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Abstract

We prove a conjecture of Kumar Joag-Dev and Prem Goel that ifM = M(�) = fi : �(i) = ig

is the (random) match set, or set of �xed points, of a random permutation � of 1; 2; : : : ; n then

f(M) and g(M) are correlated whenever f and g are increasing real-valued set functions on

2f1;:::;ng, i.e., Ef(M)g(M) � Ef(M)Eg(M). No simple use of the FKG or Ahlswede-Daykin

inequality seems to establish this, despite the fact that the FKG hypothesis is \almost"

satis�ed. Instead we reduce to the case where f and g take values in f0; 1g, and make a

case-by-case argument: Depending on the speci�c form of f and g, we move the probability

weights around so as to make them satisfy the FKG or Ahlswede-Daykin hypotheses, without

disturbing the expectations Ef , Eg, Efg. This approach extends the methodology by which

FKG-style correlation inequalities can be proved.

American Mathematical Society 1980 subject classi�cations. Primary 60B15, 60E15; sec-

ondary 06A10, 06D99.

Key words and phrases. Random permutations, �xed points, FKG inequality, Ahlswede-

Daykin inequality, correlated functions.
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1 Introduction.

Pick a permutation of f1; 2; : : : ; 10g at random, and look at its match set (set of �xed

points). The probability that the match set contains at least one odd-numbered element is

1458120=3628800 = :40181 : : :. The conditional probability that the match set contains at

least one odd-numbered element, given that it contains at least one even-numbered element,

is 622401=1458120 = :42685 : : : > :40181 : : :. Thus knowing that the match set is big in the

sense that it contains an even-numbered element makes it more likely that it is big in the

sense that it contains an odd-numbered element.

More generally, we will show in this paper that for a random permutation of n =

f1; : : : ; ng, any two reasonable de�nitions of what it means for the match set to be big

are positively correlated: Knowing that the match set is big in the �rst sense makes it more

likely (or rather, no less likely) that it is big in the second sense. A probability distribution

on 2n for which any two notions of bigness are positively correlated is said to have the FKG

property (after Fortuin, Kasteleyn, and Ginibre, 1971). Thus our result says that the distri-

bution of the match set of a random permutation of n has the FKG property. This result

was originally conjectured by Joag-Dev (1985) and Prem Goel, and proven by Joag-Dev for

n � 6. For other correlation inequalities of a similar kind, see Ahlswede and Daykin (1978),

Shepp (1980, 1982), Fishburn (1984) and Hwang and Shepp (1987).

To formulate our result precisely, call a set A � 2n an up-set if A 2 A, B � A implies

B 2 A. Let � be a random permutation uniformly distributed over all permutations of n,

and let P (A) be the probability that M(�)
def
= fi : �(i) = ig = A. As usual, for any set

A � 2n let P (A) =
P

A2A P (A).

Theorem. For any pair A;B of up-sets,

P (A)P (B) � P (A \ B):(1.1)
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Note that as long as A is nonempty, (1.1) is equivalent to P (B) � P (BjA).

Corollary. For all real-valued nondecreasing functions f; g on 2n,

Ef(M)g(M) � Ef(M)Eg(M):(1.2)

Here f is nondecreasing means f(A) � f(B) if A � B.

Proof of the corollary. Assume without loss of generality (wlog) that f(;) = g(;) = 0,

f(n) = g(n) = 1. Then f and g are �nite positive linear combinations of nondecreasing

functions from 2n into f0; 1g (constructed sequentially up the lattice), and hence are convex

combinations of indicator functions of up-sets. The corollary follows from applications of

(1.1). |

As was noted by Joag-Dev, the theorem is almost a consequence of the FKG theorem

(Fortuin, Kasteleyn and Ginibre, 1971):

FKG Theorem. If � is a probability measure on 2n satisfying

�(A)�(B) � �(A [B)�(A \ B) for all A;B � n(1.3)

then (1.1) holds for any pair of up-sets A;B.

Unfortunately, if we set � = P , we �nd that the FKG hypothesis fails to hold when jA[Bj =

n�1 > max(jAj; jBj). The problem is that a permutation can't �x n�1 of the points without

�xing the remaining point. However, the condition is satis�ed for all other pairs A;B, so it

seems as if the distribution is trying as hard as it possibly can to satisfy the FKG hypothesis.

For a measure � for which �(A) depends only on jAj, the FKG hypothesis is equivalent

to the condition

�(f1; : : : ; kg)2 � �(f1; : : : ; k � 1g)�(f1; : : : ; k + 1g) for k = 2; : : : ; n� 1:(1.4)

If we set � = P , this equivalent condition is satis�ed except for k = n� 1. Thus in a sense

the FKG hypothesis only fails in one spot.
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Now you might think that since the measure P comes so close to satisfying the FKG

hypothesis, it should be possible to twiddle the problem into a form where the FKG theorem

would apply. For example, while we have formulated the FKG theorem only for the lattice

2n, it applies to an arbitrary distributive lattice. Maybe we could transfer our problem to

another distributive lattice and apply FKG there, as was done in Shepp (1980). We tried

this approach, but we couldn't make it work.

Another idea is to stick with the lattice 2n, but to move the measure around. To see how

this might work, de�ne a new measure P �,

P �(A) =

8>>>>>><
>>>>>>:

P (n)� �; A = n

�=n; jAj = n� 1

P (A) otherwise:

(1.5)

Because P assigns measure 0 to sets A with jAj = n� 1, we may assume that A and B each

contain all subsets of n of size n� 1. But then

P �(A) = P (A); P �(B) = P (B); P �(A \ B) = P (A \ B);(1.6)

so if we could choose � so as to get P � to satisfy (1.4), we would be all set. Unfortunately,

this can't be done.

Now there is good news, and bad news. The good news is that an argument based on

this reallocation idea can be made to work. The bad news is that the argument depends on a

case-by-case analysis of a zillion di�erent possibilities for the pairA;B. In each case, we move

the weights around until we get things into a form where we can apply the FKG theorem

(or the Ahlswede-Daykin theorem, which is a strengthened form of the FKG theorem).

As an indication that a case-by-case argument may be needed, consider the following

example.
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Example. Let

A = f1g+;B = fB : 1 62 B; jBj = n� 2g [ fB : jBj � n� 1g:(1.7)

Then P (A) = 1=n, P (B) =
h�

n�1
n�2

�
+ 1

i
=n! = 1=(n � 1)! and P (A \ B) = P (n) = 1=n! so

equality holds in (1.1).

This example shows that there isn't much slack in the inequalities we are trying to prove,

whereas inequalities proven by appealing directly to the FKG theorem tend to have some

slack in them.

The method of moving mass around in a way that depends on the particular form of

the up-sets provides a new methodology for proving correlation inequalities. Certainly this

method is something of a cop-out. By using it to prove Joag-Dev's conjecture, we seem to

be saying that the conjecture is true because the distribution of the match set of a random

permutation nearly satis�es the FKG hypothesis. Perhaps this seems like too frivolous

a reason. Perhaps you would prefer a short, slick proof based on some nice property of

permutations. So would we. But even if it turns out that Joag-Dev's conjecture is true

for some really good reason, there must be situations where the FKG property holds for no

better reason than that the distributions involved nearly satisfy the FKG hypothesis. In

such situations, the methodology we have developed here may be the only way to go.

2 Preliminaries.

We use the following notations and de�nitions, some of which were already introduced in x1.

� n = f1; 2; : : : ; ng.

� 2n is the set of all subsets of n.
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� A � 2n is an up-set if A 2 A and B � A implies B 2 A.

� A ^ B = fA \ B : A 2 A; B 2 Bg.

� A _ B = fA [ B : A 2 A; B 2 Bg.

� N. B. If A and B are up-sets then A _ B = A \ B.

� A base of an up-set is a minimal set in the up-set.

� The empty up-set, denoted by ;, has no base.

� If A 2 2n, A+ def
= fB 2 2n : B � Ag has the single base A.

� N. B. ;+ = 2n; n+ = fng; if A is a non-empty up-set whose bases are A1; : : : ; An then

A =
S

iA
+
i .

� The match set M(�) of a permutation � is the set of �xed points of �, i.e. M(�) =

fi : �(i) = ig.

� The probability that a given A 2 2n is the match set of a random permutation is

P (A) = T (A)=n!, where T (A) = jf� : M(�) = Agj.

� For any A � 2n we de�ne P (A) by P (A) =
P

A2A P (A) so P (A) is the probability

that the match set of a random permutation lies in A.

Since T (A) depends only on jAj, and since the classical formula for T (A) is most simply

written in terms of n� jAj, we de�ne

Ti = T (A); where jAj = n� i, 0 � i � n(2.1)
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i Ti i!=e

0 1 :367 : : :

1 0 :367 : : :

2 1 :753 : : :

3 2 2:207 : : :

4 9 8:829 : : :

5 44 44:145 : : :

6 265 264:873 : : :

7 1854 1854:112 : : :

8 14833 14832:899 : : :

9 133496 133496:091 : : :

Table 1: Values of Ti.

so that T0 = 1, T1 = 0,
P�

n

i

�
Ti = n! and as is well known from an inclusion-exclusion

argument (Feller, 1968),

Ti = i!
iX

j=0

(�1)j
1

j!
:(2.2)

This leads to the important recurrence

Ti+1 = (i+ 1)Ti + (�1)i+1; i � 0:(2.3)

The �rst few values of Ti are shown in Table 1. It is easy to show that

T 2
i < Ti�1Ti+1 for i � 3;(2.4)

and

Ti � i!=e; i!1:(2.5)
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We remark that the asymptotic relation is remarkably accurate even for small i, as can be

seen from Table 1.

3 Proof of the theorem.

Without loss of generality, we assume henceforth thatA and B are up-sets, that each contains

all A with jAj = n� 1, and that neither one is 2n. We will also assume that (1.1) is true for

the �rst few n, say n � 5.

The proof divides into two cases:

Lemma 1. (1.1) holds if fig 2 A [ B for some i 2 n, i.e., if there is a singleton set either

in A or in B.

Lemma 2. (1.1) holds if minfjAj : A 2 A [ Bg � 2.

These lemmas are proved by somewhat di�erent methods. The proof of Lemma 1 uses

the FKG inequality and a matching argument in which each B 2 B nA with jBj � n� 3 is

paired with B [ f1g 2 A \ B under the hypothesis that f1g 2 A. The proof of Lemma 2 is

based on the Ahlswede-Daykin theorem. Both use the idea of rede�ning the measure.

The cores of our proofs of Lemmas 1 and 2 do not cover various special cases of small

k and n; these special cases have to be considered separately. Certain of these cases are

isolated in Lemmas 3 and 4, which we will prove before attacking Lemmas 1 and 2; the rest

of the cases will be cleaned up afterwards.

Lemma 3. (1.1) holds if minfjAj : A 2 A \ Bg = n� k and 2n � (k � 1)!.

Lemma 4. Suppose minfjAj : A 2 A\Bg = n� k. Then (1.1) holds if any of the following

holds:

k = 3 and n � 4; k = 4 and n � 9;(3.1)
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k = 5 and n � 25; k = 6 and n � 101;

k = 7 and n � 532; k = 8 and n � 2715:

The order of events is as follows: proof of Lemma 3; proof of Lemma 4; core proof of

Lemma 1; core proof of Lemma 2; remnants of Lemma 1; remnants of Lemma 2.

4 Proof of Lemma 3.

We are to prove that (1.1) holds if 2n � (k � 1)! where k is de�ned by

n� k = minfjAj : A 2 A \ Bg:(4.1)

We will use the FKG theorem but since P (A) = 0 for jAj = n�1, P does not satisfy the FKG

hypothesis. We want to move some of the mass of P from sets A 2 A \ B with jAj 6= n� 1

to sets A with jAj = n� 1 and get a new measure P � that satis�es the FKG hypothesis:

P �(A)P �(B) � P �(A \ B)P �(A [B); for all A;B 2 2n:(4.2)

The FKG theorem will then yield

P (A)P (B) = P �(A)P �(B) � P �(A \ B) = P (A \ B):(4.3)

The following simple lemma makes it easy to verify the FKG hypothesis for P � when

P �(A) is nearly a function of jAj:

Lemma 3A. Suppose u : 2n ! R+. Let

ui = min
jAj=i

u(A); Ui = max
jAj=i

u(A):(4.4)

If

U2
i � ui�1ui+1 for i = 2; : : : ; n� 1(4.5)
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then

u(A)u(B) � u(A [B)u(A \ B) for all A;B 2 2n:(4.6)

Proof. Since jAj+ jBj = jA[Bj+ jA\Bj, the conclusion holds whenever jAj = jBj and

jA[Bj = jAj+1. A simple induction argument with the observation that ui � Ui completes

the proof. |

Proof of Lemma 3. Pick a set A0 2 A \ B with jA0j = n� k. Set P �(A) = T �(A)=n!,

where T � is obtained from T by taking 1=2 away from T (n) and (n� 1)=2 away from T (A0)

and using the total of n=2 thus obtained to make T (A) = 1=2 for jAj = n� 1. Thus

T �(A) =

8>>>>>><
>>>>>>:

1=2; jAj � n� 1

Tk � (n � 1)=2; A = A0

Tn�jAj otherwise:

(4.7)

From (2.4) we have

T 2
i < Ti�1Ti+1 for i � 3;(4.8)

and

U�
2
2 = T 2

2 = 1 � u�1u
�
3 =

1

2
T3 = 1;(4.9)

so for (4.5) to hold it is only necessary to check that

T 2
k�1 � Tk�2T

�(A0); T
2
k+1 � T �(A0)Tk+2:(4.10)

Since the second inequality is more restrictive than the �rst when k � 6, these cases require

T �(A0) = Tk �
n� 1

2
�

T 2
k+1

Tk+2

:(4.11)

But this follows from the assumption that 2n � (k � 1)! when k � 6, as may easily be

checked. This proves Lemma 3 for k � 6; the remaining cases k � 5 are covered by Lemma

4. |
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i

0 1 2 3 4 5 6 7 8 9

T 1 0 1 2 9 44 265 1854 14833 133496

T (1) 1=2 1=2 [1=2; 1] 2 [8; 9] 44 [242; 265] 1854 [14204; 14833] 133496

T (2) 1=2 1=2 [8=15; 1] 2 [7:5; 9] 44 �! same as T

T (3) 1=2 1=2 [1=2; 1] 2 [8:36; 9] 44 [231:74; 265] 1854 �! same as T

Table 2: Reallocations.

5 Proof of Lemma 4.

The idea here, as in the proof of Lemma 3, is to move the mass of the measure T around

inside A\B to get a new measure T � satisfying the strong FKG hypothesis (4.5) of Lemma

3A. Table 2 illustrates three di�erent strategies for doing this. As long as the values used

fall within the intervals indicated on one of the three rows of the table, (4.5) will be satis�ed.

For instance, looking at the line of the table labelled T (2), we see that (4.5) will be satis�ed

as long as T �(n) = 1
2
; T �(A) = 1

2
; jAj = n� 1; 8=15 � T �(A) � 1; jAj = n � 2; etc.

In order for one of these strategies to work in a particular case, it must be possible to

reallocate the T weights so as to satisfy the constraints without changing the weights of A,

B, and A \ B. To insure that we do not change these weights, we will choose A0 2 A \ B

with jA0j = n� k and change only the weights of sets A for which A � A0 or jAj = n � 1.

All of these strategies require us to increase T (A) = 0 to T �(A) = 1
2
for all jAj = n� 1. This

leaves us with a net increase of n

2
, and the question is whether we can make up for this by

decreases in the weights of the supersets A � A0, jAj 6= n� 1.

When k = 5, so that T (A0) = T5, we choose strategy T (2): A0 has
�
5

1

�
= 5 supersets of

size n � 4, each of whose weight can be reduced by 1:5 (from 9 to 7:5);
�
5

3

�
= 10 supersets
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of size n� 2, each of whose weight can be reduced by 1� 8
15

= 7
15
; and 1 superset of size n,

whose weight is reduced from 1 to 1
2
. Thus the total savings possible is

5(1:5) + 10(
7

15
) +

1

2
= 12:66:(5.1)

This is � n=2 as long as n � 25, so we conclude that (1.1) holds when k = 5 and n � 25.

The other assertions of Lemma 4 are obtained by using strategy T (1) for k = 3; 4; 8 and

strategy T (3) for k = 6; 7. |

6 Core proof of Lemma 1.

We are to show that P (A)P (B) � P (A\B) whenever A or B has a singleton. Suppose wlog

that f1g 2 A, so A � f1g+. We partition B into disjoint sets, one or more of which may be

empty:

B = B1 + B2 + B3 + B
1
3 + Br(6.1)

where

B1 = fng(6.2)

B2 = fB 2 B n A : jBj = n� 2g

B3 = fB 2 B n A : jBj � n � 3g

B
1
3 = fB [ f1g : B 2 B3g

Br = (A \ B) n (B1
3 [ fng):

We set t = jB2j, and note that 0 � t � n� 1.

Now rewrite (1.1) as

P (A)
h
P (n) + P (B2) + P (B3) + P (B1

3) + P (Br)
i

(6.3)

� P (n) + P (B1
3) + P (Br):
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Since P (A) < 1, P (A)P (Br) � P (Br). Hence to prove (1.1) it is enough to prove

P (A)(P (n) + P (B2)) � P (n)(6.4)

and

P (A)(P (B3) + P (B1
3)) � P (B1

3):(6.5)

We will show that the �rst inequality always holds. Then we will show that in any particular

case, either the second inequality holds, or (1.1) can be proven by some other means.

Lemma 1A. (6.4) holds.

Proof. Since P (n) = P (B) = 1=n! for each B 2 B2 we need to show

P (A) �
1

t+ 1
;(6.6)

where t = jB2j, 0 � t � n� 1. This is clear for t = 0. For t = n� 1, P (A) = P (f1g+) = 1=n

so equality holds. (This is the Example of x1.) For 1 � t � n�2 assume wlog after permuting

elements that

B2 = fn n f1; 2g;n n f1; 3g; : : : ;n n f1; t+ 1gg:(6.7)

If A 2 A and 1 62 A then 2 2 A or else nnf1; 2g 2 A since A is an up-set, but nnf1; 2g 2 B2

and A \ B2 = ;. Similarly if A 2 A and 1 62 A then 3 2 A, . . . , t+ 1 2 A. Thus

A � f1g+ [ f2; 3; : : : ; t+ 1g+(6.8)

and so if M is the match set,

P (A) � P (1 2M) + P (2 2M; 3 2M; : : : ; t+ 1 2M ; 1 62M)(6.9)

=
1

n
+

1

n

1

n� 1
� � �

1

n� t+ 1

n� t� 1

n� t

=
1

n
+

(n� t� 1)!(n� t� 1)

n!
:
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The conclusion of the lemma holds if the right side is � 1=(t + 1), or transposing 1=n and

canceling n � t� 1, if

t+ 1 � (n � 1)(n � 2) � � � (n� t); 1 � t � n� 1:(6.10)

This inequality holds since t � n� 2 and 1 � n� 2. |

Remark. Equality holds in Lemma 1A if and only if t = n � 1, i.e., A = fig+ for some

i and B2 = f all (n� 2)-sets not containing ig.

We now consider (6.5). We may assume B3 6= ; (since otherwise both sides vanish) and

de�ne k0 by

minfjBj : B 2 B3g = n� k0 � 1; k0 � 2:(6.11)

For B that realize (6.11), B [ f1g 2 A\B and jB [ f1gj = n� k0. It follows that with k as

in Lemma 3, n� k � n� k0, i.e.,

k0 � k:(6.12)

Clearly (6.5) holds if for every B 2 B3,

P (A) [P (B) + P (B [ f1g)] � P (B [ f1g)(6.13)

since the correspondence B $ B[f1g between B3 and B
1
3 is 1-1 and onto. Thus (6.5) follows

from (6.13), or transposing, from

P (A) �
P (B [ f1g)

P (B) + P (B [ f1g)
=

Ti�1

Ti + Ti�1

when jBj = n� i:(6.14)

For i � 3, as in (2.4),

Ti

Ti+1

�
Ti�1

Ti

(6.15)

so that (6.14) holds if and only if it holds in the worst case when i is largest, i = k0 + 1, or

(using (2.3))

P (A) �
Tk0

Tk0+1 + Tk0

=
1

k0 + 2 + (�1)k0+1=Tk0

:(6.16)
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Since there is a set B0 2 B3 n A by (6.11) with jB0j = n� k0 � 1 say

B0 = fk0 + 2; : : : ; ng(6.17)

A must be a subset of f1g+ [ f2g+ [ � � � [ fk0+1g+ for if A 2 A and none of 1; 2; : : : ; k0+1

are in A then B0 would be a superset of A and B0 would be in A. Thus

P (A) �
k0 + 1

n
:(6.18)

If n � (k0 � 1)!=2 then by (6.12), n � (k � 1)!=2 and then by Lemma 3, (1.1) holds. Thus

we may assume

n > (k0 � 1)!=2:(6.19)

But then the right side of (6.18) is less than the right side of (6.16) at least for k0 � 6 since

(k0 + 1)(k0 + 2 +
(�1)k

0+1

Tk0

) < (k0 � 1)!=2 for k0 � 6:(6.20)

For k0 � 6, we have proven that either (1.1) holds or (6.14) and hence (6.5) holds. But

(6.5) implies (1.1) also since we have proven (6.4). Thus we have completed the proof of the

following lemma.

Lemma 1B. Suppose f1g 2 A and either B n A has no set with fewer than n� 2 elements

(B3 = ;) or the smallest set in B nA has n� k0 � 1 elements with k0 � 6. Then (1.1) holds.

It remains to show that (1.1) holds when k0 � 5. This will be done in x8.

7 Core proof of Lemma 2.

We are to show that (1.1) holds if every A 2 A [ B has jAj � 2. The proof will depend on

the Ahlswede-Daykin generalization (Ahlswede and Daykin, 1978) of the FKG inequality,
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used in a way similar to the proof of Lemma 1. To state it we assume given nonnegative

functions �; �; ; � on 2n and for any f 2 f�; �; ; �g and any C � 2n de�ne

f(C) =
X
C2C

f(C):(7.1)

Ahlswede-Daykin Theorem. If for all A;B 2 2n

�(A)�(B) � (A [ B)�(A\ B)(7.2)

then for all C;D � 2n,

�(C)�(D) � (C _ D)�(C ^ D);(7.3)

where C _ D and C ^ D are de�ned as in x2.

We may assume wlog that A \ B contains all sets with n� 1 elements. For convenience

we drop the normalization by n! in P (A) = T (A)=n! and work directly with T (A).

Analogously to (4.7) in the proof of Lemma 3, we will rede�ne T on 2n, this time so that

(7.2) will hold. Thus de�ne T 0(A) for A 2 2n by

T 0(A) =

8>>>>>><
>>>>>>:

0; A = n

1=n; jAj = n� 1

T (A) otherwise:

(7.4)

Thus T 0 removes the weight of 1 from n and redistributes it evenly over the n � 1 element

subsets to which T assigns weight zero. Otherwise T 0
� T . We want to de�ne �; �; ; � so

that (7.3) implies (1.1) and to that end set � and � as follows:

�(A) =

8>><
>>:

0; A 62 A

T 0(A); A 2 A

; �(B) =

8>><
>>:

0 B 62 B

T 0(B) B 2 B:

(7.5)

Since each of A and B contains all n� 1 element subsets,

�(A) = P (A)n!; �(B) = P (B)n!:(7.6)
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Set  as follows:

(A) =

8>>>>>><
>>>>>>:

1
2n
; A = n

0; A 62 A \ B

T 0(A) otherwise:

(7.7)

Since the sum of (A) over (n� 1)-sets is 1 we have

(A _ B) = (A \ B) =
1

2n
+ n!P (A \ B):(7.8)

Since this is a wee bit greater than n!P (A\B) we must choose �(A^B) somewhat less than

n! in order to make (7.3) agree with (1.1).

We choose � constant on all sets of �xed cardinality,

�(A) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0; A = n

1=n; jAj = n � 1

1; jAj = n � 2

nT2; jAj = n � 3

nT3; jAj = n � 4

...

nTn�2; jAj = 1

2nTn�2; A = ;:

(7.9)

Consequently

�(A^ B) � Zn
def
=

nX
i=0

 
n

i

!
�i(7.10)

= 2nTn�2 + n
n�3X
i=1

 
n

i

!
Tn�i�1 +

 
n

2

!
+ 1:

With �; �; ; � as above it will su�ce to check that (7.2) holds and that (7.3) implies

(1.1). We begin by checking that in all relevant cases, either (7.2) holds, or (1.1) can be

veri�ed by some other means.
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jDj n n� 1 n� 2 n� 3 n� 4 � � � 3 2 1 0

jCj 0 1=n 1 n 2n nTn�4 nTn�3 nTn�2 2nTn�2

n 1=(2n) 0 0 1=n2 1=n T2 Tn�5 Tn�4 Tn�3 Tn�2

n� 1 1=n 0 1=n2 1=n T2 T3 Tn�4 Tn�3 Tn�2 2Tn�2

n� 2 T2 0 0 T 2
2 T2T3 T2T4 T2Tn�3 T2Tn�2 T3Tn�2 T4Tn�2

n� 3 T3 0 0 0 T 2
3

T3T4 T3Tn�3 T3Tn�2 T4Tn�2 T5Tn�2

.

.

.

n� k Tk Tk
2
at jDj = n� k TkTn�3 TkTn�2 Tk+1Tn�2 Tk+2Tn�2

Table 3: Restrictions on  and �.

Let k be as in (4.1), the largest integer for which there is a set A0 2 A \ B with

jA0j = n � k, so that A0 is a smallest set in A \ B. To check (7.2), we need only consider

the case A 2 A, B 2 B since otherwise both �(A)�(B) and (A [ B)�(A \ B) will vanish.

Let C = A [ B and D = A \ B. The values �(A); �(B); (C); �(D) depend only on the

sizes jAj; jBj; jCj; jDj. The entries in Table 3 show for given values of jCj; jDj the biggest

possible value of �(A)�(B) for any pair of sets A;B for which A [B = C, A \B = D. For

example, the entry in row jCj = n � 2, column jDj = 3 is the maximum of �(A)�(B) with

jAj+ jBj = n� 2 + 3 = n+ 1, or n� jAj+ n� jBj = n� 1, which is T2Tn�3 as indicated.

To make sure that �(A)�(B) � (C)�(D), we must check that each entry is � the

product of the the corresponding values of (C); �(D), which are shown at the borders of

the table. For row jCj = n�1, equality holds. For row jCj = n, equality holds at jDj = n�4

and jDj = 0, and the desired inequality holds elsewhere. For any other row the columns

jDj = 2; 3; : : : are similar and require

nTn�j�1 � Tn�j; i.e., approx. n > n� j,(7.11)
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which holds using (2.3). For the last two columns the entry in the lower right corner, which

is the worst case, requires

2nTk � Tk+2; i.e., approx. 2n � (k + 2)(k + 1);(7.12)

which holds for k � 5 except for small n which are covered by Lemma 4. Thus for example

when k = 5 Lemma 4 allows us to assume that n � 26 and 2n � T7=T5 = 1854=44 for

n � 26.

We are now in a position to prove most of Lemma 2.

Lemma 2A. Suppose A [ B contains no singleton. Then (1.1) holds if k � 4 or if (k =

3; n � 8), (k = 2; n � 7), or (k = 1; n � 8).

Proof. We consider Zn de�ned in (7.10) �rst. For n = 7, Z7 = 4852 compared to

7! = 5040. Assume k � 5 or k = 2. Then (7.2) may be seen to hold as described previously

and so (7.3) and (7.8) give

(7!)2P (A)P (B) = �(A)�(B)(7.13)

� (A \ B)�(A^ B)

�

�
1

14
+ 7!P (A \ B)

�
Z7:

The last term in (7.13) is supposed to be below (7!)2P (A\B) and P (A\B) � 2=7! whenever

k � 2 in which case (7.13) is easily checked. Therefore (1.1) holds whenever n = 7 and k = 2

or k � 5.

Suppose next that n = 8 and either k � 5 or k 2 f1; 2g. We compute Z8 = 36685 with

8! = 40320. By (7.3),

(8!)2P (A)P (B) � [1=16 + 8!P (A \ B)]Z8:(7.14)

But [1=16 + 8!P (A \ B)]Z8 � (8!)2P (A \ B) if and only if P (A \ B) � (36685=58160)=8!
:
=
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(0:63)=8!, and this is valid since P (A \ B) � 1=8!. Hence P (A)P (B) � P (A \ B) whenever

n = 8 and either k 2 f1; 2g or k � 5.

The same conclusion holds also for all n � 9 since Zn=n! is decreasing in n. In particular,

reduction gives

(n + 1)!

"
Zn

n!
�

Zn+1

(n+ 1)!

#
(7.15)

= (n + 1)

8>>>>>><
>>>>>>:

[2Tn�2 � 2(�1)n�1]

+
Pn�3

i=1

h�
n

i�1

�
Tn�i�1 �

�
n+1

i

�
(�1)n�i

i
�

�
n+1

n�2

�
+ n(n�2)

2
+ 1

9>>>>>>=
>>>>>>;
� 1:

Since all terms in square brackets are strictly positive and 2Tn�2 >
�
n+1

n�2

�
when n � 8, it

follows that Zn=n! > Zn+1=(n+ 1)! for n � 8. Since P (A)P (B) � P (A \ B) is known to be

true for small values of n when k � 5 by Lemma 3, we have veri�ed the following conclusions

of Lemma 2A at this point:

P (A)P (B) � P (A \ B) if k � 5 or (k = 1; n � 8) or (k = 2; n � 7) .

It remains to consider k 2 f3; 4g. Suppose �rst that k = 4. To satisfy the (7.2) hypotheses

at k = 4 we increase �0 from 2nTn�2 to (Tk+2=Tk)Tn�2 = (265=9)Tn�2 when n � 14. Since the

original �0 value su�ces when n � 15, and since Lemma 4 says that P (A)P (B) � P (A\B)

if n � 9, the preceding proofs su�ce for k = 4 except when 10 � n � 14. When n = 10, the

increase in Z10 caused by the addition to �0 is not enough to invalidate the desired conclusion.

In particular, (7.3) applied to �0 revised gives

(10!)2P (A)P (B) �(7.16)

[1=20 + 10!P (A \ B)]

�
Z10 +

�
265

9
� 20

�
T8

�

with Z10 + (265=9 � 20)T8 = 3192875:4 and 10! = 3628800, and this implies P (A)P (B) �
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P (A \ B). The situation is even more favorable for k = 4 at n = 11; : : : ; 14, so we obtain

the desired result for all n at k = 4.

Finally, suppose k = 3. We increase the value of �0 from 2nTn�2 to (Tk+2=T2)Tn�2 =

22Tn�2 when n � 10. By Lemma 4 and the preceding proof with Zn, we know that the desired

result holds for all n except 5 � n � 9. By a method similar to that for k = 4 in the preceding

paragraph, it is easily veri�ed that P (A)P (B) � P (A \ B) when n 2 f8; 9g. However, that

method does not give the desired conclusion for n � 7, so we are left with the unresolved

cases of n 2 f6; 7g to consider further (with n = 5 covered by earlier presumption). |

We are left only with the following remnant of Lemma 2 to prove.

Remnant 2. Given no singleton in A [ B, and letting minfjAj : A 2 A \ Bg = n � k as

before, if

(a) k = 3 and n 2 f6; 7g, or

(b) k = 2 and n = 6, or

(c) k = 1 and n 2 f6; 7g,

then (1.1) holds.

The proof will be given in x9.

8 Remnants of Lemma 1.

Let k and k0 be as in (4.1) and (6.11). Suppose f1g 2 A and k0 � 5. Since (6.16) implies

(1.1) as in x6, we must prove the following remnant of Lemma 1.

Remnant 1. Given f1g 2 A, B2 = fB : jBj = n � 2 and B 2 B n Ag, and letting

minfjBj : B 2 B n Ag = n� k0 � 1 as before, if k0 � 5 then (6.16) or (1.1) holds.
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Proof. For k0 = 5, (6.16) says

P (A) �
T5

T5 + T6

:
= 0:1424:(8.1)

If t = jB2j � 1, say with f3; 4; : : : ; ng 2 B n A, then no subset of f3; 4; : : : ; ng 2 A and so

P (A) � P (f1g+ [ f2g+) < 2=n < 0:1424 for n � 15:(8.2)

Thus (8.1) holds for n � 15 and since k0 � k by (6.12) and (1.1) holds for k � 5, n � 25 by

Lemma 4, (6.16) or (1.1) holds for k0 � 5, for t � 1. The only other case is t = 0 and so every

n � 2 element superset of some particular B0 2 B n A with jB0j = n� k0 � 1 = n � 6 must

be in A. Since there are
�
6

2

�
= 15 such supersets of B0 the total savings from reallocation

T (2) in Table 2 is at least 1
2
+
�
6

2

�
7
15
+ 5(1:5) = 15 so that if n=2 � 15 then (1.1) holds by

the type of analysis used in the proof of Lemma 4. We thus may assume for k0 = 5 that

t = 0; n � 31. Suppose next that some jAj = n � 4 is not in A. Then P (A) < 4=n as in

(8.2). But 4=n < 0:1424 for n � 29 so (8.1) and (6.16) holds unless all jAj = n� 4 are in A.

But if all A with jAj = n� 4 are in A then the total savings from reallocation T (2) accruing

from B0 2 B n A with jBj = n� 6 is at least 1
2
+ 7

15

�
6

4

�
+ (1:5)

�
6

2

�
= 30 and so (1.1) holds if

n � 60. Finally if n � 61 and some jAj = n� 6 is not in A (which we know to be true since

B0 2 B n A and jB0j = n� 6), then P (A) < 6=n by the analog to (8.2). But 6=n < 0:1424

for n � 43 and since n � 61 at this point, we conclude that (1.1) or (6.16) holds for k0 = 5.

This completes the cases k0 = 5 of Remnant 1 and of course proves (1.1) for this case (since

we have shown that either (6.16) or (1.1) holds and in x6 that (6.16) implies (1.1)). We now

turn to k0 < 5.

Suppose �rst that t = jB2j � 2 with f3; 4; : : : ; ng and f2; 4; 5; : : : ; ng in B n A for de�-

niteness. Then every set A 2 A contains either 1 or both 2 and 3, so

P (A) � P (f1g+ [ f2; 3g+) =
1

n
+

n� 3

n(n� 1)(n� 2)
<

1

n� 1
:(8.3)
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Since the right side of (6.16) is 1/3 at k0 = 2 and 1=(n� 1) � 1=3 for n � 4, (6.16) holds for

k0 = 2, n � 4. For k0 = 3, T3=(T3+T4) = 2=11 and 1=(n�1) < 2=11 for n � 6. Since we can

check directly that (1.1) holds for n � 5 this covers every case for t � 2, k0 < 4. For k0 = 4,

T4=(T4 + T5) = 9=53 and 1=(n � 1) < 9=53 for n � 7. Lemma 4 settles n � 9 and so for

t � 2 and arbitrary k0, (1.1) holds when f1g 2 A. For t = 1, say with f3; 4; : : : ; ng 2 B n A

P (A) � P (f1g+ [ f2+g) =
1

n
+

1

n
�

1

n(n� 1)
=

2n � 3

n(n� 1)
:(8.4)

At k0 = 4, T4=(T4 + T5) = 9=53 and so (6.16) and (1.1) holds for n � 12. Similarly at

k0 = 3; n � 11 or k0 = 2; n � 6. We are done with Remnant 1 except for jB2j = 1; (k0 = 3

and n � 10) or (k0 = 4 and n � 11) and for B2 = ;; k0 2 f2; 3; 4g. We remind the reader

that f1g 2 A for Remnant 1.

Case 1. jB2j = 1, k0 = 4; n � 11. Since k0 = 4, some B0 2 B n A has n � 5 elements,

and B n A has no smaller set. Since t = 1 (B nA has only one set with n� 2 elements) and

B0 has
�
5

3

�
= 10 supersets with n � 2 elements each, nine of these must be in A \ B. In

addition, A \ B has a set with n � 4 elements, B0 [ f1g. The savings from T (1) of Table 2

is therefore at least 1 + 9(1=2) + 1=2 = 6 and since n=2 � 6 for n � 12 it follows as in the

proof of Lemma 3 that (1.1) holds.

Case 2. jB2j = 1, k0 = 3; n � 10. Let B = f5; 6; : : : ; ng be in B n A with no smaller set

in B n A. Since B has six supersets with jAj = n � 2 and t = 1, �ve of these must be in

A \ B so the savings by T (1) is at least 5 � 1=2 + 1=2 = 3 and so (1.1) holds for n � 6. We

may thus consider only 7 � n � 10. We proceed on the basis of the number of sets in B that

have n � 4 elements. Let x denote this number. By assumption x � 1 since k0 = 3.

Case 2.1. Suppose x � 3. These x have at least ten distinct jAj = n � 2 supersets and,

since t = 1, nine of these must be in A\ B. The T (1) savings is at least 9 � 1=2 + 1=2 = 5 so

the usual argument gives (1.1) for n � 10.
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Case 2.2. Suppose x = 2. These two have at least nine supersets with jAj = n � 2,

so the T (1) savings is at least 1=2 + 8(1=2) = 4:5. Hence P (A)P (B) � P (A \ B) by the

usual argument if n � 9. Moreover, if the two B sets with n � 4 elements have fewer than

n � 5 elements in their intersection, they have more than nine supersets with jAj = n � 2,

in which case the argument implies the desired result if n � 10. We can therefore assume

that n = 10 and that the second set in B with n � 4 elements is B0 = f4; 6; 7; : : : ; 10g. (If

B0 were to contain 1 then B0
2 A \ B, and we would obtain the desired result. We may

therefore suppose that, in general, B0
62 A.) Since the usual Lemma 3 analysis yields the

desired result for n = 10 if there are more than nine jAj = n � 2 in B, we assume that only

the nine (n � 2)-element supersets of B0 and B = f5; : : : ; 10g are in B at level n � 2. The

e�ect of this is to force B = B+
[ (B0)+ with P (B) = [2(9) + 7(2) + 9(1) + 1]=10! = 42=10!.

At the same time,

P (A \ B) � [2(2) + 8(1) + 1]=10! = 13=10!;(8.5)

so P (A\B)=P (B) � 13=42. However, since P (A) � P (f1g+[f2g+) < 1=5 and 1=5 < 13=42,

we conclude that P (A)P (B) � P (A \ B).

Case 2.3. Suppose x = 1. Then every set in B other than B = f5; : : : ; ng has at least

n� 3 elements. Suppose

B has z1 jB
0
j = n� 3 with 1 2 B0(8.6)

B has z2 jB
0
j = n� 3 with 1 62 B0

B has y jB0
j = n� 2:

Then P (B) = (9 + 2z1 + 2z2 + y + 1)=n! and P (A \ B) � (2z1 +maxfz2; y � 1g+ 1)=n!, so

P (A \ B)

P (B)
�

2z1 +maxfz2; y � 1g+ 1

9 + 2z1 + 2z2 + y + 1
(8.7)

with z1 � 1, z2 � 3 and y � 5. Since the right side of this inequality increases in z1, the
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worst case for P (A \ B)=P (B) has z1 = 1, so at z1 = 1 we get

P (A \ B)

P (B)
�

3 + maxfz2; y � 1g

12 + 2z2 + y
:(8.8)

Because z2 � 3 and y � 5, it is easily shown that the right side of the new inequality is at

least 11=42. Hence P (A \ B)=P (B) � 11=42. On the other hand,

P (A) � P (f1g+ [ f2g+) = (2n� 3)=[n(n � 1)];(8.9)

which equals 11/42 at n = 7 and is smaller for larger n. Therefore P (A) � P (A\B)=P (B).

This completes the proof of Case 2 of Remnant 1.

Case 3. This case assumes that t = 0 (no jAj = n� 2 is in B(A)) and k 2 f2; 3; 4g. We

consider the possible k in turn. (For convenience, at this point we drop the prime on k.)

Case 3.1. k = 2. Assume for de�niteness that f4; : : : ; ng 2 B n A. If A omits more than

one (n� 3)-element set, another such set either has the form f3; 5; : : : ; ng or f2; 3; 6; : : : ; ng.

In the �rst case it is easily checked that P (A) � 2=n if n � 4, and in the second that

P (A) � 2=n if n � 6. Since we assume the desired result for n � 5, we can presume that

P (A) � 2=n when A omits more than one jAj = n�3. Then, since 2=n � T2=(T2+T3) = 1=3

if 6 � n, (6.16) holds, and we conclude that P (A)P (B) � P (A\B). Suppose then that only

f4; : : : ; ng is not in A at level n � 3, so P (A) can be near to 3=n. Let (c; d) = (number of

B 2 B with jBj = n � 3 other than f4; : : : ; ng, number of B 2 B with jBj = n � 2 besides

the supersets of f4; : : : ; ng). Then

P (A \ B)

P (B)
=

3 + 2c+ d+ 1

2 + 3 + 2c+ d + 1
=

4 + 2c + d

6 + 2c + d
�

2

3
;(8.10)

and therefore P (A) � P (A \ B)=P (B) if 3=n � 2=3 or n � 5.

Case 3.2. k = 3. Let B = f5; 6; : : : ; ng 2 B n A. Since t = 0, every (n � 2)-element

superset of B is in A\B, and it follows from the usual analysis that P (A)P (B) � P (A\B)

if n � 7. Assume henceforth for Case 3.2 that n � 8.
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Assume further throughout this paragraph that B is the only set in B that has n � 4

elements. If A omits none of the jAj = n � 3, then P (A \ B)=P (B) � (2(4) + 6 + 1 +

X)=(9 + 2(4) + 6 + 1 +X) � 15=24 and, since P (A) � 4=n, we get P (A) � P (A\B)=P (B)

if 4=n � 15=24, or n � 7, so we're all right here. If A omits exactly one jAj = n � 3,

then P (A) < 3=n and P (A \ B)=P (B) � 13=24, so P (A)P (B) � P (A \ B) if n � 6.

If A omits two jAj = n � 3, then P (A) � 2=n when n � 6 (see Case 3.1 above) and

P (A \ B)=P (B) � 11=24, so P (A)P (B) � P (A \ B) if n � 5. Next if A omits three sets

with jAj = n� 3, then P (A) � 2=n and P (A \B)=P (B) � 9=24, so the desired result holds

if 2=n � 9=24, or n � 6. Finally, if A omits four or more jAj = n� 3, leaving more room at

level n� 3 for sets in B nA, and if x denotes the number of B0
2 B nA with jB0

j = n� 3 in

addition to the three supersets of B that do not contain 1 at level n� 3, then P (A) � 2=n

and

P (A \ B)

P (B)
�

9 + x

24 + 2x
�

9

24
;(8.11)

so again P (A)P (B) � P (A \ B) if n � 6.

Suppose next that B has exactly one (n�4)-element set besidesB = f5; : : : ; ng. The usual

analysis gives P (A)P (B) � P (A\B) if n � 10, so assume henceforth that n � 11. IfA omits

no jAj = n�3, then P (A) � 4=n and P (A\B)=P (B) � (2(7)+9+1)=(9(2)+2(7)+9+1) =

24=42, so P (A) � P (A \ B)=P (B) if n � 7. If A omits one jAj = n � 3, then P (A) � 3=n

and P (A \ B)=P (B) � 22=42, so the desired result holds if n � 6. If A omits two or more

jAj = n� 3, then P (A) � 2=n and P (A\B)=P (B) � (14 +X)=(42 + 2X) � 1=3, and again

P (A)P (B) � P (A \ B) if n � 6.

If B has more than two sets with n�4 elements, similar analysis shows that P (A)P (B) �

P (A \ B) for all n.

Case 3.3. k = 4. Let B = f6; : : : ; ng 2 B n A. The savings for T (1) accruing from B is

at least 1 + 10(1=2) + 1=2 = 13=2, so P (A)P (B) � P (A \ B) for all n � 13 by the usual
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analysis of Lemma 3. Assume henceforth that n � 14.

Let x denote the number of jAj = n � 3 not in A. Suppose x � 2. Then P (A) � 2=n

(see Case 3.1 above), and since 2=n � T4=(T4 + T5) = 9=53 for all n � 12, (6.16) holds and

hence P (A)P (B) � P (A \ B).

Suppose next that x = 1. Then P (A) � 3=n, and (6.16) holds if 3=n � 9=53, or n � 18.

Hence P (A)P (B) � P (A \ B) if n � 18. If B has two or more (n � 5)-element sets, then

the savings for T (1) is at least 1 + 14(1=2) + 1=2 = 17=2, so P (A)P (B) � P (A \ B) by the

Lemma 3 method if n � 17. Since this covers all n, assume henceforth that B is the only

(n� 5)-element set in B. Then

P (A \ B)

P (B)
�

9(1) + 2(9) + 10 + 1 + 2a+ b

44 + 9(5) + 2(10) + 10 + 1 + 9a+ 2b
�

2

9
;(8.12)

where (a; b) = (number of B0
2 B n A with jB0

j = n � 4 other than supersets of B, number

of B0
2 B nA with jB0

j = n� 3 other than supersets of B). Then P (A)P (B) � P (A\B) if

3=n � 2=9, or n � 14. Since the lead paragraph of Case 3.3 covers all n � 13, the proof for

x = 1 is complete.

Suppose �nally that x = 0, so that all jAj = n� 3 are in A. Let y denote the number of

jAj = n � 4 not in A. If y = 0 then P (A) � 5=n, if y = 1 then P (A) � 4=n, and if y � 2

then P (A) � 3=n. We assume n � 14.

Suppose �rst for x = 0 that B n A has two or more (n� 5)-element sets. Then the T (1)

savings is at least 1=2 + 16(1=2) + 2 = 21=2, so P (A)P (B) � P (A \ B) by the Lemma 3

method if n � 21. If y � 2, then (6.16) holds if 3=n � 9=53, or n � 18, so all n are covered

in this case. If y � 1 then (6.16) holds for 5=n � 9=53, or n � 30, but in this case the T (1)

savings is at least 1=2 + 16(1=2) + 8(1) = 33=2, so P (A)P (B) � P (A \ B) by the Lemma 3

method for n � 33. Hence P (A)P (B) � P (A\B) if B nA has two or more (n� 5)-element

sets.
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Assume henceforth for x = 0 that B is the only set in BnA with n�5 elements and, with

no loss of generality, assume also that B has no other set with fewer than n � 4 elements.

Suppose �rst that y � 3. Then P (A) < 5=n and

P (A \ B)

P (B)
�

9(2) + 2(10) + 11 + z

44 + 9(5) + 2(10) + 11 + z
�

49 + z

120 + z
�

49

120
;(8.13)

where z is the T weight from all sets in A \ B that are not supersets of B. We then have

P (A) � P (A \ B)=P (B) if 5=n � 49=120, or n � 13. Since all n � 13 are covered by

the opening paragraph of Case 3.3, the desired result holds if y � 3. Because P (A) � 3=n

if y � 2, a similar calculation shows that P (A) � P (A \ B)=P (B) if y � 12: at y = 12,

P (A \ B)=P (B) � (9 + 20 + 11)=(120 + 7(9)) = 40=183, and 3=n � 40=183 if 14 � n.

The same conclusion fails to hold for y > 12 only if B n A has at least 12 (n � 4)-element

sets. But in this case A\ B has at least 15 (n� 2)-element sets, the T (1) savings is at least

1=2+15(1=2)+1 = 18=2, and therefore the Lemma 3 method implies P (A)P (B) � P (A\B)

if n � 18. On the other hand, (6.16) holds if 3=n � 9=53, or n � 18, so all n are covered for

y > 12.

This completes the proof of P (A)P (B) � P (A \ B), i.e., (1.1) for all cases left open in

Remnant 1. The proof of Lemma 1 is complete. |

9 Remnants of Lemma 2.

We consider parts (a), (b) and (c) of Remnant 2 in that order. It is assumed that no singleton

is in A [ B.

(a). k = 3 and n 2 f6; 7g. Suppose �rst that A \ B has three or more jAj = n � 3.

Then the savings for reallocation T (1) of Table 2 is at least 1=2 + (1=2)6 = 7=2, and since

n=2 � 7=2 for n � 7, the method of Lemma 3 implies P (A)P (B) � P (A \ B) for n � 7.
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Suppose next that exactly two jAj = n � 3 are in A \ B. Then the T (1) savings is at

least 1=2 + (1=2)5 = 3, which covers n = 6 by the method of Lemma 3. To avoid (1.1) at

n = 7, the two jAj = n� 3 in A \ B must have a three-element intersection, say f4; 5; 6; 7g

and f3; 5; 6; 7g for these two, and only their �ve (n � 2)-element supersets can be in A \ B

for jAj = n � 2. So assume that

A\ B = f3; 5; 6; 7g+ [ f4; 5; 6; 7g+;(9.1)

and let B0 = A \ B. We compute P (A \ B) = 10=7!. If B = B0, maxP (A) = 1331=7!,

which occurs when all jAj � 2 are in A. In this case B cannot be increased from B0, and

P (A)P (B) � P (A \ B) since (1331)(10) < (10)(5040). Starting at B0, we can expand it to

get a larger B, but any such expansion reduces the maximal allowable A substantially. One

example is B = f5; 6; 7g+, but then P (B) = 24=7!, which is much less than is needed to violate

P (A)P (B) � P (A\B) even if P (A) remains at 1331=7! (which is impossible: maxP (A) at

B = f5; 6; 7g+ is 528=7!). In general, unless at least one of P (A) and P (B) exceeds 224=7!,

then it is not possible to violate P (A)P (B) � P (A \ B). However, if P (A) > 224=7!, then

either A contains most of the three-element subsets of 7 or it contains several two-element

subsets, and in both cases the restriction on A \ B forces B to be comparatively small.

Further details are left to the reader.

Finally, suppose A \ B has exactly one jAj = n� 3, say f1; 2; 3g for n = 6 or f1; 2; 3; 4g

for n = 7. Assume �rst that n = 6. Then, by the method of reallocation analysis of Lemma

3, A \ B can have at most one more jAj = n� 2 besides the three produced as supersets of

f1; 2; 3g, so that either P (A\ B) = 6=6! or P (A\ B) = 7=6!. Then P (A)P (B) � P (A \ B)

can be violated only if the larger of P (A) and P (B) exceeds 65=6!. Suppose P (A) � 66=6!.

Then A must contain two or more two-element sets and most of the three-element sets, and

the restriction on A\B will force B to contain little more than f1; 2; 3g+. The extreme case

of B = f1; 2; 3g+ has maxP (A) = 191=6!. When B = f1; 2g+ and A\B contains f1; 2; 4; 5g
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along with f1; 2; 3g+; P (B) = 24=6! and maxP (A) = 94=6!, compared to P (A \ B) = 7=6!,

and P (A)P (B)=P (A \ B) = 0:448. We omit further details.

Assume next that n = 7 and f1; 2; 3; 4g is the only four-element subset in A \ B. The

FKG reallocation analysis allows at most two more jAj = n � 2 in A \ B besides the three

in f1; 2; 3; 4g+ (else the desired result follows for n = 7). Hence 6=7! � P (A\B) � 8=7!. To

violate P (A)P (B) � P (A \ B), we require at least one of P (A) and P (B) to exceed 173=7!

when P (A\B) = 6=7!, or 187=7! when P (A\B) = 7=7!, or 200=7! when P (A\B) = 8=7!. If

P (A) � P (B), this forces A to contain several two-element sets or many of the three-element

sets, and as before the restriction on A\B then forces B to be comparatively small. Again,

we omit the details.

(b). k = 2 and n = 6. In this case A\B has one or more four-element sets and no three-

element set. Suppose it contains s four-element sets with 1 � s � 4 since the reallocation

analysis of Lemma 3 applies if s � 5. Then P (A \ B) = (s+ 1)=6!.

Consider s = 1 �rst, so P (A \ B) = 2=6!. Let f1; 2; 3; 4g be in A \ B. The only way to

have two-sets in both A and B is to have exactly one jAj = 2 in each with empty intersection

and f1; 2; 3; 4g as their union, say f1; 2g 2 A and f3; 4g 2 B. The maximum P (A)P (B) in

this case is 768=(6!)2, compared to P (A \ B) = 1440=(6!)2. Further calculations show that

this value of P (A)P (B) cannot be exceeded.

Suppose next that s = 2, so P (A \ B) = 3=6!. Then maxP (A)P (B) = 1104=(6!)2,

obtained with one two-element set in A and two two-element sets in B (that have empty

intersection with the one in A). By comparison, P (A \ B) = 2160=(6!)2.

Cases for s = 3 and s = 4 are similar. For example, a comparatively large value of

P (A)P (B) for s = 4 is obtained with A = f1; 3g+ [ f1; 5g+ and B = f2; 4g+ [ f2; 6g+ [

f3; 4; 5; 6g. This gives P (A)P (B) = 1806=(6!)2, compared to P (A \ B) = 2880=(6!)2.

(c). k = 1 and n 2 f6; 7g. Here P (A\B) = 1=n!. For n = 6, maxP (A)P (B) = 432=(6!)2
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with A = f1; 2g+ and B = f3; 4; 5g+ [ f3; 4; 6g+ [ f3; 5; 6g+ [ f4; 5; 6g+. The best at n = 7

appears to be P (A)P (B) = 2640=(7!)2 with A = f1; 2g+ and B =
S

AA
+ with each A a

four-element subset of f3; 4; 5; 6; 7g.

This completes the proof of Lemma 2. |
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