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Introduction

In this abortive paper, we will discuss how to find lower bounds for lowest
eigenvalues. The aim will be to get across the basic ideas, so we will discuss
only the simplest cases, and we won’t worry about matters like exactly how
many derivatives we are demanding of our functions.

The work described here is joint work with Bob Brooks and Bob Kohn.
Caveat. I seem to recall that I was changing the notation around when

I turned to other things, so there may be some inconsistencies. Also, you’ll
note the the story breaks off abruptly near the end.

Continuous version

Consider a nice bounded domain Ω in the Euclidean plane. A positive number
λ is an eigenvalue of the positive Laplacian

∆ = −

(

∂2

∂x2
+

∂2

∂y2

)
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and no Back-Cover Texts.

1



if there exists a function u (other than the zero function) such that

∆u = λu

and
u|∂Ω = 0.

We label the eigenvalues 0 < λ0 < λ1 ≤ λ2 ≤ . . . . The lowest eigenvalue
λ0 is simple, and the corresponding eigenfunction u0 does not change sign in
the interior of Ω. By taking u0 ≥ 0 and

∫

u0
2 = 1, we get a unique ‘lowest

eigenfunction’ u0.
The lowest eigenvalue λ0 is the minimum of the Rayleigh quotient:

λ0 = min
u|∂Ω=0

∫

|∇u|2
∫

u2

= min
u|∂Ω=0
∫

u2=1

∫

|∇u|2.

These minima are attained when u = u0, and since u0 ≥ 0 we can, if we wish,
add the additional constraint u ≥ 0 to the classes of functions over which we
take these minima.

Theorem.

λ0 = sup(λ|∃v,∇ · v − |v|2 ≥ λ)

= sup
v

inf(∇ · v − |v|2).

Proof. Suppose
∇ · v − |v|2 ≥ λ.

Then

λ

∫

u2 ≤
∫

u2(∇ · v) − u2|v|2

=
∫

−2u∇u · v − u2|v|2

=
∫

|∇u|2 − |∇u + uv|2

≤
∫

|∇u|2.
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Thus
λ0 ≥ sup(λ|∃v,∇ · v − |v|2 ≥ λ).

On the other hand, if we put

v0 = −
∇u0

u0

then

∇ · v0 =
∆u0

u0
+

|∇u0|
2

u0
2

and

∇ · v0 − |v0|
2 =

∆u0

u0

= λ0.

Corollary. Let

γ0 = sup(γ|∃w,∇ · w ≥ γ, |w| ≤ 1).

Then

λ0 ≥
γ0

2

4
.

Proof. Suppose
∇ · w ≥ γ, |w| ≤ 1.

Let
v =

γ

2
w.

Then

∇ · v − |v|2 ≥
γ

2
· γ −

(

γ

2

)2

=
γ2

4
.
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Corollary (Cheeger’s inequality). Let

χ0 = min
D⊆Ω

length(∂D)

area(D)
.

Then

λ0 ≥
χ0

2

4
.

Proof. By the max-flow min-cut theorem, γ0 = χ0.

Generalized continuous version

Now introduce conductivity tensor σ and capacity function ρ: In this setting
the Laplacian ∆ becomes

∆u = −
1

ρ
∇ · (σ∇u)

and the eigenvalue equation becomes

−∇ · (σ∇u) = λρu.

Now

λ0 = min
u|∂Ω=0

∫

∇u · (σ∇u)
∫

ρu2

= min
u|∂Ω=0
∫

ρu2=1

∫

∇u · (σ∇u)

and our theorem becomes:
Theorem.

λ0 = sup(λ|∃v,∇ · v − v · σ−1v ≥ λρ)

= sup
v

inf(
1

ρ
(∇ · v − v · σ−1v)).
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In this case, the choice of v that achieves the supremum is

v0 = −
σ∇u0

u0
.

Discrete version

Let Ω = ∂Ω ∪ intΩ be a graph with adjacency matrix C(x, y) and valence
function

D(x) =
∑

y

C(x, y).

A positive number λ is an eigenvalue of the discrete Laplacian ∆, where

∆u(x) =
1

D(x)

∑

y

C(x, y)(u(x) − u(y))

if
∆u = λu

and
u|∂Ω = 0.

We label the eigenvalues 0 < λ0 < λ1 ≤ λ2 ≤ . . . . The lowest eigenvalue
λ0 is simple, and the corresponding eigenfunction u0 does not change sign
in the interior of Ω. By taking u0 ≥ 0 and

∑

x u0(x)2 = 1, we get a unique
‘lowest eigenfunction’ u0.

The lowest eigenvalue λ0 is the minimum of the Rayleigh quotient:

λ0 = min
u|∂Ω=0

1
2

∑

x,y C(x, y)(u(x) − u(y))2

∑

x D(x)u(x)2

= min
u|∂Ω=0

∑

x
u(x)2=1

1

2

∑

x,y

C(x, y)(u(x) − u(y))2.

These minima are attained when u = u0, and since u0 ≥ 0 we can, if we wish,
add the additional constraint u ≥ 0 to the classes of functions over which we
take these minima.
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Theorem.

λ0 = sup{λ|∃η : intΩ × Ω → [0,∞),
y∈intΩ⇒η(x,y)η(y,x)≥1

∑

y∈Ω
C(x,y)(1−η(x,y))≥λD(x)

}

= sup
η∈H

inf
x∈intΩ

1

D(x)

∑

y∈Ω

C(x, y)(1 − η(x, y)),

where

H = {η, intΩ × Ω → [0,∞)|y ∈ intΩ ⇒ η(x, y)η(y, x) ≥ 1}.

Proof. Suppose η ∈ H and for every x ∈ intΩ,

∑

y

C(x, y)(1 − η(x, y)) ≥ λ.

For any u with u|∂Ω = 0,

λ
∑

x

u(x)2 ≤
∑

x

u(x)2 ·
∑

y

C(x, y)(1 − η(x, y))

=
∑

x,y

C(x, y)u(x)2 − C(x, y)η(x, y)u(x)2

=
∑

x,y

C(x, y)
1

2

[

u(x)2 + u(y)2 − η(x, y)u(x)2 − η(y, x)u(y)2
]

≤
∑

x,y

C(x, y)
1

2

[

u(x)2 + u(y)2 − η(x, y)u(x)2 −
1

η(x, y)
u(y)2

]

=
1

2

∑

x,y

C(x, y)





u(x)2 + u(y)2 −





√

η(x, y)u(x) −
1

√

η(x, y)
u(y)





2

− 2u(x)u(y)







=
1

2

∑

x,y

C(x, y)





(u(x) − u(y))2 −





√

η(x, y)u(x) −
1

√

η(x, y)
u(y)





2






≤
1

2

∑

x,y

C(x, y)(u(x) − u(y))2.

(This isn’t quite right, of course, since we’ve been too cavalier about what
happens when y ∈ ∂Ω, but not to worry . . . )
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On the other hand, if we set

η0(x, y) =
u0(y)

u0(x)

we have
∑

y

C(x, y)(1 − η0(x, y))

=
∑

y

C(x, y)

(

1 −
u0(y)

u0(x)

)

=
∆u0(x)

u0(x)

= λ0.

If we think of setting

v(x, y) = C(x, y)(1 − η(x, y)),

we can get a form of this principle that is in a certain sense the discrete limit
of the continuous variational principle:

Corollary.

λ0 = sup{λ|∃v : intΩ×Ω → R, v(x, y) ≤ C(x, y),
∑

y∈Ω
v(x,y)≥λD(x)

−v(x,y)−v(y,x)+v(x,y)v(y,x)/C(x,y)≥0
}

Proof. Set

η(x, y) = 1 −
v(x, y)

C(x, y)
.

More later

We’ve run out of steam, and we haven’t even covered the discrete Cheeger
inequality yet. . . .
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