
Random Walks on Weighted Graphs, and

Applications to On-line Algorithms (Extended

Abstract)

Don Coppersmith

Peter Doyle

Prabhakar Raghavan

Marc Snir

March 1990
Version 1.0A1 dated 15 September 1994

Abstract

We study the design and analysis of randomized on-line algorithms.

We show that this problem is closely related to the synthesis of random

walks on graphs with positive real costs on their edges.

1 Introduction

Let G be a weighted undirected graph with n nodes f1; : : : ; ng; cij = cji > 0
is the cost of the edge connecting nodes i and j, cii = 0. Consider a random

walk on the graph G, executed according to a transition probability matrix
P = (pij); pij is the probability that the walk moves from node i to node j,

and the walk pays a cost cij in the process. Let eij (not in general = eji) be
the expected cost of a random walk starting at node i and ending at node

j (eii is the expected cost of a round trip from i). We say that the random

walk has stretch c if there exists a constant a such that, for any sequence

i0; i1; : : : ; i` of nodes
P`

j=1 eij�1ij � c �
P`

j=1 cij�1ij +a:We prove the following
tight result:

1

Any random walk on a weighted graph with n nodes has stretch at least

n� 1, and any weighted graph with n nodes has a random walk with stretch

n� 1.

The upper bound proof is constructive, and shows how to compute the

transition probability matrix P from the cost matrix C = (cij). The proof

uses new connections between random walks and e�ective resistances in net-

works of resistors, together with results from electric network theory. Con-

sider a network of resistors with n nodes, and conductance �ij between nodes

i and j (nodes i and j are connected by a resistor with branch resistance

1=�ij). Let Rij be the e�ective resistance between nodes i and j (i.e., 1=Rij

is the current that would ow from i to j if one volt were applied between

i and j; it is known that 1=Rij � �ij). Let the resistive random walk be
de�ned by the probabilities pij = �ij=

P
k �ik. In Section 3 we show that this

random walk has stretch n�1 in the graph with costs cij = Rij. Thus, a ran-
dom walk with optimal stretch is obtained by computing the resistive inverse
(�ij) of the cost matrix (cij): a network of branch conductances (�ij � 0),

so that, for any i; j, cij is the e�ective (not branch) resistance between i and
j. Unfortunately, not all cost matrices have resistive inverses (with positive
conductances). However, every matrix (cij) has a generalized resistive in-

verse: a network of non-negative branch conductances �ij with associated
e�ective resistances Rij, such that either Rij = cij, or Rij < cij and �ij = 0.

In Section 4 we show that the resistive random walk has stretch n�1 for the
graph with costs Rij, and consequently for the graph with costs cij , since it
never traverses those edges whose costs it underestimates.

Chandra et al. [6] use electric networks to analyze a particular random
walk, in which pij = (1=cij)=(

P
k 1=cik). Traditionally, this is how electric

networks have been used in studying random walks: to analyze a given ran-

dom walk (cf. Doyle and Snell [9]). Here we instead use electric networks to
synthesize a (di�erent, in general) random walk with optimal stretch.

Next, we outline the relevance of this random walk synthesis problem to

the design of on-line algorithms. Consider the following game played between

a cat and a mouse on the graph G. Round r starts with both cat and mouse

on the same node ir�1. The mouse moves to a new node ir not known to the

cat; the cat then walks on the graph until it reaches the mouse at ij, at which
point round j+1 starts. A strategy for the cat is c-competitive if there exists a

constant a such that for any sequence i0; i1; : : : ik of nodes the cat's expected
cost is � c� (the mouse's cost) +a. The competitiveness coe�cient of the

2

cat-and-mouse game is the in�mum of c such that a c-competitive strategy

exists. A random walk with stretch c de�nes a strategy for the cat that is

c-competitive: in each round, the cat executes a random walk according to P

until it �nds the mouse. This strategy is very simple, and memoryless: the

cat need not remember its previous moves, and the next cat move depends

only on its current position.

We show that this cat-and-mouse game is at the core of many other on-

line algorithms that have evoked tremendous interest of late [2, 3, 4, 7, 8, 10,

14, 16, 17, 18]. We consider two settings. The �rst is the k-server problem,

de�ned in [14]. An on-line algorithm manages k mobile servers located at the
nodes of a graph G whose edges have positive real lengths; it has to satisfy

a sequence of requests for service at node vi, i = 1; 2; : : :, by moving a server
to vi unless it already has a server there. Each time it moves a server, it pays
a cost equal to the distance moved by that server. We compare the cost of
such algorithm, to the cost of an adversary that, in addition to moving its
servers, also generates the sequence of requests. The competitiveness of an

on-line algorithm is de�ned with respect to these costs (Section 5) [2, 17]. It
was conjectured in [14] that for every cost matrix there exists a k-competitive
algorithm for this problem. Repeated attempts to prove this conjecture have
succeeded only in a few special cases [7, 8, 17]. We use our optimal random
walk to derive a k-competitive server algorithm in two situations: (1) when

the graph G has a resistive inverse, and (2) when the graph G has k + 1
nodes. This includes all previously known cases where the conjecture was
proven true, as well as many new cases. We do so with a single uni�ed theory
| that of resistive inverses. The algorithm is very simple, and memoryless.

The other setting is the metrical task system (MTS), de�ned in [4]. A

MTS consists of a weighted graph (the nodes of the graph are states, and edge
weights are the costs of moving between states). The algorithm occupies one

state at any time. A task is represented by a vector (c1; : : : ; cn), where ci is the

cost of processing the task in state i. The algorithm is presented a sequence
of tasks T = T1; T2; : : : and can move before processing each task. The cost
incurred by the algorithm is the sum of the costs of moving and processing

tasks. A (2n � 1)-competitive on-line algorithm for MTS is presented in

[4], and shown to be optimal. The algorithm is deterministic, but somewhat
complex. In Section 6 we present a simple, memoryless randomized algorithm

for MTS that is (2n � 1)-competitive.

3

2 Lower bound on Stretch

Theorem 2.1 For any n � n cost matrix C and any transition probability

matrix P , the stretch of the random walk de�ned by P on the graph with

weights given by C is � n� 1.

Proof: We can assume w.l.o.g. that P is irreducible (the underlying

directed graph is strongly connected). Let �i be the ith component of the

left eigenvector of P for the eigenvalue 1 (when P is aperiodic, this is the

stationary probability of node i), so that �j =
P

i �ipij . Let ei =
P

j pijcij
denote the expected cost of the �rst move out of node i, and let E =

P
i �iei =P

ij �ipijcij be the average cost per move. We have

X
i;j

(�ipij)eji =
X
i

�i

0
@X

j

pijeji

1
A =

X
i

�i(eii � ei) =
X
i

�i(E=�i � ei) = (n� 1)E

while
P

i;j(�ipij)cji =
P

i;j(�ipij)cij = E. Thus,
P

i;j(�ipij)eji = (n � 1)P
i;j(�ipij)cji.

Notice that, if each directed edge (ji) (note the order!) is counted with
multiplicity proportional to �ipij; then a ow condition is satis�ed: the total
multiplicity of edges leading out of i is equal to that of those leading into i.
Thus, the above equation represents a convex combination of cycles so that
there is some cycle (i1; i2; : : : i`; i`+1 = i1) with stretch at least n� 1; thus,

X̀
j=1

eijij+1 � (n � 1)
X̀
j=1

cijij+1 :

2

The symmetry of the cost matrix C is necessary for the theorem.

3 Upper bound: resistive case

We next consider the complementary upper bound problem: given C, to

synthesize a matrix P that achieves a stretch of n � 1 on C. In this section

4

we will describe a construction and proof for a class of matrices C known as

resistive matrices.

Let (�ij) be a non-negative symmetric real matrix with zero diagonal.

Build the support graph (V;E); with vertex set V = f1; 2; :::; ng and edge

set E = f(i j) j �ij > 0g; and let (V;E) be connected. Consider a network

of resistors based on (V;E); such that the resistor between vertices i and j

has branch conductance �ij; or branch resistance 1=�ij:

Let cij be the e�ective resistance between vertices i and j: (A unit voltage

between i and j in this network of resistors results in a current of 1=cij :) We

require that the support graph be connected so that the e�ective resistances
will be �nite.

De�nition 1 A cost matrix (cij) is resistive if it is the matrix of e�ective

resistances obtained from a connected non-negative symmetric real matrix

(�ij) of conductances. The matrix (�ij) is the resistive inverse of C: 2

The following facts are not di�cult to prove, and follow from standard
electric network theory [19]. Resistive cost matrices are symmetric, �nite,
positive o� the diagonal, zero on the diagonal, and satisfy the triangle in-

equality: cij + cjk � cik: A principal submatrix of a resistive cost matrix is
resistive.

De�ne two (n� 1) � (n� 1) matrices ��; �C by

��ii =
X

j�n;j 6=i

�ij; 1 � i � n� 1;

��ij = ��ij; i 6= j; 1 � i; j � n� 1;

�cij = [cin + cjn � cij]=2; 1 � i; j � n� 1:

Then �� is the inverse of �C :

n�1X
j=1

��ij�cjk = �ik:

It can happen that a given cost matrix C = (cij) gives rise to a putative

resistive inverse with some negative conductances:

9i; j : �ij < 0

and in this case there is no resistive inverse for C:

5

Examples of resistive cost matrices include:

(1) Any three points with the distances satisfying the triangle inequality.

(2) Points on a line: vertex i is at a real number ri; with cij = j ri � rj j.

(3) The uniform cost matrix cij = d, if i 6= j.

(4) Tree closure: given a spanning tree on n vertices and positive costs for

the tree edges, the distance between any pair of points equals the distance

between them on the tree.

(5) A cost matrix C given by a graph with m + n vertices x1; x2; : : : ; xm;

y1; y2; : : : ; yn; m; n > 1; where cxi;xj = 2m, cyi;yj = 2n, and cxi;yj = m+ n �

1. The associated resistive inverse is a complete bipartite graph Km;n with
resistors of resistance mn on each edge. This example cannot be expressed

as a tree closure (Example (4) above): for if C were a tree closure, then the
midpoint of the tree path joining x1 and x2 would be at distance n� 1 from
both y1 and y2, contradicting cy1;y2 = 2n > 2(n� 1):

If C is a resistive cost matrix, its resistive inverse (�ij) provides a way of
synthesizing an optimal random walk P achieving a stretch of n� 1. In fact,

in determining the stretch of a random walk, it su�ces to consider sequences
of nodes i1; i2; : : : i`; i`+1 that form a cycle in G.

Theorem 3.1 Let C = (cij) be a resistive cost matrix and (�ij) its resistive
inverse. Let the transition probabilities be pij = �ij=(

P
`6=i �i`): Then every

cycle (v1; v2; :::; v`; v`+1 = v1) has stretch n� 1 :

X̀
i=1

evivi+1 = (n� 1) �
X̀
i=1

cvivi+1 :

Proof: Following Doyle and Snell [9] we de�ne the escape probability

Pesc(ij) to be the probability that a random walk, starting at vertex i; will
reach vertex j before returning to vertex i: Doyle and Snell [9] show that

Pesc(ij) =
1=cijP
k �ik

:

On average, out of each
P

gh �gh steps, the random walk visits vertex i

with frequency
P

k �ik; and the number of traversals of the ordered edge (ij)

is �ij: The average cost of
P

gh �gh steps is

X
gh

�ghcgh = 2(n � 1);

6

from Foster's Theorem [11, 12]. Of the
P

k �ik round trips to vertex i; the

number visiting vertex j is

Pesc(ij)
X
k

�ik = 1=cij :

So the average cost of a round trip from vertex i to j and back to i isP
gh �ghcgh

1=cij
= 2(n� 1) � cij = (n� 1) � [cij + cji]:

This cost is also, by de�nition, eij + eji; so that

eij + eji = (n � 1) � [cij + cji]:

So the stretch of any two-cycle is n� 1:
We need a bound on the stretch of any cycle, not just two-cycles. The

stationary probability of traversing the directed edge (ij) is �ij=
P

gh �gh;

which is symmetric because � is symmetric. Thus our random walk is a
reversible Markov chain [13]. For any cycle (v1; v2; :::; v`; v`+1 = v1); the ex-
pected number of forward traversals of the cycle (not necessarily consecutive)
is the same as the expected number of backward traversals of the cycle, and

the expected cost per forward traversal is the same as the expected cost per
backward traversal. Thus

X̀
i=1

evivi+1 =
X̀
i=1

evi+1vi

=
1

2

"X̀
i=1

evivi+1 +
X̀
i=1

evi+1vi

#

=
1

2

X̀
i=1

h
evivi+1 + evi+1vi

i

=
1

2

X̀
i=1

(n� 1)
h
cvivi+1 + cvi+1vi

i

=
X̀
i=1

(n� 1)cvivi+1 :

So every cycle has stretch n� 1: 2

7

4 Upper bound: non-resistive case

In this section we prove the existence of a generalized resistive inverse. The

generalized resistive inverse turns out to be the solution to a convex vari-

ational problem, and we present a simple iterative algorithm for �nding it.

From the generalized resistive inverse we get an n�1-competitive strategy for

the cat-and-mouse game with an arbitrary positive symmetric cost matrix.

Theorem 4.1 Let C be any positive symmetric cost matrix. Then there is

a unique resistive cost matrix Ĉ with associated conductance matrix �, such

that ĉij � cij , �ij � 0 and ĉij = cij if �ij 6= 0.

Thus � is the generalized resistive inverse of C.
Proof: For simplicity, we will limit the discussion to the case of the

triangle graph, with assigned costs R0 = c1;2; S0 = c1;3; T0 = c2;3, and with
edge conductances a = �1;2; b = �1;3; c = �2;3 and corresponding e�ective
resistances R = R1;2; S = R1;3; T = R2;3. This case will exhibit all the

features of the general case, and yet allow us to get by without cumbersome
subscripts. Please note, however, that for a triangle graph a cost matrix is
resistive if and only if it satis�es the triangle inequality, while for a general
graph the triangle inequality is necessary but by no means su�cient. Needless
to say, we will make no use of this condition for resistivity in our analysis of
the triangle graph.

We begin by recalling the relevant electrical theory (cf. Weinberg [19] and
Bott and Du�n [5]). The admittance matrix of our network is

K =

0
B@

a+ b �a �b

�a a+ c �c

�b �c b+ c

1
CA :

If you hook the network up to the world outside so as to establish node

voltages v1; v2; v3, the currents I1; I2; I3 owing into the network at the three
nodes are given by 0

B@ I1
I2
I3

1
CA = K

0
B@ v1

v2
v3

1
CA :

8

The power being dissipated by the network is

(I1v1 + I2v2 + I3v3) =
�
v1 v2 v3

�
K

0
B@ v1

v2
v3

1
CA

which is � 0. The matrix K is non-negative de�nite, with 0-eigenvector

(1; 1; 1). Label its eigenvalues

0 = �0 � �1 � �2:

On the orthogonal complement P = fv1 + v2 + v3 = 0g of (1; 1; 1), K has

eigenvalues �1; �2, and the determinant of KjP | that is, the product of the
non-zero eigenvalues of K | is given by the next-to-lowest order coe�cient of
the characteristic polynomial of K, which can be expressed using Kirchho�'s
tree formula:

detKjP = �1�2

= �0�1 + �0�2 + �1�2

=

����� a+ b �a

�a a+ c

�����+
����� a+ b �b

�b b+ c

�����
+

����� a+ c �c

�c b+ c

�����
= (ab+ ac+ bc) + (ab+ ac+ bc)

+(ab+ ac+ bc)

= 3D:

Here the discriminant D = ab + ac + bc is obtained by summing over the
spanning trees of the network the product of the conductivities of the edges

making up the tree (cf. Bott and Du�n [5]). The e�ective resistances are
obtained by taking the gradient of logD in edge-conductance space:

(R;S; T) = (
@

@a
logD;

@

@b
logD;

@

@c
logD)

= r(a;b;c) logD:

That was all ostensibly review. Now then, on the non-negative orthant
�� = fa; b; c � 0g in edge-conductance space the function

logD = log detKjP � log 3

9

is concave; as Gil Strang has pointed out to us, this follows from the fact

that on the set of positive de�nite matrices the function logD is concave (see

[15]).

Since logD is concave and the e�ective resistances are its partial deriva-

tives, if conductances a0; b0; c0 induce �nite e�ective resistances R0; S0; T0
then

(a0; b0; c0) = arg max
(a;b;c)2��

logD � (R0a+ S0b+ T0c):

Thus if a resistive inverse exists, it is given as the solution to a convex

programming problem. Now for any R0; S0; T0 > 0 this extremal problem
still has a unique solution, i.e., the equation above uniquely determines a

point (a0; b0; c0) 2 ��. The Kuhn-Tucker conditions identify this point as the
unique point where R � R0 with R = R0 if a0 > 0, etc. Thus when (a0; b0; c0)
lies in the interior of �� we have a genuine resistive inverse; when it lies on
the boundary we have a generalized inverse (or a true resistive inverse with
some zero conductances). So we're all set.

This proof applies as well to the case where we demand that �ij = 0 for
certain selected edges (ij); and place no upper bounds on the corresponding
ĉij (i.e. set cij =1). 2

If C = (cij) is resistive, the matrix inversion of Section 3 will �nd the
associated conductance matrix �; with ĉij = cij: If C is not resistive | or

even if it is | there is an iterative algorithm that converges to the generalized
resistive inverse whose existence is guaranteed by Theorem 4.1. In presenting
this algorithm we will once again limit the discussion to the case where the
graph is a triangle, and use the same notation as above.

By Foster's theorem aR + bS + cT = 2, (the 2 here being one less than

the number of nodes in the graph), and hence a0R0+ b0S0 + c0T0 = 2. Thus

(a0; b0; c0) = arg max
(a;b;c)2��

D;

where �� is the closure of the open simplex

� = fa; b; c > 0; aR0 + bS0 + cT0 = 2g:

To locate the maximum we can use the knee-jerk algorithm, according to

which we iterate the mapping

T (a; b; c) =
�
a
R

R0

; b
S

S0
; c
T

T0

�
:

10

This algorithm is a particular instance of a general method known as the

Baum algorithm. The mapping T takes � to itself, and strictly increases the

objective function D for any (a; b; c) (other than (a0; b0; c0)) in �. (See Baum

and Eagon [1].) It follows from this that for any starting guess (a; b; c) 2 � the

sequence T n(a; b; c) of iterates converges to the generalized resistive inverse

(a0; b0; c0).

Now let's return to the cat-and-mouse game.

Corollary 4.2 Let G be any weighted graph with n nodes. The cat has an

(n� 1)-competitive strategy for the cat-and-mouse game on G.

5 The k-Server Problem

We consider here the k-server problem of Manasse et al. [14] de�ned in Sec-
tion 1. We compare the performance of an on-line k-server algorithm to
the performance of an adversary with k servers. The adversary chooses the

next request at each step, knowing the current state of the on-line algo-
rithm, and moves one of its servers to satisfy the request (if necessary).
The on-line algorithm then moves one of its servers if necessary, without
knowing the state of the adversary. The algorithm is c-competitive if there
exists a constant a such that, for any adversary and any request sequence,

E[cost on-line algorithm] � c � [cost adversary] + a. Such an adversary is
termed adaptive on-line [2, 17]. One can weaken the adversary by requiring
it to choose the sequence of requests in advance, so that it does not know
of the actual random choices made by the on-line algorithm in servicing
the request sequence; this is an oblivious adversary. Alternatively, one can
strengthen the adversary by allowing it to postpone its decision on its server

moves until the entire sequence of requests has been generated; this is an

adaptive o�-line adversary. These three types of adversaries for randomized
algorithms are provably di�erent [2, 10, 17]. However, they all coincide when

the on-line algorithm is deterministic. Furthermore, if there is a randomized
algorithm that is c-competitive against adaptive on-line adversaries, then

there is a c2-competitive deterministic algorithm [2].

Theorem 5.1 Let C be a resistive cost matrix. Then we have a randomized

k-competitive strategy for the k-server problem against an adaptive on-line

11

adversary. More generally, if every (k + 1)-node subgraph of C is resistive,

we have a k-competitive strategy for the k-server problem on C.

Proof: We exhibit a k-competitive on-line algorithm for the more gen-

eral case; we call this algorithm RWALK. If a request arrives at one of

the k vertices that RWALK's servers cover (let us denote these vertices by

a1; a2; :::; ak), it does nothing. Suppose a request arrives at a vertex ak+1
it fails to cover. Consider the (k + 1)-vertex subgraph C 0 determined by

a1; a2; :::; ak; ak+1: By hypothesis, C 0 is resistive. Let �0 denote its resistive

inverse. With probability

p0i =
�0i;k+1Pk
j=1 �

0
j;k+1

it selects the server at vertex ai to move to the request at vertex ak+1: Since

C 0 is �nite, �0 is connected, and the denominator
Pk

j=1 �
0
j;k+1 is nonzero, the

probabilities are well de�ned and sum to 1.
We need to prove that the RWALK is k-competitive. To this end, we

de�ne a potential �: (This is not to be confused with an electrical potential.)
Say the RWALK's servers are presently at vertices a = fa1; a2; :::; akg; and

the adversary's servers are presently at vertices b = fb1; b2; :::; bkg; where a
and b may overlap. We de�ne �(a;b) as the sum of the costs of all the edges
between vertices currently occupied by RWALK's servers, plus k times the
cost of a minimum-weight matching between vertices occupied by RWALK's
servers and the adversary's servers. That is,

�(a;b) =
X

1�i<j�k

cai;aj +min
�

k �
kX

i=1

cai;b�(i);

where � ranges over the permutations on f1; 2; :::; kg:We also de�ne a quan-

tity � depending on the present position and the past history:

�(a;b; History) = �(a;b)

+(RWALK's Cost) � k � (Adversary's Cost);

where both \Cost"s are cumulative. We will show that the expected value
of � is a non-increasing function of time, and then show how this will imply

the theorem.

12

Let us consider the changes in � due to (i) a move by the adversary

(which could increase �), and (ii) a move by RWALK, which (hopefully)

tends to decrease �. By showing that in both cases, the expected change

in � is � 0, we will argue that over any sequence of requests the expected

cost of RWALK is at most k times the adversary's cost plus an additive term

independent of the number of requests.

If the adversary moves one of its servers from bj to b
0
j; its cumulative cost

is increased by cbj ;b0j : The potential � can increase by at most k times that

quantity, since the minimum-weight matching can increase in weight by at

most cbj;b0j : (Obtain a new matching �0 from the old one by matching a��1(j)

to b0j instead of bj; and note that the weight of this new matching is no more
than cbj;b0j plus the weight of the old one; the new minimum-weight matching

will be no heavier than this constructed matching.) So in this case � does
not increase.

Next, we consider a move made by RWALK, and compare its cost to the

expected change in �. First, we suppose that a and b overlap in k�1 places
(later we remove this assumption):

ai = bi; i = 2; 3; :::; k; a1 6= b1:

De�ne bk+1 = a1: For convenience, set m = k + 1; and let cij; �ij, for i; j
= 1; 2; :::;m be de�ned by cij = cbi;bj : Recall the equations relating � and C;

specialized to the entries of interest:

��11 =
k+1X
j=2

�1j

��1j = ��1j; 2 � j � k

�cji = [cjm + cim � cji]=2
kX

j=1

��1j�cji = �1i; i � k

Multiply this last equation by 2 and sum over i = 2; 3; :::; k; noticing that in

this range �1i = 0: We obtain:

0 = 2
kX

i=2

kX
j=1

��1j�cji

13

= 2
kX

i=2

0
@��11�c1i + kX

j=2

��1j�cji

1
A

=
kX

i=2

8<
:

k+1X
j=2

�1j [c1m + cim � ci1]

�

kX
j=2

�1j [cjm + cim � cji]

9=
;

For j = m = k + 1 the latter bracketed expression [cjm + cim � cji] is

zero, so we can include it in the sum, extending the limits of summation to
k + 1 :

0 =
kX

i=2

8<
:

k+1X
j=2

�1j[c1m + cim � ci1]

�

k+1X
j=2

�1j[cjm + cim � cji]

9=
;

=
k+1X
j=2

�1j

"
(k � 1)c1m +

kX
i=2

cim �
kX

i=2

ci1

�(k � 1)cjm �

kX
i=2

cim +
kX

i=2

cji

#

=
k+1X
j=2

�1j

"
kc1m �

mX
i=2

ci1 � kcjm +
mX
i=2

cji

#

=
k+1X
j=2

�1j

"
kc1m �

mX
i=2

ci1 � kcjm

+
X

1�i�m; i6=j

cji � cj1

3
5

De�ning

�` = kc`m +
X

1�i<j�m; i;j 6=`

cij

= kc`m +
X

1�i<j�m

cij �
mX
i=1

ci`

14

we discover
k+1X
j=2

�1j[�1 � �j � cj1] = 0:

Now it is straightforward to verify that the expected change in �; as RWALK

makes its random move with probability (�1j)=(
Pk+1

i=2 �1i); is

1Pm
i=2 �1i

�

k+1X
j=2

�1j[�1 � �j � cj1] = 0:

Thus the expected change in � is zero on RWALK's move.
Finally we verify the case in which a and b overlap in fewer than k �

1 vertices, and RWALK makes a move. Suppose the request is at vertex
b1. Suppose the current minimum-weight matching pairs ai with bi; i =

1; 2; :::; k: Perform the previous analysis as if the adversary's other servers
b2; :::; bk were presently at the same vertices as our a2; :::; ak: Obtain again

1Pm
i=2 �1i

�

mX
j=2

�1j[�1 � �j � cj1] = 0:

The true potential � di�ers from that of the previous case only in the weight
of the minimum-weight matching. Consider a new matching, not necessarily

of minimum weight, after our current move from aj to b1; obtained from the
old matching by matching a1 to bj; aj to b1; and ai to bi for i 6= 1; j: This
new matching di�ers from the old one by

ca1;bj � ca1;b1 � caj;bj � ca1;aj � ca1;b1

by the triangle inequality. But the previous analysis guaranteed that the
expected change in � was zero, and for that calculation we used a value of

ca1;aj � ca1;b1

as the change in �: The true change in � is less than that, and even less
when we allow the new matching to be of minimumweight, so that again the

expected change in � is non-positive.
So the expected value of �(a;b;History) = �(a;b)+(RWALK's Cost)�

k � (Adversary's Cost) is nonincreasing at every step. Since � is positive, we

�nd that
(RWALK's Cost)� k � (Adversary's Cost)

15

remains bounded, in expectation, by the initial value of �: So the competi-

tiveness is k: 2

The last result is valid even if the graph is in�nite; one only requires

that the cost of a simple path be bounded and every k + 1-node subgraph

be resistive. The potential � we developed to prove the last result seems to

be very natural and useful for the server problem. It has been subsequently

used by several authors [7, 8].

As corollaries of Theorem 5.1, we have k-competitive algorithms for the

server problem for k = 2 in any metric space [14], for points on a line [7], for

the weighted cache problem [7, 17], for the uniform cost (caching) case [18]
and for points on a tree [8]. These algorithms are extremely simple, and

memoryless. Berman et al. [3] give an algorithm for 3 servers that achieves
a �nite competitiveness in any metric space. With the sole exception of
this result, every special case of the server problem for which any �nite
competitiveness is known is in a resistive metric space. Certainly, all known
cases where we know of k-competitive on-line algorithms are in (special cases

of) resistive metric spaces. Thus our theory based on resistive random walks
both uni�es and generalizes our current picture of the k-server conjecture,
and implies k2-competitive deterministic algorithms in resistive spaces [2].

Theorem 5.1 can be used to derive competitive k-server algorithms for
non-resistive spaces as well, when these can be approximated by resistive

spaces. A cost matrix C 0 is a �-approximation for the matrix C if, for all ij,
c0ij � cij � �c0ij . If a server algorithm is c-competitive for the matrix C 0, then
it is �c-competitive for the matrix C. Using this observation, we can derive
a 2k-competitive algorithm for k servers when the nodes are on a circle,
with distances being measured along the circumference. Consider points on

a circle, with the cost cij between two points i; j given as the distance along
the smaller arc joining them. We can construct a 2-approximation C 0 to this

cost C: Each arc of the circle becomes a resistor with resistance equal to the

arc-length. If the smaller and larger arc distances joining two points are �; �
respectively, then the e�ective resistance c0 is ��=(� + �) while c = � < �:

Then easily c0 � c � 2c0: In conjunction with results in [2], this implies that

there is a 4k2-competitive deterministic algorithm for k servers on the circle.

No �nitely competitive deterministic algorithm was known before for this

problem.
On the other hand, it is not possible to �nitely approximate arbitrary

distance matrices derived from the Euclidean plane (proof omitted in this

16

version). Thus, this approximation technique does not solve the server prob-

lem in the plane.

We now turn to the case k = n� 1.

Theorem 5.2 Let C be any cost matrix. If there are n nodes and k = n� 1

servers, we have an (n� 1)-competitive strategy.

The signi�cance of Theorem 5.2 is that it holds even when the cij do not

satisfy the triangle inequality, a case for which no prior result exists [14].

Proof outline: We can assume that servers always occupy distinct

nodes. Both the on-line algorithm and the adversary have one unoccupied
node which we consider, respectively, to be \cat" and \mouse". Whenever

a server moves from i to j the cat (resp. the mouse) moves from j to i, at
cost cij = cji. We can assume that the adversary always requests the unique
node (cat's position) which is not occupied by the on-line algorithm. It has
to move one of its own servers to satisfy this request only when the positions
of the cat and of the mouse coincide. This situation corresponds exactly to
the cat-and-mouse game, and the result follows from Corollary 4.2. 2

6 Metrical Task Systems

We now consider Metrical Task Systems, as de�ned by Borodin et al. [4].

De�nitions are omitted here for brevity; the reader is referred to [4].
We compare the performance of an on-line algorithm to the performance

of an adversary. At each step, the adversary chooses the next task, knowing
the current state of the on-line algorithm, and chooses its next position. An
on-line algorithm is c-competitive if there is a constant a such that for any

n and any adversary E[cost of on-line algorithm] � c � [cost of adversary] + a

(where cost includes the task processing cost and the cost of moves).
Borodin et al. [4] de�ne an on-line algorithm for metrical task systems to

be a traversal algorithm if:

(1) the states are visited in a �xed sequence s1; s2; � � � independent of the

input task sequence; and,

(2) there is a sequence of positive threshold costs c1; c2; � � � such that the

transition from sj to sj+1 occurs when the total task processing cost incurred
since entering sj reaches cj. In fact, they set cj = csj;sj+1 .

17

We extend this de�nition to randomized traversal algorithms. Condition

(1) is replaced by (10): the states are visited by a Markov process that is

independent of the input task sequence.

Borodin et al. [4] give a 8(n � 1)-competitive deterministic traversal al-

gorithm, and a more complex (2n � 1)-competitive deterministic algorithm,

which is optimal. We give here a (2n � 1)-competitive randomized traversal

algorithm. The algorithm is very simple, and memoryless. It is based on the

random walks developed in Sections 3 and 4.

Let (cij) be the cost matrix for a metrical task system on a graph with

n nodes. Let (�ij) be the generalized resistive inverse of (cij), and let pij
be the transition probabilities for the resistive random walk. The on-line

algorithm makes a transition out of current state i when the expected total
task processing cost since entering state i exceeds a threshold �i (to this
end, Borodin et al. describe a continuous-time view of the process in which
a state-transition can be made at any point in time rather than at discrete
steps; details on how this is done omitted in this version); it then randomly

chooses the next state, where state j is chosen with probability pij .

Theorem 6.1 The on-line algorithm is (2n�1)-competitive against an adap-

tive on-line adversary, for the choice of thresholds �i = 2
P

j pijcij=(
P

j �ijcij).

Proof outline: One can show that this algorithm corresponds to a
cat-and-mouse game, with the following two modi�cations: (1) the cat pays
�i whenever it reaches node i; (2) if the mouse is caught at node i by the
cat, then the mouse can either move to a new node j and pay cij, or it

can stay put at node i until the cat catches it again, and pay �i. Using
some additional properties we prove about resistive walks, we show that
the expected total task-processing cost of the cat in the extended game is

n=(n� 1) times the expected total cost of edges traversed by cat. Each non-
trivial loop in the random walk of the cat has a stretch � n � 1. We also

show that eii � (n � 1) � �i. It follows that the expected move cost of the
cat is at most n� 1 times the mouse cost, and the expected total cat cost is

� (n� 1) � (1 + n=(n � 1)) = 2n� 1 times the mouse cost. 2

7 Open Problems

In this section we list several open problems raised by our work.

18

We do not know what stretch can be achieved by random walks when the

cost matrix C is not symmetric.

It would be interesting to study the cat-and-mouse game under a wider

class of strategies. For instance, on the circumference of a circle, it is easy

to give a deterministic algorithm for the cat that achieves a constant com-

petitiveness. Moreover, one can consider randomized algorithms other than

those based on random walks. In fact, a simple (though not memoryless)

randomized algorithm achieves a competitiveness of n=2 when the graph is

the complete graph on n nodes with the same cost on every edge.

We have no results for the k server problem in general metric spaces.
We would like to prove that the resistive random walk yields a server algo-

rithm that achieves a competitiveness that is a function of k alone, in any
metric space (against an adaptive on-line adversary). This would yield [2]
a deterministic algorithm having �nite competitiveness in an arbitrary met-
ric space. We can prove that the resistive server algorithm is (2k � 1)-
competitive against a lazy adaptive on-line adversary that moves only when

it must: whenever there is a node occupied by an adversary server that is
not occupied by an on-line algorithm's server, the adversary requests such
node. The lazy adversary conjecture is that the resistive on-line algorithm
achieves its worst performance against a lazy adversary. A proof of this con-
jecture would show that the resistive algorithm is (2k � 1)-competitive in

every metric space.

19

References

[1] L.E. Baum and J.A. Eagon. An inequality with applications to statistical

estimation for probabilistic functions of Markov processes and to a model

for ecology. Bull. Amer. Math. Soc., 73:363{363, 1967.

[2] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson.

On the power of randomization in on-line algorithms. Algorithmica,

11(1):2{14, 1994.

[3] P. Berman, H.J. Karlo�, and G. Tardos. A competitive 3-server algo-
rithm. In Proceedings 1st ACM-SIAM Symposium on Discrete Algo-

rithms, pages 280{290, 1990.

[4] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for

metrical task systems. Journal of the ACM, 39:745{763, 1992.

[5] R. Bott and R. J. Du�n. On the algebra of networks. Trans. Amer.

Math. Soc., 74:99{109, 1953.

[6] A. K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari.
The electrical resistance of a graph captures its commute and cover

times. In Proceedings of the 21st Annual ACM Symposium on Theory

of Computing, pages 574{586, Seattle, May 1989.

[7] M. Chrobak, H.J. Karlo�, T. Payne, and S. Vishwanathan. New results

on server problems. In Proceedings of the 1st ACM-SIAM Symposium

on Discrete Algorithms, pages 291{300, 1990.

[8] M. Chrobak and L.L. Larmore. An optimal online algorithm for k servers

on trees. SIAM Journal on Computing, 20:144{148, 1991.

[9] P.G. Doyle and J.L. Snell. Random Walks and Electric Networks. The

Mathematical Association of America, 1984.

[10] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and
N. Young. Competitive paging algorithms. Journal of Algorithms,

12:685{699, 1991.

20

[11] R. M. Foster. The average impedance of an electrical network. In Con-

tributions to Applied Mechanics (Reissner Anniversary Volume), pages

333{340. Edwards Bros., Ann Arbor, Mich., 1949.

[12] R. M. Foster. An extension of a network theorem. IRE Trans. Circuit

Theory, 8:75{76, 1961.

[13] J.G. Kemeny, J. L. Snell, and A.W. Knapp. Denumerable Markov

Chains. The University Series in Higher Mathematics. Van Nostrand,

Princeton, NJ, 1966.

[14] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algo-
rithms for server problems. Journal of Algorithms, 11:208{230, 1990.

[15] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and

Its Applications. Academic Press, New York, 1979.

[16] C.H. Papadimitriou and M. Yanakakis. Shortest paths without a map.

Theoretical Computer Science, 84:127{150, 1991.

[17] P. Raghavan and M. Snir. Memory versus randomization in on-line

algorithms. In 16th International Colloquium on Automata, Languages,

and Programming, volume 372 of Lecture Notes in Computer Science,
pages 687{703. Springer-Verlag, July 1989. Revised version available as
IBM Research Report RC15840, June 1990.

[18] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and
paging rules. Communications of the ACM, 28:202{208, February 1985.

[19] L. Weinberg. Network Analysis and Synthesis. McGraw-Hill, New York,
1962.

21

