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1 Introduction

Suppose we have n cells arranged in a ring, or alternatively, in a row. We

pick a cell at random and mark it; we pick one of the remaining unmarked

cells at random and mark it; and so on until after n steps each cell is marked.

After the k'th cell has been marked, the con�guration of the marked cells

de�nes some number of islands separated by seas (See Figure 1). An island

is a maximal set of adjacent marked cells; a sea is a maximal set of adjacent

unmarked cells. Let �k be the random number of islands after k cells have

been marked. Clearly �1 = �n = 1, and for a ring of cells �n�1 = 1 as well.

We show that for n cells in a ring
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!
=

1
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2n � 2

n� 1

!
=

1

(n� 1)!
Cn�1;

where Ck is the k'th Catalan Number

Ck =
1

k + 1

 
2k

k

!
:

For n cells in a row, the answer is the same as for n + 1 cells in a ring.

To see this, break the ring at the position of the last cell marked. Hence

Erow

 
1

�1�2 � � � �n�1

!
=

1

(n+ 1)!

 
2n

n

!
=

1

n!
Cn:

1



Figure 1: n = 12 cells, k = 7 marked cells, �k = 3 islands. Numbers denote

the time a cell was marked.
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This latter formula is used in a companion paper, Shepp [1], to show that

certain random graphs are disconnected.

From now on we will consider only the ring case, and write E instead of

Ering throughout.

The formula

E

 
1

�1�2 � � � �n�1

!
=

1

n!

 
2n � 2

n� 1

!

is a special case of the following formula, valid for all 1 � k � ` � n� 1:

E

 
1

�k � � � �`

!
=

(k � 1)!(n� ` � 1)!

(n� 1)!

" 
n+ ` � k

n� k

!
�

 
n+ ` � k

`� k

!#
:

Another particular case of this general formula is

E

 
1

�k

!
=

n!� k!(n� k)!

(n � 1)!k(n� k)
:

We will also show that for all 1 � k � n� 1

E(�k) =
k(n� k)

n� 1

and for all 1 � k � ` � n� 1

E(�k�`) =
k(n� `)

n� 1
+

k(n� k � 1)(` � 1)(n� `)

(n � 1)(n � 2)
:

2 E( 1
�k�:::��`

)

We give two proofs that

E

 
1

�1 � : : : � �n�1

!
=

1

(n� 1)!
Cn�1 :

The �rst proof is inductive, the second uses a more elegant counting argu-

ment. The more general equation can be proved using similar methods.
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2.1 An inductive proof

A straightforward inductive attack on this problem would number the cells

in order 1; 2; :::; n, and would de�ne �k to be the number of the k'th marked

cell. The sequence �1; �2; : : : ; �n gives a complete description of the evolution

of the process. This attack is unlikely to succeed, since the number of islands

after k cells have been marked is a complicated function of these random

variables. The trick in problems like this is to �nd a convenient partial

description of the process under study, a description that captures what is of

interest and that has simple probability properties. A similar trick is e�ective

in problems in mechanics, where the judicious choice of a coordinate system

can make all the di�erence.

Note that if we are interested only in the number of islands at each stage,

then when there are exactly i islands, the sizes of these islands are irrelevant

to the subsequent development. So we consider the situation where there are

i islands and m cells still to be marked. Letting

�j = �n�j

we observe that, conditional on the event f�m = ig, the random variables

�1; �2; : : : ; �m�1 have a distribution that does not depend on n. So we can

de�ne

f(m; i) = E

 
1

�m�m�1:::�1
j�m = i

!

and E
�

1

�1�:::��n�1

�
= f(n� 1; 1) (we can start the whole process after the �rst

cell has been marked, since this must give just one island). We shall set up

and solve a recurrence for f .

With f(m; i) as de�ned above, we consider what can happen when the

next cell is marked. There are m empty cells, and the next cell marked is

equally likely to be any one of them. The crucial step in this approach is

the observation that conditional on f�m = ig, all possible sizes of the i seas

are equally likely: the probability that when there are m cells still to be

marked, there are exactly i islands and the sizes of the intervening seas are

fm1;m2; :::;mig (where necessarily each mj is at least 1) is independent of

fm1; :::mig. This can be shown formally by Bayes' theorem.

It is convenient to distinguish two kinds of empty cells. An empty cell

that is adjacent clockwise to an marked cell is called a tied cell. There are i
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Figure 2: Tied (shaded) and free cells
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such tied cells, and m � i remaining free cells (See Figure 2). (We do not

count an empty cell that is adjacent anticlockwise to an island as being tied

to that island.)

With probability i=m the next cell to be marked is a tied cell; and then

(using the \crucial observation" above) with probability (i�1)=(m�1) there

is an marked cell clockwise from it; with probability (m� i)=(m� 1) there is

a free cell clockwise from it. On the other hand, with probability (m� i)=m

the next cell to be marked is a free cell; and then with probability i=(m� 1)

the next clockwise cell is marked, and with probability (m� i� 1)=(m � 1)

it is empty. This gives the recurrence

f(m; i) =
1

i

�
i

m

�
i� 1

m� 1
f(m� 1; i� 1) +

m� i

m� 1
f(m� 1; i)

�

+
m� i

m

�
i

m� 1
f(m� 1; i) +

m� i� 1

m� 1
f(m� 1; i+ 1)

��

valid for m � i, with the boundary conditions f(m;m) = 1=m! since when

m = i we must have �j = j for j = m� 1;m� 2; :::; 1.

To solve this recurrence, put

f(m; i) =
(m� i)!(i� 1)!

m!(m� 1)!
a(m� i;m)

so that

a(d;m) = a(d;m� 1) + 2a(d � 1;m� 1) + a(d� 2;m� 1);

valid for d � 0;m � 1, with the boundary conditions

a(0;m) = 1:

We recognize this recurrence as being related to binomial coe�cients. Work-

ing out a few values of a(d;m)=
�
2m

d

�
easily leads to the conjecture

a(d;m) =
m� d

m

 
2m

d

!

which does indeed satisfy the recurrence above. Thus we have

f(m; i) =
i!

(m+ i)!

 
2m

d

!
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so that �nally we have

E

 
1

�1 � : : : � �n�1

!
= f(n � 1; 1) =

1

n!

 
2n � 2

n � 1

!
=

1

(n � 1)!
Cn�1:

2.2 A counting-argument proof

Let �i be the i'th marked cell. (�1; : : : ;�n) is a permutation of f1; : : : ;ng.

Each such permutation gives rise to a sequence (c1; c2; : : : ; cn) where ci is

the number of islands after the i'th cell has been marked. Call a sequence

(c1; c2; : : : ; cn�1) of positive integers admissible if c1 = cn�1 = 1 and any two

successive entries di�er by at most 1. Let �i = ci+1 � ci be the increment in

the number of islands when the i+1'st cell is marked, and let ! =
P

i 1�j�ij.

The number of permutations that gives rise to an admissible sequence

(c1; c2; : : : ; cn�1) is:

1 � 21�j�1jc1 � 2
1�j�2jc2 � : : : � 2

1�j�n�2jcn�2 � 1 � n = n2!c1c2 � � � cn�1 :

To see this, think of a child assembling a necklace of beads, one bead at

a time. The child can be working on more than one string at once; these

strings are kept in a more or less circular ring, arranged in the same order as

in the �nished necklace. As each successive bead is added, it is joined to any

bead that it will be adjacent to in the �nished necklace. Figure 3 illustrates

a possible arrangement after the child placed seven beads, forming three

strings. Suppose there are ci strings after the i'th bead has been added. If

�i = 1 then the i + 1'st bead creates a new island and there are ci possible

new-island locations. If �i = �1, then the i+ 1'st bead connects two islands

and there are ci possible pairs of adjacent islands. If �i = 0, then the i+1'st

bead is added to an existing island and there are ci islands, each with two

sides, hence there are 2ci ways to add the bead. Once all the beads have been

placed, there are n ways to spin them before obtaining a recipe for marking

the cells.

Dividing the number of ways an admissible sequence c1; : : : ;cn can arise

by n! gives the probability of the sequence:

P ((�1; : : : ;�n) = (c1; : : : ;cn)) =
2!�1�2 � � � �n�1

(n� 1)!
:
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Figure 3: Assembling a necklace of beads.
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The expected value that we are interested in is thus

E

 
1

�1 � � � �n�1

!
=

1

(n� 1)!

X
(c1; c2; : : : ; cn�1)

admissible

2!:

So we just need to evaluate this sum.

Consider all possible walks (x0 = 0; x1; : : : ; x2n�1; x2n = 0) on the non-

negative integers that start from 0, go up or down 1 each time, and return

to 0 for the �rst time after the 2n'th step. The number of such walks is well

known to be
1

2n� 1

 
2n� 1

n

!
=

1

n

 
2n� 2

n� 1

!
= Cn�1:

Given such a walk, the sequence

(
x2

2
;
x4

2
; : : : ;

x2n�2

2
)

is an admissible sequence, and every admissible sequence arises from 2! dif-

ferent walks. Hence

X
(c1; c2; : : : ; cn�1)

admissible

2! = Cn�1;

and

E

 
1

�1 � � � �n�1

!
=

1

(n� 1)!
Cn�1:

3 Further results

For any possible sequence �1; : : : ;�k of islands in the ring, the sequence

M1; : : : ;M�k of sea sizes at time k is uniformly distributed: every positive

sequence m1; : : : ;m�k satisfying

�kX
i=1

mi = n� k
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arises as the value of M1; : : : ;M�k with the same probability. Therefore, the

sequence �1; : : : ;�n�1 is a Markov Chain.

Using the uniformity of M1; : : : ;M�k , and letting �0
def
= 0, it is easy to see

that for 1 � k � n � 1:

P (�kj�k�1 = �) =

8>>>>>>><
>>>>>>>:

�(��1)

(n�k)(n�k+1)
if �k = � � 1

2�(n�k+1��)

(n�k)(n�k+1)
if �k = �

(n�k��)(n�k+1��)

(n�k)(n�k+1)
if �k = � + 1 :

Hence

E(�kj�k�1 = �) = 1 +
n� k � 1

n� k + 1
� :

and

E(�k) = 1 +
n� k � 1

n� k + 1
E(�k�1) : (1)

Solving the recurrence with E(�0) = 0 we obtain

E(�k) =
k(n� k)

n� 1
:

Similarly,

E(�2kj�k�1 = �) = 1 + 2
n � k � 1

n� k
� +

(n � k � 1)(n � k � 2)

(n� k + 1)(n� k)
�2 :

This, when solved, yields

E(�2k) =
k(n� k)

(n� 1)(n � 2)
(k(n� k)� 1) :

Equation (1) can also be used to show that for all 1 � k � ` � n� 1

E(�`j�k) =
(`� k)(n� `)

n� k � 1
+

(n� `)(n � ` � 1)

(n � k)(n � k � 1)
�k :

Therefore

E(�k � �`) = E (�kE(�`j�k))

=
k(n� `)

n� 1
+

k(n� k � 1)(` � 1)(n � `)

(n� 1)(n � 2)
:
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An alternative way of proving that

E(�k) =
k(n� k)

n� 1

is via the di�erences �i � �i�1. They satisfy

P (�i � �i�1 = �) =

8>>>>>>><
>>>>>>>:

(n�i)(n�i�1)

(n�1)(n�2)
if � = 1

2(n�i)(i�2)

(n�1)(n�2)
if � = 0

(i�1)(i�2)

(n�1)(n�2)
if � = �1 :

To see that, consider the permutation � that maps i to the cell marked at

time i. The number of islands increases, decreases, or remains the same at

time i, corresponding to whether i is a local minimum,maximum, or a middle

point, of the inverse permutation ��1. Since � is distributed uniformly over

all permutations of f1; : : : ; ng, so is ��1. The integer i is a local minimum,

maximum, or a middle point of ��1 with the above probabilities. Therefore

E(�i � �i�1) =
n � 2i+ 1

n� 1

and the result follows.

Finally, we can write down the value of E(�k) directly if we note that

E(�k)

= E( j fijafter marking k cells, i is marked and i+ 1 is unmarkedg j )

=
X
i

P (after marking k cells, i is marked and i+ 1 is unmarked)

= n �
k

n
�
(n � 1) � (k � 1)

n� 1

=
k(n� k)

n� 1
:
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