
Energy for Markov chains

Peter G. Doyle

PRELIMINARY Version 0.5A1 dated 1 September 1994 ∗

UNDER CONSTRUCTION
GNU FDL†

The Dirichlet Principle

Lemma. Let P be the transition matrix for a Markov chain with stationary
measure α. Let

〈g, h〉 =
∑

ij

αigi(Iij − Pij)hj.

Then
〈g, g〉 ≥ 0.

If P is ergodic, then equality holds only if g = 0.
Proof. (See Kemeny, Snell, and Knapp, Lemmas 9-121 and 8-54.)

〈g, g〉 =
∑

ij

αigi(Iij − Pij)gj

=
1

2
[
∑

i

αig
2
i +

∑

ij

(−2αigiPijgj) +
∑

j

αjg
2
j ]

=
1

2

∑

ij

(αiPijg
2
i − 2αiPijgigj + αiPijg

2
j )
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=
1

2

∑

ij

αiPij(gi − gj)
2

≥ 0. ♣

The previous lemma is stated for a general (not necessarily ergodic) chain
because at one point later on we will need the result in this generality. How-
ever, from now on we will be assuming that P is nice and ergodic.

Theorem (Dirichlet Principle). Given a set of states E (the bound-
ary) and a real-valued function f on E (telling the boundary values), let φ
be the unique P -harmonic function with φ|E = f , and let φ̂ be the unique
P̂ -harmonic function with φ̂|E = f . Let

DE(f) = min
v|E=f

IE(v),

where

IE(v) = max
u|E=v,û|E=v,(u+û)/2=v

〈û, u〉

= max
w|E=0

〈v − w, v + w〉.

Then
DE(f) = 〈φ̂, φ〉,

and this minimax is attained when and only when u = v + w = φ and
û = v − w = φ̂.

Proof. For any functions g, h with g|E = h|E = 0,

〈g, φ〉 = 〈φ̂, h〉 = 0

since (I − P )φ and (I − P̂ )φ̂ vanish on the complement of E. Hence

〈φ̂ + g, φ + h〉 = 〈φ̂, φ〉 + 〈g, φ〉+ 〈φ̂, h〉 + 〈g, h〉

= 〈φ̂, φ〉 + 〈g, h〉.

In particular,

〈φ̂ + g, φ + g〉 = 〈φ̂, φ〉 + 〈g, g〉

≥ 〈φ̂, φ〉
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and

〈φ̂ − g, φ + g〉 = 〈φ̂, φ〉 − 〈g, g〉

≤ 〈φ̂, φ〉.

The rest is standard minimax: Let v0 = (φ + φ̂)/2 and w0 = (φ − φ̂)/2,
so that φ = v0 + w0 and φ̂ = v0 −w0. For any v with v|E = f let g = v − v0,
so that v = v0 + g. Then

〈v − w0, v + w0〉 = 〈v0 − w0 + g, v0 + w0 + g〉

= 〈φ̂ + g, φ + g〉

≥ 〈φ̂, φ〉.

Hence

IE(v) = max
w

〈v − w, v + w〉

≥ 〈v − w0, v + w0〉

≥ 〈φ̂, φ〉.

Since this holds for any v with v|E = f ,

DE(f) = minvIE(v)

≥ 〈φ̂, φ〉.

By the same token, for any w with w|E = 0 let g = w − w0, so that
w = w0 + g. Then

〈v0 − w, v0 + w〉 = 〈v0 − w0 − g, v0 + w0 + g〉

= 〈φ̂ − g, φ + g〉

≤ 〈φ̂, φ〉.

Since this holds for any w with w|E = 0,

IE(v0) = max
w

〈v0 − w, v0 + w〉

≤ 〈φ̂, φ〉.

Thus

DE(f) = min
v

IE(v)

≤ IE(v0)

≤ 〈φ̂, φ〉. ♣
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The classical Dirichlet Principle

In the reversible case, we can turn the minimax into an honest minimum, be-
cause we can explicitly evaluate the maximum that appears in the expression
for IE(v).

Lemma. If P is reversible,

IE(v) = 〈v, v〉

=
∑

ij

αiPij(vi − vj)
2.

Proof. If P̂ = P then 〈g, h〉 = 〈h, g〉, so

〈v − w, v + w〉 = 〈v, v〉 + 〈v, w〉 − 〈w, v〉 − 〈w, w〉

= 〈v, v〉 − 〈w, w〉 ≤ 〈v, v〉.

Since this hold for any w,

IE(v) = max
w

〈v − w, v + w〉

≤ 〈v, v〉.

Taking w = 0 shows that in fact

IE(v) = 〈v, v〉. ♣

Theorem (Classical Dirichlet Principle). If P is reversible,

DE(f) = min
v|E=f

〈v, v〉 = 〈φ, φ〉,

where φ is the unique P -harmonic function with φ|E = f , and this minimum
is attained only when v = φ. qed

Escape probabilities and commuting time

As an example of the Dirichlet Principle, take E = {a, b}, f(a) = 1, f(b) = 0
. Then

DE(f) = αaP (escape from a to b)

= αaP (escape from a to b backwards in time)

= αbP (escape from b to a)

= αbP (escape from b to a backwards in time)

= 1/E(commuting time between a and b).
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In the reversible case,

DE(f) = 1/E(commuting time between a and b)

= 1/(CReff)

= Ceff/C,

where Reff is the effective resistance between a and b, and Ceff the effective
conductance.

The Monotonicity Law

Given two matrices P and P ′, say that P ≤ P ′ if

Pij ≤ P ′
ij

for all i 6= j.
Theorem (Monotonicity Law). Let P and P ′ be two Markov chains

with the same equilibrium measure α. If P ≤ P ′ and P is reversible, then

DE(f) ≤ D′
E(f)

for any set E and real-valued function f on E.
Proof. Write

P ′ = P + R,

and let
P ′′ = I + R.

Then P ′′ is the transition matrix of a Markov chain with stationary measure
α, and hence for any v,

〈v, v〉′ = 〈v, v〉 + 〈v, v〉′′ ≥ 〈v, v〉.

Since P is reversible, IE(v) = 〈v, v〉, and

I ′
E(v) = max

w
〈v − w, v + w〉′

≥ 〈v, v〉′

≥ 〈v, v〉

= IE(v).
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Thus
D′

E(f) ≥ DE(f). ♣

In the particular case where E = {a, b}, f(a) = 1, and f(b) = 0, the
Monotonicity Law states that under the assumptions above, passing from
P to P ′ increases the escape probability. From this it follows that if you
perturb a transient reversible process by adding to it a drift that doesn’t
change the equilibrium measure of the process, the perturbed process is even
more transient than the original. This result is due to Ross Pinsky, who
proved it using his own theory of energy for non-reversible processes.

Note. Actually, I seem to recall that there is a question whether Pinsky’s
results do actually follow using this approach to energy, as claimed in the
paragraph above. This has got to be looked into.

Probabilistic interpretation of energy

Theorem (Probabilistic interpretation of energy). Given E and f , let
the process run for a long time N , and make a list of the values of f at all
the times when the process is in a state of E. Add up the squares of the
differences of consecutive entries in this list. Divide by N . You get DE(f).
♣
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