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Abstract

Equations that can be solved using iterated rational maps are character-
ized: an equation is ‘computable’ if and only if its Galois group is within A5 of
solvable. We give explicitly a new solution to the quintic polynomial, in which
the transcendental inversion of the icosahedral map (due to Hermite and Kro-
necker) is replaced by a purely iterative algorithm. The algorithm requires a
rational map with icosahedral symmetries; we show all rational maps with given
symmetries can be described using the classical theory of invariant polynomials.

1 Introduction.

According to Dickson, Euler believed every algebraic equation was solvable by radicals
[2]. The quadratic formula was know to the Babylonians; solutions of cubic and
quartic polynomials by radicals were given by Scipione del Ferro, Tartaglia, Cardano
and Ferrari in the mid-1500s. Abel’s proof of the insolvability of the general quintic
polynomial appeared in 1826 [1]; later Galois gave the exact criterion for an equation
to be solvable by radicals: its Galois group must be solvable. (For a more complete
historical account of the theory of equations, see van der Waerden [21], [20].)

In this paper, we consider solving equations using generally convergent purely
iterative algorithms, defined by [17]. Such an algorithm assigns to its input data v a
rational map Tv(z), such that Tv

n(z) converges for almost all v and z; the limit point
is the output of the algorithm.

This context includes the classical theory of solution by radicals, since nth roots
can be reliably extracted by Newton’s method.
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In [11] a rigidity theorem is established that implies the maps Tv(z) for varying v
are all conformally conjugate to a fixed model f(z). Thus the Galois theory of the
output of T must be implemented by the conformal automorphism group Aut(f), a
finite group of Möbius transformations.

The classification of such groups is well-known: Aut(f) is either a cyclic group,
dihedral group, or the group of symmetries of a regular tetrahedron, octahedron or
icosahedron. Of these, all but the icosahedral group are solvable, leading to the
necessary condition:

An equation is solvable by a tower of algorithms only if its Galois group G is
nearly solvable, i.e. admits a subnormal series

G = Gn � Gn−1 � . . . � G1 = id

such that each Gi+1/Gi is either cyclic or A5. Incomputability of the sextic and higher
polynomials follows as in ordinary Galois theory.

This necessary condition proves also sufficient; in particular, the quintic equation
can be solved by a tower of algorithms.

The quintic equation and the icosahedron are of course discussed at length in
Klein’s treatise [8] (see also [10], [2], [5], and especially [15]). Our solution relies
on the classical reduction of the quintic equation to the icosahedral equation, but
replaces the transcendental inversion of the latter (due to Hermite and Kronecker)
with a purely iterative algorithm.

To exhibit this method, we must construct rational maps with the symmetries of
the icosahedron. It proves useful to think of a rational map f(z) on Ĉ, symmetric
with respect to a finite group Γ ⊂ PSL2C, as a projective class of homogeneous 1-
forms on C2, invariant with respect to the linear group Γ ⊂ SL2C. Then exterior
algebra can be used to describe the space of all such maps in terms of the classical
theory of invariant polynomials.

From this point of view, a rational map of degree n is canonically associated to any
(n + 1)-tuple of points on the sphere, and inherits the symmetries of the latter. The
iterative scheme we use to solve the quintic relies on the map of degree 11 associated
to the 12 vertices of the icosahedron. Its Julia set is rendered in Figure 1; every initial
guess in the white region (which has full measure) converges to one of the 20 vertices
of the dual dodecahedron.

Outline of the paper. §2 develops background in algebra and geometry. §3
introduces purely iterative algorithms, and §4 characterizes computable fields, given
the existence of a certain symmetric rational map. §5 contains a description of all
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Figure 1: An icosahedral iterative scheme for solving the quintic.
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rational maps with given symmetries, which completes the proof and leads to an
explicit algorithm for solving quintic equations, computed in the Appendix.

Remarks.
(1) Comparison should be made with the work of Shub and Smale [16] in which

successful real algebraic algorithms are constructed for a wide class of problems (in
particular, finding the common zeros of n polynomials in n variables with no restric-
tions on degree). These algorithms exhibit much of the flexibility of smooth dynamical
systems (in fact they are discrete approximations to the Newton vector field).

(2) One can also consider more powerful algorithms which are still complex alge-
braic, e.g. by allowing more than one number to be updated during iterations. Tools
for pursuing this direction (such as the theory of iterated rational functions on Pn,
n > 1) have yet to be fully developed.

2 Galois Theory of Rigid Correspondences.

In this section we set up the Galois theory and birational geometry that will be used to
describe those field extensions that can be reached by a tower of generally convergent
algorithms.

All varieties will be irreducible and complex projective. Let V be a variety, k =
K(V ) its function field.

An irreducible polynomial p in k[z] determines a finite field extension k(α), where
α is a root of p; the extension is unique up to isomorphism over k.

To obtain a geometric picture for the field extension, consider p(z) as a family of
polynomials pv(z) whose coefficients are rational functions of v. The polynomial p
determines a subvariety W ⊂ V × Ĉ which is the closure of the set of (v, z) such that
pv(z) = 0. The function field K(W ) = k(α) where α denotes the rational function
obtained by projecting W to Ĉ.

W may be thought of as the graph of a multi-valued function W (v) which sends
v to the roots of pv. We call such a multi-valued map a rational correspondence.

We say W is a rigid correspondence if its set of values assumes only one conformal
configuration on the Riemann sphere: i.e. there exists a finite set A ⊂ Ĉ such that
the set W (v) is equal to γ(A) for some Möbius transformation γ depending on v. In
this case we say the field extension k(α) is a rigid extension.

Now let k′ denote a finite Galois extension of k with Galois group G.
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T heorem 2.1. The field extension k′/k is the splitting field of a rigid extension if
and only if there exists:

(a) a faithful homomorphism ρ : G→ PSL2C and

(b) an element φ in PSL2(k
′) such that

(c) φg = ρ(g) ◦ φ for all g in G.

Proof. Let k′ be the splitting field of a rigid correspondence k(α). For simplicity,
assume [k(α) : k] is at least 3. Let αi, i = 1,2,3 denote three distinct conjugates of α
under G. PSL2(k

′) acts triply transitively on the projective line P(k′2) ⊃ P(C2) = Ĉ;
take φ to be the unique group element which moves (α1, α2, α3) to (0, 1,∞).

We claim that φ(αg) is in Ĉ for all g in G. Indeed, φ(αg) is just the cross-ratio of
αg and (α1, α2, α3), which is constant by rigidity. Let A = φ(αG) be the image under
φ of the conjugates of α.

Define ρ(g) = φg ◦ φ−1. Then ρ(g) permutes A, so it is an element of PSL2C.
Because G acts trivially on PSL2C, ρ is a homomorphism; e.g.

φg ◦ φ−1 ◦ φh ◦ φ−1 = (φg ◦ φ−1)h ◦ φh ◦ φ−1 = φgh ◦ φ−1

and since ρ(g) fixes A pointwise only if g fixes the conjugates of α, it is faithful; thus
we have verified (a–c).

Conversely, given the data (a–c), set α = φ−1(x) for any x in Ĉ with trivial
stabilizer in ρ(G); then α is rigid over k and k′ = k(α).

Cohomological Interpretation. The map ρ determines an element [ρ] of the
Galois cohomology group H1(G, PSL2k

′), which is naturally a subgroup of the Brauer
group of k; condition (c) simply says ρ is the coboundary of φ, so [ρ] = 0.

A geometric formulation of the vanishing of this class is the following. Let W → V
denote the rational map of varieties corresponding to the field extension k ⊂ k′.
Form the Severi-Brauer variety Pρ = (W × Ĉ)/G, where G acts on W by birational

transformations and on Ĉ via the representation ρ. Then Pρ → V is a flat Ĉ bundle
outside the branch locus of the map W → V . We can factor W → V through the
inclusion W ∼= W × {x} ⊂ Pρ for any x in Ĉ with trivial stabilizer.

The cohomology class of ρ vanishes if and only if Pρ is birational to V × Ĉ; in

which case W ⊂ Pρ
∼= V × Ĉ presents W as a rigid correspondence.

More on Galois cohomology and interpretations of the Brauer group can be found
in [6], [7] and [14].
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3 Purely Iterative Algorithms.

In this section, generally convergent purely iterative algorithms are introduced and
we prove that the correspondences they compute are rigid.

Definitions. An purely iterative algorithm Tv(z) is a rational map

T : V → Ratd

carrying the input variety V into the space of Ratd of rational endomorphisms of the
Riemann sphere of degree d. To avoid special considerations of ‘elementary rational
maps’, we will always assume that d is > 1.

Let k denote the function field K(V ); then T is simply an element of k(z).
The algorithm is generally convergent if Tv

n(z) converges for all (v, z) in an open
dense subset of V × Ĉ. (Here T n denotes the nth iterate of the map T ).

The map Tv(z) can be thought of as a fixed procedure for improving the initial
guess z. The output of the algorithm is described by the set

W = {(v, z) ∈ V × Ĉ|z is the limit of Tv
n(w) for some open set of w}.

Since different w may converge to different limits, the output can be multivalued.
A family of rational maps is rigid if there is a fixed rational map f(z) such that

Tv is conjugate to f(z) for all v in a Zariski open subset of V .

T heorem 3.1. A generally convergent algorithm is a rigid family of rational maps.
This is a consequence of the general rigidity theorem for stable algebraic families,

exactly as in Theorem 1.1 of [11].

C orollary 3.2. The output of a purely iterative algorithm is a finite union of rigid
correspondences.

Proof. The output W is a finite union of components of the algebraic set {(v, z)|Tv(z) =
z}; each component is a variety. The Möbius transformation conjugating Tv to the
fixed model f(z) carries the output of Tv to the attractor A of f , so each component
is a rigid correspondence.

To make examples of generally convergent algorithms, one must check that a given
iteration will converge for most initial guesses. Here is one special but useful criterion.
A rational map f(z) is critically finite if every critical point c is eventually periodic
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(there exist n > m > 0 such that fn(c) = fm(c)). A periodic cycle which includes a
critical point is said to be superattracting.

T heorem 3.3. Let f(z) be a critically finite rational map, A the union of its
superattracting cycles. Then either

(a) A is empty and the action of f on Ĉ is ergodic, or

(b) A is nonempty, and fn(z) tends to a cycle of A for all z in an open, full measure
subset of Ĉ.

In case every critical point eventually lands in A, f(z) belongs to the general class
of ‘expanding’ rational maps, for which the result is proven in [18]. The general case
can be handled similarly, using orbifolds. This is sketched for polynomials by Douady
and Hubbard [3]; the orbifold approach for general critically finite maps is discussed
in [19].

All examples of generally convergent algorithms we will consider employ critically
finite maps. In practical terms, these maps have two benefits: convergence is assured
almost everywhere, not just on an open dense set; and convergence is asymptotically
quadratic (for a fixed convergent initial guess, 2N digits of accuracy are obtained in
O(N) iterations).

Examples of purely iterative algorithms.
(1) Newton’s method. Let V = Polyd and let Tp(z) = z − p(z)/p′(z). Then T

is a purely iterative algorithm, and it is generally convergent for d = 2 but not for
d = 3 or more (Figure 2; see also [17]).

(2) Extracting radicals. Let V ⊂ Polyd denote the set of polynomials {p(X) =
Xd − a|a ∈ C}. The restriction of Newton’s method to V is generally convergent;
thus one can reliably extract radicals. The critical points of Tp occur at the roots of
p (which are fixed) and at z = 0 (which maps to ∞ under one iteration, and then
remains fixed); thus Tp is critically finite, and by Theorem 3.3, almost every initial
guess converges to a root.

Rigidity of the algorithm Tp is easily verified, using the affine invariance of New-
ton’s method.

(3) Solving the cubic. The roots of p(X) = X3 + aX + b can be reliably
determined by applying Newton’s method to the rational function

r(X) =
(X3 + aX + b)

(3aX2 + 9bX − a2)
.
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Figure 2: Newton’s method can fail for cubics.

The critical points of Tp coincide with the roots of p, and are fixed, so again Theorem
3.3 may be applied to verify convergence.

(4) Insolvability of the quartic. Since the roots of two quartics are generally
not related by a Möbius transformation (the cross-ratio of the roots must agree),
the roots of polynomials of degree 4 (or more) cannot be computed by a generally
convergent algorithm.

A more topological discussion of the insolvability of the quartic, using braids,
appears in [12].

4 Towers of Algorithms.

Let V be a variety, k its function field. From a computational point of view, k is the
set of all possible outputs of decision-free algorithms which perform a finite number
of arithmetic operations on their input data. The graph of an element of k in V × Ĉ
describes the output of such an algorithm.

Let T be a generally convergent algorithm with output W ⊂ V × Ĉ. Assume
for simplicity that W is irreducible, and let k ⊂ k(α) be the corresponding field
extension. Then elements of k(α) describe all possible outputs which are computed
rationally from the output of T and the original input data. We refer to k(α) as the
output field of T .

If W is reducible then T has an output field for each component of W . All
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algorithms which we consider explicitly will have irreducible output.
If f(z) is a rational map, let Aut(f) denote the group of Möbius transformations

commuting with f . If Γ is a group acting on a set, Stab(a, Γ) will denote the subgroup
stabilizing the point a.

T heorem 4.1. Every generally convergent algorithm T in k(z) can be described by
the following data:

(a) A rational map f(z) and a finite set A ⊂ Ĉ such that fn(z) converges to a point
of A for all z in an open dense set; and

(b) A finite Galois extension k′/k with Galois group G, an isomorphism ρ : G →
Γ ⊂ Aut(f) and an element φ in PSL2(k

′); such that

(c) φg = ρ(g) ◦ φ for all g in G; and

(d) T = φ−1 ◦ f ◦ φ.

The output fields of T are the fixed fields of ρ−1Stab(a, Γ), as a ranges over the points
of A. If Γ acts transitively on A then the output of T is irreducible and the output
field is unique up to isomorphism over k.

Proof. Given the rigidity of generally convergent algorithms, the proof follows the
same lines as Theorem 2.1.

A tower of algorithms is a finite sequence of generally convergent algorithms, linked
together serially, so the output of one or more can be used to compute the input to the
next. The final output of the tower is a single number, computed rationally from the
original input and the outputs of the intermediate generally convergent algorithms.

A tower is described by rational maps T1(z), . . . , Tn(z) and fields k = k1 ⊂ k2 ⊂
. . . ⊂ kn such that Ti is an element of ki(z), and ki+1(z) is one of the output fields
of Ti. The field kn is the final output field of the tower. The field extension k′/k is
computable if it is isomorphic over k to a subfield of kn for some tower of algorithms.

If we require that every algorithm employed has irreducible output, then there
is a one-to-one correspondence between the elements of all computable fields over
k, and the ‘graphs’ W ⊂ V × Ĉ of the final output of all towers of algorithms. In
general, if W is reducible, then each component of W corresponds to an element of a
computable field.
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Our main goal is to characterize computable field extensions.

Möbius groups. Sd and Ad will denote the symmetric and alternating groups
on d symbols. Let Γ ⊂ PSL2C be a finite group of Möbius transformations. As an
abstract group, Γ is either a cyclic group, a dihedral group, the tetrahedral group
A4, the octahedral group S4, or the icosahedral group A5. We refer to such groups as
Möbius groups. Note that

(1) Any subgroup or quotient of a Möbius group is again a Möbius group; and
(2) every Möbius group other than A5 is solvable.

Near Solvability. Suppose a group G admits a subnormal series

G = Gn � Gn−1 � . . . � G1 = id

such that each Gi+1/Gi is a Möbius group. By (2) the series may be refined so that
successive quotients are either abelian or A5. We will say such a group is nearly
solvable. By (1) any quotient or subgroup of a nearly solvable group is also nearly
solvable.

T heorem 4.2. A field extension k′/k is computable if and only if the Galois group
of its splitting field is nearly solvable.

Since Sn is nearly solvable if and only if n ≤ 5, we have the immediate:

C orollary 4.3. Roots of polynomials of degree d can be computed by a tower of
algorithms if and only if d ≤ 5.

Proof of 4.2: one direction. Suppose k′ is computable. Let k1 ⊂ k2 ⊂ . . . ⊂ kn

be a tower of output fields such that k′ is isomorphic over k to a subfield of kn. Define
inductively k′

i+1 to be the splitting field of ki+1 over k′
i, and let

G = Gn � Gn−1 � . . . � G1 = id

be the corresponding subnormal series for G = Gal(k′
n/k). Gi/Gi+1 is the same as the

Galois group of k′
i+1/k

′
i, which faithfully restricts to a subgroup of the Galois group

of the splitting field of ki+1 over ki. By Theorem 4.1, the latter group is isomorphic
to a finite group of Möbius transformations, so G is nearly solvable.

To complete the proof we must exhibit algorithms for producing field extensions.
It turns out that, in addition to the basic tool of Newton’s method for radicals, only
one other generally convergent algorithm is required.
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L emma 4.4. If k′/k is a cyclic Galois extension, then k′ is computable.

Proof. Since k contains all roots of unity, k′ = k(α) for some element α such that
αn is in k. As we have seen, Newton’s method is generally convergent when applied
to extract nth roots. Thus k′ is the output field of T in k(z) where T is Newton’s
method applied to the polynomial Xn − αn.

L emma 4.5 (Existence of an Icosahedral Algorithm). There is a critically finite
rational map f(z) with Aut(f) isomorphic to A5, whose superattracting fixed points
A comprise a single orbit under A5 with stabilizer A3.

This will be established in the following section.

L emma 4.6. If k′/k is a Galois extension with Galois group G = A5, then k′ is
computable.

Proof. To construct an algorithm to compute k′, we need only provide data as in
(a) and (b) of Theorem 4.1. For f(z), we take the rational map given by the preceding
lemma, and A its superattracting fixed points. Since f is critically finite, Theorem
3.3 guarantees an open, full measure set of z converge to A.

Let ρ be any isomorphism between G and Aut(f). As shown in [15], there is a
degree 2 cyclic extension of k in which the cohomology class [ρ] becomes trivial. Since
cyclic extensions are computable, we may assume this is true in our original field k.
Thus there is an element φ such that φg = ρ(g) ◦φ, and T = φ−1 ◦ f ◦φ is a generally
convergent algorithm over k.

Since the stabilizer of a point in A is an A3 subgroup of A5, the output field of T
is the fixed field of A3. As k′ is a cyclic extension of this fixed field, it is computable.

The result of Serre’s quoted above has been generalized by Merkurev and Suslin to
show that any Severi-Brauer variety has a solvable splitting field [13]. (This reference
was supplied by P. Deligne.)

The lemma can also be established somewhat less conceptually without appeal to
[15]. Any element α generating the fixed field of A4 ⊂ A5 satisfies a quintic polynomial
p(z) in k(z). Since A4 is solvable, to compute the extension k′ it suffices to compute
a root of p.
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In the Appendix we will give an explicit algorithm for solving quintic polynomials.
To carry out the solution, the quintic must be normalized so that

∑
ri and

∑
ri

2 are
both equal to zero, where ri denote the roots of p. This normalization is easily
carried out by a Tschirnhaus transformation, but it requires the computation of a
square root. The square root, which Klein calls the ‘accessory irrationality’, furnishes
the predicted degree 2 extension.

Completion of the Proof of 4.2. Replacing k′ by its splitting field, we may
assume k′/k is Galois with nearly solvable Galois group. Then k′ is obtained from k
by a sequence of Galois extensions, each of which is cyclic or A5. By the preceding
lemmas, each such extension is computable, so k′ is computable as well.

Remark on the quartic. Let k′ = C(r1, r2, r3, r4), and let k be the subfield of
symmetric functions. Then the problem of computing k′/k is the same as that of
finding the roots of a general fourth degree polynomial. Since the Galois group G
here is S4, Theorem 4.2 guarantees this is possible by a tower of algorithms.

S4 is actually isomorphic to a Möbius group, namely the symmetries of an octahe-
dron, or its dual, a cube. Is k′ the output field of a generally convergent algorithm? If
so, the roots of quartic polynomials would be computable as rational functions of the
output of a single purely iterative algorithm (we have already seen the roots cannot
actually be the output of such an algorithm).

Unfortunately, this is impossible; although the Galois group is isomorphic to a
Möbius group, the potential obstruction in Galois cohomology is nonzero, and k′/k
is not a rigid extension.

The analogous case of polynomials of degree 5 is discussed in [15]. Here we will
sketch a picture of the obstruction from a topological point of view.

The field extension k′/k corresponds to the rational map Roots4 → Poly4 from
the space of roots to the space of polynomials. Let ρ : G → Γ be an isomorphism
between the Galois group G of k′/k and the octahedral group Γ ⊂ PSL2C.

If k′/k is rigid, then the Severi-Brauer variety Pρ → Poly4 associated to ρ is

birational to the product Poly4 × Ĉ.
Now Pρ is a flat Ĉ bundle outside of the branch locus of the map Roots4 →

Poly4, which is the subvariety ∆ of polynomials with vanishing discriminant. The
fundamental group π1(Poly4 −∆, p) is naturally identified with B4, the braid group
of four points in the plane: Over a loop based at p, the roots of p(z) move without
collision and return to their original positions, describing a braid.
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Figure 3: Commuting braids.

There is a natural map B4 → G ∼= S4 which records how the roots of p are
permuted by the braid. Under the identification ρ : G → Γ, this map records how
the fiber of Pρ is twisted by monodromy along a loop.

If Pρ is birational to the trivial bundle, then its restriction to some Zariski open
subset U is topologically trivial. If that subset were as large as possible—i.e., if U
were equal to the complement of the discriminant locus—then it would be possible
to lift the map B4 → Γ to Γ ⊂ SL2C, a two-fold cover of Γ.

But this is impossible: There are two commuting elements α and β in the braid
group (see Figure 3), whose images in Γ (thought of as Euclidean symmetries of a
cube) are 180◦ rotations about perpendicular axes. Such rotations cannot be lifted
to commuting elements of Γ.

There is a torus in the complement of ∆ whose fundamental group is generated
by α and β. One can show that this torus can be moved slightly to avoid any finite
set of other hypersurfaces in Poly4. Thus the obstruction persists on any Zariski open
set, and Pρ is not birationally trivial.

5 Rational Maps with Symmetry.

To compute A5 extensions, one must use rational maps with icosahedral symmetry.
In this section will construct all rational maps with given symmetries, using invariant
polynomials. We then give a conceptual proof of the existence of the map claimed in
Lemma 4.5, and also obtain concrete formulas for use in the solution of the quintic.

Let Γ be a finite group of Möbius transformations. How can we construct rational
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maps such that Aut(f) ⊃ Γ?
Here are three ways to construct such f .

I. Projectively Natural Newton’s Method. Ordinary Newton’s method applied
to a rational function p(z) can be thought of as the map which sends z to A(z)−1(0),
where A(z) is the unique automorphism of C whose 1-jet matches that of p at z. If
one replaces A(z) by the unique Möbius transformation of Ĉ whose 2-jet agrees with
that of p, then the resulting iteration,

Np(z) = z − p(z)p′(z)

p′(z)2 − 1
2
p′′(z)p(z)

is ‘projectively natural’, in the sense that Np◦γ(γz) = γ ◦ Np(z) for any Möbius
transformation γ. Thus Aut(Np) contains Γ whenever p(z) is Γ-invariant (and such
p are easily constructed).

II. Geometric Constructions. Consider, for example, the case of the icosahedral
group. Tile the Riemann sphere by congruent spherical pentagons, in the configura-
tion of a regular dodecahedron (the dual to the icosahedron). Construct a conformal
map from each face of the dodecahedron to the complement of its opposite face, tak-
ing vertices to opposite vertices. (See Figure 4.) The maps piece together across the
boundaries of the faces, yielding a degree 11 rational map f(z) with fixed points at
the face centers and critical points at each vertex. Since the notions of ‘opposite face’
and ‘opposite vertex’ are intrinsic, the map commutes with the icosahedral group.

This construction has many variants. For example, it can be applied to the 20
faces of the icosahedral triangulation, giving a rational map of degree 19, or to the
tiling by 30 rhombuses, giving a map of degree 29. (This last tiling, which may
be unfamiliar, is by Dirichlet fundamental domains for the 30 edge-midpoints of the
dodecahedron. Each rhombus marks the territory which is closer (in the spherical
metric) to one of the 30 points than to any other.)

III. Algebraic Constructions. Our final method suffices to produce all rational
maps with given symmetries. It will make clear, for example, that the three maps
just constructed, together with the identity, are the only maps of degree < 31 with
icosahedral symmetry.

Let E be a 2-dimensional complex vector space.
A point p on PE corresponds to a line in E hence to a linear functional with this

line as its kernel. A collection of n points corresponds to a homogeneous polynomial
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Figure 4: Geometric construction of a rational map.
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of degree n, vanishing along the lines corresponding to the n points. Like the lin-
ear map corresponding to a single point, this polynomial is only well-defined up to
multiplication by an element of C∗.

A rational map f : PE → PE corresponds to a homogeneous polynomial map
X : E → E. X can be obtained by homogenizing the numerator and denominator of
f .

Since the tangent space to any point of E is canonically isomorphic to E, X can
also be considered as a homogeneous vector field on E.

Now let Γ ⊂ Aut(PE) be a finite group, Γ ⊂ SL(E) its pre-image in the group
of linear maps of determinant 1. A vector field X on E is invariant if there exists a
character χ : Γ→ C∗ such that γ∗X = χ(γ)X for all γ in Γ. X is absolutely invariant
if the character is trivial.

The action of Γ on vector fields goes over to the action of Γ by conjugation on
rational maps, establishing:

P roposition 5.1. Aut(f(z)) contains Γ if and only if the corresponding vector field
X(v) is Γ-invariant.

Remarks.
1. The possibility of a character arises because f(z) determines X(v) only up to

scale.
2. For a 2-dimensional vector space, PE and PE∗ are canonically isomorphic;

thus a rational map f : PE → PE ∼= PE∗ also determines a homogeneous 1-form
θ(v) : E → E∗, unique up to scale.

3. A rational map of degree n determines a 1-form θ which is homogeneous of
degree n + 1; the converse is true unless θ = gα for some homogeneous polynomial g
and 1-form α with deg(α) < deg(θ). In this case the numerator and denominator of
the corresponding rational function are not relatively prime.

4. A homogeneous polynomial h(v) determines an exact 1-form dh(v); thus a
configuration of n + 1 points on Ĉ naturally determines a rational map of degree n.

Let x and y be a basis for E∗. The 1-form

λ(x, y) = (xdy − ydx)/2

is an absolute SL(E) invariant, as well as a primitive for the invariant volume form
ω = dx ∧ dy. The rational map corresponding to λ is the identity (λ(v) annihilates
the line through v).
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T heorem 5.2. A homogeneous 1-form θ is invariant if and only if

θ = f(v)λ + dg(v)

where f and g are invariant homogeneous polynomials with the same character and
deg(f) = deg(g) + 2.

Proof. Suppose θ is invariant. The exterior derivative dθ = h(v)ω, where h(v) is a
homogeneous polynomial. Since ω is an absolute invariant of SL(E), h(v) is invariant
with the same character as θ. Setting f(v) = h(v)/(deg(h) + 1), it is easy to check
that df(v)λ = h(v)ω and hence θ−f(v)λ is closed. Integrating this closed form along
lines from the origin yields its unique homogeneous primitive g(v); by uniqueness,
g(v) is invariant with the same character as θ.

The converse is clear; the condition on degrees assures that the sum is homoge-
neous.

The construction of invariant rational maps is thus reduced to the problem of
invariant homogeneous polynomials. The latter correspond simply to finite sets of
points on Ĉ, invariant under Γ, and are easily described.

Example: The Icosahedral Group.
Identify the Riemann sphere with a round sphere in R3 so that 0 and∞ are poles

and |z| = 1 is the equator. Inscribe a regular icosahedron in the sphere normalized so
one vertex is at 0 and an adjacent vertex lies on the positive real axis (in Ĉ). Then
the isometries of the icosahedron act on Ĉ by a group Γ ⊂ PSL2C isomorphic to A5.
This particular normalization agrees with the conventions of [8] and [2].

Since the abelianization of the binary icosahedral group Γ is zero, every invariant
is an absolute invariant.

We identify Ĉ with PE, and choose a basis {x, y} for E∗ such that the coordinate
z on Ĉ is equal to x/y.

There are three special orbits for the action of Γ: the 12 vertices, 20 face-centers
and 30 edge-midpoints of the icosahedron. The corresponding invariant polynomials,
derived in [8], are:

f = x11y + 11x6y6 − xy11

H = −x20 − y20 + 228(x15y5 − x5y15)− 494x10y10

T = x30 + y30 + 522(x25y5 − x5y25)− 10005(x20y10 + x10y20)
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Every other orbit has cardinality 60, and corresponds to a linear combination of the
degree 60 invariants f 5, H3 and T 2 (which satisfy the relation T 2 = 1728f 5 − H3).
Thus every homogeneous polynomial invariant under the binary icosahedral group is
a polynomial in f , H and T .

P roposition 5.3. There are exactly four rational maps of degree < 31 which commute
with the icosahedral group. Then these four maps, of degree 1, 11, 19, and 29
respectively are:

f1(z) = z

f11(z) =
z11 + 66z6 − 11z

−11z10 − 66z5 + 1

f19(z) =
−57z15 + 247z10 + 171z5 + 1

−z19 + 171z14 − 247z9 − 57z4

f29(z) =
87z25 − 3335z20 − 6670z10 − 435z5 + 1

−z29 − 435z24 + 6670z19 + 3335z9 + 87z4.

Proof. An invariant rational map of degree < 31 corresponds to an invariant 1-form
of degree < 32. The only invariant homogeneous polynomials of degree < 32 are f , H
and T . Since no two of their degrees differ by 2, we conclude from Theorem 5.2 that
the invariant 1-forms of degree < 32 are proportional to either g(v)λ or dg(v), where
g is equal to f , H or T . The rational maps corresponding g(v)λ are the identity, while
those corresponding to df , dH and dT are the other three maps computed above.

Remark. One may glean from the footnote on page 345 of [9] that these maps were
known as well to Klein.

Proof of lemma 4.5 (Existence of an Icosahedral Algorithm). Consider the
map f11(z). We claim the critical points of f11 reside at the 20 vertices of a spherical
regular dodecahedron, and are each mapped to their antipodal vertices under one
iteration. This is clear from the geometric construction of f11 (method II above).

It can also be verified by counting. f11 has 20 critical points, which must be a
union of orbits of Γ; the only such orbit corresponds to the vertices of a dodecahedron.
Each vertex has an A3 stabilizer in Γ; since f11 commutes with the group action, the
image vertex is fixed by the same subgroup. A simple critical point which is fixed
cannot commute with the A3 action; hence the corresponding critical value must be
the antipodal vertex.
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Thus f11 is critically finite, and almost every point is attracted to periodic cycles
of order two lying at pairs of antipodal vertices. The map f11 ◦ f11 satisfies the
hypotheses of the Lemma.

Remarks.
1. There is a one-parameter family of invariant rational maps of degree 31, which

will be used to construct φ in PSL2k
′ in our explicit solution of the quintic.

2. Let p(z) be a polynomial of degree d. Consider radically modified Newton’s
method:

Rp(z) = z − d
p(z)

p′(z)
.

Rp is the unique rational map of degree (d−1) with fixed points at the roots of p and
derivative (1 − d) at each fixed point. When d = 2, Rp is a Möbius transformation
of order two fixing the roots of p; for d > 2 the roots are repelling. (Thus Rp is not
suggested as a method to find roots of p.)

Rp coincides with the rational map naturally associated to the roots of p by exterior
derivative of the corresponding homogeneous polynomial, as discussed above. This
observation will simplify the description of our explicit iterative scheme for the quintic:
we need only specify p.
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Appendix.

In this appendix we will describe a concrete algorithm for solving the general quintic
equation. This algorithm is based on Klein’s theory of the connection between the
general quintic and the icosahedral equation, described in his famous lectures on the
icosahedron [8]. See also [4] (from which we take the illustration below), and [2]. We
begin by reviewing this theory.

The icosahedral equation.

Associated with the icosahedron (normalized as in §5) is a tiling of the Riemann
sphere by 120 spherical triangles, 60 black and 60 white (Figure 5). This configura-
tion is invariant under the icosahedral group, represented as a group Γ60 of Möbius
transformations. Each triangle has angles π/2, π/3, π/5 corresponding to the 30 edge
midpoints, 20 face centers, and 12 vertices of the icosahedron. We will refer to these
special points as 2-, 3-, and 5-vertices.

Map each white triangle conformally to the upper half-plane, and map each black
triangle conformally to the lower half-plane, so that the 3-, 5-, and 2-vertices map
to 0, 1,∞. These 120 separate mappings piece together to give a rational function of
degree 60, the icosahedral function. This function, denoted by Z60, is right-invariant
under the icosahedral group Γ60:

Z60 ◦ γ = Z60 for all γ ∈ Γ60;

it gives the quotient map Ĉ→ Ĉ/Γ60.
To write down the icosahedral function explicitly, recall that every homogeneous

polynomial invariant under the binary icosahedral group Γ2·60 is a polynomial in F12,
H20, and T30, where

F12(z1, z2) = z11
1 z2 + 11z6

1z
6
2 − z1z

11
2 ,

H20(z1, z2) = −z20
1 + 228z15

1 z5
2 − 494z10

1 z10
2 − 228z5

1z
15
2 − z20

2 ,

T30(z1, z2) = z30
1 + 522z25

1 z5
2 − 10005z20

1 z10
2 − 10005z10

1 z20
2 − 522z5

1z
25
2 + z30

2 .

The polynomials F12, H20, and T30 vanish at the 5-, 3-, and 2-vertices respectively.
They satisfy the identity

T30
2 + H20

3 − 1728F12
5 = 0.
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Figure 5: The icosahedral tiling.
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The icosahedral function Z60(z) is

Z60 =
−H20

3

T30
2 .

To check this, note that the top and bottom are homogeneous of degree 60 (so the
ratio is a rational function of z = z1/z2), the zeros and poles occur at the 3- and 2-
vertices, and by the identity

Z60 − 1 =
−H20

3 − T30
2

T30
2 =

−1728F12
5

T30
2

the 5-vertices of the icosahedron are mapped to 1.
The equation

Z60(z) = Z

is called the icosahedral equation. Solving the icosahedral equation amounts to finding
one of the 60 points that map to Z under the icosahedral function. Given one such
point, the 59 others can be found by determining the images of the first under the
group Γ60.

Please note that our normalization of the icosahedral function differs from the
normalizations of [8] and [2]:

ZKlein =
H20

3

1728F12
5 =

Z60

Z60 − 1
;

ZDickson =
F12

5

T30
2 =

1− Z60

1728
.

From the general quintic to the icosahedral equation.

In this section we give a brief account of the classical reduction of the general quintic
equation

p(x) = x5 + a1x
4 + a2x

3 + a3x
2 + a4x + a5 = 0

to the icosahedral equation, following [8]. As Klein emphasized, this reduction is best
understood geometrically.

The first step in the reduction dates back to 1683, when Tschirnhaus showed that
by making a substitution of the form

x← x2 + ax + b,
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the general quintic can be reduced to a quintic for which a1 = a2 = 0. Here a and b
are determined by solving an auxiliary quadratic equation. Such a quintic is called a
principal quintic.

Equivalently, a principal quintic is one normalized so its roots satisfy
∑

xi =∑
x2

i = 0. These homogeneous equations determine a quadric surface in the projec-
tive space of roots. Viewed geometrically, the Tschirnhaus transformation moves an
ordered set of roots to one of the two points of intersection of this quadric with the
line determined by allowing a and b to vary. Which point depends on the choice of
auxiliary root.

The symmetric group S5 acts on the quadric by permuting the roots. An odd
permutation interchanges the two rulings of the quadric by lines; adjoining with
square-root of the discriminant reduces the action to the alternating group A5, which
preserves the rulings.

The space of lines in a given ruling is isomorphic to the Riemann sphere Ĉ, and
in appropriate coordinates the action of A5 (on the space of lines) is none other than
the icosahedral action. From the original principal quintic and the square-root of its
discriminant, we may determine a point Z on the quotient such that a solution to

Z60(z) = Z

corresponds to a line containing the point (x1 : x2 : x3 : x4 : x5) for some ordering of
the roots. Then the roots themselves can be found by elimination.

Perhaps the most intriguing part of this whole story is the square root used in
the Tschirnhaus transformation to obtain a principal quintic. This square root is an
accessory irrationality, as it does not diminish the Galois group of the equation, and
as such is not expressible in terms of the roots of the equation. Rather, its function
(as pointed out in [15]) is to eliminate the cohomological obstruction described in §2.
The culmination of Klein’s lectures on the icosahedron is the result, which Klein calls
Kronecker’s theorem, that without the introduction of such an accessory irrationality
the general quintic equation cannot be reduced to a resolvent equation that depends—
like the icosahedral equation—on a single parameter. While this result was stated by
Kronecker, the first correct proof was given by Klein. Apparently, Kronecker felt that
accessory irrationalities were ‘algebraically worthless’, and proposed what he called
the ‘Abelian Postulate’, requiring that such accessory irrationalities be avoided at all
costs. According to this view, the reduction of the quintic to the icosahedral equation
is inadmissible. Arguing against this point of view, Klein (on page 504 of [9]) writes:

Soll man, wo sich neue Erscheinungen (oder hier die Leistungsfähigkeit
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der akzessorischen Irrationalitäten) darbieten, zugunsten einer einmal ge-
fassten systematischen Ideenbildung die Weiterentwicklung abschneiden,
oder vielmehr das systematische Denken als zu eng zurückschieben und
den neuen Problemen unbefangen nachgehen? Soll man Dogmatiker sein
oder wie ein Naturforscher bemüht sein, aus den Dingen selbst immer neu
zu lernen?

(When new phenomena appear, like the efficacy of the accessory irra-
tionality, should we halt our investigations because the facts fail to agree
with our preconceived notions, or should we cast aside those preconceived
notions as being too narrow, and pursue the new problems wherever
they lead? Should we be dogmatists, or should we—like experimental
scientists—try always to learn from the facts themselves?)

Quintic resolvents of the icosahedral equation.

The algorithm we are going to develop to solve the general quintic proceeds by com-
puting a root, not of the icosahedral equation itself, but of a certain quintic resolvent.

Algebraically, the icosahedral equation determines an A5 extension of function
fields k′/k, where k = C(Z) and k′ = C(Z, z)/(Z60(z) − Z). A quintic resolvent is
the irreducible polynomial satisfied by an element of k′ of degree 5 over k.

In this section, we will derive formulas for the tetrahedral and Brioschi resolvents,
again following [8]. The Brioschi resolvent is a one parameter family of quintics, to
which the general quintic may be reduced; it is this equation we will actually solve.
The tetrahedral resolvent is used to determine a root from the limit point of an
iteration.

The root of a quintic resolvent is stabilized by an A4 subgroup of A5. There
are five such tetrahedral subgroups in Γ60, all conjugate. One tetrahedral subgroup,
which we denote Γ12, is distinguished because it leads to a resolvent defined over R.

Γ12 can be described geometrically as follows. There are five cubes whose vertices
lie on the vertices of a regular dodecahedron. Of these, exactly one is symmetric with
respect to reflection through the real axis; the intersection of its symmetry group
with Γ60 is Γ12. The vertices of this cube, and the one-skeleton of its dual octahedral
(which includes the real axis), appear in Figure 6.

Γ12 permutes the 12 pentagons that correspond to faces of the dodecahedron, and
any one of them is a fundamental domain for Γ12.

Γ12 preserves the 6 vertices of the dual octahedron, and the 4 vertices of each
tetrahedron inscribed in the cube; the stabilizers of all other points are trivial. Note
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Figure 6: A cube inscribed in the icosahedron.
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that only half of the symmetries of the cube (and octahedron) are symmetries of the
icosahedron; otherwise Γ60 would have a subgroup of order 24.

Besides the special orbits of Γ12, we need to pay attention to two orbits of order
12: the face centers of the dodecahedron, i.e., the 5-vertices, and the 20 − 8 = 12
complementary 3-vertices—the vertices of the icosahedron which do not lie on the
cube.

There is a tetrahedral function r12, analogous to the icosahedral function Γ60,
which gives the quotient map Ĉ → Ĉ/Γ12. By composing with a Möbius transfor-
mation, this function can be normalized to take specified values on any three orbits
of Γ12. We choose the normalization so that the 5-vertices map to ∞, the vertices of
the octahedron map to 0, and the complementary 3-vertices map to 3.

To write down a formula for r12, we call forth some of the invariant forms for the
binary tetrahedral group Γ2·12. Fortunately, all the forms that we need to work with
are absolute invariants (no character of Γ2·12 appears). Those we use,

t6(z1, z2) = z6
1 + 2z5

1z2 − 5z4
1z

2
2 − 5z2

1z
4
2 − 2z1z

5
2 + z6

2 ,

W8(z1, z2) = −z8
1 + z7

1z2 − 7z6
1z

2
2 − 7z5

1z
3
2 + 7z3

1z
5
2 − 7z2

1z
6
2 − z1z

7
2 − z8

2 , and

χ12(z1, z2) =
H20(z1, z2)

W8(z1, z2)

= z12
1 + z11

1 z2 − 6z10
1 z2

2 − 20z9
1z

3
2 + 15z8

1z
4
2 − 24z7

1z
5
2 + 11z6

1z
6
2

+24z5
1z

7
2 + 15z4

1z
8
2 + 20z3

1z
9
2 − 6z2

1z
10
2 − z1z

11
2 + z12

2 .

vanish at the vertices of the octahedron, the cube, and the complementary 3-vertices
respectively.

Any invariant form of degree 12 is a linear combination of the forms t6
2, χ12, and

F12, which satisfy the identity

t6
2 − χ12 − 3F12 = 0.

Thus

r12 =
t6

2

F12
,

since this expression has zeros and poles in the right places, and the identity

r12 − 3 =
t6

2 − 3F12

F12
=

χ12

F12
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shows the complementary 3-vertices are mapped to 3 as desired.
Under r12, the 60 roots of the icosahedral equation

Z60(z) = Z

map in groups of 12 to 5 distinct points. In terms of a single root z, these 5 images
are

r
(k)
12 (z) = r12(ε

kz) =
(t

(k)
6 (z1, z2))

2

F12(z1, z2)
, k = 0, . . . , 4,

where
t
(k)
6 (z1, z2) = t6(ε

3kz1, ε
2kz2)

and ε is a fifth root of unity. (The rotation z → εz is an element of Γ60).
The quintic resolvent for r12(z) turns out to be

(r − 3)3(r2 − 11r + 64) =
−1728Z

Z − 1
.

We will call this equation the tetrahedral resolvent. Algebraically, the functions r
(k)
12 (z)

are just the roots of the tetrahedral resolvent in the function field setting. This equa-
tion can be derived entirely geometrically, without recourse to the explicit formulas
for r12. (See pages 100–102 of [8].)

The related function s24(z) given by

s24 =
t6F12

2

T30
=

1

r12
2 − 10r12 + 45

satisfies the Brioschi resolvent

s5 − 10Cs3 + 45C2s− C2 = 0,

where C = (1− Z)/1728; the roots of this equation are:

s
(k)
24 (z) = s24(ε

kz) =
t
(k)
6 (z1, x2)(F12(z1, z2))

2

T30(z1, z2)
, k = 0, . . . , 4.

Any principal quintic can be reduced to the Brioschi resolvent for some particular
choice of C, determined rationally in terms of the original coefficients and the square-
root of the discriminant. This reduction appears in detail in [2].
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The icosahedral iteration.

We are now ready to concoct a generally convergent algorithm for the icosahedral
field extension k′/k. The ingredients for such an algorithm are given in Theorem 4.1;
note that the Galois group, Γ60, is tautologically identified with a group of Möbius
transformations.

The algorithm itself is specified by

(a) a rational map f(w) commuting with Γ60, and

(b) a Möbius transformation φz(w), depending on a root z of the icosahedral equa-
tion, such that

φγz(w) = γ ◦ φz(w)

for all γ in Γ60.

The coordinate w can be thought of as residing on a separate Riemann sphere where
the iteration is performed. The algorithm is given by

Tz(w) = φ−1
z ◦ f ◦ φz;

by (a) and (b) Tγz = Tz and so T only depends upon Z = Z60(z).
To make the formulas as simple as possible, we will choose f = f11, the unique

lowest degree rational map with icosahedral symmetry and a non-trivial attractor (see
§5). (The attractor of f11 is periodic of order 2, so we will actually iterate f11 ◦ f11.)

As for φz, note that for each fixed w the map z 7→ φz(w) is a rational map with
icosahedral symmetry. As mentioned in Remark 1 of §5, there is a one-parameter
family of symmetric maps of degree 31 (and none of smaller degree); this provides
the simplest candidate for φ. There are three points at which this family degenerates
to maps of lower degree f1, f11, and f19; we arrange that these degenerations occur
at w =∞, 0 and 1.

To derive a formula for Tz in terms of Z, we begin by expressing φ in homogeneous
coordinates

φz(w) = [Φ(z1,z2)(w1, w2)];

then

[Φ(z1,z2)(w1, w2)] = [w1(−T30 · (z1, z2)) + w2(H20 · (−∂F12

∂z2
,
∂F12

∂z1
))].
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To check this formula, we just need to verify that it degenerates as described above.
Clearly this is true for w = 0 and ∞. For w = 1 the rational map we get is

[−T30 · (z1, z2) + H20 · (−∂F12

∂z2

,
∂F12

∂z1

)],

which agrees with f19 by virtue of the identity

−T30 · (z1, z2) + H20 · (−∂F12

∂z2
,
∂F12

∂z1
) =

3

5
F12 · (−∂H20

∂z2
,
∂H20

∂z1
).

To get the formula for TZ , we note f11 is canonically associated to the 12 vertices of
the icosahedron, so T is canonically associated to their images under φ−1

z . By remark
2 at the end of §5, all we must do to specify TZ is to give a polynomial g(Z, w) having
these 12 points as its roots.

This leads us to look at the form G = F12◦Φ, where Φ is the homogeneous version
of φ given above. The form G is homogeneous of degree 12 · 31 = 372 in z1, z2 and
of degree 12 in w1, w2. This polynomial is symmetric under the action of Γ2·60 on
z1, z2. Because the ring of Γ2·60-symmetric forms is generated by F12, H20, and T30,
and because 372 = 6 · 60 + 12, it follows on numerological grounds that G is divisible
by F12, and that the quotient G/F12 can be written as a homogeneous polynomial
of degree 6 in −H20

3, T30
2 and of degree 12 in w1, w2. This polynomial can be found

by solving a large system of linear equations. Dividing the resulting expression for
G/F12 through by T30

12w12
2 and using the fact that Z60 = −H20

3/T30
2, we get

F12 ◦ Φ

F12T30
12w12

2

= g(Z, w),

where g is a polynomial with integer coefficients, exhibited at the end of this Ap-
pendix. We found the coefficients of g by solving the relevant system of equations
with the aid of a computer.

The map TZ is now given by

TZ(w) = w − 12
g(Z, w)

g′(Z, w)
,

where g′ denotes the derivative of g with respect to w.
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From the iteration to a root.

Under the iteration w 7→ f11(w) almost every starting guess is attracted to a cycle of
period 2 consisting of one of the 10 pairs of antipodal 3-vertices. If instead iterating
f11 we iterate f11 ◦ f11, then almost every starting guess is attracted to a single one
of the 20 3-vertices.

The map TZ is just f11 transported to new coordinates by φ. For almost every Z,
almost every starting guess converges under iteration of TZ ◦ TZ to

w1 = φz
−1(e),

where e is one of the 20 3-vertices of the icosahedron in its standard location.
Of course to be able to write

w1 = φz
−1(e),

we have to select some particular root z of the icosahedral equation, for we could
equally well write

w1 = φγz
−1(γe).

Turning this around, we see that if we choose some particular 3-vertex e0, there will
be exactly three choices for the root z for which

w1 = φz
−1(e0).

These three choices differ from one another by the action of the stabilizer A3 of the
3-vertex e0. Therefore from w1 we can determine the values of two of the functions
s
(k)
24 (z), and hence two roots s1, s2 of the Brioschi resolvent. These two values cor-

respond to the two tetrahedral (A4) subgroups of Γ60 that contain the stabilizer of
e0.

As w1 ranges over the 20 attractors of TZ , the pair (s1, s2) ranges over the 20
ordered pairs of roots of the resolvent. In particular, going from w1 to the ‘antipodal
point’ TZ(w1), we get the same pair of roots in the opposite order.

To determine s1 and s2 explicitly in terms of w1, we introduce the function

µ(Z, w) =
∑
k

(r
(k)
12 − 3) ◦ φz(w) · s(k)

24 (z).

While expressed in terms of z, this function really only depends on Z, because the
action of Γ60 permutes the two sets of factors in the same way. The idea behind µ is
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that the first factor acts as a ‘selector function’ for the second: Recall that the value
of function r12 is 3 at the complementary 3-vertices; at the vertices of the tetrahedron
and the dual tetrahedron its values are

r =
11

2
+

3
√−15

2
, r =

11

2
− 3
√−15

2
,

which are the other two roots of

(r − 3)3(r2 − 11r + 64) = Z60(3-vertex) = 0.

Thus the factor (r
(k)
12 − 3) ◦ φz(w1) vanishes for three values of k and takes on the

values
1 + 3

√−15

2
,

1− 3
√−15

2
for the remaining two values of k. Consequently

µ(Z, w1) =
1 + 3

√−15

2
s1 +

1− 3
√−15

2
s2

where s1, s2 are two roots of the Brioschi resolvent. Replacing w1 with the ‘antipodal’
fixed point TZ(w1) exchanges the roles of s1 and s2, so we have

µ(Z, TZ(w1)) =
1− 3

√−15

2
s1 +

1 + 3
√−15

2
s2.

Thus we get a pair of linear equations from which we can determine s1 and s2.
All that remains is to express µ in terms of Z and w. Let χ

(k)
12 be defined analo-

gously to t
(k)
6 . Then

µ =
∑
k

(r
(k)
12 − 3) ◦ φ · s(k)

24

=
∑
k


χ

(k)
12 ◦ Φ

F12 ◦ Φ


 · t

(k)
6 F12

2

T30

=

∑
k

(
χ

(k)
12 ◦ Φ

)
· t(k)

6 · F12/(T30
13w12

2 )

(F12 ◦ Φ) /(F12T30
12w12

2 )
.

The denominator here is our old friend g(Z, w). The numerator can be expressed as
a polynomial in Z and w, by the same technique used to determine g. We find

µ(Z, w) =
100Z(Z − 1)h(Z, w)

g(Z, w)
,

where h(Z, w) is a polynomial with integer coefficients, exhibited below.
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The algorithm.

To solve the Brioschi resolvent

s5 − 10Cs3 + 45C2s− C2 = 0

we proceed in five steps.

1. Set Z = 1− 1728C.

2. Compute the rational function

TZ(w) = w − 12
g(Z, w)

g′(Z, w)
,

where g(Z, w) is the polynomial in Z and w given below, and g′ denotes the
derivative of g with respect to w.

3. Iterate TZ(TZ(w)) on a random starting guess until it converges. Call the limit
point w1, and set w2 = TZ(w1).

4. Compute

µi =
100Z(Z − 1)h(Z, wi)

g(Z, wi)

for i = 1,2, where h is the polynomial in Z and w given below.

5. Finally compute

si =
(9 +

√−15)µi + (9−√−15)µ3−i

90

for i = 1, 2. These are two roots of the Brioschi resolvent.

The key ingredients g(Z, w) and h(Z, w) are given by:

g(Z, w) = 91125Z6

+ (−133650w2 + 61560w− 193536)Z5

+ (−66825w4 + 142560w3 + 133056w2 − 61440w + 102400)Z4

+ (5940w6 + 4752w5 + 63360w4 − 140800w3)Z3

+ (−1485w8 + 3168w7 − 10560w6)Z2
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+ (−66w10 + 440w9)Z

+ w12,

h(Z, w) = (1215w − 648)Z4

+ (−540w3 − 216w2 − 1152w + 640)Z3

+ (378w5 − 504w4 + 960w3)Z2

+ (36w7 − 168w6)Z

− w9.

Remarks.
1. A quintic with real coefficients always has at least one real root. Curiously,

when applied to a real quintic with real initial guess for step 2, our method always
returns a pair of conjugate roots.

2. To find the remaining roots of the quintic, we can apply del Ferro’s formula or
Example 3 of section 3 to solve the quotient cubic. We could also construct a single
iteration that would find all five roots at once, but the formulas might be rather more
complicated.

3. Remarkably, one can also derive the formulas for g and h by hand, without
even knowing the basic invariants F12, H20 and T30 of the icosahedral group. This
alternate approach exploits the large number of coefficients that vanish, and is based
on a study of degenerations of g and h and at Z = 0, 1 and ∞.
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