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Abstract

We consider the problem of determining the conformal type—

hyperbolic or parabolic—of a covering surface of the Riemann sphere

with n punctures. To such a surface there corresponds a graph called

the Speiser graph of the covering, and it is natural to ask for a crite-

rion for the type of the surface in terms of properties of the graph. We

show how to define a random walk on the vertices of the graph, so that

the random walk is transient if and only if the surface is hyperbolic.

1 The type problem

A simply-connected open Riemann surface is conformally equivalent either
to the open unit disk or to the entire complex plane [1]. In the first case
the surface is said to be hyperbolic, or to have hyperbolic type; in the second
case it is said to be parabolic. This dichotomy is extended to multiply-
connected surfaces by declaring a surface to be hyperbolic if, like the unit
disk, it has finite electrical resistance out to infinity, and parabolic if, like
the plane, it has infinite resistance. Equivalently, a hyperbolic surface is one
on which Brownian motion is transient, and a parabolic surface is one on
which Brownian motion is recurrent ([8], [9]). The classical type problem

for Riemann surfaces is the problem of determining whether a given open
Riemann surface is hyperbolic or parabolic.
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2 The Speiser graph of a covering surface

One special case of the type problem that has received a lot of attention is
the problem of determinmg the type of an infinitely-sheeted covering surface
of the Riemann sphere with n punctures. Such a covering surface can be
represented by a Speiser graph, as I will now describe.

Start by drawing a simple closed curve C through the n branch points,
as shown in Figure 1. The branch points divide C into n segments, which
we label C1, . . . , Cn. The curve C divides the sphere into two parts, which
we label Sa and Sb. Cutting along the curves that cover C1, . . . , Cn separates
the covering surface into an infinite number of pieces, some that cover Sa

and some that cover Sb.
To reconstruct the surface, we must glue each copy of Sa along each of

the n curves that form its boundary to one or another of the copies of Sb.
The Speiser graph gives a recipe for carrying out these gluings. It is an
infinite graph with vertices labelled a and b and edges labelled by integers
between 1 and n. Each edge joins a vertex labelled a to one labelled b. Each
vertex has n edges coming into it, labelled 1, . . . , n. The vertices labelled
a correspond to copies of Sa, and those labelled b to copies of Sb. An edge
labelled i indicates that the copies of Sa and Sb corresponding to the ends of
the edge are to be glued along the parts of their boundaries that correspond
to the curve Ci.

Examples of Speiser graphs are shown in Figures 2 and 3. Figure 2 shows
the graph of the universal covering surface of the sphere with three punctures
(the Riemann surface of the inverse of the modular function). Figure 3 shows
the graph of the ”class surface” of the sphere with three punctures, which
is to homology what the universal covering is to homotopy; this surface is
discussed by McKean and Sullivan [12]. For more examples, see Wittich [20].

Here’s another way to look at the Speiser graph: Take the dual graph
of the graph C, label it as shown in Figure 4, and take the inverse image
under the covering projection. What you get is a copy of the Speiser graph,
sitting inside the covering surface. Note that a path of length two with edges
labelled i and i + 1 (modulo n) corresponds to winding once around one of
the branch points.
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Figure 1: The punctured sphere.
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Figure 2: The universal cover of the thrice-punctured sphere.
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Figure 3: The class surface of the thrice-punctured sphere.
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Figure 4: The dual graph.
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3 Determining the type of the surface from

the Speiser graph

In introducing the Speiser graph, Speiser’s idea ([18], [19]) was to determine
the type of the surface from properties of the Speiser graph. Since the graph
determines the covering surface up to the location of the punctures, and since
moving the punctures around doesn’t affect the type, the graph does in fact
determine the type; the problem is to find a simple, natural, useful, sharp
criterion expressed in terms of the graph itself. Many criteria were found
that were simple, natural, and useful [20], but never one that was sharp. I
am going to describe a criterion that is simple, natural and sharp, indicate
how to prove it, and discuss how useful it is.

4 Random walk an the Speiser graph

Following McKean and Sullivan [12], we define a certain random walk on the
vertices of the graph, which we will call the McKean-Sullivan random walk.
This is not the usual simple random walk, where the walker can move only to
a neighboring vertex. Instead, we allow the walker to move from one vertex
to any other vertex connected to it by a path in the graph that corresponds
to winding some number of times—integral or half-integral—around one of
the n branch points. Such a path can be described in terms of the labelling
as a path where the labels of the edges alternate between two integers that
are consecutive modulo n. For our purposes, it doesn’t matter what the
exact values of the transition probabilities are, as long as they are symmetric
and approximately Cauchy-distributed. This means that the probability of
a transition along a path of the kind we are considering must be the same
forward or backward, and it must be on the order of 1/(1 + k2), where k is
the length of the path.

Theorem. The McKean-Sullivan random walk on the Speiser graph of
a covering surface of the Riemann sphere with n points removed is transient
if and only if the surface is hyperbolic.
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5 A probabilistic explanation and an electri-

cal proof

This result is probabilistically obvious. The random walk on the graph is
a discrete caricature of Brownian motion on the surface. The big jumps
represent the fact that when the Brownian particle wanders in toward one
of the punctures, it may wind quite a few times around the missing point
before wandering back out to the graph again. We expect that the discrete
caricature should be transient if and only if the Brownian motion is, that is,
if and only if the surface is hyperbolic.

But while this result is probabilistically obvious, it is not at all clear how
to prove it using purely probabilistic methods. The key step of the proof I am
going to outline will depend on an analytic argument. The role of probability
in this whole discussion may be likened to that of the stones in the fabulous
stone soup.

The first step is to quadrangulate the punctured sphere as shown in Figure
5, and lift to get a quadrangulation of the covering surface. The graph
consisting of the edges and vertices of this quadrangulation is an extension
of the Speiser graph.

Now suppose we can show that Brownian motion on the covering surface
has the same type—transient or recurrent—as simple random walk on this
extended Speiser graph, where the walker moves with probability 1/n to each
of its n neighbors. To translate this information about random walk on the
extended graph into information about random walk on the Speiser graph,
we watch the random walk on the extended graph only when it is at points
of the Speiser graph. If we do this, it will appear that the walker is carrying
out a McKean-Sullivan random walk on the Speiser graph. But shutting our
eyes when the walker is outside of the Speiser graph doesn’t change the type
of the random walk, so the McKean-Sullivan random walk is transient if and
only if the surface is hyperbolic.

To complete the proof, we must justify the connection between the type
of Brownian motion on the surface and simple random walk on the extended
Speiser graph. To do this, it is best to abandon probability and make an
analytic argument, based on a method from the classical theory of electricity.
This method, called Rayleigh’s short-cut method, was introduced by Rayleigh
[16] as a way of finding upper and lower bounds for the resistance of an
electrical system; it is described at length in the monograph of Doyle and
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Figure 5: Quadrangulation of the punctured sphere.
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Snell [4]. The idea of applying Rayleigh’s method to the type problem is not
new, going back at least to Royden’s remarkable and much-overlooked thesis
[17].

The basis for the electrical argument is the observation that the Brownian
motion is transient if and only if there is a system of currents out to infinity
having finite dissipation rate. By a system of currents out to infinity, we mean
a vector field for which for a sufficiently large compact set, the vector field
is divergenceless outside of the set, and the total flux through the boundary
of the set is positive. The dissipation rate of the flow is the integral of the
square of the current density, that is, the square of the Hilbert-space norm
of the vector field.

Similarly, the random walk is transient if and only if there is a system of
currents through the edges of the graph out to infinity having finite dissipa-
tion rate. Here, the dissipation rate is the sum of the squares of the currents
through the edges.

To show that the graph and the surface have the same type—transient
or recurrent–one shows how a system of currents could be transferred from
the graph to the surface, or vice versa, without destroying the finiteness
of the dissipation rate. The ingredients of the argument can be found in
Royden’s thesis [17]. Transferring a flow from the graph to the surface is
easy: We simply fatten up the flow a little, taking the flow along each edge
and spreading it over a narrow strip. Transferring a flow from the surface
to the graph is a little trickier. The basic idea is to direct along each edge
of the graph a current equal to the flux through the corresponding edge of
the dual triangulation. The tricky part involves worrying about current that
cuts across a corner of one of the polygons in the dual triangulation. For the
original flow, the charge for doing this will be small, but for the transferred
flow, the charge will be just as much as if the same amount of current had
passed all the way across the polygon, and if we are not careful, we may
find that the dissipation rate for the transferred flow has become infinite.
Everything turns out all right, however, because for the extended Speiser
graph, the polygons of the dual triangulation don’t have too many sides, and
are not too dissimilar; this was the reason for looking at the extended graph
in the first place.
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6 How useful is this criterion?

This result gives, I believe, a very satisfactory explanation of how the type
of the surface is determined by properties of the Speiser graph. If this result
is to be more than a curiosity, however, we must explain how we propose to
tell whether the random walk we have defined is transient or recurrent. Oth-
erwise, we will merely have reduced one problem we can’t solve to another.

In certain cases, we may be able to apply traditional probabilistic methods
to determine whether the walk is transient or recurrent. For example, I
suppose that one could give a thoroughly probabilistic proof that walk on
the graph in Figure 3 is transient (though there is a better way to show
this, as I will explain shortly). In general, though, traditional probabilistic
methods don’t seem to be much help.

So how do we tell if the walk is transient or recurrent? The answer is,
translate the problem back into electrical terms and apply Rayleigh’s method
( [3], [4], [6], [10], [13] ). Taking this approach, it is easy to show that the
graph in Figure 3 is transient, thus giving another proof of the theorem of
Lyons, McKean, and Sullivan ([11], [12]) that the class surface of the sphere
with three punctures is hyperbolic. This approach can also be used to derive
known criteria for the type of the surface in terms of the rate of branching
of the Speiser graph [20]; these now appear as conditions for recurrence or
transience of the McKean-Sullivan random walk.

This suggests that what is really useful is not the result itself, but Rayleigh’s
method, the method by which the result is derived. The usefulness of
Rayleigh’s method is hardly news, however, because Rayleigh’s method is
equivalent ([5], [17]) to the method of extremal length, a geometrical method
that has been the basis for most of the work on the type problem ([2], [7],
[14], [15], [17], [20]).

This brings us to what may be the main use of this new criterion: It gives
us yet another proof that the type problem is solved, and Rayleigh’s method
is the solution. Not a formal proof, of course, but a proof in the sense of the
dictum: “Prove all things, hold fast that which is good.”
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