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Sources

This work is derived in part from Grinstead and Snell’s Introduction to Prob-
ability, Second Edition. Thanks to the the far-sightedness of the authors, and
of their publisher the American Mathematical Society, this splendid work has
now been made freely redistributable.

Two exercises on Kemeny’s constant

Grinstead and Snell gave the following two problems as exercises:
Exercise 11.5.19 Show that, for an ergodic Markov chain (see Theorem
such-and-such), ∑

j

mijwj =
∑

j

zjj − 1 = K.

The second expression above shows that the number K is independent of
i. The number K is called Kemeny’s constant. A prize was offered to the
first person to give an intuitively plausible reason for the above sum to be
independent of i. (See also Exercise 11.5.24.)
Exercise 11.5.24 Peter Doyle (private communication) has suggested the
following interpretation for Kemeny’s constant. We are given an ergodic
chain and do not know the starting state. However, we would like to start
watching it at a time when it can be considered to be in equilibrium (i.e., as
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if we had started with the fixed vector w or as if we had waited a long time).
However, we don’t know the starting state and we don’t want to wait a long
time. Peter says to choose a state according to the fixed vector w. That is,
choose state j with probability wj using a spinner, for example. Then wait
until the time T that this state occurs for the first time. We consider T as
our starting time and observe the chain from this time on. Of course the
probability that we start in state j is wj, so we are starting in equilibrium.
Kemeny’s constant is the expected value of T , and it is independent of the
way in which the chain was started. Should Peter have been given the prize?

These two exercises have given readers some trouble, and with good rea-
son. It is high time to dispel some of the mystery.

Notation

We quickly recall the notation used by Grinstead and Snell. We’re dealing
with a regular Markov chain with transition matrix P . The row vector w is
the fixed vector of P :

wP = w.

The matrix W = limn→∞
P n has all rows equal to w.

M is the mean first passage matrix. The off-diagonal entries mij tell the
mean number of steps to get to j, starting from i; the diagonal entries Mii

are zero. It is easy to see that M satisfies the fundamental relation

(I − P )M = C − D.

Here C is a matrix of all 1’s; D is a matrix with all entries 0 except the
diagonal entries dii = ri telling the mean time starting from i to return to
i. These mean recurrence times ri are obviously (and easily proven to be)
related to the equilibrium probabilities wi:

ri =
1

wi

.

The matrix Z is the so-called fundamental matrix Z = (I − P + W )−1.
Its basic properties are

(I − P )Z = Z(I − P ) = I − W ;

WZ = W ;
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ZC = C.

According to Grinstead and Snell’s Theorem such-and-such, we can compute
the mean first passage matrix M from Z:

mij =
zjj − zij

wj

,

or equivalently,
mijwj = zjj − zij.

Grinstead and Snell prove this relation with a blizzard of formulas. It is
possible to give a human-readable derivation of this formula, by developing
some of the notions of potential theory for Markov chains. We won’t bother
with this, because we will find that we can get along quite well without this
formula, and indeed without Z altogether.

Problem 19

Summing the relation
mijwj = zjj − zij

yields
∑

j

mijwj

=
∑

j

zjj − zij

=
∑

j

zjj −

∑

j

zij

=
∑

j

zjj − 1

= K,

where we have used the fact that the rows of Z sum to 1 (expressed above
in the equation ZC = C.

This solves the problem as stated, and this is clearly the solution Grin-
stead and Snell had in mind. However, as they indicate, this derivation leaves
open the question of why the quantity

∑
j mijwj should be independent of i.

They say that ‘A prize was offered to the first person to give an intuitively
plausible reason for the above sum to be independent of i’, and refer us to
Problem 24.
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Problem 24

Let’s let Ki =
∑

j mijwj. Problem 24 proposes to interpret Ki as what we
could call the ‘expected time to equilibrium’: We pick a state j at random
according to the equilibrium probability distribution w, and ask for the ex-
pected time to get to j from the starting state i. Some attempt is made to
show why we might be interested in the expected time to equilbrium, and we
are then asked whether Peter Doyle, who supposedly proposed this interpre-
tation of the quantity

∑
j mijwj, should have been given the prize described

in Problem 19.
Looking back at Problem 19, we see that a prize was offered not for an

intuitive interpretation for Kemeny’s constant, but for an intuitively plausible
reason for Ki to be constant. So far we’ve seen nothing approaching an
argument for why the expected time to equilibrium should be independent
of the starting state i, so it’s hard to see why Peter should have been given
the prize.

On the other hand, we may note that this question does not ask whether
Peter should have been given the prize on the basis of this interpretation,
but just whether he should have been given the prize. Did Peter offer an
intuitively plausible reason for Ki to be constant, somehow related to its
being the expected time to equilibrium? How can we decide this question
on the basis of the information we’ve been given? Grinstead and Snell are
not in the habit of leaving us high and dry, so the most likely explanation
is that there is a simple and intuitively plausible reason for the constancy of
Ki, immediately related to the interpretation as the time to equilibrium.

So let’s just think about this for a second. We’re starting from i, and
heading for the random state j. ‘A journey of a thousand miles begins with
a single step.’ This old saw is the basis for the formula

(I − P )M = C − D

discussed above. (Indeed, it is the basis for all of potential theory, the general
mathematical theory to which the computation of hitting times naturally
belongs.)

Now after taking one step from i, the expected time to equilibrium will
be

∑
k PikKk, so the expected time Ki to equilibrium starting at i would

seem to be 1 +
∑

k PikKk: That’s 1 for the first step, plus
∑

k PikKk to get
to equilibrium from wherever we are after the first step. However, maybe we
were already in equilibrium when we started! If the randomly selected target
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state j happened to coincide with the starting state i, then that first step
was a mistake. The probability of making this mistake is wi, and if we make
it, the expected extra time it will cost is the mean recurrence time ri = 1

wi

.
The expected cost attributable to the possibility of abandoning equilibrium
is thus wiri = wi

1

wi

= 1, which just cancels the benefit of taking one step of
our journey:

Ki = 1 +
∑

k

PikKk − wiri =
∑

k

PikKk.

This equation says that the quantities Ki have the averaging property :
The value at any state is the same as the average value at its neighbors, where
the average is taken according to the matrix P . This means that the numbers
Ki must all be the same, by a fundamental principle of potential theory called
the maximum principle. The proof of the maximum principle involves looking
at a state i where the quantity Ki takes on its maximum value, and noting
that this maximum value must be attained also at any other state k for which
Pik > 0. Eventually, you find (for an ergodic chain), that the maximum must
be attained everywhere, i.e., the quantity is constant (independent of state).
Actually, we don’t really need to drag in the maximum principle here, because
if we write the quantities Ki as a column vector v, the equation above says
that Pv = v, and we’re supposed to know already that the only column
vectors fixed by P are constant vectors. (Of course the proof of this was via
the maximum principle, in spirit if not in name!)

To recapitulate, the expected time to equilbrium has the averaging prop-
erty, because moving to a neighbor take you one step closer to equilibrium—
except if you were already in equilibrium, which happens with probability
wi and costs you ri = 1

wi

. Since the expected time to equilibrium has the
averaging property, it is constant.

This argument makes the constancy of Ki not just intuitively plausible,
but intuitively obvious. Furthermore, we were led immediately to this argu-
ment from the interpretation of Ki as the expected time to equilibrium, as
a consequence of the ‘thousand-miles/single-step’ principle. Doubtless Peter
Doyle proposed the ‘time to equilibrium’ interpretation in conjunction with
this argument, and thus should have been awarded the prize. Turning to the
answer key for confirmation, we find the terse phrase, ‘He got it!’

Yikes! You mean the prize for explaining Kemeny’s constant has already
been paid out? Sad, but true. If you look carefully at Problem 19, you will
observe that it states that ‘a prize was offered’ (emphasis added), rather than
‘a prize is offered’. . . .
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Final words

Let’s close with a few more observations about Kemeny’s constant.
First, let us observe that there is a simple computational proof of the

constancy of the expected time to equilibrium, which parallels the intuitive
argument above. This proof uses nothing beyond the fundamental equation

(I − P )M = C − D,

which as noted above is the result of applying the ‘thousand-miles/single-
step’ principle to the mean first passage matris M . The quantities Ki we’ve
been discussing are just the entries of the column vector Mwt, where wt is
the transpose of the row vector w. Multiplying the fundamental equation
above by wt gives

(I − P )Mwt = Cwt
− Dwt.

But Cwt = 1, because w is a probability vector, and Dwt = 1, because
ri = 1

wi

, so

(I − P )Mwt = 1 − 1 = 0.

But the only vectors v for which (I − P )v = 0 are constant vectors, q.e.d.
Note how all the same considerations of our intuitive argument are showing
up in these more formal manipulations.

Another important point to consider is that while the matrix Z is used
to compute the value of the constant K, it plays no role in our proof that
the expected time to equilibrium is constant. Of course once we have shown
that the time to equilibrium is constant, we may well ask what its value is.
To answer this, we’ll need to use the matrix Z, or some close relative. The
approach taken in Problem 19 leaves much to be desired, because it depends
on the formula of Theorem such-and-such, whose derivation by Grinstead
and Snell appears more ‘alphabetical’ than ‘mathematical’. As noted above,
a more humane approach is possible, based on developing the basic notions
of potential theory, but we’re not going to undertake that here.

One last thing. When Laurie Snell mailed Peter Doyle the prize for
Kemeny’s constant, he first made the mistake of trying to send a $50 bill by
mail. That first letter never arrived. You have probably heard before that
you should not send cash through the mail. Let this be a further lesson!
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