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6 (0 APPLICATIONS OF INTEGRATION

6.1 Areas between Curves

1A= [mrél(yj._yg)dx;//l (52 - 2*) — 2] afx—/04(4a:—m2)d:c

Ja=0 0
= (27— gy = (32 - ) - O = F

2. A= [8 20— (® — 42)] dr = f) (6c — o) do = [32® — $2®] = 108 =72 =36

3 A f./:l(m -IL)dy:fUl Vi - (" = 1)] dy_fol(yw?y?H) dy

e 1
=[5 -3y - G-ien -0 =4

3
/ (2y — ") = (v v4y)}dy=/ (—2y2+6y)d'y
0

= [-24° + 3% = (18 +27) —0=0
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B0 L GHAPTERS APFLICATIONG OF INTEGRATION

s gtz =0 & z{z-1)=0 & w=01

1. The curves intersect when ¢ = =

1
A:/ (a:—
Jo

$2) dx >
3",

9. First find the points of intersection: vz + 3 = z ;— 3 = (Vz+3 )2 = (.r +3

= o433 —{(e+3D* =0 = (m+3)[4—($+3)]_:0 = (¢4+3){(l—-2)=0 = z=-3o0rl So

2
) = r+3=(x+3)

1

e [ (232 5]

= 9r-2"=0 = 20 -2)=0 = =10

'[09[(1%—\/5)—(1—%%
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SECTIONG6.1 AREASBETWEEN CURVES O 421

1
3

{3/5 = = = 2 _r=0 = .1,'(11:‘2—1):0 = SL‘(CE""I)(;E_:L):U =

—1,0,0orl. 50
1
[ ($1/3 - x) dr [by symmetry]
o

13.12—-22=22 6 & 2:°=18 & 2=0 & r’=+3.s0

3 3
A= / (12 —2%) — (2° — 6)] dx = 2] (18 — 22°) dzr  [by symmetry]
0

L
-3

=2 [18z — 22%]) = 2[(54 — 18) — 0] = 2(36) = 72

3112 —x%) — (02~ 6)

|

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
422 0O CHAPTER6 APPLICATIONS OF INTEGRATION

W22 2=3 = 2°-42=0 = 20’ -4)=0 = z(z+2)(z-2)=0 = z=0,-20r2

By symmetry,

2
A:/ |3$—(J:3—m)ld:c:2/
-3 Jo

=2(8—4) =8

2 2

1]

[3z — (333 —x)|de= 2/02 {4z —:rs) dr = 2[222 - ‘—iscﬂ

¥

For4 <x<9

6. A= [ (8- —2?lde =2 [} |8 —22%|dz =2 [ (8 — 22%) dr + 2 [ (222 — 8) dx
=28z — 2¢%7 + 2[24% - 8a]3 = 2[(16 - }f) — 0] + 2[(18 — 24) — (1 — 16)]

—32- 82490 % =52 &
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122 =1-y & +y-1=0 & 2y-L+1)=0 « y=1or—1,s0x =4 or2and

' 311/2

A=y -2dy = [ (1 -y -2 dy= [y - 39" - 3]
D-d-(H-h B-E=}

Gt- - d+d =4

AN

Bdr+z=12 & (¢+6)(z-2)=0 & z=-6orz=2s0y=—bory=2and

2 . . ]
A= | [(-3°+3) —yldy=|"1 Pl gyt = (-2-246)- (18- 18 18) =222 =&

]

¥

T
L)
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20. A= 2‘/: [sin(%g) —LE] de = 2[~% cos(%

21. Notice that cos x = sin2z = 2sinzcosz <
2sinrcosr —cosr =0 < cosx{(2sinz-1)=0 &

2sinz =lorcosz =0 & x=Forj.

A= fgr/ﬁ (cosz —sin2z)dz + f:/b.? (sin2r — cosx) dx

/6 + [—%(:0521:—.=sin:1:]:rr/2

— [sin:l? + % cos 232]3 /6

2. sinx = sin 2x = 2sinz cosx when sinz = (0 and when cos z = %;

that is, when =z = O or .

A= [T (sin2z — sinz) dz + f:/gz {sinx — sin 2z} dx

/3
0

—Lcos2r + cos + 1 cos 2z — cosz] ™2
2 /3

2

23. From the graph, we see that the curves intersect at 2 = 0, = 7, and

n w/2
A:/ cosx—(l—E—m)d;r;:2/ {(:os:r;—(
Ja m 0

=2[sinz —z + %wﬂgﬂ = 2[(1 -

¥

y=cosx
f

y=sin 2x

y=sinx

= m. By symmetry,

wi2 .
]d:c: / (cosm:*l—r-g—’E
Jo T
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SECTION 6.1 AREAS BETWEEN CURVES 1 421
M. Forz>0z=2"-2 = 0=a’-2-2 = 0=(z-2)(z+1) = =z =2 Bysymmetry,
I lel = (2 =2 de=2 f] [z — (2* - 2)] dz = 2 [ (2 — 2® + 2)de = 2[32® — 12® 4 22

=2(2-544) =20

3

25. Graph the thice functions y — 2,y — - 22, and y = —22 + 3; then determine the points of intersection: (0, 0},
(1,1), and {2, —1).

A= o~ (=32)] de+ [ [(3-22) = (- 32)]de = [} fade + [7 (3~ J) dz

2. A= fol [sin e — (a:z — $)} dr + jlz {(:ﬂ2 — .L‘) — sinmc] dr
= [~Lcosmz s + %mz}; + [32° — 22% + L cos T}

=4+ (hHG2ed) -G -1-d)

2
1

it (x*— x)~ sin 7x

y=sin 1y
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26 C© CHAPTERG APPLICATIONS OF INTEGRATICN

27. An equation of the line through (0,0) and (2, 1) is y = 3 ; through (0, 0)
and (—=1,6) is y = —6z; through (2,1) and (—1,6) isy = —2z + 3.

A= L' (et )~ (o) de+ f7 [(Fe e B) — fel do
=10 (Be+ R)dot [ (- Be+ ) de

:“ ]0 :L'+1)da:+ ]0 (——;B+1)d

=3 [jo" +a]l, + %]

—F- (-0l + D0 =5 4

A [2[(~te4) — (Fot5))det [} [(—de0) -
= 02 f;’;xdl +j2 (——$+9) dx

= [$a®]g + [-352" +92],

(Z—0)+ (- L +45) — (- 18) = ¥

30. The curves intersect when vz + 2 =2 = z+2=2° = 2 —2-2=0 =
(r—2)(z+1)=0 = z=-1or2 [—1isextraneous]

=l[:‘\/;c+2w;c‘ dx
—\/ac+2)da:

. 4
e - §(e+ 2]

o+ (8—2(6\/6))—
4G
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31, Let f(z) = cosz(ff) - siDQ(%) and Az = ——.

The shaded area is given by

A= [ f(z)dr =~ M,
SEHOREHOEFORSIN]
= 0.6407

32, The curves intersect when ¥/16 —z? =1 =
B-—zd=z" = 22°=16 = FF=8 = z=2
Let f(z) = ¥/16 — x® — z and Az = 22

The shaded area is given by

A= [ f(x)dr = Ma
= 2[F(3)+ F() + F(B) + £(D)]
~ 2.5144

From the graph, we see that the curves intersect at z = =+ =~ +1.02, with

2cosz > x° on (—a, a). So the area of the region bounded by the

curves is

A= [? (2cosz — 2*)dz =2 [ (2cosz — 2°) d

a
a

—=2[2sinz — %$3]g rz 2.70

From the graph, we see that the curves intersect at x = 0 and at

r = a = 1.17, with 3z — 2% > 2* on (0, a). So the area of the region

bounded by the curves is

A= [ [(3z—2) — '] dz

= 1.15

From the graph, we see that the curves intersect at x = a = —0.72 and at

¢ = b= 1.22 with/z + 1 > 27 on (e, b). So the area between the

curves is

A= (Ve +1-2)dz= {%(x+ 1%/% - %x3]b

o9

== 1.38
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36. From the graph, we see that the curves intersect at z = a =~ —0.83 and

_ x = b2 1.22, with zsin{z®) > z* ~ 1 on (a, ). So the area of the
y = xsin(x?)

region bounded by the curves is

A= fab [zsin(z®) — (2* = 1) dx

= [~L cos(a?) — 12® + x]" ~ 1.78

37. As the figure illustrates, the curves y = # and y = «° — 6> + 4z enclose a four-part region symmetric about the
origin (since z° — 62> + 4z and x are odd functions of z). The curves intersect at values of z where

x® — 62 + 4z = x; that is, where z(z* — 62% + 3) = 0. That happens at 2 = 0 and where

xQ:—G—i——————————— “gﬁﬂ:31\/(_5;thatis,ata::—\/3+\/_‘,—\/3—\/(_J',0, V'3 — 6, and V3 + V6.

The exact area is
/\/ 3++/6

QO

9 J(S 3 - e+ 5 .3
x’ —6x —+—4m)—:c!d:r:A2 Jz — 6x +3$‘d:c
0

3-8 V3486
:2/ ($5 *613+3$) d$+2/ (A:r5+ﬁ:r:3 4393) dx
0 v 3-8

A5 126 -9

38. The inequality = > 2y describes the region that lies on, or to the right of,
the parabola z = 2y°. The inequality x < 1 — |y| describes the region

l—y ify>0

1ty ify<0

that lies on, or to the left of, the curve z = 1 — |y| = {

So the given region is the shaded region that lies between the curves.

The graphs of 7 = 1 — yand z = 2y intersect when 1 —yy = 2% <
2 ty-1=0 & (Qy-L+1)=0 = y=1Fory>0.

By symmetry,

1/2 '
A—Q/ [(1-y) —2°] dy = 2[- 2
0
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39, 1 second = 35 hour, s0 10's = zi5 h. With the given data, we can take n = 5 to use the Midpoint Rule.

_1/3606-0 _ 1
At = == = Taan- 30

. . 1,360 -1/360 1/360
distance xeny — distance chris = fu P g dt — 0/ ve dt — 0/ (v —vo)dt

m Ms = 2= [(vk —ve)(1) + {vk —ve)(3) + (v — ve)(5)

o0
+ (vk — ve)(7) + (vkx — ve )(9)]

= 15 [(22 — 20) 4 (52 — 46) + (71 — 62) + (86 — 75) + (98 — 86)]

:1_81[)_0(2+5+g+11+12):1—;66(4[})=%mi]e, or 1173 feet

40, If x = distance from left end of pool and w = w(x) = width at z, then the Midpoint Rule with n = 4 and

_ba 8270 pives Area = [1 wdr ~A(6.2 + 6.8+ 5.0 + 4.8) = 4(22.8) = 91.2 .

Az - 1

. We know that the area under curve A betweent = Oand ¢ = zis [;" va(t) dt = sa(z), where va(t) is the velacity
of car 4 and s 4 is its displacement. Similarty, the area under curve B betweent = Oandt = z is
Jo vn(t)dt = sp(z).

(a) After one minute, the area under curve A is greater than the area under curve B. So car A is ahead after one

minute.

(b) The area of the shaded region has numerical value s.4{1) — sp(1), which is the distance by which A is ahead of
B after 1 minute.

() After two minutes, car £ is traveling faster than car A and has gained some ground, but the area under curve A
from ¢ = 0 tot = 2 is still greater than the corresponding area for curve B, so car A is still ahead.

(d) From the graph, it appears that the area between curves A and I3 for 0 < ¢ < 1 (when car A is going faster),
which corresponds to the distance by which car A is ahead, seems to be about 3 squares. Therefore, the cars
will be side by side at the time x where the area between the curves for 1 < ¢ < x (when car B is going faster)
is the same as the area for 0 < t < 1. From the graph, it appears that this time is x =~ 2.2. So the cars are side
by side when t =z 2.2 minutes.

42, The area under R'(x) from z == 50 to z = 100 represents the change in revenue, and the area under C' () from
z = 50 to z = 100 represents the change in cost. The shaded region represents the difference between these two
values; that is, the increase in profit as the production level increases from 50 units to 100 units. We use the

Midpoint Rule with n = 5 and Ax = 10:
Ms = Az{[R'(55) — C'(55)] + [R'(65) — C'(65)] + [R'(75) — C’'(75)]
+ [R'(85) — C'(85)] + [R'(95) — C"(95)}}
~2 10(2.40 — 0.85 + 2.20 — 0.90 + 2.00 — 1.00 + 1.80 — 1.10 + 1.70 — 1.20)

= 10(5.05) = 50.5 thousand dollars

Using M, would give us 50(2 — 1) = 50 thousand dolars.
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13. y=—xx+3 To graph this function, we must first express it as a combination of explicit

-

i ] functions of y; namely, y = £z +/z + 3. We can see from the graph that
the loop extends from x = —3 to z = 0, and that by symmetry, the area

we seek is just twice the area under the top half of the curve on this

interval, the equation of the top half being y = —~z v/ + 3. So the area is

A= 2f_03 (—z vz +3) dz. We substitute v = z + 3, so du = dz and

the limits change to 0 and 3, and we get

A=-2 .[03 Hu — 3)/uldu = —2f03 (u3/2 _ 3u1/2) du

:—2{%115/2 —2u3/2]3 = MQ{%(BZ\/:_S) 72(3\/§)] = 2.3

0

We start by finding the equation of the tangent line to iy = & at the
point (1,1): 3" = 2a, so the slope of the tangent is 2(1) = 2, and its
equationis y — 1 = 2{(x — 1), or y = 2z — 1. We would need two
integrals to integrate with respect to z, but only one to integrate with

respect to 3.

A=f[Ay+1) - ] dy

— 1
=3 +35

By the symmetry of the problem, we consider only the first quadrant,

2

wherey = r* = x = ,/y. We are looking for a number b such

4

b fy oy = Ve = 3 -3 -

P2 =3 _p3 o Mg = PP=g =

b= 4%% ~ 252,

e 1 -17* J[-11*
46, (a) We want to choose a so that - dr = — de = |—| =|— =
1 T Jo & z |, z |,

2
= ==
a

S a==
v5_

(b) The area under the curve y = 1/z” fromz = 1toz = 4is 3 [take @ = 4 in the first integral in part (a)]. Now
the line y = b must intersect the curve « = 1/,/y and not the line = 4, since the area under the line y = 1/4*

fromz = 1 tox = 4 is only % which is less than half of % We want to choose b so that the upper area in the
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1 C
diagram is half of the total area under the curve y = = from z = 1to z = 4. This implies that

. 1
DA =g = vE-di=3 > g
1—2\/5+b=§ = b-2\/5+§:U.Lettingc:\/l;,weget

! ~2+2=0 = 8 —16c+5=0. Thus,
b-.
c:%ﬁi?‘ﬁ:li@.BulC:ﬁ<l - e=1-¥ = —ol

4

b=c?=1+2 - = 1{11 - 4/6) ~ 0.1503,

47. We first assume that ¢ > 0, since ¢ can be replaced by —c in both equations without changing the graphs, and if

¢ = 0 the curves do not enclose a region. We see from the graph that the enclosed area A lies between 2 = —c and
x = ¢, and by symmetry, it is equal to four times the area in the first quadrant.
The enclosed area is

A=4[5(c* - ?ydr =4[tz -}

=4~ 3% =43¢ =

SoA=576 « =576 & =216 & c=V216=6.
Note that ¢ = —6 is another solution, since the graphs are the same.

;oy=cos{x—¢) ' It appears from the diagram that the curves y = cosz and y = cos{z — c)
intersect halfway between 0 and ¢, namely, when x = ¢/2. We can verify that

this is indeed true by noting that cos{c/2 — ¢} = cos(—c/2) = cos{c/2).

The point where cos(x — ¢) crosses the z-axis is © = Z + c. So we require

that [/% [cos z — cos(a — ¢} dz = — |

u :/2+c cos(z — ¢) dx (the negative

sign on the RHS is needed since the second area is beneath the z-axis) <
[sinz — sin (x — c)]g/z = —[sin{z ~ o))} 0. =
[sin(c/2) — sin(—¢/2)] — [~sin(—¢)] = —sin{r - ¢) +sin[(§ +¢) —¢] &
2sin{c/2) — sinc = —sin ¢ + 1. [Here we have used the oddness of the sine function, and the fact that

sin(m —¢) = sinc). So2sin(c/2) =1 ¢ sin(e/2)=; & ¢/2=% © c=3.

=(In2+3)—(Inl1+1)

=1In2 - % =~ (.19
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w/2
50. A = / (e —sinz) dx
0

— ol 7/2
= [e* + coszl]

=(e240) -1+ 1)

=g 2

2

81. The curves intersect when x° = e 4t =2

2?41
(2*+2)(z*-1)=0 & 2°=1 & z==L

A= 1 2 “\d
4—.—1 $2+1—.‘E X
_2/1 2
- ] JE2+1

= 2[2 tan 'z —

=g — 2 Rz 2.47

52. The curve and the line will determine a region when they intersect

at two or more points. So we solve the equation

w/(z*+ 1) =mz = z=z{mz’+m) =

;L'(mm;'z-f—m)—;n:() = :E(m$2+m—l)=0 =

1—m
r=0o0rmz’+m—-1=0 = z=0orz’=

Tre
/1 . . . L . .
x=0o0rx =24/ — — 1. Note that if e = 1, this has only the solution = = 0, and no region is determined. But if
m

I/m—1>0 < 1/m>1 < 0<m< 1,then there are two solutions, [Another way of seeing this is to

observe that the slope of the tangent toy = z/{z* + 1) at the origin is 3’ = 1 and therefore we must have

0 < m < 1.| Note that we cannot just integrate between the positive and negative roots, since the curve and the line

cross at the origin. Since ma and x/(z* + 1} are both odd functions, the total area is twice the area between the

curves on the interval {O, 1/m — 1}. So the total area enclosed is

2
I2+1 0

I

0

[ r Tn,g:J dr = 2[% 111(1‘2 + 1) B %Tnxz] 1/m—1

=n(l/m-14+41)—m(1/m-1)]-(In1-0)

=lh(l/m)—-1+m=m—Inm—1
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6.2 Volumes

. o . . 2 . . _ 242
1. A cross-section is circular with radius z2, so its area is A(z) = w(z?)".

2 5+2=2 ¢ y=1- 1z s0across-section is circular with radius 1 — . and its area is

A(z) = (1 - 3a)’,

—r(2-2+3) = 3r
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4. A cross-section is circular with radius v/ — 1, so itsarea is A(z) = 7(vz — 1 )2
V= f,;' Alz)dr = f: m(z —1)de = =[32® - 9:]5

¥ ¥

y= i

5. A cross-section is a disk with radius /7, so its area is A(y) = n(\/g)z.
2 4
V =y A dy = [ 7 () dy = = [ ydy = = [3°] = 87

¥ ¥

\]

B. A cross-section is a disk with radius y — y°, so its area is A(y) = 7 (y - y2)2.

V= [y Ay dy = [y n(y —v*) dy = 7 |, (v* — 2° + %) dy = n[20°
(b h) =%

¥

7. A cross-section is a washer (annulus) with inner radius x? and outer radius /I, 50 its area is
Alz) = n(vz)’ —7(2?)? = n(x — 2*).
. _ 1 4 o [1.2 1,511 _
V=[, Alz)dz =7 [ (z-2")de =r[52° - ;2°|,

¥ ¥
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8. A cross-section is a washer with inner radius 1 and outer radius sec z, so its area is

Alz) = n(secx)? - w(1)* = m(sec’ z — 1).
V=1 Alz)dz = [t ow(sec?z ~ 1) do = 2= fol (sec? 2 — 1) dr = 2nftanz — 2], = 2m(tan1— 1)

=~ 3.5023

9. A cross-section is a washer with inner radius y° and outer radius 2y, so its area is

Aly) = m(20)? — 7(y®)" = =(4® — ¢*).

V= J2 A dy = 2457~ y*) dy = [

10. y = 22% 2 =32 s0a cross-section is a washer with inner radius ¥/ and outer radius 1. and its area is

2

7(1)? — ﬂ_(ys/z) =m(l- yS).

v :j;; A(y)dy:ﬂ'fol(l vyS)dyzw[y—iyﬂ; =7

-

To.u

o=
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11. A cross-section is a washer with inner radius 1 — /z and outer radius 1 — =, so its area is

Ay =7(1-2)? —n(1 = yz)’ =a[(1-20+2%) - (1 -2yz +a)] =n(-3z+2* +2Vz).

V:fnl A(m)dm:wjal(—3m+$2+2\/5)da:

1
=a[-3a? + 4"+ 4 = m(-f+9)

12. A cross-section is circular with radius 4 — 22, so its area is A(x) = 7(4 — 2?)” = 7(16 — 82% + z*).

V= [% Alz)dz = 2 [T A(z) de = 27 2 (16 — 82 + 2%) dz = 2x [162 — &2° 1 12%]]

=om(32 -8 +22) = 64n(1 -2+ 1) =64n & = Blir

13. A cross-section is an annulus with inner radius 2 — 1 and outer radius 2 — z*, so its area is
Alz)=m(2 -2 —x(2-1)% = T(3 — 4z + 2°).
1 1 1 1
V=, A(z)ds =2 [, A(z)dz =2r [, {3 4z' + 2*) dz = 2n[3z - }2° + %.‘rzg]o

—or(3- 4+ 4) = B
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16. y =z = = =" sotheouterradiusis 2 — v

1% fulfr[(Q—yz)2 - (2fy)2] dy=m [ [(4- 4" +4*) — (4~ 4y +v°)] dy

7 o (Wt =5yt + 4y) dy = w[3° - 30+ 2], = w(
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17. y =2 = z = /yforz > 0. The outer radius is the distance from z = -l tox = /¥ and the inner radius is

the distance fmm;z::—lto:r::y2

Ve {0 - 7 - ) }dy—ﬂfo[\/ﬁ+1)2—(92+1)2}dy
—Wfo(y”ﬁﬂ—y - 27 —1) fly+2ya-v -2 dy
=7T[é?12+§y3/2 éy5—§y3}0:w(§+‘ 12y =28y

¥

18. For 0 < y < 2, a cross-section is an annulus with inner radius 2 — 1 and outer radius 4 - 1, the area of which is
A(y) =74 —1)* — (2 — 1), For 2 < y < 4, a cross-section is an annulus with inner radius i — 1 and outer
radius 4 — 1, the area of which is A2(y) = 7{4 — 1)* — n(y — 1)%

2 2 4
V=flAydy== [ [4-1)°-@2-1\dy+x [} [4-1)7 = (v - 1)]dy
4 ' 4 4
=n[8yle + 7 [, (84 2y — ) dy = 167 + n[8y + ¢* — 59°],

=167+ 7[(32+ 16 — &) - (16 + 4 - §)] = Bnr

1
19. B, about O A (the line y = 0): V = ]0 Alz)dz = fo & df—:rrfo T dz——ﬁ[l 7} _
o

20, 2R, about OC (the line x = 0):
= fo Ay = [ |7(V? =7 ()" dy = 7 [y (1= ) dy = m[y - 2"
. 3y about AB (the line z = 1)
V= Jo Al dy = [y (1= ¢4)" dy =7 [} (1 -2 +4°7%) dy
—rly - ] =40 =%
. Sty about BC (the line y = 1):
V=) Alz)dr = fo [m(1)? — #(1 wwa)ﬂ dx ’JTJ;JI [1-(1—2c°+2%)] do
= [} (20" ~ 2% de = w[lat - 127] = 1

. %Ry about O A (the line y = Q):

"Iu d‘T_J(][
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. Ry about OC (the linexz =0): V = fo y)dy = Jo (y* ) dy = Tl'fol yldy=mn [%y5];

. 9o about AB (the line £ = 1):

V= fo dy—fo[ ()2 —m(l—y )]dy:'rrfol[l—(l—Zyraﬁ—yq)]d
=732 -y Ydy=n[2y’ - ] =m(}i-1) =

. Ry about BC (the liney— 1)

V= fo dw_fu ﬁ)zdmzwf01(1—2$1/2+w)dx

:w[a:~%maﬂ—l—%xghzﬂ(l—%-}-%):%
. Rz about O A (the line y = 0):
V= fo d:r—fo [ﬂ‘(\/_) ]da:——ﬂfo t—x%)de = n|ia® - ;a:"'] =n(3 - 1)=25.

Note: Let R = Ry + Rz + Rg. If we rotate PR about any of the segments QOA, OC, AB, or BC, we gbtain a right
circular cylinder of height 1 and radius 1. Its volume is ar?h = w(1)? - 1 = 7. As a check for Exercises 19, 23,

and 27, we can add the answers, and that sum must equal . Thus, £ + Z + 51—1 = (%)ﬂ = .

. M3 about OC (the line z = 0):
1
V=[ Alydy = f; [ (\/ﬂ)g—ﬂ(yz)g] dy:ﬂ'/o (v** — y*) dy

[ ]l

Note: See the note in Exercise 27, For Exercises 20, 24, and 28, we have 2?” + 5+ 2?“ =T

. 3 about AB (the line z = 1):
V=l A dy = Jy [ fﬁ*”“*%ﬂ dy=nfy [(1—2y2+y4)—(1—2y1/3+y2/3) dy

1
N ﬂ/ (—2y° + ' + 2% — %) dy = “[‘§§y3 + 35+ 0 - 2115/3]0
0

Note: See the note in Exercise 27. For Exercises 21, 25, and 29, we have {5 + 17 + 137 — (313 —

. %3 about BC (the line y = 1):
V= Jo d.’L‘—fO[ 1—z%) —ﬁ(lk\/_)}d:c

1 1
1‘1’/ [(1—2m3+26)—(1—2$1/2+$)] d..’!,‘:'ﬂ'/ (=22 +a® +22'% — 1) dx
40 J O

[ szt + daT + 187 ;:cz]o_w(—%+%+§-—§) =
Note: See the note in Exercise 27. For Exercises 22, 26, and 30, we have 5% + Z 4 0= = (15

w/d
n V:;-r[ (1 — tan® x)* d
J0O
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32, y = (z — 2)" and 8z — y = 16 intersect when
(x—2)' =8z 16 =8(z—2) &
(z-2"-8z-2)=0 & (@-2[z-2°-8=0
& z-2=0 or z—-2=2 & T=2ord
y=(z—-2) = z-2=%2Yy => =2+
[sincer >2].8z—y=16 = 8x=y+16 =

T = %y+2.
v=r [ {10- Gy po- 2+ o}y
3.V :w/ﬁ [(1-0)* - (1 - sinz)?]| dx

= 'rr/: [12 —{1 —sin:r)z] dc

.V =xf [(sing+ 2)? — 2%} dzx

3. Vv _w/_ﬁ {[3— (2 - {m—(—z)r}dy

V8

:wfﬂ [52—(\/Ty2+2)2]dy

-2v72

fr=-2 (3,~2:2)

36. Solve the equations forz: (y — 1)’ =d—z & z=4-(y-1)’and22+3y=6 & z=3-3y

The points of intersection of the two curves are (3, 0} and (—%, %) Therefore,

v [Tl -0t o - gy )

:“ﬁm{Ww—WV—m—%f%@
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. We see from the graph in Exercise 6.1.35 that the z-coordinates of the points of intersection are x = a = —(.72 and
r = b~ 1.22, with vz + 1 > 2¢ on the interval (a, b), so the volume of revolution is

b 5 ‘ r
Ti’] [(\/&2+1)27(I2)2:l(i$———?‘(/ (:L'+1—$4)d$:w[%$2+w4%x°]z%5.80.

. We see from the graph in Exercise 6.1.34 that the z-coordinates of the points of intersection are z = (and

z = a = 1.17, with 3z — 2° > z* on the interval (0, a), so the volume of revolution is

71‘-/(;“ ]:(3:1: +a:3)2 - (z‘l)ﬂ dz:'fr/a (92° — 62* + 2 —2%) dx

0

wd 8.5 1.7 1977 __
=73z’ - da"+ 32" — 3 ](,~6.74

S R S L T

cas 11 5 1
= 871'

a. V= W‘/:) {[2 —(a® - 2)] -2 - xcos(m/4)}“‘} dz

cas 4(197% + 1207 — 210)
B 157

o .['0"/ ? cos? z dz describes the volume of the solid obtained by rotating the region

R={(z,9){0< 2 < Z,0<y <cosz} of the zy-plane about the z-axis.

LT f: ydy =7 f; (v¥) ? dy describes the volume of the solid obtained by rotating the region
R={(z,y) |2 <y <50<x <y} of the zy-plane about the y-axis.

1 1
T f (y';l - ys)dy =7 ] {(y?)z — (y4)2] dy describes the volume of the solid obtained by rotating the region
W] 0

R={(zy)0<y<1y* <z <y®} of the zy-plane about the y-axis.

™ foﬁf * [(1 + cos z)* — 1%] dz describes the volume of the solid obtained by rotating the region
R={(z,y)|0<z<F,1<y<1+cosz} of the xy-plane about the z-axis.
Or: The solid could be obtained by rotating the region ®' = {(z,4) |0 <z < %,0 <y < cosz} about the
line y = —1.

. There are 10 subintervals over the 15-cm length, so we'll use n = 10/2 = 5 for the Midpoint Rule.
V= [17 Afx)de m Ms = B20[A(L5) + A(4.5) + A(7.5) + A(10.5) + A(13.5)]

= 3(18 + 79 + 106 + 128 + 39) = 3. 370 = 1110 cm®
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4.V = [, Ala)de = Ms = 252 [A(1) + A(3) + A(5) + A(T) + A(9)]

= 2(0.65 + 0.61 + 0.59 + 0.55 + 0.50) = 2(2.90) = 5.80 m°

4). We'll form a right circular cone with height h and base radius r by

revolving the line y = £ about the z-axis.

2 h

h P 2 hTZ s r 13
V=?rf0 (ET) d:nmw‘[o ﬁmdmzﬂ-ﬁ[gm]o

, T .
Another solution: Revolve x = — 5 v + r about the y-axis.
2 2

'k 2 R
V= _r z rR 2T 2
‘”]0 (=v+7) dy“”/n Lﬁy 2 y”}d”

2 2 h
_ T 3 T a2 2 (1.2 2 2;7 1.2
_W[Wy - +ry]0—n'(3rh—rh+'r'h)—§7rrh

* Or use substitution with w = r — fz y and du = —% dy to get
1

0 ]
of h R{1 4 h{ 134 L
——d = —-mT—|—= = - = —- = - .
Tl'/;u( " u) WT[BUL TFT( 37 Srrrh

7| Ry — i

w[R?h — R(R —r)}h + 3 (R —r)%h]
3wh[3Rr + (R® — 2Rr +r%)] = 37h(R* 4+ Rr +r?)

H H-h
Another solution: i by similar triangles. Therefore,
r

Hr=HR-hR = RhRR=HR-7r) = H:};—%.Now

imR'H — 3mr®(H — h)  [by Exercise 47

hR h rH rhR
Lopg? - Llpp2 —h= = = ——
TRy T RTY [H "SR TRERD

1 RS_ 3
gvrh R—: :é‘.'rh(R2+Rr+r2)

LrR? 4 2 4 \/(wRD) (mz)}h = 1A+ A + VA Az )R

where Ay and A- are the areas of the bases of the frustum. (See Exercise 50 for a related result.)
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2 2

89. 22+ =1 & P=r'-

r .37
V:w/ (r2~y2)dym7r[r2y—g—]
r—h 3 r—-h

{[-5]-[re-n- )

r —h)[3r® ~ (+* —2rh + A1}

w{2r% ~ L(r — h)[3r% - (r = B)*]}
)
h)

[2r% + 2rh — B*]}

uﬂlr-‘ Wi CAJI»-'

m{2r®
le{2r® —(r -
a7 (

P — 2% 2rh + rh? 4+ 20%h + 2rh® BT

h
La(3rh® — h*) = ;7h?(3r — h), or, equivalently, wh? (r - §)

~ b/2
50. An equation of the line is z = %—Z y + (z-intercept) = a/}za - 0/

V- /0 " Ay dy - / " (20 dy
[ (s b)) = [ [

a—-b? , 2bla—b)

YTy

—b)? bla — b
_ [((13},,2) y3+ ( - )y2+b2y]

y+ b2] dy

I3

¢]
b)2h + bla — b)h + b*k = 1 (a® — 2ab+ b* + 3ab)h

z{a—
= (a +ab+b2)

[Note that this can be written as 5 (A1 + Az + VA1 A2 )k, as in Exercise 48 ]

If o = b, we get a rectangular solid with volume b?h. If ¢ = 0, we get a square pyramid with volume %b2h.

B1. For a cross-section at height y, we see from similar triangles that b//22 L ; y’ soo = b(l — %)

Similarly, for cross-sections having 2b as their base and 3 replacing o, 3 = 2b(1 - 7) So
h h
¥
ve [Cawar= [ (- D)jl2(- )]
2 h 2
={ aw*(1-2 d:22f AV
A ( h) y=20° | n )Y

2 2 3 " 2 1
=2b [y +.‘-3ﬁ:| =2b [h—h%gh]

= %52 B | = %Bh where B is the area of the base, as with any pyramid. |
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52. Consider the triangle consisting of two vertices of the base and the center of the base. This triangle is similar to the
corresponding triangle at a height 3, so a/b = o/8 = «a = af/b. Also by similar triangles, b/h = 8/(h — y)

= 3 =>5b(h — y)/h. These two equations imply that & = a(1 — y/h),

and since the cross-section is an equilateral triangle, it has area

2

V:fA(y)dy - “2;/5 foh(l - %)Qdy

A{y):%.a.ﬁamﬁ(l__f}ﬂ\/gyso

4 3V RS,

_a*Vv3 [ﬁ(l g)?’r _ V3o

§3. A cross-section at height z is a triangle similar to the base, so we’ll multiply the legs of the base triangle, 3 and 4, b

a proportionality factor of (5 — 2)/5. Thus, the triangle at height z has area

A(z):%-3(55z> -4(55z> :6(1—%)2,50

V=[2A()dz=6[ (1 2/5) dz

=6 [ ut(~bdu) [u=1-2/5du=—1dz]

5

=-30[1a*]] = —30(~1) = 10 em®

54, A cross-section is shaded in the diagram.

Alz) = (2y)* = (2vr? — 22 )2, $0

B5. If ] is a leg of the isosceles right triangle and 2y is the hypotenuse, typical cross-

section of length

PYRY
then I + 1 = (2y)° = 28 =4y* = =27 2y = 36 — 95

V= A@)de=2f A@)de =27 L) (D de =2 [} y* dz

X
2P (36 - 007) do = § 24 -2 da )/

Pl =3(5-8) =2
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56. The cross-section of the base corresponding to the coordinate y has length \

2z = 2,/y. The corresponding equilateral triangle with side s has area

Aly) = 52(3?) = (21:)2(@) = (2 ﬁ)Q(é) = y+/3. Therefore,

V= [l Aly)dy = [ yvBdy = V3[1v7]s =4 .

. The cross-section of the base corresponding to the coordinate y has length
22 — 2 /g. The square has area A(y) = (2 \/5)2 = 4y, so

V= [ Aly) dy = [} dydy = [207]; = 2.

. A typical cross-section perpendicular to the y-axis in the base has length
Ly) = 3 — %y. This length is the diameter of a cross-sectional semicircle

S, so

. A typical cross-section perpendicular to the y-axis in the base has length

£(y) = 3 — 2y. This length is the leg of an isosceles right triangle, so
2 £ 2

V:_fo2 Aly)dy = % louz(—Qdu) [u:lf%y,duz—%dy}
= o(-) =3
@V =f"_ Alr)dr=2 Jo Alz)dz =2 fy 3h(2v/r2 — 22 )de =2h f; Vri—a?de

(b) Observe that the integral represents one quarter of the area of a circle of radius r, so V = 2h - imr? = fmhr?,
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61. (a) The torus is obtained by rotating the circle (z — R)* + ¢° = r?
about the y-axis. Solving for x, we see that the right half of the

circleis given by z = B + /7? — y? = f(y) and the left half by

r=R—+r?—y?=g(y). So
V=rf" {lf@* - g’} dy
=2 f§ KRZJHZR ’"2*3}2+T2—y2) - (RZ—QR rz—y2+7"2—y2” dy

=2 [ 4R\/r? —y?dy =8xR [ /r? -y dy

(b) Observe that the integral represents a quarter of the area of a circle with radius r, so
SﬂTR‘f.CT vt —y?dy = 8nR- ;11~1rr2 = 27%r%R.
62. The cross-sections perpendicular to the y-axis in Figure 17 are rectangles. The rectangle corresponding to the

coordinate ¢ has a base of length 2 /16 — 2 in the zy-plane and 4 height of 71-5 y, since ZBAC = 30° and

|BC| = % |AB|. Thus, A(y} = % v+/16 — y2 and

V=[ A dy = % 5 V16— ydy

=L [0 ul/2(—Ldu) [Put u = 16 — y2. so du = ~2y dy]

2
Vv Ji1s

. 16
o1 op16 a2, 1 a2l 32" a _ 128
= Ao U d“*\/é.a{“ }0 *3‘/5(64)—"_3\/5

63. (a) Volume(S1) = foh' A(z) dz = Volume( Sy} since the cross-sectional area A(z) at height 2 is the same for hoth

solids.

(b) By Cavalieri’s Principle, the volume of the cylinder in the figure is the same as that of a right circular cylinder
with radius r and height k, that is, wr2h.

. Each cross-section of the solid S in a plane perpendicular

to the x-axis is a square (since the edges of the cut lie on

the cylinders, which are perpendicular). One-quarier of

this square and one-eighth of S are shown. The area of

this quarter-square is | PQ|* = 2 — &*. Therefore,

A(z) = 4(r® — 2*) and the volume of S is
Ve[ Alz)de =4[ (r*—2")dx

=8 [ (r* — 2*) dx =8[r’x — 32°| = 1&+°
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65. The volume is obtained by rotating the area common to two circles of

radius r, as shown. The volume of the right half is

Vig =70 Jﬁyzd:c:w 5/2 [rg—(ér-l-z)z} dx

217/2
=r[Pe—43r+ 2’| =73

So by symmetry, the total volume is twice this, or S r°.

Another solution: We observe that the volume is the twice the volume of a cap of a sphere, so we can use the

formula from Exercise 49 with b = r: V = 2. 2xh*(3r — h) = %ﬁ(érf (3r — ir) = Swrd.

. We consider two cases: one in which the ball is not completely submerged and the other in which it is.

Case I: 0 < h <10 The ball will not be completely submerged, and so a cross-section of the water parallel to

the surface will be the shaded area shown in the first diagram. We can find the area of the cross-section at height x
above the bottom of the bowl by using the Pythagorean Theorem: R = 15% — (15 — ) andr? = 5% — (z — 5)%.
so A{x) = TT(R2 — 7%} = 20mz. The volume of water when it has depth / is then

V(h) = [* A(z)dz = [ 20madz = [1072?]] = 10mh? em® 0 < h < 10.

Case 2: 10 < h < 15 In this case we can find the volume by simply subtracting the volume displaced by the
ball from the total volume inside the bowl underneath the surface of the water. The total volume underneath the
surface is just the volume of a cap of the bowl,

so we use the formula from Exercise 49:

Vip(h) = 17h*(45 — h). The volume of

the small sphere is Vian = 27(5)° = 207,

so the total volume is

Vi — Vi = 17({45h% — A® — 500) cm®.

. Take the xz-axis to be the axis of the cylindrical hole of radius r.

A quarter of the cross-section through y, perpendicular to the

y-axis, is the rectangle shown. Using the Pythagorean Theorem

twice, we see that the dimensions of this rectangle are
r=+/R?—y2andz = \/r? —y?, 50

LAl — 22 = TR VR and

V= [" Alydy= [ 47 —y> VR? -y dy

=8 [ Vi -y VI - dy
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68. The line y = r intersects the semicircle y = vVRZ —z2 whenr = VR? — 22 = r=R' -2’ =
#2=R?—r? = z=++R?-r2 Rotating the shaded region about the z-axis gives us

V= ?T|:( Rz—ﬁcz) ~r]dm
S R2 2
]\/H—z::.a

0

2

=27 (R* —2® —r®)de  [by symmetry]

Our answer makes sense in

limiting cases. Asr — 0,

V - 37 R?, which is the

volume of the full sphere. Ay

r — R,V — (, which makes
sense because the hole’s radius is

approaching that of the sphere.

69. (u) The radius of the barrel is the same at each end by symmetry, since the
function y = R — cz” is even. Since the barrel is obtained by rotating

the graph of the function y about the z-axis, this radius is equal to the

value of y at z = 1 h, whichis R — c(%h)2 =R-d=r.

(b) The barrel is symmetric about the y-axis, so its volume is twice the volume of that part of the barrel for z > (.

Also, the barrel is a volume of rotation, so

0

V= 2]0&/2 my? dr = 27 [* (R- cm2)2 de = 2r R’z — 2Rex® + %czxs]hﬂ

0

— 1432 L pagd 2.5
=2 (s R°h — S Reh’ + ;c°h°)

Trying to make this look more like the expression we want, we rewrite it as
V = imh{2R® + (R? — 1 Rch® + 2%h*)]. But
R — LReh? + Ee*h = (R— Leh?)” - LPhi = (R d)* - 2(3eh®)? =2 - 2a2.

Substituting this back into V, we see that V = 37h(2R? +r® — 2d%), as required.

el
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70. It suffices to consider the case where %t is bounded by the curves y = f{x} and y = g(x) for a < x < b, where
g(x) < f{z) for all z in {a, b], since other regions can be decomposed into subregions of this type. We are

concerned with the volume obtained when & is rotated about the line y = —k, which is equal to

Vo = [0 ([f(2) + &P = [9(e) + kI*) da =« [ ({f(@)° = [g(2)]?) de + 2nk [ [f(2) - g(x)] dx
=W+ 27kA

6.3 Volumes by Cylindrical Shells

If we were to use the “washer” method, we would first have
X =g,y ) . ) .
‘ to locate the local maximum point (g, b) of y = z{x — 1)*

using the methods of Chapter 4. Then we would have to

solve the equation ¥ = z(z — 1) for z in terms of y to
obtain the functions & = g1(y) and z = ga(y) shown in the
first figure. This step would be difficult because it involves

e the cubic formula. Finally we would find the volume using
] V= [y {lo(0))® - l92(9))°} dy.

Using shetls, we find that a typical approximating shell has radius x, so its circumference is 2. Its height is y, that

is, z(z — 1)?. So the total volume is

5 4 371
V= Jo] 2z lr(z — 1) de =27 [ (z* - 20° + 2%) dz = Qw[% - 2% + %] =
b 0

A typical cylindrical shell has circomference 27z and height
Sin($2). V= Jﬂﬁ 2nzx sin(a:z) dx. Let uw = z°. Then du = 2z de,

soV = [ sinudu = x[~cosulf =n[l - (~1)] = 27.

For slicing, we would first have to locate the local maximum point
(a,b) of y = sin(2”) using the methods of Chapter 4. Then we
would have to solve the equation y = sin(;z:z) for x in terms of y to

obtain the functions x = ¢; (¥) and x = g2(y) shown in the second

figure. Finally we would find the volume using

V= fé’ {lg1()}* = [g2(¥)]*} dy. Using shells is definitely

preferable to slicing.
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4V = jol 27z -z dr = 27Tf01 2 dx

—ox[tet)y=2m 3 =5

5.V = [()2 2z (4 - :1:2) dr = 27 foz (4a — w3) dr
=27 [22° - 41324}3 =27 (8 —4)
= 87

6.V =27 [ {2[(3+ 2z 2%) (3 2)}de=2x [ [¢(3z - 2?)] d

=7 j(]?'(d:t"2 —z)dz = 2n[z’ — im‘l]i =2m (27— B} = 2m (%

7. The curves intersect when 4(z — 2)2 =2 — 42 +7 & 42 — 162 +16=2% — 4o +7 &
322 ~120+9=0 & 3(z?—4x+3)=0 & 3(z-1){z—3)=0.s0x=1or3.

V=2r [} {a[(2® — 42 +7) - 4(x - 2)?] } do = 2 [} [2(2? — 42 + 7 — 42® + 162 — 16)) dx

=2 | [e(=34" + 12z — 9)] dx = 2n(=3) [*(z® ~ 42® + 3z) dz = —br |32t — 52° + %:r:ﬂ?

=—6r[(8 -36+F) - (:-2+2)] =—6x(20-36+12+ %) = —6n(~%) = 167
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8. By slicing:

By cylindrical shells:

V = [ 2ne(yT - 2) dz = 2 J (@ — 2*)yda

1
= 27{%375/2 - ix‘*}o = 2n( )

- () =%

9.V = flz 2ry(L+ ) dy =2 ff (y+y°)dy =2n]

= sl 4) - (b= )] = 20(2) = 3

1-4-1)22
]

0.V = [ 2my fydy = 2 [ y*/ 2 dy

= 271'{2?;5/2]1 =4
=27 |2 =

0 5

© Brooks/Cole UK under business license to TT inc.



Intended for the sole personal use of the stipulated registered user only.
452 O CHAPTERG APPLICATIONS OF INTEGRATION

nyv= zwfo' [y( &y — 0)] dy

8 8
— 4/3 —_ 3,7/3
= 27:/(; ¥y dy = 2%[;3; ]

4
12. V = er/ [y(4y2 - ys)] dy
0

4
= 2x / (4y° — y*) dy
JO

=2 [y? — Ly]) = 2 (256 — 19

= on(22) = 2tz=

13. The curves intersect when 42 =6 -2z & 22°+2-3=0 & (2z+3)(z~-1)=0 « z=-5orl

Solving the equations for z givesusy = 40 = z=Z4;,fand2z+y=6 = z=-3y+3.

v=ar [l - b e [ (sl e 9) - (a)ha

9 4 9
= 271-[ (y\/ﬂ)dy+27r/ : %yam) dy = 271'[%3/5/2}0 +27r{—éy3 + gyg + éys/QL
0 4

= yan(3g) -
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17. V = ff 2r(4 — z)z’ do = 2n[52° — %azﬂf

- or[(

SECTION63 VOLUMES BY CYLINDRICAL SHELLS

¥

L

18. V = [ 2n[x — (~2)]{(8z — 227) — (4z — 27)] dw
= [P2n(2 +z)(4z — 2%) dz

=2r f;(&c + 227 — ) da

= 2#[4;1:2 + %9:3 - ia:“]:

= 2m (64 + 128 —64) = Zbx
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19.V = [72r(3 — y)(5 — x)dy
=fy2rB-y)(5 - ¥* - 1) dy
= fZon(12 - 4y - 3y° +¢°) dy
= 2r[12y - 2% —y° + 4]
=27(24 — 8 — 8 +4) = 247

20. V=/0127T(y+1)(\/§—y2)d9‘=27‘"/0 (y

g 21t
:211'{%3)‘)/2+§y'5/2* %ytl_ %yd]o _

¥y

2.V = 23: 2mrsinz dx

y=sin{mx/2)

7 X

¥
44

2
1
24.V—f0 27r(2—1:)(1+332

¥

0.1
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5.V = [T 2x{4 - y) Jenydy 2%.v = J°, 205 - u)(4- VP + 7)dy

7/d—-0 =
. Ax = = —.
g 1 16
V= f(;"/‘l Mz tanzde 7= 27 - & (5 tan & + 3 tan 37 + T tan §7 + 17 tan 12} ~ 1142
CAr =122 =2 n=>5and z; =2+ (2i+ 1), where i = 0, 1. 2, 3, 4. The values of f{z) are taken directly from

the diagram.
V = [? omef(x) do a0 2r[3£(3) + 5£(5) + Tf(7T) +9£(9) + 11f(11)] - 2
w27 [3(2) + 5(4) + 7(4) + 9(2) + 11(1)]2 = 3327
L) 2me” dr = 2x J7 2(2*) da. The solid is obtained by rotating the region 0 < y < 2% 0 < x < 3about the

y-uxis using cylindrical shells.

PR

2 2 .
’ 1 o . . .
, 2w /0 I fyz dy = 27 /0 Y (W) dy. The solid is obtained by rotating the region 0 < x <

L+y
0 < y < 2 about the x-axis using cylindrical shells.

. fol 2m(3 — y){1 — y*) dy. The solid is obtained by rotating the region bounded by (1) = = 1 — v, & =0, and
y = 0or(ii) & =% & = 1, and y = 0 about the line y = 3 using cylindrical shells.

. [UWH 27 (% — x)(cos z — sinz) dz. The solid is obtained by rotating the region bounded by
(i) 0 <y <cosz—sing, 0 <o < orii) sineg <y <cosw, 0 << 7 about the line & == 7 using
cylindrical shells.

1.2 From the graph, the curves intersect at & = 0 and at ¢ = @ =~ 1.32, with

z + 22 — z* > 0 on the interval (0, a). So the volume of the solid

obtained by rotating the region about the y-axis is

V:2W/.[$($+$2—I4)] dm:Qn'/ (22 +2* = 2")dr
0 a
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From the graph, the curves intersect at x = O and at ¢ = @ = 1.17, with

3z — z° > z* on the interval (0, ). So the volume of the solid obtained

by rotating the region about the y-axis is

V-__Qﬂfa {z[(3z —¢®) - 2*]} dz = 27rfa{3:172 -z~ 2%V dx
o 0

= 271'[:}:3 — %335 - %xﬁ]g == 4.62

T ) (sin’z — sin® z)| dx

3.V = 2Wj {[z— (-1D)](z* sinz)} dr o on{n® +7° —120° — 67 + 48)

il

= 2% + 27% — 247% — 1277 + 962

37, Use disks:
V= szﬂ'(mg t+o- 2)2 dr = Tl'f_lz (334 + 2% — 32% — 4z + 4) el

A 2 ] =[P4 -1 -244) - (-2 +8+8-8-8)]

38. Use shells:

V= jf 2rz(—a® + 3z — 2)dr =27 flz (—z* + 32" — 2z} dx

—on[-Lat 4t -2 =244 84— (~t+1-1)) =2
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39. Use shells:
Ve [fomfe— (1) [5— (2 =5z +9)] dx

:27rf14(m+1) (~2% + 5z —4) da
:271']’14 (—a:3 tAri+a— 4) dr = 27 [—%m‘l + ‘—éxs + %:132 — 43:]?

—or[(~64+ % +8-16) - (-1 + 34§ )

40. Use washers:

v Pe{lz-oP - 2- (-}

=2 [, [4 -1+ y“)Q] dy  [by symmetry]

=om [l [4-(1+ 2" +9%) ] dy =27 [} (3—2° —9°) dy

:2%[3y—%y5—%y9];:2w(3— — — 224n

2

2
4. Use disks: V:ﬂ'[ [ lé(y—l)z}
Jo

42. Using shells, we have
V= fZomy[VT=(y- 1 - (-VT- (=17 ) | dy
:277f02y-2~./1 —(y — I)Qdy:41rf_11(u+l)\/1 —ulduy  [letu=y—1]
:47rf_11u\/1—u2du+47rf_11\/1fu2du

The first definite integral equals zero because its integrand is an odd function. The second is the area of a semicircle

of radius 1, that is, Z. Thus, V =4 - 0 + 47 - £ = 277,

8.V =2 2rz\r? —zidz = -2r [ (7 - :cz)]/g(—Qw) dz = [7271'-

= *%‘N(U — 7‘3) = %11'7'3

uv= f;?j:me-Qwﬂ —(xz— R)*dx
= [ dr(u+R)Vr? —uldu  [letu =z - R]
= 471'Rffr VT Zuddu 4 An fjrum&u
The first integral is the area of a semicircle of radius r, that is, %m‘z,

and the second is zero since the integrand is an odd function, Thus,

V= 411'12(%7(1“2) + 47 -0 = 27 R
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r ’ r 2 3
45.V:27r/ m(—ﬁw+h)dw~_—2nhf (—I——r-:c)da::Z?rh[—w—
0 r 0 T 3r

46. By symmetry, the volume of a napkin ring obtained by drilling a hole
of radius r through a sphere with radius R is twice the volume
obtained by rotating the area above the x-axis and below the curve
y = v/R? — 22 (the equation of the top half of the cross-section of

the sphere), between = = r and x = R, about the y-axis.

This volume is equal to

outer radius R 5 9\ 3/2
2/ Qﬂf'hd.’E:Q'Qﬂ'/ z R2—$2d$=4ﬂ’[—%(R —z°) ]

nner radius r

But by the Pythagorean Theorem, R — r? = (%h)z, so the volume of the napkin ring is %ﬂ’(%h)3 = $wh®, which

is independent of both R and r; that is, the amount of wood in a napkin ring of height % is the same regardless of the
size of the sphere used. Note that most of this calculation has been done already, but with more difficulty, in

Exercise 6.2.68.
Another solution: The height of the missing cap is the radins of the sphere minus half the height of the cut-out

cylinder, that is, R — %h. Using Exercise 6.2.49,

¢ 4 3 2 1 1 3
‘/napkin ring = Vsphere - vtr:ylinder - zvcap = §7TR —ar‘h—2- h)] = 'éﬂ'h

6.4 Work

. By Equation 2, W = Fd = (900)(8) = 7200 J.
. F =1mg = (60)(9.8) =588 N; W = F'd = 588 - 2 = 1176 J
10 1

b -G
10 .
W= ,d:/—d :10[ —d =1+z du=d
/a Sz} dz b va? ™ pour . £ du = del

1 10
= 10[u—} =10(—15 +1) =9ftlb

ul

W= flz cos(%mc) dr = %[Sil’l(%ﬁl‘)]? = %( 23 — 3?) =0N-m=01].

Interpretation: From x = 110z = 2, the force does work equal to [*/? cos(1nz)dz = %(1 ~ 3?) I'in

accelerating the particle and increasing its kinetic energy. From z = % to ¢ = 2, the force opposes the motion of the

particle, decreasing its kinetic energy. This is negative work, equal in magnitude but opposite in sign to the work

donefromx=1tozx = %

. The force function is given by F'(z) (in newtons) and the work (in joules) is the area under the curve, given by

J3 F(z)de = [} F(z)dz + [} F(z)dz = (4)(30) + (4)(30) = 180 .
W= (7 fx)de & My = Az[f(6)+ F(10) + f(14) + f(18)] = 2458 + 8.8 4 8.2+ 5.2) = 4(28) = 112
.10 = f(x) = kx = 3k [4inches = § foot], sok =301Ib/ftand f(x) = 30z. Now 6 inches = £ foot, so

W = [ 30z dz = [1522])"% = 12 fe.lb,

(
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.25 = f(z) = kx = k(0.1) [10cm =0.1m], sok =230N/mand f(z) = 250x. Now 5 cm = 0.05 m, 50

W = [ 250z dz = [1252%], " = 125(0.0025) = 0.3125 =~ 0.31 I.

L1 J[U P krdr =2, then2 = [—kmz]g]z = k(0.0144) = 0.0072k and k = oo = To & 21T T8 N/m.

Thus, the work needed to stretch the spring from 35 cm to 40 cm 1s

=25 1041

fﬂ 10 zqoo o d [@mQ]I/w _ 1250( 11 ) 2

0.0 9 1/20 9 \100 400

12 = [ kadr = [lkmz]l = 1k, then k = 24 Ib/ft and the work required is

3/4

[3* 2dp de = [122%])" =12+ & = I = 6.75 ft-lb.

16

 f(@) =kz,030 = E0randr = 2L m=10.8cm

. Let L be the natural length of the spring in meters. Then

0.12—L

6 = f(u o krdr = Ek’mz]o.wq,

116-L

= 3k[(0.12 - L) - (0.10 — L)*] and

10 = [0 U ke de = [$k2?)0 0077 = 1E[(0.14 ~ L)? — (0.12 — L)*]. Simplifying gives us

12 = k{0.0044 — 0.04L) and 20 = &(0.0052 — 0.04L). Subtracting the first equation from the second gives

& = 0.0008k, so k& = 10,000, Now the second equation becomes 20 = 52 — 400L, so L = m m = 8 cm.

In Exercises 13-20, 7 is the number of subintervals of length Az, and & is a sampie paintin the ith subinterval [z, 1, ).
13. (a) The portion of the rope from z ft to (z + Ax) ft below the top of the building weighs 3 Az Ib and must be

lifted =} ft, so its contribution to the total work is 1:1:;“ Az ft-1b. The total work is

W= lim ¥ 127 Az = [0 lede = [22?])) = B2 = 625 ft-lb

oo 0
Notice that the exact height of tlhe building does not matter (as long as it is more than 50 ft}.
{b) When half the rope is pulled to the top of the building, the work to lift the top half of the rope is
Wi = [2 Jzdz = [1a?]}° = 2 ft-Ib. The bottom half of the rope is lifted 25 ft and the work needed to
accomplish that is Wy = f25 1.25dr=3% [z]50 = ¥28 fi-Ib. The total work done in pulling half the rope to
the top of the building is W = Wy + W, = 825 4 828 — 3. 635 — 1870 fi b,
1. Assumptions: 1. After lifting, the chain is L-shaped, with 4 m of the chain lying along the ground.
2. The chain slides eftortlessly and without friction along the ground while its end is lifted.

3. The weight density of the chain is constant throughout its length and therefore equals
(8 kg/m)(9.8 m/s®) = 78.4 N/m.

The part of the chain x m from the lifted end is raised 6 —x mif) <z <6 m, and it is lifted O m if z > 6 m.

Thus, the work needed is

W= lim (6 }) 784Az = [°(6 - z)78.4dx = T8A4[6 ~ $2%], = (78.4)(18) = 1411.2].

15, The work needed to lift the cable is lim 32", 227 Az = [0*° 2zdz = [22]5" = 250.000 fi-lb. The work

needed to lift the coal is 800 Ib - 500 ft = 400,000 ft-lb. Thus, the total work required is
250,000 + 400,000 = 650,000 ft-1b.
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16. The work needed to lift the bucket itself is 4 1b - 80 fi = 320 ft-lb. At time ¢ (in seconds) the bucket is ] = 2t fi
above its original 80 ft depth, but it now holds only (40 — 0.2t) 1b of water. In terms of distance, the bucket holds

[40 — 0.2(227)] 1b of water when it is x} ft above its original 80 ft depth. Moving this amount of water a distance
A requires (40 — 1—1093:-‘ ) A ft-1b of work. Thus, the work needed to lift the water is
W= lim 3 (40— La7) Az = [2(40 - Lz)de = [40z ~ F2?]; = (3200 — 320} fr-Ib
RO0 =1
Adding the work of lifting the bucket gives a total of 3200 ft-1b of work.

. At a height of & meters () < z < 12), the mass of the rope is (0.8 kg/m}{12 — z m) = (9.6 — 0.8z) kg and the
mass of the water is (25 kg/m)(12 — z m) = (36 — 3x) kg. The mass of the bucket is 10 kg, so the total mass is
(9.6 — 0.8z) + (36 — 3z) + 10 = (55.6 - 3.8z) kg, and hence, the total force is 9.8(55.6 — 3.8z) N.

The work needed to lift the bucket Az m through the ith subinterval of [}, 12] is 9.8(55.6 — 3.8x]) Aw, so the

total work is
12
W = lim 3> 9.8(55.6 — 3.847) Az = [1*(9.8)(55.6 — 3.82) dz = 9.8[55.6:1: —1.942

7!.4)00 =1

]
= 9.8(393.6) ~ 3857 J

251b
. The chain’s weight density is ——— e

be lifted 2(x — 5) ft, so the work needed to lift the éth subinterval of the chain is 2(x7 — 5)(2.5 Az). The total work

= 2.5 Ib/ft. The part of the chain x ft below the ceiling (for 5 < z < 10) has to

needed is

W= lim 3 2(c! - 5)(2.5) Az = [F12(x - 5)(25)]dz =5 [, *(z — 5) dz

n—0o =1

=5[32% —5z].” = 5[(50 — 50) — (¥ — 25)] =5(%) = 62.51t-Ib

. A “slice” of water Az m thick and lying at a depth of x7 m (where 0 < z; < £) has volume (2 x 1 x Ax) m3,
a mass of 2000 Az kg, weighs about (9.8)(2000 Az) = 19,600 Az N, and thus requires about 19,6007 Ax J

1/2 1/2

of work for its removal. So W = lim Z 19.6002; Ax = = 2450 ].

ﬂ"m

19,600z dz = [9800z°]

. A horizontal cylindrical slice of water Az ft thick has a volume of 772k = 7 - 12% - Az ft® and weighs about
(62.5 Ib/f*) (144w Az £t*) = 90007 Az lb. If the slice lies 27 ft below the edge of the pool (where 1 < z} < 5),

then the work needed to pump it out is about 90007 x] Az. Thus,

= lim Z 90007z} Az = [ 90007z dx = [450072* } = 45007(25 — 1) = 108,0007 ft-lb

TE**OO =1

. A rectangular “slice” of water Azx m thick and lying x ft above the bottom has width z ft and volume 8x Az m?.
It weighs about (9.8 x 1000)(8x Ax) N, and must be lifted {5 — z) m by the pump, so the work needed is about
(9.8 x 10%)(5 — #)(8 Az)J. The total work required is

W [2(9.8 x 10°)(5 — x)8zdx = (9.8 x 10%) [ {40z — 82°)de = (9.8 x 10°)[202* — §=

= (9.8 x 10°)(180 — 72) = (9.8 x 10%)(108) = 1058.4 x 10° = 1.06 x 10° J
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22. For convenience, measure depth = from the middle of the tank, so that —1.5 < & < L.om.

Lifting a slice of water of thickness Az at depth z requires a work contribution of

AW = (9.8 x 10°) (2 (1.5)% — ;1:2>{6 Az)(2.5 + z), 50

W [0 (9.8 x10°)12v/2.25 — 22 (2.5 + 2) dx

~ (98 x10)[60 [ /] - e+ 12 [2] 7\ - ot da

The second integral is 0 because its integrand is an odd function, and the first integral represents the area of a

quarter-circle of radius % Therefore,

W (9.8 x 10460 [7/2 /3 — 22 dz = (9.8 x 10*)(60) (1) (3) = 330,750m = 1.04 x 10°J

. Measure depth = downward from the flat top of the tank, so that 0 < & < 2 ft. Then

AW = (62.5){2v4 — 22 }(8 Az)(x + 1) ft-1b, s0

W (62.5)(16) [z + 1) V= 22 dx = 1000(]02 eVIZ P du+ [EVEI— 2 dw)

= 1000“ 1/2( du) + %‘.’T(QZ)} [Putw =4 — 22, s0du = —2z dz|
aip]d .
= 1000([% : gu“”] + ﬂ') = 1000(% + =) ~ 5.8 x 10° ft-Ib
0 ’
Note: The second integral represents the area of a quarter-circle of radius 2.

. Let z be depth in feet, so that 0 < z < 5. Then AW = (62.5)7(v/5? — 22 ) Ax - z fi-Th and

W A 625 7 #(25 — o) de = 62,57 La® — o)) = 62.5m(52 — 22 — 62.57(%?)

T4 4

22 3.07 x 107 ft-Ib

. If only 4.7 % 10 J of work is done, then only the water above a certain level (call it &) will be pumped out. So we

use the same formula as in Exercise 21, except that the work is fixed, and we are trying to find the lower limit of

integration: 4.7 x 10° = f* (9.8 x 10%)(5 — z)8x d = (9.8 x 10*)[202% — § 2 S

x 10 ~ 48 = (20-3% — £.3%) — (20R° - 3R%) & 50

98

2h% — 15R% + 45 = 0. To find the solution of this equation, we plot

2h% — 15h% + 45 between h = 0 and h = 3. We see that the equation

0
is satisfied for i 2= 2.0. So the depth of water remaining in the tank is t

about 2.0 m.

—40
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26. W~ (9.8 x 920) [7/7 12, /2 — 22 (3 +x)dx_9016[30f3/2,/ —a?de +12 [z ,/g-g:‘zdm].
Here fsf? \,/ —x?de = %"7(2) = dj3/2 /3 —a?dr = [qM %Ulmdu

9/4
[where u = % — 2%, s0du = —2z dz) 2

W R 9016[30 - S+ 12+ §] = 9016( 27 + &7) ~ 6.00 x 10° J,
21. V = mriz, 50 V is a function of z and P can also be regarded as a function of 2. If Vi = mr?z; and Vo = nr?za,

then

W:/:z F{z)dx [2 ar?P(V(z)) de

1 1

= fxz P(V(z))dV(x) [Let V{z) = wr’e, s0 dV{x) = 7r° d.]

Va2
:f P{V1dV by the Substitution Rufe.
v

’
1

28. 160 Ib/in* = 160 - 144 Ib/ft*, 100 in® = 25& ft>, and 800 in® = 22 i,

k= PV = (160 - 144) (32 = 23.040( 2%)"* ~ 426.5. Therefore, P ~ 426.5V "4 and

800/1728 25/54
W= / 426.5V 71 AV = 42654V O]
100/1728 : 25/432

= (426.5)(2.5) {(%352—)0'4 - (%)M]

~ 1.88 x 10 ft-Ib

b
29 W = / r)dr = / G’mlm2 dr = Gmlmg[ rlJ = Gmyms (1 — %)
u a

1 1
R R4 1,000,000

and . = mass of satellite in kg, (Note that 1000 km = 1,000,000 m.) Thus,

30. By Exercise 29, W = G]'u‘m( ) where M = mass of Earth in kg, R = radivs of Earth in m,

1 1
6.37 x 105 7.37 x 106

W = (6.67 x 107"1)(5.98 x 10**){1000) x ( ) ~ 8.50 x 107 )

6.5 Average Value of a Function
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3 gue = ﬁ _]'017/2 coszdr = %[sins\':]g/2 = %(1 ~0)= %

4 gue = 775 ;zz\/l—km’*dm:é—flg\/_-%du [ =1+ 2> du = 3z* dr]

9
_ 26
%[%Hs/z]l = %(27* 1) =3

= PeTF dt =L [P Vu(ddu)  [u=1+¢" du=2tdl]

26
1. 26, ,1/2 1 2].,3/2 _ 1 3/2 _
S e = g5 3w ]1_15(26 1)

= [T sec® tan g db = dlsec)y/t = 2(v2-1)
T
1.
6

~ . -1 4 . e
N cos'z sinzdz = 1 [ u'(—du) [u=cosz, du=—sinrdz]

Lt u b a = 2 -

-3l -

b fle) = foe &
& e=2o0r4d

Y .
10. (3} fove = &__—_0/ Vide = z[?’
0

4
i) - -0

(b} f(C) = favc =4 \/E = % L=

1

1" (a) fave = — 0

/ (2sinx — sin 2z) dx
0

m
L[~ 2cosz -+ } cos2z]]
Ale+3) (249 =2

(b} fic) =fae & 2sinc—sin2c= % =
o1 & 1.238 or cp = 2.808
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12. {a) fa\ra. - / {1 +J}.2

2 —
1 5

du v =14 2%, du = 2z dx]
) uz

_1n_1‘“_k1 1o\_2
20w, 2%5 5

2c 2
(b) f(C) = fuve = (1+—(;2)2 = g & Sc= (1 +C2)2

< ¢ = 0,220 01 c2 = 1.207

. £ is continuous on [1, 3], so by the Mean Value Theorem for Integrals there exists a number ¢ in [1, 3] such that

fl z)dr = f(e)(3—1) = 8= 2f({c}; that is, there is a number ¢ such that f(c) = £ = 4.

1 b
. The requirement is that 50 [ flxydx = 3. The LHS of this equation is equal to
=UJ

b
1 . ;
/ (2+6:c—3w2)d;r:6[2:):4—33:2—$3]3:2+3b~—bz,soweso]vetheequatloanJerfb‘z=3 =
0

3+/(-3)2-4-1-1 3.5
2.1 h

¥ -34+1=0 & b= . Both roots are valid since they are positive.

1 50 20
50 — 20 f() T3 = [£(25) + £(35) + f(45)]

= §(‘38+29+48)

' fa\'e =

- () Ve = 7575 . 012 v(t) dt = 751. Use the Midpoint Rule with n = 3 and At = 5% = 4 t0 estimate I.

Ies Mz = 4[v(2) + v(6) + v(10)] = 4]21 + 50 + 66] = 4(137) = 548. Thus, vae & 5 (548) = 452 km/h.
(b) Estimating from the graph, v{¢) = 45% whent = 5.2 s,

. Letf =0 and ¢ = 12 correspond to 9 A.M. and 9 P.M., respectively
Toe = 195 fo [50+ sin Sat] dt = & [50t — 14- 12 cos Lt °

= 15(50- 12+ 1422 4 14. 2] = (50 + 2}°F ~ 59°F

e = 1 [F 4pde = 2[22°]] = 10°C

1 f% 12 . B
.szgfo m—ldxzéfo( + 1) 1/2d:c—[‘3 r4+1 —9 3=06kg/m

. ds
gt = t=/2s/g |[sincet > 0] Nowv = i =gt=gv2s/9=+2gs = V' =295 =
2

v
3" We see that v can be regarded as a function of ¢t or of s: v = F(t) = gt and v = G(s) = \/2gs. Note that

r = F{T) = gT. Displacement can be viewed as a function of t: 5 = s{¢) = 1gt”; also s(¢) =
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When t = T, these two formulas for s(t) imply that
2gs(T) = F(T) = vp = T = 2(3¢T %) /T = 25(T)/T (%)
The average of the velocities with respect to time ¢ during the interval [0, T) is

1 T

1
7o ), F(tydt = = [s(T) —s(0)] by FIC]

Vtave = Fave =

1
= s(T) [since s(0) = 0] = -vr [by (%)]
T 2
But the average of the velocities with respect to displacement s during the corresponding displacement interval
[5(0), $(T)) = [0, 5(T)] is

s(T) \/Q_g 3(T) 1
reve = Glgve = —o—— ; 2gsds = ——= s ds
s-ave Gy N ) o gsas S(T)

= 2 EgeT) = 2ur Iby (4]

LV *[1 - cos(Znt))

U =

1 R 1 (B p
.Uavemov{i")dr—ﬁfo FﬂR

P 2
Since v{r) is decreasing on (0, R], vau = v(0) = il

. Thus, vy = 2 Prnax.
4’1’]! ave 3

. Let F(z) = [ f(t)dt for z in [a,b]. Then F is continuous on {a, b] and differentiable on (a, b), so by the Mean
Value Theorem there is a number ¢ in (a, b) such that F(b) — F(a) = F'(c)(b — a). But F'{x) = f(x) by the

Fundamental Theorem of Calculus. Therefore, ff fltydt — 0= f(c)(b—a).

e b
2. fue|a,b] = _ ﬁf f(a:)d:chb—i&/C f(z)da

_L:Z[pa/f(m dm] —a[ ﬁc/f dx]=E:qu»c{a,c]+Hfm[c,b}

6 Review
CONCET CHECK

1. (a) See Section 6.1, Figure 2 and Equations 6.1.1 and 6.1.2.

(b) Tnstead of using “top minus bottom™ and integrating from left to right, we use “right minus left” and integrate
from bottom to top. See Figures |1 and 12 in Section 6.1.

2. The numerical value of the area represents the number of meters by which Sue is ahead of Kathy after 1 minute.
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3. {a) See the discussion in Section 6.2, near Figures 2 and 3, ending in the Definition of Volume.
(b) See the discussion between Examples 5 and 6 in Section 6.2. If the cross-section is a disk, find the radius in
terms of x or y and use A = Tr(radius)Q. If the cross-section is a washer, find the inner radius ry, and outer

radius oy and use A = w(rgu[) - Tr(rff,).

4. (a) V = 2nrh Ar = (circumference) (height) (thickness)
(b) For a typical shell, tind the circumference and height in terms of x or y and calculate
V= f(f’ {circumference) (height} {dx or dy). where a and b are the limits on z or y.

(¢) Sometimes slicing produces washers or disks whose radii are difficult (or impossible) to find explicitly. On other

occasions, the cylindrical shell method leads to an easier integral than slicing does.

5. j: f(x) dx represents the amount of work done. Its units are newton-meters, or joules.
1 b
6. (a) The average value of a function f on an interval [a, b] is fie = 3 / fla) dz.
—a/,
{b) The Mean Value Theorem for Integrals says that there is a number ¢ at which the value of f is exactly equal to

the average value of the function, that is, f(c) = fue. For a geometric interpretation of the Mean Value Theorem

for Integrals, see Figure 2 in Section 6.5 and the discussion that accompanies it.

EXERCISES

lL0=z’-2-6=(r-3){x+2) & z=30r-2 850

A:f'jQ [Uf(xz~$—6)}dw:f32(—a:2+w+6)d$

—[ 3t da? el

=(-9+2+18) - (§+2-12)

__ 125

[

220—-1"=z2°-12 & 32=22 & 2z°=16 & z=-t4.

—a?) — (2% ~12)] dx = J: (32 — 22%) dz

leven function}
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Ll-al=1-y7 & —2’=—yz & "=y = 1'=z

= zt—x=0 = z(z*-1)=0 = y=1-x

rlz - 1){z*+z+1)=0 = z=0o0rlSo : ”0
.0}

A= [ a) = (= VB do = [} (VE - %) do

- [.2m3/2 -1

3

4 P’ +3y=—-y & ¥Yr+4=0 o yy+4)=0 &
y=0o0r —4.

A :/ [~y - (" +3v)] d:u=/_4(—312 —dy)dy

—4

b 0 (% ) = %

7. Using washers with inner radius z* and outer radius 2z, we have

V= 77'[02 {(‘2:{:)2 - (r2)2] de = 71'/2 (42 — ) dzx

0
:71'[%.1’23 - %(L‘S]EIN(S—Z - 2) =32r. &

3 5 1
__ 4w
— 15
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814y =y+3 & p-y-2=0
(y-2y+1)=0 & y=2or~-1

1% =7T'/I2 [(y+3)2— (1+y2)2} dy

—1

2
=7r/ (y2+6y+971ﬁ2y2—y4)dy
Jo1

2
2
ﬂ/ (8+6y —y” —y')dy = w8y +3y" — Lv° — L")
~1

m[{16+12-5 - 2) - (-8+3+ %+ 1)
733 - % - &) = U=

1
3 5 5

= [ {1604 - 0 -0~ 1P}y

= 277[ [(10 —y°)? — 1] dy

G

3
= 271'/ {100 — 204% 4+ 3* ~ 1) dy
0

3
=27 / (99— 20y° + y*ydy = 27 [99y — Xy° + 1),
+0

= 27 (297 — 180 + 243} = 16867

0.V = ﬂ/_?. {[(g ~2?) - (=) - {2+ 1) - (-1)]"’} dx

2

=7 [2 10 — 2%)* — (2% + 2)°] dx

2
:2w/ (96m24w2)da:=487r/ (4 - 2°)dx
Q

g
= 487 [4x — §2%]) = 48x(8 — &) = 256

11. The graph of 2 — y* = a? is a hyperbola with right and

left branches. Solving for y givesus 4° = 2% — a? =

y = £vz? — a?. We'll use shells and the height of each
shell is /a2 — a2 — (—vz? — (12) =212 — a2.
The volume is V = faﬁh 2rx - 2v/x2 — a? dx. To eval-

uate, let v = z° — a2, so du = 2x dz and z dx = 3 du.

When x = a, v =0, and when £ = a + h,
u=(a+h)®—a®=a®+2ah + k- a® = 2ah + K"

] 2ah+I12

Thus, V = dr 7 (4 du) = 2n 2702 3
0

0

= %W(Qah + hz)
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LV = .[;5://,22 2wx cosz dr by the method of cylindrical shells]

V= foa[(t=a) - (1 -0 da

V= [Zor(8 —a*)(2 - z)da
. (2) A cross-section is a washer with inner radius 2% and outer radius .
V= w{(x)z - (:c?‘)z] de = [ m(z? — 2*) dz = [ 32° - éfj; =
(b) A cross-section is a washer with inner radius y and outer radius /.
Ve ) -] du = el =) dy = el - 3 =
{c) A cross-section is a washer with inner radius 2 — x and outer radius 2 — 22,

_-ﬁwlﬂ[(z_xz)z“(g_x)z] dﬂf:fol (ﬂ: — 5z’ +43‘)d:r._7r[1.r5

5

_+2}:Q‘.

1 5
ﬂ[-‘i 3 15

[(ZI—J: —.J:)d.r—[Qf_ : ; =1-

. . Py . i . . . 242 32
(b) A cross-section is a washer with inner radius «* and outer radius 2z — 22, so its area is 7 (22 — r)° — n(2%}".

Vo= fu z)dr = fo [(21: —w2)2 - (.’L‘S)g] dr = foli'r(4$2 —dz® +z' - 2%) dx

—w[éf—r Tt T _"1:?7};:7"(%_1'*'%_%): 105

{¢) Using the method of cylindrical shells,
V = fUl 2nz(2z — 2 — 2%) de = fol 2m(22? — 2® — o'} dr = 2n [ 32" - L2t - 127

4 0

. (2) Using the Midpoint Rule on [0, 1] with f(z) = tan(z”) and n = 4, we estimate
-1

A= tan(m2) dr == i {tan((%)z) + tan((g)j) + tan((g)z) +tan((%)2)} =5 };(1.53) =2 (.38

0
(b) Using the Midpoint Rule on [0, 1] with f(z) =  tan? (x2) (for disks) and n = 4, we estimate

2((;)2)] ~ T (1.114) ~ 0.87

From the graph, we see that the curves intersect at x = 0 and

atz =a~0.75withl—z®> 2% —z+1on{0,a).

ye=xf—x 41

0
(b) The area of 2k is

A=} [{(1—2%) — (2% —a + 1)) de=1{—%2°— 32" + 3z 2} = 0.12
{c) Using washers, the volume generated when @R is rotated about the x-axis is
V= 'n'foﬂ [(1 — :172)2 — (:r:G - 1)2] dr = wfoa(—-;r:]? + 227 — 228 + 2 — 327 + 2;{:) di

[ 1,13 1.8 2.7 1.5 _ 3 219
e e AR T TR P S F A A o A
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(d) Using shells, the volume generated when 9 is rotated about the y-axis is

V=l ome[(1-2%) — (= gt )] dr=2r [ (—2® — 27 + 2% d

Cs
= o[- Lt L2 4 Lat] = 031

. The solid is obtained by rotating the region % = {(1, y)10<e <5, 0<y <cos :r} about the y-axis.
. The solid is obtained by rotating the region % = {(z,y) [0 <z < 5,0<y < V2 cosz} about the z-axis.
. The solid is obtained by rotating the region ® = {{z,y) |0 <y <2,0< 2 <4 y*} about the a-axis.

. The solid is obtained by rotating the region R = {(z,y) |0 <z < 1,2 - Vo Sy <2 - z*} ubout the z-axis.

Or: The solid is obtained by rotating the region ® = {(z,%) [0 < z < 1,&* <y < /x} about the line y — 2.

. Take the base to be the disk «* + y* < 9. Then V = ] A(x) dx, where A(xo) is the area of the isosceles right

triangle whose hypotenuse lies along the ling & = xq in the zy-plane. The length of the hypotenuse is 2+/9 — x?
and the length of each leg is v2 0 — x2. A(z) = %(\f V9—z ) =9 —a% 50

V=2 2 AGr) de =2 79— «?) dr = 2[92 — Ja?]) = 2(27 - 9) = 36.
V= [t Al de =2 ) Ale)de =2 ) [(2 - 2%) — 22 de =2 [} [2(1 - 2%)] ds

:8_];]1(1W2:1'2+;r:‘1)dr:8[m:—§w3+%w‘\ +%):S’—g

. Equilateral triangles with sides measuring 1 & meters have height 2 sin 60° = 3§r Therefore,

Alx) = oy = 8,2y = ['20/1( de = L [(21) ridr = A@[l:r }20 0003 %ﬂ m*,

1 1
247 8 64 JO 64 12 0 643

. (a) By the symmetry of the problem, we consider only the solid to the right of the origin. The semicircular

cross-sections perpendicular to the -axis have radius 1 — x, so A{z) = 17(1 — z)?. Now we can calculate
a7

V=2

Jo A( )d’r‘;2f0 _77'1*1' dJ’,"‘fO ]_—_1-)2 7%[(171_)1];:%

2

(b} Cut the solid with a plane perpendicular to the z-axis and passing through the y-axis. Fold the half of the solid in
the region = < () under the zy-plane so that the point (—1, 0) comes around and touches the point (1,0). The
resulting solid is a right circular cone of radius 1 with vertex at (z, y, z) = (1,0,0) and with its base in the

yz-plane, centered at the origin. The volume of this cone is %m‘zh = %w 171 = 3

21. fe)=ke = B3ON=k{(I5-12)cm = k=10N/ecm =1000N/m. 20cm —12¢cm=0.08m =

W= In 08 4 e — 1000 ]U 98 . da = 500 E3 ]U o

= 500(0.08)* = 3.2 N-m = 3.2J.
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28. The work nceded to raise the elevator alone is 1600 Ib x 30 ft = 48,000 ft-1b. The work needed to raise the bottom

170 ft of cable is 170 ft x 10 Ib/ft x 30 ft = 51,000 fi-Ib. The work needed to raise the top 30 ft of cable is

I3 100 de = [527])5° = 5 - 900 = 4500 fi-Ib. Adding these. we see that the total work needed is
48000 + 51.000 + 4,500 = 103,500 ft-Ib.

29. (a) The parabola has equation y = ax” with vertex at the origin and passing

through (4,4). 4 =a-4* = a:i = y:%mz = z*=4dy

= x = 2/y. Eachcircular disk has radius 2 /4 and is moved 4 — y ft.

W= [t (27)° 6254 —y) dy = 250m [ y(4— y)dy

~ 250m[2y? — 14°]) = 250 (32 ~ &) = 29007 ~ 378 fi-lb

{(b) Tn part {a) we knew the final water level (0) but not the amount of work

done. Here we use the same equation, except with the work fixed, and the

lower limit of integration (that is, the final water level — call it k)

unknown: W = 4000 <« 250x [21 — Su ] =400 <

6o (328 - (207~ 3RY)] & RPo6R7 43220
We graph the function f(k) = * — 6h* + 32 — 48 on the interval [0, 4] to see where it is 0. From the graph,
f(h) = O for h = 2.1. So the depth of water remaining is about 2.1 ft.
- fowt sin{t?) dt = = fowo sin u( 3 du) [u = t%, du = 2t dt]

100

. {-- L'Usu} = L (= cos 100+ cos0) = (1 — cos 100) & 0,007

0

N llm Sfave = llm

Fa
/ ' f(t)dt = lim (r+h’3 Fiz) , where F(ir) = [* f(t) di. But we

1
o(r+h)—
recognize this limit as being F'(x) by the definition of a derivative. Therefore, Ain{) Sfowe = F'(2) = f(x)
by FTCI.
32. (a) YR, is the region below the graph of 4 = 2 and above the z-axis between iz = 0 and x = b, and R, is the
region to the left of the graph of = = | /y and to the right of the y-axis between y = O and y = b, So the area of
2 b
Ry is Ay = ju z?dr = [1 3] 3 and the area of Rz is Az = Jo Vidy = {:;ya/z] = %b3. So there

is no solution to Ay = A, for b £ 0.
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{b) Using disks, we calculate the volume of rotation of 2k, about the z-axistobe V1, =7 f(]b (:r,2)2 dr = é:rrb5.

Using cylindrical shells, we calculate the volume of rotation of 21 about the y-axis to be

Vig =27 [P a(a?) de = 27 [e?]) = dmb*. So Vi = Viy & imd’ =1nb! & 20=5 &

b= % So the volumes of rotation about the - and y-axes are the same for b = 3.

(¢) We use cylindrical shells to calculate the volume of rotation of %2 about the z-axis:

2 . b2
Raw =27 job y(/y)dy =2r {éysﬂ] . 27b°. We already know the volume of rotation of R about the

z-axis from part (b)), and R, , = Rz & %ﬂbs = %wb“”, which has no solution for b # 0.

{d) We use disks to calculate the volume of rotation of %R about the y-axis:
" )2 2 . -
Ry =7 [J (\/1])2 dy == [%yg}g = 3mb". We know the volume of rotation of %1 about the y-axis from

part (b), and Ry, = Rz, << 3mb' = 1wb*. But this equation is true for all b, so the volumes of rotation

about the y-axis are equal for all values of .
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1. {a) The area under the graph of f from 0 to £ is equal to jg f () dz, so the requirement is that for f(xydz = 1* for

all . We differentiate both sides of this equation with respect to ¢ (with the help of FTC1) to get f(t) = 32

This function is positive and continuous. as required.

{b) The volume generated fromz =0toxz = bis f‘f 7[f(z)]* dz. Hence, we are given that b= f;’ 7[f(2)]* dz

for all b > 0. Differentiating both sides of this equation with respect to b using the Fundamental Theorem of

Calculus gives 26 = #[f ()] = f{b) = /2b/m, since f is positive. Therefore, f(x) = \/2x/7.

. The total area of the region bounded by the parabola )

y =z —x° = x(1 — z) and the z-axis is

e -2y de = [fa? -~ 4a¥2 = 4.

Let the slope of the line we are looking for be m. Then the area above this

line but below the parabola is [ [(z — %) — mz| dz. where a is the

z-coordinate of the point of intersection of the line and the parabola. We

find the point of intersection by solving the equation z — z° = mz &

l—x=m < zx=1-m. Sothevalueofais1l—m,and

folim [(z —a®) — ma]de = ‘ulim (1= m)e —2*] do = [3(1 - m)a” - %ms];—m

= %(1 —m){1—m)® -

We want this 1o be half of £, s0 £{1 — mP=% o (1-mP=3

1-m=¢L & m=1-

1
2 3

1 . . . — .
s So the slope of the required line is 1 — 5 = 0.206.

. Let ¢ and b be the w-coordinates of the points where the line intersects the ¥

curve, From the figure, By = Ry =

Iy [c — (82 — 27:1:3)] da = [ab [(81" - 272°) — c] dz

[co - 4z 4 2—4-";1:4]3 = [41‘2 — %az‘] - cr}z

ac —4a® + Za* = (46° — Fb* —be) — (40” - Ta* - ac)
0=4b" — b — be = 46" — Zb* — b(8b — 271°)
= 46" — Zp* —8p® + 270" = Elpt — 4
2 2
=b" (80" - 4)

Soforb > 0.6° =48 = b=% Thus,c=8b—270° =8(5) - 27(55) = 5

3
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4. (a) Take slices perpendicular to the line through the center C' of the bottom of the glass and the point P where the
top surface of the water meets the bottom of the glass.

A typical rectangular cross-section y units above the axis of the glass has width 2|QR| = 2 /72 — y* and

B o L J . ‘ o h |PQ  r—y ‘
length b = |@S| = e (r —vy). [Triangles PQS and PAB are similar, so I=1pa % ] Thus,

Vz[TQ T2~y2-£(r—y)dz:L/ (]fg)\/rz'—@ﬁd-y
Jo. 2r . T
=1L ' Vi fyzdy»%

/T yyvr? —yidy

o =7

the first integral is the area of a semicircle of radius r, arlL

and the second has an odd integrand 2

(b) Slice parallel to the plane through the axis of the glass and the point of contact I°. (This is the plane determined
by P, B, and C in the figure.) STUV is a typical trapezoidal slice. With respect to an z-axis with origin at C' as
shown, if S and V have z-coordinate x, then |SV| = 2+/72 — 22, Projecting the trapezoid STUV onto the
plane of the triangle P AB (call the projection S'T'U'V"), we see that [AP| = 2r.|SV| = 2v/r? — 22, and
\S'P| = |V'A| = L(JAP{ — |SV]) = r — V2 — 2.

ST AB L
ST _ |AB] o |ST| = (r— vr? —z?} - o o the same way, we find that

By similar triangles, 5P|~ |4AP)"

VUl _ |ABl —wplL L an. Lo sy, L
VB = [ip S0 VU] = (VP = = ([AP| = [V'A]) - o~ = (r+vrf=az?)- o

The area A(z) of the trapezoid STUV is 3|SV{ - (|ST| + [VU|); that is,

- - L L
Alw) = 2 - 2vr2 — 2% |(r - Tz—zz)-$+(7'+\/rgf:n2)-§ = L+/r? — z2. Thus,

2 2
V=" A@)de=L[" Vi?—atdz=L- % = 7”2‘5.

{c) See the computation of V' in part (a} or part (b).
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(d) The volume of the water is exactly half the volume of the cylindrical glass, so V' = %T(T‘QL.

(e)

Choose z-, y-, and z-axes as shown in the figure. Then slices perpendicular to the x-axis are triangular, slices
perpendicular to the y-uxis are rectangular, and slices perpendicular to the z-axis are segments of circles. Using

triangular slices. we find that the area A(xz) of a typical slice DEF, where [ has z-coordinate z, is given by

L L . L ..
A(e) = HIDE| - [EF| = 4IDE|- (£1DEI) = 22 DB = £ (% — %), Thus,

5. (a) V = wh%(r — h/3) = 1nh*(3r — h). See the solution to Exercise 6.2.49.

{b) The smalter segment has height h = 1 — x and so by part {a) its volume is
V= ia(l - 2)*[3(1) — (1 — x)] = 3=(z — 1)*(x + 2). This volume must be % of the total volume of the
sphere, which is 27(1)*. So zw(z — 1)*(x + 2) = 3(37) = (#"-2r+1)(z+2)=3 =
' -3z +2=1% = 32° -9z + 2 = 0. Using Newton’s method with f(z) = 3a° — 9z + 2,

3
w— 920 + 2 .
fl(z) =92 — 0, wegetans1 = - % Taking z; = (), we get xq == 0.2222, and
Lo —

3 R 0.2261 =2 x4, 50, cotrect to four decimal places, r ~ 0.2261.

(¢) With r = 0.5 and s = .75, the equation 2* — 3rz® + 4r%s = 0 becomes z* — 3(0.5)x* + 4(0.5)*(0.75) = 0
= -2z +4(3)3 =0 = 8z’ — 124" + 3 = 0. We use Newton’s method with
. : A
flz) = 8a® — 1222 + 3, f'(z) = 24a® — 242, 50 T y1 = Tn — H. Take z, = 0.5. Then
g 7= L6667, and x3 /= 0.6736 = x4. So to four decimal places the depth is 0.6736 m.
(d) (i) From part (a) with r = 5 in., the volume of water in the bowl is
V = 2mh®(3r — h) = §xh*(15 — h) = 5rh® — 37h”. We are given that % = 0.2 m"/s and we want to
dh dh dh 0.2

dh ) dv. 2 ) _
find p when h = 3. Now pri 10mh 7 —7h dt’w - T(10k = 12)

dh _ 0.2 1
dt w(10-3-32) 1057

. When h = 3, we have

= 0.003 in/s.
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(ii) From part (a), the volume of water required to fill the bowl from the instant that the water is 4 in. deep is
V=1.4705)" - in(4)*(15 — 4) = 2 -126mw — 2 . 11z = Elz. To tind the time required to fill the

bowl we divide this volume by the rate: Time = J%% = 307 ~ 387 5 & 6.5 min

6. (a} The vulume above the surface is jo‘r M Ay dy = ]_L}jh Aly)dy - ffh A(y) dy. So the proportion of volume

L Aly) dy . fh_h Aly) dy — [Uh Aly) dy

J0
fE50" Aly) dy JE Alyydy
have F =W = p.gf°, Aly)dy = pog 5" A(y)du so [° Ay dy = (po/p,) S50 Aly) dy.
Ay 5 A dy - (poles) I Aly) dy _pr
T Aly) dy S5t Aly) dy Ps

h h

above the surface is . Now by Archimedes’ Principle. we

Therefore, . 50 the percentage of

Y = 2
volume above the surface is 100(M) "
Pf

(b} For an iceberg, the percentage of volume above the surface is 'lOO(%} %~ 11%.

{c) No, the water does not overflow. Let V; be the volume of the ice cube, and let ¥, be the volume of the water

which results from the melting, Then by the formula derived in part (a), the volume of ice above the surface of
the water is [(p; — py) /oy Vi, so the volume below the surface is Vi — [(p; — pg) /p;]Vi = (pa/ps) Vi
Now the mass of the ice cube is the sume as the mass of the water which is created when it melts, namely
m=pVi=p Ve = Vi = (p/p;)Vi. Sowhen the ice cube melts, the volume of the resulting water is
the same as the underwater volume of the ice cube, and so the water does not overflow.

The figure shows the instant when the height of the exposed part of the
ball is y. Using the formula in Problem 5(a) with r = 0.4 and

h = 0.8 — y, we see that the volume of the submerged part of the

sphere is 27(0.8 — 3)*[1.2 — (0.8 — y)], so its weight is

1000g - 27s*(1.2 — s), where s = 0.8 — y. Then the work done to

submerge the sphere is

W = gl'ggl—%@ﬂq (12— s)ds = g% ]"]0'8(1..2.';'2 — %) ds

= ¢g1900 100(] {0 49 —_ _34]3'8 = ]000 (0 2048 — 0 1024)

= 9.8 1900 7(0.1024) ~ 1.05 x 10” joules

. . . . . dV . .
1. We are given that the rate ot change of the volume of water is (d,_t = —kA(x). where k is some positive constant

and A(x) is the area of the surface when the water has depth z. Now we are concerned with the rate of change of

dV._ dV dx

dx
the depth of the water with respect to time, that is, —. But by the Chain Ruie, — oA

dt’

so the first equation

dV d. .
can be written — T'f = —kA{x) (x). Also, we know that the total volume of water up to a depth x is
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fo s) ds, where A(s) is the area of a cross-section of the water at a depth s. Differentiating this
equation with respect to x, we get dV/dx = A(x). Substituting this into equation x, we get

Alx)(dz/dt) = —kA(z) = dx/dt = —Fk,aconstant.

. A typical sphere of radius v is shown in the figure. We wish to maximize the
shaded volume V. which can be thought of as the volume of a hemisphere of
radius ¥ minus the volume of the spherical cap with height & = 1 — V1 —r?

and radius 1.

V=2=> 3 1Irx(l-1 —7'2) —{1=+v1—=7r%)] [by Problem 5(a)]
[21" — (2 72\/_17—1"2~r2)( + ]—TQH

T [21' —

Lil= W= N

( 2 1—T2_T(T +2)+2’r(17r)
Wopr

= %’ﬂ‘ 6r2 +

ﬂ_(ﬁ'r?\/l —r2 —3?'3)
' Vv1—r?

Viiry=0 @ 2yl—rZ=r - = i & r= 25 s 0.89. Since V'(r) > 0 for

_ 2
0<r< \/-.de( ry < 0 for =2 ZF<r<l we know that V' attains a maximum at r = 5.

. We must find expressions for the areas A and 5. and then set them equal and see what this says about the curve C.

If P = (a,2q). thenarea A is just [ (22 — &%) dx = [} ° do = 4a”. To find area B, we use y as the variable

of integration. So we find the equation of the middle curve as a function of y: y = 22° < = = J/y/2.

since we are concerned with the first quadrant only. We can express area B as

2
= %a3 — .[Uza C'(y) dy, where C{y) is the function

i o= o] o

20° Cly)dy = [ (/(1;) dy = a®. Now we

with graph C'. Setting A = B, we get 3a° = $a” — [

3

differentiate this equation with respect to @ using the Chain Rule and the Fundamental Theorem:
C(2a*){4a) =30 = C(y) =2 /y/2, where y = 2a*. Now we can solve fory: @ =2 ,/y/2

o= 2(y/2) = y= 357

. We want to find the volume of that part of the sphere which is below the surface

of the water. As we can see from the diagram, this region is a cap of a sphere
with radius v and height v + d. If we can find un expression for d in terms of h,
rand @, then we can determine the volume of the region [see Problem 5(a)],

and then differentiate with respect to » to find the maximum. We see that

Siﬂﬁ’:g{“g = hfd:g%g & d=h—-resct.
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Now we can use the formula from Problem 5(a) to find the volume of water displaced:

V:%Wh‘z(-%—h):l (r+d?3r—{r+d)]= —TF(T+h*?‘CSCH)Q(QT—h'FTCSCH)

3

Zlr(l —csc 0) + h)*[r(2 + csch) — A
Now we differentiate with respect to r:

dv/dr = Z{{r(1 — csc) + B2 (2 + cscd) + 2[r(1 — csc8) + h](1 — cscB)[r(2 + csc#) — h])
= Z[r{1 — ecscB) + h]([r(1 — csc @) + R[{2 + csc ) +2(1 — csc8){r(2 + cscd) — h)
Zr(1 —csc @) + h)(3(2 4 csc8)(1 — cscf)r + [(2 + csc ) — 2(1 — cscO)]h)

Zlr(1 —esc @) + h]{3(2 + cscH)(1 — cscd)r + 3hescd)

h hescd . h
-: -\‘ —_ = B - = U
This is 0 when 7 T and when r (583 2)(cscd — 1) Now since V(csc& 1 )

(the first factor vanishes; this corresponds to d = —r), the maximum volume of water is displaced when

hescf . . , . ..
o= . {Qur intuition tells us that a maximum value does exist, and it must occur at a critical

(csc @ — 1){cscd + 2)

number.) Multiplying numerator and denominator by sin” #, we get an alternative form of the answer:

hsint
sin + cos 26"

. (&) Stacking disks along the y-axis gives us V = f(:‘ = [f())* dv.

dav._dV dh 2 dh

&=l

b) U the Chain Rul -
(b) Using the Chain Rule, dt = @

PO e D= Cnlf PO = RAVE > [f)]F = S5 VE

(©) kAVh = n[f(h)} — —

vl

f(h) =/ % RY4: that is, fly) = % y'/*. The advantage of having % = (' is that the markings on the

container are equally spaced.

12. (a) We first use the cylindrical shell method to express the volume V' in terms of ki, 7, and w:

v 22 v 2 3
V=/ 2mydr:/ 2mc[h+‘”}da:_2wf (h:c+wx)d:c
0 0 29 0 29

2417 2.4 2
=2 hi+wx =21 | — hr? +wr =7rh.r2-|-7rwr =
89 o 2 8¢ 4y

)/(49) 4gV — et
4mrgr? )
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{b) The surface touches the bottom when h =0 = 4gV — rirt=0 =

To spill over the top, y(r) > L &

2 . 2.2 2.2
w?r? _AgV —mirt Wi 4gV Twr

2g Amgr? 2g - Argr?  Amgr?

L<h+

1% 2 P Vv wir?
= 2 + =—+—
2 4g 2g or 4q

2y _ 4g(nr*L -V
_-L‘:Tﬂ‘ L-V o W Q(T”" )
w2 wre a7t

2/ g(mr2L — V)

ri/7 )
{¢) (i) Herewehaver=2,L=T7,h=7—-5=2 Whenz=1y=7—4=3. Therefore,3 = 2+
w? m-82. 1

= 2.392 = w2:64 = LL):SI'Eld/S_ V:W(Q)(2)2+ 49

2 52
= 6 and the surface is 7 — 6 = 1 ft below the top of the tank.

. So for spillage, the angular speed should

bew >

w212
2-32

= 1 = 87 + 81 = 167 f°.

(i) Atthewall,lz=2,50y=2+ 57

. We assume that P lies in the region of positive z. Since iy — z* is an odd

tunction, this assumption will not affect the result of the calculation. Let
P = {a,a®). The slope of the tangent to the curve y = z* at P is 3¢”, and so
the equation of the tangent is ¥ — a® = 30?(z — @) < y = 3a’z — 2a°.

We solve this simultaneously with y = 2 to find the other point of intersection:

2 =3a%r ~20* & (z-a)*(z+2a)=0.5Q = (—2a,—8a") is
the other point of intersection. The equation of the tangent at ¢ is

y— (-8") = 12a%[z — (=20)] & y=12a%2 + 16¢°. By symmetry,
this tangent will intersect the curve again at x = —2(—2a) = 4a. The curve lies above the first tangent, and below
the second, so we are looking for a relationship between A = *, [2* — (3a®z — 2¢°)] dz and

1.4 _ 3.2 2 3
T SO°T + 2a a:}

B=[* [(12a%z + 16a%) — «”] dz. We calculate A = |

2q

'120, =3¢ — (—6a*) = Zo*

a

and B = [6a’x? + 16a°z ~ 12*]™ = 96a® — (12a*) = 108a". We see that B = 164 = 2' A. This is
because our calculation of area B was essentially the same as that of area A, with a replaced by —2a, so if we
replace a with —2a in our expression for A, we get % (—2a)* = 108a* = B.
14. (a) Place the round flat tortilla on an xy-coordinate system as

shown in the first figure. An equation of the circle is

2% + y* = 47 and the height of a cross-section is

2V16 — 22,
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Now look at a cross-section with central angle € as shown in
the second figure (r is the radius of the circular cylinder).
The filled area A(z) is equal to the area A, (z) of the sector
minus the area Az(z) of the riangie. arc length
=216 - x?
A(z) = A1{z) — Az{x)

= %TZGQE — %rz sin 8, [area formulas from trigonometry]

= 3r(rfz) — 1r® sin(f) larc length s = rf, = . =3/r]
r

; . {2416 — 22 ;
=1r.2/16 — 2% - %r251n(—~+~*$—) [s =216 — 2]
T
. f2
=7y 16 —z2 — %T2 sm(;\/ 16 — :cz) {*)
Note that the central angle £, will be small near the ends of the tortilla; that is, when |&| =~ 4. But near the
center of the tortilla (when |z| =2 0), the central angle 8, may exceed 180°. Thus, the sine of f.. will be negative

and the second term in (») will be positive (actually adding area to the area of the sector). The volume of the

taco can be found by integrating the cross-sectional areas from ¢ = —4 to z = 4. Thus,

vm:f A(m)dm:/4 [T\/ﬂ—%r25111(2m>]dw

4 4 r

(b) To tind the value of r that maximizes the volume of the taco, we can define the function

Vi) = [4 [rm éﬁsin(%mﬂ d

A -4

The third figure shows a graph of y — V(r) and y = V'{r). The maximum volume of about 52.94 occurs
when r == 2.2912.

=~ (2.29 52.94)
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