moore space (cf.

Proposition 9).

The Kunen line is not a Moore space. For if it were, then, being collectionwise normal, it would be
metrizable, hence paracompact, which it is not. Variant: The Kunen line is not submetacompact, therefore
is not subparacompact (cf. the remark following the proof of Proposition 10), proving once again that it

is not a Moore space.

Let X be a LCH space. If X is locally connected, normal, and Moore, then X
is metrizable (Reed-Zenor). Proof: (1) X Moore = X subparacompact; (2) X locally
connected, normal, and subparacompact (hence submetacompact) = X paracompact (via

the result of Gruenhage mentioned on p. 1-6). Now cite Bing.

Question: Is every locally compact normal Moore space metrizable? It turns out that this question
is undecidable in ZFC.
(1) Under V = L, every locally compact normal Moore space is metrizable.
[VVaLtsorﬂL proved that under V = L, every normal submetacompact LCH space X is paracompact.
This leads at once to the result.]
(2) Under MA +- CH, there exist locally compact normal Moore spaces that are not metriz-
able.
[Many examples are known that illustrate this phenomenon. A particularly simple case in point is that
of the rational sequence topology over a CUE-set. By definition, a CUE-set S is an uncountable subset of R
with the property that VT C S, there exists a sequence {Uy, } of open subsets of R such that T' = Sﬂ(ﬂ Urn),

i.e., T is a relative G5. Assuming MA +- CH, it can be shown that every uncountable subset of R ﬁaving
cardinality < 2 is a CUE-set. This said, let S be any uncountable subset of the irrationals of cardinality
< 2% Put X = (Q x Q) U (S x {0}). Topologize X as follows: Isolate the points of Q x Q and take
for the basic neighborhoods of (s,0)(s € S) the sets {(s,0)} U {(sm,1/m):m >n} (n =1,2,...), where
{sn} is a fixed sequence of rationals converging to s in the usual sense. X is a separable LCH space. It is
clear that X is Moore but not metrizable, hence (i) X is perfect but not collectionwise normal and (ii) X
is subparacompact but not metacompact (since separable + metacompact = Lindeldf = paracompact).
Nevertheless, X is normal. Indeed, given T' C S, it suffices to produce disjoint open sets U,V C X: U D T
and V D S —T. Using the fact that S is a CUE-set, write T = SN (ﬂ Up)and S—T =5n (ﬂ Vi), where

n n
{U,} and {V,,} are sequences of open subsets of R : V n, Uy, D Up4+1 & Vi D Viy1. Choose open sets

t Canad. J. Math. 34 (1982), 1091-1096.
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On, P, C X:
T -V COn (S—T)—UnC Py
(S —T)N Oy =0, TAPn =0
Then put
U=UOn— U Pn)
n m<n
V=P~ |J Om)]
n m<n

A topological space X is said to be locally metrizable if every point in X has a

metrizable neighborhood. If X is paracompact and locally metrizable, then X is metriz-
able. Proof: Fix a neighborhood finite open covering U = {U; : i € I'} of X consisting of
metrizable U; and choose a development {U;(n)} for U; such that ¥ n : U;(n + 1) refines
U;(n)—then the sequence {{JU; (1), JU;(2),...} is a development for X.

FACT Suppose that X is submetacompact and locally metrizable—then X is a Moore space.

[Under the stated conditions, every open covering of X has a closed refinement that is neighborhood
countable (obvious definition). Construct a o-closure preserving closed refinement for the latter and thus
conclude that X is subparacompact (by the characterization mentioned on p. 1-4). Suppose, then, that
X is subparacompact and locally metrizable or, more generally, locally developable in the sense that every

z € X has a neighborhood U, with a development {Uy(z)}. Let V = | Vi be a o-discrete closed refinement

n
of {Uz : © € X}. Assign to each V' € Vp, an element zy € X for which V' C Ugy,, put Uy = X —(UV, V),
and let Um,n(V) = Uy NUm (zv). The collection Um,n ={U : U € Um n(V)(V € Vn)}U{X —UVp} is an

open covering of X and the sequence {Upm n} is a development for X ]

A topological manifold (or an n-manifold) is a Hausdorff space X for which there

exists a nonnegative integer n such that each point of X has a neighborhood that is
homeomorphic to an open subset of R".

[Note: We shall refer to n as the euclidean dimension of X. Homeomorphic topological

manifolds have the same euclidean dimension (cf. p. 19-25).]
Let X be a topological manifold—then X is a LCH space. As such, X is locally con-

nected. The components of X are therefore clopen. Note too that X is locally metrizable.

FACT Let X be a second countable topological manifold of euclidean dimension n. Assume: X is

connected—then there exists a surjective local homeomorphism R" — X.

PROPOSITION 11 Let X be a topological manifold—then X is metrizable iff X is

paracompact.
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[Note: Taking into account the results mentioned on p. 1-2, it is also clear that X is
metrizable iff each component of X is o-compact or, equivalently, iff each component of X

is second countable.]
A topological manifold is a Moore space iff it is submetacompact.

EXAMPLE (The Long Line) Put X = [0,Q[X[0, 1] and order X by stipulating that («, z) < (8,y)
ifa <Bora=pandz <y. Give X the associated order topology—then the long ray Lt is X — {(0,0)}
and the long line L is X I1 X/ ~, ~ meaning that the two origins are identified. Both L and L are normal
connected 1-manifolds. Neither L nor LT is o-compact, so neither L nor Lt is metrizable. Therefore
neither L nor Lt is Moore: Otherwise, Reed-Zenor would imply that they are metrizable. Variant: Moore
= perfect, which they are not. So, neither L nor LT is submetacompact. Finally, observe that L is not

homeomorphic to LT. Reason: L is countably compact but L7 is not.

EXAMPLE (The Priifer Manifold) Assign to each r € R a copy of the plane: R2 = R? x {r} =

{(a,b,r) = (a,b),}. Denote by L, the closed lower half plane in R2, L, the open lower half plane in R2,
and 0L, the horizontal axis in R%. Let H stand for the open upper half plane in R?. Put X = HU Ufr.

T
Topologize X as follows: Equip H and each L, with the usual topology and take for the basic neighborhoods
of a typical point (a,0), € L, the sets N(a : r : €), a given such being the union of the open rectangle in
L, with corners at (a +¢€,0), and (a4 €, —€), and the open wedge consisting of all points within e of (r,0)
in the open sector of H bounded by the lines of slope 1/(a — €) and 1/(a + €) emanating from (r,0). So,
e.g., the sequence (r+1/n, 1/n(a+¢€)) converges to (a +¢€,0), in the topology of X (although it converges
to (r,0) in the usual topology). The subspace H U {(0,0), : » € R} (which is not locally compact) is
. . . (z,y) = (z,y%) . .
homeomorphic to the Niemytzki plane: . X is a connected 2-manifold. Reason: A
(0,0)r — (r,0)
closed wedge with its apex removed is homeomorphic to a closed rectangle with one side removed. It is
clear that X is not separable. Moreover, X is not second countable, hence is not metrizable (and therefore
is not paracompact). But X is a Moore space: Let U, be the collection comprised of all open disks of
radius 1/n in H and the L, together with all the N(a : r : 1/n)—then {U,} is a development for X. This
remark allows one to infer that X is not normal: Otherwise, Reed-Zenor would imply that X is metrizable.
B ) A ={(0,0), : r rational} o )
Explicitly, if , then A and B are disjoint closed subsets of X that fail to
B = {(0,0), : r irrational}

have disjoint neighborhoods. Since A is countable, this means that X cannot be countably paracompact.
However, X is Moore, thus is subparacompact. Still, X is not metacompact. For X is locally separable
(being locally euclidean) and locally separable + metacompact = paracompact. Apart from all this, X is
contractible and so is simply connected.

[Note: There are two other nonmetrizable, nonnormal, connected 2-manifolds associated with this

construction.
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(1) Take two disjoint copies of HU U OL, and identify the corresponding points on the various
'
OL,. The result is Moore and separable but has an uncountable fundamental group.

(2) Take H U | JOL, and V r identify (a,0), and (—a,0),. The result is Moore and separable

-
but has a trivial fundamental group.]

According to Reed-Zenor, every normal topological Moore manifold is metrizable. What happens if
we drop “Moore” but retain perfection? In other words: Is every perfectly normal topological manifold
metrizable? It turns out that this question is undecidable in ZFC.

(1) Under MA +- CH, every perfectly normal topological manifold is metrizable.

[Lanef proved that under MA +—- CH, every perfectly normal, locally connected LCH space X is
paracompact. This leads at once to the result.]

(2) Under CH, there exist perfectly normal topological manifolds that are not metrizable.

[Let D = {(z,y) ER%Z: -1 <z < 1& 0 <y < 1}—then the idea here is to coherently paste Q copies
of [0, 1] to D via a modification of the Kunen technique (cf. p. 1-16). So let {Io : @ < Q} be a collection
of copies of [0, 1] that are unrelated to D or to each other. Let {zq : @ < Q} be an enumeration of D — D.

Put Xo = DU (| Ig) and X = |J Xa. Let {Cq : @ < Q} be an enumeration of the countable subsets
< a<l
of X such that V o : Co C Xg. Define a function ¢ : X — D : ¢|D = idp & ¢|Io = zo. We shall now

construct by induction on a < Q a topology 7o on X subject to:
(a) Va: (Xa,7a) is homeomorphic to D and ¢ = ¢| X4 is continuous.
(b) VB < a:(Xpg, 1) is an open dense subspace of (Xq, 7o).
(c) Vv < B < a: If zg is a limit point of $(Cy) in D, then every element of I5 is a limit point
of Cy in (Xa, Ta)-
Assign to D = X the usual topology. If «v is a limit ordinal, take for 7, the topology on X, generated

by U 73. Only condition (a) of the induction hypothesis requires verification. This can be dealt with
B<La
by appealing to a generality: Any topological space expressible as the union of an increasing sequence of

open subsets, each of which is homeomorphic to R, is itself homeomorphic to R™ (Brown?). If o is a

successor ordinal, say o = 8 + 1, then Xo = Xg U Ig and the problem is to define 7, knowing 73.
[ee]
Write N = HNk :V k, #(Ng) = w and fix a bijection 1y : N, — QN] — 1, 1].
1

Claim: Let {U,} be a sequence of connected open subsets of D and let {py,} be a sequence of distinct

t Proc. Amer. Math. Soc. 80 (1980), 693-696; see also Balogh-Bennett, Houston J. Math. 15 (1989),
153-162.

t Proc. Amer. Math. Soc. 12 (1961), 812-814.
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points of D :V n,
UnDUnt1 & D N (Un=0, pn € Un.

n
Then there exists an embedding u : D — D such that D — u(D) is homeomorphic to [0, 1] and

(i) V k: Each point of D — p(D) is a limit point of {u(pn) : n € Ny };

(ii) V n : D — p(D) is contained in the interior of the closure of p(Uy).

[To begin with, there exists a homeomorphism h : D — D such that V n : h(Uy) D Dy, & h(pn) €
Dy, — Dpy1, where Dy, = {(z,y) € D : 0 < y < 1/2n}. Choose next a homeomorphism g : D — D for
which the second coordinate of g(z,y) is again y but for which the first coordinate of g(h(pn)) is tg(n)
(n € N,k =1,2,...). Eachpoint of {(z,0) : —1 < z < 1} is therefore a limit point of {g(h(pn)) : n € Ny }.
Finally, if F' is the map with domain D U {(z,0) : —1 < z < 1} defined by FID =idp , then the

F(z,0) = (|=],0)
image D U {(z,0) : 0 < z < 1}, when given the quotient topology, is homeomorphic to D via f, say. The
embedding p = f o g o h satisfies all the assertions of the claim.]

To apply the claim, we must specify the U, and the p, in terms of Xg. Start by letting U, =
qﬁEl(On (z5)), where Oy (z) is the intersection of D with the open disk of radius 1/n centered at zg. Fix
a bijection ¢ : [0, 3] = N and choose the p, € Uy so that if v < § and if 2 is a limit point of ¢(Cy) in
D, then p, € CyNUy, for all n € N,(+)- By assumption, there is a homeomorphism ng : Xg — D. Use
this to transfer the data from Xg to D and determine an embedding i : D — D. Put pug = p o ng, write
D as pg(Xg) U (D — pg(Xg)) and let vg : Ig = D — ug(Xg) be a homeomorphism. The pair (ug,vg)
defines a bijection Xo = Xg U Ig — D. Take then for 7o the topology on X that renders this bijection

a homeomorphism and thereby complete the induction.

Give X = U X« the topology generated by U To—then X is a connected 2-manifold. It is clear
a<lQ) a<l
that X is not Lindelof. Because X is separable (in fact is hereditarily separable), it follows that X is

not paracompact, thus is not metrizable. There remains the verification of perfect normality. Let A be

a closed subset of X. Fix an a < Q : Co = A. Choose a sequence {Op} of open subsets of D such

that ¢(Ca) = [|On = ﬂEn Obviously, A C ¢~ 1(¢(Ca)) = [ (On) = [)¢~1(On). But thanks to
n n n n

condition (c) of the induction hypothesis, ¢ ~1(¢(Ca))—A is contained in Xo. So write Xo—A = | J Kn, Kn

n

compact, and let P, be a relatively compact open subset of X : K, C P, C P,, C X — A. To finish, simply
note that A = ﬂ ey = ﬂ ., ---p being $»~1(On) — Py. Corollary: X is not submetacompact.]
n n

The preceding construction is due to Rudin-Zenor!. Rudinf employed similar methods to produce
within ZFC an example of a topological manifold that is both normal and separable, yet is not metrizable.

Is every normal topological manifold collectionwise normal? Recall that this question was asked of

t Houston J. Math. 2 (1976), 129-134.
¥ Topology Appl. 35 (1990), 137-152.
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an arbitrary LCH space X on p. 1-15. Using the combinatorial principle ¥, Rudin (ibid.) established

the existence of a normal topological manifold that is not collectionwise normal. On the other hand, since
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the cardinality of a connected topological manifold is 2, there are axioms that imply a positive answer

but I shall not discuss them here.

Let X be a topological space. A collection {k; : i € I} of continuous functions
ki + X — [0,1] is said to be a partition of unity on X if the supports of the ; form a
neighborhood finite closed covering of X and for every z € X, k;(x) =1. fU ={U; : i €

I} is a covering of X, then a partition of unity {k; : i € I'} oan is said to be subordinate
toU if Vi:spt k; CU;.

[Note: Given a map f : X — R, the support of f, written spt f, is the closure of
{z: f(z)# 0} ]

A numerable covering of X is a covering that has a subordinated partition of unity.
Examples: Suppose that X is Hausdorff—then (1) Every neighborhood finite open cov-
ering of a normal X is numerable; (2) Every o-neighborhood finite open covering of a
countably paracompact normal X is numerable; (3) Every point finite open covering of
a collectionwise normal X is numerable; (4) Every open covering of a paracompact X is
numerable.

[Note: Numerable coverings and their associated partitions of unity allow one to pass
from the “local” to the “global” without the necessity of imposing a paracompactness
assumption, a point of some importance in, e.g., fibration theory.]

The requirement on the functions determining a numeration can be substantially
weakened.

(NU) Suppose given a collection {o; : i € I} of continuous functions o; : X —
[0,1] such that > o;(z) = 1 (V 2 € X)—then there exists a collection {p; : i € I} of
i

continuous functions p; : X — [0, 1] such that V i € T : cl(p; '(]0,1])) C ;7 1(]0,1]) and (a)
{p:*(J0,1]) : i € I} is neighborhood finite and (b) 3" p;(z) =1 (V z € X).

[Of course, at any particular z € X, the cardinality of the set of ¢ € I such that
oi(z) # 0 is < w. Put g = sup o;—then p is strictly positive. Claim: p is continuous. In

?
fact, V € > 0, every x € X has a neighborhood U : ¢;|U < € for all but a finite number of i,
thus p agrees locally with the maximum of finitely many of the ¢; and so p is continuous.

Let 0 = > max{0,0; — u/2} and take for p; the normalization max{0,0; — u/2}/0.]

Suppose that H is a Hilbert space with orthonormal basis {e; : i € I'}. Let X be the unit sphere in

H and set 0;(x) = |(z,e;)|?(z € X)—then the o; satisfy the above assumptions.

PROPOSITION 12 Every numerable open covering U = {U; : i € I} of X has a

numerable open refinement that is both neighborhood finite and o-discrete.
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[Let {k; : ¢ € I} be a partition of unity on X subordinate to . Denote by F
the collection of all nonempty finite subsets of I. Assign to each F' € F the functions
mp =mink; (i € F) B _ Lo . o .
{MF — maxn; (i ¢ F) and put p = mlgx(mp MF), which is strictly positive. Write

pr in place of mp — Mp — /2, op in place of max{0, ur} and set Vp = {z : op(x) > 0}—

then Vp C {z : mp(x) > Mp(x)} C () U;. The collection V = {Vr : F € F} is a
icF

neighborhood finite open refinement of & which is in fact o-discrete as may be seen by

defining V,, = {Vr : #(F) = n}. In this connection, note that F’ # F" & #(F') =
#(F") = {z:mp(x) > Mp:(2)} N {z : mpr(x) > Mp:(x)} = 0. The numerability of V

follows upon considering the op /o (0 = > oF).]
F

Implicit in the proof of Proposition 12 is the fact that if ¢/ is a numerable open covering of X, then
there exists a countable numerable open covering O = {On} of X such that V n, Oy is the disjoint union

of open sets each of which is contained in some member of U.

FACT (Domino Principle) Let U be a numerable open covering of X. Assume:

(D1) Every open subset of a member of U is a member of U.
(D2) The union of each disjoint collection of members of I/ is a member of U.
(D3) The union of each finite collection of members of U is a member of U.
Conclusion: X is a member of U.
[Work with the O, introduced above, noting that there is no loss of generality in assuming that

On C Opt1. Choose a precise open refinement P = {P,} of O : V n, P, C Phy1. Put Qn =

P, (n=1,2) . oo o0 o0
nd write X = n = n— n) =X Xo.
{Pn—ﬁn_z (n>3) and write Lle (L1JQ2 1)U(L1JQ2) 1UX>.]

C(X)

c(x,[0,1)) *° shall understand the set of

Let X be a topological space—then by {

f: X—=>R
f: X —=[0,1]"
alone, even if X is regular Hausdorff.

A zero set in X is a set of the form Z(f) = {z : f(z) = 0}, where f € C(X).

The complement of a zero set is a cozero set. Since Z(f) = Z(min{l,|f|}), C(X) and

all continuous functions { Bear in mind that C'(X) can consist of constants

; ; {z: f(z) >0}

C(X,[0,1]) determine the same collection of zero sets. All sets of the form {z: f(z) <0}
{z: f(z) >0}

(f € C(X)) are zero sets and all sets of the form { {z: f(z) < 0} (f € C(X)) are cozero

sets. The collection of zero sets in X is closed under the formation of finite unions and
countable intersections and the collection of cozero sets in X is closed under the formation

of countable unions and finite intersections. The union of a neighborhood finite collection
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of cozero sets is a cozero set. On the other hand, the union of a neighborhood finite

collection of zero sets need not be a zero set. But this will be the case if each zero set in

the collection is contained in a cozero set, the totality of which is neighborhood finite.
[Note: Suppose that X is Hausdorff—then X is completely regular iff the collec-

tion of cozero sets in X is a basis for X. Every compact G5 in a CRH space is a zero

set. If X is normal, then { closed Gy = zero set so if X is perfectly normal, then

open F, = cozero set’

closed set = zero set ]
open set = cozero set

zero set . . . .. zero sets
covering of X is a covering consisting of . The numerable
cozero set cozero sets

coverings of X are those coverings that have a neighborhood finite cozero set refinement.
Example: Every countable cozero set covering Y = {U,, } of X is numerable. Proof: Choose
fn € C(X7 [07 1]): Un = fn_l(]07 1])7 put ¢, = 1/2n.fn/1+fn & o= Z¢n7 let o, = ¢n/¢v
and apply NU. "

[Note: Every countable cozero set covering U = {U,} of X has a countable star
finite cozero set refinement. Proof: Choose f, € C(X,[0,1]) : U, = f,1(]0,1]), put
f=>_2""f, and define

1 1

Vi = £ 00 0 (=g 1) = (= 1) (L0 < m),

with the obvious understanding if m = 1-—then the collection {V,, »} has the properties

in question. ]

LEMMA Let U = {U; : i € I} be a neighborhood finite cozero set covering of X—then
there exists a zero set covering Z = {Z; : i € I} and a cozero set covering V = {V; :i € I}
such that Vi: Z; C V; C V; C Uj.

[Choose a partition of unity {s; : i € I'} on X subordinate to U. Put V; = x;1(]0,1])

and take for Z; the zero set of the function max r; — £;.]
(2

Let U = {U; : i € I} be a neighborhood finite cozero set covering of X; let Z =
{Z;:ielI}andV = {V;:i € I} be as in the lemma. Denote by F the collection of all

nonempty finite subsets of I. Assign to each F € F: Wrp = (| V; N (X — | Z;). The
ieF igF

collection W = {Wp : F € F} is a neighborhood finite cozero set covering of X such that

Vi :st(Z;, W) C V;. Therefore {st(z, W) : z € X} refines V, hence U. Now repeat the

entire procedure with W playing the role of &. The upshot is the following conclusion.
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PROPOSITION 13 Every numerable open covering of X has a numerable open star

refinement that is neighborhood finite.

FACT Let U = {U; : ¢ € I} be an open covering of X—then U/ is numerable iff there exists a metric
space Y, an open covering V of Y, and a continuous function f : X — Y such that f~1(V) refines U.
[The condition is clearly sufficient. As for the necessity, let {s; : ¢ € I} be a partition of unity on

X subordinate to U. Let Y be the subset of [0,1]7 comprised of those y = {y; : i € I} : Y y; = 1. The

7

prescription d(y’,y"") = Z ly; — y;'| is a metric on Y. Define a continuous function f : X — Y by sending

i
z to {ki(x) : i € I'}. Consider the collection V = {V; : ¢ € I}, where V; = {y : y; > 0}.]

Application: Let U = {U; : ¢ € I} be an open covering of X—then U is numerable iff there exists a
numerable open covering O = {O; : i € I} of crX such that Vi :cr=1(0;) C U;.

EXAMPLE Let G be a topological group; let U be a neighborhood of the identity in G—then the

open covering {zU : ¢ € G} is numerable.

Suppose given a set X and a collection {X; : i € I} of topological spaces Xj.

(FT) Let {f; : i € I} be a collection of functions f; : X; — X —then the
final topology on X determined by the f; is the largest topology for which each f; is
continuous. The final topology is characterized by the property that if Y is a topological
space and if f : X — Y is a function, then f is continuous iff V ¢ the composition
fofi:X; —Y is continuous.

(IT) Let {f; : ¢ € I} be a collection of functions f; : X — X;,—then the
initial topology on X determined by the f; is the smallest topology for which each f; is

continuous. The initial topology is characterized by the property that if Y is a topological
space and if f : Y — X is a function, then f is continuous iff V ¢ the composition

fiof:Y — X, is continuous.

For example, in the category of topological spaces, coproducts carry the final topology
and products carry the initial topology. The discrete topology on a set X is the final
topology determined by the function ) — X and the indiscrete topology on a set X is
the initial topology determined by the function X — *. If X is a topological space and if
f : X — Y is a surjection, then the final topology on Y determined by f is the quotient
topology, while if Y is a topological space and if f : X — Y is an injection, then the initial
topology on X determined by f is the induced topology.

EXAMPLE Let E be a vector space over R—then the finite topology on F is the final topology

determined by the inclusions F' — E, where F' is a finite dimensional linear subspace of E endowed with
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its natural euclidean topology. E, in the finite topology, is a perfectly normal paracompact Hausdorff
space. Scalar multiplication R x E — FE is jointly continuous; vector addition £ x E — E is separately

[e.9)
continuous but jointly continuous iff dim E < w. For a concrete illustration, put R*® = UR", where
0

{0} =R% Cc R! C ---. The elements of R® are therefore the real valued sequences having a finite number
of nonzero values. Besides the finite topology, one can also give R® the inherited product topology 7p
or any of the topologies 7(1 < p < oo) derived from the usual £P norm. It is clear that 7p C 7,y C T,
(1 <p'" < p' < ), each inclusion being proper. Moreover, 11 is strictly smaller than the finite topology.
To see this, let U = { € R® : V 4, |z;| < 27*}—then U is a neighborhood of the origin in the finite
topology but U is not open in 7. These considerations exhibit uncountably many distinct topologies on
R>°. Nevertheless, under each of them, R is contractible, so they all lead to the same homotopy type.

[Note: The finite topology on R is not first countable, thus is not metrizable.]

PROPOSITION 14 Suppose that X is Hausdorff—then X is completely regular iff X
has the initial topology determined by the elements of C'(X) (or, equivalently, C(X, [0, 1]).

[Note: Therefore, if 7’ and 7" are two completely regular topologies on X, then 7/ = 7"
iff, in obvious notation, C'(X) = C"(X).]

When constructing the initial topology, it is not necessary to work with functions whose domain is
all of X.

Suppose given a set X, a collection {U; : ¢ € I'} of subsets U; C X, and a collection {X; : ¢ € I} of
topological spaces X;. Let {f; : i € I'} be a collection of functions f; : U; — X;—then the initial topology
on X determined by the f; is the smallest topology for which each U; is open and each f; is continuous.

The initial topology is characterized by the property that if Y is a topological space and if f:Y — X is

a function, then f is continuous iff V i the composition f—1(U;) i) U; 2 X; is continuous.

EXAMPLE Let X and Y be nonempty topological spaces—then the join X * Y is the quotient of
(z,9',0) ~ (z,y",0) Xx0=X

(x’jy,l)w(x”jyjl) D+xY =Y ’

X XY x[0,1]] > X*Y
is a functor TOP x TOP — TOP. The projection p : sends X x Y x {0}
(z,y,t) = [2,9,]
(or X x Y x {1}) onto a closed subspace homeomorphic to X (or V). Consider now X * Y as merely

z:t71([0,1]) = X
y:t71(0,1]) = Y

X xY x [0,1] with respect to the relations { Conventionally { SO *

aset. Lett : X *Y — [0,1] be the function [z,y,t] — t; let { be the functions

Tyt = w . . . . s .

{ { e 1 —then the coarse join X %, Y is X %Y equipped with the initial topology determined by
z,Y,t] =y

t, , and y. The identity map X *Y — X %, Y is continuous; it is a homeomorphism if X and Y are

compact Hausdorff but not in general. The coarse join X *. Y of Hausdorff X and Y is Hausdorff, thus
50 i8 X *Y. The join X #Y of path connected X and Y is path connected, thus so is X .Y . Examples: (1)
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The cone T'X of X is the join of X and a single point; (2) The suspension X of X is the join of X and a

r
pair of points. There are also coarse versions of both the cone and the suspension, say { o Complete
(&
. . X=X
the picture by setting .
DY =Y

[Note: Analogous definitions can be made in the pointed category TOP..]

FACT Let X and Y be topological spaces—then the identity map X *Y — X %, Y is a homotopy

equivalence.
[,y,0] (0 <t < 1/3)

[A homotopy inverse X .Y — X %Y is given by [z,y,t] = { [z,y,3t — 1] (1/3 <t < 2/3) . Since

[,9,1] (2/3 <t <1)
the homotopy type of X *Y depends only on the homotopy types of X and Y and since the coarse join is

associative, it follows that the join is associative up to homotopy equivalence.]

EXAMPLE (Star Construction) The cone I'X of a topological space X is contractible and there

is an embedding X — I'X. However, one drawback to the functor I' : TOP — TOP is that it does not
preserve embeddings or finite products. Another drawback is that while I" does preserve HAUS, within
HAUS it need not preserve complete regularity (consider I'’X, where X is the Tychonoff plank). The star
construction eliminates these difficulties. Thus put 0* = @ and for X # 0, denote by X* the set of all
right continuous step functions f : [0,1[— X. So, f € X* iff there is a partition ag =0 < a1 < -+ < an <
1 =ap+1 of [0,1] such that f is constant on [a;,a;4+1[ (¢ =0,1,... ,n). There is an injection i : X — X*
that sends z € X to i(z) € X*, the constant step function with value z. Given a,b: 0 <a <b< 1, U an
open subset of X, and € > 0, let O(a, b,U, €) be the set of f € X* such that f is constant on [a,b[, U is a
neighborhood of f(a), and the Lebesgue measure of {t € [a,b[: f(t) € U} is < e. Topologize X* by taking
the O(a,b,U, €) as a subbasis—then ¢ : X — X* is an embedding, which is closed if X is Hausdorff. The
assignment X — X* defines a functor TOP — TOP that preserves embeddings and finite products. It
restricts to a functor HAUS — HAUS that respects complete regularity.

Claim: Suppose that X is not empty—then X* is contractible and has a basis of contractible open
sets.

[Fix fo € X* and define H : X* x [0,1] = X* by H(f,T)(t) = {fo(t) (Ost<T) ]

fH) (T<t<1)

An expanding sequence of topological spaces is a system consisting of a sequence
of topological spaces X" linked by embeddings f™"t!: X" — X"+l Denote by X
the colimit in TOP associated with this data—then for every n there is an arrow f™:
X" — X and the topology on X° is the final topology determined by the f™°°. Each
f™° is an embedding and X*>° = J f™>°(X™). One can therefore identify X™ with

n
f°°(X™) and regard the f™"*1 as inclusions.
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[Note: If all the f™"*! are open (closed) embeddings, then the same holds for all the
froee]

If all the X™ are Ty, then X°° is T. If all the X™ are Hausdorff, then X °° need not
be Hausdorff but there are conditions that lead to this conclusion.

(A) If all the X™ are LCH spaces, then X is a Hausdorff space.

[Let x,y € X°° : x # y. Fix an index ng such that z,y € X™. Choose open relatively
compact subsets Uy, Vo, C X™ 2 € Uy, & y € Vy,, with U,,, NV, = 0. Since U,,, and
V., are compact disjoint subsets of X1 there exist open relatively compact subsets
Uno+1s Vag+1 C X2 Uy C Upgt1 & Vig C Vg1, With Upg1 N Vg1 = 0. Iterate
the procedure to build disjoint neighborhoods U = |J U, and V. = |J V,, of z and y

n>no n>ng
in X°°.]

(B) Suppose that all the X™ are Hausdorff. Assume: V n, X™ is a neighborhood
retract of X™*t1—then X is Hausdorff.

(C) If all the X™ are normal (normal and countably paracompact, perfectly
normal, collectionwise normal, paracompact) Hausdorff spaces and if V n, X™ is a closed
subspace of X"™*! then X is a normal (normal and countably paracompact, perfectly
normal, collectionwise normal, paracompact) Hausdorff space.

[The closure preserving closed covering { X™} is absolute, so the generalities on p. 54

can be applied.]

LEMMA Given an expanding sequence of T spaces, let ¢ : K — X be a continuous
function such that ¢(K) is a compact subset of X*°—then there exists an index n and a
continuous function ¢™ : K — X™ such that ¢ = f™ o ¢".

EXAMPLE Working in the plane, fix a countable dense subset S = {sp} of {(z,y) : = = 0}.
Put X" = {(z,y) : £ > 0} U {so,... ,sn} and let f7ntl . X" — X"+l be the inclusion—then X is

Hausdorff but not regular.

EXAMPLE (Marciszewski Space) Topologize the set [0,2] by isolating the points in ]0,2[, basic

neighborhoods of 0 or 2 being the usual ones. Call the resulting space Xg. Given n > 0, topologize the
set ]0,2[x[0,1] by isolating the points of ]0,2[x]0, 1] along with the point (1,0), basic neighborhoods of
(t,0) (0 <t <1lorl<t<2)being the subsets of L, that contain (¢,0) and have a finite complement,
where Ly, is the line segment joining (¢,0) and (¢+1—1/n,1) (0 <t < 1) or (¢,0) and (t — 1+ 1/n,1)
(1 <t < 2). Call the resulting space Xp. Form Xo Il X1 IT---II X,, and let X™ be the quotient obtained
by identifying points in ]0,2[. Each X" is Hausdorff and there is an embedding f™7+! . X" — Xxn+1,
But X *° is not Hausdorff.



1-31

X0cXxtc.-.. .
FACT Suppose that are expanding sequences of LCH spaces—then X° xY > =
Yocvylc.-.
colim (X™ x Y™).

Let X be a topological space—then a filtration on X is a sequence X%, X1!,... of
subspaces of X such that V n: X™ C X"+l Here, one does not require that | J X" = X.

A filtered space X is a topological space X equipped with a filtration {X"}. A ﬁTtered map
f: X = Y of filtered spaces is a continuous function f : X — Y such that V n: f(X™) C
Y™. Notation: f € C(X,Y). FILSP is the category whose objects are the filtered spaces
and whose morphisms are the filtered maps. FILSP is a symmetric monoidal category:

Take X ®Y to be X x Y supplied with the filtration n — |J XP x Y9, let e be the one
ptg=n
point space filtered by specifying that the initial term is # (), and make the obvious choice

for T. There is a notion of homotopy in FILSP. Write I for I = [0, 1] endowed with its
skeletal filtration, i.e., I° = {0,1}, I = [0,1] (n > 1)—then filtered maps f,g: X — Y
are said to be filter homotopic if there exists a filtered map H : X ® I — Y such that

H(z,0) = f(2)
{ H(r,1) = g(z) & €Y

Geometric realization may be viewed as a functor |?| : SISET — FILSP via consideration of
skeletons. To go the other way, equip A" with its skeletal filtration and let A™ be the associated filtered
space. Given a filtered space X, write sinX for the simplicial set defined by sinX([n]) = sin,X =

C(A",X)—then the assignment X — sinX is a functor FILSP — SISET and (|?|,sin) is an adjoint

pair.

If C is a full subcategory of TOP (HAUS) and if X is a topological space (Hausdorff
topological space), then X is an object in the monocoreflective hull of C in TOP (HAUS)
iff there exists a set { X;} C Ob C and an extremal epimorphism f : [[ X; — X (cf. p. 0-21
ff.). Example: The monocoreflective hull in TOP of the full subcategory of TOP whose
objects are the locally connected, connected spaces is the category of locally connected
spaces.

[Note: The categorical opposite of “epireflective” is “monocoreflective”.]

EXAMPLE (A Spaces) The monocoreflective hull in TOP of [0,1]/[0,1] is the category of A

spaces.

EXAMPLE (Sequential Spaces) A topological space X is said to be sequential provided that a

subset U of X is open iff every sequence converging to a point of U is eventually in U. Every first



1-32

countable space is sequential. On the other hand, a compact Hausdorff space need not be sequential
(consider [0,€]). Example: The one point compactification of the Isbell-Mréwka space ¥(N) is sequential
but there is no sequence in N converging to oo € N. If SEQ is the full, isomorphism closed subcategory
of TOP whose objects are the sequential spaces, then SEQ is closed under the formation in TOP of
coproducts and quotients. Therefore SEQ is a monocoreflective subcategory of TOP (cf. p. 0-21), hence

is complete and cocomplete. The coreflector sends X to its sequential modification sX. Topologically,

sX is X equipped with the final topology determined by the ¢ € C(N,X), where N, is the one
point compactification of N (discrete topology). The monocoreflective hull in TOP of N is SEQ, so
a topological space is sequential iff it is a quotient of a first countable space. SEQ is cartesian closed:
C(s(X xY),Z) =~ C(X,ZY). Here, s(X xY) is the product in SEQ (calculate the product in TOP and
apply s). As for the exponential object ZY , given any open subset P C Z and any continuous function
¢p: N =Y, put O(¢,P) ={g9g € CY,Z): g9(¢(N)) C P} and call Cs(Y, Z) the result of topologizing
C(Y, Z) by letting the O(¢, P) be a subbasis—then ZY = sCs(Y, Z).
[Note: Every CW complex is sequential.]

A Hausdorff space X is said to be compactly generated provided that a subset U of

X is open iff U N K is open in K for every compact subset K of X. Examples: (1) Every
LCH space is compactly generated; (2) Every first countable Hausdorff space is compactly
generated; (3) The product R", k > w, is not compactly generated. A Hausdorff space
is compactly generated iff it can be represented as the quotient of a LCH space. Open
subspaces and closed subspaces of a compactly generated Hausdorff space are compactly
generated, although this is not the case for arbitrary subspaces (consider N U {p} C SN,
where p € SN —N). However, Arhangel’skii’ has shown that if X is a Hausdorff space, then
X and all its subspaces are compactly generated iff for every A C X and each z € A there
exists a sequence {z,} C A :limz, = z. The product X x Y of two compactly generated
Hausdorff spaces may fail to be compactly generated (consider X = R — {1/2,1/3,...}
and Y = R/N) but this will be true if one of the factors is a LCH space or if both factors

are first countable.

EXAMPLE (Sequential Spaces) A Hausdorff sequential space is compactly generated. In fact, a

Hausdorff space is sequential provided that a subset U of X is open iff U N K is open in K for every second

countable compact subset K of X.

EXAMPLE Equip R* with the finite topology and let H(R®°) be its homeomorphism group.

t Czech. Math. J. 18 (1968), 392-395.
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Give H(R®°) the compact open topology—then H(R) is a perfectly normal paracompact Hausdorff
space. But H(R™) is not compactly generated.
[The set of all linear homeomorphisms R*° — R is a closed subspace of H(R). Show that it is

not compactly generated. Incidentally, H(R®°) is contractible.]

For certain purposes of algebraic topology, it is desirable to single out a full, isomor-
phism closed subcategory of TOP, small enough to be “convenient” but large enough to
be stable for the “standard” constructions. A popular candidate is the category CGH of
compactly generated Hausdorff spaces (Steenrod’). Since CGH is closed under the for-
mation in HAUS of coproducts and quotients, CGH is a monocoreflective subcategory
of HAUS (cf. p. 0-21). As such, it is complete and cocomplete. The coreflector sends
X to its compactly generated modification kX. Topologically, kX is X equipped with

the final topology determined by the inclusions K — X, K running through the com-
pact subsets of X. The identity map kX — X is continuous and induces isomorphisms
of homotopy and singular homology and cohomology groups. If X and Y are compactly
generated, then their product in CGH is X x; Y = k(X x Y). Each of the functors
— X3 Y : CGH — CGH has a right adjoint Z — ZY, the exponential object Z¥ being
kC(Y, Z), where C(Y, Z) carries the compact open topology. So one of the advantages of

!/
CGH is that it is cartesian closed. Another advantage is that if { X, X are in CGH and

Y,Y’
. /
if {é‘)}f: 5, are quotient, then f X g : X X3 Y — X’ x Y’ is quotient. But there
are shortcomings as well. Item: The forgetful functor CGH — TOP does not preserve

colimits. For let A be a compactly generated subspace of X and consider the pushout

A — x
square | | in CGH—then P = h(X/A), the maximal Hausdorff quotient of the
X — P

ordinary quotient computed in TOP. To appreciate the point, let X = [0,1], A = [0, 1[—
then [0, 1]/[0, 1] is not Hausdorff and h([0, 1]/[0, 1[) is a singleton. Finally, it is clear that
CGH is the monocoreflective hull in HAUS of the category of compact Hausdorff spaces.

CGH., the category of pointed compactly generated Hausdorff spaces, is a closed category: Take
X ®Y to be the smash product X#,Y (cf. p. 3-28) and let e be SO, Here, the internal hom functor sends

(X,Y) to the closed subspace of kC'(X,Y’) consisting of the base point preserving continuous functions.

FACT Let X be a CRH space. Suppose that there exists a sequence {Un} of open coverings of X

t Michigan Math. J. 14 (1967), 133-152.
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such that V o € X : K, = ("|st(z,Upn) is compact and {st(z,Un)} is a neighborhood basis at K, (i.e., any
n
open U containing K, contains some st(x, Uy ))—then X is compactly generated. Example: Every Moore

space is compactly generated.
[Note: Jiang]L has shown that any CRH space X realizing this assumption is necessarily submeta-

compact.]

In practice, it can be troublesome to prove that a given space is Hausdorff and
while this is something which is nice to know, there are situations when it is irrele-
vant. We shall therefore enlarge CGH to its counterpart in TOP, the category CG
of compactly generated spaces (Vogt?), by passing to the monocoreflective hull in TOP of

the category of compact Hausdorff spaces. It is thus immediate that a topological space
is compactly generated iff it can be represented as the quotient of a LCH space. Con-
sequently, if X is a topological space, then X is compactly generated provided that a
subset U of X is open iff ¢=*(U) is open in K for every ¢ € C(K,X), K any compact
Hausdorff space. What has been said above in the Hausdorff case is now applicable in
general, the main difference being that the forgetful functor CG — TOP preserves co-
limits. Also, like CGH, CG is cartesian closed: C(X x; Y, Z) ~ C(X,ZY). Of course,
X x, Y = k(X x Y) and the exponential object ZY is defined as follows. Given any open
subset P C Z and any continuous function ¢ : K — Y, where K is a compact Hausdorff
space, put O(¢, P) ={g € C(Y,Z) : g(¢(K)) C P} and call Cx(Y, Z) the result of topolo-
gizing C(Y, Z) by letting the O(¢, P) be a subbasis—then ZY = kCy (Y, Z). Example: A
sequential space is compactly generated.

[Note: If X and Y are compactly generated and if f : X — Y is a continuous injection,
then f is an extremal monomorphism iff the arrow X — kf(X) is a homeomorphism, where
f(X) has the induced topology. Therefore an extremal monomorphism in CG need not be
an embedding (= extremal monomorphism in TOP). Extremal monomorphisms in CG

are regular. Call them CG embeddings.]

EXAMPLE Partition [—1,1] by writing [-1,1] = {-1} U |J {z,—=z} U {1}. Let X be the
0<z<1
associated quotient space—then X is compactly generated (in fact, first countable). Moreover, X is

compact and T'; but not Hausdorff; X is also path connected.

) X XY > X
FACT Let X and Y be compactly generated—then the projections are open maps.
X XY =Y

t Topology Proc. 11 (1986), 309-316.
Y Arch. Math. 22 (1971), 545-555; see also Wyler, General Topology Appl. 3 (1973), 225-242.
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Given any class IC of compact spaces containing at least one nonempty space, denote
by M the monocoreflective hull of I in TOP and let R : TOP — M be the associated
coreflector. If X is a topological space, then a subset U of RX is open provided that
¢~ 1(U) is open in K for every ¢ € C(K, X), K any element of K. Write A-K for the full,
isomorphism closed subcategory of TOP whose objects are those X which are A-separated
by K, i.e., such that Ax = {(z,z) : = € X} is closed in R(X x X)—then A-K is
closed under the formation in TOP of products and embeddings. Therefore A-K is an
epireflective subcategory of TOP (cf. p. 0-21). Examples: (1) Take for K the class of all
finite indiscrete spaces—then an X in TOP is A-separated by K iff it is Tg; (2) Take for
KC the class of all finite spaces—then an X in TOP is A-separated by K iff it is T;.

[Note: Recall that a topological space X is Hausdorff iff its diagonal is closed in X x X
(product topology).]

EXAMPLE (Sequential Spaces) Let X be a topological space—then every sequence in X has at

most one limit iff Ax is sequentially closed in X x X, i.e., iff X is A-separated by K = {Ns}. When this
is so, X must be T1 and if X is first countable, then X must be Hausdorff.

[Note: Recall that a topological space X is Hausdorfl iff every net in X has at most one limit.]

If K is a compact space, then for any ¢ € C(K, X), ¢(K) is a compact subset of X.
In general, ¢(K) is neither closed nor Hausdorff.
(K1) A topological space X is said to be Ky provided that V ¢ € C(K,X)
(K € K), ¢(K) is a closed subspace of X.
(K2) A topological space X is said to be Ky provided that V ¢ € C(K,X)
(K € K), ¢(K) is a Hausdorff subspace of X.
A topological space X which is simultaneously Iy and Cy is necessarily A-separated
by K.
Specialize the setup and take for K the class of compact Hausdorff spaces (McCord?),

so M = CG. Suppose that X is Iy (hence T;)—then X is ICy. Proof: Let {z € ¢(K)

-1
€ C(K,X)): z # y, choose disjoint open sets v C K: ¢” (@)U and consider
(¢ y ] v

¢t (y)cV
P(K) — p(K —U) :
. Denote by A-CG the full subcategory of CG whose objects are
{¢<K>—¢<K—v> Y B v !

A-separated by K. There are strict inclusions CGH C A-CG C CG. Example: Every
first countable X in A-CG is Hausdorff.

t Trans. Amer. Math. Soc. 146 (1969), 273-298; see also Hoffmann, Arch. Math. 32 (1979), 487-504.
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LEMMA Let X be a A-separated compactly generated space—then X is K.
[Let K, L € K;let ¢ € C(K,X), ¢ € C(L,X). Since ¢ x ¢ : K x L — X x, X is
continuous, (¢x1)) "1 (Ax) is closed in K x L. Therefore 1~ (¢(K)) = pr; ((px¢)"1(Ax))

is closed in L.]

It follows from the lemma that every A-separated compactly generated space X is Tj.
More is true: Every compact subspace A of X is closed in X. Proof: For any ¢ € C(K, X)
(K € K), AN ¢(K) is a closed subspace of A, thus is compact, so AN ¢(K) is a closed
subspace of ¢(K), implying that ¢~1(A) = ¢~ (AN G(K)) is closed in K. Corollary: The
intersection of two compact subsets of X is compact.

Equalizers in CGH and A-CG are closed (e.g., retracts) but A-CG is better behaved
than CGH when it comes to quotients. Indeed, if X is in A-CG and if E is an equivalence
relation on X, then X/F is in A-CG iff E C X x; X is closed. To see this, let p: X — X/FE
be the projection. Because p x p: X X X — X/E x3, X/E is quotient, Ay, is closed
in X/E x X/E iff (p x4, p)""(Ax/g) = E is closed in X x;, X. Consequently, if A ¢ X
is closed, then X/A is in A-CG.

[Note: Recall that if X is a topological space, then for any equivalence relation E on
X, X/FE Hausdorff == E C X x X closed and E C X x X closed plus p: X — X/FE open
= X/E Hausdorff.

A-CG, like CG and CGH, is cartesian closed. For A-CG has finite products and if
X isin CG and if Y is in A-CG, then kCj(X,Y) is in A-CG.

[Note: Suppose that B is A-separated—then CG/B is cartesian closed (Booth-
Brown').]

CG. and A-CG, are the pointed versions of CG and A-CG. Both are closed categories.
[Note: The pointed exponential object Z¥ is hom(Y, Z).]

EXAMPLE Let X be a nonnormal LCH space. Fix nonempty disjoint closed subsets A and B of X
that do not have disjoint neighborhoods—then X/A and X/B are compactly generated Hausdorfl spaces
but neither X/A nor X/B is regular. Put E = Ax AU B x BUAx. The quotient X/E is a A-separated
compactly generated space which is not Hausdorff. Moreover, X/FE is not the continuous image of any
compact Hausdorff space.

[Note: Take for X the Tychonoff plank. Let A = {(,n) : 0 < n < w} and B = {(a,w) : 0 <
a < Q}—then X/E is compact and all its compact subspaces are closed. By comparison, the product

X/E x X/E, while compact, has compact subspaces that are not closed.]

t General Topology Appl. 8 (1978), 181-195.
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EXAMPLE (k-Spaces) The monocoreflective hull in TOP of the category of compact spaces is
the category of k-spaces. In other words, a topological space X is a k-space provided that a subset U of
X is open iff U N K is open in K for every compact subset K of X. Every compactly generated space is a
k-space. The converse is false: Let X be the subspace of [0, 2] obtained by deleting all limit ordinals except
Q—then X is not discrete. Still, the only compact subsets of X are the finite sets, thus kX is discrete.
The one point compactification X of X is compact and contains X as an open subspace. Therefore X
is not compactly generated but is a k-space (being compact). The category of k-spaces is similar in many
respects to the category of compactly generated spaces. However, there is one major difference: It is not
cartesian closed (Cinéural).

[Note: If K is the class of compact spaces, then HAUS C A-K and the inclusion is strict. Reason:

A topological space X is in A-K iff every compact subspace of X is Hausdorff.]

FACT Let X% C X' C --- be an expanding sequence of topological spaces. Assume: V n, X" is in
A-CG and is a closed subspace of X" t1—then X is in A-CG.

[That X° is in CG is automatic. Let K be a compact Hausdorff space; let ¢ € C(K, X°>°)—then,
from the lemma on p. 1-29, ¢(K) C X™ (I n) = ¢(K) is closed in X™ = ¢(K) is closed in X°.]

EXAMPLE (Weak Products) Let (Xo,z0), (X1,21),... be a sequence of pointed spaces in
A-CG.. Put X" = Xy Xp -+ X Xp—then X" is in A-CG, with base point (zg,...,zn). The
<

pointed map X™ — X"*t1 is a closed embedding. One writes (w) HX" in place of X°° and calls it
1

[e.9)

the weak product of the X,. By the above, (w) [ [ X» is in A-CG. (the base point is the infinite string
1

made up of the ).

[Note: The same construction can be carried out in TOP, the only difference being that X™ is the

ordinary product of Xo,...,Xn.]

Every Hausdorff topological group is completely regular. In particular, every Haus-
dorff topological vector space is completely regular. Every Hausdorff locally compact
topological group is paracompact.

[Note: Every topological group which satisfies the Ty separation axiom is necessarily
a CRH space.]

EXAMPLE Take G = R*(k > w)—then G is a Hausdorff topological group but G is not compactly
generated. Consider kG: Inversion kG — kG is continuous, as is multiplication kG X kG — kG. But
kG is not a topological group, i.e., multiplication kG x kG — kG is not continuous. In fact, kG, while

Hausdorff, is not regular.

t Topology Appl. 41 (1991), 205-212.
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Let FE be a normed linear space; let E* be its dual, i.e., the space of continuous linear functionals on
E—then E* is also a normed linear space. The elements of F can be regarded as scalar valued functions
on E*. The initial topology on E* determined by them is called the weak™® topology. It is the topology
of pointwise convergence. In the weak™ topology, E* is a Hausdorff topological vector space, thus is
completely regular. If dim E > w, then every nonempty weak* open set in E* is unbounded in norm. By
contrast, Alaoglu’s theorem says that the closed unit ball in E* is compact in the weak* topology (and
second countable if E is separable). However, the weak* topology is metrizable iff dim F < w.

[Note: Let E be a vector space over R—then Kruse! has shown that FE admits a complete norm (so
that E is a Banach space) iff dim E < w or (dim E)¥ = dim E. Therefore, the weak* topology on the dual

of an infinite dimensional Banach space is not metrizable.]

The forgetful functor from the category of topological groups to the category of
topological spaces (pointed topological spaces) has a left adjoint X — Fg, X ((X,zo) —
Fer (X, 20)), where Fg X (Fy(X,20)) is the free topological group on X ((X,z)). Alge-
braically, FgrX (Fg(X,20)) is the free group on X (X — {zo}). Topologically, Fy X

(Far(X, x0)) carries the finest topology compatible with the group structure for which the

canonical injection X — Fiiu X ((X,29) — Fg (X, 20)) is continuous. There is a commu-
X — S F,X
tative triangle \ l and Fg, (X, z0) = Fg: X/(20) ({xo) the normal subgroup

Fgr(X, .1'0)
generated by the word zp). On the other hand, Fiyy X ~ Fy (X, z9) I1 Z (II the coproduct

in the category of topological groups) and, of course, Fg, X ~ Fgp (X LI %, %).

[Note: The arrow of adjunction X — F X ((X, z0) = Fy(X, 20)) is an embedding iff
X is completely regular and is a closed embedding iff X is completely regular + Hausdorff
(Thomas¥).]

LEMMA If X is a compact Hausdorff space, then Fy, (X)) (Fg (X, 20)) is a Hausdorff
topological group.

Application: If X is a CRH space, then Fg, (X) (Fgr (X, x0)) is a Hausdorff topological

group.
[Consider X — Fg (BX) ((X,z0) = Far(BX, Bzp)).]

Y Math. Zeit. 83 (1964), 314-320.
t General Topology Appl. 4 (1974), 51-72; see also Quaestiones Math. 2 (1977), 355-377.
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EXAMPLE [t is easy to construct nonnormal Hausdorff topological groups. Thus, given a topo-
logical space X, let Fgr X be the free topological group on X—then, for X a CRH space, the arrow
X = FgrX is a closed embedding and Fg; X is a Hausdorff topological group, so X not normal = Fgr X

not normal.

FACT Given a topological space X, Fgr(X, () & Fgr(X,z() V z),z{ € X.
[Let p' : (X, () = Fgr(X,2(), "+ (X, ) = Fgr(X,z{) be the arrows of adjunction and consider
the pointed continuous functions f’: (X, z() = Fg(X,z(), f" : (X,25) = Fgr(X, z()) defined by f'(z) =

W) () () = ) () )

The forgetful functor from the category of abelian topological groups to the category
of topological spaces (pointed topological spaces) has a left adjoint X — Fa X ((X,z¢) —
FaB(X,z)) and when given the quotient topology, Fer X/[Fr X, Fgr X| &~ FABX (Fr(X, z0)/
[Fer (X, w0), Fir (X, 70)] & Fas(X, 20)).
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§2. CONTINUOUS FUNCTIONS

Apart from an important preliminary, namely a characterization of the exponential
objects in TOP, the emphasis in this § is on the properties possessed by C(X), where X
is a CRH space.

A topological space Y is said to be cartesian if the functor — x Y : TOP — TOP
has a right adjoint Z — Z¥. Example: A LCH space is cartesian.

PROPOSITION 1 A topological space Y is cartesian iff — x Y preserves colimits
(cf. p. 0-33) or, equivalently, iff — x Y preserves coproducts and coequalizers.
[Note: The preservation of coproducts is automatic and the preservation of coequal-

izers reduces to whether — x Y takes quotient maps to quotient maps.|

Notation: Given topological spaces X, Y, Z,A: F(X xY,Z) — F(X,F(Y,Z)) is the
bijection defined by the rule A(f)(z)(y) = f(x,y).

Let 7 be a topology on C(Y, Z)—then 7 is said to be splitting if V X, f € C(X X
Y, Z)= A(f) € C(X,C(Y, Z)) and 7 is said to be cosplitting if V X, g € C(X,C(Y, 2)) =
A Yg) e C(X xY, 7).

LEMMA If 7/ is a splitting topology on C(Y, Z) and 7" is a cosplitting topology on
C(Y,Z), then 7" C 7.

Application: C(Y, Z) admits at most one topology which is simultaneously splitting
and cosplitting, the exponential topology.

EXAMPLE VY &V Z, the compact open topology on C(Y, Z) is splitting.

EXAMPLE IfY is locally compact, then V Z the exponential topology on C(Y, Z) exists and is
the compact open topology.

[Note: A topological space Y is said to be locally compact if V open set P and V y € P, there exists
a compact set K C P with y € int K. Example: The one point compactification Q,, of Q is compact but

not locally compact.]

FACT Let Y be a locally compact space—then for all X and Z, the operation of composition

C(X,Y)x C(Y,Z) - C(X, Z) is continuous if the function spaces carry the compact open topology.

PROPOSITION 2 A topological space Y is cartesian iff the exponential topology on
C(Y, Z) exists for all Z.
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EXAMPLE A locally compact space is cartesian.

FACT Suppose that Y is cartesian. Assume: V Z, the exponential topology on C(Y, Z) is the

compact open topology—then Y is locally compact.

Let Y be a topological space, Ty its topology—then the open sets in the continuous
topology on 7y are those collections ¥V C 7y such that (1) Ve V, V' e vy = V' e Vif
VcViand (2) Viery (tel),YUVieV=>Tiy,...,in: Vi, U---UV, €.

i

LEMMA Let f € F(X, 7y), where X is a topological space and 7y has the continuous
topology—then f is continuous if {(z,y) : y € f(z)} is open in X x Y.

Let T = {(P,y) : y € P} C 7v X Y—then a topology on 7y is said to have property T if T is open

in 7y X Y. Example: The discrete topology on 7y has property T.

FACT The continuous topology on 7y is the largest topology in the collection of all topologies on
Ty that are smaller than every topology on 7y which has property T.
[If 7y (T) is Ty in a topology having property T, then by the lemma, the identity function 7y (T) — 7y

is continuous if Ty has the continuous topology.]

Let Y be a topological space—then Y is said to be core compact if V open set P and
YV y € P, there exists an open set V C P with y € V such that every open covering of P

contains a finite covering of V. Example: A locally compact space is core compact.

There exists a core compact space with the property that every compact subset has an empty interior

(Hofman-Lawson').

FACT Equip 7y with the continuous topology—then Y is core compact iff V open set P and
V y € P, there exists an open V C 7y such that P € V and y € int N V.

EXAMPLE A topological space Y is core compact iff the continuous topology on 7y has property
Let Y, Z be topological spaces—then the Isbell topology on C(Y,Z) is the initial

C(Y, Z) — TY
f—=r11Q)

topology on C(Y, Z) determined by the eg : { (Q € 77), where Ty has the

t Trans. Amer. Math. Soc. 246 (1978), 285-310 (cf. 304-306).
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continuous topology. Notation: isC(Y, 7). Examples: (1) isC(Y,[0,1]/]0,1]) =~ 7v; (2)
isC(x,Z) ~ Z.

LEMMA The compact open topology on C(Y, Z) is smaller than the Isbell topology.

EXAMPLE VY &V Z, the Isbell topology on C(Y, Z) is splitting.
[Fix an f € C(X xY,Z) and let ¢ = A(f)—then the claim is that g € C(X,isC(Y,Z)). From
the definitions, this amounts to showing that V @ € 7z, eg o g is continuous. Write f_l(Q) as a union

of rectangles R; = U; x V; C X x Y. Take an z € X and consider any V : eg(g(x)) € V. Since
n n
eq(g(z)) = U{y :(z,y) € Ri}, 3 (Kk=1,...,n) : U{y t (z,y) € Rip} € V, 0V u € ﬂ Uiy, »
3 k=1

i k=1
eQ(g(u)) € V]

FACT Let Y be a core compact space—then for all X and Z, the operation of composition
C(X,Y)x C(Y,Z) - C(X, Z) is continuous if the function spaces carry the Isbell topology.

PROPOSITION 3 Let Y be a topological space—then Y is cartesian iff Y is core
compact.

[Necessity: Let 7; run through the topologies on 7y which have property T and put
X; = (1y,7;). Form the coproduct X = [[ X; and let f: X — 7y be the function whose

3
restriction to each X; is the identity, where 7y carries the continuous topology—then f
is a quotient map (cf. p. 2-2). Since Y is cartesian, it follows from Proposition 1 that
fxidy : X XY — 7y x Y is also quotient. But X x Y ~ [[X; x Y and, by hypothesis,

T is open in X; X Y V i. Therefore T must be open in 7y X if as well, i.e., the continuous
topology on 7y has property T, thus Y is core compact (cf. p. 2-2).

Sufficiency: As has been noted above, the Isbell topology on C(Y, Z) is splitting, so to
prove that Y is cartesian it suffices to prove that the Isbell topology on C(Y, Z) is cosplitting
when Y is core compact (cf. Proposition 2). Fix g € C(X,isC(Y, Z)) and put f = A~1(g).
Given a point (x,y) € X XY, let @ be an open subset of Z such that f(z,y) € Q. Choose
anopen PCY :y e P & f({z} x P) C (). Because Y is core compact, there exists an
open V C 7y : P€Vand y € intNV. But eq(g(z)) D P = eqg(g(z)) € V and, from the
continuity of eg o g, 3 a neighborhood O of z : ep(g(0)) C V, hence f(O xintNV) C Q.]

Remark: Suppose that Y is core compact—then V Z, “the” exponential object ZY is
isC(Y, Z), the exponential topology on C(Y, Z) being the Isbell topology.
[Note: The Isbell topology and the compact open topology on C(Y,Z) are one and

the same if Y is locally compact.]
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FACT Let f,g € C(Y,Z). Assume: f,g are homotopic—then f, g belong to the same path com-
ponent of isC(Y, Z).

FACT Let f,g € C(Y,Z). Assume: f,g belong to the same path component of isC(Y, Z)—then

f, g are homotopic if Y is core compact.

What follows is a review of the elementary properties possessed by C(X,Y) when
equipped with the compact open topology (omitted proofs can be found in Engelking®).

Notation: Given Hausdorff spaces X and Y, let coC(X,Y) stand for C(X,Y) in the
compact open topology.

[Note: The point open topology on C(X,Y) is smaller than the compact open topol-
ogy. Therefore coC(X,Y) is necessarily Hausdorff. Of course, if X is discrete, then “point

open” = “compact open”.]
PROPOSITION 4 Suppose that Y is regular—then coC(X,Y) is regular.

PROPOSITION 5 Suppose that Y is completely regular—then coC'(X,Y) is com-
pletely regular.

EXAMPLE It is false that Y normal = coC(X,Y) normal. Thus take X = {0,1} (discrete
topology)—then coC'({0,1},Y) ® Y x Y and there exists a normal Hausdorff space Y whose square is not

normal (e.g., the Sorgenfrey line (cf. p. 5-11)).

O’Meara¥ has shown that if X is a second countable metrizable space and Y is a metrizable space,

then coC(X,Y) is perfectly normal and hereditarily paracompact.
EXAMPLE The loop space QY of a pointed metrizable space (Y, yo) is paracompact.

A Hausdorff space X is said to be countable at infinity if there is a sequence {K,} of

compact subsets of X such that if K is any compact subset of X, then K C K,, for some
n. Example: A LCH space is countable at infinity iff it is o-compact.
[Note: X countable at infinity = X o-compact. Example: P is not o-compact, hence

is not countable at infinity.]

FACT Suppose that X is countable at infinity. Assume: X is first countable—then X is locally

compact.

t General Topology, Heldermann Verlag (1989).
t Proc. Amer. Math. Soc. 29 (1971), 183-189.
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EXAMPLE Q is o-compact but Q is not countable at infinity.

EXAMPLE Fix apoint z € BN—N-—then X = NU{z}, viewed as a subspace of SN, is countable
at infinity but it is not first countable.

[Note: The compact subsets of X are finite. However X is not compactly generated.]

EXAMPLE Let E be an infinite dimensional Banach space—then E* in the weak* topology is

countable at infinity.

PROPOSITION 6 Suppose that X is countable at infinity—then for every metrizable
Y, coC(X,Y) is metrizable.

PROPOSITION 7 Suppose that X is countable at infinity and compactly generated—
then for every completely metrizable Y, coC(X,Y) is completely metrizable.

Notation: Given a topological space X, write H(X) for its set of homeomorphisms—
then H(X) is a group under composition.

Let us assume that X is a LCH space. Endow H (X)) with the compact open topology.
Question: Is H(X) thus topologized a topological group? In general, the answer is “no”

(cf. infra) but there are situations in which the answer is “yes”.
H(X)x HX) — H(X)
(f:9) = gof

whether the inversion f — f~! is continuous.]

) H(X)x X
Remark: The evaluation
¥ { (f.z) = f(x)

Given subsets A and B of X, put (4,B) = {f € H(X) : f(A) C B}—then by
definition, the collection {(K,U)} (K compact and U open) is a subbasis for the compact

[Note: The composition { is continuous, so the problem is

is continuous.

open topology on H(X).

PROPOSITION 8 If X is a compact Hausdorff space, then H(X) is a topological

group in the compact open topology.
[For fe (K, U)& f~1e (X -U,X — K)|]

FACT If X is a compact metric space, then H(X) is completely metrizable.

LEMMA Let X be a locally connected LCH space—then the collection {(L,V)},
where L is compact & connected with int L # () and V' is open, constitute a subbasis for

the compact open topology on H(X).
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PROPOSITION 9 If X is a locally connected LCH space, then H(X) is a topological
group in the compact open topology.

[Fix an f € H(X) and choose (L,V) per the lemma: f~! € (L,V). Determine
relatively compact open O & P: f"(L) CcO C O C P Cc P cCV (= f(X-0)n
P) Cc (X —L)n f(V)). Let = be any point such that f(z) € int L—then ({z},int L) N
(X —0)nP,(X —L)n f(V)) is a neighborhood of f in H(X), call it Hy. Claim:
g € Hp = g~! € (L, V). To check this, note that g((X —O)NP) Cc (X —L)n f(V) =
LU(X - f(V)) C g(O)ug(X —P). But g(O), g(X — P) are nonempty disjoint open sets,
so L is contained in either g(O) or g(X — P) (L being connected). Since the containment
L C g(X — P) is impossible (g(z) € int L and z ¢ X — P), it follows that L C g(O) or
still, g~Y(L) Cc O C V, i.e., g~ € (L, V). Therefore inversion is a continuous function.]

Application: The homeomorphism group of a topological manifold is a topological

group in the compact open topology.

EXAMPLE Let X = {0,2"(n € Z)}—then in the induced topology from R, X is a LCH space

but H(X) in the compact open topology is not a topological group.

Suppose that X is a LCH space, X, its one point compactification—then H(X) can
be identified with the subgroup of H(X ) consisting of those homeomorphisms X, — Xoo
which leave co fixed. In the compact open topology, H(X) is a topological group (cf.
Proposition 8). Therefore H(X) is a topological group in the induced topology. As such,
H(X) is a closed subgroup of H(X,).

[Note: This topology on H(X) is the complemented compact open topology. It has
for a subbasis all sets of the form (K, U), where K is compact and U is open, as well as
all sets of the form (X — V, X — L), where V is open and L is compact.]

An isotopy of a topological space X is a collection {ht : 0 < t < 1} of homeomorphisms of X such
h:X x[0,1] > X
that

h(z,t) = he(z)
[Note: When X is a LCH space, isotopies correspond to paths in H(X) (compact open topology).]

is continuous.

EXAMPLE A homeomorphism A : R™ — R" is said to be stable if 3 homeomorphisms h1,... ,hg :

R™ — R" such that h = hjo- - -ohj, where each h; has the property that for some nonempty open U; C R",
hi|U; = idUi- Every stable homeomorphism of R" is isotopic to the identity.

[Take k = 1 and consider a homeomorphism h : R™ — R"™ for which h|U = idy. Define an isotopy
h(z + 2tu) — 2tu (0<t<1/2)

A hy(2-2)r) (1/2<t<1)

{ht: 0 <t <1} of R™ as follows. Fix u € U and put ht(z) = {
2 —2t

hi(z) = z.]
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FACT Equip H(R"™) with the compact open topology and write Hst(R"™) for the subspace of
H(R™) consisting of the stable homeomorphisms—then HgT(R"™) is an open subgroup of H(R"™).
[Note: Therefore HgT(R"™) is also a closed subgroup of H(R"™) (since H(R™) is a topological group

in the compact open topology).]

Application: The path component of idgn in H(R") is HgT(R™).

[In view of the example, there is a path from every element of HgT(R"™) to idgn. On the other hand,
if 7:[0,1] - H(R"™) is a path with 7(1) = idgn but 7(0) € Hst(R"™), then 7~ (Hsp(R")) would be a
nontrivial clopen subset of [0,1].]

[Note: It can be shown that H(R™) is locally path connected (indeed, locally contractible (cf. p.
6-17)).]

An isotopy {ht : 0 < ¢ < 1} is said to be invertible if the collection {ht_1 :0 <t <1} is an isotopy.

LEMMA An isotopy {ht : 0 < ¢t < 1} is invertible iff the function H : X x [0,1] — X x [0,1]
defined by the rule (z,t) — (ht(x),t) is a homeomorphism.

[Note: H is necessarily one-to-one, onto, and continuous.]

FACT Let X be a LCH space—then every isotopy {ht : 0 <t < 1} of X is invertible.

[Show first that V z € X, ht_l(m) is a continuous function of ¢.]

FACT Let X be a LCH space—then every isotopy {ht : 0 < ¢t < 1} of X extends to an isotopy of
Xoo-

[Define ht @ Xoo = Xoo by Et|X = ht & Et(oo) = oo. To verify that h is continuous, extend H
to Xoo % [0,1] via the prescription H(o0o,t) = (ht(00),t), 50 h = oo o H, where 7o is the projection of
Xoo X [0,1] onto Xoo. Establish the continuity of H by utilizing the continuity of H~! (the substance of

the previous result).]
EXAMPLE Every isotopy {ht : 0 <t < 1} of R" extends to an isotopy of S™.

Let X be a CRH space, (Y, d) a metric space. Given f € C(X,Y) and ¢ € C(X,R~y),
put Ny(f) ={g: d(f(2),9(x)) < ¢(x) V x}.

Observations: (1) If ¢1,¢2 € C(X,Rsg), then Ny(f) C Ny, (f) N Ny, (f), where
B(x) = min{n (2), $a(2)}; (2) It g € Ny(f), then Ny(g) C Ny(f), where (z) = d(x) —
d(f(z), g(x)).

Therefore the collection { Ny (f)} is a basic system of neighborhoods at f. Accordingly,
varying f leads to a topology on C'(X,Y’), the majorant topology.
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[Note: Each ¢ € C(X,Rs() determines a metric dg on C(X,Y), viz. dy(f,g9) =

: d(f(x),g(x))

min{1, sup —————~——=
{ zeX ¢($)

which is thus completely regular. However, in general, the majorant topology on C'(X,Y)
need not be normal (Wegenkittl').]

}, and their totality defines the majorant topology on C(X,Y),

Here is a proof that C(X,Y) (majorant topology) is completely regular. Fix a closed subset A C

C(X,Y) and an f € C(X,Y) — A. Choose ¢ € C(X,R>0) : Ny(f) C C(X,Y) — A. Define a function
d

& : O(X,Y) = [0,1] by ®(g) = sup 2SE9E)

reX gﬁ(fl})
continuous and ®(f) =0, ®|A =1.]

f g € Ny(f) and let it be 1 otherwise—then & is

[Note: The verification of the continuity of ® hinges on the observation that g € Ny(f) = d(f(z),

g9(z)) < ¢(x) ¥V x, hence V g € Ny(f) — Ng(f), sup M =1
reX gﬁ(fl})

Example: Suppose that the sequence {fx} converges to f in C(R",R") (majorant
topology)—then 3 a compact K C R™ and an index kg such that fi(z) = f(x) Vk > ko
&VreR"-K.

EXAMPLE Suppose that f : R®” — R"™ is a homeomorphism—then f has a neighborhood of

surjective maps in C(R™,R™) (majorant topology).

EXAMPLE Equip H(R"™) with the majorant topology—then the path component of idgn in

H(R™) consists of those homeomorphisms that are the identity outside some compact set.
FACT The majorant topology on C'(R"™,R"™) is not first countable.

LEMMA The compact open topology on C(X,Y") is smaller than the majorant topol-
ogy.

[Fix a compact K C X, an open V C Y, and a continuous f : X — Y such that
f(K) C V. Choose € > 0 such that Vy € f(K),d(y,y) <e=1y € V. Let ¢ € C(X,Rsp)
be the constant function z — e—then V g € Ny(f), g(K) C V]

Remark: The uniform topology on C(X,Y) is the topology induced by the metric

d(f,g) = min{1, sup d(f(z),g(x))}. The proof of the lemma shows that the compact open
zeX

topology on C'(X,Y) is smaller than the uniform topology (which in turn is smaller than
the majorant topology).

t Ann. Global Anal. Geom. 7 (1989), 171-178; see also van Douwen, Topology Appl. 39 (1991), 3-32.
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FACT The compact open topology on C(X,Y) equals the uniform topology if X is compact.
FACT The uniform topology on C(X,Y) equals the majorant topology if X is pseudocompact.

Let M(Y) be the set of all metrics on Y which are compatible with the topology of
Y—then the limitation topology on C(X,Y") has for a neighborhood basis at f the Ny, (f)

(m e M(Y)), where N,,,(f) = {g: 15;1612 m(f(z),g(x)) < 1}.

[Note: If my,my € M(Y), then Ny, 1, (f) C N, (f) N N, (f) and if g € Ny (f),

then N(g)m(g) C Ny (f), where m(f(x),g9(x)) <1 —€V z.]

The limitation topology is defined by the metrics (f,g) — min{1, sup m(f(x),g(z))} (m € M(Y)),
r€X
thus the uniform topology on C(X,Y') is smaller than the limitation topology.

LEMMA Suppose that X is paracompact—then the limitation topology on C(X,Y)
is smaller than the majorant topology.
[Fix m € M(Y) and let f € C(X,Y). By compatibility, V z € X, 3 ¢(z) > 0 :

1 e(x
A(F(@).9) < €)= m(Fe).9) <+ Put 0, = (o’ : d( (). /=) < 2} then {0,)
is an open covering of X. Let {U,} be a precise neighborhood finite open refinement and
choose a subordinated partition of unity {x,}. Definition: ¢ =" L;)mw. Consider now
any zo € X and assume that d(f(zo),y) < ¢(zo). Let kg, ,..., Ky, be an enumeration
lay) _ elr)
2 = 2
1,...,n) to get p(xp) < @ But xg € U,, C O,,. Therefore d(f(x;), f(xo)) < 6(;’%) (=

m(f(zi), f(z0)) < i) = d(f(zi),y) < e(z;) = m(f(z:),y) < i = m(f(z0),y) < % And
this shows that Ny (f) C Ny, (f).]

[Note: In general, the limitation topology is strictly smaller than the majorant topol-

of those K, whose support contains zo and fix ¢ between 1 and n :

ogy. To see this, observe that C(R, R) is a topological group under addition in the majorant
topology. On the other hand, there is a countable basis at a given f € C'(R,R) (limitation
topology) iff f is bounded, thus C(R,R) is not a topological group under addition in the
limitation topology.]

FACT Take X = Y—then in the limitation topology, H(X) is a topological group.

REFINEMENT PRINCIPLE Let (Y, d) be a metric space—then for any open cover-
ing V={V}ofY,3me M(Y) such that the collection {V,} is a refinement of V, where

Vy ={y' :m(y,y) < 1}.
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[A proof can be found in Dugundji'.]

LEMMA Let (Y, d) be a metric space—then for any § € C(Y,Rs¢), 3m € M(Y) :
d(y,y') < 0(y) whenever m(y,y’) < 1.

[Choose an open covering V = {V} of Y such that the diameter of a given V is
< %inf d(V). Using the refinement principle, fix an m € M(Y) such that the collection
{Vy} refines V. If (y,y’) is a pair with m(y,y’) < 1, then V,, C V for some V, hence

y,y €V =d(y,y') < %5(1/) <4(y).]

PROPOSITION 10 Take X = Y-—then the limitation topology on H(X) is equal to
the majorant topology.
[Fix f € H(X) and ¢ € C(X,Rsg). Thanks to the lemma, 3m € M(X) : d(z,2’) <

¢ o f~Y(x) whenever m(z,2') < 1. If ¢ € H(X) and sup m(f(z),g(z)) < 1, then
zeX

d(f(z),g9(x)) < ¢po f7Hf(z)) = ¢(x) V z, i.e., Ny(f) N H(X) is open in H(X) (limi-
tation topology).]

Application: The homeomorphism group of a metric space is a topological group in

the majorant topology.

EXAMPLE Let X be a second countable topological manifold of euclidean dimension n—then
in the majorant topology, H(X) is a topological group. Moreover, Cernavskii* has shown that H(X) is
locally contractible.

[Note: X is metrizable (cf. §1, Proposition 11), so 3d: (X, d) is a metric space.]

Notation: V f € C(X,Y), gry C X x Y is its graph.
Given an open subset O C X x Y, let I'o = {f : gr; C O}—then the collection {I'o}
is a basis for a topology on C(X,Y), the graph topology.

[Note: In this connection, observe that T'o NT'p = T'onp.]

LEMMA The majorant topology on C(X,Y) is smaller than the graph topology.
[The function (z,y) — ¢(z) — d(f(z),y) from X x Y to R is continuous, thus O =
{(z,y) : d(f(z),y) < ¢(x)} is an open subset of X x Y. But I'p = Ny(f).]

t Topology, Allyn and Bacon (1966), 196; see also Bessaga-Pelczyniski, Selected Topics in Infinite
Dimensional Topology, PWN (1975), 63.

t Math. Sbornik 8 (1969), 287-333.
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Rappel: A function f: X — R is lower semicontinuous (upper semicontinuous) if for

each real number ¢, {z : f(x) > ¢} ({z: f(z) < c}) is open. Example: The characteristic

function of a subset S of X is lower semicontinuous (upper semicontinuous) iff S is open

(closed).

HAHN’S EINSCHIEBUNGSATZ Suppose that X is paracompact. Let g : X — R be
lower semicontinuous and G' : X — R upper semicontinuous. Assume: G(z) < g(z)V z €
X-—then 3 a continuous function f : X — R such that G(z) < f(z) < g(z)V z € X.

[Put U, = {z: G(z) < r}n{x: g(x) > r} (r rational). Each U, is open and X = (JU,..

Let {k,} be a partition of unity subordinate to {U,} and take f = > rx,.]

The following result characterizes the class of X satisfying the conditions of Hahn’s einschiebungsatz.

FACT Let X be a CRH space—then X is normal and countably paracompact iff for every lower
semicontinuous g : X — R and upper semicontinuous G : X — R such that G(z) < g(z) V = € X,
3feC(X,R):G(zx) < f(z) <glz)VezeX.

[Necessity: With r running through the rationals, there exists a neighborhood finite open covering

{Or} of X : Or C {z : G(zr) < r < g(z)} V r and a neighborhood finite open covering {P,} of X :

= . . . —oo (z & Or)
P, C O, V r. Fix a continuous function fr : X — [—oo,r] such that fr(z) = _ . Put
r (z € Pr)
f(xz) = sup fr(z)—then f has the required properties.
T

Sufficiency: There are two parts.

X is normal. Thus let A, B be disjoint closed subsets of X. With G the characteristic function

g(z) =1 (z € B) . N . N
of A, let g be defined by : g is lower semicontinuous, G is upper semicontinuous,

g(z) =2 (z & B)
and G(r) < g(z) V ¢ € X. Choose f € C(X,R) per the assumption and let U = {z : f(z) > 1},

BCV
X is countably paracompact. Thus consider any decreasing sequence {Ay} of closed sets such

1
that () An = 0. Put =
aon 0. Put g(z) = ———

U ACU
V ={z: f(z) < 1}—then { are disjoint open subsets of X and { , hence X is normal.
\%

(r € Ap — Apy1,mn=0,1,...) (Ap = X): g is lower semicontinuous.

1
Take f € C(X,R) : 0 < f(z) < g(z) and let Uy, = {z: f(z) < ?}—then {Un} is a decreasing sequence
n

of open sets with A,, C Uy, for every n and ﬂ Un = 0. Since X is normal, this guarantees that X is also
n

countably paracompact (via CP (cf. p. 1-13)).]

LEMMA Assume that X is paracompact and suppose given a neighborhood finite
closed covering {A4; : j € J} of X and V j, a positive real number a;—then 3 a continuous
function ¢ : X — Ry such that ¢(z) < a; if x € A;.

[The function from X to R defined by the rule # — min{a; : z € A;} is lower

semicontinuous and strictly positive.]
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PROPOSITION 11 The majorant topology on C(X,Y) is independent of the choice
of d provided that X is paracompact.

[It suffices to show that the graph topology on C'(X,Y) is smaller than the majorant
topology (cf. p. 2-10). So fix an f € T'p and consider any zy € X. Choose a neighborhood
Uy of 2y and a positive real number ag such that z € Uy & d(f(xo),y) < 2a0 = (z,y) € O.
Choose further a neighborhood Vj of zy such that Vo C Uy & d(f(x0), f(x)) < ap V x €
Vo—then {(z,y) : z € Vo & d(f(z),y) < ap} C O. From this, it follows that one can find
a neighborhood finite closed covering {A; : j € J} of X and a set {a; : j € J} of positive
real numbers for which {(z,y) : z € A; & d(f(x),y) < a;} C O. In view of the lemma, 3
a continuous function ¢ : X — Ry with ¢(z) < a; whenever z € A;, hence Ny(f) C I'o,

i.e., every point of I'p is an interior point in the majorant topology.]

To reiterate: If X is paracompact, then the majorant topology on C'(X,Y) equals the
graph topology.

[Note: The assumption of paracompactness can be relaxed (see below).]

Let X be a CRH space, (Y,d) a metric space. Given f € C(X,Y) and a lower semicontinuous
o X = R, put No(f) = {g : d(f(2), 9(x)) < o(z) ¥ z}.

Observations: (1) If 01,02 : X = R>p are lower semicontinuous, then Ny (f) C Ngy (f) N Noo (f),
where o(z) = min{o1(z),02(x)}; (2) If g € No(f), then N-(g) C Ny (f), where 7(z) = o(z)—d(f(z), g(z)).

[Note: The minimum of two lower semicontinuous functions is lower semicontinuous, so o is lower
semicontinuous. On the other hand, the sum of two lower semicontinuous functions is lower semicontinuous.
But z — d(f(z),9(z)) is continuous, thus z — —d(f(z),g(x)) is lower semicontinuous, so 7 is lower
semicontinuous.]

Therefore the collection {N,(f)} is a basic system of neighborhoods at f. Accordingly, varying f

leads to a topology on C(X,Y), the semimajorant topology.

LEMMA The semimajorant topology on C(X,Y’) is smaller than the graph topology.

[Let O = {(z,y) : d(f(z),y) < o(z)}—then Tp is open in C(X,Y). Proof: Fix (zo,y0) € O,
put € = é(o(wo) — d(f(z0),y0)), and note that the subset of O consisting of those (z,y) such that
o(z) > o(zro) —e, d(f(x), f(zo)) <€, and d(y,yo) < € is open. And: Ns(f) =T0o.]

LEMMA The graph topology on C(X,Y) is smaller than the semimajorant topology.

[Fix an f € T'p. Define a strictly positive function o : X — R by letting o(zp) be the supremum of
those ag €]0,1] for which z¢ has a neighborhood Uy such that z € Uy & d(f(z0),y) < ap = (z,y) € O.
Since Ny (f) C o, the point is to prove that o is lower semicontinuous, i.e., that Ve € R, {z : ¢ < o(z)} is

open. This is trivial if ¢ < 0 or ¢ > 1, so take ¢ €]0, 1] and fix zo : ¢ < o(z0). Put € = (o(xp) — ¢)/3—then
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¢+ 2¢ < o(wo), thus 3 a neighborhood Uy of zg such that = € Uy & d(f(z0),y) < c+ 2¢ = (z,y) € O.
Supposing further that z € Uy = d(f(z0), f(z)) < €, one has z € Uy & d(f(z),y) <c+e= (z,y) €0 =
c<c+e<o(z)]

FACT The semimajorant topology on C(X,Y) equals the graph topology.

A CRH space X is said to be a CB space if for every strictly positive lower semicontinuous o : X - R
there exists a strictly positive continuous ¢ : X — R such that 0 < ¢(z) < o(z)Vz € X.

Example: If X is normal and countably paracompact, then X is a CB space (cf. p. 2-11).

Examples (Mack'): (1) Every countably compact space is a CB space; (2) Every CB space is count-

ably paracompact.

EXAMPLE The Isbell-Mréwka space ¥(N) is a pseudocompact LCH space which is not countably

paracompact (cf. p. 1-12), hence is not a CB space.

FACT The majorant topology on C(X,Y) equals the graph topology V pair (Y,d) iff X is a CB
space.

[Necessity: Fix a strictly positive lower semicontinuous o : X — R. Specialized to the case Y = R,
the agssumption is that the majorant topology on C(X) equals the semimajorant topology, so working with
N (0), 3¢ : Ny(0) C No(0) = (1 —€)p € Ny(0) C Ny(0) (0 <e<1) = 0<p(x) <o(z)VaxeX,thus
X is a CB space.

Sufficiency: Since Ng(f) C Ny (f), the semimajorant topology on C(X,Y") is smaller than the majo-

rant topology.]

If (Y,d) is a complete metric space, then coC(X,Y) need not be Baire. Examples:
(1) coC(]0,92[,R) is not Baire; (2) coC(Q, R) is not Baire.
[Note: Recall, however, that if X is countable at infinity and compactly generated,

then coC(X,Y) is completely metrizable (cf. Proposition 7), hence is Baire.]

PROPOSITION 12 Assume: (Y,d) is a complete metric space—then C'(X,Y) (ma-
jorant topology) is Baire.

[Let {O,} be a sequence of dense open subsets of C(X,Y"). Let U be a nonempty open
subset of C'(X,Y). Since U N O; is nonempty and open and since C'(X,Y) is completely
regular (cf. p. 2-8), 3 f1 e UNO1 & ¢1 € C(X,Rx0) : {g:d(f1(x),g9(x)) < ¢p1(x) Va} C
UNO1, where ¢1 < 1. Next, 3 fo € Ny, (f1)NO2 & ¢p2 € C(X,Rx0) : {g : d(f2(z),g(z)) <

t Proc. Amer. Math. Soc. 16 (1965), 467-472.
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p2(x) ¥V x} C Ny, (f1) N Og, where ¢o < ¢1/2. Proceeding, 3 fn41 € Ny, (fn) N Opnt1
& dnt1 € C(X,Rso) : {g : d(fat1(2),9(2)) < dnta(z) V 2} C Ny, (fn) N Ongr, where

1 .
b1 < dn/2. So, ¥V z, d(fni1(x), fn(z)) < STESE thus {f,(z)} is a Cauchy sequence
in Y. Definition: f(z) = lim f,,(z). Because the convergence is uniform, f € C(X,Y).
Moreover, d(f,(x), f(z)) < ¢p(x) ¥V n & ¥V x, which implies that f € U N () Oy).]

FACT Assume: (Y,d) is a complete metric space—then C(X,Y) (limitation topology) is Baire.

Convention: Maintaining the assumption that X is a CRH space, C'(X) henceforth
carries the compact open topology.
Let K be a compact subset of X. Put pi (f) = sup|f|(f € C(X))—then px : C(X)
K

—
R is a seminorm on C(X), i.e., px (f) > 0, px (f+9) < px(f)+pr(9), px(cf) = |clpr (f)-
[Note: More is true, viz. pg is multiplicative in the sense that pr (fg) < px (f)px(g).]
Remark: The initial topology on C(X) determined by the px as K runs through the
compact subsets of X is the compact open topology.
[Note: In the compact open topology, C'(X) is a Hausdorff locally convex topological

vector space.]

Observation: If K C X is compact and if f € C(K), then 3 F € BC(X) : F|K = f. Proof: Apply

the Tietze extension theorem to K regarded as a compact subset of §X.

A CRH space X is said to be a kr-space provided that a real valued function f :
X — R is continuous whenever its restriction to each compact subset of X is continuous.

Example: A compactly generated X is a kr-space (but not conversely (cf. infra)).

EXAMPLE Let X be a kr-space. Assume: X is countable at infinity—then X is compactly
generated.

[Fix a “defining” sequence {K,} of compact subsets of X with K, C Knp41 V n. Claim: A subset
A of X is closed if AN K, is closed in K, for each n. For if not, then A has an accumulation point
ao : ap € A, which can be taken in K1 (adjust the notation). Choose a continuous function f1 : K1 - R
such that f1(AN K1) = {0} and fi(ap) = 1. Extend f1 to a continuous function f2 : K2 — R such that
f2(AN K2) = {0}. Repeat the process to get a function f: X — R such that f(z) = fn(z) (z € Ky).

Since X is a kr-space, f is continuous. This, however, is a contradiction: f(A) = {0}, f(ao) = 1.]

FACT A kr-space X is compactly generated iff kX is completely regular.
[If X is a kr-space, then C(X) = C(kX). So, the supposition that kX is completely regular forces
X = kX (cf. §1, Proposition 14).]
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[Note: Recall that in general, X completely regular 7 kX completely regular (cf. p. 1-36).]

PROPOSITION 13 ((X) is complete as a topological vector space iff X is a kgr-
space.

[Necessity: Suppose that f : X — R is a real valued function such that f|K is
continuous ¥ compact K C X. Let fx € C(X) be an extension of f|K—then {fx} is a
Cauchy net in C(X), thus is convergent, say lim fx = F. But f = F.

Sufficiency: Let {f;} be a Cauchy net in C(X)—then V compact K C X, the net
{fi|K} is Cauchy in C'(K), hence has a limit, call it fx. If K; C Ko, then fg,|K1 = fKk,,
so the prescription f(z) = fx(x) (x € K) defines a function f : X — R. Since X is a

kr-space, f is continuous. And: lim f; = f.]

EXAMPLE Let k be a cardinal > w—then N is a kr-space but N is not compactly generated.

[Note: N“ is homeomorphic to P, thus is compactly generated.]
FACT Suppose that the closed bounded subsets of C'(X) are complete—then X is a kr-space.

PROPOSITION 14 (C(X) is metrizable iff X is countable at infinity (cf. Proposition
6).

[Let d be a compatible metric on C(X). Put U, = {f : d(f,0) < 1/n}. Choose a
compact K,, C X and a positive €, : f(K,) C|— €n, €,[= f € U,—then for any compact
subset K of X, 3n: K C K,,. Therefore X is countable at infinity.]

PROPOSITION 15 C(X) is completely metrizable iff X is countable at infinity and
compactly generated (cf. Proposition 7).

[If C(X) is completely metrizable, then C(X) is complete as a topological vector space,
so X is a kr-space (cf. Proposition 13), thus X, being countable at infinity, is compactly
generated (cf. p. 2-14).]

A CRH space X is said to be topologically complete if X is a G5 in 8X or still, if X is a G in any

Hausdorff space containing it as a dense subspace. Example: P is topologically complete but Q is not.
Examples: (1) Every completely metrizable space is topologically complete and every topologically
complete metrizable space is completely metrizable; (2) Every LCH space is topologically complete.

[Note: A topologically complete space is necessarily compactly generated and Baire (Engelking’).]

t General Topology, Heldermann Verlag (1989), 197-198.



2-16

Remark: It can be shown that Proposition 15 goes through if the hypothesis “completely metrizable”

is weakened to “topologically complete” (McCoy-Ntantu®).

EXAMPLE Let X be a LCH space. Assume: X is paracompact—then C'(X) is Baire.

[Using LCH3 (cf. p. 1-2), write X = HXi’ where the X; are pairwise disjoint nonempty open o-
7

compact subspaces of X. Each X; is countable at infinity and there is a homeomorphism C(X) = [ [ C(X;).

But the C(X;) are completely metrizable (cf. Proposition 15), hence are topologically complete,zand it is
a fact that a product of topologically complete spaces is Baire (Oxtoby?).]

[Note: The paracompactness assumption on X cannot be dropped. Example: Take X = [0, Q[—then
C(X) is not Baire. Proof: Since X is pseudocompact, O, = | J{f : n < f(z) < n+ 1} is a dense open

T

subset of C(X) and (| On = 0.]
n

FACT Suppose that X is first countable and C(X) is Baire—then X is locally compact.

STONE-WEIERSTRASS THEOREM Let X be a compact Hausdorff space. Suppose
that A is a subalgebra of C'(X) which contains the constants and separates the points of
X—then A is uniformly dense in C(X).

EXAMPLE Let 0 < a < b < 1—then every f € C([a,b]) can be uniformly approximated by
d

polynomials Z nixk, ny integral.
1

1
[It is enough to show that f = > can be so approximated. Given an odd prime p, put ¢p(z) =

—(1 — 2P — (1 — z)P) : ¢p is a polynomial with integral coefficients, no constant term, and pop, — 1

D
1 gq

1
uniformly on [a,b] as p — oco. Now write p = 2q + 1, note that ‘ 5 ‘ < —, and consider g¢y.]
p p

PROPOSITION 16 Suppose that X is a compact Hausdorff space—then C(X) is
separable iff X is metrizable.

[Necessity: If {f,} is a uniformly dense sequence in C'(X), then the {z : |f.(z)| > %}
constitute a basis for the topology on X, therefore X is second countable, hence metrizable.

Sufficiency: Let d be a compatible metric on X. Choose a countable basis {U,,} for
its topology and put f,(z) = d(z, X — U,) (x € X)—then the f, separate the points of
X, thus the subalgebra of C'(X) generated by 1 and the f,, is uniformly dense in C'(X), so

t SLN 1315 (1988), 75.
Y FPund. Math. 49 (1961), 157-166.
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the same is true of the rational subalgebra of C'(X) generated by 1 and the f,,. But the

latter is a countable set.]

EXAMPLE Assume that X is not compact and consider BC(X), viewed as a Banach space in
the supremum norm: ||f|| = sup |f|—then BC(X) can be identified with C(8X) (f — Bf : ||f|| = [IBfI])-
Since BX is not metrizable, itX%ollows that BC(X) is not separable.

[Note: To see that X is not metrizable, fix a point 9 € X — X and, arguing by contradiction,
choose a sequence {z,} C X of distinct x5 having xo for their limit. Put A = {z2n}, B = {z2n+1}—then
A and B are disjoint closed subsets of X, so, by Urysohn, 3 ¢ € BC(X) such that 0 < ¢ <1 with ¢ =1
on A and ¢ = 0 on B. Therefore 1 = ¢(z2n) = Bop(zo) & 0 = Pp(x2n+1) = Bd(xo), an absurdity.]

PROPOSITION 17 (C(X) is separable iff X admits a smaller separable metrizable
topology.

[Necessity: Fix a countable dense set { f,} in C(X)—then { f,,} separates the points of
X and the initial topology on X determined by the f, is a separable metrizable topology.
Reason: The arrow X — R defined by the rule z — {f,,(z)} is an embedding.

Sufficiency: Let X stand for X equipped with a smaller separable metrizable topology.
Embed Xy in [0,1]“. Fix a countable dense set {¢,} in C([0,1]*) (cf. Proposition 16)
and put f, = ¢,|Xo—then the sequence {f,} is dense in C(Xy), thus C(Xj) is separable.
Indeed, given a compact subset Ky of Xy and fy € C(Xp), 3 ¢po € C([0,1]¥) : ¢o| Ko =
folKo & Ve > 0,3 ¢y : pr,(dpn — P0) < € = pr,(fn — fo) < €. Finally, the separability
of C(Xy) forces the separability of C(X). This is because a compact subset K of X is a

compact subset of Xy and the two topologies induce the same topology on K|
Example: Take X = R (discrete topology)—then C'(X) is separable.

EXAMPLE If X = UKn, where each K, is compact and metrizable, then C(X) is separable.

n
[There is no loss of generality in supposing that K, C Kn+41 V n. Choose a countable dense subset
{fn,m} in C(Ky) (cf. Proposition 16) and let F ,, be a continuous extension of fn , to X—then the
initial topology on X determined by the F, , is a separable metrizable topology which is smaller than

the given topology on X, so C(X) is separable (cf. Proposition 17).]

FACT Let X be a LCH space—then C(X) is separable and metrizable iff X is separable and

metrizable.

FACT Let X be a LCH space—then C(X) is separable and completely metrizable iff X is separable

and completely metrizable.
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PROPOSITION 18 ('(X) is first countable iff X is countable at infinity.

PROPOSITION 19 ((X) is second countable iff X is countable at infinity and all
the compact subsets of X are metrizable.

[Necessity: C'(X) second countable = C'(X) first countable = X countable at infinity
(cf. Proposition 18). In addition, C'(X) second countable = C(X) separable. So, by
Proposition 17, X admits a smaller separable metrizable topology which, however, induces
the same topology on each compact subset of X.

Sufficiency: The hypotheses on X guarantee that C'(X) is separable (via the example

above) and metrizable (cf. Proposition 14).]

EXAMPLE Let E be an infinite dimensional locally convex topological vector space. Assume:
E is second countable and completely metrizable—then the Anderson-Kadec theorem says that FE is
homeomorphic to R¥ (for a proof, see Bessaga-Pelczyniskit). Consequently, if X is countable at infinity
and compactly generated and if all the compact subsets of X are metrizable, then C(X) is homeomorphic

to R¥.
FACT Suppose that X is second countable—then C(X) is Lindel6f.

Up until this point, the playoff between X and C(X) has been primarily “topological”,
little use having been made of the fact that C(X) is also a locally convex topological
vector space. It is thus only natural to ask: Can one characterize those X for which C(X)
has a certain additional property (e.g., barrelled or bornological)? While this theme has
generated an extensive literature, I shall present just two results, namely Propositions 20

and 21, these being due independently to Nachbin® and Shirotall.

FACT C((X) is reflexive iff X is discrete.

[Assuming that C(X) is reflexive, its bounded weakly closed subsets are weakly compact. Therefore
the compact subsets of X are finite which means that C'(X) is a dense subspace of R¥ (product topology).
But the reflexiveness of C'(X) also implies that its closed bounded subsets are complete, hence X is a kr-

space (cf. p. 2-15). Thus C(X) is complete (cf. Proposition 13), so C(X) = R¥ and X is discrete.]

A subset A of X is said to be bounding if every f € C'(X) is bounded on A. Example:
X is pseudocompact iff X is bounding.

t Selected Topics in Infinite Dimensional Topology, PWN (1975), 189.
Y Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 471-474.
I Proc. Japan Acad. Sci. 30 (1954), 294-298.
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Given a subset W of C(X), let K(W) be the subset of X consisting of those x with the
property that for every neighborhood O, of x there exists an f € C'(X): f(X —0O,) = {0}
& fegw.

BOUNDING LEMMA If W is a barrel in C'(X), then K (W) is bounding.

[Suppose that K (W) is not bounding and fix an infinite discrete collection O = {O}
of open subsets of X such that ONK(W) # 0 V O € O. Choose an element O; € O.
Since Oy NK(W) # 0,3 f1 € C(X) : f1(X —01) = {0} & f1 ¢ W. On the other hand,
W, being a barrel, is closed, so 3 a compact K; C X and a positive €1 : {g: px, (f1 —g) <
e1} N W = (). Choose next an element Oy € O : Oy N K7 = () and continue. The upshot
is that there exist sequences {O,}, {fn}, {Kn}, {€n} with the following properties: (1)

On+1ﬂ('!1Ki) =0; (2) fa(X=0,)={0} & [, &€W; (3) {9 : vk, (fn—9) < e }NW = (.
- 1
Take ¢; = 1 and determine c,41 : 0 < cp1 < T subject to the requirement that
n

no1 x 1
Cn1PK, 1 (Y —fi) < €ngy1 ¥V n. Put f = > —fi—then by (2) and the discreteness of
i=1 Ci i=1 Ci

{On}, f is continuous, and (1)—(3) combine to imply that ¢, 1f &€ W V n, thus W does

not absorb the function f, a contradiction.]

LEMMA OF DETERMINATION If W is a barrel in C(X) and if f is an element of
C(X) such that f(z) =0V x € U, where U is an open set containing K (W), then f € W.
[Suppose false. Choose a compact K C X and a positive € : {g : px(f—g) < e}NW =
(), and for each z € K — U, choose a neighborhood O, of z : g(X — O,) = {0} =g W.
Fix f, € C(X,[0,1]) : fa(z) = 1 & fo| X — Oy = 0, and let U, = {y : fz(y) > 1/2}.

The U, comprise an open covering of K — U, thus one can extract a finite subcovering
n

fa, :
Up. ... Uy . Put iy — i —1,....n)—th LK —U =
) .. Put kg, Y T (4 n) en;::l&z|
1. Since kg, (X — Og,) = {0}, cka, f € W(c € R), therefore F = kg, f + -+ kg, [ =

1
ﬁ(mﬁmlf + -+ nky, f) € W. But by its very construction, F|K = f|K = F ¢ W]

PROPOSITION 20 C(X) is barrelled iff every bounding subset of X is relatively
compact.

[Necessity: Rephrased, the assertion is that for any closed noncompact subset S of
X, 3 feC(X): fis unbounded on S. Thus let Bg = {f : sup|f| < 1}—then Bg is
s

balanced and convex. Since Bg is also closed and since the requirement that there be some
f € C(X) which is unbounded on S amounts to the failure of Bg to be absorbing, it need
only be shown that Bg does not contain a neighborhood of 0. Assuming the opposite,
choose a compact K and a positive € : {f : px(f) < ¢} C Bg. Claim: S C K. Proof:
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IfzeS—K,3fecCX): f(K)={0} & f(x) = 2, an impossibility. Therefore S is
compact (being closed), contrary to hypothesis.

Sufficiency: Fix a barrel W in C'(X )—then the contention is that W contains a neigh-
borhood of 0. Owing to the bounding lemma, K (W) is compact (inspect the definitions to
see that K (W) is closed). Accordingly, it suffices to produce a positive € : {f : prw)(f) <
€} C W. To this end, consider BC'(X) viewed as a Banach space in the supremum norm.
Because BC'(X) is barrelled and W N BC(X) is a barrel in BC(X), 3 € > 0 : ||¢] <
2¢ = ¢ € W (¢ € BO(X)). Assuming that pgw)(f) < ¢, fix an open set U containing
K(W) such that |f(z)] < e Va € U. Let F(z) = max{e, f(x)} + min{—e¢, f(x)}—then
2F(z) =0 (x € U), thus the lemma of determination implies that 2F € W. But V= € X,
2(f(x) ~ F(2))| < 26 = 27 ~ F)]| < 26 = 2(7 ~ F) € W, 50 3 (2F) + L (2(f ~ F)) € W,
ile., feW|]

Example: C([0,€2]) is not barrelled.

EXAMPLE If X is a paracompact LCH space, then C(X) is Baire (cf. p. 2-16). Since Baire =

barrelled, it follows from Proposition 20 that the bounding subsets of X are relatively compact.

Notation: Every f € C'(X) can be regarded as an element of C(X, R ), hence admits
a unique continuous extension fo : X — R.
[Note: Put vy X = {z € BX : foo(x) € R}—then the intersection (] wvsX is vX ]
fec(x)
FACT The elements of X — vX are those z with the property that there exists a G5 in X

containing x which does not meet X.

Let W be a balanced, convex subset of C(X)—then W is said to contain a ball if
Ar>0:{f:supl|f| <r}CW.

Example: )lf?lvery balanced, convex bornivore W in C(X) contains a ball.

[Given f,g € C(X) with f < g,let [f,g]={¢: f < ¢ < g}. Since ¥ compact K C X,
pr(¢) < max{pr(f),px(9)}, [f, 9] is bounded, thus is absorbable by W. In particular:
A7 > 0 such that [-r1,71] C W]

FACT Suppose that W contains a ball. Let K be a compact subset of X. Assume: f(K) = {0} =
feW—thenJe>0:{f :px(f) <e}CW.

Let W be a balanced, convex subset of C(X)—then a compact subset K of X is said
to be a hold of W if f € W whenever fo(K) = {0}. Example: X is a hold of W.
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LEMMA Suppose that W contains a ball—then a compact subset K of X is a hold

of W provided that f € W whenever f., vanishes on some open subset O of X containing
K.

Application: Under the assumption that W contains a ball, if K and L are holds of
W, then sois K N L.

[Consider any f : foo(O) = {0}, where O is some open subset of SX containing K NL.
Choose disjoint open subsets U,V of X : K C U, L—0O C V and let U’, V' be open subsets
of BX:KCcU cU cU,L-0cCV' cV CV. Fix ¢ € C(X,[0,1]) : Bp(U) = {1},
BQS(V/) — {0}. Note that 2f¢ vanishes on (OUV')NX. But OUV’' c (OUV)NX =
(2f$)oo (O U V') = {0}. On the other hand, L C O UV’ thus by the lemma, 2f¢ € W.

Similarly, 2f(1 — ¢) € W. Therefore f = %(2f¢5) + %(2/“(1 —¢)) e W]

Let W be a balanced, convex subset of C'(X)—then the support of W, written spt W,
is the intersection of all the holds of W.

LEMMA Suppose that W contains a ball—then spt W is a hold of W.
[Since X is a compact Hausdorff space, for any open O C X containing spt W, 3

holds K1,..., K, of W such that (n] K; CO]
i=1

PROPOSITION 21  ('(X) is bornological iff X is R-compact.

[Necessity: Assuming that X is not R-compact, fix a point zg € vX — X—then the
assignment f — foo(zo) defines a nontrivial homomorphism zZ, : C(X) — R, which is
necessarily discontinuous (cf. p. 2-24). So, to conclude that C'(X) is not bornological, it
suffices to show that 7 takes bounded sets to bounded sets. If this were untrue, then there
would be a bounded subset B C C(X) and a sequence {f,} C B such that Zo(f,) — oco.
The intersection ({z € BX : (fn)oo(®) > (fn)oo(xo) — 1} is @ G5 in fX containing xy,
thus it must meegX (cf. p. 2-20), say at xpp hence f,(xgp) — oco. But then, as B is
bounded, Jn
fn(z00)

Sufficiency: It is a question of proving that every balanced, convex bornivore W in

— 0 in C(X), which is nonsense.

C(X) contains a neighborhood of 0. Because W contains a ball, the lemma implies that
spt W is a hold of W, thus the key is to establish the containment spt W C X since this
will allow one to say that 3 € > 0: {f : pspew (f) < €} C W (cf. p. 2-20). So take a
point zg € X — X and choose closed subsets Ay D As D --- of X :V n, xg € int A,
& (NAr) N X = 0 (possible, X being R-compact (cf. p. 2-20)). Claim: At least one

of the X — int A, is a hold of W (= xg & sptW = sptW C X). If not, then V n,
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3 fn: (fn)eo(BX —intA,) =0 & f, € W. The sequence {X — A, } is an increasing

sequence of open subsets of X whose union is X. Therefore f = supn|f,|is in C(X). Fix
n

d>0: [—f, f] C dW—then nf, € dW ¥ n= f, € W¥n>d, a contradiction.]
LEMMA A subset A of X is bounding iff its closure in X is contained in vX.

FACT If C(X) is bornological, then C(X) is barrelled.
[Note: Recall that in general, bornological # barrelled and barrelled # bornological.]

Remark: There are completely regular Hausdorff spaces X whose bounding subsets are relatively
compact but that are not R-compact (Gillman-Henriksen®). For such X, C'(X) is therefore barrelled but

not bornological.

Given a closed subset A of X, let T4 = {f : f|A = 0}—then I is a closed ideal in
C(X). Examples: (1) Iy = C(X); (2) Ix = {0}.

SUBLEMMA Suppose that X is compact. Let I C C(X) be an ideal. Assume:
VeeX,3f,el: fy(x)# 0—then I = C(X).

IV z € X, 3 a neighborhood U, of x : f.|U, # 0. Choose points x1,... ,2, : X =
() U, and let f = En:fi_:feI:>1:f-%EI:>I:C(X).]
i=1 i=1

LEMMA Suppose that X is compact. Let I C C(X) be an ideal and put A =

() Z(f). Assume: A C U C Z(¢), where U is open and ¢ € C(X)—then ¢ € I.
fel
[The restriction I|X — U is an ideal in C'(X — U) (Tietze), hence by the sublemma,

equals C(X —U). Choosean fel: fIX —U=1toget ¢ = fpecll]

PROPOSITION 22 Suppose that X is compact. Let I € C(X) be an ideal—then

I =14, where A= (N Z(f).
fer B
[Since I C I, it need only be shown that I4 C I. So let f be a nonzero element of

I4 and fix € > 0. Choose ¢ € C(X,[0,1]) : {z : |f(z)] < €¢/2} C Z(¢) & {z : |f(z)] >
3¢/4} € Z(1 — ¢). Because A C {x : |f(z)|] < €/4} C Z(f), the lemma gives f¢ € I.
And: [|f = foll =sup|f — fél <e=f e 1]

PROPOSITION 23 The closed subsets of X are in a one-to-one correspondence with
the closed ideals of C'(X) via A — I4.

t Trans. Amer. Math. Soc. 77 (1954), 340-362 (cf. 360-362).
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[Due to the complete regularity of X, the map A — I4 is injective. To see that
it is surjective, it suffices to prove that for any closed ideal I in C(X) : I = I, where

A= ) Z(f). Obviously, I C I4. On the other hand, V compact K C X, the restriction
fel

I|K is an ideal in C(K) (cf. p. 2-14), thus I|K = I4nx (cf. Proposition 22), and from
this it follows that Iy C T = 1.]

Application: The points of X are in a one-to-one correspondence with the closed

maximal ideals of C(X) via  — Ij,.

By comparison, recall that the points of X are in a one-to-one correspondence with the maximal
ideals of C(X).
[Note: Assign to each z € X the subset mg of C(X) consisting of those f such that = € clgx (Z(f))—

then m, is a maximal ideal and all such have this form. For the details, see Walkerf.]

A character of C'(X) is a nonzero multiplicative linear functional on C'(X), i.e., a

homomorphism C'(X) — R of algebras.

LEMMA If x : R — R is a nonzero ring homomorphism, then y = idgr.
[In fact, x is order preserving and the identity on Q.]

Application: Every ring homomorphism C(X) — R is R-linear, thus is a character.

LEMMA If x: C(X) — R is a character of C(X), then V f, [x(f)| = x(|f])-
[For [x(£)I? = x(£)? = x(f*) = x(1f1?) = x(1f])?* and x(|f]) is > 0.]

By way of a corollary, if x : C(X) — R is a character of C(X) and if x(f) = 0, then x(min{1, |f|}) = 0.
Proof: 2x(min{1, [£}) = x(1) + x(f) = x([1 — f) =1 [x(1 = H) = 1—1=0.

FACT Write vf for the unique extension of f € C(X) to C(vX)—then C(X) “is” C(vX) and the
characters of C'(X) are parameterized by the points of vX : f — vf(z) (z € vX).

[If X is R-compact and if x : C(X) — R is a character, then in the terminology of p. 19-6 & p.
19-7, Fy = {Z(f) : x(f) = 0} is a zero set ultrafilter on X. Claim: F, has the countable intersection

o~ min{1, |fn|} ~
property. Thus let {Z(fn)} C Fy be a sequence and put f = Z BT —then ﬂ Z(fn) = Z(f).
1

n : 1 .
To prove that x(f) = 0, write f = Z W

=1

1

+ gn, where 0 < gn < 277, apply x to get x(f) =

t The Stone-Cech Compactification, Springer Verlag (1974), 18.
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X(gn) <27, and let n — oco. It therefore follows that NF, is nonempty, say € NF, (cf. p. 19-7). And:
x(f =x(f)) =0==z€ Z(f —x(f)) = x(f) = f(=)]

——

Notation: C(X) is the set of continuous characters of C'(X).

L —

From the above, there is a one-to-one correspondence X — C(X), viz. £ — X, where

If X is not R-compact, then the elements of vX — X correspond to the discontinuous characters of

O(X).

o —

Topologize C'(X) by giving it the initial topology determined by the functions x —

—

x(f) (f € C(X))—then the correspondence X — C(X) is a homeomorphism (cf. §1,
Proposition 14).

C(X)
c(y)

are isomorphic as

X
PROPOSITION 24 Let v

be CRH spaces. Assume: {

are homeomorphic.

topological algebras—then { ‘;(

X Y
[Schematically, H H and «— is a homeomorphism.|
C(X) «— C(Y)
vX

are isomorphic as algebras—then { are
vY

X C(X)
FACT Let be CRH spaces. Assume: o
Y

homeomorphic.
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§3. COFIBRATIONS

The machinery assembled here is the indispensable technical prerequisite for the study
of homotopy theory in TOP or TOP,,.
Let X and Y be topological spaces. Let A — X be a closed embedding and let

f: A=Y be a continuous function—then the adjunction space X Lif Y corresponding

A Ly
to the 2-source X < ALY is defined by the pushout square l l , [ being

X — XY
the attaching map. Agreeing to identify A with its image in X, the restriction of the

. . X-A
is a homeomorphism of { onto an

o X —
projection p : XII'Y — X ;Y to v v

open - p(X—A4) .
{dosed subset of X Ly ¥ and the images {p(Y) partition X Ly Y.

[Note: The adjunction space X LY is unique only up to isomorphism. For example,
if  : X — X is a homeomorphism such that ¢|A = id 4, then there arises another pushout
square equivalent to the original one.]

(AD;) If A is not empty and if X and Y are connected (path connected), then
X Uy Y is connected (path connected).

(ADy) If X and Y are Ty, then X U Y is Ty but if X and Y are Hausdorff,
then X Ly Y need not be Hausdorft.

(AD3) If X and Y are Hausdorff and if A is compact, then X Ly Y is Hausdorff.

(ADy) If X and Y are Hausdorff and if A is a neighborhood retract of X such
that each z € X — A has a neighborhood U with ANU = (), then X U; Y is Hausdorff.

(AD5) If X and Y are normal (normal and countably paracompact, perfectly
normal, collectionwise normal, paracompact) Hausdorff spaces, then X L; Y is a normal
(normal and countably paracompact, perfectly normal, collectionwise normal, paracom-
pact) Hausdorff space.

(ADg) If X and Y are in CG (A-CG), then X Li; Y is in CG (A-CG).

EXAMPLE Working with the Isbell-Mréwka space ¥(N) = S U N, consider the pushout square

s 5 gs

l l . Due to the maximality of S, every open covering of U(N) ¢3S has a finite

T(N) — ¥(N)UsBS
subcovering. Still, ¥(IN) Uy 8S is not Hausdorff.
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TOP — TOP

X — X x[0,1]’
X = 1IX

x — (x,t)

where X x [0, 1] carries

The cylinder functor [ is the functor I : {

(0 <t <1)and a projection

. TOP — TOP
. The path space functor P is the functor P : , where
X — C([0,1], X)

X — PX
v —j(z)

the product topology. There are embeddings 4; : {
_ { IX > X
b (x,t) >z

C([0,1], X) carries the compact open topology. There is an embedding j : {

cr .. PX —- X )
with j(z)(t) = z, and projections p; : (0 <t < 1), with pi(o) = o(t).
o — p(o)
(I, P) is an adjoint pair: C(IX,Y) ~ C(X, PY). Accordingly, two continuous functions
X =Y
{ / determine the same morphism in HTOP, i.e. are homotopic (f ~ g), iff
g: X—=Y
Hoig=f . .
1 H e C(IX,Y) such that ) or, equivalently, iff 3 G € C(X, PY) such that
o1 =49
{ pooG=f
proG=g’

Let A and X be topological spaces—then a continuous function 7 : A — X is said

to be a cofibration if it has the following property: Given any topological space Y and

: : : F:X =Y . . :
any pair (F,h) of continuous functions such that F'oi = h o iy, there is a
h:TA—Y

continuous function H : IX — Y such that FF = H o1g and H o [1 = h. Thus H is a filler

for the diagram

A L X
7:() Y 7:()
IA i IX

[Note: One can also formulate the definition in terms of the path space functor, viz.

A—PY

P
7 d Do ]
e

X—>Y

A continuous function ¢ : A — X is a cofibration iff the commutative diagram
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A 5 X
io l lio is a weak pushout square. Homeomorphisms are cofibrations. Maps
IA - IX
7

with an empty domain are cofibrations. The composite of two cofibrations is a cofibration.

EXAMPLE Let p : X — B be a surjective continuous function. Consider Cp = IX II B/ ~,
where (2/,0) ~ (2',0) & (z,1) ~ p(z) (no topology). Let t : Cp, — [0,1] be the function [z,t] — #;
let z : t—1(]0,1[) — X be the function [z,t] — x; let p : t~(]0,1]) — B be the function [z,t] — p(z).
Definition: The coordinate topology on C), is the initial topology determined by ¢,z,p. There is a closed

. L . F:C0p =Y . .
embedding j : B = C) which is a cofibration. For suppose that are continuous functions
h:IB—Y
such that F' o j = h o ip—then the formulas H(j(b),T) = h(b,T),
T
F[m,t—i—E] (t>1/2, T <2-—2t)
H([z,t],T) = < h(p(z),2t+T —2) (t>1/2,T >2—2t)
Flz,t + tT) (t < 1/2)

specify a continuous function H : IC, — Y such that F = Hoig and H oIj = h.
[Note: Cp also carries another (finer) topology (cf. p. 3-22). When X = B & p =idx, Cp is I'c X,
and when B = % & p(X) = %, Cp is XX, l.e., the coordinate topology is the coarse topology (cf. p. 1-27

LEMMA Suppose that 7 : A — X is a cofibration—then 7 is an embedding.

A - X
[Form the pushout square o l lF corresponding to the 2-source TA 4> A
IA T Y

s X. The definitions imply that there is a continuous function G : Y — IX such that

GOF:iO . . . HOiOZF
Goh—Ti and a continuous function H : IX — Y such that Holih "

H o G = idy, G is an embedding. On the other hand, hoi; : A — Y is an embedding,
hence Gohoiy : A—i(A) x {1} is a homeomorphism.|

Because

For a subspace A of X, the cofibration condition is local in the sense that if there exists a numerable
covering U = {U} of X such that V U € U, the inclusion ANU — U is a cofibration, then the inclusion
A — X is a cofibration (cf. p. 4-5).

When A is a subspace of X and the inclusion A — X is a cofibration, the commutative
10A — TA
diagram i l is a pushout square and there is a retraction r : I X —
10X — X UIA
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u: X —IX

I defined by

wX UTA. TIf p: 19X UIA — IX is the inclusion and if {

{zf ;10 ol then A is the equalizer of (u,v). Therefore the inclusion A — X is a
= 1

closed cofibration provided that X is Hausdorff or in A-CG.

PROPOSITION 1 Let A be a subspace of X—then the inclusion A — X is a cofi-
bration iff 1o X U TA is a retract of IX.

Why should the inclusion A — X be a cofibration if 1o X UI A is a retract of I X? Here
is the problem. Suppose that ¢ : i g X UITA — Y is a function such that ¢|igX & ¢|I A are
continuous. Is ¢ continuous? That the answer is “yes” is a consequence of a generality

(which is obvious if A is closed).

LEMMA If 10X UTA is a retract of X, then a subset O of icX UIA is open in
10X
IA -

[Let 7 be the retraction in question and assume that O has the stated property. Put
Xo ={z:(x,0) € O}. erte Uy, for the unlon ofallopen U C X : AN U x [0,1/n[C O.

Note that A N Xop = AﬂUU and X — UU C A. Claim: Xo C UU Turn it

10X U I'A iff its intersection with { Ij( is open in {

around and take an z € X — UUn—then for any ¢t € ]0,1], r(A x {t}) = A x {t}, so
1

r(z,t) € (A—UU,) x[0,1] = (A— Xo) x[0,1] C (X — Xp) x[0,1] = (2,0) = r(z,0) €
1
(X XO) 0,1] = =z € X — X, from which the claim. Thus O = O’ U O”, where
N(Ax]0,1]) and O" = (isc X UTA)NJ(Xo NU, x [0,1/n[) are open in ip X UTA.]
1

EXAMPLE Not every closed embedding is a cofibration: Take X = {0} U{1/n : n > 1} and let
A = {0}. Not every cofibration is a closed embedding: Take X = [0, 1]/[0, 1[= {[0], [1]} and let A = {[0]}.

X
EXAMPLE Given nonempty topological spaces { , form their coarse join X *. Y—then the
Y

X
closed embeddings { — X %, Y are cofibrations.
Y

[It suffices to exhibit a retraction r : I(X*.Y) — io(X*.Y)UIY. To this end, consider r([z,y,1],T) =
([z,y,1],7),

r([z,y,t],T) = ]
Y ([x,y,l]’TJrit—z) (2—2T§t§1)

2t 2-T
{([x,y,mm (0<t< =)
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FACT Let X° C X! C --- be an expanding sequence of topological spaces. Assume: Y n, the
inclusion X™ — X7%1 is a cofibration—then V n, the inclusion X™ — X is a cofibration.
[Fix retractions rp : IX*+1 - joX*k+1 U T1X*. Noting that X% = colim X", work with the rj, to

exhibit 10X U IX™ as a retract of IX*.]

LEMMA Let X and Y be topological spaces; let A C X and B C Y be subspaces.
Suppose that the inclusions { g : ); are cofibrations—then the inclusion Ax B — X xY

is a cofibration.

[Consider the inclusions figuring in the factorization A x B — X x B — X x Y]

Given ¢ : 0 <t < 1, the inclusion {t} — [0, 1] is a closed cofibration and therefore, for
any topological space X, the embedding #; : X — I'X is a closed cofibration. Analogously,
the inclusion {0,1} — [0, 1] is a closed cofibration and it too can be multiplied.

z Ly
PROPOSITION 2 Let fi " be a pushout square and assume that f is a
X ? P

cofibration—then 7 is a cofibration.

[The cylinder functor preserves pushouts.]

Application: Let A — X be a closed cofibration and let f : A — Y be a continuous
function—then the embedding Y — X LIy Y is a closed cofibration.

The inclusion S"~' — D" is a closed cofibration. Proof: Define a retraction r :
ID" — igD™UIS™ ! by letting (x,t) be the point where the line joining (0,2) € R™ x R
and (z,t) meets i0D™ U IS"~!. Consequently, if f : "' — A is a continuous function,
then the embedding A — D™ Ly A is a closed cofibration. Examples: (1) The embedding
D" — S™ of D™ as the northern or southern hemisphere of S™ is a closed cofibration;
(2) The embedding 8" ! — 8™ of 8" ! as the equator of 8™ is a closed cofibration, so
YV m < n, the embedding S™ — S™ is a closed cofibration.

FACT Let f: S® ! — A be a continuous function. Suppose that A is path connected—then
D" Li¢ A is path connected and the homomorphism 74 (A) = 7¢(D™ Li¢ A) is an isomorphism if g <n —1

and an epimorphism if ¢ = n — 1.

VAN KAMPEN THEOREM Suppose that the inclusion A — X is a closed cofibration. Let
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of
nma — Iy

f : A — Y be a continuous function—then the commutative diagram l l is a

ox —> TI(XU;Y)
pushout square in GRD.
[Note: If in addition, A, X and Y are path connected, then for every z € A, the commutative
m(4,2) T (v i)
diagram i l is a pushout square in GR.]

m(X,z) — m(XUpY,f(z))

Let A be a subspace of X, i: A — X the inclusion.

(DR) A is said to be a deformation retract of X if there is a continuous function

r: X — Asuch that roi=1d4 and 707 ~idx.

(SDR) A is said to be a strong deformation retract of X if there is a continuous

function r : X — A such that r o7 =1id4 and 70 r ~ idx rel A.

If ip X UTA is a retract of X, then 1o X UTA is a strong deformation retract of I.X.
Proof: Fix a retraction v : IX — ic X UIA, say r(x,t) = (p(z,t), g(x,t)), and consider the
homotopy H : I2X — IX defined by H((z,t),T) = (p(z,tT), (1 — T)t + Tq(x,t)).

PROPOSITION 3 Let A be a closed subspace of X and let f : A — Y be a continuous
function. Suppose that A is a strong deformation retract of X—then the image of Y in

X Uy Y is a strong deformation retract of X L Y.

EXAMPLE The house with two rooms is a strong deformation retract of

[0, 1]3.

LEMMA Suppose that the inclusion A — X is a cofibration—then the inclusion
10X UTAU#1 X — IX is a cofibration.

[Fix a homeomorphism @ : 1[0, 1] — I[0, 1] that sends T{0}Uig[0, 1JUT{1} to ig[0, 1]—
then the homeomorphism idx x ® : I?X — I?X sends igIX U I(ipX UTAU i1 X) to
i X UI?A. Since the inclusion A — IX is a cofibration, igI X U I%A is a retract of I?X
and Proposition 1 is applicable.]

[Note: A similar but simpler argument proves that the inclusion i¢c X UTA — IX is a

cofibration.]
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PROPOSITION 4 If A is a deformation retract of X and ifi: A — X is a cofibration,
then A is a strong deformation retract of X.

[Choose a homotopy H : IX — X such that H oip = idx and H o4y = i or, where
r: X — A is a retraction. Define a function h: I(iocX UTAU 1 X) — X by

h((2,0),T) = z (v € X)
h((a. ), T) = H(a, (1= T)t) (a€ A)
h((2,1),T) = H(r(x),1 - T) (x € X)

Observing that i¢cX U TA U i; X can be written as the union of i¢cX U A x [0,1/2] and
Ax[1/2,1]Ui; X, the lemma used in the proof of Proposition 1 implies that A is continuous.
But the restriction of H to io X UIA U1 X is h oig, so there exists a continuous function
G : IX — X which extends h o;. Obviously, Goiyg =idx, Goi; =tor,and V a € A,
Vtel0,1]: G(a,t) = a. Therefore A is a strong deformation retract of X.]

PROPOSITION 5 Ifi: A — X is both a homotopy equivalence and a cofibration,
then A is a strong deformation retract of X.

[To say that i : A — X is a homotopy equivalence means that there exists a continuous
function r : X — A such that r o7 ~id4 and i or ~ idx. However, due to the cofibration
assumption, the homotopy class of r contains an honest retraction, thus A is a deformation

retract of X or still, a strong deformation retract of X (cf. Proposition 4).]

EXAMPLE (The Comb) Consider the subspace X of R? consisting of the union ([0, 1] x {0}) U
({0} x [0,1]) and the line segments joining (1/n,0) and (1/n,1) (n = 1,2,...)—then X is contractible.
Moreover, {0} x [0, 1] is a deformation retract of X. But it is not a strong deformation retract. Therefore

the inclusion {0} x [0,1] — X, while a homotopy equivalence, is not a cofibration.

Let A be a subspace of X—then a Strgm structure on (X, A) consists of a continuous
function ¢ : X — [0,1] such that A C ¢$~1(0) and a homotopy ® : IX — X of idx rel A
such that ®(z,t) € A whenever t > ¢(z).

[Note: If the pair (X, A) admits a Strom structure (¢, ®) and if A is closed in X, then
A= ¢~ Y0). Proof: ¢(x) =0= 2= &(x,0) =lim®(z,1/n) € A.]

If the pair (X, A) admits a Strgm structure (¢g, ®g) for which ¢y < 1 throughout X,
then A is a strong deformation retract of X. Conversely, if A is a strong deformation retract
of X and if the pair (X, A) admits a Strgm structure (¢, ®), then the pair (X, A) admits
a Strgm structure (¢g, @g) for which ¢y < 1 throughout X. Proof: Choose a homotopy
H :1X — X of idxrel A such that H o ;(X) C A and put ¢o(z) = min{¢(z),1/2},
Qy(z,t) = H(®(x,t), min{2t,1}).
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COFIBRATION CHARACTERIZATION THEOREM The inclusion A — X is a
cofibration iff the pair (X, A) admits a Strom structure (¢, ®).
[Necessity: Fix a retraction r : IX — ioX UTA and let X &TX 3[0,1] be the
projections. Consider ¢(x) = Os<u1<)1 |t —qr(x,t)|, ®(z,t) = pr(zx,t).
t

Sufficiency: Given a Strgm structure (¢, ®) on (X, A), define a retraction r : IX —

1w X UIAD
' (®(z,t),0)
r(z,t) = { ( ;

One application of this criterion is the fact that if the inclusion A — X is a cofibration,
then the inclusion A — X is a closed cofibration. For let (¢, ®) be a Strgm structure on
(X, A)—then (¢, ®), where ®(z,t) = ®(x, min{t, ¢(x)}), is a Strgm structure on (X, A).
Another application is that if the inclusion A — X is a closed cofibration, then the inclusion
kA — kX is a closed cofibration. Indeed, a Strgm structure on (X, A) is also a Strgm
structure on (kX, kA).

EXAMPLE Let A C [0,1]" be a compact neighborhood retract of R”—then the inclusion A —

[0,1]™ is a cofibration.

EXAMPLE Take X =[0,1]%(k > w) and let A = {0}, 0, the “origin” in X—then A is a strong

deformation retract of X but the inclusion A — X is not a cofibration (A is not a zero set in X).

FACT Let A be a nonempty closed subspace of X. Suppose that the inclusion A — X is a co-
fibration—then V ¢, the projection (X, A) — (X/A, * 4) induces an isomorphism Hg (X, A) — Hq(X/A, x4),
* 4 the image of A in X/A.

[With U running over the neighborhoods of A in X, show that Hq(X, A) =~ lim Hy(X,U) and then

use excision.]

LEMMA Let X and Y be Hausdorff topological spaces. Let A be a closed subspace of X and let
f A —= Y be a continuous function. Assume: The inclusion A — X is a cofibration—then X LIy Y is

Hausdorff.

As we shall now see, the deeper results in cofibration theory are best approached by

implementation of the cofibration characterization theorem.

PROPOSITION 6 Let K be a compact Hausdorff space. Suppose that the inclusion
A — X is a cofibration—then the inclusion C'(K, A) — C(K, X) is a cofibration (compact
open topology).
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[Let (¢, ®) be a Strom structure on (X, A). Define ¢ : C(K, X) — [0,1] by ¢ (f) =
supgpo f and Pk : IC(K,X) —» C(K,X) by ®x(f,t)(k) = ®(f(k),t)—then (dx,Px) is
K

a Strgm structure on (C(K, X),C(K, A)).]

EXAMPLE If A is a subspace of X, then the inclusion PA — PX is a cofibration provided that

the inclusion A — X is a cofibration.

EXAMPLE Take A = {0,1}, X = [0,1]—then the inclusion A — X is a cofibration but the
inclusion C(N, A) — C(N, X) is not a cofibration (compact open topology).
[The Hilbert cube is an AR but the Cantor set is not an ANR.]
ACX

PROPOSITION 7 Let { Bcy’ with A closed, and assume that the corresponding

inclusions are cofibrations—then the inclusion A X Y U X x B — X x Y is a cofibration.
[Let (¢, ®) and (¢, ¥) be Strom structures on (X, A) and (Y, B). Define w: X xY —
[0,1] by w(z,y) = min{$(z), ¢ (y)} and define Q: I(X xY) - X x Y by

Q(z,y),t) = (®(z, min{t, P(y)}), ¥(y, min{t, $(z)})).

Since A is closed in X, ¢(z) < 1 = &(x,4(z)) € A, so (w,Q) is a Strom structure on
(X xY,AxYUX x B)/]

[Note: If in addition, A (B) is a strong deformation retract of X (Y'), then AXxYUX x B
is a strong deformation retract of X x Y. Reason: ¢ < 1 (¢ < 1) throughout X (V) =
w < 1 throughout X x Y]

EXAMPLE If the inclusion A — X is a cofibration, then the inclusion A X X UX x A - X x X
need not be a cofibration. To see this, let X = [0,1]/[0, 1[= {[0],[1]}, A = {[0]} and, to get a contradiction,
assume that the pair (X x X, A x X U X x A) admits a Strgm structure (¢, ®). Obviously, ¢=1([0,1[) D
AXxXUX x A= X x X (since A= X), so there exists a retraction 7 : X x X - A x X UX x A. But

(1], 1) € {0, i)} = (1], [1]) € {r([0], [1D)} = {([0], (1))} = {lo]} x {[1]} = r([1],(1]) = ([0],[1]) and

(], 1) € £ [N} = - -- = (1], [1]) = ([1], [0)-

LEMMA Let A be a subspace of X and assume that the inclusion A — X is a
cofibration. Suppose that K, L : IX — Y are continuous functions that agree on 7o X U
ITA—then K ~ LreligX UITA.

[The inclusion in X UT AUi; X — IX is a cofibration (cf. the lemma preceding the proof
of Proposition 4). With this in mind, define a continuous function F' : IX — Y by F(x,t) =

K (z,0) and a continuous function h : I(ic X UTAU#;X) — Y by { ZEE? (1)37 ;; = é{((;lj,jj";)
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& h((a,t),T) = K(a,T) = L(a,T). Since the restriction of F to incX U TA U i1 X is
equal to h o g, there exists a continuous function H : I?X — Y such that F = H o iy
and H|I(ipX UTAU 1 X) = h. Let ¢ : [0,1] x [0,1] — [0,1] x [0,1] be the involution
(t,T) — (T,t)—then Ho(idx x¢) : I’X — Y is a homotopy between K and Lrelig X UTA.]

PROPOSITION 8 Let A and B be closed subspaces of X. Suppose that the inclusions
{ A= X

B X AN B — X are cofibrations—then the inclusion A U B — X is a cofibration.

[In IX, write (z,t) ~ (2,0) (zx € AN B), call X the quotient IX/ ~, and let
p:IX — X be the projection. Choose continuous functions ¢, v : X — [0, 1] such that

A= ¢1(0), B =4~1(0). Define A : X — X by A(z) = {x, %] ifx ¢ AN B,
Az) =[z,0l on A

Mz) = [,1] on B Consider now

A(z) = [z,0] if z € AN B—then A is continuous and {

. . . F:X—=Y . .
a pair (F,h) of continuous functions {h I(AUB) > Y for which F|(AU B) = h o iy.
. . [Ho IX 5Y Ha|TA = h|TA B o .
Fix homotopies {HB X Y such that {HB|IB: hIB & F=Hjgoiyg = Hpgoi

and, using the lemma, fix a homotopy H : I?’X — Y between Hy and HpreligX U
I(AN B). With ¢ as in the proof above, the composite H o (idx X ¢) factors through
x> rx , thus there is a continuous function H :IX — Y that renders the diagram

r2x X ey

pxid | LH commutative. An extension of (F, h) is then given by the composite

IX — Y
H

Ho(Axid): IX 51X - Y]

FACT Let A and B be closed subspaces of a metrizable space X. Suppose that the inclusions
ANB - A ANB - B, B~ X, A— B — X — B are cofibrations—then the inclusion A — X is a

cofibration.

Let A be a subspace of X. Suppose given a continuous function ¢ : X — [0, co] such
that A C ¥~1(0) and a homotopy ¥ : I1~1([0,1]) — X of the inclusion ¢~1([0,1]) —
X rel A such that ¥(z,t) € A whenever ¢ > 1)(x)—then the inclusion A — X is a cofibra-
tion. Proof: Define a Strgm structure (¢, ®) on (X, A) by ¢(z) = min{2¢y(z), 1},
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LEMMA Let A be a subspace of X and assume that the inclusion A — X is a
cofibration. Suppose that U is a subspace of X with the property that there exists a
continuous function 7 : X — [0,1] for which ANU C 7~1(]0,1]) C U—then the inclusion
ANU — U is a cofibration.

[Fix a Strgm structure (¢, ®) on (X, A). Set mp(x) = Oglilﬂ(@(a:, t)) (x € X). Define

a continuous function ¢ : U — [0,00] by 9 (z) = ¢(x)/mo(x). This makes sense since
d(x) = 0 = mo(x) > 0 (x € U). Next, ¢p(z) <1 = mo(z) > 0 = n(®(z,t)) >0 =
®(x,t) € U (V t). One can therefore let ¥ : I9p=1([0,1]) — U be the restriction of ® and
apply the foregoing remark to the pair (U, ANU).]

Let A,U be subspaces of a topological space X—then U is said to be a halo of A
in X if there exists a continuous function = : X — [0,1] (the haloing function) such
that A C 7=1(1) and 7=1(]0,1]) C U. For example, if X is normal (but not necessarily

Hausdorff), then every neighborhood of a closed subspace A of X is a halo of A in X but
in a nonnormal X, a closed subspace A of X may have neighborhoods that are not halos.
(HA;) If U is a halo of A in X, then U is a halo of 4 in X.
(HA2) If U is a halo of A in X, then there exists a closed subspace B of X : A C
B C X, such that B is a halo of A in X and U is a halo of B in X.
[A haloing function for #=1([1/2,1]) is max{27(x) — 1,0}.]
Observation: If the inclusion A — X is a cofibration and if U is a halo of A in X,
then the inclusion A — U is a cofibration.

[This is a special case of the lemma.]

PROPOSITION 9 Ifj: B— A and i: A — X are continuous functions such that ¢
and ¢ o j are cofibrations, then j is a cofibration.
[Take ¢ and j to be inclusions. Using the cofibration characterization theorem, fix a
halo U of A in X and a retraction r : U — A. Since U is also a halo of B in X, the
B % PY
inclusion B — U is a cofibration. Consider a commutative diagram 7 l lpo .
A - Y

B L pPY
To construct a filler for this, pass to its counterpart l J,PO over U, which thus
U — Y
For

admits a filler G : U — PY. The restriction G|A : A — PY will then do the trick.]

EXAMPLE (Telescope Construction) TLet X° C X! C --- be an expanding sequence of topo-
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logical spaces. Assume: YV n, the inclusion X™ — X™%! is a closed cofibration—then V n, the inclusion
X™ — X is a closed cofibration (cf. p. 3-5). Write tel X°° for the quotient ]o_o[X" X [n,n 4+ 1]/~. Here,
~ means that the pair (z,n+1) € X" x {n+ 1} is identified with the pair (z, n—i(—)l) € X"t x{n+1}. One
calls tel X°° the telescope of X*°. It can be viewed as a closed subspace of X x [0, oo[. The inclusion

telp X = LnJ X¥* x [k,k + 1] = X x [0,00] is a closed cofibration (cf. Proposition 8), so the same is
true of the IichcOlusion telp X — telp+1 X (cf. Proposition 9) and tel X°° = colim tel,, X°°. Denote by
p>° the composite tel X — X x [0, co[— X *°.

Claim: p°° is a homotopy equivalence.

[It suffices to establish that tel X*° is a strong deformation retract of X x [0, co[. One approach is

to piece together strong deformation retractions X"+! x [0,n + 1] = X"*t1 x {n + 1} U X" x [0,n + 1].]

X0cxtc:-- . ) . .
Let be expanding sequences of topological spaces. Assume: YV n, the inclusions

YOcvylc...
X" - xntl
are closed cofibrations. Suppose given a sequence of continuous functions ¢™ : X™ — Y™
yn — yntl
xXn N Xn—l—l
such that V n, the diagram ¢nl l¢n+1 commutes. Associated with the ¢™ is a continuous

yn N Yn+1
function ¢ : X°° — Y *° and a continuous function tel ¢ : tel X*° — tel Y°°, the latter being defined by
(" (z),n+2t) eY" x [n,n+1] (0<t<1/2)

telgp(z,n +t) = {(¢”(x),n+1)EYn+1 x{n+1} (1/2<t<1) .

tel X*° — X
There is then a commutative diagram tel qSl l¢oo . The horizontal arrows are homotopy
telY>® — Y
equivalences. Moreover, tel ¢ is a homotopy equivalence if this is the case of the ¢™, thus, under these
circumstances, ¢ : X*° — Y itself is a homotopy equivalence.

[Note: One can also make the deduction from first principles (cf. Proposition 15).]

PROPOSITION 10 Let A be a closed subspace of a topological space X. Suppose
that A admits a halo U with A = 7~1(1) for which there exists a homotopy Il : [U — X
of the inclusion U — X rel A such that IT o4y (U) C A—then the inclusion A — X is a
closed cofibration.

[Define a retraction r : IX — 0 X UTA as follows: (i) r(x,t) = (x,0) (7(z) = 0); (ii)
r(z,t) = ((z, 27 (x)t),0) (0 < w(z) < 1/2); (i) r(x,t) = ((z,t/2(1 — 7(x))),0) (1/2 <
m(z) <1&0<t<2(1—-mn(x))) and r(z,t) = (lI(z,1),t —2(1 —7(z))) (1/2 < w(zx) <1
&2(1 —m(z)) <t <1); (iv) r(z,t) = (z,t) (w(z) =1).]



3-13

EXAMPLE If A is a subcomplex of a CW complex X, then the inclusion A — X is a closed

cofibration.

A topological space X is said to be locally contractible provided that for any = €
X and any neighborhood U of x there exists a neighborhood V' C U of z such that

the inclusion V' — U is inessential. If X is locally contractible, then X is locally path
connected. Example: V X, X* is locally contractible (cf. p. 1-28).
[Note: The empty set is locally contractible but not contractible.]

A topological space X is said to be numerably contractible if it has a numerable covering {U} for

which each inclusion U — X is inessential. Example: Every locally contractible paracompact Hausdorff
space is numerably contractible.

[Note: The product of two numerably contractible spaces is numerably contractible.]

FACT Numerable contractibility is a homotopy type invariant. Proof: If X is dominated in ho-

motopy by Y and if Y is numerably contractible, then X is numerably contractible.

Examples: (1) Every topological space having the homotopy type of a CW complex is numerably
contractible; (2) If the X ™ of the telescope construction are numerably contractible, then X *° is numerably

contractible (consider tel X *°).

A topological space X is said to be uniformly locally contractible provided that there
exists a neighborhood U of the diagonal Ax C X x X and a homotopy H : IU — X
between p1|U and ps|Urel Ax, where p; and po are the projections onto the first and

second factors. Examples: (1) R™, D™, and S™ ' are uniformly locally contractible; (2)

The long ray L™ is not uniformly locally contractible.

EXAMPLE (Stratifiable Spaces) Suppose that X is stratifiable and in NES(stratifiable)—then

X is uniformly locally contractible. Thus put A = X X 50X U (IAx)U X x i1 X, a closed subspace of the
stratifiable space I(X x X). Define a continuous function ¢ : A - X by { (@, (1)) o & (z,z,t) > z—
then ¢ extends to a continuous function ® : O — X, where O is a neighbor(}i),g(i czfz iyn I(X x X). Fix a
neighborhood U of Ax in X x X : IU C O and consider H = ®|IU.

[Note: Every CW complex is stratifiable (cf. p. 6-30) and in NES(stratifiable) (cf. p. 6-43). Every
metrizable topological manifold is stratifiable (cf. p. 6-29 ff.: metrizable = stratifiable) and, being an

ANR (cf. p. 6-28), is in NES(stratifiable) (cf. p. 6-44: stratifiable = perfectly normal + paracompact).]

FACT Let K be a compact Hausdorff space. Suppose that X is uniformly locally contractible—

then C(K, X) is uniformly locally contractible (compact open topology).
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LEMMA A uniformly locally contractible topological space X is locally contractible.

[Take a point zp € X and let Uy be a neighborhood of xg—then I{(zg,z0)} C
H~=Y(Up). Since H='(Uy) is open in IU, hence open in I(X x X), there exists a neigh-
borhood Vi C Uy of zg : I(Vy x Vo) € H=1(Up). To see that the inclusion Vo — Uy is
inessential, define Hy : IVy — Uy by Ho(z,t) = H((x,x0),1).]

[Note: The homotopy Hy keeps x¢ fixed throughout the entire deformation. In addi-
tion, the argument shows that an open subspace of a uniformly locally contractible space

is uniformly locally contractible.]

EXAMPLE (A Spaces) Every A space is locally contractible. In fact, if X is a nonempty A
space, then V z € X, U is contractible, thus X has a basis of contractible open sets, so X is locally

contractible. But an A space need not be uniformly locally contractible. Consider, e.g., X = {a,b,c,d},
c<a c<b
where , .
d<a d<b
FACT Let X be a perfectly normal paracompact Hausdorff space. Suppose that X admits a
covering by open sets U, each of which is uniformly locally contractible—then X is uniformly locally

contractible.

[Use the domino principle.]

When is X uniformly locally contractible? A sufficient condition is that the inclusion
Ax — X x X be a cofibration. Proof: Fix a Strgm structure (¢, ®) on the pair (X x X, Ax),
put U = ¢~1([0,1]) and define H : IU — X by

(D ((z,y), 2t 0<t<1/2
H{(@y). 1) = {iécpééxzi oy Uity

FACT Suppose that X is a perfectly normal Hausdorff space with a perfectly normal square—then
X is uniformly locally contractible iff the diagonal embedding X — X x X is a cofibration.

[Use Proposition 10, noting that Ax is a zero set.]

Application: If X is a CW complex or a metrizable topological manifold, then the diagonal embedding
X — X x X is a cofibration.

FACT Let A be a closed subspace of a metrizable space X such that the inclusion A — X is a
cofibration. Suppose that A and X — A are uniformly locally contractible—then X is uniformly locally
contractible.

[Show that the inclusion Ax — X X X is a cofibration by applying the result on p. 3—-10 to the triple
(X x X,Ax,Ax A)]
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PROPOSITION 11 Suppose that A C X admits a halo U such that the inclusion
Ay — U x U is a cofibration. Assume that the inclusion A — X is a cofibration—then
the inclusion A4 — A X A is a cofibration.
A 2% AxA

[Consider the commutative diagram i l . The vertical arrows are
U — UxU
Ay

cofibrations, as is Ayy. That A4 is a cofibration is therefore implied by Proposition 9.]

PROPOSITION 12 Let X be a Hausdorff space and suppose that the inclusion Ax —
X x X is a cofibration. Let f: X — [0, 1] be a continuous function such that A = f~1(0)
is a retract of f=1([0, 1] )—then the inclusion A — X is a closed cofibration.

[Write r for the retraction f~1([0,1[) — A, fix a Strgm structure (¢, ®) on the pair
(X x X,Ax), and let H : IU — X be as above. Define ¢y : X — [0,1] by ¢f(x) =
max{f(z), p(z,r(z))} (f(z) < 1) & ¢s(z) = 1 (f(z) = 1)—then ¢;°(0) = A. Put
H¢(x,t) = H((x,r(x)),t) to obtain a homotopy H : [(bj_fl([O, 1]) — X of the inclusion
¢;1([0, 1[) = X rel A such that Hyo il(qS]?l([O, 1[)) C A. Finish by citing Proposition 10.]

Application: Let X be a Hausdorff space and suppose that the inclusion Ax — X x X
is a cofibration. Let e € C'(X, X)) be idempotent: e oe = e—then the inclusion e(X) — X
is a closed cofibration.

[Define f: X — [0,1] by f(z) = ¢(z,e(z)).]

So, if X is a Hausdorff space and if the inclusion Ax — X x X is a cofibration, then for
any retract A of X, the inclusion A — X is a closed cofibration. In particular: V zg € X,
the inclusion {z¢} — X is a closed cofibration, which, as seen above, is a condition realized
by every CW complex or metrizable topological manifold.

[Note: Let X be the Cantor set—then V z¢y € X, the inclusion {zg} — X is closed

but not a cofibration.]

FACT Let X be in A-CG and suppose that the inclusion Ax — X X X is a cofibration—then
for any retract A of X, the inclusion A — X is a closed cofibration.
[Rework Proposition 12, noting that for any continuous function f : X — X, the function X —

X X X defined by © — (z, f(x)) is continuous.]

A—>X
LEMMA Suppose that the inclusions { , , are closed cofibrations and that X is a closed
Al - X
. fiA=DY . . .
subspace of X’ with A = X N A’. Let be continuous functions. Assume that the dia-
fl:A" =Y’



3-16

X «— 4 L5 vy

gram J, J, J, commutes and that the vertical arrows are cofibrations—then the induced
X' «— A — Y
f
map X Ly Y — X'U. Y’ is a cofibration and (X Uy Y)NY' =Y.
XUy 25 Pz

[Consider a commutative diagram J, J}’O. To construct a filler H' for this,
XUy — Z
Yy — Xxuv - Pz

work first with J, J, lpo to get an arrow G : Y’ — PZ. Next, look at
Y — X'u,Y — Z

i G
Al —Y' —PZ
{ . Since equality obtainson A=XNA", 3G € C(XUA',PZ):G'|A"=Go .

X—Xxu;y -4 Pz
But the inclusion X U A’ — X’ is a cofibration (cf. Proposition 8), so the commutative diagram

4
XuAd G PZ
l lpo
admits a filler H : X’ — PZ which agrees with G o f’ on A’
X ———X'upY —— 7

and therefore determines H' : X' U Y' — PZ.]

FACT Let A — X be a closed cofibration and let f : A — Y be a continuous function. Suppose

X Ax - X X X

that are in A-CG and that the inclusions are cofibrations—then the inclusion
Y Ay =Y XY

Az — Z xy, Z is a cofibration, Z the adjunction space X Ly Y.

AXpA—> X X, AUA X X
[There are closed cofibrations . Precompose these arrows with the
Y XY 522X, YUY X Z

diagonal embeddings, form the commutative diagram

X A Y

l l .

XX X+ XX AUAX, X —— Z X, YUY X Z

and apply the lemma.]
[Note: Proposition 7 remains in force if the product in TOP is replaced by the product in A-CG.

Take U = X in Proposition 11 to see that the inclusion Ay — A X A is a cofibration.]

Application: Let X and Y be CW complexes. Let A be a subcomplex of X and let f: A — Y be a

continuous function—then the inclusion Az — Z X Z is a cofibration, Z the adjunction space X Li; Y.
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AX - X x X
[The inclusions are cofibrations (cf. p. 3-14), thus the same is true of the inclu-
Ay - Y XY

Ax - X X1 X
sions (cf. p. 3-8). Z itself need not be a CW complex but, in view of the skeletal

Ay —»Y XrY
approximation theorem, Z at least has the homotopy type of a CW complex.]

FACT Let A — X be a closed cofibration and let f : A — Y be a continuous function. Suppose
X

that { are uniformly locally contractible perfectly normal Hausdorff spaces with perfectly normal
Y

squares—then X Uy Y is uniformly locally contractible provided that its square is perfectly normal.

[Note: A priori, X Li¢ Y is a perfectly normal Hausdorff space (cf. ADs).]

A pointed space (X, zg) is said to be wellpointed if the inclusion {z¢} — X is a
cofibration. TLX is the full subgroupoid of ILX whose objects are the zq € X such that
(X, o) is wellpointed. Example: Let X be a CW complex or a metrizable topological
manifold—then V 2y € X, (X, ) is wellpointed (cf. p. 3-15).

[Note: Take X = [0, ], xog = Q—then (X, z¢) is not wellpointed.]

The full subcategory of HTOP .. whose objects are the wellpointed spaces is not isomorphism closed,
e, if (X,z0) ~ (Y,y0) in HTOP,, then it can happen that the inclusion {zo} — X is a cofibration but

the inclusion {yo} — Y is not a cofibration (cf. p. 3-8).
EXAMPLE Let X be a topological manifold—then V zg € X, (X, z0) is wellpointed.

FACT Let K be a compact Hausdorfl space. Suppose that (X, z¢) is wellpointed—then V kg € K,
C(K, ko; X, o) is wellpointed (compact open topology).
[Note: The base point in C(K, ko; X, zo) is the constant map K — z¢.]

Given topological spaces the base point functor IIX x IIY — SET sends

X
Y )
an object (xg,yo) to the set [X,zo;Y,y0]. To describe its behavior on morphisms, let

{;70,;'166;/( and suppose that both (X, z¢) and (X, 1) are wellpointed. Let 0 € PX :
0, J1

7(0) = o 0 =y : , o
{0(1) ~ & let 7 € PY : {T(l) — then the pair (o,7) determines a bijection

lo,7]% : [X,z0;Y,y0] = [X,2z1;Y,y1] that depends only on the path classes of {: in

X
Iy -
H(xz1,t) = o(1 —t), and put e = H oi;. Take an f € C(X,x0;Y,yo) and define a

continuous function F' : ipX U I{x1} — X XY by { gl?t))—;((ecgft)),,i((et()z)c))) __then the

Here is the procedure. Fix a homotopy H : IX — X such that H o1y = idx,
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WX UI{z;} = XxVY
diagram | |»  commutes, where G(z,t) = H(x,1 —t). To con-
IX ? X
struct a filler Hy : IX — X xY,let ¢ : X xY — Y be the projection, choose
a retraction 7 : IX — ioX U I{x1} and set Hy(x,t) = (G(z,t),qF (r(z,t))). Write
f# = qo Hf oiy € C(X,z1;Y,y1). Definition: [o,7]x[f] = [f#]. The fundamen-
tal group m1(Y,yo) thus operates to the left on [X,zo;Y,yo] : ([7],[f]) — loo, T]xlf],
oo the constant path in X at xo. If f, g € C(X,z0;Y,90), then f ~ g in TOP iff
3 [r] € m1(Y, yo) : [00, T]#[f] = [g]. Therefore the forgetful function [ X, zo;Y, yo] = [X,Y]
passes to the quotient to define an injection 1 (Y, yo)\[X, x0; Y, yo] — [X, Y] which, when
Y is path connected, is a bijection. The forgetful function [ X, zo; Y, yo] — [X, Y] is one-to-

one iff the action of m1(Y,yo) on [X, zo; Y, yo| is trivial. Changing Y to Z by a homotopy

equivalence in TOP : ;/ :Z leads to an arrow [X, x0;Y,y0] — [X,20;Z,20]. It is a
0 0

bijection.

FACT Suppose that X and Y are path connected. Let f € C(X,Y) and assume that Vz € X, f. :
m1(X,z) = 71 (Y, f(z)) is surjective—then V z € X, fi : mn(X,z) = mn(Y, f(z)) is injective (surjective)
iff f. :[S™, X] — [S™,Y] is injective (surjective).

LEMMA Suppose that the inclusion i : A — X is a cofibration. Let f € C'(X, X) :
foi=i& f~idy—thendge C(X,X):goi=i& go f~idxrel A.
[Let H : IX — X be a homotopy with Hoig = f and Hoi; =idx;let G: IX — X

be a homotopy with G o iy =idx and G o Ii = H o Ii. Define F : IX — X by F(x,t) =

{G(f(x),l —2t) (0<t<1/2)

H(z,20—1) (1j2<t<1) ndpul

Gla,1—2t(1 —T 0<t<1/2
MO = G230 00 -y (st on

to get a homotopy k : I2A — X with Foli = koiy. Choose a homotopy K : I?X — X such
that F' = K oig and K o I% = k. Write K(; 1y : X — X for the function z — K((x,t),T).
Obviously, K(g,0) =~ K(o,1) =~ K(1,1) = K(1,0), all homotopies being rel A. Set g = G 01—
then go f = F oig = K(g,0) is homotopic rel A to K; gy = F oy = idx.]

1A= X
j:A—=Y
¢poi=j. Assume that ¢ is a homotopy equivalence—then ¢ is a homotopy equivalence in
A\TOP.

PROPOSITION 13 Suppose that { are cofibrations. Let ¢ € C(X,Y) :
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[Since j is a cofibration, there exists a homotopy inverse ¢ : ¥ — X for ¢ with
Y o j =i, thus, from the lemma, 3¢’ € C(X,X): ¢ o0i =i & )’ 0otp o ~ idxreli(A).
This says that ¢’ = ¢’ 01 is a homotopy left inverse for ¢ under A. Repeat the argument
with ¢ replaced by ¢’ to conclude that ¢’ has a homotopy left inverse ¢”” under A, hence
that ¢’ is a homotopy equivalence in A\TOP or still, that ¢ is a homotopy equivalence in
A\TOP.]

Application: Suppose that {E‘é’;g) are wellpointed. Let f € C(X,zo;Y, yo)—then
» Y0

f is a homotopy equivalence in TOP iff f is a homotopy equivalence in TOP,.

FACT Suppose that (X, zo) is wellpointed. Let f € C(X,Y) be inessential—then f is homotopic

in TOP. to the function z — f(zo).

A 5 X
LEMMA Suppose given a commutative diagram ¢ l “’ in which {; are
B — Y
j

cofibrations and { ¢ are homotopy equivalences. Fix a homotopy inverse ¢’ for ¢ and a

(8

homotopy ha : IA — A between ¢’ o ¢ and id 4—then there exists a homotopy inverse 9’
for ¢ with i0¢’ =’ o4 and a homotopy Hx : IX — X between 9’ 01 and idx such that
e

[Fix some 1)’ with i o ¢ = 1’ o j (possible, j being a cofibration). Put h = io hy :
hoiy=140hgoig =i0¢d' op =1 ojod =1 otpoit = I H :IX — X such
that ) o1 = Hoigand Holi = h. Put f = Hoiy : foi =iohgoi; =i &
f~2~Hoig=v¢'o¢p ~idy =3 ge C(X,X):g0i=1i& gof~idxreli(A). Let
G : IX — X be a homotopy between g o f and idx reli(A). Define Hx : IX — X by

 Jg(H(z,2t)) (0<t<1/2) . , .
HX('r’t)_{G(x,%—l) (1/2<t<1) : Hx is a homotopy between g o 1)’ o1 and idx

and Hx oIi =ioh'y, where h/;(a,t) = ha(a, min{2¢,1}) is a homotopy between ¢’ o ¢ and
id 4. Make the substitution )" — g o’ to complete the proof.]

A 5 X
PROPOSITION 14 Suppose given a commutative diagram ¢ | | in which
B — Y
j

;. are cofibrations and ¢ are homotopy equivalences—then (¢, ¢) is a homotopy equiv-

(0
alence in TOP(—).
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[The lemma implies that (¢’, ") is a homotopy left inverse for (¢, 1) in TOP(—).]

X =Y
EXAMPLE Let f be objects in TOP(—). Write [f, f'] for the set of homotopy
fleX Y’
f~g
f/ ~ gl

[9,9']? The answer is “no”. Let f = g be the constant map S! — (1,0); let ' : S' — D? be the inclusion

classes of maps in TOP(—) from f to f’. Question: Is it true that if { (in TOP), then [f, f'] =

and let g’ : S — D? be the constant map at (1,0)—then [f, f'] # [g, ']

X0 - xt —
PROPOSITION 15 Let l l be a commutative ladder con-

Yy° — vyt —
necting two expanding sequences of topological spaces. Assume: V n, the inclusions
Xn — Xntl
yn — yntl
equivalences—then the induced map ¢>° : X*° — Y°° is a homotopy equivalence.

are cofibrations and the vertical arrows ¢™ : X™ — Y™ are homotopy

[Using the lemma, inductively construct a homotopy left inverse for ¢°°.]

FACT Let X° Cc X! C ... be an expanding sequence of topological spaces. Assume: Y n, the
inclusion X™ — X"%1 is a cofibration and that X™ is a strong deformation retract of X?+1—then X0 is
a strong deformation retract of X °.

[Bearing in mind Proposition 5, recall first that the inclusion X? — X is a cofibration (cf. p. 3-5).

X0 