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3 O DERIVATIVES

3.1 Derivatives

The line from P(2, £(2)) 10 Q(2+ h, f(2 + h))

f2+h) - f(2)
. :

o
f2+hm—f2) is the line that has slope

fiz+h)

/ 2+h

2. As h decreases, the line P() becomes steeper, so its slope increases. So

0< {0 -I@ SO @ i O SD g 0.< 4 (04) - ) < S3) - £2) < £2)

3. ¢'(0) is the only negative value. The slope at z = 4 is smaller than the slope at z = 2 and both are smatler than the
slope at & = —2, Thus, ¢'(0) < 0 < g'(4) < ¢'(2) < ¢'(-2).

8. Since (4,3)isony = f(z), f(4) = 3. The slope of the tangent line between (0, 2) and (4, 3) is 150 f'(4) = 3.
8. We begin by drawing a curve through the Y y
origin at a slope of 3 to satisfy f(0) = G and i

f/(0) = 3. Since f'(1) = 0, we will round
off our figure so that there is a horizontal

tangent directly over x = 1. Lastly, we make

sure that the curve has a slope of —1 as we
pass over x = 2, Two of the many

possibilities are shown.

¥

7. Using Definition 2 with f{x) = 3z — 5z and the point {2, 2), we have
- 3(2+h)?—-5(2+h)] -2
F(2) = tim LEER @ [BEHR 5@ )]

h—0 h h—0 h

(12 + 12 4 3h* ~ 10 — 5k) — 2

3R +Th _
h-(} h h—0 h -

= lim = lim lim (3h +7) = 7.
h—0

So an equation of the tangent line at (2,2} isy — 2 =7(z — 2)ory =Tz — 12.
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8. Using Definition 2 with g(z) = 1 — z” and the point (0, 1), we have

o o 90 ER —g(0) . [L=O+R) -1 R e
g0 = fim T = = i e — = i e = i () =0

So an equation of the tangent lineisy — 1 = 0(x — 0) ory = 1.
9. (a) Using Definition 2 with F(z) = z* — 5z + 1 and the point {1, —3), we have
- 1+h)*—=5(1+h)+1] — (-3
F'(1) = lim —-—v-—F(1 +h) = F(1) = lim [( ) ( ) ] (=39)
h—0 h h—0 h
 (14+3h+3R2+h*—5-5R+1)+3 . h*+3h°—2h
lim = lim ——
h—0 h h-—=0 h
2
- lim h{h* +3h —2)
h—0 h
So an equation of the tangent line at (1, —3)isy — (-3)=-2(z - 1) & y=-2r—1L

= lim(h? + 3h — 2) = -2
h—0

8

a+t+h a
Clath) —Gla) _ . 1+2ath) 142
h—0 h
:},lma+2a2+h+2ah—a—2a2—2ah:lim 1
b h(1 + 2a + 2h)(1 + 2a) h50 (1 + 2a + 2h)(1 + 2a)

10. (a) G'(a)= ?1112%)

=(1+2a)?

So the slope of the tangent at the point {—3, —1} is

m=[1+2(-3)] ~? = 4, and thus an equation is

y+i=4(z+3ory=4z+ 1.

_ 1+h _ ql
1. (@) f/( ):’{%Mﬁi_ﬂ :flil%%'

31+h _3
Solet F{h) = — We calculate:

h F(h) || 2
0.1 3.484 || -0.1
0.9 \em e — 1.1
0.01 3.314 || —0.01 2.6
0.001 3.298 || —0.001 From the graph, we estimate that the

(0.0001 | 3.296 || —0.0001 slope of the tangent is about

32-28 _ 04 ..

We estimate that f'(1) = 3.296. 1.06 —0.94 012
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+h) - 9(%)
h

~ lim tan(% + h) — tan(%)‘
h—0

tan (I +h) —1

Solet G(h) = "

We calculate:

-
0.73 E‘ s 0.83
0.85

h G(h) h
0.1 2.2305 j —0.1 From the graph, we estimate that the slope of the
0.01 2.0203 || -0.01 1.07 - 0.91 _ 0.16 _

0.001 | 2.0020 || —0.001 082-074 008
0.0001 ; 2.0002 || —0.0001

langent is about

We estimate that g’ (§ ) = 2.

13. Use Definition 2 with f(z) = 3 — 2z + 4z°.
o) = tim TN = S@ oy B ath) i +1)?) — (3 — 20+ 4a?)
h—0 h h—0 h
(3 - 2a — 2k + 4a® + 8ah + 4h%) — (3 — 20 + 4a)
h
h(-2+8a+4k)

_ 2
o 2h +Bah +4h7 . = lim(-2+ 8a+4h) = -2 + 8a
h R—D h —0

= lim

p flat )~ f@) _ (et h) - S+ h)] - (ot - 5a)
= lim &—e——>* = lim
h—0 h h—0 h
_ {a* +4a®h + 6ah? + 4ah® + h* — Ba — Bh) — (2" - 5a)
lim
h—Q h
_ 4aPh+6a’h? +4ah® + h* =5k . (40’ +6a’h + dak® + A* - 5)
= lim = lim
h—0 h h—0 h

= lim (40® + 6a’h + dah® + h* —5) =4a® - 5

15. Use Definition 2 with f(t) = (2t +1)/(t + 3).
2a+h)+1 2a+1
hoy Slath) = J(a) _ o (ath)+3 C a+t3
h—0 h h—0 h
limn (2a+2h+ 1)(a+3)—(2a+1){a+ h+3)
R0 h{a + h -+ 3)}(a + 3)
- {26 + 6a + 2ah + 6h +a+3) — (2a® + 2ah + 6a + a4+ h +3)
R0 hla+h+ 3)a+3)
= lim Sh = lim 5 = i
h-oh{a+h+3)a+3) h-0(a+h+3)(a+3) (a+t3)?

f'le) =
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(a+h)’+1 d®+1
(@ +2ah+h*+1)(a—2) — (a® + 1){a+ h - 2)

P ha+h—2)(a - 2)

. (a® —2a% +2a*h —dah + ah® —2h* +a - 2) - (a® +a’h — 22" +a+h - 2)

h—0 hla+h—2)a—2)

l = deh+ah® ~20% —h _ h(a® —4a+ah —2h — 1)

R0 Rla +h —2}{a —2) h—0  hla+h—2)a—2)
i @ —dat+ah—2h—1 a’—da-1
h=o  (a+h—2)(a—2) (a—2)?

17. Use Definition 2 with f(x) = 1/vz + 2.

1 1
. yla+h)+2  Va+2
= jim h

va+2—+a+h+2

gy Yatht2varz L [vVer2-Veth+2 Vo+2+vat+hi2
h—0 h =0 | hva+h+2vVa+2 Va+2++ve+h+2
o (a+2)—(a+h+2)
ho0hva+h+2vVe+2(Va+2+Va+h+2)
= lim ~h
R0 hyv/a+h+2Va+2{(Vat2+vVath+2)
litm —1
=0 Va+h+2Va+2(Va+24+Va+h+2)

-1 _ 1
 2(a+2)?

oy — 1 L1 h) = fla)
fa) = i L5

C (Vat2)?(2/aT3)

~ lim fla+ h)— fla) — lm V3a+h)+1-+3a+1
h—0 h h—0 h
. (\/3a+3h+1—\/3a+1)(\/3a+3h-|-1+\/3a+1)
im
h—0 h{v3a+3h+1++/3a+1)
(B3a+3h+1)—~(3a+1) . 3h
im = lim
h—=0h(v3a+3h+1++3a+1) r—0h({V3a+3h+1++3a+1)
lim 3 = 3
=0 3a+3h+1+v3a+1 2+3a+1

Note that the answers to Exercises 1924 are not unique.
1+h)Y -1
19. By Definition 2, &m}) H—T) = f'(1), where f(z) = 2% anda = 1.

10 _
Or: By Definition 2, im}] (1—+}F = f'{0), where f(2) = (1 + z)®anda = 0.
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V1 -2
. By Definition 2, }{in%] —ﬂ-%— = f'(16), where f(z) = ¥z and a = 16.

4
v -2
Or: By Definition 2, }lzinr%j L_;E— = f'(0), where f(z) = /16 + zand a = 0.

2% — 32

r—295

. By Equation 3, lim = f'(5), where f(z) =2 anda = 5.

. By Equation 3, :cl—i»I:P/4 %7_41 = f'{m/4), where f(x) = tanz and @ = 7 /4.
cos(m+ h)+1
h
cos(m+h)+1
—— =

. By Definition 2, lim = f'(w), where f(z) =cosxando = 7.

Or: By Definition 2, lim f'(0), where f(z) = cos(m + x) anda = 0.
' +t-2
t—1

2 21 [92 _
-v(2>—f’():mf_(2_+f2_—f(__>=m[(2+h) 6(2+h)h5] [2* ~ 6(2) — 5]
(4 +4h + h* — 12 - 6k — 5) — (-13) R2 — 2h

= Jlim R = Jim =7 = fim(h = 2) = ~2m/s

- By Equation 3, lim f'(1), where f(t) =t* +tanda = 1.

/ . 2+ h) - f(2
0@ = £2) = Jim L2 W I

i [22+8)° - (2+h) +1] - [2(2)° - 2+1]
b h
i (2h% +12h% + 24h +16 -2~ h + 1) - 15
h—0 h
i 2h° 4 12h% + 23k
h—0 h

lim (2h% + 12k +23) = 23 m/s

h—0

. (a)} f'(x) is the rate of change of the production cost with respect to the number of ounces of gold produced. lts
units are dollars per ounce.

(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17/ounce.
So the cost of producing the 800th (or 801st) ounce is about $17.

{c} In the short term, the values of f'{z) will decrease because more efficient use is made of start-up costs as x
increases. But eventually f'(x) might increase due to large-scale operations.

. (a) f'(5) is the rate of growth of the bacteria population when ¢ = 5 hours. Its units are bacteria per hour.

(b) With unlimited space and nutrients, f’ should increase as ¢ increases; so f'(5) < f'(10). If the supply of

nutrients is limited, the growth rate slows down at some point in time, and the opposite may be true.

. (a) f'(v) is the rate at which the fuel consumption is changing with respect to the speed. Its units are
(gal/h)/ (mi/h).

{b) The fuel consumption is decreasing by 0.05 {gal/h)/(mi/h) as the car’s speed reaches 20 mi/h. So if you
increase your speed to 21 mi/h, you could expect to decrease your fuel consumption by about
0.05 (gal/h)/(mi/h}.
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30, (a) f'(8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is
$8 per pound. The units for f'(8) are pounds/(dollars/pound).

(b} f'(8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are
generally less willing to buy a product when its price increases.

31. T(10) is the rate at which the temperature is changing at 10:00 a.M. To estimate the value of T'(10}), we will
average the difference quotients obtained using the times { = 8 and £ = 12. Let
T(8)-T(10y 72-81 ' _T(12) - T(10) 88— 81
s_10 g o MmdBETTo T T
. T —-T(10) A+B 45+35
I _ ~ —_
T = lm = =15 =3 = 3

A= = 3.5. Then

= 4°F/h.

. For 1910: We will average the difference quotients obtained using the years 1900 and 1920.

Lot A4 — E(1900) — B(1910) 483511

1900 — 1910 —10

B= E(1920) — E(1910)  55.2 - 51.1
T 19201910 10

) . E(®)-EQ1910) A+B
E(1910) = lm ———oi5 ~ 3

={).28 and

= (.41. Then

= ().345. This means that life expectancy at birth was increasing

at about 0.345 year/year in 1910.
For 1950: Using data for 1940 and 1960 in a similar fashion, we obtain £ (1950) = [0.31 + 0.10]/2 = 0.205. So
life expectancy at birth was increasing at about 0.205 year/year in 1950.

. (a) 5'(7") is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are
(mg/L)/°C.
(b} For T = 16°C, it appears that the tangent line to the curve goes through the points {0, 14) and (32, 6). So
g;}g = —% = —(.25 {mg/L)/°C. This means that as the temperature increases past 16°C, the
oxygen solubility is decreasing at a rate of 0.25 (mg/L)/°C.

5'(16) ~

. {(a) §'(T) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature.
Its units are (cm/s)/°C.

(b) For T' = 15 °C, it appears the tangent line to the curve goes through the points (10, 25) and (20, 32). So
32-125
2010
salmon is changing at a rate of 0.7 {cm/s)/°C. In a similar fashion for T = 25 °C, we can use the points
25-35
25-20
maximum sustainable speed decreases rapidly.

S(15) = = 0.7 (cm/s)/°C. This tells us that at T = 15 °C, the maximum sustainable speed of Coho

(20, 35) and (25, 25) to obtain S'(25) = —2 (cm/s)/°C. As it gets warmer than 20 °C, the

38. Since f(z) = xsin(1/z) when z # 0 and f{0) = 0, we have

£0)= tim f(0+h’2 —F(0) _ i hsin(l}{h) -0

= }llir% sin{1/h). This limit does not exist since sin{1/h}

takes the values —1 and 1 on any interval containing 0. (Compare with Example 4 in Section 2.2.)
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36. Since f(z) = z*sin(1/z) when z # 0 and f{Q) = 0, we have

p— 2 ‘. —
- lim f(O+h)— f(0) — lim h*sin(1/h) — 0
h—0 h h—0 h

£{0)

= }l!imohsin(lfh). Since ~1 < sin% < 1, we have

—|h| < |k sin% <|hl = —|h< hsin% < |h|. Because Ain}J(— |h{} = 0 and ’llm%] || = 0, we know that

lim (h sin %) = 0 by the Squeeze Theorem. Thus, f'(0) = 0.

k-0

3.2 The Derivative as a Function

1. Note: Your answers may vary depending on your estimates. By

estimating the slopes of tangent lines on the graph of f, it appears that
(a) f'{1) = -2 () f(2) = 0.8
(© f'(3) = -1 (d) f'(4) ~ —0.5

. Note: Your answers may vary depending on your estimates. By
estimating the slopes of tangent lines on the graph of £, it appears that
(a) f'(0) ~ -3 (b) f(1) =0
) f'(2) =15 (d) f/(3) = 2
(€) f'(4) =0 (f) £(5) = -1.2

. It appears that £ is an odd function, so f* will be an even
function—that is, f'(—a) = f'(a).
(a) f'(-3) =15 (b f'{(—2)~1
(c) f[{(-1}=0 (d) f(0) =~ —4
(e f(1)=0 0 f(2)~1
(gy /{3y = 1.5

. (2) = 11, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive,
then 0, then negative again. The actual function values in graph 11 follow the same pattern.

(b = IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then
suddenly become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the
slopes of the tangents.

(¢) = 1, since the slopes of the tangents to graph (c) are negative for x < 0 and positive for = > 0, as are the
g
function values of graph L

(d)’ = 111, since from left to right, the slopes of the tangents to graph (d) are positive, then 0}, then negative, then 0,
then positive, then 0, then negative again, and the function values in graph I1i follow the same pattern.
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Hints for Exercises 5—13: First plot z-intercepts on the graph of * for any horizontal tangents on the graph of f. Lock for any corners on
the graph of £ —there will be a discontinuity on the graph of £'. On any interval where f has a tangent with positive {or negative) slope, -
the graph of ' will be positive {or negative). If the graph of the function is linear, the graph of f* witl be a horizontal line.

¥

|
I
i
i
/ |
i
I
i
1
v
'
i
i
'
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14. The slopes of the tangent lines on the graph of y = P(t) are always ¥
positive, so the y-values of y = P(t) are always positive. These 10T
values start out relatively small and keep increasing, reaching a s0d

maximum at about £ = 6. Then the y-values of y = P(¢) decrease

and get close to zero. The graph of P’ tells us that the yeast culture

grows most rapidly after 6 hours and then the growth rate declines.

. It appears that there are horizontal tangents on the graph of M for
t = 1963 and t = 1971. Thus, there are zeros for those values of £
on the graph of M’. The derivative is negative for the years 1963

to 1971. y y
—0.0:',}L |y

1950 1960 1970 1980 1990

. See Figure | in Section 3.5.

. {a) By zooming in, we estimate that f'(0) = 0, f'(3)
and f'(2) = 4.
(b) By symmetry, f'(—z) = —f'(x). So f'{—3) = -1,
F(—1)= —2,and f'(-2) = —4.
(c) It appears that f'(x) is twice the value of z, so we guess that
f{z) = 2x.

r . h.“ .
24 op 22
iy & 2Rz bR —t oo R h(2e+h)
h—D h h

(x4 h)? — ?

=lim{2z + h) = 2z
h—0

. (a) By zooming in, we estimate that f'(0) = 0, f'(3) ~ 0.75, (c)
F(1) 23, f/(2) =12, and f/(3) =~ 27.
(b) By symmetry, f'(—z) = f'{z). So f'(~3) = 0.75, f'(—1) = 3,
f(—2) = 12,and f'(—3) = 2T.
(d) Since f'(0) = 0, it appears that f' may have the form f'(z) = az®.
Using f'(1) = 3, we have a = 3, so f'(z) = 3z°.
f(a:+h})l—f(:c) (x+h)® -2 i (z® + 3¢®h + 3zh® + 1) — 2°

= hm _— = 1
h—0 h h—0 h

_ 32®h+3zh®+ A% . h(32° +3zh+ 1)
= him = lim
h—0 h h—0 h

-1 1

(e) f'(z) = lim

= lim (32% + 3zh + h?) = 32°
h—0

f(a:+h)—f($) = lim 37“37: limgz lm =0
h S0 R h—0h  h—0

Domain of f = domain of f = R.

. fi{x) = }1112"6
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2. f/(z) = %%M — tim 12+ 7(z + h.;] —(12+72)

= lim 12+7£+7h“12_7m:lim%x}‘iné?:"{

h— h h—0

Domain of f = domain of f' = R.

: - 1-3 R4 - (1 — 3a2
. -3+ 2eh+ )] -(1-32%) ., 1-32" —6ah—-3h*-1+32"
= lim = lim
A h h—+ h

—6xh — 3h* h{—6z — 3h
= i SZR BNy PG 8R) g 6 —3h) = -
h—0 h R—sD h h—0

Domain of f = domain of f' = R.

- 5(x+h)¥ +3(z+h) —2] — (5z* + 32 -2
2 f/(z) = lim {ED) flz) —’ll'mt[ o h) + 3 )h | —(Ba” 432 =2)
. 522 +10zh+5h° +32+3h—2- 522 —32+2 . 10zh+5h* + 3k
:hm =hm—
h—0 h h—D h

h(10z + 5h + 3)

= lim

k=0

Domain of f = domain of f' =R,

hm(l()a; +5h+3)=10x+3

. R -3 h}+5] —(x* -3 5
3. flz) = ,1.'”}] flz+ h}l flz) _ Ain% [(z+h) (x + )h+ | - (= x +5)
; (z* + 32k + 3zh® + h® — 3z — 3h +5) — (2° — 3z +5)
hnj%] h
_ 3ch+3zh? +8° -3k h{(3«® +3zh+h® —3)
lim = lim
h—0 h h—0 h
= lim (3«® + 3zh + h® —3) = 32° - 3
h—0

Domain of f = domain of f' = R.

vy o flarhy—f@) . (g+h+Ve+h)—(z+x)
s e
(_ Vi+h-\z \/F+\/_)
7 h Vithiva

= lim
h—0

= lml
-0

1+ (x+h) -
h(vVz + b+ /7)
1 1

=1 =14+ —
in +2\/5

~U( \/M+\/") T

Domain of f = [0, o0), domain of f* = (0, 0o).

5. g(x) = }ILILI}J

gath)—gle) . VIT2w R - VIT \/1+2(m+h)+x/1+2:c:|

h h—0 h V1+2{x+h)+ T+ 22
(420420 —(14+2r) _ 2 2 _ 1
haoh[\/1+2(m+h)+\/1+2m] =0 /14204 2h++14+22 21422 1+2z

= lim

Domain of g = [—%,00), domain of ¢’ = (—%,%0).
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3+{(zx+h) 3+z
. z+h) x i 1—3x+h 1-3z
2. /(2) = i LI iy 2=
i (3+:1:+h)(1—3:1:)—(3+:1:)(1—3ww3h)
Py h(1 — 3z — 3h)(1 — 3z}
i (83— 92+ — 32° + h— 3ha) — (3 9z — 9h + = - 32* — 3ha)
P (1 — 3z — 3h)(1 — 3x)
. 10 — i 10 10
= A3z —3m)(1—3z) h-0(l—3z—3h)(1-3z) (1—32)?

Domain of f = domain of f' = (—00,3) U (3,0).

4t+h) 4 A+ h)(t+1) —4t(t+h+1)
— 1)(t
; :limG(t+h) G(t)zlim (tth)+1 e+1 (t+h+1)(t+1)

h—s0 h h—D h h—0 h

. (4t + 4ht + 4t + 4h) — (4t” +4ht + 1)

A0 h{t+h+ D)t +1)
4h 4 4

= lim lirn = 2
h—o h(t+h+ 1)t + 1) oo (t+h+1)(E+1)  (t+1)

Domain of G = domain of G’ = (—o0, —1) U (—1,00}.

1

oo gtk —gm) . (@th? 22— (et h)’
8. ¢(z) = fim, h = B = i et h)e?

©? — (2 +2zh + h%) o 2R B2 —2z—-h -2z

R e h(z + h)?z2 B0 (x4 h)2z? 4

-3

Domain of g = domain of ¢’ = {x |  # 0}.

fe+h)-flz) . (@+h)' -zt (2" +42°h + 62h7 + dah’ ht}y — z*
= lim = lim
h—0 h A0 h R0 h
3 272 3 4
:1im4m h46x°h* +4zh” +h :lim(4:E3+6:L'2h+4a:h2+h3)=43;
h—0 h k=0
Domain of f = domain of f' = R.

29. f'(z) = lim

3

30. (a)

T

{b) Note that the third graph in part (a) has small negative values for its slope, fibutasz — 67, ff — —oo.
See the graph in part (d).
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Je+h —f@) _ | O @th-vE=s [/B- @ th +vE=2
h B h V6—@+h) +b—z

— lim A8 (M -(6-2) _ . —h

"""h[\/ﬁ—(m+h)+\/6—m] h=0 h(v/6 — 2 — h+ /6 — z)

© f'(z) = lim

= lim wl = —1

06—z —h+v6-x 2V6-=x

Domain of f = (—o0, 6], domain of f' = (—oc,6).

1

3N @ fla) =

—2r 4+ 2(z+ h)
he(x+ h)

—lim 14— | =14 2
T h0 z{z+h)| x?

(b) Notice that when f has steep tangent lines, f'{x) is very large.
When f is flatter, f'(z) is smaller.

6 6
_ 2 2 2 _ @ 2
~ lim f{t+h) f(t)th1+(t+h) 148 _ im6+6t 6—6(t+h)
h—0 h h—0 h h=e h[1 + (¢ + R)?] (1 +12)
. —12th — 6h? . —12t — 6k —12t
= lim = lim = 5
=0 R{1+(t+ AP (1 +182) k=0 14+ (E4+ )2 (1+12) (14 2)

(b) Notice that f has a horizontal tangent when ¢ = (. This corresponds

to f'{0) = 0. f' is positive when f is increasing and negative when f

is decreasing.

)

33. (a) U'(t) is the rate at which the unemployment rate is changing with respect to time. Tts units are percent per year.
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Uit+h)-Ut) _Ultt+h)-UlR)
h h
U(1992) — U(1991) 7.5-6.8
1992 -1991 1
For 1992; We estimate U’ (1992) by using b = —1 and k = 1, and then average the two results to obtain a final

estimate.

h=-1 = U'(1992)~

(b} To find U (#), we use .Flaiﬂ%] for small values of /.

= (.70

For 1991 U’ (1991) =

U(1991) — U(1992) 68—75 _
1991 -1992 ~ -1

U(1993) - U(1992) _ 6.9 75
1993 -1992 1

So we estimate that U’ (1992) =~ £(0.70 4 (—0.60)] = 0.05.

0.70;

h=1 = U'(1992) ~ = —0.60.

13 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
U'ty | 0.70 005 -070 -0.65 035 -035 —045 035 -025 -020

34. (a) P’(t) is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its

units are percent per year (%/yr).
t+h)—P b+ hYy — P(t
(b) To find P’ (t), we use }Ein}) Pt f)L (®) Y P(t+ f')t P®) for small values of k.
P(1960) — P(1950)  35.7 - 31.1
1960 — 1950 10
For 1960: We estimate P’ {1960} by using h = —10 and h = 10, and then average the two results to obtain a

final estimate.

For 1950: P'(1950) =

= (.46

(1950) — P(1960)  31.1 - 35.7
1950 — 1960 N —10
P(1970) — P(1960)  34.0 —35.7
, = 10 P'(1960) ~ - = —0.
= P(1960) 1970 — 1960 10 0.17

So we estimate that P'{1960) ~ £[0.46 + (-0.17)] = 0.145.

h=-10 = P'(1960) ~

=0.46

1950 1960 1970 1980 1990 2000
0.460 0.145 -0.385 -0.415 —0.115 0.000

} + L } 4 - -

1950 1960% 1970 1980 19992000 °

I | i } { —

1950 1960 1970 1980 1990 2000 '
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(d) We could get more accurate values for P’(t) by obtaining data for the mid-decade years 1955, 1965, 1975,
1985, and 1995.

35. f is not differentiable at x = —1 or at x = 11 because the graph has vertical tangents at those points; at z = 4,
because there is a discontinuity there; and at z = 8, because the graph has a comner there.
. (a) g is discontinuous at x = —2 (a removable discontinuity), at z = ( (g is not defined there}, and at x = 5
(a jump discontinuity).

(b) g is not differentiable at the points mentioned in part (a} (by Theorem 4), nor is it differentiable at
z = —1 (corner), = 2 (vertical tangent), or z = 4 (vertical tangent).

. As we zoom in toward (—1, 0), the curve appears more and more like

a straight line, so f{z) = = + /|| is differentiable at = —1. But

no matter how much we zoom in toward the origin, the curve doesn’t

straighten out—we can’t eliminate the sharp point (a cusp). So f is

not differentiable at z = 0.

. As we zoom in toward (0, 1), the curve appears more and more like a

straight line, so f is differentiable at x = 0. But no matter how much
we zoom in toward (1, 0} or (—1, 0}, the curve doesn’t straighten
out—we can’t eliminate the sharp point (a cusp). So f is not
differentiable at z = £1.

. (a) Note that we have factored  — @ as the difference of two cubes in the third step.

_ 1/3 _ _1/3 13 1/3
fla) = lim L& =F@) 27 me P A"
T—a Tr—a T—a r—a z—a (x1/3 —a1/3)($2/3—|—3:1/3a,1/3+a,2/3)

_ 1 _ 1 1. —2/3
= lim T2/3 1 173175 1 2/3 . 3q2/3 O 3@

F(O+ k) — £(0) Vh -
0

1 . .
(b) f10) = 0 = lim = th TER This function increases without bound, so the

limit does not exist, and therefore f%0) does not exist.

(©) hm |[f{z)| = 11

at;c—O.

= oo and f is continuous at & = 0 (root function), so f has a vertical tangent

1
0 312/3

0. (a) ¢{0) = 11m gz ):g([)) = lim < {m —n , which does not exist.

(b) g(a) = hm M = lim 23 - a?ff = lim (11/3 _ a1/3)($1/3 + al/a)
Ze r—a t—a T —a z—a (£1/3 — al/3)(x2/3 4 £1/3g1/3 1 a2/3)

o VLBV a8 g s 13
ca £2/3 © 7173013 1 q2/3 34273 3g1/3 OF 3%
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(c) g{z) = 2*/® is continuous at z = O and (d) 04

i { = lim ——= = cc. This sh hat
al:l_‘nlo|g(,’£)| il—’n}’31:n|l/3 oco. This shows tha

¢ has a vertical tangent line at x = 0.

—(xz—-6) if x <6 6—x ifxz<6
r—6 ifa:26A r~6 ifx>6

N f(z) = ¥$—6|={

lim
6+ T —

[&) = £(6) _ e —61=0 _
6

x—8t xr — 6

But lim fle) Z f8) _ gy, 2260 gy
-G r—6 -G T —6 rz—6— T —
lim (-1} = -1

a—6—

So f'(6) = leG %@ does not exist. However, f'(z)

r—=6

Another way of writing the answer is f'(z) = PR

. f{z) = [z] is not continuous at any integer n, so f is not
differentiable at n by the contrapositive of Theorem 4. If a is not an
integer, then f is constant on an open interval containing a, so
f'(a) = 0. Thus, f{(z) = 0, z not an integer.
2 ifz>0
(b) Since f(z) = 2% for z > 0, we have f'{z) = 2z forz > 0.
[See Exercise 3.2.17(d).] Similarly, since f(z) = —x? for
¥ x < 0, we have f'(z) = —2z forz < 0. At x = 0, we have

10) = i F@ =IO _ ozl
fO=im =T T =k =

So f is differentiable at 0. Thus, f is ditferentiable for all x.

-z fz<0

8. (a) flx)=c|z|= {

2 if x>0
(c) From part (b), we have f'(z) = ] =2|xz|.
-2z if x <0
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M. (@) f/ (4) = lim fa+h -f4) o B-U@+R)-1 . —h
h—0— h R0~ h hoo- h

1
S
fly= tim LGERZFA) SR 12Uy

h—0+ h e h T ot m oot 1 —h
0 if <0
(©) fla)=< b—= if0<x<4
1/(5—=z) if z >4
These expressions show that f is continuous on the intervals
(—00,0), (0,4), (4,5} and (5, oc). Since

Jim fz) = bm (5-2)=5#£0= lim f(z) lim f(z)

does not exist, so f is discontinnous (and therefore not
ditferentiable) at 0.

T—d— T4

Atd we have lim f(z)= lim (5 —z)=1and lim+ flz) = Hm g-l_;,,- =1,s0 linif( J=1= f(4)
T—d - T

i
g4t
and f is continuous at 4. Since f(5) is not defined, f is discontinuous at 5.
(d) From (a), f is not differentiable at 4 since f_ (4) # fi{4), and from (c), f is not differentiable at 0 or 5.
45. (a) If f is even, then

f(—27+h})l—f(“$) = lim f[‘(f—hf)l] — fl=z) _ lim f(w—h;—f(l')

:7}%&;}%&@ llet Az = —h] = — lim LEFBAZH@) oy

f T
)=

Therefore, f' is odd.
(b} If f is odd, then

foath) = f(=2) o flole—h)] = f(=z) _ i@~ h)+ f(a)
h h—0 h h—D h

=W J@) fenr=-n = fim LEFADT@ _ o,

—h AxS0 Ax

Fe) =i

= lim

Therefore, f' is even.

86, (a) dTidt

‘ { t
0 !

(b) The initial temperature of the water is close to room temperature because of the water that was in the pipes.
When the water from the hot water tank starts coming out, dT'/dt is large and positive as 1" increases to the
temperature of the water in the tank. In the next phase, dT'/dt = 0 as the water comes out at a constant, high
temperature. After some time, d7'/dt becomes small and negative as the contents of the hot water tank are
exhausted. Finally, when the hot water has run out, dT'/dt is once again () as the water maintains its (cold)
lemperature.
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In the right triangle in the diagram, let Ay be the side opposite angle ¢ and
Az the side adjacent angle ¢. Then the slope of the tangent line £ is
m = Ay/Az = tan ¢. Note that 0 < ¢ < §. We know (see Exercise 17)

that the derivative of f{z) = z?is f'(x) = 2z. So the slope of the tangent

to the curve at the point (1, 1) is 2. Thus, ¢ is the angle between 0 and 3

whose tangent is 2; that is, ¢ = tan™" 2 &~ 63°.

3.3 Differentiation Formulas

1. f(x) = 186.5 is a constant function, so its derivative is 0, that is, fl{z) =0
. f(x) = /30 is a constant function, so its derivative is 0, that is, fllz)=0
. flzx)=5z—-1 = f(z)=5-0=5
F(z) = —4z'° = F'(z)=—4(10z°"") = —40z°
fay=2+3z-4 = flr)=22"""+3-0=2¢c+3
g(z) 8_ 925 +6 = g'(z)=5(82""} —2(52z° ') +0=40z" — 10z°
148 = ) =1t +8) =Hat 40y =4

Attt o= (1) = 4(66%) - 3(4®) +1 =3 — 1263 +1

= V'(r)=23n(3r") = dmr?

f(t)
f®)

t

2
3
4
5.
6
1f
8 f
9

0. R(t) =5t%% = R(t)= 5[—§t(“3/5>—1] — _34~8/8

M Y{E) =67 = Y'(¢)=6(-90"1° =541

12. R(x \/—“— =10z 7T = Ri{z)=-7V10x ®= —7;/:—0
13, =(1 = "(z) = %(5334) = ﬁm“

" f(t) = % =22 o )= - (—%t‘m) = 51— + Q—tl-—

—2/5 2/8)-1 . _2,-7/5 _ 2
(- _ 2T/ —

15.y=ﬂ: m

= y=~—x

_ am . . 1/3 r_1-am_ 1
6. y=¥r==x = y =3z =37

12. y = 4n? = 3 = Osince 47° is a constant.
18 g(0) = VEut VI = VEuVVE & ) = V)4V (B ) = V4 VB V)

Wo=t?— ==t = J=2a-(-3)"=2+_— S oty

3
wh = e

20 u=VE+2VB =27 123 = W=V 42(3) 2=

3 %/E
. Product Rule: y = (z* +1)(z*+1) =
y' = (22 +1)(32%) + (2 +1)(2x) = 32" + 3z? + 2% + 2z = 5z + 32° + 22
Multiplying first: y = (22 + 1)(z* 4 1) =" +2* +2?+1 = o' = 5z* + 3z 4 2z (equivalent).
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- _ q.3/2
22. Quotient Rule: F(z) = z-3ryz _zzd =

Nz 2172

172 (1 _ %ml/z) _ (3: _ 3$3/2) (%m—lfz)

(@)’

1/2 9. 1.1/2 , 3 1,172

T sr—sr /" +3r 3 3:1':_l 12 _4

= = =3z —_
x z

Simplifying first: F(x) = TodTye =Vz-3r=x?-3z = Fl(x)= %:(c‘”2 — 3 (equivalent).

—

For this problem, simplifying first seems to be the better method.

The notations £ and & indicate use of the Product and Quotient Rules, respectively.
2. V(r) = (22° +3)(«* —22) B
V(z) = (22° + 3)(42® — 2) + (2 — 22)(62%) = (82° + 82 — 6) + (62° — 1223) = 142% —42% — 6

2. Y(u) = (2 +u ) — 2u?) B

Y'(u) = (u 2+ u‘3)(5u 4u) + (u° — 2uP) (=26~ — 3u™Y)
= (5u 5w —du )+ (26 - Bu 4 4ut + 6677 = 3u® + 2u + 2u?
1 3 3 -2 4 3y M
2T y+50°) =y ? -3y ) (y+5°) =
T2 -3y (1+15¢7) + (y+ 5°) (<2973 +12y7%)
2415 -3y~ — 45y ) + (=297 + 12y — 10 4+ 60y )
+ 14y~ 2 +9y™% or 5+ 14/57 +9/4*

—2'? =y =322 LpV? = 17V 232 — 1) [factor out 2277

2z+1)(3) —(Br—1)(2) 6z+3—6z+2 5
(2z 4+ 1)2 T (22412 T (22+1)2
2t OR

S N (4+1%)(2) —g2t)(2t) _ 842 —;uz _ 8—2t22
(4 +t2) (4+12) (4 +£2)

g'(x) =

t2 QR
32 -2t + 1
;o (3% -2+ 1)(20) - 26t —2)  2t[3¢7 - 2t +1—1(3t — 1)]
B (362~ 2t + 1) B (32 — 2t + 1)°
(382 —20+1--3t° +t)  2(1—t)

(3t2 — 2t + 1)? (32 — 2t 4 1)

8y =

Y

£t ® (#* = 2) (32 +1) — (P + 1) (4£%) (3% +¢* —6¢% — 2} — (41° + 4¢")
t1—2 (¢4 — 2)° B (4 - 2)°
0 -3¢ —6t2 -2 P43+ 6542
-2 (-2

0.y =
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3
y = v 2vv 2o =? -0 =y =20 - 2(3) =2 —v V2

(4
1 2uyo—-1 21
M — ‘1/2 = 2 —_—— = =
We can change the form of the answer as follows: 2v — v v Nz 7

Nz

1 1 1 1 1
WEiu(s) trETatiE
(Vz +1)° VE(V/T+1)’

(2* +2° +1)(0) ~ 1 {42® +22)  2a(2e” +1)

i

(z4 + z2 4 1)° T (zt4a?+1)

.y::c2+:c+a:'1+w‘2 = y’:2:c+1)a:'2—2;c'3

.y =az’ +brt+ec = y =2ar+b

! . B C
.y:A+§+£}~=A+Bm’1+C:c”2 = y =-Br?-20z%=-—= -2
x  x? 2

T 3

=
(1+/r)(2r) _Tz(?lﬂruz) _ or + 27372 %1‘3/2 _r+ _gre./z _ %T’(4+3T‘l/2) _r{d+34T)

(1+r) Y N (R S RV L TRV

ez , (1+cx)(c) —(ex){c) c+cte -z c

N = = = = =
YT 1ter y (1 4 ca)? (1+ cx)? (14 cz)?
L= VIRt = PR 4t = 47
Y = TS 4 RS L g 9) = (78 48— 2)/(3°7°)

6 2y +5
W oW HD o o4yt =

=3 = 2u (28 — ud - 5) = 22 — w® - 5)/ud

(1) —e(l—c/e®) z4efeate/z _2fx 2 _ 2z

x z 2

o o) = (cz +d)(a) — (az + b)(c)  aczxtad—acx —bc _ ad—bec
cx+d B (cz + d)? N (ex + d)? T (ex +d)?
8. P(z) = ana™ + an12™ 4+ bt +mz+ag =
Pz} = nanz™ '+ (n— Dan—12™ 2+ + 2002 +as
x
. fle) = e =
a® - D1 —=z(2 —z* — 1 241
f’(g;):( 2) 2(93): 2 2=_$2 2
(z2 - 1) (z? - 1) (z* - 1)

Notice that the slopes of all tangents to f are negative and f'(z) < 0

always.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

12 © CHAPTER3 DERIVATVES

85, f(z) =32 —52°+3 = 8. fir)=z+1/z=z+z"" =
f{x) = 45z'* — 15z, flzy=1-2"%=1-1/2%

Notice that f'(x) = 0 when f has a horizontal

-6
tangent, f' is positive when f is increasing, and f’

. ! _ .
is negative when f is decreasing. Notice that f'(z) = 0 when f has a horizontal

tangent, £’ is positive when f is increasing, and f'

is negative when f is decreasing.

. To graphically estimate the value of f'(1) for f(x) = 3x% — z>, we’ll graph f in the viewing rectangle
1 -01,1+0.1]by[f(0.9), f(1.1)], as shown in the figure. [When assigning values to the window variables, it is
convenient to use Y1(0.9) for Ymin and Y1(1.1) for Ymax.] If we have sufficiently zoomed in on the graph of f, we
should obtain a graph that looks like a diagonal line; if not, graph again with 1 — 0.01 and 1 + 0.01, etc.
Estimated value: 2.299
, 2.299 — 1.701  0.589
F>= 1708 ~ o2
Exact value: f(z) = 3z° -~z = f'(z) = 6x — 3z%,
so f'{1) =6~3=23.

= 2.99,

0.9 . 1.1l
1701

. See the previous exercise. Since f is a decreasing function, assign Y;({3.9) to Yyax and Y, (4.1) 10 Y min-

Estimated value: f'(4) =~ 0'49?:18? — 2'30637 = _0'812251 = —0.06255.

Exact value: f(z) =272 = f(z) = —%E—:W, so f'(4) =-1(47¥%) = —3(3

) = —& = —0.0625.

49, (a) 50 (b)

+ /“‘*l\ +

From the graph in part (a), it appears that f' is zero at

x1 = —1.25, z7 = 0.5, and x3 == 3. The slopes are negative (so
f' is negative) on {—o0, z1) and (x2, z3). The slopes are positive

(so f' is positive) on (z1, T2) and (3, 00).
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@ f(z) =a2* - 32" —62° + Tz + 30 =
fl{z) =42% —90* — 120 +7

From the graph in part (a), it appears that g is zero at z = 0. The
slopes are negative {so g’ is negative) on (—oo, 0). The slopes are
positive (so ¢’ is positive) on (0, co).

:1:2

z2+1
(% +1)(2z) — z*(2z) 2z
(22 +1)? C (2 +1)?

(c) g(z) =

g(z)=

_ 2 2+ )@) - @a(1) 2
Nv=T T VST @ar @

isy—lz%(m—l),ory=%$+%.

1
_ VT ,_(“1)(2«/35)*‘/5(1)Z(x+1)—(2m): 1-z
Ly v = (z+ 1) 2vz(z+1)2  2a(z+1)

y' = 55 = —0.03, and an equation of the tangent lineis y — 0.4 = —0.03(z — 4), ory = —0.03z + 0.52.

5+ At{4,0.4},

B.y=flz)=z+vE = flz)=1+3z"% Sothe 35
slope of the tangent line at (1,2) is f'(1) = 1+ (1) = 2

and its equationisy — 2 = 2(z — Lyory = 3z + 4.

/7

—15

By = (1 +22)° =1+4z+ 42 = y =4+8z At(1,9),y = 12 and an equation of the tangent line is
y—9=12(r—1}ory =12z — 3.
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1
55. (a) y = f(x) = e =
0)—1(2) -2

(14 22)° T (1+4z2)?

fi(z) =

. So the slope of the

2
tangent line at the point (-1, 4) is f'(-1) = 7 = 1 andits

equation is y — % = %(:L‘Jrl)ory = %$+1.

56. (a) y = f(x) =

&
Tra
(1+a®)l —z(2z) 1—2?
(1+22)% (1+22)
tangent line at the point (3,0.3) is f/(3) = ¢ and its equation is
y—03=-0.08(x -3 ory=—0.08z + 0.54.

F(@) =

5- So the slope of the

57. We are given that f{5) = 1, f'(5) =6, g(5) = -3, and g'(5) = 2.
(@) (fgY(5) = F(5)g'(5) + g(5)f'(5) = (1)(2) + (-3)(6) =2 - 18 = -16
I (5 9B)f'(5) = f(5)g'(5) _ (=3)(6) — (1)(2) _ 20
o (7) [9(6) (-3p 9
. f(5)g'(5) — g(B)f'(5) _ (1)(2) = (—3)(6) _
@ (5) o 10 I
58. We are given that f(3) = 4, g(3) = 2, f(3) = —6, and g'(3) = 5.
(@ (f+g) (38} = ( )+4¢'(8)=-6+5=-1
(b) (fg)' (3) = f(3)g'(3) + g(3)f'(3) = (4)(5) + (2)(-6) =20 - 12 =8
© (g) 3)f (3) - f(3)9"(3) _ (=6 -(4)) _ =32 _
f

[9(3)] (2)? B

F N ey B —gBNS(3) - [f3)
o (75) o= T o

_ {(4-2)(—6)—4(—6-5) —12444
= (4-2) >

59, fﬂ?) Vaglz) = fz)= Vxg( w)+g z) -3z /% 50

—fg(4 J+o(d) 7= =2-T+8-1=16.
60 d [h(:c)] _ zh/(z) — h(z) -1 . 4 [EJ _ 2h(2) —h(2) 2(-3)-(4) 10
dx =9

" dx T 2 T = =-25

=8

22 - 4 4
61. (a) From the graphs of f and g, we obtain the following values: f(1) = 2 since the point (1, 2) is on the graph of f;
g{l)=1 :,ince the point (1, 1) is on the graph of g; f'(1) = 2 since the slope of the line segment between (0, 0)

-0 ' . .
e 2; g'(1) = —1 since the slope of the line segment between (—2, 4) and (2, 0)

and(2,4)ls
s gy = L Nowu(a) = fl@)gla)so (1) = F(Ug'(1) + (1) /() =2 (1) +1-2 =0,

g(5)f'(5) — f(5)g'(5) _
[9(5)]?

(b) v(z) = f(x)/g(x). s0v'(5) =
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62. (a) P(z) = F(2)G(z). 50 P'(2) = F2)G'(2) + GR)F'(2) =32 +2-0

Ty — ’ 1-1_5.(=
) Q) - F)/6G). 0 @' = SOECZZIED - —ay (

Ay y=zg(c) = y =zg'(z)+g(x) 1=2z4(z)+g9()

_ T . g(z) 1 —zg'(z) _ glz) —xg'(z)
®y=tm T VST e FOE

,_20'@) —g@)-1 _ 2g'(z) ~ g(a)
($)2 1.2

)y = = U

L@y =2 fx) =y =2f(z)+ flz)(2x)

fl=z ,_ 2 () = flz)(2
wy=12 & y=2 =i ) -

22 . f(@)(2s) - 2% (=)
@y T YT F @)

dy= Lrefle)

NG
Vz [zf' (@) + flz)] - [1 +2f(z)] 5}“\/;
v= (va)*

2 (z) + 22 f(z) — 2o VP = AP f(a) 20 af(x) + 207 f(z) — 1

T Topl/z T 2p3/2

©y=

.y=flz)=1—2> = f'(z) = —2z, so the tangent linc at (2, —3} has

slope f'(2) = —4. The normai line has slope —2; = } and equation

y+3:i($—2)0ry:%m-—%.

Ly=fz)=x—2* = f(z)=1-2z Sof'(1} = -1, and the slope of
the normal line is the negative reciprocal of that of the tangent line, that is,

—1/(—1) = 1. So the equation of the normal line at (1,0) isy — 0 = 1(x - 1)

¢ y=x ~ 1. Substituting this into the equation of the parabola, we obtain

2

z—1=x—-x% < =z =21, Thesolution # = —1 is the one we require.

Substituting z = —1 into the equation of the parabola to find the y-coordinate,

we have y = —2. So the point of intersection is (—1, —2), as shown in the
sketch,

.y =2 — 2% — o+ 1 has a horizontal tangent when 3 = 32® -2z —1=0. 3z +1)(z - 1) =0 &

1 gg)

z=1or —%. Therefore, the points are (1, 0) and (~§, 5
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_z—1 (x4 —{z-1)(1) 2
LA - v (x+1)? T {x+1)2

then its slope is 2/(a + 1)°. But if the tangent is parallel to £ — 2y = 2,

2 1
that is, v = 1z — 1, then its slope is 2. Thus, ——— = =
Y 2 p 2 (a+1)2 2

{a+1)’=4 = a+1=42 = a=1lor—3 Whena=1y=0

. If the tangent intersects the curve when z = a,

and the equation of the tangentisy —0 = 4(z — 1) ory =

1 7
ory =sr+ 3.

(z+1)(1) —x(l) 1
(x +1)2 T (x+1)2

L Ify = flx) = ;:T_—T then f'(z) = . When z = a, the equation of the tangent

a 1 a 1

at+1  (a+1)2 o+l  {(a+1)2
2a+1)? ~ala+l)=1-a & 2a®+4a+2-a*-a-1+ta=0 & a*+4a+1=0.
—4+ /2 —4(1)(1)  —4+12

2(1) - 2 =243,

so there are two such tangent lines. Since 6
{ N\

lineisy — x — a). This line passes through (1,2) when 2 — 1—a) &
P 2

The quadratic formula gives the roots of this equation as ¢ =

_—24V3 2443 -17V3
f(_zi\/é)_gkl:\/?-ﬂrl_ﬁl:l:x/ﬁ ~1F+3

_24#2V3FV3-3  -1+£V3 133
B 1-3 So-2 27

the lines touch the curve at A(—2 + /3, 1%@) 7 (—0.27, —0.37) and

B(~2- V3, 158) ~ (-3.73,1.37).

Y Let (a, az) be a point on the parabola at which the tangent line passes
through the point (0, —4). The tangent line has slope 2a and eguation

y—(—4)=2a(x—0) & y=2az—4.Since (a,a’} alsolieson

the line, a? = 2a{a) — 4, ora® = 4. S0 a = 42 and the points are (2, 4)

and (-2, 4).
0. —4)

Ly=62452-3 = m=y =182> +5 butz® > Oforall z, som > 5 forall z.

Ify = 2” + x, then y’ = 2z + 1. If the point at which a tangent meets the parabola is (a, a® + a), then the slope of

2
the tangent is 2a + 1. But since it passes through {2, —3), the slope must also be % =4 a;— 3'
z a-—

a®+a+43

Therefore, 2a + 1 = . Solving this equation fora we geta* +a +3 =20’ — 32 -2 <

a*—~4da—5=(e—-5{a+1)=0 & a=5o0r—1 Ifa=—1,thepointis (~1,0) and the slope is —1, so the
equationisy — 0 = (~1)(x + 1) ory = —x — 1. If a = 5, the point is (5, 30) and the slope is 11, so the equation
isy —30 = 11{z — 5) ory = 11z — 25.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SEGTION3d OIFFCRENTATIONFORMULAG U 127

7. (2) (fah) = [(fo)hl’ = (F@)'h+ (FO)B' = (f'g+ fg)h+ (Fo)h' = f'gh+ fo'h+ fgh’

(b) y = vz (z* + z + 1)(2x — 3). Using part (a), we have

J = @ e ) -3 - VR 4 1))+ VE (a4 1))
2r—3
2y

. (a) Putting [ = ¢ = h in part {a), we have

=(z"+z+1) + vz [(42® +1)(2z — 3) + 2(z* + & +1)]

%[f(m)]s — (fFD) = FEf+fFF+FEf =3FFf =3[f (@] F(z).
by y = (;t4+3:1:3+17m+82)3 = ?J’:3(1'74+3I3+17m+82)2(4m3+gw2+17)

Ly=flz)=ar® +br’ +cx+d = [f(z)= 3az® + 2bz + ¢ The point (—2,6) ison f,s0 f(-2) =6 =
_8a +4b — 2c +d = 6 (1). The point (2,0) ison f,s0 f(2) =0 = 8a+4b+2c+d = 0(2). Since there are
horizontal tangents at {—2,6) and (2,0), f'(£2) = 0. f'(-2) =0 = 12a-4b+c=03) and

f(2)=0 = 12a+4b+ c =0 (4). Subtracting equation (3) from (@) gives8b =0 = b=0. Adding (1)
and (2) gives 8b + 2d = 6, so d = 3 since b = 0. From (3) we have ¢ = —12a, so (2) becomes

8a-+4(0) 4 2(~122) +3=0 = 3=16a = a={5.Nowc=—12a=—12(F%} =~ and the desired
cubic function is y = m — -1: +3.

. (a) s(0) = 100,000 subscribers and n(0) = 1.2 phone lines per subscriber. '(0) = 1000 subscribers/month and
n'(0) = 0.01 phone line per subscriber/month.
(b) The total number of lines is given by L{t) = s(t)n(t). To find L'{0}, we first find L'(t)
using the Product Rule. L'(t) = s(t)n'(t) + n{t)s'{({) =
L'(0) = s(0)r’(0) + n{0)s'(0) = 100,000(0.01) + 1.2(1000) = 2200 phone lines/month.

. If P(t) denotes the population at time £ and A(t) the average annual income, then T (t) = P(1)A(t) is the total

personal income. The rate at which T'(¢) is rising is given by T'(¢) = P(¢ JA'(t) + A(D) P/ () =
T'(1999) = P(1999) A’ (1999) + A(1999)P'(1999) = (961 400)($1400/yr) + ($30,593)(9200/yr)
= $1,345,960,000/yr + $281,455,600/yr = $1,627.415,600/yr

So the total personal income was rising by about $1.627 hillion per year in 1999.
The term P(t)A’(t) ~ $1.346 billion represents the portion of the rate of change of total income due to the
existing population’s increasing income. The term A(Z £)P'{t} = 3281 million represents the portion of the rate of

change of total income due to increasing population.

. () £(20) = 10,000 means that when the price of the fabric is $20/vard, 10,000 yards will be sold.
£/(20) = —350 means that as the price of the fabric increases past $20/yard, the amount of fabric which will be
sold is decreasing at a rate of 350 yards per (dollar per yard).

®) R(p) =pf(p) = R =pf)+fp)-1 =
R'(20) = 20'(20} + £(20) - 1 = 20{—350) + 10,000 = 3000. This means that as the price of the fabric
increases past $20/yard, the total revenue is increasing at $3000/($/ yard). Note that the Product Rule indicates
that we will lose $7000/($/yard) due to selling less fabric. but that that loss is more than made up for by the
additional revenue due to the increase in price.
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7. f(x)=2-=zifz < land f(x} = 2 — 2z + 2if z > 1. Now we compute the right- and left-hand derivatives
defined in Exercise 3.2.44:

fL(1) = lim fa+h) - 1) = lim 2-(0+h-1 = lim —h lim —1= -1and
B~ h O h Jm Jim
limw (1+hP -2(1+h)+2-1 B2

h—0+ h h—l.[(r]l+ h hi;rc[)l+ h hlrgl+

fi(1)
Thus. f'(1) does not exist since f7. (1) # £1.(1), ¥ ¥
s0 f is not differentiable at 1. But f'(x) = —1

forr < land f'{z) =2z~ 2ifz > 1.

-1-2r fz<-1
if ~1<zx<1

if z>1
—1+h)— gf— 1 _9(_ _ _
g(=1+h) —g(-1) = lim Zio (it k)1 = lim =2h lim (—2)= -2and
h h—0— h h—O— h—0—

gi-1+h—g(=1) _ | (~1+h)% -1 —2h + k?

h h—Q+ h = hl_lﬁ)l-k h = hl_l.r(rJl+ (_2 + h) =-2

so g is differentiable at —1 and ¢'(—1) = —2.

— 2*
m W - (I)Tl— im = lim (2+h) = 2 and

h—0—

. h . / :
= hl_lg]L 7= h]_l‘IElJr 1=1,s0g'(1) does not exist.

Thus, g is differentiable except when x = 1, and ¥ y=glx)
if z < —1
if —1<x<1

if x>1

B1. (a) Notethatz° — 9 < Oforz® <9 & |z|<3 & -3<z<3.So
-9  ifr<-3
f(x) ~2*4+9 if -3<z<3 =
-9 ifzr>3
2r  ifx< -3
flzy=< —2¢ if 3<z<3 =
2c  ifz>3

2 if [z >3
—2z if lz| <3

fB+h) - f3)
h

To show that f'(3) does not exist we investigate ’llin% by computing the left- and right-hand

derivatives defined in Exercise 3.2.44.
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2
=B +R?+9]-0

— Lim {(-6—h}=-6 and

h—0~

Cray o e S8R —FB) im SR i 6 hy =6
I Jm = = g G =6

Since the left and right limits are different, ¥ ¥ /

9 r
o T3 HR) = £3) d
£(3) does not exist. Similarly, f'(—3) does not

does not exist, that is,

exist. Therefore, f is not differentiable at 3 or
at —3.

-3

82. Ifz > Lthenh(z) = [z — 1| +io+2|=x - 1+x+2=20+1
[f-2<z<lthenh(z)=—-(z-1)+x+2=3.
Ifz < —2, then h(x) = —(z — 1) — (z + 2) = —2z — 1. Therefore,

—2r—1 ifzx<-2 if o< —2
h(z) =14 3 if 2<z<1 R (z) = if —2<z<l
2z +1 fxz>1 ifr>1

To see that h'(1} = lim M does not exist,

r—1 T —

observe that lim Mz) = h(1) _ lim 3-3 =0 but
1~ x—1 a1 3 -1

lim PO Ry 2222 ) Similanly,
z—1+ x—1 z—1+ 2 -1

k' (—2) does not exist.

.y = f{z)=az® = f'(z) = 2az. So the slope of the tangent to the parabolaat x = 2 is m = 2a(2} = 4a. The |
slope of the given line, 2z +y =b & y = —2x + b, is seen to be —2, so we must have da = -2 &
a= ;%. So when x = 2, the point in question has y-coordinate —% . 22 = —2. Now we simply require that the
given line, whose equation is 2z + y = b, pass through the point (2, -2): 2(2) +(-2) =b < b=2. Sowe
must have a = —3 and b = 2.

. f is clearly differentiable for x < 2 and for x > 2. Forz < 2, f'(x) = 2x,50 fL(2) = 4. Forz > 2, f'(x) = m,

so f4 (2) = m. For f to be differentiable at x = 2, we need 4 = f'(2) = f1(2) = m. So f(z) = 4z + b. We

must also have continuity at z = 2,504 = f(2) = lim+ flz) = 1im+ (4 + b) =8+ b. Hence, b= —4.
r—2 z—2

f'-Fg _f-(f/e)d _ fg—fd
2

.F=flg = f=Fg = [ =Fg+Fy = F= g g g

@ry=c = y= S LetP= (a, g) The slope of the tangent lineat z = a is y'(a) = AEC—Q-. Its equation is .
£

: 2 . . .2 . .
Y- £ = ——%—(w —g)ory = ——CE.’E + _c! 50 its y-intercept 18 =, Setting ¥y = 0 gives © = 2a, so the
a a a a a

z-intercept is 2a. The midpoint of the line segment joining (0, f) and (2a,0) is (u, E) = P.
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(b) We know the z- and y-intercepts of the tangent line from part (a), so the area of the triangle bounded by the axes
and the tangent is 3 (basc)(height) = 2zy = (2a)(2c/a) = 2¢, a constant,

B7. Solution 1: Let f(z) = x'"%. Then, by the definition of a derivative,

F = lin f@- 1) = lim ﬂ___l

. But this is just the limit we want to find, and we know (from the
-1 -1 z—1 T —1

1000
Power Rule) that f'(z) = 10002*°, so /(1) = 1000(1)°%° = 1000. So lim ”’——1—1 = 1000.

Solution 2:  Note that (2" — 1) = (x — 1)(2°*® + 2 +2*7+ ... + 2% + £+ 1). S0

o pl000 C (z- }( 999+T998+:L,997+__.+$2+$+1)
lim ————= = lim
c-1 -1 T—1 r—1

=lim (2™ 42712 p 2 b ) =11l I T4

r—1 o

1000 ones

= 1000, as above.

In order for the two tangents to intersect on the y-axis, the points of tangency

must be at equal distances from the y-axis, since the parabola y = 22 is

symmetric about the y-axis. Say the points of tangency are (o, a”) and

(—a,a?), for some a > 0. Then since the derivative of y = 2% is dy/dz = 2z,

the left-hand tangent has slope —2a and equation y — a* = —2a(z + a), or

y = —2ax — a”, and similarly the right-hand tangent line has equation

y —a® = 2a(z — a), or y = 2ax — a®. So the two lines intersect at (0, —a?). Now if the lines are perpendicular,

then the product of their stopes is —1, 50 (—2a)(2a) = =1 & o2 =1

1 & a=1 Sothe lines intersect
at (0,—1).

3.4 Rates of Change in the Natural and Social Sciences

L@s=ft)=t-10t+12 = o(t)=f{t)=2t-10
(b) v(3) =2(3) — 10 = —4ft/s
(c) The particle isatrest when v(t) =0 & 2t—10=0 < =255,
{d) The particle is moving in the positive direction whenv(t) >0 « 2t-10>0 & 2t>10
(e) Since the particle is moving in the positive direction () t=38,

and in the negative direction, we need to calculate the =4

distance traveled in the intervals [0, 5] and [5, 8]
separately. | f(B) — f(0)] = |—13 — 12] = 25 ft and
[f(8) — f(5)] = |—4 — (—13)| = 9 ft. The total
distance traveled during the first 8 s is 25 + 9 = 34 ft.
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@ s= ()= -0t2+15t+10 = v(t)=f(t)=3t"— 184+ 15=3(t —1)(t - 5)
(b) v(3) = 3(2)(-2) = —12ft/s (f)

uv(f)=0 & t=1sords

dot)>0 & 0<t<lort>5
(e) |f(1) — f(0)] =17 - 10| =T,
f(5) — f(1)] = |-15 - 17| = 32, and

|f(8) — £(5)] = |66 — (—15)| = 8L.
Total distance = 7 + 32 + 81 = 120 ft.

) s = f() =13 — 122+ 36t = o(t) = f'(t) = 3t> — 240 + 36

(b) v{3) = 27 - 72+ 36 = —9ft/s

(c) The particle is at rest when v(t) = 0. 3t — 24t + 36 =0 = 3(t - 2)(t-6)=0 = t=2sorbs.
(d) The particle is moving in the positive direction when v(t) > 0. 3(t —2){t - 6) >0 <« 0<t<2o0rt> 6.
(e) Since the particle is moving in the positive direction and in the H =8,

negative direction, we need to calculate the distance traveled in the

intervals [0, 2], [2, 6], and (6, 8] separately.
|£(2) — f(0)] = 32 - O] = 32.
|f(6) — f(2)| = |0 — 32| = 32.
|£(8) — f(6)] = |32 - 0| = 32.

The total distance is 32 + 32 + 32 = 96 ft.

L@s=fO =t —4t+1 = ot)=f{t)=4>-1¢
(b) v(3) = 4(3)% — 4 = 104 ft/s
(c) Itis at rest when v(t) = 4(t — 1) =4(¢ - 1){(t* +t +1) =0 & t=1s.
(d) It moves in the positive direction when 4{t* - 1) >0 <« t>1.
(e) Distance in positive direction = | f(8} — f(1}| = 14065 — (—2)| = 4067 ft
Distance in negative direction = [f(1) — f(0)| =|-2—-1| =3 ft
Total distance traveled = 4067 + 3 = 4070 ft
t=8,
s = 4065

/i
r{

@+ -2t 1-42

= o(t)=s() =

e+ (#+1)

1-3)?* 1-9 -8 2
@+1) 107 100 25 /s

(b) v(3) =

(c)Itisatresiwhenv =0 & 1-t*=0 & t=1s [t# —1sincet > 0]

(d) It moves in the positive direction whenv >0 & 1-t*>0 & t# <1l & 0<t<L
p
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ft

49
13p It

(¢) Distance in positive direction = |s(1) — s{0)| = | — 0] =

i
2

Distance in negative direction = j8(8) — s{1)| = |% — .21;|

Total distance traveled = % + % = %g ft

1

(f) t=

t=1,
L] s=

0

t=10
s=0

1
2

. (a) s = VT (312 - 35¢+90) = 3t°/% — 35632 4 90"/ =

olt) = 5'(1) = %ta/z _ %tlm + 45712 = 184712 (42 7t 4 6) = t— 1){t —6)

15 (
2Vt
(b) v(3) = 25 (2)(-3) = —15 V3 ft/s
(¢c)Itisatrestwhenv =0 < ft=1sor6s.
(d) It moves in the positive direction whenv >0 < (t~1)(t~6)>0 & 0<t<1l or t>6.
(e) Distance in positive direction = |s{1) — s(0)| + [s(8) — s(6)| = {68 — 0| + |4\/§ - (-12 \/6)|
=58 + 42 + 126 =~ 93.05 ft
Distance in negative direction = |s(6) — s(1){ = |12 /6 — 58| = 58 + 126 ~ 87.39 ft
Total distance traveled = 58 + 4 /2 + 126 + 58 + 126 = 116 + 4 v/2 + 24 /6 & 180.44 fit

t=8,
s=4/2=~56

Ls(t) =82 45t Tt = v =5t =32 -9%-T=5 & 3 -9%-12=0 &
(t—DE+ D=0 & t=4 or —L1. Sincet > 0, the particle reaches a velocity of 5 m/satt = 4s.
L (a) s =5t + 37 = v(t) = % =5+ 6t,s0v(2) =5+6(2) = 17m/s.
(byv(t) =356 = 5+6t6=358 = 66=30 = {t=05s
a dh
L (a) h =10t — 0.83¢° = o) = i 10 — 1.66¢, so v(3) = 10 — 1.66{3) = 5.02 m/s.

10+ 417
1.66
The value t; = (10 — /17 ) /1.66 corresponds to the time it takes for the stone to rise 25 m and

la = (10 + V17 ) /1.66 corresponds to the time when the stone is 25 m high on the way down. Thus,
v(t1) = 10 — 1.66[(10 — v/17)/1.66] = V17 &~ 4.12 m/s.

by h=25 = 10t—-083t>=25 = 0837 -10t+25=0 = t= == 3.54 or 8.51.
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10. (a) At maximum height the velocity of the ballis 0 ft/s. v(t) =s'(t) =80 -32=0 & 321=80 &
t = £. So the maximum height is s() = 80(2) — 16(£)* = 200 — 100 = 100 t.

(b) s(t) =80t—16t2 =96 <« 1602-80t+96=0 < 16(t*—5t+6)=0 & 16(t=3)(t-2)=0.
So the ball has a height of 96 ft on the way up at £ = 2 and on the way down at ¢ = 3. At these times the '
velocities are v(2) = 80 — 32(2) = 16 ft/s and v(3) = 80 — 32(3)} = —16 ft/s, respectively.

1. (@) A(z) =22 = A'(z)=2x. A'(15) = 30 mm®/mm is the xAx) {axy

rate at which the area is increasing with respect to the side length

as x reaches 15 mm.

(b) The perimeter is P(z) = 4z, so A'(z) = 2z = 1(4z) = 3 P(z).
The figure suggests that if Ax is small, then the change in the area
of the square is approximately half of its perimeter (2 of the 4
sides) times Az. From the figure, A4 = 2z(Az) + (Az)? If
Az is small, then AA = 2x(Ax) and so AA/Ax = 2z.

av
dr |, _,

av _
dr

the rate at which the volume is increasing as x increases past 3 mm.

12 (a) Viz) =2* = 3z°. = 3(3)* = 27 mm®/mm is

{b) The surface area is S(z) = 6z°, s0
V'(z) = 3z* = 1(62”) = 1 S(x). The figure suggests that if Az is
small, then the change in the volume of the cube is approximately half
of its surface area (the area of 3 of the 6 faces) times Ax. From the
figure, AV = 3z%(Ax) + 3z{Az)? + (Az)?. If Az is small, then
AV = 3z*(Azx) and so AV/Ax = 3z°.

13. (2) Using A(r) = 7r?, we find that the average rate of change is:

L A(3) ~ A(2) 9w —dwm . A(25)— A(2)  6.25m —4m

R W=S5—2 =~ o5

A(2.1) — A(2)  44lw —drn
21-2 - 0.1

(b) A(r) = mr? = A'(r) = 2mr, 50 A'(2) = 4.

(

(i) =4.1n

(¢) The circumference is C(r) = 2mr = A'(r). The figure suggests that if Ar is
small, then the change in the area of the circle (a ring around the outside) is
approximately equal to its circumference times Ar. Straightening out this ring
gives us a shape that is approximately rectangular with length 2rr and width
Ar, 50 AA = 2rr(Ar). Algebraically,

AA = A(r + Ar) — A(r) = n(r + Ar)y? — mr? = 2nr(Ar) + m(Ar)?
So we see that if Ar is small, then AA = 27r(Av) and therefore,
AA/Ar = 27r.
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14. After t seconds the radius is r = 60¢, so the area is A(t) = 7(60¢)* = 3600mt> = A'(t) = 7200mt =

(a) A’'(1) = 72007 cm? /s (b} A'(3) = 21,6007 cm? /s (c) A'(5) = 36,000m cm? /s
As time goes by, the area grows at an increasing rate. In fact, the rate of change is linear with respect to time.

 S(r) =4dxr? = S'(r) =8 =
(a) §'(1) = 8 fi*/ft (b) §'(2) = 16 f* /ft (©) §'(3) = 24r % /tt
As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect
to the radius.

. () Using V (r) = 37r®, we find that the average rate of change is:

3
~ $7(512) — 2x(1 .

@ Y® V) 5TO1D) Z5mU) _ypy s m

85 3

)~ 4 — 4x(12 _
(i) V(bé_SV(ﬁ) _ 37(216) 1 37(125) _ 12137y /pam
V(5.1) = V(5) _ 4n(5.1)° — §n(5)°

51-5 0.1

(b) V'(r) = 4nr?, s0 V'(5) = 1007 ym’ /pm.

= 102.0137 pm®/um

(i)

© V(r)=4mr® = V'(r) =4mxr® = S(r). By analogy with Exercise 13(c), we can say that the change in the
volume of the spherical shell, AV, is approximately equal to its thickness, Ar, times the surface area of the
inner sphere. Thus, AV = 4772 (Ar) and so AV/Ar = 4rr?,

. The mass is f(z) = 322, so the linear density at x is p(z) = f'(z) = 6z.
(a) p(1) = 6 kg/m (b) p(2) = 12kg/m (c) p(3) = 18 kg/m
Since p is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.

L V() = 5000(1 — £6)° = 5000(1 — At + 1E5t%) = V'(£) =5000(— 55 + ggt) = —250{1 — )

(a) V'(5) = —250(1 — &) = —218.75 gal/min (b) V'(10) = —250(1 — 48} = —187.5 gal /min
(¢) V'(20) = —250(1 — 2) = —125 gal/min (d) V'(40) = —250(1 — 43) = 0 gal /min

The water is flowing out the fastest at the beginning— when ¢t = 0, V'(t) = —250 gal/min. The water is flowing
out the slowest at the end — when ¢ = 40, V' (t) = 0. As the tank empties, the water flows out more slowly.

. The quantity of charge is @(¢) = t° — 2% + 6t + 2, so the current is Q' (t) = 3t2 — 4t + 6.
(a) Q(0.5) = 3(0.5)* — 4{0.5) + 6 =4.7T5 A b)Yy Q' (1) =3(1)—4(1)+6 =5A

The current is lowest when @ has a minimum. Q" (t) = 6t — 4 < 0 when ¢ < 3. So the current decreases when
t < 2 and increases when t > 2 Thus, the current is lowest at t = 2s.

GmM dF _ 26mM

W F === = (GmM)r=? = = —2(GmM)r % = e , which is the rate of change of the
"

force with respect to the distance between the bodies. The minus sign indicates that as the distance r between
the bodies increases, the magnitude of the force F' exerted by the body of mass m on the body of mass M is
decreasing.

2GmM

(b) Given F'(20,000) = 2, find F'(10,000). -2 = " 30,0008

= GmM = 20,000°.

2{20,000°)
10,0003

F'(10,000) = — = -2.2% = ~16 N/km
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21. (a) To find the rate of change of volume with respect to pressure, we first sotve for V' in terms of P.

C dV C
(b) From the formula for 4V /dP in part (a), we see that as P increases, the absolute value of dV/dP decreases,
Thus, the volume is decreasing more rapidly at the beginning.

(PV)P _CP P

1dV 1( C) C C 1

©@8=-vap="v\ P

C(6) — C(2)  0.0295 — 0.0570 (b) Slope = ac 0017 o (moles /L) /min
4 At 7.8

~0.006875 (moles/L)/min cw
~0.0408 — 0.0570 0.08
B 2 0.06 1
—0.008 (moles/L}/min o044
0.0570 — 0.0800 002+

2

= —0.0115 {moles/L}/min 0

1860 — 1750 14 2070 - 1860 4,
N ¥ T = = = = 1]_, = = 21,
23 (2) 1920: 1 = yoor 510 = 1 ™2 = 9930 — 1920 !

(ry + mg)/ 2 = (11 + 21)/2 = 16 million/year

4450 — 3710 140 5280 — 4450 g0
—_— =74 = e = 822 — B3
1080 — 1970 — 10 = "»™2 = T950""Togp ~ 10~ °

(ma + ma)/ 2 = (74 + 83)/2 = 78.5 million/ year

1980: m, =

(b) P(t) = at® + bt® + ct + d (in millions of people), where a ~ 0.0012937063, b ~ —7.061421911,
e~ 12,822.97902, and d ~ —7,743,770.396.

() PH) = at® + bt* +ct+d = P'(t) = 3at® + 2bt + ¢ (in millions of people per year)

(d) P'(1920) = 3(0.0012037063)(1920)% + 2(—7.061421911)(1920) + 12,822.97902
= 14.48 million/year [smaller than the answer in part (a), but close to it]
P'{1980) = 75.29 million/year (smaller, but close)

(&) P'(1985) ~= 81.62 million/ year, so the rate of growth in 1985 was about 81.62 million /year.

28, (a) A(t) = at* + bt + et + dt + e, where @ = —5.8275058275396 x 107°% b = 0.0460458430461,
¢ = —136.43277039706, d = 179,661.02676871, and e = —88,717,597.060767.

() A(t) = at® + b® +ct? +dt +e = A'(t)=4dat® + 3bt* +2ct +d

(c) A'(1990) ~ 0.0833 years of age per year
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— L. ,
11955 1965 1975 1985 1995
1950 1960 1970 1980 1990

a’kt
B @0 = s
d[C]  {akt+1)(a’k) — (a®kt){ak) a’k{aki+1—akt) o’k

dt (akt +1)2 B (akt + 1)2  (akt + 1)2

_ a’kt  d’ktt+ae—d’kt _ a
akt+1 akt+1  akt+1
2 2
a a‘k d|[C] dx
= = from part ==,
akt+1) (ke 12~ ar (rompat@l =g
q—f _Ja o _fla-f fa___F

1
v fa TOPTOSFYdT - T T w-nE

rate of reaction =

() Ifx=[Cl,thena—x=a

So k(a — z)? :k(

21. (a) Using v = :1% (R? — r?) with R=0.01,1 =3, P = 3000, and 5 = 0.027, we have v as a function of r:
n
3000 s __ _
v(r) = ———- (0.01% — r*). v(0) = 0.925 cm/s, v(0.005) = 0.694 cm/s, v(0.01) = 0.
4(0.027)3
P
4nl

v’ (0) = 0, v (0.005) = —92.592 (cm/s) /cm, and v'(0.01) = —185.185 (cm/s)/cm.

—(-2r) =—P— When { = 3, P = 3000, and n = 0.027, we have

(b) v(r) = (R2 -r?) = ()= onl’

v,(r)__ 30007
T 720002733

{c) The velocity is greatest where r = {) {at the center) and the velocity is changing most where r = R = 0.01 cm
B () () f=57

(at the edge).
(1T —1 df
2LY p (2V p ) e

T

p
.. _i _1’:_ 1 1/2
=2z \/;‘ (2Lﬁ)T =

! ZA<ﬁ)p—1/2 . ¥

2L 2l dp 2
(b) Note: [HNustrating tangent lines on the generic figures may help to explain the results.

(1) % < Oand L is decreasing = fisincreasing = higher note

1

(iii) f =

(ii) % > 0and T is increasing = fisincreasing = higher note
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< Oand pisincreasing => fisdecreasing = lower note

af

(iii) o

gy f iy f

0

29. (a) C(xz) = 2000 + 3z + 0012 +0.00022° = C'(z)} = 3 + 0.02z + 0.00067°

{b) C'(100} = 3 + 0.02(100) + 0.0006(10,000) = 3 + 2 + 6 = $11/pair. C'(100) is the rate at which the cost is
increasing as the 100th pair of jeans is produced. It predicts the cost of the 101st pair.

{c) The cost of manufacturing the 101st pair of jeans is

C(101) — C(100) = (2000 + 303 + 102.01 + 206.0602) — (2000 + 300 + 100 + 200)
=11.0702 = $11.07

30. (a) C(z) = 84 + 0.16z — 0.0006z2 + 0.000003z® = C'(z) = 0.16 — 0.0012z + 0.000009z =
C’(100) = 0.13. This is the rate at which the cost is increasing as the 100th item is produced.

(b) C(101) — C(100) = 97.13030299 — 97 ~ $0.13.

3. (a) A{x) = p(z) = A'(z) = xp'(x) —plx}-1 _ zp'(x) — p(x)

" =~ .A'(z) >0 = Alz)is increasing; that'

is, the average productivity increases as the size of the workforce increases.
p(z)

(b) p'(z) is greater than the average productivity = p'(z) > A(z) = p'(z) > e

rp(z) >plz) = ap'(z)-plz)>0 = w—) >0 = A'(z)>0.

32 () S = @ _ (1 +4I0-4) (9.6m_0‘6) _ (40+24$0.4) (1_6:1:70.6)
de (1+ 4x0-4)
9'633_0‘6 + 38.49:?0'2 — 643;‘*0'6 _ 38.458_0'2 B 54.41_—0.6

(1 4 420-4)? T (14420 )?

At low levels of brightness, R is quite large [R(0) = 40] and is

quickly decreasing, that is, S is negative with large absolute value,

This is to be expected: at low levels of brighiness, the eye is more

sensitive to slight changes than it is at higher levels of brightness.

PV PV 1
11, = T — = =
PV =nRT = nR  (10)(0.0821) — 0.821

(PV). Using the Product Rule, we have

‘g. = — [POV'(0) + VOP'(0)) = 55z [(8)(—0.15) -+ (10)(0.10)] ~ ~0.2436 K /min.
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34. (a) If dP/dt = 0, the population is stable (it is constant).
dP P g P P 3 Je]
— = = - —=1-= —=1-= P=PFPf1-—=].
(b)dt 0 = jgP 7‘0(1 PC)P=> . 1 7. = 7. 1 o = ( TU)
If P. = 10,000, 7 = 5% = 0.05, and 3 = 4% = 0.04, then P = 10,0001 — £} = 2000.

(¢) If 3 = 0.05, then P = 10,000(1 - £) = 0. There is no stable population.

35. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is,

ac
7 =Oand—£- =0.

{b) “The caribou go extinct” means that the population is zero, or mathematically, C = (0.

() We have the equations % = aC — bCW and dd_V:/ = —cW + dCW. Let dC/dt = dW/dt = 0, e = 0.05,
b = 0.001, ¢ = (.05, and d = 0.0001 to obtain 0.05C — 0.001CW = 0 (1) and
—0.05W + 0.0001C'W = 0 (2). Adding 10 times {2) to (1) eliminates the {'W -terms and gives us
0.06C —0.5W =0 = ( = 10W. Substituting C' = 10W into (1) results in
0.05(10W) — 0.001(10W)W =0 < 05W -001W? =0 & 50W-W?=0 <
WHBO—-W)=0 < W =0o0r50. Since C = 10W, C = 0 or 500. Thus, the population pairs (C, W)
that lead to stable populations are (0, 0) and {500, 50). So it is possible for the two species to live in harmony.

3.5 Derivatives of Trigonometric Functions

fl@)=z-3sinz = f(z)=1-3cosz

. flz) =zsinz = f'{z)=x cosz+ (sinx) -1=wxcosr+sinz

.y =sinz + 10tanz = y' = cosz + 10sec’

.y =2cscx +HBeosz = Yy = -2cscrcotz — Bsinx

cg(t) =t2cost = ¢(t) =t*(—sint) + (cost) - 3t° = 3t* cost — t¥sint or t*(3cost — tsint)

. g(t) = 4scct +tant = ¢'(t) = 4secttant +sec’t

Ch(8) = fcsch —cotf = RB'(0) =0(~cscOcot§) +(csch) - 1 — (—csc® §) = escf — Bescheot 6+ csc? §
.y = ulacosu + beotu) =

v = u(—asinu—besc®u) + {(acosu + beotu) - 1 = acosu + beot w — ausinu — bu cse? u

T cosz)(l) — (z){—sinx cosx + xsinz
oyo T oy (cos2)() = @)osing) _ cosa
cos @ {cosx) cos? x
10,y = 1+sinz
T+ Ccosx

, _ {z +cosx)(cosz) ~ (1 +sinz)(l ~sinz) zcosz+cos’z — (1 —sin’z)
- (z + cos z)? B (z + cosz)?

_ zcosx + cos® & — (cos® z) TCOST

{x+ cosz)? "~ (z+cosx)?

sect
1+ sect
(1 + secH)(secftan®) — (secB)(secftand) (secHtanf)((1 +sect) —secd]  sccftand

f18) = (1+ sec8)? - (1 + secf)? (14 sect)?

Cf(8) =
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. tanx — 1

T secz

2

dy secxsecis — (tanz — 1)secztanz SeCﬂS(SBC a:—tan2$+tanm) _l+tanz

dx sec? sec? T secT
Another method: Simplify y first: y =sinz —cosz = 3 =cosz +sinz.

,  x°cosz — (sinz)(2z) _ x(zcosz —2sinz)  xcosT —2sinx

($2)2 $4 333

= cscO(f 4 cotf) =

cscf (1 — csc? 6) + (8 + cot #)(— cscfcot §) = csc (1 —esc® ¢ — Ocotd ~ cot? 8)
= cscf (— cot? § — feot § — cot® f) [1+ cot® & = csc® 6]
= csch (0 cot @ — 2cot? 6) = —cscfcot § (8 + 2cot f)

.y=sech tanf = 1y =sech (sec’§) + tand (secftand) = sech (sec’ § + tan® 0)

Using the identity 1 + tan® 8 = sec? #, we can write alternative forms of the answer as
secé (1 + 2tan’6) or  sec(2sec’f —1)

. Recall that if y = fgh,theny’ = f'gh+ fg'h + fgh'. y = rsinzcosx =

d . . : .
d_y =sinzcosx + TcosrcosT + rsinz (—sinz) =sinzcosz + x cos
x

2 2

r — xsinz

= —c¢scrcotx

5 =

1 \ _ (sinz)(0) —1(cosx) —cosxr 1 cosz
- sin? & sin® x sinx sinx

4 {cscx) = 4
" dx " dx \sinz

=secrtanx

. 4 {secx) =

dr dr cos? T cos?r  coST COSZT

d 1 _ f{cosz){0) —1(—sinz) sinz 1 sinz
cosT ) B

{cotz) = = - = —¢sc T

d (cosa:) _ (sinz)(—sinz) — (cosz}(cosz) sin? z 4 cos® z 1 2
dr sin® z sin’ z sin? z

dx sinzx
. f{z) =cosz =
f(x) = lim flz+h) - f(z) — lim cos(x + h) — cosz coszrcosh —sinxsinh — cosT

h—0 h h—0 h - ;111-% h

) cosh —1 . sinh . cosh—1 . . sinh
= lim [ cosg ———— —sing —=— | = cosx lim ———— —sinz lim
h— h, h k-0 h h—0 h

= (cosz}(0) — (sinz)(1) = ~sinz

.y=tanz = 3 =sec?x = the slope of the tangent line at (Z,1) is sec” 3 = (v/2 )2 = 2 and an equation

of the tangent lineisy — 1 =2{(z — Z)ory =2z +1— 3.

Ly =(l+z)cosz = 3y =(1+2)(—sinz)+cosz-1. At{0,1),% = 1, and an equation of the tangent line is
y—1=1(z -0,ory=x+1

.y=xz+coszx = ¥ =1—sinz. At(0,1),% = 1,and an equation of the tangent line is y - 1 = 1{z — 0), or
y=x+1
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1 cosx — sin &

Ay = y = [Reciprocal Rule]. At (0,1),y' = ————15 = —

sinz + cosx (sinz + cos x)?

an equation of the tangent lineisy — 1 = —1{z — 0),ory = —z + 1.

25 ()y=xcosz —=> y =z(—sinz)+cosz(l) =cosz - Tsinz.

So the slope of the tangent at the point (7, —m) is
cosm — wsinm = —1 — x{0) = —1, and an equation is

yt+tm=—(z—mory= -z

26. (a) y =secr — 2cosz = Y =secxtanx + 2siny =

the slope of the tangent line at (%,1) is
sec § tan 3 + 2sin § = 2-V3+2- 3§ = 3+/3 and an equation is
y—1:3\/§(x7%)0ry:3\/§m+1——7r\/§.

21. (a) f(z) =22+ cotzx = f(z)=2—cscPx

(by 6 Notice that f'(z) = 0 when f has a horizontal tangent.
' f' is positive when f is increasing and f' is negative when f

is decreasing. Also, f'(x} is large negative when the graph

of f is steep.

28. (a) f(x) = Jxsinz = f'(z)=/rcosx+ (Sinm)(%ﬂf}ﬂ) = JTcosr + ;H\l/;

Notice that f'(x) = 0 when f has a horizontal tangent.

f ' is positive when f is increasing and f’ is negative when f

e

~ is decreasing.

N

-3

29. f(x) = « + 2sina has a horizontal tangent when f'(z) =0 < 1+2cosx=0 & cosz=-1 &
x =2 4 2rnor & + 2mn, where n is an integer. Note that 4F and 27 are £% units from . This allows us to

write the solutions in the more compact equivalent form (2n + 1)m & %, n an integer.
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_ cosz

 24sinz

(2 +sinx)(—sinz) —cosxcosz _ —2sinzx — sin?z — cos’ _ —2sinz -1 — 0 when
(2 + sinz)? B (2 + sinx)? (2 +sinx)?

—28inz-1=0 & sin:czf% = J::”T"+27rn0ra:z3575+27rn,naninteger.80y:

3. y

!

y=— \%@ and the points on the curve with horizontal tangents are: (Lﬁ” + 27n, %) (%’ +2mn, ——=

7L an integer.

3. (a) x(f) = 8sint = o(t) = z'(t) = 8cost

(b) The mass at time ¢ = 2T has position z(27) = 8sin & = 8(39) = 4+/3 and velocity

v(%) = 8cos & = 8(~3) = —4. Since v{ ) < 0, the particle is moving to the left.

32. (a) s(t) = 2cost + 3sint = wv(t) = —2sint + 3cost

(b) (c)s=0 = t2~ 255 Sothe mass passes through the

equilibrium position for the first time when ¢ = 2.55 s.

(dyv=0 = ¢ =098, s(t;1)~ 3.61cm. So the mass

travels a maximum of about 3.6 cm (upward and downward)

from its equilibrium position.

(¢} The speed |v| is greatest when s = 0; that is, when

t = to + nmw, n a positive integer.

From the diagram we can see that sinf = z/10 < « = 10sinf. We want to find the
rate of change of x with respect to ; that is, dz/d¢. Taking the derivative of the above
expression, dx/df = 10{cos #). So when § = I,

dr/df = 10cos 5 = 10(3) =5 ft/rad

W dF _ (pusind + cos8)(0) — pWipucosd —sin#) _ uW(sinf - pcosd)

B@QF=——— = =
@ pesiné + cos 6 df (j5in@ + cos 6)? {psin + cos 8)*

(b)i—gzﬂ = pW(sing — pcosf) =0 = sinf=pcosf = tanf=p = f=tan"'p

0.6(50)

From the grz = —
(c) 30 rom the graph of F 06500 = cos B

for 0 < @ < 1, we see that

dF
0 0 = 0 = 0.54. Checking this with part (b) and g = 0.6,
we calculate # = tan~" 0.6 = 0.54. So the value from the graph is

consistent with the value in part (b).
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3. lin}) sindc im — - imultiply numerator and denominator by 3]
r— x

[asz — 0,3z — 0]

[let 8 = 3]

|Equation 2]

— lim 4sindx im 6z
T a0 dx z—0 Gsin 6x

=4() (0 =2

. sinde lim i oz )
z—0 sin 6z : sin6x
Ly O
6 z—0 sin 6z
Iim tan bt = lim ( in 6 - Lt ) = lim 6 sin 6t - lim 1 - lim Ll
" t—0 sin 2¢ t—0 cos6t sin 2t =0 6t t—0 cos 6t t—0 2sin 2t

11, 2 11,
6(1)- 7 - 5(1) =3

6 lim in 6¢ lim im
-— 1 . P— —_—
ti—0 6t t—0cosbt 2t—0sin2i

cosf —1 . cosB—1
_ lim ——
= lim & _ 8—0 8
a—0 sind a—o siné i sin @
4] g0 @

sin{cos @) Sin(éiﬂ,cosg) _sinl _

§50 secl éinglsecﬁ 1

gin® 3t . sin 3t  sin 3t . sin3t . sindt
ol = lm — = lim - lim

t2 t—0 t-+0 t t—0 t
. 2 . 2
- (lim s Bt) = (3 lim Smgt) =(3-1)2=9
t—0 t -0 3t

cosZ2xsinx
im ———
z—0 sin2z

- },1—>mo cos 22 [ {sin 2z)/x

T—

. lim [{sinz)/x
M] = lim cosQ:cl x--o[( /e ]

2 ilE}J [(sin 2z)/2x]

1 1 1
ST 21 2
sinxz —cosx . sinx —cosx . sine —cosx

. lim ————— = lim —————— = lim - -
x—m/4 COS2Z c—n/acos2x —sin®x  =—n/4 (cosz + sinz)(cosx — sinx)
-1 -1 _—1

lim = =—
: hid : s
z—m/acosT +sine  cosf+sing /2

. Divide numerator and denominator by #. (sin & also works.)

sin i sind
. sin @ . B e 1 1
lim ——— = lim - = - = = —
0@ +tanf 60 sin 8 1 . sind , 1 1+1-1 2
1 - —_— 1+ lim ~—— limn
g cos -0 0 ¢—0cosd

lim sin(z-1) sin(z — 1) — lim 1 im sin{z — 1) _

ik S N 1
P a2-2 e E+dE-1) em1z+2e01 z-1 3
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. . R .9
d sinz 2 coszcosz —sinz (—sinz) _ cos’z +sin’z 9 1
45, (a) tan:z: = — = sec’r = 3 == 2 .Sosecz = ="
dr cosz cos“ X cos“ I COosS“

d d 1 cosx){0) — 1(—sin sinz
(b} —secx = — = secxrtanz = ( )X0) ( I).Sosecmtanas: 3
dx dr cosx cos? x cos? x

()i(. ’ —I—cosm)—il_i_mtw
© dg O T dx cscx

, cscz (—cse?x) — (1 +cotz)(—cscxcotz)  csca [—cse’z+ (14 cotw) cot z]
cosx — sinz= - = >
csc? x csc? @

—esc?z 4+ cot?z +cotx _ —1l4+cotz

- cs8C T T cser
cotzx — 1

csCr

Socosz —sinz =
. Let |[PR| = z. Then we get the following formulas for r and & in terms of § and x:

sin — = = r= ineand.cosg—E = h*:ccosg
2 =Esiny 27z - ’
= 2(2r)h = rh. So
I PR Y zsin(f/2)
N Zﬂel—lgh h 2%gkx£1+ x cos(8/2)
= 1x lim tan(8/2) =0.
i lim tan(6/2)

. By the definition of radian measure, s = rd, where r is the radius of the circle.

/2

g
By drawing the bisector of the angle 0, we can see that sm - = = o =2rsin 7

2
r6 _2.(8/2) 9/2
S - -
o lim 5= lim 5t ai%‘+251n(9/2) M S 072)

lln’b sinz — 1 combined with the fact that as § — 0 £ — Dalso.}
Jriiain

= 1. [This is just the reciprocal of the limit

3.6 The Chain Rule

dy dy_d_u
dr ~ dudz
@:@d_u:lumlﬁ(g}: 3 — 3 :
dz  dudzr 2 2Vu 2443z
dy _dydu_ oo 2o
d:::_dud:v_(mu J(—2z) = ~202(1 — 2%)".
dy _ dydu

T = dnde = (sec2 u) (cosz) = sec(sinz) - cos z, or

. Letu = g(z) = 4z and y = f(u) = sinu. Then — = (cosu)(4) = 4cosdz.

. Letw = g{x) =4+ 3zandy = f(u) = u = u*% Then

.Letu=g{z)=1-z%andy = f(u) = u'®. Then

. Let u = g(z) = sinz and y = f(u) = tanu. Then —=

equivalently, [sec(sin z))? cos x.

. Letu = g(z) =sinzand y = f(u) = /u. Then d:yc dyég:l‘u,_lf2 3 — 8T

dudz 2 B C 2+sinz

B ~ 3 _ d_y dy du
- Letu = g(z) = Vzandy = f(u) = sinw. Then = = - "=~ =

CF(@) = (2® +4z) = F(2)=7(z +42)° (327 +4) [or7a®(z? + 4)°(

(;172—:r:+1)3 = F'(m):B(m2—$+1)2(2m—l)
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0. Fla)= ¥T+3z + 20 = (1+22+%)" =

—3/4 d an 1 . 2
) 'd_(1+2$+$)_4(1+2x+m3)3/4 (2 + 32%)
2 + 3z? 2 + 3z?

4{1+2m+$3)3/4 440+ 2z +2)°

Flz) =i(1+20+2°

8®

S =20 = fe) = M1t ) = e

. -2

1 PR , - 5 -
= (DT s g =30t 1) (t) = 128 (e 1) Ty

- g(t) = S

2
. - > t
f) = YTt = (L4 tand)”® = F/(8) = 1(1+tant) 3 sect t = — oo
3 {/(1+tant)’

2

Ly =cos(a® +2%) = y =—sin(a®+2%) 327 [a®isjustaconstant] = —3z” sin(a® + 2%)

L y=a®+cos®z = ¥y =3{cosz)?(—sinz) [aisjustaconstant] = -3 sin x cos? z

Ly =cot(z/2) = y =—cscP(z/2)- 1 = —Lesc?(z/2)
.y = 4sechr = 3 = 4sechrtanbz(5) = 20secba tan bx
Lglz) = (1 +42P(3+x 2% =
g(z) =(1+4z)° 883+ z—2%)"(1 - 22)+{(3+z—2°)° 5(1+4z)* -4
=41 +42)4(3 + = — 2%)" [2(1 + 42)(1 - 22) + 5(3 + = — z°)]
= 4(1 +42)*(3 + = — 227 [(2 + 4z — 162%) + (15 + 5z — 527)]
= 41 +42)* (3 + z — 2%)7 (17 + 9z — 212%)

LAy = -1+ =
W) = (t* - DY 48 + 1P 068) + (8 + 1) 30" — 1)2(48°)
=122 - D2 13 [ - 1)+ + )] =128 - 1P+ )P (2 1 1)

Ly=(2r 5827 -5 =

y' = 4{2z — 5)°(2) (8z* - 5)73 + {2z — 5)Y{=3) (8% — 5)f4 (16z)
= 8(2z — 5)*(82% ~ 5) ™* — 48z (2z — 5)" (82 - 5) "
[This simplifies to 8(2z — 5)%(82% - 5) ™" (—4z” + 30z — 5) ]

Ly =+ 1)+ =

-2/3

y' = 233(3’2 + 2)1/3 + (z* +1)(3) (3:2 +2) (2x) = 23:(1:2 + 2)1/3 [1 +

2?41
3{x? +2)

.y=12cosnz = y =2*(-sinnz)(n)+cosnz (3z°) = z*(3cosnx — nasinnz)

Ly —gzsinyT = y =xzcosyT- iz +sinyx 1= 3VFcos T +sinz

.y =sin{zcosz) => y =cos(zcosz)- |[z{—sinz)+cosx 1] = (cosz — rsinz)cos(z cosz)
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e =
7 — 3z
3z
f(@)= VT =3a(1) —z- 3(7-32)7% - (~8) _ it 5%
(VT - 3z )2 (7 —3z)!
_2(7-32)+3x 14— 3z

(7 — 3z)372 (7 — 3z)3/2

.F(z):\/g: (211)1/2
F'(2) —%(zli)-”?_% (;—_i) =%(zti)1/2-(z+l)(é);1(;— -

1+ DM a4 l-z41 (z+1)? 2 1
T2(z-1V2  (z+1)2

1
2

-1V 1P (-1)/2(z +1)**

_ (y-1?
(O = G rayp
G'ly) = P +2)° 4y -1 1-(y— 51): -5(3% + 2y) 2y + 2)

[(y? +2y)°]
20y + 29)"(y — 1)*[2(° + 29) — 5(y — L)(y + 1)]
(12 +2)"°
_ 20y DP[(20% +4y) + (=5y2 +5)] _ 20y~ V*(=3° + 4y +5)
(y2 + 2y)° (v* +2p)°

r

.y:z—
r?+1
2 2 3 2
o NS e,
y,:\/——r2+1(1)—r-%(r2+1)_1/2(2r):V’r s 11
(Ve F1)° (VT 1) (vViT¥1)®
24+ 1) —r? 1
:( 2) 3 = 2 3/2Or(7'2+1)
( T +1) (r2 +1)

~3/2

Another solution: Write y as a prodoct and make use of the Product Rule. y = r(r2 +1) o

y =r- =1+ 17 @)+ (P2 1)
_ (r2 +1)73/2{4r2+ (1_2 +1) } - (Tz +1)w3/2 (1) = (Tz +1)—3/2

-3/2

The step that students usually have trouble with is factoring out (r2 + 1) . But this is no different than factoring

out = from x2 + x°; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this
case, —% is smaller than — 2.
. COSTT
Y T Sinnz - cos iz
, _ (sinnz + coswz)(—m sinwz) — (cos wx)(m cosmx — 7 sinmx)
B (sinwz + cosmx)?

2qy — 7 sinwr coswL — 7 cos’ T + T SinwE cos AT

(sinwx + cos mz)?

—7 sin

_ —w(sin® mz + cos® ) _ - or -7
~ (sinwz + cos mr)? (sin 7z + coswx)? 1+ 2sinmx coswz
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29, y = tan(cosz) = y = sec’(cosz)- (—sinz) = — sin xsec?(cosx)
Iy
sin® &
30 y=

COS T

,  cosz(2sinzcosz) —sin’z (—sinz) sinz (2cos® x + sin” x) _sinz (1+ cos® 1)

cos? cos? ¢ cos? x
=sinx (1 + sec? .1:)

Another method: y = tanzsing = ¢ =sec® rsinz + tanzcosz = sec® zsinz + sinz

cy=sinVI+a? = y =cosvI+z2 3(1+2%)V2 22 = (zcosV1+22)/VI+a2
Ly = tan?(30) = {tan36)® = ¢ = 2(tan30)- % (tan30) = 2tan 30 - sec® 30 - 3 = 6 tan 30 sec® 30

Ly =(1+cos’x)® = o =6(1+cos®z)® 2cosz(—sinx) = —12 cosz sinz (1 + cos” z)°

1 , .1 1 1 .11 1
L Y =8Il — = Y =S8N — + TCo8— ——z ] =sm— — —cos—
T T r\ =z T T
.y =sec’x +tan’z = {(sec ;1:)2 + {tan :;r:)2 =
y = 2(sec x)(sec x tan x) + 2(tan :1:)(sec2 z)= 2sec’ ztanz + 2sec® rtanz = dsec® ztanz
. y = cot(z?) + cot’ z = cot(z?) + (cotz)? =
= —csc?(x?) - 22 + 2(cot 2)' (— cse? ) = —2zesc?(2?) — 2ot zesc

.y = cot’(sinf) = [cot(sin@)]* =

y' = 2[cot(sin )] - d% [cot(sin#)] = 2 cot(sinf) - [— csc®(sin§) - cosf] = —2cos8 cot(sind) csc’(sin )

.y = sin{sin(sinz}) = 3" = cos(sin{sinz)) % (sin(sin z)) = cos{sin(sin z)) cos(sinz) cosz

Fla+ \/E)‘l/z(1+%x~l/2) == :c1+ﬁ (1 + 2\1/3_:)

y=4(z+ :n+\/s?)_m[1+ Yo+ va) 2 (14 42 17)]

(ta.n V'sin m) = cos (tan \/sinm) sec? v/sinz - ad— (sinz)1/2
z

sec® vsinz - 2(sinz)™/? - cosx

(sec? viinz ) ( L )(cos )

2+/sinx

. .2 .
cos(sinz) = 3 = L(cos(sin?z))"!* [ sin(sin? z)|(2sinz cosz) = _sinfsin’z) sinz cos z

cos(sin® z)

Ly =(1+22)"" = y =101+ 2x)% 2 =201 + 22)%. AL(0,1), 3" = 20(1 + 0)° = 20, and an equation of
the tangent line 1s y — 1 = 20(xz — 0), ory = 20z + 1.

.y =sinz+sin’y = y =cosz+ 2sinzcosz. At (0,0}, 3" =1, and an equation of the tangent line is
y—0=Ulx—0),ory =z

.y =sin(sinz) = y = cos(sinz) - cosz. At (m,0), ¥ = cos(sinz) - cosm = cos(0} - (—1)
and an equation of the tangent line isy - 0= ~1(x — w),ory = —x + .
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8%. y=v5+az2 = y =306+ :1:2)_1/2 (2z) = o/v5 + 2. AL(2,3), v’ = 2, and an equation of the tangent

lineisy —3=2(z ~2),0ory = Zr+ 2.

4. () y = f(z) = tan(22%) = [f'(z)= secz(%mz) (2-2x). (b) 1
The slope of the tangent at (1, 1) is thus

F(1) =sec® (%) =2 £ = m, and its equation is

y—1l=n(zr-lory=mz-7+1

48, (a) Forz > 0, |z| =z, and y = f(x) =

VITE() - a(d)2-a?
(vVZ-22)°
B (2—$2)+:c2 _ 2

(2-22)*?  (2-a2)%?
So at {1, 1), the slope of the tangent line is f'(1) = 2 and its equation

filz) =

isy—1=2(r-1)ory=2r— L

® @)= o

, z-1(1-28) (2 -VI—22(1) Vi—a2
f(.’,l',')— 2( 5!7) = \/‘1'__22
—a:2—(1—x2) -1

22T —22  a2y/1- a2

Notice that all tangents to the
graph of f have negative slopes
and f'(x) < 0 always.

From the graph of f, we see that there are 5 horizontal

tangents, so there must be 5 zeros on the graph of f'.
From the symmetry of the graph of f, we must have
the graph of f’ ashighatx = Qasitislowatz = 7.

The intervals of increase and decrease as well as the

signs of f” are indicated in the figure.
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(b) f(z) = sin(z +sin2z) =
f/(z) = cos(z + sin2z) - % (z + sin 2z)

= cos(z + sin 2x){1 + 2 cos 2x)

-3

. For the tangent line to be horizontal, f'(z) = 0. f(x} = 2sinx + sin’z =
fx)= 2ros;c+251na:cos:c =0 & 2cosz{1+sinz)=0 & cosz=0orsinr=-1,s0
=2 + 2nmor 3 + 2nx, where n is any integer. Now f{F) = 3and f(2F} = —1, so the points on the curve

with a horizontal tangent are (% + 2n, 3) and (3 4 2nx, —1), where n is any integer.

. f(z) =sin2z — 2sinz = f'(z) = 2cos2z —2cosz = dcos’z — 2cosz ~ 2, and
dcos’z —2cosz —2=0 & (cosx—1)(dcosz+2)=0 & cosz=1lorcosz=—1 Sox=2nmor

(2n + 1)7 £+ 3, n any integer.

- F(z) = flg(z)) = F'(z)=fg(z)) (=),
so F'(3) = f'{(g(3)) - ¢'(3) = f(B) - ¢'(3) = 7 - 4 == 28. Notice that we did not use f'(3) =

Lw=uov = wiz)=ulv(z)) = w{xr)=1v'(v(z)) v(z),s0
w'(0) = 2/ (v(0}) - v(0) = v'(2) - v'(0) = 4 - 5 = 20. The other pieces of information, u(0) = 1, »’(0) = 3, and
©'(2) = 6, were not needed.
(@) hiz) = flg(z)) = H(z ) = f'(g(x)) -g'(ﬂ?) so h'(1) = f'(g(1}) - ¢'(1) = f'(2) - 6 =5-6 = 30.
®) Hiz) = g(f(z) = H'(z)=g'(f@)) f(x),50 H'(1) =g/ (F(1)) - £(1) = g'(3)-4 = 9-4 =36,

@) F(z) = f(flx)) = F'lz)=f{f(x) fle)so F(2) = f(f(2)- f(2) = f1)-5=4-5=20.
(b) G(z) = g(g(z)) = G'(z)=g'(g(z)} ¢'(2).50G"(3) =¢'(9(3)) ¢'(3) =¢'{2) 9=T-9=63.

C@u(z) = flgle)) = (@)= flglz))g (). Sou'(1) = f(g(1))g'(1) = f'(3)g'(1). Tofind f'(3), note

-4 1
that f is linear from (2, 4) to (6, 3), so its slope is é S -7 To find g'(1), note that g is linear from (0, 6)

0 (2, 0), o its slope is g:g = _3 Thus. f/(3)g’'(1) = (~1)(-3) = 2

) v(z) = g(f(z)) = v'(z)=g"(f(2))f (x). Sov'(1) = ¢'(F(ANF'(1) = ¢'(2) (1), which does not exist

since g'(2) does not exist.

2)
© w(z)=glglz)) = w'{z)=g'(g(x))g (z}. Sow'(1)

. . 2-
that g is linear from (2, 0} to {5, 2), so its slope is E g =

g (g(1))g'(1) = ¢'(3)g'(1). To find g'(3), note
. Thus, g'(3}¢'(1) = (£)(-3) = -2.

2
3

(@) h(z) = f(f(2)) = K(z)=f(fla)f (17)
So h'(2) = f(F2)S(2)=F D@~ (-)(-1) =1

) g(z) = f(z*) = @) =1(") 3 (3°) = £(2*)(2e).
Sog'(2) = f/(2°)(2-2) = 4f'(4) = 4(1.5) = 6.
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hiz) = flg(z)) = H(z)=f(g(x))g (x). So k'(0.5) = f'(9(0.5))g(0.5) = £(0.1)¢'(0.5). We can
estimate the derivatives by taking the average of two secant slopes.
14.8 —12.6 18.4 —14.8 y my +me 22436
4 . =_— — - — = . 1) = -
For f' (0.1): my “1"0 22, my 0501 36. So f(0.1) 5 5
p ) _010-017 005-010 ,05le+m2:_06
For g'(0.5): my = o5_064 — 0.7, mg = N6-05 - 0.5. So g'(0.5) — 6.
Hence, h'(0.5) = £/(0.1)g'(0.5) ~ (29}(-0.6) = —17.4.
gl@) = f(f@) = ¢ =F@)f (@) S0g (1) =FFANS )= F2F (D).
2.4 4.4 —-3.1 ~m1+m2:2

s 31-24 B 3
F()l'f (2) m] = ———20#15 = 1.4,?’1’12 = —“—25_20 = 2.6. Of( ) 2

fran. _20-18 - 24-20 m1 +ma
Forf(l).ml-———-——. . —0.4,m2—-—1'5_1.0—08 So f'(1) = 5

Hence, g'(1) = f'(2)f'(1) = (2)(0.6) = 1.2.
. (a) F(z) = f(cosx) = F'(z}= f'(cosx) —ii—((:os:r) —sinzf'{cos )

(b} G(z) = cos(f(z)) = G'(z) = —sin(f(z)) f'(z)
L@ Fla) = f@) > Fla)= 6% 4 (@) = f/(@)ac"
(b) G(z) = [f=)]* = G )—a[f N f ()
L (a) f(z) = L{z*) = f(z)=1L(z") 4° = (1/z*) 4z® = 4/x forz > 0.
(b) g(x) = L(4z) = 4g'(z)= L"(4$) ‘4 =(1/(4z)) -4 = 1/z forz > 0.
(©) F(z) = [L(@)]* = F'(z)=4{L{@)*- L'(z) = 4[L()]* (1/x) = 4[L{z}] 7=
@ Gle) = L{tje) = C'(x) = L(1/) - (-1/a%) = (1/(1/2) - (-1/3%) = - (~1/a?) = ~1/z
forz > 0.
cr(z) = flg(h(x))) = () = fla(h(x))) g'(h(z)) - I'(x). s0
(1) = £ (glh(1))} - g"(R(1)) - A'(1) = f'{g(2))  g'(2) 4 =F'(3)-5-4=6-5-4=120
s(t) = 10 + % sin{10wt) = the ve]omty after £ seconds is
v(t) = s'(t) = 1 cos(10mt)(107) = EF cos(10mt) cm/s.

=290

= 0.6.

. (@) s = Acos(wt +8) = velocity = s’ = —wAsin(wt + 6).

M IfA#Q0andw £ O, thens’ =0 < sinfwt+8) =0 & wit+td=nr & t= z
7 an integer.
27t dBbB 27
. (a) B(t) = 40—&-035sm54 = rr ((}35 S 7 )(54)
dB _ Tm 2n
j— 1 —

(by Att = pri cs54 (.16.

Lty =12+ 2.8sin(365 (t-80)) = L'(t)=28cos(Z(t - 80))(3).

On March 21, ¢ = 80, and L' (80) ~ 0.0482 hours per day. On May 21, ¢ = 141, and L'(141) ~ 0.02398, which is-

approximately one-half of L'(80).
45(t ~ 2)®

. (a) Derive gives ¢'(t) = .(.2t+—1)

without simplifying, With either Maple or Mathematica, we first get

- 2)° (t - P , : .
g'(t) = 2t Y — 18 0T 1)1 5. and the simplification command results in the above expression.
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(b) Derive gives y = 2(z® —x + 1)3(2:c + 1)*(172% + 62° — 9z + 3) without simplifying.
With either Maple or Mathematica, we first get
y =102z + 1)*(2® —x + 1)4 +4(20 + 1)%(z* —z + 1)°(3z — 1). If we use Mathematica’s Factor or
Simplify, or Maple’s factor, we get the above expression, but Maple’s simplify gives the polynomial
expansion instead. For locating horizontal tangents, the factored form is the most helpful.

4
jz"—xz+1
r -rve x+1) . Derive gives f'(x) = e e+l

zt+zr+1 (it zt Dat-z+1)

whereas either Maple or

0. (a) f(z) = (

3 -1

4

g —x+1 2

b A 1
,/$4+m+l(x +a+ 1}

Mathematica give f' (z) = after simplification.

{¢) f'(z) = 0 where f has horizontal tangents. f’ has two maxima and

one minimum where f has inflection points.

. (a) If f is even, then f(x)} = f{—=x). Using the Chain Rule to differentiate this equation, we get

fz)= f(—=x) % (—x) = —f'(—x). Thus, f'(—x) = —f'(z), so f’is odd.

(b) If f is odd, then f(x) = —~ f(—=z). Differentiating this equation, we get f'(z) = —f'(~z)(—1) = f'(—z). s0
f' s even.

|2 - @@ = r@lel + D] o @)

g(z)
_ =) J@)g(=) _ fl(z)glz) — f(z)d'(2)
g(z) lg(z)]® lg(z))

d .. . e
. (@) — (sin" rcosnz) = nsin™ ! zcoszcosnz + sin™ z (—nsinnz) {[Product Rule]

dz

= nsin® ! & (cos n cos £ — sin nz sin x) [factor out nsin™ ! x]

=nsin™" !z cos(nx + T) [Addition Formula for cosine)
=nsin™ ' zcos[(n + 1}z] [factor out )

1

(b) d_(i (cos™ xcosnz) = ncos™ 'z (—sinz)cosnx + cos™ z (—nsinnz) {Product Rule]

1 1

= —ncos” "z (cosnrsinz + sinnzcosx) [factor out —r cos™ " x]

= —ncos™ 'xsin(nz + x) [Addition Formula for sine]
= —ncos” ! zsin[(n + 1)z [factor out z]

T4, “The rate of change of y° with respect to  is eighty times the rate of change of y with respect to " <

d 5 o4y dy - dy 4 .
T y° = 80 e o R0 7 + 5y" =80 (Note that dy/dzx # 0 since the curve never has a

horizontal tangent) < y4 =16 & y=2 (sincey > 0forallx)

s 5yt
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75. Since 0° = ({558 rad, we have — (sm 8°) = i (sin 1250) = 155 cos 1550 = 155 cos6°.

76. (a) f{z) = |z| = Va2 = (a:g)l/z = fl(z)= %(:1:2)_1/2 (22) = z/Va? = 2/ |z|forz # 0.
f is not differentiable at & = 0.
(b) f(z) = |sinz| = Vsin®z =
—1/2 cosz  if sinx >0
% (Sin2 a:) 2sinzcoszx = COSZ =

jsin z| —cosz if sinz <0

y
f

NSO

KD,
NN

f is not differentiable when & = n, » an integer.

COS T it x>0
(c) g(x) = sin|z| =sinva? = g'(z)=coslz|: % = |—zi cosx = {

—cosr if z <0

g is not differentiable at 0.

77. First note that products and differences of polynomials are polynomials and that the derivative of a polynomial is
P(fﬂ))' Q@)P'(z) - P(x)Q'(z) _ _Ai(z)
Q(z) Q@))? (@)
= Q(z)P'(z) — P(z)Q'(x). Suppose the result is true for n = k, where k > 1. Then
" R@pFT
£ = (gl ) _ Q@M A4 (@) — An() - (5 + DIQE)* - Q'(a)
[@(z))F+ {[Q=) ]’““P
_ Q@) Ak (@) — (k+ DA(@)Q@)* Q' (=
{Q( Jj2Ere
_ [Q@IM@®)] 4k (=) — (k + NA@)Q (2)} _ Q) Ai(z) — (b + 1) A(2)Q (<)
(Q()]*[Q(z))*+? [Q(z)j*+?

= Apra(e)/[Q(@)]* 2, where Apy1(z) = Q@) Ak(z) — (b + 1) Au(2) Q' (2)-

where

also a polynomial. Whenn = 1, f M (z) = (

We have shown that the formula holds for n = 1, and that when it holds for n = k it also holds forn = k + L.
Thus. by mathematical induction, the formula holds for all positive integers 7.
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3.7 Implicit Differentiation

d ; /
I.(u)%(my+2w+3:ﬂ2)=£(4) = (z-y+y-1)+2+6z2=0 = zy=-y—2-6xr =

_yt2

y  —y—2-6z /
= ——ory -

Y = -6

1-2z 32 4 , 4
b)ry +22+3*=4 = ry=4-2z—32° = y=T:E—2—-3SU.SOy'=*F_3-

) ,_—y—2—6;c__—(4/:1:*2732)—2—6.1'#—4/x—39:__iA3
(c) From part (a), ¥y’ = o = = = ~ =-0 .

d 2 2 d I ’ 8 4
I —_ ; = — ]_ - :0 = - ——— = = —
@ — (42® + 9y°) - (36) = 8r+18y-y = gy =y o
(bydz2 +9y? =36 = P’ =36—42° = yzzg(g—:ﬂz) = y=:i:§\/9—x2,so
2z

"= 12192 VP (C2m) = F———
e R N e

4_$
9y

{c) From part (a), y’ = —

d (1 1
.(a)E(E+'—

(-1 = (2)(1) _
Ve ey T

Vi 4-VE_ 4

——=+1

OV=-Z=T&

eyl

;o r_ f:_E
T dm(l) = 2042y =0 = 2yy =-2x = y "

d €T
2 2 ’ r i
TR ) y ]_ 2.’1: _ j!yy 0 - ‘33]- _ :gyy = y [—

d d
Iz (2 + 2y + 4°) = o 6) = 327+ (2% +y-2x) +8yy =0 = 2%y +8yy = —3a° — 2zy

; _3m2+2:1:y _ _m(3x+2y)
v x? + 8y x? + 8y

= («° +8y)y =32 — 22y =
d 9 3y _ d : 2.0 gy 2
'd:r(x -—2:r:y+y)—a~5(c) => 2x—2(xy' +y-1)+3Y =0 = 2r-2y=2xy 3y =

2-2y=y(2x-3y%) = ¢ = 2 - 2y

T 2r - 3y?
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.i(x2y+my2)=—q—(3m) = (ztzy'+y-2:1:)+($'2yy'+y2-1)z3 =
dzx dx

3 — 2zy —o?

2 f_
2y + 2y =3 -2y —y" = y(af+2y)=3-2y-y > ¥ =—m oo

'di(y5+m2y3)=d£(1+a:"y) = Sty +2% 3y +y 2 =042t +y &’ =

4’y — 2oy®
4 2 2 4y _ 4.3 3 r_
Y (by' +32%y —2t) =4ty - 2myt = W = e

.di($2y2+:csiny)=-&%(4) = :c2-2yy’+y2-2:E+mcosy-y'+siny-1:0 =
i

—2zy® —siny

. 2 . r
2rtyy +rcosy -y = —2zy° —siny = (22'y+zcosyly = 2y —siny > y = Y —

. di (14+x)= di;!n [sin(zy®)] = 1= [cos(zy®)](z 2yy +y* 1) = 1=2zy cos(zy? )y + y* cos(zy?)
T

1 — 4% cos(zy?)

2 2y 2\, ! r
= 1 —y?cos(zy?) = 2zycos(xy’)y = y D2y cos(2v?)

.i(4cosmsiny):gd—(l) = 4cosz-cosy-y +siny - (~sinz)] =0 =
T

dx
‘4 . . o r_w—tMﬁtany
y'(4coszcosy) = 4sinzsiny Y = Tcoszcosy ‘

. di lysin(z?)] = dia: [zsin(y?)] = wyeos(z?) 2z +sin(z?) -y = zcos(y?) - 2yy’ +sin{y®) -1 =

. _ sin(y®) — 2zy cos(z®)
v = sin(x?) — 22y cos(y?)

y' [sin(a:Q) — 2zycos(y’)] = sin{y?) — 2zycos(z®) =

=gy )
.di[tan(x/y)]:d—(i(m+y) = secz(a:/y)-y—y;—y=1+y =

ysec?(z/y) — zsect(wfy) -y =¢* +¥y = ysecd(¢/y) — vy’ =ty +ase’(zfy) =
, _ ysec’(z/y) - v
y? + xsec?(x/y)

ysec?(z/y) — 1° = [ +wsed®(a/y)] -y =
d -
.d;i(\/m—i—y):E(lerzyz) = %(az+y) 1/2(1+y’):a:2-2yy’+yzi2x =
1 y’ 2. .. 2 ! 2 7 2
=2z + 2z = l1+y =4y Je+yy +dzy°Ve+y =
2\/:E+y+2\/sc+y w v v
y —dxly T ryy =iV Fy-1 = yl-4%yVrTFy)=daVzty-1 =
; ey /Tty —1
vy = 1—4z?yJ/T+y

z yr + Y
2. /Ty 2. /zy
[ 20°FY\ _ dzy T -y g = VI

Y 2. /Ty 2. /Ty xr — 222 [Ty

LTy =142y = %(my)_”r"(:cy'+y-1)=0+m2y’+y-2w = = ry + 2zy
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> (1+a%)tan(z—y) =y =
r—y)-(1-y)+tan{z—y)- 22 =y =
g —y) - (1+2%)sect(z —y) ¢ +2ztan(z —y) = =
y) + 2ztan(z —y) = [1 + (1+2%)se’(z —p)] -y =

(
(
2z —
)

(1 + z?) sec? ) + 2z tan{z — y)
1+(1 + mQ)se('?(:c -y

I

oy = cot(zy) = y+zy = —csElay)y+ay) = (y+azy)[l+ec(zy)) =0 =

y+ay =0 [since 1+ esc’(zy) > 0] = ¢ =-y/z

. sinz +cosy =sinzcosy => cosx —siny-y =sinz (—siny-y') +cosycosz =

(sinzsiny —siny)y = coszcosy —cosz = Y = —_ﬂmC(.)s:l:(c.osy )
‘ siny (sinz — 1)

di.!a: {1+ flz) + 2 [f (@)} = = fi(2)+ 22 3[f(x)])? fllx) + [f(x)]® 2z = 0. If z = 1, we have

Fr)+ 12 3P -f(1)+[f(1)} 2W=0 = fOH+1:3-2%f)+2-2=0 =
F+H12f'(1)=~16 = 13f(1)=-16 = [f'{1)=-3.
.%[g(:c)%—msing(m)]z%(wz) = 4g(z)+zcosg{z) g'(x)+sing(x)-1= 2z Ifz =1, we have
g{) +1cosg(l)-g'(1) +sing(l) = 2(1}) = ¢'(1)+cos0-g'(1)+sin0=2 = ¢1)+4¢(1)=2 =
2(1)=2 = ¢(I)=1

Lyttt =yt = 4y3+(m2-2y+y2-2m%§~)+(y'4msj—z+$4—l)=1 =

dr 1— 4y — 222y — o*
dy 2xy? + 4x8y

2ry® dz +4:c3yd—$ =1-4y° -2y —z* =
dy dy

2 2, .2
2 2?2 2 2 .2 dz — dx 2 de _ av” —dy(z +v)
A2t + ) =ax’y = 2(2®+y )(2$@+2y)—209$d_y+“$ = dy ~ 4dx(z? + ) — 2axy

ity 4+t =3 = 2zdtxy 4y 1420 =0 => a2y +2p=-22-y =
—9r -2-1 -3

y
zt 2 hen z = 1 an Yy = i, W¢ nhave y 1+2- 1 3 80

an equation of the tangent lineisy — 1 = —1l(z — 1) ory = —z + 2.

Yixt+t2yy=-2z-y = y =

P4+ 2y -y =2 = 2242y +y-1)-20 +1=0 = 2oy -2y =-2z-2y-1 =
—2r -2y -1

t — = — — f =
¥ (2x —2y) 2e-2y—-1 = y 2% — 2y

. Whenz =1 and y = 2, we have

—2-4- - 7 3
y’=—22—_47—1—:_—g:%,soanequationofthetangemlineisy—2= (:E_l)ory:im_i
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27. 2% + y2 = (21:2 +2y2 - .’.1’:)2 = 2r+2yy = 2(‘23’;2 + 2y2 —x){dz + 4yy’ —1). Whenz =0and y = é—g we

have 0 +y' =2(5)(2 - 1) = ¢ = 2 —1 = 4 =1, s0anequation of the tangent line is

y-1=1z-0ory=2x+3.

1
2/3 2/3 2..-1/3 4 2, -1/3 ¢
Zﬂ.$/+y/—4 = 3T /+§y y =0 = \3/_4-

| =_(_3\/§)2/3 B
(-3v3)""* -3V3

andy = 1, we have y' = —
yAlzﬁ(m+3\/§) ory=%$+4-

29. 2(a® + y2)2 =25(2> — ¥*) = 4(2? +y*) (22 + 2yy') = 252z - 2y} =
Mz +yy)(2® + %) =25z ~yy') = 4y’ (172 +3%) + 25yy’ = 252 — 4z (a® + ¥ =
25z — dz(z® + 9°)
T 95y 4+ dy(z? + y?)
9 40

tangent lineisy — 1= —Z(z —3)ory = -357 + 3-

!

75 —120 45 9
¥ 22

.Whenz =3andy = L.we have y' = 2322 = 42 = —13, so an equation of the

30. %37 — 4) = 2*(z? ~-5) = v -y =z -5 = 4’y — 8yy’ = 4z - 10z. Whenx = Oand
y=—2 wehave —32y + 16y’ =0 = —16y'=0 = ' = 0, soanequation of the tangent line is
y+2=0(z—-0ory=-2.

102° —z

. () g =52t 22 = 2y =5(4a’) -2z = ¢ = ”

(b)

10(1)° — 1
So at the point (1,2) we have y' = —9% = g,and an

equation of the tangent line is y ~ 2 = 2(z — 1) ory = Sz — 3.

Jzﬁ

. 3z 462
y = ———

32 () y?=2"+3z° = 2y =32 +3022) = %

. So at the poini (1, —2) we have

. 312 +6(1 9 . o
= 3)" +60) ;( +2)( ) _ ~ 7> and an equation of the tangent line is y + 2= -2z - Nory = —Fz + 3.

(b) The curve has a horizontal tangent where y’' = 0 <> {©)
g 3

32 +6x =0 < 3z(r+2)=0 & z=0o0rz=-2 But ’(_%,2,\
note that at z = 0, y = ( also, so the derivative does not exist. At
r=-2y" = (-2 +3(-2)?=-8+12=4,s0y = %2 Sothe
two points at which the curve has a horizontal tangent are {—2, ~2)
and (—2,2).
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; 3z — 6z +2 ;
= = =—1at
®)y 2(2y° 3y —y+1) v

(0,1)andy' = 3 at (0,2).

Equations of the tangent linesarey = -z + 1

andy:%:c—i-Q.
] @y =0 = 3P -6z+2=0 =
\ z=1+1/3

There are eight points with horizontal tangents:
four at x ~ 1.57735 and four at z ~ 0.42265.

(d)y By multiplying the right side of the equation by x — 3, we
obtain the first graph.

By modifying the equation in other ways, we can generate

the other graphs.

—3
y(y* — 1)y - 2)
=z — 1)(z— 2}z - 3)

vy + DY - 1)y - 2) (y+ 1)y ~ 1}y —2)
=z(z—1)(x - 2) = (z - 1)(z ~ 2)

4 4

z(y+ D(y* - 1){y - 2)
=ylz - 1)(z - 2)
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(b) There are 9 points with horizontal tangents: 3atz = 0,3 atx = %

and 3 at z = 1. The three horizonta! tangents along the top of the
wagon are hard to find, but by limiting the y-range of the graph (to
(1.6, 1.7], for example) they are distinguishable.

. From Exercise 29, a tangent to the lemniscate will be horizontal if ' =0 = 25z — 43:(32 + yz) =0 =
z[25-4(z*+4)] =0 = z? + y? = 2 (1). (Note that when z is 0, y is also 0, and there is no horizontal
tangent at the origin.) Substituting 25 for z* + 42 in the equation of the lemniscate, 2(z* + y?)? = 25(2% — ),
we get 27 — y* = 28 (2). Solving (1) and (2), we have 2? = 2 and y* = &, so the four points are (:{:JC +3 )

2¢ | 2yy , bz

= —=+—-—"=0 = = —
a+b2 Y

—bzg 2 2
= azy:z (z — zp). Multiplying both sides by o7 2 gives y;;y gg = _% + E_ Since (2o, yo) lies on

5 = Aanequation of the tangent bine at (o, yo) is
a‘y

Yoy _ 30
h 0% J0
the ellipse, we ave —|— b2 + b2

2r  2yy’ . . .
——32—: - g—f =0 = y = = an equation of the tangent line at (xp, yo) is
€

5256 2 ol
z (z — xo}. Multiplying both sides by 62 gives y;zy %g = %

2
Ty . -
eh Since {(xp, yo) lies on the

2 2
ToZ Yoy  To Yo _
hyperbola, we have T T T 1.

f

NVEH =V 5 ——=+ =0 = ¢y =- =» an equation of the tangent line at {xo, yo) is

2[ 2\/"
Y— Yo = v (z—2e).Nowz=0 = y=yo-— v (—xa) = Yo + /Zo /Yo, so the y-intercept is

\/&_0‘ A/ Lo
Al Yo 4/To
+ T Ady=0 = —-yw=--—lx—=T = r—Ig— ————
Yo + /To /Yo Yy Yo m( o) 0=

x = zp + +/To /Yo, S0 the z-intercept is o + /Zo /Yo. The sum of the intercepts is

(30 + V5 v/50) + (0 + 30 /i) = 70+ 2Fo vBo + 30 = (VE + Vi) = (Ve) =e.

. If the circle has radius 7, its equationis &® + ° = 7% = 2z +2yy' =0 = ¢ = ug, so the slope of the

tangent line at P(zq, yo) is —=% The negative reciprocal of that slope is 2L which is the slope of
Yo —Zo/yo o

OP, so the tangent line at P is perpendicular to the radius QO P.

p—1 p—1 p—1,.p/a

_ T el A

Wy =z = gy =p* = y’:mqt1 =P q'y:p e
qy qY qx? q
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4. 22° +4° =3andx =y’ intersect when 22 + 2 -3=0 < (2r+3)(z~1)=0 & z=—-3orl, bu
—% is extraneous since z = y° is nonnegative. Whenz = 1,1 =gy° = y = 41, so there are two points of
intersection: (1,+1). 2z + 32 =3 = 4dx+2y =0 = y =-2z/yandz=9y° = 1=24y =
y' = 1/(2y). At (1,1), the slopes are m; = —2(1)/1 = —2 and m2 = 1/(2 - 1) = £, so the curves are orthogonal

(since . and m are negative reciprocals of each other). By symmetry, the curves are also orthogonal at (1, —1).

2% — 4% = 5 and 42° 4 9y® = 72 intersect when 4x® + 9(:1:2 — 5) =72 & 13°=117 & =23 s0
there are four points of intersection: (£3,42). z* —y* =5 = 2z-2yy' =0 = ¢ ==z/y.and
42+ 07 =72 = 8x+18yy =0 & ¢ = —4x/9y. At(3,2), the slopesare m; = 2 and mz = —

2
the curves are orthogonat. By symmetry, the curves are also orthogonal at (3, —2), (—3,2) and (-3, —2).

84. The orthogonal family represents the direction of
the wind.

N

45. z° + y* = r? is a circle with center O and ax + by = O/is a line through O.

P ryP=r® = 2z+2yy =0 = 1y = —z/y,sothe slope of the tangent

line at Py {xo, yo) 18 —xo/yo. The slope of the line O Py is yo/zo, which is the

negative reciprocal of —xo/yo. Hence, the curves are orthogonal, and the families

of curves are orthogonal trajectories of each other.

. The circles 2° + ¢ = ax and 2* + 3? = by intersect at the origin where the
tangents are vertical and horizontal. If {xo, yo) is the other point of intersection,

then 22 + 43 =axo (D and 22 + 43 = byo (2). Nowz? + y* =ax =

a—2r

andz’ +¢y°=by =
2y

e+ 2y =a¢ = ¥y =

e+ 2y =by = Yy = . Thus, the curves are orthogonal at

2z
b—2y

a— 2% b2
(o, y0) « oy L= 21‘?;0 Aad 20!350*437(21:43!3*25?;0 =
0 o}

axo + byo = 2{zj + y3), which is true by (1) and (2).
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47-'9:61'2 = y’:?cmandw2+2y2:k = 2r4+dyy =0 = y

, ; z z 1 .
wy' =—x = ¥y :_m—_—_-ﬂw—r_’) :_-ﬂ,solhecurvesare

orthogonal.

Ly=az® = y =8ar’andz®+3y’=b = 2ri6yy’ =0 =

; r z r 1 h
3y = -z = y__S(y)__S(a:c3)__3a:c2’SO e curves are

orthogonal.

. To find the points at which the ellipse z? — zy + y? = 3 crosses the z-axis, let y = 0 and solve for .
y=0 = z2-z(0)+0°=3 & = ++/3. So the graph of the ellipse crosses the z-axis at the points
(£+/3,0). Using implicit differentiation to find ', we get 2z — zy’ — y + 2y =0 = Y(Qy—z)=y-2

0—2v3
2(0) — V3

& oy = y—253‘ Soy’ at (V3,0) is
2y—=x

0+2+v3

=2and ¢ at (—v/3,0) is
vat )2@+ﬁ

= 2. Thus, the tangent
lines at these points are parallel.

. (a) We use implicit differentiation to find y’ = gy_ 2i

1-2(-1) _3_,
2)-(-1) 3 7

as in Exercise 49.

The slope of the tangent line at (—1,1) ism =

o1 . -
s0 the slope of the normal line is —— = —1, and its equation is
m

y—1=-1{x+1) < y= —z. Substituting —z for y in the

equation of the ellipse, we get z? - z(—z) + (—$)2 =3 =

322 =3 <« =z = +1.So the normal line must intersect the ellipse
again at x = 1, and since the equation of the line is y = —, the other

point of intersection must be (1, —1).

Lt ey =2 = oy +y’ ey 4y 1=0 & Y (2y+)=-2mt-y &

’ 2ry® +y 2wy +y ) R
=" 2% §p———= =_1 _9 _
Yyt 2yt & y'ty=2ry+z & y2oy+ll=z(2zy+1l) &

yzy + 1) —x(Rzy+1) =0 & (2ey+1l)(y-2)=0 <« :cyz—-l:;ory=:z:.Buta:y:—% =
ey +ry =1 -1 #2 sowemusthaver =y Then 2®y’ +2y =2 = '+ =2 ©
42’ -2=0 & (2*+2)(z®-1)=0. So 22 = —2, which is impossible, or > = 1 & =z = +1.

Since x = y, the points on the curve where the tangent line has a slope of —1 are {(—1, -1} and (1,1).
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82 224+ 4y7 =36 = 2z+8y/ =0 = ¥y = _4£y' Let (a, b) be a point on 2% + 4y* = 36 whose tangent line

passes through (12, 3). The tangent line is then y — 3 = —% (z—12),s0b -3 = —fg (@ — 12). Multiplying

both sides by 4b gives 452 — 12b = —a? + 12a, 50 4b° + o = 12(a + b). But 4h* + a® = 36,5036 = 12(a + b)
— a4b=3 = b=3<— q Substituting3 — a for binto a® + 4b? = 36 gives a” + 4(3 — a)® = 36

o a?+36-24a+4a® =36 & 50> —2a=0 & afla—24)=0s0a=00ra=% Tfa=0

b=3-0=3andifa=2,b=3- 2 = -2 Sothe two points on the ellipse are (0, 3) and (#,-2).

@
4b
24 _ 9

tangent liney — 3 = Oor y = 3. With (a,b) = (%, -2}, we have

Usingy — 3 = ——(x — 12) with (a, b) = (0, 3) gives us the

r%3)

y-3= -5z -12) & y-3=3(-12) «

Yy = %;r — 5. A graph of the ellipse and the tangent lines confirms

our results.

L2t 4yt =5 = 224+42y) =0 = Yy = -%. Now let i be the height of the lamp, and let {a, b) be the
Y

point of tangency of the line passing through the points (3, h) and (-5, 0). This line has slope
(h —0)/[3 = (—=5)] = 1h. But the slope of the tangent line through the point {a, b) can be expressed as y = ﬁ%),

— b
of as (i (_05) == :i 3 [since the line passes through {5, 0) and {a, b}]. so —% oy

42 = —a® ~ha <« a4+ 4b? = —5a. But a® + 4b% = 5 [since (e, b) is on the ellipse], s0 5 = —5a

a=—1 Thendb?® = a? —Ba=—1-5(-1)=4 = b= 1,since the point is on the top half of the ellipse.

= h = 2. So the lamp is located 2 units above the z-axis.

3.8 Higher Derivatives

1. a = f.b=f,c= f". We can sce this because where a has a horizontal tangent, b = 0. and where b has a
horizontal tangent, ¢ = 0. We can immediately see that ¢ can be neither f nor F', since at the points where c has a
horizontal tangent, neither @ nor b is equal to 0.

. Where d has horizontal tangents, only ¢ is 0, so d’ = ¢. ¢ has negative tangents for z < 0 and b is the only graph
that is negative for z < 0, so ¢’ = b. b has positive tangents on R (except at x = 0), and the only graph that is
positive on the same domain is a, so b’ = a. We conclude thatd = f,c = f',b= f", anda = .

. We can immediately see that o is the graph of the acceleration function, since at the points where a has a horizontal
tangent, neither ¢ nor b is equal to 0. Next, we note that ¢ = 0 at the point where b has a horizontal tangent, so b
must be the graph of the velocity function, and hence, b’ = a. We conclude that c is the graph of the position

function.

. @ must be the jerk since none of the graphs are 0 at its high and low points. a is 0 where & has a maximum, so
B = a. bis 0 where ¢ has a maximum, so ¢’ = b. We conclude that d is the position function, ¢ is the velocity, b is
the acceleration, and a is the jerk.
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flay=ad+622-Tz = fl(o)=5z*+120-7 = ['(z)=202" 412

Cf) =t e 2t = fi(t) =87 —42° + 8 = F(t) = 5618 — 210t* + 24¢°
—cos20 = y =-2sin20 = ¢ =—4cos2f

.y =0sinf = y =0cosf+sinl = y' =0(—sin@) +cosf-1+cost =2cosf — sinf

CF() = (1—T0)¢ = F'(8) = 6(1 - Tt)°(=7) = —42(1 - Tt)* =
F(t) = —42 - 5(1 — 78)4(—7) = 1470(1 - 7¢)*

2z + 1 , (x—1)2)—(2z4+1)(1) 220-2-2r—1
@) =7 = g(@) = (z —1)2 T (z-12
_5
(z —1)3

1 4u (A 4su)(—d) - (l—4w(3) _ 4-12u-3+12u __ =T
T3 W= (1+ 3u)? - (1 + 3u)? = {1+ 3u)?
12

(14 3u)?

¢'(x) = =3(-2)(x - 1) P =6(x-1)" or

L h{u) =

7143w = R7(w) = —T(=2)(1+3u)"?(3) = 42(1 + 3w)~* or

; H(S)za\/g-l-% —asi/? 4 bs~V2 >

H'(s}) =a-3s "1/2+b( %3’3/2)=%as_1/2—%bs_3/2 =

H'(s) = %a(~%s”3/2) _ lb( 3 —5/2) _ _%as-a/z + %bs‘m
he) = vEEF1 = W(z)= l(xz L 1)V (2r) = \/a:j—-i-l
VIEF 11— [§(a? + )72 (23)] @A)y

h'(z) = ( = 1)2 (z? + 1)1 T (@24 1)3/2

Ly=z" = y =nz""' = y'=nhn-1z

n—2

L= (241D s ¢ =3P+ 1)"1/3 (32%) =23 + 1) ° =
yn — 21’2(—%)(1‘3 +1)74/3(3.’E2)+($3+1)_1/3(4$) =4.’L‘(.’1’,‘3+1)_1/3 —2.’.13‘4(2’,‘3-%1)74/3
4z
RV |
Ve+l-4—4z- a4+ aa 1l -2z/Vz+1 4@+1) -2z  2x+4
(Va+1)’ z+1 @+ (@)
(=t 13?2 (2c+4) -z +1)!? _{z+ DY2[2(x 4+ 1) — 3(x + 2)]
{(a:+ 1)3/2}2 (@+1)°
_2w+2-3x-6_ -z-4

(:L' + 1)5/2 - (:L' + 1)5/2

. H(t) = tan3t = H'(t) = 3sec’3t =

=

H"(ty =2 3sec3t % (sec 3t) = Bsec 3¢ (3sec 3t tan 3t} = 18 sec” 3t tan 3t

18. g(s) — sPcoss = g¢'(s) = 2scoss —s’sins =

¢"(s) = 2coss — 2ssins — 25sins — s° cos s = (2 — s7) cos s — 4ssin s
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19. g(f) =fcscd = g'(8) = —0Ocscheot +cscl =
g"(8) = (=1)cscBeot @ + (—6)(— cscfcot ) cot @ + (—O csc §)(—csc? &) — cscHcot @

= —cschcotf + Hescleot? 8 +Hesc® 8 — cscBeot §
= csc (@ csc? @+ Ocot?d — 2cot )

T+ 3
x? +2x
(z*+27)(1) - (x+3)2x+2) _ (z°+2x)— (2" +8z+6)  *+6z+6
(x? + 2x)? B {z? + 2x)2 T (2?2 + 2x)2
(o + 22)%(2x + 6) — {z® + 6z + 6)2(x? + 2z)(2z + 2)
(22 + 22)7)°

~2(z” + 22)[(=® + 22)(z + 3) — (2" + 6z + 6)(2z + 2)]
B (% + 2x)*
2[(@® +52” + 62) — (22 + 142" + 242 +12)]  2(2° + 927 + 182 +12)

(22 + 2x)3 (z% + 2z)3

20. h(z) =

R (z) =

R (z) = —

21 (a) f(z) = 2cosx +sin’z = f/(z) = 2(—sinz) + 2sinx{cosz) = sin2x — 2sinz =

F(x) = 2cos2x — 2cosx = 2(cos 2z — cos x)

‘We can see that our answers are plausible, since f has horizontal

tangents where f'(z) = 0, and f' has horizontal tangents where

(:r2 + 1) — x(2z) 1 —x?
@+1)° (@241

22. (a) f(z) = = fle) =

2 +1
(2% + 1)2 (—2x) — (1 — 2*)(2)(z* + 1){2=) _ 20(22° —2 - 2% - 1) _ 2z(z? - 3)
(a2 +1)* (22 +1)° (22 +1)°

J'(@) =

We can see that our answers are plausible, since f has horizontal

tangents where f'(z) = 0, and f' has horizontal tangents where

F(z) = 0.

-15

Boy=vIrFd=Qe+3)” = o =32+3) 2=+ =

y' = e 43)Y 2= —(22+3)7% = " =3(22+3)7%% 2=3(2c+3)7*
_ oz ,_ Qe -=2) _ -1 (25 — 1)
Zﬁ.y——Qwvl = ¢y = Bz — 172 = BrTe or 1(2z - 1) =
Y =-1(-2)22 - 1)7*2) =42z - 1)7* =
" =4(-3)(2z — 1)742) = —24(2z — 1)™* or —24/(2z - 1)*
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2. f(t) =tcost = f'{t)=t(—sint) +cost-1 = f'(t)=1t(—cost)—sint-1-sint =
f(t) = tsint — cost -1 - cost — cost = tsint — 3cost,so f(0) =0 -3 =-3.

% g(z) = VE— 22 = g'(z)=3i6-207-2)=-(6-20)"" =
g."(;[:) = %(5 - 23)—3/2(-—2) - _(5 —_ 2‘,1’.)—3/2 = gm(m) _ 3(5 _ .21:)—5/2(72) — _3(5 _ Qw)_SIQ, o
— _3(1)75/2 - _3

cot§ = f(B)=—csc*8 = f7(0) = -2csch(-cschcoth) =2esc’Heotd =
( —2csc? @cot ) cot & + 2csc? 8 (— csc29)=—2csc26‘(2c0t29+c3020) =

)2 [2(\/5) +(2)2] — 80

. g{z) =secx = g¢'(x)=secxtanz =
¢’ (x) = seczsec? z + tanz (sec ztanx) = sec® z + secztan® z = sec’ z + secz (sec2 x—1)

3

=2sec’xr —secr =

¢"(z) = 6sec® z (secrtanz) —secztanz = secrtanz (6sec’z —1) =

§"(2) = VE()(6-2 - 1) = 112
L 922 +37 =0 = 18r+4+2yy =0 = 2y =18z = ¢ =-%z/y =

' . _ 2 2

"=-9 (yl—fq««) =-9 (y—l‘(—igm—/y)) =-9. E—isgi =-9. % [since x and y must satisfy
Y Y Y ¥

the original equation, 9z% + y? = 9]. Thus, v’ = —81/3°.

!

VT =1 = W_ y ==0 = ¥ = INE =
y -

P NITE

ﬂl/(zf ) VEOAE) (VN -~ JEUNE) _ 1+ JINE
2z

2x

_VERVY
T2z 22k

since & and y must satisfy the original equation, /x + /¥ = 1.

2

.w3+y3=1 = 3m2+3y2y’:(] = y’z—az—2 =

y2(2$) — _'1;2 . 2yy' _ _QZEyQ - 2.’172y(—$2/y2) o 2:8:(]4 + 21’4’y _ 2$y('y3 + CES) _ 2z

5

(¥?)? B y! - ¥ .
since z and y must satisfy the original equation, z* + 3 = 1.

ety =at = 4P+t =0 = 4y =4’ = Y =2 =

3 9.2 _ .3, 9,27 3 3 4 4 s ~

__(y 3z ! 3’yy)=3$2y2 ( Iy a2 viat et
{¥*) o y

L fle)=2" = f@)=n"" = ffa)=nm-1)z"? = - =

FP @) =nn-1)n-2)-2. 12" = nl

[ =021 = fe)=-16s-1775 = [M@)=(DEYEe )75 =
P = (DG -5 S e = f@) = (-1 alE (Br — 1)

B/ )= (Liz) " = Fla)e 11+ (@) =1-20+2)5 fO) = 1-2-3(1+2)°%,
f(4)(m) =1.2. 34(]_ +$)75 f{n)(w) — (—1)"’1’1!(1 + x)f(n+ 1}
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3
)I~(2n—l)/2

! flz)=1/(32") = 327° = fl@)=3(-3"" = [@)=303(-427° =
(@)= (=3 (45 = - =

f(n)(l') - %(_3)(_4) . [“‘('n'f‘ 2)]m»(n+3) — (_l)n -3 .f_:lswi“-:; F (n + 2) . — (_I)E;;Si:- 2)'

38 Dsinz =coszr = D?sinz=—sint = D%sinz=—cosz = D*sinz =sinz. The derivatives of
sin z occur in a cycle of four. Since 74 = 4(18) + 2, we have D™ sinx = D?sinx = —sinz.

39. Let f(z) = cosz. Then Df(2z) = 2f'(2x), D* f(2x) = 22§"(2z), D*f(2x} = 2% f"'(2x). .. .,
D™ £(22) = 2" f™(2z). Since the derivatives of cos z occur in a cycle of four, and since 103 = 4(25) + 3, we
have £19%(z) = f®(z) = sinz and D' cos 20 = 2'%% 199 (2z) = 213 5in 24

8. Let f(z) = zsinz and h(z) = sinz, so f(z) = zh(z). Then
f'(x) = hiz) + zh'(z), f'(z) = K'(z} + K (z) + zh"(z) = 2R/ (z) + zh" (z),
£ (z) = 20" (z) + " (z) + zh'"(2) = 3K (z) + 2k (z), ..., ™ (z) = nhl" "V (z) + zh{™ (z). Since
34 = 4(8) + 2. we have A% z) = P (z) = D?sinz = —sinx and h® (z) = — cos z. Thus,
D) g sinz = 35R3Y () + 23 (2) = —35sinT — zcosa.

41. By measuring the slope of the graph of s = f(t) att = 0, 1, 2, 3, 4, and 5, and using the method of Example 1 in
Section 3.2, we plot the graph of the velocity function v = f’(t) in the first figure. The acceleration when ¢ = 25 is
a = f"(2), the slope of the tangent line to the graph of f' when t = 2. We estimate the slope of this tangent line to

be a(2) = f*(2) = v'(2) = & = 9 fi/s*. Similar measurements enable us to graph the acceleration function in the
second figure.

iy

401

30

204

104

' :
T T

0 C of 1 t

42, (a) Since we estimate the velocity to be a maximum at ¢ = 10, the acceleration is 0 at £ = 10.

20

1(\/ I
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{b) Drawing a tangent line at t = 10 on the graph of a, a appears to decrease by 10ft/ s? over a period of 20 s. So at
t = 10's, the jerk is approximately —10/20 = —0.5 (ft/s?)/s or ft/s.

L@ s=288 — 152+ 36t +2 = w(f) =s(t) =66°-30t+36 = a(t)=2'(t)=12t-30
(bya(l)=12-1-30= 18 m/s’
(€) v(t) = 6(t2 — 5t +6) = 6(t — 2)(t ~ 3) =0 whent = 20r3and a(2) = 24 — 30 = -6 m/s?,
a(3) = 36 — 30 = 6 m/s%.
)y s=205 32— 12t = o(t)=s(t)=6t"—6t—12 = a(t)=0'(t)=12t-6
(b) a(1) = 12-1 -6 = 6 m/s?

(
(c)v(t) =6(t* —t—2) =6(t+1)(t—2) =0whent =—1or2 Sincet > (,t# —1and
a(2) = 24 — 6 = 18 m/s?.

. (@) 8 = sin( ) +cos (£¢),0 <t <2 v(t) = &'(t) = cos(§t) - % - Z = Zlcos{Zt) — sin(F1)]
m

= a(t) =v'(t) = Z[-sin(Zt}- 5 - cps(%t) 2] = —% [sin{ %t}

72 2

36 7

: x5 — sin(™ sin(§?)
(©v(t)=0for0<t<2 = cos(¥t)=sin(ft) = 1= cos(Z1) =

=—=153. Thus,

36 [IJ“\?

(b a(1) = — 2 [sin(% - 1) +cos(Z - 1)] = 31 =~ (14 V3) ~ —0.3745 m/s®

2
] - _%\/5 a —0.3877 m/s°.

L@ s=2 -T2+ At+1 = v(t)=&() =6 14t +4 = alt)=V(t)=12t- 14
() a(1) —14=-2 m/s
(@ v(t) = (31:’- Tt+2) =2(3t —1)(t —2) = Owhent = } or2and a(3) = 12(
a(2) = 12(2) — 14 = 10 m/s*.
L@s(t) =t -2 42 = w) =5 ) =4t - 128 = a(t)=0(t) =127 - 24t =12¢(t - 2) =0
whent = Qor 2.
(b) s(0) = 2m, v(0) =0m/s, 5(2) = —14m, v(2) = —16 m/s
L@ sty =2° -9t = w(t) =) =62 - 18 = at)=v(t)=12t — 18 =0whent = 1.5.
(b) 5(1.5) = —13.5m, »(1.5) = —13.5m/s

L@ s= f()) =1 —120° +368,t >0 = w{t)= f'(t) = 3t* ~ 24t + 36.
a(t) = v'(t) = 6t — 24. a(3) = 6(3) — 24 = —6 (m/s)/s or m/s*,

{c) The particle is speeding up when v and a have the
same sign. This occurs when 2 < ¢ <C 4 and when
t > 6. It is slowing down when v and a have opposite
signs; that is, when 0 <t < 2and when 4 < t < 6.
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(1+£)(1) —¢(2t) _

50. (a) z(t) = 1+ 1)

1 _i il v(t) =2'(t) =
~2t( - 3)
T

at)=0 = 2(-3)=0 = t=00rv3

a(t) = v'(#)

{c) v and a have the same sign and the particle is

speeding up when 1 < ¢ < +/3. The particle is

slowing down and v and @ have opposite signs when

0<t<1andwhent>\/§.

-15
@ y(t) = Asinwt = o) =y'(t) = Awcoswt = at) =(t) = — Aw?® sinwt
(b) a{t) = —Aw’ sinwt = —w?{Asinwt) = —w?y(t), so a() is proportional to y(t).
(c) speed = ju(t)| = Aw |coswt| is a maximum when coswt = +1. But when coswt = +1, we have sinwt = 0,
and a(t) = —Aw? sinwt = —Aw?(0) = 0.

. By the Chain Rule, a(f) = %% = j—z% = % v(t) = v(t) %

velocity with respect to time {in other words, the acceleration) whereas the derivative dv/ds is the rate of change of

The derivative dv/dt is the rate of change of the

the velocity with respect to the displacement.
. Let P(x) = az? + bz + ¢. Then P'(z) = 2az + band P"(z) =20. P'(2) =2 = 20=2 = a=1L
P(2)=3 = 21(2)+b=3 = 44b=3 = b=-1
P2)=5 = 12°+(-1)(@) +c=5 = 2+c¢=5 = c=3S0Px)=2"-z+3
. Let Q(z) = az® + bx? + cx + d. Then Q'(z) = 3az® + 2bz + ¢, Q" (x) = bax + 2b and Q"' () = 6a. Thus,
Q) =a+btetd=1,Q (1) =3a+2b+c=23,Q"(1) = 6a+2b=06uand Q"(1) = 6a = 12. Solving
these four eguations in four unknowns a, b, cand d we gete = 2, b = ~3,c = 3 and d=-1,50
Q(z) =22° —32° + 3z - L.
.y = Asinz + Bcosz = y = Acosz — Bsinzx = 3"’ = —Asinz — Bcosz. Substituting into
y” +y' — 2y = sinx gives us (~3A — B)sinz + (A — 3B) cosx = 1 sinz, so we must have —3A — B =1
and A — 3B = 0. Solving for A and B, we add the first equation to three times the second to get B = —1—:5
and A = —35.
Ly=Ar?+ B+ C = y =24x+B = 3y’ = 2A. We substitute these expressions into the equation
¥ +y — 2y =x%toget
(24) + (24z + B) — 2(A2? + Bz + C) =+*
2A + 2Ax + B - 2Az® — 2Bz - 2C =2°
(—24)2% + (24 — 2B)z + (24 + B - 2C) = (1)2* + (0)z + (0)
The coefficients of 22 on each side must be equal, so —24 =1 = A= —%. Similarly, 24 — 2B =0 =
A=B= 1ad244+B-20=0 = -1-1-20=0 = C=-}

flr) =zg(z?) = fl@)=xg'(a%) 2+ g(e?) -1 = g(z®) +20°¢(c%) =
Flz) = ¢'(c?) - 22 + 227 - ¢"(2?) - 22 + ¢'(2?) - 4z = bzg'(z%) + 42°g" (z7)
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8. flz) = ==
_ @lg (@) + 79" (2) — ¢/ (x)} - 20[2g'(z) — gla)] _ o°9"(x) — 209/ (2) + 20(x)
= - z
59, f(z) =g(vZ) = [l(z)=d(Vz) Lz7'/%= 9;(\\2_:)

() = 2Vz g (VT) - %33—1/2 —d(Jz) 2 %m—uz _ V2 (R (VE) — ¢ (VF)

(2vz)? iz
_ v7d" (V) - g (V)
4z /x

f”(ﬂf)

flz) =32 —102° +5 = f(z) =15z - 305" =
f(z) = 602> — 60z = 60z(z® — 1) = 60x(z + 1)(z — 1)
So f”(z) > 0 when ~1 < = < Dorz > 1, and on these intervals the

graph of f lies above its tangent lines; and f”(z) < 0 whenz < —1
or ) < x < 1, and on these intervals the graph of f lies below its

tangent lines.
o) - 22l
{z? + z)
(= + m)2(—2) + (22 +132)(2® +2)(22+1)  2{32" +3z +1)
(22 + )" (@)
(2 + $)3(2)(6:1: +3)—2(32% + 3z + 1)(3)(2* + w)2(2::: +1)
(22 +2)°
—6(4z® + 62° + 4z + 1)
(x2 + z)*
(22 + 2)*(=6) (1207 + 122 + 4) + 6{42° + 622 + 4z + 1)(4)(z? + 2)" 2z + 1)
(z? + z)"
24(5z* + 102 + 102° + 5z + 1)
(z2 + )°

61. {a} f(m) =

2+ x

fiz) =

£"(w) =

/@) =

fOx)y =7

0 f@) = =1 - —

2z = o+l = floy=—2" 4+(+1)? = flr)=22°-20+1)"" =

@) = ()@ B@E DT S e > )= (D [ - (4 1))

—6(56z* + 544z° — 218427 4 6184x — 6139)

,aCAS givesus f"'(z) = (222 — Tz — 4)*

Tr + 17
62. (a) For f(.E) = 'ém

(b) Using a CAS we get f(z) = ng 'T_—:::i 7= 2:::: N + - E 1 Now we differentiate three times to obtain

144 B 30
@zt 1F  (z— 4+

£"(z) =

Hr
PR

63. We will show that for each positive integer n, the nth derivative £ exists and equals one of f, f', ", f
F@=1 Since fP) = f, the first p derivatives of f are f', f”, £, ..., f»1), and f. In particular, our statement
is true for n = 1. Suppose that k is an integer, & > 1, for which f is k-times differentiable with f (%) in the set
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S={f.f. 5", ..., f® V). Since f is p-times differentiable, every member of S [including F®7 s
differentiable, so f**1) exists and equals the derivative of some member of S. Thus, f*T) is in the set
(. F7. f". ..., fP}, which equals S since f*’ = f. We have shown that the statement is true for n = 1 and
that its truth for n = k implies its truth for n = & + 1. By mathematical inducticn, the statement is true for all
positive integers 7t.
. (a) Use the Product Rule repeatedly: FF = fg = F' =fg+fd =
= (fH.Q' + flgf) + (f’ "+ fd") = fe+2fg + fg".
by F" = fg+ f'g' +2(f"d' + Fg")+ f'g" + f¢"" = f"g+3f"¢' +3f'9" + f¢" =
@ = [@g 4 g 43579 + £g") + 3" + £§") + 9"+ gD
= fWg+4f"g +6f'g" +4f'g" + fg¥

{c) By analogy with the Binomial Theorem, we make the guess:

n n n-— n - n n— n— 1
F( )=f( )g-!-nf( l)g’+ (2)f(n 2)g”+"'+ (k)‘f( k)g(k)+..._|_nf’g( 1)+fg( )

ny n! _nn—-1)(n-2).--(n—k+1)
where (k) T Hm—k) X '

65. The Chain Rule says that dy _ 4y @ 80
dr dudzx

Py _d (dy\ _d (dydu\ _[d (dy\|du K dy d [du
d:cra;(a)a(aa —L; ( )] dﬂm;(a;) [Product Rule]
_[d (dy\du}du dydiu &y (du)® dydu
 |du du dz| dr ' dudr? T du? \dr du dx?
dZ

d’y _
66. F E —_— = =
rom Exercise 65, 2 = a2 (

a [dy (a\?], @ [dydu
d;v du? \ de dz | du dz?
Y] () | L ()| Ly [ () Lu T ()T dy
dx dr \ dz du? dr \du /| dz2 dr \dx? /| du
d 2 d 2 2 2 3
au +2ﬁ_d_gﬂ+ — 9{....1{ _‘_M.@y
dx dzr dz? du? u \du/ dz | \ dz? dx3 du

Sdu d*ud’y  dyd’u

dx dx? du? t du dz?

2 2
)

dz du dx?

APPLIED PROJECT Where Should a Pilot Start Descent?

1. Condition (i} will hold if and only if all of the following four conditions hold:

(@) P(0) = 0
{3 P'(0) = 0 (for a smooth landing)
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(v) P'(£) = 0 (since the plane is cruising horizontally when it begins its descent)
(6 P(£) = h.

First of all, condition « implies that P(0) == d = 0,s0 P(z) = az® + be? +ex = P'(z)=3az’ +2bz +c.
But P/(0) = ¢ = 0 by condition 3. So P'(£) = 3af” + 2bf = £ (3a£ + 2b). Now by condition 7,

3af+2b=0 = a= —2—b. Therefore, P(zx) = —?—bma + bx?. Setting P(£) = h for condition §, we get

3¢ 3¢
2b 2 1. 5 3h
3££3+b€2_h = —§b£2+b€2=h = ng =h = b:B—z = a=——

2h 3h
y:P(m): €3 3+E s

P(t) =

L 4’ .
. By condition (ii), % = —u forall £, so z (t) = £ — wi. Condition (ii) states that Acﬂ_f < k. By the Chain Rule,

dy dydr 2h dr  3h _ bhx v Ghav

= —_— = —— — — - <
we have = = -~ — 7 (3* ) -+ 7 - (2 ) 7 7 forx <f) =

2 : 2 2
% :%%E(Qg; %_%%:jm;v :;:+6f;) . In particular, when t = 0, z = £ and so

2 2 2 2 o2
% . = — 12;;” £+ 62: = —6};} Thus, th B = b;f < k. (This condition also follows from

taking x = 10.)

. We substitute k = 860 mi/h%, h = 35,000 ft x 5;80 = and v = 300 mi i/h into the result of part (b):

6(35,000 - ;7=)(300)? 35,000 :
< > 30046 —————— = b64. 3
e < B0 = £2>3004/6 5950 - 860 64.5 miles

3h
. Substituting the values of » and £ in Problem 3 into P(x) = —2—h.L' + = p? gives us P(z) = ax® + br?, where

8 £

ar4.937 x 1077 and b ~ 4.78 x 1073,

7

APPLIED PROJECT Building a Better Roller Coaster

1. (a) flx) =az’ +bz+c = f'{x)=2az+b

The origin is at P : fo)y=0 = c=10
The slope of the ascent is 0.8: fin=08 = b=1038
The slope of the drop is —1.6:  f/(100) = —1.6 =+ 200a+b=-1.6

4
(b)b=0.8,50200¢ + b=—-1.6 = 200a+08=-16 = 200a=-24 = a= o 24 = —0.012.

200
Thus, f(x)} = ~0.012z* + 0.8z.
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(c) Since L passes through the origin with slope (1.8, it has equation ¥y = 0.8z. The horizontal distance between P
and Q is 100, so the y-coordinate at Q is £(100) = —0.012(100) + 0.8(100) = —40. Since L passes
through the point (100, —40) and has slope —1.6, it has equation y + 40 = —1.6(x — 100) or
y = —1.6z + 120.

50

L, L

[ P(.0)
=50

—100

(d) The difference in elevation between P (0, () and Q(100, —40) is 0 — (—40) = 40 feet.

2. (a)

Interval

Function

First Derivative Second Derivative

(—00,0)
[0, 10)
{10, 90]

(90, 100]

{1060, 00)

Li(x) =08z

g(z) = kx* + 12° + mz +n

glz) =ax® + bz +c

h(z) = pz* + qz® +rx + 5

Lao(z) = —1.6z + 120

Li(z) =08

g'(x) = 3kx® +2lx +m
q(z) =2ax+b

h'(z) = 3pz® +2qz +r
Ly(z)=-1.6

Li{z) =0

There are 4 values of z (0, 10, 90, and 100) for which we must make sure the function values are equal, the first

derivative values are equal, and the second derivative values are equal. The third column in the following table

contains the value of each side of the condition — these are found after solving the system in part (b).

Atx =

Condition

Value

Resulting Equation

0

9(0) = L. (0)
g(0) = L1(0)
g"(0) = LY(0)

=

O

n=>0
m =108
20=0

9(10) = ¢(10)
g'(10) = ¢'(10)
g"(10) = ¢"(10)

Wit :c|$

=1

1000k + 1001 + 10m +n = 100a + 10b + ¢
300k +200+m =20a+b
60k + 21 = 2a

h(90) = ¢(90)
h'(90) = ¢'(90)
h”(90) = ¢”(90)

=]
[
o

n S o

I
3

729,000p + 8100g + 907 + 5 = 8100a + 90b + ¢
24,300p 4+ 180g ++ = 180a + b
540p + 2g = 20

(100} = Ly(100)
R'(100} = L(100)
R”(100) = L4 (100)

1,000,000p + 10,000 + 100r + s = —40
30,000p 4+ 200g +r = —1.6
600p+2¢ =0
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(b) We can arrange our work in a 12 x 12 matrix as follows.

constant
0
0.8

=

[y

o

—
e}

729,000
24,300
540
1,000,000
30,000
600

o|lo|lo|lo|lo|lo|loc|o|-]j@|D]| -
o|lo|lnr | =l Q|O|ID|O O

o|lo|locjo|lo|lc|o|

Solving the system gives us the formulas for g, g, and k.
a=—-0.013 = —%5

3 1.2, 14 4
b=093=14 glz)=—mz°+ 3T — 3

o1 .3 2.2 176 _ 2920
h(z) = e Tt e Tl

2250 9

(¢) Graph of L1, q, g, h, and La:
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The graph of the five functions as a piecewise-defined function:
(10, 68,9
—
\\
(90, —220/9/\ h
(100, —40)

=100

This is the piecewise-defined function assignment on a TI-83 Plus Flokl Plotz P10tz
calculator, where Yo = L1, Ys = g, Ys — ¢, Y7 = h, and WasYek(R{BD)

<
d
it

(¥l and R
Y3 = Lo. ek(XZ10 an

YV k(R >90
<1083+ 3%

“Na=

1
a
>

A comparison of the graphs in part 1(¢c) and part 2(c}: 20

B

Problem |

3.9 Related Rates

dv Wm_ﬁ@
dt  dr dt dt

dA _dAdr _  dr dA _ __ dr . . . 2
T dr 2 pm (b) i 2y o = 27{30 m)(1 m/s) = 60r m*/s

dy dydc 9 2 dy
—_ = —= — = = . :2,—: 14 :70
7 = (3z° + 2)(5) = 5(3z* + 2). When x o 5(14)

dzx _ da:_ dy dr _ ydy
> Tyt dt =0 m T T Ve T % T
. . dy dx 4
— 2 2 _ = = —_ = —— -
Wheny =4,x" +4° =25 = = =423 For ot 6, o :1:3(6) F8.

2 2 az ax @z _ 1
EETAYy = %dt YWy T @ dt

dx dy dz 1 46
2 _ 2 2 2 _ 18 — =2 a = = 2+12-3) =
22 =5"+12° = z 69 = z==13. For 7 nd —= g =3, pril (5-2+ b= 13

\ dz di dy dz 1( dm+ydy).Whenm=5andy:12v

dy _ 2 d_:r _ 3J£I dr dy
i (32%) — With —=

21+ 28 dt
3(4) dz

2(3) dt

=4 when z — 2 and

Ly =1+ 23

y =3, wehave 4 =
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7. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mi /h passes directly over a radar
station. If we let £ be time (in hours) and z be the horizontal distance traveled by the plane (in mi), then we are
given that dz/dt = 500 mi/h.

{b) Unknown: the rate at which the distance from the plane to the station is (<) ud
increasing when it is 2 mi from the station. If we let y be the distance from 1 I/
¥
the plane to the station, then we want to find dy/df when y = 2 mi.

(d) By the Pythagorean Theorem, y° = z° +1 = 2y(dy/dt) = 2z(dx/dt).

(e) % = gc—ldf- = £(500). Since 3> = 2° + 1, when y = 2,z = v/3, 50 % = ¥3(500) = 250 V3 & 433 mi/h.
Yy

. (a) Given: the rate of decrease of the surface area is 1 cm2/ min. If we let (<)
t be time (in minutes) and $ be the surface area (in cm?), then we are

given that dS/dt = —1 cm?/s,
(b) Unknown: the rate of decrease of the diameter when the diameter is

10 cm. If we let 1 be the diameter, then we want to find dz /dt when

= 10cm.

(d) If the radius is r and the diameter z = 2r,thenr = 1z and § = dwr? = 41r(%:r)2 =mr: =

a5 _dSdz _,  ds
dt — dxr dt dt’
d dxr dzx 1 dr 1
ey —1 = 5= QM:E = i 5 When z = 10, i BET So the rate of decrease

L cm/min,

18 Fox

. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15-ft-tall pole at a rate of 5 ft/s. If we let £ be '
time (in s) and x be the distance from the pole to the man (in ft), then we are given that dc/dt = 5 ft/s.

{b) Unknown: the rate at which the tip of his shadow is moving when he is (c)
40 ft from the pole. If we let y be the distance from the man to the tip of s
his shadow (in ft), then we want to find di(:c + y) when z == 40 ft. 6
x y

Tr—+y

) . 1
{d) By similar triangles, €5 = = 15y=6cx+6y = =6z => y- iz

_5da
T 3dt

{e) The tip of the shadow moves at a rate of %(m +y) = % (z+ 3x)

=3(5) = £ fi/s.

. {a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at 35 km/h, and ship B is sailing north at
25 km/h. If we let ¢ be time (in hours), x be the distance traveled by ship A (in km), and y be the distance
traveled by ship B (in km), then we are given that dz/dt = 35 km/h and dy/dt = 25 km/h.

(b) Unknown: the rate at which the distance between the ships is changing at (c)

4:00 p.M. If we let z be the distance between the ships, then we want to

find dz/df whent =4 h,
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dz

@22 =050 -2 +y* = 22— = 2(150—:c)(

et dt

(&) At4:00 PM., z = 4(35) = 140 and y = 4(25) = 100 = 2 = /(150 — 140)2 + 1002 = /10,100. So
dz _ 1 (2 — 150)d_$ 4 dy] _ —10(35) +100(25) _ 215
itz Yae| T Joioo  viol

~ 21.4km/h.

We are given that %—:E = 60 mi/h and % =25mi/h. 22 =2 +¢* =

2z%f2 d_$+2ydy N @_ dz dy dz_l( dx dy)

dt dt dt %@ Va7 w2\ w TV

After 2 hours, z = 2(60) = 120 and y = 2(25) = 50 = z = +/120% + 502 = 130,

dz _1( dz _ dy\ _ 120(60) +50(25) _
(x a TV dt) 130 /h.

Odt_z

We are given that tji_t = 1.6 m/s. By similar triangles, =

dw_ de_ 2 dy _
priale i $2(1.6) When z = 8, 0t

so the shadow is decreasing at a rate of 0.6 m/s.

_24(1.6)

We are given that (fi_? = 4 ft/s and % =5ft/s. 2° = (z + )° + 500° =

dr dr dy
2z m = 2{x + y)( T + it ) 15 minutes after the woman starts, we have

© = (4 ft/s)(20 min)(60 s/min) = 4800 ftandy = 5 - 15- 60 = 4500 =
z = /(4800 + 4500)2 + 5002 = /86,740,000, s0

dz _x+y(dr dy\ _ 4800+ 4500
dt =z dt / /36,740,000

(4+5)=
. dx
14, We are given that i 24 fi/fs.

dy
2 _ 2 2 _ i
(a) gt = (90 — )" +90° = 2y—= o = 2(90 )( T
When z = 45, y = /452 + 902 = 45/5, so
@_gomx(j_m) 15 )_*_i
dt y dt 45{ V5

so the distance from second base is decreasing at a rate of \2—% =2 10.7 ft/s.

{b) Due to the symmetric nature of the problem in part (a), we expect to get the same answer —and we do.

24
2=22400° = 2:% 0% Whena =45, 2 = 45 V5, s0 z— 45 (24) = —= =~ 10.7 ft/s.

di dt 45 \/‘ NG
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dh . dA .
15. A = 1bh, where b is the base and A is the altitude. We are given that i 1 ¢cm/min and = 2 cm®/min.

Using the Product Rule, we have % - (b % +h d_) When 2 = 10 and A = 100, we have

dh db

=1 ip = = == : = =2 -
100 = $b(10) = Zb=10 = b=20,s02 2(20 1410 dt) = 4=20410 7
db 4-20 , .
7= 10 —1.6 cm/min.

pulley Given% = —1m/s, tind %‘E whenz=8m.¢y* =l +1 =

dy . dx dr _ydy _
Vo TH g T @ odt
dx \/ég

6
i Thus, the boat approaches the dock at %E 1.0l m/s.

% Whenxz = 8, y = /6D, s0

We are given that % = 35 km/h and % =25km/h. 22 = (z + y)? + 100°

dz dr dy
= = —Z |, Atd:00pP.M., z = =14
= 2z o 2(I+y)(dt + ) 14:00 PM., z = 4(35) 0 and

y=4(25) =100 = 2= /(140 +100)? + 100% = /67,600 = 260, so
dz w—l—y(d_sc @) 140 + 100 720

A dt =z

dt

— ~5h54k .
260 {35+ 25) = 3 55.4 km/h

18. Let D denote the distance from the origin (0, 0) to the point on the curve y = /z.

D= a0 407 =2+ (E =V rz =

%:%(w‘+x)71/2(2 +1)dI* eyl dv Wthd__g“'he”_4

2+ dt’
dD 9 27
= = 3) = = 3.02 em/s.

2\/20( ) 45 em/s

If ¢ = the rate at which water 1s pumped in, then d—;;— = (' — 10,000, where
[y

V = Lar2h is the volume at time ¢. By similar triangles, L % =
dav. ., dh

dt 00 dt

h
When h = 200 cm, (i, = 20 cm/min, so C' — 10,000 = £(200)*(20) =

C' = 10,000 + &{{;)ﬂ—mﬂ Az 289,253 cm /mm.

By similar triangles, % = % 50 b = 3h. The trough has volume
V = 3bh(10) = 5(3h)h = 1587 = 12= ‘fi‘t/ = SOh% =
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2. 0625 03 025 The figure is labeled in meters. The area A of a trapezoid is

\ ./

%(basel + base; )(height), and the volume V" of the 10-meter-long trough is

10.4. Thus, the volume of the trapezoid with height A is

- . a 025 1
V = (10)3 [0.3 + (0.3 + 2a)] h. By similar triangles, A=08 S g
h
2a=h = V =5(0.6+h)h=23h+5h> Now % = %% = 02=(3+ 10h)£—i— =

d

dh 0.2 dh 0.2 0.2 ) 1 ) 10 .
= - W = u. - — = — ——— el .
dt 3+ 10k hen h = 0.3, 2 - 37 10(03) G m,/min 30 m/min or 3 ¢m/min

1 The figure is drawn without the top 3 feet.

I

Yy V = 1(b + 12)h(20) = 10(b + 12}k and, from similar triangles,
e 6>l 12— l— 16—

6 y 16 8 8h 11k
=-and = = — = -, = +y=h+12+ — =12+ ——. Thus,
5 an 5 5 3 sob=x+12+y 12 3 12 3 us

11h 110Ah2 dv 220, \ dh
= 10(24+ T)h =240h + —— and 5008 = —- = (240+ Th) & Whenh =5,
dh _ 0.8 3
dt 2404 5(220/3) ~ 2275

~ 0.00132 ft/min,

2 3
We are given that v _ 30 f/min. V = §nrh = %r(ﬁ) h=Th

dt 2

v _dVidho o whidh o dh_ 120
dt  dh dt T4 dt dt — wh?
dh 120

=101 — = 7o

When

6 .
=z, = 0.38 ft /min.

We are given dz/dt = § ft/s. cotéd = % = x=100cotd =

dx de df sin®#
o 00 csc 7 = 7 100 8. When y = 200,

.. 100 1 g (/2 1 o
sm6—200—2 = Pl -8——50rad/s.Thedngle1s

H . 1
decreasing at a rate of - rad/s.

A= 3bh,buth=5mandsinf = g = h=4sin#, so

A= 2(5)(4sin@) = 10sin 6. We are given @ _ 0.06 rad/s, so

dat
dA _ dA db
dt ~ df dt

= (10cos#)(0.06) = 0.6 cos §. When 0 = 7,

1) = (0.6)(3) = 03 m¥s.
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We are given df/dt = 2°/min = Z rad/min. By the Law of Cosines,
72 =122 +15% — 2(12)(15) cos § = 369 — 360 cosd =

dx df dz 180sin@ df o
Qa:d——Sﬁ[) mGd— = i = d_Wh n d = 60°,

x = /369 — 360 cos 60° = /189 = 3+/21, s0
de _ 180sin60° m Tv3 _ VIm
dt  3v21 90 3431

~ 0.396 m/min.

dP

dv
27. Differentiating both sides of PV = C with respect to ¢ and using the Product Rule gives us P —— 7 + Vﬂut_ =

dv V dP dP av 600
TP A When V' = 600, P = 150 and - 20, so we have e 150(20) -80. Thus, the

volume is decreasing at a rate of 80 cm®/min.

dv dP dv yi4 4P V dP
) 1.4 0.4 2% 14 %7 _ el S —— —  When
PVt =C = P AV V=0 = = P iavii g TiP &
V = 400, P = 80 and % = —10, so we have (fi_lt/ = —ri%TOO)(—IO) = @ Thus, the volume is increasing at

arate of 220 = 36 cm®/min.

1 1 1 1 1 180 9 400
. With i, = 80 =100, - ="+ ==+ === = ——. Differentiati
ith 2, and R TR + R, — 80 + 100 = 8000 — 200 so R 5 ifferentiating

*Ml—+iw1thres ct to £, we have — 1 dR _ i@—jﬂ@
B TR, pe R2dt T O RE 4t REdt

= ,11!2(};2 d;’:“l + %%). When R: = 80 and Ry = 100,
107 ‘
(0.3) + — 1002 (0. 2)] = a1 ~ 013295,

400 [ 1

92 | 802

d
30. We want to find _dl?; when L = 18 using B = 0.007W?*/® and W = 0.12L*%%.

dB _ dB dW dL - 20— 15
o T = (0007 2W VR (002253 LYY
dt — dW dL dt ( 0o 3w )( 225 ) 10,000,000

5

= [0.007. 2(0.12- 182'53)‘”3} (0.12.2.53 - 18"%%) (107

) A 1.045 x 1078 g /yr

: d. .
We are given that :i% =2 ft/s.sinf = {P(_} = 1z =10sinf =

d—m—-fl()cosé';{ﬁ When@—-E =10(‘.05E@

iy
2 VR

— rad/s.

002 5
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d
32. P Using ¢} for the origin, we are given %% = —2ft/s and need to find a—% when

x = —b5. Using the Pythagorean Theorem twice, we have

VT2 + 122 4+ /42 + 122 = 39, the total length of the rope. Differentiating

ith ect to £, we get = de + y dy 0, so
res N —_— —_——— =, 8
Wi resp 8 r i1 dt y? + 122 dt

dy /Yy +12%dx

— — N h =-=530= —5)2 4122 24122=13 24122
= __;r2+122 i ow when z \/( ¥+ -I-\/y + + 'y

V2 4122 = 26, and y = /262 — 12?2 = +/B32. So when z = -5,

dy _ —(—_5—296—)(42} -0 —0.87 ft/s. So cart B is moving towards @ at about 0.87 ft/s.
dt — /532(13) 133

33. (a) By the Pythagorean Theorem, 40007 + y* = £°. Differentiating with respect

dy
to ¢, we obtain 2y —

i =2/ d_f . We know that % = 600 ft/s, so when

y = 3000 ft, £ = /40002 + 30002 = /25,000,000 = 5000 ft and

de _ydy 3000 1800 ,
@ _y S000 fis.
&= rd = 3000000 = = 360 ft/s

d ¥y dd 1 dy df cos® 0 dy
®) Here tanf = 7o = (t‘“lg) ilmm) = =G - owa &t~ a000 dt

When y = 3000 ft, (jit = 600 ft/s, # = 5000 and cos # = @-9 = 4009 = 4

¢ " soo0 5

4o _ {4/5)°

7 2000 (600) = 0.096 rad/s.

7
We are given that %t- =4(27) = §nrad/min. & = Jtand =

dr [ ‘ ‘
T": =3se(:20%.Whenw= 1, tand = £, s0sec’ =1 + (%)2 = 10

= 3(L)(87) = 2" ~ 83.8 km/min.

d
We are given that -&-:E = 300 km/h. By the Law of Cosines,

=2+ 12 - 2(1)(x)cos120° =z + 1 - 2x{-1) =2+ 2+ 1,50

Et}l 2r +1dr
dt 2y dat’

r=3 _5km = y=vE +5+1=+31km =

d_ _ 1650 296 km/n.

dt V31

. After 1 minute,
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. dzx . dy . .
We are given that Fri 3 mi/h and T 2 mi/h. By the Law of Cosines,

2% = 2% + y® — 2zycos45° =:c:2-{-y2 —V2zy =

22%_2 d—$+2 @—\/ﬁw \/_y— After 15 minutes [= § h|,

dt dt dt dt
V13 — 62
—_— and

4

dz 2 2 13-6v2 _ o
5_\/13—6\/5[2( V1d-6v2 2 13-0v2

~~ 2.125 mi/h.

Let the distance between the runner and the friend be £. Then by the Law
£
A\ of Cosines,

£2 = 200° + 1002 — 2 - 200 - 100 - cos & = 50,000 — 40,000 cos & (*),
Differentiating implicitly with respect to ¢, we obtain

2¢ % = —40,000(— sin #) % Now if D is the distance run when

wehaver = 3 andy = 2 = z2=(3)2+(%)2—\/§(%)(%) = z=

the angle is @ radians, then by the formula for the length of an arc on a circle, s = rf, we have D = 1004, so

df
0= 1—(1)0D = % = 1(1]0 (ij: = 109 To substitute into the expression for — 7R . we must know sin @ at the time

1
when £ = 200, which we find from (*): 200? = 50,000 — 40,000cosf <« cosf = v

sinf = 1/1— (3)? = T2 Substituting. we get 2(200) — = 40,000

100

7 it -0 ()

dé/dt = D:E 2 6.78 m/s. Whether the distance between them is increasing or decreasing depends on the
direction in which the runner is running.
The hour hand of a clock goes around once every 12 hours or, in radians per
hour, 22 = T rad/h. The minute hand goes around once an hour, or at the rate
of 27 rad/h. So the angle 8 between them (measuring clockwise from the
minute hand to the hour hand) is changing at the rate of

df/dt = & — 2z = — L% rad/h. Now, to relate 6 to £, we use the Law of

Cosines: £2 =42 +82—-2-4-8 - cosf = 80 — 64 cos b (x).
. Ty . df . de
Differentiating implicitly with respect to ¢, we get 2¢ i —64(—sin B)E' At 1:00, the angle between the two

hands is one-twelfth of the circle, that is, 12 = % radians. We use (x) to find £ at 1:00:

¢ = /80 — 6dcos £ = /80 — 32/3. Substituting, we get 2/ @ =64sin T(-47) =

64(1y (-4
de = (2) (=75 ) =— B8n ~~ —18.6. So at 1:00, the distance between the tips of the hands is

dt 24/80-32v3  3V80-32V3
decreasing at a rate of 18.6 mm/h =~ 0.005 mm/s.
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3.10 Linear Approximations and Differentials

1. As in Example 1, T(0) = 185, T(10) = 172, T{20} = 160, and
T(10) — T(20) _ 172 — 160
10— 20 —10

T(30) =~ T(20) + T'(20)(30 — 20) ~ 160 — 1.2(10) = 148 °F.
We would expect the temperature of the turkey to get closer to 75 °F

T'(20) ~

= —1.2 °F/min.

as time increases. Since the temperature decreased 13 °F in the first

10 minutes and 12 °F in the second 10 minutes, we can assume that the

slopes of the tangent line are increasing through negative values:

—1.3,-1.2,.... Hence, the tangent lines are under the curve and 148 °F

184 — 147 _ _ 37
6-30 — T30

Then the linear approximation becomes T(30) ~ T'(20) + T"(20) - 10 =~ 160 — 31 (10) = 1472 =~ 147.7.

is an underestimate. From the figure, we estimate the slope of the tangent line at ¢ = 20 to be

1} - P(2) 87.1-749
1-2 -1
P(3)= P(2) + P'(2){3 — 2) =~ 74.9 — 12.2(1) = 62.7 kPa.

From the figure, we estimaie the siope of the tangent line at A = 2 to be
93 : 23 = —:—355. Then the linear approximation becomes

P(3)~ P(2) + P'(2) - 1 = 74.9 — £ ~ 63.23 kPa.

P
. P(2) = ( = —12.2 kilopascals/km.

. Extend the tangent line at the point {2030, 21) 1o the {-axis.

Answers will vary based on this approximation—we’ll use

t = 1900 as our {-intercept. The linearization is then P
ercent

P(t) = P(2030) + P(2030)(t — 2030} aged 65

and over 107
2 21 + 55 (t — 2030)

P(2040) = 21 + 2L(2040 — 2030) = 22.6%

130

P(2050) = 21 + 35(2050 — 2030) ~ 24.2%

These predictions are probably too high since the tangent line lies above the graph at t = 2030.

N(1980) — N(1985) 150—17.0 0.4 and B — N(1990) — N(1985)  19.3-17
1980 — 1985 - -5 - - 1990 — 1985 - 5
Then N'(1985) = lim N(t) - N(1985) A+ B

+-51085 t — 1985 2
N(1984) = N(1985) + N’'(1985)(1984 — 1985) ~ 17.0 + 0.43(—1) = 16.57 million.

1995) — N(2000)  22.0 — 24.9
1995 — 2000 -5

N(2006) ~ N(2000) + N’(2000){2006 — 2000) = 24.9 + 0.58(6) = 28.38 million.

. Let A = 0 = 0.46.

= (.43 million/year. So

N'(2000) & 2L

= (.58 million/ year.
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5 f(z) =2 = f'(z) =3z s0f(1)=1and f'(1) =3 Witha =1, L(z) = f(a) + f'(a}(z — a)
becomes L{z) = f(1) + f/(1)(z—-1)=1+3(z-1) =3z -2
B flz) =127 2= 2+2)"? = fl(2)=-22+2)"%s0 f(0)= Jzand f'(0 y=—1/(4v2).8
Liz) = f(0) + f(0)(z - 0) = 5 — yi5(x - 0) = 55 (1 - =)
7. flz) =cosz = f'(z) = —sinz,s0 f(§) = Oand f'(§) = -1 Thus,
FE) +F(B)E-5)=0-1(-F) =—=+§

8. flo) = Yz =2 = f(z) =327 50 f(~8) = —2and f'(-
Thus, L{x) = f(—8) + f'(-8){(x +8) = -2 + 12(:5 +8)=Ha —%

8) =

9 flmy=v1-2 = flx)=
f'(0) = — 3. Therefore,
VI—z = f(z)= f(0) + f(0)(z - 0)
=1+ (-3){z-0)=1-3z

S0v09=+1-01=1-3(0.1) =0.95and
v0.99 = /T —0.0I ~ 1 - £(0.01) = 0.995.

.50 f(0)=1and

2\/1—3:

goy=¥T1z=01+2)"° = &) =3i1+207""
50 g(0) = 1 and g’(0) = 3

Therefore, /1 + z = g(z) ~ g(0) + ¢'(0)(z —0) = 1 + 3=
So ¥/0.95 = &1+ (=0.05) = 1 + } (~0.05) = 0.983, and

Y11= YT+01=1+%(01)=103

@) =YT-z=(1-2)"° = fl@)=—301-2)
f(0) = 1and f'(0) = —%. Thus,
flx) = F(0} + f{0)(z — 0) = 1 — 3. We need
YT—z-01<1-4iz< yT—2z+0.1, which is rue when
~1.204 < z < 0.706.

 flz) =tanz = f'(z)=sec®z, 50 f(0) =0and f'(0) =

Thus, f(x) =~ f(0) + f/(0){x ~0) =0+ 1(z - 0) = z.
We need tanz — 0.1 < x < tanx + 0.1, which is true when
—0.63 < x < 0.63.
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1

m =(1+2.’L‘)#4 =

13. f(z) =

fz) = —4(1 +22)7%(2) = =50 f(0) = Land f'(0) = —8

-8
(14 2z)
Thus, f(z) 2= f(0) + f'(0)(z —0) =1+ (—8){x - 0) =1 8x.

We need 1/(1 +2z)* — 0.1 < 1 -8z < 1/(1423)* +0.1, which is true  -0.08
when —0.045 < & < (.055.

8 f(’ll) = 4;_ = ’(:E) = m"_lm—w 50 f(O) = % and

<=, So fz) =~ 14+ 2(x-0) =%+1—161'. We need

1 .
—0l<t+Fa< + 0.1, which is true when

vid—x vid—1T

—3901 << 214

. If y = f{x), then the differential dy is equal to f'(x)dr. y = x* +5x = dy= (42 +5)dx.
.y —coswx = dy=-sinwz-wdr = —nsinnrdr
Ly =daltanz = dy= (¢"sec’z +tanz - 2z)dr = (z?sec’ z + 2w tan ) dx

_ t
y=VITE = dy=1(1+¢) "7 @0dt= dt
u+1 (e D) = e+ -2
w1 dy = {u—1)2 du= (u—1)2 du

, Y =

Ly=(1+2r)"% = dy=4(1+2r) % 2dr = —8(1 + 2r)dr
Wy =a'+2r = dy=(2x+2)dz

(b) Whenz = 3and dz = 1,.dy = [2(3) + 2] (}) = 4.
L@ y=z" -6 +52 -7 = dy=(3;c2—12;r:+5)da:

(b} When z = —2and dx = 0.1, dy = (12 + 24 + 5)(0.1) = 4.1.

L@y =+v4d+5zr = (ly:%(4+5m)’1/2v5dm:—5—dx

24+ bx

5 5
(b)When;r,:(Janddw:0.04,dy=2—\/1( 04)=2. L =% =005

L@y —1/(r+1) = dy=-—

1
(& +1)2 de

1
(b) When i = 1 and dz = —0.01, dy = —55(-0.01) = 3 0 = T8

(@ y=tanz = dy=sec’zdz

(b} When z = 7/4 and dr = —0.1, dy = [sec(r/4)]* (—0.1) = (\/5)2 (—0.1) = -0.2.

. () y=cosz = dy=—sinzdr

(b) When = — /3 and dz = 0.05, dy = — sin{7/3)(0.05) = —0.5 /3 (0.05) = --0.025 /3 = —0.043.
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27.y:ﬂ:2,a::1,Aw:(].5 = B.y=r.r=1Az=1 =
Ay = {1.5)* — 1% = 1.25. Ay =+2—-+1=+v2 10414
dy = 2zdx = 2(1){0.5) =1

’

-
L ;. Ay

dy =
/17

At

s

2. y=6-z’r=-2Az=04 =
Ay =(6—(~16)") — (6 —(—2)%) = 1.4
dy = —2zdr = —-2(-2)(0.4) = 1.6

I /y

¥

L

d
(—2,2)

l:jz : 1] X
N y=flx)=2" = dy=>5c"de. Whenz = 2 and dz = 0.001, dy = 5(2)*(0.001) = 0.08, s0
(2.001)° = £(2.001) = £(2) +dy = 32+ 0.08 = 32.08.

] i
Ry=flz)=Vzr = dy= 5 \1/_ dr. When z = 100 and dx — 0.2, dy = —==(—-0.2) = —0.01, 50
T

2 V100
V98 = £(99.8) ~ F(100) + dy = 10 — 0.01 = 9.99.

o7 2 2
Boy=fla)=2"" = dy= mdﬂ?. When z = 8 and dx = 0.06, dy = e
(8.06)%% = f(8.06) = f(8) + dy =4+ 0.02 = 4.02.

(0.06) = 0.02, s0

M. y=flz)=1/z = dy=(-1/2")dz. Whenz = 1000 and dx = 2,dy = (—1/(1000)%](2) = ~0.000 002,
50 1/1002 = F(1002) ~ F(1000) + dy = 1/1000 — 0.000002 = 0.000 998

35. y = f(z) =tanz => dy=sec’ rdr. Whenz = 45° and dx = ~1°,
dy = sec? 45°(—7/180) = (v2Z) (—7/180) = —=/90, s0
tandd® = f(44°) & F(45°) + dy = 1 — /90 =~ 0.965.

3.y = f(z) =cosz = dy= —sinzde. Whenx = % anddz =

dy:fsinﬂ(

1 (Ll8a) = ~1(&) = — g5, s0c0831.5° = f(d )

180 12
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3. y=flz)=secx = f(z)=secz tanz,so f(0) =1and f'{0) = 1-0 = 0. The linear approximation of f
at0is f(0) + f{0)(z — 0) = 1+ 0(z) = 1. Since 0.08 is close to 0, approximating sec (.08 with 1 is reasonable.

38. If y = 2% 3 = 62" and the tangent line approximation at (1,1) has slope 6. If the change in z is 0.01, the change
in g on the tangent line is 0.06, and approximating (1.01)6 with 1.06 is reasonable,

. (a) If z is the edge length, then V = z* = dV = 3z*dz. When z = 30 and dx = 0.1,
dV = 3(30)%(0.1) = 270, so the maximum possible error in computing the volume of the cube is about
270 cm®. The relative error is calculated by dividing the change in V. AV, by V. We approximate AV
with dV.
: AV dV  3zidx .
Relative error = ~V R T T T 3? = 3(5) =
Percentage error = relative error x 100% = 0.01 x 100% = 1%.

(b) S =6z = dS=12zxdzr. Whenz = 30and dz = 0.1, dS = 12(30)(0.1) = 36, so the maximum
possible error in computing the surface area of the cube is about 36 cm?.
A5 dS  12xdr dr 0.1 -
e _2(%) — 0.008.
Percentage error = relative error x 100% = 0.006 x 100% = 0.6%.
@) A=7r? = dA=2nrdr. Whenr = 24 and dr = 0.2, dA = 27{24)(0.2) = 9.67, so the maximum

possible error in the calculated area of the disk is about 9.6 ~ 30 cm?.

(b) Relative error _AA dA_2mrdr _2dr _2(02) 02 _ 1
T A T AT w724 127 60

Percentage error = relative error x 100% = 0.016 x 100% = 1.6%.

Relative error =

= 0.016.

. (a) For a sphere of radius r, the circumference is C = 2mr and the surface areais § = 4nr®, sor = C/(27) =
4

£l

S=an(C/2r)* =C*/r = dS=(2/7)CdC. When C = 84 and dC = 0.5,dS = g(84)(0.5) -8
w

. . 84 . d5 84 1
s0 the maximum error is about — = 27 cm?. Relative error = — = /m =— x0.012
T b 842/ 84

3 \27 - G

1764 . . 1764 . .
7 S0 the maximum error is about —5 & 179 cm®. The relative error is
m T

hl 3 3
bV = %?T’f‘ﬂ = éw( ¢ ) & = dV = E%Cde. When C = 84 and dC = 0.5,

_ 1 2 _
dV = 5 (84)*(0.5) =
dv 1764/ 72 1

appmximately V = W = % = (1L.018.

. For a hemispherical dome, V = 27r® = dV = 2xr® dr. Whenr = 2(50) = 25 m and
dr = 0.05 cm = 0.0005 m, dV = 27{25)*(0.0005) = ZZ, so the amount of paint needed is about 5% = 2 m?,
L@V =7r’h = AV x=dV = 2nrhdr = 27Th Ar
(b) The error is
AV —dV=[r(r + Ar)*h — 7r®h] — 2xrh Ar = mr2h + 2arh Ar + 7(Ar)2h — 7rh — 2xrh Ar
= 7(Ar)?h

3
. F=kR'" = dF =4kR*dR = % = % = 4(%) Thus, the relative change in F' is about

4 times the relative change in R. So a 5% increase in the radius corresponds to a 20% increase in blood flow.
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45. (a) dc:gEd:c:Oda::O
dz

(b) d(cu) = %(cu)dﬂ:‘ = c%d:ﬂ =cdu

_d_u
dr

+@)dm‘4@id:}:+@-da¢:du+dv
dzr dx

(c)ydlu+v) = %(u +v)dr = ( I

(d) d(uv):%(uv)d:c: (u@-{-u@) dm:u@dw+vd—udx=udv+vdu

dz dr dzx dr
du dv du

] v2 72 22

da:fu@d:z
z

d_dx (z") dz = na™ ' dx

8. (a) f(z) =sinz = f'(z)=cosz,so f(0) =0and f/(0) = 1.
Thus, f(z) = f(O)+ f/(O)(z - ) =0+ 1{z - 0) ==

1 y=1.02sinx 0.36

—

4
1 F=1.025i
y=0.98sinx ¥ sin x

y=098sinx

y=102sinx

y=0.98sinx
[~

—0.36 J .33

We want to know the values of z for which y = x approximates y = sin x with less than a 2% difference; that
is, the values of x for which

—sinz

ToSE g0 o —002< i o002 o
sSmr

sinz

{—0.02 ginx < —sinz < 0.02sinz if sinz >0 {0.9831119: << 1.02sinz if sinz >0
i=4

—0.02sinx >z —sinz > 0.02sinz if sinz < ¢ 1.02sinx < z < 0.98sinz if sinz < 0

In the first figure, we see that the graphs are very close to each other near x = 0. Changing the viewing rectangle'
and using an intersect feature (see the second figure) we find that y = = intersects y = 1.02sinz at r = 0.344.
By symmetry, they also intersect at 2 =z —0.344 (see the third figure.). Converting 0.344 radians to degrees, we °

get 0.344(”3—1?3) m= 19,77 & 20°, which verifies the statement.
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47. (2) The graph shows that f'(1) = 2,50 L(z) = f(1)+ f/(1)(x = 1) =5+ 2(x — 1)=2z+3.
£{0.9) = L(0.9) = 4.8 and f(1.1) = L(1.1) = 5.2.
(b) From the graph, we see that f'(z) is positive and decreasing. This means that the slopes of the tangent lines are
positive, but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in
part (a) are too large.

8. (3) g{z) = VIZ+5 = g¢'(2)=0=3 g(1.95) = g(2) +¢(2)(1.95-2) = -4+ 3(—-0.05) = —4.15.
§(2.05) = g{(2) + ¢'(2)(2.05 — 2} = —4 + 3{0.05) = —3.85.
(b) The formula ¢'(z) = vz2 1 5 shows that g'(z) is positive and increasing. This means that the slopes of the

tangent lines are positive and the tangents are getting steeper. So the tangent lines lie below the graph of g.
Hence, the estimates in part (a) are too small.

LABORATORY PROJECT Taylor Polynomials

1. We first write the functions described in conditions (i), (ii), and (iii):
P(z) = A+ Bz + C2* f(z) =cosz
P'(z)=B+2Cz fi(z) = —sinz
z)

P”(m) = 20 f”(

— oS
So, taking a = 0, our three conditions become
P(0) = f(0): A=cos0=1
P'(0) = f{0): B=—-sn0=0
P"(0) = f'(0): 20 =-~cos0=-1 = C:m%

The desired quadratic function is P(x) = 1 — 122, so the quadratic approximation is cosx &~ 1 — 3z°.

1.4 The figure shows a graph of the cosine function together with its

-

linear approximation L{z) = 1 and quadratic approximation

P(z) = 1 — $a” near 0. You can see that the quadratic

' j . approximation is much better than the linear one.

A

2. Accuracy to within 0.1 means that [cosz — (1 — $2°)| < 0.1 &
—0l<cosz— (1-12%) <01 & 01> (1- 1a%} —cosz > -01 =

cosz+0.1>1—122" >cosz—01 ¢ cosz-01<1- 1% <cosz+0.1
Lz Yy=cosx+0l

/ From the figure we see that this is true between A and B. Zeoming in

or using an intersect feature, we find that the z-coordinates of B and
A are about £1.26. Thus, the approximation cosz &~ 1 — 2% is

accurate to within 0.1 when —1.26 < = < 1.26.
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3, If P(z) = A+ B(z — a) + C(x — a)*, then P'(z) = B +2C(x — a) and P"(x) = 2C. Applying the conditions -
(i}, (ii), and (iii), we get
P(a) =f(a): A= f(a)
P'a)=fla): B=fl(a)
P'a@)=f"(a): 2C=f"(a) = C=3f"a)
Thus, P(z) = A + B(z — a) + C{z — a)® can be written in the form
P(@) = f(a) + f'(a)(z —a) + 3f"(a)(w — a)".

. From Example 2 in Section 3.10, we have f(1) =2, f'(1) = %, and

flo)=3=z+3) 2 S0 (@) = —§(e + 37" =

iy =- é From Problem 3, the quadratic approximation P(z) is

Veraxf) + f()z -1+ 3 D - 1)

=2+ Yz -1) - FHlz-1)?

The figure shows the function f(z) = v/z + 3 together with its linear approximation L{r) = e+ Tandits
quadratic approximation P(z). You can see that P(z) is a better approximation than L{z) and this is borne out by

the numerical values in the following chart.

from L{x) actual value from P(z)

1.9950 1.99499373 ... | 1.99499375
2.0125 2.01246118 ... | 2.01246094

2.0500 2.04939015 ... | 2.04937500

. Tu(z) = co +c1(x — a) + ca{w — a)* + cs(x —a)® + -+ + ez — @)™ If we put = = a in this equation. then all
terms after the first are 0 and we get T (a) = co. Now we differentiate T, () and obtain
T!(x) = 1 + 2co{x — a) + 3e3(x — a)® + dea(z — @)® 4 -+ + nea{z — @) 7. Substituting = = a gives
T} (a) = ci. Differentiating again, we have
T(z) = 2ea + 2 - 3cs(x — a) + 3 - dea{x — a®) + -+ + (n — Dnen(z — a)" 7 and so T}/ (a) = 2¢z. Continving
in this manner, we get
TV(z) =2-3c3+2-3-dea(z —a)+ -+ {n—2)(n — Dnea(z —a)** and T, (a) = 2 - 3es.
By now we see the pattern. If we continue to differentiate and substitute z == @, we obtain Y (u) =23 4cy and

in general, for any integer k between 1 and 7,

(k)
T,gk)(a) =2.3.4.5 kew =Klex = o= Tnk‘(a)

k) (a0
Because we want T, and f to have the same derivatives at a, we require that ¢, = f7(a) fork=1,2,... ,n.

k!
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6. Tul@) = f(@) + Fla)e —a)+ LD a4

equation we need to calculate the derivatives of f at O:

(n)
f ()(

x — a)™. To compute the coefficients in this

F(0) =cost=1
f(0)=—-sin0=0
70 = -
£y =0

80y =1

We see that the derivatives repeat in a cycle of length 4, so £°7(0) = 0, f®(0) = —1, f7(0) = 0, and

F®)(0) = 1. From the original expression for Ty, (), with n = 8 and a = 0, we have

fh‘l (0)
3

20

TR

z) = f{0) + [(0)(x —0)? (2 -0 4+

f” 0
0 +—2(! )(x

-1 1 -1 1
—1+O$+?I+OL+4J:+0a:+6;r+0:c+§m

6 g

z z + % The Taylor pelynomials T, Ty, and Ty

and the desired approximation is cosz = 1 — o7 + T

consist of the initial terms of Ts up through degree 2, 4, and 6, respectively. Therefore, Ta(z) =

.’L'2 .'L'4 $2 I4 1_6

Ta(w) =1 - 5p + Jroand Tefa) = 1 - 5 + 5 -
We graph Ta, Ty, T, T, and f:

TS
~

-1.4

Notice that T () is a good approximation to cos x near 0, Ty (x) is a good approximation on a larger interval,
Ts(x) is a better approximation, and Ts{x) is better still. Each successive Taylor polynomial is a good

approximation on a larger interval than the previous one.
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3 Review
CONCEPT CHECK

. See Definition 3.1.2 and the subsequent discussions on the interpretations of the derivative as the slope of a tangent
and as a rate of change.

. (a) A function f is differentiable at a number a if its derivative f’ exists at z = a; that is, if f'(a) exists.

(b} See Theorem 3.2.4. This theorem also tells us that if f is nor continuous at e, then f is not differentiable at a.

. (a) The Power Rule: If n is any real number, then g— (") = nx"™'. The derivative of a variable base raised to a
£

constant power is the power times the base raised to the power minus one.

. D . . d
(b) The Constant Multiple Rule: If ¢ is a constant and f is a ditferentiable function, then 7z [ef(z)] =¢ d(fr:

The derivative of a constant times a function is the constant times the derivative of the function.
” , d d "
(c) The Sum Rule: If f and g are both differentiable, then e [f(z) + g(x)] = o flx)+ % g(z). The derivative
4845 i

of a sum of functions is the sum of the derivatives.

{(d) The Difference Rule: If f and g are both differentiable, then dia: [f(z) — g(x)] = % flz) - % g(x). The

derivative of a difference of functions is the difference of the derivatives.

(e) The Product Rule: If f and g are both ditferentiable, then d%: [f(z)g(z)] = flx) % glx) + g(x) % flx).

The derivative of a product of two functions is the first function times the derivative of the second function plus
the second function times the derivative of the first function.
d

da
glx) = f(z) — f(z) — g(z}
(f) The Quotient Rule: If f and g are both differentiable, then 4 [f(w)] = dx 5 d )
de | g(x) [g(2)]

The derivative of a quotient of functions is the denominator times the derivative of the numerator minus the

numerator times the derivative of the denominator, all divided by the square of the denominator.

(g} The Chain Rule: If f and g are both differentiable and F' = f o g is the composite function defined by
F(z) = f(g(z)), then F is differentiable and F" is given by the product F'(x) = f'(g(z))g'(x). The
derivative of a composite function is the derivative of the outer function evaluated at the inner function times the
derivative of the inner function.

1

L @y=xz" = y =nz"" (by y=sinx = 3 =cosz

(Cyy=cosx = ¥y =-—sinzx (d) y =tanx = y —sec’zx

() y=cscx = y = —csczcotz (fyy=secx = y =secx tanx
(@y=cotex = Yy =—csc’zx

. Implicit differentiation consists of differentiating both sides of an equation involving a and y with respect to x, and
then solving the resulting equation for y'.

. The second derivative of a function f is the rate of change of the first derivative f’. The third derivative is the
derivative (rate of change) of the second derivative. If f is the position function of an object, f " is its velocity
function, f” is its acceleration function, and f’

. () The linearization L of f atx = ais L(z) = f(a) + f'(a)(z — a).
(b) If y = f(x), then the differential dy is given by dy = f'(z) dz.

(¢c) See Figure 6 in Section 3.10.

is its jerk function.
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TRUE-FALSE QUIZ

. False. See the warning after Theorem 3.2.4.

, True. This is the Sum Rule.

, False. See the warning before the Product Rule.
. True. This is the Chain Rule.

. True by the Chain Rule.

. False. &%f(\/_) = f;(g) by the Chain Rule.

. False. f{«) = ‘:EQ-F:E! =z’ +aforz > 0orz < —1and|a:2+:c| = —(z% + ) for -1 <z <0.So
flz)=2x+1forz > 0orz < —land f'(z) = —(2z+1) for -1 <z <0.But |2z + 1| =2z +1

forz > —1and 22 + 1] = 2z — 1forz < —3.

f(ryexists => fisdifferentiableatr = fiscontinuousatr = lim f(z)= fin).

gle) =12 = 4(x)=5z" = ¢2)= 5(2)* = 80, and by the definition of the derivative,

lim 3%}%(2) = ¢'(2) = 80.

12 A\t "
£ Y i< the second derivative while (Ey—) is the first derivative squared. For example, if y = z, then
£

dz?

d? dy\*®

— =0but{ =) =1,

gz b (dm) !

A tangent line to the parabola y = 2° has slope dy/dx = 2z, 50 at {2, 4) the slope of the tangent is
2(~2) = —4 and an equation of the tangent line is y — 4 = —4(x + 2}. {The given equation,

y —~ 4 = 2x(x + 2), is not even linear!]

1 . d
£ (tanz r) =2tanz sec® x, and o (se(:2 T) =2secz(sece tanz) = 2 tanx sec? x.
T

EXERCISES

. Estimating the slopes of the tangent lines at x = 2, 3, and 5, we obtain approximate values 0.4, 2, and 0.1. The
slope of the tangent line at x = T is negative, so f'(7) < 0. Arranging the numbers in increasing order, we have:
STy <0< f1(5Y < f1(2) < 1 < f'(3).

28 = 64,50 flz) =2%anda = 2.

. (@) f'(r) is the rate at which the total cost changes with respect to the interest rate. Its units are

dollars/ (percent per year).

(b) The total cost of paying off the loan is increasing by $1200/(percent per year) as the interest rate reaches 10%.
So if the interest rate goes up from 10% to 11%, the cost goes up approximately $1200,

(c) As rincreases, C increases. So f'(r) will always be positive.
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CHAPTER3 REVIEW

For Exercises 4-6, see the hints before Exercise b in Section 3.2.

4, 9 5,

7. The graph of @ has tangent lines with positive slope for 2 < 0 and negative slope for z > 0, and the values of ¢ fit
this pattern, so ¢ must be the graph of the derivative ot the function for a. The graph of ¢ has horizontal tangent lines
to the left and right of the z-axis and b has zeros at these points. Hence, b is the graph of the derivative of the

function for ¢. Therefore, a is the graph of £, c is the graph of £/, and b is the graph of f”.

. (a) Drawing slope triangles, we obtain the following estimates: F”'(1950) 11% = 0.11,
F'(1965) = =& = —0.16, and F'(1987) ~ §2 = 0.02.

(b) The rate of change of the average number of children born to each woman was increasing by 0.11 in 1950,

decreasing by 0.16 in 1965, and increasing by 0.02 in 1987,

(c) There are many possible reasons:
e In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.
o In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to
have a large family.
» In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.

. B’(1990) is the rate at which the total value of U.S. banknotes in circulation is changing in billions of doltars per
year. To estimate the value of B’{1990), we will average the difference quotients obtained using the times ¢ = 1985

(1985) — B(1990)  182.0 — 268.2
1985 — 1990 - -5

o = BU9%) - BO1990) _ 4015 — 2682
- 1995 — 1990 - 5
, . B(t)-B(1990) _A+C _ 17.24 4 26.66
B(1990) = lm —— 60  ~ 2 5

= 17.24 and

and ¢ = 1995. Let A = B

= 26.66. Then

= 21.95 billions of dollars/year.
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s 15

4—(z+h) 4-=
i f($+}z)—f(a:)_1_ 3+(x+h) 34z
hlglo h = ab h

(4—xz—h)3+z)— (4—x)3+z+h) I —7h

fiz) =

lim

h—0 B3+ x4+ h)(3+x) = i h3+z+h)3+x)
-7 7

= fim, B+zt+h)@B+z) (3+a)?

Sfly=2"+5zx+4 =

fa - ’ h)+4— (2 +5z+4

#/(z) = lim flz+h)— fl=) — lim (x+h)" +5{x+h)+ (z° + 5z + 4)
h—0 h h—D h

- i 3x%h + 3xh? + k® + 5h

h—0 h

i L) S(2)

=}1in})(3a:2+33:h+h2+5) =32° +5

i V3-8 +h) —v3-5z/3-5(x+h)+v3-5x
s h V3 =5z +h)+ 3 -5z
3-5@+h)]-(@B-52) _ -5 -5

- (@) f'(x)

= lim

= lim =
"*”h(\/st(az-kh)-Fﬂ—:am) h—=0 \/3—5(z+h)++3 -5z 2v3-5bx

{b) Domain of f: (the radicand must be nonnegative) 3 — 5z >0 = 5z <3 = =z1¢ (foo, %]

Domain of f': exclude 2 because it makes the denominator zero; = € (—00,2)

(c) Our answer to part (a) is reasonable because f(z) is always

negative and f is always decreasing.

Ly (;r:4——3m2+5)3 =

y = 3(z* — 3¢ + 5)2 :i% (z* - 32® +5) =3(z* - 32" + 5)2(4:53 — 6z) = 6z(z* — 3z* + 5)2(23:2 —3)

d .
.y =cos(tanz) = ¥ = —sin(tanz) o (tanz) = — sin(tan z)(sec® x)

1

rd

VL B L YL N y = %$71/2 _ %w—wa —

Y = VI 5

3z -2
VT
, V2ZZFIE) - (Bz-2)1@2c+1)7V32) @z+1)Y? 32c+1) - (3z-2) 3z+5

(Vaz+1)° (2c + 1)V (2z + 1)3/2 2z 1)3/?

Ly =22x2R+1 =

y' =2z 3(2® + 1)_1/2 (2z) + Va2 +1(2) =
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Ly = (m+1/m2)ﬁ = y':ﬁ(:ﬂ+1/£2)ﬁ_l 1—2/z%)

L (=2 —t(=2)  1-f4 241
Coa-e T a-e? -y

.y =sin{cosz) = ¥y = cos(cosz){—sinz) = —sinzcos{cos )

sec’ /1 —

.yztan\/l—x = ’y’=(SeC2\/1—Cﬂ)(2\/—]ilT-—m)(—1)=—2—'\/-lT——x

ISR M C.)) - 1 :
gl@) = + we have y = sin{z — sinz)

. Using the Reciprocal Rule, g(z) f_(lg;j = @)

_ cos(x —sinz)(1 - cosT)
v= sin?(x — sinx) ’

-%(Iy4+$2y):%(m+3y) = o4y +yt 1+ Yy 2e=143 =

1y —2zy

' 4 L LA A
y(dey +2* —3)=1-y*—2ny = y T

.y =sec(l+2?) = y':2msec(1+x2)tan(l+m2)

sec 26
1 + tan 26

(1 + tan 20)(sec 20 tan 26 - 2) — (sec26)(sec®20-2)  2sec2f [(1+ tan20) tan 26 — sec? 26|

(14 tan26)? (1 + tan 26)?

200 eanl B ‘
_ 2sec 20 (tan 20 + tan” 20 — sec” 26)  2sec2d (tan26 — 1) 1+ tan?c = sec? ]
(1 +tan20)? (1 + tan 26})?

=

f—

d . ’
4 (mzcosy-i-sin?.y) = (zy) = 2%(—siny y')+ (cosy)(2z) +cosy -2y =z-4 +y-1 =
il

y — 2xcosy
2cos2y — x?siny —

y'(—mQSitly+2cos2y—m)=y—2:L‘COSy = ¥y =

Ly = (1—;8"1)_1 =
v = —l(l—a Y (127 = —(1 - n) T = (- 1)/2) T = (e = 1)

y=(@+ve) = y’=—§(r+ﬁ)“/3(1+7)

csin(ry) =2 —y = cos(zy)(zy +y-1)=2z—-y = zcos(zy)y +¥ =2z —ycos(zy) =

2z — ycos(zy)
zcos(zy)+1

e T = s e g -

cy=cot(3z2 +5) = ¢ =—csc?(32” +5)(6z) = —6zcsc?(32° +5)

y[xcos(zy) + 1] = 2z — yeos(zy) = ¥ =

{2+ N Lo (z* + M) @)z + A)° — (24 X)*(4e”) 4{x+A)3(A4 az?)

BERES v (zt+ 2%) (zt + A%’
cy=sin{tanvI+a%) = ¢ =cos(tanv/T+2?%)(sec® V1 +2%)(32°/(2v1+2?)]
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.

36.
37.

38y

. lim

y = (sinmz)/z = ¥ = (mzcosmz —sinmz)/z?

y = tan’(sinf) = [tan(sin8))? = ¢ = 2[tan(sin8)] - sec?(sin#) - cos @

tany
t =y—-1 = t + (zsec® Ty = oy =
rvany =y any ( y) Yy y Yy 1 — 2 sec? Y

~4/5

y=(rtanz)"/® = ¢ = L(ztanz) 5(tanz + zsec’ 1)

e —D{w—4) o —5x+4

T (x-2{x-3) z2-5x+86

(z° — 5z +6)(2c - 5) — (2* — 5z +4)(2z—5)  2(2z — 5)
(z2 — 5z + 6)* T (z—2)*(z - 3)?

'y:

L f =VERTL = )=+ =24t+ 1)

Frt) =263t + 1)732 4= 474t + 1)¥2 50 f7(2) = -4/9%? = - L.

. g(#) = @sin® = g'(6) =fcosh+sind-1 = g"(#)=0H—sind)+cosd 1+ cosd =2cos# —Esind,

so g’ (mw/6) = 2cos(n/B) — (w/6)sin(n/6) = 2 (\/5/2) — (7/6)(1/2) = V3 — n/12.

2P =1 = 625+ 6% =0 = Y =-2%f =

i o o o DV T (e Y

(v*)? yre ¥

Sy =2-2)7 = f@)=2-17" = ff@)=202-27 = ["@)=232-2" =

n!

f(4)(.L') = 2 . 3 4(2 - $)75. In general, f(n)(ﬁ) =2 3 B I n(2 —E)#(VHLI) = m

secx  sec0 1
a—01—sinz 1—sin0 1-0

=1

. t? ) 08" . ; ] cos® 2t 1 1
lim = hm ——— : ¢ e — lim = - =

lim

Tto0tan® 2t to0 sin® 2 0 i t—0 ( sin 2t)3 813 8

t—0

.y = 4sin’z = 3y =4 2sinzcosz. At (%, 1), y =8 % M3 = 2/3 s0an equation of the tangent line is

Ly =+1+4sine = y = é(l +4Si11:13)_1/2 cdcosx =

2

y~1=2\/§(m—%),0ry=2\/§$+1—7r\/§/3.

-1 , (@ 4+ 1)(22) - (2 - 1)(2x) 4z

Ly=— = y = = . At{0, —1), " = 0. 50 an equation of the

2 +1 (22 + 1)° (z2 + 1)2
tangent lineisy +1=0(z — 0),ory = —1.

2cosx
v1+4sinz

equation of the tangent lineisy — 1 = 2{x — 0),ory = 2z + L.

CAL(0, 1),y = = 2,s04n

2
V1

cxt fdry 4yt =18 = x4 d(my Fy- D420 =0 = 422y +2y+yy =0 =

—x 2y At —2-2

’ r:7 V '3 [ ‘;2 ,l: 21 ,=
2y + yy -2y = y(2z+ty) T2y =y Ty (2, 1),y o]

an equation of the tangent lineisy — 1 = fg(x —2),ory = —%z + 1—53
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49. (1) fx)=x2+/H -2 =
F(@) = 2[4 (5 - a) VA-1)| +VEmT = o=+ VE T

-z +2(5—:c)_wf:r+10—2:r:_ 10 — 3z
_2\/5—:1" 24/b—x 25 —=x 20—z

(b) At (1,2): (1} = £. So an equation of the tangent line is y — 2 = —(:c —ory= 4:1: + 3 i
At (4,4): f'(4) = -

25—
25z

% = —1. So an equation of the tangent lincisy —4 = —~1{x — 4) ory = —x + 8.

(d) 4.5 - %

A

—235

The graphs look reasonable, since f’ is positive where f has tangents
with positive slope, and f' is negative where f has tangents with
negative slope.

50. (a) f(z) = 4z —tanz = f'(z)=4—sec®z = [f'(z)=—2secx(secx tanz)= -2 sec?  tan .

We can see that our answers are reasonable, since the graph of f is

0 where f has a horizontal tangent, and the graph of f” is positive

where f has tangents with positive slope and negative where f has

tangents with negative slope. The same correspondence holds

between the graphs of f' and f".

.y =sinz +cosxz = y =coszr—sing=0 < cosr=sinzand0 <z <2r & m:i{org’f.sothe
ponntsare(4,\/_)and (&, f\/Q_)

22+2 =1 = 2+dyy =0 = y =-z/(2y)=1 & x= —2y. Since the points lic on the ellipse,

wehave (—20)2 + 2 =1 = 6 =1 = y= i%. The points are (—%,%) and (ﬁ,—ﬁ).

L fl@)=(c—a)(z-bz-c = flz)=(~b}z—-c)+{r—a)(z—c)+(z~ea)lz-b) So
Flo) (-t -dt @-ae-+@—a)e-b) _
flz) (z — a)(z - b)(z —c)

2r—sinfr = —2sin2r=-2cosxsinz — 2sinrcosy & sin2r = ZsinrcoszT

. (a) cos 2x: = cos
(b) sin{z + a) = sinxcosa + coszsina = cos(z +a)=coszcosa ~sinzsina.
- @ h(z) = flz)glz) = P(z) = fla)g'(z) + 9(x)f' (=) =
W{(2) = f(2)9'(2) + 9(2)f'(2) = B} + (5)(-2) = 12 - 10 =2
(b) Fz) = f(g(z)) = F'(z)=["g(x))g'(x) = F(2)=f(g(2)g'(2)=f(5)4)=11-4=44
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%. () P(2) = f(@)g(z) = Ple) = f(a)g'(a) +
P2) = f(2)4'(2) + 92 (2) = (1) )+(4)(

f(2)
g(
gl

b Q) ="y = =

2/'(2) - F2) (@) _
[9(2)}
(©) Q2) = flglz)) = C'(x) = flgla))
C'(2) = (9 (2) = £ (4)g'(2) = (

Q'(2) =

51 f(z) = 2"g(z) = f'(2)=2"¢(x) +9(z)(22) = z[zg'(z) + 29(2)]

8. f(z) =9(z") = f(z)=g(")2z}= 22g' (")

5. f(«} = [9()* = f(2)=2[g(2)]'  ¢'(2) = 29(x)g'(x)

60. f(x) =x"g(z") = f'(x)=az" ‘g(z°) + ¢ (a")(bs" "'} = az® " lg(z") + bx" " g (")
61. /() = g(g(z)) = f'(2)=g'(9(2))g'()

62. f(z) =sin(g(z})) = [f'(z) = cosl(g(z))-g'(z)

83. f(z) = g(sinz) = ['(v) =g (sinz) cosz

84. f(z) = gltanz) =

[ (x) = g'{tan /' } - —(tanf ) =g¢'(tan /T ) -

e
B )= e

oy @)+ g(@)] [f(x)g' (=) + g(2)f'(z)] — flz)g(e) [f'(z) + g
h(x) 3
[f{z) + g(=)]

_ @) ¢'(@) + flz)g(@)f () + f(z)g(x)g'(x) + [glo)] ['(2) — f(z)g() S (2) ~ f(z)g(z)g'(x)
[f(2) + g(2))?

f'(@)g@)]” +g' (@) [f ()
[ (2} + gta))?

6. ey — TG L ey - F2@) @@ o)~ f) @

o) 2/ F@g@ @ 2@ @

§7. Using the Chain Rule repeatedly, h(z) = f(g(sindz)) =
W(2) = ['(glsindz) - -
— F'{glsin 42))g (sin 4a) (cos 4z) (4)

(g(sindx)) = f'(g(sindx)} - ¢'(sin 4z} - ?i% (sindzx)
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(b) The average rate of change is larger on [2, 3.

(¢) The instantaneous rate of change (the slope of the tangent) is
largeratz = 2.
(d) f(x) =z —2sinz = f'(z)=1-2cosz, 50
JS f1(2) =1~ 2cos2 = 1.8323 and
f(5) =1 2cos5 = 0.4327.
So f/(2) > f'(5), as predicted in part (c).

. f is not differentiable: at z = —4 because f is not continuous, at z = —1 because J has a corner, at = 2 because

f is not continuous, and at z = 5 because f has a vertical tangent.

wz =V = oft) =2 = [1/(2VE+ )] 2Pt = AV 2 =
AV ¥ 22 — 2t (Pt VB + 72 ) _ h2c?

b2 + 212 - (b2 + c2t2)3/2

a(t) =v'(¢) =
(b) v(t) > 0 for ¢ > 0, so the particle always moves in the positive direction.

@y=t—12t4+3 = o{t)=y =32 12 = a(t)=v{t) =6t
(b) v(t) = 3(t* — 4) > 0 when ¢ > 2, s0 it moves upward when ¢ > 2 and downward when 0 < ¢ < 2.
(¢) Distance upward = y(3) — y(2) = —6 — (-13) =7,
Distance downward = 5(0) — ¢{2) = 3 — {—13) = 16. Total distance = 7 4- 16 = 23.

(Vo= %wr2h = dV/dh= %?TTQ [# constant]

by V= %n‘rzh = dV/dr = 3nrh [h constant]

. The linear density p is the rate of change of mass m with respect to length z. m = z(1 + /z) =z + =

p=dm/dr =1+ % 2, 5o the linear density whenz = 4is 1 + g\/Z =4 kg/m.

. (@) C(z) = 920 4 2z — 0.022% + 0.00007® = C'(z) = 2 - 0.04z + 0.00021z”
(b) C'(100) = 2 — 4 + 2.1 = $0.10/unit. This value represents the rate at which costs are increasing as the

hundredth unit is produced, and is the approximate cost of producing the 101st unit.

(c) The cost of producing the 101st item is C'(101)} — C(100) = 990.10107 — 990 = $0.10107, slightly larger
than C'(100).

. Ifz = edge length, then V = 2° = dV/dt = 3z% d/dt =10 = dz/dt=10/(3z")and S = 6z =
dS/dt = (12z) dz/dt = 122[10/(32?)] = 40/x. When z = 30, dS/dt = % = % cm®/min,

. Given dV/dt = 2, find dh/dt whenh =5.V = %rrrzh and, from similar
. r_ 3 _w{3h z 37 g
trmngles,ﬁ—ﬁ = V—E(m) huﬁh , SO
dt 100 dt dt — 9nh? T 9m(5)® 9

when h = 5.
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71. Given dh/dt = 5 and dz/dt = 15, find dz/dt. 2° = 2° + h* =
dz dz dh dz 1
22— 9 — = — = —(15x + bh). Whent = 3,
2z o 2 dt+2h prilia i Z(l5:r+5 ). When
h=45+3(5)=60and z = 15(3) =45 = 2z = 45% +60% =75,s0
dz
dt

= 2 [15(45) + 5(60)] = 13 fi/s.

. 4
. We are given dz/dt = 30 ft/s. By similar triangles, % = —

£/241
4 dz 120

= —= == 7.7 ft/s.

0% T Jadl dt vRdl

. We are given df /dt = —0.25 rad/h. tan 8 = 400/ =

de
x=400cot§ = d_:c = «-400csc® § =

 When 8 = =,
dt g Vhend =g

% = —400(2)*(-0.25) = 400 ft/h.

BO. (a) f{x) = /20— 22 =
: —2z 2y—1/2 -
fi(z) = ——— = —=(256 — %) . So the linear
2+/25 — x2?

approximation to f () near 3 is

flo)= f3)+ '3z -3) =14~ {(z-3).

(¢) For the required accuracy, we want v/25 — 22 — 0.1 < 4 — ¥(z — 3)

and 4 — 3(z — 3) < /25 — 22 + 0.1. From the graph, it appears that
these both hold for 2.24 < & < 3.66.

81. () f(z) = JT+3z=(1+32)""* = f{z)=(1+3x) %3 s0the linearization of f ata = 01is
Liz) = f{O)+ f/ {0z —0) =1+ 1 *r=1+z.Ths, JT+3z~x1+z =

V1.03 = §/1+3(0.01) = 1 + (0.01) = 1.01.
(b) The linear approximation is ¥/1 + 3z = 1 + x, so for the required

accuracy we want /1 + 3z — 0.1 <1+ z < ¢/1+ 3z + 0.1. From
the graph, it appears that this is true when —0.23 < z < (.40,
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y=2"—22+1 = dy=(32° —4z)de. Whenz = 2 and dz = 0.2, dy = [3(2)* — 4(2)](0.2) = 0.8.

.A=m2+%w(%m)2:(l+’—g):ﬂ2 = dA=(2+ %)zdz.

When z = 60 and de = 0.1, dA = (2 + $)60(0.1) = 12 + &F 50

the maximum error is approximately 12 + 3—2’5 ~ 16.7 cm®.

limmwrl— im
"i—1 r—1  |dx

. lim
h—0 h

4 —
V16 +h —2 _ [% %]

g 8005 td
.GHW/E 9—71'/3 o b ¢=m/3

y Vittanz —+1+sinz i (\/1+ta.nw—\/1+sin:c)(\/1+tana:+\/1+sinm)
. lim =1l
220 x? T—0 o (VI+tanz + V1 +sinz)
lin (1+tanz) — (1 +sinx) i sinz (1/cosz — 1) COS T
= |1 = .
z—6 z3(/1 + tanx + /1 +sinzx ) z—0 z3(\/1 + tanz + /1 +sinz) cosz
. sinz {1 — cosx) 1+cosz
lim : :
rHOx3(\/1+ta,na:+\/1+smm)cosas 1+ cosx

i sinz - sin® z
z—0 z3(y/1'+ tanz + V1 +sinx ) cosx (1 + cosz)

—(lim sinz im !

T le—0 z 20 (/T +tanz + /1 +sinz ) cos z (1 + cos x)
1 1

T

Vit VI)-1-1+1) 4

. Differentiating the first given equation implicitly with respect to z and using the Chain Rule, we obtain

flglz) =z = fglz)d(x)=1 = 4(z)= ng(sv_)-)" Using the second given equation to expand the

1 . . .
5 - But the first given equation states that f(g(x)) = =,

T

denominator of this expression gives g (x)

1

s0g/(s) = 77—
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0 O GHAPTER3 DERIVATIVES
90. Let (b, ¢) be on the curve, that is, B3 4 2B = q23 Now 22/ 4 2% =¢?? = —g-x‘”S + %,y—]./S% -0

d 1/3
So—y=—y =
dz xl/3

1/3 and an equation of the tangent

1/3
:c) , s0 at (b, c) the stope of the tangent line is —(c/b)

lineisy — ¢ = ~{e/B)*(z — b) ory = —(c/b)" 3z + (¢ + b*/3¢c'/?). Setting y = 0, we find that the z-intercept
is B173c%3 4 b = B1/3(2/3 4 b2/3) and setting 2 = O we find that the y-intercept is

e+ b2/3c13 = ¢1/3(c23 4 B2/3). So the length of the tangent line between these two points is

\/[61/3(02/3 + 52/3)]2 + [c1/3(c2/3 + b2/3)}2 — \/52/3(a2/3)2 + Cz/s(az/a)2

- \/(52/3 1 c2/3)ad/3 = \/a2/3gArs

= va? = g = constant
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0 PROBLEMS PLUS

1. Let a be the z-coordinate of §). Since the derivative of y = 1 — 2% is y' = 2z, the slope at (} is —2a. But since

the triangle is equilateral, E/@ = «,/5/1, so the slope at @ 1s —+/3. Therefore, we must have that —2a = —V3

2
= a= -‘é—a Thus, the point ¢} has coordinates (—"2—/5, 1- (3?) ) = (Jg, i) and by symmetry, P has

204

coordinates (_.@ 1).

y=2"—3zx+4 = y =3 -3 ady=3("-z) =

y' = 6z — 3. The slopes of the tangents of the two curves are equal

when 322 — 3 = 6z — 3; that is, when z = 0 or 2. Atz = 0, both

tangents have slope —3, but the curves do not intersect. Atz = 2,  ommon

tangent line

both tangents have slope 9 and the curves intersect at {2, 6). So

) . y=x'-3r+4 —20
there is a common tangent line at (2,6), y = 9z — 12.

. (a) Put & = 0 and y = 0in the equation: f(0+0) = f(0) + f(0) +0%-0+0-0° = f(0) =2f(0).
Subtracting f{0) from each side of this equation gives f(0) = 0.

flo+h)— fO) _ [£(0) + f(h) + 0%k + OR?] — f(0)
h

im
h—0 h

:limmzlimi@:l

h—0 h z—0 T

(b) £'(0) = lim

lig 282+ h) - fl&) _ [f(@) + f(h) +@®h+ xh®] - f(x)
im == = lim

h—D h h—0 h

O R R e )

. 2 _ 3
ln 5 —}113}) [_h +z +:vh] 1+

() f'(z) =

. We find the equation of the parabola by substituting the point (—100, 100}, at which the car is situated, into the
general equation y = ax?: 100 = a(—100)> = a = 7}5. Now we find the equation of a tangent to the
parabola at the point (o, o). We can show that y’ = a(2x) = 15=(2%) = 257, 50 an equation of the tangent is
¥ — yo = g5xo{x — o). Since the point (zg, yo) is on the parabola, we must have yo = 7523, s0 our equation of
the tangent can be simplified to y = 1_(1)033% + %.’ro(m — zp). We want the statve to be located on the tangent line, so
we substitute its coordinates (100, 50) into this equation: 50 = 25 + g %o(100 — 20) =
rd — 200z + 5000 =0 = o =3 [200 + /2002 — 4 (5000)] = zp = 100 £ 50+/2. But
zo < 100, so the car's headlights illuminate the statue when it is located at the point

(100 — 50+/2,150 — 100 ﬁ) =z (29.3, 8.6), that is, about 29.3 m east and 8.6 m north of the origin.
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M O DHAPTER PROBLEMDFIL

§. We use mathematical induction. Let S,, be the statement that T (sin? z + cos* z) = 4" cos(4x + nm/2).

51 is true because
d , . . 3 . .2 2
— (sm4 r+costz) = 4sin® zcosz — 4cos’ zsina = 4sinz cos z {sin” & — cos” x)
= —4sginxcosx cos 2x = ~2sin 2z cos 2z = — sindx = sin(—4x)

=cos(Z — (—4z)) = cos(% + 4z) =4" ' cos(4z +nF) whenn =1

k

Now assume Sy is true, that is, — (sin* z + cos® z) = 4* " cos(4z + £F ). Then
da®

k41 dk: d
d sin? z + cos? z) = d sin® z + cos? :c)] == [41“1 cos(4:c + k%)]

dxktl ( ) dz E&E( T

= —gh-! sin(4:c + k%) . % (4.’1’) + kg—) = —4F sin(4:c + k%)
—4* sin(—-4z — k%) = 4F cos(% ~ {4z — kZ))

=4* cos(4z + (k+1) F)

which shows that Sk ¢ is true.
T

. d , — o L .
Therefore, —— (sin® & + cos® 2) = 4™ cos(dx -+ ng) for every positive integer n, by mathematical induction.
a’: L

Another proof: First write

sinz + cos® ¢ = (sin’ z + cos® E)Q —2sin*zcosiz =1— %sin2 2v=1-1(1 —cosdz) = 3+ % cosdz.
Tt 1.
Then we have T (sin® = 4 cos? T) = o (% + 1cosdz) = § 4% cos(dx +nl) = 4" ! cos(dz + n%).
. . A i _ ~ 1
. If we divide 1 —  into 2™ by long division, we find that f{xz) = 1$ e R T2
— -z

This can also be seen by multiplying the last expression by 1 — x and canceling terms on the right-hand side. So we

1

letg(e) =14+z+2+---+x" ', sothat f(x) =
— I

(n)
—glz) = [ (z)= (1 ) — g™ (x). But

l1—=x

(r)
. . . L 1
g is a polynomial of degree {n — 1), so its nth derivative is 0, and therefore FM )y = (1 ) . Now
— X

2
(1)1 -2) 1) = (102 S0 = 2 =20 -0
;i% -2~ =(-3-20- w) (-1 =3-2(1 —z)7", dd—; (1—z) ' =4-3-2(1—x)"° andsoon. So

1—=x

(n}
. 1 !
after 7 differentiations, we will have fi™ (z) = ( ) = n

(1 = )ntt”
. We must find a value g such that the normal lines to the parabola = x? at z = %z¢ intersect at a point one unit

1
from the points (£xq, x5 ). The normals to y = x? at x = +zo have slopes — s and pass through {£zo, x3)
o

1 1
respectively, so the normals have the equations y — 2§ = ——(z — o) and y — T = 5 (z 4+ xo). The

2xy Lo
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common y-intercept is z3 + 1. We want to find the value of 2, for which the distance from (0,23 + %) to (w0, 23)
equals 1. The square of the distance is {zo — 0)* + 23 — (zd+ %)]2 =x5+3=1 & zo= i{,—g. For these
values of iy, the y-intercept is z§ + = = 2, so the center of the circle is at (0,2).

Another solution: Let the center of the circle be (0, a). Then the equation of the circle is 2+y-a)f=1
Solving with the equation of the parabola, y = x?, we get 2% + (sc2 - a)2 =1 & 2+2' -2’ +a’=1
& o' 4 (1 - 2a)2z® + a® — 1 = 0. The parabola and the circle will be tangent to each other when this quadratic
equation in 2 has equal roots; that is, when the discriminant is 0. Thus, (1 — 2a)* — Aa®* 1) =0 &

1-4da+4a® —4a®?+4=0 & da=55s0a= 3 Thecenter of the circle is (0, 3).

@) - f@) _  (f@ =) VEevE| . (@t | s
= tim [0S0 e LI ()

T—a

i YOI iy (5413 = @) (Va+ va) =2Va 1 @)
. We can assume without loss of generality that @ = 0 at time ¢ = 0, so that @ = 12t rad. [The angular velocity of
the wheel is 360 rpm = 360 - {2 rad)/(60 s} = 12 rad/s.] Then the position of A as a function of time is

40sinf _ si
y  40sin =sm3=lsin127rt.

A = (40 cos 8, 40sin #) = {40 cos 12r¢, 40sin 127t), so sino = Tom = 190 3 3

(a) Differentiating the expression for sin o, we get cos o - Ej% = % - 127 - cos 127t = 4w cosb.

2
When @ = %, we have sina = isinf = Aé—ﬁ,socn:)so:: V1= (—?) = /13 and

d—a_ _ 4TFCOS% _ 2 _ 47r\/§
dt cosa /11712 V11

A2 6.56 rad/s.

(by By the Law of Cosines, |AP[* = |OA|* + |OP|* —2|OA|IOP|cos@ =
1202 = 40% + |OP* — 2. 40|OP|cos# = |OP|° — (80cosf) |OP| — 12800 =0 =

0P| = :_1;(80 cos 0 + /6400 cos? § + 51,200) = 40cosf + 40 \/cos2 6 + 8

= 40(c050 + /8 + cos? 9) cm  (since |OFP| > 0)

As a check, note that {OP| = 160 ¢cm when @ = 0 and |OP] = 80 /2 cm when 8§ = z.

(c) By part (b), the z-coordinate of P is given by z = 40 (cos 6+ 8+ cos?é ), 50

dx _ drvdf :40(sin6~ 2cosfsind ) 127 = —4807rsi119(1+ _____EEEAQ____) cm/s.

dt — d8 dt 24/8 + cos2 8 V8 +cos? 8

In particular, dz/dt = 0 cm/s when 8 = 0 and dz/dt = —480m cm/s when ff = Z.
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10. The equation of T is y — 22 =211 (x —31) = 21120 — 222 or
y = 2z12 — x7. The equation of T} is y = 2z2x — 2. Solving for the point
of intersection, we get 2z(z1 — 22) = 3 —a3 = z = i(z1 + z2).

Therefore, the coordinates of P are (3 (21 + 22), £122). So if the point of

contact of T is {a,a®}, then Q1 is (5 (a + 1), a1 ) and Q2 is
(L(a+ x2),az2).

Therefore, |PQ1|? = 1{a —z2)* + #3(a — 22)* = (a— 22)? (3 + 2%) and

|PQ1* _ (a—z2)”
IPP® T (o —a2)”

U’Pl|2 = i(:r:l - :1':2)2 + m%(a:l — .1‘2)2 = (z1 — 3:2)2 (% +$1). and simitarly

PQ: _ (1 —a)? [P |
- = . Finall
{PPQEZ (.121*:132) 4 |PP1}

|[PQ2]  a—m T —a
|PP2| r1 — ¥z ] — &g

+ =1.

. It seems from the figure that as P approaches the point (0,2) from the right, z — oo and yr — 2T, As P
approaches the point {3, 0) from the left, it appears that z7 — 3% and yr — oc. So we guess that zp € (3, oc) and
yr € (2,00). It is more difficult to estimate the range of values for z and y~. We might perhaps guess that
zn € (0,3), and yn € (—o00,0) or (—2,0).

In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation

2 2 _ Yy ny

. . 4 . .
of the tangent line: % + % =1 + = V= =080y = —§§ So at the point (zo, yo) on the eilipse, an

equation of the tangent line is y — yo = — =

9
4 xzq
9

x—(:r — xo) or dzox + Gyoy = 422 + 9y2. This can be written as
Yo

3 + % = 1, because (xo, yo) lies on the ellipse. So an equation of the tangent line is

1.

Therefore, the z-intercept z+ for the tangent line is given by TO‘; =1 & xr = —,andthe y-intercept yr
Ty

4
Yoy =1 & yr = —.
Yo

So as g takes on all values in (0, 3), 7 takes on all values in (3, 20), and as yo takes on all values in (0, 2},

is given by

yr takes on all values in (2,00). At the point (xg, o) on the eilipse, the slope of the normal line is
1 _9 Yo

9y
e , and its equation is 0 = ——(x — xo). So the z-intercept xn for the normal line is
Yiwoye) Lo Quationis y = yo = 77 1(z — o). P

4z

. 9 4 5 . .
givenby 0 — yo = 1 g—o(wN —xo) = N = —% + o = ;0 , and the y-intercept yn is given by
o]

9 5
ﬂ-i—yo:* L

9
yn =2 2(0-z0) = v =7y 4

4I0

So as g takes on all values in (0,3), = takes on all values in (0, 3), and as yo takes on all values in {0, 2),

yw takes on all values in (— %, 0).
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12. lim sin(3 + )" — sin = f'(3) where f(z) = sinz”. Now f'{z) = {cos z%)(2z), so f'(3) = 6cos 9.

x—0 T

13. (a) * If the two lines L and Lo have slopes 7y and m2 and angles of
inclination ¢, and ¢, then 7ny = tan ¢, and rny = tan ¢;. The

triangle in the figure shows that ¢, + a + (180° — ¢,) = 180° and so

o = $y — ¢,. Therefore, using the identity for tan(x — y), we have

tan ¢, — tan
tan o = tan(g, — ¢,) = tang, —tang, and so

1+ tan ¢, tan ¢,

ma — M1

tang = ———.
1+ mymae

(b) (i) The parabolas intersect when * = (z — 2)®> = z=11Ify= 22, then y' = 2, so the slope of the
tangent to y = z° at (1,1) is my = 2(1) = 2. If y = (= — 2)*, then ' = 2(z — 2), so the slope of the
tangent to y = {x — 2)? at (1,1) is my = 2(1 — 2) = —2. Therefore,

™My — M1 -2-2 4, —1/4Y AL o ]
tana = i—— 7 20-2) = 2 and so @ = tan™ ' (5} = 53° (or 127°).

(i) 22 ~ y? = 3and 2% — 4z +y? + 3 = Ointersect when z° —de + (#° ~3)+3=0 <« 2z(z-2)=0

= r=~00r2 butOisextraneous. If = 2, theny = +1.If z* — y* =3 then 2z - 2yy’' =0 =

. 2—m ‘
y =z/yandz® — 4z +4°+3=0 = 20—-44+2yy =0 = y = ="Z At(2,1) the slopes are
Y

mi =2and my = 0,50 tana = {555 = -2 = a = 117°. At(2, —1) the slopes are my = —2 and
me = 0,s0tana = %z_(g)—%—) =2 = a=063°(orll?).

4. =4px = 2y =4p = y =2p/y = slopeof tangent at P(xy, 4 ) is my = 2p/y1. The slope of
H1

FPismg = , $0 by the formula from Problem 13(a),

wfzi—p) =2 p(zi—p) _ v - 2(21 = p)
1+ 2pfn)n Az —p)] wm{zi—p)  wi(z—p)+2pn

tanoa =

dpz, — 2 §
_ dpoy — Zpmi 4 2p 2p(p + 21) __ slope of tangent at P = tan 3

oyt —pyi+ 2 wilp+ @) W

Since 0 < a, 3 < 7, this proves that o = 3.

. Since ZROQ = ZOQP = 4, the wriangle QO R is isosceles, so

iQR| = |RO| = z. By the Law of Cosines, #* = 2 + r* — 2rz cos ¢. Hence,
2
r

r
T 2rcos® 2cosb’

2rzcost) =12, 502 Note that as y — 07, 8 — 07 (since

= z. Thus, as P is taken closer and closer
2cos() 2

to the w-axis, the point R approaches the midpoint of the radius AQO.

ginf = y/r), and hence z —
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Cf@) o f@) 0 f(@) - £(0) _
16 alli% g(z) Jm, g(z) -0 = lim, g(z) — g(0) mlao g(z) —g(0
0

I —

sin{a + 2z) — 2sin(a + ) +sina
. lim 3
x—0 x

lm sinacos 2z + cosasin 2z — 2sinacosz — 2cosasinT + sina
z—0 T2

— lim sina (cos2r — 2cosz + 1) + cosa (sin 2z — 2sinx)
x—0 2
i sina{2cos*x ~1—2cosz + 1) + cosa (2sinz cosz — 2sin )
xz—0 e
im sina (2cosz)(cosx — 1) + cosa (2sinz)(cosz — 1)
x—0 T2
Jim 2(cosz — 1){sinacosx + cosasinz](cosx + 1)
T—0 z2(cosxw + 1)

~2sin? z [sin( (a+z)] _ 9 lim (sinm)z'sin(a—km) __2(1).zsin(a+0)

= —sina

lim

a0  z2(cosz + 1) z—0 cosT+1 cos0+ 1

r
. Suppose that ¥ = mux + ¢ is a tangent line to the ellipse. Then it intersects the ellipse at only one point, so the

{(mzx + c)

2 =1 & (b +a’m)z? + 2mea®z 4+ a*c® - a®h® = 0 must

discriminant of the equation z— +
be Q; that is,
0= (2mca2)2 —4(b* + *m* NP - oY)
=4a’c®m? — 44?7 + 4670t — 42’ PFm® + 20w = 407V (P Y -

Therefore, a?m? + b2 — 2 = 0.
Now if a point (o, 3) lies on the line ¥y = max + ¢, then ¢ = 3 — ma, so trom above,

2 g2
0=a?m? + b2 - (- ma)® = (a? - a®)m? +2afm+ b2 — 62 & mi+ f"‘ﬁ my =8

=0
a? — a? a? —a?

(a) Suppose that the two tangent lines from the point (e, 3) to the ellipse have slopes rm and i Then m and —lr;
m m

2
are roots of the equation z* + 208 z 4 & = (. This implies that (z — m){ z — 1y 0 «
a?—a?”  a?-o? m

1 1 . . . .
z2 - (m + —) z+m ( —) = 0, so equating the constant terms in the two quadratic equations, we get
m ki

f— 2 .
5 A m(l) =1, and hence b* — 32 = a® — o>. So (a, 3) lies on the hyperbola z* — y* = a® — b°.
m

a? —a?

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

CHAPTER3 PROBLEMSPLUS 207

1 3
(b) If the two tangent lines from the point (c, 3) to the ellipse have slopes m and - then m and — —are TOOtS

1 . .
of the quadratic equation, and so (z — m) (z + E) = (), and equating the constant terms as in part (a), we get

2 92
h2 52 — —1, and hence b* — 3% = a — a?. So the point (e, 3) lies on the circle z° + y* = a® + b%.
o

H+yi=at+ b

19. y =2 — 222 —2 = y =42 — 4z — 1. The equation of the tangent line at x = a is
y - (a* — 2a® —a) = (4a® —da ~ 1){z —a)ory = (4a® — da — D)z + (—3a* + 2a”) and similarly for z = b.
Soifatz = aand z == b we have the same tangent line, then 4a® — 40 — 1 = 45° — 4b — 1 and
—3a* + 20% = —3b* + 2b°. The firstequation gives a® — % =a—b = (a—b)(a® + ab+ %) = {a —b).
Assuming a # b, we have 1 = a? + ab + b%. The second equation gives 3(a* — b} = 2(a* - b*) =
3(a® — b*)(a® + b%) = 2(a” — b*) which is true if a = —b. Substituting into 1 = a* + ab + b° gives
1=a2—-a’4+4a®> = a=+lsothata=1andb= —1 or vice versa. Thus, the points (1, -2) and (—1,0)
have a4 common tangent line.

As long as there are only two such points, we are done. So we show that these are in fact the only two such

points. Suppose that a2 — b* # 0. Then 3(a? — b*)(a® + b?) = 2(a® — b*) gives 3(a® + b*) =2 ora® + b = 2.
Thus, ab = (a2+ab+bz) —(@*+¥)=1-2=2%s0b= %.Hence,aE—l—g—lm = %,5099,4-&-1:6(1[2 =
b a .
1

0=9a*—6a>+1=(3*-1)".503a> —1=0 = a*=1 = B = oa7 = 3 = a’, contradicting our

assumption that a® #£ b*.

20. Suppose that the normal lines at the three points {a1,43), (a2, a3), and (as, a}) intersect at 2 common point. Now
if one of the a; is ) (suppose a; — 0) then by symmetry az = —as, 50 a1 + a2 + a3 = ). Sc we can assume that

none of the a; is 0.

The slope of the tangent line at (ai, af) is 2a;, so the slope of the normal line is — 3 and its equation is

@

1 . . . . .
= —— (z — a;). We solve for the z-coordinate of the intersection of the normal lines from (a1, a)

204
1

1
and (a2, a3): y=al E(w—al):aa—ﬁ(m—ag) =
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a1 — a2

) =(—a1 —az)(a1 +az) © = -2aa(a1 +ax) (*).

2(’11(].2
Similarly, solving for the z-coordinate of the intersections of the normal lines from (a1, a?) and {aa, a3) gives

Tr = 72(11(1,3(&,1 + a3) (T)
Equating () and () gives az{a1 + a2) = aa(a1 +a3) & ai{e2 —az} = ai — ai = —(az +a3){az2 — a3)

=3 (11:—((12-1—(13) & gy tay+as=0.

/ P

Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 x 2 grid shown. We can

see that the minimum value of r occurs when there is a line with slope g which touches the circle centered at (3, 1)

and the circles centered at (0,0) and (5, 2). To find P, the point at which the line is tangent to the circle at (0, 0),

we simultaneously solve 2% + y* = 72 andy = -2z = 2+ ZP =7 = =47 =

T = 7—% T —% r. To find Q, we either use symmetry or solve {z — 3)* + (y — 1)* = and

y— 1= —%(x—3). Asabove, we get ¢ = 3 - —& 7,y = 1 + —E= . Now the slope of the line PQ is 2 50
1+i’"—(—i’") L+ 2%r 204100 2

mpg = Ve Ve VI ToC o 5VB 50 =6v2 -8 &

S-Tmro/mT doumT VA4

B8r =20 & r= ;.é:;E_ So the minimum value of r for which any line with slope % intersects circles with

radius r centered at the lattice points on the plane is 7 = 3% ~ 0.093.

Assume the axes of the cone and the cylinder are parallel. Let H denote
the initial height of the water. When the cone has been dropping for ¢
seconds, the water level has risen x meters, so the tip of the cone is

x + 1t meters below the water line. We want to find dx/dt when

x +t = h {when the cone is completely submerged). Using similar

r=—(z+1).

triangles no_T
J T+t h

volume of water original volume volume of submerged
and cone attimet of water part of cone

7R*(H + ) TRZH irri(z +1)
2

aR*H + nR*z TR*H

3h*R’z r(x + t)3
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Differentiating implicitly with respect to ¢ gives us

2 dT _
dt

dz

g dt
dt+3(m+t) 7 =

3h°R r? [3(::: +t)?
dr _ Pz +t)°
dt  h2R?2 —r%(z +1t)?

dz r2h? _ r?
dt

= 1ipE _2p2 . P 2
crt=h h2R r2h R T

2

T . .
=5 g ¢m /s at the instant the cone is completely submerged.
"

Thus, the water level is rising at a rate of T

By similar triangles, g = “1% = 7= % The volume of the cone is
sh\?, 2571 dv 251, dh

i =220 p8 0 - = 2 p% 2 Now the rate of
16) h= e o T @O eee

change of the volume is also equal to the difference of what is being added

V= %'Jﬂ"zh = %ﬂ'(

(2 em® /min) and what is cozing out (kmrl, where rl is the arca of the cone and k

dVv
is a proportionality constant). Thus, i 2 — kmrl.

- 5(10 25 { 10
Equating the two expressions for % and substituting & = 10, % =-0.3,r= % =3 and -;/vé:é—i =1

—125]” 281 =24 —7507T. Solving for k&

& 1=2VI81, weget 21(10)%(-0.3) =2 -kn - V281 & o SEG

256
256 4 376w
250w /281

d
being poured in; that is,d—‘; = 0. kvl

givesus k = . To maintain a certain height, the rate of oozing, £7rl, must equal the rate of the liquid

256 + 375m . 25 5+/281 _ 256 43757
260 /281 8 g 128

~ 11.204 cm®/min.

24, (a) flz)=x(z—2)(z—6)=2° - 82> + 12z = f'(z} =3z — 162 + 12. The average of the first pair of
zeros is {0 + 2)/2 = 1. Atz = 1, the slope of the tangent line is f'(1) = —1, so an equation of the tangent line
has the form y = —1x + b. Since f(1) =5, wehave 5 = —1 4+ = b = 6 and the tangent has equation

0
y = —x + 6. Similarly, at x = ——;Q =3, y=-9z+18atx = 2L26 = 4,y = —4xz. From the graph, we

see that each tangent line drawn at the average of two zeros intersects the graph of f at the third zero.

8

—18

(by ACAS gives f'{z) = {z - b}z —c)+(z~a)(z—c)+(z —a){x - b)or

f'(z) = 32° — 2{a + b+ c)x + ab + ac + be. Using the Simplify command, we get
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— By 12
f’(a;b) :__(a 4b) and f(a;b> :—(a Sb) (@ + b — 2¢), so an equation of the tangent line at

a+b (a —b)?
T )— 5 fa+b—2c)

To find the z-intercept, let ¢y = 0 and vse the Solve command. The resultis x = c.

Using Derive, we can begin by authoring the expression (z — a)(z — b)(x — ¢). Now load the utility file
Dif_apps. Next we author tangent (#1, z, {a + b) /2)—this is the command to find an equation of the tangent
line of the function in #1 whose independent variable is x at the z-value (2 + b)/2. We then simplify that

expression and obtain the equation ¥ = #3. The form in expression #3 makes it easy to see that the z-intercept

is the third zero, namely c. In a similar fashion we see that b is the z-intercept for the tangent line at (a + ¢)/2

and a is the z-intercept for the tangent line at (b + ¢)/2.

#1° (x - a)-(x - b}-({x - ¢} Author the function y=

I a+ b
#2: TANGENT|(x - al«{x - b)-{x - ¢}, x, ——— Tangent (#1, x,la+b}/2)
2

2 2
la - 2+a:b + b J.(c - x}

0.0s Simp(42)
4
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