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5 [0 INTEGRALS

5.1 Areas and Distances

1. (a) Since f is increasing, we can obtain a lower estimate by using

left endpoints. We are instructed to use five rectangles, son = 5.

S5
L5:;f($1_1)A:B [Am:b_;_a_: 1054(]:2]

= flzo) - 2+ f(x1) - 2+ flz2) - 2+ flzs) - 24 flza) - 2
= 2[£(0) + f(2) + f(4) + F(6) + f(8)]
~2(1 43+ 4.3 + 5.4+ 6.3) = 2(20) = 40

Since f is increasing, we can obtain an upper estimate by using

right endpoints.

Rs = i fz:) Az
i=1

= 2[f{x1) + f(z2) + Flzs) + fza) + f(zs)]
= 2[f(2) + F(4) + F(6) + £(8) + F(10)]
223 +43+54+63+7)=2(26) = 52

Comparing Rs to Ls, we see that we have added the area of the rightmost upper rectangle, f (10) - 2, to the sum
and subtracted the area of the leftmost lower rectangle, f{0) - 2, from the sum.

10
(b) Lo = glf(mi—l)ﬂl' ([Ar = 38=0 =)

= 1[f(wo) + flz1) + -+ + f{wo)]
=fO)+ f(L)+---+ f(9)
=14+214+3+3.74+43+49+54+58+634+67

=43.2

Ryo = ,%zflf(m) Az = f(1) + f(2) + -+ F(10)

add rightmost upper rectangle,
=L 1-f(10)—=1- f(0
w0+ 1-010) 1) subtract leftmost lower rectangle

=4324+7-1=49.2
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(a) (i) Lg = Zﬁzlf(a:ikl)ﬂzr: [Az = 12
= 2[f(xo) + flz1) + fz2) + flzs) + fza) + flzs)]
= 2[f(0) + f(2) + f(4) + f(6) + £(8) + F{10)]
~ 294884821 7.3+59+4.1)
— 2(43.3) = 86.6

(i) Re = Le + 2- f(12) — 2 f(0)
~ 86.6 - 2(1) — 2(9) =

[Add area of rightmost lower rectangle

and subtract area of leftmost upper rectangle. ]

(iily Mg = Z flz

2lf(1) + F(3) + f(B) + £(T) + F(9) + f(11)]
2(89 485+ 7.846.6+45.1-+2.8)
2

(39.7) = 79.4

(b} Since f is decreasing, we obtain an overestimate by using left endpoints; that is, Lg.
(c) Since f is decreasing, we obtain an underestimate by using right endpoints; that is, Rs.

(dy Ms gives the best estimate, since the area of each rectangie appears to be closer to the true area than the
overestimates and underestimates in Ls and Rs.

4
3@ R =3 flz)Az [Az=32 =1]
i=1

=flz1) 1+ floz) 1+ fwa) - 1+ flzg) -1
= f(2)+73) + f(4) + f(5)
=3+ titi=5=128
Since f is decreasing on [1, 5], an underestimate is obtained by using the

right endpoint approximation, Hj.
4
(b) L4 = Z f(w'g—])ACL'
i=1

=F()+f(2)+ f3) + f{4)

=l+i+4+3=2=2083
L4 i1s an overestimate. Alternatively, we could just add the area of the
leftmost upper rectangle and subtract the area of the rightmost lower
rectangle; thatis, Ly = Ry + f{1}-1— f(5) -1
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4 (a) Rs = Zs: f(".L‘;)A:l’: [A;[: = %
i=1

= f@:) - L+ flaa) - 14 flza) - 1+ f(za) - 1+ flzs) - 1
= f(1) + £(2) + f3) + f(4) + f(5)
=24+21+16+9+0="70

Since f is decreasing on [0, 5], Rs is an underestimate.

5
by Ly = Z f(:ﬂif1) Ax
i=1

= f(0) + f(1) + f(2) + f(3) + f(4)
=254+244+21+16+9=95

L5 is an overestimate.

5. (a) f(;c):l-i—wzandAac:z—_é:l—) =1 =
R:=1-flO)+1 f()+1-f2)=1-1+1-24+1-5=8.
_2-(=1)
6
R = 0.5[f(=0.5) + f(0) + f(0.5) + £(1) + f(1.5) + f(2)]
=0.5(1.254+1+1.25+2+3.25+5)

= 0.5(13.75) = 6.875

Ax =05 =

My La=1-f(~1)+1-Ff0)+1-f(1)=1-241-1+1-2=5
Lg = 0.5[f(=1) + f{—0.5) + f(0) + £(0.5) + f(1) + F(1.5)]
=0.5(2+1.25 + 1+ 1.25 + 2 + 3.25)
= 0.5(10.75) = 5.375

(¢) M5 =1- f(—0.5) +1- £(0.5) + 1- f(1.5)
=1-125+1-125+1-325=5.75
Mg = 0.5[f(—0.75) + f(—0.25) + F(0.25)
+ F(0.75) + £(1.25) + F(1.75)]
= 0.5(1.5625 + 1.0625 + 1.0625 + 1.5625 + 2.5625 + 4.0625)
= 0.5(11.875) = 5.9375

(dy Mg appears to be the best estimate.
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6. (a)

(b} f(;r):l/(1+3:2) and Az =242 1 =

(i) g = 24: fla:) Ax (i) My = f‘_, J@E)Axr [T = §{mior + )]
=1 i=1
f(-1} -1+ f(0)-1 = f(—=1.5)- 14 f{-05)-1
+f(1) -1+ f(2)-1 +£(0.5) - 1+ f(1.5) -1

_ 4 4 4 4 _ 144

(c)n:S,soAm:z——é_—ZA:%_

Ry = Z[f(=1.5)+ f(=1)+ f(—0.5) + f{0) + f(O.5) 4+ F(1) + f(L.5) + £(2)]

1
2
1

4 1 4 4 1 4 17 __ 287 .
=3l et tlts+gtigtg] =1 ~22077

16)] ~ 22176

1. Here is one possible algorithm (ordered sequence of operations) for calculating the sums:

1 Let SUM = 0, X_MIN = 0, X_MAX = 7, N = 10 {or 30 or 50, depending on which sum we are calculating),
DELTA_X = (X_MAX — X_MIN)/N, and RIGHT ENDPOINT = X_MIN + DELTA_X.

2 Repeal steps 2a, 2b in sequence until RIGHT_ENDPOINT > X_MAX.
2a Add sin (RIGHT_ENDPO[NT) to SUM.
2b Add DELTA_X to RIGHT_ENDPOINT.

At the end of this procedure, (DELTA_X) - (SUM) is equal to the answer we are looking for. We find that

30

18 i ™ i 7 50 i
o = — sin{ — | = 1.9835, Aag = — sinf — | =~ 1.9982, and = — gin[ — | = 1. ,
Ry 10 i1“n(10) 9835, Hag 0 1_Zlf-nn(:m) 9982, and Rsq = ;:19111(50) 9093

It appears that the exact area is 2.
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Shown below is program SUMRIGHT and its output from a TI-83 Plus calculator. To generalize the program, we
have input {rather than assigned) values for Xmin, Xmax, and N. Also, the function, sin x, is assigned to Y1,

enabling us to evaluate any right sum merely by changing Y and running the program.

PROGRAM: SUMRIGHT pram=UMRIGHT
tE+5 . Amin=7a

tPrompt Kmit AMAax="7n

tPromprt Kmax N=7108

iPromrt M 1.983523537
2 (Emax—Kmind 2D Done
tdAmintD2R
tFor(I.1:H2
1S+ CRDSS
tR+0+>F

tEnd

JuE oot
tDisk 2

B. We can use the algorithm from Exercise 7 with X_MIN = 1, X_MAX = 2, and 1 / (RIGHT_ENDPOINT)2 instead

10

1
of sint (RIGHT _ENDPOINT) in step 2a. We find that B1g = — =2 (0.4640,
sin ( - )in step 0= 15 X 1107 1+qm)

1 30 1 1 50 1
Rag = — ———— 5 ~ 0.4877, and B —— = (L.4926. It appears that the exact area
=30 2 (1 r i/30)° = 50 24 (1 ¥ i/50)7 PP

. In Maple, we have to perform a number of steps before getting 4 numerical answer. After

loading the student package [command: with (student) ;] we use the command
left sum:=leftsum(x”(1/2),x=1..4,10 [or3C,or 50}); which gives us the expression in summation
notation. To get a numerical approximation to the sum, we use evalf (left_sum) ;. Mathematica does not have
a special command for these sums, so we must type them in manually. For example, the first left sum is given by
(3/10) *Sum[Sqrt [1+3{i-1) /101, {i,1,10}], and we use the N command on the resulting output to get
a numerical approximation.

In Derive, we use the LEFT RIEMANN command to get the left sums, but must define the right sums ourselves.

{We can define a new function using LEFT RIEMANN with k ranging from 1 to n instead of from O ton — 1.)

(a) With f(z) = /z, 1 < z < 4, the left sums are of the form L, = — 3~ /1 + 3l = 1). Specifically,
i=1 n

Lo = 4.5148, Lay == 4.6165, and Lsp ~ 4.6366. The right sums are of the form R, = % Sl + —Z
= V k3

Spcciﬁca]ly, ng w2 4.8148, RSO ~ 47165, and R50 ~ 4.6966.
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(b) In Maple, we use the 1 ef tbox and rightbox commands (with the same arguments as left sum and

rightsum above) to generate the graphs.

4 1 “ 4

0

left endpoints, n = 10 left endpoints, n = 30 left endpoints, n = 50
2.1 2.1 2.1

41 4

0

right endpoints, n = 10 right endpoints, n = 30 right endpoints, n = 50

{¢) We know that since /z 1s an increasing function on (1, 4), all of the left sums are smaller than the actual area,
and all of the right sums are larger than the actual area. Since the left sum with n = 50 is about 4.637 > 4.6
and the right sum with n = 50 is about 4.697 < 4.7, we conclude that 4.6 < Lgg < exact area < Ry < 4.7,

so the exact area is between 4.6 and 4.7.

10. See the solution to Exercise 9 for the CAS commands for evaluating the sums.

(a) With f{z) = sin(sinx), 0 < x < I, the left sums are of the form L, = _27r_ Y sin #) In
T =1 Tt

particular, Lig &= 0.8251, Lag = 0.8710, and Lsp == 0.8799. The right sums are of the form

R, = g— E sin(sin g—;) In particular, R1o == 0.9573, R3o ~ 0.9150, and Rsp = 0.9064.

n

{b) In Maple, we use the leftbox and rightbox commands (with the same arguments as leftsum and

rightsum above) to generate the graphs.

left endpoints, n = 10 left endpoints, n = 30 left endpoints, 72 = 50
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right endpoints, » = 10 right endpoints, i = 30 right endpoints, n = 50

(c) We know that since sin(sin z) is an increasing function on (0, %) [this is true because its derivative,
— cos(sin )(— cosz), is positive on that interval], all of the left sums are smaller than the actual area, and all of
the right sums are larger than the actual area. Since the left sum with n = 50 is about 0.8799 > (.87 and the
right sum with n = 50 is about 0.9064 < 0.91, we conclude that 0.87 < Lsg < exact area < Rsp < 0.91, 50
the exact area is between 0.87 and (.91,

. Since v is an increasing function, Lg will give us a lower estimate and Fg will give us an upper estimate,

Ls = (0 ft/$)(0.5 5) + (6.2)(0.5) + (10.8){0.5) + (14.9){0.5) + (18.1){0.5) + (19.4)(0.5)
= 0.5(69.4) = 34.7 ft

R = 0.5(6.2 + 10.8 4+ 14.9 + 18.1 + 19.4 4 20.2) = 0.5(89.6) = 44.8 ft

(@) da Ly = (30 ft/s)(12s) +28-12 42512 +22-12 +24 - 12

= (304+28 + 25422+ 24)-12 = 129-12 = 1548 ft

(b)yd~ Ry = (28 + 25+ 22+ 244 27) - 12 = 126- 12 = 1512t

(¢) The estimates are neither lower nor upper estimates since v is neither an increasing nor a decreasing function
of .

. Lower estimate for oil leakage: Rs = (7.6 + 6.8 + 6.2 + 5.7+ 5.3)(2) = (31.6)(2) = 63.2 L.
Upper estimate for oil leakage: Ls = (8.7 + 7.6 + 6.8 + 6.2 + 5.7)(2) = (35}(2) = 7O L.
. We can find an upper estimate by using the final velocity for each time interval. Thus, the distance d traveled after

62 seconds can be approximated by
8
d =Y v(t:)At; = (185 ft/s)(10s) + 319 - 54 447 -5+ 742 - 12 + 1325 - 27 + 1445 - 3 = 54,694 ft
i=]

. For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an
underestimate, We will use Mg to get an estimate. At = 1, 50

Mg = 1[6(0.5) + v(L.5) + v{(2.5) + v(3.5) + v{4.5) + v(5.5)]

=55 +40+28+18+10+4=1551t

For a very rough check on the above calculation, we can draw a line from (0, 70) to (6, 0) and calculate the area of
the triangle: %(70)(6) == 210. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable.
. For an increasing function, using left endpoints gives us an underestimate and using right endpoints results in an
overestimate. We will use Mg to get an estimate, At = 3028 = 55 = Tsoo h= ﬁ h.

6

Me = A [v(2.5) + v(7.5) + v(12.5) + v(17.5) + v(22.5) + v(27.5)]

P
= -L(31.25 + 66 + 88 + 103.5 + 113.75 + 119.25) = =£(521.75) ~ 0.725 km

For a very rough check on the above calculation, we can draw a line from (0, 0) to (30, 120) and calculate the area

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

38 U CHAPTERS INTEGRALS

of the triangte: 1(30)(120) = 1800. Divide by 3600 to get 0.5, which is clearly an underestimate, making our
midpoint estimate of (.725 seem reasonable. Of course, answers will vary due to different readings of the graph.

flx)=¥x, 1<z <16, Az=(16-1)/n=15/nandz; =1+iAx =1+ 15i/n.

A—hmR#hmeﬂ £-1,m241+15z 15

'n-'f)C) T).—'OO,,’ 1 n

flzy=14+2* 2<a<b Ar=(5-2)/n=3/nandz; =2+iAx =2+ 3i/n.

A= lim R, = hm Zf(.f, Az = hm Z (2+ 31) %

n—oo
11 zl

 flg)=zcosw, 0< e <E Ax=(]-0)/n=7F/nandz; =0 +ilzr=3i/n

A= lim R, = lim Zfﬂ:,, YAr = lim Z— (E)l

n—oo L= O n—oc 2n 2n

10
. lim Z (5 ) can be interpreted as the area of the region lying under the graph of y = (5 + z)'” on the
00

2~ 2
interval [0, 2], since for y = (5 -+ x)'° on [0, 2] with Az = 0 o =0+iAzx = 2— ,and z} = z, the
y n

n

expression for the area is A = lim Zf('xzi Az = lim Z b+ — ) —. Note that the answer is not unique.
noee i=1 e =1

We could use y = z'% on [5, 7] or, in general, y = ((5 — n) + 2)'% on [n,n + 2].

n

. lim Z T tan —= can be interpreted as the area of the region lying under the graph of y = tan x on the interval
4ot 0O 4n in

T/4-0 ®
1] T 4n

m

[0, %] since for y = tan x on [0, ﬂ with Az = LI =0+ iAr = 21—71 and x} = x;, the
n

T . . .
—— . Note that this answer is not unique,

expression for the areais A = lim Z Flxi) Az = hrn Z tan( m) 1
i)

nR— oG dn
since the expression for the area is the same for the function y = tan{z — kn) on the interval [kw, kw + ﬂ , where
k is any integer.
i

1-0 1 , g . E
-(d)Aw—T—;andwi—Oﬁ—zAw—;. = lim R, = hm wal)Aw— lim Z(-)

n—oo Tt
i=1

n .3 n 2 2
. R | 3 1 [n(n+1)1° . (n4+1)° 1 1
©) Jim Do = 2= i o [T Pt LS

5 2 ]
. (2) y = f(x) . -Tzand:t:i:O—{—iAa: %LE

. A 6
A= lim Ry = lm ):f(m)mA lim 2(33) .

T

s :
n o0 1=1

(b)z 5(Mn(n—i—l) (';’;7, +2n—1)

‘)2t +2n - 1) 64 i (n® +2n+ 1)(2n* + 2n ~ 1)
12 12 o n? - n?

16
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7T-2 B _ 54
W (@ y=flz)=a*+52°+2, 2<2<7 = AW:T:E,CEi=2+IA$:2+; =

7 o4 oy 2 .
5

5 2+E) +5(2+§3) +(2+—7‘>
- n T n

4723n* + 7845n° + 347507 — 125
6n?

a’g—ﬁ = 3935.83

- bi
25, 4= f(x)=cosx. Ar= b-0 :%andzi:0+iA$:E.

. 1
n (bz) b CAS bSlIl(b(i‘h" +1))

A= lim R, = lim Zf(:rl) Az = lim Zcos

T

n

-— = lim -

i1} n— 00 . ( b ) %
2nsin| ——
2n

Ifb = %, then A=sing =1 The value 1 is the exact area, whereas the value obtained in Example 3(b), 1.006, is
just an approximation.
26. () o The diagram shows one of the n congruent triangles, ANAOB, with
central angle 27 /n. O is the center of the circle and AB is one of the

sides of the polygon. Radius OC is drawn so as to bisect ZAOB. It

follows that (OC intersects AB at right angles and bisects AB. Thus,

AAOB is divided into two right triangies with legs of length
2(AB) = rsin(r/n) and r cos(w /n).

AAOB has area 2 - L{rsin{n /n)][r cos(m/n)] = r?sin(r/n) cos(m/n} = 1r2sin(2r/n), so

A, =n - area(AAOB) = Lnr®sin(2n/n).

. . sin# . . .
{b) To use Equation 3.5.2, ém}] r = 1, we need to have the same expression in the denominator as we have in

the argument of the sine function—in this case, 2 /n.
1 osin{2w/n) 2

. . . . m .
lim A, = lim inr’sin(2r/n) = lim gnré-———.— = lim
n—oo b 00 =0 n [Reyast 271'/?1

S_i_mﬂrﬁ_ Let g — 2_7(.
n

Thenasn — 00,8 — 0,50 lim

5.2 The Definite Integral

4
1. Ry = Y f(z:) Az [x] = z; is aright endpoint and Az = 0.5]
i—=1

= 05[f(0.5) + FQ1) + F(1L.B) + (2]  [f(z) =2— 2]
=0.5[L75+ 1+ (-0.25) + (-2)]
= 0.5(0.5) = 0.25

The Riemann sum represents the sum of the areas of the two rectangles

above the x-axis minus the sum of the areas of the two rectangles below

the z-axis; that is, the net area of the rectangles with respect to the T-axis.
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6
2 Lg =3 flwi-1)Ax [z} = z;_1 is aleft endpoint and Ax = 0.5]
1=1

flxy=3x—7
15 2 /4

= 0.5[£(0) + £(0.5) + F(1) EAS

+ f(1B)+ f(2)+ £(25)]  [f(z) =3z -7 5
= 0.5[=7+ (=5.5) + (=4) + (-2.5) + (~1) + 0.5]
=0.5(—19.5} = —-9.75

The Riemann sum represents the area of the rectangle above the x-axis

minus the area of the five rectangles below the z-axis.

5
I M =3 f@)Azx (2] =7 = %(I@q + x;) is a midpoint and Az = 1]
i=1
=1[f(1.5) + f(2.5) + f(3.5)
+f(45) + f(55)] [f(z)=vz-2|
rz —{).856759
The Riemann sum represents the sum of the areas of the two rectangtes

above the z-axis minus the sum of the areas of the three rectangles below

the -axis.

5
4 (a) Rs = 5 f(x:)Ax  [xj = @; is aright endpoint and Az = 0.5] ¥ fixy=x—2sin2x
=1

=0.5[£(0.5) + f(1) + f(1.5) + f(2)
+ f{25)+ f(3)]  |f{x) =« — 2sin2z]
=2 5.353254

The Riemann sum represents the sum of the areas of the four rectangles

above the z-axis minus the sum of the areas of the two rectangles below

the -axis.

£
(by Mg = > F(@:) Az [x] = T, is a midpoint and Az = 0.5] / fixy=x—2sin2x
=1

= 0.5[£(0.25) + £(0.75) + f(1.25) + f{1.75)
+ f(2.23) + £(2.75)] [f(z) =& — 2sin 2]
=z 4.458461

The Riemann sum represents the sum of the areas of the four rectangles | 05 1 ‘

/

above the x-axis minus the sum of the areas of the two rectangles below e 15 2 25 .3 35 X

the z-axis.

5. Ar=(b—a)/n=(8-0)/4=8/4=2.

{a) Using the right endpoints to approximate fos flz)de, we have

4

;f(:ﬂi)AI =2f(2)+ fA)+ fF6)+ FBY = 2[1+ 2+ (-2} + 1] =4.
(b) Using the left endpoints to approximate fDS f(z)dz, we have

il flrao) Az =2[f(0) + f(2) + f(A) + F(B) =224+ 1+ 2+ (-2)] = 6.
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(¢) Using the midpoint of each subinterval to approximate fo z) dzx, we have

Zf(m YAz =2[f(1) + f(3) + F(B) + F(TH = 2B +24+ 1+ (~-1)] =10.

. (a) Using the right endpoints to approximate | f3 g(x)dz, we have

5° gl B = 1Ug(=2) + 9(=1) + 60) = 9(1) +9(2) + 9(3)

i=1

~1-05-15-15-05+25=-05

{b) Using the left endpoints to approximate | fa g{x) dx, we have

S gl 1) Ac = 1g(=3) + g(=2) + 9(=1) + g(0) = g(1) + g(2)]

i=1

~241-05-15-15-05=-1

(¢) Using the midpoint of each subinterval to approximate ffS g(xz) dz, we have

z 0T Az = 1[g(=2.5) + g(=15) + g(—0.5) + g(0.5) + g(1.5) + ¢(2.5)]

=1

=15+0-1-175-14+05=-1.75

. Since f is increasing, Ls < 025 f(z)de < Rs.

Lower estimate = Ls = Z flai—1) Az = 5[f(0) + f(5) + f(10) 4+ F(15) + f(20)]

i=1

=5(—42 — 37 — 25 — 6 + 15) = 5(—95) = —475

Upper estimate = R = il flxz:) Az = B[f(5) + F(10) + f(15) + F(20) + f{25)]

— 5(—-37 — 25 — 6 + 15+ 36) = 5(—17) = —
. (@) Using the right endpoints to approximate _[0 x) dz, we have
Z:l flz:) Az =2[f(2) + f(4) + f(6)] = 2(8.3 + 2.3 - 10.5) = 0.2
(b) Using the left endpoints to approximate fOG f(z) dz, we have

3
Zf(.’l’}fiml)A.'E:Q[f(O)‘l’f()‘l“f( )] =2(9.3+83+2.3) =398
(¢) Using the midpoint of each interval to approximate fo x) dx, we have

Z:f(fi)A$:2[f(l)+ f(3)+ f(5)] =2(9.0+6.5—-17.6) =158

The estimate using the right endpoints must be less than Jo x) dz, since if we take x7 to be the right endpoint z;
of each interval, then f(x;) < f(z) for all x on [x;_1, z|, which implies that f(x:} Az < f:‘lq (z) dz, and so
3 3
the sum 3~ [f(z:) Az] < Z [fm ) )dm] = [06 f(x) dx. Similarly, if we take 2] to be the left endpoint x;—1-
i=1 £

3
of each interval, then f{z;_1) > f(z) forall z on [z;_1, &), and so > [f{wi—1) Ax] = f06 f(z) dz. We cannot
i=1

say anything about the midpoint estimate.
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9. Az = (10 — 2)/4 = 2, so the endpoints are 2, 4, 6, 8, and 10, and the midpoints are 3, 5, 7, and 9. The Midpoint

4
Rule gives [, V2% 4 1de = Y. (@) Az = 2(v37 + 1+ VB +1+ VT + 1+ V9% +1) = 124.1644.
i=1

) 6 . . K3 b 7w
. Az = {7 ~ 0}/6 = I 50 the endpeints are 0, %, im, 3%, 4x, 2% and %, and the midpoints are 75, 93, 5. 5+

11w
12"

4 and The Midpoint Rule gives
6
Iy sec(x/3) dz ~ 21 F(@) Az = E(sec & + sec 3= + sec 35 + sec I+ sec 3% 4 see LT ~ 3.9379.

. Ax = (1 - 0)/5 = 0.2, so the endpoints are 0, (1.2, 0.4, 0.6, 0.8, and 1, and the midpoints are 0.1, 0.3, 0.5, 0.7.

and 0.9. The Midpoint Rule gives

5 &
flsin(z?)de = Y f(Z:) Az = 0.2[sin(0.1)% + 5in(0.3)% + sin(0.5)° + sin(0.7)* + sin(0.9)*] ~ 0.3084.
i=1

Q

. Ar = 54;1 = 1, so the endpoints are 1, 2, 3, 4, and 35, and the midpoints are 1.5, 2.5, 3.5, and 4.5. The Midpoint

Sp—1 2 15—-1 25-1 35-1 45-1
R ives = T =1 = 1.8205.
”leg“’eg‘[l TN f@)Ae [1.5+1+2.5+1+3.5+1+4.5+1

i=1

. In Maple, we use the command with (student); to load the sum and box commands, then
m:=middiesum{sin{x*2),x=0..1,5); which gives us the sum in summatton notation, then
M:=evalf (m); which gives My == 0.30843908, confirming the result of Exercise 11. The command
middlebox (sin{x*2},x=0..1,5) generates the graph. Repeating for n = 10 and n = 20 gives

Mip = 0.30981629 and Mz ~ 0.31015563.

e

0 0 0

. See the solution to Exercise 5.1.7 for a possible algorithm to calculate the sums. With Az = (1 — 0)/100 = 0.01
and subinterval endpoints 1, 1.04, 1.02, ..., 1.99, 2, we calculate that the left Riemann sum is

100 100

Lioo = Y sin(#?_;) Az = 0.30607, and the right Riemann sum is Rigo = _ sin(27) Az == 0.31448,

i=1 i=1
Since f(x) = sin(z?) is an increasing function, we must have Ligp < f[)l sin{z*}dz < Rioo, 50
0.306 < Liop < fol sin(mQ) dr < Riop < 0.315. Therefore, the approximate value 0.3084 = (.31 in Exercise [ 1

must be accurate to two decimal places.
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15. We’ll create the table of values to approximate foﬂ sin x dz by using the
Ry

1.933766
Xmax = 7, and i = 3, 1{}, 50, and 100. 1.983524

program in the solution to Exercise 5.1.7 with Yy = sinz, Xmin = 0,

1.999342

The values of Ry, appear to be approaching 2.
1.999836

. [2 V1 2% dz withn = 5, 10, 50, and 100.
The value of the integral lies between 3.622 and 3.685. Note that

Ln Rn
3.080614 | 4.320856 /=)
3.354110 | 3.978731 statement for _]_21 1+ z*dz since f is decreasing on (—1,0).
3.501540 | 3.716464
3.622383 | 3.684845

= +/1 + x4 is increasing on (0, 2). We cannot make a similar

.On [0,7), im ¥ zising; Az = [ zsinxdz.

xI
l+x

5
. On [1,5], hm Z — 2/ d.
1

. On [1,8], lim Z\/_z T (2 Az = [} V2x +2° da.

—
n—oo ;0

L On[0,2], im . [4—3(x}) +6(a})°] Az = [(4 — 322 + 62°) da.

n—oo i

.Notethaté}.;tcz5 —Eandri——1+tﬂx_ul+§1.
| K1

5

6
1+ 3x)d li E ,A—l E 1+3 -
/:( x)dr Jin flz:) Az fm [+(1 ]n

-1

61
+
6 18; 6 | — " 18
lim - 94+ 2| = lim — - =
i 25 |2+ nﬂf;n[ﬂ D ]

i=1 i=1 =1

lim S —2n+EZi = lim 9[ 2n +1—8 w—”(nﬂ)}
n

n—o0 N py n—x T 2

n—oo n—oc T

lim { 12+108 ﬂ(n2 1)]

= lim [42 I s 1]

n— o

lim [—12-1— 54(1 + l)} =—-12+54-1=42
T
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22/ (€® + 22 — ¢ )duz'# hnl Zf () [Az =3/nandz, =1+ 3i/n|

gl

n

= lim E
f ] &)
i=1

.l
= lim —

oo T | £

3
= lim —
[ 3ade SR £ I

. 3
= lim —
TL--e X2 TR

73 6 n? 2

N— 00

1 : 1 j
_ Hm(zv nin+1)(2n + )ﬁﬁ.@ﬁ.@

i
:lim( n+1 2n+1+18.n+ ——6)

n—mo i3 n
i |2 Do Dy rasf1+ 2 6 =2 124118 1-6 =2
n—oo| 2 71, T

— 2 2i
23.N0tethatAm:2 Oz—andmi:ﬂ-l—iA:c:—z.
n n n

’ 2
/U(Qfl:, } de hm E Flrd) Az = hm E (2—;;) (—)
‘ 9 n 4 T . . 9 4 n .
JE&;[Z*;EI%]—,}T;;(%;Elz

i=1 =1 i=1

= lim

n— 00

= lim [4_i l—l—l)(Z !
n—o0 3 T i

[4£ n(n—|—l)(2n+l)} 4 n+1 2n+1)
6

nd T

5 ™
2, / (1+22°) de = lim Z flz) Az [Azr=5/nand z; == 5i/n]
0 n—oo =

s 3 (12 5)‘,35205[2” EOX }

i=1 i=1

: L L 1)
= lim 3 (] ' lim 250 n (n4+ ¥ ]

nd

1\2
= lim |5+ 3125 (1 + —) ]
n—o0 T

=h+312.5 = 317.5
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— 1 . . ,
25. Note that Az = g—ﬁ—l == andz; = 1 +iAzr = 1+i(1/n) =1 +i/n.

n ) n PR
/]2:.9 d.r=nh_‘rr;o2f z;) Ar = hm Z(1+%) (rla i tZ( n )

i=1

k)

1 n n ‘ n . n -
= lim_ # Z(n3 +3n%i + 3nd® +4°) = lim. ~ [X; n + Z; 3ni + Z; 3ni® + Zl 13}
i= i= i= i=

2=1

HIEI;O—4 n-n®+3n Zt+3fnZz +Z

| 3 nn+1), 3 nrn+l@Cn+1l) 1 n?
nlE-I‘I;o gl—{—};‘g“‘ 2 +1’13 6 +n4

lim Ll +

3 1y 1 1 1
lim 1+—(1+w~)+—(1+—)(2+~n)
n— 0o 2 T 2 T ™

3 n+1
2 Tt

n+1 2n+1+1'(n—|—1)2

1
2 ) ) 4

26. (a) Az = (4—0)/8 = 0.5and z7 = x; = 0.54.
8
[Ha? - 3z)de~ Y. fz})Ax
i=1

= 0.5{{0.5% — 3(0.5)] + [1.0° = 3(L.0)] +
+ [3.5% = 3(3.5)] + [4.07 —3(4.0)] }
=i(-2-2-2-2-3404144)=-15

(c)/ z? — 3z) dr = hm ( )] (%) (d)] (z? — 3z)de = A1 — Ag,

where A; is the area marked + and

4
lim —

n—oo T

16 Z Aq is the area marked —.

n?
i=1

T (]

lim, {64 n{nt 1)(2n +

n—o0

lim [3—2 (1 + l) (
n—-oo | 3 T

32 _ 8
2.3 4= ¢

T K0

a'é] = lim

i (b—a)? n(n+1)
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b n
b— .
28 / 22 dz lirn ¢ a

o+ O

= lim
TL— DO

litn

n—oc

6 n2

(1+%) (2+%)+a(b—a)2-l-(1+%>+a2(ba)]

B — 3ab? + 3a2b - o®
= Gl 3 +a(b—a) +a?(b—a)= = —,;% 2

JER \ , ) ) B — a3
73—?—01) +(1b+ab —a“bh= 3

lim

n—00

{ 2a(b-a)
(LRSS RN
[

+ab® ~ 20%b +a® + a’h - d®

- 41
r,a:2,b:6,andA$:u =é Using Equation 3, we getx) = 2; =24+ iAx =2+ —Z,
) iz

n 2+ﬁ

5 dw = i R lim )t
i=1 1+ (2+ )

2r — 2mi
30. f(z) = z*sinzx, [a,b] = [0, 27], Az = 7rn 0 _ i—f.and i =a+ilAxr = %.50

° iN? . fori\] ox
/ ’sinzdr = lim R, = lim E {( ) sjn(__)] il
Jo n—00 L 00 T 2

N Az = (7 - 0)/n=mn/nand x] = z; = Ti/n.

T .
s . . OWL\ T cas 1 5
f sinbrdr = lim E (sin b ) ( ): lim E (sm— Z D 2 lim -cot(
0 n—oo n—oc & 7 i i 2n

n—oo 71
i=

32 Az = (10-2)/n=8/nand z} = =; = 2 + 8i/n.

10 n T N B
. 8z 8 1 81
2Pdz = li 2 = }1=8 lim = P

[atdn = w324 3) () = i 30 (2+ 5

i=1 i=1

S g i L 64(58.593n° 4 164,0520° + 131,208n" — 27,776n” + 2048}
T Tnom 21n®

(;S 8(1,243.984) - 9,99?{.872 P 1,428,5531

33. (a) Think of fu x) dr as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is
A=+ (b+Bh90f0 z)dr = £(1+3)2 =4.

) [2 flayde = [3 f@)de + [} fleyde + [7 f(z) da
trapezoid rectangle triangle

=1+32+ 3.1 4+ $.2.3 =4+3+43=10

(©) f f(z) dz is the negative of the area of the triangle with base 2 and height 3. j flz
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(d) j,? f{x) dz is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals
—l(B +b)h = —3(3 +2)2 = —5. Thus,
J f@)de = [ f@)dz =+ [] flz)do + f7 f(@)de =10+ (=3) +(-5) =2

. () f02 g(z)dz = 3-4-2=4 (areaof atriangle)

(b ff glz) dz —%ﬂ(2)2 = —2r (negative of the area of a semicircle)

© f] glz)dz=3-1-1=3
Jo glz)dz fu ) de + [Cglz)do+ [) g(z)dr=4— 2w+ 1 =45-2r

(area of a triangle)

. f03 (2z — 1) dav can be interpreted as the area of the triangle above the x-axis

minus the area of the triangle below the x-axis; that is,

F(E) - =§-1=-3

. [ 32 v/4 — 2 dx can be interpreted as the area under the graph of
f(z) = v4 — 22 between ¢ = —2 and x = 2. This is equal to half the area of

the circle with radius 2, so f_22 Vi zidr=1ir.2° =27

f ER (1 +v9 -z ) dz can be interpreted as the area under the graph of

f(z) =14 v9 — z? between x = —3 and x = 0. This is equal to one-quarter

the area of the circle with radius 3, plus the area of the rectangle, so

JLO04VO—2)dz = jm-3+1-3=3+ I

! jfl (3 — 2z) dx can be interpreted as the area of the triangle above the x-axis

minus the area of the triangle below the x-axis; that is,

DO @ =F-3-1

. f_21 |} dx can be interpreted as the sum of the areas of the two shaded

triangles; that is, £{1)(1) + =
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10
0

triangles; that is, 2(%)(5)(5) — 95,

| ~ 5| du can be interpreted as the sum of the areas of the two shaded

. j; Vidt = — jf Vidt [because we reversed the limits of integration |

= - ]:) vadz [we can use any letter without changing the value of the integral]

38
3

. ‘fll 2% cos x dz = 0 since the limits of integration are equal.
(5 -6a%)dr= [ 5dz —6 [ a*de =5(1-0) - 6(5) =5-2=3
;’(1 +3z") dz = ]2 1d:c+f2 3ztdr = 1(5 - 2) +‘3I *dz = 1(3) + 3(618.6) = 1858.8
(20 =3+ 1) de =2 [ 2¥dr -3 [ wde + ] 1da

=2. 147 1 3. L2 1) 1 14— 1) =2 =225
3 2 2

(2cosx — Sr)dr = | "2 2coszdr — [T U YBrda = 2‘]‘0Tr coszdr — 5 wazwdx

(n/2)* —0* _, 57
2 8
. ]_2 flz)da + fz T)idr — f fiz)dz = ff’2 flx)dx —l—j':f f(z)dz [by Property 5 and reversing limits|

= ffl f{w)dz  [Property 5]

/2
40

=2(1) -5

[ () de = [ flx)de — f] f(z)de =12 - 3.6 = 8.4

) fo"pf( +3g(x)) de =2 [ f(z)de + 3 [ g(x) de = 2(37) + 3(16) = 122

3 forz <3 5 )
LIt f(x) = .then [’ f{z) dx can be interpreted as the area of
x forx >3

the shaded region, which consists of a 5-by-3 rectangle surmounted by an

isosceles right triangle whose legs have length 2. Thus,

J2 fla)de = 5(3) + 1(2)(2) = 17.

.0 <sinx < 1on [0, 3], sosin® ¢ < sin®z on [0, T|. Hence, foﬁ/‘l sin® zdr < fO"M sin® xdx (Property 7).

5—x>32z+lon(l,2,s0v5—z>va+land [7vVE—xde> [ Vot 1ds.
1<z <lthen0<z?<landl1<1+2%2<2s01</1+a2%<+2and

11— (-1 ]g] V1+223dr < v/2[1 = (=1)} [Property 8|; that is, 2<[ VIdrZde <22

P<sing<lforf <z<Is03(f-2%)< *sinzdr < 1(Z - Z) [Property 8]; that is,

/b

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
SECTIONG.2 THE DEFINITEINTEGRAL €1 379

W0 <z<2then0<z® <8 s0ol<z®4+1<9andl < vu®+1 <3 Thus,

12~ 0) < [2VaP + Lde < 3(2 - 0) thatis, 2 < [J Va? +1dz <6.

FZ <e <, then1<tan$<\/§-§01(§f%)<]ﬂ/3tanxda:<\/_(§—%)or

T /3
=< ]ﬂ/4 tanx dx < ﬁ\/g

. Let f(z) = 2® — 3z + 3for 0 < z < 2. Then f'(z) = 3z — 3 = 3{z 4+ 1)(z — 1), so f is decreasing on {0, 1)
and increasing on (1,2).  f has the absolute minimum value f(1) = 1. Since f(0) = 3and f(2) = 5, the absolute
maximum value of f is f(2) = 5. Thus, 1 < 2 — 3z + 3 < 5 for z in [0, 2]. It follows from Property 8 that

1-(2-0) <j0 (z° — 3z +3)dr <5-(2—0);thatis, 2 < ] (x* — 3z + 3) d < 10.

LFor -1 <2 <1,0<z'<landl <v1+az*<v2s501[1—( f V14 rtdr < \/ﬁ[lf(Al)]or
2< [f VI+atde <22

LI im < < 37, then ‘/75 <sinz < landj < sinz < 1,50 3 {37 — im) < 3;Z/“sm rdr < 1( ~ 37);

that is, 37 < f”“ sinzdz < 37
CVEE L > Ve = 2R [ Vet +1 d:v:>jlzr dx—%(33—13)=2—:f.
L0 <sine<lfor0<z< % soxsine <x = fo ;rsinxdccgfn"/zmd;z:x %{(%)2702] = I

. Using a regular partition and right endpoints as in the proof of Property 2, we calculate

[P ef(z)de = lim i cf () Az; = lim cEn: Flz) Azy =c lim Y fz:) Az = ¢ [0 flx)dr
1L7\DC2-:] n—oc !:1 n—o0 i=1

. As in the proof of Property 2, we write f: flx)dz = lim Y f(z;) Az. Now f(x:) > Oand Az > 0, s0
oS =1

n
f(x:) Az > 0 and therefore 3 f(z:) Az > 0. But the limit of nonnegative quantities is nonnegative by
3=1

Theorem 2.3.2, so0 f: flz)dz > 0.

. Since — [ f(x)] < f(z) < |f{z)}}, it follows from Property 7 that
[Pl dr < [ fe)de < [P de = |[] f@)de| < f) 1) d

Note that the definite integral is a real number, and so the following property applies: —a <b<a = |b[<a

for all real numbers b and nonnegative numbers a.

T f(x) sin 2z d:c| < jo% | f(z)sin2x|dx |by Exercise 65] = 0% |f(z)| isin 22| dz < f{f" |f{x)| dx by

Property 7, since |sin2z| <1 = |f(x)|[sin 22| < |f(z)]-
n i 4 1
. i = lim = ) = [ z*d

lim Z —/lﬂ
" oo 1+ z/n Ty 1422
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f
i i1—1 1
. sead; =1 —and xf = T 1Xy = 1+ — }. Then
69. Choose x + - and ©] = /T 1% \/( - ) ( n)

n

L 1 Z 1
r|72 g —
-/; ! d.[’_'n_h—l»l;o n (1+ 171)(] +i)

. 1
_nlft'o”; (nti1)nti)

= 1 1 .
i — by the hint
JEL”;;(n+i—1 n+i) [by the hin]
Iim n "2_21 L — i L
n—ou pr 44 pa 141

li TR e T~
nl—lvrolo " n—1 i+ 1 2n—1 2n

1
= li Z—— ) = lim {1 —-4%) =
J (] zn) Jm (L=5) =3

DISCOVERY PROJECT Area Functions

1. {(a)
y=21+1
oo, 2x 4 1)

AS in part (a),
Area of trapezoid = § (b1 -+ b2)h Alw) =33+ (22 + D)z 1)
=1
=3B +7)2 322+ 4)(x — 1)
= 10 square units (z+2)(z — 1)

Or: = 2% + & — 2 square units

Area of rectangle + area of triangle
= (),-h,T + %btht
= (2)(3) + 1(2)(4) = 10 square units

¢) A'{x} = 2z + 1. This is the y-coordinate of the point (z, 2z + 1) on the given line.
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) A(x) = [7, (L+1t2)dt = [7 1di+ [T £*dt [Property 2]
- (—1)° {Propel‘ty 1 andjl
Exercise 5.2.28
=z+1+32°+3
= %ma +x+ %
(¢) A'{z) = x* + 1. This is the y-coordinate of the point

{x,1+ 2%} on the given curve.

y=1+1

fr+h 1+ (x+ap)

-1 Y x x+h 1 -1 0 i x+h

A(z + h) — A{z) is the area under An approximating rectangle is shown in the figure.
thecurvey = 1 + % fromt = z to It has height 1 + 22, width h, and area (1 + 2%}, so
t=az+h. Alz+h) — Alx) = h(1+2?) =

Az + 1) — Alx)
h

2

=1+ >

(f) Part (e) says that the average rate of change of A is approximately 1 + x2. As h approaches 0, the quotient

approaches the instantaneous rate of change—namely, A'(z). So the result of part (c), A'(z) = %+ 1, is

geometrically plausible,

3. (@ f(z) = cos(z?)

A

-125

(b) g{x) starts to decrease at that value of z where cos(t?) changes from positive to negative; that is, at about
x =125
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() glz) = f; cos(t®)dt. Using an integration command, we (d) We sketch the graph of ¢ using the

find that g(0) = 0, {0.2) = 0.200, g(0.4) = 0.399, method of Example 1 in Section 3.2. The

g(0.6) == 0.592, ¢(0.8) == 0.768, g(1.0) ~ 0.905, graphs of g’ (x} and f(x) look alike, so

g(1.2) = 0.974, g(1.4) = 0.950, g(1.6) ~ 0.826, we guess that ¢'(x) = f(z).

g{1.8) 2 0.635, and g(2.0) ~ 0.461.

4. Tn Problems | and 2, we showed that if g (z) = [ f{t) dt, then ¢’ (x) = f(x), for the functions f(t) = 2¢ + 1 and
f(t) =1+ t2. In Problem 3 we guessed that the same is true for f{¢} = cos(t*), based on visual evidence. So we
conjecture that g'(x) = f(z) for any continuous function f. This turns out to be true and is proved in Section 5.3

(the Fundamental Theorem of Calculus).

5.3 The Fundamental Theorem of Calculus

1. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this
theorem and the paragraph that follows it at the end of Section 5.3.

2. () g(z) = Jy f(t)dt, 50 g(0) = [y f(t)dt =0. (d)
g(1) = [ f(t)dt =1 -1-1 [areaof triangle] = 3.
g(2) = [21(tydt = [} f(¢)dt+ [] f(t)dt [below the z-axis]
=3—-3-1-1=0.
g(3) =92+ f; fydt=0-1

g(4) = g3+ [ fit)yde= L4+ i.1.1=0

g(h) = gi4) + ‘['45 f#)dt =0+ 1.5=15.
g(6) = g(5) + L f(H)dt =15 +25 =4

(b g(7) = g{6) + fg J{)dt = 4 + 2.2 [estimate from the graph] = 6.2.

(c) The answers from part (a) and part (b) indicate that g has a minimum at z = 3 and a maximum at = = 7. This

makes sense from the graph of f since we are subtracting areaon 1 < x < 3and addingareaon3 <z < 7.
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3. (@ glz) = f; f(t)d @
g(U — O f)dt =0 ’
fn fitydt =1-2=2 [rectangle],

:fo (t)dt = [} F(O) dt+ [F f(tydt = g(1) + [ flt)dt
—241-2+ % .1-2 =5 [rectangle plus triangle],
Y= f3 f(t D+ L fE)dt=5+3 1-4=T7,

g(6 =g(3)+ fg t)dt [the integral is negative since f lies under the z-axis|
=74+ [-(3-2:241-2)]=7T-4=3

(b) g is increasing on (0, 3) because as z increases from 0 to 3, we keep adding more area.
(¢) g has a maximum value when we start subtracting area; that is, at x = 3.

4. (a) g(— f_ =0,9(3) = f_ t)dt = f flt)dt + fo t) dt = () by symmetry, since the area
db()\«’e the z-axis is the same as the area below the axis.

(b) From the graph, it appears that to the nearest %, g(—2) = f__sg fiOydt=1,g9(~1)= f:; f(t)dt =31,

D
and g{0) = [, f(t)di ~ 55,

(¢) g is increasing on (—3,0) because as z increases from —3 to 0, we keep
adding more area.

(d) ¢ has a maximum value when we start subtracting area; that is, at = 0.

(f) The graph of ¢’ () is the same as that of f(z), as indicated by FTCI.

(a) By FTCI with f(#) = t* and @ = 1, g(x) = [ t*dt =>

flz) =2
(b) Using FTC2, g(z) = [ t*dt = [%ta]f = %-1;3 B

¢ {z) = z°.

(a) By FTC1 with f{t) =1+ vtanda = 0,
g(:c)=1;f(1+\/i)dt = ¢(z)=flx) =1+
(b) Using FIC2, g(z) = [ (1 +VE) dt = [t + 36372 " =24 22°/2

= g'(z:):l-&-:r.l/z:l-i-ﬁ.

0 X 2

1 f(t) =TI+ 2tand g(z) = fy V1 +2tdt, soby FTCL, ¢'(2) = f(z) = /1 + 2.
8. f(t) = (2-+1")° and g(z) = [ (2+14)" dt,sog'(z) = flz) = (24 z%)".
9. f(t) = tsint and g(y) = [ t*sintdt,so by FTC1, ¢'(y) = f(y) = v’ siny.

10. f(x} = 9:4}:5'2 and g(u) =/3:L ﬁidm, sog'(u) = flu) =

+u2
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" F f cos{t?) dt = — [; cos(tz)dt =

12. f(6) = tanf and F(z) = ['* tanfdf =

1 du dh
Let w e Then T = — Also, Ea;

d 1/ . 4
= — [T sin” tdt =
dx L

‘ dF
2 Then g—tf = 2xz. Also, !
dx

13.

il
d pel

dr

du 1 dy
— = —=. Also, ==
/. Then i N 50, -

VE u
:i costdt:i/ costdt du
dx f4 t du f4
d
. Let v = cos z. Then d_u = —sinz. Also, &y _
dr dz

:—f (¢ +sint) dt = ;

= (u+sinu) - (—sinz) =

dy dw
T dw da:’bo

d fl u®
= — ——du
dw f, 14+ u?

dy _

. Letw — 1 — 3x. Then @ = —3. Also, =
dx dx
; d ! u’

= — du
L oy 1+ u?
d u3
dw 1+ u2

1 du 3 dy
.Letu—x—g. Thengq_j— Also Ty

d [° 5 d [° 4 du
= — in“tdt = — in® ¢ dt - —
Y= /1 P du f ™

— i tan@d8. so by FICI, F'(z) =

dh du
du dz’

%I;Sin“tdt-% =sintu=— =

t “dr

e

_ dydu
T Qudz

F'{z) = — cos(z?)

du Asin“(l/m)'

dx T2

dh du

de  dudz'

1+T3dr=—d—/ \/1+’r3dr-d—u:
du J, dzr

_ dydu .
T duds’

cosu 1 _cosyz 1
u  2/E Jr /e
dy du

T duds

(t + sint)dt - %

— sinx [cosx + sin{cos x)]

 dw

dx

3(1 - 3x)*
14+ (1 - 3x)?

dw w?

BT

_d " .3 du .3 2
__du,/(; sin” ¢ dt o sin u( 3;3)_

364

S 01 3% (-1 7291
'_/_lmdxg[“é?}_l_%“_ 6 6

- ffzﬁdm = {bf]i

2
. ‘];28(4.’1: +3)de = [32° —+—3$}8 e

3y -y dy = [y + 3 - ) =

1
L 4/5 3. [5.9/5
- Jy 2t de = {gﬂ’,‘ ]

0

N VEde = et de = |

-2 .2
] idt:B/ £ dt
t4
1 71

— 5 _p=2=5
] 0_‘9

(2-8°+3-8)

—_ %(84/3 _

BV __ (1 N7
-3, 8 -8

3

=65 — (-2)] = 6(7) = 42

- (2-2°+3-2) =152 - 14 =138

My =202 -1n=3(16-1)=3
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. [, 27" dw does not exist because the function f(z) = # % has an infinite discontinuity at & = 0; that is, f is

discontinuous on the interval {2, 3].

> 2 2 L o
. f — dz does not exist because the function f(z} = = has an infinite discontinuity at z = (; that is, f is
5 £

discontinuous on the interval [—5, 5].
. ]:W cos 8 df = [siné’]iﬂ =sgin2r —sinr=0—-0=0

CfEe2 42 de = [ (22 +2%) de = [m2+%$7}§: (4+3)-(0+0) =12

4 9 4 ey 1 4
/ —d:n:/ ;r,l/zdarz[ } :[2.1:1/2] —2vVi—2V1=4-2=2
L VT 1 1/2], 1

. f;/t’isecztdt: [tanﬂg/4 —tanT —tan0=1-0=1

S BreyE)de =, (3+$3/2) dr = [3m+%x5/2];= [(3+2)-0] =

. j:“ cse? B df does not exist because the function () = csc® @ has infinite discontinuities at ¢ = 7 and 6 — 27,

that is, f is discontinuous on the interval [, 27].

. fJ"ﬁ csc 8 cot 0 df does not exist because the function f(#) = csc 8 cot § has an infinite discontinuity at ¢ = 0;

that is, f is discontinuous on the interval [0, 2].

s fle)de = [y ot de + [ 2% de = [30°]; + [327)] =

7 fleyde = 2 ade + f) sinzdr = [%mzﬁﬂ ~ [cosz]j = (0_

7I_2 ﬂ,2
=T (-l 1) =2

. From the graph, it appears that the area is about 60). The actual area is

X . . 127
et ode = [$2%3] = 481 0= %2 = 60.75. Thisis § of the

area of the viewing rectangle.

. From the graph, it appears that the area is about 1. The actual area is

6 -~376 6
_4 T -1 1 1 215
d — | e— — | — _——— - = = Uaols,
/1 * ¥ {—3] [3;173} 3-216 3 648 0.3318

1 1

. It appears that the area under the graph is about —g- of the area of the
viewing rectangle, or about %71- 7z 2.1. The actual area is

Jo sinzdr = [—cosz]§ = (—cosm) = (—cos0) = = (1) +1=2.
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40. Splitting up the region as shown, we estimate that the area under the graph
is 2 + (3 2) = L.8. The actual area is

/% gee? o dz = [tan T]T/S V3 -0=+v3=173

Q

0

42.]:’; a.msad;vs—[—msr]m”f()-}—J£ ¥z

(N A
\/ 53

Q2 3x 2 2o 2 3z 2
- — -1 —1 A |
"widu:f u2 ]du+/ u—du:—/ u2 dqu/ u du =
oy %+ 1 n w4l Jo u?+1 o w41

222 -1 d -1 d 42 -1, 97 -1
*(—,T)z——'—.(“’) ey e =2 = 3 o
(202 + 1 oo (B3ry2+1 dx de? +1 O9x? +1

2

tanzx , dt
) /Lma. V2+f4 /t'nur \’2+t4 /] V2+t4 1 2+t4 [ \/2+t4

(’(I)*——ld (t uu)Jr——l—i(Tz)-‘-— s +
i V2 tant x d V2 + a8 dr V2 + tant \/2+:n:8

'.L':] )
.y*f\/— tsint dt = f\/— tsmfdt+]1 Visintdt = — flﬁ\/fsintdt—\—] Visintdt =

y' = — ¥z (sinz)- d_T (VZ)+ 237 sin(z?) - d_(fc (z°) = ﬁ%mf “m( !} (32%)

T2y
Sinﬁ
2

LY = [C::T cos(u?) du = j(fm cos(u’) du— [ cos(u®) du =

= 32" ?sin(2?) —

y = cos(252%) a4 (5z) — cos(cos® &) - ——(cosz) = cos(2527} - 5 — cos(cos’ z) - (— sinx)

dir
2

= 5 cos(252° ) + sin z cos(cos” z)

x)—L.If(t)dt = () / ‘/”—“4 du [%mcef / ‘/”—“4 ] .

1 2y 8
—Vif)-%(f):——m-mALﬁ—W F'(2) = VI T 2 = V357,

2

dz

F'z)= f'(x) =

. For the curve to be concave upward, we must have /' > 0. y = [
Jo
o — (14 2x)

(1 +x+22)
allz. (1+22) <0 < x< —3. Thus, the curve is concave upward on (—00, —3 ).

. For this expression to be positive, we must have (1 + 2z) < 0, since (1 +x + :1?2)2 > 0 for
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49. (a) The Fresnel function S(z) = [ sin{%¢*) dt has local maximum values where 0 = S'(z) = sin(Zz*) and 5’
changes from positive to negative. For z > 0, this happens when Z2% = (2n — 1)7 lodd multiples of 7| &
1=22m-1) & z= V/An — 2, n any positive integer. For z < 0, 8" changes from positive to negative
where %;r:2 = 2n7 [even multiples of 7} & 2 =4n <« &= -2./n 8 doesnot change sign at
x =10
(b) S is concave upward on those intervals where S”(z) > 0. Differentiating our expression for S'(x), we get
§"(x) = cos(5x )(2" z) = mzcos(Zx?). For # > 0, 5"(x) > 0 where cos(5z )>0 o 0<ia’ <2
or (2n— 3w < Z2® < (2n+ §)m nanyinteger ¢ 0 <z <lorydn—1<z <ydn+ 1 nany
positive integer. For z < 0, §”(z) > 0 where cos(Z2%) <0 & (2n— 3)7 < Fa® < (2n — 3)m, nany
integer & 4dn-—-3d<zl<dn-1 & Vin-3<|z<Vin-1 = \/H:—'(*:B‘( dn — 1
= —+/4n — 3 > r > —+/4n — 1, so the intervals of upward concavity for £ < 0 are
(—vAn — 1, —+/4n = 3 ), n any positive integer. To summarize: S is concave upward on the intervals {0, 1).

(V3. 1), (VB VE). (=7, ~VB), (VT.3). ...

{c) In Maple, we use plot ({int (sin{Pi*t*2/2),t=0..x),0.2},x=0..2);. Note that Maple
recognizes the Fresnel function, calling it Fresnel§ (x). In Mathematica, we use
Plot [{Integrate[Sin[Pi*t*2/2],{t,0,x}1,0.2},{x,0,2}1. InDerive, we load the utility file
FRESNEL and plot FRESNEL_STN (x). From the graphs, we see that [, sin(Z#°}dt = 0.2 atx ~ 0.74.
0.75 0.25

50. (a) In Maple, we should start by setting

si:=int(sin(t)/t,t=0..x): InMathematica, the command is

si=Integrate[Sin[t]/t, {t.0,x}]. Note that both systems

47
recognize this function; Maple calls it S1 (x} and Mathematica calls it J

SinIntegral [x]. In Maple, the command to generate the graph is

plot (si,x=-4%Pi..4*Pi); InMathematica, itis -2
Plot [si, {x,-4*Pi,4*Pi}]. In Derive, we load the vtility file EXP_INT and plot ST {x).

(b) Si(z) has local maximum values where Si’(:) changes from positive to negative, passing through 0. From the

sint sin @
Fundamental Theorem we know that Si'(z) = / —dt= , 50 we must have sinz = O fora
X

maximum, and for & > 0 we must have & = (2n — 1), n any positive integer, for Si’ to be changing from
positive to negative at x. For z < 0, we must have z = 2nm, n any positive integer, for a maximum, since the
denominator of Si’'(x) is negative for z < 0. Thus, the local maxima occur at

x =, —2m, 37, 4w, om, —6m, . ...

cosr sinx

(¢} To find the first inflection point, we solve Si”(z) = ——r = 0. We can see from the graph that the first
: T

inflection point lies somewhere between x = 3 and z = 5. Using a root finder gives the value = 2 4.4934. To
tind the y-coordinate of the inflection point, we evaluate Si(4.4934) ~ 1.6556. So the coordinates of the first
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inflection point to the right of the origin are about (4.4934, 1.6556). Alternatively, we could graph $”{x) and
estimate the first positive z-value at which it changes sign.

{d) It seerns from the graph that the function has horizontal asymptotes at y == 1.5, with ligl Si(x) = £1.5
respectively. Using the limit command, we get lim Si(z) = 7. Since Si(z) is an odd function,

lim Si(z) = —%. So Si(x) has the horizontal asymptotes y = +Z.

{e) We use the fsolve command in Maple {or FindRoot in Mathematica) to find that the solution is z = 1.1.
Or, as in Exercise 49(c). we graph y = Si(z) and y = 1 on the same screen to see where they intersect.
51. (a) By FTCI, g'{z) = f(x). Sog'(z) = f(z) =0atx = 1,3,5,7, and 9. ¢ has local maximaat z = 1 and 5
(since f = g’ changes from positive to negative there) and local minima at x = 3 and 7. There is no local
maximum or minimum at x = 9, since [ is not defined for z > 9.

(b) We can see from the graph that | [ fdt| < flsfdt| < ‘f;fdt’ < ‘f57fdt| < ‘j'?gfdt}.

So g(1) = U'Ol fdti, g(5) = [ fdt = g(1) - ff’fdt‘ n ‘f;’ fdti, and
g(9) = fggfdt =g(5) — ‘f;fdt‘ + ‘fffdt'. Thus, g{1) < g{5) < g{9), and so the absolute maximum of
glz)occurs at x = 9.

(¢} g is concave downward on those intervals where g” < 0. But @

g'(z) = f(z), 50 g"{z) = f'(x), which is negative on 14

(approximately) {,2), (4,6) and (8,9). So g is concave downward

on these intervals.

52. (a) By FTC1, ¢'(z) = f(z). Sog'(z) = f(x) = 0atx = 2, 4,6, 8, and 10. g has local maxima at = 2 and 6
(since f = g’ changes from positive to negative there) and local minima at z = 4 and 8. There is no local
maximum or minimum at & = 10, since f is not defined for x > 10.

(b) We can see from the graph that _fffdt! > ‘_];fdtf > fffdt‘ > |f: fdtl > !fsmfdt‘.
So g(2) = \.ﬁf fritl. a(6) = [° fdt = g(2) - ‘_[2" fdt’ +fE fdt|, and
g(10) = 010 fdt =g(6) - l'['esfdt‘ 4 }j'sw fdt‘. Thus, g(2) > g(6) > g{10), and so the absolute maximum
of g{x) occurs at x = 2.
(¢) g is concave downward on those intervals where ¢ < 0. But @
g'(z) = f(x).s0 ¢"(x) = f'(z), which is negative on (1,3), (5,7) 051
and (9, 10). So g is concave downward on these intervals.
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55. Suppose h < 0. Since f is continuous on [z + h, ], the Extreme Value Theorem says that there are numbers v and
vin [z + h,z] such that f(u) = mand f(v) = M, where m and M are the absolute minimum and maximum
values of f on [z + h, z]. By Property 8 of integrals, m(—h) < [, f{t)dt < M(-h): thatis,
flu)(—h) < — f;Jrh F(t)dt < f(v)(—h). Since —h > 0, we can divide this inequality by —h:

f{u)<%fm+h gleth) —glz) 1

z+h
F(£)dt < f(v). By Equation 2, £ A - / F(£) dt for b # 0, and hence
(z+h) — g(a)
h

fluy< 4

< f(v), which is Equation 3 in the case where h < 0.

h{z}
() dt + / f dt] (where a is in the domain of f)

gz} a [ @ ,
[ [+ [ / f(t)dt] = —lgle))g'() + F (@) W (2)
(h(z) W (3) — F(g(e))9'(2)

57. (a) Let f(z) = vz = f(z)=1/(2yx)>0forz >0 = fisincreasingon (0,00). Ifx > 0. then
% > 0,501+ z® > 1 and since f is increasing, this means that f(l + .L"j) > f(1y = V1+x3 > 1 for
x>0 Nextletg(t) =t -t = ¢ (t)=2t—1 = g'(t) > 0whent > 1. Thus, g is increasing on
(1,c0). And since g(1) = 0, g(t) > 0 whent > 1. Now let t = V123, wherez > 0. /14 2% > 1 (from
above) = t>1 = g(t)>0 = (1+2°) - V1+ 28 > 0forz > 0. Therefore,
1<VIi+23<1+2%forz >0

(b) From part (a) and Property 7: [, 1dz < [/ vVI+a%de < [} (1+2%)dz <
< IViTalde < [o+ 22Y], & 1< [fVItaide<1+4=125

58. (a) If x < 0, then g{z) = fo"" ft)dt = 7 0dt=0. (b)
IF0 < & < 1,then g(z) = [ f(t)dt = [ tdt = [§¢°]] = 3a°.
Ifl < x <2, then
glx) = [y fe)dt = [ f(O)dt + [T F(b)dt

=g(1) + fF(2—t)dt = §(1)* + [2¢ — 1¢°]]
=14 (20-32%)-(2-3) =2 - iz* -1
Ifz > 2, then g(z) = [ f(t)dt=g(2)+ f; 0dt =1+0=1. So
0 if x <0
T fo<z<t
9(z)= 2r— 122 —1 if l<a <2
1 if x> 2

(¢) f is not differentiable at its comers at z = 0, 1, and 2. f is differentiable on (—oc, 0), (0,1), (1,2) and (2, 20).
g is differentiable on {-—oc, c0).
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59, Using FTCI, we ditferentiate both sides of 6 4 f % dt = 2/ to get % = = = f(z)= x3/2,

. . . *fi
To find a, we substitute = = a in the original equation to obtain 6 + / %2 dt=2v/a = 6+0=2/a =
3=yae = a=9

60. By the Fundamental Theorem of Calculus, fl ) (u)du = h'(2) — h'(1) =5 — 2 = 3. The other information is

UNnecessary.

61. (a) Let F(¢ fo f(s)ds. Then, by FTCI, F'(t) = f(t) = rate of depreciation, so F'(t) represents the loss in

value over the interval [0, ¢].

{b) C(t {A + / f(s da] = —() represents the average expenditure per unit of £ during the interval

[0, #], assuming that there has been only one overhaul during that time period. The company wants to minimize

average expenditure.

i
(c) C(t) = % {A + / f(s) ds]. Using FTC1, we have C'(t) =
Jo

Cy=0 = ti@=A+ [ f9as = =74~
0

JO

B2. () C(1) = % /t [F(s) + g(s}] ds. Using FTC1 and the Product Rule, we have
Jo
. 1 ‘
C't) = 1)+ - % [ 160+ g(6)] ds S ') =

IO 90— 5 [ ol =0 = 150)+9(0] - 1[ F) +gls)ids =0
S +9W] -0 =0 = O =)+ 40

%
(b)For()gtSBO,wehaveD(t):[ (K _L )d

15 900

—_—8 = — &

15 900

15 450

[v V T_V Vo

1% 1% (
SoD(t) =V = Ft—%tzzv = 60t—t?=900 = *—60t+900=0 =
a

(t—30)° =0 = t=230. Sothe length of time T is 30 months,

L fr/v Vv Vo4 LV Ve, V o t
. t —— e —_— d‘:— _ 85— — '
(©) C (1) t]o (15 350° +1,2,9003) i t[l.’is 500" T 38700° |,

1(‘[/ L V3) v V Voo

=i\ " s00" T30t /T 15 900 38700t

v v 1 1

(t) = = + Dozt = Owh f= — = f=2L5.
e TR W 19350° T 900 5

1%
C(21.5) = 15 W( 38,700

C0) = 5 = 5+ G

21.5) + (21.5)% ~ 0.05472V, C(0) = % ~ 0.06667V, and

TERT 30)? = 0.05659V, so the absolute minimum is C(21.5)  0.05472V.
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V 1% |
(d) As in part (c), we have C(¢} 5 900t+ 38,700t ,so C(t) = f(t) +g(t)

v v v o, V.V Vo,

900" T30t 15 a0l T 1200l

# _+_]_ ___.1_ =t L_-l_
“ 112,900 38,700/ "\ 450 900
1/900 43

~ 2738, 700 2

number of €' in part {c), so we have verified the result of (a) in this case.

= 21.5. This is the value of ¢ that we obtained as the critical

1 1 /%1 9 1/2
63/1 %dmxﬁji ;dm:%[ln{aﬂ]l=%(ln9—hll):ﬂ12~ln970=lng =in3

Lo 100°1" 10 1 9
5. fu 107 de = [mmL “ni0 Inl0  Ini0

V372
. V3/2 . - . 1
f = Lt 2 = 6[sm 1(@) —sin (%)}

= 4[tan”lt Lo 4(tan"l 1—tan ' O) = 4(% —«0) =T

0

Po=e? " =e? 1 Jorstart withe*™!

=e%e?|

2 2 4 2 ) 2
du = ] (4?1_3 + ufl)du = [—u_z +1nlu} = [—2 + lnu]
1 -2 1 Uu

1
=(-32+In2)—(—2+mn)=2+In2

5.4 Indefinite Integrais and the Net Change Theorem

i 5 __i 1/2 12 -1/2 T
— [VaTF1+0) = 2 [0+ 1)+ 0] = 4(e® +1) Ze = s

— |rsinz +cosz+ C} = zcosz + (sinz) -1 —sinxr =rcosx

d x ol - 1 Va? —a? - z{-z)/VaZ—z? 1 (& —2®) +2° 1
I eve -2 ] po

a? —x? a? (a2 — r2)3/2 (a2 — z2)°

[»/mw} :_Lg[m] _ @A) Ve a

a? dx a2z2

z* — (2® +a”) B 1
a?r2/2? + a2 2 \z? t a?
—3/4+1 1/4

5./$_3/4d2~——:f—37m+0# / +0 4$1/4+C1

T dr alz x

. 4,"3
6./%d$Af'1/3dI_m+C 34/;-%('
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' ot 2
1 / (m?‘+(sm+1)dx:f4—+(si‘2— t24+C=1ta"+3° +24+C

2 $6

8./m(1+2w4)(lx=/($+2m5)dw:%Jr?E—I—C—:c +1$ +C

. : 2 B : s
9. /(1—f,)(2+t2)dt:/(2—2t+t2—t)dt_zr_25+§—~+c_2t A (AR
' " 2 2 'l.L3 u"l 1.3 1
10.](1; +14+ = )du—'/(u +14u )du:?-%uir_—l+C:gu'+u—a+C
2372

11./(2—\/:?)2(133: [(474\/E+$)d:ﬂ:4$—43—/2+——+0—4$ g 3/2+la: +C

12 [(sin6 + 3cosf)df = —cosf + 3sinf + C

. a1 o L" T 1 " E
13 / —bl—li—i.z—da::[ Sm.;r da::/ -qmﬂdm: /secztanxd$:sec1r+0
I . .

1 —sin“x cos?z COST COSZ

" sin 2 " 28in @ cos .
14. /de:/Mdm:f?coswdm:2smx+c
sinx sina

15. [ »y@de = [2¥%de = 24°/% + C. 16. f(cosz — 2sinx)de =sinz + 2cosz + C.
The members of the family in the figure The members of the family in the figure
correspond to ' = 5, 3,0, —2, and —4. correspond to C' = 5, 3,0, —2, and —4.

8

12

h

.f;(ﬁrzleerS)dm: R Cix 53?}2:[23‘33—2372+5$]§:(16—8+10)—0:18

.‘I'l3(1+2$f4;1;3)d1-:[, N - R G T=[33+$2—$4]3

1
=34+9-81)-(1+1-1)=-69-1=-70
0 Vo N Q 5
S0, Byt — 6y 4+ 14) dy = [5(3 )+14y]_3:[y072y3+14y](13
= () — (—243 + 54 — 42) = 231

.fijg(usquJruz)du—[é;"——u + % u} =0-(Z-4-%)=—1

. f32(3u+ 1)? du = f; (91:.2 +6u+1) du = [9-%u3+6- %u2+u]i2
= (244+12+2) —{-24+12 -2} =38 - (-14) =52

= {311,3 + 3u? + u 2_2

. j:‘(2’u +8)3e— Dde = j:(buz +13v —5)dv = [6-30° + 13- 2v° — 51)] [20® + 2o? — Em]i
— (128 + 104 — 20) — 0 = 212

. a4
VR e = [V T de = (20774 2072
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9
26, [0 V2tdt = f) V2t dt = {‘/5'%&/2}0:\/5'%'27—0:18&

[ (o0 H—H]

_a Y

2 7 2
+5 _ _
26] yr oy ?}3y dy=f(y2+5y4)dy=[—yl+5-é
1 . 1

2 1\2 2
28./ (a:+—) d.'a::/ (w2+2+1‘_2)d$
J1 x 1
(eamD-Gi2-y-

2. [} /5/zde =5 [}a7 de = VB2 vE] = VE(2:2-2-1) =25

93y -2 ¢ —1/2 3/2 1/2]° a2z o1/2]?
3!1./1 z dx:/(3$1/2—2x 1/)d$=[3o§z/ —2-2z ] =[2a: - 4 }

1 1 1
= (54— 12) — (2 4) = 44
3. [ (4sinf — 3cosf) df = [-dcosf — 3sinf]f = (4 -0) — (-1-0) =

32 f”/SscLBtanGdBA[secﬁ} sec%—sec%:?,—\/f

] 4 cos? g /4 1 cos® 0 /4 9
s e df = —_— d@ = g+ 1)d9
33 /o cos? @ dé /0 (c092 a9 t os?h cos? @ fn (sec )

— [tan@ + 07" = (tan T + ) - (0+0) =1+ T

/3 : . w/3 s 2 T/3 a2 /3
%, sind + sin f tan 9{19 _ sin# (1 + tan” 8) d9=/ sin f sec 9(162/ Sin 6 dé
sec? 8 a sec? ¢ o sec? 8 0

=[- cosO]g/S =—3-(-=

64 64 1/3 64 o
35. / 1+ ‘/— ( 172 +3 ) dz = / (212 4 g0 gy = / (a2 420 da
:r 1

m1/2 1
64 ) ) .
= {21‘1/2+%m5/6]] = (16+192) - (24 8) =14 4 186 _ 256

36. fol(l+:1,'2)3dw=J61(1+33:2+3334+m6)dm: [m+$3+%$5+%$7}3= (1+1+2+1)-0=
9/4  _9/5

37-.]3(%-&{’/_)@* (d/4+x4/5)d$=[z_/4-+2/5l_[4 94 4 8gf ];:

8 01 .8 13 a/s A3 /8 8 3 L7 s 8
I —_ - — —_— — = 3
:m.fl e l(a: x )dsr; vy el P al
= (316-3-2) - (3 -8) =¥
39, 2 (z—2|z)yde = [°,[z ~ 2~x)| dz + [Z[z — 2x)| dz = [’ Bzdr + [ (~2)d
=3{(0-4) - (2-0)=-1=-35

3mw/2 3n/2

0. [‘"/2 lsinz| dz = [ sinzde + ]
-+ 0 (D =241=3

(—sinz)dz = [—cosz]] + [cosz];
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81. The graph shows thaty = z + z° — 2% has z-intercepts at z = 0 and at

T = a 25 1.32. So the area of the region that lies under the curve and
above the xr-axis is
Jile+ e —at)de = [32% + 52° - 32

— (3a* + 40° - 3a") 0

= (.84

. The graph shows that y = 2 + 32* — 2x° has z-intercepts at = 0 and

at r = a = 1.37. So the area of the region that lies under the curve and

above the z-axis is
fo(2¢ + 3z* — 22°

3. A=

M y-= Yz = m:y4s8()A:J}le4dy: [%ys];:

. If w’(#) is the rate of change of weight in pounds per year, then w{t) represents the weight in pounds of the child at

age t. We know from the Net Change Theorem that j w'(t) dt = w(10) — w(5), so the integral represents the
increase in the child’s weight (in pounds) between the ages of 5 and 10.

. J: Itydt = J: Q' (t) dt = Q(b) — Q{a) by the Net Change Theorem, so it represents the change in the charge Q
fromtimet =qtot =b.

. Since r{t) is the rate at which oil leaks, we can write r(t) = —V"'(#), where V{¢) is the volume of oil at time ¢.
[Note that the minus sign is needed because V is decredsmg so V'(t) is negative, but r(t) is positive.] Thus, by the
Net Change Theorem, [ r(t) dt = ~ [/ V/(t) dt = — [V (120) - V(0)] = V(0) — V/(120), which is the
number of gallons of oil that leaked from the tdnk in the first two hours (120 minutes).

. By the Net Change Theorem, j t)dt = n(15) — n{0) = n(15) — 100 represents the increase in the bee

population in 15 weeks. So 100 + fo n'(t) dt = n(15) represents the total bee population after 15 weeks.

. By the Net Change Theorem, ff[;](;}[? R/(z)dz = R(5000) — R(1000), so it represents the increase in revenue when

production is increased from 1000 units to 5000 units.

. The slope of the trail is the rate of change of the elevation E, so f{z) = E'(x). By the Net Change Theorem,
fq z)de = fs E'(z)dzr = E{5) — E(3) is the change in the elevation F between x = 3 miles and z = 5 miles
from the start of the trail.

. Tn general, the unit of measurement for f: f(z) dz is the product of the unit for f{x) and the unit for z. Since
f{x) is measured in newtons and x is measured in meters, the units for fOIDD f(ir) dx are newton-meters.

{A newton-meter is abbreviated N-m and is called a joule.)
. The units for a(z) are pounds per foot and the units for x are feet, so the units for da/dx are pounds per foot per

foot, denoted (1b/ft}/ft. The unit of measurement for f2 x) dx is the product of pounds per foot and feet; that is,
pounds.
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. (a) displacement = [ (3t — 5)dt = [3¢* — St}ﬁ = 15=-Im
(b) distance traveled = foa 13t — 5|dt = 5/3(5 - 3t)dt + f:/3(3t —5)dt
=[5t - 22007 4 3t —51&]5/3 % %27
. (a) displacement = [ (t* - 2t — 8) dt = [11° —° - 8t] = (72— 36— 48) —
(b) distance traveled = fls |t? — 2t — 8| dt = fl )t +2)|dt
= [i (-t +2t+8)dt+ f) (t ot —8)dt = [-30 4 2+ 8e)0 4+ [16F — 12 —8t]]
= (8 4 16432) — (-1 +1+8)+(72-36-48) - (§ ~16-32) =Fm
V) =alt) =t+4 = ut)=i?+4t+C = v0)=C=5 = vt)=4t*+4t+5m/s
(b) distance traveled = f1° [v(t)l dt = [1°| 362 + 4t + 5| dt = [,°(§£° + 4t + 5) dt
= [+ 28 +5t]0 == 390 4 200 + 50 = 4162 m

L@t =alt)=2+3 = v(t)=t43t+C = v(0)=C=-4 = v{t})=t>+3t-

(b) distance traveled = [ [t? + 3t — 4| dt = 21+t - 1) dt
= [J(—t? =3t +4)dt + [ (£ +3t —4) dt
= [—1% - 36y ag]) + [A62 4+ 12— 4]}
Sl B BORICEE SEURICES BURS L

- Since ' (x) = pla). m = [} ple)de = [0 +2/F) du = 9w+ 307 =36+ 2 0= 40— 463k

. By the Net Change Theorem, the amount of water that fiows from the tank is

S0ty dt = [1°(200 — 4) dt = [200t — 2¢2] = (2000 ~ 200) — 0 = 1800 liters.

. Let s be the position of the car. We know frorm Equation 2 that s(100) — s(0) = [, 190 (¢} dt. We use the Midpoint
Rule for 0 < ¢ < 100 with n = 5. Note that the length of each of the five time intervals is

20 seconds = 2% hour = éo hour. So the distance traveled is

3600
190 (t) dt = 2L [6(10) + v(30) + {50} + v(70) + v(90)]

= 155 (38 + 58 + 51 + 53 +47)

— 247 - 1
= ja A 14 miles

60. (a) By the Net Change Theorem, the total amount spewed into the atmosphere is
Q(6) — Q) = fos r(t}dt = X{6) since Q(0) = 0. The rate r(¢) is positive, so Q is an increasing function.
b—a 6-0

Thus, an upper estimate for Q(6) is R and a lower estimate for Q(6) is Lg. Af = == = 1.
n

6
Re =) r{t;) At = 10 + 24 + 36 + 46 + b4 4 60 = 230 tonnes.

=]

6
Lg =3 r(ti-1) At = Rg + r(0) — r(€) = 230 + 2 — 60 = 172 tonnes.

i=1
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Q(6) = My = 2[r(1) + r{3} + 7(5)] = 2(10 4 36 + 54) = 2(100} = 200 tonnes.
. From the Net Change Theorem, the increase in cost if the production level is raised from 2000 yards to 4000 yards

is C(4000) — C(2000) = [t " () dar.

4000 4000
f C'(x)dx = / (3 — 0.01z + 0.000006z°) dx
2000 2000

4000

= [3z — 0.005z" + 0.000002z° |,

= 60,000 — 2,000 = $58,000

. By the Net Change Theorem, the amount of water after four days is
25,000 + f, r{t) dt ~ 25,000 + My
= 25,000 + 132 [r(0.5) + r(1.5) 4+ 7(2.5) + r(3.5)]
A 25,000 + [1500 + 1770 + 740 + (—690)] = 28,320 liters

. (a) We can find the area between the Lorenz curve and the line y = « by subtracting the area under y = L(z) from

the area under ¢y = x. Thus,

area between Lorenz curve and liney = = fol [z — L{z)| dx

coefficient of inequality = area under Tine § = = fl p
o g FOE

_ Jo le — L{z)|dz _ o [z — L(x)]dx = 2/0 [z — L{z)] dz

(/2] 1/2

(by L(z) = Za + Sa = LBO%)=L(3) =5+ % = & = 0.39583, so the bottom 50% of the
households receive at most about 40% of the income. Using the result in part (a),

coefficient of inequality = 2fnl lx — L(z)] da = 2f01 (- TZ»CQ B %x) s
= 2[‘01(;"—2x — %5{72) dr = 2f01 1_52 (;E B 332) dz
, el )
=332 57, = 3G —3) = 8)

. (a) From Exercise 4.1.66(a), v(t) = 0.00146t% — 0.11553t* + 24.98169¢ — 21.26872.

125
0

125

(b} h(125) — h{0) = [ u(t) dt = [0.000365¢* — 0.03851¢" + 12.490845¢° — 21.26872¢

e 2 e
/ r+1 1 e
f %dm:/ (m+1+;)dm_[%m2+$+1n|w|}l
1 1 :

~s 200,407 ft

&£

= (%€2+€+1116) *(%+1+llll) 2%82+8A%

v 1y " 1 1.2 o
.[l (\/E—k:/—g) d$:[; (I+2+;)dw:[§x +2:c+ln|zu4

=8 +184+mIn9—(8+8+In4)=F +In3

; 1 3 .
./($Z+I+m)d.f:£3—+ﬂj+t3n 1.’L'+C

. B=34 = _jUb e“dr =3[ eTde = [e*)0

" =32 = b= In(3e” — 2)
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5.5 The Substitution Rule

1. Let v = 3z, Then du = 3dzx, sodz = ldu. Thus,
[cos3rdr = fcosu(ddu) =3 fcosudu = gsinu+ C = 1 sin 3z + C. Don’t forget that it is often very

easy to check an indefinite integration by differentiating your answer. In this case,

dii {1sin3z + C) = (cos3z) - 3 = cos 3z, the desired result.

 Letu — 4 + x%. Then du = 2xdz and zdx = %du, 50
Jo(d+2?) ' de=[u(ddu) =1 Ful+C= L4+ +C.
. Letw = 23 + 1. Then du = 3z dz and z° dz = %du, SO

1 3/2
[2*Va3 + Tde = [ u (5 du) :g%ﬁ+0—%-§u3/2+0: 2(z* +1)%% + C.

. Letu = y/z. Then du = —L—dmandr}_da? = 2du, so

2z N
sin /T .
/ 7z dr = [ sinu(2du) = 2(— cosu) + C = —2cosyz + C.
T

. Letu = 1 + 2z. Then du = 2dz and dz = 3 du, so

—2
[ e = [ ) =25 + O — 5 4 C= g +O

(1 + 22)3
. Let w = cos®. Then du = —sin&@df and sinf df = —du, so
fcos®sinfdf = [u' (—du) = -3u® +C=—Fcos’ 0+ C.

u? (14 2x)2

. Letw =2 + 3. Then du = 2z dz, 5o [ 22(z* +3) de = [u'du=1u" + C = 1(2? +3)° + C.
. Letu = 2® + 5. Then du = 3z”dw and z*dz = } du, so

[22(@® +5)%de = fu® (3du) = 3 - 2u'®+C = 45(c® +5)°+C.

. Letw = 3z - 2, Then du = 3dz and dz = 3 du, s0

fBz—2)Pdz = [« (1du) =1 2P +C=L(Bz-2)" +C.

. Letuw — 2 — = Then du = —dx and dz = —du, so

J@2—2)%de = [uS(—du) = 3" +C= -1 -2 +C.

.Letu =14z + 2z% Then du = (1 + 4z) dz, so

1+4E du -1/2
T T \/ﬁ / = 1/2+ v1+xd2es 4+

.Letu = 2® + 1. Then du = 2z dz and zdz = 3 du, 50

/(2+1)2d$_f (%du):%._ul

. Letw = 2y + 1. Then du = 2dy and dy = 1 du, so

3 g fatran =2 L
/(2y+1)5dyuf375 (2du)—2

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

3 U CHAPTERS INTECRAL

14

Let u = 5t + 4. Then du = 5dt and dt = £ du, so

/(5;-:4—)2‘7&:/ w7 (Ldu) =

. Letuw =4 — . Then du = —dt and dt = —du, so

[VE=tdt= [u?(~du) = 23 +C=-24-1)"? + C.

. Letu = 2y* — 1. Then du = 8y° dy and y* dy = £ du, so

[V VaE T Tdy = [u (b du) = 3 0= oyt - ) v

. Letu = wt. Thendu = wdt and dt = l du, so

[sinwtdt = [sinu(Ldu) =Li(—cosu)+C=—-Lcoswt+C.

. Let u = 26. Then du = 2d0 and d0 = } du, so

[sec26 tan20df = [secutanu (4 du) = Lsecu+C = §sec20+C.

. Letuw = /& Then du = i and idt = 2du, 50

2Vt Vi
/CO\S/_;/Edtzfcosu(?du):25inu+C:251n\/f+C".

. Letu = 1 + %2 Then du = 32'/*dz and \/:Edsc = 2du, so

[ VEsin(l + 2% de = [sinu(2du) =2 (—cosu) + C = -2 cos(1 +2°%) + C.

. Letw = sind. Then du = cos @ df,so [ cosf sin®6df = [ubdu=3u"+C=1sin"6+C.

. Letuw = 1 + tan#. Then du = sec” 0d#, so

[(1+tan8)®sec’0df = [u’du= 2u®+ C = (1 +tand)® + C.

. Letu = 1+ 2% Then du = 32°dz and 2° dz = § du, so

[t e G =340 ro=gus e

. Let u = az® + 2bz + c. Then du = 2(ax + b) dr and (az + b) dz = £ du, so

{ax +b)dx %du_

e el =i[uw?du=u"?+C=Vaz?+ 2z +c+C.
az T +c u

. Let w = cot . Then du = — csc® xdx and csc? rdz = —du, so

ud’?

Veotzese’ rdr = | vu(—du +C = -2(cotz)¥? +C.
32 3

. Let u = E. Then du = - dz and ida: = —ldu, 80
T x2 @2 T

2

fcoq (r/x) dr — /cosu(—}- du) 1 sinu+C = _1 sin~ £ C.
- T T T x

. Let 4 = secz. Then du = secz tanx dx, so

[sec® z tanzde = [sec® x(secx tanz)dr = [u'du = v’ + C = ise’ z + C.
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28. Letu = 2° + 1. Then % = w — 1 and du = 3z? dz, so
[V Fiatde= [V +1-2° 2P de= [u'P(u— 1)z du) = 1 l(ut® ) du
= %(%u”"’ 3 4/3) +C0=1@+ 1) 1P+ 1)+

29. Let u = b4 ca®"!. Then du = (a + 1)cz® dz, s0

a U DRV IS -1 a2\ Lo 2 N
/”‘ b cattd /” e P = e BV) O gy e

30. Let w = cost. Then du = —sintdt and sint dt = —du, so
[ sint sec®(cost)dt = fsec’ u-(—du) = —tanu + C = —tan(cost) + C.

M. Letw =z -+ 2. Then du = dz, so

-2 _
[ gogte= [ du= [ (- m7 =72 g
R AR R

32. letu=1—xz Thenx =1 — u and dx = —du, so

u) 1—2u+u? —i/2 1/2 3/2
(—du) = _du:—/(u —2u" +u )du
\/1—3: / Vi

——(2u1/272-%u3/2 25/2)+C*—2\/1—£+ — 3/2—%(1—r

In Exercises 33-36, let f(=) denote the integrand and F(x) its antiderivative (with C' = 0},
3z —1

(322 — 2 4+ 1)*

w=23c"-2r+1 = du=(6z—2)dr=2(3x— 1)dz, so

3z — 1 1/1 1 [
T gp= | = (du) == :
/(3w2—2$+1)4dw /u4(2 ") 2/“ du

1 3 1
——Zu 0= -
6 6 (322 — 224+ 1)°

8. fla) =

Notice that at z = % f changes from negative to positive, and I has a local minimum.

v=x+4+1 = du=2rxdz 0

3. f(z) =

x
VIZ+ 1

T 1 1 1 —1/2
L dr—f —{Zdu) == d
]\/_:r2+_1 B /\/6(2 ”) 2]“ "
0=Vt +1+C.

Note that at z = 0, f changes from negative to positive and F’ has a local

minimum.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
400 O CHAPTERSH INTEGRALS

35, f(x) =sin®zcosz. u=sinz = du=coszdr,so

[sin®z cosxde = fusdu: iu‘l +C = isin4:c+C

Note that at x = 5, f changes from positive to negative and F' has a local

maximum. Also, both f and F' are periodic with period m, so at # = 0 and

at x = =, f changes from negative to positive and F' has local minima.

. f(0) = tan® 0 sec? 0. u =tanf = du = sec’8df, so

[tan? @ sec?9df = [u’du = ju + C = jtan® 4 + C

Note that f is positive and F is increasing. Atz =0, f =0and Fhasa

horizontal tangent.

-2
.Letu=x—1,50du = de. Whenz = 0,u = —1; whenz = 2,4 = 1. Thus, [ (z ~ 1)® dz = [ v du =10
by Theorem 6(b), since f{u) = u®® is an odd function.

L Letu =44 3z, s0du =3dz. Whenz =0, u—=4; whenz = 7, u = 25. Thus,

121 2, am 2 934
= | =22 ¥ =Z(125-R8) = = 26
[3/2]4 (2 )=505 -8

7 25
/ VA4 +3xdr = Vu(3 du) 5 5
0

4 3
CLetu =1+ 22, sodu = 622 dz. Whenxz =0, u = 1; when z = 1, w = 3. Thus,

_f[} z* (1 +2m3)5 dr = ffu"’(% du) = é[guﬁ}f =315 =24(r20-1)=28 = 12

. Let u = 22, so du = 2z dx. When z = 0, u = 0; when z = /7, u = 7. Thus,
f\/;f'

VT xcos(z?) dr = [ cosu (3 du) = [sinu|j = $(sinw —sin0) = (0 — 0) = 0.
cLetw =t/4, sodu = %dt. Whent =0, u = 0; whent = w, u = /4. Thus,

[y sec®(¢/4) dt = ;/4 sec’ u (4 du) = 4[tanu];/4 =4(tan T —tan0) = 4(1 - 0) = 4.
. Letu = mt, sodu = wdt. Whent = §,u= T;whent = 3, u= 3. Thus,

fll//h? csent cot wtdt = f;r//: cscu cotu (& du) = 1 —cscu}:ﬁ =-2(1-2)=1

. fff}s tan® # df = 0 by Theorem 6(b), since f(#) = tan® @ is an odd function.

2
dx o 1 e . ;
. fo ﬁ does not exist since f{x) = m has an infinite discontinuity at z = 2.

. Letu = cosf, 50 du = —sinf/df. When 6 = 0,u = 1; when § = %, u = 5. Thus,

/3 ng 172 _ 1 1
/ %dﬂ:/ ﬁ:/ u"zduz[—l] =-1-(-2)=1
0 38 J1 u Jis2 U 1/2

f"/2 r?sinzx sine

dx = 0 by Theorem 6(b), since f(x} = is an odd function.

_ﬂ./2 1+I6 1"‘.’36

Letu=1+2z,50du = 2dx. Whenz =0, v = 1; whenz = 13, u = 27. Thus,

/13 dx fZT 27
- . = U
0 31422 1

“23(1 gy = {%-:}u}/ﬂ =3(3-1)=3,

1
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. Letu — sinz, so du = coszdr. Whenx = 0, u = 0; when x = £, u = 1. Thus,
foﬂlz cos sin{sinz) dr = _fol sinudu = [~ cosu]; =—(cosl-1)=1-cosl.
Lletu=xz—1,sou+1==zxanddu = dr. Whenx =1, w = 0; whenx = 2, v = 1. Thus,

; r . . 1 , ]
JPavETde = f)(ut yade= [ 4P du = [2 4 32 <2 e =2

L Letu=1+2x,s0x = %(u_l) and du = 2dz. Whenz = 0,4 = 1; whenz = 4, u = 9. Thus,

4 IEd.’B 9%(U—1)du 1 9 1/2 —1/2 . 1/2 9
- bk o d:l{§3/2,2/]
| == T3 [ g e ]

9
=1.2 [uf‘“ -3u1/2]1 =179y~ (1-3) =2

4
. /0 (3’%55 does not exist since f{x) = @27 has an infinite discontinuity at & = 2.

. Assumea > 0. Letu = a® — 2%, s0du = —2xdz. Whenz =0, u — a®; when z = @, & = 0. Thus,

a2

[ aVa P o= [SutA(~kdn) = 3 [P du=1 - [3]) < e

0

L letuw =22 +a’.sodu=2xdrandrdz = %du. Whenao =0,u = a°; when z = a. u = 2a2, Thus.

2
a a 242 o 2a?
/D eVt ald = / w2 du) = 3[32] T = [40]

2
a2 a?

= %[(232)3/2 — (a2)3/2] = %(2 V2 - 1)(13

[#]

. f°, & v@? 4+ a? dx = 0 by Theorem 6(b), since f(x) = = vz? + a* is an odd function.

. From the graph, it appears that the area under the curve is about

1 + (alittle more than § - 1 - 0.7), or about 1.4. The exact area is given by

A= fo] V2z + 1dz. Let u = 2z + 1, so du = 2 dz. The limits change to

2.04+1=1and2-1+1=3,and
3

A= [} Vu(}du) = %{%MS”L —1(3v3-1)=v3-1~139%.

. From the graph, it appears that the area under the curve is almost

1
2

m - 2.6, or about 4. The exact area is given by

A = [T(2sinz — sin 2z)dr = —2[cos 2]y — [ sin2z dx

= —2(-1-1)-0=4

Note: {7 sin 2z dx = 0 since it is clear from the graph of y = sin 2z

/2

o sin 2z dz.

that f:/z sin2zdr = —
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52. First write the integral as a sum of two integrals:
I= [ (r+3Vi—atde=h 1= [*,avA-a?de+ [*,3vF— 2 dz. I = 0 by Theorem 6(b), since
f(z) = 24 — 2% is an odd function and we are integrating from x = —2 to x = 2. We interpret [, as three times

the area of a semicircle with radius 2, s0 I = 0+ 3 - £ (- 2°) = 6.

. Let u = z2. Then du = 2z dz and the limits are unchanged (0° = 0 and 1* = 1}, so
I= fol zv/T—zfde = } [} V1 - u? du. But this integral can be interpreted as the area of a quarter-circle with
radivs 1. Sol =1-4(r-1%) = 3.

. The volume of inhaled air in the lungs at time ¢ is

V() = f) flu)du = [ %sin(%u)du= 25 L gino(Z dv) [substitute v = 2w, dv = 3 dul

=2 [—cosv|™" = & [—cos(#t) + 1] = 2 [1 - cos(%t)] liters

. Number of calculators = x(4) — f2 5000 [1 — 100(t + 10}~

)
= 5000 [t + l(JO{t +10)71]; = 5000 [(4 + 120) — (2 + 1] ~ 4048

. Letu = 2z Then du = 2dz, so 7 f(2x)de = f flu)(}du) = L f(u)du

. Letw = «%. Then du = 2z dz, so jj zf(2?) dx = fog fu) (3 du)
. {(a) Let w = —z. Then du = —dx, so
Ji feeyde = [T flu)(=du) = [T flu)du= [} f(z)de

From the diagram. we see that the equality follows from the fact that we

are reflecting the graph of f, and the limits of integration, about the

e e e LR

y-axis.
{b) Letu = x + c¢. Then du = dzx, so
[ fat+e)de= 0T fluydu = 77 f(z)dx

From the diagram, we see that the equality follows from the fact that

we are translating the graph of f, and the limits of integration, by a :

distance ¢. y ate b+e X

. The area under the graph of y = sin /z from0to 4is 4, = f(f sin y/z dz. The area under the graph of

y=2zsinx from0to2is Az = fﬂ 2esinzrdr [u = 2%, du = 2zdz, Vi =z for0 < z < 2] "—“jglsin\/ﬂdu.

Since the integration variable is immaterial, 4; = Aa.

65. letu=1—z Thenx =1 —uand dr = —du, so

_fUI a1 - x)de = [ (1 - )" uP(—du) = 3wl —w)*du = Jo 21— )% du.
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6. Letw = = — . Then du = —dx. Whenz = %, u = O and when z = 0, u = 7. So
[T af(sine)dr=— [T (r —u)f{sin(r — u))du = [J(7 —u)f(sinu) du
= [ flsinu)du — [J uf(sinu)du=m [ flsinz}dz — [ «f(sinz)de
= 2f af(sinz)de =x [ f(sinz}dr = Jo ef(sinx)dz = § [ f(sinz)dz.
67. Let u = 5 — 32. Then du = —3dz and dz = —1 du, 50
/. d l(w:;du]:—%ln\u\—l-C':félnlf)—Sﬂ-!-C.
5—3x u
68. Let v = 22 + 1. Then du = 2z dx and zdx = 3 du, $0
2+ 1

1
ld
] z dm:/ﬂ’ Y inful+C = 4nfa? + 1|+ C = Lln(z? +1) +C [sincez® +1> 0]
i

or In{z® + DY2 + C=lnvzZ+1+C.

2
69. Let w = Inx. Then du = i—?,so/%da::fuzdu = %u?’—{—C: %(1113:)3 +C.

! 2 tan~' z)°
70. Letu = tan™"' 2. Then du = de . S0 tan mdz—/udu:y-’—+cz(_____)+c_
1+ 2 1+ g2 2 2

. Letu =14 ¢®. Thendu = e"da,so [ "1+ et dr = [ yudu= %uf’/z +C =21 + e 1 .
Or: Letu = 1+ e=. Thenu?® = 1 + e and 2udu = €* dz, so
ferVTretds = fu-2udu= §u3+C:§(1+e”)3/2+C’.

72. Let u = cost. Then du = —sintdtand sintdt = —du, so
fecstsintdt = e (—du) = —€* + C = —e** + C.

1. Letw = Ina. Thendu = @,sn dr_ _ d?u =lnju/+C=nlnz 4+ C.
T

zlnx

eI

M. Letu = " + 1. Then du — ¢® dz, so /
J e +1

d.r:[d—s=1n|u|+C’zln(eI+1)+C-

cos .
75. /cota:d;r: = / dx. Let w = sinxz. Then du = cosx dz, s0
sinzx

fcotzdr = [ L du=Injul+C =isinz|+ C.
76, Let w = cos . Then du = — sinz dx and sinx dz = —du, so

sinz —du " »
—  dr= = — tg C = — s . . -
/ 1+ cos?zx i / 1+ 42 an -+ tan” (cosz) + C

77. Letu = 1 + z2. Then du = 2z dz, s0

/1+$d;c—/;d$+/ z da::tan_]:rJr/—%—E-tan1$+}-1n|u|+C
J 14227 ) 1+a2 1+ 122 ] u 2

=tan™'z+ 3Injl +2°| + C=tan 'z + 3 In(1 +2%) + C [since 1 +z° > 0O},
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1
. T gdu . 1.1y
78. Letu:;132,Thendu:2;::(13",,50/1_1_32‘1d!x=/1+“2 = 5 tan uw+C = ;tan (:c)+C.

7. Letw = 1/z,s0du = —1/x* dr. Whenz = 1,4 = |;whenz = 2,u = 1. Thus,

2 1= 1/2
/ ° dm:f e (—du) = — [¢"])/? = —("? —e) =e— Ve
J1 1

T

80. Letw = —2°, sodu = —2rdz. Whenz = 0, u = 0; whenz = 1, w = —1. Thus,

Jlaede = [, et (- 3du) =~ ], =~ e — ) = K1 - 1/e)

8. Letu = Inx, sodu = Eif Whenz = e, v = 1: when z = e*: 4 = 4. Thus,
x

E'q 4 4
f de =/ u*/?du:ﬂu”ﬂ =2(2-1)=2
e TVInz 1 1

dx
V1—z2

82 Letw == sin ?a, sodu = .Whenz =0, u=0; whenz = 3, u = Z. Thus,

w2 /6 2
72

/1/2 Siﬂill' p /Tr/ﬁ d |:
—m———= I = UL = | —
1] \/1 —.]',‘2 40 2

rsing sin x t .
 ———— = 5 = 3 . where = —— . By Exercise 66,
1tcoslz 2 snlz @f(sinz) F®) g g

a

T xsinx T " "  sinz
———dr = flsinz)de = < inz)dr = —d
/u TF oo & [0 zf(sinz) dz 2f0 f(sinz)dx /0 ooz ™

lLetw = cosz. Thendu = —sinxdr. Whenz = 7, u = —1 and when 2 = 0,

E/" sinzx dp = du _Efl du
2 f, 1+tcos?z = T+u?2 2/ 1+u?

= g[tan_l 1— tanfl(—l)] = [%

b Review

CONCEPT CHECK

1. (a) 3°7_, f{x]) Az is an expression for a Riemann sum of a function f.

x; is a point in the ith subinterval [z;_1, ;] and Az is the length of the subintervals.
{b} See Figure ! in Section 5.2.

(¢} In Section 5.2, see Figure 3 and the paragraph beside it,

2. {(a) See Definition 5.2.2.
(b) See Figure 2 in Section 5.2.

(c) In Section 5.2, see Figure 4 and the paragraph above it.

3. See the Fundamental Theorem of Calculus after Example & in Section 5.3.
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. (a) See the Net Change Theorem after Example 5 in Section 5.4.

(b f t) dt represents the change in the amount of water in the reservoir between time ¢; and time £.

. () f 120 u(t) dt represents the change in position of the particle from ¢ = 60 to t = 120 seconds.

(b) j ]20 v(t}| dt represents the total distance traveled by the particle from £ = 60 to 120 seconds.

(c} f 120, t) dt represents the change in the velocity of the particle from ¢ = 60 to t = 120 seconds.

. (a) [ f{z)dz is the family of functions {F | F" = f}. Any two such functions differ by a constant.

(b) The connection is given by the Evaluation Theorem: f f(z)dz = [f flz) dw] if f is continuous.

. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this
theorem and the paragraph that follows it at the end of Section 5.3.

. See the Substitution Rule (5.5.4). This says that it is permissible to operate with the dz after an integral sign as if it

were a differential.

TRUE-FALSE QUIZ

. True by Property 2 of the Integral in Section 5.2,
, False. Trya—0.b=2, f(z) = g{z) = 1 as a counterexample.
. True by Property 3 of the Integral in Section 3.2.

. False. You can’t take a variable outside the integral sign. For example, using f(z) = 1 on [0, 1],

fol z f(z)de = fol rdr = [%a:z]; = 1 (a constant) while wfol ldz = z[z], = z -1 = z (a variable).

. False. For example, let f(x} = z°. Then fol Vzldr = fol zdr = 3, but 1/f01 xidz = \/g = ﬁ

. True by the Net Change Theorem.

. True by Comparison Property 7 of the Integral in Section 5.2.
. False. Forexample, leta = 0,0 =1, f(z) = 3, g(z) = z. f(z) > g(z} for each x in (0, 1), but
f{x)=0<1=g(z)forz € (0,1).
The integrand is an odd function that is continuous on [—1, 1], so the result follows from Theorem 5.5.6(b}.
[°(az? + bz +c) dz = [ (a2® +¢) dz + 12, brde

=2 [P(az® + ¢) dz [by 5.5.6(2)] +0 [by 55.6(b)}
The function f{z} = 1/z* is not bounded on the interval [—2, 1]. It has an infinite discontinuity at z == 0,
so it is not integrable on the interval. (If the integral were to exist, a positive value would be expected, by

Comparison Property 6 of Integrals.)

See the remarks and Figure 4 before Example | in Section 5.2, and notice that y = & — z% < 0 for
1<az<2

. False. For example, the function y = |z is continuous on R, but has no derivative at z = 0.

. True by FTC1.
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EXERCISES

— lim 3 f(m:) Az

n—oo )
T

lim E

oo £

i=1

lim

6
Le = Z f(a:i,l) Ar [Az = %0 = 1]
i=1

= f(xo) - 1+ flz1) -1+ flz2) - 1
tf(ma) - 1+ flaa) - 1+ flzs) - 1
~2+35+4+24+(-1)+(-25)=8
The Riemann sum represents the sum of the areas of the four
rectangles above the z-uxis minus the sum of the areas of the two

rectangles below the x-axis.

Ms = Zb: f@) Az [Az =250 =1]
i-1

= f(@) -1+ f(@2)- 1+ f(T3) - 1
FHED -1+ f(Te) 1+ f(Te)- L
= f(0.5) + f(1.B) + £(2.5) + f(3.5) + f(4.5) + f(5.5)
~3+39+34+03+(-2)4+(-29)=57
The Riemann sum represents the sum of the areas of the four
rectangles above the z-axis minus the sum of the areas of the two

rectangles below the z-axis.

flz) =a* —xand Az = 220 =05 =
Ry =05F(0.5) + 0.5£(1) + 0.55(1.5) + 0.5£(2)
=0.5(-025+0+0.754+2)=1.25

The Riemann sum represents the sum of the areas of the two
rectangles above the z-axis minus the area of the rectangle below the

a-axis. (The second rectangle vanishes.)

[Az = 2/nand x; = 2i/n]

)(E)-mi[a5e 23]

i=1 i=1

n—oo | Tt3

-i_n+1 2n+1

[ 8 ‘n(n+1)(2n+1)_i_n(n+l)}

n? 2

lim
n—so | 3 11

? =307, =

. (4 1
lim 3 (] + E)(

2.

n+1
n n

1
2+_)A2(1+1H—§.1.2_2.1_%
n n ‘
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J2(2? ~ 2) dz = A1 — As, where A and A are the areas shown in

the diagram.

¥

0 ' ] 0
I; can be interpreted as the area of the triangle shown in the figure and I can be interpreted as the area of the
quarter-circle. Area = $(1)(1) + }l(w){l)2 = % + 7

4 On|0,7], lim zn: sina; Az = [ sinzdz = [—cosxly = - (1) — {-1) =

n—>

5. fof(x d:ﬂ-fo de + [} flz)de = 10= 7+f4 z)dr = f4 dr =10-7=3

. h—1 : ;
6. (a) jlﬁ (w+22°) dz = lim E flae:) Az {Aw =2 = 2, =1+ il

T n T

T 4 4 5 4
lunz (1+—a)+2(1+i)]‘—
n—o0 e n T T

4 3
lm 1305n* + 31265 + 2080n° 256 4 — 5990

n—od n3 n

(b) [7 (21 22%) dr = [a? + 22°] = (2 + 12828) — (4 + 1) =12 4 5208 = 5220

7. First note that either @ or b must be the graph of [7 f(t) dt, since fo t)dt = 0, and ¢(0) # 0. Now notice that
b > 0 when ¢ is increasing, and that ¢ > () when a is increasing. It follows that ¢ is the graph of f(x). b is the graph
of f'(z), and a is the graph of {7 f(t) dt.

v f 2
B. (a) By FTC2, we have]

T T T/2
(sln — C0S —) dr = [5111 — COY _]
0 dx

2 2 3

/2 ,
(h i / sin z cos z dx = 0, since the definite integral is a constant.
dr J, 2 3

d [t d vt d [* t
(C)Zi_;:/; sin 5 co 3dt d.L‘( /ﬂ/Qsmacos dr) dxl”/25111§Cos§dt=—sm%msg,

by FTCI.
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9.

10.

11.
12.

1 -
e (Va+ D du= [y (u 1”+2u1/“+1)duw[3 3/2+§u5/4+uh=(§+§+1)—0=ﬁ

5
dt . .
. f (IR does not exist because the function f(t) =
1
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1.12(85634-3(132)413::[8-15 3. ~3i:[‘2_7;4+g;3]?:(2-24+23)——(2+1)=4Uu3:37
T @

] (0! — 8z +7) de = [2a° —4a® + Ta|, = (LT° ~47° +77) = 0= $T° - 47 47T

0

_];Jl(lfasg)dar::[m—l—lozcw]o (1_76)_0:%
Letw =1 —z, sodu = —dr and dz = —du. Whenz =0, u = 1; when z = 1, w = 0. Thus,
Ju 1—a)dr = U u®{—du) = jul wdu =35 [um] (lw()):l.

0 10

/ \/E duA/‘g(ul/22u)du: {2“@1/2—uﬂ}g:(ﬁfSI)A(Q—l):—'{G

1

49

.Letw =¢° + 1, s0du = 2ydy and ydy = %du Wheny =0, u = 1; wheny = 1, u = 2. Thus,

fo yly® +1)° d?j—fl ( du):%[% 2(64_1):%:%'

CLetw = 1 +4°. sodu = 3y* dy and y* dy = %du. When y = 0, u = 1; wheny = 2, u = 9. Thus,

019
BV dy = [P (G du) = §[36?] = d071-1) = §

1

1
———— has an infinite discontinuity at £ = 4;
P a7 ’

that is, f is discontinuous on the interval [1, 5].

CLetu = 37l sodu = 3rdi. Whent =0, v = 1; whent = 1, u = 3. Thus,

! 8 1 3= 1 2
[J sin(37rt)dt:/0 bmu(——du) zg[—cosu}o =--3—7r-(7171):§.

Cletu = v*, sodu = 3v° dv. Whenv = 0, uw = 0; when v = 1, u = 1. Thus,

jnl v? cos(v?) dv = ]01 cosu {5 du) = [sin u}; = 4(sinl — 0) = §sinl.

sinx

1 T
. ] sinz_ 0 by Theorem 5.5.6¢b}, since f(x) = is an odd function.
1

14 x2 14 22

.Letwu = 2% + 4x. Then du = (2z + 4)dx = 2{x + 2) dz. so

x4+ 2 _ .
,———————j2+4:r'd$: u 1/2(%{1‘&):%2u1/2+C:\/E+C:1IT2+4SB+C

. Letu = 3. Thendu = 3dt.so [csc?3tdt = [esc® u (3 du) = H{—cotu) + C = —cot 3t + C.
. Let u = sin 7. Thendu:ﬂ'coswtdt,sofsinﬁt coswtdtzfu(%du) ; 2u +C— (51n7rt) +C.

. Let 4w = cosx. Then du = —sinz dx, s0

[ sinz cos(cos z) dx = — [cosudu = —sinu+ C = —sin{cosx) + C.

. Let u = 28. Then du = 2d#¥, so

]’(”/3 sec 20tan 20 46 = ‘['0”/4 secutanu (3 du) = 3[sec u}g“ = 1(sec T — secO)

—3(vE-1) =} V2~
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26. Letw = 1 + tant, so du = sec’ tdt. Whent = 0, w = 1; when = I-u =2 Thus,
fO”M(I +tant)sec? tdt = [Puddu= [} =12 -1 =1016-1)=12
27. Since 2% — 4 < 0for 0 <z < 2and 2% — 4 > 0for 2 < z < 3, we have |2° — 4| =

0<z<2and|z® -4 =2® —4for2 <z < 3. Thus,

/ [:c —74Ld$—/ —a’ d$+/(:r —-4)d [4m—§]:+[—;—4£2

=(8-8) - 0+(9-12)-(§-8) =% -3+ ¥ =¥ 3=
28, Since /7 — 1 < Ofor0 <z < land vz —1>0forl <z <4, wehave|yz—-1=—-(Vz-1)=1-x
for0 <z < land|y/z -1 =z —1forl <z < 4. Thus,
iR Al de = (1= VE) e+ f (VF - e = [z 3672 4+ [20972 ~ ]
SCEHEUEICEE R CEDET RS SRS EUSEE
In Exercises 2% and 30, let f(x) denote the integrand and F'(x) its antiderivative (with C' = 0},

29 1etn = 14 sinz. Then du = coszdzr, so

cos x dx .
——— = [uflfzdu =m0 =2V1+sinz+C.
V1+sine

30. Letw = z* + 1. Thenz® = u — land zdz = % du, so

fu—’%da:: (uﬂl) (3du) = %/(ul/g—ufl/z) du

72u1/2) +C

- (z* + 1)1/2 +C
+1)=3]+C

=1Ve2+1(2" -2)+C

31. From the graph, it appears that the area under the curve y = x /z

between z = 0 and £ = 4 is somewhat less than half the area of an

8 x 4 rectangle, so perhaps about 13 or 14. To find the exact value,

we evaluate

4
ijvrdr* H e e = Exwﬂo=§ufmgf%—fus
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% x sin® z dz is equal to 0.

32. From the graph, it seems as though fozfr cos

To evaluate the integral, we write the integral as

I:fo%cos2m(1—c052$) sinzdzandletw =cosz =

du = —sinxz dz. Thus, [ = 111 w?(1— u?)(—du) =

. By FICL, F{z) = [[VI+tidt = F'{z)=+v1+z%
 Fz) = [7 tan(s )ds = F'(z)=tan(z?)

3
= tdt R

. glz) = Y e Lety = g(u}and u = z°.

p dy _ dydu U 2, 3z°
Then ¢/ («) = 52 _ Y 32 322 = _
eng'(x) de  dudr /1 4+l ¥ V1i+ 2 v V14 29

B du _ . . dg _ Ei_gdu 3
. Let w = cos . Then o = —sinz. Also, dr  dudz’ *0

LA D g \3/1At2dt-@:\S/I—uz(—sin:z:)
dx du J, dx
= /1—cos?z (—sinz) = —sinx Vsin®z = —(sinz)>®

. ® 1
.y:/ cosBCm:/ c059d6+[ cosﬂdew/ ('osf)de f COSBdG N
vz ? Ji 8 N3 g . 8

cosz €os/T 1  2cosx—cosy/T
T VE 2T 2

Ly =[S sin(th)dt = [ sin(t?)dt + f7 7 sin

3m+1 sin(t) dt — [Fsin(t) dt =

0
_d_
T

y' = sin|( 3z +1)* } 4 (3:c+ 1) — sin[(2z)*] 3 (2z) —3%1n[(‘3a:+1) ] —QSin[(Qm)ﬂ

Ifl1<z<3thenvIZ+3<VEZ13<vV3TF3 = 2<V22+3<2v3,50
23— 1) < [PV77  3dz <23(3 — 1); thatis. 4 < [ V2T + 3dx < 4V3.

. 1 1 1 5 ,
.It3$x§5,then4§m+l§6&md6 < S}l,soa(5—3)§/3 %degi(fi-&;thalls,

r+1
1 51 1
~ < dr < =,
3_,[3 z+17°=3

2

0<z<] = 0<cosz <1l = z’cosr<z® =
1
3

fy atcoszdr < [y ade = $[z°], = 1 [Property 7).

0 3

sinz . .
. On the interval [ x is increasing and sin x is decreasing, so is decreasing. Therefore, the largest value
€T

)
sinx i 4 2/2
qlzy on [%,g} i sm;}ri = {r_/il = 2W\/§.By Property 8 with A = Qﬂ—ﬁ we get

2\/§7r

of

S
T
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. Let f(z) = +/1 + 23 on [0, 1]. The Midpoint Rule with n = 5 gives
SV a8 de ~ H{F(0.3) + £(0.3) + F{0.5) + £(0.7) + £(0.9)]
oy {\/TJF (017 + /T4 (03)° -+ T+ (09)F] ~ 1110

. (a) displacement = [ (t? — t) dt = [$1® — §¢%], 5 _ 25 = 155 = 29.16 meters

(b) distance traveled = [ |£2 — t|dt = [7 (t(t — 1) dt = [ (t - *) dt + [ (¢ —t) dt
1 : 5
= [3t" = 5%, + [5¢" - ot])
=1 )= (3 — 2) = 3 = 29.5 meters
. Note that r{¢) = b'(t), where b(¢} = the number of barrels of oil consumed up to time ¢. So, by the Net Change
Theorem, fus 7(t) dt = b(3) — b(0) represents the number of barrels of oil consumed from Jan. 1, 2000, through

Jan. 1, 2003.

. Distance covered = f;'o v(t)dt = My = 20=2[v(0.5) + v(1.5) + v(2.5) +v(3.5) + v(4.5)]
= 1(4.67 + 8.86 4 10.22 + 10.67 + 10.81) = 45.23 m

. We use the Midpoint Rule with n = 6 and At = 245_ 9 — 4. The increase in the bee population was

J2r(t) dt = Me = 4[r(2) + 7{6) + r(10) + r(14) + r(18) + r(22)]

7= 4[50 + 1000 + 7000 + 8550 + 1350 + 150]

= 4(18,100) = 72,400
. Ay = 1bh = 1(2)(2) = 2, Ay = §bh = L(1)(1) = 5, and since y=-x—1"
Y= —v1 — 22 for 0 € = < 1 represents a quarter-circle with radius 1, X

Az = tnr? = ix(1)* = 3. S0

flaf@)de=A - A2 - Ag=2-4-F=1(6—m)

. By the Fundamental Theorem of Calculus, we know that F(z) = [ t* sin(t*) dt is an antiderivative of
f(z) = 2* sin(:z:2). This integral cannot be expressed in any simpler form. Since [: f dt = 0 for any a, we can

take @ = 1, and then F(1) = 0, as required. So F(z) = [ t*sin(¢?) dt is the desired function.

. (a) C is increasing on those intervals where C” is positive. By the Fundamental Theorem of Calculus,

C'(x) = (% [fo cos(5t?)dt] = cos(Fx®). This is positive when Z2? is in the interval

((2n — )=, (2n + £)m). n any integer. This implies that (2n — )7 < §2° < (2n+ 3)7 <
0< |zl < lorvdn—1 < |&| < vAn + 1, n any positive integer. So C is increasing on the intervals [—1, 1],
VAL VR VAL VA3 [3 =] ...

(b) C is concave upward on those intervals where C”' > 0. We differentiate C” to find C": C’(z) = cos(32°)

= C"(z) = —sin(Z2?)(Z - 2z) = —wasin(Fe?). For z > 0, this is positive where
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(2n — 1) < Z2* < 2nm, n any positive integer > 2(2n — 1) < z < 2/n, nany positive integer.
Since there is a factor of —x in C”', the intervals of upward concavity for z < 0 are (—\/2(271 +1), -
n any nonnegative integer. That is, C is concave upward on (—\/ﬁ, 0). (\/5, 2), (—\/t_i, —-2), (\/5, 2\/2-) .

{c) . 0.8

PN
N G

0 0.6

From the graphs, we can determine that J” cos(5¢%) dt = 0.7 atx ~ 0.76 and & ~ 1.22.

The graphs of S(x) and C(z) have similar shapes, except that §7s

—
flattens out near the origin, while C’s does not. Note that for

2 > 0, C is increasing where 5 is concave up, and C is decreasing

where S is concave down. Similarly, S is increasing where C' is

concave down, and S is decreasing where C' is concave up. For

x < {), these relationships are reversed; that is, C is increasing
where S is concave down, and § is increasing where C' is concave
up. See Example 5.3.3 and Exercise 5.3.49 for a discussion

of §(z).

f(z)
1+z2

© )

T2 dt = f(z)=wxcosx +sinx+

51. / ft)dt = zsinx + (by differentiation) =
JO

.’L‘2

1+ 32

1
1+ z2

):xcosm+sinx = f(:r)(

) =zcosr +sinr =

fa)(1-

1 2
f(z) = Ij (z cos + sinx)

B2. From the given equation, |~ f(t) dt = sinx — . Differentiating both sides using FTC1 gives f(z) = cosz. We

put z = a into the first equation to get 0 = sina — %, so @ = % satisfies the given equation.

53. Letu = f(x) and du = f'(z) dz. So2 [¥ f(z)f' () dz =2 [[{) wau = [w2] 1)) = [f(B)] — [£(

5. Let F(z) = [2 © /1585 dt. Then F'(2) — Jim E-Q—*i;i(g) }1113:] L T g and
Fl(z) = m,som%f” VI+t3dt=F(2)=1+2 =v0=3,

§5. Letu = 1 — . Then du = —dz, so [} f(1 —z)de = [} f(u)(—du) = f, f(u)du= [} f(zx)dz

) ] S - [ L

The limit is based on Riemnann sums using right endpoints and subintervals of equal length.
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1. Differentiating both sides of the equation z sinwz = [~ f(t}dt (using FTC| and the Chain Rule for the right side)
gives sin 7z + mx coswr = 2xf(2°). Letting z = 2 so that f(z?) = f(4), we obtain
sin 27 + 2w eos 2m = Af(4),50 f(4) =20+ 2x-1) = 3.

2 (a) Let f(z) = az® + bx + . f(0) = f{m) = 0, so we know that f(0) =0 = ¢=0, and f(m)=0 <«
arl+br =0 <« b= —an So f(z) = ax® — arz. Now we want the maximum value of f{z) on [0, 7] to

be the same as that of sin z, that is, 1. So we find the value of x at which f has a maximum by differentiating

and setting f'(z) =0 < 20z —ar =0 & :c:%.Nowf(%):a(-’gl)Q_mr(%)-—-wivrQu.Weset

this equal to 1, in order to find a: fiwga =1 & a= #w% = b=—an= i. Thus, the desired

function is f(x) = - Fz* + 4z,

Alternate solution (without calculus): Use f(x} = ax(x — ).

{b) Once again. g(0) = g{m) =0 = g(z)= ax’®

— amx. We want g'(0) = [4£ (sinz)], = cos0 = 1. We
calculated g/ (z) in part (1), sowe set g'(0) = 1 & 2a(0) —am=1 & a=—3. Wealsowant

¢'(m) = [L (sinz)] = cosm = —1,s0 we check that ¢'(7) = —1 witha = —4:

g'(m) = 2(—L)7 — (=1)7 = 1. Thus, the desired function is g(z) = — 22* + =.
(¢) Again, h{x) = ax? ~ amz. Now we want the area under the curves of h(z) and sin z to be the same; that is,
Jo h{z)dx = [ sinxdr = [—cosalg = (1) — (1) = 2. Weintegrate & between 0 und 7 and set the result
31 ~

equal to 2: [ (az” — amx) dr = [’ — jamz®]] = lan® ~lan®= —lar®* =2 & a=-12/7".

Thus, the desired function is h(x) =

{d)

3. Forl <2< 2 wehavez® < 2% = 16,501 + 2* < 17 and L > l.Thus.
+ x4 17

"2 . .2
1 1 1
x> —dr = —. 1+ 4t <z <280 —r < — i
/] e x_/l 170!1 7 Alsol +z° > =z forl_:rwlsol+x4<$4dnd

-3 24

2 2 -372
1 _ 1 1 7
/1 12 da:<‘/1 e = [L]l——+§=ﬁ.Thus,wehavetheestimate

1 LS| 7
— < dr < —.
17—f1 Trat 52

4. By FTC2, [| f'(w)dw = f(1) - f0)=1-0=1.
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B. Such a function cannot exist. f () > 3 for all :x means that f is differentiable (and hence continuous) for atl x. So
by FTC2, ]14 Flz)de = f(4) ~ f(1) = 7 — (—1) = 8. However, if f'(z) > 3 for all z, then
£ fi(z)dz = 3 (4 — 1) = 9 by Comparison Property 8 in Section 5.2.

Another solution: By the Mean Value Theorem, there exists a number ¢ € (1,4) such that

fle)= f(431 : {(1) = 775}71) = % = 8=3f"(c). But f'{x) >3 = 3f'(c) > 9. sosuch afunction

cannot exist.
2

2er — 2 .
, it appears

. (@) From the graph of f(z) = =

that the areas are equal; that is, the area enclosed

ts independent of c.

(b) We first find the r-intercepts of the curve, to determine the limits of integration: ¥y = () &  2cr — ¢ =0

+» = Qorx = 2c. Now we integrate the function between these limits to find the enclosed area:

2¢ 2

20z — 1 : 1 : 1 :

A= / (TC—JT dr = = [ez® — 127 ?)C =3 [e(2¢)® — 2(20)°] = > [4¢® ~ £¢*] = &, a constant.
0 : :

{c) 5q The vertices of the family of parabolas seem to

determine a branch of a hyperbola.

0 = 6

(d) For a particular ¢, the vertex is the point where the maximum occurs. We have seen that the x-intercepts are ()

2c(c) — ¢*

. . . 2e 1 . .
and 2¢, so by symmetry, the maximum occurs at = ¢, and its value is 3 = —. So we are interested in
c c

the curve consisting of all points of the form (c, —) , ¢ > 0. This is the part of the hyperbola y = 1/x lying in
c

the first quadrant.

rg(x) 1

0 V91488

have f/(2) = ——meg/(3) = —m
L+ [g(z)) 1+ [g(=)]”

. flz) = dt, where g{z) = [77°°

5% [1 +sin(¢*)] di. Using FTC1 and the Chain Rule (twice) we

[1+ sin(cos® )] (- sinz). Now

9(3) = fy [L+sin(t*)]dt = 0,50 f'(§) = (1 +sin0)(-1) =1-1- (1) = L.

I f(x) = [ 2 sin(£?) dt = 2® [ sin(¢?) dt, then f'(z) = 2® sin(e®) + 2& [ sin(t?) dt, by the Product Rule
and FTC1.
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9. flz) =24+ =(-z+2(z+1)=0 & z=20rzx=-1 f(x)=0forze [—1,2] and f(z) <0
everywhere else. The integral f: (2 +z— :02) dz has a maximum on the interval where the integrand is positive,
which is [=1,2]. Soa = —1, b = 2. (Any larger interval gives a smaller integral since f(z) < 0outside [-1,2].
Any smaller interval also gives a smaller integral since f(x) > 0in [~1,2].)

. This sum can be interpreted as a Riemann sum, with the right endpoints of the subintervals as

sample points and with @ = 0, b = 10,000, and f (x) = /. So we approximate

10.000

r - ) 10,000
S Vi lim 10000 $h 100000 o (0000 7y g = [gzm} = (1,000,000} ~ 666,667.
i=1 0

=1 n—oo

Alternate method: We can use graphical methods as tollows: Y _
Areaof each ¥ = VX

From the figure we see that || | /zdz < Vi < 7 Vede, so rectangle is \/i

10,000

fum‘ooo Jrdr < 3 Vi < ‘]'11”'001 VT dz. Since
=1

[ Vzdr = %m”z + C, we get j;)m‘ooo VT dx = 666,666.6 and

flm,um JTdz = % [(10,001)3/2 - 1] ~ 666,766.

10,000
Hence, 666,666.6 < > \/'Z < 666,766. We can estimate the sum by averaging these bounds:

=1

wa00 - _
~ wﬁ@*ﬁ@ ~~ 666,716, The actual vaiue is about 666,716.46.
=1

. (a) We can split the integral [ [x] dz into the sum 3 Uil [=] dm}. But on each of the intervals [¢ — 1,3) of
i=1

integration, [z] is a constant function, namely 4 — 1. So the 4th integral in the sum is equal to

i3

. C s o . _ nl (n—1)n
(i — 1)[i — (i — 1)] = (i — 1). So the original integral isequalto 3 (i — 1) = ) i = —F—"—.
i=1

2

i=1
(b) We can write [ [a] d = fob [z] dz — [ [x] da.
Now fob [z] de = DM |] da + fﬁi]l [2] de. The first of these integrals is equal to 3 {[b] — 1) [4], by part (a),
and since [z] = [[b]] on {[8] , b]. the second integral is just [5] (b — [8]). So

I [xlde = 3([6) — 1) [8] + [6] (6 — [B]) = 2 [6] (2b — [6] — 1) and similarly

Jo [z} dz = 4 [o] (2a — [a] — 1). Therefore, [P lzldz = L [b] (26— [b] — 1) — 2 [e] (2a ~ [a] — 1).

d in sin g . .
12 By FTCI, = [ ([ VI uf du)dt = ;"% VI +u” du. Again using FTCI.

d2 T sint d sin @«
— ( 1+u4du)dt=— 1+utdu=+1+sin* zcosz.
1

dr? f, dr
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13. Differentiating the equation [ f{t)dt = [f(z)]* using FTCI gives f(x} = 2f(z)f'(z) =
F@)2f (z) —1] = 0,50 flx) =0or f'(z) = L. f(z) =1 = f(z) = jz+C. Tofind C we substitute into
the original equation to get [7 (3¢ +C)dt = (22+C)* & 1g? 4 Cx + C2. It follows that

C = 0,50 f(x) = Lz. Therefore, f(z) = 0or f(z) = 3z

Let z be the distance between the center of the disk and the surface of the liquid.

/ The wetted circular region has area 7r? — mz” while the unexposed wetted region
f {(shaded in the diagram) has area 2 f; V1% — t2 dt, so the exposed wetted region

has area A(x) = mr® — 7x® —2 [T /r? = 12dt. 0 < x < . By FICI, we have

Alz) = —2rz + 2/r? - 22

Now A() >0 = —21z4+2Vr2—22>0 = Vr-—22>7mr = "—2>7r%2" =

2
. r
Pttt = e rtel) = < —p—— = <

.
P VTl

Since A'(x) > 0for0 < z < z* and A'(zx) < 0 for z*< & < r, we have an absolute maximum when z = z*.

, and we’ll call this value z*.

. Note that % ([m [/Uu f(#) dt} du) = fo 4 Sf(#) dt by FTC1, while

% [/Ozf(u)(:r—u)du} = % [:E/:f(u)duJ - % [/Dw f(u)udu}

= [y flu)du+zf(z) - f(x)x = [ fu)du
Hence, [ f(u)(z — u)du = [ [f;’ f(t)dt] du + C. Setting « = 0 gives C' = 0.

We restrict our attention to the triangle shown. A point in this

triangle is closer to the side shown than to any other side, so if

we find the area of the region R consisting of all peints in the
triangle that are closer to the center than to that side, we can
multiply this area by 4 to find the total area. We find the

equation of the set of points which are equidistant from the

center and the side: the distance of the point (i, y) from the

side is 1 — y, and its distance from the center is 1/ x? + y2.
So the distances are equal if /22 +y2 =1—y & 2 +¢*=1-2y+y* & y=3(1~«"). Notethat

the area we are interested in is equa! (o the area of a triangle plus a crescent-shaped area. To find these areas, we
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have to find the y-coordinate & of the horizontal line separating them. From the diagram, 1 — h=Vv2h &

h = 1—+1—\/§ = /2 — 1. We calculate the areas in terms of h, and substitute afterward.
The area of the triangle is 3 (2R)(h) = A2, and the area of the crescent-shaped section is
(31 -2~ hldz = 2[;(% ~h— 32 de=2[(3 - h)x— éazﬂg = h — 2h? — 14°. So the area of

the whole region is

lim

linr L " + n +
=
n—oc 1 n+1 n—+ 2
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