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2 J LIMITS AND RATES OF CHANGE
2.1 The Tangent and Velocity Problems

1. (a) Using P(15, 250), we construct the following table: {(c) From the graph, we can estimate the

slope of the tangent line at P to be

=800 _ 333

t Q slope = mpg

694 -250 __ _ 444 __
5 (5,604) | S2A=20 _ A _ 444

10 | (10,444) | #4380 — 13 — 3838 b\ appronimate
graph of funcuon

20 | (20,111) | =E0 = 18 =278 1 approximate

2015 tangent line

25 | (25,28) P20 — 22 - 222

V (gallons}

30 | (30,0) 0-280 — 250 — 166 P

" H
(b) Using the values of ¢ that correspond to the points closest 1 ‘|'_? AN
to P (t = 10 and £ = 20), we have 5w o 20 23 30

¢ (minutes}

—38.8 + (—27.8)

= —33.3
5 33

42 — 36

2948 — 2806 __ 14
() Slope = =2 =55 = "2

42 — 38

1 (d) Slope = $82=204 =

2. (a) Slope = 2248 -2530 4_!138 69.67 (b) Slope = 2248=2661 _
2
7

From the data, we see that the patient’s heart rate is decreasing from 71 to 66 heartbeats/minute after 42 minutes.
After being stable for a while, the patient’s heart rate is dropping.

3. For the curve y = z/(1 + z) and the point P(1, $):

(a) (b) The slope appears o be ;.
Q mpgQ

(0.5,0.333333) | 0.333333 Oyttt
(0.9,0.473684) | 0.263158 )
(0.99,0.497487) | 0.251256 <
(0.999,0.499750) | 0.250125
(1.5,0.6) 0.2
(1.1,0.523810) | 0.238095
(1.01,0.502488) | 0.248756
(1.001, 0.500250) | 0.249875

y=ge+
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5 O GHAPTERZ LIMITS AND RATES OF CHANGE

4. For the curve y = /x + 4 and the point P(5, 3}:

(a) (b) The slope appears to be %
@ mpQ

(4.5,2.915476) | 0.169048 .
(4.9,2.983287) | 0.167132 ©y-3=¢la-5)or
(4.99, 2.998333) | 0.166713 yola 18

(4.999, 2.999833) | 0.166671 6 6

(5.5, 3.082207) | 0.164414
(5.1,3.016621) | 0.166206
(5.01, 3.001666) | 0.166620

(5.001, 3.000167) | 0.166662

y secant line at x = 4.5
tangent line at x =3
—-secant lineat x=35.5

~

y=\/x+4

secant line
atx= 5.5

5. (a) y — y(t) = 40t — 16#°. Att = 2,y = 40(2) — 16(2)? = 16. The average velocity between times 2 and 2 +
o _y@+h) —y(2) _ [40(2+h) - 162+ R)°] —16 _ 24k - 16A

(2+h)—2 h h
(i) [2,2.5]: b = 0.5, Vave = —~32 ft/s (i) [2,2.1]: b = 0.1, Vave = —25.6 ft/s

=-24-16h,if L #0.

(i) [2,2.05]: h = 0.05, vave = —24.8 ft/s  (iv) [2,2.01): h = 0.0L, vave = —24.16 ft/s

(b) The instantaneous velocity when ¢ = 2 (h approaches 0) is —24 ft/s.

6. The average velocity between ¢ and ¢ + h seconds is
58(t -+ h) — 0.83(¢ + h)? — (58t — 0.83t%)  58h — 1.66th — 0.83h°
58(t 4 ) ( +h) ( ) _ 58k 166::” 0-83h" _ 58— 1.66t— 0.83hif h £ 0.
{a) Here t = 1, so the average velocity is 38 — 1.66 — (.83h = 56.34 — 0.83h.
(i) [1,2]: h = 1,55.51 m/s (i) [1,1.5]: A = 0.5, 55.925 m/s
(iii) [1, 1.1): b = 0.1, 56.257 m/s (iv) [1,1.01]: A = 0.01, 56.3317 m/s

(v) [1,1.001]: A = 0.001, 56.33917 m/s

(b} The instantaneous velocity after 1 second is 56.34 m/s.
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7. 5 = s(t) = t°/6. Average velocity between times 1 and 1 + A is
s(1+h)—s(1)  (14+Rm)¥6-1/6 A +3h°+3h h*+3h+3 i£h 40

Ve = T Y R) -1 h 6h
@ @) [1,3): k=2 vae =2 ft/s Gi) [1,2): b = 1, Vave = % ft/s
(iii) [1, 1.5]: b = 0.5, Yave = 33 ft/s (v} [1,1.1]: B = 0.1, vave = 325 ft/s

(b) As h approaches 0, the velocity approaches 2 = 3 ft/s.

(c) s
44

s(24+ h) - 3(2)‘

. Average velocity between times ¢ = 2and ¢ = 2 + h is given by h

@ @h=3 = vy= @) 1788 _ 10 s g7y

(2) _119-32 %Z =435 fi/s

(iVh=2 = wv,=

(iyh=1 = = = = 38 ft/s

(b) Using the points {0.8, 0) and (5, 118) from the
approximate tangent line, the instantaneous

. —_ - 118—0
velocity at ¢t = 2 is about ¢4 ~ 28 fi/s.

. For the curve y = sin(10n/z) and the point P(1, 0):

(a)

x Q mpg Q
2 | (2,0) 0 5 | (05,0
1.5 | (1.5,0.8660) 1.7321 6 1 (0.6,0.8660)
1.4 | (1.4,-0.4339) | —1.0847 7| (0.7,0.7818)
1.3 | (1.3,-0.8230) | —2.7433 8| (08,1)
1.2 | (1.2,0.8660) 4.3301 9 | (0.9, -0.3420)
1.1 | (1.1,-0.2817) | —2.8173

As z approaches 1, the slopes do not appear to be approaching any particular value.
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{b) 1 We see that problems with estimation are caused by the

frequent oscillations of the graph. The tangent is so steep at

P that we need to take z-values much closer to 1 in order to

get accurate estimates of its slope.

N

-1
(c) If we choose = = 1.001, then the point ) is (1.001, —0.0314) and mpgy = —31.3794. If & = 0.999, then (7 is
(0.999,0.0314) and mpg = —31.4422. The average of these slopes is —31.4108. So we estimate that the
slope of the tangent line at P is about —31.4.

2.2 The Limit of a Function

1. As x approaches 2, f{xr) approaches 5. [Or, the values of f(z) can be made as close to 5 as we like by taking =
sufficiently close to 2 (but = # 2).] Yes, the graph could have a hole at (2, 5) and be defined such that f(2) = 3.

. As x approaches 1 from the left, f{x) approaches 3; and as = approaches 1 from the right, f(x) approaches 7. No,
the limit does not exist because the left- and right-hand limits are different.

. (a) ]in_l3 f(x) = oo means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x

sufficiently close to —3 (but not equal to —3).

(b) lim+ F(z) = —oc means that the values of f(x) can be made arbitrarily large negative by taking z sufficiently
T4t

close to 4 through values larger than 4.

. (a) }in%)f(:ﬂ) =3 {b)y lim f(z)=4 {©) lim f(z)=2

=3~ 3+

(d) ‘liné f(z) does not exist because the limits in part (b) and part (c) are not equal.

() f(3)=3

. (a) f(x) approaches 2 as x approaches | from the left, so lim f{z) = 2.

r—1-

(b) f(zx) approaches 3 as x approaches | from the right, so lim f{z) = 3.

x—1

(c) lim1 f(z) does not exist because the limits in part (a) and part (b) are not equal.
(d) f(x)approaches 4 as z approaches 5 from the left and from the right, so liné flz)=4.
{e) f(5) is not defined, so it doesn’t exist,

. (@) lim g(z)=-1 (by lm g{z)=1 (©) lingzg(w) doesn’t exist

T——2 r——2+

(d) g{(-2) =1 (¢) lim g{x)=1 () li]gl+ g{z) =2

r—2

(g) ling(ss) doesn’t exist (hy g(2) =2 (i) lim g(z) doesn't exist

x—at

(j) lim glz)=2 (k) g(0) doesn’t exist () lin})g( )=0

T4~

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION22 THELIMITOFAFUNCTION O 83

1. (@) lim g(t) = ~1 (b) lim gt} = -2
t—0- t—0t
() }ir% g{t) does not exist because the limits in part (a) and part (b) are not equal.
i = 1i t)=0
(d) lim g(t) =2 (e) lim g(t)

() }m; g(t) does not exist because the limits in part (d) and part (e) are not equal.

(g g(2)=1 (h)}ig}ig()zs

. (a) lim2 R{z) = —c ()] lim5 R(z) = oo
(d) Mm R(z)=o0
r——3+
(e) The equations of the vertical asymptotes are x = —3,x = 2, and z = 5.
. (a) 1in37f(:c) = —00 (b) lirE3 flz) = (c) lirr%] flz) =00
(d) lim f(z)=-c0 (e) linﬁl+ flz) =00
o6 T

(f) The equations of the vertical asymptotes are z = -7,z = -3,z = 0, and x = 6.

lim f(t) = 150 mg and Iim+ f(t) = 300 mg. These limits show that there is an abrupt change in the amount of
t-—=12— 112 -

drug in the patient’s bloodstream at ¢ = 12 h. The left-hand limit represents the amount of the drug just before the

fourth injection. The right-hand limit represents the amount of the drug just after the fourth injection.

(@) lm f(z)=1

z—0—

(b lim f(z)=0
z—0F

{c) lin}) f{z) does not exist because the limits in part (a) and part (b)

-2
L are not equal.

-0.5

12. lim f{x) exists for all @ except @ == £1.

E—aQ
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138 lim f(z)=4, lim f(x)=2,

z—3t z—3

Jim flz)y =2, f3)=3 f(-2)=1

flz) f(z)

2.5 0.714286 . 0.655172
2.1 0.677419 0.661017
2.05 ¢ 0.672131 0.665552
2.01 0.667774 (.666110

2.006 | 0.667221 0.666556
2.001 | 0.666778

2 —_ —
It appears that lgnz ;_—ﬂiwz =0.6=

x flx)
+1 0.329033
+0.5 0.458209
+0.2 0.493331
+0.1 0.498333
+0.05 | 0.499583
+0.01 | 0.499983

. sinz
It appears that lim ——— =
z-+0 T + tanx

14. lim f(xr)=1, lm f(z)=-1,

z-—0~ z~+0t

lm f(z) =0, lim f(c)=1 f(2)

T—2=

F(0) is undefined

- z? ~ 2z )
2 -x-2

z fz)

0 0
~0.5 -1
—0.9 -9
-0.95 | -19
~0.99 | -99
~0.999 | —999

16. For f(z)

- — 2z .
D S does not exist
132 —x -2

since f(x) — —-ooasz — —17 and f(z) —

It appears that lim

asx — —11,

18. For f(z) = \m/i—_lé

z | ) s | )

17 0.123106 15 0.127017
16.5 0.124038 15.5 0.125992
16.1 0.124805 15.9 0.125196
16.05 | 0.124902 15.95 | 0.125098
16.01 | 0.124980 15.99 | 0.125020

. vz —4 1
It that 1 =0.125 ==
appeats that e 7 — 16 T3
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:\/:c+4—2: 20.Forf(x)—tan3$‘
z

19. For f(x) = anbz

x f(z) z f(z) z f(=z)
1 0.236068 -1 0.267949 +0.2 0.439279
0.5 | 0.242641 —0.5 | 0.258343 +0.1 0.566236
0.1 | 0.248457 —0.1 | 0.251582 +0.05 | 0.591893
0.05 | 0.249224 —{.05 | 0.250786 +0.01 | 0.599680
0.01 | 0.249844 —0.01 | 0.250156 +0.001 | 0.599997

vi+4-2

T

=025 = :li- It appears that lim tande _ 0.6 = -g—

It appears that lim =
0 —0 tan bz

9* — 57
——:

21. For f(z) = —: 22, For f(z) =

z f(z) z f(z) x f(=z)
0.5 0.985337 . 0.183369 0.5 1.527864 —-0.5 0.227761
0.9 0.719397 . 0.484119 0.1 0.711120 —0.1 0.485984
0.95 | 0.660186 0.540783 0.05 | 0.646496 —0.05 | 0.534447 |
0.99 | 0.612018 0.588022 0.01 | 0.599082 —0.01 0.576706 |
0.999 | 0.601200 0.598800 0.001 | 0.588906 —0.001 | 0.586669

T 2

1 .
-1 _h6=3 It appears that lim, 9 - 5 0.59. Later we
*—

P — 3
It appears that illl]i m = 5

will be able to show that the exact value is
In(9/5).

= oo since (x — 5) — Oasz — 5% and 6 = > 0forz > 5.

—oco since {x — 5} — Oasz — 5~ andac6 5 < Oforx < 5.

. 2-z . . . . .
25, llm1 W = oo since the numerator is positive and the denominator approaches 0 through positive values
T — —_

asx — 1.

-1 —
26. limx— =—oosincen:2-40asa:—»0and—m—l-— <0OforQ <z <landfor—-2<z <0
r—0 332(37+2) m?(m+2)

. r—1 . + z—1
21. Pl‘lglﬁm~—0051ncc(3:+2)~—>0asa:—»~2 andm <Ofor-2<z <0
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28. lim cscx= lim (1/sinz) = cosincesinz —» Qasz — « andsinz > 0for0 <z < m

T—T T~

lim secxr= lim {1/cosz)= —ocsince cosz — 0asx — (—m/2)” and cosz < 0 for
oo (= /2) s—(=m/2)"

- <& < —wf2.

. z+1 . x=+1 . .
lim = —0o sifnce — 2asz — 17 and sin 7z — 0 through negative values as ¢ — 1%,
x

o1+ sinwx

. (a) f(z) =1/(z" - 1)

P /(@) z f(@)
0.5 —1.14 1.5 0.42
0.9 —3.69 1.1 3.02
.99 —33.7 1.01 33.0
0.999 —333.7 1.001 333.0
0.9999 —3333.7 1.0001 3333.0
0.99999 | —33.333.7 1.00001 | 33,333.3

From these calculations, it seems that lim f{z) = —oc and 1im+ flz) = oc.
r—1— z—1
(b) If  is slightly smaller than 1, then «* — 1 will be a negative number close to 0, and the reciprocal of z® — 1, that
is, f(z), will be a negative number with large absolute value. So lim f(z) = —oc.
z—1—

If x is slightly larger than 1, then 2 — 1 will be a small positive number, and its reciprocal, f(z), will be a large
positive number. So lim+ f(z) = cc.

z—1

{c) It appears from the graph of f that lim f{r) = —oc and
x—1-

wll,ﬂll+ (x) = oo.

€T T

— = CEDET 1).Thercf0re, asz — —1"or

R.ayy= =

x — 2%, the denominator approaches 0, and y > 0 for # < —1 and

forx >2s0 lm y= lim y=o0.Also,asxz — —1" or
z——11 r—2t

T — 27, the denominator approaches G and y < O for —1 < & < 2,

so lim y= lim y=—oc.

T—+—1" -2
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33, (a) Let h(z) = (1 + )™ (b) 6

T h(z) \

-0.001 2.71964
—0.0001 2.71842 —4
-0.00001 | 2.71830 L
—0.000001 | 2.71828
(.000001 | 2.71828
0.00001 | 2.71827
0.0001 2.71815
0.001 2.71692

1/%

It appears that lin%) {1+ )" = 2.71828, which is approximately e.

In Section 7.4 we will see that the value of the limit is exactly e.

34. For the curve y = 2° and the points P(0, 1) and Q(z, 27):

x Q mpg
0.1 (0.1,1.0717735) | 0.71773
0.01 (0.01,1.0069556) | 0.69556
0.001 (0.001,1.0006934) | 0.69339
0.0001 | {0.0001,1.0000693) | 0.69317

The slope appears to be about 0.693.

35. For f(z)} = x* - (27/1000):

(a)

T f(z) z f(x)
1 0.998000 0.04 0.000572
0.8 | 0.638259 0.02 —0.000614
0.6 | 0.358484 0.01 —0.000907
0.4 | 0.158680 0.005 | —0.000978
0.2 0.038851 0.003 | —0.000993
0.1 0.008928 0.001 | —0.001000
0.05 | 0.001465

It appears that lin}} f(z) = -0.001.
T—

It appears that lirr%) flz)=0.
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tanr — =

3. h(z) =

(a)

r3

r

h(x)

xr

h{zx)

1.0
0.5
0.1
0.05
0.1
0.005

0.55740773
0.37041992
0.33467209
0.33366700
0.33334667
0.33333667

0.001
0.0005
0.0001
0.00005
0.00001
0.000001

0.33333350
0.33333344
0.33333000
0.33333600
0.33300000
0.00000000

Here the values will vary from one calculator to another.

(b) It seems that lil’l'(l) hz) =%,

Every calculator will eventuatly give false values.
(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

0.4

37. No matter how many times we zoom in toward the origin, the graphs of f(x) = sin{n /x} appear to consist of
almost-vertical lines. This indicates more and more frequent oscillations as ¢ — 0.

IV\VAWM

1.2 1.2
b m : o m o
—-12 -1.2
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38, lim m= lim -—m—o. *,\/1—v2/c2—>0+.andm——+oo.

v—e— v—e /1 — ’U2/62

39. There appear to be vertical asymptotes of the curve y = tan(2sinz)

at r == +0.90 and x == £2.24. To find the exact equations of these

asymptotes, we note that the graph of the tangent function has vertical

asymptotes at x = 7 + wn. Thus, we must have 2sinx = § + 7,

or equivalently, sinz = § + Zn. Since —1 <sinz < 1, we must

have sing = +% and s0 x = +sin~! 7 (corresponding to
r =~ £0.90).
Just as 150° is the reference angle for 30°, 7 — sin™" % is the reference angle for sin™" 5. So

T = :i:(?r —sin~! %) are also equations of the vertical asymptotes (corresponding to x = +2.24).

40. (a) Lety = (z® — 1}/ (2 - 1).

x Y
0.99 5.92531
0.999 | 5.99250
0.9999 | 5.99925
1.01 6.07531
1.001 6.00750
1.0001 | 6.00075

From the table and the graph, we guess that the limit of ¥ as = approaches 1 is 6.

3 —_—
(b} We need to have 5.5 < e -1 < 6.5. From the graph we obtain the approximate points of intersection
Ve -1 P

P(0.9313853,5.5) and Q(1.0649004,6.5). Now 1 — 0.9313853 =2 0.0686 and 1.0649004 — 1 = 0.0649, so
by requiring that x be within 0.0649 of 1, we ensure that y is within 0.5 of 6.

2.3 Calculating Limits Using the Limit Laws

1 @ lim [f(z) + h(a)] = lim f(z) + lim h(z) ) lim (@) = [lim f@)]
=-3+8=5

© fim YR = 3/ fim hle) = V5 =2 ® 1 757 =

lim f(z)
. £) _ zoa _=3_ 3 .oglz)
© m ) = Tmh@) 8 - 8 () lim oy =

Z—a

(g) The limit does not exist, since lim g (z) = 0 but lim f(x) # 0.
T Tr—a

R 70 M L R T N
W MA@ - /@ Tmh) - Imf@)  8-(-3) I
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60 O CHAPTERZ LIMITS AND RATES OF CHANGE
2 (@) lim [f(z) +9()] = Jim f(z) + limg(z) =2+0=2
(b) il—.m1 g(x) does not exist since its left- and right-hand limits are not equal, so the given limit does not exist.
(©) lim [f(z)o(e)] = lim f(2) - lim (=) =013 =0

(d) Since lim1 g{x) = 0 and g is in the denominator, but lim1 f(z) = —1 # 0, the given limit does not exist.
T—— T——

0 2761 = i ]| i 0] = 21

(f) lim /3 + f(a) = \/3+L1L1111f(m) =3+1=2

. lim (32! + 222 —x+ 1) = lim 32*+ lim 22— lim ¢+ lim 1 [Limit Laws 1 and 2]
r——2 T——2 -2 x——2 r——2

=3 lim z* +2 lim z* — lim =+ lim_1 [3]
T——

r——2 T — T——

=3(-2)* +2(-2)2 - (-2) + (1) [9, 8, and 7]
=48+8+2+1=59

B 2
m 221 (e 4 ) [Limit Law 5]
'x—.2m2+6m—4_lim2(:c2+6x—4) ot L4

2 1iﬂ12 z* + 1in121
z—2 T2 T2
2(2)% +1 9 3
= = = = - 7
(22 +6(2)-4 " 12 4 [9, 7, and 8]

. 1in13(:1:2 —)(z* + 5z - 1) = 1im3(:c2 —4). lirr:la(m:3 +5z—1) [Limit Law 4]
E— T— xT—

= (lim 2* — lim 4) . (lir%:cs +5lmz—lm1)  [21and3]

Tx—3 r— z—

=(3¥-4).(3%+5-3-1) (7,8, and 9]
=5-41 = 205

. tlixgl(tz + 1Pt + 3)5= tliml(tz +1)%. Jim (¢ + 3)° [Limit Law 4]
3 5
. 2 . .
= [dm, @+ )] [ im,0+9) ]
3 5
:[lim #* 4+ lim 1] -[lim t+ lim 3] (1]
t——1 t—s—1 t——1 t——1

=[(-1)*+1]*-~1+3°=8-32=256  [9,7,and 8]
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1+ 3z 8 . 1+ 3z 8
- =|lim ———— [6]
1+ 452 + 314 a1 1+ 4z? + 324

[ lim(1+32) 3
]

5
lizn {1 + 42 + 3x* 51

Lae—1

{2, 1, and 3]

lirri1+31imla; 3
lim1+4lim z? + 3 lim x4
Le—+1 r—1 r—1
[ 1+3(1) o /1y

=|=1 =(z) ==z 7,8,and 9
_1+4(1)2+3(1)4} 8 3) =g U8anddl
2\/u4+3u+6=\/lirgg(u4+3u+6) (1

= /lim v*+3 lim u+ lim 6 {1. 2, and 3]

u—— U——2 u——

= /(=2)* +3(-2) +6 [9, 8, and 7]
=VI6 6+6=v16=4

lim v16 —x2 = / lim (16 — z2) [11]

r—4— x4

= / lim 16 — lim =x2 [2]

o—4d— z—d4—

=,/16 - (4)* =0 [7 and 9}

. (a) The left-hand side of the equation is not defined for x = 2, but the right-hand side is.

(b) Since the equation holds for all z 5 2, it follows that both sides of the equation approach the same limit as

x — 2, just as in Example 3. Remember that in finding lim f(x), we never consider x = a.
Tr—a

2 . -
i TET2 +x2 6 _ iy 23 =2)

£—2 T — r—2 r—2 Zlﬂ($+3):2+3:5

x? + 5z +4 . {z+ )z +1) . x+1 -4+1 -3 3
- —_— = hm _—————— = llm = = —_——= -
es—4724+3z—-4 oo-4(z+4)(r-1) 2o-4x-1 —-4-1 -5 b

lim

2
:E———E—MdoesnotexistsincemVQ~—>0butm2-—:c—l—6—>8asm—»2.

_limﬂw_lim r _ 4 4
Te—t(z—4)(z+1) s—o4z4+l 4415
lim 2 -9 — lim (t+3)(t-3) _ . £=3 -3—3 6 _ 6
3224 TE+3 =3 (2A+ 1)(E+3)

=32t +1  2(-3)+1 -5 5

2
, lim i 4z

— 2 " doesnotexistsincez® — 3z —4 — Obutz? — 4z — Hasx — —1.
r—-12? — 3z — 4

2_1 ch - h + h?
(Arh)7-16 . (A6+8h+h)-16 . 8+ =]im}L(8—erz;£itl}){8+h):8+0=8

h—D h h—0 h h—0 h

(z-D*+z+1) 24zl 1P+1+1 3

@-D@tl) e w+l  1+1 2
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g (LER) -1 (1+4h+6R° +4h° +4%) -1 . 4h+6h% +4h% + bt
g h = aho h " h—0 h

. h{4+6h +4h% + h%)
= lim
h=0 h

=lim (4+6h+ 4k +1°) =4+0+0+0=4

(2+h® -8 . (8+12h+6h*+h%) -8 12h+6h% 4+ A
2 = lim = lim ————
h h—0 h h—0 h

= lim (12 4+ 6h + h%) =124+ 0 +0 = 12

(3+ vt) (3-vi)
3- vt

= lim

=lim(3+vt) =3+v0=6
t—9

T hlo h VI+h+1 a0h(y1+h+1) A=0h(y1+h+1)

1 1 1
= lim = ==
E=01+h+1 V1+1 2

lim\/m~3-\/m-|_3—lim (z+2)-9
z7 =T  z+2+43 =7 (z-T)(Vz+2+3)

. r—7 1 1
= lim -

1
1‘ = = —
2t (z—T)(VZr2+3) *-7\Vat243 B+3 6

. {z+2){(z - 2)(=* +4)
1111 PR
=(2+2)(2° +4) =32

= lim (x + 2){z" + 4) = lim (z +2) lim (2” +4)

r+4

a——4 4 +x - rz——4 4;[:(4 + :L‘) - 1—1-11—14 E - 4(—4) -

(B -t £2 1
= 1m——=11m—=hm—=
to0 t(t2+¢) t—-0t-t{t+1) t—0t+41

L= (xz+9 . (V-3 (Vx+3)(2+9) factorz —Jasa
= lim = lim .
V-3 z—9 VI —3 difference of squares

= lim [(vZ +3) (z +9)] = (V8 +3) (9 +9) = 618 = 108

= lim i:_(:i,ti’l = lim __:_h__
" k=0 h(3+h)3 ;) A(3 + R)3

_ 1 _ 1 1
)] “A%[g(sm)] T 3(3+0) 9
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29.lim( 1 1) 1.m1—\/1+t_l, (1-vI+e)(Q+vVI+t) —t

— = — . —= = Im
tvi+t t 0 g1 FE =0 tVEFT(1+v1+1t) t=0t/T+E(1+VI+1)

t—0

. -1 -1 1

= lim
t—

Trt(l+vitt) VI+0(l+vIi+0) 2

GE(L-2) R -yE VL)
1—-yz z—1 1— /=

= lim

[difference of cubes]

=lﬁ[ﬁ(Hﬁ+m)]=lm[1(1+1+1)]m3

Another method: We “add and subtract’ 1 in the numerator, and then split up the fraction:

(YE-D+(1-a%) (1-z)(1+2)
= e —},‘Ei[‘“"—r_T]

1 (1-v2)1+vz)(1+1)
=am it -z

]=~1+(1+\/I)(1+1)=3

(b)

z /(z)
-0.001 0.6661663
—0.0001 0.6666167
-1 —0.00001 | 0.6666617

L --0,000001 | 0.6666662
0.000001 | 0.6666672

I

limO ————m 1 0.00001 | 0.6666717
r— xr — .
0.0001 0.6667167

(.001 0.6671663

The limit appears to be 2

3
(c) lim( il .‘1+3‘T+1)-—limw( 1+3a:+1) = lim I("1+3I+1)
20\ /T+3z—1 V1+3z+1/ =2-0 (1+3z)—1  =-0 3z

=

(VI+3z+1) [Limit Law 3]

!

8=

0

flin})(1+3$)+linhl] [1and 11]
/lin})l-l-Slin}]:r—}-l) [1,3,and 7]

1+3-0+1) [7 and 8]

Wl wWle

| pumee—

TN

I
Q= Wl W
dlalbil
=
+
=
I .
(2]

Wl
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32 (2

z (=)
—0.001 0.2886992
—0.0001 0.2886775
—0.00001 | 0.2886754
—0.000001 | 0.2886752

0.000001 | 0.2886751
0.00001 | 0.2886749
0.0001 0.2886727
0.001 0.2886511

The limit appears to be approximately 0.2887.

(C)hm(\/3+az—\/_ \/3+a:+\/")_1. (3+z)-3 S
S0z (V3tz+v3) =0VBte+

v VBratVs

lim 1
=0 [Limit Laws 5 and 1]

B lim /3 7+ lim /3

- ! [7 and 11]

/lim (3+2) + V3

1
S VBH0+V3
1
2v3
33. Let f(x) = -2, g(x) = 2* cos 20mz and h(x) = z*. Then

—1<cos20mr <1 = —x<z?cos20mz<z® =
f(z) < g(x) < h(z). Sosince lir% flz)y= lin}) h(z) = 0, by the
r— &

1,7, and 8]

Squeeze Theorem we have lir% glz) =0.

. Let f{z) = —Vx3 + 22, g(x) = V&3 + 22 sin{n/z), and
x) = vz? + 22. Then —1 < sin(w/z) <1 =
V3 + 22 < /xd + 2?sin(n/r) < Vi + 12 =
flx) < g{x) < h{x). Sosince alri_l“%f(:l’:) = al:l_l"l“l) h{z) = 0, by the

Squeeze Theorem we have lin}] g{z) =0.

.1 < flz) <z + 2+ 2forallz. Now lim 1 = 1and
z——1

hm1 (2 +204+2) = lun1 z? +2 hml T+ hm1 2 = (—1)% + 2(—1) + 2 = 1. Therefore, by the Squeeze
r—— 22— — T — T
Theorem, Iirn1 flz)=1.

E—
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.3z < f(x) <z +2for 0 <z < 2. Now lim 3z = 3 and liml(:r3+2) = 1irr11m3+li11112=13+2=3.
xr— r— r— I —r

Therefore, by the Squeeze Theorem, lim1 flz) =3

L 1< cos(2/z) <1 = —z* <x'eos(2/x) <z’ Since lim (~z*) = 0 and lim z* = 0, we have

lim [z* cos(2/x)] = 0 by the Squeeze Theorem.

1 <sin(2r/z) <1 = 0<sin?(2n/z) <1 = 1<1+sin’(2r/2) <2 =
vz <z [1+sin® (2r/x)] < 24/z. Since lim vz =0and lim 2/ =0, we have
&—0

r—0+

tim [vZ (1 +sin® (27/z))] = O by the Squeeze Theorem.

T

L Ifx > —4,then|z+ 4| =2+ 4,50 lim+|a:+4|= m {(r+4)=-4+4=0.
r——4

li
z——4+
Ifz < —4,then |z +4f = —(z+4),s0 lim lx+4[= lim —(z+4)=—-(-4+4)=0

r——4 =4

Since the right and left limits are equal, lim4 |z +4] =0
T——

- 4
Ltz < —4,then [z + 4] = —(m+4),so$_l§ﬂ_ i m_»h—l}r %—Z—l :IE_m4_ (-1} =—-1

-2 -2 .
dfz > 2. then|z -2 =z — 2,50 lim 22 _ i 2222 lim 1= 1. Iz < 2, then
r—2t Tz -2 2t z—2 r—2+
.z =12 . —(x-2) . . .
iz ~2|=—(z-2),s0 lim —— = lim 9% = lim —1 = —1. The right and left Limits are

z—2— T — -2 xr — z—2
" . lx—2
different, so lim | |
T2 I —

does not exist.

Lz > %,then |2z — 3| = 2x — 3, 50

22% — 3z 22% — 3 z(2z—3) . 3
T el Tl AN TR A C L) S| — 15 Ifz < 2, th
eyt 22— 3] amibt 22-3  amlst 283 soist T g e

2¢% — 3z 2z° — 3 z (2x - 3)
2z — 3| =3 —2z,50 i LT = lim %= lim -~z=-15.
|22 — 3 @ 50 lm 253 dm — 2 -3) el -2z —3) i P 5

22% — 3z

The right and left limits are different, so lim_————— does not exist.
z—1.5 |2x — 3

. . 1 1 . 1 1 .2 . .
. Since |z| = —zforz < O, wehave lim (- — — | = lm {~—— ] = lim —, which does not exist
x—0— \ T {fﬂl z—0— \ T —I x—0— T

since the denominator approaches 0 and the numerator does not.

44. Since |z| = z for £ > 0, we have lim (l 1 ) = lim (l - l) = lim 0=0.
z-+0

z—0t -’L‘AH r z—0t

45, (a) ’ (b) (i) Sincesgnz =1forz >0, lim sgnz = lim 1 =1
r—0+ —{+

(ii) Since sgnx = —1forz < 0, lim sgn xr = lim —-1= ~1.

z—0— x—0~

(iii) Since lim sgnzx # lim+ sgn x, liH‘l) sgn z does not exist.
z—0 &=

z—0~

(iv) Since |sgnz| = 1forx £ 0, Iin}] |sgnz| = lin}] 1=1
T—t T—
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86. (a) lim fl@) = lim (4—2%) = lm 4— lim z?

r—2— z—2 =2
=4-4=0

lim x— lim 1
z—2 =2+

lim f(x)

lim (¢ —1)=
x—2t z—2t (£ )

=2-1=1

{b) No, lim2 f(x) does not exist since lim f(x) # lir;1+ flz).
r— r—2- T —+

2_
a7. () (i) lim =
propy g

2_
() lim = —L

aveyt
{b} No, lim1 F(z)

48. (a) (1) lim Ah{x)=
z—0t

(i) lm h(z)

r—0~

E
=1

. 1'2 -
limm
z—1+ T~ 1

1_2

lim

L m @+1)=2

z—1t

-1
Iﬂ',"—ll ‘-::—-1_"-(1:—1)

x—1

lim z2=02=0

x—1{0

lim —(z+1)=-2

r—1~

does not exist since lim F(x) # lim F(x).

T—1"

lim z =0, so lim h(z) = 0.

x—0—

z-=0

(i) lim h(z) = lim ?=1"=1

(iv) lim h(z)= lim z*=2*=4
T2~ o2~

(v) lim h(z)= lim (§-2z)=8-2=6

z—2t -2t

{vi) Since lim h(z)

z-—2

# lim h(z), lim h{z) does not exist.
x—2+ x-+2

lim -2

T =2t

49, () (i) [z] = —2for -2 <z < —1,s0 ]im+[[zr,]] =

r——2

(~2)

(i) fz] = —3for -3 <z < -2,50 lim [z] =
T— =2 T——2"

so lim_ [x] does not exist.

T—s—

= lim (-3)=-3.

@iy {=] = JJim

—3for—-3 <3< -2,50 lin%4|[:1:]} =

b ()zf=n—-1forn—-1<z<n,s0 lim o] = lim (n-1)=n—1,

z—n— rT—n"

lim n=n
z—nt

(i [z) =nforn <z <n+1,s50 lim [x]

z—nt

(¢} lim [z] exists < ais not an integer.
rT—a

LN

(b) () lim f(=x)

T+

50. (a)

Hm (a:ﬁl[:c]]):zl_i}rf_[m—(n—l)]=n—(n—1)=1

T-+m T

lim (z—[x])

z—nt

(i) lim+ flz)

T—TL

= Iim+(:r—n)=n—n=0

(c) lim f(z)exists <> oisnotan integer.
T—q
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. The graph of f(z) = [z] + [—z] is the same as the graph of g(z) = —1 with holes at each integer, since f(a} =0
for any integer a. Thus, lir;]ﬁ f{z) = —1and lir;lJr fz)=—-1,50 il_}mQ f(z) = —1. However,

£2) = [21 4+ 1-2] =2 + (=2) = 0,50 lim f(2) # £(2).

o2
. lim (Lo\f 1-— ) Lg/1 —1 = 0. As the velocity approaches the speed of light, the length approaches 0.

v—oeT
A left-hand limit is necessary since L is not defined for v > c.
. Since p(z) is a polynomial, p(z) = ap + a1z + a2’ + - - - + anz™. Thus, by the Limit Laws,
lim p(z) = lim (ag o+ agzi 4+ an:c")
T—+Q T—a

—ag+a111m;c+a2hma: 4 -+ ap lim 27
Tr—a rT—a

=ag +aia+ az6” + - + @na” = pla)

Thus, for any polynomial p, lim p(z) = p(a).

. Letr(z) = g ; where p(x) and g(z) are any polynomials, and suppose that g(a) # (. Thus,

z—a [Limit Law 5] = 222 [Exercise 53] = r(a).

gla)

lim r{x) = lim
T—a ( ) T q(

p(z)  Jmp(z) (a)
)~ lmg(z)

. Observe that 0 < f(z) < z* for all z, and lin}) 0=0= lim0 z*. So, by the Squeeze Theorem, lin}] f(x) =0
T— r— r—
. Let f{x} = [z] and g(x) = —[x]. Then l'm?5 f{x) and 'lin;g(:c) do not exist (Example 10} but
lim [f(z) + g(x)] = lim ({z] — [=]) = lim 0 = 0.
r—3 z—3 T3

. Let f(x) = H(z) and g(z) = 1 — H(x), where H is the Heaviside function defined in Exercise 1.3.59.
Thus, either f or g is 0 for any value of z. Then lir% f(z) and lin}) g{z) do not exist, but
r— T—

tim [ (z)g(@)] = lim 0 = 0

\/S_E—z—lim(\/6_$_2~\/6m$+2-\/3_$+1)
Vi—z-1 «=2\\3-x~1 V6-z+2 V3—-z+1

= lim

l(\/ﬁ——m)z—22_\/ﬂ+1] _lim(ﬁ—xw4_m+l)

(vV3—z)' —12 VB-z+2 3—z-1 6—z+2

= im (2_‘7‘.(' _E+1) 1 V 3—x+1 l
23 (2-g)(Vo—T+2) -2\b-z+2 2

. Since the denominator approaches 0 as x — —2, the timit will exist only if the numerator also approaches 0 as

z — —2. In order for this to happen, we need lim2 (3$2 +ax+a+ 3) =0 <

(-2 +a(-2)+a+3=0 & 12-2a+a+3=0 < a=15 Witha = 15, the limit becomes

lim 322 +152+18 _ . 3@+ D(@+3) _ Lo 3@+3)  3(=2+3) 3 _
em2 24+z-2 -2 (z-D@+2)  e—-2 z-1  -2-1
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60. Solution 1: First, we find the coordinates of P and @} as functions of r. Then we can find the equation of the line
determined by these two points, and thus find the z-intercept (the point 1), and take the limit as r — 0.
The coordinates of P are (0, 7). The point Q is the point of intersection of the two circles z* + y® = r?and
(z — 1)® + y? = 1. Eliminating i from these equations, we get rP-zf=1-(z-1? & =14+22-1
o = %rz. Substituting back into the equation of the shrinking circle to find the y-coordinate, we get

(%1‘2)2 +y¥=r" & y¥=r¥l-3r") & y=r/1-;r? (the positive y-value). So the coordinates

of ¢ are (1 r2ry /1 - irz ) The equation of the line joining P and () is thus

0). We set & = 0 in order to find the z-intercept, and get

:—%N( /1—;_11_—7'24-1) 2( —1_%24_1).

i =
1—21"2*1

Now we take the limitas r — 0%: lim z = lim 2(1/ Ili )— lim 2 \/_+1)—4

r—0t r—Q+ r—=0t

So the limiting position of R is the point (4, 0).

Solution 2: We add a few lines to the diagram, as shown. Note that ~ PQS§ = 90° (subtended by diameter PS).
So £Z8QR = 90° = £0QT (subtended by diameter OT). It follows that LOQ5 = LT QR. Also

ZP8Q =90° — LSPQ = ZORP. Since AQOS is isosceles, so is AQT R, implying that QT = T'R. As the
circle Cz shrinks, the point ¢} plainly approaches the origin, so the point R must approach a point twice as far from
the origin as T, that is, the point (4, 0}, as above.

¥
P

2.4 The Precise Definition of a Limit

1. (a) To have 5z + 3 within a distance of (.1 of 13, we must have 129 <5z +3<13.1 = 99<5zx<10.1
= 1,98 < g < 2.02. Thus, z must be within 0.02 units of 2 so that 5z + 3 is within 0.1 of 13.

(b) Use 0.01 in place of 0.1 in part (a) to obtain 0.002.

2. (a) To have 6z — 1 within a distance of 0.01 of 29, we must have 2899 < 6x -1 <2901 =
2099 < 6z < 3001 = 4.9983 < z < 5.0016. Thus, x must be within 0.00186 units of 5 so that 6z — 1 is
within 0.01 of 29.

(b} As in part (a) with 0.001 in place of 0.01, we obtain 0.00016.
(c) As in part (a) with 0.0001 in place of 0.01, we obtain 0.0000186.
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. On the left side of z = 2, we need |z — 2] < |L2 — 2| = 4. On the right side, we need |z — 2| < |2 —2| = £.
For both of these conditions to be satisfied at once, we need the more restrictive of the two to hold, that is,

|z — 2| < 4. So we can choose & = £, or any smaller positive number.

. On the left side, we need |z — 5] < |4 — 5| = 1. On the right side, we need |z — 5| < [5.7 — 5| = 0.7. For both
conditions to be satisfied at once, we need the more restrictive condition to hold; that is, |z — 5| < 0.7. So we can

choose § = 0.7, or any smaller positive number.

. The leftmost question mark is the solution of /Z = 1.6 and the rightmost, /z = 2.4. So the values are
1.62 = 2.56 and 2.4% = 5.76. On the left side, we need |z — 4| < [2.56 — 4] = 1.44. On the right side, we need
|z — 4] < |5.76 — 4] = 1.76. To satisfy both conditions, we need the more restrictive condition to hold — namely,

|& — 4] < 1.44. Thus, we can choose § = 1.44, or any smaller positive number.

. The left-hand question mark is the positive solution of 2° = 1, thatis, z = %, and the right-hand question mark is -

the positive solution of % = 2, that is, z = \/g . On the left side, we need |z — 1| < |7z — 1| = 0.292 (rounding

down to be safe). On the right side, we need |z — 1| < L\/g - 1‘ =2 (1.224. The more restrictive of these two

conditions must apply, so we choose & = 0.224 (or any smaller positive number).

|VEZ+1-3/ <05 & 25<Az+1 < 3.5 Weplot the

three parts of this inequality on the same screen and identify the

z-coordinates of the points of intersection using the cursor. It appears

that the inequality holds for 1.3125 < z < 2.8125. Since

|2 — 1.3125! = 0.6875 and |2 — 2.8125| = 0.8125, we choose
0 < 6 < min {0.6875,0.8125} = 0.6875.

. Jsinz ~ 3] <01 <& 0.4 <sinz < 0.6. From the graph, we see that for this inequality to hold, we need
0.42 < x < 0.64. So since |0.5 — 0.42] = 0.08 and |0.5 — 0.64| = 0.14, we choose

0 < § < min {0.08,0.14} = 0.08,
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9. For & = 1, the definition of a limit requires that we find & such that f(él +x— 3:63) — 2’ <1l &
1 < 4+ z — 32% < 3 whenever 0 < |z — 1| < &. If we plot the graphs of y = 1,y =4+ 2z — 3z° andy = 3on
the same screen, we see that we need 0.86 < z < 1.11. So since [1 — 0.86] = 0.14 and |1 — 1.11] = 0.11, we
choose & = 0.11 (or any smaller positive number). For ¢ = 0.1, we must find é such that
[(4+2-32") -2/ <01 & 1.9<4+z- 32° <2.1 whenever0 < [z — 1| < 6. From the graph, we see
that we need 0.988 < x < 1.012. So since |1 — 0.988] = 0.012 and |1 — 1.012] = 0.012, we choose § = 0.012

{or any smaller positive number) for the inequality to hold.

4

r

[

102

10. For ¢ = 0.5, we need 1.91 < z < 2.125. So since |2 — 1.91| = 0.09 and |2 — 2.125] = (.125, we can take
0 <6 <0.09. Fore = 0.1, we need 1.980 < 2.021. So since |2 — 1.980] = 0.02 and |2 — 2.021| = 0.021, we

can take & = 0.02 (or any smaller positive number).

T
@+ 1) (z— 1)
(.93 <z < 1.07. So since [1 — 0.93| = 0.07 and

(1 —1.07] = 0.07, we can take & = 0,07 (or any smaller positive

11. From the graph, we see that

5 > 100 whenever

number),

08 : 1.2
0

12. For M = 100, we need —0.0997 < & < 0 or 0 < z < 0.0997. Thus, we choose § = 0.0997 (or any smaller
positive number) so that if 0 < |z| < &, then cot? z > 100.

200 y=cot’x

\ |

0.2

3 : :
=—0.0997 0 =0.0997
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For M = 1000, we need —0.0316 < = < Qor 0 < = < 0.0316. Thus, we choose § = 0.0316 (or any smalier

positive number) so that if 0 < || < 8, then cot® z > 1000.

\y = cot?x

( H
=—0.0316 0 ~=~0.0316

0.1

13. (a) A=mrand A = 1000ecm? = 7r? =1000 = r?=1200 =

p= /00 [r50] x17.8412cm.

(b) [A 1000, <5 = -5<ar?-1000<5 = 1000-5<mr? <10004+5 =

VB <p < 1008 o 177966 < r < 17.8858. /0 — (/2 2 0.04466 and

/128 /180 0.04455. So if the machinist gets the radius within 0.0445 cm of 17.8412, the area will be
within 5 cm? of 1000.

(¢) z is the radius, f(x) is the area, o is the target radius given in part (a), L is the target area (1000), & is the
tolerance in the area (5), and & is the tolerance in the radius given in part (b).

. (@) T = 0.1w? + 2155w +20and T = 200 = 202 (°C)
'd
0.1w? + 2.155w + 20 = 200 = [by the quadratic formula or T=201 /
from the graph] w = 33.0 watts (w > 0)

35
(watts)

(b) From the graph, 199 < T <201 = 3289 <w < 33.11.

fc) x is the input power, f(x) is the temperature, a is the target input power given in part (a), L is the target
temperature (200), £ is the tolerance in the temperature (1), and ¢ is the tolerance in the power input in watts
indicated in part (b} ((.11 watts).

15. Given £ > 0, we need & >> 0 such that if 0 < |z — 1| < &, then
(2z+3)—5|<e But|(2z+3)-5|<e & [2z-2|<e¢
& 2z-1<e & |z-—1]<e/2 Soif wechoose § =¢/2,
then < |z — 1) <& = (224 3)—5 <e Thus,

liml(2:c —+ 3) = 5 by the definition of a limit.
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16. Given = > 0, we need § > 0 such that if 0 < |z — (—2)| < &, then
|Gz +3)-2| <eBu|(je+3)-2/<e &

lz+1)<e & jlz+2/<e & |- (-2)] <2.Soif

we choose § = 2¢,then 0 < |z — (=2)| <& =

|(3z +3) — 2| <& Thus, xlinjz(%a: + 3) = 2 by the definition of a

limit.

. Given g > 0, we need § > 0 such that if 0 < |z — (—3)| < &, then
(1 —dx) — 13| <e. But|(l—4dz) —13| <& &
-4z —12|<e & |-A||lz+3<e & |z—-(-3)]<e/d
Soif wechoose 6 = g/4,then 0 < |z — (-3){ <6 =
[(1 —4x) — 13| < e. Thus, z[i}r_l3(1 — 4z) = 13 by the definition of

a limit,

. Given £ > 0, we need 6§ > O such thatif 0 < |z — 4| < 6, then
(7T —3x)— (-5)| <e But{{7—3z) - (-5} <e
3z +12/<e & |-3||lz—4<e & |r—4 <e/3. S0
if we choose § = ¢/3,then0 < [z —4| < § =
I(7 — 3z) - (—5)] < e. Thus, a]ciE};W — 3z) = —b5 by the definition

of a limit.

-3
7

-5-¢

19. Given e > 0, we need § > O such that if 0 < |z — 3| < 6, then §—§‘<E & tz-3l<e &

|z -3
— < £

|z — 3| < 5e. Sochoose § = 5e. Then0 < |z —3| <6 = |z—-3|<be = 5

=

%—g}<5. Bythedeﬁnitionofalimit,iiir}}g:g.
20. Given ¢ > 0, weneed § > Osuchthatif 0 < [z — 6] < 6. then [(2+3) ~ 3| <e & |2-%|<e &
Llz-6/<e & |r—6]<de. Sochoosed =4c. Then0 < |z -6 <8 = |z—6]<4de =

|z — 6]

1 <e = |%—g|<€ = |(§:+3)A%|<5.Bythedeﬁnitionofalimit,iLmﬁ(f+3):%.

- 21, Givene > 0, we need 6 > O such that if 0 < |o — {=5)| < &, then |{(4 — $2) - 7| <& &
~2z-3l<e & Zlz+5/<e & |o—{(-5)| < e Sochoosed = Ze. Then |z — (-B)| <& =

|(4 - 2z} — 7| < e. Thus, lim_ (4 — 22) = 7 by the definition of a limit.
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24+ —12

3 " 7‘ < €. Notice that if 0 < [z — 3,

2242 —12 _ (z+ 4}z — 3)

th 3,
enz #£ 3, 50 p— p—

=z + 4. Thus, when { < |z — 3|, we have
o+ —12
x—3

24+ z—12
r—3

—7‘<s & |z+4)-T<e & |z—-3/<e Wetaked =candseethat 0 < |z —3| <4

2 ~12
- 7’ < &. By the definition of a limit, lim =% —~% =7,
z—3 z—3

. Givene > 0, we need § > O such thatif 0 < |z — a| < é, then |z — a| < &. So § = £ will work.

. Given & > 0, we need & > 0 such that if 0 < |z — a| < &, then |c - ¢| < £. But |c — ¢| = 0, so this will be true no -
matter what & we pick.

. Given £ > 0, we need § >> 0 such that if 0 < |z — 0] < &, then |9:2 70| <g & z¥<e <« lr|< e Take
§=E ThenO< |z -0/ <6 = |2°-0|<c Thus, Jim x? = 0 by the definition of a limit.

. Given & > 0, we need § > O such thatif O < |z — 0] < &, then |z — 0| < ¢ & 2 <e & |z]< ¥
Take § = /2. Then0 < [z — 0] <& = |z° - 0| < §* = & Thus, lim 2 = 0 by the definition of a limit.

. Given & > 0, we need § > 0 such that if 0 < |z — 0] < &, then ||z| — 0] < &. But |||} = |z|. So this is true if we

pick § = ¢. Thus, limD |z] = 0 by the definition of a limit,

.Given£>0,weneed6>Osuchthatif9—6<:ﬂ<9,then|\4/9u;n-0|<5 & YiI-—z<e &
g-z<e! & 9-cl<zr <9 SotakeS=¢"Then9-86<z<9 = |¥9—z-0|<e Thus,
lim /9 — z = 0 by the definition of a limit.

z—9—
. Given e > 0, we need § > 0 such that if 0 < |z —~ 2| < &, then |(2” — 4z +5) — 1| <& &
|22 —4z+4|<e & |(z-2)°|<ec Sotakeb=\EThen0<|z—2[<§ & [z-2<E &
|(@ = 2)*| <& Thus, lim (z* — 4z + 5) = 1 by the definition of a limit
r—

 Givene > 0, we need & > 0 such that if 0 < |z — 3| < 6, then |(z? + 2 —4) — 8| <& & |? 4312/ <e
& {z—3}z+4)] <e Noticethatif |z — 3] < L,then-1<z-3<1 =

6<z+4<8 = |z+4 <8 Sotaked =min{l,e/8} Then0 < iz -3|<d <«

|(z — 3){z+4)| < {8(zx—3)| =8|z — 3] <8 <& Thus, }clil’}; (2® + = — 4) = 8 by the definition of a limit.

. Given & > 0, we need § > 0 such that if 0 < |z — (—2)] < &, then |(z® — 1) — 3| < & or upon simplifying we
need |z — 4| < & whenever 0 < |z 4 2| < §. Notice thatif [z +2[ < Lthen -1 <z +2<1 =
—5<zx—-2<-3 = |r-2/<5 Sotakeé=min{e/5,1}. ThenO < |z +2| <é = |r—2| <5and
x+2| <g/5,50 (x> = 1) = 3| = |[(z + 2)(z — 2)| = |z + 2|z — 2| < (¢/5)(5) = &. Thus, by the definition

of a imit, lim (2:2 - 1) = 3.
T——2

. Given ¢ > 0, we need § > 0 such that if 0 < |z — 2| < &, then |z — 8| < . Now
|2* = 8| = [(z = 2) (2® + 22 +4)|. If |& — 2| < L, thatis, 1 <z < 3,thena® + 22 +4 < 3 +2(3) +4 =19
and so o — 8| = |z — 2| (2% + 22 + 4) < 19|z ~ 2|. Soif we take § = min {1, {5}, then
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0<|z—2/<é = |2°-8|=|z—2|(z* +22+4) < 519 =& Thus, by the definition of a limit,

lim z® = 8.
r—2

. Givenz > 0, welet§ =min {2,£}. O < |z —3| < thenfz -3 <2 = -2<r-3<2 =
4<z+3<8 = |r+3 <8 Also|z—3|< £, s0]z® -9 =|z+3||z—3 <8-§=e Thus,

lim x% = 9.
r—3

. From the figure, our choices for § are §1 = 3 — /9 —cand

&2 = /9 + € — 3. The largest possible choice for & is the minimum
value of {81, 6z2}; thatis, § = min{é1,82} = 2 = /9 +¢e—3.

. {a) The points of intersection in the graph are (zy, 2.6) and (z2,3.4)

with 21 =~ 0.891 and z2 = 1.093. Thus, we can take 6 to be the

smallerof 1 — z; andxp — 1. So 6 = 22 — 1 = 0.093.

(b) Solving z* + 2 + 1 = 3 + ¢ gives us two nonreal complex roots and one real root, which is
2/3
216 + 108¢ + 12+/336 + 324¢ + Ble? -12
_’1;(5) = ( + e 4+ '\/ + €+ 3le ) YERE Thus, & = ;c(g‘) — 1.
6 (216 + 108e + 12¢/336 + 324c + 81¢? )

(c) If e = 0.4, then z(£) = 1.093 272342 and § = z(e¢) — 1 ~ 0.093, which agrees with our answer in part (a).

. 1. Guessing a value for 5 Let ¢ > 0 be given. We have to find a number § > 0 such that i - % < & whenever

1 1 2 - -2 1
0<|z—-2<é But ——§‘=‘ Il = e I<s. We find a positive constant C such that — < C =

2z |2z| | 2|

% < C|z — 2| and we can make C' |z — 2| < & by taking |z — 2| < % = &. We restrict z to lie in the
1 1 1
interval [z — 2| <1 = 1<zl:<3sol>—1—>l = <i< = — < =.S0C=<is
T 2z |2z] 2 2
suitable. Thus, we should choose § = min {1, 2¢}.
2. Showing that 6 works  Givene > Owelet§ = min {1,2¢}. If0 < |z — 2f < §, thenjz — 2| <1 =
1| |z—2

1 1 1 1
~ (asi ) - ,50 |~ — =| = — - 2¢ = ¢. This sh
l<z<3 = 12w|<2(as1npanl) Also |z — 2{ < 2¢, 50 == 2] < 5 - 2¢ = &. This shows

that lim(1/x) = 3
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37. 1. Guessing a value for § Given g > 0, we must find § > 0 such that |\/z — v/a| < € whenever
|z — g , : . .
— &. But - = 278« ¢ (from the hint). Now if we can find a positive constant C' such
0 <l ol <6 ButlVE - Vel = <2 < ) po
|z — qf |z — aj

VI +ya c

restricting  to Jie in some interval centered at a. i | — a| < 3a, then —fa<z-a< la = ja<z< 3a

< &, and we take |& — a| < C'e. We can find this number by

that /z + +/a > C then

= T+ va >4/ ia+a andso C =/ 30+ /aisasuitable choice for the constant. So

|z —al < (w;_l;a + \/E)s. This suggests that we let & = min {%a, (\/ je+ \/C_L) }

2. Showing that § works ~ Given g > 0, we let § = min {%a, (\/%a + \/E)s}. If0 < |x — a| < &, then
lz—a) < ta = Vr+ya>,/ia+a(asinpartl). Alsolr—al< ( %a-}-\/a)s,so

o—a_ (Vo724 Va)e

I\/E_\/alzﬁ+\/a< (\/a_/Q-I-\/E)

= ¢. Therefore, lim /z = \/a by the definition of a limit.
r—a

. Suppose that zin}) H(t) = L. Givene = 3, there cxists § > Osuch that 0 < [¢| < 6 = [|H({t) — L| < i e

L-l<H@#)<L+3} For0<t<8H({t)=Lsol<L+j3 = L>3 For—6<t<0H(t)=050

L-1<0 = L < 3. Thiscontradicts L > 3. Therefore, lim H (t) does not exist.

. Suppose that lim f(z) = L. Given ¢ = 1, there exists § > Osuchthat 0 < |z{ <& = |[f(z) — L| < 3. Take

any rational number r with 0 < |r| < 8. Then f(r) = 0,500 — L| < ,s0 L < |L| < §. Now take any irrational
number s with 0 < |s| < &. Then f(s) = 1,50 |1 — L| < . Hence, 1 — L < 3, s0 L > 1. This contradicts

L<3,s0 1irr%J Sf(x) does not exist.
Ir—

. First suppose that llix}z f(x) = L. Then, given £ > 0 there exists § > Osothat 0 < |z —a| <6 =
[f(z) L <eThena—é<z<a = 0<|z—a|<éso|f{z)- L] <e. ThUS,TET_ f(z) = L. Also
a<z<a+éd = 0<|zx—a|l<bso|f(z)—L| <s.Hence,mEr?+f(m)=L.

Now suppose lim f(z)=L = Il_i’rt111+ f(x). Lete > 0 be given. Since wl_igﬁ f{z) = L, there exists 61 > (so

T—a

thata — 6, <x <a = |f(z)— L <e. Since lim+ f(z) = L, there exists 82 > Osothata < & < a+ 62

xr—a
= |f(x) — L| < e. Let 6 be the smaller of §; and 82. Then0 < [z —a| < § = a-b1 <z <aor
a<x<a+bso|f(x) - L| < e Hence, lim f(z) = L. So we have proved that lim f(z) =L <

lim f(z) = L= lim f( )-

T—a

& jz—(-3) < L

1
4. > 10,000 & (z+3)*< & |r+3|< o

(x+3) 10,000

1
+'10,000
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42. Given M > 0, weneed 6 > Osuchthat0 < jz 4+ 3| <& = 1/(xz+3)* > M. Now

{x

1 1 1
4

< — & |r+3 < —.Sotake b6 =
M | | VM v M

1 1
—— > M,s0 i =
=+ 3 > M,so Nm (z + 3)4 o0

(z+3) .Then0 < jz+3j <é=

4

5
. Let N < O be given. Then, forx < —1, we have ———— < N

(z+1)

__al5 1 _ 3/ O

§= N.Then l-é<e<-1 = N<a:+1<0 =
) 5
Hm
z——1~ (z+1)

3 =

. (a) Let M be given. Since lim f{z) = co, there exists §; > Osuchthat 0 < |z —a| < 61 =

r—a

flx) > M +1 — ¢ Since lim g{z) = c, there exists §2 > Osuchthat 0 < [z —a| < &2 = |glx)—¢c| <1
r—a

=» g{z) > ¢ — 1. Let § be the smaller of §; and é;. Then0 < | —a| <§ =
flz)+g(z) > (M +1—¢) +{c— 1) = M. Thus, lim [f(x) + g(x)] = oo.

{b) Let M > 0 be given. Since lim g{x) = ¢ > 0, there exists §; > Osuchthat 0 < |z —a| < §; =
lg(z) —c| <¢/2 = g{z) > c/2 Since lim f(x) = oc, there exists f2 > O such that 0 < |z — af < 2
T—a

g-ﬁ(—irf—l’tff,so

= f(z)>2M/ec Let§ =min{d1,82} ThenO < [z —a| <& = flz)g(z) > 5 =

lim f(z) g(z) = oo.

{c) Let N < 0 be given. Since lim g(z) = ¢ < 0, there exists §; > Osuch that 0 < |z —a| < §; =

T—+a

lg(z) —¢| < —¢/2 = g(z) < ¢/2. Since lim f(x) = oo, there exists é2 > O suchthat 0 < |z — a| < &2

= f{z) >2N/c. (Notethate < 0and N <0 = 2N/¢ > 0.) Leté = min{é;,82} Then
2N ¢

O<|jz—al<é = flz)>2N/c = f(a:)g(a:)<T-§=N,soiiil}1f(a:)g(:c)=_oc.

2.5 Continuity

1. From Definition I, lin}1 flz) = f(4).
r—

2. The graph of f has no hole, jump, or vertical asymptote.

3. (a) The following are the numbers at which f is discontinuous and the type of discontinuity at that number:
—4 (removable), —2 (jump). 2 ( jump}, 4 (infinite).
{by f is continuous from the left at —2 since lim f(x) = f(—2). f is continuous from the right at 2 and 4 since
z2—=—=2"

lim f(x)= f(2)and 1im+ f{z) = f(4). Ttis continuous from neither side at —4 since f({—4) is undefined.
z—d

T—2™

4. g is continuous on [-4, -2}, (-2, 2), [2,4), (4,6), and (6, 8).
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8. The graph of y = f(z) must have a discontinuity
at x = 3 and must show that lim f{z) = f(3).
z—3

ina ]§?°S§ (b) There are discontinuities at times ¢ = 1,2, 3, and 4. A
n aoliars
person parking in the lot would want to keep in mind

that the charge will jump at the beginning of each hour.

(in hours}

8. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any
instantaneous jumps from one temperature to another.

(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City
increases, without any instantaneous jumnps.

(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump
from one height to another without going through all of the intermediate values— at a cliff, for example.

{(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.

(e) Discontinuous; when the lights are switched on (or off }, the current suddenly changes between 0 and some
nonzero value, without passing through all of the intermediate values. This is debatable, though, depending on
your definition of current,

, Since f and g are continuous functions,
iLnla [2f(x) —g(x)] =2 ierlé Fflz) - lim glx) [by Limit Laws 2 and 3]
=2f(3) — 9(3) [by continuity of f and g at z = 3]
=2-5-9(3) =10 — g(3)
Since it is given that il_r% [2f(z) — g(z)] = 4, we have 10 — g(3) = 4,50 g(3) = 6.
lim f(z) = lim (2° + V7~ <) =iﬂw2+\/W:42+m:lﬁ+\/§=f{4).

By the definition of continuity, f is continuous at a = 4.

4
. lim f(z) = lim (x +22%)* = (ml_i’rglm +2 lim :1:3) =[-1+ 2(—1)3]4 =(-3)" =81 = f(-1).

£— -

By the definition of continuity, f is continuous at ¢ = —1.
lim x + lim 1
. Ceox+l Ty s 4+1 5 , .
. zh_rgg(sc) = a]:}—IEl 5% 1 2fmeE—tml 2@Z-1 31" g{4). So g is continuous at 4.

£—d r—4
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9% +3 Lim (2z + 3) 2lim z + lim 3
) . — 1 — T . L - r—a T-—a
18, Fora > 2. wehave lim flo) = A 25 = Bm@—2 M S lm 2

T—a r—a r—a

[1,2,and 3] = % [7and 8] = f(a). Thus, f is continuous at x = a for every a in (2, 00); that is, f is

continuous on (2, co).

14. Fora < 3,wehave lim g(z} = lim 23 -2z =2lim /3 —2 [LimitLaw3] =2 /lim({(3—-x) [!{1]
r—a T—a r—ra r—a

=2 /lim3—limx [2] =2v3—a [Tand8] = g(a),so g iscontinuous at x = a for every a in

x—n T—i2

(—o0, 3). Also, lim g(xz) = 0 = g(3), so g is continuous from the left at 3. Thus, g is continuous on {—oc, 3|.
=3

15. f{z)=— = _1 % is discontinuous at 1 since f(1) is not defined.

1/(x—=1) ifx#1
16. f{z) — 9 e ) is discontinuous at 1 because
if =

lim f(z) does not exist.

z—1

. fz) 1-z° ifzr<l
. ) =
1/z it z>1

The left-hand limit of f ata = 1 is
lim f(z) = 11m7(1 — z%) = 0. The right-hand limit of f ata =1

e—1- z—

is lim f(x} = hm (1/z) = 1. Since these limits are not equal,

r—1t z—1+

hm1 f(x) does not exist and f is discontinuous at 1.
T—

22—z
if 1
13-f(-17)_{$21 if z#
1 ifz=1

x
hm flz) = llm1 P

_ialxﬁ-l

but f(1) = 1, so f is discontinous at 1.
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9. fz) ={ «+3 ,
-5 fe=-3 (75 Hfe=-3

So limsf(m) = xliTS( 4) = —Tand f(-3) = ~5.

T —

2
" —z-12 if @ # -3 {.1:——4 if z# -3

Since lim3 flz) # f(=3), f is discontinuous at —3.

1422 ifz<l
(z) =
4—z ifx>1

lim f(z)= lim (1 +2*) =1+1"=2and

r—1- r—1—

i =1 i — = —1=23.
hm+ (z) 3’:llr1111+(4 z) =4 3

Thus, f is discontinuous at 1 because lim1 f(z) does not exist.
L —

. F(x) = _ {5 a rational function. So by Theorem 5 (or Theorem 7), F is continuous at every number in

T
2 +5x+6
its domain, {z |z + 5z +6 #0} = {z | (x +3)(z+2) # 0} = {z |z # -3, —2}or
(—o0, —3) U (-3, -2} U (-2, 00).

. By Theorem 7, the root function ¥z and the polynomial function 1 + > are continuous on R. By part 4 of
Theorem 4, the product G(z) = /= (1 + 5153) is continuous on its domain, R.

. By Theorem 3, the polynomials 2% and 22 — 1 are continuous on (— o0, 00). By Theorem 7, the root function /i is
continuous on [0, co). By Theorem 9, the composite function +/2z — 1 is continuous on its domain, [3,00). By
part 1 of Theorem 4, the sum R(z) = z* + /2z — 1 is continuous on [£,00).

. By Theorem 7, the trigonometric function sin  and the polynomial function z + 1 are continuous on R. By part 5

of Theorem 4, h (z) = :j—ml is continuous on its domain, {z | z # —1}.

. By Theorem S, the polynomial 1 ~ z* is continueus on (—oc, 00). By Theorem 7, cos is continuous on its domain,

R. By Theorem 9, cos(1 — z*) is continuous on its domain, which is R.

. By Theorem 5, the polynomial 2z is continuous on (—o0, o0). By Theorem 7, tan is continuous at every number in
its domain, that is, {m | z # Z + nn}. By Theorem 9, tan 2z is continuous on its domain, which is

{x|2x # 2 +an} ={z|z#Z+ En} (the odd multipies of 5).

. By Theorem 7, the root function 1/ and the trigonometric function sin z are continuous on their domains, [0, co)
and (—o0, 0o), respectively. Thus, the product F(x) = \/z sinz is continuous on the intersection of those domains,
[0, 00}, by part 4 of Theorem 4.

. The sine and cosine functions are continuous everywhere by Theorem 7, so F' (z) = sin(cos(sinx)), which is the
composite of sine, cosine, and (once again) sine, is continuous everywhere by Theorem 9.
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1 . . .
10 y = ———— is undefined and hence discontinuous when
1+sinz

l+sint=0 ¢ sinz=-1 & z=-3+2mn,nan

integer. The figure shows discontinuities for n = —1, 0, and 1; that

. 5mr T 3
is, -5 = —7.85, i —1.57, and - = 4.71.

[

The function y = f(z) = tan /T is continuous throughout its domain because it is the composite of a

510

-5

trigonometric function and a root function. The square root function has domain [0, oo) and the tangent function has

. o . 2
domain {z | x # Z + wn}. So f is discontinuous when z < Oand when \/z = £ +mn = z=(§ +mn)",
where 7 is a nonnegative integer. Note that as x increases, the distance between discontinuities increases.

. Because we are dealing with root functions, 5 + 1/ is continuous on [0, 00), v/ + 5 is continuous on [—5, 50}, S0

5+\/‘
VE+

. Because x is continuous on R, sin z is continuons on R, and x + sin z is continuous on R, the composite function

the quotient f(z) = is continuous on [0, oo). Since f is continuous at x = 4, hm flz)y=Ff4)=1

f{z) = sin{x + sin z} is continuous on R, so lim f(z) = f(7) = sin(7 + sin7) = sin7 = 0.

_ 2 ifzcl
S = VT o ifz>1

By Theorem 5, since f(z) equals the polynomial z° on (—o0, 1), f is continuous on (—oc, 1}. By Theorem 7,
since f{z) equals the root function \/z on (1, 00), f is continuous on (1,00). Atz = 1,
lim f(z) = lim x*=1land lim f(z)= lim /Z = 1. Thus, lim f(x) exists and equals 1. Also,
T—1— z—1t -1+ x—1

r—1—

f(1) = v/1 = 1. Thus, f is continuous at z = 1. We conclude that f is continuous on (—o0, 00).

cosz if z>w/4

By Theorem 7, the trigonometric functions are continuous. Since f{z) = sinz on (—oo, 7/4) and f{x) = cosx on

sing if < n/d
- flz ={

(w/4,00), f is continuous on (—oo, 7/4) U (7r/4,oo). hm flz)= lim sinz=sin}= 1/v/2 since
(m/4}~ T (mw/4)"

the sine function is continuous at 7 /4. Similarly, lim N f(z)= lim cosz = 1/4/2 by continuity of the
r—(m/4) z—(m/4t

cosine function at /4. Thus, h(m/ 5 F(x) exists and equals 1/+/2, which agrees with the value f{/4).
T— 7

Therefore, f is continuous at 7/4, so f is continuous on {—oc, 00).
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2 . ¥
14z if £ <0

/. fz)=¢2-2 if 0<z<2 0,2)
(x—2)% if z>2 0. 1)

f is continuous on (—oo, 0), (0,2), and (2, 00) since it is a polynomial on 0| 2,0)
each of these intervals. Now lim f(z) = lirg (1+x%) =1and
z—07

z—0~

lim f(z) = lim (2 — ) = 2, so0 f is discontinuous at 0. Since f(0) = 1, f is continuous from the left at (.
z—07T z— 0+

Also, lim f(z)= lim (2—=z) =0, lirn+ flz) = 1im+(:c —2)? =0, and f(2) = 0, so0 f is continuous at 2.
w—2 2 x—2

r—2—

The only number at which f is discontinnous is 0.

x+1 if z<1
1/ ifl<e<3
ve—3 ifx>3

f is continuous on {—o0, 1), (1, 3}, and (3, oo}, where it is a polynomial, a

rational function, and a composite of a root function with a polynomial,
0
respectively. Now lim f{z)= lim (z+ 1) =2and /
T—1" =17

lnn flzx) = lim (1/z) = 1, so f is discontinuous at 1.

x—1

Since f(1} = 2 f is continuous from the left at 1. Also, lim f(z) = lim (1/z) = 1/3,and

r—3 o-—3

hm f{x) = lim +/z —3=0= f(3),s0 f is discontinuous at 3, but it is continuous from the right at 3.
3+

z+2 ifzx<0
207 if0<z<1
2—x ifx>1
f is continuous on {—oo, 0), {0, 1), and (1, oo) since on each of these

intervals it is a polynomial. Now limi flzy= lim_(x +2) =2and

lun flz) = lnn 22% = 0, so f is discontinuous at 0. Since f(0) =0, f

z—0t

is continuous from the right at 0. Also lim f(z) = lim 22° = 2and
x—1- 1

lim f(z)= 1im+(2 — ) = 1, so f is discontinuous at 1. Since
r—1

z—1t

f{1) = 2, f is continuous from the left at 1.

. By Theorem 5, each piece of F is continuous on its domain. We need to check for continuity at 7 = R.

. _ GMr GM GM
Jim F(r) = Tm —ps= = gz and lim Fr)= R

GM . . . . .
F(R) = R F is continuous at R. Therefore, F' is a continuous function of r.

. GM .
50 ,}EI}I F(r)= TR Since

. f is continuous on {—oc, 3) and (3, 00). Now 111:1;1 f(z)= lim (cz+1)=3c+1and
z—3~ z—3~

hm fiz) = 11m (cx®? — 1} =9c— 180 fiscontinuous & Be+1=9c-1 & 6c=2 & ¢

Thus, for f to be continuous on (—co, %), ¢ = 3.
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0. The functions z° — ¢ and cx + 20, considered on the intervals (—oo, 4) and [4, 00) respectively, are continuous
for any value of ¢. So the only possible discontinuity is at = = 4. For the function to be continuous at * = 4, the

left-hand and right-hand limits must be the same. Now lm g(z) = lim (z°® — c2) =16 — ¢? and
r—4~ T—4~

lim_g(z) = lim (cz +20) = dc+ 20 = g(4). Thus, 16 — P =dc+20 o FH+4+4=0 &
xr—4 r—4
c= -2

2
_xt-2r -8 (x40 x+2)
continuous on R and f(x) = g(z) for z ¢ —2. [The discontinuity is removed by defining f(—2) = —6.]
-
discontinuity is not removable. (It is a jump discontinuity.)
4+ 64 (z+4)(a° - 42+ 16
(c) flz) = = ( X )
r+4 x+4
g{x) = 2% ~ 4z + 16 is continuous on R and f(x) = g(x) for z # —4. [The discontinuity is removed by
defining f(—4) = 48.]
3 - 1
(dy flz) = 39 _\f = G- %)(ﬁ NGS has a removable discontinuity at 9 because g{x} = W is
1

continuous on R and f(x) = g(z) for = # 9. [The discontinuity is removed by defining f(9) =

has a removable discontinuity at —2 because g(z) = z — 4 is

= lim f(z)=—1and lim+ f(z) = 1. Thus, lim7 f(x) does not exist, so the
T—T a—=T T—

has a removable discontinuity at —4 because

1
&

025 of v2s 1=

f does not satisfy the conclusion of the f does satisfy the conclusion of the

Intermediate Value Theorem. Intermediate Value Theorem.

. f(x) = #* — * + x is continuous on the interval [2, 3], f(2) = 6, and £(3} = 21. Since 6 < 10 < 21, there is a
number ¢ in (2, 3) such that f(¢) = 10 by the Intermediate Value Theorem,

. f{z) = 2% is continuous on the interval [1,2], f(1) = 1, and f(2) = 4. Since 1 < 2 < 4, there is a number ¢ in
(1,2) such that f(c) = ¢? = 2 by the Intermediate Value Theorem.

. f(x) = 2* + = — 3 is continuous on the interval [1,2], f(1) = —1, and f(2) = 15. Since —1 < 0 < 15, there is a
number ¢ in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
x* + & —~ 3 = 0 in the interval (1, 2).

. f(z) = ¥z + z — 1 is continuous on the interval [0, 1], £(0) = —1,and f(1) = 1. Since —1 < 0 < 1, there is a
number ¢ in (0, 1) such that f(c} = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
Yr+ax—1=0,0r = =1z, inthe interval (0, 1).

. f(x) = cosx — x is continuous on the interval [0, 1], f{0) = 1, and f(1} = cos1 — 1 = —0.46. Since
—0.46 < 0 < 1, there is a number ¢ in (0, 1) such that f(¢} = 0 by the Intermediate Value Theorem. Thus, there is
a root of the equation cos z — o = 0, or cos x =, in the interval (0, 1).

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

JECTIONZS GONTWTY © &

48, f(z) = tanz — 2z is continuous on the interval [0, 1.4}, f (1) = tan1 — 2 = —0.44, and
f(1.4) = tan1.4 — 2.8 ~ 3.00. Since ~-0.44 < 0 < 3.00, there is a number ¢ in (0, 1.4) such that f(c) = 0 by the
Intermediate Value Theorem. Thus, there is a root of the equation tan z — 2z = 0, or tan x = 2, in the interval
(0,1.4).

. (a) f(x) = sinz — 2 + x is continuous on [0,2], f(0) = =2, and f(2) =sin2 ~ 0.91. Since —2 < 0 < 0.91,
there is a number ¢ in (0, 2) such that f{c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the
equation sinx — 2 + z = 0, orsinz = 2 — &, in the interval (0, 2).

(b) £(1.10) 22 —0.009 < 0 and f(1.11) ~ 0.006 > 0, so there is a root between 1.10 and 1.11.

. (@) f(z) = #° — z* + 2z + 3 is continuous on [—1,0], f(—1) = —1 < 0,and f(0) = 3 > 0. Since —1 < 0 <3,
there is a number ¢ in (—1,0) such that f{c) = 0 by the Intermediate Value Theorem. Thus, there is a root of
the equation z° — z° + 2z + 3 = 0 in the interval (—1,0).

(b) f{—0.88) = —0.062 < 0and f(—0.87) ~ 0.0047 > 0, so there is a root between —0.88 and —0.87.
(@) Let f(z) =2 — 2® — 4. Then f(1) = 1° = 1> =4 = ~4 < Oand f(2) = 2° — 2* — 4 =24 > 0. So by the
Intermediate Value Theorem, there is a number c in (1, 2) such that f(e) = ¢® ~ ¢ —4 = (.

(b) We can see from the graphs that, correct to three decimal places, the root is z ~ 1.434.
25 1.5

| J g )"

-10 —0.5

1
. (a) Let f(z) =+v2—5— o Then f(5) = —} < Oand f(6) = £ > 0, and f is continuous on (5, 50). So by

the Intermediate Value Theorem, there is a number ¢ in (5, 6) such that f{c) = 0. This implies that

1
= — 5.
c+3 ¢

(b} Using the intersect feature of the graphing device, we find
that the root of the equation is x = 5.0186, correct to three

decimal places.

. (=) Il f is continuous at ¢, then by Theorem 8 with g(h) = @ + h, we have
lim f(a+h) = /(i (a+h)) = ().
(<)Lete > 0. Since 'llin}J fla+h) = f(a), there exists & > Qsuchthat0 < |h| << 6 =

fla+h) — f(0)] < & Soif 0 < |z —a| < 6, then |f(z) - f(a)] = | f(a+(z —a)) ~ fla)] <.

Thus, lim f(x) = f(a) and so § is continuous at a.
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54, il_{rb sin{fa + h) = Plbl_‘)ﬂ%] (sinacosh + cosasinh} = 11111.% (sinacosh) + r{% {cosasinh)

= (lim sin a) (1im cos h) + (lim €08 a) (lim sin h)
h—0Q h—0 h—0 R0
= (sina}(1) + (cosa)(0) = sina
. As in the previous exercise, we must show that J{in}) cos(a + h) = cosa to prove that the cosine function is
continuous.
lim cos(a + A} = lim (cosacosh —sinasinh)
h—0 h—0
= lim (cosacosh} — lim (sinasinh)
h-s0 h—0

= (lim Cos a) (lim cos h) - (lim sin a) (lim sin h)

h—0 h—0 h—0 —0

= (cosa}(1l) — (sina)(0) = cosa
. () Since f is continuous at @, fim f(x) = f(a). Thus, using the Constant Multiple Law of Limits, we have

lim (cf }(z) = lim cf(z) = c lim f(z)} =ef(a) = (cf ){a). Therefore, cf is continuous at a.

r—a

(b) Since f and g are continuous at a, lim f(z) = f(a) and lim g(x) = g(a). Since g(a) # 0, we can use the

T—a

lim f
Quotient Law of Limits: lim (i) (z) = 311_1’1:1?w gég = ZII:EZ gg; = ;Eg = (g) (a). Thus, g is continuous

at a.

0 if z is rational ) ) )
) = o is continuous nowhere. For, given any number ¢ and any 4 > 0, the interval
1 if x is irrational

{a — 6, a + &) contains both infinitely many rational and infinitely many irrational numbers. Since f{a) — O or 1,

there are infinitely many numbers x with 0 < |z —a| < § and | f(z} — f(a)| = 1. Thus, lim f(z) # f(a).

[In fact, lim f{x) does not even exist.]

0 if x is rational )
. glx) = S is continuous at 0. To see why, note that — |z| < g{z) < |z|, so by the Squeeze
x if x is irrational

Theorem lin%] g{z) = 0 = g(0). But g is continuous nowhere else. For if a # 0 and & > 0, the interval

(a — &, a + &) contains both infinitely many rational and infinitely many irrational numbers. Since g(a) = O or a,

there are infinitely many numbers z with 0 < |z — a| < & and |g{x) — g(a)| > |e| /2. Thus, lim g(z) # g(a).
T—Q

. If there is such a number, it satisfies the equation ° + 1 =2 & z® — 2 + 1 = 0. Let the left-hand side of this
equation be called f(x). Now f{—2) = —5 < 0,and f(—1) =1 > 0. Note also that f(z} is a polynomial, and

thus continuous. So by the Intermediate Value Theorem, there is a number ¢ between —2 and —1 such that

fle) =0,sothate =c* + 1.
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60. (a) ]im+ F(z) =0and lim F(z)=0,s0 lin}) F(z) = 0, which is F(0), and hence F' is continuous at z = a if
z—0 T—

r—0~

r—na

a=0.Fora >0, lim F(z) = lim z = a = F(a). Fora < 0, lim F(z) = lim(~z) = —a = F(a). Thus,
T—ra T T—a

F'is continuous at & = ; that is, continuous everywhere.

(b) Assume that f is continuous on the interval I. Then fora € I, lim |f(x}| = ‘lim f(:c)' = |f(a}| by
r—a r—a

Theorem 8. (If a is an endpoint of I, use the appropriate one-sided limit.) So | f| is continuous on 1.

1 ifz>0
(¢) No, the converse is false. For example, the function f(z) = { L i 0 is not continuous at = 0, but
-1 ife<

If(z)t = 1is continuous on R.

. Define u(t) to be the monk’s distance from the monastery, as a function of time, on the first day, and define d(t) to
be his distance from the monastery, as a function of time, on the second day. Let D be the distance from the
monastery to the top of the mountain. From the given information we know that u(0) = 0. u(12) = D, d(0) = D
and d(12) = 0. Now consider the function u — d, which is clearty continuous. We calculate that (u — d)(0) = —D -
and (u — d)(12) = D. So by the Intermediate Value Theorem, there must be some time £o between 0 and 12 such
that (u — d)(t0) =0 & wu(to) = d{to). So at time ¢g after 7:00 A.M., the monk will be at the same place on

both days.

2.6 Tangents, Velocities, and Other Rates of Change

Ay _ flz) - f3)

. (a) This is just the slope of the line through two points: mpg = Ar 3
T z—

{(b) This is the limit of the slope of the secant line P as £} approaches P: m = lim

x—3

As _ fla+h)—fla) _ flath) - fla)

At (a+h)-a h

fla+h)— fla)
h

. The slope at D is the largest positive slope, followed by the positive slope at E. The slope at C is zero. The slope at
B is steeper than at A (both are negative). In decreasing order, we have the slopes at: D, F, C, A, and B.

. (a) Average velocity =

(b) Instantaneous velocity = ill}irr%}

. The curve looks more like a line as the viewing rectangle gets smaller.

2 1
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5. (a) (i) Using Definition 1,

m = lim

T—a

(ii) Using Equation 2,

= fim L@t R = S@) o F(3 k) = f(=8) (3R 28 )] - (3)
h—0 h R0 h R0 h

9—6h+h®—64+2h—3 h(h — 4)

=i h ST S ime =

{b) Using the point-slope form of the equation of a line, an equation of the tangent line is y — 3 = —4(z + 3).
Solving for y gives us y = —4x — 9, which is the slope-intercept form of the equation of the tangent line.

{c) 4 y=x+2x 4

I S N

4
y=—dx—-9 -2 y=—4x—9

6. (a) (HYm = 1_"1191 M - 1 a3 (_1): I (z + 1)(3:2 4 1)

r— (1) ety x+1 N | T+ 1
= lim (w2—$+1):3

T—r—

fl=14+h) = f(-1) - _imh3—3h2+3h—1+1
h h h
=lim (h* -3k +3) =3

h—0

(i) m = lim
h—0

By —(-D=3f-(-1)] & y+l1=3s+3 & y=3x+2

(c) 4

[ y:3x+2/
-4

i-L-n

-4

7. Using (2) with f(z) = 1+ 2r — 2% and P(1,2),
—_— — — 3 _—
fm J@FR = f@) QR 7). [1420 k) - (4R -2
oy h h—0 h
i LE2+ 2R — (14 3k 43R + 17) — 2
h—0 h
— 2 — 2 J—
= lim A(=h" —3h-1)
R0 h
Tangent line: y — 2 = —1{z — 1)

m =

= lim
h—0
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8. Using (1},
V2l +1 . V4 1-3 V2a4+1+43
mzll»Lq z—4 :cl—~4 Tz —4 \/2.1:—++3
_ lim (2¢ +1) — 3° — fim 2(x — 4)
2l (1—4)\/§W+3) z—1 (z —4)(v2z +1+3)
= lim 2 Zl
by WH) 3+3 3

Tangent line: y — 3= 3(x - 4) & y—3=1z -4

9. Using (1) with f{x) = and P(3,2),

J(@) — fla) _

m = lim
r—a

2r —0
, g AL 2 2 2
10. Using (1), m = lim ~—"—5— = lim ey = lim s =

Tangent line: y —0=2(z - 0) & y=2z

f@)=fla) _ o 2a+3)-2/(@+3) . 2at3)-2Az+3)

1. (a)mzll_rpa r—a et T -0 r—a (,’,E—G,)(.T""‘?D)(G‘}'B)

= lim 2(a _2) = lim —2 =
T T —a)z+3)(at3) s—e(z=3)(at+3) (a+3)

-2 1 .. -2
—(_1+3)2:—— (iMa=0 = m——-(0+3)2——

M Ha=-1 = m=

(lila=1 = m=

12. (a) Using (1),

1 H-(1 2 P _g—da? - -
m:Iim(+$+$) (+a+a):limm+a¢ a-a’ _ . % a+(zx—a)(zx+a)
T-sa r—a z—a r—a r—a T —a

i B THD) g =142

r—a r—a T—a

b (z=-1 = m=1+2(-1)=-1 (©)
i)z=—-2 = m=1+2(-31)=0
ji)r=1 = m=1+2(1)=3
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13. (a) Using (1),

(@® 4z +1) - (a® - 4a +1) - (z° — a®) — 4(z — a)

I —a Tr—a r—a

a2 ST
(z ~ a){z® +az + a®) —4(z a)zlim(m2+am+a2—4):3a2—4
x—a z—o

(b) At (1, —2): m = 3(1)? — 4 = —1, so an equation of the tangent line {c)

sy—(-2)=-1l{z—-1) < y=-x-—1 At(2,1}:
m = 3(2)® — 4 = §, 50 an equation of the tangent line is
y—1=8(x—-2) & y=8z—15

14. (a) Using (1),

Vi /A= VE) (VA VE)
s-a T o Var(e - o) (Va+ va)

-1 1

I 3

. ~1 B o 1
Ve a) Vet vE) B Ve Ve Vaava) | 27 "3

{b) At (1,1): m = —3, so an equation of the tangent line is c) 2

y—l=-3(@-1) o y=-lz+d

At {4,2]: m = -k, so an equation of the tangent line is

y-—3=-7%(z-4) & y=-Lz+i

15. (a) Since the slope of the tangent at t = 0 is 0, the car’s initial velocity was 0.
(b) The slope of the tangent is greater at ' than at B, so the car was going faster at C.

{c) Near A, the tangent lines are becoming steeper as x increases, so the velocity was increasing, so the car was
speeding up. Near B, the tangent lines are becoming less steep, so the car was slowing down. The steepest

tangent near C is the one at C, so at C' the car had just finished speeding up, and was about to start slowing
down.

{d)y Between D and E, the slope of the tangent is 0, so the car did not move during that time.
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16. Let a denote the distance traveled from 1:00 to 1:02, b from 1:28 to 1:30, and ¢ from 3:30 to 3:33, where all the
times are relative to £ = 0 at the beginning of the trip.

5
distance in miles

W0 +a+b+c ]
200 +a+ b

slope = 65

Fo0+a+b

3:33

3:30 :
time in hours

. (40t —16¢%) —16 16240t 16 . —8(2t" — 5t +2)
im = lim = Hm
t—2 t—-2 12 i—2 t—2 1-2

—8(t—2)(2t 1)
0 t—2

= —8lim(2t — 1) = —8(3) = 24

Thus, the instantaneous velocity when ¢ = 2is —24 ft/s.

H(1+h) — H(1)
)

58 + 58h — 0.83 — 1.66h — 0.83kR%) — 57.17
= lim (58 + ) = lim (56.34 — 0.83h) = 56.34 m/s

R—0 h
_ ,lllf}) H(a+hf)L — H(a)
i {58a + 58h — 0.83a® — 1.66ah — 0.83h%) — (58a — 0.83a%)
h—0 h
= lim (58 - 1.66a — 0.83h) = 58 — 1.66a m/s

-

18. (@) v(1) = lim

{c) The arrow strikes the moon when the height is 0, that is, 58t — 0.83t> =0 <« (58 —0.83t) =0 <«

58 .
t = —— =~ 69, ! .
0.83 69.9 s (since £ can’t be 0)

(d) Using the time from part {(c), v (6%) = 58 - 1.66 (65—:5) = —b58 m/s. Thus, the arrow will have a velocity

of —58 m/s.

- 4 3 h (43 9
19, via) = lim SR =sl@) _ o HathP+0arh)+2 (4o’ +6at2)
h—0 h h-—0 h

" da® + 12a°h + 12ah® + 4R + 6a + 6h + 2 — 4a® — 6a — 2
h0 h

liz

. 12a%h + 12ah® + 4k + 6h
= lim =
h—0 h

lim (120” + 12ah + 4% + 6) = (12a® +6) m/s

Sov(1) = 12(1)? + 6 = 18 m/s, v{(2) = 12(2)* + 6 = 54 m/s, and v(3) = 12(3)2 + 6 = 114 m/s.
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20. (a) The average velocity between times ¢ and ¢ + h is
s(t+h) —s(t)  (t+h)® —8(t+h)+ 18— (t* — 8t +18)

(t+h)—¢ 3

£+ 2h+h* -8t —8h+18—t*+8(—18  2h+1h*—8h
a h - h

=(2t+h—8) m/s
(i) [3,4]: t=3,h =4— 3 =1, s0the average (i) [3.5.4]: t = 3.5, h = 0.5, so the average velocity
velocity is 2(3) +1 - 8 = —~1 m/s. is 2{3.5) + 0.5 — 8 = —0.5 m/s.

(i) [4,5]: t =4, h = 1, so the average velocity is  (iv) [4,4.5]: ¢ =4, h = 0.5, s0 the average velocity is
2(4) +1— 8= 1m/s. 2(4) + 0.5 — 8 = 0.5 m/s.

s(t+ h) —s(t)

(b) (t) = lim b

:’{in})(2t+h78):2t78,sov(4):0.

5

3..

21

14

of 1 2 3 4 5 1

21. The sketch shows the graph for a room temperature 22. The slope of the tangent (that is, the rate of
of 72° and a refrigerator temperature of 38°. The change of temperature with respect to time) at
initial rate of change is greater in magnitude than the t = 1 h seemns to be about

75 — 168 o .
m =~ —0.7 F/mm.

Temperature TCRA

rate of change after an hour.

i Time

" 3

(i1 hoursy 3t
30 60 60 120 150 18

0 !
{min)

23. (a) (i) [20,23]: % = —1.2°C/h

9.0 —11.5 .
o - LBCHh

102-115
(iii) [20, 21]: 5180 = 1.3°C/h
(b) In the figure, we estimate A to be (18,15.5)

and B as (23, 6). So the slope is

(ii) [20,22]:

6-155

TR —1.9°C/h at 8:00 P.M.
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P(1996) - P(1992) _ 10152 - 10,086 _ 116 _ g0 coiverr

1996 — 1992 4 4

‘ - 10,152 — 10,109 43
(ii) [1994, 1996]: P(li}ggé — i;(;fgzl) - 5 =5 = 21.5 thousand /year

P(1998) - P(1996) _ 10075 - 10,152 _ 28 _ ) o ivenr
1998 — 1996 2 2

21.5 4+ 11.
{(b) Using the values from (ii) and (iii), we have —+§ = 16.5 thousand, vear.

24. (a) (i) [1992,1996]:

(iii) [1996, 1998]:

(c) Estimating A as {1994, 10,125) and B as P A(in thousands)

(1998, 10,182) , the slope at 1996 is 10,186 -
10,182 — 10,125 = 57 = 14.25 thousand/year. 101527
1998 — 1994 4

1992 1994 1996 1998 2000 !

N(1997) — N(1995) 2461 —873 _ 1588
1997 — 1995 - 2 T2
N(1996) — N(1995) 1513 — 873
1996 — 1995 - 1
(1995) — N(1994) 873 — 572
1995 — 1994 B 1

640 + 301 _ 941
=

25. (a) (i) {1995, 1997]: = 794 thousand/year

{ii) [1995, 1996}: = 640 thousand/year

(ii1) [1994, 1995]: N

= 301 thousand/year

(b) Using the values from (ii} and (iii), we have = 470.5 thousand,/year.

(c) Estimating A as (1994,420) and B as (1996, 1275), the slope N 4 (in thousands)

. 1275—420 _ 855 sely
at 1995 is 1996 1064~ 2 = 427.5 thousand/year

(1?3333 — J;;;SGQQG) = 1886 5 1015 = g;-l- = 435.5 locations /year
(1998) — N(1997) 1886 — 1412

1998 — 1997 - 1
N(1999) — N(1998) 2135 — 1886
1999 — 1998

26. (a) (i) [1996, 1998]: N

(i) [1997,1998]: N = 474 locations/ year

(i) {1998, 1999]: = 249 locations/year

24
dra+ 219 _ 78 _ 361.5 = 362 locations/year.

{b) Using the values from (ii) and (iii), we have 5 5
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(c) Estimating A as {1997, 1525) and B as (1999, 2250), the slope

, 22501525 725 ..
at 1998 is 1999 —1997 = 2 - 362.5 locations / year.

?

; + 4 +
T + t + +
1996 1997 1998 1999 2000

AC _ C(105) — C(100} _ 6601.25 — 6500

Axr — 105 — 100 5

(i) AC _ C(101) — C(100) _ 6520.05 — 6500
Ar 101 — 100 - 1

27. (a) (i) = $20.25/unit.

= $20.05,/unit.

) C(100 + h} = C(100) _ [5000 + 10(100 + &) + 0.05(100 + £)*] — 6500 _ 20h+ 0.05h*
h h h
=20+ 0.05h, R #0
C(100 + k) — C(100) _
h

So the instantaneous rate of change is }{in}) }llirrf)(QO + 0.05h) = $20/unit,

t+h t

60 60

t+h (t4+h)? t 2 h  2th  R?
— 10 12 fy X _ _ b 2th
0,000 K 30 3600 136+ 3600 )| = 20000( —55 * 5660 T T600

2 2
28 AV = V(t+ h) - V() = 100,000 (1 - —) — 100,000 (1 - —)

100,000
T 3600
Dividing AV by k and then letting h — 0, we see that the instantaneous rate of change is 23 (t — 60} gal /min.

R (=120 + 2 + h) = ?h(—uomtm)

t | Flow rate (gal/min) | Water remaining V' (¢) (gal)
0 -3333.3 100, 000
10 —2777.7 69,444.4
20 —2222.2 44,444.4
30 —1666.6 25,000
40 —1111.1 11,1111
50 —555.5 2,771.7
60 0 0

The magnitude of the flow rate is greatest at the beginning and gradually decreases to 0.
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2 Review

CONCEPT CHECK
1. (a) lim f(z) = L: See Definition 2.2.1 and Figures 1 and 2 in Section 2.2.

(b) Iim+ f(x) = L: See the paragraph after Definition 2.2.2 and Figure 9(b} in Section 2.2.

r—a

(¢c) lim f{z)= L: See Definition 2.2.2 and Figure 9(a) in Section 2.2.

r—a~

(d) lim f(z) = oo: See Definition 2.2.4 and Figure 12 in Section 2.2.

r—a

(e) lim f() = —oo: See Definition 2.2.5 and Figure 13 in Section 2.2.

. In general, the limit of a function fails to exist when the function does not approach a fixed number. For each of the

following functions, the limit fails to exist at x = 2.
¥
Y

§x=2

The left- and right-hand There is an There are an infinite
limits are not eqgual. infinite discontinuity. number of oscillations.
. See Definition 2.2.6 and Figure 14 in Section 2.2.
. (a)—(g) See the statements of Limit Laws 1-6 and 11 in Section 2.3.
. See Theorem 3 in Section 2.3.
. (a) A function f is continuous at a number ¢ if f(z) approaches f{a} as x approaches «; that s,
lim f(z) = f(a).
{(b) A function f is continuous on the interval (—oo, 0o} if f is continuous at every real number a. The graph of
such a function has no breaks and every vertical line crosses it.
. See Theorem 2.5.10.
. See Definition 2.6.1,

. See the paragraph containing Formula 3 in Section 2.6.

. (a) The average rate of change of y with respect to x over the interval [z1, 3] is

x

2 — &1

(b) The instantaneous rate of change of y with respecttoz at x = x; is lim M
T2—T] Xz — Xy

TRUE-FALSE QUIZ

1. False. Limit Law 2 applies only if the individual limits exist (these don’t).
2. Faise. Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is).

3. True. Limit Law 5 applies.
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4. True. The limit doesn’t exist since f(x)/g(z) doesn’t approach any real number as x approaches 5.

(The denominater approaches 0 and the numerator doesn’t.)

Consider lim z(z ~5) or lim sin(z — 5)
r—5 I — o T — 5

. The first limit exists and is equal to 5. By Example 3 in

Section 2.2, we know that the latter limit exists (and it is equal to 1),

Consider liné [f(z)g(z)] = lin% {(m —6) %—6] . It exists (its value is 1) but f{6) = 0 and g(6)} does not
exist, so f(6)g(6) # 1.

A polynomial is continuous everywhere, so liH}J plz) exists and is equal to p(b).
T—

Consider lin}J [f(z) — g{x)] = lim :El xl ) This limit is —oo (not 0), but each of the individual

functions approaches oo.

1/{z-1) if z#1
2 ftr=1

Consider f(z) = {

The function f must be continuous in order to use the Intermediate Value Theorem. For example, let

1 if0<z <3
fla) = it 3 There is no number ¢ € [0, 3] with f{c) = .
-1 ifz=

. True. Use Theorem 2.5.8 with a = 2, b = 5, and g{z) = 42 — 11. Note that f{4) = 3 is not needed,

. True. Use the Intermediate Value Theorem witha = —1,b=1,and N =, since 3 < 7 < 4.

. True, by the definition of a limit with e = 1.

2241 ifz#£0
. False. For example, let f(z) =
2 ite=40

Then f{z) > 1 for all z, but lin% flz) = lin%] (z®+1) =1

EXERCISES

L@@ lim f(z) =3 i) lim f(z) =0
r—2

T— 371
(iii) limsf(;r) does not exist since the left and right (iv) lin}1 flz)=2
limits are not equal. (The left limit is —2.}

{v) ilg}} flz) = oo {(vi) 1iI£17 flz)= -0

(b} The equations of the vertical asymptotes are x = O and 2 = 2.

(c) f is discontinuous at x = —3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable,
respectively.
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' lin}) cos(z + sinzx) = cos [lin%)(a: -+ sin w)] [by Theorem 2.5.8] =cos0 =1

2 2
-9 3 -9
j==3 = - = 0.
. Since rational functions are continuous, hm R — 32 4 2(3) - 3 12

i z2-9 _ g EE3E=3) -3 -3-3 -6 _3
o T 122 -3 eers(mtd)@—1) e—-sz-1 -3-1 -4 2

2 2

T —9 . 2 + x _9
\ —_— 2r—3—0asz—1 d—— < 0fort <z <3
mliraln+ 2973 oo since x° + 2z as an 22 107 3 <

- h* —3h*+3h —1) +1 P 3h% 4
i DD PR el BTk (k2 -3h 4 3) =3
h—0 3 h—0 h h—0 h h—0

Another solution: Factor the numerator as a sum of two cubes and then simplify.
(h=1P+1 . (h=1P+1% (-1 +1][(h-1)° 1(A-1)+17]
lim —*—— = lim ————— = lim
h h—0 h h—0 h
= lim [(h~1)* —h+2] =1-0+2=3

(t+2)t=2) _ . t+2 242 4

1
TR - 1 ot+4) i ro+4 4+d+4 12 3

———-—=oosince(w—9)4—}0asr—>9and(—r—\_[%)—4>0f0rr7é9.
1

i
. lim = lim -1 = -1 __1
216 3 — 16 8—16(\f+4)(\f 4) —ibs+d VI6+4
v'+20—8 (v+4)v—2) . v+4 _ 2+ 4 3

. = :l = =
ey T 216 v (vt Do —2) (w2 +4) vk (vt 2)(wE+4)  (2+-2)(22+4) 16
r—8 ;
T x -8 - ) -1 ifzx<8§

Thus, lim
r—8— T —

11m (Vz—-9+[z+1]) = hm Ve—9+ hm [r+1]=v9-9+10=10
—1—z2 14++1-—2z2 — lim lw(lw:c) _ lim e . T 0
T 1++1-2? ﬂ:—'Oa:(1+\/1—a:2) I—’Dx(1+\/1—r2) 20 14 4/1 — 22

HVw+2—\/2—$_Vw+2+\f55:1im —(z—2) _ -1
:]3(:[2—2) \/$_.+_2+\/ﬁ T—2 m(_q;_ (\/F+\/2—$) m—o2an(\/ﬁ+\/2__q;)
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. Since 2 — 1 < f(z) <z for0 < z < 3 and lim1 (2z-1)=1= lim1 z?, we have lirri f(x) = 1bythe
r— £

PT—

Squeeze Theorem.
. Let f(z) = —2°, g(x) = 2° cos(1/z”) and h(zx) = z>. Then since |cos(1/z*}| < 1 for z # 0, we have
f(z) € g(z) < h{x) for z # 0, and so lin}) fla)y= lin{l) hiz) =0= lin%] g(z) = 0 by the Squeeze Theorem.

. Givene > 0, weneed § > Osothatif 0 < | — 5/ < 8, then [[Te —27) —8|<e & [Tz —-3b|<e &
| — 5| < &/7.S0take § = ¢/7. ThenO < [z — 5| <& = |(Ta -27)—8§| <. Thus,'liné(’?:c—??):é}

by the definition of a limit.

. Givene > O wemustfind § > Osothatif 0 < |z — 0] < &, then | ¥z — 0| <e. Now | ¥z — 0| = | x| <e =
lo| = | ¥z)® <& Sotake 6 =¢®. ThenO0 < [z — 0| = |z| <& = [¥Z 0| =|¥7] = ¥/|a] < V¥ = <.
Therefore, by the definition of a limit, 3111% ¥z = 0.

. Given g >> 0, we need & > 0 so thatif 0 < |z — 2| < &, then |z* — 3z — (=2)| < &. First, note that if |z — 2| < 1,
then—1<x—2<lLso0<z—1<2 = |r—1 <2 Nowletd =min{e/2,1}. Then0 < jz — 2| < §
= |#*-3z—(-2)|=lz-2)z-D|=lz—-2|lz -1 < (/2)(2) ==

Thus, 111112 ((L‘2 — 3z} = —2 by the definition of a limit.
r—

. Given M > 0, weneed 6 > Osuchthatif 0 < x — 4 < §,then2/\/xr —4 > M. Thisis true <
Vi—4<2/M & z-—4<4/M% Soifwechoose§ =4/M* then0<z—-4<é = 2z 4> M.
So by the definition of a limit, 1im+ (2T —4) = .

r—4

@) flx) = V=zifz <0, flz) =3—-zif0<z <3, fz)=(z-3)%ifz> 3.
(i) 1i%1+ flz) = 11%1+ 3—z)=3 (ii) lirg: flz)= lim v—z=0

r—0—

(iii) Because of (i) and (ii), lirr%) f{x) does not exist. (iv) lim f(z)= lim (3—z) =0

r—3~ r—3-

(v) 1i1§1+ flz) = lim (z— 3)?=0 (vi) Because of (iv) and (v}, liné flz)=0.

z-3

(b) f is discontinuous at ¢ since limD f{z) does not exist, © v

. . . . 3
f is discontinuous at 3 since f(3) does not exist.

U (a)g(r) =2z —z'if0<2<2,g(z)=2-rxif2 <z <3,
glz) =z —4if3 <z <4, g(z) =nif x > 4. Therefore,

lim g(z)= lim (2z —z°) =0and
T2~ z—27

lim g(z) = Iim+ {2 —x) = 0. Thus, lim2 glz)=0=g(2),s0g
r—2 T

2t

is continuous at 2. lim g(x) = lim (2 —z) = —1and
r—3 r—3~

lim g{x) = lim (z —4) = —1. Thus, lim g(z) = —1 = g(3), so g is continuous at 3.
r—3+ z—3+ r—3

lim g(z)= lim (r—~4)=0and lim g(x) = lim # = & Thus, lim g{z) does not exist, s0 g is
x—4— r—4 r—4t z—dt z—4

discontinuous at 4. But 1im+ g(z} = m = g(4), so g is continuous from the right at 4.
x—d
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. 2% is continuous on R since it is a polynomial and cos z is also continuous on IR, so the product rdcosz is
continuous on R. The root function ¥z is continuous on its domain, {0, oc), and so the sum,

h{x) = ¥z + x* cosx, is continuous on its domain, [0, oc).

. 22 — 9 is continuous on R since it is a polynomial and 1/ is continuous on [0, co), so the composition v/z2 — 9 is
continuous on {z | &% — 9 > 0} = (—oo, —=3] U [3, 0c). Note that z° — 2 # 0 on this set and so the quotient
2

function g(x) = is continuous on its domain, (—oo, —3] U [3, 00).

T2 —

. f(z) = 22® + £ + 2 is a polynomial, s0 it is continuous on [-2, —1] and f(—2) = ~10 <0 < 1 = f(-1). So
by the Intermediate Value Theorem there is a number ¢ in (-2, —1) such that f(c} = 0, that is, the equation
2x% + 2% + 2 =0hasarootin (—2, —1).

. Let f(2) = 2sinz — 3 + 2z. Now f is continuous on [0, 1] and f(0) = —3 < 0 and
f(1) = 2sin1 — 1 ~ 0.68 > 0. So by the Intermediate Value Theorem there is a number ¢ in (0, 1) such that
f{c) = 0, that is, the equation 2sinz = 3 — 2z has a root in (0, 1).

. (a) The slope of the tangent line at (2, 1) is

Lo f@) = £@)

r—2 r—2 T—2

= lim [-2(@+2)] = ~2-4= -8

(b} An equation of this tangent lineisy — 1 = —8(x — 2) ory = —8x + 17,

. For a general point with z-coordinate a, we have

m = lim 2/(1 —3z)—2/(1 —3a) _ — lim 2(1 - 3a) — 2(1 — 3x)
T onn r—a e—a (1 - 3a)(1 — 3x)(z — a)
6(z — a) . 6 _ 6

= A a0 mE—a) e (30l =37)  (1=3a?

Fora = 0, m = 6 and f(0} = 2 s0 an equation of the tangent line is y — 2 = 6(z — 0) ory = 6z + 2. For
a=—1,m=2%and f(~1) = L, s0 an equation of the tangent lineisy — 3 = 3(z+ 1) ory = Jx + .

. (a) s = s{t) = 1 + 2t + t>/4. The average velocity over the time interval {1, 1 + h] is
. s(l+h)—s(1)  14+2(1+h)+ (1+h) 2/4—13/4 10r+h>  10+h
T o(l+h) -1 h 4h 4
So for the following intervals the average velocities are:
(1) [1,3): h =2, vave = (10+2)/4=3m/s
(i) [1,2]: k=1, vave = (10+1)/4 = 2.75 m/s
(iii) (1, 1.5): h = 0.5, vave = (10 + 0.5)/4 = 2.625 m/s

(V) [1, 1.1): h=0.1, vave = (104 0.1)/4 = 2.525m/s

= lim =— =25m/s.

s(1+h) —s(1) ., 10+h 10
h h—0 4 4

{b) When t = 1, the instantancous velocity is }l}mﬂ
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32. (a) When V increases from 200 in® to 250 in®, we have AV = 250 — 200 = 50 in®, and since P = 800/V,

AP = P(250) — P(200) = % - % = 3.2 —4 = —0.8Ib/in°. So the average rate of change is

AP  -08 1b/in”
AV - 50 - —-0.016 et
{b) Since V' = 800/ P, the instantaneous rate of change of V' with respect to P is

AV V(Pah)-V(P) _ . 800/(P+ k) - 800/P
Jm AP = AT h = lim h

. 800[P—(P+h) ) —800 800
= lim = =

im0 WP +RP b (PLhP P?

which is inversely proportional to the square of P.

ZHl 402 = —02<%t! _3.02 =
z—1 x—1

1
28 < = a 1 < 3.2. Graphing the functions y = 2.8,
a‘: —

y={x+1)/(x — 1), and y = 3.2 on the interval [1.8, 2.2], we see

that the inequality holds whenever 1.91 < @ < 2.11 (approximately).
So since 2 — 1.91] = 0.09 and |2 — 2.15| = (.15, any positive
& < 0.09 will do.

. The slope of the tangent to y = 2:+1 is
-
(z+h)+1 z+1

() -1 xz-1  (z—{xzt+th+1)—(c+1){z+h-1)

1 =

A0 h po hz— )z +h—1)
— lim —2h =
ko bz -1z +h-1) (x—1)2

2

So at (2, 3), m = —‘m

=-2 = y-3=-2z-2) =

2 1
2 T AU (=10 e = X
Y x4+ (—1,0), m Sy 5

y=-i(z+1) = y ) s

\

-4
.| f(z)| < glz) & —g(z) < f{z) < g(z) and il_r.ra g(z) = 0 = lim —g(x). Thus, by the Squeeze Theorern,

lim f{z) =0.

. {a) Note that f is an even function since f(z} = f(—z). Now for
any integer n, [n] + [—n] = n — n = 0, and for any real number
k which is not an integer,
(k] + [kl = [kl + (- [%k] - 1) =-1.So lim f(x) exists

(and is equal to —1) for all values of «a.

{b) f is discontinuous at all integers.
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1. Lett = &z, soz =°. Thent —» lasz — 1,50
Sl @-DEH)  _ f+l 1412
I - D {2 +t+1) e-1t2+¢+1 1241+1 3

Another method: Multiply both the numerator and the denominator by (1/x + 1) ( Vo2 + Yz + 1).

) ) . . Var+b-2 ar+b+2 . ar+b—4
2, First rationalize the numerator: lim . = lim ————.
ey z Var +b+2  =0z(Vazr+b+2)

denominator approaches 0 as x — 0, the limit will exist only if the numerator also approaches 0 as x — 0. So we

Now since the

require that a(0) +b—4=0 = b= 4. So the equation becomes
a

Vi +2

3. For —% <m<%,wehave2w~1<0and2$+1>0,so|2m—1L=A(Qaz—l Jand 22+ 1| = 2z 4 1.

2z -1l —[2z+1] _ Iim —(2z-1)-(2x+1) _ lim —4r - Jim (—4) = 4,
x z—0 T z—0 X z—0

=1 = a=4. Therefore,a =5b=4.

Therefore, lim
x—0

4. Let R be the midpoint of OP, so the coordinates of R are {4z, 12} since the coordinates of P are (z,z%). Let

1‘2

1 . .
@ = (0,a). Since the slope mop = — = &, MgRr = - (negative reciprocal). But
T

1,2 2
sz —a z*—2Za

mQR:21 0 = ,soweconcludethat —1 = 2% —2¢ = 2a=2"+1 = u=-;—a:2+
T — x
2T

Asz —0,a — L, and the limiting position of @ is (0, 3 ).

[ [z] +1 z

1
5. Since [z] <z < [z] + 1, wehave—<——< = 1< <l+—forz>1 Asz — 0,

[z] [] = [=] T«]

— 1. Thus, lim =1 by the Squeeze Theorem.

[[ ] [[ ] = —oo [a]

6. (2) [«]® + [y]® = 1. Since [z]° and [y]* are positive integers or 0, there are only 4 cases:

[z] — 00,50 —= — Oand 1 + —

Case (i): [zl = 1. [yl =0 1<z<2ad0<y<l1

Case (ii): Jz]=-1.[y] =0 —1<z<0and <y <1

Case {iii): Je] =0,y =1 0<z<landl <y <2

Cuse (iv):  [z] =0,Ty] = -1 0<z<land-1<y <0

(b) [z]* — [¥]* = 3. The only integral solution of n* — m? = 3isn = +2 and
m = +1. So the graph is

{(z,y) | l2] = £2, [yl = =1} =

2< <3 or —2<x<1,
(z,y) .
1<y<2o0 -1<y<0
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©z+y]* =1 = [z+y]==+1 Frn<r<n+L[z]=nThen[z] +y] =1 =
= l<zty<lor Ilyl=1-n = 1-—n<y<2-—n. Choosing integer
-1<r+y<0 values for n produces the graph.

7. f is continuous on {—00, a) and (a, o). To make f continuous on R, we must have continuity at a. Thus,
lim f(z)= lim f(z) = lim = lim (¢ +1) = d° 2

T—a r—ao r—a r—a

[by the quadratic formula] a = (1+/5)/2 ~ 1.618 or —0.618.

=a+1 = a°—-a-1=0 =

8. (a) Here are a few possibilities:

¥
1+

{b) The “obstacle” is the line z = y (see diagram). Any intersection of the graph of f with the line y = =
constitutes a fixed point, and if the graph of the function does not cross the line somewhere in {0, 1), then it must
either start at (0, 0) (in which case 0 is a fixed point) or finish at (1, 1) (in which case 1 is a fixed point).

(c) Consider the function F(x) = f(x) — x, where f is any continuous function with domain [0, 1] and range in
[0,1]. We shall prove that f has a fixed point.
Now if f(0) = 0 then we are done: f has a fixed point (the number 0), which is what we are trying to prove.
So assume f(0) # 0. For the same reason we can assume that f(1) # 1. Then F(0) = f(0) > 0 and
F(1} = f(1) =1 < 0. So by the Intermediate Value Theorem, there exists some number ¢ in the interval (0, 1)
such that F{c) = f(c) —e¢=0. So f(c) = ¢, and therefore f has a fixed point.

- lim f(@) = lim (3 [f(x) + g(2)] + § [f{x) - g(=)])

7 [m [f(z) + g(2)] + § lim [£(2) — g(a)]

2+ 3:1=2and
im ( [f(x) +g(2)] - f(z)) = lim ;.
(2)g(a)] = lim f(a)] [1im g(e)

X
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Another solution: Since lim [f(z) + g(z)] and lim [f(x) — g(x)] exist, we must have
Tr—a T—a

tim (7(2) + 9(@))? = {lim [£(2) + 9(a)])” and Jim [7(z) — 9@ = (1 [£(2) - g(a)]) 150
Ih_r’r}1 [f{z)g(x) = lim 3 ([f(=) + g(@)]* = [f (z) — g(x)}*) [because all of the f* and g* cancel]

= 4 (1im [£(2) + g(@))* - lim [f(2) - (@)’ ) = §(2* ~1%) = .
10. (a) Solution I: We introduce a coordinate system and drop a perpendicular

from P, as shown. We see from ZNC P that tan 28 = -l—y— and
from Z N BP that tan ¢ = y/x . Using the double-angle formula for
y 2 tan 0 2(y/x)
ts, =tan2f = = .
tangents, we get T2 an 20 T tan?f ~ 1- (y/a)

2z

“o r2—y?

After a bit of simplification, this becomes

y? = x (3z — 2). As the altitude AM decreases in length, the point P will approach the z-axis, that is, y — 0,
50 the limiting location of P must be one of the roots of the equation 2(3x — 2) = 0. Obviously itisnotx =0
(the point P can never be to the left of the altitude AM , which it would have to be in order to approach 0) so it
must be 3z — 2 = 0, thatis, z = §.

Solution 2: We add a few lines to the original diagram, as shown. Now
note that Z BPQ = Z/PBC (altemnate angles; QP || BC by
symmetry) and similarly ZCQP = ZQCB. So ABPQ and ACQP
are isosceles, and the line segments BQ, QP and PC are all of equal

length. As |AM| — 0, P and @ approach points on the base, and the

point P is seen to approach a position two-thirds of the way between B

and ', as above.

(b} The equation 1y = z(3x — 2) calculated in part (a) is the equation of
the curve traced out by P. Now as [AM| — 00,280 — 5,80 — 1,
z — 1, and since tan & = y/x, y — 1. Thus, P only traces out the

part of the curve with 0 < y < 1.

B
0

11. (a) Consider G(z) = T(x + 180°) — T'(z). Fix any number a. If G(a) = 0, we are done:

Temperature at a = Temperature at a + 180°. If G(a) > 0, then G{a + 180°) = T{a + 360°) — T'(a + 180%)
= T{a) — T{a+ 180°) = —G(a) < 0. Also, G js continuous since temperature varies continuously. So, by the
Intermediate Value Theorem, G has a zero on the interval [a, a + 180°). If G(a) < 0, then a similar argument
applies.

(b) Yes. The same argument applies.

(¢) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could
argue that altitude above sea level is sometimes discontinuous, so the result might not always hold for that
quantity.
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