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13 (O VECTORS AND THE GEOMETRY OF SPACE [1ET 12

13.1 Three-Dimensional Coordinate Systems ET 121

1. We start at the origin, which has coordinates (0,0, 0).
First we move 4 units along the positive r-axis,
affecting only the z-coordinate, bringing us to the point
(4,0, 0). We then move 3 units straight downward, in

the negative z-direction. Thus only the z-coordinate is

affected, and we arrive at {4,0, -3).

. The distance from a point to the xz-plane is the absolute value of the y-coordinate of the point. (-5, —1,4) has
the y-coordinate with the smallest absolute value, so @ is the point closest to the zz-plane. (0, 3, 8) must lie in the

yz-plane since the distance from K to the yz-piane, given by the z-coordinate of R, is 0.

. The projection of (2,3, 5) on the zy-plane is (2, 3, 0);

on the yz-plane, {0, 3, 5); on the zz-plane, (2,0, 5).

The length of the diagonal of the box is the distance between

the origin and (2, 3, 5), given by

VEZ—02+(3-02+(5-02=v38=6.16

. The equation = + y = 2 represents the set of all points in
R whose - and y-coordinates have a sum of 2,0r
equivalently where y = 2 — . This is the set

{{#,2 —2,2) | « € R, z € R} which is a vertical plane

that intersecis the xy-plane inthe liney =2 — 2, 2 = 0.
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6. (a) In R?, the equation = = 4 represents a line paraltel to the y-axis. In R, the equation = = 4 represents the set
{(z,y,2) | z = 4}, the set of all points whose z-coordinate is 4. This is the vertical plane that is parallel to the
yz-plane and 4 units in front of it.

(b) In R3, the equation y = 3 represents a vertical plane that is parallel to the zz-plane and 3 units to the right of it.
The equation z = 5 represents a horizontal plane parallel to the zy-plane and 5 units above it. The pair of
equations ¢ = 3, z = 5 represents the set of points that are simultaneously on both planes, or in other words, the
line of intersection of the planes ¥ = 3, z = 5. This line can also be described as the set {(z,3,5) | =z € R},
which is the set of alt points in R® whose z-coordinate may vary but whose y- and z-coordinates are fixed at 3
and 5, respectively. Thus the line is parallel to the z-axis and intersects the yz-plane in the point (0, 3, 5).

7. We first find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

PQI=y/ll - (2P + @4 = (-1-0 = VoTa=1= VI

QR =/(-1- 1P+ —27 +2— ()P =VETTTo=Ia

IPRI=\/[—1—(—2)}2+(1—4)2+(2—0)2:m:m

Since all three sides have the same length, PQ R is an equilateral triangle.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 131  THREE-DIMENSIONAL COORDINATE SYSTEMS ETSECTION121 O 219

8. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

!AB\E\/(3—1)2+(4—2)2+[—2—(—3)]2:\/4+4+1:3

IBC| = /(3=3+(~2— 42 +[1 - (-2 = VO£ 36 +9 = V35— 3v5

IAC|=\/(3—1)2+(—2—2)2+[1—(—3)]2:\/4+16+16:6

Since the Pythagorean Theorem is satisfied by [AB|? + |AC|? = |BC|?, ABC is a right triangle. ABC is not

ososceles, as no two sides have the same length.

9. {a) First we find the distances between points:

AB| = /(7 = 5) + (9 = 1) + (-1 —3)° = VB = 231

IBC| = /(1= T2 + (—15— 9)% + [11 = (=)} = V756 = 6 V3T

\ACI:\/(1—5)2+(—15—1)2+(11_3)2=\/§§6:4\/ﬁ

In order for the points to lie on a straight line, the sum of the two shortest distances must be equal to the longest
distance, Since |AB| + |AC| = |BC), the three points lie on a straight line.

(b) The distances between points are

KL =/(1-072+(2-3)"+[-2— (—4F = V6

LM =31+ (02 +[t - (-2) = V7

KM=/ (3—0)* + (0-8)* +[1 — (=4)]* = Va3
Since \/6 + \/ﬁ #* \/E the three points do not lie on a straight line.

10. (a) The distance from a point to the xy-plane is the absolute value of the z-coordinate of the point, Thus, the

distance is |—5] = 5.
(b) Similarly, the distance is the absolute value of the z-coordinate of the point: |3] = 3.
(c) The distance is the absolute value of the y-coordinate of the point: |7| = 7.

(d) The point on the 2-axis closest to (3, 7, —5) is the point (3,0, 0). (Approach the z-axis perpendicularly.) The
distance from (3, 7, —5) to the z-axis is the distance between these twa points:

VB 3%+ (70 + (=5 -0)* = V74 = 8.60.

(e} The point on the y-axis closest to (3,7, —5) is (0, 7,0). The distance between these points is

VB 02+ (7= +(=5-0) = VB~ 5.83

(f) The peint on the z-axis closest to (3,7, —5) is (0,0, —5). The distance between these points is

VB0 (7= 0 + =5 — (=5)]* = VBB ~ 7.62.
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11. An equation of the sphere with center (1, —4, 3) and radius 5 is (z — 2 4y — (=) + (=~ 3)* = 5% or
(z—1)7+(y+ 4)® + (2 — 3)? = 25. The intersection of this sphere with the z2-plane is the set of points on the
sphere whose y-coordinate is 0. Putting y = 0 into the equation, we have {z — 12 +4%+ (2 - 3)? =25 y=0or

(-1 +(z~ 3)? = 9, y = 0, which represents a circle in the xz-plane with center (1,0, 3) and radius 3.

12. An equation of the sphere with center (6, 5, —2) and radius /7 is (z — 6)% + (y — 5)2 [z — (—2))F = (\/?)2 or
(z — 6)2 + (y — 5) + (2 +2)* = 7. The intersection of this sphere with the zy-plane is the set of points on the
sphere whose z-coordinate is 0. Putting z = 0 into the equation, we have (z — 6)? + (y — 5)* = 3,z = 0 which
represents a circle in the zy-plane with center (6, 5, 0) and radius /3. To find the intersection with the zz-plane, we

sety =0: (x—6)° 4 (z + 2)? = —18. Since no points satisfy this equation, the sphere does not intersect the
xz-plane. {Also note that the distance from the center of the sphere to the xz-plane is greater than the radius of the

sphere.) Similarly, the sphere does not intersect the yz-plane since substituting z = 0 into the equation gives

(y—5)7+(z+2)° = -29.

. The radius of the sphere is the distance between (4,3, —1) and (3,8, 1):

r= \/(3 - 4)% + (8 —3)" + [1 — (-1)]° = v/30. Thus, an equation of the sphere is

(z—3)%+(y—8)°+(z2—1)" = 30.

. If the sphere passes through the origin, the radius of the sphere must be the distance from the origin to the
point (1,2,3): r = /(1 02+ (2-0)24+(3-0)2 = V/14. Then an equation of the sphere is
(x— 12+ (y—2)%+ (2 —3)° = 14

. Completing squares in the equation % + y* + 22 — 6z + Ay — 2z = 11 gives
(2 =6z +9)+ (P +4y+4)+ (2 —22+1)=11+9+4+1 =
(z —3)2 + (y + 2)® + (z — 1)® = 25 which we recognize as an equation of a sphere with center (3, -2, 1) and

radius 5.

. Completing squares in the equation gives
(22 —dz+)+ P+ 2+ 1) +22=0+4+41 = (2—2)%+ (y+1)* +z° = 5 which we recognize as an
equation of a sphere with center (2, —1,0) and radius V5.

. Completing squares in the equation gives (z? —z+ L)+ (¥ —y+ D+ (P —z+ 1) =5+ 31+ =
(z — %)2 +{y - %)2 + (2 %)2 = 2 which we recognize as an equation of a sphere with center (3, 3, 3)

radius /3 = ¥3

4 2"

. Completing squares in the equation gives 4(z% ~ 2z + 1) +4{y* + dy+4) +42° =1+ 4+ 16 =
4z —12+4(y+2°%+422=21 = (z—1)*+(y+2)*+2* = 2, which we recognize as an equation of

a sphere with center (1, —2,0) and radius /2 = 3@
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19, {a) If the midpoint of the line segment from Pi{x1,y1,21) to Pa(x2, y2, 22) i8

Q= (sr:] _gm, L —;—yz 2t ; 2 ) then the distances | Py Q| and |Q P2/ are equal, and each is half of | P, .
We verify that this is the case:

|PLPa| =\ (22 — 1) + (g2 —9)* + (22 — 22)?

|AQ = \/[%(.’L‘l +z2) — 561]2 + [%(yl +y2) — y1]2 + [3(z1 + 22) — 21]2
= (32— )" + G = dn) + G2 )’

= \/(%)2[(5’92 —z1) (g —y)’ + (22— 31)2]

= %\/(52 —e1)? 4 (2 - )+ (22 — 1)
= % | PPy

Q| = \/ [2 — 2(@1 +22)|* + [yz — 21 +32)]" + (22 — (m + )]

=/ (ke — 2o0) + (b — 400) + (B2 — 1)’

:\/% (zg —xz1)° +(y2wy1) +(22‘31)2]

= %\/(562 —2)? (g~ )+ (22— n)?
=3 |PLPy|
So (} is indeed the midpoint of P, P.

(b) By part (a), the midpoints of sides AB, BC and CA are Pi(—1,1,4), P2(1,3,5) and P3(2, ,4). (Recall
that a median of a triangle is a line segment from a vertex to the midpoint of the opposite side.) Then the lengths

of the medians are:

AP = Jo2+ (3 -2+ (53 = /2 +4= /2B =2
BB =/ (5427 + (37 + (457 = /& + 2 1= /% = 15
CR= /(-3 -9+ (1 -1+ (457 = /8 +1= 1V

20. By Exercise 19(a), the midpoint of the diameter (and thus the center of the sphere) is C'(3, 2, 7). The radius is half
the diameter, sor = /(4 —2)2 + (3 - 1)2 + (10— 4)? = %\/ZZ = +/11. Therefore an equation of the sphere
is{z—37+(y—22+(2—7)7 =11

21. (a) Since the sphere touches the zy-plane, its radius is the distance from its center, (2, —3, 6), to the xy-plane,

namely 6. Therefore r = 6 and an equation of the sphere is (z — 2)* + (y + 3)> + (2 — 6)* = 6% = 36

{b) The radius of this sphere is the distance from its center (2, —3, 6) to the yz-plane, which is 2. Therefore, an
equation is (z — 2} + (y + 3)2 + (z — 6)* = 4.

{c) Here the radius is the distance from the center (2, —3, 6) to the zz-plane, which is 3. Therefore, an equation is
(-2 4+ (y+3)*+(z-67=09.
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22,

The largest sphere contained in the first octant must have a radius equal to the minimum distance from the center

(5,4,9) to any of the three coordinate planes. The shortest such distance is to the zz-plane, a distance of 4. Thus an

equation of the sphere is (z — 5)% + (y — 4)* + (z — 9)% = 16.

. The equation y = —4 represents a plane parallel to the xz-plane and 4 units to the left of it.

. The equation = = 10 represents a plane parallel to the yz-plane and 10 units in front of it.

. The inequality z > 3 represents a half-space consisting of all points in front of the plane z = 3.

. The inequality y > 0 represents a half-space consisting of all points on or to the right of the zz-plane.

. The inequality 0 < z < 6 represents all points on or between the horizontal planes z = 0 (the zy-plane) and z = 6.

. The equation y = z represents a plane perpendicular to the yz-plane and intersecting the yz-plane in the line y = z,

r =1

. The inequality 2% 4+ y? + 2% > 1is equivalent to \/z? + y2 + z2 > 1, so the region consists of those points whose

distance from the origin is greater than 1. This is the set of all points outside the sphere with radius 1 and
center (0,0,0).

. The inequality 1 < % 4+ 3 + 2% < 25 is equivalent to 1 < /x? + y2 + 22 < 5, s0 the region consists of those

points whose distance from the origin is at least 1 and at most 5. This is the set of all points on or between the

concentric spheres with radii 1 and 5 and center (0,0, 0).

. Completing the square in z gives 2% + > + (22 =2z + 1) < 3+ Lorz® + ¢° + (2 — 1)* < 4, which is equivalent
P o4

to /22 + y2 + (z — 1)? < 2. Thus the region consists of those points whose distance from the point (0,0,1}) is

less than 2. This is the set of all points inside the sphere with radius 2 and center (0,0, 1).

. The equation =% + 3% = 1 represents the set of all points in R* where 2* + ° = 1, a surface that intersects the

zy-plane in the circle £ + y? = 1,z = 0. Since z can vary, the surface is a circular cylinder of radius 1. Thus, the

equation represents the region consisting of all points on a circular cylinder of radius 1 with axis the z-axis.

. Here 22 + z* < 9 or equivalently v/22 + z2 < 3 which describes the set of all points in B* whose distance from

the y-axis is at most 3. Thus, the incquality represents the region consisting of all points on or inside a circular

cylinder of radius 3 with axis the y-axis.

. The equation xyz = () is satisfied when any of z, y, or z is (. Thus, the equation represents the region consisting of

all points on the three coordinate planes x = 0,y = 0, and z = 0.

. This describes all points with negative y-coordinates, that is, y < 0.

. Because the box lies in the first quadrant, each point must comprise only nonnegative coordinates. So inequalities

describing the regionare 0 <z < 1,0 <y £2,0< 2 < 3.

. This describes a region all of whose points have a distance to the origin which is greater than r, but smaller than E.

So inequalities describing the region are r < /22 4+ y? + 22 < R,orr? < o + 4% + 2% < R

. The solid sphere itself is represented by /2 + y? + 22 < 2. Since we want only the upper hemisphere, we restrict

the z-coordinate to nonnegative values, Then inequalities describing the region are /2 +y2 + 22 <2,z > 0, or
22+y2+z2§4,z20.
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39. (a) To find the z- and y-coordinates of the point I, we project it \
C

onto Ly and project the resulting point ¢} onto the 2- and
y-axes. To find the z-coordinate, we project P onto either the
xz-plane or the yz-plane (using our knowledge of its - or

y-coordinate) and then project the resulting point onto the

z-axis. (Or, we could draw a line parallel to QO from P to

the z-axis.) The coordinates of P are {2, 1,4).

(b) A is the intersection of L1 and L, B is directly below

the y-intercept of Lo, and C is directly above the z-intercept
of L2 .

. Let P = (x,y,2). Then 2|PB| = |[PA| < 4|PB|* = |PA* «

Az -6+ (2 +(+2) =@+ +¥-5)°+(z-3)° &

4(z® — 122 +36) —2* — 20 +4(y* —dy +4) - ¥ + 10y + 4(z* +42+4) - 2" +62=35 &

30?50z + 3y — 6y +322+22: =35 144 - 1616 < z°— Pr+y’ -y +2° +Fz =14,
332

By completing the square three times we get (z — 2—;’)2 +y-1%+ {2+ 1?1)2 = 332 which is an equation of a

2 1, 3) and radius 3/33—3_2

sphere with center (22,1,

. We need to find a set of points { P(x,y,2) | |AP| = |BP| }.

VEHD?P+E -5+ (-8 =@ -6+ -2P+(2+2° =

4+ 1)+ -5+ (-3 =@-6°+y-2°+(z+2)?° =

2242+ 14y —10y+254+22—624+9=2 122436 +9°> —dy+4+22+424+4 =

14z — 6y — 10z = 9. Thus the set of points is a plane perpendicular to the line segment joining A and B (since this

plane must contain the perpendicular bisector of the line segment AB).
. Completing the square three times in the first equation gives (z 4 2)% + (y — 1) 4 (2 + 2)* = 22, a sphere with
center (—2, 1, 2) and radius 2. The second equation is that of a sphere with center (0, 0, 0) and radius 2, The

distance between the centers of the spheres is /(=2 — 0)2 + (1 — 0)2 + (=2 — 0)2 = /4 + 1 + 4 = 3. Since the

spheres have the same radius, the volume inside both spheres is symmetrical about the plane containing the circle

of intersection of the spheres. The distance from this plane to the
center of the circles is % So the region inside both spheres \
consists of two caps of spheres of height i = 2 — % = % From

Exercise 6.2.49 [ET 6.2.49], the volume of a cap of a sphere is
V=1nh*3r—h)= %71'(%)2(3 -2 — 3) = HE 8o the total

9. lm _ lir
volume is 2 ST = e
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13.2 Vectors

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude.

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) and direction at any

given location.

(¢) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has

both magnitude (distance) and direction.

(d) The population of the world is a scalar, because it has only magnitude.

. If the initial point of the vector (4, 7} is placed at the

origin, then {4, 7} is the position vector of the point (4, 7).

. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry

—_— — — —_ = — — ey
of the parallelogram as a guide, we see that AB = DC, DA =CB,DE = EB,and EA = CE.

-~ - - - - . l — —_— - .
. (a) The initial point of QR is positioned at the terminal point of PQ, so by the Triangle Law the sum PQ + QR is

—
the vector with initial point P and terminal point R, namely PR.

I —
(b) By the Triangle Law, RP + P is the vector with initial point R and terminal point S, namely RS.

{c) First we consider Q5 — PS as Q5 + (—PS). Then since — PS5 has the same length as PS5 but points in the

— — —_—  — e g
opposite direction, we have —PS = SPandso (5 — PS = Q8+ SP = (QP.

— — — — — e — — e
(d) We use the Triangle Law twice: RS + SP + PQ = (RS + SP) + PQ = RP+ PQ =RQ

. (a) {b)
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Ma=(2-03-3-1-1)=(20-2)

13. 3, D)+ (-2,4) = 3+ (-2),-1+4)
= (153}

15. (0,1,2) + {(0,0,-3) = (0+ 0,1+ 0,2+ (-3))

17 Ja) = V/(-42 + ¥ =25 =5
a+b=(-4+63+2) =(2,5
a—b=(-4-63-2) =(—10,1)
2a = (2(-4),2(3)) = (—8,6)
3a+4b = (—12,9) + (24,8) = {12,17)

12a={4-4,2-0,1-(=2))=(0,2,3)

7

1, (=2, 1) + (5,7) = (=245, -1+ 7
= (3,6)

(S,y

16. (—1,0,2) + {0,4,0) = (-1 +0,0+4,240}
={-1,4,2)

18. |a = /22 + (-3)? = V13
a+b=(2i—-3j)+({+5j)=31+2j
a-b=(2i-3j)~({+5j)=1-8]
2a=2(2i—3j)=4i—-6]

Ja+4b =3(21—3j) +4(i+ 5]}
=6i—-9j+4i+20j=10i+11]j
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19 |a| =v62 + 22+ 32 = VA9 =7 20. |a| = /(-3)2 + (—4)2 + (1) = V26
at+tb={(6+(-1),2+53+(-2) = (571 a+b=1{-3+6—-4+2—-14(=3)
a—b={6—-(-1),2-53-(-2)) = (3, -2, —4)

= {7,-3,5) a-b={(-3-6-4-2,-1-(-3))
2a = (2(6),2(2),2(3)) = (12,4, 6) —9,-6,2)
3a+ 4b = (18,6,9) 4+ (—4,20, -8} 2a = (2(—-3),2(—4),2(-1)) = (-6, -8, -2
= (14,26,1} 3a+4b = {-9,-12,-3) + (24,8, -12)
= {15, -4, —15)

el = V124 (=22 +12 = V6 al = /3T 07+ (—2)2 =13

a+b=(G1—-2j+K+(j+2k)=i-j+3k a+b=(3i~2Kk) +(i-j+k)=4i-j-k

a-b=(i—-2j+kj-(j+2k)=i-3j-k a-b=(3i-2k)-(i-j+k)=2i+j-3k

2a=2(i-2j+k)=2i-4j+2k 2a =2(3i-2k) =6i—4k

3a+4b = 3(i — 2j + k) 4+ 4(j + 2k) 3a-+4b = 3(3i—2k) +4(i — j+ k)
=3i-6j+3k+4j+8k =9i—6k+4i—4j+4k
=3i—-2j+11k =13i-4j-2k

2 2 . _L _ _9__ ;5
19, =5 = /92 £ (-5) m\/m,sou—mg(g, 5) <mm>

121 - 5j| = /122 + (=5)2 = V169 = 13,s0u = 5 (12i —5j) = 5 i - & J.

. The vector 81 — j + 4 k has length |81 — j 4+ 4k| = /8% + (—1)2 + 42 = /81 = 9, s0 by Equation 4 the unit

vector with the same direction is § (8i —j+ 4k) = 2i— §j

L (=2,4,2)] = /(=2)2 + 42 + 22 = V24 = 2 /6, 50 a unit vector in the direction

—2,4,2) isu = (~2,4,2). A vector in the same direction but with length 6 is

Bl
26

6 12 6 ,
242 = (-2 B 2 o162 6. B).

. From the figure, we see that the z-component of v is
v1 = |v|cos(n/3) =4 - % = 2 and the y-component is
vy = |v|sin(r/3) = 4- X2 = 2/3. Thus
v = (vi,v2) = <2,2\/§>.
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28. From the figure, we see that the horizontal component of the
force F is |[F|cos38° = 50cos38° ~ 39.4 N, and the

vertical component is {F|sin38 ° = 50sin38° ~ 30.8 N,

. |F1] = 10 1b and [F| = 12 b.
F1 = —|Fi|cosd5°i+ |Fi|sind5”j = —10cos45° 1+ 10sin45° ]
— —52i+5v2j
Fa = |F2|cos30°i+ [F2|sin30°j = 12c0s30° i + 125in30° j = 6 v3i + 6]
F=F +F;= (6v3-5v2)i+(6+5v2)j~3.32i+13.07j

6452 . 64542
63— 52 63— 52

. Set up the coordinate axes so that north is the positive y-direction, and east is the positive z-direction. The wind is

|F| ~ /(3.32)2 + (13.07)2 = 13.51b. tan8 = = 0=tan" ~ 767

blowing at 50 km/h from the direction N45 > W, so that its velocity vector is 50 km/h 845 ° E, which can be
Written as Vi = 50(cos 45 ° 1 — sin 45 ° j). With respect to the still air, the velocity vector of the plane is
250 km/h N 60 ° E. or equivalently vpune = 250{cos 30 ° i + sin 30° j). The velocity of the plane relative to the

ground is

V = Vind + Volne = (50 €08 45 ° 4+ 25008 30°) i + (—-50sin45° +250sin30°) j

_ (25\/§+ 125\/5) i+ (125—25\/5)5 ~ 251.91 4+ 89.6]

The ground speed is |v| == /(251.9)2 + (89.6)% = 267 ki /h. The angle the velocity vector makes with the
z-axis is & tan ! (S5 ) & 20°. Therefore, the true course of the plane is about N(90 — 20) “E = N70° E.

. With respect to the water’s surface, the woman’s velocity is the vector sum of the velocity of the ship with respect to

the water, and the woman’s velocity with respect to the ship. If we let north be the positive y-direction, then
v = {0,22) 4+ (—3,0) = (—3,22). The woman’s speed is |v| = /9 + 484 = 22.2 mi/h. The vector v makes an
angle # with the east, where 6 = tan ! (%) 7= 98 °. Therefore, the woman’s direction is about
N(98 — 90)° W = N8°W.

. Call the two tensile forces T3 and T's, corresponding to the ropes of length 3 m and 5 m. In terms of vertical and
horizontal components,

Ty = —|Ts|cos52°i+|Ts|sin52°) (1) and  T5;=|Tsicosd0i+ |Ts|sind0°) (2)

The resultant of these forces, T3 + T, counterbalances the force of gravity acting on the decoration [which is
~5gj = —5(9.8)j =—49]j]. So Ts + Ts = 49 ). Hence
T3+ Ts = (—|Ts|cos52° +|Tsjcos40°) i+ (| Ts|sin52° + |Ts|sin40°) j = 49j. Thus
— | T3] cos52° +|Ts|cos40° = 0 and {T3|sin 52 ° 4+ |T5|sin 407 = 49,
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cos40°
osH2°

49 cos40°
~ 30 N. Therefore, |Ts| = [T
c0540° tan 52 ° + sin 40°° erefore, [Ta| = [Ts| 2o

Ts = —23i+30], and Ts = 23i + 19j.

From the first of these two equations [T3| = !T5| . Substituting this into the second equation gives

~ 38 N. Finally, from (1) and (2},

|Ts| =

. Let T and T2 represent the tension vectors in each side of the
clothesline as shown in the figure. T'; and T2 have equal vertical

components and opposite horizontal components, so we can write

Ty = —ai+bjand Ty =ai+bj (a,b > 0). By similar triangles, g OTOS = a = 50b. The force due to

gravity acting on the shirt has magnitude 0.8¢ =~ (0.8){9.8) = 7.84 N, hence we have w = —7.84 j. The resultant
T + T of the tensile forces counterbalances w,s0 T1 + Tz = —w = (—ai+bj)+{ai+bj) =784]
= (~B0bi+bj)+ (50bi+bj)=2bj=7.84j = b=TM =392anda =50b= 196. Thus the tensions
are T1 = ~ai+bj=—1961+3.92jand Ty =ai+bj= 1961+ 3.92j.

Alternatively, we can find the value of # and proceed as in Example 7.

. We can consider the weight of the chain to be concentrated at its
midpoint. The forces acting on the chain then are the tension vectors
T, T2 in each end of the chain and the weight w, as shown in the
figure. We know | T'1| = |T2| = 25 N so, in terms of vertical and

horizontal components, we have
T:=—-25cos37° 1+ 255in37°j
T:=25cos37 i+ 258n37°j
The resultant vector T; + T'z of the tensions counterbalances the weight w, giving T + T = —w. Since
w = — |w|j, we have (—25¢0837°1+ 256sin37°j) + (25¢0s37°1 + 25sin37°§) = |w|j =
50sin37°j=|w|j = |w|=50sin37° = 30.1. So the weight is 30.1 N, and since w = myg, the mass is

0.1~ 3.07 kg

T —_— —_— — — —_— =
. By the Triangle Law, AB + BC = AC. Then AB ++ BC + CA = AC + CA, but

— — — — —_— — —
AC+C‘A=AC+(—AC) —0.S0AB+ BC+CA=0.

AC =1ABand BC = 2BA. ¢ = OA+ AC =a +
¢c=OB+BC=0A+2BA = BA=%c-3b.BA=-AB,sodc—3b=3a-3c &

ct+2e=2a+b < c=§a+%b.
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37. (a), (b) R (c) From the sketch, we estimate that s == 1.3 and { ~ 1.6.
(dc=sa+th & T7T=3s+2tandl =251t

Solving these equations gives s = 2 and t = 1.

38. Draw a, b, and ¢ emanating from the origin. Extend a and b

to form lines A and B, and draw lines A" and B’ parallel to

these two lines through the terminal point of c.

Since a and b are not parallel, A and B’ must meet (at P}, and A’ and B must also meet (at Q). Now we see that

o]
T

0P|
al

{or its negative, as in the diagram), then ¢ = sa + tb, as required.

e —y
OFP +0Q —c,s0if 5 =

—
(or its negative, if a points in the direction opposite OP) and { =

Argument using components: Since a, b, and c all lie in the same plane, we can consider them to be vectors in two
dimensions. Let a = (a1, as), b = (b1, b2), and ¢ = {c1, e2). We need say + thy = ¢y and saa + thy = 3.

Coll] — C142

. Similarl
bgal - b1a2 i y

Multiplying the first equation by a; and the second by a1 and subtracting, we get ¢ =

o sz] — 51(32

=3 oy’ Since a # 0 and b # 0 and a is not a scalar multiple of b, the denominator is not zero.
201 — D1ay

. |r — rg| is the distance between the points (z, ¥, z) and {xq, Yo, z0), so the set of points is a sphere with radius 1

and center (xo, Yo, 20)-

Alternate method: lr —rol =1 & \/(m 20 +{y—w)i+(z-20)l=1

(z — 20)® + (y — y0)* + (z — z0)® = 1, which is the equation of a sphere with radius 1 and center (2o, 3o, zo0).

. Let P, and P; be the points with position vectors r1 and rz respectively, Then [r — ri| + |r — r2| is the sum of the
distances from (x,y) to P1 and Ps. Since this sum is constant, the set of points (x, ¥) represents an ellipse with foci

Py and P,. The condition k > |r1 — r2| assures us that the ellipse is not degenerate.

. a+ (b +c) = {a1,a2) + ({b1,b2) + (c1,¢2)) = (a1, a2} + (b1 +c1,b2 +c2)
={ay + b1 +e1,a0 by +c2) = {{a1 + b1) + 1, (w2 + b2) + ¢z}
={a1 + b1,a2 + b2} + {cr.e2) = ({@1,a2) + (b1, b2)) + {c1, 2}

={(a+h)+c
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42. Algebraically:
cla+b) =c({ai,az,a3) + {b1,ba,b3)) = c{a1 + by, 00 + b2, a3 + bs)

= {clay +b1),c(az +b2),e{as + ba)) = {car + cb1, caz + cbz, caz + cby)
= {ca1, caz,cas) + {cby,cha, chs) = ca+chb

Geometrically:

—_— _—
According to the Triangle Law, if a = PQ and b = QR, then
a+b= P_R) Construct triangle PST" as shown so that }TEI' =ca

and .ﬁ: = ch. (We have drawn the case where ¢ > 1.) By the

Triangle Law, I?T: = ca + cb, But triangle PQR and
triangle PST are similar triangles because ¢ b is parallel to b.

—> — — —
Therefore, PR and PT are parallel and, in fact, PT = ¢PR.
Thus, ca+ch = c{a+ b).

— — —_
. Consider triangle ABC, where [J and £ are the midpoints of AB and B(C. We know that AB + BC' = AC (1)
— —_ —_ — —_— —_— — _
and DB + BE = DE (2). However, DB = %AB, and BE = %BC’. Substituting these expressions for DB and

———y = — — R — —_— —_
BE into (2) gives 3 AB + %BC = DE. Comparing this with (1) gives DE = éAC. Therefore AC and D E are

parallel and ‘Iﬁ} =3 EI

The question states that the light ray strikes all three
mirrors, so it is not parallel to any of them and e, # 0,
az #0and ag # 0. Let b = (b1, b, b3), as in the
diagram. We can let |b} = |al, since only its direction is

. 2] . |az|
important. Then —= =sinf = ==
|bi |al

From the diagram b; j and a3 j point in opposite
directions, 50 bo = —ao. |AB| = |BC|, s0

ib3| = sing |BC| =sind |AB{ = |as/, and
|b1| = cos ¢ |BC| = cos¢ |AB] = |ai].

bs k and a3 k have the same direction, as do by 1 and a4 1.

= |b2| = Jaa].

so b = (a1, —a2,as). When the ray hits the other

mirrors, similar arguments show that these reflections will
reverse the signs of the other two coordinates, so the final
reftected ray will be (—a1, —a2, —as) = —a, which is

parallel to a.
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13.3 The Dot Product

. (a) a - b is a scalar, and the dot product is defined only for vectors, so (a - b) - ¢ has no meaning.
(b) (a- b)c is a scalar multiple of a vector, so it does have meaning.
(c) Both |a| and b - ¢ are scalars, so |a| (b - €) is an ordinary product of real numbers, and has meaning.
(d) Both a and b -+ ¢ are vectors, so the dot product a - (b + ¢) has meaning.
(e) a - b is a scalar, but ¢ is a vector, and so the two quantities cannot be added and this expression has no meaning.
(f) |a| is a scalar, and the dot product is defined only for vectors, so ja| - (b + ¢} has no meaning.
, Let the vectors be a and b. Then by Theorem 3, a - b = |a| |b|cos# = (6)(3}cos § = 555 = V2.
1) (3,6) = (4)(3) + (-1 (6) = 6
(2)(-8) + (@)(=3) = -
~2) - {3,-1,10) = (5}(3) + (0)(=1) + (=2)(20) =
Yo {t, —t,58) = (s)(t) + (2s)(—t) + (35)(5t = st — 25t + 155t = 1dst
i—-2j+3k)-(5i+9k)=(1}(5 ) (—2)(0) +
=(4j—-3k)-(2i+4j+6k) = {0)(2)+ (4)(4) + )(6)
, Use Theorem 3: a - b = |a| [bl cos# = (12)(15) cos & = 180 - 2 = 60/3 & 155.9
. Use Theorem 3: a-b = |a} |b| cos# = (4){10} cos 120° = 40(—3) = —20

. u, v, and w are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60 ° and
u-v=|u||v/cos60° = (1)(1)(3) = 1. if w is moved so it has the same initial point as u, we can see that the

angle between them is 120° and we have u - w = |u| }w|c0s120° = (1)(1)(~3) = -1
. u is a unit vector, so w is also a unit vector, and | v| can be determined by examining the right triangle formed by u

and v. Since the angle between u and v is 45 °, we have |v| = [u|cos45° i . Then

u-v=lu||vlcos45° = (1)(%)%2 = 3. Since u and w are orthogonal, u - w = 0.

@ i-j={1,0,0)-(0,1,0) = (1)(0) + (0)(1) + (0)(0) = 0. Similarly j - k = (0)(0) + (1)(0) + (0)(1) = 0 and
k-i=(0)(1) + (0){0) + (1)(0) = 0.

Another method: Because 1, j, and k are mutually perpendicular, the cosine factor in each dot product
(see Theorem 3}is cos 3 = 0.

(b) By Property | of the dot product,i-i= li|* = 1% = 1 since 1 is a unit vector. Similarly, j - j = jI* =1and
= |k* = 1.
. The dot product A - P is
{a,b,c) - (2,1.5,1) = a(2) + b(1.5) + ¢(1)
(number of hamburgers sold}(price per hamburger)
+ (number of hot dogs sold)(price per hot dog)
+ (number of soft drinks sold)(price per soft drink)

s0 it is equal to the vendor’s total revenue for that day.
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. Ja] = /32 + 42 = 5. |b| = V52 + 122 = 13, and a - b = (3)(5) + (4)(12) = 63. Using Corollary 6, we have
cosf = %% = BESTB = % So the angle between a and b is 6 = cos™! (&) ~ 14°.
. la] = (ﬂ)2 +12=2,|b|=0+25="5anda-b=(v3){0) + (1)(5) = 5. Using Corollary 6, we have
a'b

1 . _
cosf = ol b = 2—55— = 5 and the angle between a and b is cos ™' (3) = 60°.

lal =12 ¥ 22+ 32 = V14, |bj = /42 + 02 + (-1)2 = V17.and a- b = (1)(4) + (2)(0) + (3)(—1) = L.

a-bh 1 1

lal bl — VI4-v17 V238

Lal = /62 + (=32 +22 =17, |b| = /22 + 12+ (-2)2 =3,anda- b = (6)(2) + (=3)(1) + (2)(—2) = 5.
ab 5 5

O - - —_ —1¢(5 P, [}
Then0039w|al|b‘f7.3f21and9 cos (21) 76°.

Lal = V012 + 12 = 2, |b] = /12 + 22 + (-3)2 = V14, anda- b = (0)(1) + (1)(2) + (1)(-3)

a-b -1 -1 1
Then cosé = = = —— ] = 101°.
falbl  V2.4/14 27 2\/?)

el = V2 + (D7 + 12 = VB, [b| = /37 + 22 + (1) = V14, and

. . ab 3 3
a-b=(2)(3) + (-1){2)} + (1)(=1) = 3. Then cos @ = NIRRT
_ 30\ oo
§= cos ‘(g—m)”l'

. Let a, b, and ¢ be the angles at vertices A, B, and C respectively.

Then cos # = and the angle between a and b is § = cos ' (ﬁ) ~= 86°,

and # = cos™ ! (—

and

Then a is the angle between vectors AB and R‘ b is the angle

— — ,
between vectors BA and BC, and ¢ is the angle between vectors

07 and (ﬁ
AB - AC (2,6) - (—2,4)

Thus cosa = = =

1 20
= —4+24) = -
’E‘ |Ry’| V22162 /(-2)2 + 42 V40V20 ( ) V800

2
and @ = cos™? (%) = 45°. Similarly,

BA-BC (2,6} (-4, -2) 1 0 _ V3
3

cosh = (8+12) = —— =

54 |B—c’:\: VI+36y/16+4  va0v20 /300

b—cosl(%ﬁ) =45%andc = 180° — (45°+ 45°) = 90°.

2

el Jas*Jac

Alternate solution: Apply the Law of Cosines three times as follows: cosa = —
2 AB| [4C

[acf - [x2[" - [ac]

-7 [
Tl

cosh = ,and cosc =

i 0
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e
22. As in Exercise 21, let d, e, and f be the angles at vertices D, E, and F. Then d is the angle between vectors DE
— — — — —
and DF, e is the angle between vectors ED and EF, and f is the angle between vectors F'D) and F'E. Thus

cosd = DE - DF - (~=2,3,2) - {1,1,-2) 1 (-2+3-4)=— 3
| IDE| | DF| V(=22 + 3 42812+ 124 (-2)° VITV6 102

. 3 ) o e
. ——— ] =~ 107°. Similarly,
( 102 ¢
‘EB| ‘ﬁ;l VIFO0+4/91+4116 1729

Cos € —

6+61+8)= \/@so

20
—1 o o o o Q
€ = COoS —— )& 26"%and f ~ 180° — (107°+ 26°) =47 °.
( —493) f ( )

|E~“’|2— \Iﬁ:’ DF

2 l—) 2
Alternate solution: Apply the Law of Cosines three times as follows: cosd = -

o] o7
L O o
,andcos f = - 215?' ‘E_f‘|

cose = ———
21DE‘ lEF‘

(@) a-b = (=5)(6) + (3)}(—8) + (7}(2) = —40 # 0, s0 a and b are not orthogonal, Also, since a is not a scalar
multiple of b, a and b are not parallel.
(b) a-b = (4)(—3) + (6)(2) = 0, so a and b are orthogonal (and not parallel).
(cra-b=1(-1)(3) + (2)(4) + (5){—1) = 0, s0 a and b are orthogonal (and not parallel).

(d) Because a = —% b, a and b are parallel.

. (a) Because u = —% v, u and v are parallel vectors {and thus not orthogonal).

(byu-v =(1}(2) + (-1)(—=1) + (2)(1) = 5 # 0, so u and v are not orthogonal, Also, u is not a scalar multiple
of v, so u and v are not parallel.

(©) v v=_(a){—b)+ (b){a) + {c)(0) = —ab + ab + 0 = 0, so u and v are orthogonal (and not parailel).

— — —_— — —_— —_—
QP =(-1,-3,2),QR={4,-2,-1),and QP - QR = —4 4+ 6 — 2 = 0. Thus @ P and R are orthogonal, so
the angle of the triangle at vertex @ is a right angle.

. {—6,b,2) and {b,1”,b) are orthogonal when (—6,5,2) - (b,b°,b) =0 & (=6)(b) + (b)(+*) + (2)(b) =0
e Podb—0 o bb+2Db-2=0 & b=0Oorb=-+2

. Leta = a1+ azj+ a3k be a vector orthogonaltobothi4-jandi+ k. Thena-(i+j) =0 < a1+a2=10
anda-(i+k)=0 < a,+a3 =050 a = —as = —as. Furthermore a is to be a unit vector, so
1 = ai +aj + a3 = 3af implies a; = ==, ' *%i—ﬁj—%kanda:—%i-&-%j—#ﬁkare

two such unit vectors.
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(VB); =
b=2—3g Sinceuisaunitvector, lul =va? +B2 =1 & o’ +b=1 & a 2r(i-da)=1 &
Ba?- Ba+ 28 =1 « 100a® - 60a — 39 = 0. By the quadratic formula,

~(-60) £ /("60)? ~4(100)(-39) _ 60+ 10200 _3+4v3 . 314V3
2(100) h 200 10 T 10
5 3(3+4v3\ _ 4-3v3 3-43 5 3(3-4v3\ 4+3V3
b=—=-—--— = ,andifa = ———— thenb == — = = .
8 4 10 10 10 8 4 10 10

3+4v3 4-33
0 ° 10

28. Let u = {a, b) be a unit vector. By Theorem 3 we need u - v = |u| |v|cos60° & 3a+4b=

Thus the two unit vectors are <

3 4\/_ 1+3V3
10 10

> ~ (0.9928, —0.1196) and

> (—0.3928,0.9196}.

. Since |(3,4,5)] = I+ 16 + 25 = v/50 = 5+/2, using Equations 8 and 9 we have cos o = i\/_ cos

and cosy = 5\5/,2 = % The direction angles are given by o = cos™! (F) ~65° 3 =cos” ! (54,

and v = cos“]‘(%) =45°.

. Since |{1, -2, —1)| = T+ 4+ I = /6, using Equations 8 and 9 we have cos o = \/-, cos 3 = ‘/g and

COsSy = :/—é. The direction angles are given by o = cos™? (ﬁ) /= 66° 8 =cos™! (——w\/-ﬁ) = 145°, and
— e 1 e °
¥ = cos (——\/—ﬁ) 114

. Since |2i43j - 6k| =4 +9+ 36 = v49 = 7, Equations 8 and 9 give cosax = % cos 3 =2, and
cOsy = ’76 while @ = cos“l(%) =73°,. 3= Cos_l(%) = 65° and v = cos™! (——) 149°.

’T],and cosy = %

. Since |21 — j + 2k| = V4 + 1 + 4 = v = 3, Equations 8 and 9 give cos v =
while @ =y = cos™ ' (2) = 48° and 3 = cos ™' (—3) = 109°.

3

{e,e,af =Vt 42+ = V3¢ (since ¢ > 0), so cosa = cos 3 = cos~ =
— — —_— =1{f 1%\ _eEc
oa=/03=2 =cos (ﬁ)NJB.

. Since cos® o + cos® 3 + cos®y = 1,
cos?y =1—cos*a—cos? B =1 —(:032(%) - cosz(%) =1- ( = i. Thus cosy = i% and

_m — 2=
y=3Fory=5.

= 3 and the

. |la] = /32 + (—4)2% = 5. The scalar projection of b onto a is comp, b = a|;1b AL (+4)-0

5

b
vector projection of b onto a is proj, b = (aa| ) |:| 3- %(3, —4) = <%, - %)

. |]aj = V12 + 22 = /5, so the scalar projection of b onto a is comp, b =

a-b
|a|

the vector projection of b onto a is proj, b = (— — = ﬁ {1,2) = <—%, —,4
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. ‘b 1 3
37. |]a| = /16 + 4 + 0 = 2/5 so the scalar projection of b onto a is comp, b = 22 W(ﬁﬂr 24+0) = 7

3 a 3 1
The vector projection of bonto ais proj, b= —=7— = —= - —=
P PP T VBl VB 2vB

b —-3+4(-6)+8 1 .
. |a] = /1 +4 4 4 = 3 50 the scalar projection of b onto a is comp, b = a|a| = + (3 s =3 while

o . la 1 {(-1,-22) ;12 2
the vector projection is proj, b = 5 Tal =3 3 = <91 g 9>'
. . -b
Lal=v1+0+1= V2 so the scalar projection of b onto a is comp, b = ?Ei_

S . . 1 a . .
the vector projection of b onto a is proj, b = Blal ~ R %(1 +k)=1(1+k).

. Ja] = V4 + 9+ 1 = /14, so the scalar projection of b onto a is
a'b 2-18-2 18
a| ~ 14 V14
18 a 18 2i—-3j+k ... ..
- = . = —=2(21—-3j+ k).
R S TVE T vir T

b
. (orthab)-a = (b — proj,b)-a="Db-a—(proj,b)-a=b-a— Ta|2 a-a

comp, b = while the vector projection of b onto a is

proja b= —

b
=b-a—§—21a|2:b-awa-b=0
|al
So they are orthogonal by (7).
. Using the formula in Exercise 41 and the result of Exercise 36,

we have

orthe b=">b —projab :(_4,1> _ <7%’,%>

. comp, b = =2 o a-b=2]al=2vI0. Ifb = (b, by, b3), then we need 3by + Ob — 1b3 = 2+/10.

a-b
Jal
One possible solution is obtained by taking by = 0,5y =0, b3 = -2 V10.

In general, b = (s,%,3s — 2 V10 hsteR

%al) =l—)|l;—r <= ézl—:ﬂora-b=0 < |b|=lajora-b=0.
That is, if a and b are orthogonal or if they have the same length.

a-b b-a
JafF 77 b a

. {a) comp, b = comp,a

b & a-b=0or— =—=.But — =

(b) proj, b = proj,a <

a b a b
>

b jal” b
I _ bl
jal*  Ibf?
Soproj, b =proj,a < aand b are orthogonal, or they are equal.

= |a| = |b|. Substituting this into the previous equation gives a = b.

.HereD = (1 —-2)i+4(9—-3)j+ (15 - 0)k = 2i + 6j + 15k so by Equation 12 we have
W = F-D =20+ 108 — 90 = 38 joules.
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4. W = |F||D|cos# = (20){4) cos40° 4]. W = |F||D|cos8 = (25)(10) cos20°
~ 61 ft-Ib a2 235 ft-1b

48. Here [D] = 100 m, |F| = 50 N, and § = 30°. Thus W = |F|{D|cos§ = (50)(100)(%3) = 2500 v/3 joules.

49. First note that n = {a, b) is perpendicular to the line, because if Q1 = (a1, 1) and Q2 = {az2, b2) lie on the line,

thenn - Q1Q2 = aaz — aay + bbz — bby = 0, since aaz + bbes = —c = aa1 + bb1 from the equation of the line.
Let P = (x2,y2) lie on the line. Then the distance from P to the line is the absolute value of the scalar projection

Rieramd — - (T2 — T1,%2 — y1}} laxs — axy + bya — b fazy + by + ¢
of PP onto n. com (PP): = =
. Pn {202 |n] va? + b2 Vva? 4 b2

3- 2+ —4-3+5] 13

Newe T

. (r —a) - (r — b) = 0implies that the vectorsr —aandr — b are

since axy + byz = —e. The required distance is

orthogenal. From the diagram (in which A, B and R are the terminal
points of the vectors), we see that this implies that R lies on a sphere
whose diameter is the line from A to B. The center of this circle is the

midpoint of AB, that is,
%(a+ b) = <%{a1 + bl) s %(CLQ -+ bz) . %(a:} + bg)>, and its radius is

La bl =14/ 1)+ (a2~ b2)? + (as — ba)™.
Or: Expand the given equation, substitute r - r = 2% | 42 + 2 and complete the squares.

. For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along
the coordinate axes. The diagonal of the cube that begins at the origin and ends at (1, 1, 1) has vector representation
(1,1, 1). The angle @ between this vector and the vector of the edge which also begins at the origin and runs along

the z-axis [that is, (1,0, 0}} is given by cos 8 = (L,1,1)-(1,0,0) :i = 9=C0s'1(ﬁ‘}§) a2 55°,

1L, 1,1)](1,0,0)]  v3

. Consider a cube with sides of unit length, wholly within the first octant and with edges along each of the three

coordinate axes. i + j + k and i + j are vector representations of a diagonal of the cube and a diagonal of one of its

faces. If  is the angle between these diagonals, then cos 8 = (i+j+k) ({+)) = 1+1 - \/? =
V32 3

i3~ Kfi+]

6 = cos™! \/gz.%o.
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53, Consider the H-C-H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1,0,0)

and (0, 1, 0) (or any H-C-H combination, for that matter). Vector representations of the line segments emanaling
; 1 1 _1
from the carbon atom and extending to these two hydrogen atoms are {1~ 2,0 — 1,0 - 3} = (3,3, —3) and

= (—%,%,—35). The bond angle, 9, is therefore given by

_% = B:cos“l(—%)mlogﬁo.

. Let c be the angle between a and ¢ and (3 be the angle between ¢ and b. We need to show that a = 3. Now
_a-jalb+a-|bla_|ajla-b+|a’|b, _a-b+al|b|

lal e} B |al c| lel

b-c _la|[b/+b-a
bl |e| |c|

o = /3 and c bisects the angle between a and b.

. Similarly,

cos 3 = . Thus cosa = cos 3. However 0° < o < 180°%and 0° < 3 < 180°, so

. Leta = {a1,aq,as) and = (by, ba, b3).
Property 2: a-b = (a1, as,as) - {b1,b2, b3} = a1by + a2by + asbs
=bya; + boaz + bsag = {b1,b2,bs) - {a1,a2,a3) =b-a
Property 4. (ca) - b = {(ca1,caz,cas) - (b1, ba, b3} = (ca1)br + {caz)bz + (casz)bs
= c{aibs + azbz + asbs) = c(a-b) = ai1{ch1) + az(chz) + as(chs)
= {ay, a2, a3) - {ch1,cba, chs) = a - (cb)

Property 5: 0-a = (0,0,0) - {a1,a2,a3} = (0)(ar) + (0){az) + (0){az) =0

. Let the figure be called quadrilateral ABC D. The diagonals can be represented by R’ and BD. A_C: = fTé + %
— — — e — — — . .
and BD = BC + CD = BC — DC = BC — AB (Since opposite sides of the object are of the same length and

paral]el,):f_}i’ = ﬁ'.) Thus
4G BD = (4B + BC) . (BC - AB) - A8 (BC - AB) + 5O (BC - AB)

g ——2 | —2 —s — | —2 | ——2
=AB.BC—|AB| +‘BC| —AB-BC=\BC| —‘AB|

— 2 — 2 . —_— ——
But ‘AB‘ = iBC\ because all sides of the quadrilateral are equal in length. Therefore AC - BD} = 0, and since

both of these vectors are nonzero this tells us that the diagonals of the quadrilateral are perpendicular.

. Ja-b| = ||a| |bicos8| = |a| |b] {cosf|. Since |cos 8| < 1, |a-b| = |a] |b||cos 8] < |af |b].

Note: We have equality in the case of cos8 = +1, 50 8 = 0 or § = 7, thus equality when a and b are parallel.

The Triangle Inequality states that the length of the longest side of
a triangle is less than or equal to the sum of the lengths of the two

shortest sides.
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) la+bl®=(a+b) - (a+b)=(a-a)+2(a-b)+(b-b)=la*+2(a-b)+ b
< |a)* + 2]a| Ib| + [b]? {by the Cauchy-Schwartz Inequality]

= (ja| + [b})?
Thus, taking the square root of both sides, |a + b| < |a] + |b|.

59. (a) The Parallelogram Law states that the sum of the squares of the
lengths of the diagonals of a parallelogram equals the sum of the

squares of its (four) sides.

(byla+b>=(a+b)-(a+b)=|a*+2(a-b)+|bl®and
a-b’=(a-b)-(a-b)=la* -~ 2(a b) + b/*
Adding these two equations gives |a + b|* + |a — bi* = 2|a|® + 2ib|%.

13.4 The Cross Product ET124

i j k
1 b 1;0 20 Lo 12k(20) 1-0j+B3-0k=2 3k
.axb= == i-— i+ =2-0)i—-(1-0)j+ (3~ =2i-j+
31 01 ! 03 ! !
031
Now{axb})-a=(2,-1,3)-{1,2,0) =2—-2+0=0and(axb)-b=1{2-1,3)-{0,3,1) =0-3+3 =0,
so a x b is orthogonal to both a and b.
i jk
14 5 4 5 1
Laxb=| 5 1 4|= i‘ j+} Kk
0 2 -1 2 -1 0
-1 0 2
=2-0i-10—-(-4)]j+0-(-1)]k=2i-14j+k
Now (axb)-a={(2,—14,1)-(5,1,4) = 10 — 14 + 4 = 0 and
(axb)-b=1{2-14,1) - {(-1,0,2) = =24+ 0+ 2 = (}, so a x b is orthogonal to both a and b,
ij k
1 -1 2 -1 21
axb=121 —-1;= i— i+
1 2 0 2 01
01 2
=R2-(-1}]i-(4-0)j+(2-0)k=3i-4j+2k
Now(axb)-a=@3i-4j+2k)-2i+j-k)=6-4-2=0and
(axb)-b=(3i-4j4+2k)-(j+2k)=0—4+4=0,s0a % bis orthogonal to both a and b.
i jk
d axb=|1 -1 1|=
1 11
=(-1-Di-(1-Dj+[1-(-D]k=-2i+2k
Now{axb)-a=(-2i+2k) - i—-j+k)=-2+0+2=0and
(axb)-b={(-2i+2k) - (i+j+k)=-2+0+2=0,s0a x bis orthogonal to both a and b.

i i+ k

-11 11 1 -1
11 11 1 1
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i
! 2 4 3 4 3 2
Baxb=|3 2 = i— J+ k
-2 -3 1 -3 1 -2
1 -2 -3

= [~6— (=8)]i— (-9 —4)j+ (-6 -2k =2i+13j— 8k

Since (a x b)-a={21+13j—8k) - (3i+2j+4k) =6+ 26 — 32 = 0, a x b is orthogonal to a.
Since {a x b)-b=(2i+13j—8k)-(i—2j-3k) =2~ 26 + 24 =0, a x b is orthogonal to b.

1 et
k

2 &t

i—(—et—2ej+ (e -2 k=-2i+3e "j—€c'k
ca=(-2i+3e'j—e'k)-(i+e'j+e "k)=-2+3—1=0, ax bisorthogonal to a.
‘b =(-2i+3e"]j -etk) . (2i—+—etj—e_tk) =—44+3+1=10,a x bis orthogonal to b.

R A t 3 t t?
- i— i+
2t 32 1 32 1 2t

= (3t — 2N (3 i+ 2 - k=t'i-2j+k
Since (a x b)-a = {t*, ~2t3 %) . {,£*,#*) = * — 2t> + ¢° = 0, a x b is orthogonal to a.
Since (a x b) - b= (%, ~2t*,¢*) - (1,2¢,3¢%) = t* — 4t* + 3t* = 0, a x b is orthogonal to b.

ij k
1 0 -2
01 1

0 -2

1 -

11

2i-j+k

. {(a) Since b x ¢ is a vector, the dot product a - (b x ¢} is meaningful and is a scalar.
(b) b - ¢ is a scalar, s0 a x (b - ¢) is meaningless, as the cross product is defined only for two vectors.
fc) Since b x ¢ is a vector, the cross product a x (b x ¢) is meaningful and results in another vector.
{d) a - bis a scalar, so the cross product (a - b) x ¢ is meaningless.
(e) Since (a - b) and (¢ - d) are both scalars, the cross product (a - b} x (c - d} is meaningless.

{fy a x band ¢ x d are both vectors, so the dot product (a x b) - (¢ x d) is meaningful and is a scalar.

. Using Theorem 6, we have [u x v| = |u| |v|sin8 = (5)(10)sin 60 ° = 25 1/3. By the right-hand rule, u x v is
directed into the page.
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11. If we sketch u and v starting from the same initial point,
we see that the angle between them is 30 °. Using Theorem 6,

we have
wx v] = Juf v]sin30° = (6)(8)(1) = 24
By the right-hand rule, u x v is directed into the page.
.(a) [ax b|={a||bjsind =3 -2-sin7 =6

(b) a x bis orthogonal to k, so it lies in the zy-plane, and its
z-coordinate is (0. By the right-hand rule, its y-component is

negative and its z-component is positive.

1 2 i j k=6-1)i-3-0Mj+(1-0)k=5i-3j+k
01

ij

bxa=|0 1 j i i+ k=(1-6i-(0-3)j+0-1)k=-5i+3]j-k
1 2

Natice a x b = —b x a here, as we know is always true by Theorem 8.

ij k

-1 (} -1 1
j+ k=—4i—4jso
0 —4 a0

31
k=-2i-2j+dkso
11

i+

_ -2 4
o0 -4

-4
Thusa x (b xe) #(axb)xe.

. We know that the cross product of two vectors is orthogonal to both. So we calculate

i jk
(1,-1,1) x {0,4,4) = | 1 -1 1 St C e s ajak
Ly Xl 4, 5) = - - 1 — i + = —-8i—4j+ i
" u g 14 04" 10 4 !

So two unit vectors orthogonal to both are & (-8 —44) = (=8, —4,4) , that is, <f

V64 +16 + 16 46

and< ,
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16. We know that the cross product of two vectors is orthogonal to both. So we calculate

ik
11 11 11

11 1= i— i+ k =i+ j— 2k. Thus, two unit vectors orthogonal to both
50 1 01 21 20

arei—\%(l,l,—?},thatis,<—\}—E,ﬁ,v%>and<—ﬁ,—%, >
, Leta = (al,ag,a3). Then

i ok
Oxa=[0 0 0

0 0

a2 ag
1 d2 a3s

i j k
2 ds

0 0

a1 a2 da

0 0 0

. Leta = {a1, a2, a3} and b = (by, ba, ba).

az as a1 as ap az az a4z a1 as

H 3 ' (blsbgyb3> = bl b? +
bz b3 bl b3 bl b2 b2 bS bl b3

{axb)-b= <
= (a2bzbr — asbab1) — (a1bsbe — asbibz) + (arbabs — azbiba) =0
. a X b = {ashs — asbe,azh1 — aibs, arb: — azby)
= {(~1){h2as — bzaz) ,{—1){bsa1 — bras) ,{—1){braz — b2a1 }}
= — (baas — bzaz,bzay — biaz, bras — boay) = b xa
. ca = (a1, o, cdg), SO
(ca) x b = (cazbs — casba, casby — caibs, carby — cazbi)

(1253 - aabQ, a3b1 — a1b:3, albz bt azbl) - c(a X b)

{
=
= {cagbs — cazba, cagby — caiby, carby — cazby)
= {

aaicha) — az{chz) ,aa(eb1) — a1(chs) ,a1{cha) — az(chb1))
=axch
N ax(b+e)—ax (by+eci,bs+ca byt es)
= {az(bz + c3) — aa(by + c2),as(br +e¢1) — a1(bs + c3),a1(b2 + c2) — az(by + 1))
= {azbs + azcs — ashs — aacz,ashy + ascr — arbs — ares, a1be + a1cz — azby — azar)

= {(azhs — aabz) + (azc3 — asca}, {asby — a1bs) + (asc1 — arcs),

(albz - azbl) -+ ((1162 - agcl))
= (azbg — agbg,aalh — a1b3, a1b2 - a2f)1> + ((12(33 — Q3C2,a3C1 — Q1C3,Q1C2 — &261)

=(axb)+{axc)
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22 (a+b)xec=—-cx{a+b) by Property 1 of Theorem 8
=—(cxa+cxb) by Property 3 of Theorem 8

=—(—axc+(-bxc)) by Property | of Theorem 8
=axc+hxe by Property 2 of Theorem 8

23. By plotting the vertices, we can see that the parallelogram is determined

— .
by the vectors AB = (2,3) and AD = {4, —2). We know that the area
of the parallelogram determined by two vectors is equal to the length of

the cross product of these vectors. In order to compute the cross product,

eny
we consider the vector AB as the three-dimensional vector (2,3,0)

(and similarly for E) and then the area of parallelogram ABCD is
i j k
—— —
|AB><AD[= 2 3 0|l ={(0)i-(0j+(-4-12)k =|-16k| =16
4 -2 0

24. The parallelogram is determined by the vectors E ={0,1,3) and I_('_ﬁ = (2, 5,0), so the area of parallelogram
KLMN is

*

i j k
'Exﬁ‘: 0 1 3||=[(=15)i—(—6)j+(~2)k| = |~15i+ 6] — 2k| = /765 ~ 16.28
2 5 0

— —_—
25. (a) Because the plane through P, (7, and R contains the vectors P() and PR, a vector orthogonal to both of these
—_—
vectors (such as their cross product) is also orthogonal to the plane. Here PQ} = (—1,2,0} and

PR = (—1,0,3), 50

PQ x PR ={(2)(3) — (0)(0), (0)(—1) — (=1)(3), (= 1}(0) — (2)(-1)) = (6,3,2)
Therefore, {6, 3, 2} (or any scalar multiple thereof} is orthogonal to the plane through £, @, and R.

(b) Note that the area of the triangle determined by P, (7, and R is equal to half of the area of the parallelogram
determined by the three points. From part (a), the area of the parallelogram is

N
’PQ X PR‘ = [{6,3,2)| == v/36 + 9 + 4 = 7, 50 the area of the triangle is 3(7) = .

26. (a) P_Cj ={-3,2,—-1) and PR - (1, =1, 1}, so a vector orthogonal to the plane through P, @, and R is
PG x PR = ((2)(1) = (=1)(=1), (=1)(1) = (=3)(1), (-3)(-1) - 2)1)) = (1,2,1)

{(or any scalar mutiple thereof).

(b) The area of the parallelogram determined by P_Cj and IB_R? is
‘13_63 X I?’wﬁl =[{1,2,1}| = V12 + 22 + 12 = V6, so the area of triangle PQR is %\/6
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21 (a) FC} = (4,3, 2} and PR = {5,5,1), so a vector orthogonal to the plane through P, ¢, and R is
— —_—
PQ x PR ={(3)(1) — (—2)(8),(-2)(5) — (4{1), (4)(5) — (3)(3)) = (13, -14,5)
(or any scalar mutiple thereof).
- — - .
{b) The area of the parallelogram determined by P() and PR is
|P_c§ x Ffz( = (13, —14,5)| = /132 + (—14)2 + 52 = /390, so the arca of triangle PQR is 4 v/380.

. (a) I—’—é = (1,1,3) and P_}% = {3,2,5), so a vector orthogonal to the plane through P, ¢, and R is
PG x PR ={(1) (5) ~ (3)(2), 3)(3) — (1)(5), (1) (2) — (1)(8)) = {~1,4,~1) (or any scalar multiple
thereof ).

— —
(h) The area of the parallelogram determined by P¢) and PR is

‘P—Q) X P_FE‘ =|{-1,4, -1} =v1+16+1= V18 = 31/2, so the area of triangle PQR is
1.3v2=32

. We know that the volume of the parallelepiped determined by a, b, and ¢ is the magnitude of their scalar triple

product, which is

6 3 -1
1 2 0 2 0 1
a-(bxc=0 1 2(=6 3 + (-1)
-2 5 4 5 4 -2
4 -2 5
=6(5+4)—3(0—8)—(0—4) =82
Thus the volume of the parallelepiped is 82 cubic units.

1
La-(bxe)={ 1 -1
-1 1 1

+ (=1

11 -11 -1 1

-11 11 1
-1

So the volume of the paralielepiped determined by a, b, and ¢ is |—4| = 4 cubic units.
— — 3
a=PQ=(2,1,1),b=PR={1,-1,2),andc= PSS ={0,-2,3).

2 11
-1 2 1 2 1 -1
a-(bxe)=|1 -1 2| =2 5 3 -1 0 3 + 1 o o =2-3-92= -3
0 -2 3

s0 the volume of the parallelepiped is 3 cubic units.
N — —
La=PR=233.b=PR={(-1,—-1,~1)andec = PS = (6,-2,2).

2 3 3
-1 -1 -1 -1 -1 -1
a-(bxec)=|-1 =1 -1 =2 3 + 3 = —8—12+24 =4,
-2 2 2 6 —2
6 —2 2

so the volume of the parallelepiped is 4 cubic units.

2 31
-1 0 10 1 -1

L,a-(bxcy=|1 -1 0|=2 3 +1 = —4 — 6 + 10 = 0, which says that the
2 39 3 2 72 7 3

volume of the parallelepiped determined by a, b and ¢ is 0, and thus these three vectors are coplanar.
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—_ —_ —
Ma=PQ=(1,45.b= PR=(2,—-1,1)andc = PS = {5,2,7).

1 45
-1 1 21 2 —1
a-(bxel=([2 —-1 1|=1 -4 +5 =-9-36+45=0,
27 5 7 5 2
5 27
s0 the volume of the parallelepiped determined by a, b and ¢ is 0, which says that these vectors lie in the same

plane. Therefore, their initial and terminal points P, ¢}, R and S also lie in the same plane.

35. The magnitude of the torque is
|7| = |r x F} = |r| |{F|sin# = (0.18 m)(60 N) sin(70 + 10) ° = 10.8sin80° == 10.6 J.

36. |r| = /4% + 47 = 44/2 ft. A line drawn from the point P to the point of application of the force
makes an angle of 180° — (45 4+ 30) © = 105 ° with the force vector. Therefore,

IT| = |r x F| = |r| |F|sin0 = (42 )(36)sin 105° = 197 ft-lb.

37. Using the notation of the text, r = {0,0.3,0} and F has direction (0, 3, —4). The angle # between them can be

{0,0.3,0) - (0,3, —4) 0.9 . oo
- = c8f=-—F7= = cosf=06 = O#=531°.
1(0,0.3,0] [{0,3, -4} (0.3)(5)

Then |7| = |r| [F|sin# = 100=0.3|F|sin53.1° = |F|=417TN.

determined by cos 8 =

38. Since |u x v| = [u| |v/sind, 0 < 8 < 7, |u x v| achieves its maximum value forsinfd =1 = 6= Z,in
which case |u x v| = |u| |v| = 15. The minimum value is zero, which occurs whensiné =0 = #=0or=,
s0 when u, v are parallel. Thus, when u points in the same direction as v, so u = 3}, ju x v} = (. As u rotates
counterclockwise, u x v is directed in the negative z-direction (by the right-hand rule) and the length increases until
§ = . in which case u = —3iand |u x v| = 15. As u rotates to the negative y-axis, u x v remains pointed in the
negative z-direction and the length of u x v decreases to 0, after which the direction of u x v reverses to point in
the positive z-direction and [u x v| increases. When u = 31 (so @ = %), ju x v| again reaches its maximum of 15,

after which |u x v| decreases to 0 as u rotates to the positive y-axis.

39. (a) . The distance between a point and a line is the length of the

perpendicular from the point to the line, here 1P_L>S' ‘ = d. But referring

to triangle PQS, d = |?Sl - ‘cﬁﬂ sind = |b|sing. But @ is the

angle between @5 = b and Cﬁ% = a. Thus by Theorem 6,
|bjiaxb| |axb]
] |b| |

|a x b

sinf =
a||b|

and so d = |bisinfl =

() a=QR=(-1,-2,~1)andb = QP = {1, -5, 7). Then
ax b= {(-2)(-7) - (=1)(=5), (=1)(1) = {(=1){=7), (=1)(=5) = (=2)(1)) = (9, —8,7). Thus the

distance i1sd = |a x b =L6\/81+64+49:,/%=1f%_

al
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40. (a) The distance between a point and a plane is the length of the

perpendicular from the point to the plane, here |i'-“13l =d. ButTPis

parallel to b x a (because b x a is perpendicular to b and a) and

d= {”}—}—51 = the absolute value of the scalar projection of c along Q

b x a, which is |c| |cos 8]. (Notice that this is the same setup as the development of the volume of a
parallelepiped with i = |c| |cos#]). Thus d = |¢| [cos 8| = h = V/A where A = |a x b/, the area of the base.

. V Ja-(bxc)] l|laxb) ¢
finally d = — = = by Theorem 8 #5.
Sofinally d = 7 = =2 9] ax bl

b a=QR=(-1,2,01,b =08 = (-1,0,3) and ¢ = QP = (1,1,4). Then

-1 20 0
axbl-e=|-1 0 3| =(-1 -2
(a xb) D], ,
11 4
-1 2
k=6i+3j+2k
-10

Thusd:|(al><b)-c\: 17 _ 17

a x b V61974 T

Nl.{a—b)x{a+b)=(a—-b)xa+(a—-b}xb by Theorem 8 #3
=axa+(—-b)xat+axb+{-b)xb by Theorem 8 #4
=(axa)—(bxa)+{axb)—(bxb) by Theorem & #2 (with ¢ = —1)
=0—(bxa)+(axb)—-0 by Example 2
=(axb)+{axDb) by Theorem 8 #1
= 2(a x b)

42. Leta = {(a;,az,0s), b = {b;, b, bs) and ¢ = {c1, 2,03}, s0 b x ¢ = (bacz — bacz, bacy — bics, bica — beey)

and
a x {b X C) = (az(blcz - bzcl) - a3(b361 — bu’::;) ,as(b2(13 - bacz) — al(blcz — bgcl) s
G](bgcl - b1(33) - (],2(62(23 - b3Cg)>
= {usbicy — agbacy — azbacy + asbies, asbecs — asbscs — arbics + arbzcy,
a1bscr — ajbics — asbaes + agbacs)
= {(agez + ascstby — (azbz + asbs)er, (a101 + azca)ba — (a1b1 + azhs)es,

(a1c1 + azcalbs — (arby + azbz)es)
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(%} = {{azcs + naeca)br — (azbs + asbs)er + arbicr — arbie,
(arer + azea)ba — (arby + asba)ea + azbaca — aabaca,
(arcr + a2ca)bs — (a1bs + asha)es + asbacs — asbaes)
= {{a1c1 + azcz + ascz )by — (arhy + azbe + azbs)er,
{aic1 + azer + asca)bs — (aibr + azba + aszba)ea,
(are1 + azea + azes )bz — (aihy + azhs + aghs)es)
= (aic1 + azcz + azes) (b, bz, bs) — (a1by + azba + asbs) (1,2, ¢3)
={a-c)b—(a bl
(*} Here we look ahead to see what terms are still needed to arrive at the desired equation. By adding and
subtracting the same terms, we don’t change the value of the component.

$B.ax(bxc)+bx(cxa)+cx(axh)

={(a-c)b—(a-b)c]+[(b-a)c— (b-c)a]+ [(c-b)a— (c-a)b] by Exercise 42

=(a-c)b—(a-bjc+(a-bjc—(b-clat+(b-cla—(a-c)b=0

4. letc xd =v. Then
(axb)-{exd)=(axb)-v=a-(bxv) by Theorem § #5
=a-[bx (¢cxd)
=a-[(b-d)c—(b-c)d] by Exercise 42
(b d)(a-c})-(b-c)(a-d) by Properties 3 and 4 of the dot product

a-c b.c

a-d b-d

45. (u) No. [fa-b=a-c,thena- (b — ¢} = 0, s0 a is perpendicular to b — ¢, which can happen if b # c.
For example, leta = (1,1,1}, b = {1,0,0) and ¢ = {0, 1,0}.
{(b) No. Ifa x b = a x cthen a x (b — ¢) = 0, which implies that a is parallel to b -- ¢, which of course can
happenif b # c.
(c) Yes. Sincea - ¢ = a - b, a is perpendicular to b — ¢, by part (a). From part {b}, a is also parallel to b — ¢,
Thus since a 7 0 but is both parallel and perpendiculartob — ¢, wehaveb—c =0.50b = c.

46. (a) k; is perpendicular to v; if i # 7 by the definition of k; and Theorem 5.

by ki - vy Vi X V3 ‘VI:VL'(V2XV3):1
vi - (ve x vs) vi - (V2 X V)

Kk o Vi X Vi vz-(V3xv1) (VgXVg)-Vl
2 V2 — F Vg = =
vi - (v X v3) vi-(va xva)  vi-(va xvs)

=1 by Theorem & #5]

Ky vy = (vixve) vy _ vi(vexvs) _ 1 [by Theorem 8 #3]
; vi-(vaxvs)  wvi-(vy xvs)
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7" [(Vg X Vl) X (V1 X Vz)]

() ki - (ko x ky) =k - (

vy X V3 vi X V3 ) B ki
Vi (Vg X V3) v - (Vz X V3) {Vl . (Vz X V3)]
k, o
= —————— ([{va x v1) - va| vi = [(v3 x v1) - vi] v2) [by Exercise 42]
[vi:(va2 X va)]
But (v3 x v1) - vi = 0 since v3 x v, is orthogonal to vy, and
(VS % V]} SV = Vo . (V3 X Vl) = (V2 x v3) FV] T VY - (Vz X V3). Thus
ki - (k2 x k) ky [vi - (va X va)| v
} ——— . vy = —
' : ¥ {V]_ . (Vg s V3)]2 ' ? AS (V2 X Vg)
1
e E— [by part (b)]

Vi - (VQ x Vg}

k- v1

DISCOVERY PROJECT The Geometry of a Tetrahedron

1. Set up a coordinate system so that vertex S is at the origin, B = (0,:,0), @ = (22,¥2,0), P = (z3,¥3, z3).
— — —— —
Then SR = (0,y1,0), SQ = (z2,y2,0), SP = {x3,y3, 23), QR = (~2,3 — y2,0), and
—
QP = <.1'33 — T2, Y3 — y2723>. Lﬂt
—_— —
Vg = QR X QP
= (Y123 — yez3)i + x2z3j + (—o2ys — zamn + 23y2 + 7211 ) k
Then vg is an outward normal to the face opposite vertex S. Similarly,
Py . . —_— — .
VR = SQ x SP = Y2231 — I223) -+ (Cl',‘zyg — $3y2)k, Vo = SP x SR = —Y1z3l +a:3y1 k, and
——— —
vp=SRxS8Q=-zonk = vs+vr+vg+vp=0 Now
—_ —
lvs| = area of the parallelogram determined by @R and QP
= 2 (area of triangle RQP)
=2|v4
Sovg = 2vy, and similarly vg = 2va, vg = 2v3, vp = 2vy. Thus vy + vz + va + vy = 0.
2 () Let S = (20,90, 20), B = (71,11, 21), @ = (x2,y2, 22}, P = (23, y3, z3) be the four vertices. Then
Volume = % {distance from S to plane RQP) x (area of triangle RQP)
—
| [N SR
= ET B

— e
'RQXR ;
— —
where N is a vector which is normal to the face RQP. Thus N = R@Q x RP. Therefore
To—T Ho— ¥ 20—z
— — — 1

V = %(RQXRP)SR‘ZE Ta — Tl Y — Y1 22— &1
I3 —I1 Y3~ =23 — 21
1-1 1-2 1-3
(b} Usingthcformulafrompart(a),V:% 1-1 1-2 2-3
3~1 -1-2 2-3
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3. We define a vector v; to have length equal to the area of the face opposite vertex P, so we can say |vi| = A, and
direction perpendicular to the face and pointing outward, as in Problem 1. Similarly, we define vz, vs, and v4 so
that |vz| = B, jva| = C, and |v4| = D) and with the analogous directions. From Problem 1, we know
Vitvatva+vi=0 = vi=—(vi+va+vs) = |val=]|-(vi+vetvs)l=I|vi+vetvs
= \V4|2 =|vi+va+ V3|2 =

va-va={(vi+va+v3) (Vi+v2+vs)
=vivitvive+ vy Va+vVa-Vi+ Ve V2+ Ve Va+ VoVt V3 Va+V3ovs
Since the vertex S is trirectangular, we know the three faces meeting at § are mutually perpendicular, so the vectors

V1. va, v are also mutually perpendicular. Therefore, v, - v, = 0 fori # j and i, j € {1,2, 3}. Thus we have

V4 V4 =V]-V]+Vy-Va+V3-V3 = [V4|2:|V1|2+|V2‘2+‘V3‘2 = D2:A2+32+C2.

Another method: We introduce a coordinate system, as shown.
Recall that the area of the parallelogram spanned by two vectors is
equal to the length of their cross product, so since
uxv={-gqr0 x{—q,0,p) = (pr,pg, gr), we have

lu x v| = /(pr)? + (pqg)? + (gr)?, and therefore

D= (Luxv))? = L(pr)* + (pg)® + (g7’

= (3pr)* + (3p0)" + (30r)" = A* + B* + C*.

A third method: We draw a line from S perpendicular to Q R, as
shown. Now D = Lch, so D* = 1c°h?®. Substiuting

h? =p? + k% weget D? = 12(p° + k%) = 1°p° + 1°K%
But O = gck, so D? = ZC p2 + 2. Now substituting

e = ¢ + r? gives

D = 50 + 3P + CP = A+ B® + (2

13.5 Equations of Lines and Planes ET125

1. {a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these
vectors are each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar

multiples of each other, so these vectors, and hence the two lines, are parallel.
(b) False, for example, the z- and y-axes are both perpendicular to the z-axis, yet the - and y-axes are not parallel.

(c) True; each of the first two planes has a normal vector paralle! to the normai vector of the third plane, so these
two normal vectors are parallel to each other and the planes are parallel.

(d) False; for example, the xy- and yz-planes are not parallel, yet they are both perpendicular to the zz-plane.
(e) False; the z- and y-axes are not parallel, yet they are both parallel to the plane z = 1.

(f) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector
for the plane. Thus, the direction vectors are parallel to each other and the lines are parallel.
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(g) False; the planes y = 1 and z = 1 are not parallel, yet they are both parallel to the z-axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction
vector for the line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.
( j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is
perpendicular to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle ¢,
0° < 6 < 90°, and the line will intersect the plane at an angle 90 ° — 6.

. For this line, we have rg = 1 — 3k and v = 2i — 4j + 5k, 50 a vector equation is
r=ro+ttv=_(i—-3k)+t(2i —4j+5k) = (1+2t)i—4tj+ (=3 + 5¢) k and parametric equations are
=142t y= -4t z=—3+5t

. For this line, we have ry = —2i 4+ 4j + 10k and v = 3i + j — 8k, so a vector equation is
r=ro+tv={-2i+4j+10k) +¢t(3i+j—8Kk)=(—-2+43¢)i+ (4+1t)}+ (10 — 8¢) k and parametric
equations are z = —2 + 3t,y = 4 +t, 2z = 10 — 8t.

. This line has the same direction as the given line, v = 21 — j + 3 k. Here rg = 0i 4 0j + 0k, so a vector equation
ist=(0i+0j+0k)+#2i-j+3k)=2ti—tj+ 3tkand parametric equations are z = 2¢, y = —t,
=3t

. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as n = (1,3, 13.
Sorp =i+ 6k, and we can take v = i + 3j + k. Then a vector equation is
r={(i+6k)+t{i+3j+k)=(1+8i+3tj+ (6+1)k, and parametric equations are z = 1 + ¢,y = 3t,
z=0+1.

. The vector v = (1 — 0,2 — 0,3 — 0) = (L, 2,3) is parallel to the line. Letting o = (0,0, 0}, parametric equations

are;r::0+1-t:t,y=0+2-t:2t,z:0+3-t=3t,whi1esymmelricequationsarea::%: %

. The vector v = (—4 — 1,3 - 3,0 — 2) = (5,0, -2} is parallel to the line. Letting Po = (1, 3, 2), parametric

- . . . -1 -2
equations are x = 1 — 5¢, ¥y = 3 + 0t = 3, z = 2 — 2¢, while symmetric equations are z 5 = z g V= 3.

Notice here that the direction number b = 0, so rather than writing y

-3, . . .
0 in the symmetric equation we must write

the equation y = 3 separaiely.
v ={(2-6,4—1,5—(-3)) = (—4,3,8), and letting Po = (6, 1, —3), parametric equations are = 6 — 4¢,
r—-6 y-1_ =243

-4 3 8

y =1+ 3t, z = —3 + 8¢, while symmetric equations are

cv=(2-0,1~1,-3-1) =(2,4,—4), and letting Py = (2, 1, —3), parametric equations are z = 2 + 2t,

2
x—2 y—-1 =z+3 =z-2 z+3
= = =2y -2 = .
12~ -1 U2 y-2="3

y=1+ %t, z = —3 — 4¢, while symmetric equations are

ijk
v={(i+j))x{j+k)=|1 1 0|=1-j+ kis the direction of the line perpendicular to both i + j and j + k.
011
With Py = (2, 1,0), parametric equations are z = 2 + ¢, y = 1 — ¢, z = t and symmetric equations are
y—1

r—2= =zorrx—2=1—-y==z
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. The line has direction v = (1,2, 1}. Letting Py = (1, -1, 1), parametric equations are x = 1 + ¢,y = —1 + 2¢,
y+1_

5 z—1

z =1+ t and symmetric equations are z — 1 =

. Setting x = 0, we see that (0, 1, 0) satisfies the equations of both planes, so they do in fact have a line of
intersection. v = n; x nz = {1, 1,1) x {1,0,1) = (1,0, —1} is the direction of this line. Taking the point (0, 1, 0)
as P,, parametric equations are x = ¢, y = 1, z = —¢, and symmetric equations are x = ~z,y = 1.

. Direction vectors of the lines are vy = {—2 — (—4),0— (—6), -3 — 1) = {2,6, —4) and
vy = {h - 10,3 — 18,14 — 4) = (-5, —13,10), and since vz = —%vl, the direction vectors and thus the lines
are parallel.

. Direction vectors of the lines are vi = (—2,4,4) and vo = (8, —1,4). Since v1 - v = ~16 — 4 + 16 # 0, the
vectors and thus the lines are not perpendicular.

. (a) A direction vector of the line with parametric equations z = 1+ 2t,y = 3t,2 =5 — 7tis v = (2,3, -7} and

the desired parallel line must also have v as a direction vector. Here Py = (0,2, —1), so symmetric equations
. r y-2 z+4+1

for the | = =

or the line are 3 3 —

-2
y — _—_7 orr —= 7%,
point of intersection with the zy-plane is {— £, 31,0). Similarly for the yz-plane, weneed z =0 &
y—2 z+1

3 =7

(b) The line intersects the xy-plane when z = (). so we need g = Y= 1—71 Thus the

0= & gy =2, z = —1. Thus the line intersects the yz-plane at {0, 2, —1). For the

gﬂz+1
3 -7

xz-plane, weneedy =0 < = - T = —%, z= -1371 So the line intersects the xz-piane

w(-4.0.4).

. (a) A vector normal to the plane 2z — y + z = 1lis n = {2, —1, 1), and since the line is to be perpendicular to the
plane, n is also a direction vector for the line. Thus parametric equations of the linearex =5+ 28, y =1~ ¢,
z2=1

(b) On the zy-plane, z = 0. So z = ¢ = ( in the parametric equations of the line, and therefore x = b and y = 1,
giving the point of intersection (5, 1,0). For the yz-plane, z = 0 which implies t = —%,soy=Zandz = -2
and the point is (0, 2, ~2). For the zz-plane, y = 0 which implies t = 1, so z = 7 and z = 1 and the point of

intersection is (7,0, 1).

. From Equation 4, the line segment fromry = 21 — j+4ktor) =4i+6j+ kis
(i) =(l—fro+trn =(1-2i—-j+1k)+t4i+6j+k)=(2i-j+4k)+t(2i+7j—3k),
D<t <l
. From Equation 4, the line segment fromrp = 10i +3j+ ktor; =5i+ 63— 3kis
r() =(1—-t)rp+tri=(1-H(10i+3j+ k) +¢(5i+6j—3k)
=(10i+3j+k)+#{-51+3j—4k}), 0<t<1
The corresponding parametric equationsare z = 10 — 58, y =34+ 3,2 =1 -4, 0 <t < L.

. Since the direction vectors are v = {(—6,9, —3) and v, = (2,3, 1), we have vi = —3v3 s0 the lines are
parallel.

. The lines aren’t parallel since the direction vectors (2,3, —1} and (1, 1,3} aren’t parallel. For the lines to intersect

we must be able to find one value of ¢ and one value of s that produce the same point from the respective parametric
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equations. Thus we need to satisfy the following three equations: 1 + 2t = -1+ 5,3t =4+ 35,2t =1+ 3s.
Solving the first two equations we get t = 6, s = 14 and checking, we see that these values don’t satisfy the third
equation. Thus L, and Ly aren’t parallel and don’t intersect, so they must be skew lines.

. Since the direction vectors (1,2, 3) and {—4, —3, 2} are not scalar multiples of each other, the lines are not parallel,
so we check to see if the lines intersect. The parametric equations of the lines are Ly: v = ¢, y = 1 4 2¢,
=2+ 3tand La: 2 =3 —4s,y = 2 — 35, 2 = 1 + 2s. For the lines to intersect, we must be able to find one
value of £ and one value of s that produce the same point from the respective parametric equations. Thus we need to
satisfy the following three equations: ¢ =3 — 48,14+ 2t = 2 — 33, 24+ 3t = 1 4 2s. Solving the first two equations
we get £ — —1, s = 1 and checking, we see that these values don't satisfy the third equation. Thus the lines aren’t
parallel and don’t intersect, so they must be skew lines.

. Since the direction vectors (2,2, —1} and {1, —1, 3) aren’t parallel, the lines aren’t parallel. Here the parametric
equationsare L1t x =1+ 2,y =3+ 2,2 =2 —-tand Ly: 2 =2+ 8,y =6 — 8,2 = —2 + 3s. Thus, for the
lines to intersect, the three equations 1 +2¢ =24+ 5,34 2{ =6 — 5, and 2 — { = —2 + 33 must be satisfied
simultaneously. Solving the first two equations gives £ = 1, s = 1 and, checking, we see that these values do satisfy

the third equation, so the lines intersect when ¢ = 1 and s = 1, that is, at the point {3, 5, 1).

. Since the plane is perpendicular to the vector {(—2, 1,5), we can take {—2, 1, 5) as a normal vector to the plane.
(6, 3, 2} is a point on the plane, so settinga = ~2,b =1, ¢ = 5and xg = 6. yo = 3, z0 = 2 in Equation 7 gives
—2(x—6)+1y—3)+5(z—2)=00r -2 + y + 5z = 1 to be an equation of the plane.

. J+ 2k = (0,1, 2) is a normal vector to the plane and (4,0, —3) is a point on the plane, so setting @ = 0, b = 1,
c=2,70=4,5% =0, 20 = 3 inEquation 7 gives 0{w — 4) + 1{y —0) + 2{z — (-3)} = Oory + 2z = —6 1o
be an equation of the plane.

.i+j— k= (1,1, —1) is a normal vector to the plane and (1, —1, 1) is a point on the plane, so settinga = 1,b = 1,
c=—1,xo= 1,90 = —1,20 = lin Equation 7 gives 1 (z — 1) + lly — (=1)] = 1{(z — 1) =0 or
&+ y — z = —1 to be an equation of the plane.

. Since the line is perpendicular to the plane, its direction vector (1,2, —3) is a normal vector to the plane. An
equation of the plane, then, is 1{z — {(—2)] +2(y — 8) = 3(2 — 10) = 0orx + 2y — 3z = —16.

. Since the two planes are parallel, they will have the same normal vectors. So we can take n = {2, —1, 3}, and an
equation of the plane is 2(z — 0) — Hy - 0)+3(z — ) =0o0r2z —y+ 3z = 0.

. Since the two planes are parallel, they will have the same normal vectors. So we can take n = (1,1, 1}, and an
equation of the plane is L[z — (1)) + 1{y — 6) + [z — (=5)] = 0orz +y + z = 0.

. Since the two planes are parallel, they will have the same normal vectors. So we can take n = (3,0, - 7), and an
equation of the plane is 3(z — 4) + 0y — (-2)] - 7(z - 3) =0o0r 3z — 7z = —-9.

. First, a normal vector for the plane 2z + 4y + 82 = 17 is n = {2, 4, 8). A direction vector for the line is
v = (2,1, ~1), and since n - v = 0 we know the line is perpendicular to n and hence paralle! to the plane. Thus,
there is a parallel plane which contains the line. By putting ¢ = 0, we know the point (3, 0, 8) is on the line and
hence the new plane. We can use the same normal vector n = (2, 4, 8}, so an equation of the plane is
2 -3+ 4Hy—-0)+8(z—8)=0orz + 2y + 4z = 35,

. Here the vectorsa = {1 - 0,0 - 1,1 =1} = (1,~1,0) and b= (1 — 0,1 — 1,0 — 1} = (1,0, —1) lie in the
plane, so & X b is a normal vector to the plane. Thus, wecantaken =axb=(1-0,0+1,0+ 1) = {1,1,1}.
If P is the point {0, 1, 1}, an equation of the plane is 1{(x — 0} + 1(y — 1) + l{z = 1) =0orz +y + z = 2.
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32. Here the vectors a = {2, —4,6) and b = (5,1, 3} lie in the plane, so
n=axb={-12-6,30— 6,2 + 20} = {~18,24,22) is a normal vector to the plane and an equation of the
plane is —18(z — 0) + 24(y — 0) + 22(z — 0} = O or —18x + 24y + 222 = 0.

. Here the vectors a = (8 — 3,2 — (—1),4 — 2} = {5,3,2) and
b=(-1-3-2—(-1),-3 - 2) = (—4,—1, —5) lic in the plane, so a normal vector to the plane is
n=axb={-15+2 ~8+425 -5+ 12) = (13,17, 7) and an equation of the plane is
~13(z -3)+ 17y — (-1 +7{z - 2) = 0or —13z + 17Ty + 72 = —42,

. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since
the given line lies in the plane, its direction vector a = (3,1, —1) is one vector in the plane. We can verify that the
given point (1,2, 3) does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can
pick any point on the line and find a vector connecting the points. If we put ¢ = {}, we see that (0, 1, 2) is on the line,
sob={1-0,2-1,3-2y=(1,1,landn=axb={1+1,-1-3,3—-1} = (2,-4,2}. Thus, an
equation of the plane is 2{z — 1) — 4(y — 2) + 2(z — 3) = 0 or 2z — 4y + 2z = 0. (Equivalently, we can write
x—2y+z=10)

. [f we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since
the given line lies in the plane, its direction vector a = {(—2, 5,4) is one vector in the plane. We can verify that the
given point {6, 0, —2) does not lie on this line, so to find another nonparallel vector b which lies in the plane, we
can pick any point on the line and find a vector connecting the points. If we put ¢t = 0, we see
that (4,3,7) is on the line, sob = {6 —4,0—3,-2 —7) = (2,3, -9} and
n=axb={(-45+12,8 —~ 18,6 — 10} = {(—33, —10, —4). Thus, an equation of the plane is
=33z —6) —10(y — 0) — 4]z — (—2)] = 0 or 33z + 10y + 4z = 190.

. Since the linex = 2y = 3z, 0rz = Yo 5 lies in the plane, its direction vector a = {1, %, 3 ) is parallel to

1/2 1/ 2

the plane. The point (0,0, 0) is on the line (put t = 0), and we can verify that the given point (1, —1, 1) in the plane
is not on the line. The vector connecting these two points, b = (1, —1, 1), is therefore parallel to the plane, but not
paraliel to (1,2,3). Thena x b = (3 + 3

3,3 —1,-1—12) = (2, —2, -2} is a normal vector to the plane, and
an equation of the plane is 2(z — 0) — £(y — 0) — £(z — 0) = Dorbz — 4y ~ 92 = 0.

6 1

. A direction vector for the line of intersectionisa = n; x ng = {1,1, -1} x {2, -1,3) = {2, -5, -3}, and a is
paraliel to the desired plane. Another vector parallel to the plane is the vector connecting any point on the line of
intersection to the given point {—1,2, 1) in the plane. Setting z = 0, the equations of the planes reduce to

3

y —z = 2and —y + 3z = 1 with simultaneous solution y = 1 and z = 5 . So a point on the line is (U, ;, 5) and

another vector parallel to the plane is ( -1, - 2, 2) Then a normal vector to the plane is
n={2-5-3)x {-1,-2,

—+) = (2,4, —8) and an equation of the plane is
2z +1)+4(y—2)—8(z—1)=00rz —2y+4z = —1.

.n; = (1,0, —1) and ny = {0, 1, 2). Setting z = 0, it is easy to see that (1,3, 0) is a point on the line of intersection
of z — z =1 and y + 22 = 3. The direction of this line is v1 = n; x ng = {1, -2, 1}, A second vector parallel to
the desired plane is vo = (1,1, —2), since it is perpendicular to « + y — 2z = 1. Therefore, a normal of the plane
inquestionisn = vy x va = {4 — 1,14+ 2,1+ 2) = (3,3,3), or we can use {1,1, 1). Taking
{zo, ¥0,z0) = (1,3, 0), the equation we are looking foris (z — 1)+ {(y - 3) +2=0 & z+y+z=4

. Substitute the parametric equations of the line into the equation of the plane: (3 —¢) — (2+¢) +2(5¢) =9 =
8 =8 = = 1. Therefore, the point of intersection of the line and the plane is givenby x =3 — 1 = 2,
y=2+1=3and z = 5(1) = 5, that is, the point (2, 3, 5).
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40.

Substitute the parametric equations of the line into the equation of the plane: (1 + 20)+2(4t) — (2-3t) +1=0
= 13t =0 = t = 0. Therefore, the point of intersection of the line and the plane is given by
z=1+2(0) =1,y =4(0) = 0,and z = 2 - 3(0) = 2, that is, the point (1,0,2).

. Parametric equations for the linearez = f,y =1 +1t,2 = %t and substituting into the equation of the plane gives

M) -1+ +3(2) =8 = 2t=9 = t=2Thsz=2y=1+2=3z=3(2)=1andthe point

of intersection is {2,3, 1).

. A direction vector for the line through (1,0, 1) and (4, —2,2) is v = (3, -2, 1) and, taking Po = (1,0, 1},

parametric equations for the linearex = 1+ 3L, y = —26, 2 = 1 + ¢. Substitution of the parametric equations into
the equation of the plane gives 1 + 3t =2t +1+t=6 = t=2Thenz=1+3(2)=7y= —2(2) = -4,
and z = 1 + 2 = 3 so the point of intersection is (7, —4, 3).

. Setting = = 0, we see that (0, 1, 0) satisfies the equations of both planes, so that they do in fact have a line of

intersection. v =1y x ny = {1,1,1) x {1,0,1) = (1,0, ~1} is the direction of this line. Therefore, direction

numbers of the intersecting line are 1, 0, —1.

. The angle between the two planes is the same as the angle between their normal vectors. The normal vectors of the

two planes are (1,1, 1) and (1, 2, 3). The cosine of the angle § between these two planes is
1,1,1-{1,2,3) 14+2+3 _ 6 /6
L1, D[(L,2,3)  VIF1+1vVI+4+9 V42 7

cosfl =

. Normal vectors for the planes are n; = {1,4, —3) and nz = {—3, 6, 7), so the normals (and thus the planes) aren’t

paratlel. But ny - n2 = —3 + 24 — 21 = {, so the normals (and thus the planes) are perpendicular.

. Normal vectors for the planes are ny = {—1,4, —2) and np = {3, —12,6). Since nz = —3n;, the normals

{and thus the planes) are parallel.

. Normal vectors for the planes are n; = (1,1, 1} and np = {1, —1, 1}, The normals are not parallel, so neither are

the planes. Furthermore, ny - nz =1 — 1+ 1 =1 # 0, so the planes aren’t perpendicular. The angle between them
11 - N2 1 1

[ [n2] ~ V3V3 3

is given by cos 8 =

= f= cosfl(%) = 70.5°.

. The normals are n1 = (2, —3,4) and nz = (1, 6,4) so the planes aren’t parallel. Since n1 -nz =2 - 184+ 16 = 0,

the normals (and thus the planes) are perpendicular.

. The normals are ny = {1, —4, 2} and ny = (2, —8,4). Since n2 = 2mny. the normals (and thus the planes) are

parallel.

. The normal vectors are n; = (1, 2,2) and nz = {2, —1,2). The normals are not parallel, so neither are the planes.

Furthermore, ny - ngz = 2 — 2 +4 = 4 # (, so the planes aren’t perpendicular. The angle between them is given by
n - np 4 4

Ini] 0z~ VBV 9

cosf = = 9:603_1(3) = 63.6°

. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say z = 0. (This will only

work if the line of intersection crosses the xy-plane; otherwise, try setting z or y equal to 0.) Then the equations
of the planes reduce to z + ¥ = 2 and 3z — 4y = 6. Solving these two equations givesx = 2,y = 0.
So 4 point on the line of intersection is (2, 0,0). The direction of the line is
v=mn; xn;={5-4,-3-5 -4 3} =(1,--8,-7), and symmetric equations for the line are
Y z

rT—2="==—.
-8 =7
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np-ng  3-4-35 _ﬁ_Therefore

Imif|nz|  3VEO 5

{b) The angle between the planes satisfies cosf =

0 = cos™* (—4E) ~ 119° (or 61°).

@z—2y+z=1 = m=(,-2,)and2x+y+z=1 = mnz=(21,1). The vector that gives the
direction of the line of intersection of these two planesis v =nj; x n2 = {(—2 — 1,2 - 1,1 +4} = {-3,1,5).
Setting = = y = 0, we see that both planes contain (0,0, 1) so that this point must lie on their line of
z—1
intersection. Then symmetric equations for this line are -% =y=—F
ni - ng 2-2+1

bC‘gZ = J—
b cost = el ~ VItdgivarisl 6

. Setting = = 0, the equations of the two planes become 2z = y and 5y + 2z = —1, which intersect at y = fé and
z=— '13. Thus we can choose (zo, Yo, 20) = (0, —é, —é). The vector giving the direction of this intersecting line,
v, is perpendicular to the normal vectors of both planes. Sov =n; x ng = {2, -5, -1} x {1,1, -1) = (6,1, 7).

Therefore, by Equations 2, parametric equations for this line are & = 64,y = fé +tz= —é + Tt.

. Setting i = 0, the equations of the two planes become 2z + 52 = —3 and «: 4+ z = —2, which intersect

atz = —% and z = 1. Thus we can choose (xo, %0, 20) = {—3,0, 3). The vector giving the direction of

this intersecting line, v, is perpendicular to the normal vectors of both planes. So

v=m xne={20,5) x {1,-3,1) = (15,5 — 2, —6) = 3 (5,1, —2). Therefore, by Equations 2, parametric

equations of the line of intersection of the two planes are x = —g +5t,y=tz= % - 2t

. The plane contains all perpendicular bisectors of the line segment joining {1,1,0) and (0, 1, 1). All of these

bisectors pass through the midpoint of this segment (%, %, %) = (%, 1, %

(1-0,1-1,0—1) = (1,0, 1) is perpendicular to the plane so that we can choose this to be n. Therefore the

). The direction of this line segment

equation of the plane is 1(;1;—%)—;—0(3;—1)—1(2—%):0 = r =z

. The plane will contain all perpendicular bisectors of the line segment jeining the two points. Thus, a point in the
plane is Py = {—1,—1,2), the midpoint of the line segment joining the two given points, and a nermal to the plane
is n = {6, 6, 2), the vector connecting the two points. So an equation of the plane is
6z+1)—6(y+1)+2(z—2)=00r3c -3y +2z=2.

. The plane contains the points {a, 0, 0), (0, b, 0} and (0, 0, ¢}. Thus the vectors a = {—a,,0} and b = (—a,0, ¢}
lie in the plane, and n = a x b = (bc — 0,0 + ac, 0 + ab) = (b, ac, ab) is a normal vector to the plane. The
equation of the plane is therefore bex 4+ acy + abz = abe + 0 + 0 or bex + acy + abz = abe. Notice that if @ # 0,

b # (and ¢ # 0 then we can rewrite the equation as z + % + £ 1 Thisisa good equation to remember!
a [

. (a) For the lines to intersect, we must be able to find one value of ¢t and one value of s satisfying the three equations
14+¢t=2-351~1{=sand 2t = 2. From the third we get ¢ = 1, and putting this in the second gives s = 0.
These values of s and ¢ do satisfy the first equation, so the lines intersect at the point
Po={(14+1,1-1,2(1)} = (2,0,2).

(b) The direction vectors of the lines are {1, —1, 2} and (-1, 1,0}, so a normal vector for the plane is
{(—1,1,0) x {1,—1,2) = (2,2,0) and it contains the point {2, 0, 2). Then the equation of the plane is
2r—2)+2(y—0)+{z—-2)=0 & z+y=2
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. Two vectors which are perpendicular to the required line are the normal of the given plane, (1,1, 1}, and a direction
vector for the given line, {1, —1,2). So a direction vector for the required line is
(1,1,1) x {1,—-1,2} = (3,—1,—2). Thus L is given by {x,y, z) = {0, 1,2) + t(3, —1, —2), or in parametric
form,z =3l y=1—-1t2=2-2¢.

. Let L be the given line. Then (1,1, 0) is the point on L corresponding to £ = 0. L is in the direction of
a=(1,-1,2)and b = {—1,0,2) is the vector joining (1,1,0) and (0,1, 2). Then

(11 _1? 2) i <_190’ 2)
12 + (,1)2 + 22

direction vector for the required line. Thus 2(—3, 3, 1) = (-3, 1,2} is also a direction vector, and the line has

b — proj, b = (-1,0,2) — (1,-1,2) = (-1,0,2) - 2{1,-1,2) = (-3, 1,1} isa

parametric equations x = —3¢, y = 1 + ¢, » = 2 4 2¢. (Notice that this is the same line as in Exercise 59.)

. Let P; have normal vector n;. Thenn; = (4, ~2,6), no = (4, -2, —2), ns = {-6,3, 9. ns = (2, -1,-1}.
Nown, = —%ng, so n; and ng are parallel, and hence Py and P; are parailel; similarty Py and Py are paratlel
because nz = 2n4. However, n; and ny are not paraliel. (0, 0, é) lies on Py, but not on P, so they are not the

same plane, but both P, and Py contain the point (0,0, —3), so these two planes are identical.

. Let L; have direction vector v;, Then vi = (1,1, -5}, vo = (1,1, -1}, vs = {1, 1, -1}, vq = (2,2, -10).
vo and vz are equal so they’re parallel. v4 = 2vy, so Ly and L, are paraliel. La contains the point (1,4, 1), but this
point does not lie on Ly, so they're not equal. (2, I, —3) lies on Ly, and on Ly, with £ = 1. So L1 and L4 are
identical.

s Let ) =(2,2,0)and R = ('3 ), points on the line corresponding to ¢ = G and ¢ = 1. Let
P =(1,2,3). Thena = QR = (1, —3,5). b= QP = (—1,0,3). The distance is

g 1axbl _[{1L,-35 x{-103)] [(-9-8-3)| v9+8+3 \/ﬁ /
‘a, |<1, -3, 5>| i(la -3, 5” V12 +32 + 52

. Let @ = (5,0,1) and R = (4,3, 3), points on the line corresponding tot = O and ¢ = 1. Let
= (1,0, —1). Thena = E)TE ={-1,3,2Yand b = @5 = (—4,0, —2). The distance is
g laxbl _[(-1,3,2) x(-4,0,-2)] _|(-6,-10,12)] _2+37 1576 270

al 1(=1,3,2)] L322 T VizZe3Tia? V14 =2V5

S (D@ + (D) + (-2)6) - 1 =

. By Equation 9, the distance is D =

1 26
WiTEsrs [4(3) + (—6)(—2) + 1(7) — 5] = i3

. Put y = z = 0'in the equation of the first plane to get the point (—1,0, 0} on the plane. Because the planes are
parallel, the distance D between them is the distance from (-1, 0, 0} to the second plane. By Equation 9,

po BEDH6O) -30) -4 7 T\f

VEiP (3P 3

- Put y = 2 = 0 in the equation of the first plane to get the point (%, 0, O) on the plane. Because the planes are

. By Equation Y, the distance is D =

parallel the distance IJ between them is the distance from (%, 0,0) to the second plane. By Equation 9,
|1(3) +2(0) - 3(0)—1] 1

D= = .
V12 +22 1 (-3)2 3v14
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69. The distance between two paralle] planes is the same as the distance between a point on one of the planes and the
other plane. Let Py = (zp, o, 2¢) be a point on the plane given by ax + by + cz + d1 = 0. Then
azo + byo + czo + d1 = 0 and the distance between Py and the plane given by az + by + ¢z 4+ d2 = @ is. from
lazo + byo + czo + da| _ |—d1 + d2f _ |d1 — da|
VaZ + b + 2 VEFTEFE Va2 + B +E

. The planes must have parallel normal vectors, so if ax + by + ¢z + d = 0 is such a plane, then for some ¢ # 0,

Equation 9, I =

{a,b,e) = (1,2, —2) = (t,2¢, —2¢}. So this plane is given by the equation  + 2y — 2z + e = 0, where e = d/t.
1 ¢

\/12 + 22 4 (=2)2

So the desired planes have equations ¢ + 2y — 2z = Tand © 4 2y — 2z = —5.

By Exercise 69, the distance between the planes is 2 = 6=1il—-¢ & e=Tor-5.

iz =y=z = z=y (). Laz+l=y/2=2/3 = z+1=y/2 (2). The solution of (1) and (2) is
r=y= -2 However,whenz = -2, 0 =2 = z=-2,butz+1=2/3 = =z= -3, acontradiction.
Hence the lines do not intersect. For Ly, vi = {1,1, 1}, and for Lo, va = (1,2,3), so the lines are not parallel.
Thus the lines are skew lines. If two lines are skew, they can be viewed as lying in two paralle] planes and so the
distance between the skew lines would be the same as the distance between these parallel planes. The common
normal vector to the planes must be perpendicular to both {1, 1,1} and (1, 2, 3}, the direction vectors of the two
lines. Sosetn = (1,1,1) x {(1,2,3) = (3 -2,-3+1,2—1) = (1, —2,1). From above, we know that
(—2,—-2,—2) and {—2, —2, —3) are points of L, and Lz respectively. So in the notation of Equation 8,
H=2)-2(-2)+1{-2)+di=0 = di=0and1(-2)—-2(-2)+1(-3)+d2=0 = do=1

o-1 1
VIF4+1 Ve

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n={1,1,1) x {1,2,3) = (1, —2,1). Pick any point on each of the lines, say (—2, —2, —-2) and (-2, -2, -3},

By Exercise 69, the distance between these two skew lines is [J) =

and form the vector b = {0, 0}, 1) connecting the two points. The distance between the two skew lines is the
L . b 1.0-2.0+1-1 1
absolute value of the scalar projection of b along n, that is, D = [n- bl = | i | =—

n] VIta+l V6

. First notice that if two lines are skew, they can be viewed as lying in two parallel planes and so the distance between

the skew lines would be the same as the distance between these parallel planes. The common normal vector to the

planes must be perpendicutar to both v; = (1,6,2) and vz = (2, 15, 6}, the direction vectors of the two lines

respectively. Thus setn = vy x vo = (36 — 30,4 — 6,15 — 12} = (6, -2, 3). Setting ¢ = D and s = 0 gives the

points (1,1,0) and (1, 5, —2). So in the notation of Equation 8,6 -2 +0+d; =0 = d; =—4and

6—-10—-6+dy =0 = dy =10. Then by Exercise 69, the distance between the two skew lines is given by
|—4 — 10| 14

V36 +4+9 7

Alternate solution (without reference to planes): We already know that the direction vectors of the two lines are

vy = (1,6,2) and va = {2,15,6). Then n = vy x vz = {6, —2, 3) is perpendicular to both lines. Pick any point

on each of the lines, say (1, 1,0) and (1, 5, —2), and form the vector b = {0, 4, —2) connecting the two points.

Then the distance between the two skew lines is the absolute value of the scalar projection of b along n, that is,

1 14
= 086~ — =

2.
V36 +44+9
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73.1fa# 0, thenaz+ by+ecz+d=0 = a{z+d/a)+bly—0)+c(z—0) = 0 which by (7) is the scalar
equation of the plane through the point {—d/a, 0,0) with normal vector {a, b, ¢). Similarly, if b # 0 (or if ¢ # 0)
the equation of the plane can be rewritten as a{z — 0) + b(y + d/b) + ¢(z — 0) = 0 [or as
a{z — 0) + b(y — 0) + ¢(z + d/c) = 0] which by (7) is the scalar equation of a plane through the point
(0, —d/b,0) [or the point (0, 0, —d/c)] with normal vector {(a, b,c).

74. (a) The planes = + y + 2 = ¢ have normal vector {1, 1, 1}, so they are all

parallel. Their z-, y-, and z-intercepts are all c. When ¢ > 0 their
intersection with the first octant is an equilaterat triangle and when ¢ < 0
their intersection with the octant diagonally opposite the first is an
equilateral triangle.

(b) The planes = + y + ¢z = 1 have z-intercept 1, y-intercept 1, and z-intercept 1/c. The plane with ¢ =0 is
parallel to the z-axis. As ¢ gets larger, the planes get closer to the ay-plane,

(c) The planes y cos @ + z cos # = 1 have normal vectors {{}, cos #, sin ), which are perpendicular to the z-axis,
and so the planes are parallel to the z-axis. We look at their intersection with the yz-plane. These are lines that
are perpendicular to {cos 8, sin #) and pass through (cos 8, sin #), since cos® 8 + sin® § = 1. So these are the

tangent lines to the unit circle. Thus the family consists of all planes tangent to the circular cylinder with
radius 1 and axis the z-axis.

LABORATORY PROJECT Putting 3D in Perspective

1. If we view the screen from the camera’s location, the vertical clipping plane on the left passes through the points
(1000, 0, 0}, (0, —400, 0), and (0, —400, 600). A vector from the first point to the second is
vy = {—1000, —400, 0} and a vector from the first point to the third is v = {—1000, —400, 600). A normal vector
for the clipping plane is vi x va = —240,0001 + 600,000 j or —21 + 5, and an equation for the plane is
—2{x —1000) +58(y —0)+0(z—0)=0 = 22— by = 2000. By symmetry, the vertical clipping plane on the
right is given by 2x + 5y = 2000. The lower clipping ptane is z = 0. The upper clipping plane passes through the
points (1000, 0, 0), (0, —400, 800), and (0, 400, 600}. Vectors from the first point to the second and third points are
vy = {—1000, —400, 600} and vo = {—1000, 400, 600}, and a normal vector for the plane is
vi X va = —480,0001 — 800,000k or 31 + 5 k. An equation for the plane is
3(x —1000) +0(y —0)+5(z —0) =0 = 3z + 5z = 3000.

A direction vector for the line L is v = {630, 390, 162} and taking Fo = (230, —285, 102), parametric
equations are x = 230 4 630¢, y = —285 + 390¢, » = 102 4 162¢. L intersects the left clipping plane when
2(230 4 630¢) — 5(—285 + 390¢) = 2000 = t= —%. The corresponding point is (125, —350, 75).

L intersects the right clipping plane when 2(230 + 630t) + 5(—285 + 390t) = 2000 = ¢t = 2% The
corresponding point is approximately (811.9, 75.2, 251.6), but this point is not contained within the viewing
volume. L intersects the upper clipping plane when 3(230 + 630¢) + 5(102 + 162t) = 3000 = ¢ = %,
corresponding to the point (650, —25, 210}, and L intersects the lower clipping plane when z =0 =
102 +162t =0 = t = —%. The corresponding point is approximately (—166.7, —530.6, 0)., which is not
contained within the viewing volume. Thus L should be clipped at the points (125, —350, 75) and
(650, —25, 210).
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2. A sight line from the camera at (1000, 0, 0} to the left endpoint (125, —350, 75) of the clipped line has direction
v = {—875, —350, 75). Parametric equations are z = 1000 — 875¢, y = —350t, z = 75¢. This line intersects the
screenwhenz =0 = 1000 — 875t =0 = ¢= £, corresponding to the point (0, —400, %2 ). Similarly, a
sight line from the camera to the right endpoint (650, —25, 210) of the clipped line has direction (—350, —25, 210}
and parametric equations are x = 1000 — 350t, y = —25t, 2 =210t. z=0 = 1000-350t=0 =
t = 2 corresponding to the point (0, —222, 600). Thus the projection of the clipped line is the line segment
between the points (0, —400, 6—5{.“)) and (0, —lf,,o, 600).

. From Equation 13.5.4 {ET 12.5.4}, equations for the four sides of the screen are
ri(t) = {1 — t){0, —400,0) + ¢ {0, —400, 600}, rz(t) = (1 — ¢){0, —400,600) + ¢ {0, 400, 600},
ra(t) = (1 - £){0,400,0) + ¢ {0, 400, 600}, and r4(t) = (1 — ¢}{0, —400, 0} + ¢ {0, 400,0}. The clipped line
segment connects the points (125, —350, 75) and {650, —25, 210), so an equation for the segment is
r5(t) = (1 — ){125, 350, 75) + t (650, —25, 210}. The projection of the clipped segment connects the points
(0, 400, %29} and (0, —22%,600), so an equation is re(t)} = (1 — ¢){0, —400, 232} +¢(0, — 322, 600). The
sight line on the left connects the points (1000,0,0) and (D, —400, %(—’), SO an equation is
r7{t) = (1 - t)(1000,0,0) +t (0, —400, %2). The other sight line connects (1000, 0,0} to (0, — 22,600}, so an
equation is rg(t) = (1 — £){1000,0,0) + £ {0, — 22, 600).

"\ (650,25, 210)

X

. The vector from (621, —147, 206) to (563, 31, 242), v = (—58, 178, 36). lies in the plane of the rectangle, as
does the vector from (621, —147, 206) to (657, —111, 86), va = {36, 36, —120). A normal vector for the plane is
vi x vy = {—1888, —142, —708; or (8,2, 3), and an equation of the plane is 8z + 2y + 3z = 5292. The line L
intersects this plane when 8(230 + 630¢) + 2(—285 + 390t) + 3(102 4+ 162t) = 5292 = ¢ = 1322 = (.589.
The corresponding point is approximately (601.25, —55.18, 197.46), Starting at this point, a portion of the line is
hidden behind the rectangle. The line becomes visible again at the left edge of the rectangle, specifically the edge
between the points (621, —147, 206) and (657, —111,86). (This is most easily determined by graphing the
rectangle and the line.) A plane through these two points and the camera’s location, (1000, 0, 0), will clip the line at
the point it becomes visible. Two vectors in this plane are vy = {—379, —147, 206} and v2 = {—343, —111, 86).
A normal vector for the plane is vi x vy = (10224, —38064, —8352) and an equation of the plane is
213x — 793y — 174z = 213,000. L intersects this plane when

213(230 + 630t) — 793(—285 + 390t) — 174(102 + 162t) = 213,000 = &= geeatl ~0.2177. The

corresponding point is approximately (367.14, —200.11, 137.26). Thus the portion of L that should be removed is
the segment between the points (601.25, —55.18, 197.46) and (367.14, —200.11, 137.26).
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13.6 Cylinders and Quadric Surfaces

ET 12.6

1. (a) In R, the equation ¥ = z” represents a parabola.

(b) In R3, the equation y = 22 doesn’t involve z, 50 any
horizontal plane with equation z = k intersects the graph
in a curve with equation y = 2. Thus, the surface is a
parabofic cylinder, made up of infinitely many shifted
copies of the same parabola. The rulings are parallel to

the z-axis.

{c) In R®, the equation z = y* also represents a parabolic
cylinder. Since = doesn’t appear, the graph is formed by
moving the parabola z = y? in the direction of the z-axis.

Thus, the rulings of the cylinder are parallel to the z-axis.

{b) Since the equation y = e™ doesn’t
involve z, horizontal traces are
copies of the curve y = ™. The

rulings are parallel to the z-axis,

{c) The equation z = e¥ doesn’t
involve x, so vertical traces in
x = k (parallel 1o the yz-plane)
are copies of the curve z = e¥,
The rulings are parallel to the

r-axis.
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. Since x is missing from the equation, the vertical
traces y2 +4z22 =4,z =k, are copies of the
same ellipse in the plane z = k. Thus, the surface
4* + 422 = 4 is an elliptic cylinder with rulings

parallel to the z-axis.

. Since z is missing, each horizontal trace & = y?,
z = k, is a copy of the same parabola in the plane
z = k. Thus, the surface z — 3* = 0 is a parabolic

cylinder with rulings parallel to the z-axis.

. Since y is missing, each vertical trace z = cos z,
y = k is a copy of a cosine curve in the plane
y = k. Thus, the surface z = cos x is a cylindrical

surface with rulings parallel to the y-axis.

4. Since y is missing from the equation, each vertical
trace z = 4 — 22, y = k, is a copy of the same
parabola in the plane y = k. Thus, the surface
z = 4 — 2% is a parabolic cylinder with rulings

parallel to the y-axis.

6. Since = is missing, each vertical trace yz = 4,

x = k is a copy of the same hyperbola in the plane
x = k. Thus, the surface yz = 4 is a hyperbolic

cylinder with rulings parallel to the z-axis.

Wormm

8. Since z is missing, each horizontal trace

2%~ y? =1,z = kis a copy of the same

hyperbola in the plane 2 = k. Thus, the surface

x® —y* = 1is a hyperbolic cylinder with rulings

parallel to the z-axis.
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9. (a) The traces of 2% + 4°> — 2% = linz = k are y? — 2% = 1 — k%, a family of hyperbolas. (Note that the
hyperbolas are oriented differently for —1 < k < 1 than for k < —1 or k > 1.) The traces iny = k are
2% — 2% =1 k2, asimilar family of hyperbolas. The traces in z = k are ° + 4 = 1+ k°, a family of
circles. For k = 0, the trace in the zy-plane, the circle is of radius 1. As |k[ increases, so does the radius of the
circle. This behavior, combined with the hyperbolic vertical fraces, gives the graph of the hyperboloid of one

sheet in Table 1.

(b) The shape of the surface is unchanged, but the hyperbolaid is
rotated so that its axis is the y-axis. Traces in ¢y = k are circles,

while traces in x = k and =z = k are hyperbolas.

(c) Completing the square in y gives =° + (y + 1)2 — 2% = 1. The
surface is a hyperboloid identical to the one in part (a) but shifted

one unit in the negative y-direction.

10. (a) The traces of —2? — y® + 2% = Llinz = kare —y* + 2° = 1 + k®, a family of hyperbolas, as are the traces in

y =k, —2% + 2% =1+ k% The traces in z = k are z° + y* = k% — 1, a family of circles for |k| > 1. As |k|
increases, the radii of the circles increase; the traces are empty for |k| < 1. This behavior, combined with the
vertical traces, gives the graph of the hyperboloid of two sheets in Table 1.

(b) The graph has the same shape as the hyperboloid in part (a) but is rotated so that its axis is the z-axis. Traces in
x =k, |k| > 1, are circles, while traces in y = k and z = k are hyperbolas.

. Traces: x = k, 9y® + 362 = 36 — 4k®, an ellipse for |k| < 3;
y = k, 42® + 362° = 36 — 9k2, anellipse for |k| < 2; z = k,
4x? + 94% = 36(1 ~ k%), an ellipse for (k| < 1. Thus the surface is

an ellipsoid with center at the origin and axes along the z-, y- and
Z-axes.
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12. Traces: « = k, 4y = k* + 22, a parabola; y = k, 4k = z° 4 2%, a
circle for k > 0; z = k, 4y = x* + k* a parabola. Thus the surface is

a circular paraboloid with axis the y-axis and vertex at (0,0,0}.

13. Traces: = = k, y* = k> + 22 ory® — 27 = k”, a hyperbola for k # 0
and two intersecting lines for k = 0, y = k&, 2 + 2% = k2, acircle for
k#0z=ky® =2 +k%ory® - 2% = k% ahyperbolafor k # 0
and two intersecting lines for k& = 0. Thus the surface is a cone (right

circular) with axis the y-axis and vertex the origin.

14 Traces: x =k, z — k% = —y* aparabola;y = k, 2 + k> = 22, a
parabola; z = k, 2 — y* = k, a hyperbola. Thus the surface is a
hyperbolic paraboloid with saddle point (0, 0, 0) (and since ¢ > 0,

the saddle is upside down).

15. Traces: = k, 4y° — 2% = 4 + k*, a hyperbola; y = &,
x? + 2% = 4k* — 4, acircle for |k| > 1;z = k, 4y* — 2® = 4 + k2,
a hyperbola. Thus the surface is a hyperboloid of two sheets with
axis the y-axis.

16. Traces: x = k, 25y2 + 2% = 100 + 4k%, an ellipse; y = k,

25k% + 2% = 100 + 42” or z° — 42* = 100 — 25k7, a hyperbola for
|kl < 2,z = k, 25¢* + k% = 100 + 4z* or 25y° - 42 = 100 — k7,
a hyperbola for |k| < 10. Thus the surface is a hyperboloid of one

sheet with axis the x-axis.
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17. Traces: x = k, k* + 42% —y = Oory — k% = 4z*, a paraboly;
=k +4:2 =k anellipsefork > 0; 2z =k, 2® + 4k* —y =0
or y — 4k* = x?, a parabola. Thus the surface is an elliptic paraboloid

with axis the y-axis and vertex the origin.

2

2
k .
. Traces: z = k. |k| <2 = g+ % =1- —Z,elhpses;

y=k |kl < = x2+22:4(1—k2),circles;z:k.lkf32

2 2

= %+y2=lm%,ellipses.m2+4y2+z2=4 &=

2 2 L2
32% + y_ + = =1, which is the equation of an ellipsoid.

. y = 2% — 2. The traces in z = k are the parabolas y = 2° — k7,
the traces in y = k are k = 2% — =%, which are hyperbolas (note the

hyperbolas are oriented differently for k > 0 than for k < 0); and the

2 2
traces in z = k are the parabolas y = k2 — z%. Thus, 2 1 % - 913—2

is a hyperbotic paraboloid.

. Traces: z = k= y® + 42% = 16K% ellipses; y = k =
1627 — 422 = k*, hyperbolas if k # 0 and two intersecting lines if
k=0z=k = 162% —y* = 4k* hyperbolas if k¥ # 0 and two
intersecting lines if & = 0.

2 2
1622 = y2 +477 o = % + % is an elliptic cone with axis

the x-axis and vertex the origin.

y? 2
. This is the equation of an ellipsoid: z* + 4y® + 922 = 2 + ——; z_ = 1, with z-intercepts £1,

(1/2) Ty

y-intercepts i% and z-intercepts i%. So the major axis is the z-axis and the only possible graph is VII.
o2

y =
IR

y-intercepts :t% and z-intercepts £1. So the major axis is the z-axis and the only possible graph is IV.

. This is the equation of an ellipsoid: 9z + 4y* + 2 + 2% = 1, with z-intercepts :tl

23, This is the equation of a hyperboloid of one sheet, with a = & = ¢ = 1. Since the coefficient of y? is negative, the

axis of the hyperboloid is the y-axis, hence the correct graph is II.

. This is a hyperboloid of two sheets, with @ = & = ¢ = 1. This surface does not intersect the xz-plane at all, so the

axis of the hyperboloid is the y-axis and the graph is TIL

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
SECTION13.6 CYLINDERS AND QUADRIC SURFACES ETSECTION126 (O 265

. There are no real values of x and z that satisfy this equation for y < 0, so this surface does not extend to the left of
the zz-plane. The surface intersects the plane y = & > 0 in an ellipse. Notice that i occurs to the first power

whereas  and z occur to the second power. So the surface is an elliptic paraboloid with axis the y-axis. Its graph
is VL.

. This is the equation of a cone with axis the y-axis, so the graph is L.

. This surface is a cylinder because the variable y is missing from the equation. The intersection of the surface and the

xz-plane is an ellipse. So the graph is VIIL

. This is the equation of a hyperbolic paraboloid. The trace in the xy-plane is the parabola y = z*. So the correct

graph is V.

2 2
.z2=4x2+9y2+360r—4m2—9y2+z2236 3ﬂ.m2:2y2+3220r:c2——‘y—+z—0r

~1/271/3

| hyperboloid R
Ty T g T g = | represents a hyperoolol =3 + 5 represents an elliptic cone with

of two sheets with axis the z-axis, vertex {0,0,0) and axis the z-axis.

.9:=2y2+3220r:13=%é+m0r 32. 40 — y* + 42 = 0ordx =¢* —42%or
2
2 2

¥ . .
% = yT + % represents an elliptic paraboloid 7= T F representsa hyperbolic paraboloid

i 1 : ith s Uy U
with vertex (0,0,0) and axis the z-axis. with center (0,0,0)

Z
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3. Completing squares in y and z gives 34. Completing squares in y and z gives
4z° + (y -2 +4(z - 3)* = 4or y -2+ (z-2 -z =0or
g2 Y
=2 + (z = 3)* = 1, an ellipsoid with S=(y-2*+ % an elliptic paraboloid

4 4
center (0, 2,3). with vertex (0, 2, 2) and axis the horizontal line

x
:c2+

y=2z=2

. Completing squares in all three variables gives 36. Completing squares in all three variables gives
(z—2°—(y+12+(z-1%*=0o0r (-1 —(y—1)2+(z+2)%=20r
(y+ 1)* = (z — 2)* + (2 — 1)*, acircular cone (z—-1)% (y-1P (2+2)

2
5 - + =1,a
with center (2, —1,1) and axis the horizontal line 2 2

r=2z=1. hyperboloid of one sheet with center (1,1, —2)

and axis the horizontal linex = 1, z = -2.

In Section 17.6 [ET 16.6], we will be
able to graph ellipsoids without gaps;
see Exercise 17.6.53 [ET 16.6.53].
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"‘
ety
LY, p 8% e =
T 4
-
-.‘&‘\\“R.

24

To restrict the z-range as in the second graph, we can use the option view = -2,.2 in Maple’s plot3d
command. or PlotRange -> {-2,2} in Mathematica’s P1ot 3D command.

’P

7D
(T
S e‘//':’” 7
N s %

43. The surface is a paraboloid of revolution (circular . The surface is a right circular cone with vertex at
paraboloid) with vertex at the origin, axis the (0, 0, 0) and axis the z-axis. For x = k # 0, the

y-axis and opens to the right. Thus the trace in trace is a circle with center (k, 0, 0) and radius

the yz-plane is also a parabola: y = 2%, z = 0. x k L
’ r =y = — = —. Thus the equation is

The equation is y = z° + 2°. 3

1,2 2 2

=y + 2.

The parabola 3

y=x

—The line
x=73y
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45. Let P = (x, y, z) be an arbitrary point equidistant from (—1, 0, 0) and the plane & = 1. Then the distance from P

0(=1,0,0)is \/(z + 1)2 + y2 + 22 and the distance from P to the plane z = 1is |z — 1 A1Z = |z — 1]

(by Equation 13.5.9 [ET 12.59]). So |z — 1| = /(z+ 1)2+32+22 & (z—-1)=(z+1)°+3*+2* =
22— 2z+1=2+2c+1+3°+2%2 & 4z =y* + 2. Thus the collection of all such points P is a circular

paraboloid with vertex at the origin, axis the w-axis, which opens in the negative direction.

. Let P = (x,y, z) be an arbitrary point whose distance from the z-axis is twice its distance from the yz-plane. The

distance from P to the z-axis is 1/(z — )2 + y® + 22 = /3> + 22 and the distance from P to the yz-plane
(x=0)is |z /1 = |z}. Thus /32 + 22 =21z & > +22 =42® & 2% = (y%2%) + (2%/2°). Sothe

surface is a right circular cone with vertex the origin and axis the z-axis.

f (a,b,¢) satisfies z = y? — 2z thene =b% —a’. Ltz =a+ t.y=b+t.z =c+2(b— a)t,
Lyxz=a+t.y=b—t z=c~2(b+ a)t Substitute the parametric equations of L into the equation of the
hyperbolic paraboloid in order to find the points of intersection:; z = y* — 2 =
c+2b—a)t=(b+t)? —(a+t)? =0 —a* + 2b—a)t = c=>b*—a’ Asthisis true for all values of ¢,
L tieson 2z = y* — 2°. Performing similar operations with L gives: z = v -2t =

~2bt+a)t=(b-1t)—(a+t}* =b—a® —2(b+a)t = c=>b"—a® This telis us that all of L, also lies

onz =y —z°

. Any point on the curve of intersection must satisfy both 2z + 4y — 22% + 6z = 2 and

222 + 4y* — 227 — 5y = 0. Subtracting, we get 6z + 5y = 2, which is linear and therefore the equation of a plane.

Thus the curve of intersection lies in this plane.

The curve of intersection looks like a bent ellipse. The

.0
,0:0:0:0. projection of this curve onto the xy-plane is the set of

%S ',
‘ SOREIKRLE y ‘ . . - .
“\\‘\\\\“3““"’ 02 ?.:4':”,, o oints (z,y,0) which satisfy 22 + ¢ = 1 — ¢* <«
Q u Y Y
'l

\\\\- \\\ X 0 ,,11’
¥57 A £r7
15;, F y 2

?+28 =1 o 24+ —2—— =1 Thisisan
(1v2)*

.\‘s _‘\ ‘\\“\\ a8 \
! \\‘\ Seeis) . .
“E Mt equation of an ellipse.
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13.7 Cylindrical and Spherical Coordinates ET127

1. See Figure 1 and the accompanying discussion; see the paragraph accompanying Figure 3.
2. See Figure 5 and the accompanying discussion.

3.

(L‘:QCOS%:ﬁ,y:QSin% w:lcos%:(),y:lsin%r

z = 1,50 the point is (v'2,/2,1) in z = 2, so the point is {0, —1, 2) in rectangular

rectangular coordinates. coordinates.

\.

Y

i(3,0.v6) z=1lcosm=—1,y = lsinm ={}, and
z=3cos0 =3,y = 3sinl = 0, and z = e, so the point is (—1,0, ) in rectangular
z = —6, so the point is (3,0, —6) in coordinates.

rectangular coordinates.

X

w=dcos(~F) =2, T =5cos(T) = 2

y=4sin(—%) =23, and z = 5, so the

and z = 6, so the point is ( r

point is {2, —2 V3, 5) in rectangular rectangular coordinates.

coordinates.
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-1 . .o
9. r2 =g 442 =17+ (~1)* = 2s0r = V2, tanf = L T —1 and the point (1, —1) is in the fourth
x

quadrant of the zy-plane, so # = I + 2nm; z = 4. Thus, one set of cylindrical coordinates is (Vv2,E,4).

10. r2 = 2% 4+ 37 =32 4 32 :1850T:\/ﬁ-——3\/§;tan9:%= % = 1 and the point (3, 3) is in the first

quadrant of the zy-plane, so § = = + 2nm; z = —2. Thus, one set of cylindrical coordinates is (3v/2, §,-2).

M. 72 = (1) + (-v3)" = 4507 = 2 tanf = =48 = /3 and the point {—1, —/3) is in the third quadrant of

the zy-plane, so & = 3T + 2nm; z = 2. Thus, one set of cylindrical coordinates is (2,42,2).

12. r? = 3% + 4% = 25 50 r = 5; tan = § and the point (3, 4) is in the first quadrant of the zy-plane, so
0 = tan"' (1) + 2nm & 0.93 + 2n7; z = 5. Thus, one set of cylindrical coordinates is

,5) == (5,0.93,5).

b(3.0,m)

= psingeosd = (1) sin0cos0 = 0, z=3sinmcos0 =0,y = 3sinwsin( =0,
. z = 3cosn = —3 and in rectangular
y = psingsing = (1)sin0sin0 = 0, and
o coordinates the point is {0, 0, —3).
z = pcos ¢ = (1) cos = 1 so the point is

(0,0, 1) in rectangular coordinates.

kaanr
y 3 X
* ¥

%,and z =>5sin Fcosm = ~5,y = bsin ¥ sinw =0,

—ein T eagE — Y3 o — oin T oain T
r=singcosf =%, y=sinZsing 2

I . z = b5cos § = 0o the point is (—5,0,0) in
z:cos%:ﬁg,sothepomtls (@ 3@) in 2 P (=5,0,0)
rectangular coordinates.

rectangular coordinates.
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. : : B Z4
17. 2 =2sinTcos T = %2,y = 2sinZsinZ = X8

z=2cos § = V2 so the point is (%—5, %—5, \/5) in rectangular

.

coordinates.

FEE
RN

[EPREpR—.. Y
=
s
ii'_i‘

=

] 3

w
‘
e

— 9ain & T V8 g mom _ ¥E ., T _
.m—Qangcos4—2,y—25m33m4—2,2—2cosa—l

so the point is (%—a, %5, 1) in rectangular coordinates.

,p:\/m2+y2+z2:\/T+3+12=4,COS¢=§= = = ¢=%,and

cosf = psTn 3 45111;13'/6 % = #= % (since y > 0). Thus spherical coordinates are (4, %, g)

1 m 2 .
7 = ¢ = §,andcosB_ psing  2sin(m/3) =0

-P—\/$2+y +22 =/ 0+3+1=2, cosqﬁ—;:

= 0= :g (since y >> 0). Thus spherical coordinates are (2, g, %)

=V0+1+1=V2 cos¢p=

-1 3n 0 _
V2 - V2 sin(37/4) B

{since y < ). Thus spherical coordinates are (\/ﬁ ; )

.p=\/1+1+6=2\/§,cos¢=—: = ¢ = —,andcos#d

22 6 - 24/2 sin{m /6) :_E
3r

g= ?if {since y > (). Thus spherical coordinates are (2 V2, =, —).

V6 £ T -1 1
2

46

= E, thus in spherical

.p—\/.r2+y2+22 x/;"2+z2—x/1—|—3u28A G

E cos ¢

coordinates the point is (2, %, %)

o=Vt 22 =612=2v2.0= ,cosqb = g = g,thusin spherical coordinates

the point is (‘2 V2, :}, g—)
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Bop=vri+:22=3+1=26= %; cosg = z 2—;, so in spherical coordinates the point
p

T 2%
is |2 =, — 1.
15(,2,3>

)) = (5, £,0.927).

T, _ 3 _ -1(3 . . . .
F:cos¢p =% = ¢ =cos (5) so in spherical coordinates the point is

Lz=peosp=2cos0=2p" =2+l 4+ 22 =42 = r=pP-22=V22-22=0,

(orr = 2sin0 = 0), f == 0 and the point is (0, 0, 2).
.z = 2\/5005% =0,7r :2\/§Sin% =228 = 3—2”5 and the point is (2\/5,37”,0).
. z=8cos% =0,r = 8sin 2 = 8,0 = I and the point is (8, £,0).
Lz=4cos § =2, r=4sin g =23,0= T and the point is (2\/3,%,2).
. Since r = 3, 2% + y? = 9 and the surface is a circular cylinder with radius 3 and axis the z-axis.

32. Since p = 3, 2% + y* + 2* = 9 and the surface is a sphere with center the origin and radius 3.
. Since ¢ = 0, z = 0and y = 0 while 2 = p > 0. Thus the “surface” is the positive z-axis including the origin.
. Since ¢ = %, z = 0 but there are no restrictions on x and y (z = p cos 8, y = p sinf)). Thus the surface is the
xy-plane.
. Since ¢ = %, the surface is the top half of the right circular cone with vertex at the origin and axis the positive
zZ-axis.
. Whether spherical or cylindrical coordinates, since § = Z the surface is a half-plane including the z-axis and

intersecting the xy-plane in the half-line y = v/3z, z > 0.

. z=r%=z%+ y*, so the surface is a circufar paraboloid with vertex at the origin and axis the positive z-axis.

. Since 7 = 4sinf and y = rsinf, y = 4sin?8. Alsor® = z° + 3° soz® + y* = 16sin? 4. Thus
x? +y* — 4y = 16sin’ 0 — 16sin’ 8 = O or 22 + (y — 2)% = 4, a circular cylinder of radius 2 and with axis
parallel to the z-axis.

. 2 = pcos¢ = z is a plane through the point (0, 0, 2) and parallel to the zy-plane,

. Since psing = 2and z = psingcos B, x = 2cosf. Alsoy = psin¢sind soy = 2sinf. Then

2 4+ y* = 4cos® @ + 4sin”® § = 4, a circular cylinder of radius 2 about the z-axis.

r=2cosf = ri=xftyf =2rcosf=2x < (x- 1)%+y* =1, which is the equation of a circular

cylinder with radius 1, whose axis is the vertical linex =1,y =0,z = z.
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L p=2cosp = pP=12pcosdp=2z & 24yt +22=22 o P+ +(z- 1)® = 1. Therefore, the
surface is a sphere of radius 1 centered at (0,0, 1).
43, Since r% + 22 = 25 and r? = 2% + y%, we have z° + y* + 2° = 25, a sphere with radius 5 and center at the origin.
84, Since 2 — 222 = 4and r? = 2% + 4%, we have 2 + ¥ — 22% = 4or 22% + 1y* — 127 = 1. a hyperboloid of
one sheet with axis the z-axis.
. Since x° = p* sin® ¢ cos? @ and 2% = p? cos® ¢, the equation of the surface in rectangular coordinates is

z? + z% = 4. Thus the surface is a circular cylinder of radius 2 about the y-axis.

. Since p*(sin? ¢ —4cos® @) = 1, p*(sin” ¢ — 4 cos® ¢) + p cos® ¢ — p’cos’ P = Lox

p?(sin® ¢ + cos? ¢ — 5cos® @) = Lor p*(1 — 5eos® ) = 1. But p* = & + 3% + 22 and 2% = p? cos” ¢, so we

can rewrite the equation of the surface as 2 + y° + 2% ~ 52 = Lor z° + y° — 42% = 1. Thus the surface is a

hyperboloid of one sheet with axis the z-axis.
. Sincer? —r = 0,7 = 0orr = 1. But z° + y* = r?. Thus the surface consists of the right circular cylinder of

radius 1 and axis the z-axis along with the surface given by z? +y? = 0, that is, the z-axis.

. Since p* — 6p + 8 = 0, either p = 2 or p = 4. Thus the surface consists of two concentric spheres (centered at the

origin), one with radius 2 and the other with radius 4.
. (a) % + y? = r?, so the equation becomes z = r?.

(b) x = psinpcosh, y = psin¢sind, and z = pcos ¢, so the equation becomes

pcos ¢ = (psindcos#)? + (psinésin #)° or pcos ¢ = p*sin® ¢ or psin® ¢ = cos .

. (a) ¢+ y2 = 1"2, so the equation becomes r?+22 =2

(b 2 + y* + 2% = p?, s0 the equation becomes PP =2o0rp= V2.
. {a) x = 7 cos#, so the equation becomes r cosf = 3 or r = Jsecd (since cos A # () here).

(by m = psin ¢ cosd, so the equation becomes psin ¢ cosf = 3.
@) eyt = r2, so the equation becomes r*+224+2z=00rr2 + (z + 1)2 =1.

(by 2% + y? + 22 = p® and z = pcos ¢, so the equation becomes p° +2pcosd =0o0rp=—2cos¢.
. (a) r*(cos® B — sin® @) — 22° = 4 or 22° = r® cos 20 — 4.

(b) p? (sin2 deos? 0 — sin® ¢sin? 6 — 2 cos? QS) = 4orp? (sin2 ¢ cos 20 — 2 cos” q)) =4,
Ly risin®o+ 22 =1

(b) p? sin® psin® @ + p? cos® ¢ = 1 or p? (sin2 ¢ sin? # + cos? qb) =1
. (a) r?2 = 2rsinforr = Zsiné.

(b) p° sin® ¢(cos® & + sin’ §) = 2psin ¢ sin b or psin® ¢ = 2sin ¢sind or psing = 2sin .
. (a) z = 7%(cos® @ — sin® @) or z = r° cos 26.

(b) pcos ¢ = p” sin® ¢(cos” & — sin” §) or cos ¢ = psin® ¢ cos 26.
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51. 58.

2 =r = /2% + y? is a cone that opens upward.

Thus r < z < 2 is the region above this cone and

z = r? = z* + y? is a circular paraboloid with

vertex (0,0,0), opening upward. z = 2 — r*

beneath the horizontat plane 2 = 2. 0 < 8 < §

= z-2=—(2*+y") isacircul boloid
i (2% +y7) is a circular parabolof restricts the solid to that part of this region in the

with vertex (0, 0, 2} opening downward. Thus first octant.

r? < z < 2 — r?is the solid region enclosed by

these two surfaces.

X

p = 2 represents a sphere of radius 2, centered at . .
2 < p < 3 represents the solid region between

the origin, so p < 2 is this sphere and its interior. . . .
and including the spheres of radii 2 and 3,

0<g< % restricts the solid to that portion of o .
centered at the origin. § < ¢ < 7 restricts the

the region that lies on or above the zy-plane, and . .
solid to that portion on or below the xy-plane,

0 < 8 < T further restricts the solid to the first

octant. Thus the solid is the portion in the first

octant of the solid ball centered at the origin with

radius 2.

. —Z < # < I restricts the solid to the 4 octants in which x is

z
3
positive. p =sec¢ = pcos¢ = z = 1, which is the equation of
a horizontal plane. 0 < ¢ < % describes a cone, opening upward. So

the solid lies above the cone ¢ = ¢ and below the plane z = 1.
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62 p=2 < z°+y*+ 2° = 4, which is a sphere of radius 2,
centered at the origin. Hence p <C 2 is this sphere and its interior.

0<¢< % restricts the solid to that section of this ball that lies

above the cone ¢ = Z.

. We can position the cylindrical shell vertically so that its axis coincides with the z-axis and its base lies in the
ay-plane. If we use centimeters as the unit of measurement, then eylindrical coordinates conveniently describe the
shellas 6 <r <T7,0<6 <2m,0<z<20

. (a) The hollow ball is a spherical shell with outer radius 15 cm and inner radius 14.5 cm. If we center the ball at the

origin of the coordinate system and use centimeters as the unit of measurement, then spherical coordinates
conveniently describe the hollow ball as 14.5 < p < 15,0 <8 < 2r, 0 < p < 7.

{b} If we position the ball as in part (a), one possibility is to take the half of the ball that is above the xy-plane which
is described by 14.5 < p < 15,0 < § < 2w, 0 < ¢ < /2,

. z > /a2 + y? because the solid lies above the cone. Squaring both sides of this inequality gives z* > z* + y*

2 2

= 222227+ +2 =9 = P =pfcos’9> 1p° = cos’¢ > & The cone opens upward so that

the inequality is cos ¢ > %, or equivalently 0 < ¢ < 7. In spherical coordinates the sphere z = ot 4yt ts

peosg = p° = p=rcose. 0 < p < cos¢ because the solid lies below the sphere. The solid can therefore be

described as the region in spherical coordinates satisfying 0 < p < cos¢, 0 < ¢ < 3.

. In cylindrical coordinates, the equations are z = 2 and z = 5 — r2.

The curve of intersection is 2 = 5 — r2 or r = /5/2. So we graph the

surfaces in cylindrical coordinates, with O << r < 4/5/2. In Maple, we

can use either the coords=cylindrical option in aregular plot

command, or the plots [cylinderplot] command. In

Mathematica, we can use ParametricPlot3d.

. In cylindrical coordinates, the equation of the cylinder is r = 3,

(} < z < 10. The hemisphere is the upper part of the sphere radius 3,

center {0,0, 10), equation 7 4+ (2 — 10) = 37, z > 10. In Maple, we

can use either the coords=cylindrical option in a regular plot

command, or the plote [cylinderplot] command. In

Mathematica, we can use ParametricPlot3d.
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68. We begin by finding the positions of Los Angeles and Montréal in spherical coordinates, using the method described

in the exercise:

Montréal Los Angeles
p = 3960 mi p = 3960 mi

#=360°— 73.60° = 286.40° | # = 360° — 118.25° = 241.75°
d=90°— 45.50° = 44.50° p=90°— 34.06° =5594°

Now we change the above to Cartesian coordinates using & = pcos#sin @, y = psinfsin ¢ and z = p cos ¢ to get

two position vectors of length 3960 mi (since both cities must lie on the surface of the Earth). In particular:

Montréal: (783.67, —2662.67, 2824.47) Los Angeles: {—1552.80, —2889.91, 2217.84)

To find the angle o between these two vectors we use the dot product:

(783.67, —2662.67, 2824.47) - {—1552.80, —2889.91,2217.84) = (3960)° cosa = cosar = 0.8126 =

a =2 {1.6223 rad. The great circle distance between the cities is s = pf ~ 3960(0.6223) ~ 2464 mi.
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LABORATORY PROJECT Families of Surfaces

1. z=(azx® + by?)e~=>~¥" . There are only three basic shapes which can be obtained (the fourth and fifth graphs are
the reflections of the first and second ones in the zy-plane). Interchanging a and b rotates the graph by 90° about the

z-axis.

¢/
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J ey ',’i;/l \
b

Y

e

(’:“\‘ - é&“;‘\
&SN ’“M}:};,’;

LK
57
7

\t._'ll
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7

2
i
K
i

a=-2,b=-1

If @ and b are both positive (a # b), we see that the graph has two maximum points whose height increases as a and
b increase. If a and b have opposite signs, the graph has two maximum points and two minimum points, and if a and

b are both negative, the graph has one maximum point and two minimum points.
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2. z = 2* +y* + cxy. When ¢ < —2, the surface intersects the plane z = k # 0 in a hyperbola. (See graph below.) It

intersects the plane = = y in the parabola z = (2 + ¢)z?, and the plane & = —y in the parabola z = (2 — ¢)z”.

These parabolas open in opposite directions, so the surface is a hyperbolic paraboloid.

When ¢ = —2 the surface is z = 22 4+ y? — 2zy = (x — y)°. So the surface is constant along each line
x — y = k. That is, the surface is a cylinder with axis & — y = 0, z = 0. The shape of the cylinder is determined by
its intersection with the plane x + y = 0, where z = 4z, and hence the cylinder is parabolic with minima of 0 on

the line y = .

When —2 < ¢ <0,z > 0forall x and y. If = and y have the same sign, then
2? +yt tery >t 4yt - 2oy = (z - y)2 > 0. If they have opposite signs, then cxy > 0. The intersection with
the surface and the plane z = k > 0 is an ellipse (see graph below). The intersection with the surface and the planes
x = 0and i = 0 are parabolas z = * and z = x? respectively, so the surface is an elliptic paraboloid.

When ¢ > 0 the graphs have the same shape, but are reflected in the plane £ = 0, because

2+ y* + czy = (—2)* + y* + (—c)(—z)y. That is, the value of z is the same for ¢ at (z, y) as it is for —c at

(—I, U)

(

L/
C

2

c=—1,2z=2

So the surface is an elliptic paraboloid for 0 < ¢ < 2, a parabolic cylinder for ¢ = 2, and a hyperbolic paraboloid

for ¢ > 2.
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3 p= 1+ 0.2sinmf sin ne. If we start with m = 1, n = 1 the equation is p == 1 4 0.2sin @ sin ¢, whose graph

appears spherical or nearly spherical in shape. First we investigate varying just m. Values of m > 1 produce vertical

ridges in the sphere, the number of ridges corresponding to the value of m. We graph two examples.

A

T

m=4n=1 m=7n=1

If we leave m fixed at 1 and vary n, we see horizontal ridges that span half the sphere arranged in a staggered

fashion. Again, the number of “bumps” coincides with the value of n.

m=1n=>5 m=1,n=10

If we allow both m and » to vary, we get combinations of the vertical and horizontal bumps.

AV TEITH

m=4,n=5 m=7n=10

The graph on the left shows m = 4, n = 5. Looking at the top of the bumpy sphere, we can see the 4 vertical ridges
which become perturbed horizontally as they progress down the sphere. We can also see the 5 horizontal rows of
bumps. (Consequently, there are 20 bumps on the surface.) The graph on the right shows yn = 7, n = 10 which

should have 70 bumps.
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13 Review ET 12
CONCEPT CHECK

. A scalar is a real number, while a vector is a quantity that has both a real-valued magnitude and a direction.

. To add two vectors geometrically, we can use either the Triangle Law or the Parallelogram Law, as illustrated in
Figures 3 and 4 in Section 13.2 [ ET 12.2]. Algebraically, we add the corresponding components of the vectors.

. For ¢ > 0, ca is a vector with the same direction as a and length ¢ times the length of a. If ¢ < 0, ca points in the
opposite direction as a and has length |c| times the length of a. (See Figures 7 and 15 in Section 13.2 [ET 12.2].)
Algebraically, to find ca we multiply each component of a by c.

. See (1} in Section 132 [ET 12.2].
. See Theorem 13.3.3 [ ET 12.3.3] and Definition 13.3.1 {ET 12.3.1].

. The dot product can be used to find the angle between two vectors and the scalar projection of one vector onto
another. In particular, the dot product can determine if two vectors are orthogonal. Also, the dot product can be used
to determine the work done moving an object given the force and displacement vectors.

. See the boxed equations on page 847 [ET 811] as well as Figures 4 and 5 and the accompanying discussion on
pages 84647 [ET 810-11].

. See Theorem 13.4.6 [ ET 12.4.6] and the preceding discussion; use either (1) or (4) in Section 13.4 [ET 12.4].

. The cross product can be used to create a vector orthogonal to two given vectors as well as to determine if two
vectors are parallel. The cross product can also be used to find the area of a parallelogram determined by two
vectors. In addition, the cross product can be used to determine torque if the force and position vectors are known.

. (a) The area of the parallelogram determined by a and b is the length of the cross product: [a x b.
{b) The volume of the parallelepiped determined by a, b, and ¢ is the magnitude of their scalar triple product;
la- (b x c)|.

. If an equation of the plane is known, it can be written as ax + by -+ ¢z + d = 0. A normal vector, which is
perpendicular to the plane, is (a, b, ¢) (or any scalar multiple of {a, b, ¢}). If an equation is not known, we can use
points on the plane to find two non-parallel vectors which lie in the plane. The cross product of these vectors is a
vector perpendicular to the plane.

. The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find
this angle using Corollary 13.3.6 [ ET 12.3.6].

., See (1), (2), and (3) in Section [3.5[ET 12.5].
. See (5), (6), and (7) in Section 13.5 [ET 12.5).

. {a) Two {nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero
vectors are parallel if and only if their cross product is 0.

(b) Two vectors are perpendicular if and only if their dot product is 0.

(c) Two planes are parallel if and only if their normal vectors are parallel. -

— —

. (a) Determine the vectors PQ = (a1, az,a3) and PR = {b1,bo, bs). If there is a scalar ¢ such that
{a1,az,a3) =t (b1, b2, bs), then the vectors are parallel and the points must all lie on the same line.
Alternatively, if PQ x PR =1, then P{) and PR are parallel, so P, ), and R are collinear.
Thirdly, an algebraic method is to determine an equation of the line joining two of the points, and then check
whether or not the third point satisfies this equation.
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(b) Find the vectors P_Q> = a, P_}é = b, ITg = c¢. a X b is normal to the plane formed by P, ¢ and R, and so §
lies on this plane if a x b and c are orthogonal, that is, if {a X b) - ¢ = 0. (Or use the reasoning in Example 5
in Section 13.4 | ET 12.4].)
Alternatively, find an equation for the plane determined by three of the points and check whether or not the
fourth point satisfies this equation.

. (a) See Exercise 13.4.39 [ ET 12.4.39].

{b) See Example 8 in Section 13.5 [ET 12.5].

(c) See Example 10 in Section 13.5 [ ET 12.5].

. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We

can find the trace in the plane x = k (parallel to the yz-plane) by setting £ = k and determining the curve

represented by the resulting equation. Traces in the planes y = k (parallel to the z2-planc) and 2z = k (parallel to

the xy-plane) are found similarly.

. See Table 1 in Section 13.6 [ET 12.6].
. (a) See (1) and the discussion accompanying Figure 3 in Section 13.7 [ ET 12.7).
(b) See (3) and Figures 6-8, and the accompanying discussion, in Section 13.7 [ET 12.7].

TRUE-FALSE QUIZ

. True, by Theorem 13.3.2 [ ET 12.3.2] #2.
. False. Theorem 13.4.8 [ET 12.4.8] #] saysthatu x v = —v x u.

3. True. If @ is the angle between u and v, then by Theorem 13.4.6 [ET 12.4.6],

[ux v| = |u}|v|sinf = |v||u|sinf = |v x u.

(Or, by Theorem 13.4.8 [ET 124.8], ju x v| = |-v x u| = |=1[|v x uf = |[v x ul.)

. This is true by Theorem 13.3.2 [ET 12.3.2] #4.

. Theorem [3.4.8 [ ET 12.4.8] #2 tells us that this is true.

. This is true by Theorem 13.4.8 [ET 12.4.8] #4.

. This is true by Theorem 13.4.8 [ET 12.4.8] #5.

. In general, this assertion is false; a counterexample is i x (i x j) # (i x i) x j. (See the paragraph preceding
Theorem 13.4.8 [ET 12.4.8].)

. This is true because u x v is orthogonal to u (see Theorem 13.4.5 [ET 12.4.5]), and the dot product of two
orthogonal vectors is (.

L (u+v)xv=uxv+vxv (byTheorem 13.4.8 [ET 12.4.8] #4)

=uxv+0 (byExample 13.4.2 [ET 12.4.2])

= u x v, s0 this is true.

. Iffuf = 1, |v| = 1 and # is the angle between these two vectors (so 0 < # < ), then by

Theorem 13.4.6 [ET 12.4.6}, [u x v| = |u||v{siné = sind, which is equal to 1 if and only if § = 3 (thatis, if and
only if the two vectors are orthogonal). Therefore, the assertion that the cross product of two unit vectors is a unit
vector is false.

. This is false, because according to Equation 13.5.8 [ ET 12.5.8], ax + by + ¢z + d = Q iis the general equation of a
plane,
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13. This is false. In R?, z2 + y* = 1 represents a circle, but { (z, ¥, 2) | a® + y® = 1} represents a three-dimensional
surface, namely, a circular cylinder with axis the z-axis.

14. This is false, as the dot product of two vectors is a scalar, not a vector.

EXERCISES

1. (a) By the formula for an equation of a sphere (see Section 13.1 [ET 12.1]), an equation of the sphere with center
(1,—-1,2) and radius 3is (z — 1)+ (y + )* + (z - 2)* = 9.

{b) Completing squares gives (z + 2)° + (y + 3)* + (z — 5)* = —2 4+ 4 + 9 4 25 = 36. Thus, the sphere is
centered at (—2, —3, 5) and has radius 6.

2. (a) a+b b

3u-v=|u||vicosds® = (2)(3)? =3v2 [uxv|=|u||v|sind5° = (2)(3)% = 34/2. By the right-hand
rule, u x v is directed out of the page.

4 2)2a+3b=2i+2j—4k+9i-6j+3k=11i - 4j-k
By bl =0 +4+1=+14
(©ra-b=(1)(3) +(1)(-2) + (-2)(1) = -1

i j k

(daxb=|1 —(1-4)i—(14+6)j+(-2-3)k=-3i-T7j—5k

=9i+15j+3k, [bxc|=3v/9+25+1=3+35
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1 1 -2
3 1 3 -2
fra-(bxe)=|3 -2 -2 =9+15-6=18
0 -5 0 1
0 1 -5
(g) c xc=0foranyc.
(h) From part {e),
i j k
ax{bxecl=ax(%i+15j+3k)=|1 1 -2/ =3+30)i-(3+18)j+(15-9)k
9 15 3
=33i—-21j+6k
(i) The scalar projection is comp, b = |b|cosf# = a-b/ |a| = —L‘/_
(1) The vector projection is proj, b = —ﬁ_(a/ la]) = -2
(k) cosf = a-b = 1 =—— andf =

lalb] 614 2\/5

. For the two vectors to be orthogonal, we need (3,2, z) - {
BH2n)+ () + (z)x) =0 & 2° +6m+8=0 < sc+2)(:r+4) =0 &

Tz — —2o0rx = -4,

. We know that the cross product of two vectors is orthogonal to both. So we calculate
(J+2k) x (i—-2j4+3k)=B3—(—]i—-(0—-2)j+{(0— 1}k = 7i+ 2j — k. Then two unit vectors
. i+2j—k 1 .
orthogonal to both given vectors are - _71 +2) = =+ (Ti+ 2] - k), that is,
T+22+(~1)% 3V6
k.

%@H'ﬁj 3\/_kand 3\/‘ S_wz/f_stFS_\l/G
L@ (luxv)-w=u-{vxw)=2
bu-(wxvi=u-[—(vxw)l=—u-(vxw=-2
@v-luxw)=(vxu)-w=—(uxv) w=-2

(d{uxv) - v=u-(vxv)=u-0=0
-(axb) [(bxc)x(cxa)=(axb) ([(bxc)-alc—[(bxe) cla)
(see Exercise 13.4.42 [ET 12.4.42])
=(axb)-[(bxc)-ajc=[a-(bxec)(axb)-c

=fa-(bxc)la-(bxc) =[a-(bxc)

. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the
diagonals joining the points (0,0,0) to (1,1,1) and (1,0,0) to (0,1,1) are {1, 1, 1) and {~1,1,1). Let 8 be the
angle between these two vectors. {(1,1,1) - {-1,1,1) = -1+ 14+1=1=[{1,1,1} [{~1,1,1}| cos # = 3cos @
= cosl=3 = f=cos” () =TI
— — —

. AB = (1,3, —1), AC = (—2,1,3) and AD = (—1,3,1). By Equation 13.4.10 [ET 12.4.10],

13 -1
— — —
AB-(ACx AD)=|-2 1 3 =
-1 3 1

13 -2 3 -2 1
-3 -

31 -1 1 -1 3

— — —_—
The volume is |AB . (AC X AD)‘ = 6 cubic units.
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11.

AB = (1,0, -1}, AC = {0,4,3), s0
—

{a) a vector perpendicular to the plane is AB x AC = (044, —(3+0),4-0) = (4,-3,4).
(b) 3| A5 x AC| = §vI6 70716 = 4.

.D=4i13j+6k W =F-D =12+ 15+ 60 = 87 joules

. Let F| be the magnitude of the force directed 20 © away from the direction of shore, and let I be the magnitude of

the other force. Separating these forces into components parallel to the direction of the resultant force and
perpendicular to it gives Fy cos20° + Fbcos30° = 255 (1), and F1sin20° — F3sin30° =0 =

F = F %%— (2). Substituting (2) into (1) gives F3{sin30° cot 20° + cos30°) = 255 => Fy a2 114N.
S

Substituting this into (2) gives F) ~ 166 N.

. 7| = |r| |F|sin @ = (0.40)(50) sin(90° — 30°) =~ 17.3 joules
. The line has direction v = (-3, 2, 3). Letting Py = (4, —1, 2), parametric equations are z = 4 — 3¢, y = -1+ 2¢,

z =2+ 3t

. A direction vector for the line is v = (3,2, 1}, so parametric equations for the line are z = 1 + 3¢, y = 24,

z=—-1+1

. A direction vector for the line is a normal vector for the plane, n = {2, -1, 5}, and parametric equations for the line

aexr=-2+2y=2—-1tz=4+5%

. Since the two planes are parallel, they will have the same normal vectors. Then we can take n = (1,4, —3) and an

equation of the plane is 1(z — 2) + 4(y — 1} — 3(z —0) = Oorz + 4y — 3z = 6.

. Here the vectorsa = (4 — 3,0~ (—=1},2 — 1) = {1,1,1}and b = {6 — 3,3 — (—1),1 — 1) = (3,4,0) lie in the

plane, son — a x b = (—4,3,1) is a normal vector to the plane and an equation of the plane is
—4{z—-3)+3{y— (1)) +1{z —1)=00r -4+ 3y + 2 = —14.

. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since

the given line lies in the plane, its direction vector a = (2, —1, 3) is one vector in the plane. We can verify that the
given point {1, 2, —2) does not lie on this line. The point (0, 3, 1) is on the line (obtained by putting { = 0) and
hence in the plane, so the vector b = (0 — 1,3 — 2,1 — (=2)} = {—1,1,3) lies in the plane, and a normal vector is
n =a x b = (-6, 9, 1}. Thus an equation of the plane is —6(z — 1} —9(y — 2) + (z +2) = Oor

6 4+ 93y — =z = 26.

. Substitution of the parametric equations into the equation of the plane gives

2 -y+2=22-8)-(1+3)+4t=2 = —t+3=2 = t=1 Whent = 1,the parametric
equations givez =2 — 1 =1,y = 1 + 3 = 4 and z = 4. Therefore, the point of intersection is (1,4, 4).

. Use the formula proven in Exercise 13.4.39 [ET 12.4.39]. In the notation used in that exercise, a is just the direction

of the line; that is, a = (1, —1,2). A point on the line is (1, 2, —1) (setting £ = 0}, and therefore
b={(1-0,2-0,-1-0)=(1,2,-1). Hence

d— IaXb‘ _ |<1="1v2) x (1127_1>1 _ 1<_35313>‘ _\/ﬁ__é_
o Vi-i+d VB V6 V2

. Since the direction vectors (2, 3,4) and {6, —1,2) aren’t parallel, neither are the lines. For the lines to intersect, the

three equations 1 + 2t = —1 + 65, 24+ 3t = 3 — s, 3 + 4t = —5 + 25 must be satisfied simultanecusly. Solving
the first two equations gives t = %, 5= % and checking we see these values don’t satisfy the third equation. Thus
the lines aren’t parallel and they don’t intersect, so they must be skew.
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24. (a) The normal vectors are (1,1, —1} and {2, —3, 4}. Since these vectors aren’t parallel, neither are the planes
parallel. Also (1,1, -1} - {2, 3,4} = 2 — 3 — 4 = —5 # 0 so the normal vectors, and thus the planes, are not

perpendicular.

(1,1,~1) - (2,-3,4) 5

(b) cosf = NG _f\/ﬁ

25. By Exercise 13.5.69 [ET 12.5.69], D =

26. The equation x = 3 represents a plane parallel to
the yz-plane and 3 units in front of it.

28. A parabolic cylinder whose trace in the zz-plane

is the z-axis and which opens to the right.

z

30. 4z — y + 2z = 4 is a plane with intercepts
(1,0,0), (0, —4,0), and {0,0,2).

224 _

5

VBT

) 22 122° (or we can say == 58 °).

21. The equation x = z represents a plane
perpendicular to the xz-plane and intersecting the

zz-plane inthe linex = z, y = 0.

29. A (right eltiptical) cone with vertex at the origin

and axis the z-axis.

2
3. An equivalent equation is —&? 4 yT —z22=1a

hyperboloid of two sheets with axis the y-axis. For

fy| > 2, traces parallel to the xz-plane are circles,
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32. Anequivalent equation is —2% + % + 2 =1,a

hyperboloid of one sheet with axis the z-axis.

. Completing the square in y gives 34. Completing the square in y and z gives
4z° + 4(y - 1)* + 22 =4dor x = (y — 1) + (z — 2)*, a circular paraboloid

5 , |z o with vertex (0, 1, 2) and axis the horizontal line
¢+ (y—1)° + il 1, an ellipsoid centered 1 5
y=12=2

at (0,1,0).

2 ,y2 2 y2 2

Azt 4yt =16 & m— + 6= = 1. The equation of the ellipsoid is — + 6 + ~z— = 1, since the horizontal
trace in the plane z = 0 must be the original ellipse. The traces of the elhpsmd in the yz-plane must be circles since
the surface is obtained by rotation about the z-axis. Therefore, ¢ = 16 and the equation of the ellipsoid is

2 2 2

x Y z

—t+t =+ == 4 =16.
4+16+16 1 o 42l +y*+ 27

. The distance from a point P {x, y, 2) to the plane y = 1 is |y — 1|, so the given condition becomes
ly - U=2{z-02+(y+12+(z-0? = |y-1=2V22+{y+1)*+2* =
(y— 1P =42 + 4y + 1D?* +42 & -3 =42+ (3 +10y) +42* &
B =42 +3(y + g)z +42° = 3224+ L(y+ 35-)2 + 32% = 1. This is the equation of an ellipsoid whose

center is (0, - %, 0).

.a:=rcosl9:2\/§cos§ :2\/5-%: \/§,y=rsinﬂz2\/§sin§ :2\/5--"2g = 3, z = 2, so in rectangular
coordinates the point is (v/3,3,2). p=vr2 + 22 =/12+4=4,6 = Z,and cos¢ = 2= Lso¢=2and

spherical coordinates are (4, 3 3)

114=2v22=—1.cosf = —2—:27 = }2_/2 s0 8 = I and in cylindrical coordinates the peint is

2 4
(2v2,%,-1). p= 4+ 4+1=3,cos¢p = —3, so the spherical coordinates are (3, 3, cos™' (—3)).

39, x = psindcosf = 8sin L cos § =8 % - _g =22,y = psin¢gsinf = 8sin = sin T = 2+/2, and
z=pcos¢ =8cosf =8§- 3? = 4/3. Thus rectangular coordinates for the point are (2 Vv2,2/2,4 \/5)
=2’ tyP=8+8=16 = r=46= Loandz = 4+/3, so cylindrical coordinates are (4, %,4\/5).
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. ¢ = %. This is one frustum of a circular cone with vertex the origin and axis the positive z-axis.
s

0=17
half-line z =y, z > 0.

. In spherical coordinates, this is a half-plane including the z-axis and intersecting the xy-plane in the

. Since r = cos@ and z = rcosf, x = cos’ 8. Alsor® = 2% + y?soz® + y° = 2cos? 0. Thus 2 + 3> — 22 =0
or (x — 1)* +y* = 1. Thus the surface is a circular cylinder with axis the linez =1,y =0,z = .

. Since p = 3secd, pcos @ = 3 or z = 3. Thus the surface is a plane parallel to the zy-plane and through the
point {0, 0, 3).

. 22 + 42 = 4. In cylindrical coordinates: r> = 4. In spherical coordinates: p — 2% = 4 or p* — p*cos® ¢ = 4 or
pisin® ¢ =4 or psing = 2.

. 2% + 42 + 2% = 4. In cylindrical coordinates, this becomes 72 + z° = 4. In spherical coordinates, it becomes
PP =4dorp=2

. In cylindrical coordinates: 2 + z* = 2r cosf or 2 = r(2cos 8 — ).
In spherical coordinates: p* = 2psin ¢ cos# or p = 2sin ¢ cos 8.

. The resulting surface is a circular paraboloid with equation z = 4z? + 4y*. Changing to cylindrical coordinates we
have z = 4(z° + y*) = 4r°.

. p=2cos¢ = pt=2pcosd = 4yt +22=22 =
z? + y* + (z — 1)* = 1. This is the equation of a sphere with radius 1,
centered at (0,0, 1}, Therefore, 0 < p < 2cos ¢ is the solid ball whose
boundary is this sphere. 0 <8 < 7 and 0 < ¢ < % restrict the solid to the

section of this ball that lies above the cone ¢ = Z and is in the first octant.
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1. Since three-dimensional situations are often difficult to visualize and work with,
let us first try to find an analogous problem in two dimensions. The analogue of
a cube is a square and the analogue of a sphere is a circle. Thus a similar
problem in two dimensions is the following: if five circles with the same radius

7 are contained in a square of side 1 m so that the circles touch each other and

four of the circles touch two sides of the square, find 7.

The diagonal of the square is /2. The diagonal is also 4r 4+ 22. But z is the diagonal of a smaller square of side 7.

Thereforez = v2r = V2Z=4r+2o=4+2/2r=(4+2v2)r = r= 2~

Let us use these ideas to solve the original three-dimensional problem. The diagonal of the cube is
V12 +12 + 12 = /3. The diagonal of the cube is also 4r + 2z where z is the diagonal of a smaller cube with
edge r. Thereforex = V2 + 12+ 12 =37 = V3=dr+ 20 =4r+23r = (4—{—2\/5)?". Thus

V3 _2v3-3
4423 2

. The radius of each ball is {v/3 — 3)m.

2. Try an analogous problem in two dimensions. Consider a rectangle with

length L and width W and find the area of S in terms of L and W. Since

S contains B, it has area

A(S)= LW + the area of two L x 1 rectangles

+ the area of two 1 x W rectangles
+ the area of four quarter-circles of radius 1
as seen in the diagram. So A(S) = LW + 2L + 2W + 7. 12,
Now in three dimensions, the velume of S is
LWH+2{LxWx1)+21 xWx H)+2(L x1x H)
+ the volume of 4 quarter-cylinders with radius 1 and height W
+ the volume of 4 quarter-cylinders with radius 1 and height L
+ the volume of 4 quarter-cylinders with radius 1 and height H

+ the volume of 8 eighths of a sphere of radius 1

V(S)=LWH +2LW + 2WH +2LH+7- 1> W+ n- 1> L+n. 1* - H 4 .17

=LWH+2(LW+WH+ LH)+7(L+W + H) + in.
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3. (a) We find the line of intersection I. as in Example 13.5.7(b) [ET 12.5.7(b)]. Observe thai the point (—1, ¢, c) lies
on both planes. Now since L lies in both planes, it is perpendicular to both of the normal vectors ny and nz, and
i jk
thus paratlel to their cross product n; x nz = | ¢ 1 1| ={2¢,~c* +1,—c - 1). So symmetric equations

1l —¢ ¢

1 — — ;
of L can be written as I__;C = cy2 _Cl = cz2 +c1 , provided that ¢ # 0, £1.

If ¢ = 0, then the two planes are given by y + z = 0 and ¢ = —1, so symmetric equations of L are z = —1,

y = —z. If ¢ == —1, then the two planes are given by —z +y+ z = —1and 2 +y + z = —1, and they intersect
inthe line z = 0,y = —z — 1. If ¢ = 1, then the two planes are givenbyx +y+z=landz —y+z =1,
and they intersect in the liney =0,z =1 — z.

(t —e)(—2¢)

(b) If we set z = ¢ in the symmetric equations and solve for = and y separately, we getx + 1 = Zil

]

2 2 2
- - — -1 —1)t+2 o
—c= % = = 2Ct;fl ), ¥ = (c = J)r 1+ < Eliminating ¢ from these

equations, we have 22 + y° = t? + 1. So the curve traced out by L in the plane z = ¢ is a circle with center at

{0,0,1) and radius +/2 + 1.

(c) The area of a horizontal cross-section of the solid is A(z) = w(2* + 1), so

V=l Ay = w320 + 2] = 4.

3

4. (a) We consider velocity vectors for the plane and the wind. Let v; be the
initial, intended velocity for the plane and v, the actual velocity relative
1o the ground. If w is the velocity of the wind, v is the resultant, that
is, the vector sum v; + w as shown in the figure. We know v; = 180,
and since the plane actually flew 80 km in £ hour, [v,| = 160. Thus

vy = (160cos85°) i + (160sin85°) j ~ 13.91 + 159.4 . Finally,

Vit w = v, 50w = vy - v; &2 13.91 — 20.6 j. Thus, the wind

velocity is about 13.91 — 20.6 j, and the wind speed is

'w| = /(13.9)2 + (—20.6)% ~ 24.9 km/h.

(b) Let v be the velocity the pilot should take. With the effect of wind, the actual velocity

(with respect to the ground) will be v + w, which we want to be v;. Thus
v=1v;—w= 180j— (13.91 - 20.6 j) = —13.91 + 200.6 j. The angle for this vector can be found by

tanf ~ 2258 = §=94.0°, or 4.0° west of north.
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5. (a) When # = 8, the block is not moving, so the sum of the forces on the
block must be 0, thus N + F + W = 0. This relationship is
illustrated geometrically in the figure. Since the vectors form a right

F| _ 7

triangle, we have tan(6,) = W =T = e

{b) We place the block at the origin and sketch the force vectors acting on the block, including the additional

horizontal force H, with initial points at the origin. We then rotate this system so that F lies along the positive

x-axis and the inclined plane is parallel to the z-axis.

\F| is maximal, so |F| = p n for & > 6. Then the vectors, in terms of components parallel and perpendicular

to the inclined plane, are
N=nj F = (p,n)i

W =(—mgsin8)i+ (—mgcosf)j
H = {hmin c0s )i + {—hyi,sin6)
Equating components, we have
pont —~mgsin® + hgincos =0 = hmincosf + u.n = mgsiné
n—mgeost — hninsin@=0 = hyi,sinf+ mgcosl =n
(c) Since (2) is solved for n, we substitute into (1):
Fmin 08 8 + pt, (Rmin sin 8 + mgcos#) = mgsinf =

Poin €08 @ + Amingt, sin 6 = mgsinf — mgu, cosd =

b sin — p_ cosf o tané — p,
win N cosO + g, smg) Y 14 p, tand

tan ) — tan#
From part (a) we know p, = tan®,, so this becomes hmin = mg| ——— = ing
part (a) Eo s min g( T T tan®. tan@) and using a

trigonometric identity, this is mg tan{fl — 8,) as desired.
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Note for § = 8, hmin = mgtan0 = 0, which makes sense since the block is at rest for 5, thus no
additional force H is necessary to prevent it from moving. As @ increases, the factor tan(6 — ,), and hence the
value of Ay, increases slowly for small values of § — 8, but much more rapidly as § — 8, becomes significant.
This seems reasonable, as the steeper the inclined plane, the less the horizontal components of the various forces
affect the movement of the block, so we would need a much larger magnitude of horizontal force to keep the
block motionless. If we allow & — 90 °, corresponding to the inclined plane being placed vertically, the value of
Bmin i$ quite large; this is (o be expected, as it takes a great amount of horizontal force to keep an object from
moving vertically. In fact, without friction (so 6, = (), we would have § — 90 ° = hAmin — o0, and it
would be impossible to keep the block from slipping.

(d) Since hmax is the largest value of / that keeps the block from slipping, the force of friction is keeping the block
from moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in
part (b). then, except that we have F = —(u,n)i. (Note that |F| is again maximal.) Following our procedure in

parts (b) and {c), we equate components:
—p,n—mgsin @+ Amax €088 =0 =  hmaxcos® — p,n = mgsing
L —GCoSH — hmaxsinf =0 = huyaxsinf +mgcostf =n
Then substituting,
Bmax €058 — i, (Rmax sin @ + mgcosd) = mgsind =

Bmax €088 — Amaxpt, sin @ = mgsinf + mgp, cosf =

b —m sinf + p, cosf —m tanf + g,
max =TI\ cosO—p,smb ) I\1— g, tand

tan@ + tand,
1—tanf,tané

) = mgtan(f + §,)

We would expect Amax to increase as @ increases, with similar behavior as we established for i, but with
Amax values always larger than Amin. We can see that this is the case if we graph Amax as a function of &, as the
curve is the graph of Amin translated 28, to the left, so the equation does seem reasonable. Notice that the
equation predicts hmax — o0 as @ — (90° — 8,). In fact, as Amax increases, the normal force increases as
well. When (90° — 8,} < 8 < 90°, the horizontal force is completely counteracted by the sum of the normal
and frictional forces, so no part of the horizontal force contributes to moving the block up the plane no matter

how large its magnitude.
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