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Abstract

We show that if two closed hyperbolic surfaces (not necessarily
orientable or even connected) have the same Laplace spectrum, then
for every length they have the same number of orientation-preserving
geodesics and the same number of orientation-reversing geodesics. In
the orientable case, this result dates back to 1959, and can be proved
by a straight-forward application of the Selberg Trace Formula. The
extension to the non-orientable case involves a not-so-straightforward
application of the Trace Formula.
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1 Introduction

We say that two hyperbolic surfaces (assumed closed but not necessarily
orientable or even connected) are almost conjugate if their closed geodesics
match, in the sense that for every length l they have the same number of
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orientation-preserving geodesics and the same number of orientation-reversing
geodesics.

More generally, we say that two hyperbolic d-manifolds (assumed closed,
but not necessarily orientable or even connected) are almost conjugate if their
geodesics match with respect to length and ‘twist’. The twist of a geodesic
(also called its ‘holonomy’) is measured by the conjugacy class in O(d) of the
action of parallel translation around the geodesic. To say that geodesics have
matching length and twist amounts to saying that the corresponding deck
transformations are conjugate under the action of the full isometry group of
hyperbolic d-space.

While we haven’t specifically required it in the definition, the matching of
geodesics between almost conjugate hyperbolic manifolds, whether surfaces
or manifolds of higher dimension, can and should be taken to respect the
imprimitivity index of the geodesics as well as their length and twist.

Please note that here and throughout, by ‘geodesics’ we mean oriented
closed geodesics. Because our geodesics carry a designated orientation, the
number of geodesics of length l will always be even, with each unoriented
geodesic being counted twice, once for each orientation. So when we say, for
example, that the number of geodesics of length at most l is asymptotically el

l
,

we’re talking about oriented geodesics; the asymptotic number of unoriented
geodesics would be el

2l
.

According to the Selberg Trace Formula, almost conjugate hyperbolic
manifolds are isospectral : They have the same Laplace eigenvalues with the
same multiplicity. (Cf. Randol’s chapter in [3]; Gangolli [8]; Bérard-Bergery
[1].) And using Sunada’s method [13], it is easy to construct pairs of non-
isometric hyperbolic manifolds that are almost conjugate and hence isospec-
tral. Sunada’s method is very flexible, and works already in dimension 2: For
an exposition, see Buser [2]. The isospectral surfaces that Buser describes are
all orientable, but with trivial modifications the constructions can be made
to yield isospectral pairs of non-orientable surfaces. Since we don’t know of
any handy reference for examples of non-orientable surfaces, we’ll elaborate
on this in Section 4. (You’ll see very shortly why we care.)

We’ve said that according to Selberg, almost conjugate manifolds are
isospectral. What about the converse:

Question 1 If two hyperbolic manifolds are isospectral, must they be almost
conjugate?
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In the case of orientable surfaces, where there is no twisting to contend
with, the answer is yes: This is ‘Huber’s Theorem’ [9, 10, 11], dating back to
1959. Nowadays we recognize this as a straight-forward consequence of the
Trace Formula.

The purpose of this paper is to prove that the answer is still yes for
surfaces, even without the orientability assumption. As we will see, this is a
not-so-straight-forward consequence of the Trace Formula.

Theorem 1 If two hyperbolic surfaces (not necessarily orientable or even
connected) are isospectral, then they are almost conjugate.

Now it will be apparent why we care about the existence of isospec-
tral pairs of non-orientable surfaces: If such pairs didn’t exist, Theorem 1
wouldn’t go beyond Huber’s Theorem.

In higher dimensions Question 1 remains open, even in the case of con-
nected orientable manifolds. The issues at stake in higher dimensions are
well illustrated in the proof of Theorem 1—so you might be interested in this
theorem even if you don’t see why anyone would care about non-orientable
surfaces.

To see that the possible existence of isospectral hyperbolic manifolds that
are not almost conjugate is a question that must be taken seriously, we note
that in dimension d ≥ 3, there exist isospectral flat manifolds that are not
almost conjugate. The best possible example of this is the 3-manifold pair
‘Tetra and Didi’ [5]. In the flat case, some care is needed in defining almost
conjugacy, because while in a hyperbolic manifold geodesics come only in
isolation, in a flat manifold geodesics come in parallel families of varying
dimension. So in the flat case, matching geodesics between manifolds involves
measuring, rather than just counting. But Tetra and Didi will fail to be
almost conjugate according to any definition.

Note. For further insight into the possible existence of isospectral spaces
that are not almost conjugate, it is natural to expand the class of spaces
we’re considering from manifolds to orbifolds. (Cf. Dryden [6], Dryden and
Strohmaier [7].) Of course we need to extend the definition of ‘almost conju-
gacy’ appropriately. We don’t propose to discuss orbifolds in detail here, but
for the benefit of those familiar with orbifolds, we have appended some com-
ments in Section 5 below. Briefly, what we find is this: Theorem 1 extends
to rule out examples among hyperbolic 2-orbifolds. However, there are ex-
amples of isospectral flat 2-orbifolds (necessarily disconnected) that are not
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almost conjugate. And we still don’t know what happens in the hyperbolic
case in dimension ≥ 3.

2 Outline

Let M be a hyperbolic surface, and γ a geodesic of length l and imprimitivity
index ν (the number of times γ runs around a primitive ancestor). Define
the weight wt(γ) as follows:

wtM(γ) =











1
ν

if γ is orientation-preserving;

1
ν

tanh(l/2) if γ is orientation-reversing.
(1)

Define the total weight function

WM(l) =
∑

l(γ)=l

wt(γ). (2)

From the Selberg Trace Formula, we have

Proposition 1 Let M and N be hyperbolic surfaces, possibly non-orientable
or disconnected. M and N are isospectral if and only if WM = WN .

Sketch of proof. The weight wtM(γ) tells the spectral contribution of
γ, measured in units of the contribution of a primitive orientation-preserving
geodesic of length l(γ). Geodesics of different lengths make distinguishable
contributions to the spectrum, but the contributions from geodesics of any
given length get pooled together. (For details, see Randol’s chapter in Chavel
[3], specifically page 294; cf. also Gangolli [8] and Bérard-Bergery [1].)

To prove Theorem 1 above, it suffices to show

Theorem 2 If M and N are hyperbolic surfaces and WM = WN , then M
and N are almost conjugate.

Observe that this is a purely geometrical statement: All reference to the
Laplace spectrum has been laundered through the total weight function.

To prove Theorem 2, we will analyze how we might engineer agreement
between WM and WN without having total agreement between the geodesics
of M and N , and show that this is not possible without having infinitely
many lengths l for which the number of geodesics of length exactly l is at
least C el

l
, for C > 0. This will contradict the following Proposition, which is

a simple consequence of the so-called ‘Prime Geodesic Theorem’.
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Proposition 2 For any compact hyperbolic surface, the number of geodesics
of length exactly l is o( el

l
).

Proof. According to the Prime Geodesic Theorem (see [12]), for a con-
nected hyperbolic surface (whether orientable or not) the number F (l) of

geodesics of length at most l is asymptotic to el

l
. The number f(l) of geodesics

of length exactly l is given by the jump of F at l:

f(l) = lim
s→l+

F (s) − lim
s→l−

F (s). (3)

But if F is any positive increasing function asymptotic to G, the jumps of F
are o(G). So f(l) = o( el

l
). This establishes our claim for connected surfaces.

The extension to the general case is immediate, because the o( el

l
) estimate

holds separately on each of the finitely many connected components.

3 Proof of Theorem 2

Let αM(l) denote the number of primitive orientation-preserving geodesics
in M of length exactly l, and βM(l) the number of primitive orientation-
reversing geodesics.

Fix two surfaces M and N with WM = WN , and set

a(l) = αM(l) − αN(l); (4)

b(l) = βN(l) − βM(l). (5)

Note how, in the second definition, M and N have traded places. The reason
for this switch is so that a and b will tend to have the same sign (though
they may sometimes have opposite signs).

Let
L = {l : a(l) 6= 0 or b(l) 6= 0} (6)

and

L0 = {l ∈ L : l is not a multiple of any other element of L}. (7)

According to this definition, L is the set of lengths of geodesics where M
and N exhibit different behavior, and L0 consists of those lengths which
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are minimal with respect to the partial order where l � m means m = kl,
k ∈ N+. Every element of L sits above some minimal element, i.e.

L ⊆ L0N
+. (8)

Our job is to show that L0 = ∅.

Lemma 1 |L0| < ∞

Proof. Suppose l ∈ L0. By assumption, WM(l) = WN (l). Because l is
minimal in L, any contributions by imprimitive geodesics to WM(l) are ex-
actly matched by contributions to WN(l). This means that the contributions
of primitive geodesics of length l must match:

a(l) = tanh(l/2)b(l). (9)

Assume for convenience that a(l) > 0, and hence b(l) > a(l). Rewrite the
equation above:

b(l) − a(l) = b(l)(1 − tanh(l/2)); (10)

b(l) =
b(l) − a(l)

1 − tanh(l/2)
. (11)

When l is large,

b(l) =
b(l) − a(l)

1 − tanh(l/2)
≈

el

2
(b(l) − a(l)) ≥

el

2
. (12)

According to Proposition 2, the total number of geodesics of length exactly
l is o( el

l
). Here we have at least something on the order of el

2
geodesics of

length l. This puts an upper bound on l, and thus forces |L0| < ∞.
Let Podd denote the set of odd primes.

Lemma 2 For any l ∈ L0, only a finite number of the odd prime multiples
of l are also multiples of an element of L0 differing from l. Specifically,

|lPodd ∩ (L0 − {l})N+| ≤ |L0| − 1. (13)

Proof. If l1 ∈ L0, l1 6= l, then |lPodd ∩ l1N
+| ≤ 1. (This is a simple

fact about about divisibility: It has nothing special to do with lengths of
geodesics!)
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Now fix any l ∈ L0, and let p be an odd prime that avoids the finite set
for which pl ∈ (L0 − {l})N+. Since l is minimal in L, as above we have

a(l) = tanh(l/2)b(l). (14)

As above, assume for convenience that a(l) > 0, and hence b(l) > a(l).
By assumption, WM (l) = WN (l). The only geodesics that are ‘in play’

at length pl are those of length l or pl: That was the whole point of the
restriction we’ve placed on p. So

a(pl) +
1

p
a(l) = tanh(pl/2)

(

b(pl) +
1

p
b(l)

)

. (15)

Let’s rework this:

a(pl) − tanh(pl/2)b(pl) =
1

p
(tanh(pl/2)b(l) − a(l)); (16)

a(pl) − b(pl) + b(pl)(1 − tanh(pl/2)) =
1

p
(tanh(pl/2)b(l) − a(l)); (17)

b(pl) =
1
p
(tanh(pl/2)b(l) − a(l)) + (b(pl) − a(pl))

1 − tanh(pl/2)
. (18)

Look at the numerator here. For p large, 1
p
(tanh(pl/2)b(l)− a(l)) is close

to 1
p
(b(l) − a(l)), and b(l) − a(l) is a positive integer. And b(pl) − a(pl) is

always an integer: Not necessarily a positive integer, just some integer. As
soon as p is larger than 2(b(l)−a(l)), 1

p
(b(l)−a(l)) will be a positive fraction

smaller than 1/2, and adding an integer to it can only increase its absolute
value. This means that for p large, the smallest the numerator can be in
absolute value is something like 1

p
(b(l) − a(l)), which is at least 1

p
.

Meanwhile, the denominator is 1− tanh(pl/2) ≈ 2e−pl. So b(pl) is bigger

than something like epl

2p
. This contradicts Proposition 2—unless L0 is empty!

So L0 = ∅, and M and N are almost conjugate.

4 Isospectral nonorientable surfaces

It is well known that there are many examples of isospectral closed hyper-
bolic surfaces. The first example goes back to Vigneras [14], who constructed
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arithmetic examples from quaternion algebras. More recent constructions
have used Sunada’s method. Sunada’s method is very flexible, and can pro-
duce nonorientable examples as easily as orientable examples. But as we
don’t know of a reference for this, we briefly outline the procedure here. For
necessary backgound, see Buser [2].

If you take any pair of Sunada isospectral closed hyperbolic surfaces with-
out boundary, then they have a common quotient. Now just add what Con-
way calls a ‘cross-handle’ to this quotient, i.e., take the connected sum with
a Klein bottle. Or more generally, take the connected sum with any closed
non-orientable surface. Put the hyperbolic metric on this new quotient, and
lift everything (the cross-handles and the metric) back up to the covers. The
resulting surfaces are isospectral and nonorientable.

Another way of producing isospectral nonorientable pairs is to change
some of the gluings in known orientable examples where isospectrality is
proven using transplantation. To take a specific example, consider the sur-
faces described by Buser [2], Chapter 11, page 304. If you reinterpret Buser’s
glueing diagrams (Figures 11.5.1 and 11.5.2) so that the identifications on
the β geodesics are by translation, you get a non-orientable isospectral pair.
The β identifications now add four cross-handles, rather than four handles.
The transplantation method proving isospectrality in the orientable case con-
tinues to work here as well.

5 Comments on orbifolds

Here, as promised above, are some brief comments about orbifolds.
There are three independent examples of isospectral flat (disconnected)

2-orbifolds that are not almost conjugate, one involving quotients of a square
torus, and two involving quotients of a hexagonal torus. We describe them
using Conway’s orbifold notation [4].

A standard square torus has as 2- and 4-fold quotients a 2222 orbifold and
a 244 orbifold. If we call the torus S1 and the quotients S2 and S4, spectrally

S1 + 2S4 = 3S2, (19)

i.e., you can’t hear the difference between a torus with two 244s, and a trio
of 2222s.

A standard hexagonal torus H1 has as 2-, 3-, and 6-fold quotients a 2222
orbifold H2 (this is a regular tetrahedron); a 333 orbifold H3; and a 236
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orbifold H6. Spectrally,
H2 + H6 = 2H3 (20)

and
H1 + H3 + H6 = 3H2. (21)

From these relations we can derive, for example:

H1 + 3H3 = 4H2; (22)

H1 + 4H6 = 5H3; (23)

2H1 + 3H6 = 5H2. (24)

These examples arise from a careful analysis of the contributions of ro-
tations of various orders to the spectrum via the Selberg Trace Formula.
To explain just how this works would take us too far afield. However, it is
possible to verify isospectrality in these examples in a direct and elementary
way by using Fourier series to represent explicitly the eigenfunctions of the
component orbifolds, and checking that eigenvalues match up.

Among hyperbolic 2-orbifolds, no such examples exist, whether connected
or not. This is a corollary of Theorem 1, together with the observation
that, in contrast to the flat case, in the hyperbolic case elliptic elements of
differing order make distinguishable contributions to the spectrum. Again,
to go further into detail would take us too far afield.

Thanks
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stimulating discussions. We’re sorry to have to thank Peter Sarnak for point-
ing out that if a function is approaching a limit, its jumps must be getting
smaller and smaller.
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