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4 [] APPLICATIONS OF DIFFERENTIATION

4.1 Maximum and Minimum Values

1. A function f has an absolute minimum at x = ¢ if f(c) is the smallest function value on the entire domain of f,

whereas f has a local minimum at ¢ if f(¢) is the smallest function value when x is near ¢.

. {a) The Extreme Value Theorem

(b} See the Closed Interval Method.

. Absolute maximum at b; absolute minimum at d; local maxima at b and e; local minima at d and s;

neither a maximum nor a minimum at a, ¢, r, and ¢.

. Absolute maximum at e; absolute minimum at ¢; local maxima at ¢, e, and s; local minima at b, ¢, d, and r;

neither a maximum nor a minimum at .

. Absolute maximum value is f{4) = 4; absolute minimum value is f(7) = 0; local maximum values are f(4) = 4

and f(6) = 3; local minimum values are f(2) = 1 and f(5) = 2.

. Absolute maximum value is f(8) = 5; absolute minimum value is f(2) = 0; tocal maximum values are f(1} = 2,
f(4) =4, and f(6) = 3; local minimum values are f(2) =0, f{5) = 2, and f(7) = 1.

. Absolute minimum at 2, absolute maximum at 3, 8. Absolute minimum at 1, absolute maximum at 3,
local minimum at 4 local maximum at 2, local minimum at 4

v

31

74
1‘..

0

9. Absolute maximum at 5, absclute minimum at 2, 10. f has no local maximum or minimum, but 2 and

local maximum at 3, local minima at 2 and 4 4 are critical numbers

¥ ¥
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212 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

1. (a)

12. (a) Note that a local maximum

cannot occur at an endpoint. J
| [TV
W o1 2

X

Note: By the Extreme Value Theorem, f must not be

continuous.

13. (a) Note: By the Extreme Value Theorem, f must not
be continuous; because if it were, it would attain

an absolute minimum.
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15 f(z) =8 - 3z.x > 1. Absolute maximum
f(1) = 3; no local maximum. No absolute or
local minimum.

17. f(z) = #°, 0 < & < 2. No absolute or local
maximum or minimmum value.

v
2,4

19. f(x) = 2%, 0 < z < 2. Absolute minimum
F(0} = 0; no local minimum. No absolute or
local maximum.

A. f(z) = 2%, -3 < z < 2. Absolute maximum
f(—3) = 9. No local maximum, Absolute and
local minimum f(0) = Q.

(=39 '

SECTION 41 MAXIMUM AND MINIMUM YAWES O 2R

16. f(z) = 3 — 2z, z < 5. Absolute minimum
= —7: no local minimum. No absolute or

\

1

local maximum.

<

(5.7

18. f(z) = °, 0 < = < 2. Absolute maximum
f(2) = 4; no local maximum, No absolute or
local minimum.

2. f(x) = z*, 0 < z < 2. Absolute maximum
f(2) = 4. Absolute minimum f{0) = 0. No
local maximum or minimum.

¥
2.4)

2. f(r) =1+ (z+1)% -2 <z < 5. No absolute
or local maximum. Absolute and local minimum

fl=1) =1
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23 f(t) = 1/t,0 <t < 1. No maximum or

minimum.

25. f(#) =sinf, —2r < & < 2m. Absolute and
local maxima f(—2F) = f(§) = 1. Absolute

and local minima f(-%) = f(3£) =

¥

/'\\’/l\./

27. f(z) = 1 — /z. Absolute maximum f(0) = 1

no local maximum. No absolute or local
minimum.

N
~__

l-z if0<z<?2
24 if2<x<3

2. f{ﬂf)={

Absolute maximum f(3) = 2; no local
maximum. No absolute or local minimum.

¥

2._

4. f(t)=1/t,0 < t < 1. Absolute minimum

f(1) = 1; no local minimum. No local or

absolute maximum.

d

26. f{f) = tan@, —% < @ < 5. Absolute minimum

f(=%) = —1; no local minimum. No absolute

or local maximum.

(51

28. f(x) = 1 — z°. No absolute or local extreme
values.

2 if —1<z2<0
9 -z ifo<e<1

. f(x) = {

Absolute and local maximum f(0) = 2.

No absolute or local minimum.

¥
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fle)=br 44z = f(x)=10z+4 f'(x)=0 = =z = -2 so—2istheonly critical number.
L flo) =242 -z = fx)=3z+22 -1 fz)=0 = z—l—l)(3a:—1)=0 = xr=-1
These are the only critical numbers.
Cfx) =2+ 32 24z = f'(z) =32 + 6z — 24 = 3(2® + 22— B),
fiz)=0 = 3(z+4x—-2)=0 = x = —4,2. These are the only critical numbers.
L fley=2*+2%+z = flo)=3"+2+1 fx)=0 = 32 +2r+1=0 =
_ —2+/1-12
6

. Neither of these is a real number. Thus, there are no critical numbers.

st =3t 4t — 617 = S =120 4+120 - 12t.5'(8) =0 = 12(*+t-1) = t=0or
t? + ¢ — 1 = 0. Using the quadratic formula to solve the latter equation gives us

-1+ 4/12 —4(1)(—-1 — -1+ 5
t= 200 ((=1) = li\/g a2 0.618, —1.618. The three critical numbers are 0, T\/_

f(z)_z—-f-l f,{z)*(z2+z+1)1~(z+1)(2z+1)_ _2_ 9,
' 24zt (24 241) (22 +2+1)°
#2z+2)=0 = z=0,—2are the critical numbers. (Note that z2 + z + 1 # 0 since the discriminant < 0.)
2z +3 if 22+3>0 , 2 ifzr>-%
: = g'lz)=
—(22+3) if 22+ 3 <0

g’ () is never 0, but ¢’ (x) does not exist for z =

=0 &

-2 ifor< -3

.g(:r:)z]?:c-l—S}x{

50 —5 1s the only critical number.

z+2

3p5/3°

g'(—2) = 0 and g’ (0) does not exist, but 0 is not in the domain of g, so the only critical number is —2.

29

Lg(e) =20 — 27 = ¢(2) = %x—z/a + %x—5/3 = %a:_s‘/‘?’(:c +2) =

g(t) =522 1 5% = g'(t) = W13 4 5433 ¢'(0) does not exist, so t = 0 is a critical number.

gty=2t713(2+448) =0 & t=-2s0t=—2isalsoacritical number.

gty =vE(l-t)=t"? - 3% = g(t)=—= -2Vt g¢'(0) does notexist, so ¢ = 0 is a critical number.

2\f

1-—3¢
D=4q4'(t) = t =1L sot=1isalsoacritical number.
Q‘( ) 2\/{ 3 3
F(x) =2z -4)? =

Fliz)=z*® 2 -4)+ (2 —4)* 27 = 1oz —)[5- 2 24 (x — 4) - 4

_ (z—4)(14z —16) _ 2(z —4)}(7z — 8)
Py = FATE =0whenz =4, & 73
4.

and F'(0) does not exist.

Critical numbers are 0, 2 =

=Vai-z = G(z)=13}(z"-2) 28 (2x — 1). G'(z) does not exist when 2% — z = 0, that is,
whenz=00rl. G'(z) =0 < 22-1=0 < z= -é— So the critical numbers are x = (), % 1.
. f(8) =2cos@ +sin®0 = f(0) = —2sinf +2sinfcosh. f(A)=0 = 2sinflcosf@—1)=0 =
sinf@ =0orcosf =1 = A =nr(naninteger) or f = 2nx. The solutions # = nr include the solutions
# = 2nm, so the critical numbers are § = n.
. g(0) =46 —tanf = ¢'(6) =4 — sec?f. g'(9) =0 = sec’f=4 = sech=+42 =
cosf = :}:% = f#= % + 2nm, %’5 + 2nm, <E + 2nm, and T + 2nw are critical numbers.

Note: The values of @ that make g’ () undeﬁned are not in the domdm of g.
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8, f(z) =322 122 +5, (0,3, [f(z)=6x-12=0 & z=2 Applying the Closed Interval Method, we
find that f{0) = 5, f(2) = —7, and f(3) = —4. So f(0) = 5 is the absolute maximum value and f(2) = —7is the
absolute minimum value.

flz) =2 3241, [0,3. f(z)=3"-3=0 <« x=d4lbu—lisnotin 0,3]. £(0) =1, f(1) = 1.
and f(3) = 19. So f(3} = 19 is the absolute maximum value and f(1) = —1 is the absolute minimum value.

 flr) =22% — 322 120+ 1, [-2,3]. f'(z) =62" ~ 6z~ 12= 6(z —z-2) =6z -2z +1)=0 &
=2 -1. f(-2)=-3, f(-=1)=8, f(2) = —19,and f(3) = —8. S0 f(—1) = 8 is the absolute maximum
value and f(2) = —19 is the absolute minimum value.

Cfz) =" 62+ 9z +2 (1,4 fl@)=32"—122+9=3(2" ~ 4z +3) =3z -1){z-3) =0
r=1,3 f(-1)=—14, f(1) =6, f(3) = 2,and f{4) = 6. So f(1) = f(4) = 6 is the absolute maximum
value and f{—1) = —14 is the absolute minimum vaiue.

flx) =2t 227 43, [-2,3] flz) =4® ~dz=da(2® - 1) = 4z{z+ (- D=0 & z=-L0L
F(=2) =11, f(-1) =2, f(0) =3, F(1) = 2, f(3) = 66. S0 f(3) = 66 is the absolute maximum value and

(+1)

+1) = 2 is the absolute minimum value.

, flz) = (@2 - D% [-1,2) f(z) =3(z" - 1) (2e) =6bz(x + 1)’ (@ —1)°=0 & z=-1,0,1
F{£1) = 0. f{0) = —1,and f(2) = 27. So f(2) = 27 is the absolute maximum value and f(0) = —1is the
absolute minimum value.

2 2

oz ,o (@) —x(2m) 0 1-a" B N

fl=@) = a1 0,2]. f'(z)= @11 =~ ZEL) =0 ¢ z==lbut—1lisnotin[0,2]
£(0y=0. f(1) = L, £(2) = . So f(1) = § is the absolute maximum value and f(0) = 0 is the absolute
minimum value.

¢ -4 (2% +4)(2z) — (z° — 4)(2x) 16z

L fl) = =—, —4,4]. [ = =
flx) ORI —4,4]. f'z) (2 + 4)° (22 + 4)2

F(£4) = 12 = £ and f(0) = —1. So f{£4) = { is the absolute maximum value and f(0) = —1is the absolute

minimum value.

L f(1) = tvVE— 12, [-1,2].

P =t-a-)" 2+ (413

=0 & x=0

o R (4-) 4o

1= +vd—t2=

Vi —12 Nz N
F)=0 = 4-22=0 = =2 = t==v2 but=—v2isnotin the given interval. [-1,2].
F'(t) does not existif 4 — 2 = 0 = t = =£2, but —2 is not in the given interval. f(=1) = =3, f(\/i) =2,
and £(2) = 0. So f{v/2) = 2 is the absolute maximum value and f(—1) = —+/3 is the absolute minimum value.

() = YR 1) [0.8]. f(6) =84 = fy=8 4P =42t = 02—y

3V12

Ffiey=0 = t=2. f(t)doesnotexistift=0. f(0)=0,f(2)=6 ¥2 ~ 7.56, and f(8) = 0.

So f(2) = 6 /2 is the absolute maximum value and f(0) = f(8) = Ois the absolute minimum value.

. f(z) = sine +cosz, [0,2]. f(z)=cosx—sinz=0 < sinz=cosz = A N
3 COS X

tanz=1 = z=72 fO)=1f(3)=v2~141f(5)= VB4l o 1.37. So f(Z) = V2isthe

absolute maximum value and f(0) = 1 is the absolute minimum value.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION A1 MAXIMUM AND MINIMUM VALUES  © 217

i p— 57 _®
2 -~ %%
flom) =2 -7~ 114, f(- %) =v3 - 3 ~ 0886, f(~2) = ~F - V3~ —2.26,
flm} =7+ 2 =05.14. So f(m) = 7 + 2 is the absolute maximum value and f( 5

minimum value,

5. f(r) =z — 2cosz, [-m, 7. f(z)=1+42sinz=0 & sinz=-

) = 73 — /3 is the absolute

.f(w):;c”(lﬁw)b. 0<z<la>0,b>0
b1 —2)" =1+ (1-2)-az” =2 (1 —2)" [z b(—1) + (1 —z) - g
=11 - z)* '(a - ax — bx)

At the endpoints, we have f(0) = f(1) =0 [the minimum value of f ] In the interval (0,1), f'(x) =0 <

@ -8 bk a® at+b—a bg a ' u° B a®b®
a+b _(a+b)“ a+b _(a—i—b)ﬂ (a+b)b_(a+b)u+b‘

Q.bb
b)a-’rb

is the absolute maximum value.

We see that f'(z) = 0 at about z = 0.0 and 2.0, and that f'(z) does
not exist at about x = —{).7, 1.0, and 2.7, so the ¢critical numbers of f
are about —0.7,0.0, 1.0, 2.0, and 2.7.

From the graph, it appears that the absolute maximum value is about

0
f(=1.63) = 9.71, and the absolute minimum value is about
3 f(1.63) = —7.71. These values make sense because the graph is
symmetric about the point (0, 1). (y = 2® — 8z is symmetric about
the origin.)

=10

b) fx) =2® —Bz+1 = f{z)=3>—8.50 f'(z) =0 = :c:i\/g.

3 .
H(443) = (1) -(eT) 1= Ty
= —%\/g—l-l =1- %@ [minimum] or ?ﬁJrl = 1+%§ Imaximum]

{From the graph, we see that the extreme values do not occur at the endpoints,)

. (a) 23 From the graph, it appears that the absolute maximum value is
°(

F(2) = 2, and that the absolute minimum value is
about f(0.25) = —0.11.
—0.5

b f@)=a* 32" + 32" 2 = f(z)=42" -92° + 6z - 1= {4z — 1){z — 1)%
Sof{z)=0 = z=3orz=1Nowf(1)=1*-3.1+3 1 - 1 = 0 (not an extremum)
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and f(%) = (:1;)4 - 3(%)3 + 3(%)2 - Ili = —%% (minimum). At the right endpoint we have

f(2y=2%—3.2%43.2° — 2 = 2 (maximum).

61. (a) _ From the graph, it appears that the absolute maximum value is about

£(0.75) = 0.32, and the absolute minimum value i

f(0) = f(1) = 0; that is, at both endpoints.

T T R et Yo WL SIS
b) flz)=avr—22 = flz)=1= 5 _$—$2+m_ W Wit

Sof(x)=0 = B3x-4r°=0 = z(3-4z)=0 = z=0or f(0)=Ff(1)=0 [minimum],

and f(3) =% —(%)2:3—1@ [maximum].

62. (2) From the graph, it appears that the absolute maximum value is about

F(5.76) = 0.58, and the absolute minimum value is about

F(3.67) = —0.58.

_ (2+sinz)(—sinx) — (cosz)(cosz) —1—2sinz

(2 + sinx)® (2 +sinz)”

(=)

() =0 = sinz=-} = x:%or%.Nowf(%):%ﬁE:—% [minimum],

1 .
7 [maximum].

mass 1000

. The density is defined as p = volume ~ V(T)

(in g/cm3). But a critical point of p will also be a critical point

of V [since j—; = —1000V‘2% and V is never 0], and V is easier to differentiate than p.

V{T) = 999.87 — 0.06426T + 0.00850437 % — 0.00006797* =
V(T) = —0.06426 + 0.0170086T — 0.0002037T 2 Setting this equal to O and using the quadratic formula to

~0.0170086 &+ +/0.01700862 — 4 - 0.0002037 - 0.06426 .
find T, tT = =~ 3.9665° .5318°C.
n we ge 3(—0.0002037) 3.9665°C or 79.5318°C, Since
we are only interested in the region 0°C < T < 30°C, we check the density p at the endpoints and at 3.9665°C:

1000 1000 1000
R~ ~ 1.  p(30) & ———— & 0. - 0(3.9665) =~ ———— = 1.000255.
p(0) 99957 1.00013; p(30) 0037628 0.99625; p(3.9665) 000255. So water has

099.7447
its maximum density at about 3.9665°C.
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SECTION 41 MAXMUMAND MINMUM VALES T @
nid dF _ (psing + cos#)(0) — pW(pcosf —sinf)  —pW{ucosd —siné) .

"~ psin® 4 cosf a0 (psin @ + cos B)* (psin 8 + cos §)*

So % =0 = pcosf—sind=0 = u= zlo—rlg = tan #. Substituting tan & for u in F* gives us
F= (tan )W W tan#d _ Wtanfcosf W sin @

" (tan#)siné -+ cosd T sin?d " sin®6 +cos2f 1
o5 + cosf

Lt (see the figure), so F' = LW. We

V1 Vg1

compare this with the value of F’ at the endpoints: F/(0) = uW and F(3) = W.

= Wsinf.

If tanf = y, then sin & =

Now because ——r— < 1land —k < p, we have that B S ;

V41l Vit +1 WAL

is less than or equal to each of £(0) and F( ). Hence, W is the absolute minimum value of F(#), and it

i

Vil

occurs when tanf = .

. We apply the Closed Interval Method to the continuous function

I() = 0.00009045t> + 0.001438¢* — 0.06561¢> + 0.4598¢% — 0.6270¢ + 99.33 on [0, 10]. Its derivative is
I'(t) = 0.00045225¢% + 0.005752¢° — 0.19683t% + 0.9196¢ — 0.6270. Since [’ exists for all ¢, the only critical
numbers of I occur when I'(¢) = 0. We use a root-finder on a computer algebra system (or a graphing device) to
find that I'(t) = O when t = —29.7186, 0.8231, 5.1309, or 11.0459, but only the second and third roots lie in the
interval [0, 10]. The values of I at these critical numbers are 7(0.8231) ~ 99.09 and 1(5.1309) = 100.67. The
values of 1 at the endpoints of the interval are 7{0) = 99.33 and I{10) ~ 96.86. Comparing these four numbers,

we see that food was most expensive at £ = 5.1309 (corresponding roughly to August, 1989} and cheapest at
t = 10 (midyear 1994).

. (a) 4200 The equation of the graph in the figure is

v{t) = 0.00146¢3 — 0.11553t* + 24.98169¢ — 21.26872.

v (t) = 0.00438t% — 0.23106¢ + 24.98169 = a(£) = 0.00876t — 0.23106. /() =0 =

t) = 32898 ~ 264, a(0) ~ 24.98, a(t1) &~ 21.93, and a(125) = 64.54. The maximum acceleration is about

64.5 ft/s% and the minimum acceleration is about 21.93 ft/s*.

@ u(r) = k(ro — P)r? = kror® — krd = W'(r) =2kror —3kr*. V(r) =0 = kr(2ro—3r)=0

= 7 =0o0r 3rq (but 0 is not in the interval). Evaluating v at 7o, 570, and 7o, we get v(57o) = Lkrd,

v(%ru) = %krg', and v(rp) = 0. Since 3= > %, v attains its maximum value at r = %rg. This supports the

statement in the text.

{b) From part (a), the maximum value of v is %kr%.
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(c) v

4 5.1
7krp

68. g(r) =2+ (z—5)® = ¢(@)=3x—5)?% = g'(5)=0,505isacritical number. But g(5) = 2and g
takes on values > 2 and values < 2 in any open interval containing 5, so ¢ does not have a local maximum or
minimum at 5.

89, flz) =™ +2% +2+1 = f(z)=1012"" +512°° +1 > 1 forall 2, so f'(x) = 0 has no solution.

Thus, f(z) has no critical number, so f(2) can have no local maximum or minimurm.

70. Suppose that f has a minimum value at ¢, so f(x) > f(c) for all & near ¢. Then g(z) = — f(z) < —f(c)

for all z near ¢, so g(z) has a maximum value at c.

71. It f has a local minimum at ¢, then g(x) = — f(z) has a local maximum at ¢, so g’'(¢) = 0 by the case of Fermat’s

Theorem proved in the text. Thus, f'{c) = —g'(¢) = 0.

72. () f(x) = az® + bx° +cx +d, a # 0. So f'(z) = 3az® + 2bx + c is a quadratic and hence has either 2, 1, or 0

real roots, so f(x) has either 2, 1 or 0 critical numbers.

Case (i) {2 critical numbers): Case (it} (] critical number): Case ({{if) (no critical number):

flay=2" -3z = floy=2> = flz)=2"+3z =
fl(z) =32 -3 s0z=-1,1 fl(z) =320z =0 f(z) = 32% +3,

are critical numbers. is the only critical number. so there are no real roots.

¥ y y

(b) Since there are at most two critical numbers, it can have at most two local extreme values and by (i) this can
occur. By (iii} it can have no local extreme value. However, if there is only one critical number, then there is no

local extreme value,
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APPLIED PROJECT The Calculus of Rainbows

4 d
1. From Snell's Law, we have sina = 3sin3 = d—iﬁ (sine) = E% (sing) = cosa= 3 cos 3 Eg =

dj cos o

— _ ‘ —9_ 4% _o ) ’ -0 o
Now D{a)=m+2a—-43 = D'(a)=2 4da 2 3(:05,8 So D" (a)

2cos 3 = 3cosa. Thus, 4cos® § =9cos’a = 4-— 4sin? 8 = 9 — 9sin? o. Since 3sina = 4sin g,

gﬁ _ 3dceosa
doo 4dcosfB’

sinﬁ:%sina = 4—4(%sina)2:9—95in2a = [Qf%)sinzoczg—/—lif) =

= sina = %. So a & 1.037 radians or 53.4°. We show that this & does give the minimum on [0, %} :
a=0sine=4sing = F=0oD0)=r~314 Whena=31=sin3=7%sinf = sinf=3
= [B~085.S0D (%) =m+m—4(0.85) 2.88. Forazl.og’r,sinﬁ:gsinazg\@,soﬁzmm

= D(a)==7r+2(1.036) —4(0.702) a2 2.41. So the minimum occurs when a ~ 1.04 radians or 59.4°.

di lcosa
. . 4 . — . Bl .
. We repeat Problem | with & in place of 3. Sosina = ksin@ = do ~ hoosd 3
' dp 4 cosov ’ 2., 2 2
Dgy=2—-4— =2~ and D' {0) =0 & kcosfi=2cosa. Sok“cos* 3 =4dcos“a =
da k cos 3

k2 — k2sin? 3 =4 — 4sin®a = k% —sina=4- 4sin*a = 3sinfa—=-4-k* =

4 — (1.3318)°
— 3

cr1 = 1.038 radians, so the rainbow angle is about # — I (a1) =~ 42.3°. For k ~ 1.3435 (violet light) the

_ 2
sina = 4/ 4 3k . So for k ~ 1.3318 (red light) the minimum occurs when sin g =

minimum occurs at ap =2 1.026 radians, and so the rainbow angle is about # — D {az) = 40.6°.

. At each reflection or refraction, the light is bent in a counterclockwise direction: the bend at 4 is & — 3, the bend at
Bism — 23, the bend at C is again w — 2/3, and the bend at I is o — 3. So the total bend is

D(a)=2{c— B3)+ 2{r — 28) = 2o — 65 + 27, as required. Now sinay = ksin 3 = E'Q:—I—C()SO[.S()
da  kcosgd

Dfa)=2-62 =y Bowsa

= kcosﬁandD’(a):O « kcos —3cosa. Sok?cos’ B =9cos’a =

g2
k? — k?sin®pB =9 -9sina = k% -sina=9-9sin’a = sin’a= 2 Sk =

— k2 _ 2
sina = 9 Sk Wk = %, then the minimum occurs when sina; = % or arp == 1,254 radians.

Thus, the minimum counterclockwise rotation is I (o) = 231°, which is 231°
equivalent to a cleckwise rotation of 360° — 231° == 129° (see the figure),
231° — 180° = 51°
So the rainbow angle for the secondary rainbow is about
180° — 129° = 51°, as required. In general, the rainbow angle for the

secondary rainbow is m — [27 — D ()] = D (a) — .
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4. In the primary rainbow, the rainbow angle gets smaller as k gets larger, as we found in Problem 2, so the colors
appear from top to bottom in order of increasing k. But in the secondary rainbow, the rainbow angle gets larger as k

gets larger. To see this, we find the minimum deviations for red light and for violet light in the secondary rainbow.

' . 9 — 1.3318° .
For k == 1.3318 (red light) the minimum occurs when sinog = s or cx; ~ 1.254 radians, and so the

rainbow angle is D (o) — m & 50.6°. For k a2 1.3435 (violet light) the minimum occurs when

: 9 — 1.3435° . : , 0
sinog = {/ ~————""_ or az ~ 1.248 radians, and so the rainbow angle is D (a2) — 7 = 53.6°. Consequently,

8
the rainbow angle is larger for colors with higher indices of refraction, and the colors appear from bottom to top in

order of increasing k, the reverse of their order in the primary rainbow.

Note that our calculations above also explain why the secondary rainbow is more spread-out than the primary
rainbow: in the primary rainbow, the difference between rainbow angles for red and violet light is about 1.7°,

whereas in the secondary rainbow it is about 3°.

4.2 The Mean Value Theorem

1. f(x) =2? — 4z + 1, [0,4]. Since f is a polynomial, it is continuous and differentiable on R, so it is continuous on

[0, 4] and differentiable on (0,4). Also, f(0) =1 = f(4). f'(¢)=0 & 2c-4=0 <« c=2, whichisin

the open interval {0, 4}, so ¢ = 2 satisfies the conclusion of Rolle’s Theorem.

. flz)=2* — 3x% + 2z + 5, [0,2]. fis continuous on [0, 2] and differentiable on (0, 2). Also, f(0) = 5 = f(2).

Fle)=0 & 3—6c+2=0 & 029}— W:li%ﬂ,bmhin(oﬂ).

. f(z) = sin2mz, [—1,1]. f, being the composite of the sine function and the polynomial 27z, is continuous and
differentiable on R, so it is continuous on [ 1, 1] and differentiable on {—1, 1}. Also, f{—1) =0 = f(1).
flle)=0 & 2mcos2mc=0 & cos2me=0 & 2mc=x3+2mn & c=xi+nlIfn=00r

11, thene = £4, £3 isin (—1,1).

. flz) = z+/z + 6, [—6,0]. f is continuous on its domain, [—6, co), and differentiable on (—6, ), so it is
. o . Jc+ 12

continuous on [—6, 0] and differentiable on (—86, 0). Also, f(—6) =0 = f(0). fl(c)=0 & ——— =0
[-6,0] (—6,0) f(-86) f(0). f(c) 2o

& e= —4, whichisin (—6,0).

L fy=1-22 f(—D=1-(-1)?=1-1=0= f(1). fla)= —%w‘l/s, s0 f'(¢) = 0 has no

solution. This does not contradict Rolle’s Theorem, since f'{0) does not exist, and so f is not differentiable

on (—1,1).

@) =-1072 fO)=0-)TF=1=@-17=f2). [(z)=-2x-1)7" = fla)is

never (0. This does not contradict Rolle’s Theorem since f'(1) does not exist.
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f8) - J0) 6-4_1 D -f1) 25 _

7 S0  ~ 8 —4.Thevaluesofc 8 o g
which satisfy f'(c) = %,; seem to be about which satisfy f'(c) = —— seem to be about
c=0.8,32,44,and 6.1. c=11,28, 4.6, and 3.8.

— % The values of ¢

9. (a), (b) The equation of the secant line is © flz)=x+4+4/z = fla)=1- 4/z%
:8.5—5(m_1) - So f'(c) = =8 = c=2v72and
8—-1
fle) =22+ == 773 = 3 /2. Thus, an equation of the
tangent line is y — 3 /2 = %(x—z\/ﬁ) =
Y= %a: + 22,

10

(b) The slope of the secant line is 2, and its equation is
y=2r flz)=2"-2¢ = f(z)=232%-2,

sowesolve flic)=2 = 3%=4 =

€= :I:ZJ.J@ =2 1.155. Our estimates were off by about
0.045 in each case.

-5

It seems that the tangent lines are parallel

to the secant at x ~ +1.2.

1. f(x) =32 + 22 + 5, [-1,1]. fiscontinuous on [—1, 1] and differentiable on (—1, 1) since polynomials are

continuous and differentiable on R.  f'(¢) = f(b) f(a) & be+2= f(i)—_({(l_)-l) = 10; 6_ 2

6c=0 < ¢=0,whichisin{(-1,1).

12. f{z) =2 + & — 1, [0,2]. f is continuous on [0, 2] and differentiable on (0, 2). f'(¢) = w

32 41 =21 : - BN +2- butonly Z5 isin (0,2).
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. flz) = [1,4]. f is continuous on [1, 4] and differentiable on (1,4). f'(c) =

F(z) = ¥z.0,1]. f is continuous on R and differentiable on (—oc, 0) U (0, 20}, so f is continuous on [0, 1]

b 1 F(1) — F(0) 1 1-0
B o =0 @ mm- 1 ©

o c2z(§)3=i = c::t:,/zl—7=i§.but0nly§isin(0,1).

_ f(b) - f(e)
b—a

and differentiable on (0,1). f'(c) =

3 =1 & =1

z PN

r+2
2 2_1
(0+2)2:me & (c+2)=18 & c=-2+3V2 -2+3/2~2.24isin(1,4).

L flzy =]z —1]. F(3)— f(0) =[3~1] —[0—1] =1 Since f'(c) = -1ifc <1 and f'(c) = 1 ife > 1,

f'{)(3 — 0) = +3 and so is never equal to 1. This does not contradict the Mean Value Theorem since f'(1) does

not exist.

r+1 _ s Y- -1z+1) -2 . - or
.f(a:):m_l.f(2)—f(0)_3—{w1)—4.f(:n)_ @1 _($_1)2.Smcef()<0f

all z (except z = 1), f'{¢)(2 — 0) is always < 0 and hence cannot equal 4. This does not contradict the Mean

Value Theorem since f is not continuous at & = 1.

Let f{z) =14 2z + 2® + 42° Then f(~1) = —6 < 0and f(0) = 1 > 0. Since f is a polynomial, it is

continuous, so the Intermediate Value Theorem says that there is a number ¢ between —1 and 0 such that f(¢) = 0.
Thus, the given equation has a real Toot. Suppose the equation has distinct real roots ¢ and b with @ < b. Then
fla) = f{b) = 0. Since f is a polynomial, it is differentiable on (a,b) and continuous on [a, b]. By Rolle’s
Theorem, there is a number 7 in (a, b) such that f'(r) = 0. But f'(x) = 2 + 3z + 20z* > 2 forall , so f'(z)
can never be 0. This contradiction shows that the equation can’t have two distinct real roots. Hence, it has exactly
one real root.

. Let f{z}) = 20 — 1 — sinx. Then f{0) = —1 < Oand f{m/2) =7 —2 > 0. f is the sum of the polynomial

2z - 1 and the scalar multiple (1) - sin z of the trigonometric function sin . so f is continuous (and
differentiable) for all x. By the Intermediate Value Theorem, there is a number ¢ in (0, 7 /2) such that f(c} = (.
Thus, the given equation has at least one real root. If the equation has distinct real roots a and b with ¢ < b, then
f(a) = f(b) = 0. Since f is continuous on [a, b} and differentiable on (e, b}, Rolle’s Theorem implies that there is
anumber r in (a, b) such that /(r) = 0. But f'{r) = 2 — cosr > 0 since cos r < 1. This contradiction shows that

the given equation can’t have two distinct real roots, so it has exactly one real root.

. Let f(x} = 2° — 152 + ¢ for z in [—2,2]. If f has two real roots a and b in [—2, 2|, with a < b, then

f(a) = f(b) = 0. Since the polynomial f is continuous on [a, b] and differentiable on (a, b), Rolle’s Theorem
implies that there is a number  in (a, b) such that f'(r) = 0. Now f'(r) = 3r* — 15. Since r is in (a, b), which is
contained in [—2, 2], we have |r| < 2, s0 7% < 4. It follows that 37 — 15 < 3.4 — 15 = —3 < 0. This contradicts

f'(r) = 0, so the given equation can’t have two real roots in [—2, 2]. Hence, it has at most one real root in [—2, 2].

. f(z) = 2* + 4z + c. Suppose that f(x) = 0 has three distinct real roots a, b, d where a < b < d. Then

fla) = f(b) = f{d) = 0. By Rolle’s Theorem there are numbers c; and cz witha < ¢1 < band b < ¢3 < d and
0= f'{c1) = f'{c2), so f'(z) = 0 must have at least two real solutions, However
0= f'(z) =dz* +4=4(c* + 1) =4(z +1) (x* — 2 + 1) has as its only real solution z = —1. Thus, f(z) can

have at most two real roots.
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. (a) Suppose that a cubic polynomial P(z) has roots a1 < a2 < a3 < da, 50 P(a1) = P(az) = P(as) = P{ag).
By Rolle’s Theorem there are numbers c1, ¢z, c3 withay < 1 < ag, 02 <2 < a3 and a3 < c3 < a4 and
P'(c1) = P'(¢a) = P’(c3) = 0. Thus, the second-degree polynomial P’ () has three distinct real roots, which
is impossible.

(b) We prove by induction that a polynomial of degree n has at most n real roots. This is certainly true for . = L.
Suppose that the result is true for all polynomials of degree n and let P(x) be a polynomial of degree n + 1.
Suppose that P(z} has more than n + 1 real roots, say a1 < a2 < a3 < +-- < dn41 < Gn2. Then
P(a1) = P(az) = - -- = P(ant2) = 0. By Rolle’s Theorem there are real numbers ¢y, ... ,cny1 With
@1 < €1 < @2yenr y Onal < Cng1 < apse and P'(c1) = -+ = P'{cn41) = 0. Thus, the nth degree
polynomial P'(x) has at least n + 1 roots. This contradiction shows that P(x) has at most n + 1 real roots.

. (a) Suppose that f{a) = f(b) = 0 where @ < b. By Rolle’s Theorem applied to f on [a, b} there is a number ¢ such
thata < ¢ < band f'(c) = 0.
(b) Suppose that f(a) = f(b) = f{c) = 0 where @ < b < ¢. By Rolle’s Theorem applied to f{x) on [a, b] and
[b, ¢] there are numbers a < d < band b < e < c with f'(d) = O and f'(e) = 0. By Rolle’s Theorem applied
to f'{x) on [d, €] there is a number g with d < g < e such that f"(g) = 0.

(c) Suppose that f is » times differentiable on R and has n + 1 distinct real roots. Then f ("} has at least one real

root.

. By the Mean Value Theorem, f(4) — f(1) = f'(c)(4 — 1) for some ¢ € (1,4). But for every ¢ € (1, 4) we have
f'{c) = 2. Putting f'(c) > 2 into the above equation and substituting f(1) = 10, we get
FA)y = f(1) + fi(e)(4—1) =104+ 3f'(¢) > 10 4+ 3 -2 = 16. So the smallest possible value of f(4} is 16.

. If3 < f'(z) < 5 for all z, then by the Mean Value Theorem, f(8) — f{2) = f'(c) - (8 — 2) for some c in [2, §].
(f is differentiable for all , so, in particular, f is differentiable on (2, 8) and continuous on [2, 8]. Thus, the
hypotheses of the Mean Value Theorem are satisfied.} Since f(8) — f(2) = 6f'(c) and 3 < f'(c) < 5, it follows
that6-3 <6f(c) <6-5 = 18 < f(8) — f(2) < 30.

. Suppose that such a function f exists, By the Mean Value Theorem there is a number 0 < ¢ < 2 with

flle)= f—(?%g@-)- = —;l But this is impossible since f'(z) < 2 < 2 for all , so no such function can exist.

. Let h = f — g. Then since f and g are continuous on [a, b] and differentiable on (a, b), so is h, and thus k satisfies
the assumptions of the Mean Value Theorem. Therefore, there is a number ¢ with a < ¢ < b such that
h{b) = h(b) — h(a) = h'(c)(b — ). Since h'(c) < 0, A'(c)(b —a) < 0, s0 f(b) — g(b) = h(b) < 0and hence
f(b) < g(b).
. We use Exercise 26 with f(z) = V1 + z, g(z) = 1 + %z, and a = 0. Notice that f(0) = 1 = g(0) and
, 1 1
= e & —
I =5 <2
Another method: Apply the Mean Value Theorem directly to either f{z) =1+ iz — V1 +zorgz) =1+
on [0,8].

= ¢'(x) for z > 0. So by Exercise 26, f(b) < g(b) = V1+b<1+ zbford> 0.

. f satisfies the conditions for the Mean Value Theorem, s0 we use this theorem on the interval [—b, b):
W = f'(c) for some ¢ € (—b,b). But since f is odd, f(—b) = — f(b). Substituting this into the above :
f(b) + £(b) f(8)

equation, we get = flle) = e
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Let f(z) =sinz and let b < a. Then f(z) is continuous on [b, a] and differentiable on (b, a). By the Mean Value
Theorem, there is a number ¢ € (&, «) withsina — sinb = f(a) — f(b} = f'(c)(a — b) = (cose){a — b). Thus,
[sina — sind| < |cose|]|b—a| < |a —b|. Ifa < b, then |sina — sind| = |sinb —sina| < |b—a| = |o - b]. If

a = b, both sides of the inequality are 0.

. Suppose that f'(x) = c. Let g(z) = cx, so g'(z) = ¢. Then, by Corollary 7, f(z) = g(x) + d, where dis a

constant, so f(z) = cz + d.

.Forz > 0, f(z) = g(z).so f'(x) = ¢ (). Forz < 0, f'(z) = (1/z) = —1/z* and

. Let v(2) be the velocity of the car ¢ hours after 2:00 p.M. Then

glxy = (1+1/z) = —1/2%, so again f'{z) = ¢'(x). However, the domain of g{x) is not an interval [it is
(o0, 0) U (0, 00)] so we cannot conclude that f — g is constant (in fact it is not}.

v(1/6) —v(0}) 50-30
j6=0 i/ " 120. By the Mean

Value Theorem, there is a number ¢ such that 0 < ¢ < g with v'(c) = 120. Since v'(¢) is the acceleration at time ,

the acceleration ¢ hours after 2:00 P.M. is exactly 120 mi/h*.

. Let g(¢) and h(t) be the position functions of the two runners and let f(£) = ¢(¢) — h(t). By hypothesis,

F(0)y = g(0) — h(0) = 0 and f{b) = g{(b) — R(b) = 0, where b is the finishing time. Then by the Mean Value

Theorem, there is a time ¢, with (¢ < ¢ < b, such that f'(c) = w But f(b) = f(0) = 0,50 f'(c) = 0.

Since f'(e} = ¢'(c) — h'(¢) = 0, we have g'(c) = h'(c). So at time ¢, both runners have the same speed

g'{e) = W (o)

. Assume that f is differentiable (and hence continuous) on R and that f'(x) # 1 for all z. Suppose f has more than

one fixed point. Then there are numbers a and b such that & < b, f(a) = a, and f(b) = b. Applying the Mean

Value Theorem to the function f on {a, b], we find that there is a number ¢ in (a, b} such that f'{c) = M.
-4

b—a

b—a

our supposition was wrong, that is, that f cannot have more than one fixed point.

But then f'(c} = = 1, contradicting our assumption that f'(x) # 1 for every real number . This shows that

4.3 How Derivatives Affect the Shape of a Graph

1.

2

{a) fis increasing on (0,6} and (8, 9).

(b) f is decreasing on (6, 8).

{¢) f is concave upward on (2,4} and (7, 9).

(d) f is concave downward on (0,2) and (4, 7).

(e) The points of inflection are (2, 3), (4, 4.5) and (7, 4) (where the concavity changes).
(a) f is increasing on (1, ~3.8) and (5, =6.5).

{(b) f is decreasing on (03, 1), (=3.8,5), (6.5, 8), and (8, 9).

{¢) f is concave upward on {0, 3) and (8,9).

{d) f is concave downward on (3, 5) and (5, 8).

(e} The point of inflection is {3, =~ 1.R) (where the concavity changes).
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3. (a) Use the Increasing/Decreasing (I/D) Test.
{b) Use the Concavity Test.

{c) At any value of  where the concavity changes, we have an inflection point at {z, f{z)).

4. (a) See the First Derivative Test.

(b} See the Second Derivative Test and the note that precedes Example 7.

5. (a) Since f'(z) > Oon (1,5), f is increasing on this interval. Since f'{«} < 0on (0,1) and (5,6), f is decreasing
on these intervals.

(b) Since f'{x) = 0 atz = 1 and f' changes from negative to positive there, f changes from decreasing to
increasing and has a local minimum at z = 1. Since f'(z) = O atz = 5 and f’ changes from positive to
negative there, f changes from increasing to decreasing and has a local maximum at z = 5.

6. (a) f'(x) > O and f is increasing on (0, 1) and {3,5). f'(z) < O and f is decreasing on (1,3) and (5, 6).

(b) Since f'(x) =0atxz = 1l and z = 5 and f’ changes from positive to negative at both values, f changes from
increasing to decreasing and has local maxima at z = 1 and ¢ = 5. Since f'{x) = Oatz = 3 and f’ changes
from negative to positive there, f changes from decreasing to increasing and has a local minimum atz = 3.

7. There is an inflection point at x = 1 because f”{x) changes from negative to positive there, and so the graph of f
changes from concave downward to concave upward. There is an inflection point at @ = 7 because F/'(z) changes
from positive to negative there, and so the graph of f changes from concave upward to concave downward.

8. (a) f is increasing on the intervals where f'(z) > 0, namely, (2,4) and (6, 9).

(b) f has a local maximum where it changes from increasing to decreasing, that is, where f' changes from positive
to negative (at x = 4). Similarly, where f* changes from negative to positive, f has a local minimum (at = 2
and at z = 6).

(c) When f’ is increasing, its derivative f” is positive and hence, f is concave upward. This happens on (1, 3),
(5,7). and (8,9). Similarly, f is concave downward when f” is decreasing—that is, on (0, 1), (3, 5),
and (7,8).

{(d) f has inflection points at z = 1, 3, 5, 7, and 8, since the direction of concavity changes at each of these values.

9. The function must be always decreasing and concave downward. ¥

—

10. (a) The rate of increase of the population is initially very small, then gets larger until it reaches a maximum at about
t = & hours, and decreases toward () as the population begins to level off.

(b} The rate of increase has its maximum value at £ = 8 hours.
(c) The population function is concave upward on (0, 8) and concave downward on (8, 18).

(d) At ¢t — &, the population is about 350, so the inflection point is about (8, 350).
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M@ flz)=2—120+1 = fi(z)=32"-12=3(z+2)(z-2).
We don’t need to include “3” in the chart to determine the sign of f'(x}).

Interval z+2 r—2 Fx) f

x < —2 - - + increasing on {00, —2)

—2<x <2 + -~ - decreasing on (-2, 2)

x> 2 + + + increasing on (2, co)

So f is increasing on (—o0, —2) and (2, o0} and f is decreasing on {—2, 2).
(b) f changes from increasing to decreasing at z = —2 and from decreasing to increasing at T = 2. Thus,

f{—2) = 17 is a local maximum value and f{2) = —15 is a local minimum value.

©) f'(z)=6x. f'(z) >0 & x>0and f'(x) <0 < =z <0. Thus, fisconcave upward on (0, o0)
and concave downward on {—oc, (). There is an inflection point where the concavity changes,
at (0, £(0)) = (0, 1.
12. (a) f(z)=5-32+2> = f(z)= —62x+32° =3z(z—2). Thus, f'(x) >0 <« z<Oorz>2and
fiiz) <0 & 0<z<2 So fisincreasing on (—oco, () and (2, 0o) and f is decreasing on (0, 2).

(b) f changes from increasing to decreasing at z = 0 and from decreasing to increasing at z = 2. Thus, f(0) =5is
a local maximum value and f(2} = 1 is a local minimum value.

© f'(z)=—6+6x=6(x—1). f'(2)>0 & x>landf(z) <0 & =z <1 Thus, fisconcave
upward on (1, o0) and concave downward on (—oo, 1). There is an inflection point at (1, 3).

13.(a) f(z) =2 — 22" +3 = f(z)=42® —doz=4dz{z’ — 1) =4da(z + 1)(z - 1).

Interval z+1 z—1 fx) f

x < -1 — - decreasing on (—o0, —1)
—l<z<0 - increasing on {—1,0)
0<ax<l + - - decreasing on (0, 1)

z>1 + + + increasing on (1, o)

So f is increasing on (—1, 0) and (1, oc) and f is decreasing on (—oo0, —1} and (0, 1}.

(b) f changes from increasing to decreasing at x = 0 and from decreasing to increasing atz = —land z = 1.
Thus. f(0) = 3 is a local maximum value and f(£1) = 2 are local minimum values.

© f'(z)=122" —4=12(z" - 1) = 12(z + 1/V3) (z - 1/V3). f'(x)>0 & «<-1/V3or
z>1/V3and f'(z) <0 & -1/v3 <z <1/v/3. Thus, f is concave upward on (~00, —+/3/3) and
(\/5/3, o) and concave downward on (—\/5/3, \/5/3) There are inflection points at {£+v/3/3, % ).

a? (2? +3)(2z) —2(2x) 6z

W, (a) f(z) =

£ # ’ — — . . . algd 3 .
213 f'(=z) (22 3)° 13 The denominator is positive so the sign

of f'{z) is determined by the sign of . Thus, f'(x) >0 & =z >0and f'(z) <0 <« =z <0.So0fis
increasing on (0, 0o) and f is decreasing on (—oc, 0).

{b) f changes from decreasing to increasing at = = 0. Thus, f{0) = 0 is a focal minimum value.
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(z® +3)2(6) — 6z - 2(2* + 3)(2z) _ 6(z° +3) [2* + 3 — 42|
[(22 +3)]° - (22 +3)*
_6(3-3z%) —18(z+1)(z-1)
24+3) (x? +3)° )
fz)>0 & —-l<z<landf’(z)<0 & =z <—lorz> L Thus, fisconcave upwardon (—1,1)

(© f’(z) =

and concave downward on (—oc, —1) and (1, 0o). There are inflection points at (+1, $).

(@ f(z) =« - 2sinzon (0,3r) = f(z)=1-2cosz. f'(z)>0 & 1-2cosz>0 cosT < 3 -
& TorcMmolTcr<dn f{z)<0 & cosz>5 & O<z<forf <z<IF Sofis
increasing on (F, %) and (ZF,37), and f is decreasing on (0,%) and (37, Z7).

{b) f changes from increasing to decreasing at x = %" and from decreasing to increasing at x = 3 and atx = %’*

Thus, f{25) = 2= + /3 &~ 6.97 is a local maximum value and f(3) = § — V3 &~ —0.68% and

F(Z) = I — /3 2 5.60 are local minimum values.

(¢) f/{zx) =2sinz >0 ¢ O<z<mand2r <z <3m, f'(x) <0 & =m<x<2m Thus, fisconcave
upward on (0, 7) and (2, 37), and f is concave downward on (7, 2r). There are inflection points at (7, 7)
and (2w, 27).

(@) f(r) =cos’z — 2sinz, 0 <z <2m  f'(z) = —2cosxsinz — 2cosx = —2cosx (1 + sinz). Note that
l+sinz >0 [sincesing > —1], withequality < sinzr=-1 <« z=37/2 [since0 <z < 2|
= cosz=0.Thus, f(z) >0 & cosx<0 <« 7/2<z<3n/2andf(z) <0 & cosz>0
& O<z<m/2o0r3n/2 < x < 2m. Thus, fis increasing on (7/2, 37 /2) and f is decreasing on (0, 7/2)
and (37 /2, 2m).

(b) f changes from decreasing to increasing at z = /2 and from increasing to decreasing at z = 3m/2. Thus,
fim/2) = —2is a local minimum value and f(37/2) = 2 is a local maximum value.

(¢) f'{(z) = 2sinz (1 + sinz) — 2cos® & = 2sinz + 2sin” z — 2(1 — sin’ z)

= 4sin’x + 2sing — 2 = 2(2sinz — 1)(sinz + 1)
so f'(z) >0 & sinm>% & Z<r<Poandf'(z)<0 & sinm<%andsin:c#—1 &
O<z<for¥r<z<or <a:<27r Thus, f is concave upward on (%

)
on (0,%), (3£,32), and (37'”,217) There are inflection points at (X, —1} and (25, —1).

) and concave downward

) =2 =52 43 = flx)=52*-5=5z"+1){z+ )z - 1)

First Derivative Test: f'{z) <0 = -~1<z<landf(z)>0 = z>lorz < —L. Since f’ changes
from positive to negative at x = —1, (1} = 7 is a local maximum value; and since f' changes from negative to
positive at r = 1, f(1) = —1 is a local minimum value.

Second Derivative Test: f(x) = 20z*. f'(z) =0 & z=2zL f(-1)=-20<0 = f(-1)=Tisa
local maximum value. f”(1) =20 >0 = f(1)= —1is alocal minimum value,

Preference: For this function, the two tests are equally easy.

2 2
flz) = 22 +4 = [z)= (e +(a4:l _‘_1;)21:(21‘) - (;2-;_2)2 - & a:)ii)_z
First Derivative Test: f'(z) >0 = -2<z<2and f{z)<0 = z>2orz < -2 Since f' changes

from positive to negative at z = 2, f(2) = 3 is a local maximum value; and since f* changes from negative to

positive at z = —2, f(—2} = —1 is a local minimum value.
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Second Derivative Test:

i) = (2% + 4)%(—22) — (4 — 2%) - 2(z? + 4)(22)

(22 + 4)2

(e [ ) 24 -2 —20(02-2F)
- (332 + 4)4 - ($2 + 4)3

fz)=0 & rz=+2 f'(-2)=% >0 = f{-2) =—; isalocal minimum value.

f'(2)=—% <0 = f(2)=1isalocal maximum value.

Preference: Since calculating the second derivative is fairly difficult, the First Derivative Test is easier to use for

this function.

1 e e
L flry=z+y1-z = f’(;r:):1+%(1—:c)_l/2(—1)=I-NT_w.Notethatflsdehnedtor

1—z>0thatis, forz < 1. f'(z) =0 = 2y1-z=1 = \/l—mzé = l—:r:% =
T = % f’ does not exist at x = 1, but we can’t have a local maximum or minimum at an endpoint.

First Derivative Test: f'(z) >0 = z <3and f(z} <0 = 3 <z < L Since f' changes from

iti i po—= 2 3y = 8 ¢4 P
positive to negative atx = 2, f(2} = 2 is a local maximum value.

Second Derivative Test: f"(z) = —5(—5}(1 — x)32%-1) = _sz\/rl__;nﬁl f3)=-2<0 =>
2) = 2 is a local maximum value.
Preference: The First Derivative Test may be slightly easier to apply in this case.
() flz) = 2z - 1) =
fllo) =23z - 12 4+ (2 - 1)* 42® = 2¥{a - 1)* Bz + 4(z - 1)] = 2 (z - 1)*(Tz — 1)
The critical numbers are (), 1, and %.
) f(x) =32%(x - 1) Tz -4+ 22 2x - DTz —4) +2°(z —1)*. 7
=a*(z - 1) [3z — 1){(7Te — 4) + 22(7x — 4) + Tz(z — 1)]
Now f”(0} = f”(1) = 0, so the Second Derivative Test gives no information forx = O orz = 1.
(%) = (%)2(% -D0+0+7(3)(2~1)] = (%)%*%)(4)(7%) > 0, so there is a local minimum
ar = %
%,
maximum at ¢ = 0, a local minimum at z = %, and no local maximum or minimum atz = 1.

(¢) f"is positive on (—o0,0), negative on (0, 1), positive on (£, 1), and positive on (1, 00). So f has a local

. {a) By the Second Derivative Test, if f/(2) = 0 and f”(2) = —5 < 0, f has a local maximum at z = 2.
(b) If f'(6) = 0, we know that f has a horizontal tangent at r = 6. Knowing that f”(6) = 0 does not provide any
additional information since the Second Derivative Test fails. For example, the first and second derivatives of
y={x 6" y=—(x—-6)" andy = (x — 6)° all equal zero for z = 6, but the first has a local minimum at

x = 6, the second has a local maximum at z == 6, and the third has an inflection point at x = 6.

22. f'(z) > O forall z # 1 with vertical asymptote z = 1, so0 f is ¥

increasing on {—oc, 1) and {1,00). f7(z) > 0ifz < lorz > 3,

and f(z) < 0if 1 < < 3,50 f is concave upward on {—oc, 1)

and (3, o0), and concave downward on (1, 3). There is an inflection

/
point when x = 3. /0
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23 f(0)=f'(2) = f(4) =0 <« horizontal tangents at z = 0, 2, 4. y
fl(z)>0ifx <Oor2<z <4 = fisincreasingon (—oc,0)

on (0,2) and (4,00). f'(z) >0ifl <z <3 = fisconcave

and (2,4). f'(z) <0if0 <z <2o0rz >4 = fisdecreasing /
/ 0

: 2 3 4 ¥
upward on (1, 3). f"(z) < Oifz <lorz >3 = fisconcave \
downward on (—oo, 1) and (3, oc). There are inflection points when

x = land 3.
¥ F(1)=f(-1)=0 = horizontal tangents at x = +1.
fl{z) < 0if|x| <1 = fisdecreasingon (—1,1). f'(x) > 0if
\/\{J\ 1< |zl <2 = fisincreasing on (-2, —1)and (1,2).

) BT f(z)=-1if|z| >2 = the graph of f has constant slope —1
on (—o0o, —2) and (2,00). f"(x) < 0if -2 <2 <0 =

f is concave downward on (—2,0). Inflection point (0, 1}.

25. f'(x) > 0if|e| <2 = fisincreasingon (—2,2). f'(z) < 0if|z] >2 = fisdecreasing on (—oc, —2)

and (2,00). f/(=2) =0 = horizontal tangentat z = —2. lim2 [f'(2)] = c0 = thereis a vertical asymp-
n—

tote or vertical tangent (cusp) at z = 2. f”(z) > 0ifz #2 = [ isconcave upward on (—oc, 2) and (2, cc).

T

L
_:2 0

f(0)=f(0) =0 = the graph of f passes through the origin
and has a horizontal tangent there. f'(2) = f'{4) = f'(6) =0 =

X
ix=2

horizontal tangents at z = 2,4, 6. f'(z) > 0if0 <z < 2o0r
4<xz<6 = [fincreasingon (0,2)and (4,6). f'{x} <0if
2<z<dorx>6 = fdecreasing on (2,4) and (6, 00).
fllz) »0if0 <z <lor3 << = fisCUon{0,1)
and (3,5). f“{zx)<0ifl<z<3orz>5 = fisCDon(l,3)and (5,00). f(—z)=flz) = fis
even and the graph is symmeltric about the y-axis.

21. (a) f is increasing where f' is positive, that is, on (0,2), (4, 6), and (8, co0); and decreasing where f” is negative,

that is, on (2,4} and (6, 8).

(b) f has tocal maxima where f' changes from positive to negative, at £ = 2 and at x = 6, and local minima where
f' changes trom negative to positive, at x = 4 and at x = 8.

(¢) f is concave upward (CU) where ' is increasing, that is, on (3, 6) (&)
and (6, 50), and concave downward (CD) where f' is decreasing. that
is, on {0, 3).

(d) There is a point of inflection where f changes from being CD to
being CU, that is, at z = 3.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

232 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
2. (a) f is increasing where f’ is positive, on (1, 6) and {8, o0}, and decreasing where f is negative, on {0, 1)
and (6, 8).
(b) f has a local maximum where f’ changes from positive to negative, at z = 6, and local minima where f
changes from negative to positive, atz = 1 and atx = 8.
(¢) f is concave upward where f is increasing, that is, on (0,2), (3,5). {e)

and (7, o0). and concave downward where f' is decreasing, that is, on
{2,3) and (5,7).

(d) There are points of inflection where f changes its direction of

concavity, atx = 2,z =3,z =bandx = 7.

2. (a) flz)=22° 32" -122 = f(z)=62" 6z —12=6{(x—2-2)=6(z—-2)(x+1). f'(z) >0
= r<-lorer>2and fi(z) <0 & —1<z< 2 Sofisincreasing on {—o¢, —1) and (2,00), and f
is decreasing on {1, 2).
{b) Since f changes from increasing to decreasing at x = —1, f(—1) = 7 is a local maximum value. Since f
changes from decreasing to increasing at z = 2, f{2) = —20 is a local minimum value.
() f'(zr) =6(2x -1} = f"(x)>0o0on(3,00)and f’(z) < Oon (d) -7 ¥

(=20, 3). So f is concave upward on (3, 0o} and concave

downward on {—o0, L ) There is a change in concavity at x = %

and we have an inflection point at (3, —32).

0. (a) flz)=2+43z-2° = fl)=3-3"=-3@" 1) =-3+t1)(z-1. f(z) >0 &
—l<r<land f'{z}) <0 & =x< -lorx> 1 So fisincreasing on{—1,1)and f is decreasing on
{—o0, —1) and (1, co}.
(b} f{—1) = 0is a local minimum value and f(1) = 4 is a local (d)
maximum value.
(c} f'(z) = -6z = f"{x)>0o0n(—00,0)and f'{z} < Oon

(0,00} . So f is concave upward on (—oco, 0) and concave downward

on (0, o0). There is an inflection point at (0, 2).

N (@ f(z)=a"-62° = f(a)=42" - 12z =42(2* - 3) = 0 whenz =0, +V/3.

Interval ¢ -3 f

< V3 + decreasing on (—o0, —v/3)
-V3<z<0 increasing on (~+/3,0)
D<a<V3 decreasing on (0, v/3)
>3 increasing on (\/5, oc)
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{b) Local minimum values f(:l:\/f;) = -9,

local maximunt value f{0) =0
© f'z)=12-12=12(z" - 1) >0 & z*>1 &

|z} >1 & z>lorz < —1,s0 fisCUon(—o0,—1),(1,00)

and CD on (-1, 1}. Inflection points at {31, —5) (=y3.-9 107 (:3.-9)

32, (a) g(x) = 200+ 8e® + 2' = () = 242* + 42° = 40*(6 + ) = 0 whenz = —6 and when z = 0.
FJr)>0 & x>-6(x#0)andg'{x) <0 & =z < —6,s0gisdecreasing on (—oo, —6) and g is

increasing on {—6, 00), with a horizontal tangent at z = 0.
(b) g{—6) = —232 is a local minimum value. (d)

There is no local maximum value.

(¢) g"(z) = 48z + 122* = 122(4 + ) = 0 when x = —4 and when

z=0.4"(z)>0 & z<-4dorz>0andg’(z) <0 & 4. -56)

-4 < x < 0,50¢gis CUon {—~oc,—4) and (0, 00), and g is CD on

(—4,0). Inflection points at (—4, —56) and (0, 200) (6.7

33. (a) h(z) = 3z° — 523+ 3 = R'(z) = 152" — 152 = 152 (2® — 1) = O when = = 0, £1. Since 15z° is
nonnegative, A’ (z) >0 ¢ x*>1 &« |z|>1 <& x>1lorz < —1,s0hisincreasing on

{(—o0, —1) and (1, co) and decreasing on (—1, 1), with a horizontal tangent at z = (),
(b) Local maximum value h{—1) = 5, local minimum value h(1) = 1

(c) h''{x) = 60z® — 30w = 30x(22% - 1)

= 60m(:r:+ ﬁ) (I — —%)

W'{z) > 0whenz > —= or — = < & < 0,50 his CU on

(—%,O) and (%,oo) and CD on (—oo,w%) and (0, ﬁ)

Inflection points at (0, 3) and (i%, 3F %\/5 ) [about

(=0.71,4.24) and (0.71,1.76)].

34. (a) h(z) = (2 — 1)3 = h(z) = 6z(z” - 1)2 >0 < >0 (x+#1),s0hisincreasing on (0, co) and

decreasing on (—o0, 0).

(b) h(0) = —1 is a local minimum value.
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(©) k() = 6(x* — 1) + 242?(2® — 1) = 6(=? — 1)(52” — 1). The roots +1 and + 7= divide R into five

intervals.

Interval z? ) Concavity

r<—1 upward

-l << —ﬁ downward

1 1
<<
1

7 <zxr<l1 downward

upward

x>1 + upward

From the table, we see that k is CU on (—oc, —1},

( e f) and (1, )andCDon( I—T)and(%,l).

Inflection points at (£1, 0) and ( —, —15—245)

/@A) =2ve+3 =
_ _ + 2z + 3) 3z + 6
Ale) =z §a+3)7 2+ Vo3 1= e bV =z — =
(z) =z 5(x+3) + + e+ WrEs:
The domain of Ais [-3,00). A{z) >0 for:n > —2 and A'(z) < 0for —3 < & < —2, s0 A is increasing on
(-2, 00) and decreasing on {—3, —2).

(b) A(—2) = —2 is a local minimum value. (d)

1
2ve+3-3—(3z46)-
(c) A”(;c): vV +3

(2vz+3)°

_6@+3)~(32+6) _ _3x+12 3(z +4)

A(z+37°72 Hz+ 352 Az 1 3372

A”(z) > Oforall z > -3, so A is concave upward on (-3, 0c).
There is no inflection point.

¥ () Gx)=2—-4/z = G’(I):l—%:——l\/z(ﬁ—m. Gz)>0 & z>4andG(z) <0 &

0 < z < 4,50 G is decreasing on (0, 4) and increasing on (4, 00).

{(b) Local minimum ((4) = —4. No local maximum.

© G ) =1-20"Y2 = G'(z)=2z"%%*=1/V13 50
G"(x) > 0forz > 0. Thus, G is CU on (0, oo).
(3 has no IPs.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION43 HOW DERIVATIVES AFFECT THE SHAPE OF AGRAPH T 238
4z +1)

3V

C'(x) > 0if -1 <z <0orz >0and C'(z) < Oforz < 1,50 C is increasing on (—1,00) and C' is

3. (@) Clx) =23z +a) =23+ 42 = Cla) =323+ 4273 =227+ 1) =

decreasing on (~oo, —1).
(b) C(—1) = —3is a local minimum value. (d)
4z — 2)
9Vas
C"(z) < Ofor0 <z < 2and C”’(z) > Oforz <Oandz > 2, s0

C is concave downward on (0, 2) and concave upward on (—oo, 0)

" _ - - 2,642}
(©) C"(z) = 4273 — 8a733 = 42733 (3 - 9) = 2.6

and (2, oc). There are inflection points at (0, 0) and

(2,6V/2) =~ (2,7.56).

323~z = B'(z)=

N

(-1,-3)

LI bl £
= =

B'(z) < 0if z < 0orz > 8, so B is decreasing on (—oc, 0) and (8,

by B(0)

B(8) = 4 is a local maximum value.

38. (a) B(z) = 208~ . B'(z) > 0if0 < z < 8 and

oc), and B is increasing on {0, 8).
= {} is a local minimum value.

(c) B'(x) =

—2p743 = so B"{z}) < Oforallz #0. Bis

-2
3 9.4/3"
concave downward on {—oc, () and (0, o0). There is no inflection
point.
3 (a) f(0) =2cosf —cos20, 06 <27,
f(8)=~2sin8 + 2sin28 = —2sinf + 2(2sinfcosf) = 2sind (2cos @ — 1).

Interval

sin @

2cosf -1

7'(8)

;

d<o< %

+
+

+

+

increasing on

3)

F<b<m
11'<i9<5T’r — - +
=<2 - + -

(0,
decreasing on { I, #)
(

increasing on (m, 3F)

decreasing on (3, 2r)

(b) f{%) = 2 and f(&) = £ are local maximum values and f{r) = —3 is a local minimum value.
(©) f'(0) = —2sinf + 2sin20 = )
F(8) = —2cosf+4cos20 = —2cos 0 + 4(2cos” 6 — 1)
= 2(4cos® § — cosf ~ 2)

1++/33
8

fu(9)=l') < cosf = QICOS_l(lisﬁg)

< #=cos s 0.5678, (m,—3)

1-+/33
8

(=)

1 ( 1 *8‘/@) = 2.2067, or 27 — cosl(

27 —cos™ ! ( 1 +8\/§ ) 2 4.0775.

) =2 5.7154, cos™

Denote these four values of @ by &1, 84, 82, and 83, respectively. Then f is CU on (0,81), CD on (#,.62),
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CU on (82, 83), CD on (#3,64), and CU on (84, 27). To find the exact y-coordinate for § = #1, we have

2
. 1 33 14+ /33
f(81) = 2cos8; —cos20y = 2cosfy — (2(:05231 - 1) = 2(—+é—\/_) - 2(—8—*\/—) +1

=3 4+333=2(1+V33) =y =~ 126
Similarly, f(@
and (94,y1).
0. (a) f(t) =t +cost, 2 <t <2r = (d
() = 1 —sint > 0 forall t and f'(t} = 0 when
sint=1 & (= ‘5
on (—2m, 27).

=~ or 3, s0 f is increasing

(b) No maximum or minimum

(€) f'(t) = —cost >0 & te(-F,-Z)u(F, 371, s0 f is CU on these intervals and CD on (—2m, —32),
(—%,%).and (3Z,2). Points of inflection at (£%,+30) and (£2,+3)

From the graph, we get an estimate of f(1) =2 1.41 as a local

maximum value, and no local minimum value,
r+1 1—-=z

f(ﬂf):——,m = f(ﬁff}:W-

Flz)=0 & z=1 f(1)= % — /2 is the exact value.

(b) From the graph in part (a), f increases most rapidly somewhere between z = — 3 and = —3. To find the

exact value, we need to find the maximum value of f, which we can do by finding the critical numbers of f'.

2% — 3r -1 3+17 3+ 17
=0 & == L= 2

—_— = = corresponds to the minimum value of f'.
(z2 + 1)°7? 4

(=) =

6

The maximum value of f* is at (3;4@, L -‘%) /= (—0.28,0.69).

42. (a) 9 From the graph, we get estimates of f(2.61) =~ 0.89 as a local and

absolute minimum, f{0.53) = 2.26 as a local maximum, and
F(27) ~ 8.28 as an absolute maximum. f{x) =z + 2coszx
O<z<2m = flz)=1-2sinz. f(z)=0 <

L o f(g) I+ V/3 is the exact value of

ST = 3

E
6
the local maximum, f ( ) \/§ is the exact value of the local

and absolute minimum, and _f(21r} = 27 + 2 is the exact value of the
absolute maximum.
(b) From the graph in part (a), f increases most rapidly somewhere between z = 4.5 and 2 = 5. Now f increases
most rapidly when f'(z) = 1 — 2sinz has its maximum value, f"(z) = —2cosz =0 & =

F10) = f'(2r) =1, f/ (%)} = —1,and f'(2) = 3. The maximum value of f" occurs at {3, 37") .
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4. f(x)=cosz+ 2cos2r = f(zr)= —sinz—sin2x = [(zr)=—cosz—2coslz

(a) From the graph of £, it seems that f is CD on {0, 1), CU on (1, 2.5),
CDon (2.5,3.7), CU on (3.7,5.3), and CD on (5.3, 2). The points

—2-  of inflection appear to be at (1,0.4), (2.5, —0.6). (3.7, =0.6), and
J (5.3,0.4).

From the graph of f” (and zooming in near the zeros), it seems that f

/\ /\ W is CD on (0,0.94), CU on (0.94, 2.57), CD on (2.57,3.71), CU on
3

7 {3.71,5.35), and CD on (5.35, 27). Refined estimates of the
inflection points are (0.94, 0.44), (2.57, —0.63), (3.71, —0.63), and
(5.35,0.44).

fe) =2z -2 =

Fla)=2" 4z —2° + (z - 2)* 322 = 2%z ~ 2’4z + 3(z - 2)] = 2*(x - 2)*(Tz - 6} =

f(z) = (2z)(z — 2)*(Tz — 6) + =% - 3(x — 2)}(Tx — 6) + z°(z — 2)*(7)
= z(zx — 2)%[2(z —- 2)(Tx — 6) + 3z(Tz — 6) + Tz(z — 2)]
= z(x — 2)?[4227 — T2z + 24] = 6z(z — 2)*(T2* — 127 4 4)

5 From the graph of £, it seems that f is CD on (—o0, 0), CU on

(0,0.5), CD on (0.5, 1.3), and CU on (1.3, oc). The points of

inflection appear to be at (0, 0), (0.5, 0.5), and (1.3, 0.6).

-5

From the graph of f (and zooming in near the zeros), it seems that f

0
(\ /\j 1 is CD on (00, 0), CU on (0, 0.45}, CD on (0.45, 1.26), and CU on
Vo]

(1.26, oc). Refined estimates of the inflection points are (0,0),

(0.45,0.53), and (1.26, 0.60).

—-10

. In Maple, we define f and then use the command
plot (Qiff (diff (f,x),x),x=-3..3) ;. In Mathematica, we [
define f and then use Plot [Dt [Dt [£,x],x], {x,-3,3}].We -3

see that f” > 0 forz > 0.1and f” < 0 for z < 0.1. So f is concave w
up on (0.1, 0o) and concave down on (—o0,0.1}.
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86, Tt appears that ' is positive (and thus 0.2

f is concave up) on (—1.8,0.3) and

(1.5, oc) and negative (so f is concave

-0
down) on (—oc, ~1.8) and (0.3, 1.5). L

-0.1

_ Most students learn more in the third hour of studying than in the eighth hour, so K(3) — K/(2) is larger than
K(8) — K(7). In other words, as you begin studying for a test, the rate of knowledge gain is large and then starts to

taper off, so K'(#) decreases and the graph of K is concave downward.

. At first the depth increases slowly because the base of the mug depth of coffee

is wide. But as the mug narrows, the coffee rises more quickly. height |

. . . . X of mug
Thus, the depth d increases at an increasing rate and its graph is

concave upward. The rate of increase of d has a maximum

where the mug is narrowest; that is, when the mug is half full. It

is there that the inflection point (IP) occurs. Then the rate of limi: T
fill mug

increase of d starts to decrease as the mug widens and the graph

becomes concave down.

. f(z) =tanz —xz = f’(r):sec2$—1>0f0r0<ﬂ:<%sincesec2:c>1f0r0<$<§.50fis

increasing on {0, Z). Thus, f(z) > f(0) =0for0 <z < 7 = tanzr—-z>0 = tanzx > x for

0<r <3,

. Let f(z) = 2% — 3+ 1/z. Then f'(z) = 1/A/z — 1/2® > O forz > 1 since for z > 1,z >z > /7. Hence, f
is increasing, so forz > 1, f{z) > f{1} = 0or2/x — 3+ 1/z > 0forz > 1. Hence, 2/ > 3 — 1/x for
x> 1.

fl@)=ar® bt 4ex+d = f(z)=3ax’ + 2bx +c. Weare
giventhat f(1) =0and f(-2)=3,s0 f(1)=a+b+c+d=0and
f(-2) = -8a+4b—-2c+d=3 Also f'(1) =3a +2b+c=10and
f'(~2) = 12a — 4b 4+ ¢ = 0 by Fermat’s Theorem. Solving these four

equations, we geta = 2, b= 1, c= —2,d = £, so the function is
flz) = $(22° + 32® — 122 + 7).

P rar tbr+2 = fx)=32" 1 2z +b.If £ = —3 is an extremum, then
f(-3)=27~6a+b=0 < b=06a~27 Ifx=—1isanextremum,then f'(~1} =3 ~2a+b6=10
= bhb=2-3S0b=2a—-3andb=6a-27 = b=09,a=06. Then
f'{x) = 32% + 122 + 9 = 3{x + 1){z + 3) and the First Derivative Test shows that f has a local maximum when

x = —3 and a local minimum when z = —1.
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53, Suppose that f is differentiable on an interval I and f'(z) > 0 for all z in [ except = = c. To show that fis
increasing on I, let 21, ©2 be two numbers in I with z3 < 2.

Case I 1 < 12 < c. Let J be the interval {z € I | z < c}. By applying the Increasing/Decreasing Test
to f on J, we see that f is increasing on .J, so f(z1) < f(z2).

Case? ¢ < zy < x2. Apply the Increasing/Decreasing Testto fon K = {r € [ |z > ¢}.

Case 3 1 < z2 = c. Apply the proof of the Increasing/Decreasing Test, using the Mean Value Theorem
(MVT) on the interval [z, 2] and noting that the MVT does not require f to be differentiable at
the endpoints of [z, x2].

Case 4 ¢ =x1 < 2. Same proof as in Case 3.

Case 5 T < ¢ < x2. By Cases 3 and 4, f is increasing on [z1, ¢ and on [c, z2], so f(@1) < fle) < f(z2).

In all cases, we have shown that f(z1) < f(z2). Since x1, 22 were any numbers in I with £1 < 72, we have shown

that f is increasing on [,
. (a) We will make use of the converse of the Concavity Test (along with the stated assumptions); that is, if f
is concave upward on I, then f” > Oon I. If f and g are CU on I, then f” > Oand g" > O on {1,
so(f+g) =f"+¢">00nl = f+gisCUonl.

(b) Since f is positiveand CUon I, f > 0and f” > 0onl. Sog(z)=[f(2)]? = ¢ =2ff =
g =2f o 2ff =2V +2ff">0 = gisCUonL

. (a) Since f and g are positive, increasing, and CU on I with f” and ¢” never equal to 0, we have f > 0,
f >0, f">0¢>0¢ >0,9">00nl Then(fg) = flg+f¢ =
(fg)" = f'g+2f'd +fg" > f'g+fg’ >00onl = fgisCUonl
(b) In part (a), if f and g are both decreasing instead of increasing, then f* < O and ¢’ < 0 on 1, so we still have

2f'g' > Oon L Thus, (fg)' = f'g+2f' ¢ + f¢" = "9+ f¢" >0onI = fgisCUon [ asinpart(a).

(¢) Suppose f is increasing and g is decreasing [with f and g positive and CUJ. Then f* > Oand g" < 0on [,

s0 2f'g" < 0on I and the argument in parts (a) and (b) fails.

Example 1. T = (0,00), f(z) = 2%, g(x) = 1/z. Then (fg)(z) = z*, so (fg)'(z) = 2z and
(fg)"{x) =2 > Gon . Thus, fgis CUon I.

Example 2. [ = (0,00), f(z) = 4z /z, g(z) = 1/z. Then (fg)(z) = 4 /z, s0 {(fg)'(z) = 2//z and
(fg)"(x) = =1/v/z® < 0on I. Thus, fgisCDon I.

Example 3. [ = (0,00), f(z) = 2%, g(x) = /. Thus, (fg)(z) = z,so fgis linearon I.

. Since f and g are CU on (—o0, 00), f > O and g > Don (—oo, 00).
hiz) = flg(z)) = H(e)=f{glah)g'(z) =

R(2) = " (g(2))g (2)g (x) + £ (a(2))g" (@) = f"(g(x))lg'(@)]" + f'(9(2))g" (x) > Oif £ > 0.
So his CUIf f 1s increasing.
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57. Let the cubic function be f(z} = ax® + bz® + ez +d = f'(z)=3az’ + bz +c = [f"(z)=6az +2b
So fisCU whenbaz +2b>0 < x> —bf(3a), CD when z < —b/(3a), and so the only point of inflection
occurs when z = —b/(3a). If the graph has three z-intercepts 1, x2 and 3, then the expression for f(z) must
factor as f(x) = a{z — x1)(x ~ z2)(z — z3). Multiplying these factors together gives us
He) = alz® — (#1 + 22 + x3)z® + (z122 + 2173 + T2T3)z — z12223). Equating the coefficients of the
z?-terms for the two forms of f gives us b = —a(z1 + z2 + z3). Hence, the x-coordinate of the point of inflection

ig_iw_—a(:c1+$2+sc3) _ T+ T+ a3

3a Ja 3
Py =z +c+ 2 = Plz) =42 + 32 + 20 = P"(z) = 122" + 6ex + 2. The graph of P"(z)

is a parabola. If P"(x) has two roots, then it changes sign twice and so has two inflection points. This happens
when the discriminant of P”(z) is positive, that is, (6c)° —4-12.2>0 & 36c° -9 >0 <

le| > 243@ ~163.H36c2-96=0 & c= i%@, P"{x) is 0 at one point, but there is still no inflection point
since P () never changes sign, and if 36¢” —96 < 0 & |¢] < 243@. then P"(x) never changes sign, and so
there is no inflection point.

100

C:M —_ C:72

3

For large positive ¢, the graph of f has two inflection points and a large dip to the left of the y-axis. As ¢ decreases,
the graph of f becomes flatter for z < (), and eventually the dip rises above the z-axis, and then disappears entirely,
along with the inflection points. As ¢ continues to decrease, the dip and the inflection points reappear, to the right of
the origin.

. By hypothesis g = f’ is differentiable on an open interval containing ¢. Since (¢, f(¢)) is a point of inflection, the
concavity changes at z = ¢, so f'/(x) changes signs at z = c. Hence, by the First Derivative Test, f has a local

extremum at x = c. Thus, by Fermat’s Theorem f”'(c} = 0.

flo) =2 = fllz)=4® = f@)=1227 = F(0)=0.Forz <0, f'(z)>0,s0 fisCUon
(—oc,M); forz > 0, f”(x) > 0, so f is also CU on (0, co). Since f does not change concavity at 0, (0, 0) is not an

inflection point.
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61. Using the fact that || = v'z2, we have that g(x) = vz = ¢e) =V +Vzl=2Va?=2[z| =

¢ (z) = 2x(z?) M= -lzf‘ < Oforz < Oand g”(z) > 0forz > 0, s0 (0,0) is an inflection point. But g"(0)
I

does not exist.

e I

62. There must exist some interval containing ¢ on which " is positive, since f"/(e) is positive and f™" is continuous.
On this interval, f” is increasing (since f* is positive), so f/ = (f')’ changes from negative to positive at c. So by
the First Derivative Test, f has a local minimum at # = ¢ and thus cannot change sign there, so f has no maximum -
or minimum at ¢. But since f* changes from negative to positive at ¢, f has a point of inflection at ¢ (it changes

from concave down to concave up).

4.4 Limits at Infinity; Horizontal Asymptotes

1. (a) As z becomes large, the values of f(x) approach 5.

(b} As 2 becomes large negative, the values of f(z) approach 3.
2. {a) The graph of a function can intersect a The graph of a function can intersect a horizontal asymptote.

vertical asymptote in the sense that it ft can even intersect its horizontal asymptote an infinite

can meet but not cross it. number of times.

¥

¥y

No horizontal asymptote One horizontal asymptote Two horizontal asymptotes

3 (a) ﬂl}_}rr; flz)=cc (b) lim f(x)=o00

z——1"

{c) lim f{x)=—-c0 ()] .li_.m flz)=1

r——1+

() lim f(z)=2 (f) Vertical: z = —1,z = 2; Honizontal: y = 1,y = 2

it OX)
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4. (2) lim glz) =2 (b) x_lszloc glz)= -2
(c) lim g(x) = oo (d) lim g{z) = o0

{(e) lim+ glx)=—0oc (f) Vertical: z = —2,z = 0, z = 3; Horizontal: y == —2,y =2

r——2

5. If f(x) = /2%, then a caleulator gives f(0) = 0, f(1) = 0.5, f{2) = 1, f(3) =1.125, f(4) =1,
£(5) = 0.78125, f(6) = 0.5625, f(7) = 0.3828125, f(8) = 0.25, f(9) = 0.158203125, f(10) = 0.09765625,
F(20) = 0.00038147, f(50) = 2.2204 x 1072, f(100) ~ 7.8886 x 1077,
It appears that lim (z%/27) = 0.

6. (a) From a graph of f(«z) = (1 — 2/x) in a window of [0, 10,000] by [0, (.2}, we estimate that xhjgo f(z)=0.14
(to two decimal places.)

(b) From the table, we estimate that lim f(z) = 0.1353
© flz) i .
(to four decimal places.)
10.000 | 0.135308
100,000 | 0.135333
1,000,000 | 0.135335

[divide both the numerator and denominator by z*

30 —r+4 (3 -z +4)/2° .
ol ———————— = the highest er of 2 that
7 e 222 Bz — 8 wiee (222 + bz — B)/a? (the highest pow v
appears in the denominator))

lim (3 — 1/z +4/x%)

T Limit Law 5
lim (24 5/z — 8/x2) [Limit Law 5]

L 00

lim 3 — lim (1/z) + lim (4/z°)

&L=+ O E—+00

tim 2+ lim (5/z) — lim (8/22)

3 — lim (1/2) + 4 lim {1/z%)
T— 00 T
2+ 5 lim (1/z) — 8 lim (1/x?)

fLimit Laws 1 and 2]

[Limit Laws 7 and 3}

3~ 0+ 4(0)
2 4 5(0) — 8{0)
3

2

[Theorem 4]

8 lm

A O

. it
mhllc}o 114 35 [Limit Law 11]

a2 3 .
- \ﬁm 12-5/8" +2/7 | ivide by 2]

\/12$345r+2_\/ 122° — 5z + 2

1+ 4x2 + 323

lim (12 ~ 5/2% + 2/z°)

= Limit Law 5
lim (1/2% + 4/ + 3) [Limit Law 5]
=00
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lim 12 — lim (5/2%) + lim (2/z°)
E— 00 T— 00 T— 00

imit Laws | and 2
lim (1/23) + lim (4/;,;) T+ Lim 3 [Limit Laws 1 and 2]
r—ooo - :r:

12— 5 lim (1/2%) + 2 lim (1/2°)

r— 00

Limit Laws 7 and 3
lim (1/z%) + 4 lim (1/z) +3 [Limit Laws 7 and 3]

= WE(—W [Theorem 4]
0+4(0)+3

Z\/%—\/Zzz

. 1/x _ _
711520 (2¢ +3)/z  lim (2+3/x) ~ lim 243 lim (1/z)  2+3(0) 2

€T 00

z1i_)r{.1ﬂ(1/:1:) lim (1/x) 0 0

€T ___0

lim 345 lim
(32+5)/x _ . 3+5/z oo tom o 345(0)
e (@—4)fz emel—dfr g gy L1 4(0)

T =00 r—oo ¥

=3

1 ST

lim (1/z* — 1/z—1)
. (1_27_.7)2)/122 T— 00
lim =

Tz (222 = T)/x? lim (2~ 7/a?)

lim (1/2%) — lm (1/z) - lim 1 0—0-1
T——00 z—-—x  U—=U-

r——o

lim 2-7 lim (1/2?) T 210 2

E—— 0

. 2 . 2y -

hy 203 L Q-3 Jm (2/y"-3) 2 Jim (1/y7) = im 3 oy —5 3

y—oo 5y + Ay yooe (By? +4y)/y? lm (5+4/y)  lim 5+4 lim (1/y)  5+4(0) 5
Yo Yoo Y00

. Divide both the numerator and denominator by z* (the highest power of z that occurs in the denominator).

3
, a® + bz 145 im (14 %)
lim r’+5c im 3 ~ lim g2 = x
vooc 223 — x2 + 4 z—oo g3 — 2 +4 Tt 00 1 4 . 1 A4
—_— 2——+ lim (2-=-+ —
r P

.’L"‘)' T OO

. . 1
Hm 145 lim = 14 5(0) 1

xT—o0 T—o0 I .

1 =5 _ = )
1im2—lim—+4nm_1E 2-0+4{0) 2

T 00 x—oo T T—o0 I

249 t2 4 2)/t . 1/t + 2/ 0+0
14. lim L—-—: im ﬁ-(-—)/—-— = lim [t = i =10
tmoo 13 412 — 1 oo (B2 1)/ - 141/t —-1/82 1400
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15. First, multiply the factors in the denominator. Then divide both the numerator and denominator by u*.

du? +5 44t kil
I CATH SN Uk & P T ut
o (w2 —2)(2u2 — 1) u—oo 2u* —5u? +2 Tuioe 2ut — 5wt £2 0 u—eo
4

U

. 5 1
ulLH;o (4 + F) lim 4+5 llm —

U— o0 oo ud
T =
lim (2—34_3) lim 2 -5 lim i—i—211m——
u? !

2 4
U— 0 w—oc u—oo I u—oc U

:—:2
2

16. lim —— Hm —(TLL)/I—W— im 1+2/x - 4x0 *-1—
w—*m\/., oo B 1 1/VaE s A4 1z VI+0 3

Ve o i3 lim /(928 — z)/x8
17. lim jT—x = Hm 9% — z /o = == [since z° = v/z8 for x > 0]
z—oo a3+ 1 w—oe (2% 4+ 1) /28 hm (1 + 1/x3)

lim /9 —1/z° mhm 9~ lim (1/z5)

T—+O0 T— 00

T lim 1+ llm (1/23) - 140

T

=v9-0=3

: i - 6 _ 6
V9% — VTt — /2 lim —/(92° —z)/x

18. lim ———~ = lim =

= i 3= /8 1 0
rmmoe 23 + 1 eatoe (2% + 1)/2° Im (14 1/2%) [since x %6 for £ < 0]

lim —+/9—1/2" -/ lim 9— lim (1/25)

r—— T—— 00

~ Lim 1+ lim (1/:::3 B 1+0
= —/0 - 0=

a:/\/ . -1 , -
= lim —————— [since —x = |x| = V2 forz < 0]
z—a00 Vi 4//xt z——ee /14 4/2? 14

; ] 2 _ 2 3 3 2 4L gp?) — gt
(V& + 622 — &) = lim Vai+62? —2® Valtbrl 42t (z* + 3:) z
Fee L VaT £627 422 =oee ol 4+ 627 4 22
T . 6z?/a*
200 \/m+sc2 i) (VT +62% + 22) [Vt

6
= lim

I—»oo\/H_—ﬁfgg_?+1 T1+1

£ 2 _3 9 2 3 9 P 2_ 3 2
. dim (V922 + 7 — 3z) = lim (V92® + 2 ac)(\, a? +x + 3z — Hm (\/J:——!-I) (3z)
T v9$2+m+3:r, smoo T2 + 2 + 3
lim =

hw\/ﬂ+m+3x Yo Voz? tx+ 3% $2+a“+‘3m 1z

1 1

= lim = lim = ==
3*00\/93;2/$2+x/1:2+337/$ w—'oo\/9+1/.:c+3 VO+3 3+3
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—VI“P?“’”} w S 20

= lim
LN
92 -2

—2
= lim ——=——= Iim =
oo p — 22 $ 20 - 14 /1+2/x 144/1+2(0)

Note: In dividing numerator and denominator by x, we used the fact that for z < 0, z = —v/z?.

i (e VETE) = lim (o + VT E) [T

=-1

' - , (\/a:2+a:n—x/x2+bm)(\/m2+a:n+\/a:2+b$)
) man;o (\/w tax -Vt + b:c) lengo VI? + azx + Vx? + bx
. (2® +ax) ~ (2° + bx) . (a—b)x)/z

= lim = lim
w=o0 /a2 +ax 4 Va? b oo (\/m2+am+\/:c2+b;r)/\/a?

a—b a—b a—b

= lim = =
s St ajz+/1+b/z VI+H0+VI+0 2

. lim cos does not exist because as x increases cos z does not approach any one value, but oscillates between 1

T— o0

and —1.

. /T is large when z is large, so lim /z = oco.
r—od
. ¥/ is large negative when z is large negative, so lim r = —o0.
X — OO

. lim (z — Z) = lim 7 (/2 — 1) = ccsince \/z — oo and /T — 1 = oo as  — oc.
Tr— o0

I— 00

2~ 22 +3 m (2 — 22+ 3)/z°

5-2r2  zace  (5— 2x2)/2?

T —2/x+3/z°
5/x? —2

[divide by the highest power of « in the denominator]

= —00 because £ — 2/ + 3/1° — oo and 5/z° —2 — —~2asz — 0.

. lim (z*+2°) = lim_ 2®(% + 1) [factor out the largest power of z] = —00 because z° — —oo and

ljz+1—lasz — —oc.

. lim (.’nz —z*) = lim 2*(1 - %) = —cosince ¥ — ooand 1 — 2% — —oo.
T30 r— o0

o+ +r® . (z+2*+2%) /2t
. lim ———— = lim
g—oo 1—x2+ 2t zooo (1—2? 4 2t)/2
3
- i ME Rletz
zroe 1/2? = 1/22 + 1

because (1/2° + 1/z + z) — ooand (1/z* — 1/2* + 1) — lasz — oo,

[divide by the highest power of x in the denominator]

1 . ! .1 . sin ¢
32. 1ft = =, then lim rsin— = lim —sint = lim L 1.
T r—00 x t—t 1 t—0+ 1
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T flz)
—10,000 | —0.4999625
l 100,000 | —0.4999962

"33. (a) —100[

—1,000,000 | —0.4999996

-1
From the graph of f(z) = V2% +z + 1+ z, we From the table, we estimate the fimit to

estimate the value of lim f(z) to be —0.5. be —0.5.

I——00

Vii+r+1l—x . ($2+:r+l)—;n2

m (V2 tz+1l4z)= lim (Veid+z+1+2)|——————|= lim
(C) x—lvlzloo( T * ZE) .’ngd—oc( ) \,".7;2+.’E+1—.’I? T——00 \/JE2+ZE+1—.“L'
~ lim (z 4+ 1)(1/x) _ 1+(1/x)

R o PP Ty R Sy sy BT
1+0 1

T _1+0+0-1 2

Note that for z < 0, we have v/22 = |x| = —=x, so when we divide the radical by z, with = < 0, we get

N CErEa —\/i_«/ﬁ' = — /T (i/z) + (/7).

z f(x)
10,000 | 1.44339
100,000 | 1.44338
J 1,000,000 | 1.44338
100

1.4

From the graph of From the table, we estimate (to four decimal

laces) the limit to be 1.4434.
f(x) =322 + 8z + 6 — v/3x2 + 3 + 1, we estimate places) the limit to be

(to one decimal place) the value of lim f(z) tobe 1.4.
T— 00

© lim fz) = lim (V322 4 8z + 6 — 322 +3x+ 1) (V32> + 82+ 6+ v3z? + 3z +1)
oo St V322 + 82z +6 4+ 322 + 3z + 1
(32% + 8z +6) — (32° + 3z + 1)
c—oo /322 + 8z + 6+ 3z + 3+ 1
. (5z + 5)(1/z)
a—oo (/327 + 8z + 6+ V3z2 + 3z +1)(1/x)
~ bm 5+5/x __ 5 5
s—o0 /34 8[x + 6/2% +/3+3/z+1/z2  V3+V3 2V3

= 1.443376
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T 1
\ - 1 = =1, =11 i tal
xl{rirloox+4 wEI:Eoo ¥4z 1,50y = 1 is a horizonta

. x T .
asymptote. lim —— =ocand lim —— = —o0,s0z = —4is
r-s~4— T+ 4 r——4t T + 4

a vertical asymptote. The graph confirms these calculations.

. Sincez? —1 — Oasx — +landy < Ofor—1 <z < landy > Ofor

22 2

4 . 4

x < —1andz > 1, we have lim 2+ = - T+
r—1— I

2
4 4

lim $2+ =oo,and lim $2+ —co,s0x = landz = —1

r——1— T z——11T T -1

are vertical asymptotes. Also

2+ 4 i 1+4/z° 140
acw—»ioosczV]_ maimlul/mz_l—o

=Lsoy=1isa
horizontal asymptote. The graph confirms these calculations.

lim —$3— lim z = =400, so there is
"rotee 2+ 32— 10 e—te 1+(3/l‘) —{10/.7:2) - ’

no horizontal asymptote.

3 3

lim :r— = lim —I'—"' = 0, since
r—2t $2 317 - 10 r—2+ (:E + 5)((3 — 2)

3 23
> 0forx > 2. Similarly, lim

T
(z+5)(x —2) p2- T2+ 3z — 10

3
1,3

im — % = _oo,and lim ———— — 50,50
o i3z _10 o m_.m§,+x2+3m~10 o0

x = 2 and x = - are vertical asymptotes. The graph confirms these

calculations.

2 +1 lim 141/
':v—»icol'd—k;l’;_m—ttool-}—l/ 2
$+1M 241
P4+ z(z2+1)
¥ 41 a4+ 1

—1l<zr<0, lim 3 = oo and lim = —o0,50x=01is
e+ 3 + 1 20— T2+ T

= 1,80y = 1is a horizontal

asymptote. Since y = >0forz > 0and y < 0 for

a vertical asymptote.

1/z I 1 1

\/m 1/ ¥zt S \/1+ e

4

y & 1/x

1 1
im . = l]m = = —
e RV e Y A W S
rd

so ¢ = %1 are horizontal asymptotes. There is no vertical asymptote.
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. x—9 _ 1-9/x 1-0 1
40. lim —————— = lim = =-.
z—o0 Ar2 + 3¢ + 2 e \JA+ (3/x) + (2/zF) VA+0+0 2
Using the fact that v/z2 = |2} = —z for z < 0, we divide the numerator by —z and the denominator hy V2.
- -~ -1 1
Thus, lim ——r—2 = 1+9/z _ -1+40 _ 1

Hm =
e——oo \JAz? 1 Bz +2  =—-e JAd+ (3/x) + (2/2?) VA+0+0 2

The horizontal asymptotes are y = :t%. The 10

polynomial 4x® + 3¢+ 2is positive forall 2,  —a0

so the denominator never approaches zero,

and thus there is no vertical asymptote.

. Let’s look for a rational function.

(1) lil:él f{z)=0 = degree of numerator < degree of denominator

(2) lim f(r) = —oc = thereis afactor of z? in the denominator (not just x, since that would produce a
r—0

sign change at x = 0), and the function is negative near z = 0.
(3) lim f(z)=ocoand lim f(r)=—oco = vertical asymptote at x = 3; there is a factor of (z—3)in
2—3 z—3

the denominator.

(@) f(2) =0 = 2isan z-intercept; there is at least one factor of (z — 2} in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits
2—-x

givesus f(x) = m

as one possibility.

. Since the function has vertical asymptotes z = 1 and # = 3, the denominator of the rational function we are looking
for must have factors (z — 1) and {z — 3). Because the horizontal asymptote is i = 1, the degree of the numerator

must equal the degree of the denominator, and the ratio of the leading coefticients must be 1. One possibility

3,2

is /(@) = ey

1 _
V=TT % has domain {00, =1} U (—1,00).

11—z /-1 0-1 .
i Sl al S B R A =_1 .
mhm 1 mhm\l/, T = 011 1,50y isa HA

The line x = —1is a VA,
, (+z)(-1)— (1 —x)(1) -2 .
= + = Of 1 ¥y
Y T+ TEeSE < 0forz #£ 1. Thus

{—o0, —1) and (-1, co) are intervals of decrease.

' —-2(1 4 " .
=-2. ( +rm) = < 0forz < —1andy” > 0forz > —1, so the curve is CD on {—oc, —1)
1+ a2 T+

and CU on {—1, cc). Since & = —1 is not in the domain, there is no IP.
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_ 14247

44, y= '—1—+7 has domain R.

.14 22° 1zt +2 0+2
lim ——— = lim —
z—+o00 1+$2 r—+oo 1/I2+1 0+1

= 2,50y = 2isa HA.

(1+2%)(dx) — (1 +2°)(2x) 2z

= >0
(1+ z2)? 1+ 22)°

There isno VA. iy’ =

< x>0,

andy <0 < x < 0. Thus, y is increasing on {0, 00) and y is decreasing on (—o0,0) . There is a local (and

(1+2%)%(2) - (22) - 2(1 +2*) (20) _ 2-6a?
[(1+22))° (1+22)°

absolute) minimum at (0, 1). "' =

Yy’ >0 = —% <z< %,sothecurveis CUon (—%, ﬁ) and CD on (—oo,—%) and (—

There are IP at (:I:%, %)

1/z 0
4 I — = |i = =0,s0y=01
oy L R I y=rne

horizontal asymptote.

2 1_ _ g2
r= :_2+1m)(22m) = (12+£1)2 =0whenz =xlandy’ >0 &
T T

z? <1 & —1 <z <1, s0yisincreasing on (—1,1) and decreasing

on {(~oo, —1} and (1, 0o).

1 o2 —92) — {1 — 22)2(2% + 1)2 9 2_13
=( + %) ( $21+(12)4.1:) {x* + )33: (ﬂ;(i 2)3)>0 & z>+v3or—v3<z<0s0yis
- T

CU on (v/3, 00) and (—+/3,0) and CD on {00, —+/3 ) and {0, v/3).

S

46. y = i =w»~£é—|Lhasd0mainR. AsT — Foo,y — £1, 50
Va2 +1 /1 +1/x?

y = £ 1 are HA. There isno VA. y = m(xz + 1)'1/2 =

—1/2

y =z(-) (@ + 17 @20+ (= 1) ()

=(z*+1) 2% + (z° +1)]

372
[
= (a:2 + 1)_3/2 > Oforall z

Thus, y is increasing for all . y” = (~3)(z® + 1)_5/2 (2z) = ﬁ > 0 for z < 0. So the curve is CU
e+

on (—oo,0) and CD on (0, 00). There is an inflection point at (0,0).
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a1, y = f(z) = 2*(x — 2)(1 — z). The y-intercept is f(0) = 0, and the z-intercepts

occurwheny =0 =z =0, 1,and 2. Notice that, since z° is always positive, the

graph does not cross the z-axis at 0, but does cross the z-axis at 1 and 2.

lim z*{z — 2){1 - z) = —oo, since the first two factors are large positive and the
L D0

third large negative when « is large positive. lim z?(x — 2)(1 — &) = —oc because
T——00

the first and third factors are large positive and the second large negative as x — —oo0.

Ly = (2+2)(1 — 2)(3 — ). As z — oo, the first factor is large positive, and

the second and third factors are large negative. Therefore, lim f(z) = oc. As
r—0o0

x — —ox, the first factor is large negative, and the second and third factors are

large positive. Therefore, lim f{z) = —oo. Now the y-intercept is

T — OO

£(0) = {2)*(1)(3) = 24 and the z-intercepts are the solutions to f(z) =0

= = —2,1and 3, and the graph crosses the z-axis at all of these points.

Ly = f{z) = (z +4)°(z — 3)*. The y-intercept is £(0) = 43(—3)* = 82,944,
The z-intercepts occur wheny = 0 =» x = —4, 3. Notice that the graph does

not cross the z-axis at 3 because (z — 3)* is always positive, but does cross the

x-axis at —4. lim (2 + 4)*(x — 3)* = oo since both factors are large positive
00

when r is large positive. lim (z + 4)°(2 — 3)* = —o0 since the first factor is
L OO

large negative and the second factor is large positive when  is large negative.

.y = (1 — 2}z — 3)%(z — 5)°. Asx — oo, the first factor approaches —oc while
PP

the second and third factors approach oc. Therefore, lim (z) = —oco. As
I—* XD

T — —o0, the factors all approach oo. Therefore, lim (z) = oo. Now the

r— —0d

y-intercept is f(0) = (1)(~3)*(—5)* = 225 and the z-intercepts are the solutions

to f(x) =0 = =z =1,3.and5. Notice that f{x) does not change sign at
x = 3or z = 5 because the factors (z — 3)% and (x — 5) are always positive, so
the graph does not cross the w-axisatx = 3 or x = 5, but does cross the z-axis

atx = 1.
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51, First we plot the points which are known to be on the graph: (2, —1) and
(0,0). We can also draw a short line segment of slope 0 at x = 2, since
we are given that f'(2) = 0. Now we know that f'(z} < 0 (that is, the
function is decreasing) on (0, 2), and that f"(z) < 0 on (0,1) and
f(z) > 0on (1,2). So we must join the points (0,0) and (2, ~1) in

such a way that the curve is concave down on (0, 1) and concave up on (1, 2). The curve must be concave up and
increasing on (2, 4) and concave down and increasing toward y = 1 on (4, o). Now we just need to reflect the
curve in the y-axis, since we are given that f is an even function [the condition that f{—z) = f(z) for all z].

. The diagram shows one possible function

satisfying all of the given conditions.

. We are given that (1) = f'(1) = 0. So we can draw a short horizontal line at the point {1, 0) to represent this

situation. We are given that x = 0 and = = 2 are vertical asymptotes, with lin% flx) = —o0, lim+ flg) =
r— r—2

and lim f(x) = —o0, so we can draw the parts of the curve which approach these asymptotes.
r—2

On the interval {—o0, 0), the graph is concave down, and f (z} — oo as Y
T — —oc. Between the asymptotes the graph is concave down. On the

interval (2, oo} the graph is concave up, and f(z) -+ Oas z — oc, so

y = 0 is a horizontal asymptote, The diagram shows one possible function
satisfying all of the given conditions.

. The diagram shows one possible function

satisfying all of the given conditions.

sinx

. 1
. (a) Since —1 <sinz < 1foralle, —— <
T

1
. < . forz > 0. Asz — o0, —1/z — Oand 1/z — 0, so by the
Squeeze Theorem, (sinz)/z — 0. Thus, lm 2T o
=00 xT

(b) From part (a}, the horizontal asymptote is ¢ = (}. The function
y = (sinx)/x crosses the horizontal asymptote whenever sinzx = 0;
that is, at @ = mn for every integer n. Thus, the graph crosses the

asymptote an infinite number of times.
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B6. (a) In both viewing rectangles, lim Pz} = mlim Q{z) = oc and ;B'Erlloo P(z) = xETmQ(m) = —oc. Inthe

larger viewing rectangle, P and () become less distinguishable.

10,000
{ oflp
-2 e 2

> ~ 10,000

5 _ .3
P(Jﬁ):hmw_hm(lg.i 3%):1-%(0)4-%(0):1 =

(b) lim 3 72 + 3

P and @ have the same end behavior.

57. Divide the numerator and the denominator by the highest power of & in Q(x).

(a) If deg P < deg @, then the numerator — 0 but the denominator doesn’t. So lim [P(x}/ Qx)] =0.
Tr—

(b) If deg P > deg @, then the numerator — Foc but the denominator doesn’t. so lim [P(z)/Q(z)] = £oo

(depending on the ratio of the leading coefficients of P and Q).

VL

0

(iyrn=20 (iYn > 0(nodd) (ii)n >0 (neven) (ivyn<0(nodd) (v)n <O0(neven)

From these sketches we see that
ifn=20

1 ifn=0
. if n>0
(2) lim 2" =<¢0 ifn>0

z—0+

if n <0, nodd

oo if n<O .
if n <0, neven

if n=0
1 ifn=20
it n>10, nodd

© limz"={oc ifn>0 -
o0 if n>0, neven

0 fn<0O
itn<0

o0 xT T— 00 o0 ;1;2 £ 00

4z — 1 1 dz® +:
89, lim — = lim (4; _) =4, and lim i lim (4+ 2) = 4. Therefore, by the Squeeze
£ £

Theorem, lim f(x) = 4.

Tr— o0
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60. (a) After ¢ minutes, 25¢ liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains
(5000 + 25¢) liters of water and 25¢ - 30 = 750¢ grams of salt. Therefore, the salt concentration at time ¢ will

750t 30t g

be C(8) = S500+ 260 ~ 200+ L'

30t 30¢/t 30

im = = 30). So the salt concentration approaches that of
A S0 1t e 200/t +t/t ~ 0+ 1

(b) hm Ct) =

the brine being pumped into the tank.

62 + 5z —
3l <02 o 28< A5 5o 5
2z -1

we graph the three parts of this inequality on the same screen, and

Bz + 5r — - : .
find that the curve y = %TI—E seems to lie between the lines
72 —

y = 2.8and y = 3.2 whenever £ > 12.8. So we can choose V = 13

(or any larger number) so that the inequality holds whenever z > N.

. For e = (0.5, we must find N such that wheneverz > N, we have

Vart+1 4r2 + Vvidr? +1
T

$+l +1

-2/ <05 & 15< < 2.5. We graph

the three parts of this inequality on the same screen, and find that it

holds whenever z > 3. So we choose N = 3 (or any larger

vazr2 41
x

+1

number). For £ = (.1, we must have 1.9 < < 2.1, and

the graphs show that this holds whenever z > 19. So we choose

N = 19 (or any larger number).

vidze 4+ 1 N

. For e = 0.5, we need to find N such that
x+1

vdz? +1
z+1
three parts of this inequality on the same screen, and see that the

4)’ < {15

& —2.5 < < —1.5 whenever x < N. We graph the

inequality holds for # < —6. So we choose N = —6 (or any smaller

number).

viz? +1
z+1
@ < N.From the graph, it seems that this inequality holds for

Fore = 0.1, we need —2.1 < < 1.9 whenever

x < —22. So we choose N = —22 (or any smaller number).
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2r+1

ve+1

graph, we see that this inequality holds for z > 2500. So we choose

64. We need N such that > 100 whenever z > N, From the

N = 2500 ({or any larger number).

0
. (a) 1/2% <0.00001 & «%>1/0.0001 = 10,000 & z>100 (x> 0)

(b) If ¢ > Ois given, then 1/2* < ¢ & x2>1/e & z>1//z Let N =1}/

1 . 1
2—0|:F<E,S0 lim —2:().

T x—o0 T

Thenz > N = :E>i =
VE

(@) 1/vZ < 0.0001 & Z>1/0.0001=10" & z>10°

(b)Ife > Disgiven,then 1/yZ <& & Z>1l/e & z>1/e’ LetN =1/

1 1 1 . 1
Thenz > N = .17>€—2 = 1%_0’“ﬁ<E,SO$lLH;oﬁAO.
.Forz < 0,[1/x —~ 0] = —1/z. lf= > Ois given, then —1/r < ¢ & =z < -1/c

Take N = —1/e. Thenz < N = z<-1/e = |(1/z)-0|=-1/z<es0 lim (1/x)=0.

. Given M > 0, weneed N > Osuchthatz > N = z*> M. Nowz® > M & z> VM, sotake
N=UMThenz>N=¥M = z°>M,solim 2’ =0,

@€T— 00

. Suppose that lim f{x} = L. Then for every £ > 0 there is a corresponding positive number N such that
£ oo

|f(x} — L| < ¢ wheneverz > N.Ift = 1/z,thenz > N & 0<1l/z<1/N & 0<it< 1/N. Thus,
for every & > 0 there is a corresponding & > 0 (namely 1/N) such that | f(1/t) — L| < ¢ whenever 0 < t < é.
This proves that lim f(1/t) = L = lim f(z).

t—s0+ r—oo

Now suppose that lim f(z) = L. Then for every € > 0 there is a corresponding negative number NV such that
€r——0oo

|f(z) ~ L| < e wheneverz < N.Ift =1/z, thenz < N & 1/N<1/z<0 « 1/N <t <0 Thus, for
every & > ( there is a corresponding & > 0 (namely —1/N) such that | f(1/t) — L] < € whenever -6 < ¢ < 0.
This proves that lim f(1/t) = L = lim f(x).

t—0— & ~00

, Definition  Let f be a function defined on some interval (—oo,a). Then lim f(x) = —oc means that for every
€= =00

negative number M there is a corresponding negative number N such that f(z) < M whenever z << N. Now we

use the definition to prove that lim (1+ 333) = —oo. Given a negative number M, we need a negative number
T——

Nsuchthatz <« N = l1+az<M Nowl4+2®<M & z<M-1 & z<M-1 Ths, we
take N = /AT _landfindthatz < N = 14 2% < M. This provesthat lim (1+z°) = —oc.
x

——00
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4.5 Summary of Curve Sketching

Ly=flz)=2tz==z(z"+1) A. fisapolynomial, so D =R.
B. z-intercept = 0, y-intercept = f(0} =0 C. f{—z)= —f(z}),s0 f

is odd; the curve is symmetric about the origin.  D. f is a polynomial, so

there is no asymptote. E. f'(z) = 32® + 1 > 0, so f is increasing on
(—o0,00). F. There is no critical number and hence, no local maximum

or minimum value. G. f”(x) =6z > 0on (0,c0) and f'{x} < Oon

(—,0), s0 f is CU on (0, oc) and CD on (—oo, 0). Since the concavity

changes at x = 0, there is an inflection point at (0,0).

Ly = flz) =2 + 62 + 9r =x(z+3)* A. D=R B. z-intercepts H,
are —3 and 0, y-intercept = 0 C. No symmetry D. No asymptote
E. fliz) =32 +120 +9=3(z+ )z +3) <0 <« -3<r<-1,

so f is decreasing on (—3, —1) and increasing on (—o0, —3) and {1, oc).
F. Local maximum value f(—3) = 0, local minimum value

fi-D)=-4 G fzy=6z+12=6(z+2)>0 & z>-2,

so fis CUon (—2,00) and CD on (—oc, —2). IP at (—2, —2)

Ly=flr) =215z +95> -2 = —(z - 2)(¢*~Tz+1) A. D=R B. y-intercept: f(0) = 2:
z-intercepts: f{zx) =0 = =z =2 or (by the quadratic formula) r = "'—iz\@ = (.15, 6.85
C. Nosymmetry D. No asymptote H. ¥
E. f'(z) = -15+ 18z — 32" = —3(2® — 6z +5)
=-3x-1zx-0)>0 & l<z<h

so f is increasing on (1, 5) and decreasing on {—oc, 1) and (5, co).

F. Local maximum value f{3) = 27, local minimum value f{1) = -5
G. fliz})=18—-6z=-6(z—-3)>0 <« z<3s0fisCUon
(—00,3}and CD on (3, 00). IP at (3,11)

Ly = flz) =8z —z' =2°(8 —2®) A. D=R B. y-intercept: £(0) = 0; x-intercepts: f(z) =0 =
r=0+£2v2 (= £2.83) C. f(—z) = f{x),so f is even and symmetric about the y-axis. D. No asymptote
E. fi{z) =16z — 42® = dz(4 - 2*) = 422+ 2)(2-2) >0 & H 216 ¥ (2. 16)

r < —2or0 <z < 2,50 fis increasing on {—oo, —2) and (0, 2) and
decreasing on {—2,0) and (2, c0). F. Local maximum value

f(£2) = 16, local minimum value f(0) = 0

G fl(z)=16-122" =4(4 - 32") =0 « z=1=

x>0 < —%<m<~3\/§,sofisCUon -

CD on (foo,fi) and (i oo). IP at (:i:

V3 VER
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5 y=f(z)=z"+42° = z*{(x +4) A. D=R B. y-intercept:
f(0) = 0; z-intercepts: f(z) =0 < = =-4,0 C. Nosymmetry

D. No asymptote E. f'(z) = 4z® + 122" =42’ (2 +3) > 0 @

x > —3, s0 f is increasing on (—3, 0o) and decreasing on (—co, —3).

F. Local minimum value f{—3) = —27, no local maximum

G. f(x) =122+ 242 = 12z(z +2) <0 & -2<x<0,
s0 f is CD on (=2,0) and CU on (—oc, —2) and (0, c0).

IP at (0,0) and (—2, —16)

Ly = flz) =x(z+2)* A. D=R B. y-intercept: f(0) = 0;
z-intercepts: f{z) =0 <« =z =—-2,0 C. Nosymmetry D. Noasympiote

E fl(z)=3c(ct2?+(@+2°={z+2?Br+(c+2)]=(x+2*{dz+2). f'(z) >0 & z>-3

and f'(z) <0 & < —20r—2<z< -1, s0fisincreasing on (-1, 00) and decreasing on (~oc, —2)

and (2, —3). [Hence f is decreasing on (—o0o, —3) by the analogue of Exercise 4.3.53 for decreasing functions.]

F. Local minimum value f(—3) = —2I, no Jocal maximum H. y

G. f'(x) = (z+2)*(4) + (dz + 2)(2)(z + 2)

=2(z + 2)[(x + 2)(2) + 4z + 2
=2(x + 2){6x +6) = 12(x + 1)(x + 2)

flz) <0 « -2<z<-1,50fisCDon(—2,—-1)andCUon

(—oc, —2)and (—1,00). IPat (-2,0) and (-1, 1)

Ly = flz) =22° —52° +1 A. D=R B. y-intercept: f(0} =1 C, Nosymmetry D. No asymptote
E. f'(z) = 10z* — 10z = 10z(z® — 1) = W0z(z — 1)(z* + x+ 1)}.50 f'{z) <0 & O<z<land
() >0 & =z <0orx> L Thus, fisincreasing on (—o0,0) and (1, oc) and decreasing on (0, 1).

F. Local maximum value f{0) = 1, local minimum value f(1) = —2 H. ¥
G. f'(z) =40z® — 10 =10(4z® ~- ) so f'{z) =0 & z=1/V4

Fz) >0 © z>1/Vand f'(2) <0 & =x<1/VA4,

so fisCDon (~00,1/¥/4) and CU on (1/V/4, ).

1 9
Pat [ —,1— ——— | = (0.630, —0.786)
(i‘/i 2(%1)2)
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8.y = f(x) = 202 — 32° A. D=R B. yintercept: f(0) = 0; a-intercepts: flz) =0 =
-3z - 2)=0 & xz=0or +,/20/3 = £2.582 C. f(—z) = —f(x},s0 f is odd;
the curve is symmetric about the origin. ID. No asymptote
E. f{z) = 60z% — 15¢* = —152%(z? —4) = —15¢%(z + 2)(z — 2),50 f'{x) >0 ¢ -2 <z <Oor
0<z<2and f'(z) <0 <« z<—2orz > 2 Thus, fisincreasing on (~2,0) and (0, 2} [hence on (—2,2)
by Exercise 4.3.53) and f is decreasing on (0o, —2) and (2, c0).
F. Local minimum value f(—2) = —64, local maximum
value f(2) =64 G. f"(z) = 120z — 60z® = —60z(z* — 2).
f'z)>0 & z<-v2o0<z<v2f'(z)<0 &
—V2 <z <0orz > /2 Thus, f is CUon {—o0, ~v/2)
and (0,v/2), and f is CD on (—+/2,0) and (v2, 00). [P at
(—v2,—28v/2) = (- 1.414, —39.598), (0,0), and (v/2,28 v2)

Ly = f(x)=a/(x —1) A D={z|z#1}=(-o0,1)U(l,00) B. z-intercept = 0,

y-intercept = f(0) =0 C. Nosymmetry D, lim z 1= 1,50y = 1isa HA.

z—too T —

= —p0, lim E1=oo,sozc=1isaVA.

r—1+ T —
ooy _lz=1)—z -1
L@ =" =&
on (—oo,1} and {1,00). F. No extreme values
w2 .
G. f'(z) = @17 >0 < z>1ss0fisCUon(1,00)andCD
ofi {(—a, 1}, No IP

5 < Oforz # 1, so f is decreasing

Ly=xz/{z — 1) A D={z|x#1}=(-00,1)U(1,00} B. z-intercept = 0, y-intercept = f(0) =0

C. No symmetry D, xli,rjrzlocﬁ =0.soy:0isaHA.£Ln11 (a:jjl)"’- =o0o,80z = lisa VA.

-12) - z(2)(z 1) -z -1

ey
E. f(e) = (@ 1)4 ~ -1

. This is negative on (—oo, —1) and (1, co) and positive on

(—1,1).s0 f(z) is decreasing on {—o0, —1) and (1, o) and increasing on (—1,1}.
F. Local minimum value f(—1) = —i, no local maximum. H.

- 1=+ @+ 1)E) -1 2Az+2)

@~ 1)° EEN This is

G fi'(z)= (

negative on {—o0o, —2), and positive on (—2, 1} and (1, o¢). So f is CD

on (—oc,—2) and CU on (—2,1) and (1,00). IPat (-2, —%)
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258 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION
1. Yy = f(.’L‘) - 1/(;{:2 —9) A. D= {m & T 7.-6 j:S} e (—-oo,_?,) U (_3’3) U (3’00)
B. y-intercept = f(0) = — 2, no z-intercept  C. f(-z)} =f (#) = f iseven; the curve is symmetric about
1

. ) 1 . . 1 L S
the y-axis. D. IEI:EDO =g 0, soy =0isa HA. xlf?_ 29 xl_lgl+ 22_9 >

1
2 -9 :oo’x_lrlj};+ 3;2_9 = —0Q, SD$=3and$=—SareVA.

—21—2 >0 < z<0 (zx# -3)sofisincreasing H.
(a2 - 9)
on {—oo, —3) and {—3, 0) and decreasing on (0, 3) and (3, co}. ‘,

F. Local maximum value f(0) = —3.

=22 - 9)" 4+ (20)2(2® - 9)(22) _ 627 +3) o
- (27— 9)" (a? —9)

2>9 & z>3orx<—3,s0fisCUon (—o0,—3)and (3,00}
and CD on (-3,3). NoIP

G yl’f

Ly =fle) =x/(z* -9) A D={z|z#%3}=(-00,-3)U(-3,3}U(3,00) B. z-intercept =0,
y-intercept = f(0) = 0. C. f(—z) = —f(z), so f is odd; the curve is symmetric about the origin.

D. lim —— =0, soy =(¢isaHA. lim 3 =co, lim 2 = —o0,
z—too 2 — O r—3t X — 9 r—3- T — 9

) T . T
lim ——— =00, lim ———F = —00, 502 = 3and x = —3 are VA,
x——3+t T° — 9 r——3— I° — 9

, _(mz—g)fx(Qm)_i 22 +9 . . o
E. f'(z)= e =9 < 0 (x # £3)so f is decreasing on {—oc, —=3), (—3,3),

and (3,00). FE No extreme values
__23:(:62 - 9)2 —(z? +9) - 2(z* - 9)(2z)
(x> —9)*

G. f'(x) =

2;1:(:1:2 + 27)
= ——————% >0when -3 <z <0orz >3 !
(2 — 9) i
so £ is CU on (—3,0) and (3, 00); CD on (—oo, —3) and (0, 3). ’
IP at (0,0)

.y = flz) =xz/(«* +9) A. D=R B. y-intercept: f(0) = 0; z-intercept: f(z} =0 < z=10

~f(x), s0 f is odd and the curve is symmetric about the origin. D. lim {x /(z*+9)] = 0,50

r—too

=

(Z+9)D-20) _ 9 o _3+n)B-2)

y=0isaHA;noVA E. f'(z)= =
f ( ) (m2 + 9)2 (.’52 + 9)2 (332 4+ 9)2
-3 < x < 3,50 f is increasing on (—3,3) and decreasing on {—oc, —3) and (3, 00).

F. Local minimum value f(—3) = —3, local maximum value f(3) = g
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SECTION45 SUMMARY OF CURVE SKETCHING £ 259
(z* +9)° (—2z) — (9 - 2?) - 2(2® + 9)(2x)
[(z? +9)]°

_ (22)(® + 9[- (&* +9) —2(9—27)]
(z? 4 9)*

G. f{z)= H.

B 2c{z® — 27)

~ =0 & z=0+/FT =433
(2 +9)

fz)>0 & -3vV3<z<Oorz>3y3s0fisCUon
(—3+/3,0) and (3 v/3,00), and CD on (—oc, -3 /3 ) and (0,3 v/3).
There are three inflection points: (0,0) and {+3 V3, :{:7115\/5)

Ly = flx) = 2? /(;1:2 +9) A. D=R B, y-intercept: f(0) = 0; z-intercept: f(z) =0 & z=0

C. f(—x) = f(x), so f is even and symmetric about the y-axis. D. lim [2?/(z®+9}] =L.soy=1

z-—too

(27 +9)(22) — 2°(2z) 18z
(22 + 9)° (224 9)°

isaHA;no VA E. f'(x) = >0 < x>0,s0 fisincreasing on

(0, 0c) and decreasing on (—00,0). F. Local minimum value f(0) = 0; no local maximum

6. /@) = (¢® +9)°(18) ~ 182 - 2(a* +9) 22 _ 18(z* +9) [(2" + 9) — 42®] 18(9  3¢?)
’ o (22 + 9)2}2 (z* +9)* (2 +9)°

_ -54(3:+\/§)(5'3_‘/§) S0 & —v3<zx<V3
(z2+9)°

so fis CUon (—\/5, \/5) and CD on (—o0, —\/3) and (\/5, ).
There are two inflection points: (:I:\/g, %)

Ly = flz) = £ -1 A D=A{z|z2#0} =(—00,0)U (0,00} B. No y-intercept; z-intercept: f(z) =0 <

T2

z—1

3 = —o¢, 50 = 0isa VA,
T

r—1
=1 C. Nosymmetry D. lim z ={,s0y = 0is a HA. lin%J
€r—r

zotoo g7 o

2 2
- 1—(x—-1)-2 —r°4+2r —(x-—2)
=k =T T T3 ,sof(z) >0 & 0<zr<2and

E. f'(z)=

f{z}<0 & =z <O0orz>2 Thus, fisincreasing on (0, 2) and H.

decreasing on (—o0,0) and (2, 00).

F. No local minimum, local maximum value f(2) = 3.
2 (1) = {=(x-2)]-32> 2" ~627 2(z —3)

()’ 78 7

G. f'(z) =

f(z) is negative on (—o0,0) and (0, 3) and positive on (3, 00), s0 f is

CD on (—00,0) and (0, 3) and CU on (3, 00). TP at (3, £)
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2
16. y = f(x) < z: 2 A. D={zlxr#0}=(-00,0)U(0,0c) B. No y-intercept; z-intercepts: flz)=0

& z=+v2 C. f(~z)= f(z),s0 f is even; the curve is symmetric about the y-axis.

x -2 I ) :
D. lim ={0,s0y =0isaHA lim = —00, sox = 0is a VA,
r—odoo ozt z—0

rh2r — (2? - 2)(4r%) 25 482° -2’ -4) _ —2(x+2)(z —2)

E. f’(IE) = (2:4)2 = 8 = 5 = 5

F'(z) is negative on {—2,0) and (2, co) and positive on (—oco, —2} and (0,2), so f is decreasing on {—2,0} and
(2, 00) and increasing on (—o0, —2) and (0,2). F. Local maximum value f(£2) = %, no local minimum.

6. fila) = T (cAe) 267 —4) et 20 [-2a% + 5(2 — 4)] _ 2(32" — 20)

($5)2 .'L'IO $6

f" () is positive on (—oo, -/ & ) and ( 2, oo) and negative on

(7\/2_30,(]) and (0, \/g),sofisCUon (—oo,— 2_$) and
(\/Z?oo) and CD on (—\/2_?0,0) and (0,@).

IP at (i, fa %) ~ (£2.5820,0.105)

2 W(x2+3)—3_ 3
243 243 - x? 4+ 3

Ly = flx) = A. D =R B. y-intercept: f(Q0) = 0; z-intercepts:

flzy=0 « =0 C. f(—z) = f(x),so fiseven; the graph is symmetric about the y-axis.

2

D. lm —— = 1,soy = lisaHA. No VA. E. Using the Reciprocal Rule,
—rtoo T2 + 3

—2z bx
(2 +3)*  (2243)

f'(x) =3

= fl(z) >0 < x>0and f'(z) <0 < =z <0 50 fisdecreasing

on {—oo, 0) and increasing on (0, c0). F. Local minimum value f(0) = 0, no local maximum.
(22 +3)% -6 —6z-2(z* +3) -2
(=2 + 3)2)
6(x? + 3)[(z* +3) — 4a”]
(% 3)°
_ 6(3 - 32%) _ 18z + 1){z—1)
(z2 + 3)3 (z2 +3)3 ©,0)

G. f'(x) =

£"(x) is negative on {—oo, —1} and (1, 00) and positive on {—1,1), so f is CD on (~o0, —1) and (1, oc) and

CUon (-1,1). IPat (£1, §)
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22 -1

] A.D={zx|x# -1} =(—o00,—-1}U(-1,00) B. z-intercept = 1,

18 y= flzr) =

f1 1-1 .
y-intercept = f{0) = —1 €. Nosymmetry D. lim :1: i Ea = 1,50y = lisaHA.

lim ——
r-+too $3+1 J:—d:ool+1/ 3

3

_lzooand lim z -1 —co, 80z = —1isa VA,
+]. r—a—1T ﬂfd+1

@) - (@) e e f s nercasing on (oo
E. fl{ixr) = @ 1) ~($3+1)2>0(1‘# 1) so f is increasing on (—oc, —1)

and (—1,20}. F. Noextreme values

122(z° +1)° — 627 - 2(2® + 1) - 32°

G. i —
v @+ 1)

_122(1 - 22%)
=150 & z<-lor0<z<

1
(.1,"3 + 1)3 ! ! %’
so f is CU on {—o0, —1) and( \/_) and CD on (-1, 0) and (%,oo).

IPat (0, —1), (-3\}—5,%)

Ly = flr)=2z+v5—2x A, Thedomainis {x |5 —x >0} = (—00,5] B. y-intercept: f(0) =
z-intercepts: f(z) =0 < =z=0,5 C.Nosymmetry D. No asymptote
10 — 3z
E flz)=x- 36 -2 2(-D)+6G-a)2 1=206-2) " [z +26—2)= ——— >0
fle) = x4 -2) 72 (1)~ (5~ a) H6-2) e+ 25 —2) = 5

o < 4 so f is increasing on (—00, &) and decreasing on (32, 5).

F. Local maximum value f{%} = l9\/ﬁ 7z 4.3; no local minimum . (1o Inv'i.-i)
ER

2(5 — x)"/2(=3) — (10 — 3z) - (%)(5 —x)73(-1)
evE )

(52?65 —2)+ (10-3x)] 3z —20
a 4(5 — ) RTCRS

" (x} < Oforz < 5,so fis CDon {—c0, 5). No IP

G. f'(z) =

Ly = flz) =2y/r—x A. D=[0,0c) B. y-intercept: f(0) = 0; x-intercepts: f(z) =0 =
2\/:E='J: = dr=1 = 4dr—-2'=0 = z4—-2)=0 = x=0,4 C. No symmetry
1 1

— —1=-=(1- 7).
G 1= = (- A)
negative for x > 1, so f is increasing on (0, 1) and decreasing on (1, 00). H. » Wy
1,1
F. Local maximum value f(1) = 1, no local minimum,
4 -1
G. f(x) = (‘Evl/z - 1) =307 = gz < Oforz >0, ’ 4\1

sa fisCDon (0,00). NoIP

D. Noasymptote E. f'(z) = This is positive for z < 1 and
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N y=flz)=vz2+1-x A. D=R B. Noz-intercept, y-intercept = 1 C. No symmetry

D. lim (vz?+1- x) = oo and

T =00

- . vi+l+zx . 1 —
Jim (VT T —a) = lim (VeF 1 -9) T = i o 7
+

T
soy =0isaHA. E. f'(z) = 1="rtdee— H.
f'{x) < 0,s0 fis decreasingon R. K. No extreme values

G. f'(z) = —

W > 0,50 fisCUonR. NolP

= /z/{z -5) A. D={z|z/(x—5)>0}=(-00,0]U(500). B. Intercepts are 0.

C. Nosymmetry D. Iii.lfoo‘}mif—5 ::cli‘l:ilzlco1"1——5/.L =1,s0y =1lisaHA.

. 1 xr -1/2 5 3
soxr =5isaVA. E. f’(ar):i(x_g)) = —2lz(z - 5) } 2 < 0,50 f is decreasing on

{—o0,0) and (5,00} . F. Noextreme values H.

G. f(x) = E[a(x =57 (z — 5)*(4x — 5) > Oforz > 5, and

f(z) < 0forz < 0,50 fis CUon (5,00) and CD on (—00,0). No IP

Ly = f(z) =z/vV22+1 A. D=R B. y-intercept: f(0) = 0; z-intercepts: f(z) =0 = =z=0
C. f(—z) = —flz), so f is odd; the graph is symmetric about the origin.

1
D. lm f(x) = lim o = lim ——— = __x/z i

litr lim —
2 oo I—oco\ﬂ'xz_f_ 1:4->oc1/ /SL‘ T 4,‘;,:-2 /1/ T 00 /‘1_‘_1/1:2
1 1
140

x/x
lim /

= l' lim
H_oo\/ﬁ = \/W/:c e a1 (-
zos - 00—\/1+1/:rz \/1+

so y = %1 are HA. No VA.

2r
VEE+l-a ——— 2
fion 2vri+1 o +l—-z" 1 g
E. fliz) = L = ($2+1)3/2 = {12-}—1)3/2 > 0 for all z, so f is increasing on R.
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F. No extreme values

_ -3
G. f”(m):_%(fﬂerl) 2 og = i

(2 4+ 1)5/2"
z < 0and f(z) < 0forz > 0. Thus, f is CUon (—o0,0) and
CD on (0,00). IP at (¢, 0)

so f'{x) > 0 for

y=flz)=zv2-2°* A . D= [-—\/5, \/2_] B. y-intercept: f{0) = 0; z-intercepts: f(z) =0 =

z=0,+v2 C. f(-z) = —f(z), so f is odd; the graph is symmetric about the origin. D. No asymptote

2 2
- —T°+2—x 21+ 2)(1 — z) . .
E. f'(z) =z < +v2—x% = :1: = . f'{(x) is negative for
f(z) V2 —x2 V2 —x? V2 — 2 f=) g

V2 < x < ~land1 < z < /2, and positive for —1 < z < 1, so f is decreasing on (—\/5, —1) and (1,v2)

and increasing on (—1,1). F. Local minimum value f{—1) = —1, local maximum value f(1) = 1.

VI =2 (—4z) — (2 — 227) —e

2 —x?
@~ =)

(2-27)(—4x)+ (2 -2
- (2 _ m2)3/2

(0,0) 2,00 *
22° — 6z 2x(z® — 3) w20

T 2—z2)3 (2- )2

LB
Since 2% — 3 < 0 for x in [~v/2, V2], f”(z) > 0 for ~V2 <z <0and f'{x) <0for0 <z < /2 Thus, fis

CU on (—+/2,0) and CD on (0,v2). The only IP is (0,0).

Ly =flz) = MT—z2/z A. D= {x | <1,z # []} =[-1,0)U(0,1] B. z-intercepts £1, no y-intercept

T 22
C. f(—xz) = — f(z), so the curve is symmetric about {(0,0). D. lim+ Lo
x—0 T

2 b 2
o N G A e I 1 . :
sox=0isaVA. E. f'(z)= o C Ao < 0, so f is decreasing on {—1,0)
and (0,1). F. No extreme values H. ¥4

P -
G. f(z)= —----~—-———$3(1 _w2)3/2

\/g, so fis CUon (WI,M\/g) and (0,\/5) and CD on

>0 & f1<w<—\/§0r
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2% y=flz)=2/Ve: -1 A. D=(-, ~1)uU(l,00) B. Nointercepts C. f(—z) = —f(x),so f is odd;

) T
the graph is symmetric about the origin. D. lim z =1land lim ———— = —1,50y = +1are HA.

N £ | z——00 4/g2 — 1

lim f(z)=+4occand lim f{z) = -oo,sox = *1are VA.

r—1+t x——1"

3 ] — .
Vi l1-x x2—1_$2*1—1‘2_ 1

< 0, so f is decreasing

e P R e VL C as

on (—o0,—1) and (1,00). F. No extreme values

G. (@)= (- D(-§)(&* — 1) 22 = @%‘7

f"(z) < 0on (—oo,~1)and f”(z) > 0on (1,00), s0 f is CDon

(=20, —1)and CU on (1, 00). No TP

y=flz)=x— 3213 A. D=R B. y-intercept: f{0) = O; z-intercepts: f(z) =
=2 = 22-272=0 = z(x*-27)=0 = z=0,%3v3 C. f(—z)=—Ff(z) sofisodd;

1 =z
x2/3 /3

the graph is symmetric about the origin. D. No asymptote E. fllz)=1- 27 =1~
F'(x) > 0 when |z| > 1 and f'(z) < 0 when 0 < || < 1,50 f is increasing on (—oc, —1) and (1, 0), and
decreasing on (—1,0) and (0, 1) [hence decreasing on (—1, 1) since f is H.

continuous on (—1,1)]. F. Local maximum value f(~1) = 2, local

minimum value f(1) = —2 G. f’{z) = 227°/® <Owhenz <0
and f”(z) > O whenz > 0, so f is CD on (—oe, 0) and CU on (0, co).

IP at (0, 0)

Ly = flz) =23 - 52*3 =23z —5) A. D=R B. z-intercepts 0, 5; y-intercept #  C. No symmetry

D. lixj? 22/3(x — 5) = %00, so there is no asymptote H. Y
r— oo
0

E. f’(m):§$2/3—%0$*1/3:%m'1/3(372)>0 < z<0or -1

x > 2,50 [ is increasing on (—oc, 0), (2, 0o0) and decreasing on (0,2) .

F. Local maximum value f(0) = 0, local minimum value f(2) = —3 ¥4

G. fi(z) = Wp M3 Wp=dA = W3z 1 1) >0 &
> —1,s50 fis CUon (—1,0) and (0, 00}, CD on {—o0, —1).

Pat (—1,—6)
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H.y=flx)=z++|z| A. D=TR B. z-intercepts 0, —1; y-intercept 0 C, No symmetry

D. lim (:c + |a:|) =00, lim (m+ |:c|) = —oo. Noasymptote E. Forz >0, f(z)=z+/z =

1
fliz) =1+ 1 > 0,50 f increases on (0,00). Forz < 0, fiz}) =z +v—x = [fl(a}=1-— — >0

2V

2
& 2yz>1 & -r>1 & z< -7 sofincreaseson (—oo, ) and decreases on (—3,0).

F. Local maximum valuef(—3) = 1, local minimum value f(0) = 0 H.
G. Forz >0, f'(z) = -327%% = f’(z) <0,s0fisCDon

(0,00). Forz < 0, f'(z) = ~1(~2)"%? = f"'(z)< 0,50 fis

CDon (—co,0). NoIP

Ly =f(z)= (@2 -1)7=(="—1)*3 A. D=R B. z-intercepts £1, y-intercept 1 C. f(-z) = f(z).s0

the curve is symmetric about the y-axis. D. lim (z? — 1)>/* = oc, no asymptote

z—too

E fz)=3%2"-1)""" = f@)>0 & z>lor-1<z<0,f(z)<0 & z<-lor

0 <z < 1. So f is increasing on (—1,0), (1, oo} and decreasing on (~o00, —1), (,1). F. Local minimum

values f(—1) = f(1) = 0, local maximum value f(0) =1 H. Y

G. f(z) = ($2~1)~1/3+%I(—§)($2—l)_4/3(2m) =/3.94) (V3,94

=32 -3 -1)" >0 o Jz>V3

so fisCUon (-0, ~ v3}, (V3,00) and CD on (—v/3, —1),
(=1,1),(1,v3). IPsat (£v3, ¥4}

.y = f(z)=3sinz —-sin®x A D =R B. y-intercept: £(0) = 0; z-intercepts: f(z) =0 =
sing (3 —sin®x) =0 = sinz=0 [sincesin®c <1< 3] = «=nnr naninteger.
C. f(—x} = —f(x), so f is odd; the graph (shown for —27r < z < 27) is symmetric about the origin and periodic
with period 2. D. No asymptote E. f'(z) = 3cosz — 3sin’ zcosz = 3cosz (1 — sin” )} = 3cos’ .
f{z) >0 & cosx>0 & zc (2nm— §,2n7w+ ) foreachinteger n,and f'(z) < 0 &
cosz <0 & x € (2nm+ §,2nm + ) for each integer n. Thus, £ is increasing on (2nm — T, 2n7 + J)
for each integer n, and f is decreasing on (2n7r + 3, 2nm + %") for each integer n.
F. f has local maximum values f(2nm + %) = 2 and local minimum values f(2nm + £y = -2

G. f'(z) = —9sinzcos’z = —9sinz (1 —sin’ x) = —9sinz (1 —sinz)(1 +sinz). f'(z) <0 &
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sinz > Oandsinz #+1 & € (2nm,2nm + 3) U (2nm + 5, 2nx + ) for some integer n.
F'(z) >0 & sinz<Oandsinz#+1 & z€(@n-Dm2n—1)r+3)U{(2n— )7+ 3,2n7)
for some integer 7. Thus, f is CD on the intervals (2nx, (2n+ 3)7) and  H. y

2
({(2n + 3)m, (2n+ 1) «r) [hence CD on the intervals (2n7, (2n + 1) 7))

for each integer n, and f is CU on the intervals {(2n — 1), (2n — 7))

and {(2n — 3)m,2nx) [hence CU on the intervals ({2n — 1), 2nm)] for

each integer n. f has inflection points at (nm, 0) for each integer n.

sinzx

.y=f(z) =sinz —tanz A. D={z|z#(2n+1)5} B.y=0 & sinr=tanz= oz
sinz =0orcosz =1 & & = nn (z-intercepts), y-intercept = f(0) =0 C. f(—z) = —f(z). so the curve

is symmetric about (0, 3). Also pertodic with period 2z D. 1(1[1/1 ) (sinx — tanz) = —o0 and
a—(mw/2}~

lim (sinx —tanx) = oo, 0 x = nw + § are VA,
r—{m/2)t

E. f'(x) = cosz —sec® z < 0, so f decreases on each interval in its
domain, that is, on ({2n —- 1)%,(2n + 1)) . FE No extreme values

G. f'(z) = —sinz — 2 sec’ ztanz = —sinz (1 + 2sec’ z). Note

that 1 + 2sec® z # Osincesec®z # —1. f'(z) > O0for —Z <z <0
2 2

and%l<m<27r,sofisCUon((n-v%)7r,mr) and CD on . |
(nm, (n+ 3)m). f has IPs at (nr,0). Note also that f*(0) = 0, but

f'(r) = -2

.y = f(z) =xtanz, -S <z < I A. D=(-%,7) B.Interceptsare0 C. f(—z)= f(x), sothe curve is

symmetric about the y-axis. D. lim ztanz = oo and lim ztanT = 00,80 T — % and
o—{m/2) z——(w/2)t

x=—FaeVA. E. f'(z) =tanz + zsec’z >0 & O0<z <3, H.

T

so f increases on (0, 3) and decreases on (— Z, 0).

F. Absolute and focal minimum value f{0) = 0.

G. vy’ =2sec’z + 2z tanzsec’z > Ofor —Z <z < %, so fisCU

on (—%,%).NolP

.y=f(z)=2z—tanz, -Z <z <3 A. D= (-3%,%) B. y-intercept: f{0) = 0; z-intercepts: f(0) = 0
& 2r=tanz < r=0orxz==117 C. f(—z) = —f(z),so fis odd; the graph is symmetric about the

origin. D, lim (2z —tanz)=ocand lim (2r—tanz) = —o0,s0x = 3 are VA. No HA.
e—{—m/2yt x—(m/2)"
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E f(z)=2—sec’z <0 & jsecz|>v2andf'(z)>0 & |secz|< V2, so f is decreasing on
(—Z,-Z),increasing on (—7, 5 ), and decreasing again on (3,3) F. Local maximum
T

value f(Z) = Z — 1, local minimum vatue f(-5)=-2+1 H,

G. f"(z) = —2secz -secxrtanr = —2tanzsec’ r

= -2tanz(tan’z + 1)

sof'(x) >0 & tanzx<0 & -Z<zx<0andf'(z)<0 &

tanz >0 © 0<uz <% Thus, fisCUon (—%,0) and CD

on (0,%}. f has anIPat (0,0).

.y = f(z) =tz —sinz,0 <z <3r A. D={0,3r) B. Noy-intercept. The z-intercept, approximately 1.9, '
can be found using Newton’s Method. C. No symmetry D. Noasymptote E. f'(z) =3 —cosz >0 &

1 T 5w Tx . ‘ . FP : x 5w I . . :
cosr <+ © Z<z<iorlE<a<3m sofisincreasingon (5, %) and (&7, 37) and decreasing

on (0, %) and (3, %’r) . F. Local minimum value f{%) = £ — —? H

local maximum value f{3F) = 2% + 3{,—5 local minimum value

f(%):%’—a? G f'(z)=sinz>0 & 0<zx<mor

27 < & < 37, 50 fis CUon (0, 7) and (27, 3x) and CD on (7, 27).
IPs at (w, Z) and (27, 7).
.y = f(e) = cos®z — 2sinz A, D=R B. y-intercept: f(0) =1 C. No symmetry, but f has period 2.
D. Noasymptote E. ' =2cosz (—sinx} —2cosz = —2cosz (sinz+1).y =0 < cosz=00r
smz=-1 < z={(2n+1)5. ¢ > 0whencosz < Osincesinz + 1 > 0 forall z. So y > 0and fis
increasing on {(4n + 1), (4n + 3}Z); ¥’ < Oand f is decreasing on {{(4n — 1)5, (4n + 1)%). F. Local
maximum values f{{4n + 3)%) = 2, local minimum values f((4n + 1}3) = ~2
G. v = -2cosz(sine+1) = —sin 2z — 2cosz =
y" = ~2cos2r +2sinz = —2(1 — 2sin’z) 4 2sinz

= 4sin’ 1 +2sinz — 2 = 2(2sinz — 1)(sinx + 1)

y' =0 sin:v:%or—l = $=%+2n7r,%+2mr,or

2+ 2nm. y” > Oand f is CUon (5 + 2nm, §F + 2nx);

v’ <0and fisCDon (3 + 2nm, T +2(n+ )7}

IPsat (2 + 2nm,—1) and (3F + 2nr, - 5).
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37. y = f(z) =sin2c — 2sinz A. D =R B. y-intercept = f(0) =0. y =0 &
2sinz = sin2z = 2sinxcosxz <« sinz =0orcosz =1 & & = nm (z-intercepts)
C. f{—z) = — f(x), so the curve is symmetric about (0, 0).
Note: f is periodic with period 2, so we determine E-G for —m <z < m.  D. No asymptotes
E. f'(z) =2cos2r — 2cosz = 2(2cos’ z — 1 —cosx) = 2{2cosz + 1)(cosz — 1) >0 & cosz < -~

& -m<a< %o <z <mso fisincreasing on (—, —2r), (22,7} and decreasing on (-3¢,

F. Local maximum value f(-22) = 2¥2,

local minimum value f(%") = —3—‘2é

G. f'"(x) = —4sin 2r + 2sinz = 2sinz (1 — 4cosx) = 0 when

x=0,+7orcosz =1 Ifa=cos ' 1, then fis CUon (—a,0) and

(v, ) and CD on (—m, —cx) and (0, a).

IPs at (0,0), (£7,0), (o, ~24E), (—a, 2 g5},

. f{x)=sinz —x A. D=R B. z-intercept = 0 = y-intercept

C. f(—z) =sin(—x) — (—x) = —(sinz —z) = —f(z), so f is odd.

D. Noasymptote E, f'(x) = cosx — 1 < 0for all z, so f is decreasing P,

on{—oc,00). F. Noexremevalues G. f’(r)=—sinz =

Fi(z) >0 & sinz<0 & (Zn-1)r <z <2nmsofisCUon
{(2n — 1), 2n7) and CD on (2nw, (2n + 1)7), n an integer. Points of

inflection occur when £ = nm.

when
sin & cosz#1 sinx l—cosx sinxz(l—-cosz) 1—cosw

=Cs8CT ~—Ccotx

.y = flz)

1+ cosx l+cosr 1—cosz sin? sinx

A. The domain of f is the set of all real numbers except odd integer multiples of w. B, y-intercept: f(0) = ;
z-intercepts: * = nw, n an even integer. C. f{—z) = —f(xz), so f is an odd function; the graph is symmetric

about the origin and has period 2. D, When 7 is an odd integer, lim  f(z) =ocand lim . flx) = —x,
T— () z—(nw)

so x = n is a VA for each odd integer . No HA.

~ (1+4cosz)-cosx —sinz(—sinz)  1+4+cosz 1
n {1+ cosz)? " (L4cosz)?  14cosz

E. f'(z) . f'{z) > O for all x except odd

multiples of 7, so f is increasing on {(2k — 1), (2k + 1)7) for each integer k. F. No extreme values

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION45 SUMMARY OF CURVE SKETCHNG O 269

o sinx . - -
G-f (ﬁ):m>0 = sinx >0 = qui 3 x—i 'J'."-V

r € (2kw, (2k + Lyw) and f”(z) < Oon ((2k — 1)x, 2k7)
for each integer k. f is CU on (2km, (2k -+ 1)) and CD on
((2k — 1}, 2kn) for each integer k. f has IPs at (2kw, 0)

for each integer &.

.y = f(z)=cosz/(2+sinz) A. D=TR Note: f is periodic with period 2, so we determine B--G on [0, 2].
B. z-intercepts 3 ,%,y-intercept = f{0) = % C. No symmetry other than periodicity D. No asymptote

(24 sing)(—sinz) —cosz(cosz) _ 2sinz+1
(2 + sinx)?  (2+sinxz)?’

f(z) >0 <« 2sinz+1<0 &

E. f'(z) =

sinz < —1 & I <z < 1% o fisincreasing on (ZF, L7 ) and decreasing on (0, Lx 2m).

F. Local minimum value f(%") = f%, Tocal maximum value f(l%s-ﬁ) = ﬁ
2

” (2 +sinz)?(2cosx) — (2sinz + 1)2(2 + sinz) cosz cosx {1 —sinx)
. = — =l 0
G. /(=) (2 + sinz)* {2+ sinzx)3 et

cosz <0 & Z<x<3 sofisCUon(F,%)andCDon (0, 2} and (32, 27). IPat (3,0), (37,0

H. y

W 4, WL g WLE L, W 4, 2
V= oEr® RIS T aaEl® = mpre @~ e+l

=W a2 a2
—24EI$(I LYy =ex®(x — L)

where c = — 2:;;; i is a negative constant and 0 < x < L. We sketch

f(z} = cz®(z — L) fore = ~1. f(0) = f(L) = 0.

f'(x) = cx®[2(z — L)) + (x — L)*(2¢x) = 2¢x(z —~ L) [z + {(z — L)} = 2cx{x — L)(2x — L). Sa for
C<az<L flz)>0 & z(z—L)2z—-L)<0(incec<0) & L/2<z<Landf{z)<0 &
0 < z < L/2. So f is increasing on (L /2, L) and decreasing on (0, L/2}, and there is a local and absolute
minimum at (L/2, f(L/2)) = (L/2,cL*/16).

f(z) = 2cie(e— L)(2c — L)) =

Fx) = 2¢[lz — L){(2z — L) + 2(1)(2x — L) + z(z — L)(2)] = 2c(62* — 6Lz + L?) =0 &

6L + \/12L

— I 1 L+ l/—_L and these are the z-coordinates of the two inflectton points.
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“—Jc—ﬁ,wherek>{]and0<m<2.F0r0<9:<2.

z—2<0,50 F'(z) = —%253 > 0 and F is increasing.

(z

lim+ F(r) = —ocand lim F(z) =oo,s0z = 0and = 2 are vertical
x—0 =2

asymptotes. Notice that when the middle particle is at x = 1, the net force

acting on it is 0. When x > 1, the net force is positive, meaning that it acts to

the right. And if the particle approaches z = 2, the force on it rapidly
becomes very large. When z < 1, the net force is negative, so it acts to the

left. If the particle approaches 0, the force becomes very large to the left.

Long division gives us: r—1
x+ ll z* +1
$2 +x
—r+1
—z—1
2
1

Thus, y = f(x) = P =m—1+$ilandf(;c)~(:c—1)= [forz £0] —0

as x — +oo. Sothe line y = x — 1 is a slant asymptote (SA).

_ w4zt 4+ +3
a 12 4 2x

4. y

Long division gives us: 2r -3

2?4+ 2z|22%+ 2+ T+3
223 + 457

-3+
— 322 ~ 6z

T+ 3

20 +2° + 7+ 3 Tz +3
Thus, y = r) = =2+ —3 — _ —
us, y = f{x) 2 1 00 x + P and f(z) — (22 — 3)

[forx£0] — (0asz — too. Sotheliney = 2z — Jisa SA.
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Long division gives us:
28 —2

2x2+x—slﬂ3—2a{~’ +5
4z® + 227 — 6z

—4x’ + 6z +5
—4z? - 22 +6

8r—1

37 2 71
4z 2x +5:2$—2+ 8x and

Thus, y = f(z) = 5 —3 2% + 2~ 3

L
z

8

;3:1:—1 = 5'31 3 lforz #0] — Oasx — +oo. Sotheliney =2xr —21is
¢ +xr—3 94 -
x

T2

flo) - (2a -2 = 5

a SA.

s+l 4z .
. y = ——————— . Long division gives us:
®.y=—"""53 g g
QX
? — 22 + 2|5z + 24+ =z

52% — 5g3 + 10z

503 4+ 2% — 9z
5t — 542 + 10

6z — 9z — 10

2* .
6 9z — 10 and

flz) — (52 +5) = B2 g fforz#0] —0asz -~ doo Sotheliney =5z +5

isd SA.
2
— . 1

2z —1 2e—1
—5E 17
B. y-intercept: f(0) = 1; z-intercepts: f(z) =0 = -22°45z-1=0 = z= —1

r=0.22, 228 C. Nosymmetry

D. lim f(z)=-ocoand lim f(z)=o00,50z =1isaVA
T(1/2}~ r—(1/2)t

1 . .
Jim [flx) —(—z+2)] = J:EI:EDG o1 0,sothe liney = —z + 2isa SA.
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2

. 1 — ———— < Oforz # 3, so f is decreasing H. o '
(2¢ — 1) \ ;
on (—oo, 1) and (3,00). F. No extreme values

G. fllz)=-1-22z-1)"7 =

8 <. 50 f"(z) > O when

fla) = —2(-2)(2x - 1)7%2) = 1P

x> Land f(z) < 0 when z < §. Thus, fis CU on (3, 00) and CD

on (—oc, 2). No IP

2
.y:f(m):’”mf;?:HH% A D={z€R|a#2} = (~00,2) U (2,00)

B. y-intercept: f{0) = —6; no z-intercepts. C. No symmetry D. lil’;l flz) = —oo and lir?+ flz) = o0,
r—2 €Tr—

1 . .
sor— 2isaVA. lim [f(z)—(z+2)]= lim 6 _ 0, so the line y = x + 2 is a slant asymptote.

rz—too r—toc T —

16 2412 (x-6){zx+2)

A A TR (@ - 2)?

,50 f'{z) > O0whenx < —20rz > 6 and

f'(x) <Owhen —2 <z < 20r2 < x < 6. Thus, f is increasing on {—oo0, —2} and (6, oo) and decreasing on
{—2,2) and (2, 6).
F. Local maximum value f(—2) = —4,

focal minimum value f(6} = 12

CciLQ)TSO f(z) > 0for

x> 2and f'{z) < Oforz < 2. fisCUon (2,00) and CD

G. f"(z) =16(-2)(z ~2)"° =

on (—oo, 2). No [P

(z®+4)/zx=2+4/z A D= {z|z#0}=(-00,0)U(0,00) B. Nointercept

—f(x) = symmetry about the origin D. lim (z +4/z) = cobut f{z) —x =4/ — Das

r — too, 50y = T is a slant asymptote. lim+ {r+4/z) = oo and
z-—0Q

lim (z44/z)=—oo,sox=0isaVA. E. fl(g)=1—-4/2° >0

z—0—

& z2°>4 & z>2o0rx< 2, s0 fisincreasing on (oo, ~2)

and {2, o) and decreasing on {—2,0) and (0, 2).

F. Local maximum value f(—2) = —4, local minimum value f(2) =4
G, f'(z)=8/2>0 <« x>0s0fisCUon (0,00)and CD

on (—x,0). NolP
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2 .
_ 4wl o1, D={z|z#0}={—00,0)U(0,00) B. No intercept
T T

{z-intercepts would occur when 2% + z + 1 = 0 but this equation has no real roots since b? - dac = -3 < 0.}
C. Nosymmetry D. lim {x +1+1/z) = too,sonoHA. But(z + 1+ 1/x) - (¢ +1) =1/ — Oas
I — X0

x — +00, 50y = = + 1 is a slant asymptote. Also lim (x + 1+ 1/z) =oc, lim (z + 1+ 1/z) = —00, 50
x-s07

x—0
z=0isaVA. E. f(z)=1-1/z" >0Owhenz®*>1 & z>1lor H ¥
z< -1 f(z) <0 & -1<z<1 Sofisincreasingon(—ooc, 1),

(1, 00) and decreasing on (—1,0), (0,1). FE f(1} = 3is alocal

minimum, f{—1) = —1 is a local maximum. G. f“(z) =2/2* >0 /T
< x> 0,50 fis CUon (0,00} and CD on (—-oc,0). No IP

242?41

y=flr) = 2

=2r+1+ A. D=R B. y-intercept: f(() = 1, z-intercept: f(z) =0

2241 22 +1

= O0=2' 42 +1=(z+1)2z* —z+1) = z=-1 C. Nosymmetry D. NoVA

lim [f(#)— 22+ )] = lim —2r L2

1 et e = (), s0 the li = 22 + 1is a slant as tote.
z—too 2 41 mjim1+1/m2 50 the line y A+ 11 nt asymptote

(2° + 1)(=2) — (—22)(22) _ 2(z" +22° +1) — 22" — 2+ 4z°
(2 +1)2 - (x2 +1)2

et 462t 2% +3)

- (22 +1)2 - (22 +1)2

E. f(z)=2+

so f'(x) > 0if z # 0. Thus, f is increasing on (—oc, ) and (0, 20). Since f is continuous at 0, f is increasing
on R. F. Noextreme values
{22417 (82% +122) — (22 + 627) - 2(=" + 1) (22)
[(22 + 1)2)? ;
APy
_dz(a? + D[(2® + 1)(22% + 3) — 22* — 627 YA
- (332 + 1)4 !

G. f'(z) H.

_ dz(—z%+3)
GER

so f"(x) > 0fore < —/3and 0 < x < /3, and f’(z) < O for
~V3<z<Oandz > V3. fisCUon (—oo,—\/g) and (0,\/5),

and CD on {—v/3,0) and (v/3,00). There are three IPs: (0, 1), (—v/3, —2v8 + 1) & (-1.73,~1.60), and

(v3,2/3 +1) = (1.73,3.60).

_ @1 2 +3c+3x 41 g5y l2m-d

5.y = f(x) (x—-1)2 z2-2z+1 (z—1)2

A.D={zeR|z#1}=(-00c,1)U(l,0c) B. y-intercept: (0} = 1,

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

27 L GHAPTER4 AFFLICATIONS OF DIFFERENTIATION

z-intercept: f(z) =0 = =z = -1 C. Nosymmetry D. lim1 f(z) =oco,s0x=1lisa VA,
12 4

P
T
x  z?

120 — 4
, N _ e
im [f(n) = (w4 5)] = lp ——eeg = lim .

=), sotheliney = r + 5is a SA.
(z-1)2 3+ 12— (a4 1) 2z - 1)
((z —1)7)°
- De+1)’Be-1)-2z+1] _ (z+1)*(z-5)
- (@ -1 @— 1
so f'(x) >0whenz < -1, -1 <z < l,orz > 5 and f'{z) <0

H.

E. f'(z) =

when 1 < z < 5. f is increasing on {—o0, 1) and (5, oc) and

L EL0)

decreasing on (1, 5).

F. Local minimum value f(5) = 2€ = 27 no Jocal maximum

(2= 1)’z — 1) + (2= 5)- 2z + 1)] = (& + (& 5) -3z —1)°
(= — 1%

(z—1*(z+D{{z= D[z +1)+2(x —5)] - 3=+ 1)(z - 5)}
(z—1)°

@+ D {-1)Bz -9 -3(2" —4z-5)}  (z+1)(24)
n {z —1)4 INCENIE

so f'(x) >0 -1l <z<lorx>1l,and f'(x) < 0ifx < —1. Thus, fis CUon (-1, 1) and (1, 00) and CD

G. f'(=z) =

on (~oo, —1). [Pat (—1,0)
4x
4z% + 9

VEIST 19 4— 4o 43/VEST+ Y 442’ +9) - 1627 36
427 + 9 C (4w +9)2 T (da? 4 9)327

r)=Vi?+9 = f'(x) =

F(2) =

f is defined on

(—o0,00). f{—z) = f(z),s0 f is even, which means its graph is symmetric about the y-axis. The y-intercept is
J(0) = 3. There are no z-intercepts since f{z) > 0 for all .

VAz? + 9 - 22} (V422 + 9 4 22
lim (v4r? +9—2z) = lim ( It )

nvoo w0 \/41-2 9 + 2z
(4x +9) - Y 9

im ——— =
o0 /ArZ 4+ 942 = \/42:2 + 942z

and, similarly, lim (+4z?24+94+2z) = lim
y T — - 00 ( ) T—— 00 1,’4$2 +

s0y = +2x are stant asymptotes. [ is decreasing on (—oc, 0} and increasing on {0, oc) with local minimum

F(0) = 3. f"(x) > Oforall z,s0 fis CUon R.

sy = flz) = Vel dde = ez +4). 2z +4)20 & z<—dorz>0,50D = (—00,—4|U[0,00).

y-intercept: f(0) = 0; z-intercepts: f(x) =0 = =z = —4,0.
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T T AR T (o4 2) = va? +4:c:|:(:r:+2) Vil tdrt(z+2) _ (x% +4z) — (z° + 4z + 4)
VRt dzE(z+2) VR tdrt(z+2)

—4
C Vzitdz+(z+2)

80 hm [f(&) F (x + 2)] = 0. Thus, the graph of f approaches the stant asymptote § = x + 2as z — oo and it

€T —

2
approaches the slant asymptote y = —(x + 2) as z — —o0. f'{¢) = % so f'(z) < Oforz < —4
T T

and f'(x) > 0 for z > 0; thatis, f is decreasing on (—oc, —4) and ¥
increasing on (0, oc). There are no local extreme values.

flz) =(z+2)(=* +42)7"2 =

(z+2)- (-3)(@® +42)%2 - 2z +4) + (2% + 42) 7/
= (2? +4x) 7% [(z + 2)% + (¢” + 4x))]
—4(z? +42)7%? <0on D

so fis CD on (—o0, —4) and (0, cc). No IP

VirZ —a? 4w
A T

b .
0, so y = ——x is a slant asympiote.
a

= l and lim ~ =0, Therefore, lim [f{z) — z*] = 0,and s0

€T c—tow L

the graph of f is asymptotic to that of y = z2. For purposes of differentiation, we will use f(x) = z* + 1/z.
A. D= {z |z #0} B. Noy-intercept; to find the z-intercept, wesety =0 & x = -1

3 3
1
C. Nosymmetry D. lim vt —ooand lim 2 +1 = —00, H.
r—0t T z—0~ xr

so 2 = 0 is a vertical asymptote. Also, the graph is asymptotic to the

parabola y = z2, as shown above. E. f'(z) =2z —1/z" >0 &

T > —;\}—5 so f is increasing on (3\15,00) and decreasing on (—o0,0) and

0, 2=]. F Local minimum vale f{ 4=} = 398 16 jocal maximum
V2 vz 2

G. f'(z)=2+2/2">0 & zx<-lorz>0,s0fisCUon
(—oc, —1) and (0,00), and CD on {—1,0). IPat(-1,0}
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5. lim [f(z) -2’

z—+oo

. . i
A. D={x|z#0} B. Nointercept C. f issymmetric about the origin. D. lim (:c3 + ;) = —oo and

z—0~
. 3, 1 . . . .
lim [z®+4 =] = o0, so z = 01is a vertical asymptote, and as shown above, the graph of f is asymptotic to
z—0t X

thatofy = z%. E. fl(z) =32 -1/2*>0 & ' >1 & H. ¥

1o fic . ey 1 1
|z} > 5 %0 f is increasing on ( 00, %) and (%,OO) and

decreasing on (—%,U) and (0, “3\}—5) . F. Local maximum value

—%ﬁ) = —4.37%% 1ocal minimum value f(q%) =4.37%1

G. f'(x)=6x+2/2° >0 & z>0,s0fisCUon(0,00)and
CDon (—cc,0). No IP

lim [f(z)—cos €] = lm 1/x* =0, so the graph of f is
#— oo T— oo

asymptotic to that of cos . The intercepts can only be found

approximately. f(x) = f{—z), so f is even. lirr}J (cosx + —-1—2-) = 0o, S0
T T

x = 01is a vertical asymptote. We don’t need to calculate the derivatives,

since we know the asymptotic behavior of the curve.

4.6 Graphing with Calculus and Calculators

1 flz) = 4z* — 3223 + 8927 — 952429 =  f'(z) = 162® — 962% + 178z — 95 =

F'(z) =4822 — 192z + 178. f(z) =0 « z=~05, 1.60; f(z)=0 < =092 2.5 258and

10 404
r [\ /f-
4 24 — 2.8
)T Y
-0.2 1.9

From the graphs of f’, we estimate that f* < 0 and that f is decreasing on {—oc, 0.92) and (2.5,2.58), and that

fliz)=0 & 12146254

A

~2

F' > 0 and f is increasing on (0.92, 2.5) and (2.58, oc) with local minimum values f(0.92) =~ —5.12 and
F(2.58) == 3.998 and local maximum value f{2.5) = 4. The graphs of f’ make it clear that f has a maximom and a

minimum near x = 2.5, shown more clearly in the fourth graph.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION46 GRAPHING WITH CALCULUS AND CALCULATCRS

From the graph of '/, we estimate that f” > 0 and that f is CU 30
on {—oc0, 1.46) and (2.54, 00), and that f” < O and f is CD on \ /jr

(1.46, 2.54). There are inflection points at about {1.46, ~1.40} and

(2.54, 3.999).

-20
2. f(z) =2a® —152° + 75r" — 1252° -z =
Flz) = 62° — 75z* + 3002® — 3752 =1 = f"(z) = 30z* — 300x* + 9002” — 750z.
flx)=0 & z=0o0rx~533 [f(r)=0 < x~2.50,4.95 0505

f'(z)=0 & z=0,50rz~ 138, 3.62.

300

|
_L

From the graphs of f’, we estimate that f is decreasing on (—o0, 2.50), increasing on (2.50, 4.95), decreasing on
(4.95, 5.05), and increasing on (5.05, co), with local minimum values f(2.50) =~ —246.6 and f(5.05} =~ —5.03,
and local maximum value f(4.95) = —4.965 (notice the second graph of f ). From the graph of f”, we estimate
that f is CU on {—o00,0), CD on (0, 1.38), CU on (1.38, 3.62), CD on (3.62, 5), and CU on (5, oo). There are
inflection points at (0, 0) and (5, —5), and at about (1.38, —126.38) and (3.62, —128.62).

2r -3

1 2 2 -3z+24
3 (22 - 3z — 5)*/3

9 (z? — 3z — 5)5/3

\

-3

3 f(z) = \d/m = _f"(a") = f”(&:) _

3

22 -3

z—5
Note: With some CAS’s, including Maple, it is necessary to define f(x) = m |$2 - 3z - 5|

since the CAS does not compute reak cube roots of negative numbers. We estimate from the graph of f' that f is

1/3

)
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increasing on (1.5, 0o}, and decreasing on (—o0, 1.5). f has no maximum. Minimum value: f(1.5} ~ —1.9.
From the graph of f”, we estimate that f is CU on (~1.2,4.2) and CD on (~00, —1.2) and (4.2, oo). IPat
(~1.2,0) and (4.2, 0).

b 2® - 227 + 2 N f,(cc)_2x5+2w4—3z3f4w2+2:c—1
24+ x—2 (a:2+:c—2)2

- flz) =

2% +32° — 32 —112% + 122° + 18z — 2
(22 +x—2)°

f(x) =2

L

TN T

8

We estimate from the graph of f’ that f is increasing on (—2.4, —2), (=2, —1.5) and (1.5, cc) and decreasing
on (—oo, —2.4), (—1.5,1) and (1, 1.5). Local maximum value: f(—1.5) = 0.7.
Local minimum values: f{—2.4) = 7.2, f(1.5) == 3.4. From the graph of f”, we estimate that f is CU on
(—c0,—2).{—1.1,0.1) and (1, 00) and CD on (—2, —1.1) and (0.1, 1}.
fhasIPat (~1.1,0.2) and (0.1, —1.1).
—22% 4 2¥ 1

(z8 — 22 — 4z +1)°
2(3z® — 3z* + Bz — 627 + 3z + 4)

(2% — 22 — 4z 4+ 1)°

3

T
-2 —-dr+1

7@) =

f”((L’) —

i

We estimate from the graph of f that 3 = 0 is a horizontal asymptote, and that there are vertical asymptotes at

=3

= —1.7, z = 0.24, and x = 2.46. From the graph of f’, we estimate that f is increasing on {—oc, —1.7),
(—1.7,0.24), and (0.24, 1), and that f is decreasing on (1, 2.46) and (2.46, 00). There is a local maximum value
at f(1) = —3. From the graph of f”, we estimate that f is CU on (—o0, —1.7), (—0.506,0.24), and (2.46, c0),
and that f is CD on (1.7, —0.506) and (0.24, 2.46). There is an inflection point at {—0.506, —0.192).
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6. f(z) =tanx +5Scosz = f'(z)=sec’z —5sinz = f'(z)= 2sec® x tanz — 5 cosz. Since f
is periodic with period 27, and defined for all = except odd multiples of 5, we graph f and its derivatives

Ol’l[ z 3”]

272

12

We estimate from the graph of f' that f is increasing on (—3,0.21), (1.07, 2}, (%,2.07), and (2.93.31),
and decreasing on (0.21,1.07) and (2.07,2.93). Local minimum values: f{1.07) =~ 4.23, f (2.93) ~ —5.10.
Local maximum values: f{0.21) = 5.10, f{2.07) = ~4.23.

From the graph of £, we estimate that f is CU on (0.76, Z) and (2.38, 2% ), and CD on (—%,0.76) and
(Z,2.38). f has IP at (0.76,4.57) and (2.38, ~4.57),

1 flz) =2’ -4z + Tcosz, -4 <z <4 fl(z)=20-4-Tsine = f'(z)=2-"Tcosz.
flz) =0 & z~110;f(z)=0 & z~=-149,-107,0r289; f'(z)=0 <«
z=+tcos ' (%) = £1.28.

10

A ]
*/F

7

From the graphs of f’, we estimate that f is decreasing (f' < 0) on {—4, —1.49), increasing on (—1.49, —1.07),

5

decreasing on {—1.07, 2.89), and increasing on (2.89, 4), with local minimum values f{—1.49) ~= 8.75 and
f{2.89) =~ —9.99 and local maximum value f{—1.07) &~ 8.79 (notice the second graph of f). From the graph
of f, we estimate that f is CU (f* > 0) on (—4, —1.28), CD on {—1.28,1.28}, and CU on {1.28, 4}. There are
inflection points at about {—1.28,8.77) and (1.28, —1.48).
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sin @ rcosk —sinz
8 f(x) = - , =2 < ¢ < 2w f(z) = —

x%(cosz — xsinx — cosz) — (xcosz — sin x)(27) —x?sinz — 2xcosz + 2sinx

f”(I) = (22)2 -

el

-3

f is an even function with domain (—o0, 0) U (0, o0). There is no y-intercept, but }:l‘% f(z) = 1. The z-intercepts
are -2, —7. 0, 7, and 27. From the graph of f', we estimate that f is decreasing on (-2, —4.49), increasing on
(—4.49,0), decreasing on (0, 4.49). and increasing on (4.49, 27). Thus, f has local minima of
f(:4.49) =~ —0.22. From the graph of f", we estimate that f is CD on (-2, —5.94), CU on (~5.94, —2.08),
CD on (—2.08,0} and (0, 2.08), CU on (2.08,5.94), and CD on (5.94, 27). f has 1Ps at approximately
(45.94, —0.06) and (£2.08, (.42).

)y =82 =3 ~10 = flz) =242 -6z = f'(z) =48z 6

20

2

|
-1

7 1 0.3 0.5
— 40 —~1 -10.5

From the graphs, it appears that f(x) = 8z — 32% — 10 increases on {(—0o0, 0) and {0.25, c0) and decreases on
{0,0.25); that f has a local maximum value of f(0) = —10.0 and a local minimum value of f(0.25) ~ —10.1; that
fis CUon (0.1, 00) and CD on {—oc, 0.1); and that f has an IP at (0.1, —10). To find the exact values, note that
f'(z) = 242 — 6z = 6z(4x — 1), which is positive (f is increasing) for {—o0, 0) and {4, 0c), and negative
(f is decreasing) on (0, %) By the FDT, f has a local maximum at z = 0: f(0) = —10; and [ has a local
minimumat 1: f(3) =% — £ —10= -8 f"(z) = 48z — 6 = 6(8z — 1), which is positive (f is CU) on
(£, 00) and negative (f is CD)on (—oc, 3). fhasanIPat (3, f(3)) = (3. - %)

10. 3 3

N

2
-6 20

From the graphs, it appears that f increases on (0, 3.6) and decreases on {—o0, 0} and (3.6, c0); that f has a local

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 46 (GRAPHING WITH CALCULUS AND CALCULATCRS T 281

maximum of f(3.6) ~ 2.5 and no local minima; that f is CU on (5.5, oc) and CI} on (—o00, 0) and (0, 5.5); and

22+ 1lz—20 11

that f has an IP at (5.5,2.3). f(z} = — = 1+—— -5

f(z) = —11z7% + 4022 = —& 311z — 40), which is positive (f is increasing) on (0, 12, and negative
4

(f is decreasing) on (—00,0) and on (42, 00). By the FDT, [ has a local maximum at x = 4L

40 11(38) — 20 -11-40 — 20 -
= (11) + 1(57) _1600+11-11-40—20-121 _ &; and f has no local minimom.
(%)2 1600 80

= -11z"? +40z7% = [f"(z) =222"%— 120z~* = 2z*(11z — 60), which is positive (f is CU) on
oo), and negative (f is CD) on (—oo, 0) and {0,89). fhasanIPac (90, f($0)) = (88,2,

111 11 117 90

. From the graph, it appears that f increases on (—2.1, 2.1) and decreases 4.6
on (—3,—2.1) and (2.1, 3); that f has a local maximum of f(2.1) ~ 4.5 ( 1 :
-3l 3.1

and a local minimum of f(—2.1) = —4.5; that f is CU on (—3.0,0) and
CDon (0,3.0), and that f has an 1P at (0,0). f(x) = 2v9 —2? = J

roos — - 2z°
f@0—¢§?E+W9 vﬁ?@

(f is increasing) on (_32‘[2' ———‘/_) and negative (f is decreasing) on ( 3, %/—5) and (3 V2 5) By the FDT,

2t

2
J has a local maximum value of f i\f 2 % and f has a local minimum value of

f(“STﬁ) = —2 (since f is an odd function). f'(z) = ——-9:%? + /09— 22
V8 —x?{-2r) + xz(%) (9 - mz)"lm(fh}

_ IR At VS
9 2 ;1:(9 a:)

_ 3= 2 (2% -27)
CVI-a? (9P (9 - 22)?

which is positive (f is CU) on (=3, 0) and negative (f is CD) on (0, 3). f has an IP at (0, 0).

which is positive vy

f”(x) —

and decreases on (—2m, —5.2), (—1.0,1.0), and (5.2, 27); that f has local

. From the graph, it appears that f increases on (—5.2, —1.0) and (1.0, 5.2)
maximum values of f(—1.0) & 0.7 and f{5.2) = 7.0 and local minimum 63 {

PN

vatues of f(—5.2) = —7.0and f(1.0) = —0.7; that f is CU on L/
(—2=,~3.1) and {0,3.1) and CD on (—3.1,0) and (3.1, 27), and that f

has [P at (0,0), {—3.1,—3.1}and (3.1,3.1). f(z) =a — 2sinz =

=175

f(z) =1 — 2cos z, which is positive (f is increasing) when cosz < 3, thatis, on {3, —Z) and (3,

and negative (f is decreasing) on {~2n, — 3%}, (~%, %}, and (3F,2r). By the FDT, f has local maximum values
of f(-3)=3+ V3 and f(3R) =22 4 /3, and local minimum values of f(—2¢) = — 28 — /3 and
F(Z)=-2 V3. f(a) =1—2cosz = ["(x) = 2sinz, which is positive (f is CU) on (—27, —) and

(0,7) and negative (f is CD) on (—x,0) and (7, 27). f has TP at (0,0), (—m, —=x) and (m, 7).
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13.

has VA at ¢ = 0 and at = = 1 since

= —coand lim f(z)=co.

z—1

[dividing numerator and

denominator by z°]

_ 2
= (L+4/x)(1 — 3/2) — Dasx — £oo, so f is asymptotic
2z —1)

to the z-axis. Since f is undefined at x = 0, it has no y-intercept. f(z) =0 = (z+4)(z - =0 =

r = —4orz = 3, so f has z-intercepts —4 and 3. Note, however, that the graph of f is only tangent to the z-axis

and does not cross it at z = 3, since f is positive as z — 37 and as z — 3%,

500

1. R

- 1500

From these graphs, it appears that f has three maximum values and one minimum value. The maximum values are
approximately f{—5.6) = 0.0182, f(0.82) = —281.5 and f(5.2}) = 0.0145 and we know (since the graph is

tangent to the x-axis at x = 3) that the minimum value is f(3) = 0.

10z(x — 1)*
(z—2)3x+1)?

xlin_llf( ) =00, lifgt f(z) = —ocoand lim f(z) = co.

has VA at x = —1 and at x = 2 since

flz) =

r—2t

N 10(1 - 1/x)*
1) = T 2pp 7 ey
the line y = 10. f(0) =}, so f has a y-intercept at 0. f{z) =0 =

— 10as x — +oo, so f is asymptotic to

10z(x —1)*=0 = x=~0o0rx = 1. So f hasz-intercepts 0 and 1.

Note, however, that f does not change sign at x = 1, so the graph is tangent to the z-axis and does not cross it.
We know (since the graph is tangent to the z-axis at z = 1) that the maximum value is f(1)} = 0. From the graphs it

appears that the minimum value is about f(0.2) = —0.1.
20
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1) a:(x—i—l) (z* +182° —44J:—16)

15 f( )— (m_‘)\2(~p_/|\4 = f'v'_‘)\Snrm_/I)S (fI’Ol‘nCAS)
0.0011

Am M\

—0(]002 700001 —2000

From the graphs of f', it seems that the critical points which indicate extrema occur at z ~ —20, —0.3, and 2.5,
as estimated in Example 3. (There is another critical point at z = —1, but the sign of f” does not change there.)

+ 1)(x® + 362° + 62 — 6282% + 684z + 672z + 64
We differentiate again, obtaining f''(x) = 2 (= +1)( 5 )
0.00001 (z - 2) (x —4)

|72 R e
i 0

I

—0.00001 —0.001

From the graphs of £, it appears that f is CU on (—35.3, -5.0), (—1, —0.5), (—0.1,2), (2,4) and (4, 0c) and CD
on (—oc, —35.3), (5.0, —1) and (—0.5, —0.1). We check back on the graphs of f to find the y-coordinates of the
inflection points, and find that these points are approximately (—35.3, —0.015), (—5.0, —-0.005}, (—1,0),
(—0.5,0.00001), and (—0.1, 0.0000066).

10z(z - 1)*
(z —2)%(x+1)2

200 1

z — 1*(5¢ — 1) (from CAS).

VY |
= SO =-0 e e

- flz) =

/

0 —50

-6

From the graphs of f’, we estimate that f is increasing on (—oo, —1} and (0.2, 1) and decreasing on {—1,0.2),
(z — 1)*(52° — 8z* + 17z — 6)

(1,2) and (2, co). Differentiating f'(x), we get f"'(z) = 60 FEDHEEIE

100

2
0{
A T >5 {
-2

-3

From the graphs of f”, it seems that f is CU on (—oo, —1.0), (—1.0,0.4} and (2.0, 00), and CD on (0.4, 2). There .
is an inflection point at about (0.4, —0.06).
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sinfz , sinx [2(::32 + 1) cos — xsin 51:1
1. y = flz) = \/—.E_Z—-F——_—l with 0 < = < 37. Froma CAS, g’ = = 1)3/2

(4m4 + 622 + 5)(:052 r— 4:):(:1:2 + 1)sina:cosx —2zt— 2,2 -3
(z2 +1)* l

and

1

'y:

From the graph of f’ and the formula for y', we determine that y’ = 0 when z = 7, 2, 37, orz & 1.3, 4.6, or 7.8.
So f is increasing on (0, 1.3}, (m, 4.6), and (27, 7.8). f is decreasing on (1.3, ), (4.6, 27), and (7.8, 37). Local
maximum values: f{1.3) = 0.6, f(4.6) ~ 0.21, and f(7.8) = 0.13. Local minimum values: f(m) = f(2r) = 0.
From the graph of f*, wesee thaty” =0 < 1 20.6,2.1,3.8,5.4,7.0,0r8.6. So fis CUon (0,0.6),
(2.1,3.8), (5.4,7.0), and (8.6,3x). f is CD on (0.6, 2.1), (3.8,5.4), and (7.0, 8.6). There are IP at (0.6,0.25),
(2.1,0.31), (3.8,0.10), (5.4,0.11), {7.0,0.061), and (8.6, 0.065).

2o —1

N

453 4+ 6z + 9
4zt + 2+ 1)

3228 + 96x* + 1522° — 4822 + 62 + 21
- 16(xt + 2 4 1)°*

fz) =

['(z) =

From the graph of f', f appears to be decreasing on {—oco, —0.94) and increasing on (—0.94, co). There is a local
minimum value of f(—0.94) =~ —3.01. From the graph of f”, f appears to be CU on (—1.25, —0.44) and CD on
(—o0, —1.25) and (—0.44, o). There are inflection points at {(—1.25, —2.87) and (—0.44, —2.14).

1.2

-1.2

From the graph of f(z) = sin(z + sin 3z) in the viewing rectangle [0, 7] by [—1.2, 1.2], it looks like f has two
maxima and two minima. If we calculate and graph f'(z) = [cos(z + sin3z)] (1 + 3cos 3z) on [0, 27,
we see that the graph of f’ appears to be almost tangent to the z-axis at about x = 0.7. The graph of

[ = — [sin(z + sin 3z)] (1 + 3 cos 3z)* + cos(z + sin 3x)(—9sin 3z) is even more interesting near this z-value:

it seems 1o just touch the z-axis.
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NN

0.9997 -2

If we zoom in on this place on the graph of f”, we see that f" actually does cross the axis twice near z = 0.65,
indicating a change in concavity for a very short interval. If we look at the graph of f' on the same interval, we see
that it changes sign three times near z = 0.65, indicating that what we had thought was a broad extremum at about
& = 0.7 actually consists of three extrema (two maxima and a minimum). These maximum values are roughly
£{0.59) = 1 and £(0.68) = 1, and the minimum value is roughly f(0.64) = 0.99996. There are also a maximum
value of about f(1.96) = 1 and minimum values of about f(1.46) = 0.49 and f(2.73) = —0.51. The points of
inflection on (0, 7) are about (0.61,0.99998), (0.66,0.99998), (1.17,0.72), (1.75,0.77), and {2.28,0.34). On
(7, 2m), they are about {4.01, —0.34), (4.54, —0.77), (5.11, —0.72), (5.62, —0.99998), and (5.67, —0.99998).
There are also [P at (0, 0) and (m, 0). Note that the function is odd and periodic with period 2=, and it is also

rotationally symmetric about all points of the form ((2n + 1)x,0), n an integer.

L f@) =2t tex=x(z"+c) = fley=32"+c = f'(z)=6z
20 20

20 ~20
ce= —6 e=10 c==6
z-intercepts: When ¢ > 0, 0 is the only z-intercept. When ¢ < (}, the x-intercepts are () and +v/ e
y-intercept = f(0) = 0. f is odd, so the graph is symmetric with respect to the origin. f'(z) <0forz < 0and
f’(z) > 0forz > 0,s0 fis CD on (—oc, 0} and CU on (0, oo} . The origin is the only inflection point.
If ¢ > 0, then f'(x) > Oforall z, so f is increasing and has no local maximum or minimum.
If ¢ = 0, then f'(2) > 0 with equality at = = 0, so again f is increasing and has no local maximum or

minimum.

If e < 0, then f'(z) = 3[z* — (—¢/3)] = 3(m+ c/S)(z— —c/3),
so f' (x )>00n( - )and( c/3,oo),f’(a: ) < Oon
( v —¢/3, \/T) Itfollowsthatf( c/3) Vv —c/3is

a local maximum value and f( —0/3) =2¢\/—-c/3is alocal

minimum value. As ¢ decreases (toward more negative values), the local

maximum and minimum move further apart.

There is no absolute maximum or minimum value. The only
transitional value of ¢ corresponding to a change in character of the graph

is ¢ =},
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21. f(z) = 2* + co® = 2%(2? + ¢). Note that f is an even function. For ¢ > 0, the only z-intercept is the point (0,0).
We calculate f'(z) = 4z° + 20 = 4z(2? + 3¢) = f"(z} = 122" + 2e. If ¢ > 0, z = O is the only critical
point and there is no inflection point. As we can see from the examples, there is no change in the basic shape of the
graph for ¢ > 0; it merely becomes steeper as ¢ increases. For ¢ = 0, the graph is the simple curve

y = &*. For ¢ < 0, there are z-intercepts at 0 and at £+/—c. Also,

o
there is a maximum at (0, 0}, and there are minima at '
1
\
§

(ﬂ:\ [—1c, ficz) . As ¢ — —o00, the z-coordinates of these minima

get larger in absolute value, and the minimum points move

downward. There are inflection points at (:|:1 [—%c,— %3), which

also move away from the origin as ¢ — —oc.

. We need only consider the function f(z) = 2°v/c? — 22 for ¢ > 0, because if ¢ is replaced by —c, the function is
unchanged. For ¢ = 0, the graph consists of the single point (0,0). The domain of f is [—c, ¢|, and the graph of f is
symmetric about the y-axis.

=2z T «® _ 237(62 -} -

2\/62—1}2 ved — 2 B Vet — z?

So we see that all members of the family of curves have horizontal tangents at z = 0, since f'(0) = 0 forall ¢ > 0.

fila) =20V -2 ot ———

Also, the tangents to ail the curves become very steep as & — Le, since lim  f'(z) = co and

I—*—C

lim f(z)=—oc. Weset f/() =0 & z=0o0rz’— Zc? = 0, s0 the absolute maximum values

- 3
r—

are f(:l:\/gc) = Bi\/ﬁcs.

() = (—92% + 2¢*) V2 — 2% — (-32° + 2%z) (—z VT —2?) 6zt — 9cPx? + 20
= 2 — o2 - (c2 — $2)3/2

24 .2 /o=
Using the quadratic formula, we find that f”/(x) =0 < z° = Mi%-ﬁ Since —c < = < ¢, we take

= i i ; - 9 —+33)(v33—3) .
x? = 22332 50 the inflection points are (:I:u’ 9 lgﬁc, ( )( )Ca)l

144

From these calculations we can see that the maxima and the points of
inflection get both horizontally and vertically further from the origin as ¢

increases. Since all of the functions have two maxima and two inflection

points, we see that the basic shape of the curve does not change as ¢

changes.

. Note that ¢ = () is a transitional value at which the graph consists of the z-axis. Also, we can see that if we

substitute —c¢ for ¢, the function f{z) = T &5 will be reflected in the x-axis, so we investigate only positive
cexr
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values of ¢ (except ¢ = —1, as a demonstration of this reflective property). Also, f is an odd

function. hT f(z) = 0,50y = 0is a horizontal asymptote for all c. We calculate
=T

(14 c*z2?)c - cz(2c’x) B _c(czzz -1}

= ) =0 & 2 —-1=0 < x==1/c Sothere
(1 + 222)? Gramp @ /

f(m) =

is an absolute maximum value of f(1/¢) = 3 and an absolute minimum value of f(~1/c) = —1. These extrema

have the same value regardless of ¢, but the maximum points move closer to the y-uxis as ¢ increases.

(—2c%z) (1 + c2:c2)2 - (=2 +c)2(1 + Fi?) (26%7)]
(1+ 222"

(-2c%z) (1 +*2%) + (c3592 —¢)(4c’z) _ 2033(c2$2 -~ 3)

(14 c2z2)3 (1+c2z2)3

(=) =

f'(z) =0 & z=0o0r=v3/c, so there are inflection points at (0, 0)
and at (£v/3/c, £v/3/4).

Again, the y-coordinate of the inflection points does not depend on ¢, but as ¢ increases, both inflection points

approach the y-axis.

1

. Note that f(l‘) = u—_;m

is an even function, and also that ligl f(x) = 0forany value of e, soy = 0
Tr— T oo

c=0

is a horizontal asymptote. We calculate the derivatives:

—4{1 — 22 2 dz{z®+ (3¢-1
fia) = { .DQ).’L‘ + c;c _ xle? + (2,_,(: )l,and
[(1—22)" + cz?] (1 -22)" + cx?]
. 102° + (9¢ — 18)z* + (32 = 12¢ + 6)2? +2 — ¢
[z + (¢ — 2)22 + 1) ‘

=) =

We tirst consider the case ¢ > 0. Then the denominator of f’ is

positive, that is, {1 — 22)” + ez? > 0 for all 2, so f has domain R and also £ > 0. If 3¢ — 1 = 0; thatis, ¢ > 2,
then the only critical point is f(0) = 1, a maximum. Graphing a few examples for ¢ > 2 shows that there are two IP
which approach the y-axis as ¢ ~+ co.

¢ = 2 and ¢ = 0 are transitional values of ¢ at which the shape of the curve changes. For (0 < ¢ < 2, there are

three critical points: f(0) = 1, a minimum value, and f(:l:,/l - %(-) = _(II—M)’ both maximum values. As¢
cfl —¢

decreases from 2 to 0, the maximum values get larger and larger, and the z-values at which they occur go from 0 to
+1. Graphs show that there are four inflection points for 0 < ¢ < 2, and that they get farther away from the origin,
both vertically and horizontally, as ¢ — 0. For ¢ = 0, the function is simply asymptotic to the z-axis and to the
lines z = =1, approaching 4+oc from both sides of each. The y-intercept is 1, and (0, 1) is a local minimum. There
are no inflection points. Now if ¢ < 0, we can write

flz) = . = ! = L . So f has vertical

(1*.‘]’)2)2-{-(!1172 (1Am2)2_(\/‘_"5m)2 ($2—ﬁ$~1)(12+\f—?m—1)
asymptotes where 22 + /—cx —1=0 & z= (—/=ctVi—-c)/2orz= (V-ctvi-c)/2 Asc
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decreases, the two exterior asymptotes move away from the origin, while the two interior ones move toward it. We

graph a few examples to see the behavior of the graph near the asymptotes, and the nature of the critical points

w:(]andaszj:\/lﬂéc:
) 2

T T
_.“

H i '
- 1

-.2

c=~1 c=—2 c=—4
We see that there is one local minimum value, f(0) = 1, and there are two local maximum values,

S (:I: 1- %c) = —(11—/4) as before. As ¢ decreases, the z-values at which these maxima occur get larger, and
efl—c

the maximum values themselves approach 0, though they are always negative,

. f(@)=cx+sinz = fl(z)=c+cosz => f’(z)=-sinz

f(—z) = — f(z), so f is an odd function and its graph is symmetric with respect to the origin.

f(z) =0 < sinr = —cr, s00is always an z-intercept.

f(z)=0 & cosz= —c, so there is no critical number when |¢| > 1. If |¢] < 1, then there are infinitely
many critical numbers. If z; is the unique solution of cos z = —c in the interval [0, 7], then the critical numbers are
2nm + xy, where n ranges over the integers. (Special cases: Whene =1, x; = O, whenc= 0,1 = -’25; and when
c=-1,x1 =)

f(x) <0 <« sinx > 0,s0 f is CD on intervals of the form (2nm, (2n + 1)), fis CU on intervals of the
form {(2n — 1)7, 2n7). The inflection points of f are the points {2n7, 2nmc), where n is an integer.

If ¢ > 1, then f'{z} > 0 forall z, so f is increasing and has no extremum. If ¢ < —1. then f'(x) < 0 forall z,
so f is decreasing and has no extremum. If j¢| < 1, then f'(x) >0 <& cosz > —c < zisinaninterval of
the form (2nm — @1, 2n7 + 1) for some integer n. These are the intervals on which f is increasing. Similarly, we
find that f is decreasing on the intervals of the form (2n7 + x1,2{n + 1)7 — z1). Thus, f has local maxima at the
points 2n + @1, where f has the values ¢(2nm + x1) + sinx; = ¢(2n7 + 1) + /1 — ¢2, and f has local
minima at the points 2n7 — x,, where we have f(2n7 — 1) = ¢(2nm — 1) —sinz; = e(2n7 — 21) — V1 — 2.

The transitional values of ¢ are —1 and 1. The

inflection points move vertically, but not horizontally,
when ¢ changes. When |c| > 1, there is no extremum. For
le] < 1, the maxima are spaced 2w apart horizontally, as

are the minima. The horizontal spacing between maxima

and adjacent minima is regular (and equals 7) when ¢ = 0,

but the horizontal space between a local maximum and the

nearest local minimum shrinks as |¢{ approaches 1.
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26. For ¢ = 0, there is no inflection point; the curve is CU everywhere. If ¢ increases, the curve simply becomes steeper,
and there are still no inflection points. If ¢ starts at O and decreases, a slight upward bulge appears near z = 0, so
that there are two inflection points for any ¢ < 0. This can be seen algebraically by calculating the second

derivative: f(z)=z' +ca’+z = fla)=42°+2cx+1 = f'(z)= 122"+ 2c Thus, f"(x) >0

when ¢ > 0. For ¢ < (, there are inflection points when z = + A%c. For ¢ = 0, the graph has one critical

number, at the absolute minimum somewhere around z = ~0.6. As ¢ increases, the number of critical points does
not change. If ¢ instead decreases from 0, we see that the graph eventually sprouts another local minimum, to the
right of the origin, somewhere between 2 = 1 and z = 2. Consequently, there is also a maximum near & = 0.
After a bit of experimentation, we find that at ¢ = —1.5, there appear to be two critical numbers: the absolute

minimum at about z = —1, and a horizontal tangent with no extremum at about z = 0.5. For any ¢ smaller
3

than this there will be 3 critical points, as shown in the graphs with ]

=3
20/ L s
I
'l
]

¢ = —3 and with ¢ = —5. To prove this algebraically, we calculate

f'(z) = 4z + 2cz + 1. Now if we substitute our value of ¢ = —1.5, the
25

formula for f'(z) becomes 4z° — 3z + 1 = (z + 1){2z — 1)°. This has

indicating that the function has two critical

a double root at & = %,
points: z = —landx = %,just as we had guessed from the graph.

(a) f(z) = cz* — 222 + 1. For ¢ = 0, f{z)} = —2z* + 1, a parabola whose vertex, (0, 1), is the absolute
maximum. For ¢ > 0, f(z) = cz* — 22° + 1 opens upward with two minimum points. As ¢ — 0, the minimum
points spread apart and move downward; they are below the x-axis for 0 < ¢ < 1 and above for ¢ > 1. For

¢ < 0, the graph opens downward, and has an absolute maximum at z = 0 and no local minimum.

(b) f'(z) = dez® — 4z = dex(2® — 1/c) (e #0). e <0, 0is the
only critical number. f(z) = 12cz® — 4, so f"(0) = —4 and there

is a local maximum at (0, f{0}) = (0,1), which liesony = 1 — z*

If ¢ > 0, the critical numbers are 0 and 1/ \/E As before, there is a

focal maximum at (0, £(0)) = (0,1), which liesony = 1 ~ z°.

f(£1/+/c) =12 — 4 =8 > 0, so there is a local minimum at
z = £1/y/c Here f (£1/y/e)=c(l/c®}) —2/c+1=—1/c+ 1
But (+1/y/c,—1/c+ 1) liesony = 1 — x* since
1— {21/’ =1- 1/e
8 (a) flz) =22 +ca® + 2 = fa)=62"+2cx+2=203z"+cz+1}). f'(x) =0 &

—c+ 2 —12 " .
= _‘___Gi._.___ So f has critical points & 2 —12>0 & | > 2v/3. Forc = +2V/3,

f'(z) > 0on (o0, 00), so f does not change signs at —c/6, and there is no extremum. If ¢* — 12 > 0, then
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, 12 . .
f' changes from positive to negative at ¥ = ————————— and from negative to positive at

—c+ V2 —12 —c—/c2 — 12
6

. So f has a local maximum at x = — % and a local minimum at

—c+ V2 —-12
R

(b) Let zg be a critical number for f(x). Then f'(z0) =0 =

. -1 3z}
3xi+cxo+1=0 < c:T—TO.Now
To

—1 - 322
f(l'o) :2373+C$?)+23.’70 = 2I3+mg(TmQ) + 2z
Qa

3 3 3
12$U—$0*3${]+2£E0:$0—$0

So the point is {xa, yo) = (v, To — z3); that is, the point lies

onthe curve y = ¢ — z°.

4.7 Optimization Problems

1. (a) We needn’t consider pairs where the first number
First Number { Second Number | Product

22 22

21 42
20 answer appears to be 11 and 12, but we have

is larger than the second, since we can just

interchange the numbers in such cases. The

19 76 considered only integers in the table.
18 90
17 102
16 112
15 120
14 126
10 13 130
11 12 132

(b} Call the two numbers x and y. Then = + y = 23, so y = 23 — «. Call the product P. Then
P = zy = (23 — x) = 23z — 2°, so we wish to maximize the function P(x) = 23z — z°. Since
P'(x) =23 — 2r,wesee that P'(z) =0 & x = % =11.5. Thus, the maximum value of P is
P{11.5) = (11.5)% = 132.25 and it occurs when z — y = 11.5.

Or: Note that P"{z) = —2 < 0 for all z, so P is everywhere concave downward and the local maximum at

x = 11.5 must be an absolute maximum.
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. The two numbers are ¢ + 100 and z. Minimize f(z) = (z + 100)z = 2% + 100z. f'(z) =2z +100=0 =
z = —50. Since f”(x) = 2 > 0, there is an absolute minimum at x = —50. The two numbers are 50 and —50.

. 100
., The two numbers are « and @, where z > 0. Minimize f(z) =z + - fllx) =
z

The critical number is z = 10. Since f'(x) < 0 for0 < z < 10and f'(z) > 0 for z > 10, there is an absolute
minimum at z = 10. The numbers are 10 and 10.

. Let z > O and let f(z) = = + 1/x. We wish to minimize f(x). Now
fiz)=1- % = %,ﬁ;(m? ~1) = %(m + 1)(z — 1), so the only critical number in (0, o) is 1.

f'{(z) <0for0 <z < land f'(z) > 0forz > 1, so0 f has an absolute minimum at z = 1, and f(1) = 2.
Or: f'(z) = 2/z° > Oforall z > 0, s0 f is concave upward everywhere and the critical point (1, 2) must
correspond to a local minimum for f.

. If the rectangle has dimensions x and y, then its perimeter is 2z + 2y = 100 m, so y = 50 — x. Thus, the area is
A = zy = (50 — z). We wish to maximize the function A(z) = (50 — ) = 50z — 22, where 0 < & < 50.
Since A'(x) = 50 — 2z = —2(zx — 25), A'(z) > 0for 0 < = < 25 and A'(z) < 0for 25 < 2 < 50. Thus, A has
an absolute maximum at x = 25, and A(25) = 257 = 625 m®. The dimensions of the rectangle that maximize its
area are x = y = 25 m. (The rectangle is a square.)

. If the rectangle has dimensions x and y, then its area is zy = 1000 m?, so y = 1000/x. The perimeter
P = 2x 4+ 2y = 2z + 2000/z. We wish to minimize the function P{x} = 2z + 2000/x forz > 0.
P'(x) = 2 — 2000/2% = (2/2%)(z* ~ 1000}, so the only critical number in the domain of P is z = +/1000.
P"(x) = 4000/z® > 0, so P is concave upward throughout its domain and P(\/ﬁ]—O-O) = 4/1000 is an absolute
minimum value. The dimensions of the rectangle with minimal perimeter are z = y = /1000 = 10+/10 m.

{The rectangle is a square.)

. (a)

125 75

The areas of the three figures are 12,500, 12,500, and 9000 ft?. There appears to be a maximum area of at least
12,500 ft2.

(b) Let z denote the length of each of two sides and three dividers.

Let y denote the length of the other two sides.

{c) Area A = length x width =y - =
(d) Length of fencing = 750 = 5z + 2y =750
() 5z+2 =750 = y=3715-3z = Az)= (375 z}x =375z — 227

(fy A'(z) =375 -5z =0 = =75 Since A”(z} = —5 < 0 there is an absolute maximum when x = 75.
Then y = 228 = 187.5. The largest area is 75322 ) = 14,062.5 ft*. These values of - and y are between the

values in the first and second figures in part (a). Our original estimate was low.
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{b) Let x denote the length of the side

of the square being cut out. Let y

denote the length of the base.

ix :
....: ................... }..-.,
X H

The volumes of the resulting boxes are 1, 1.6875, and 2 ft®. There

appears to be 2 maximum volume of at least 2 3.

{c) Volume V = length x width x height = V=y.y.-z= Ty?
(d) Lengthof cardboard =3 = z+y+rx=3 = y+2r=3
@y+2x=3 = y=3-22 = V(z)==z(3 2u)°

(f) V(z) = (3 - 22)° =

Viz) =2 2(3 -20)(—-2) +(3-22)* - 1 = (3 — 2xr)[-4z + (3 — 2z)] = (3 - 2z)(—6z + 3),

3

so the critical numbers arez = 2 andz = 3. Now 0 < z < 3 and V(0) = V(2

) = 0, so the maximum is

V(L) = (1)(2)* = 2 ft*, which is the value found from our third figure in part (a).

zy = 1.5 x 10%, so y = 1.5 x 10%/z. Minimize the amount of fencing,
which is 3z 4 2y = 3z + 2(1.5 x 10%2) = 3z + 3 x 10%z = F(x).
F'(z) =33 x 10%2® = 3(2* — 10°) /z*. The critical number is

x=10%and F'(z) < 0for0 < x < 10 and F'{z) > 0if z > 10%,s0

the absolute minimum occurs when z = 10% and y = 1.5 x 10*.
The field should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the field.

. Let b be the length of the base of the box and h the height. The volume is 32,000 = 6°h = & = 32,000/b°.
The surface area of the open box is § = b? + 4hb = b® + 4(32,000/6%)b = b* + 4(32,000)/b. So
S'(b) = 2b — 4(32,000)/6> = 2(b* — 64,000) /b =0 <« b= {64,000 = 40. This gives an absolute
minimum since S'(b) < 0if 0 < b < 40 and §'(b) > 0if b > 40. The box should be 40 x 40 x 20.

. Let b be the length of the base of the box and & the height. The surface area is 1200 = b° + 4hb =
h = (1200 — b*)/(4b). The volume is V' = b%h = b%(1200 — b%) /4b = 300b — %4 = V'(b) = 300 — 3p°.
Vi) =0 = 300=23p> = B*=400 = b= /400 = 20. Since V'(b) > 0 for 0 < b < 20 and
V’(b) < 0 for b > 20, there is an absolute maximum when & = 20 by the First Derivative Test for Absolute
Extreme Values (see page 280). If & = 20, then / = (1200 — 20%) /{4 - 20) = 10, so the largest possible volume
is b°h = (20)%(10) = 4000 cm®.

Vo=lwh = 10=(2w)(w)h = 2wh.so h = 5/w?. The cost is
10(2w?} + 6[2(2wh) + 2(hw)] = 20w? + 36wh, so
C(w) = 20w® + 36w(5/w?) = 20w* + 180/w.

2w C'(w) = 40w — 180/w® = 40 (v® — §)/u® = w= {/% is the

critical number. There is an absolute minimum for C' when w = /2 since C'(w) < 0for 0 < w < {/g and

C'(w) > 0 forw > /3. C(g/g) :20({*/%)2+ A~ $163.54
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10 = (2w)(w)h = 2w?h, so h = 5/w”. The cost is

Clw) = 10(2w?) + 6[2(2wh) + 2hw] + 6(2w”)

=32w? + 36wh = 32w” + 180/w

C'(w) = 64w — 180/w? = 4(16w® — 45) /w® = w= {1 isthe
critical number. C'(w) < 0 for 0 < w < /22 and C'(w) > O forw > § 25 The minimum cost is

C({/4) - 32(28125)*/° 4 180/V2.BI2Z5 ~ $191.28.

. (a) Let the rectangle have sides x and y and area A, so A = xy or y = A/x. The problem is to minimize the
perimeter = 2z + 2y = 2z + 2A/z = P(z). Now P/(z) = 2 — 2A/z* = 2(z” — A) /x”. So the critical
number is z = v/A. Since P'(z) < 0for 0 < = < v/A and P'(z) > 0for z > v/A, there is an absolute
minimum at z = v/A. The sides of the rectangle are v/ A and A/\/Z = /A, 50 the rectangle is a square.

(b} Let p be the perimeter and x and y the lengths of the sides,sop =2z +2y = 2y=p-2z =
y=1pa Theareais A(z) = z(3p—z) = 3pr—2".Now A'(z) =0 = ip—22x=0 =
2r=3p = = 1p. Since A”(x)= —2 < 0, there is an absolute maximum for A when z = p by the

Second Derivative Test. The sides of the rectangle are % pand %p — %p = ip, so the rectangle 15 a square.

. The distance from a point (z, y) on the line y = 4x + 7 to the origin is /(2 — 0)2 + (y — 0)2 = /22 + 32,
However, it is easier to work with the square of the distance; that is,

2
D(z) = (, fa?  y? ) =22 +y* =2? 4+ (4z + 7). Because the distance is positive, its minimum vatue will

occur at the same point as the minimum value of L.
Dz)=2z+2@z+7)(4) =34z +56,s50 D' (z) =0 & =z= .
D'"(z) = 34 > 0, s0 D is concave upward for all z. Thus, D has an absolute minimum at z = —32. The point

closest to the originis (z,y) = (—2,4(- ) +7) = (- &, &)

. The square of the distance from a point {z,y) on the line y = —6x + 9 to the point {~3, 1) is
Dig)={x+32+{y—1)2 =(x+3)? + (—6x+8)? =37z% — 90z + 73. D'(z) = T4z — 90,50 D'(z) = 0

& =2 D"(z)=74>0,s0D is concave upward for all x. Thus, D has an absolute minimum at 2 = 52

37"
The point on the line closest to (—3,1) is (32, 32 }.

¥ From the figure, we see that there are two points that are farthest away

A, y)
: from A(1,0). The distance d from A to an arbitrary point P{x, y} on the

ellipse is d = \/(z — 1)2 + (y — 0)? and the square of the distance is

S=d?=z-2z2+1+y? =22 — 2w+ 14+ (4—42%) = —3z* 22 +5.

dx?+y'=4 ; ; 1 1
§=-6zx—2and 5" =0 = z=—3 Nowd" =-6<0,s0we

know that S has a maximum at = —3. Since —1 < 2z < 1, §(-1)

S(—1) = 28, and S{1) = 0, we see that the maximum distance is /. The cotresponding y-values are

y =58 4(=1)7 = £/2 = £4V7 & £1.80. The points are (~ 3, £4v3).
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18. : The distance d from (1, 1) to an arbitrary point P(x,y) on the curve

Pix, y) g y=tanzisd = \/(x -~ 1)? + {y — 1)? and the square of the distance is
§=d?*=(x—1)"+(tanz — 1)*.

§' = 2(z — 1)+ 2(tanz — 1) sec® z. Graphing &’ on (- %, 5 ) gives us a

zero at x 72 0.82, and so tan x = 1.08. The point on y = tan @ that is

closest to {1, 1) is approximately (0.82,1.08).

The area of the rectangle is (2:1:)(2y) =dzy. Alsor? = 2% +y* s0

y=+/r? — % sothe areais A(z) = 4z +/r? - 22. Now
z’ r? — 9g? ..
A!(x) = 4(\/ e — 22 - m) = 4% The critical

number is x = Wik Clearly this gives a maximum.

2

A lp2 L e < the
27" = BT =a which tells us that the

rectangle is a square. The dimensions are 2x = V2rand 2y = V2r,

2 2
The area of the rectangle is (22)(2y) = 4zy. Now E— + ‘;—2 = 1 gives

b
y = E\/a2 — 22, 50 we maximize A{z) = 4—zve? — 22
41 a

4
a
_ 4—b(a2 _ Iz)*1/2[_m2 42 —3:2] _

(@ fe

\

Al(z) {a: Ha® - zg)_lfz(-Qx) +(a® —= )1/2 1}

So the critical number is x = %a, and this clearly gives a maximum. Then y = %b, s0 the maximum area is

4(%&) (%b) = 2ab.

The height h of the equilateral triangle with sides of length L is —? L,
since h? 4+ (L/2Y° =L = K =L"—1L?=31" =
3
Floy L =V3 =
2

-3z = y= ?(L"—‘Z(L‘).

h = JQEL. Using similar triangles,

i \/55(:—\/§ giﬂ

F..,., L 2

The area of the inscribed rectangle is A(z) = (2z)y = V3z(L — 2z) = V3 Lz — 2+/32% where 0 < z < L/2.
Now 0 = =v3L-4v3z = z=+3L/(4V/3) = L/4. Since A(0) = A(L/2) == 0, the maximum
occurs when x = L/4, and y = %L - %L = 3';—:}5, so the dimensions are L/2 and %EL.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTIONA.7 OPTIMIZATION PROBLEMS U 295
The rectangle has area A(z) = 2zy = 22(8 — :::2) = 16z — 22>, where

0<o<2V3 NowA'(z) =16~ 62 =0 = z=2,/2 Since

A(0) = A{24/2) = 0, there is a maximum when z = 2 \E Then

Yy = 13—6, 50 the rectangle has dimensions 4 \/g and %.

The area of the triangle is
Alz) = 2(2t)(r + &) = t(r + 2) = V7% — 2*(r + x). Then

—2x > P —2x
2_$2+ rf-zrétr

27 272~ g2

z? +rx

0=Az)=r

+yvri—-z2? =
2 32

$2 +rr
/2 _ 2

z=grorz=—r NowA(r) =0 = A(-r} = the maximum occurs where z =

7+ 37 = 2rand base 2/r? — (%r)z =2,/3r2 =37

The rectangle has area xy. By similar triangles

=vVrr—1 = +rz=r"-2* =5 0=W+rz-r=Q2zc-r)(z+r) =

1

37, $0 the triangle has height

—dy+12=3zxory = ——%sr:+3. So the area is

Alz) =2(~32+3) = —32% + 3z where 0 < = < 4. Now

0=A(z)=-3z+3 = z=2andy= 3. Since

A(0) = A(4) = 0, the maximum area is A(2) = 2(2) = 3 cm®.

The cylinder has volume V = 7y%(22). Alsoz® + ¢* =+? =

y* =1% — 2% so V() = 7(r’ — 27%) (2z) = 27 (r’z — %), where
0<z<r. V'ig)=2r(r’-32%) =0 = z=r//3 Now
V(0) = V{r) = 0, so there is a maximum when z = r 4/3 and

V(’r/\/g) =m{r* —r?/3) (27‘/\/3) = 47r’r‘3/(3\/§) )

By similar triangles, y/x = h/r, so y = hx/r. The volume of the
cylinder is mx®(h — y) = wha® — (h/r)z® = V(z). Now
V'(z) = 2rha — (37h/r)z* = wha(2 — 3z/r).

SoV'(z)=0 = =z =0o0rz = 2r. The maximum clearly occurs

when z = %r and then the volume is

rhz® — (nh/r)e’® = rha*(1 — z/r) = =(2r) 2) = &tk
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21, = The cylinder has surface area
- 2(area of the base) + (lateral surface area)
= 2nr(radivs)? -+ 27 (radius)(height) = 2ry® + 2my(2z).
Nowm2—+—y2 =r® = 4 =r-2* = y= V2 = 22, so the

surface area is

S(z)z?w(r2 7:32) +4Are/r2 —z2, 0<z<r

—onr? —2mx’ + 411'(3: Ve — 2 )

Thus, §'(z) = 0 — 4wz + 47 [:1: (r? - :cz)_l/z(—Z:c) + (r* - m2)1/2 . 1]

z’ T = dn Y I
VT2 -2
§zy=0 = x\/r2—$2=r2w2m2 x) = (m\/r2A$2)2:(r2—2$2)2 =

IQ(TQ — wQ) =t 4p®p? L4t = P2e? ot =t —arir? + 4 = Bt - Briat 4+ ri=0.

=47 |- — —
2 _ 12

2, but we reject the root with the + sign

This is 2 quadratic equation in 2. By the quadratic formula, z* = 3£X2

since it doesn’t satisfy (x). [The right side is negative and the left side is positive.} So z = y/ b@ r. Since
S(0) = S(r} = 0, the maximum surface area occurs at the critical number and a? = —‘/—_ 2 =

5 *10‘/57"2 =2 J;U‘/grz = the surface area is

g2 =r? —

QW(siwga)Tz 4 dx /5—10)15 fsimlgsrz — 2 [2_ 5-;5/3 Y (5*\/15())(54—\/3)] _ 7r7‘2[5i§£5 n 2{520} _

5] :777"2[%] =7r (1—!—\/_)

Perimeter = 30 = 2y+x+7r(§)=30 =

2
x

(30— T — %I) = 15— 5~ ? The area is the area of the

2
rectangle plus the area of the semicircle, or zy + %w(g) , 8O

FLEY

A(z)_a:(15———~—)+ Log? = 15z — $2® — 222,

! = 15 — x = — 15 _ 60 " — n L.
Al)=15-(1+Z%)z=0 = w—-1+ﬁ/4—4+ﬂ. A'(z) = (1+4)<0,sothlsgwesa

=4 —_— —_—
maximum. The dimensions are x = % ftand y = 15— 30 - 15w = 60 + 15m — 30 — 157 = ft,
T

447 447 4+ 7 4+

so the height of the rectangle is half the base.

29. T ry =384 = y=384/z. Total areais

Alz) = (8+2)(12 + 384/x) = 12(40 + = + 256/x), so

A'(x) =12(1 - 256/2°} =0 = = 16. There is an absolute
minimum when & = 16 since A’{z) < 0for0 < z < 16and A'(z} > 0
for x > 16. When z = 16, y = 384/16 = 24, so the dimensions are

24 ¢cm and 36 cm.

f
6
|
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zy = 180, so y = 180/z. The printed area is

(z —2)(y — 3) = (z — 2)(180/ — 3) = 186 — 3z — 360/x = A(x).

Al(z) = -3+ 360/z =0 whenz? =120 = = =2+/30. This

gives an absolute maximum since A(z) > 0 for 0 < & < 2v30 and

A'(z) < 0forz > 2v/30. When z = 2 V30, y = 180/(2+/30), so the
dimensions are 2 v/30 in. and 90/ V30 in.

Let x be the length of the wire used for the square. The total area is

A5 20)

4+ L210-2)% 0<zr<10

A’(x)z%m—lg(m—w)zﬁ < %:1:-&-%@3:——%2@:0 & $=%.Now

A(0) = (g)wo ~ 4.81, A(10) = 1% — 6,25 and A(g-‘*f;%) ~ 2,72, 50

(2) The maximum area occurs when & = 10 m, and all the wire is used for the square.

. L _40v3 .
(b) The minimum area occurs when @ = v a 4.35 m.

. z\ 2 10— z\°
Total area is A(x) = (Z) +r 5 =
¥[3

0<z<10. A’(m):g_mg;w—(%

z = 40/(4 + 7). A(0) =25/ ~ 7.96, A(10) = 6.25, and
A{40/(4 + =)} ~ 3.5, so the maximum occurs when z = 0 m and the

minimum occurs when z = 40/(4 + ) m.

The volume is V = wr2h and the surface area is

S(r) = wr? + 2nrh = wr? + 211'1‘(%) =mr? + ﬂ
7T r

) 2 /
S(T):2TFT—%=O = 2t =2V = ngzcm.
by

This gives an absolute minimum since S'(r) < 0 for 0 < 7 < {f L4 and §'(r) > O forr > yf K When
™ T

Tﬁ3zhfl—m+_u__v = 3
TV T w2 _W(V/w)2/3 -
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L =8csch+4sech,0< 8 < I,

% = —8cscl cot 8+ 4sec tan @ = 0 when

secO tanf = 2csc@ cotd & tan®d=2 & tanf = V2 <
8 =tan ' V2.
dL/d# < Owhen 0 < # < tan™' /2, dL/d6 > 0 when

tan ' ¥/2 < § < Z,so L has an absolute minimum when

8 = tan~* /2, and the shortest ladder has length

v 2/3
L= e eV TT 2~ 1665 1

Another method: Minimize L? = 22 + (4 + y)°, where 4i

REP4r? =R = V=2rh=%(R -k )h=3(R°h -1
V'(h)=Z(R*-3h%) =0whenh = %R. This gives an absolute

maximum, since V'{h) > 0 for0 < h < %R and V'(h) < 0 for

h> V,-R The maximum volume is

() =5 - ) =

36. The volume and surface area of a cone with radius r and height h are givenby V = tmr®hand S = 7r/r? + 2.

LepPh =27 = ¢¥= 8 (1.

We'll minimize A = §% subjectto V =27, V =27 = 5 3
T

1 2 2
A=a3r (" +h) =7 (81)(8 +h2)w£+81ﬂ'h soA'=0 = —2-8 +8lr =0 =

7l mh h? h3

. 812 1
8“:2; = 3= @ = h_”‘ 62 \/' 3.722. From (1),

1
o 8L _ 81 2 3V8 ok 4" 6.81%/A* > 0,50 Aand hence S has an

Th  n.36/r  Von? on?

absolute minimum at these values of + and h.

_ . H H-h . .
By similar triangles, B (1). The volume of the inner cone is

V= %mf‘zh, so we'll solve (1) for . % =H-h =

H _
th_!ﬁ:M:E(R_T) @.
j o

R R
aH

—r)= qR(R?" -y =

3_RT(2R 3r).
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Vi(ir)=0 = r=00r2R=3r =

= %szH , which is approximately 15% of the volume of the larger cone.

2 3
E(v) = aL%;L =0 (b)

when 2¢% = 3uv®? = 2u=3u = v= %u.

The First Derivative Test shows that this value of v gives the

minimum value of E.

39. § =6sh— —9 cot9+332£c306
@
de
dsS 1 — cosé

(by — = 0 when csc8 — \/§c0t9 =0 => —— —35 =~ { = cosf = —=. The First Derivative
do sin f sin 3

(a) = 2s%csc? O - 3323§ csc 6 cot @ or %Sz cscd (cscd — V3 cot 8).

Test shows that the minimum surface area occurs when # = cos ™! (m\}—g) 2 55°.
3 - L - L _ V3 ; Qi
(c) If cos@ = 5 then cot § = 7 and csc @ = 75 850 the surface area is

k 2 §2
3/ 15 §=6sh -~ 357 L 4362808 = 6sh — Los® 4 10

=6sh + %32 = 63(11 + 2—\1/53)

Let ¢ be the time, in hours, after 2:00 p.M. The position of the boat heading

south at time ¢ is (0, —20¢). The position of the boat heading east at time ¢

is (—15 + 15¢,0). If D(¥) is the distance between the boats at time ¢, we
minimize f(t) = [D(t)]* = 20%% 4 15%(¢ — 1)*

f'(t) = 800t + 450(¢ — 1) = 1250t — 450 = 0 when ¢ = 2 = 0.36 h.
0.36 h x S0 = 21.6 min = 21 min 36 s. Since f”'(t) > 0, this gives a

minimum, so the boats are closest together at 2:21:36 P.M.

/=3 _
M. Here T'(x) = z -'_254—5 To<z<s = T’(E):%H”T:E“M_'I“
6 8 6vz2+25 8

& 162% = 9(2® +25) & @ =% But 2 > 5,50 T has no critical number. Since 7(0) = 1.46 and

=0 & Br=6+/121+25

T(5) 2 1.18, he should row directly to B.
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42,

X B In isosceles triangle AOB, 20 = 180° — & — 8,50 ZBOC = 20. The
' distance rowed is 4 cos @ while the distance walked is the length of arc
A C BC = 2(28) = 40. The time taken is given by
_dcosé 44

4+ — =2cosf+8, 0<0<Z

T(0) = =5+

T'(8) = —2sinf+1=0 & sinfd=%2 = =1

Check the value of T" at @ = £ and at the endpoints of the domain of T'; that is, ¢ = 0 and & = 3. 7'(0) = 2,

T(Z) = V3 + 2 2~ 2.26,and T(§) = § ~ 1.57. Therefore, the minimum value of T'is § when 6 = Z; that s,

2
the woman should walk all the way. Note that T (6) = —2cos8 < 0for0 < 6 < §,s06 = % gives a maximum

time.

k
The total illumination is T{z) = %S— + w (} < x < 10. Then

, -6k 2k . 3 3
= = 10-—x) =2
4::{( I'(z) i (10— 2)° 0 = 6k(10—x) kz® =

310—2¥ =2 = PBW-2)=z = 10 -z=z
= 1W0B=z+ Bz = 1(]{’/5:(1-&-%)3: =

103

x = =~ 59ft This gives a minimum since I" (x) > 0 for
T g (z)

0 <z <10

The line with slope m (where m < 0) through (3, 5) has equationy — 5 = m(x — 3)
or y = ma + (5 — 3m). The y-intercept is 5 — 3m and the z-intercept is —5/m -+ 3.

So the triangle has area A(m) = (5 — 3m){—5/m + 3) = 15 — 25/(2m) — &m.

25
2m?2

2 25

Now A'(m) = =2 = m=-3(sincem <0).

—g:O & om

25 . .
A"(m) = ——3 > 0, so there is an absolute minimum when m = —2. Thus, an
m

equation of the lineisy — 5 = —3{(z — 3)ory = — %z + 10.

Every line segment in the first quadrant passing through (a, b) with endpoints on the

z- and y-axes satisfies an equation of the form y — b = m(x — a). where m < (. By

setting = = 0 and then y = 0, we find its endpoints, A(0, b — am) and B{a — £,0).

m’

B X

The distance d from 4 to B is given by d = \/{(a — &)Y 02+ [0 (b—am)]?.
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Tt follows that the square of the length of the line segment, as a function of m, is given by

2ab b

2
S{m) = (a . ﬁ) +(am - b)% = o® — == + = +a’m® - 2abm + b*. Thus,
T ™m m

2
2 .
5'(m) = ?g‘?b — &3— +2a’m — Zab = — (abm — b2 + @®m* — abm®)
m ™m m

- %[b(am —b) +am®*(am - b)] = %(Gm ~ b)(b+am?)

Thus, §'(m)=0 & m=bjaorm=— {/g Since b/a > 0 and m < 0, m must equal — C/g Since

13 < 0, we see that §'{(m) < O form < — f/g and §'(m) > 0 form > — \"fé Thus, S has its absolute
m

minimum value whenm = — {/E That value is

2 2 2
5(_-\3/5): (a+byTV + (—a {*/g_b) - (a+ W) + (m+b)
— 0,2 +2&4/3b2/3 +a2/3b4/3 _+_a4/362/3 +202/3b4/3 +b2 _ (12 +3a4/3b2/3 +3(1.2/3b4/3 +62
The last expression is of the form z° + 32%y + 3zy* + y° [= (x +y)°] withz =a*Pandy = b3,

s0 we can write it as (a2/3 + b2/3)3 and the shortest such line segment has length /S = (a*/® + b%/%)%/2,

8. y = 1 +40z° - 32° = ' = 1202% — 152, so the tangent line to the curve at z = a has slope
m(a) = 1204 — 15a*. Now m’(a) = 240a — 60a® = ~60a(a® — 4) = —60afa + 2){a — 2}, s0 m'(a) > 0
fora < —2,and 0 < a < 2, and m'(a) < 0 for =2 < a < O and @ > 2. Thus, m is increasing on (—o0, —2),
decreasing on (2, 0), increasing on (0, 2), and decreasing on (2, co) . Clearly, m(a} — —o0 as @ — %00, so the
maximum value of m{a) must be one of the two local maxima, m{—2) or m(2). But both m(~2) and m(2) equal
120- 2% — 15 2* = 480 — 240 = 240. So 240 is the largest slope, and it occurs at the points {—2, —223) and
(2,225). Note: @ = 0 corresponds to a local minimum of m.

Here s = h® + b%/4,50 h? = 5% — b*/4. The areais A = 3b/s? — b?/4.

Let the perimeterbe p,so 2s +b=pors={p—b)/2 =
A(b) = b/ (p— b /4 — b/4 = b\ /57 — 2pb/4. Now

Vp? — 2pb - 2
A'(b) = d pb_ _bp/d b4 . Therefore, A'{(b) =0 =

4 \/m_'i p? — 2pb

—3pb+p?=0 = b=p/3 Since A’(b) > 0forb < p/3and A'(b} < 0 forb > p/3, there is an absolute

maximum when b = p/3. Butthen 2s + p/3 =p,sos =p/3 = s=b = thetriangle is equilateral.
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48. See the figure, The area is given by

Ax) = 1(2va® =27 )z + 3 (2va? ~ 2?7 ) (VT + 1 — a?) =Va? 22 (z + Va2 + b7 — a?) for

, bes z TR ) —
0 <z <a NowA'(z) = azwxz(l-i-—“mz )+($+ 2% +b a)/az_mzwo “

+ b2 — g2

T2 — o2
+(I+\/$2+52—a2)=\/a2—1;2($+ -+ G!,)

PO 22 L B2 — g2
Except for the trivial case where z = 0, a = b and A(x) = 0, we have

x2 + b2 — a2 > 0. Hence, cancelling this factor gives

T _ 42
z a? —zx
= v+l -at=d -2’ =

Va2 — 2 = Va2 + b2 —a?

x? (332 +b - az) =o' — 2% +2* = ? (bZ - az) =a* — 24%2°

4 a*

= m2(b2+02)=a = .I”:\/az—w

Now we must check the value of A at this point as well as at the endpoints of the domain to see which gives the

maximum value, A(0} = avb? — a2, A(e) = 0and

2 2 2 2 2 2
o 52 a a
Va? + b2 Va2 + b? Va2 + b2 Va2 +b?

= ab

. ab { a? 4 i ] _ ab(a2 + bg)
Vel + B [ VaZ s Va2t ] @+l

Since b > vb¥ — a2, A(a*/Va? +b2) > A(0). So there is an absolute maximum when z = ﬁ. In this
a

2 2
and the vertical piece shouid be ikl = va? + b2,

2ab
Va?+ b2 a? + b

case the horizontal piece should be

49. Note that |[AD| = |AP|+ |PD| = bH=z+|PD| = |PD|=35 — z. Using the Pythagorean Theorem

for APDB and APDC gives us

L(z)=|AP|+ |BP|+ |CP| =+ /(5 —z)2 + 22 + /(5 — z)? + 32

=z + 2% — 10z + 29+ /x2 — 107 + 34

r—>5 + r—-5
VIZ— 10z +29 22— 10z + 34

= L(z)=1+
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A
—

-03

From the graphs of L and L', it scems that the minimum value of L is about L(3.59) = 9.35 m.

50. We note that since ¢ is the consumption in gallons per hour, and v is the velocity in miles per hour, then

~ gallons /hour _ gallons
" “miles/hour  mile

gives us the consumption in gallons per mile, that is, the quantity G. To find the

Jde  dv o de
minimum, we calculate ﬁ _ 4 (v) d” d” = d’U

dv  dv y2 v

This is 0 when v de _ c=0 & de = <. This implies that the
dv dv v

tangent line of ¢(v) passes through the origin, and this occurs when

v 7z 53 mi/h. Note that the slope of the secant line through the origin and

a point (v, c(v)) on the graph is equal to G{v), and it is intuitively clear

that G is minimized in the case where the secant is in fact a tangent.

The total time is

T(x) = (time from A to C) + (time from C' to B)

\/az+1:2 VB2 +(d—=x)

wn

. b<ae<d

T'(z) = T d—=x sind;  sinf

nva? + 22 w8+ {d—x)* Y v2

. sinfl;  siné:
The minimum occurs when T'(z) = 0 = =
1 (3]

[Note: T"(x) > 0]

If d = |QT|, we minimize f{#1) = |PR| 4+ |RS| = acscf; + besc b,

Differentiating with respect to £y, and settin ﬁ equal to 0, we get
g 2 40, q &

%1- 0= —acsct cot@1 — beschacot s 32?

Q

dé,
So we need to find an expression for ——= 70 . We can do this by observing that {QT| = constant = a cot #1 + bcot &,
1

Differentiating this equation implicitly with respect to 81, we get —a csc 29, — besc? 82 jgg =0 =
1

df;  acsc’6

—= — -2~ We substitute this into the expression for —
dfy besc2 gy P

0 to et
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2
s¢° @ cot @
)—O = —acsc91cot6’1+a9—bi—l—2—:0 o=
csc bz

acse? i
besc? 6

—acsclycot B, — besc iz cot B2 (—

cot @ cot 0 ]
cot? cscfy = cschicotfy <= ! _ 2 < cosfy; = cos8;. Since #, and 8; are both acute, we
csc csc O

have 61 = 62.

y° = x° + 2%, but triangles CDF and BC A are similar, so
z/8=zf{4vx~4) = z=2x/vz—4. Thus, we minimize
f@)=y*=2*t42?/(z ) =2%/(x - 1), 4<z <8

() = (z — 4)(32%) — 2° _ z%[3(z — 4)‘— ] _ 22% (2 —26) 4
(z—4)? (z—4)? (z — 4)
whenz = 6. f'(z) < Owhenz < 6, f'{x) > 0 when z > 6, so the

minimum occurs when r = 6 in.

Paradoxically, we solve this maximum problem by solving a minimum
problem. Let L be the length of the line AC'B going from wall to wall

touching the inner corner C'. As 8 — O or § — %, we have L -+ 0o and

there will be an angle that makes L a minimum. A pipe of this length will

Just fit around the corner,

From the diagram, L = Ly + L2 = Qcsct + 6secd = dL/df = —9csch cot§ + 6secd tanf = 0 when

Gsecd tanf® = Ycscl cotf <« tan39=§=1.5 PEN ta.n9:\3/1.5.Thense029:1+(%)2/3and

1/2

. 4y — _ 5ra11/2
esc?f =1+ (%) 2/3, s0 the longest pipe has length L = 9[1 + (-,f;’) 2/3} + 6[1 + (%)ZfsJ = 21.07 ft.

Or,use 0 =tan ' (V1.5) ~ 0.852 = L =9csch+ Gsech ~ 21.07 ft.

It suffices to maximize tan #. Now

3t tany + tan@ t+tan @
1 tan(y + 9) 1—tan tan® 1 —ttand

So3t(l —ttanf) =t +tané = 2t = (1+3t*)tanf =

2%
9= .
tant =

£ = 2(1+3¢%) —2t(68)  2(1-3¢%)
B (1 + 3'62)2 - (1 + 3t2)2 -

1-3t2=0 < t:ﬁsincetz(].

Now f'{t) > 0for0 <t < :}—5 and f'(t) < Ofort > %, so f has an absolute maximum when ¢t = -3-

and tan § = ——2(1/—\/5)—~ = -3= = f =T, Substituting for ¢ and 6 in 3t = tan(t + &) gives us
1+30143)° )

\/gztan('dw-%) = =12
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We maximize the cross-sectional area
A(0) =10 + 2{1dh} = 10h + dh = 10(10sin¥) + (10cos 8)(10sin @)
=100(sin @ + sin@ cosf), 0<O< %
A’ (8) = 100(cos 8 + cos 8 — sin” #) = 100{cos 0 + 2cos § — 1) = 100(2cos — 1)(cosf + 1)

=0Owhencosf =31 & 6=135 (cosf@#—1since0<O<3)

Now A(0) =0, A(Z) = 100and A(F) =75 V'3 & 129.9, so the maximum occurs when 8 = 7.

5 2 )
From the figure, tan cx == p and tan 3 = T Since

a+ﬁ+9=180°=7r,9::rr—ta.n'1(3) —tan_l(g2
T :

ﬁ_ 1 ( 5) 1
&= el
1+(§) 1+(L
x 3—=x

_ @ 5 @3-zt 2
22125 22 (3-z2244 (3-2)°

Nowiguo = 5 = 2
dr 24+ 2% x2—6x+13

= 2% +50 = 5z° — 302 + 65 =

32 —30r+15=0 = z*—10z+5=0 = xz=5z= 25 Wereject the root with the + sign,
since it is larger than 3. df/dx > Oforz < 5 —2 /5 and d/dz < Oforz > 35— 2 /5, 50 8 is maximized

when |[AP| =2 =5-— 24/5 = 0.53.
. Let x be the distance from the observer to the wall. Then, from the given figure,

6= tanl(m) — tan_l(f—i),zr >0 =
T x

dg 1 [_h+d] B
dr 1+ [(h+d)/z])" x? 1+ (d/z)?

1 d]____h+d _d
22| T 24 (h+d)? P+

Cdz? t (h+ @ - (h+ (2 +d°) KP4 hd® Rzt 0
B 22 + (b + d)®] (22 + d2) Tt +dD)

hz: = hid+hd® o z22=hd+d® < z=./d(h+d). Since df/dx > 0forall x < \/d(h + d) and

d#/dx < O forall z > /d{h + d), the absolute maximum occurs when = = \/d(h + d).
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59. In the small triangle with sides a and c and hypotenuse W, sin @ = %

and cos @ = —I;—/, In the triangle with sides b and d and hypotenuse L,

sinf = % and cos § = % Thus, a = Wsin®,c = Wcos#,d = Lsin@,

and b = L cos#, so the area of the circumscribed rectangle is

A(BY=(a +b)(c+d) = (Wsinb + Lcos8)(W cos8 + Lsin6)
= W2sinf cosfl + WLsin® 6 + LW cos® @ + L?sin 6 cos @

= LW sin® @ + LW cos® 0 + (L + W*)sin8 cos ¢

= LW (sin® 0 + cos® 0) + (L* + W?) - § - 25in 8 cos
G

— LW+ 1(L* + W?)sin20, 0<0<Z

This expression shows, without calculus, that the maximum value of A(#) occurs whensin26 =1 & 2¢0=7Z

2

m

= § = Z.Sothe maximum areais A(Z) = LW + 3(L? + W?) = 3(L? + 2LW + W?) = }(L + W)*,
60. (a) Let D be the point such that @ = | AD|. From the figure, sin § = % = |BC} = bescé and

cosé = |g3| =2 I_Bglm = |BC| = (a — |AB|)sec®. Eliminating | BC| gives

(a — |AB|)secld =bcscd = bootf@=a—|AB| = |AB|=a — bcotf. The total resistance is

R(6) = Clilﬂ'dBl +C}B4IC‘ _ C(&—bCOtQ + bcscﬂ)-

1 1
1 2 L Ty

2
(b) R'(6) = c(bcfj 0 _ boscl CO“’) - chscB(CSCB - C"tg)

3 1 1
1 T3 L Ta

, csc@  coté ra
R(#) =0 =0 & —i =
L T2 T

cscd  cotd 4 4

T T .
y costl < T—i and R'(#) < 0 when cos @ > ;2, so there is an absolute
1

R# >0 «
5 T3

4
1

minimum when cos 6 = 3 /7.
4 _ 4
(c) When rp = %7‘1, we have cos 8 = (%) 508 = cos ! (%) 22 79°.

If k = energy /km over land, then
S+ 25 energy /km over water = 1.4%. So the total energy is

E=14kv25+ 2?2 + k(13 —1),0 <z < 13,

and s0 — = _ Ldkz
dr (25 4 x2)!/?
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dE .
Set i 0: 1.4kz = k(25 + z*)

V2o 19622 =22 425 = 0962 =25 = 7= L= A5l

Testing against the value of E at the endpoints: E{0) = 1.4k(5) + 13k = 20k, E(5.1) & 17.9k,

E(13) =~ 19.5k. Thus, to minimize energy, the bird should fly to a point about 5.1 km from B.

(b) If W/ L is large, the bird would fly to a point C that is closer to B than to I to minimize the energy used flying
over water. If W/ L is small, the bird would fly to a point C that is closer to D than to B to minimize the

de Wz

dr 5+ 22

distance of the flight. E = Wv25+ 22 + L(13 —z) = — L =0 when

L €

W 25+ 2

. By the same sort of argument as in part (a), this ratio will give the minimal expenditure of

energy if the bird heads for the point = km from B.

(c) For flight direct to 1), x = 13, so from part (b), W/L = @ 23 1.07. There is no value of W/ L for which

the bird should fly directly to B. But note that lim (W/L) = oo, so if the point at which E is a minimum is

r—0t

close to B, then W/ L is large.
(d) Assuming that the birds instinctively choose the path that minimizes the energy expenditure, we can use the
I/2

equation for dE/dx = 0 from part (a) with 1.4k =,z = 4, and k = L: (){4) = 1- (25 + 4°) =

c=+41/4 7 L6.

strength of source

62. (a) I(z) x 5. Adding the intensities from the left and right lightbulbs,

{distance from source)

k k k k

{x) = = .
(=) Erd (10— 2)* +d2 z24d? T 20zt 100+ &

(b) The magnitude of the constant & won’t affect the location of the point of maximum intensity, so for convenience

wetake k = 1. I'(z) = — 2z - 2(z - 10)
' (z2 +d2)*  (x? — 20z + 100 + d2)*’

Substituting d = 5 into the equations for I(z)and I'(x), we get

1 1 ; 2 2(x — 10)
I = and I = - -
3(x) T2 + 25 + a2 — 20z + 125 5(e) (x2 + 25)2 (z? — 20z + 125)2

0.005

From the graphs, it appears that Is(x)
“/\} has a minimum at z = 5 m.

!
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1 1
22+ 100 T 22 =20z + 200 2"

(c) Substituting d = 10 into the equations for I(z) and I'(x) gives Jio{x) = d

2z 2(x—10)
(z2 +100)® (22 — 20x +200)°

Iio(w} = -

00006 From the graphs, it seems that for

d = 10, the intensity is minimized at the

endpoints, that is, 2 = 0 and x = 10.

The midpoint is now the most brightly lit

0 point!
0014 ~0.0006

(d) From the first figures in parts (b) and (c), we see that the minimal illumination changes from the midpoint

{x = 5 with d = 5) to the endpoints (z = 0 and x = 10 with d = 10).

0.0365 0.023

! ! I N
I, 10) - 1(5)
i
n L 4 + gt
0 L i) 0 N L 10 s

0.0325 X 0.0215 x -0.0! d

So we try d = 6 (see the first figure) and we see that the minimum value still occurs at = 5. Next, we let
d = 8 (see the second figure) and we see that the minimum value occurs at the endpoints. It appears that for
some value of d between 6 and 8, we must have minima at both the midpoint and the endpoints, that is, I(5)
must equal £(0). To find this value of d, we solve T(0) = I(5) (with k = 1);

l+ 1 _ 1 . 1 2 N
d 1600 +d2 ~ 254+d2 25442 9254+ d2

(25 + d®) (100 + d%) + d*(25 + d°) = 2d*(100 +d*) =

2500 + 125d° + d* + 25d° + d* = 200d® + 2d* = 2500 =504 = d® =50 —

d =522 7.071 (for0 < d < 10). The third figure, a graph of I(0} — I(5) with d independent, confirms that
I(0) — I(5} =0, that is, I{0) = I(5), when d = 5 /2. Thus, the point of minimal illumination changes

abruptly from the midpoint to the endpoints when d = 5+/2.

APPLIED PROJECT The Shape of a Can

1. In this case, the amount of metal used in the making of each top or botiom is (2r)% = 4r2. So the quantity we want
to minimize is A = 2xrh + 2(4r?). But V= xr*h ¢ h = V/7r?. Substituting this expression for k in A

gives A = 2V/r + 8r?. Differentiating A with respect to r, we get dA/dr = —2V/r* + 16r =0 =

16r° =2V = 22r°h & % =

8 . . d’A 4V
— a2 2.55. This gives a minimum because — =16 + — > (.
7 dr? rd
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We need to find the area of metal used up by each end, that is, the area of each
hexagon. We subdivide the hexagon into six congruent triangles, each sharing

one side (s in the diagram) with the hexagon. We calculate the length of

s=2rtan g = fr s0 the area of each triangle is 5 s'r = \/—7‘ , and the total

area of the hexagon is 6 - %rg = 2/372. So the quantity we want to
minimize is A = 2rrh + 2- 23712

- dA 2V
Substituting fot f as in Problem 1 and differentiating, we get Py + 8 /3 7. Setting this equal to 0, we get

837 =2V = 2rr’h = ? _4 ‘fl'\/_ ¢ 2.21. Again this minimizes A because d —

L Let & =43 72 4 2nrh + k (d7r + h) —4\/31" +27rr( t)+k(4wr+i).Then

d =837 — Z~ + dkmw — —Q—k— Setting this equal to 0, dividing by 2 and subsututmg V = wh and
T3

kt
—3 = }—1 in the second and fourth terms respectively, we get0 — 4 V3r — th+ 2kr — TL
r

h k 2m—h/r . vV
kl2r— =) =7mh—-4+v3 = — = 1. We now multiply by ——, noting that
(n’ ) by V3r Twh/r_4\/_ ply by — g

Wik and t _ufmh 2m—hjr
TV e Y S
r r r whir—4+/3

Let ¥V /k = Tand h/r = x sothat T(z) = Y7z - %—_I We see
L _4\/5

from the graph of " that when the ratio IV /k is large; that is. either the

volume of the can is large or the cost of joining (proportional to k} is

small, the optimum value of h/7 is about 2.21, but when V'V /k is small,

indicating small volume or expensive joining, the optimum value of /7 is
larger. (The part of the graph for V'V /k < 0 has no physical meaning, but
confirms the location of the asymptote.)

. Our conclusion is usually true in practice. But there are exceptions, such as cans of tuna, which may have to do with
the shape of a reasonable slice of tuna. And for a comfortable grip on a soda or beer can, the geometry of the human
hand is a restriction on the radius. Other possible considerations are packaging, transportation and stocking
constraints, aesthetic appeal and other marketing concerns. Also, there may be better models than ours which

prescribe a differently shaped can in special circumstances.
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4.8 Applications to Business and Economics

1. (a) C(0) represents the fixed costs of production, such as (¢) The marginal cost function is C"(x).
rent, utilities, machinery etc., which are incurred even We graph it as in Example 1 in
when nothing is produced. Section 3.2.
(b) The inflection point is the point at which C”' () changes c
from negative to positive; that is, the marginal cost C’(z)
changes from decreasing to increasing. Thus, the

marginal cost is minimized at the inflection point.

2. (a) We graph C" as in Example | in Section 3.2. (b} By reading values of C'(x) from its
graph, we can plot c(z) = C{z)/x.

(¢) Since the graph in part (b} is decreasing, we estimate that

the minimum value of () occurs at z = 7. The average

cost and the marginal cost are equal at that value. See the

box preceding Example 1.

3. e(z) = 21.4 — 0.002z and e{z) = C(z)/z = C(z) = 2L4z —0.0022°. C'(z) = 21.4 — 0.004x and
C’(1000) = 17.4. This means that the cost of producing the 1001st unit is about $17.40.

4. (a) Profit is maximized when the (b) P(x) = R(z) -~ Clx) is (c) The marginal profit function is
marginal revenue is equal to the sketched. defined as P'{z).
marginal cost; that is, when R and
(7 have equal slopes. See the box
preceding Example 2.
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. (a) The cost function is C(z) = 40,000 + 300z + z°, so the cost at a preduction level of 1000 is
Clx) _ 40,000
C(1000) = $1,340,000. The average cost function is ¢(z) = "

(1000) = $1340/unit. The marginal cost function is C’(z) = 300 + 2z dlld C’(1000) = $2300/unit.

40 000
(b) See the box preceding Example 1. We must have €' (z) = c(z} & 300+2r = —— +30+x &

+ 300 + zand

T = 40.000 = 22 =40000 = = /40,000 = 200. This gives a minimum value of the average cost

z
80,000
function ¢ () since ¢’ (z) = 5 0.

(¢} The minimum average cost is ¢{200) = $700/unit.

25,000
. (@) C(z) = 25,000 + 120z + 0.12%, C(1000) = $245,000. c{z) = G(;) = 22 1120 4+ 0.1z,

¢(1000) = $245/unit. C'(x} = 120 + 0.2z, C*(1000) = $320/unit.

25 000 25,000
(b) We must have C'(z) = ¢(z) <« 120+ 0.2z = - Z— 41204 0.1z & 0.z ==

. - . 50,000
0.1z% = 25,000 = = /250,000 = 500. This gives a minimum since ¢’ (z) = > 0.

3

(¢) The minimum average cost is ¢{500) = $220.00/unit.

. (a) C(z) = 16,000 + 200z + 4z>/2, C{1000) = 16,000 + 200,000 + 40,000 v/10 = 216,000 + 126,491, so

C{1000) =~ $342,491. ¢(z) = C{z)/z = 16300 + 200 + 4’2, ¢(1000) A~ $342.49/unit.

C’(z) = 200 + 622, C'(1000) = 200 + 6010 ~ $389.74/ unit.

16,000

(b) We must have C'(z) = e{z) < 200+ 6272 = +200+4z? o 22%*=16000 &

z = (8,000)%/3 = 400 units. To check that this is a minimum, we calculaie

- 16,000 2 2 .
S _ ’ 2 3/2
“l@) 2t v oooa? (@

and positive for ¢ > 400, so ¢ is decreasing on (0, 400) and increasing on (400, c0). Thus, ¢ has an absolute

— 8000). This is negative for 2 < (8000)%/% = 400, zero at x = 400,

minimum at x = 400. [Note: ¢ () is not positive for all z > 0.]

{¢) The minimum average cost is c¢(400) = 40 + 200 + 80 = $320/unit.

. (a) C{x) = 10,000 4 340z — 0.3z* + 0.0001z, C(1000) = $150,000.

1
o) = Clay/z = 29 | 340 — 0.3z + 0000122, ¢(1000) = $150,/unit.

C'(z) = 340 — 0.6z + 0.00033; , C'(1000) = $40/unit.

(b) We must have C'(z) = c{z) <> 340 — 0.6z + 0.0003z% = 10,000 + 340 — 0.3z + 0.0001z*> &
T

10,000
T

0.0002z2 = —— 4+ 0.3z < 0.00022° — 0322 — 10,000 =0 <« 23 — 1500z* — 50,000,000 = 0

. . . 20,00
= &~ 1521.60 ~ 1522 units. This gives a minimum since ¢’ (z) = Uf 0 + 0.0002 > 0.

(¢} The minimum average cost is about ¢{1521.60) ~ $121.62 /unit.

. (a) C(z) = 3700 + 5z — 0.042° + 0.0003z% = C'(z) =5 — 0.082 + 0.0009x? (marginal cost).
() = C(z) _ 3700
xr xr

2 4+ 5 —0.04z + 0.0003z> (average cost).
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The graphs intersect at (208,51, 27.45), so the production

level that minimizes average cost is about 209 units.

3700

(c) ¢ (z) = =0 = 3700 +0.04c% —0.0006z> =0 = z; ~ 20851

e(xr) = $27.45/umt.

{d) The marginal cost is given by C" (), so to find its minimum value we’ll find the derivative of C’; that is, C".
C"(z) = ~0.08 4 0.0018z =0 = a1 =220 = 4447, ("(z1) = $3.22/unit,
C""(x) = 0.0018 > 0 for all x, so this is the minimum marginal cost. C’" is the second derivative of .

. {a) C(x) = 339 + 25z — 0.092% + 0.0004z°> = C'(z) = 25 — 0.18z + 0.0012z? (marginal cost).
clx) = =& _ 3—? + 25 — (.09 + 0.0004z7 (average cost).

xr

The graphs intersect at (135.56, 22.65), so the production

level that minimizes average cost is about 136 units.

339

(¢} (z) = — 7~ 0.09+0.0008x =0 = =z ~135.56. cf{z1)~ $22.65/unit.

) C"(z) = ~0.18 + 0.00242 =0 = =z =180 =75 ('(75) = $18.25/unit.
C"'{x) = 0.0024 > 0 for all z, so this is the minimum marginal cost.

. C(z) = 680 + 4z + 0.01z%, p(x) = 12 = R(z) = zp(x) = 12z. If the profit is maximum, then
R(x)=C'(x) = 12=4+002z = 002z =8 = z = 400. The profit is maximized if P"(z) < 0,
but since P"'{x) = R"(x} — C"(x). we can just check the condition R"(x) < C"(x). Now
R'"(z) =0 < 0.02 = C"(z). so z = 400 gives a maximum.

C(z) = 680 + 4x + 0.012%, p(z) = 12 — z/500. Then R(z) = zp(x) = 12z — £*/500. If the profit is
maximum, then R'(z) = C"(z) [See the box preceding Example 2.] < 12 — /250 =4 +0.02z <
8=10024r & z=8/0.024 =28 The profit is maximized if P”(z) < 0, but since

P'(z) = ”( ') — C"(x), we can just check the condition R”(z) < C”(x). Now

R'(z) = — 555 < 0.02 = C"(z), 50 2 = 222 gives a maximum.

. Clz) = 1450 4 36z — £° + 0.001z%, p(z} = 60 — 0.01z. Then R(x) = zp(x) = 60z — 0.01z>. If the profit is
maximum, then R'(z) = C'(x) < 60— 0.02z = 36 — 2z + 0.003z> = 0.003z> — 1.98z — 24 = 0. By

1.98 +/(~1.98)2 + 4(0.003)(24) _ 1.98 + v/4.2084
2(0.003) 0.006

z % (1.98 + 2.05)/0.006 ~ 672. Now R"(z) = —0.02 and C"'(z) = 2 4 0.006z = C"(672) = 2.032

= R'(672) <C"(672) = there is a maximum at z = 672,

. Since z > 0,

the guadratic formula, z =
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14. C{z) = 16,000 + 500z — 1.62% + 0.004z°, p(x) = 1700 — 7z. Then R(z) = zp(z) = 1700z — 7z*. If the

profit is maximum, then R'(z) = C'(z) < 1700 — 14z =500 — 3.2z + 0.0122° &
0.01222 + 10.8z — 1200 =0 < 22 + 900z — 100,000 =0 <& (z+1000)(z—100)=0 < =z =100
(since & > 0). The profit is maximized if P"(z) < 0, but since P"(z) = R"(x) — C"'(«), we can just check the
condition R"(z) < C"(x). Now R (x) = —14 < —3.2 + 0.024z = C"(z) for z > 0, so there is a maximum at
z = 100.

. C(z) = 0.001z° — 0.3z + 6z + 900. The marginal cost is C’(z) = 0.003z° — 0.6z + 6.
C'(x) is increasing when C”(z) > 0 & 0.006z — 0.6 >0 <z > 0.6/0.006 = 100. So C'{z) starts to
increase when x = 100,

. C(z) = 0.00022° — 0.2522 + 4z + 1500. The marginal cost is C'(z) = 0.0006z° - 0.50z + 4.

(z) is increasing when C''(z) >0 < 0.0012z - 05 >0 <« x> 0.5/0.0012 = 417. So C"(x} starts to

increase when = = 417.

. (a) C(z) = 1200 + 12z — 0.12% 4+ 0.00052°. 10.000

R(z) = zp(z) = 29z — 0.00021z".

Since the profit is maximized when R'(z) = C'(z).

we examine the curves R and C' in the figure, looking for z-values at

which the slopes of the tangent lines are equal. It appears that ¢ = 200 is

) " : - 400
a good estimate. ¢

(b) RM(x) =C'(x) = 29-0.00042z =12 - 0.2z + 0.0015z2 = 0.0015z% - 0.19958z — 17 =0 =
z = 192.06 (for > 0). Asin Exercise 11, R"(z) < C"(z) = -0.00042 < ~-0.2+0.003z <
0.003z > 0.19958 < =z > 66.5. Our value of 192 is in this range, $0 we have a maximum profit when we
produce 192 yards of fabric.

. (a) Cost = setup cost + manufacturing cost = C(z) = 500 + m(z) = 500 + 20z — 52°/* + 0.01z°.
We can solve z(p) = 320 — 7.7p for p in terms of  to find the demand (or price) function.
320 — = 320z — a*
z=320-77p = T7.7p=320—~z = plz)= 22 - z R{z) = zp(z) = ﬂ]—??w:g—
320 — 2z

by C'(z) = R'(z) = 20— Pz " +0.02 = — e T 81.53 planes, and

p(x) = $30.97 million. The maximum profit associated with these values is about $463.59 million.

. (a) We are given that the demand function p is linear and p(27,000) = 10, p{33,000) = 8, so the slope is
i = — 3056 and an equation of the line is y — 10 = (—g3555) (# — 27,000) =
y=p{z) = — 5552 + 19 = 19 — (2/3000).
(b) The revenue is R(z) = zp(x) = 19z — (2%/3000) = R'(z) = 19 — (x/1500) = 0 when = = 28,500.
Since R"{x) = —1/1500 < 0, the maximum revenue occurs when x = 28,500 => the price is
p(28,500) = $9.50.

20. (a) Let p(x) be the demand function. Then p(z) is linear and y = p(z) passes through (20,10} and (18, 11), so the

slope is —4 and an equation of the lineis y — 10 = —3(z —20) & y= —3 + 20. Thus, the demand is

p(z) = —3z + 20 and the revenue is R(z) = zp(z) = —1z% 4+ 20z.
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(b) The cost is C(z) = 6z, so the profit is P(z) = R(z) — C(z) = —42® + 14z. Then 0 = P'(z) = —~z + 14
= 1z = 14. Since P"(z) = —1 < 0, the selling price for maximum profit is p(14) = —$(14) + 20 = $13.

21. (a) As in Example 3, we see that the demand function p is linear. We are given that p(1000) = 450 and deduce that
p(1100) = 440, since a $10 reduction in price increases sales by 100 per week. The slope for p is

;M0 480 — _ L 50 an equation is p — 450 = —J5(x — 1000) or p(z) = — {5 + 550.

(b) R{z) = zp(z) = — 4z + 550x. R'(z) = —3z + 550 = 0 when = = 5(550) = 2750,
p(2750) = 275, so the rebate should be 450 — 275 = $175.
() C'(z) = 68,000 + 150z =
P(z) = R{z) — C(z) = -%zQ + 550z — 68,000 — 150x = —Tlﬁch + 4002 — 68,000,
P'(x) = —1x + 400 = 0 when = = 2000. p(2000) = 350. Thercfore, the rebate to maximize profits should
be 450 — 350 = $100.
. Let  denote the number of $10 increases in rent. Then the price is p(x) = 800 + 10z, and the number of units

occupied is 100 — z. Now the revenue is
R(x) = (rental price per unit) x (number of units rented)
= (800 + 10x)(100 — ) = —10z” + 200z + 80,000 for 0 < z < 100 =

R/(x) = -202+200 =0 <« = 10. Thisis a maximum since R"'(x) = —20 < 0 for all z. Now we must
check the value of R{z) = (800 + 10z) (100 — x) at z = 10 and at the endpoints of the domain to see which value
of x gives the maximum value of R. R{G) = 80,000, R(10) = (900}(90) = 81,000, and

R(100) = (1800)(0) = 0. Thus, the maximum revenue of $81,000/week occurs when 90 units are occupied at a
rent of $900/week.

800
. If the reorder quantity is z, then the manager places — orders per year. Storage costs for the year are
x

. 80,000
%ar -4 = 2 dollats. Handling costs are $100 per delivery, for a total of % -100 = . dollars. The total

costs for the year are C'(x) = 2z + . To minimize C{x), we calculate

80,000
x

C'x)=2— w = %(5\32 — 40,000). This is negative when x < 200, zero when z = 200, and positive when
&£ xr

x > 200, so C is decreasing on (0, 200) and increasing on (200, oo}, reaching its absolute minimum when

& = 200. Thus, the optimal reorder quantity i1s 200 cases. The manager will place 4 orders per year for a total cost

of C(200) = $800.
. She will have A/n dollars after each withdrawal and (} dollars just before the next withdrawal, so her average cash
balance at any given time is 3 (A/n + 0) = A/(2n). The transaction costs for n withdrawals are nT. The lost

interest cost on the average cash balance is [A/(2n)] - R. Thus, the total cost for n transactions is
AR y AR , AR 2 AR

C{n)=nT + o Now C'(n) =T 2 and C'(n) =0 = 22 = n T

AR : S . . AR .
n=aor the value of n that minimizes total costs since C"'{n) = ——5 < 0. Thus, the optimal average cash

T

A AV2R2T AT AT

balance is — = = — =/ ==
2n 2VAR V2R 2R
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4.9 Newton’s Method

1. (a) The tangent line at x = 1 intersects the z-axis at
x a2 2.3, s0 z2 & 2.3, The tangent line at

z = 2.3 intersects the z-axis at & = 3,

so x3 = 3.0.

r

LA N

(b) z, = 5 would not be a better first approximation than x; = 1 since the tangent line is nearly horizontal. In fact,
the second approximation for z; = 5 appears to be to the leftof z = 1.

y The tangent line at z = 9 intersects the x-axis at z = 6.0, so

r2 = 6.0. The tangent line at = 6.0 intersects the z-axis at
x == 8.0, s0 x3 ~ 8.0.
I
r 5
1 ~A x

0

3. Since 7; = 3and y = 5z — 4 istangent to y = f(x) at = = 3, we simply need to find where the tangent line
intersects the z-axis. y =0 = 512 ~4=0 = =%

4, (a) (b

e

TN "

If z1 = 0, then z2 is negative, and x3 is even If z; = 1, the tangent line is horizontal and
more negative. The sequence of approximations Newton’s method fails.

does not converge, that is, Newton's methad fails.

(c) {d)

— N\ —
\/

If 21 = 3, then 2 =— 1 and we have the same If z1 = 4, the tangent line is horizontal and
situation as in part (b}. Newton’s method fails Newton's method fails.

agatn.
(e) f If 21 = 5, then x> is greater than 6, za gets closer to 6, and

the sequence of approximations converges to 6. Newton's

method succeeds!
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@3 + 20 — 4
a2 +2

1+2-4 -1 (1.2)% +2(1.2) — 4
Rl R B —12-
T+t B o 3(1.2)2 + 2

5 f(x) =2®+2z -4 = f(z)=32"+2,50Fat1 = Tn — Nowzi =1 =

72 1.1797.

Ty =

f(;r;n):I _zp—an—1
fizn) " 822 — 2x,
1-1—1 28 2% 1

Nowr, =1 = zp;=1 32 2 = x3=2 75 5.0 625

L flz) =2 2T -1 = fr)=32% - 27,50 Tni1 = Tp —

Flea) "7 T 4xd
2% — 20 (2.125)* - 20

= =2 - —— =2, = 2125 —
Nowr; =2 = z2=2 0P 2125 = x3=2125 1215P

n » =20
L flr) =2 —20 > f’($):4$3,50$n+1:$n_f(m) z _

= 2.1148.

x> + 2

e .Nowz; = -1 =
L,

Cflxy =242 = fl(z) =52 s0oani = @0 —

— 5 e 5
=0'+2 1 L, L 3,"3:_1,2_%%—1.1529.

ST T 5(—1.2)*

L flz) =2 +2+3 = flz)=3z"+ 150

3x2 +1
(—1)*+(-1)+3 ~1-1+3 1
-1 =le— 1% = -2 = -125
¥z 3(—1)Z+1 3+1 4 25

Newton’s method follows the tangent line at {—1, 1) down to its

Tnyl = Tn — Nowxr; = -1 =

intersection with the x-axis at (—1.25, 0), giving the second

approximation £z = —1.25.

L flz) =z —2—-1 = f(z)=42" 1,50

—In—1
43 — 1
1*-1-1 -1 4 \ .
To=1-— m =1- —é—“ = ‘73- Newton'’s method follows the

tangent line at (1, —1) up to its intersection with the z-axis at (3,0),

Tntl = EIn — Nowr; =1 =

giving the second approximation xz = %.

11. To approximate z = +/30 (so that 2* = 30), we can take f{x) = 2 — 30. So f'(z) = 327, and thus,
zh -
3a2

until they agree to eight decimal places. z; =3 = 3 ~ 3.11111111, x5 =~ 3.10723734,

0
. Since /27 = 3 and 27 is close to 30, we’ll use 1 = 3. We need to find approximations

In+i: = Ln —

x4 22 3.10723251 = z5. So ¥/30 = 3.10723251, to eight decimal places.
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Here is a quick and easy method for finding the iterations for Newton’s method on a programmable calculator,
(The screens shown are from the TI-83 Plus, but the method is similar on other calculators.) Assign f(z} = 2~ 30
to Yy, and f'(z) = 3z2 to Y. Now store z; = 3 in X and thenenter X — Y1 /Y2 — Xtoget xz = 3.1. By

successively pressing the ENTER key, you get the approximations &3, Za. ...

Plotl Plotz Flot:
~V1B¥¥-38
WMeBRIKe
M=l
“Wy=
“We=
“Ve=
Vo=

In Derive, load the utility file SCLVE. Enter NEWTON (x*3-30,x,3) and then APPROXIMATE to get
(3, 3.01111111,3.10723733, 3.10723250, 3.10723250], You can request a specific iteration by adding a fourth
argument. For example, NEWTCON (x*3-30,x,3,2) gives [3,3.11111111, 3.10723733).

In Maple, make the assignments f := z — z°3 — 305, ¢ ==z -+ z — f(z)/D(f)(z);, and z == 3.5,
Repeatedly execute the command & := g(); to generale successive approximations.

In Mathematica, make the assignments flz_] := 23 — 30, glz_] := =z — f(z]/f'[z}. and x = 3.

Repeatedly execute the command = = g[z] to generate successive approximations.

xl — 1000
Tx8
agree to cight decimal places. -1 =3 = z2 /&= 2.76739173, z3 ~ 2.69008741, 4 ~ 2.68275645,

x5 &= 2.68269580 =~ zs. So V1000 ~ 2.68269580, to eight decimal places.

12 flr)=2" — 1000 = [f/(x)=T72% 80 Fns1 = Zn — . We need to find approximations until they

223 — 622 + 3uwn + 1
6x2 — 12z, + 3

need to find approximations until they agree to six decimal places. z; = 2.5 = x2 = 2.285714,

3 7 2.298824, 24 == 2.224765, x5 &= 2.224745 == z6. So the root is 2.224745, to six decimal places.

13 flz)=22° 622 +3z+1 = flo)=62"-122+3 = oy =Tn - . We

zi +z, —4
dz3 +1
z3 2= 1,285346, 14 =~ 1.283784, x5 =~ 1.283782 ~ xg. So the root is 1.283782, to six decimal places.

1 firi=z'+2-4 = flx)=42"+1 = Znp1=2n— Lz =15 = zp = 1.323276,

15, sinz = 22,50 f(x) =sinz — z° = f'(z)=cosx -2z = ¥
sinzxy, — J:fl

In4l = In — . From the figure, the positive root of

COSTp — 2Tn £

1
sinz=olisnear a1 =1 => zo 0.891396, z3 ~ 0.876985, \\\J/ﬂ
x4~ 0.876726 ~ 5. So the positive root is 0.876726, to six decimal

places.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

318 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

16. 2cosz = x*, 50 f{x) = 2cosx —x* = f'(z) = —2sinz — 4z°

2008 Tn — T ”
~——"—_ From the figure, the positive root

= I+l = Tn — —(F 5 7 =
—2sinx, — 4z}

of 2cosz =z isnearl. 21 =1 = 2= 1.014184,

3 = 1.013958 = x4. So the positive root is 1.013958, to six decimal

places,

From the graph, we see that there appear to be points of intersection near

= —0.7and ¢ = 1.2. Solving z* = 1 + x is the same as solving

flz)=az"-2-1=0.flz)=2'-2-1 = f(z)=42" 1,
:J:fl—mn—l
473 —1

JZ SOLpyl = Tn —

x = —0.7 Ty =12

xg == —{(.725253 T2 =2 1.221380

xs =~ —.724403 x3 = 1.220745

x4 = —.724492 = x5 T4 = 1.220744 =~ x5

To six decimal places, the roots of the equation are —0.724492 and 1.220744.
7 From the graph, we see that reasonable first approximations are z = 0.5
andz = +15. f(z) =2 -5z +2 = f'{z)=>5z" 5,50

:ciw5:cn+2
5z% -5

Tn+l1 = Tn —

-

&I -1.5 xr = 0.5 xry = 1.5
T2 7= —1.593846 x2 =04 2 A2 1.396923
r3 &= —1.582241 z3 ~ 0.402102 == 24 3 ~ 1.373078
Az —1.582036 =~ x5 4 =~ 1371885
rs = 1.371882 =~ x¢

Lq

To six decimal places, the roots are —1.582036, 0.402102, and 1.371882.

19, 2 From the graph, we see that there appear to be points of intersection near

M z = —0.5and x = 1.5. Solving ¥z = z* — 1 is the same as solving
fley=¢z-2"+1=0. flz)=Yz—a*+1 =

/ f’(.’E)I 1,.—2/3 \‘Vﬂf_n—mi+1

3T — 2,80 Tpt1 = Tp — ECYE .
3Tn — 2,

-2

1 = —0.5 1 = 1.5
oo &~ —0.471421 ra &~ 1.461653

I3 —0.471074 =~ T4 r3 ~ 1.461070 ~= T4

To six decimal places, the roots are —0.471074 and 1.461070.
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From the graph, we see that there appear to be points of intersection near

z=—12andz = 1.5. Solving vz + 3 = z° is the same as solving

Hey=2"—vz+3=0 f(z) =2 -V +3 =

r—l SO x =y — Tn = Von F3
vz £3 T g — 1/ (2VEa +3)

Fla) =22 -

Ta ~~ —1.164526 T2 ~ 1.453449
r3 ~ —1.164035 = x4 o = 1.452627 = x4

To six decimal places, the roots of the equation are —1.164035 and 1.452627.

. From the graph, there appears to be a point of intersection near z = 0.6.

Solving cos & = +/Z is the same as solving f{z) = cosz — /z =0,
flz} =cosz— x = f(z)=—sinz-1/(22) s0

COS L — +/Zn
bl = Tn — .Nowz; =06 =
Tl = T ina, — 1/(2 V1) o
2 7= 0.641928, x3 2 0.641714 = x4. To six decimal places, the root of
the equation is 0.641714.

. From the graph, there appears to be a point of intersection near r = 0.7.

Solving tanx = m is the same as solving
f(zy=tanz — 1 —22 =0. f(z) =tanz — V1 - 2? =

tanx, — \/1——1:%
secx, + on/V1 — a2
o1 =07 = z220.652356, 23 = 0.649895, x4 ~ 0.649889 ~ xs.
To six decimal places, the root of the equation is 0.649889.

fi(x)= sec’ 2+ x/V1 — 12,80 Tny1 = Tn —

3 fl@)=a"—-o*-52° -2 +42+3 =
_2( TN n flz) =5z - 42% - 152° -2z +4 =
Ii_$175$131_$ft+4$n+3
5x4 — 4z — 1622 — 2z, + 4

there appear to be roots near —1.4, 1.1, and 2.7.

Tntl = En — . From the graph of f,

-19
z = —14 21 =11 o 227
re ~= —1.39210970 T & 1.07780402 xy r 2.72046250
T3 &= —1.39194698 3 = 1.07730442 T3 &~ 2. 71987870
T4~ —1.39194691 =~ x5 T4 ~ 1.07739428 = 15 T4 R 2.T1987822 == 15

To eight decimal places, the roots of the equation are —1.39194691, 1.07739428, and 2.71987822.
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. 4 .
Solving z° (4 — 27) = a1 the same as solving
4
2 +1
4zl — xh —4/(22 + 1)
8z, — 4x3 + 8z, f(z + 1)°

there appear to be roots near x = £1.9 and 2 = £0.8. Since f is even, we

flo)=4a® — 2" — =0.ff($)=8:c—4wﬂ+(;152‘8+1)2 =

. From the graph of f(z),

In4l = Tn —

only need to find the positive roots.
1 = 0.8 z; = 1.9
x2z ~ 0.84287645 T2 =~ 1.94689103
x3 ~ 0.84310820 r3 ~ 1.94383861
T4 = 0.84310821 = x5 T4 2= 1.94382538 = x5

To eight decimal places, the roots of the equation are £0.84310821 and £1.94382538.

5. 3 \ From the graph, y = z°v/2 — z — 22 and 3 = 1 intersect twice, at
rx~-2andatz~ -1 f(z)=2*V2—z-22-1 =

f’(zr) — 3:2 , %(2 —p— 1.2)—1/‘2(__1 . 2:[’,‘) + (2 — - $2)1/2 O

— 31,33(2 - - 9:2)71/2 [a:(—l —2z)+4(2—-x - mQ)]

z(8 — 5x — 6z%)

N

22—z — 22 — 1

50 Tl = En — . Trying z1 == —2 won’t work because f'(—2) is undefined, so we'll
£n(8 - By — 6x2)

2@t — @)
try #; = —1.95,

r, = —1.95 z1 = —0.8

2 2= —1.98580357 r2 ~ —0.82674444

rs 22 —1.97899778 - 13~ —0.82646236

T4 &= —1.97807848 xq 77 —0.82646233 ~ x5
x5 = —1.97806682

rg = —1.97806681 =~ z7

To eight decimal places, the roots of the equation are —1.97806681 and —0.82646233.

From the equations ¥ = 3sin{x?) and y = 2« and the graph, we deduce

that one root of the equation 3sin{z?) = 2z is z = (). We also see that the

graphs intersect at approximately z = (.7 and x = 1.4.
f(z) = 3sin(z®) —2¢ = f'{z) = 3cos(z?) - 2z — 2,50

_ 3sin(x?) — 2,
' T T cos(z2) — 2
1 = 0.7 r1=14
rz =2 (.69303689 2 =~ 1.39530295
T3 7= 0.69269996 ~ x4 z3z = 1.59525078
zq 7 1.39525077 ~ x5

To eight decimal places, the roots of the equation are 0.69299996 and 1.39525077.
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() flz) = = f'(z) = 2z, so Newton’s method gives

_ PRI VLI ORI 2
Tl = E o, T 2 e, T 2\ '

{b) Using (a) with ¢ = 1000 and x; = V000 = 30, we get xg = 31.666667, x5 ~ 31.622807, and
ry 7 31.622777 & xs. So 1000 ~ 31.622777.

1 1/xy —
" (d) f(‘l:) - —a = f ( ) - Fs SO0 Tnt1 = Tn — /_mlT/a:%a’ =Zn +Tn — GIL'%, = 2.’;13?1 - a&fﬁ.

(b) Using (a) with a = 1.6894 and z;, = % = 0.5, we get 22 = 0.5754, z3 ~ (.588485, and
x4 =~ 0.588780 = x5. So 1/1.6984 = (.588789.

fley=23-3z+6 = f(z)= 322 — 3. If 1 = 1, then f'(z1) = 0 and the tangent line used for

approximating z is horizontal. Attempting to find 2 results in trying to divide by zero.

3

. — &Ly — 1

..’I,’S—ﬂ’::]. = Ia—ﬂf—l:O.f(I):.’Eg—I_l . f’(m):3$271150$n+1:;L‘n—'rﬂr;m2 ——1 .
L) n_

(@) ) = 1.z = 1.5, x3 = 1.347826, ©4 =~ 1.325200, 75 = 1.324718 = T¢

(b) 21 = 0.6, w2 = 17.9, z3 2 11.946802, &4 = 7.985520, x5 = 5. 356009, z6 == 3.624996, x7 =~ 2.505589,
Ts & 1.820129, xo =~ 1.461044, T1p = 1.339323, r11 & 1.324913, 12 =~ 1.324718 =~ zy3

(©) 71 = 0.57, z2 = ~—54.165455, 3 ~ —36.114293, x4 = —24.082094, 5 ~ —16.063387, xg == —10.721483,
ro & ~T.165534, xs = —4.801704, xe &~ —3.233425, x10 = —2.193674, 211 = —1.496367,
~ —0.997546, 17 =~ —0.496305, r14 ~= —2.894162, x15 = —1.967962, x16 = —1.341359,
re —(0.870187, 15 22 —0.249949, 219 = —1.192219, o0 &~ —0.731952, 221 = .355213,
s —1.753322. ron A= —1.180420, zo4 ~ —0.729123, xan = 0.377844, 136 ~ —1.937872,
re —1.320350, Tos &~ —0.851919, z2g & —0.200959, 3o =~ —1.119386. 31 =~ —0.654201,
Tan 2 1.547010, xaz =~ 1.360051, z31 = 1.325828, x35 ~ 1324719, x36 ~2 1.324718 = 137,

1 From the figure, we see that the tangent line corresponding to xy =1
=x'-x- / / results in a sequence of approximations that converges quite quickly

057 08

(x5 = x¢). The tangent line corresponding to 21 = 0.6 is close to

being horizontal, so 2 is quite far from the root. But the sequence

S still converges — just a little more slowly (12 & x13). Lastly, the

/ tangent line corresponding to 2, = 0.57 is very nearly horizontal, z2

-2 is farther away from the root, and the sequence takes more iterations

to converge (r3e ~ T37).

. For f(x) = £'/3, f'(x} = 127*/ and

flza) zi/?

Intl =&n — 57—~ —In — =Ty — 3&n = —2T,.

/() 12

Therefore, each successive approximation becomes twice as large as the.

previous one in absolute value, so the sequence of approximations fails to

converge to the root, which is 0. In the figure, we have z; = 0.5,
te = —2(0.5) = —Land x3 = —~2(~1) = 2.
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32. According to Newton’s Method, for z, > 0,

AV Ln
Tngl = Ty — ]/(2— ) = &n — 2z = -z, and for z, <0,

Tntl = Tn — I g — [—2(—xn)] = —n. So we can

/(2v=zn)

see that after choosing any value z; the subsequent values will alternate

between —x1 and z; and never approach the root.

. (a) f(z) =32 — 282" + 62 + 24z =  fl(z) = 122% - 842 + 122+ 24 =

r ’ 2
[ (x) = 362 — 1682 + 12. Now to solve f'(z) = 0, try z = I = wm=a - }r”((f:l)) =3 =
1

r3 = (.6455 = 11~ 064502 = 5= 06452 Nowtryz; =6 = 22 =7.12 =
T3 & 6.8353 = 14~ 68102 = x5 ~6.8100. Finallytryz; = —0.5 = =z~ 04571 =
T3 = —0.4502 = x4~ —0.4552. Therefore, x = —0.455, 6.810 and 0.645 are all critical numbers correct
to three decimal places.
(b) f(—1) =13, f(7) = —1939, f(6.810) =~ —1949.07, f(~0.455) =~ —6.912, f(0.645) =~ 10.982. Therefore,

f(6.810) = —1949.07 is the absolute minimum correct to two decimal places.

fzy=a’+sinz =  f'(x) = 2z + cosz. f'(x) exists forall z, so to

find the minimum of f, we can examine the zeros of f'. From the graph of

J', we see that a good choice for z; is 21 = —0.5. Use g{z) = 2z + cosz 10

and ¢'(xr) = 2 — sinz to obtain z3 ~ —0.450627,

x3 & —0.450184 ~ x4. Since f'(x} =2 — sinz > 0 for all z,
F(—0.450184) Az —0.232466 is the absolute minimum.

cy=x"+cosx = y =32 —sine = y' =6x—cosx = ¥y =6 + sinx. Now to solve 3" = 0,

"
1
try @1 = 0, and then 2 = 1 — 3’”((?)) =5 = x3 = 0.164419 2 x4. For £ < 0.164419, ¥ < 0, and for
L1

z > 0.164419, y" > 0. Therefore, the point of inflection, correct to six decimal places, is
(0.164419, (0.164419)) =~ (0.164419, 0.990958).

2 f(z)=~sinz = f(x)=-cosz. Atz = a, the slope of the

tangent line is f'(a) = — cos a. The line through the origin and (a, f(a))

-0 o .
. If this line is to be tangent to f at & = a, then its

—sina
slope must equal f'(a). Thus, =—cosa = tana=a.
a

~To solve this equation using Newton’s method, let g(z) = tanz — &,

tanx, — Tn

g(x)=sec’z -1, andznyq = 20 — with r1 = 4.5 (estimated from the figure). z» =~ 4.493614,

sec?z, —~ 1

r3 2 4.493410. 74 22 4.493409 = 5. Thus, the slope of the line that has the largest slope is f'(z5) ~ 0.217234.
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The volume of the silo, in terms of its radius, is

Vir) = :rr;r'2(30) + %(%Tﬂ"g) = 30mr? + %T(Ta.

From a graph of V, we see that V() = 15,000 at 7 = 11 ft. Now we use

Newton’s method to solve the equation V {r) — 15,000 = 0.
av

0 oy 30mr2 + %ﬂ-r‘ﬁ — 15,000
a0 + e 80 Fatl =T 60mrs + 2772

r1 = 11, we get rp = 11.2853, r3 = 11.2807 =2 r4. So in order for the

. Taking

silo to hold 15,000 ft® of grain, its radius must be about 11.2807 ft.

38. Let the radius of the circle be r. Using s = 76, we have 5 = r6 and so r = 5/6. From the Law of Cosines we get
42 —r? g2 2. p.r.cosf < 16 =2r3(1 — cosf) = 2(5/8)* (1 — cosh).
Multiplying by 62 gives 168 = 50(1 — cos#), so we take

. 10
F(8) = 166% + 50 cos @ — 50 and f'(9) = 326 — 50sin 6. The formula r
. From the 0 3

1662 + 50 cos &, — 50
328, — 50sinf,

graph of f, we can use §) = 2.2, giving us 6z = 2.2662,

for Newton’s method is 0,41 = On —

G5 22 2.2622 == 04. So correct to four decimal places, the angle is
2.2622 radians =2 130°.

i

. In this case, A = 18,000, R = 375, and n = 5(12) = 60. So the formula A = = [1 — (1 +1) "] becomes
1

18,000 = 210 -4z & 4Be=1-(1+ z)7%  [multiply each term by (1 + z)*°]

4821 + )% — (1 + 2)°® + 1 = 0. Let the LHS be called f{z), so that
£ () = 482(60)(1 + )% + 48(1 + 2)*° — 60(1 + 2)*

= 12(1 + 2)*° [42(60) + 4(1 + x) — 5] = 12(1 + z)**(244z — 1)

 48an(l+ 2% — (1 4+ 7)™ 41
12(1 + z,,)% (244, — 1)

estimate for £ = i. So let £; = 1% = 0.01, and we get xz = 0.0082202, z3 =~ 0.0076802, x4 ~ 0.0076201,

&5 A2 0.0076286 ~2 zg. Thus, the dealer is charging a monthly interest rate of 0.76286% (or 9.55% per year,
compounded monthly).

Tntl = En . An interest rate of 1% per month seems like a reasonable

0. (2) p(z) = 2° — 2+ r)z* + (1 +2r)2* — (1 )t 2l -z +r—1 =
pl(z) = 5zt —4(2 + r}z* +3(1 + 2r)x? — 2{1 — r)x + 2(1 — r). So we use

25— (24 r)ed + (1 +2r)2d — (0 —rjen +2(1 ~r)zn+7 -1
5z — 4(2 +r)xd 4+ 3(1+ 2r)2? - 2(1 —r)za +2(1 —7)

Trnyl = &n — . We substitute in the value

r 2 3.04042 x 10~% in order to evaluate the approximations numerically. The libration point Ly is slightly
less than 1 AU from the Sun, so we take z3 = 0.95 as our first approximation, and get x2 = 0.96682,

rs % 0.97770, x4 & 0.98451, 25 ~ 0.98830, zg ~ 0.98976, x7 ~ 0.98098, za = 0.98999 =~ zy.

So, to five decimal places, L, is located 0.98999 AU from the Sun (or 0.01001 AU from Earth).
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(b) In this case we use Newton’s method with the function
pl) —2ra® =2 — 2+ r)z* + (1 +20)2® - L+ r)? +2(1—-r)z+r—1 =
[p(x) ~ 2rz?]" = B5x* — 4(2 4+ )2 + 3(1 + 2r)2? — 2(1 + r)z + 2(1 - ). So

o — 2+ 7r)zn + (1 +2r)2d — (1 +rz2 +2(1—r)zn +7—1

. Again, substitut
Sad — A(2 +1)zd + 3(1+ 2r)23 — 2(1 4 r)an + 2(1 py o W SIS

Tn+l = Tn —

r & 3.04042 x 107°. Ly is slightly more than 1 AU from the Sun and, judging from the result of part (a),
probably less than 0.02 AU from Earth. So we take x; = 1.02 and get zp =~ 1.01422, z3 = 1.01118,

x4 72 1.01018, x5 A= 1.01008 = xg. So, to five decimal places, Lo is located 1.01008 AU from the Sun (or
0.61008 AU from Earth).

410 Antiderivatives

.’B2+1 1+1
S
241 141
Check: F'(z) =2-32> —4-22+ 3+ 0= 622 — 8z + 3 = f(x)
Cfle)=4+2> 52 = Fla)=4c+Lis 52410

3+1 541 7+1

f@)=1-2*+50° - 327 = Fla)=z——— +5% 32 +C0=z-12*4+ 22035 ¢

341 541 TT41
Sy =2 + 42048 = F(x)=%$21+1;41:c11+8$+0

f(z)=62" -8z +3 = F(z)=6 +3+C=22° -4’ +3x+C

. flz) =52t — 7t o F(:z:)r5m11/4+1—7$3/4+1+C:55—/4—7i/4+(]=4a:5/4—4$?/4+0
i t1 241 7/4

Cfl@)=22+32"7 = Flr)=2t+ ST+ C =22+ 0274 ¢

Cfle) =6z — §r =622 210 =

1/2+1 1/641 3/2
T x
(r) =6

1 T
5 +1 571

L7/8
T L+C:4m3/2_$x7/6+0

=655 - 7/6

774 7/3
_ 4 31 __ .3/4 4/3 _r r _4.7/4, :

L f(z) = Vi + Vit =3 L 2P o F(m)_7—/4+7—/3~+07?a:/ +$x7/3+0
1028

=5= 10z * has domain (—co, 0) U (0, 0c), so F(z) = 758
e

5 e
+01:“@+Cl it x <0

+ o if x>0
See Example | for a similar problem.

5—4z° + 22°
g(z) = _:cﬁ—i—_r = 527 — 427% + 2 has domain (-0, 0) U (0, oc), s0
x
-8 -2

1
52 4 i =-2 1200 ifx<o
5 2 z5 | 22

1 2
—I_5+F+2$+CQ if >0

=u? + 3" =

1 4 1/2
u o+ 3u Ju
_f(u):~_2__\/_1_ k
u u

1 4 w12 1 6
== 3 Y L
U+ 71/2+C’ S ﬁ+c
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12 f(z) = 22/ + 22772 has domain (—oo, 0) U (0, 00), so
z 3253 4322 £ Oy if 2> 0
F(z) =
2253 4+ 327° + Cy if z<0
h(z) =« +5sine = H(m):%:c4+5(—cosw)+0=%m“——Scosx%C
. f(t) = 3cost — 4sint = F(t) = 3(sint) — 4(~ cost) + C = 3sint + 4cost + C
. f(t) = 4Vt —secttant = F(t)fs/gtaﬂAsect+C £43/2 — sect + Cr on the
interval (nw — Z,nm + 3).
. £(8) = 607 — Tsec®® = F(8) =26* — Ttan 6 + Cy on the interval (nx — §,nm + §).
2 3

. f'z) = 6z + 1227 = f'(z):6-i+12-%+c=3z2+4x3+c =

o
flz)=3- ———!—4 I+C’$+DA:C +z*+ Cr+ D [C and D are just arbitrary constants]

L)y =2+28+2° = flay=20+3a*+ 12" +C = f(cc):m2+%$5+$:r8+0m+D
@) =142 = fa)=a+ 520 =
flzy = f;r + 2. 14/5+C$+D—2$ +126m14/5+0$+D

f'(z) =cosz = f()—smw-i—C’ = flz)=—coszc+Cz+D

)
Cf) =602 = f) =208 +C = fty=5"+Ct+D = ft)=+3C7+Dt+E
)=

t-vi o= =10 = )=t R4 CtED =

fr
fit) = St' - S+ 0P + Dt+ B
fZ)=1-6z = fl)=z—32"+C.f(0)=Candf(0)=8 = C=8s0f(x)=x-3"+8
fllzy=8:2+1224+3 = fl@)=22"+62° +3¢+C. f(1)=11+Cand f(1)=6 =
114C =6 = =—5soflx)=2z*+6z"+3z—5.
F(z) = V7(6 + bz) = 622 + 52%? = fla) = 42®? + 225% + C.
F(1)=6+Cand f(1) =10 = C =4,50 f(z)=42"% +225% +4.
. fx) =2z —3/z* =22 -3z = f(z) = & + 2% 4 C because we're given that x > 0.
fi=2+Cand f(1)=3 = C =150 f{zg) =2+ 1/ + 1.
21. f'(#) = 2cost +sec’t = f(t) = 2sint + tant + C because —7/2 < < 7 /2.
AE)=2(v3/2) +V3+C=2V3+Cand f(§) =4 = C=4-2V3 50
F(t) = 2sint + tant + 4 — 2v/3.
fla) =37 = f(:,;):{_:}/ﬂc1 TEEY iy =31ci=0 = Gi=u,
=3/x+Ce if <0
—3/z+3 ifx>0
f-1)=34+Co=0 = 02=3.30f(m):{_3/$3 N
U (z) =242 + 22410 = f(z) =8 +2°+102+ C. f(1)=8+1+104 Cand f'(1}) = -
19+C =-3 = C=-2250f(z)=82+2°+ 10z — 22 and hence,
flo) =22+ 1e® + 522 — 22+ D. f(1) =2+ 3 +5-22+ Dand f(1) =5 = D=22-1
so f(w) = 22* + 32® + 5a® — 22¢ + .
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30.

Fx) = 4 — 6z —402° = flz) =4z —32* - 102" +C. f(0)=Cand f'(0)=1 = =150
f'(:r:)=4$—32:2—IUI‘1+1andhence,f($):‘Zazzfa:a_215+:1:+D. fl0y=Dand f(0) =2 =
D =250 f(z) =22 — 2~ 22" +z+ 2.

Cf7(0) =sinf+cosf = f(§)=—cosf+sinf+C. f/{0)=-1+Candf(0)=4 = C=550

£(8) = —cosf + sin @ + 5 and hence, f(§) = —sinf —cosd + 50 + D. f(0) = ~1+Dand f(0) =3 =
D =450 f(f) = —sin® — cosf + 50 + 4

L) =3/vE=3tTYE o fl) =62+ C. f4)=12+Cand f'(4) =7 = C=-550

F7(t) = 6t'/? — 5 and hence, f(t) = 46> — 5t + D. f(4) =32 - 20+ Dand f(4) =20 = D=8.s0
ft) = 4832 — 5t + 8.

Cflz)=2-12¢ = fl@)=2c-62+C = fla)=2"-20"+Cz+D.

fO)=Dand () =9 = D=9.f(2)=4-16+2C+9=2C-3and f(2) =15 = 20=18 =
C =950 f(x)=2"-22>+9z+9.

) =202 + 1222 +4 = flz) =5t +4’ + 4+ C = flz) =z +z* + 227 + Cz + D.

fO=Dand f(0) =8 = D=8 f1)=1+1+2+C+8=C+12and f(1) =5 = C=-T50
f@)=2"+2* +20° - Tz + 8.

Cf(@) =2+ cosz = f@)=2z+sina+C = flz)=z"—cosz+Cx+D. f(0)=—1+ Dand

flOy=—-1 = D:O.f(%):W2/4+(%)Candf(%):() = (5)0= %4 = C=-I.s0
flz) =

x? —cosz — (%).ﬂ

L (x) =sinz = f'(z)=-coszt+C = 1=f"(0)=-14+C = C=250

f'(z)=—cosz+2 = f(z)=-sinz+2c+D = 1=f{0)=D = f(z)=—-sinw+2c+]
= fl@y=cosz+az+z+E = 1=f0)=1+E = E =0,50 f(x) =cosz + 1° + .

. Given f'(z)} = 2z + 1, we have f(x) = 2 + = -+ C. Since f passes through (1, 6),

F)=6 => 1°41+C =6 = C =4 Therefore, f(z) =2°+z+4and f(2) =2° +2+4 = 10.

fz)=2" = fl@)=1*+C. z+y=0 = y=-z = m=-LNowm=f(z) =

—1=x* = z=-1 = y=1/(from the equation of the tangent line), so (—1, 1) is a point on the graph
of f.From f, 1= 3(-1)*+ C = C = 2. Therefore, the function is f(z) = jz* + §.

. bis the antiderivative of f. For small xz, f is negative, so the graph of its antiderivative must be decreasing. But

both a and ¢ are increasing for small x, so only b can be f’s antiderivative. Also, f is positive where & is increasing,
which supports our conclusion.

. We know right away that ¢ cannot be f’s antiderivative, since the slope of ¢ is not zero at the x-value where f = 0.

Now f is positive when a is increasing and negative when a is decreasing, so o is the antiderivative of f.

. The graph of " will have a minimum at 0 and a 42. The position function is the antiderivative of the

maximum at 2, since f = F' goes from negative veloeity function, so its graph has to be horizontal
to positive at z = 0, and from positive to negative where the velocity function is equal to (.

atx = 2.
5
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2 ifo<z<l1 2r+C f0<x<1
1 fl<z<?2 = flx)=Rz+D ifl<z<?
-1 f2<z<3 —z+ F if2<z<3

fO)=-1 = 20)+C=-1 = = -1 Starting at the point

{0, —1) and moving to the right on a line with slope 2 gets us to the point
(1,1). The stope for 1 < z < 2 is 1, so we get to the point (2, 2). Here we
have used the fact that f is continuous. We can include the point z = 1 on
either the first or the second part of f. The line connecting (1,1} to (2,2) is y = x, so D = 0. The slope for

2<r<3is—1sowegetto(3,1). f(3)=1 = -3+E=1 = FE=4 Thus,

2 —1 if0<z<]
fzi=1= fl<or<?2
—r44 f2<z<3

Note that f'{z) does notexistatz = loratr = 2.

a4, (a) (b) Since F(0) = 1, we can start our graph at (0, 1). f has a minimum at about
x = (.5, s0 its derivative is zero there. f is decreasing on (0,0.5), so its

derivative is negative and hence, ¥ is CD on (0,0.5) and has an IP at

z =~ 0.5. On {£).5,2.2), f is negative and increasing (" is positive), so F'is
s p

decreasing and CU. On (2.2, 00), f is positive and increasing, so F' is

increasing and CU.

N/

© flzy=22z—-3x =
F(zr) =22 -3-22°* + C. F(0) = Cand
Flo)=1 = C=150
F(I):I2—2I3/2+1.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

B8 O CHAPTERA APFLICATIONS OF CIFFERENTIATION

45. f(x) = sin{z?), 0 <oz <4 8. f(x)=1/(z*+1)

) F
F/ 77— \\=/1 1]l IR RNV

S s SALrme s

£ 2 A=A/ | AANAAY S

F/ 7 7—\A\—/ |
JA AN/ 6:1////——1 (N

IR AN N
Feortftemerttsfr—-s
f-sfif oy
1-Friree-714d--11x
(RN e
[/ A—=NAN—/ ] || L R Al I A ey

We compute slopes [values of f(x) = (sinz)/=z for

0 <z < 2n] as in the table [lim, o+ f(z) = 1] and draw a

direction field as in Example 6. Then we vse the direction

field to graph F starting at (0, 0).

y
2

o e -

\
R R

2
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We compute slopes [values of f(x) = ctanz for —7m/2 <z < 7/2} as in the

table and draw a direction field as in Example 6. Then we use the direction field to

graph F starting at (0, 0) and extending in both directions. Note that if f is an even

function, then the antiderivative F' that passes through the origin is an odd function.

Remember that the given table values of f are the slopes of F atany z.

For example, at x = 1.4, the slope of F'is f(1.4) = 0.

(b} The general antiderivative of f(z) ==z~ is

{—1/m+01 if <0

F(z) = since f(z) is not defined

—1/:E+CQ if >0

Tyiy v
. \
oy

i
o
-

at z = 0. The graph of the general antiderivatives of f(z) looks

§
|

like the graph in part (a), as expected.

|
b

AN S R
AURTR U U

\

!

'
!

. w(t) = &'(t) =sint — cost = s(t) = ~cost —sint+C. s(0) = -1+ Cands(0) =0 = C =130
s{t) = —cost —sint - L.

Lo{) =5 () =15vE = s(t)=t""+C.s(4)=8+Cands(4) =10 = C=2s0s(t) =13+ 2.
caty=v'{t)=t—-2 = v) =12 -2+ C.v0)=Candv(0)=3 = C =3 s0v(t)=3t"—2t+3
and s(t) = 2£° —t* + 3t + D. 5(0) = Dand 5(0) =1 = D=1,ands(t) = 25 —¢* 4 3¢+ 1.

ca{t) =v' (1) = cost +sint = w(t)=sint—cost +C = S=v0)=-14C = C =6,s0

o(t) =sint —cost+6 = s(t)=-cost—sint+6t+D = 0=s(0)=-1+D = D=1so
s(t) = —-cost —sint + 6t + 1.

ca(t) = v'(t) = 10sint + 3cost = wv(t) = —10cost +3sint +C =
S(i)=—l(Jsint—Scost+C't+D.8(0)=—3+D=Oands(27r):—3+27rC+D:12 = D=3and

=5 Thus, s(t) = —10sint — 3cost + 2t +3.

™
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88. a(t) = v'(t) = W0+ 3 —3t> = ot)=10t+3 £ +C = st)=5+3* -2+ Ct+D =
0=35(0)=Dand10=5{2) =20+4—-4+2C = C=-bsos(t)=—5t+5°+ 2t* — 1¢*.
. (a) We first observe that since the stone is dropped 450 m above the ground, v{0) = 0 and s(0) = 450.
V(t) =alt) =—-98 = o(t)=-98+C.Noww(0)=0 = C=0s00v{t)=-98 =
s(t) = —4.9¢% + D. Last, 5(0) =450 = D =450 = s(t) = 450 — 4.9¢%,
(b) The stone reaches the ground when s{t) = 0. 450 —4.9t* =0 = * =450/49 =
t = \/m ~2 9.58 s.
(c) The velocity with which the stone strikes the ground is v(t1) = —9.8./450/4.9 ~ —93.9 m/s.

{d) This is just reworking parts (a) and (b) with »(0) = —5. Using v(¢) = - 9.8t + C,v(0) = -5 =
0+C=-5 = o{t)=-98 -5 Sos(t)=—-4.9t> - 5t+ Dands(0) =450 = D =450 =
s(t) = —4.9t* ~ 5t + 450. Solving s(t) = 0 by using the quadratic formula gives us
t= {51 V8845)/(~9.8) = t ~9.09s.

() =a(t)=a = v)=a+Candvg=2(0)=C = v{t)=at+ve =

s(t) =1at’ +wt+D = s =80)=D = s{t)= fat’ + vot + so

. By Exercise 60 with a = —9.8, s(t) = —4.9¢* 4+ vpt + 50 and v(t) = s’ (£) = —9.8 4+ vy. So

[0()]* = (—9.8t +v0)” = (9.8)° 7 — 19.6vpt + 0§ = v + 96.041* — 19.6v0t = v — 19.6(4.9¢° + vat).

But —4.9t* + vt is just s(t) without the so term; that is, s(t) — so. Thus, [v(£)]® = v3 — 19.6s(t) — so).

. For the first ball, s3(#) = —16¢* + 48¢ + 432 from Example 8. For the second ball, a(t) = —32 =
v(t) = =32t + C.buto(l) = =32(1)+ C =24 = C=56s0v(t)=—-32t+56 =
s{t) = —16t* + 56t + D, but s{1) = —16(1)2 +56(1) + D =432 = D = 392, and
sa(t) = —16t> + 56¢ + 302. The balls pass each other when s, (t) = s2(t) =
—16t% + 48t + 432 = —16¢” + 56t + 302 & St =40 & t=5s.

Another solution: From Exercise 60, we have 51(t) = —16t% + 48 + 432 and s2(¢t) = — 16t + 24¢ + 432.
We now want to solve s1(¢) = sa(t — 1) = —16t2 + 48t +432 = —16(t — 1)> + 24(t — 1) + 432 =
48t =32t — 16+ 24t —24 = 40=8 = t—5s.

. Using Exercise 60 with o = —32, vp == 0, and sp = h (the height of the cliff ), we know that the height at time ¢ is
s(t) = =16t + h. v(t) = s'(t) = —32and v(t) = —120 = -32t= —120 = ¢ =3.75 s0
0=s(3.75) = —16(3.75)* + h = h =16(3.75)> = 225 f1.

B4, (a) EIy" = mg(L —z) + 3p9(L —2)* = EIy' = -img(L —z)* - ipg(L~2)*+C =
Ely = ¢mg(L — 2)* 4+ 55p9(L — 2)* + Cz + D. Since the left end of the board is fixed, we must have
y =y =0whenz =0. Thus, 0 = —3mgL® — 2pgL® + Cand 0 = ImglL® + % pgL? + D. It foliows that
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Ely = img(L - 2)® + Lpg(L — z)* + (3mgL”® + }pgL?)z — (3mgL® + FpgL*) and
1
fw) =y = 57| kmo(L = 2)* + Fipg(L - 2)* + (§mgL® + GegL?)a — (Gmol” + 3109L%)]

(b} f(L) < 0, so the end of the board is a distance approximately — f{L) below the horizontal. From our result in

(a), we calculate

-1
—f(L) Vi [%mgL3 + %ng" — %mgL3 - ﬁngd‘]

1oy y ay_ gLt (m  pL
g7 Gmel’ +spelt) =~ [ 3+ 3

Note: This is positive because g is negative.
65. Marginal cost = 1.92 — 0.002z = C'(z) = C{z) = 1.92z 0.001z° + K. But
C(1) = 1.92 — 0.001 + K =562 = K = 560.081. Therefore, C(z) = 1.92z — 0.0012% + 560.081 =
C(100) = 742.081, so the cost of producing 100 items is $742.08.

d
66. Let the mass, measured from one end, be m(z). Then m{0) =0 and p = W&Tg =z7? = mz)=22"24C

and m(0) = €' = 0, so m(z) = 2 /. Thus, the mass of the 100-centimeter rod is m(100) = 2+/100 = 20 g.
67. Taking the upward direction to be positive we have that for0 < ¢ < 10 (using the subscript 1 to refer to

0<t<10),a1(t) = — (9—0.98) = vi(t) = w(t) =—9t+0.45t° + vo, butv1(0) = vo = ~10 =

v(t) = —9t +0.4582 — 10 = 61 (t) = s1(t} = — 522+ 0.15t° — 10t + so. But 5,(0) = 500 = s0 =

s1(t) = —$t% + 0.15¢% — 10t +500. 51(10) = —450 + 150 - 100 4 500 = 100, so it takes more

than 10 seconds for the raindrop to fall. Now for ¢ > 10, a(t) = 0 =¢'{t) =

v(t) = constant = v1(10) = —9(10) + 0.45(10)% — 10 = =55 = wv(t) = —55. At 55 ft/s, it will take

100/55 = 1.8 s to fall the last 100 ft. Hence, the total time is 10 + 10 = 18 = 118s.
88. v'(t) = a(t) = —22. The initial velocity is 50 mi/h — 252280 = 220 ft/q 5o v(t) = —22¢ + %2, The car stops

whenv(t) =0 & t= 222 = 1 Since st} = —11t* + 22%¢, the distance covered is

(1) = —11(10) + 220 18 - L0 — 422 7 1y,
69. a(t) = k, the initial velocity is 30 mi/h = 30 - % = 44 ft/s, and the final velocity (after 5 seconds) is

50 mi/h = 50 3280 = 220 fi/s Sou(t) = kt + Cand v(0) =44 = C =44 Thus, v(f) = kt + 44 =

v(5) = 5k + 44. Butv(5) = 22 so 5k + 44 = 22 8 = k= B 587ft/s%
0. a(t) = —16 = wv(t) = — 16t + vp where vo is the car’s speed (in ft/s) when the brakes were applied. The car
stops when —16t + v =0 & t= zv. Now s(t) = 1(—16)t" + vt = —8t% + vot. The car travels 200 ftin
a1 1,2

the time that it takes to stop, so s(5zv0) = 200 = 200 == —8(%1}0)2 +vols5ve) = 5500 =

v: = 32-200 = 6400 = vy = 80 ft/s (54.54 mi/h).
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. Let the acceleration be a(t) = k km/h?. We have v(0) = 100 km/h and we can take the initial position s(0) to
be 0. We want the time t; for which v(#) = 0 to satisfy s(t) < 0.08 km. In general, v"(f) = a(t) = k, so
v(t) = kt + C, where C' = v(0) = 100. Now s'(t) = v(t) = kt + 100, so s(t} = %k‘t2 + 100¢ + D, where
D = s(0) = 0. Thus, s(t) = $kt* + 100¢. Since v(t;) = 0, we have kt; + 100 = Qor t; = —100/k, 5o

1 100\ 100 11 5,000 . -
s{te) = Ek (—T) + 100 (—T> = 10,000 (ﬁ - E) =7 The condition s(¢s) must satisfy is

5,000 5
_-’T_<0_08 = ,&999

0,08 >k [kisnegative] = k < —62,500 km/h?, or equivalently,

k< —32 482 m/s%.

72 (a) For0 <t < 3wehavea(t) =60t = v(t)=30"+C = v(0)=0=C = o) =306 50
sty =108 +C = s(0)=0=C = s(t) = 10t°, Note that v(3) = 270 and s(3) = 270.
For3 <t <17 a{t) = —g=-32ft/s = v(t)=-32(t—3)+C = v(3)=2710=C =
v(t) = —32(t —3) +270 = s(t)=-16(t—3)>+270(t -3)+C = s(3)=270=C =
s(t) = —16(t - 3)* + 270(t — 3) + 270. Note that v(17) = —178 and s(17) = 914.

For 17 < ¢ < 22: The velocity increases linearly from —178 ft/s to —18 ft/s during this period, so
%% = Lzz_“(—_l;—?—g) = % = 32, Thus, v(£) = 32(t — 17) — 178 =
s(t) = 16(t — 17)* — 178(t — 17) + 914 and s(22) = 424 ft.
Fort > 22: v(t) = —18 = s(t) = —18({ —22)+ C. But s{22) =424 = C =
a(ty = —18(¢t — 22) + 424.
Therefore, until the rocket lands, we have
30¢2 if0<t<3
—32{(t—3)+270 if 3<t<17
32(¢ —17) - 178  if 17 <t <22
—18 if t>22

v(t) =

104 if 0<¢<3
—16(t —3) +270(t - 3) + 270 f 3 <t <17
16(t — 17) = 178 (t ~ 17) + 914 if 17 <t < 22
~18(t — 22) + 424 if ¢ > 22

160 1

0
—100+

=200+

of 3 7o

(b) To find the maximum height, set v(t) on 3 < t < 17equalto 0. —32{(t —3) +270=0 =  =11.4375s
and the maximum height is s(t1) = —16(¢; — 3)% + 270{¢; — 3) + 270 = 1409.0625 ft.

(¢) To find the time to land, set 5(t) = —18(t — 22) + 424 = 0. Then t — 22 = 424 = 235 s0t =~ 45.6s.
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" 73. (a) First note that 90 mi/h = 90 x 3253 ft/s = 132 ft/s. Then a{t) = 4 ft/s? = v(t)=4t+ C, butw(0) =0

= (= 0. Now 4t = 132 when t = 182 = 33 5, so it takes 33 s to reach 132 ft/s. Therefore, taking
$(0) = 0, we have 5(t) = 2¢*, 0 < t < 33. So 5(33) = 2178 ft. 15 minutes = 15(60) = 900 s, so for
33 <t <933 we have v(¢) = 132 ft/s = s(933) = 132(900) + 2178 = 120,978 ft == 22.9125 mi.
(b} As in part (a), the train accelerates for 33 s and travels 2178 ft while doing so. Similarly, it decelerates for 33 s
and travels 2178 ft at the end of its trip. During the remaining 900 — 66 = 834 s it travels at 132 fi/s, so
the distance traveled is 132 - 834 = 110,088 ft. Thus, the total distance is
2178 4+ 110,088 + 2178 = 114,444 ft = 21.675 mi.
(c) 45 mi = 45(5280) = 237,600 ft. Subtract 2(2178) to take care of the speeding up and slowing down, and we
have 233,244 ft at 132 fi/s for a trip of 233,244/132 = 1767 s at 90 mi/h. The total time is
1767 4+ 2(33) = 1833 s = 30 min 33 s = 30.55 min.

(d) 37.5(60) = 2250's. 2250 — 2(33) == 2184 s at maximum speed. 2184(132) + 2(2178) = 292,644 total feet
or 292,644/5280 = 55.425 mi.

4 Review

CONCEPT CHECK

1. A function f has an absolute maximum at z = c if f(c) is the largest function value on the entire domain of f,
whereas f has a local maximum at ¢ if f(c) is the largest function value when z is near c. See Figure 4 in

Section 4.1.
. (a) See Theorem 4.1.3.
{(b) See the Closed Interval Method before Example 8 in Section 4.1.

. (a) See Theorem 4.1.4.
(b) See Definition 4.1.6.

. (a) See Rolle’s Theorem at the beginning of Section 4.2,

(b) See the Mean Value Theorem in Section 4.2. Geometric interpretation—there is some point P on the graph of
a function £ [on the interval (a, b)] where the tangent line is parallel to the secant line that connects (a, f(a))

and (b, f(b)).
. (a) See the I/D Test before Example 1 in Section 4.3.
{b) See the Concavity Test before Example 4 in Section 4.3.

. {a) See the First Derivative Test after Example 1 in Section 4.3.
(b) See the Second Derivative Test before Example 6 in Section 4.3.
{c) See the note before Example 7 in Section 4.3.
. (a) See Definitions 4.4.1 and 4.4.5.
(b) See Definitions 4.4.2 and 4.4.6.
(c) See Definition 4.4.7.
(d) See Definition 4.4.3.

. Without calculus you could get misleading graphs that fail to show the most interesting features of a function.
See the discussion following Figure 3 in Section 4.5 and the first paragraph in Section 4.6.
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9. (a) See Figure 3 in Section 4.9.
flzs)

(b).’.l?'z“—‘ﬂ’,‘l—_

filz1)

(€} Tnt1 = Tn — f’(mn)

(d) Newton’s method is likely to fail or to work very slowly when f'(z1) is close to 0.

. (a) See the definition at the beginning of Section 4.10.

(b} If Fy and F; are both antiderivatives of f on an interval I, then they differ by a constant.

TRUE-FALSE QUIZ

For example, take f(z) = 2°, then f'(z) = 327 and f'(0) = 0, but £(0) = 0 is not a maximum or
minimum; {0, 0) is an inflection point.

For example, f{x) = |x| has an absolute minimum at 0, but f'(0) does not exist.

For example, f(x) = x is continuous on (0, 1} but attains neither a maximunt nor a minimum value on

(0,1). Don’t confuse this with f being continuous on the closed interval [a, b], which would make the

statement true.

fH-f=y _o

By the Mean Value Theorem, f'(c) = D) —32° 0.Notethat|c| <1 < c¢(—1,1).

This is an example of part (b) of the I/D Test.

For example, the curve y = f(z) = 1 has no inflection points but f”(c) = 0 for alt .

f(@)=¢(z) = f(z)=glz)+ C. Forexample,if f(z) = z 4+ 2 and g(x) = = + 1, then

f'(x) = ¢'(z) = 1, but f(z) # g(x).

Assume there is a function f such that f(1} = —2 and f(3) = 0. Then by the Mean Value Theorem there
fB -f1)  0-(=2)

exists a number ¢ € (1, 3) such that f'(c} = T 3 = 1. But f'(z) > 1forallx, a

contradiction.

The graph of one such function is sketched.

K

0 x

At any point (a, f(a)), we know that f'(a) < 0. So since the tangent line at {a, f(a}) is not horizontal, it
must cross the z-axis—at x = b, say. But since f"'(x) > 0 for all z, the graph of f must lie above all of its
tangents; in particular, f(b) > 0. But this is a contradiction, since we are given that f{z} < 0 for all z.

Let w1 < xo where @y, 22 € I. Then f(z1) < f(x2) and g{z1) < g(z2) (since f and g are increasing on
Dy so (f +g)(@1) = f(71) + glz1) < f(z2) +g(z2) = (f + g}(=2).

f(z) =z and g{x} = 2z are both increasing on (0, 1), but f{x) — g{x) = —x is not increasing on (0, 1).
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Take f(x) = z and g(x) = x — 1. Then both f and g are increasing on (0,1). But Flzg(z) = x(x —1)
is not increasing on (0, 1).
Letx; < 2o where 1,22 € I. Then 0 < f(z1) < f(zz2) and 0 < g{z1) < glz2) (since f and g are both
positive and increasing). Hence, fle) glz) < flz2) glxr) < fla2) g(z2). So fgis increasing on 1.
Let 21,72 € I and 21 < xa. Then f(z1) < f(x2) (f is increasing) =

11
fx1) flx2)
The most general antiderivative is F'(x) = —1/z + €y forz < 0 and Flxy=-1/z+Czforz >0

(f is positive) = g(x1) > g(z2) = g(x) =1/f(z)is decreasing on 1

(see Example | in Section 4.10).

By the Mean Value Theorem, there exists a number ¢ in (0, 1) such that

F1) = £(0) = f{e)(1 — 0) = f'{c). Since f'(¢) is nonzero, f(1) — f(0) # 0,50 F(1) # F(0).

EXERCISES

Cf@) =10+ 27 - 2%,0< e <4 flx)=27-32" = ~3(z* —9) = —3(z + 3){z — 3) = 0 only when
z = 3 (since —3 is not in the domain). f'(z) > 0 forz < 3and f'(z) < Oforz > 3,50 f(3) = 64 is alocal
maximum value. Checking the endpoints, we find £(0) = 10 and f(4) = 34. Thus, f(0) = 10 is the absolute

minimum value and £(3) = 64 is the absolute maximum value.

Cfle)=x-yZ,0<z<4 fll)=1-1/2yz) =0 & 2/z=1 = == 1. f'(x) does not exist
& =0 f{z)<0for0<z<iandf(z)>0for:<z<4sof(y)= — 1 is alocal and absolute
minimum value. f(0) = 0and f(4) = 2, so f(4) = 2 s the absolute maximum value.

2 2

zi+z+1)(1) - z(2x+1 1-

-f(:r)‘:z—f——,—QS:cSO.f’(a:):( )() g )= , xr 2_0 N
2 +x+1 (z2+z+1) (2 +z+1)

# = —1 (since 1 is not in the domain). f'(z) < 0for —2 <z < —land f'(z) > 0for =1 <z < 0,50

f(=1) = —1is alocal and absolute minimum value. f(—2) = —2 and £{0) = 0, s0 f(0) = 0is an absolute

maximum value.

flz) = (@2 +22)%, [-2,1]. f'(z) = 3(z* + 2z)%(2z + 2) = 6(z + 1)z’ (z + 2)% so the only critical numbers in
the interior of the domain are z = —1,0. f'(z) < Ofor -2 < z < —land f'(z} > O for -1 <z < 0 and

0 <z < 1,s0 f is decreasing on (—2, - 1) and increasing on (—1,1). Thus, f(~1) = —1 is a local minimum
value. f(—2) = 0 and f{1) = 27, so the local minimum value is the absolute minimum value and F(1) =27 is the
absolute maximum value,

. flz) ==z +sin2z, [0,7]. f'(2) =1+2c082x =0 <& cos2z= iz

or 2, f"(x) = —4sin2z, 50 f'(3) = —4sin & = —2v3 < 0and "

f(F) =%+ 3@ ~ 1.91 is a local maximum value and f{3F 1.23 is a local minimum value. Also

£(0) = 0and f{x) = =, 5o f(0) = 0 is the absolute minimum value and f(7) = = is the absolute maximum
value.

. f(z) = sinz + cos’ z, [0,7]. f'(z) = cosz — 2coszsinz = cosx (1 — 2sinz), so f'(z) = 0forzin (0, )
o cosz=0orsinz =41 & x=% % o3 f'(a)=cosz—sin2z = f'(z)=—sinz-2cosz,
@ (E) = -4 ~204) = -4 (5) = -1 =20 = L £1(5) = 4 2(3) 3. T,

F{%) =32 and f(3F) = § are local maxima and F(Z) = 1is alocal minimum. f{0) = 1 and f(x) = 1,0

f has its absolute minimum vajueof 1 at 0, 2 3 and 7. f attains its absolute maximum value of % at % and Fﬁ
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7 Ly B tz-b , 2z 34040
Taoe Bzt — 22241 2o - N

Pt 2 . 1— 1/t +2/4 1 1
. hm = lim = = =
- (2t—1)(t2+t+1) oo (2—1/8)(1+1/t+1/42) 2.1 2

. lim = I = lim
r——oo 3r—1 @00 (3$_1)/4/$2 z—-00 —3+1/x

lim (z® +2%) = lim 2*(1+42) = —cosincez® - ocand 1+ — —ooas r — —oc.
z——00

&t — 00

VA2 + 32— 22 Via?+3z+2r ; (42* + 3z) - 42

/4,2 1 . vAx2 1 2 . /4 1/22 .
VL fim MV 1 yat /e {since —z = |z| = vz for 2 < 0]

lim {(v4z2 + 3z — 2z) = lim

. . = 11m
T — o0 T—00 1 V42 +3x + 2x T 00 4/ 472 + 3z + 22
3 3/ x?

m —— = lim
zooo Vda? + 3z + 2z w—oe (VAx? + 3z 4 2x) Va2
3
m o
z—oo \JA 4+ 3fr 42
3

[since z = |z| = Va2 forz > 0]

4
0<sin'z<1,s00< 002 Since lim 0= 0and lim —= = 0, lim 2% _ 0 by the

T —00 €T o0 ,\/_ €00 \/-

Squeeze Theorem.

- f0) =0, f(=2) = f'(1) = f(9) =0, Jim - f(x) =0,
lim f(z) = —oo, f'(z) < 0on(—oc,~2), (1,6}, and (9, c0),

z—6

f'{x)>0o0n(-2,1)and (6,9), f’{z} > 0 on (—o0,0)
and (12, 00), f”(x) < 0on (0,6) and (6,12)

. For0 <z < 1, f'(z) = 2z, 50 f(z) = 2% + C. Since f(0) =
f@)=zon[0,1]. Forl <z <3, f'(z) = —1,50
flzy)==2z+D. 1=f(1)=-1+D = D=25s0

flx)=2—z. Fore >3, f(z) = 1,50 f(z) =z + E.
~1=f(3)=34+E = E=—4,50 f(z) =2z — 4. Since f

is even, its graph is symmetric about the y-axis.
Sisodd, f'(x) <0for0 <o <2, f'{z)>0forz > 2,
f'(z) >0for0<z <3, f'(x)<0forz>3,

lime o f(z)=-2
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16. (a) Using the Test for Monotonic Functions we know that f is increasing on (2, 0) and (4, oc) because f* > O on
{(—2,0) and (4, 00}, and that f is decreasing on (—oo, —2) and (0,4) because f* < 0 on (—o0, —2) and (0,4).

(b) Using the First Derivative Test, we know that f has a local maximum at z = 0 because f' changes from positive
to negative at z = 0, and that f has a local minimum at ¢ = 4 because f * changes from negative to positive
atr = 4.

f possible graph of f

/\/,_\fg__
yl2\-/345

N_—*

N2

Ly=flz)=2—-2z-2* A. D=R B. y-intercept: f(0) =2.
The z-intercept (approximately 0.770917) can be found using Newton’s
Method. €. Nosymmetry D. No asymptote

E. f/(z) = —2 — 32® = ~(3z° +2) < 0, so f is decreasing on R.

F. No extreme value G. f”(z) = —6zx < 0on (0,00} and f"{x) > 0
on (—50,0), so f is CD on (0, co) and CU on {—o0,0).

There is an [P at {0, 2).

Ly=flz)=a2 -6z 152 +4 A . D=R
B. y-intercept: f{0} = 4; z-intercepts: f(x) =0 =
x = —2.00,0.24, 785 C, Nosymmetry D. Noasymptote
E. f'(z) = 32 — 122 — 15 = 3(z” — 4z — 5) = 3{z + 1)(= — 5).

so f is increasing on (—oo, —1), decreasing on (—1,5), and increasing
on (5,00). F. Local maximum value f(—1) = 12, local minimum
value f(5) = —96. G. f’(z) =6z —12=6(x —2),s0 fisCD
on (—oc,2) and CU on (2, 00). There is an IP at (2, —42}.

Ly =flz) =2t - 32 + 32° —z = x(x - 1)* A. D=R B. y-intercept: f(0) = 0; z-intercepts: f(z) =0
& gp=0orz=1 C.Nosymmetry D. fisa polynomial function and hence, it has no asymptote.
E. f'(z) = 42® — 92° + 6 — 1. Since the sum of the coefficients is 0, 1 is a root of f', so
flz)=(z-1)(42® -be+1) ={z - 1)’z -1). f&) <0 = =< 1,50 f is decreasing on (—o0, 1)
and f is increasing on (;11 . oo). F. f'{x) does not change sign at x = 1, H. ¥

2.-
_AT ini
355 18 a local minimum

so there is not a local extremum there. f(3) =
value. G. f"(z) = 12z% — 18z + 6 = 6(2z — 1){x — 1).

f'z)=0 & z=4o0rl. f'2)<0 & <<l =

fisCDon (%,1) and CU on (—oc, 4} and {1, 00). There are inflection

points at {5, — 1) and (1,0).
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1 1 . ] L . .
. y= f(z)= 2 01{-2) A. D= {x|z# %1} B. y-intercept: f(0) = 1; no z-intercept

C. f(—=) = f(x), so f is even and the graph of f is symmetric about the y-axis. D. Vertical asymptotes:

2x
(1-a2)?

x = +1. Horizontal asymptote: y = 0 E. ¢ = =0 <& z=0,s0 fisdecreasing on (—o0, —1
ymp

and (—1,0), and increasing on (0, 1} and (1, co). H.
F. Local minimum value f{0) = 1; no local maximum
(1- .1:2)2 22— 22 2(1 - 2?)(~22)
(1- =2
2(1—4) + 82> 622 ,
( )3I=6x+23<0@x2>1,
-2  (1-%)

0 fis CDon (—oo,—1) and (1, 20), and CU on (~1,1). No IP

G. f(x) =

B
z(x — 3)2
1 1

C. Nosymmetry, D. i —_— =1}, =0 isaHA lim ——— =
ymmetry wi oo x(x ~ 3)2 oY s oot z(z — 3)? o

Ly = flx) = A D={r|z+#0,3} =(-00,0)U (0,3} U(3,00) B. No intercepts.

. 1 1
1 —_— = — lim ———— = =0: =
ILIIIJ{ 2= 3) oa, 11_‘1113 P oo, sox = Qand z = 3 are VA.

oy~ E B ala —3) 301 a)
E. f{z)= x2(x — 3)* Cx¥(x—3)3 =

file) >0 © 1<z <3 5s0/fisincreasing on (1,3) and decreasing H.

on (—o0,0), (0,1), and (3,00) . F. Local minimum value f(1) = 1

6(2z° — 4z + 3)
a3z -3¢

G. f"(z) = Note that 22% — 42 + 3 > 0 forall z

since it has negative discriminant. So f"(z) >0 < z>0 = fis

CU on (0,3) and (3, 00) and CD on (—oo,0). No IP =3

1 Zr+1
r+1 z(z+1)

A. D={z|z+#0,~1} B. Noy-intercept, z-intercept = — 1

. . . 2r+1 ) 2+ 1
C. Nosymmetry D. lim z}=0,s0y =0isaHA. lim —— =00, 1 _— =
y y z5Fo0 f(w) Y z—ot x{x+ 1) o - z{x+1)
. 2r+1 . 2z 41
1 — =0, I = - o0z =0, 1=—
I_j1_111+ e+ 1) o0 m_}gll_ D) oo, 80 =0, ¢ 1 are VA.
Ef’(;c)*—i—;<0'f'd"' 1 H
. Sl Rl Py » 80 f is decreasing on (—~o0, 1), .
{(—1,0) and (0,00). F. No extreme values
2(2z + 1)(2*
G. f"(a:):ing 2 _ 2=+ +.m+1)
2 (z4+1)3 a3z +1)3
ff(2) >0 & &>0or—1<z<—1%, 50 fisCUon (0,00) and

(-1,—3) and CD on (o0, —1) and (—%,0). 1Pat (—3,0)
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4
=z -8+ 276—_’_8 A. D={z |z # -8} B. Intercepts are 0 €. No symmetry

64 .
j—S = oo, but f(z) — (z — 8) = poare —0asx — 00,50y = x — 8 is a slant asymptote.
2

lim =ocand lim r __ —oao, 502 = —BisaVA. H.
r—+—81 $+8 T——8" .’E+8

; 64 z(x + 16) .
E. =1- = -
fi(z)=1 @+ 8] o+ 8) >0 & z>0orz < -16,

%
(—16, ~32) 3~
so f is increasing on (—oc, —16) and (0, o0} and decreasing on \

(~16, —8) and (—8,0). F. Local maximum value f(—16) = —32,
local minimum value f{(0) =0 G, f"(z} = 128/(z + 8’ >0 &

x> -8, 50 fis CUon (—8,00) and CD on (o0, —8). No IP

y=fl@)=x+V1—2z A. D={ziz<1}=(-00,1] B. y-intercept = 1; z-intercepts occur when
z4+/1—-x=0 = Jy1-z=-x = l-z=2° = 2’4z-1=0 = x:%@,but
the larger root is extraneous, so the only z-intercept is —14;@ C. Nosymmetry D. No asymptote
E. fiz}=1-1/(2V1-2})=0 & 2Vl-z=1 & H.

l-z=3% & z=3and f(2)>0 & z < £, s0 fis increasing

on (oo, ), decreasing on (2,1). F. Local maximum value f(2) = %
4 4 4 4

1

m <0 < z<1,50fisCDon(—00,l1).

G. f'(x)=—
No 1P
Ly=fl@)=z+v2+z A, D={-2,00) B. y-intercept: f(0) = 0; z-intercepts: —2and 0 C. No

, T 1 344
symmetry D. No asymptote E. )= ——=+ V2t = —r——[r+2(2+ = =
y y ymp () s T VETE 2,—2+$[ (2 + )] Worer

when z = — 3, s0 f is decreasing on (-2, —2) and increasing on (-4,00). F Locul minimum value

f(-%) = ug\/g: —449@ ~ —1.09, no local maximum H. y

2273 (3z+4) 21+‘
4(2 + z)
624 7)-(3z+4) _  3z+8

A2+ 2)/ A2+ )32

G. f'(z) =

f'(x) > 0forz > —2,50 fis CUon (=2,00). NoIP
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%6 y=f(r)=yor— ¥z A D=[0,00) B. y-intercept §; z-intercepts 0, 1

C. Nosymmetry D. lim (m”g —31/3) = lim [m1/3 (:rl/s - 1)] = 00, no asymptote

e T 00

3rt/® — 2

1/6 2 6 - et
TS >0 & 32/°>2 <« x> (%) sofisincreasing on

E. fl(z) =30 - 1z7%3 =

((%)6,00) and decreasing on (0, (%)6) . f((%)s) ~ == is a local minimum value.

8 — 9z'/®
1.-3/2 L 2,-5/3 _ 1/6 8 b4
it + 5 = 362573 >0 & /7 <y H.

& r< (g)ﬁ.sofis CUon (0, (g)s) and CD on (( )5,00).
Pat ((5)°,-35)

21 y = f(z) =sin’z —2cosx A. D =R B. y-intercept: F(0) = -2 C, f(—z) = f(z),s0
[ is symmetric with respect to the y-axis. f has period 2r. D. No asymptote
E. y = 2sinzcosz + 2sinz = 2sinz {cosz +1). 4 =0 <« sinz=0orcosz=—1 < z=nror
= (2n+ 1}r. y' > 0 when sinz > 0, since cosz -+ 1 > 0 for all z. Therefore, y’ > 0 (and so f is increasing)
on (2nm, (2n + 1)7); ' < 0 (and so f is decreasing) on ((2n — 1)7, 2n7). K Local maximum values are

f((2n + 1)m) = 2: local minimum values are f(2nm) = ~2. G. ¢ =sin2z + 2sinz =
y”:2C0521‘+2COS$:2(20082$—1)+2COS$:4C082$’+2COS:L‘-2
=2(2cos’ x + cosx — 1) = 2(2cosx — 1){cosz + 1)
y'=0 ¢ cosz=Jor—1 & zr=2nmtZorz={(2n+Ljr. y” > 0(ndso fisCU)on

(2nm - Z,2n7+ Z); y” < 04and so f is CD) on (207 + Z, 207 + 32 ). There are inflection points

at (2nm+ I, -1).
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28 y=flz) =4z —tanzx, ~T<z< I A D=(-3%, Z). B. g-intercept = f(0) =0 C. f(-z)= - f(x),

so the curve is symmetric about (0,0). D. lin/l {4z — tan ) = —oo0, lim/ +(4:c —tanz) =00, SOT = 5
r—mw/2 z-—mf2

andz = — 5 are VA. E. flley=4—-sec?z>0 & secxr<2 &
cosz >3 & —§F<Ir<i. soflsmcredsmgon( Z,Z) and

decrea%mgon(f—,—%)and(%,%). F f(3) =% —+3isa

local maximum value, f(—ls’—) /3 — 2 i5 a local minimum value.

G. f'(z) = —2sec’rtanz >0 & tanzx <0 & -F <z <0,
so fisCUon (—Z,0) and CD on (0, 5 ). IPat (0,0)
z? -1 *(2z) - (2 -~ 1)32°
s - -

2t (-2z) ~ (3~ 2%)42® 222 —12
x® DS

f”(m) —

Estimates: From the graphs of f" and f”, it appears that f is increasing on

(—1.73,0) and (0, 1.73) and decreasing on {—o0, —1.73} and (1.73, o0);

f has a local maximum of about f(1.73) = 0.38 and a local minimum of

about f(—1.7) = —0.38; f is CU on {—2.45, () and (2.45, c0), and CD

on (—oo, —2.45) and {0, 2.45); and f has inflection points at about

(—~2.45,—0.34) and (2.45,0.34).
—_— 2 -
Exact: Now f'(z) = 3:43: is positive for 0 < % < 3, that s, f is

increasing on {—+/3,0) and (0, /3 ); and f' (z) is negative (and so f is

decreasing) on { ~o00, —v/3 ) and (v3,00). f'(#) =0 whenx = +v3.

f/ goes from positive to negative at z = V3, s0 f has a local maximum of

2
f(ﬁ) = % = 249@; and since f is odd, we know that maxima on

the interval (0, oo) correspond to minima on {—oc, 0), so f has 4 local

22 —

minimum of f -4/3) = _2v3 Also, f" () = is positive (S0
9 5

fis CU) on {—+/6,0) and /6, 00}, and negative (so f is CD) on

(—oo,—\/g) and (0,+/6 ). There are IP at (\/_, = )and

(V6 )
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. f(z) = 1—\3{% =231 -2t =

7% 14 2r
3 (z-1)7°

r 2 (- 1)2(2) = (1 + 22)(Q)(z — 1) LAt (—23:_5/3) _ 252+ 5z -1
3 (-1)° (¢ - 1)° 9 9 (@-1)°

Fla) =2 311 - 2)"2(-1) + (1 - 2) 7 (3)z7° =

f”(.ﬁ!:) —

4 20 0.5

=

=10

-3 . 0 5
f l
+ + 3
A f
2 -0.6 0

From the graphs, it appears that f is increasing on {—0.50, 1) and (1, oc), with a vertical asymptote at = 1, and

2

decreasing on {—oc, —0.50); f has no local maximum, but a local minimum of about f{—0.50) = —0.53; f is CU
on (—1.17,0) and (0.17,1) and CD on (—o0, —1.17), {0,0.17) and (1, 00); and f has inflection points at about
(—1.17,—-0.49), (0,0) and (0.17,0.67). Note also that linl:l f{x) =0, s0 y = 0is a horizontal asymptote.

Cf(z) =32° — a4+ 2t —bx® — 207+ 2 = fl(z) = 182° — 252t + 427 — 1527 — 4z =

() = 90z - 10023 + 122° — 30z — 4
75

A ~_7

-50 s

!
From the graphs of f" and f”, it 25
appears that f is increasing on
f

(—0.23,0) and (1.62, co) and

decreasing on {—oo, —0.23) and

(0,1.62); f has a local maximum of 1 }

1.5
0.5

038
about f {0) = 2 and local minima ]

of about f(—0.23) = 1.96 and f(1.62) = —19.2; f is CU on (—o0, —0.12) and (1.24, oc) and CD on
(~0.12,1.24);and f has inflection points at about (—0.12,1.98) and (1.24, —12.1).
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32 f(z) =sinzcos’z = f(z)=cos’z—2sin’zcosz = f'(z)=-Tsinz cos?r + 2sin’ z

25

N i)
CATA -~y

—2.5 —0.4

From the graphs of f* and f*', it appears that f is increasing on (0,0.62), (1.57,2.53), (3.76,4.71) and
(5.67, 27) and decreasing on (0.62,1.57), (2.53,3.76) and (4.71, 5.67); f has local maxima of about
£(0.62) = £{2.53) = 0.38 and £(4.71} = 0 and local minima of about f{1.57) = 0 and

F(3.76) = f(5.67) = —0.38; f is CU on (1.08,2.06), (3.1, 4.22) and (5.20, 2) and CD on (0, 1.08),
(2.06, 3.14) and {4.22,5.20); and £ has inflection points at about {0, 0), (1.08,0.20), (2.06,0.20), (3.14,0),
(4.22, —0.20), (5.20, —0.20) and (2, 0).

33. f(z) = 2" + " + 2 — 1 = 0. Since f is continuous and f{0} = —1 and f(1) = 2, the equation has at least one
root in (0, 1), by the Intermediate Value Theorem. Suppose the equation has two roots, @ and b, with a < b.

Then f(a) = 0 = f{b), so by the Mean Value Theorem, there is a number & in {a, b) such that
fb) - fla) 0

flx) = a2 b a 0, so f has a root in (@, b). But this is impossible since

(@) = 1012 4 512°° + 1 > 1 forall z.

34. By the Mean Value Theorem, f'{c) = f(4) f(O) & 4f'(c) = f(4) - 1 for some ¢ with O < ¢ < 4. Since

2<f()<5wehave4()§4f'(c)§4(5) & 4D <fA)-1<4(5) © 8<f(4)-1<20 &
9< f(4) <21

35. Since f is continuous on {32, 33] and differentiable on (32, 33), then by the Mean Value Theorem there exists a

5
%c_4/5—\/2_3 ;{2_ V3B -2butic >0 = ¥33-2>0

number ¢ in (32, 33) such that f'(c} =

= V33 > 2. Also f' is decreasing, so that f'(¢) < f'(32) = £(32)7%® = 0.0125 =
0.0125 > f'(c) = V33 -2 = 33 < 2.0125. Therefore, 2 < +/33 < 2.0125.

36. For (1,6)tobeonthe curve y = * + az® + b + 1, wehavethat6 = 1+a+b+1 = b=4—a Now
v = 3z® + 2ax + band ¥ = 62 + 2a. Also, for (1, 6) to be an inflection point it must be true that
y'(1)=6(1)+2¢=0 = a=-3 = b=4-(-3)="7 Notethat witha = —3, we have
y"’ = 6z — 6 = 6(z — 1), so yy” changes sign at z = 1, proving that (1, 6) is a point of inflection. [This does not
follow from the fact that " (1} = 0.]

31. (a) g(z) = f(2*) = g'(z) = 2z (z°) by the Chain Rule. Since f(z) > 0 for all z # 0, we must have

f'(z*) » Oforz £ 0,s0g'(z) =0 < =0, Now g'(z) changes sign (from negative to positive) at
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x = (), since one of its factors, f’(a:z), is positive for all z, and its other factor, 2z, changes from negative to
positive at this point, so by the First Derivative Test, f has a local and absolute minimum at z = 0.

by g'(x) = 2f' (z?) = ¢'(a)=2[cf"(z%) 2z)+ f'(a?)] = 427 f"(z*) + 2f'(x®) by the Product Rule
and the Chain Rule. But z2 > 0 for all = # 0, f”{z*) > 0 (since f is CU for z > 0), and f'(x?) > 0forall
z # 0. so since all of its factors are positive, g”(z) > 0 for = # 0. Whether g (0) is positive or 0 doesn’t

matter (since the sign of ¢ does not change there); g is concave upward on R.

. Call the two integers z and 3. Then x + 4y = 1000, so z = 1000 — 4y. Their product is P = xy = (1000 — 4y)y.
so our problem is to maximize the function P(y) = 1000y — 4y, where 0 < y < 250 and y is an integer.
P'(y) = 1000 — 8y,s0 P' (y) =0 <> y=125. P"(y) = —8 < 0,50 P(125} = 62,500 is an absolute
maximum. Since the optimal ¢ turned out to be an integer, we have found the desired pair of numbers, namely

¢ = 1000 — 4(125) = 500 and y = 125.

. . . . C Az, + B C
, If B = 0, the line is vertical and the distance from x = -9— to (z1,y1) 18 |21 + —| = [Azs = By + l 50
A VA2 ¥ B?

A
assume B # 0. The square of the distance from (z1,y1) to the line is f{z) = (z — 21)% + (y — y1)” where

2
Az + By + C = 0, so we minimize f{z} = (x—21)* + (—%z — % _yl) =

2 — —
f’(m)—2(m—w1)+2(—émg*yl)(—%)f’(:c):{] = :r::B:C1 ABu: Acandthisgives

B B A%+ B?

2

a minimum since f'(z) = 2(1 + %5) > 0. Substituting this value of z inte f(x) and simplifying gives

_ (Ax+ By + 0)2 _ . ) ~ |Az1 + By +C|
flx) = 1B . s0 the minimum distance is \/ f(z) = N

40. On the hyperbola xy = 8, if d(x) is the distance from the point (x,y) = (x,8/z) to the point (3, 0), then
d(z)? = (- 3P +64/2% = fla). fx)=2z—-3)— 128/ =0 = 2'-3"-64=0 =

( —4)(x® + 2> +42+16) =0 => =z = 4 since the solution must have & > 0. Then y = § = 2, so the point

- . T . .
By similar triangles, ¥ ———, so the area of the triangle is
x x2 —2rz

?“.’32

Va2 - 2rz
2rz ot — 2rz - rzt(x — )/t - 2rz

z2 —2rx

Afx) = 3(2y)z =2y = =

A(a) =

_ rz? {x—3r)

(x? - 27‘.’1:)3/2

A'(x) < Owhen 27 < z < 3r, A'(z) > Owhenz > 3r. Soz = 3r
gives a minimum and A(3r) = r(grz)/(\/g ry=3 NETS

=0 whenx = 3r.
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The volume of the cone is

V= imlr+a)=in(r’ —a®)(r+2), r<z<r

Vie) =2 [{(#* - ?) (1) + (r + x)(~2x)]
=L[(r+a)(r—x-2z)] = §({r+z)(r -3z

=0whenz = —rorz =r/3.
)

Now V{(r) = 0 = V(—r), s0 the maximum occurs at x = r/3

2 2 .3
and the volume is V(g) —7_3:(,,.2 _ %) (4_;‘) _ 3E;rlr '

We minimize

L{z) =|PA| +|PB| + |PC| =2 V2% + 16 + (5 — x),
0<z <5 Lz)=2e/eP+16 —-1=0 &
2=Vt +16 & da’=2"+16 & z= .

£(0) =13, L( & ) & 119, L(5) ~ 128,50 the minimum

4
occurs when x = welad 2.3.

If | D| = 2, the last part of L(x} changes from (5 — x} to
(2—z)with0 <z <2 Butwestillget L'(z) =0 <
x = Z=, which isn't in the interval [0, 2]. Now L{0) = 10
and L(2) =2 V20 = 4+/5 ~ 8.9. The minimum occurs
when P = C.

L C dv K 1 C
Bu=K=+= = —= = 1=0
TVETT T d T (L/c)+(c/L)(C LZ)

L = C. This gives the minimum velocity since v’ < 0 for0 < L < C'and v’ > Ofor L > C.

We minimize the surface area S = nr2 + 2mrh + L(4nr?) = 3mr? + 2nrh.
3

V=258 v
Solving V = rr®h + Znr® for h, we geth = ——35— = p 2r,s0

S(r)—37rr2+27r'r[ 4 A%r] = Z7@r +2—:{—.

T2

2V Lo %m,a -
- 4+ U=
72 3 2

o = %E @ =4 %‘i This gives an absolute minimum since §'(r) < O for0 < r < {/ :;—V and
7 i T

vV —
S'(r) > Oforr > §f % Thus, h =
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47. Let z denote the number of $1 decreases in ticket price. Then the ticket price is $12 — $1(x), and the average

attendance is 11,000 + 1000{x). Now the revenue per game is

R(z) = (price per person) x (number of people per game)

= (12 - ){11,000 + 1000z) = ~1000z* + 1000z + 132,000

for 0 < x < 4 (since the seating capacity is 15,000) = R'(z) = -2000z +1000=0 < z=0..
This is a maximum since R” (x) = —2000 < 0 for all z. Now we must check the value of

R(z) = (12 — £)(11,000 + 1000z) at z = 0.5 and at the endpoints of the domain to see which value of x
gives the maximum value of B. R(0) = (12)(11,000) = 132,000, R(0.5) = (11.5){11,500} = 132,250, and
R(4) = (8)(15,000) = 120,000. Thus, the maximum revenue of $132,250 per game occurs when the average

attendance is 11,500 and the ticket price is $11.50.

. (a) C'(z) = 1800 + 25z — 0.2z% + 0.001z” and

R{x) = xp(x)} = 48.22 — 0.03z>. The profit is maximized

when C'(z) = R'(z).

From the figure, we estimate that the tangents are parallel

when x = 160.
(b) C'(z) = 25 — 0.4z + 0.003z% and R'(z) = 48.2 — 0.06z. C'(z) = R'(z) =
0.003x7 —0.34x - 23.2=0 = z; =~ 161.3(z > 0). R'(x) = ~0.06 and
C"(z) = —0.4 + 0.006z, so R"(z1) = —0.06 < C"(z1) ~ 0.57 = profit is maximized by

producing 161 units.

C(x) _ 1800

(c) e(z) = — +25 - 0.2z + 0.0012? is the average cost.

xr

Since the average cost is minimized when the marginal cost equals
the average cost, we graph c{x) and C'(z) and estimate the point of

intersection. From the figure, C'(z) = ¢{z) & == 144

8. f(x) =2 —a2"+322 32z -2 = f(z)=5z"—42°+ 6z - 3,50

:t:i—:rf,ll+3r,21—3:cn—2

S5zi — 4ad + 6z, — 3

Trntl = Tn — Nowzi =1 = z2=15 = z3=1343860 =

Is 7 1.300320 = @5~ 1.297396 = a6 ~ 1.297383 = x7, so the root in {1, 2] is 1.297383, 1o six

decimal places.
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80. Graphing y =sinz and y = x? — 3z + 1 shows that there are two
roots, one about 0.3 and the other about 2.8,
flz)=sinz—z*+3z-1 = f(z)=cosz—2x+3 =

sinzn 2 + 37, —

COSTn — 20, + 3

To 7 0.268552 = 13~ 026888l ~z,andx =28 =

ro = 2770354 =  x3 == 2.77T0058 == 14, so to six decimal places,

the roots are 0.268881 and 2.770058.

1
.Nowz1 =03 =

Tn+l = Tn —

ity =cost+t—t* = f(t)=—sint+1-2t f(t)exists

for all £, so to find the maximum of f, we can examine the zeros of f'.

From the graph of f', we see that a good choice for £; is 1 = 0.3.
p g

Use g(t} = —sint + 1 - 2t and ¢'(t) = — cost — 2 to obtain
ta A2 0.33535293, 13 == 0.33541803 =~ t4. Since
FI(E) = —cost — 2 < Oforall #, £(0.33541803) ~ 116718557 is

the absolute maximum.

.y = f(z) =zsinz, 0<z<2x A D=[0,2n] B. y-intercept: f(0) = 0; z-intercepts: f(z) =0 &
z=0orsinz =0 < =z=0,mor2r C., Thereisnosymmetry on D,butif f is defined for all real numbers
x, then f is an even function. D. Noasymptote E. f'(z)} = zcosz + sinz. To find critical numbers in (0, 27),
we graph f' and see that there are two critical numbers, about 2 and 4.9. To find them more precisely, we use

m

Newton's method, setting g(z) = f'(x) = zcosx + sinx, so that ¢’ (x) = f"'(x) = 2cos T — xsinz and

Ty COS X, + SINTp

20088y — Tn SINTx

Tny1 = Tn —

20 == 4.913214, x5 = 4.913180 ~ x4, so the critical numbers, to six decimal places, are ) = 2.028758 and

ro = 4.913180. By checking sample values of f'in (0, 71). (r1,72), and (r2, 27), we see that f is increasing on
(0,71), decreasing on (ry, r2), and increasing on (72, 2x ). K. Local maximum value f{r;) = 1.819706, local
minimum value f(re) = —4.814470. G. f(z) = 2cosz — zsinz. To find points where f”{x) = 0, we graph
f" and find that f”(x) = 0 at about 1 and 3.6. To find the values more precisely, we use Newton'’s method. Set

2C08Tn — Fn SINDTn

hixz) = f'(z) = 2cosz — zsinz. Then A'(z) = ~3sinz — £ €OS 2, $0 Tns1 = Tn — —— .
—38iNTyn — Tn COSTy

ri=1 = xo~~1.078028 o3~ 1076874 = rqandx; =3.6 = x3~ 3.643996, r3 =~ 3.643597 =~ 14,
so the zeros of f”, to six decimal places, are r3 = 1.076874 and r4 = 3.643597. By checking sample values

of f"in (0,7ra), {rs,r4), and (ra, 27), we see that f is CU on (0,r3), H. y4
CD on {r3,74), and CU on (r4, 2m). f has inflection peints at 4
(rs, f(rs) = 0.948166) and (ra, f(rs) & —1.753240). 5

A
Avan

-4
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53. f'(z) = Va® —4/yz = 257 _ 4pV = f(z) = %507/2 74(21,4/5) L= %mwz .

B4, f'(x) =8z —3sec’z = flz)= 8(%:1:2) - 3tanz + C, = 4z% — 3tanz + C, on the interval
(nm—Z, nm+ %)

L fI(t) =2t — 3sint = f(t)=1t"+3cost+C.
f(0)=3+Cand f(0) =5 = C=250f(t)=t"+3cost+2

2
—m:u+u—1/2 = f()z%u2+2u1/2+c.
u

Ly2pCand f(1)=3 = C=43,50 flu)=3u" +2Vu+ 3.

Nz =1—6z+482° = flz)=z-32"+162"+C. fF(0)=Cand f'(0}=2 = C=2-50
F'(z) = z — 32% + 162° + 2 and hence, f(z) = %:02 —z®+42°+2x+D. f(0)=Dand f(0) =1 =

D=1s0f(z)=22> 2 +42* + 22 + L

) =20 32 —dx +5 = fl@) =32+ -2+ 5+ C =
flo)=3%a* +ia? - 222+ 32° +Cx+D. f(0)=Dand f(0)=2 = D=2
f=4+1-2424C0+2adf(1)=0 = C=-&-F+5-% &=

1.5, 1.4 2.3, 5.2 251
GE +ga — st + 5w 60:c+2.

. flz) = z?sin(a?), 0<z <7

y4

Cfle) =2+ 2P+ e’ = f'(z) = 42 + 32° + 2cz. Thisis O when(4z® + 3z +2¢) =0 &

z = 0 or 4z® + 3x 4+ 2¢ = 0. Using the quadratic formula, we find that the roots of this last equation are

o= 2LV 32 M.Nowif9—32(1<0 & o> 2

75 then (0, 0) is the only critical point, a minimum.

_ 8
Ife= 331

then there are two critical points (a minimum at x = (), and a horizontal tangent with no maximum
2

33 then there are three critical points except when ¢ = 0, in which case

or minimumatz = — ) andif ¢ <

the root with the + sign coincides with the critical pointat z = 0. For 0 < ¢ < 3;92, there is a minimum at

G — V9 — 32
—gﬂ,amaximumatw:—§—5-M

R 3 3 ,and a minimum at x = 0. For ¢ — 0, there is a
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minimum at r = —% and a horizontal tangent with no extremum at x = 0, and for ¢ < 0, there is a maximum at

K — 32 .
x = 0, and there are minima at & = —-;— + —9——83—6 Now we caleulate f”(z) = 122% + 6z + 2¢.

6+ VBT %
6£v36-4-12-2¢ ¢ ira6 gc<0 o

¢ > 2, then there is no
24

The roots of this equation are & =

V9 — 24e

. . . 1
inflection point. If ¢ < 3, then there are two inflection points at = = ~1 + "

Value of ¢ | No. of CP | No. of [P
c<0 3 2

2 2
3 2
2 2
1 2
1 0

61. Choosing the positive direction to be upward, we have a{t) = 9.8 = v(t) = —9.8{ + vo, but v(0) =0 =g

= o(t)= 98t =5(t) = s(t) = 4.9t + so,burs(0) =so =500 = s(t) = —4.9t* + 500. When
§=0,-492 4500 =0 = t;=,/20 101 = v(t1)=-98/5F ~ —98.995m/s. Since the

canister has been designed to withstand an impact velocity of 100 m/s, the canister will not burst.

. Let 54 (t) and s5(¢) be the position functions for cars A and B and let f(t) = sa(t) — s(t). Since A passed B
twice, there must be three values of ¢ such that f{t) = 0. Then by three applications of Rolle’s Theorem (see
Exercise 4.2.22), there is a number ¢ such that f”{c¢) = 0. So 8’4 (c) = si(c), that is, A and B had equal
accelerations at ¢ = ¢. We assume that f is continuous on [0, T] and twice differentiable on (0,7"), where T is the

total time of the race.

kcosf  k(h/d) h h h

63. (a) ] = — = =k— =k =k

d? d? 4 (VAR ¥ h2)’ (1600 + h2)%?

dr (1600 + A2)¥* — h2 (1600 + n%)"* -2h k(1600 + #%)"? (1600 + A% — 3h?)

ah 2 3
dh [(1600 | h2 )3/2] (1600 + 12)

k(1600 — 2h%)

W [k is the constant of proportionality]
+

Set dI /dh = 0: 1600 — 2h2 =0 = h?2P=800 = h=+800=20 V2. By the First Derivative Test,
1 has a local maximum at b = 20/2 ~= 28 ft.
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(b)

;o keost  k[(h—4)/d] _ k(h—4) _ k(h - 4)
Toodar d? - d3 - [(h—4)? +$2]3/2
dﬂ}' 215 2 d
%:%-E:k(h—:;)(wg)[(h—e;)%rm] ’-2x-d—‘t”
— _AVi— Ay g 2] —12zk(h — 4)
= k(h — 4)(=3z)[(h ~ 4)* + =] 4 TEVTENeS

— k(h— )[(h - 4)* +22] 7

dI 480k(h — 4)

dti,_.  [(h— 4)% + 1600
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.Letf(a:):sin:c-—cosmon [0 27] since f has period 2x. f'{x) = cosz +sing =0 & cosg = —sinz &

tanz = —1 <« 1z = 2T or Z*. Evaluating f at its critical numbers and endpoints, we get f(0) = -1,
FE)y =Vv2. () = w\/ﬁ, and f(27) = —1. So f has absolute maximum value /2 and absolute minimum
value —v/2. Thus, —v/2 < sinz — cosz < V2 = |sinz—cosz| < V2.

24— ) (4~ ) = 22 (4 - 2P )y7 (4 — ) = f(@}f(y), where f(t) = £2(4 — t*). We will show that
0 < f{t) < 4for |t| < 2, which gives 0 < f(z) f(y) < 16 for L3:| < 2and |y| £ 2.
Fi) =42 -+ = f{t)=8 -4 =4t(2-)=0 = t=0o0r 2.
F(0) =0, f{+v2) = 2(4 - 2) = 4,and f(2) = 0. So 0 is the absolute minimum value of f(#)on[-2,2]and 4is
the absolute maximum value of f(t) on [—2,2]. We conclude that 0 < f(¢) < 4 for |t| < 2 and hence, \
0< f(z)fly) <4%or0 < 2*(4—2%)y* (4 - y?) < 16.

. First we show that {1 — ) < 1 forall . Let f(z) = 2(1 —z) =z — z2. Then f'(x} = 1 — 2x. This is 0 when
x=1and f'(z) > Oforz < 3, f'(x) < Oforz > 1. so the absolute maximum of f is f(3) = . Thus,
z(l —z) < ; forall z.
Now suppose that the given assertion is false, that is, a(1 — b) > ; and b(1 — a} > 1. Multiply these
inequalities: a(1 —b}b(1 —a) > 1= = [a(l —a)][b{(1 - b}] > . But we know that a(1 — e} < ; and

b1 —b) <1 = [a(l—a)][b(1-5)] < J5. Thus, we have a contradiction, so the given assertion is proved.

. Let P(a, 1 — a®) be the point of contact. The equation of the tangent line at Pisy — (1 - a %) = (—2a){z - a)
= y—1l+ae?=-20x+27 = y= —2az + a® + 1. To find the z-intercept, puty = 0: 2az = a®*+1 = -
2
1 . . .
= g 2+ . To find the y-intercept, putz = 0: y = a? + 1. Therefore, the area of the triangle is
a

2 2 2
1/a2+1 a® +1 L : a +1
Y (a®+1) = ~(~_) Therefore, we minimize the function A(a) = ( ) O<a <l
2 2a 4a 4a

e = U020 1) 20) = (P4 1)) _ (@ + Yie’ — (@ 4 1)) _ (o 4+ 1) (e - )
B 16a* - 41a2 = 4@2 '

Alla) =0when3a® - 1=0 = a= - A'(a)<0fora< =, A'(a >0fora> 5. So by the First
V3 f

Derivative Test. there is an absolute minimum when @ = ~%=. The required point is { ==, 2 } and the correspondin
‘;75 q P 73 5 p g

‘o aran | 1Y _ 4v3
minimum area is A(ﬁ) = 2=,

. Differentiating z° + zy + %* = 12 implicitly with respect to z gives 2z + y + % + 2y d—y =10,s0
.r X
dy  2z+4y dy I . L
k. = = —2x. b — 4T £
Iz P T =0 & y 2z. Substituting —2z for y in the original
equation gives z° + z{—2z) + (—22)? = 12,5037z* = 12and z = +2. If x = 2, theny = —2z = —4, and if
r = —2 then y = 4. Thus, the highest and lowest points are {2, 4) and {2, —4).

. At a highest or lowest point,

. (a) V'(t) is the rate of change of the volume of the water with respect to time. H’(t) is the rate of change of the

height of the water with respect to time. Since the volume and the height are increasing, V'(¢) and H'(t) are

sitive.
positive 251
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(b) V'(t) is constant, so V" (#) is zero (the slope of a constant function is 0).

(c) At first, the height H of the water increases quickly because the tank is narrow. But as the sphere widens, the
rate of increase of the height slows down, reaching a minimum at ¢ = #2. Thus, the height is increasing at a
decreasing rate on (0, t2), so its graph is concave downward and H"'(¢1) < 0. As the sphere narrows fort > t2,
the rate of increase of the height begins to increase, and the graph of H is concave upward. Therefore,

H"(t2) = 0and H"{t3) > 0.

1 n 1
T+1z T T+lz -2
1 1 ¢ 1

1 flz) =

-7z 1-(z-2

1 n 1
1+ 1-(r—2)

if z <0

fo<e<?2

= fl@)=

1 +a)?

5+ if <0
(1-2)°

-1 if0<z<?

1 1 . -1
T Ty fr=? (142 (217
We see that f'(z) > Oforz < Oand f'(z) < Oforz > 2. For 0 < z < 2, we have

, 1 i (z* + 2z +1) ~ (2° — 6z + 9) 8(z 1)
PO G2 ™ 6 e Bt
O<x<l, f/(1)=0and f'(z) > 0forl <z < 2. We have shown that f'(z) > 0forx < 0; f'(z) < 0for
O0<z<l;f(r)>0forl <z <2and f'(z) <0forz > 2. Therefore, by the First Derivative Test, the local

if z>2

=, 50 f'(z) < 0for

maxima of f are atz = 0 and = = 2, where f takes the value . Therefore, # is the absolute maximum value of f.

. If f(x) > Oforall x, then f is increasing on (-0, 00), s0 f'(0) must be greater than f'(—1). But

f(0) =0 < 3 = f'(~1), so such a function cannot exist.

. A= (z1,2%) and B = (z2,23), where z1 and z; are the solutions of the quadratic equation =* = ma + b. Let
P = (z,2%) and set A} = (z1,0), B1 = (x2,0), and P, = {x,0). Let f(x) denote the area of triangle PAB.
Then f(x) can be expressed in terms of the areas of three trapezoids as follows:

f(x)—area (A1) ABB;) — area (A1 APP,) — area{B, BPP)
= %(ﬂ:f + a:g)(:r,g —z) — %(:ﬂ?r‘fJ + a:z)(a: — ) — %(;r:2 + :c%)(asg —z)
After expanding and canceling terms, we get
flx) = x) +z5(z — 1) + 2° (21 — 72}
) =Lt + 2§ + 22(z1 — 22)]. f'(x) = 3[2(z1 — x2)] = 21 — @2 < Osince z2 > z1.

f@) =0 = 3 a3

2z(z1 —x2) = 21 — 22
flzp)=

(za2f — 2128 — wat + 122° — 228”4+ 323) = L{2i{wa -

= zp=i(m +x2).

[ rz — ﬂf])] + 5'22 [%(mz - 931)] + i(ﬂ"'l +I2)2($1 - 3'?2))

Haa —21) (2 + 23) - L(z2 — z1) (21 + 22)7]

= .’L'z—.’Bl)( — 2112 +$C2) = %(Ig—ﬂ:‘l)(xl --.’172)22-;-(:32*1‘1)(1‘241‘1)2

2‘1‘1)

3 (=%
el
= %(:cz *ml)[ (ml +$2) — (mf + 2xiap +a:§)]
5
HE
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To put this in terms of m and b, we solve the system y = 22 and y = ma1 + b, giving us H—mr—b=0 =
T = %(m —+/m?2 + 4b). Similarly, zz = %(m ++/m? + 4b). The area is then

Ly -z’ = 3{(Vm? + 4b)3, and is attained at the point P(zp,2%) = P(3m, {m°).

Nore: Another way to get an expression for f() is to use the formula for an area of a triangle in terms of the
coordinates of the vertices: f(z) = 1 [(z2af — z123) + (2122 — z2f) + (z2] — 2227 )]

If f'(z) < O foralla, f(z) > O for 2| > 1, f’(x) < Ofor |z < 1, and

lim [f(x) + z] = 0, then f is decreasing everywhere, concave up on

xr—too

(—o00, —1) and (1, co), concave down on {—1, 1), and approaches the line

y = —x as ¢ — “oc. An example of such a graph is sketched. r=il

. flzy={a®+a—6)cos2z + (a - 2)z +cosl = F@)=—(a®+a-6)sin2x(2)+ (e -2).
The derivative exists for all z, so the only possible critical points will occur where f'(z) =0 <

2(a —2){a+3)sin2z =a -2 <« eithera = 2or 2(a + 3)sin 2z = 1, with the latter implying that

sin2r = ————. Since the range of sin 2z is [—1, 1], this equation has no solution whenever either

2(a+3)

5("(:1_:3—) < —lor m > 1. Solving these inequalities, we get —% <a< —g.

. To sketch the region { (z,) | 2zy < |z — y} < 2® +y°}, we consider two cases.

Case I: x >y This is the case in which (z, ) lies on or below the line i = x. The double inequality
becomes 2zy < ¥ — y < 2 + y*. The right-hand inequality holds if and only if 2 —z + > +y >0 &

(z- D%+ (y+5)°>L & (z,y) lies on or outside the circle with radius J= centered at (3, —3).

2 2

The left-hand inequality holds if and only if 2oy —z+y <0 & zy - %a: + %y <0 &

(z+3)(y—1) £ -1 & (x,y)liesonorbelow the hyperbola (2 + 3)(y — 3) = — ;. which passes

through the origin and approaches the lines y = % and r = —% asymptotically.
Case 2: y > x This is the case in which (z, y) lies on or above the fine y = x. The double inequality

becomes 2y < y —~ ¢ < &° + y°. The right-nand inequality holds if and only if z* + 2+ 3> —y >0

(z+ 37+ (y—3?>1 & (z,y)lies on or outside the circle of radius 75 ventered at (—1,1). The

left-hand inequality holds if and only if 2zy + 2 —y <0 & zy+ %IL‘ - %y <0 & (:c — —é—) (y + %) < —i
& {x,y) lies on or above the left-hand branch of the hyperbola (sc - %) (y + %) = —é, which passes through the .
origin and approaches the lines y = —% andx = % asymptotically. Therefore, the region of interest consists of the
points on or above the left branch of the hyperbola (z - 1) (y + ) = —§ thatare on or outside the circle

(z+ %)2 +{y - %)2 = 1. together with the points on or below the right x=—t2 |

branch of the hyperbola (z + 3) (y — ) = — that are on or outside the circle

(z — )%+ (y+ 2)* = 1. Note that the inequalities are unchanged when x

and y are interchanged, so the region is symmetric about the line ¢ = z. So we
need only have analyzed case 1 and then reflected that region about the line

y = x, instead of considering case 2.
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13. (a) Lety = |AD|. 2 = |ABi, and 1/z = |AC|, so that [AB| - |[AC| = 1.

We compute the area .4 of AABC in two ways. First,

A:%\ABHAC}sin%" :1-1-3@ = ﬁ.Second,

2 2 4

A = (area of AABDY + (area of AACD)
— L|AB||AD|sin T + L |AD||AC!sin 2
= 1oy 4 1y(1/2) LB = Ly(z +1/z)

> 0.

Equating the two expressions for the area, we get y(m + :U) T Sy TEiie @Al &

Another method: Use the Law of Sines on the triangles ABD and ABC. In AABD, we have
LA+ LB+ /D =180 & 60°+a+LD=180° < 2D =120°—a. Thus,

z _ sin(120° —a)  sin120°cosa — cos120°sina _ 3@ cosor + £ sina

Y sin sin o sin o

and by a similar argument with AABC, @ cota = 2% + % Eliminating cot o gives g

&
=——,z >0

Ve +1 ¥

{b) We differentiate our expression for y with respect to « to find the maximum:

d 2+ 1) —x(2z 1—z? L . . .
- ( ) 2( ) = < 5 = 0 when x = 1. This indicates a maximum by the First Derivative
dr (a4 1) (a® +1)

Test, since y'(z) > 0for0 < z < land i (x) < 0 for x > 1, so the maximum value of y is y(1) = 1.

From geometry, two tangents to a circle from a given point have the same
length, so |CF| = |CD|, |AE| = |AF|, and |BD| = |BE|. Thus,
3(I1BC| +]AC| - |AB|)

= 3[(BD| +|DC) + (|AF| +|FC|) - (|AE| + |EB|)]

=1[(1BDI +1cDI) + (JAF| + [€DI) — (14F| + 1BD])]
=1i2|cD| = |CD)

{b) Using the result from part (a) and the fact that a = |BC'|, we have tanf = =

I
[CD|
=|CD| = % ({AC|+ |BC| — |AB|) = 4(acos20 + o — asin2§) <«

1
2
1
2
1
2

.
tan
Pr= atan8(20032 #—1+41-2sin# cosd)

a(2sin @ cos® — 2sin’® ) [in terms of @]

a{sin 26 + cos 26 — 1) [in terms of 26]

{c) We differentiate r with respect to & and set dr/df equal to 0 to find the maximum values:
dr/df = La(2cos 20 — 25in 26) = a(cos 20 —sin26). Since 0 < § < .dr/df =0 & cos26 =sin26

& 1=tan20 < 20= <> @ = %. This gives a maximum by the First Derivative Test, since
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dr/df > 0for0 < 6 < Z,and dr/df < 0 for § <0 < . The maximum value is

r(Z) = la(sinT +cos T — 1) = 1{(vV2-1)a = 0.207a.

2
15. (a) A = Lbh withsiné = hfc,s0 A = Lbesinf. But Aisa
constant, so differentiating this equation with respect to £, we

dA 1 dé dc db
— = = | beoos —sinf + — 8
get 7 0 5 [b( cosf — g b sinf p csin }

= bccosf)@ = —sin# [b

dc db d@ ldc 1db
pm = = —tané

dat "t dt cdt
(b) We use the Law of Cosines to get the length of side a in terms of those of b and c, and then
we differentiate implicitly with respect to £ a? = B2 + ¢ — 2bccost =

da db de de de db
2a — 7 —Zb—+2 d——?{b{:( sin @) — +bE 9+accosﬂ] =

da db d(' de de
dt dt dt dt

i b— 4+c— + besind — — b— cosfl — ¢ g-ff cos 6) Now we substitute our value of @ from the
Law of Cosines and the value of df /dt from part (a), and simplify (primes signify differentiation by t):

da _ bb' +cd +besing [—tanb(c Yo+ b'/b)] — (b + eb')(cosd)
dt Vb2 + ¢ — 2bc cosd

b+ ec ~ [sin O(bc’ + cb') 4 cos” B(bc’ + cb')|/cosf DY +ec” - (b + cb)secd
VI + 2 — 2bhccosd VB2 + 2 — bccosh

16. Let x == .y = |AF] as shown. The area A of the AAEF is A = 1zy. We
need to find a relationship between x and y, so that we can take the derivative
d.A/dx and then find the maximum and minimum areas. Now let A’ be the point

on which A ends up after the fold has been performed, and let P be the intersection

of AA" and EF. Note that AA’ is perpendicular to E'F since we are reflecting A

through the line EF to getto A’, and that | AP| = |PA’| for the same reason. But
|AA’| = 1, since AA’ is a radius of the circle. Since AP} + |[PA'| = [AA],
we have |AP| = % Another way to express the area of the triangle is

= 3 |EF||AP| = 1/28 +42(1) = 1/2% + 2. Equating the two expressions for A, we get
ley=1/22 T2 = difi=2"+y = JSP-1)=+ = y=xz/var: — 1.
(Note that we could also have derived this result from the similarity of NA'PE and AA'F E; that is,

AP _|AF ¥ Ty
|PE|  |AE| (1Y T Va1 Vo1

. 1
Now we can substitute for y and calculate d;d. A= B
T
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fAg2 (3422 — 1V V2R . -
dA _ 1| VAT 102) -2 (5) (47 = 1) T BT picic o when 20 /37T T - o (42 — 1) =0

dr ~ 2 4z2 — 1

& 2(®-1) P[4t —1) —22?] =0 = (&'-1}-2"=0(z>0) & 29'=1 =
T = % So this is one possible value for an extremum. We must also test the endpoints of the interval over
which x ranges. The largest value that z can attain is 1, and the smallest value of z occurs wheny =1 <

l=z/VizZ~1 & =42 1 & 3’=1 & z= % This will give the same value of A4 as will

x = 1, since the geometric situation is the same (reflected through the line y = x). We calculate

1 (N2

1 .
=t = = = (1.25,and A(1)} = 7 = 00.29. So the maximum area

2 Jaapsy o1 4

is A(l) = A(\%) = zlﬁ and the minimum area is A(%)

Another method: Use the angle 8 (see diagram above) as a variable:

1 1

= = . A is minimized when sin 28 is imal, that is,
T cos — 1om20 A is minimiz in 26 is maximal, that is

Ly = 4 (secd) (besc)
whensin20=1 = 20=2 = #= Alsonotethat A'E =z = Jsecf <1 = secf<2 =

= #< I andsimilarly, AF=y=2csc0<1 = cscf<2 = sinf<i = 6
3 y 2 2

As above, we find that A is maximized at these endpoints: A(%) =1 .1 =5 \l/g =
sin £
3

1

= —. T
4 sin 3

minimized at§ = Z: A{T} %1

. . . . D
. (a) Distance = rate x time, so time = distance/rate. T, = —,
&}

~ 2|PR| N |RS| _ 2hsecd N D —2htanf . _ 2Vh*+ D?/4 4Rt 4+ D2
- (3] Ca - C1 (&) e C1 - C1 )

T

() % = % -secd tand — 2—hse(:29 = 0 when 2h sec 8 (i tanf — —1-seC9) =0 =

c1 2 1 c2

1 sin@ 1 1 siné 1 . c . L
— - = =0 = = = sinf = —L. The First Derivative Test shows that
ci cosf ¢z cost c1cos8  escosd Co

this gives a minimum.

{c) Using part (a) with J = 1 and 17 = 0.26, we have T} = ?- =
1

Vv4ah? + D?

C1

o1 = 555 ~ 3.85km/s. Ty = 4h? + D* =Ticd =

1
h'ﬂ2 2

T2:2 — D? = 1,/(0.34)2(1/0.26)% — 12 ~ 0.42 km. To find c2, we use sinf = ?—: from part (b)
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2hsecd N D —2htan®
Ci (5]

and T2 = from part (a). From the figure,

C1

R (551
sinf = <= = sech = andtan9=—-—2,80

. p)
€2 c5 — ¢} ch — Cf

7 2hea n ch% — cf — 2hes
2: -
cl\fc.gfc% Cz\ﬁcgfcrf

Using the values for T [given as 0.32], , ¢1, and D, we can graph vei—el

[&]

2he Dy/c2 ~c? —2he . - . . . .
2 + 2 21 = L and find their intersection points. Doing so gives us
ciyei —c? cay/ €5 — ¢}

9 == 4.10 and 7.66, but if ¢ = 4.10, then # = arcsin(c /c2) =~ 69.6°, which implies that point 5 is to the left

Y, = T2 and Yz =

of point R in the diagram. So ¢z = 7.66 km/s.

18. A straight line intersects the curve y = f(z) = 7 + cx® + 12z% — 52 + 2 in four distinct points if and only if the

graph of f has two inflection points. f'(z) = 4z® + 3ez”® + 24z — 5 and f"(z) = 1222 + ez + 24

—6c £ /{6c)2 — 4(12)(24
ffiz)=0 & z= c% VA 26()12) (12)( ). There are two distinct roots for f”(x) = 0 (and hence two

inflection points) if and only if the discriminant is positive; that is, 362 -1152>0 & *>32 &

le| > +/32. Thus, the desired values of c are ¢ < —4 V2ore > 42,

Leta = |EF| and b = |BF| as shown in the figure.
Since £ = |BF| + |FD|, |FD| = £ — b. Now

|ED| = |EF|+|FD|=a+{-b

=2 -2+l —/(d—2)? +a?
:\fr2—322+£’f\/(d—$)2+(\/r2—$2)2
=\/r2 g2 4 — \/d? — 2da + 22 4 72 — 22

Let f(z) = vr2 — 2?2 + £ — /d? +7? — 2dz.

—T n d
VT — gz JdT+r? —2dz

2 2
Fla)=0 = —m = d - = d N

Vii—g? @+ —2dx r2-a? AP+ - 2da
d2a? + 122 — 2de® = d¥r? — d%2? = 0=2d2® - 2d%2° — % + diP =

0 =2da?(z —d) — (a2 —d?) = O0=2(z-d)-r*lz+d)z—-d) =

(r2 — )"V (=22) — L(d® + r* - 2dz) VP (-2d) =

0= (z —d)[2dz* - r*(z + d)]
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Butd > r > x, so & # d. Thus, we solve 2dz® — r®x — dr? = Q for z:

~{-r?) + \/(_T2)2 — 4(2d)(—dr?) P2/ 8d%r?
2(2d) =

. Because /1% + 8d2r? > 7%, the “negative”

xr =

can be discarded. Thus,

oo CHVIEVITHRE P et 4R (r > 0)
B 4d B 4d

:Z%(T_'_ ?"2+8d2)

The maximum value of | ED| occurs at this value of .

——a —
Let a = D denote the distance from the center C of the base to the midpoint IJ of a side of the base.

—_ = a= rh =7 vh
h(h —2r) Vhh=2r)  Vh-2r

Since APQR is similar to ADCR, %’i =
L

Let b denote one-half the length of a side of the base. The area A of the base is

A = 8(area of ACDE) = 8(1ab) = da(atan §) = 4a”.

4 \/H h?
The volume of the pyramid is V = } Ah = }{da®) h = - (r ) h = 4r? , with domain 2 > 2r.
3V Vh=2r h—2r

2 W2 —4hr 4 Jh(h—4r)
(h—2r)2 3 (h—2r)

4, (Ao 20)(Eh) R

=4
(h — 2r)2 3

2 (h- 2r)*(2h — 4r) — (h® — 4hr) (2)(h — 2r)(1)
[(h— 2r)2)?
2 2h—2m) [(h® — dhr + 47%) — (h® — 4hr)]
(h - 2r)*
_ 324 1

B CEN DR
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The first derivative is equal to zero for k = 4r and the second derivative is positive for It > 2r, so the volume of the
pyramid is minimized when h = 4r.
To extend our solution to a regular n-gon, we make the following changes:

(1) the number of sides of the base is n

(2) the number of triangles in the base is 2n

(3) LDCE = =
T

(4) b= atan T
n
We then obtain the following results:

and

: Tr) hfzgr’ % - n;z ’ (E) e

e maltan V= T _—
A=na tann,V— 3 tan(n (h—2r)2

2 4
1 - .
% = 8?? . ta,n(%) . m Notice that the answer, b = 4r, is independent of the number of sides of the

base of the polygon!

av
V=i o ———:411'7"2»[1—14

3 dt T But % is proportional to the surface area, so % = k - Azr? for some

d d VIS .
constant k. Therefore, 47> d_]tn =k-d4mr? o d_; = k = constant. An antiderivative of k with respect to £ is

kt,sor = kt + C. When t = 0. the radius r must equal the original radius ro, s0 C' = ro, and r = kt + 7ro. To find

k we use the fact that when ¢ = 3, r =3k +roand V = 3vy  —  $n@Bk+r)’ = - 37 =

3k +r0)® = ir] = 3k+ru:%ﬁro = k:%ro(%%i—l).smcerﬁkt-f-rg,

P %7‘0 (-—1—— - l)t + rg. When the snowball has melted completely we have r = 0 =
: ¥2

32 . 392 .
3—\/_.Hence, it takes \/_ -3 = L 2z 11 h 33 min
¥z -1

NI N

é?"o(\%f 1)t+7‘0 = 0 which gives £t =
¥a

longer.
. By ignoring the bottom hemisphere of the initial spherical bubble, we can rephrase the problem as follows: Prove

that the maximum height of a stack of n hemispherical bubbles is \/n if the radius of the bottom hemisphere is 1.

We proceed by induction. The case n = 1 is obvious since /1 is the height of the first hemisphere. Suppose the
assertion is true for n = k and let’s suppose we have k + 1 hemispherical bubbles forming a stack of maximum

height. Suppose the second hemisphere (counting from the bottom) has radius r. Then by our induction hypothesis
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360 1 CHAPTER4 PROBLEMSPLUS
(scaled to the setting of a bottom hemisphere of radius r), the height of the stack formed by the top & bubbles is
Vkr. (If it were shorter, then the total stack of & + 1 bubbles wouldn’t have maximum height.)
The height of the whole stack is H{r) = Vkr 41— r2 (See the figure.) £

We want to choose r so as to maximize H (r). Note that 0 < r < 1. We calculate

H'(r) = Vk - —— and H"(r) =

Wi

P=k(l-r") & k+r’=k & TIU%.Thisis[heonly

critical number in {0, 1) and it represents a local maximum (hence an absolute

maximum) since H"(7) < 0on (0,1). Whenr = 4/ ?c%

ﬂ_+ Lk k1
vk+1 E+1  VeE+1 VE+1

when it is true for n = k. By induction, it is true for all positive integers n.

H(r)=Vk = +/k + 1. Thus, the assertion is true forn =k + 1

Note: In general, a maximally tall stack of n hemispherical bubbles consists of bubbles with

radiil,\fnl,a‘an,...,\/g,\/I
T T T TL
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