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14 [] VECTOR FUNCTIONS ] ET13

14.1 Vector Functions and Space Curves ET 131

. The component functions t2,\/t - 1,and v/5 — tarc all defined whent —1>0 = ¢t>land5-t>0 =
t < 5, so the domain of r(t} is [1, 5].

. The component functions i n g, sint, and In(9 — ¢?) are all defined whent # —~2and9 —t* >0 =

-3 < t < 3, sothe domain of r(¢) is (-3, -2) U (-2, 3).

In t 1/t .
. lim cost =cos0 =1, lim sint =sin0 =0, lim tlnt = lim — im L= lim —t =20
0t a0t t—0+ t0+ 1/t t—o+ —1/t% 1o+t

t-+0t t—ot t—0t

by I'Hospital’s Rule]. Thus lim+ {cost,sint, tInt} = < lim cost, lim sin#, lim tlnt> = {1,0,0).
t—0

t
— =1 [using I"Hospital’s Rule],

_im\/‘lth"l \/1+t+1_1im 1 1
b R VIFi+1 e Tri+1l 2
Thus the given limit equals (1, 3,3).

. hm VE+3 i = %tlmi (tat_nt) =tanl.

Thus the given limit equals (2 %, tanl}.

1/t
. lim arctant = , lim e 2 =0, lim im L = [by I'Hospital’s Rule].

t— o0 t—oo t—oe t t 1

Int
Thus lim { arctant,e™ %, SELA <£, 0, 0).
t— o0 t 2

. The corresponding parametric equations for this curve are
r=t'+1, y = t. We can make a table of values, or we can

eliminate the parameter: t =y = z = yP+ 1, withy € R.

By comparing different values of ¢, we find the direction in which

t increases as indicated in the graph.

. The corresponding parametric equations for this curve are
z = t3,y = t2. We can make a table of values, or we can
eliminate the parameter: z = t* = t= ¥z =
y=t2=(¥z)’ =a¥* witht e R = zeR By

comparing different values of t, we find the direction in which

{ increases as indicated in the graph.
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9. The corresponding parametric equations are « = t, y = cos 24,
z = sin 2. Note that 32 + 2% = cos? 2t + sin® 2t = 1, so the
curve lies on the circular cylinder ¢° + 2% = 1. Since = = £, the

curve is a helix.

. The corresponding parametric equations are x = 1 ++t,y = 3¢,
z = —t, which are parametric equations of a line through the point

(1,0,0} and with direction vector (1,3, —1}.

. The parametric equations give z* + 2° = sin®¢t +cos’t =1,y =3,

which is a circle of radius 1, center (0, 3,0} in the plane y = 3.

. The parametric equations are x = £,y = ¢, z = cost. Thus z = y,
so the curve must lie in the plane z = y. Combine this with

z = cos t to determine that the curve traces out the cosine curve in

the vertical plane x = y.

. The parametric equations are z = t2, y = t*, z = t°. These are
positive for ¢ # 0 and 0 when ¢ = 0. So the curve lies entirely in the
first quadrant. The projection of the graph onto the zy-plane is

y = 2, y > 0, a half parabola. On the z2-plane z = 23,z > 0,

half cubic, and the yz-plane, 3° = 2*.
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14. The parametric equations give
2% 4+ y? + 2% = 2sin t + 2cos® ¢ = 2, so the curve lies on the

sphere with radius /2 and center (0, 0,0). Furthermore

x = y = sint, so the curve is the intersection of this sphere with the

plane & = y, that is, the curve is the circle of radius \/5, center

(0,0,0) in the plane = = y.

. Taking ro = (0,0,0) and r; = (1,2, 3), we have from Equation 13.5.4 |[ET 12.5.4]
r()=(1—t)ro +tr1 = (1 -1){0,0,0) +¢(1,2,3),0 <t <lorr{t) = (t,2t,3t),0<t < 1.

Parametric equations are ¢ = ¢,y =2, z =3, 0 <t < 1,

. Taking ro = (1,0,1) and r1 = (2, 3,1}, we have from Equation 13.5.4 [ET 12.5.4]
r(t)=(1—t)ro+tr; = (1-8){1,0,1) +1(2,3,1),0 <t < lorr{t) = {1 +£,3,1),0< < 1.
Parametric equationsarex = 1 +¢,y=3t, 2 =1,0<¢ < 1.

. Takingro = (1,—-1,2) andr; = (4,1,7), wehaver(t) = (1 —t)ro+tr1 = (1 -¢)(1,-1,2) +£{4,1,7),
0<t<lorr{t)={1+3t—-1+2¢2+ 5,0 <¢< 1 Parametric equations arex = 1 + 3¢, y = —1 + 2¢,
z=245,0<t<1.

. Takingrp = {(—2,4,0) andr; = (6,—1,2), wehave r(t) = (L —t)ro+ir; = (1 - 1) (-2,4,0) + ¢ {6, -1,2},
0<t<lorr(t)={(-2+8t,4 - 5t2t),0 <t <1 Parametric equationsare z = -2+ 8, y =4 - 5¢, 2 = 2¢,
0<i<L

. = = cosdt, y = ¢, z = sin4¢t. At any point (z,y, z) on the curve, 22 + 2% = cos® 4t + sin® 4¢ = 1. So the curve
lies on a circular cylinder with axis the y-axis. Since y = ¢, this is a helix. So the graph is VL.

Lx=ty=t* z=e"" Atany point on the curve, y = z2. So the curve lies on the parabolic cylinder y = x?,

Note that y and 2 are positive for all ¢, and the point (0,0, 1) is on the curve (whent = (). Ast — oq,
(z,y,2) — (0, 00,0), while as t — —o0, (z,y, 2) — (—o0, 00, 0}, so the graph must be II.

.z =1t y=1/(1+1¢%),z =t Note that y and z are positive for all . The curve passes through (0, 1,0} when
t=0.Ast — o0, (z,y,2) — (00,0,00),and as t — —o0, (&, y, 2} — (—o0,{, 0c). S0 the graph is TV,

.x—=¢ 'cosllft,y =€ 'sinl0t, z =e "
z? +y* = e * cos® 10t + e~ ** sin® 10t = e~ **{cos” 10t + sin” 10t} = ™% = 2%, so the curve lies on the cone

z® + 4% = 2% Also, z is always positive; the graph must be 1.

. & = cost, y =sint, z = sin 5. 2+ y2 — cos’ t +sin’t = 1, so the curve lies on a circular cylinder with axis

the z-axis. Each of =, i and z is periodic, and at ¢ = 0 and ¢ = 27 the curve passes through the same point, so the
curve repeats itself and the graph is V.

.z =cost,y=sint,z=Int. z°+y° =cos’t+sin’t = L, so the curve lies on a circular cylinder with axis the
z-axis. Ast — 0, z — —o0, so the graph is HI.

. If o = tcost, y = tsint, and z = ¢, then
22 +y* =t2cos’t +t?sin®t = ¢* = 22, so the curve lies on the

cone z° = x* + y°. Since z = t, the curve is a spiral on this cone.
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26. Here ¢? = sin®t = zand 22 + y* = sin ¢t + cos®t = 1, s0
the curve is the intersection of the parabolic cylinder z = x?

with the circular cylinder z% + =1

2. v(t) = (sint, cost, t*) 28, r(t) = (t* — * + 1,1,£%) 2, r(t) = (£, vVE—1,v/5—t)

RN

2

30. We have the computer plot the parametric equations z = sin¢, ¥ = sin 2¢, z = sin 3¢, 0 < ¢ < 2. The shape of
the curve is not clear from just one viewpoint, so we include a second plot drawn from a different angle.

x = (14 cos16t) cost, y = {1 + cos 16} sint, z = 1 4 cos 16¢.
At any point on the graph,
z?2 + 32 = (1 + cos 16t)% cos? t + (1 + cos 16¢) sin’ ¢

= (1 4 cos 16t)* = 27, so the graph lies on the cone

z? + y? = 2%, From the graph at left, we see that this curve looks
like the projection of a leaved two-dimensional curve onto a cone.
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xr = mcost, Y= mmnt,
z = 0.5cos 10t. At any point on the graph,
22 4+ 4%+ 2% = (1 — 0.25cos” 10t) cos® ¢
+(1 — 0.25cos® 10t) sin® ¢ + 0.25 cos? ¢
=1—0.25cos” 10t + 0.25 cos® 10f = 1,

so the graph lies on the sphere > + 3 4+ 2® = 1, and since
z = 0.5 cos 10t the graph resembles a trigonometric curve with ten

peaks projected onto the sphere. The graph is generated by £ € [0, 27].

L Ift = —1,thenxz = 1,y = 4, z = 0, so the curve passes through the point {1, 4,0). If t = 3, then
x =9,y = —8,2 = 28, so the curve passes through the point (9, —8, 28). For the point (4,7, —6) to be on the

curve, werequirey =1 —3t =7 = f= -2 Butthenz =1+ (—2)° = —7 # —6,s0 (4,7, —6) is not on the

curve,

. The projection of the curve C of intersection onto the zy-plane is the circle z° + y> = 4,2 = 0.
Then we can write © = 2cost,y = 2sin#, 0 < # < 27. Since (7 also lies on the surface z = 1y, we have
z=xy = (2cost}(2sint) = 4costsint, or 2sin{2t). Then parametric equations for C' are
x = 2cost,y = 2sint, z = 2sin{2t),0 < ¢ < 2m, and the corresponding vector function is

r{f) = 2costi+ 2sint j+ 2sin(26) k, 0 < ¢ < 2m.

. Both equations are solved for z, so we can substitute to eliminate z: /22 + 32 =1+y =
+y’ =1+2+y" = z?=142y = y=3(z®—1). Wecanform parametric equations for the curve

C of intersection by choosing a parameter z = ¢, theny = J(t* — 1) andz = L +y =1+ 3(£* — 1) = 2(£* + 1).

Thus a vector function representing C'isr(t) = ¢i+ 2(t* — 1)j + :(t* + 1) k.

. The projection of the curve C of intersection onto the zy-plane is the parabola y = z2, z = 0. Then we can choose
the parameter z = t = 1y = 2. Since C also lies on the surface z = 422 + 2, we have
z =4z +y* = 4¢% + (+*)°. Then parametric equations for C are z = £, y = t2, z = 4¢* + t*, and the

corresponding vector function is r(t) = ¢i+t2j + (42 +t1) k.

The projection of the curve C of intersection onto

1

the zy-plane is the circle 2* + y* = 4,2 = 0.

Then we can write x = 2cost, y = 2sint,

T

0 <t < 2m. Since C also lies on the surface

2= z% we have z = % = (2cost)? = 4cos? &.

Then parametric equations for C are z = 2 cost,

y=2sint, z =4cos?t,0 < t < 2.
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r=t = y= = 42=16-2-42 =161 —4t' = z=1/4— (4t)° — 14 Note that z is

positive because the intersection is with the top half of the ellipsoid. Hence the curve isgivenbyz =1,y = 2,
/ 1
z = 4 - th - t4.

. For the particles to collide, we require ry (£) = ra(t) & (8*,7t —12,1*) = (4¢ - 3, t?,5t — 6). Equating
components gives t* = at - 3,7t — 12 = 2, and {* = 5¢ - 6. From the first equation, t* — 4t +3 =0 &
(t—3)(t—1)=0so0t =1ort=3.t=1does not satisfy the other two equations, but £ = 3 does. The particles
collide when t = 3, at the point (9,9,9).

. The particles collide provided r1(¢) = ra(t) & (t,¢%,¢%) = (1 + 2,1+ 6¢,1 4 14t). Equating components
gives £ = 14 2t, 12 = 1 4 6t, and ¢ = 1 + 14¢. The first equation gives ¢ = —1, but this does not satisfy the other
equations, so the particles do not collide. For the paths to intersect, we need to find a value for t and a value for s
where r1(t) = r2(s) & (t,tz, 3) = (14 2s,1 + 68,1 4 14s). Equating components, t = 1 + 2s,
t2 = 1 + 65, and £3 = 1 + 14s. Substituting the first equation into the second gives (1 4 25)2 =1+6s =
452 —2s=0 = 2s(2s—~1)=0 = s=0ors= 4 Fromthe firstequation,.s=0 = t=1ands=3}

= t = 2. Checking, we see that both pairs of values satisfy the third equation. Thus the paths intersect twice, at

the point (1,1,1) when s = 0and ¢ = 1, and at (2,4,8) when s = £ and t = 2.

. Letu(t) = {u1(t), u2(t), us(t)) and v(t) = {v1(t), v2(t), vs(t)). In each part of this problem the basic procedure
is to use Equation 1 and then analyze the individual component functions using the limit properties we have already

developed for real-valued functions.

(a) lim u(t) + lim v(¢} = <lim w1 (t), lim uz(t), lim u;;(t)> + <lim v1(t), lim v2(t), lim v;;(t)) and the limits
t—a tsa t—a t—a t—a t—a t—+a t—a

of these component functions must each exist since the vector functions both possess limits as t — a. Then
adding the two vectors and using the addition property of limits for real-valued functions, we have that

lim u(t) + im v(¢) = (fim w1 (#) + im v (¢), lim wa(e) + lim a(@), Jiza ws (6) + Jim v (t))
= (lim [us (&) + v (8)], Bim [ua(8) + v2(6)], Jim fus(2) + wa(t)])
= lim (ur(t) + v1(t), ua{t) + va(t), ua(t) + va(t)} [using (1) backward]

= lim [u(t) + v(8)

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION14.1  VECTOR FUNCTIONS AND SPACE CURVES ET SECTION131 O 299

(b) 1}im cu(t) = Eim {cui(t), cua(t), cus(t)) = <tlim cur(t), tlim cua(t), lim cua(t)>

= <c lim w3 (), ¢ Jim wa t), ¢ lim ua(#) ) =  (Yim ua (¢), lim ua(2), lim s (t)>

= ctlim {(ua(t), uz(t), ua()) = Ctlinclz u(t}
© fm () i v(0) = i () i w0, i s () -l w00 Jm 020, i 0n(9)

= [tm )] [sm 1 (0] + [t 1a)] [fim (0] + [fim (9] [fm o0

t—a
= tlim wi{B)vi(t) + tlim ua{t)uo(f) + tlim ua(t)vs(t)

= lim {u1{t)va(t) + ua(tyvz(t) + us(t)vs(t)] = lim [u(e) - v(¢)]
(@) Jim u(t) x Jim v(t) = (im uy(t), lim ua(t), lim us(8) ) x ( lim v (8), lim va(t), lim va(t))

= ([1im us(t)] [tim va(#)] - [lim ug(t)] [1im va(1)]

t—a t—a t—a

[fim )] Jim 109)] = [t a(9)] [fm 6]

iy 0] [ a(0)] = [fim a0 0]
= <t11_fg [uz(Bhus(t) — wa(t)va(t)] , lim {ua(t)or () — us(t)va(t)],
lim fus (£)v2(t) — uz(t)vl(t)]>

= lim {wa(t)us(t) — ua(t)va(t), us (8) vr(¢) — wr(t)us(t),
u(thva(t) — ua{t)vi(t))

= Jim [u(t) x V(1)

42, The projection of the curve onto the zy-plane is given by the parameltric equations = (2 + cos 1.5¢) cost,
¥ = (2 + cos 1.5¢) sin t. If we convert to polar coordinates, we have
r? =2° +4° = [(24 cos 1.5t) cost]® + [(2 + cos 1.5t) sin t]”
= (2 + cos 1.5¢)*(cos? t + sin” t)

= (2 4 cos 1.5¢)°

= 7 =2+cos L5t Also, tanf = < = (2+cos1.5t)sint _

= =tant = d=t¢t
z  (2+cosl.5t)cost an

Thus the polar equation of the curve is r = 2 4+ cos 1.58. At 8 = (}, we have r = 3, and r decreases to 1 as &

increases to 2%, For 3 <6 < &€, rincreases to 3; 7 decreases to 1 again at ¢ = 27, increases to 3 at 6 = &,
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decreases to 1 at @ = 487 and completes the closed curve by

increasing to 3 at # = 4m. We sketch an approximate graph as

shown in the figure.

We can determine how the curve passes over itself by investigating the maximum and minimum values of z for

t = # € [0,4x]. Since z = sin 1.5¢, z is maximized where sin 15t=1 = 15t=2Z, 5?”, or 97” =

t=3, %’r, or 3w. z is minimized where sin1.5¢ = -1 =
3

- 7 11 o Tm o llE
L5t =<, Sor s = t=m 00 <+ . Note that
these are precisely the values for whichcos1.5t =0 =

r = 2, and on the graph of the projection, these six points

appear to be at the three self-intersections we see. Comparing
the maximum and minimum values of z at these intersections,

we can determine where the curve passes over itself, as

indicated in the figure.

We show a computer-drawn graph of the curve from above, as well as views from the front and from the right side.

Top view Front view Side view

The top view graph shows a more accurate representation of the projection of the trefoil knot on the zy-plane (the
axes are rotated 90 ), Notice the indentations the graph exhibits at the points corresponding to r = 1. Finally, we
graph several additional viewpoints of the trefoil knot, along with two plots showing a tube of radius 0.2 around the
Curve.
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e s
ATy 00
¥

3. Letr(t) = {f (t),g(t),h(t)) and b = {b1, bz, bs). If }im r(t) = b, then lim r(t) exists, so by (1),

—a t—a

b= tlim r{t) = Qim Ft), iEim g(t), tlim h(t)>. By the definition of equal vectors we have t]im F(&) = b,

tiim g(t) = bz and tlim h(t) = ba. But these are limits of real-valued functions, so by the definition of limits, for
—tg2 —a

every € > 0 there exists &1 > 0, 62 > 0,83 > 0so |f(t) — b1| < €/3 whenever 0 < it — a| < 81,

|g(t) — b2| < €/3 whenever 0 < [t — a| < &2, and |h(t) — bs| < ¢/3 whenever 0 < It — a| < 3. Letting

& = minimum of {8z, 82,83}, we have |f(2) — bi] + |g(t) — bz| + [h(¢) — bs| < /3 +€/3 +€/3=¢
whenever 0 < [t — a| < 6. But [r(t) — b| = [{f(t) — b1, g(t) — b2, h(t) — b3)|

= V() —b1)? +(g(t) — b2)? + (R(t) — ba)? < V/[F(1) — 0a]% + /Ig(8) — b2]? + /A(E) — baJ?

= |f(t) — b1 + |g(t) — ba| + |A(E) — b3|. Thus for every e > O there exists § >> 0 such that

[e(t) — b < |f(t) — b1] + |g(t) — ba| + |h(t) — ba] < e whenever 0 < |t — a| < 6. Conversely, if for every e > 0,
there exists & > 0 such that [r(¢t) — bj < e whenever 0 < |t — a| < §, then

[(f(t) = big(t) = bo, h(#) —bs)l < & V() -2+ [g{t) =B +[h(t) — sl <e &

[F(t) = B1])* + [g(t) — B2]* + [R(t) — bs]® < €* whenever 0 < |t — a| < . But each term on the left side of this

inequality is positive so [f(2) — b1)* < €7, [g(t) — ba]” < € and [h(2) — b3]* < € whenever 0 < |t —a| < 6, or
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taking the square root of both sides in each of the above we have |f(t) — bi| < e, |g(t) — ba2| < eand

|h(t) — b3} < ¢ whenever 0 < |t — a| < é. And by definition of limits of real-valued functions we have

t—a

80 }im r(t) = (bi1,b2,b3} = b.

14.2 Derivatives and Integrals of Vector Functions

lim f(¢) = b1, tlim g{t) = bz and }im h(t) = bs. Butby (1), }1_12 r{t) = <}1_I;I; f(t),}i_lgg(t), }Eﬁ h( )>,

1. @@

r(4.5) —r(4)
®) 0.5

same direction but with twice the length of the vector
r(4.2) — r(4)

0.2
vector in the same direction but with 5 times the length of the
vector r{4.2) — r(4}.

= 2[r(4.5} - r(4)], so we draw a vector in the

r(4.5) — r(4). = 5[r(4.2) — r(4)], so we draw a

(¢) By Definition 1, ¥'(4) = lim w_

r4.5)—r(4)

0.5

(d) T(4) is a unit vector in the same direction as r’(4), that is, parallel to the tangent line to the curve at r(4) with

length 1.
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2. (a) The curve can be represented by the parameitric equations = 2, y =1t,0 < ¢ < 2. Eliminating the parameter,
we have £ = y*, 0 < y < 2, a portion of which we graph here, along with the vectors r(1), r(1.1), and

r{1.1} — r(1).

r(l.1) — ()

(1,1)\~ .21, 1.1

(b) Since r(t) = (t*,¢), we differentiate components, giving r'(¢) = (2¢,1), sor'(1) = (2,1}.

r(l.1)—r(1) (121,11} —(1,1) _ B
= 1 =10{0.21,0.1) = (2.1,1).

As we can see from the graph, these vectors are very close in length and direction. r'(1) is defined to be
lim r(l1+h)—r(1) r(1.1) — r(1)
h—o h 0.1

r({l.1) — r(1)
0.1

, and we recognize as the expression after the limit sign with A = 0.1.

Since h is close to 0, we would expect to be a vector close to r'(1).
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3. (a), (©) ¥y 4, (a), (c)

\J

(b) ¥'(t) = {—sint,cost)

by r'(t) = <1, 2\ﬁ>

. Since (x — 1)2 =% = y, the curve is a B. (a), (¢} Y
parabola.

(a), (¢)

by ' (8) =i+ 2t ) =ei—e"j

. {a), (©) ' 8. x = 2sint,y = 3cost, s0

(z/2)% + (y/3)* = sin® ¢t + cos® t = 1 and the curve
is an ellipse.
(a), (c)
(v3.2)

/Og \r()
NA

3
(b) r'(t) = 2costi— 3sint]

by r'(t) = e'i+ 3]

o= (S0 -0 5 Vi) = (1)

. r(t) = {cos3t,t,sin3t) = r'(t) ={(-3sin3t,1,3cos3t)
) =i—j+etk = () =0i+0j+4e"k=4e"k

1 t .

— a4} 421 ' _ s
Lr(t) =sin” ti+V1I-t2j+k = r(t)_\/l—-ﬁl mJ

rt) =i jrin(l43)k = r) =2 i+

3
1+3tk
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. r'(t) = [at(—3sin3t) + acos3t]i+b- 3sin®tcostj+ c-3cos’ t(~sint) k

= (acos3t — 3atsin3t)i+ 3bsin®tcostj— 3ccos® tsintk

. r'(t) = 0+ b + 2tc = b + 2t ¢ by Formulas 1 and 3 of Theorem 3.

. To find 1’ (t), we firstexpand r(t) = ta x (b+t¢) = t{a x b) +t*(a x ¢},s0r'(t) = a x b+ 2t(a x ¢).
cr'(t) = (306%,126%,2) = r'(1) = (30,12,2). So |r'(1)| = v/30% + 122 + 22 = /1048 = 2 /262 and

3]

r'(1) 1 15 1
T(1) = Ty = v (30.12,2) = (G 785 74 -

(1)~ v

=2 itoi+k = r(1)=2i+2j+k Thus
Vit

_ I"(l) _ 1 . . N o . 2

1 = - 22+22+12(21+2‘]+k)w3(21+2.]+k)*31+

—sinti+3j+4cos2tk = r'(0) =3j+ 4k Thus
r'(0) 1 : Ligs 3. 4

foend = 3 4k=—3 +4k=- -k.
v (0)] 02+32+42(J+ ) =53] )=3%i+3

. r'(t) = 2costi— 2sintj+sec’tk = r'(%) :\/ﬁi—\/ﬁj+2kand‘r’(§)| =2+2+4=2+2

Thus T(F) = Ii’gl = 5:1/—5 (vV2i— v2j + 2K)

PR T
“2l TR

<1$2r3) = <711?:%v 73;4‘> ru(t) = (0,2,6t), SC

) 2t 3¢t 1 3t? 1 2t
ry <"ty =11 2t 3| = i-— i+ k
2 6t 0 6t 0 2
0 2 6t
(12¢% — 6£%)i — (6t — 0)j + (2 — O) k = (6%, —6¢,2).
Lr(t) = <ezt,e"2t,t62t> = )= <2€2t, —2e7% (2t + 1)B2t> =
r'(0) = (2e° —2¢%, (0 + 1)e®) = (2,-2,1) and [r'{0)] = /22 + (=2)2 + 12 = 3. Then
r' (0)
(0) = I’ (0)] = §<2’ -2,1) = <§’—'§" %)
r’(t) = (4e* de7 M, (4t + 4)e¥) = 1(0) = (4e®,4e°, (0 + 4)e®) = (4,4,4).
r'() - r” (1) = (2%, —2e7%, (2t + 1)e*) - (de® e (4t + 4)e*)
= (26*)(4e®) + (=27 )(4e ™) + ((2t + 1)e*)((4t + 4)e™)
= 8e* — 8e M 4 (8t7 + 12t + 4)e* = (8% + 12t + 12)e*t — e~
. The vector equation for the curve is r(t) = {t°,t%,¢*), so r'() = (5t*, 4>, 3t*}. The point (1, 1, 1) corresponds

to t = 1, so the tangent vector there is r’'(1) = (5,4, 3). Thus, the tangent line goes through the point {1, 1,1) and
is parallel to the vector {5, 4, 3}. Parametric equationsarex = 1+ 5t, y = 1+ 4f, 2 = 1 4 3¢.

. The vector equation for the curve is r(t) = (t* — 1,t* + 1,£ + 1), sor’(t) = (2¢,2¢,1). The point (~1,1,1)
corresponds to ¢ = (), so the tangent vector there is ' (0) = (0,0, 1), Thus, the tangent line is parallel to the vector
(0,0,1) and parametric equations are x = —14+0-t =-1,y=140-t=1,z=1+1-t =1+t
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25. The vector equation for the curve is r(t) = (e7* cost,e *sint,e ™"}, 50
r'(t} = (e*(—sint) + (cos t)(—e~), e teost + (sint){—e?), (—e7t))
= (—e *(cost +sint),e"*(cost — sint), —e~*).

The point (1,0, 1) corresponds to ¢ = 0, so the tangent vector there is
t'(0) = (—€®(cos 0 + 5in 0), e(cos 0 — sin0), —e”) = (=1, 1, —1). Thus, the tangent line is parallel to the
vector {—1,1, —1) and parametric equationsare z = 1 + (-1}t =1 -ty =0+1-1 =1,
z=14+(-1t=1-1¢

L r(t) = (Int, 22, 8%), r'(t) = (1/t,1/v1,2t). At (0,2,1),t = 1 and r'(1) = (1,1, 2). Thus, parametric
equations of the tangent lineare z = ¢,y =2+ ¢,z =1+ 2t.

. r(t) = (t,v2cost,v/2sint) =
r'(t) = (1, —v2sint,v2cost). At (§,1,1),¢ = § and
r'{Z) = (1, —1,1). Thus, parametric equations of the tangent

linearex = T +t,y=1-t2=1+t \
/

0
3 x

. r(t) = (cost, 3™, 3¢ %), 1 (t) = (—sint, 6e*, —6e~*).
At(1,3,3),t = 0and r'(0) = (0,6, —6). Thus, parametric
equations of the tangent lineare x = 1,y = 3 + 6¢, z = 3 — 6t.

0.6
08 .

¥ 0!

(@) e(t) = (3,64, 8%) = r'(¢) = (3t%,4¢°,5t%), and since ¥'(0) = (0,0, 0) = 0, the curve is not smooth.

by r(t) = (t* +¢,t4,1°) = r'(t) = (3t* + 1,4¢%,5¢*). r'(t) is continuous since its component functions are
continuous. Also, r'{t) # 0, as the y- and z-components are 0 only for t = 0, but r'(0) = (1,0, 0} # 0. Thus,
the curve is smooth.

© r(t) = (cos®t,sin®t) = r'(t) = (—3cos®tsint, 3sin®tcost). Since
r'(0) = (—3 cos” 0sin 0, 3sin® 0 cos 0) = (0,0) = 0, the curve is not smooth.
. (a) The tangent line at ¢ = 0 is the line through the point with (b)
position vector r(0} = (sin 0, 2sin 0, cos 0) = (0,0, 1),
and in the direction of the tangent vector,

r'(0) = {mcos0, 27 cos 0, -~wsin0) = {x,2x,0).

So an equation of the line is

{(z,y,z) = r{0) + ur'(0) = (0 + wu,0 + 2mwu, 1} = {7wu, 27u,1}.

r(1) = (sinZ,2sin I,cos 2} = {1,2,0}, r' (1} = (wcos §,2mcos 5, —wsin 5 ) = (0,0, —7).

So the equation of the second line is (z,y, z) = {1,2,0) + v (0,0, —7) = (1,2, —7wv). The lines intersect
where {mu, 2mu, 1) = (1,2, —mv), so the point of intersection is (1, 2, 1),
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3. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of
intersection. Since rj(t) = (1,2t,3t*) and ¢ = 0 at (0,0,0), ri(0) = (1,0,0} is a tangent vector to r; at (0,0, 0).
Similarly, r3(t) = {cost,2cos 2t, 1) and since r2(0) = (0,0, 0}, r5 (0) = (1,2, 1) is a tangent vector to rp at
(0,0,0). If 8 is the angle between these two tangent vectors, then cos 8 = 71-175 (1,0,0)- (1,2,1) = 71‘5 and

= -1{ 13 o
& = cos (JE) ~ 66°.
. To find the point of intersection, we must find the values of ¢ and s which satisfy the following three equations
simultaneously: t =3 —s,1 -t =8-2,3 + t? = %, Solving the last two equations gives t = 1, s = 2 (check

these in the first equation). Thus the point of intersection is (1,0, 4). To find the angle # of intersection, we proceed
as in Exercise 31. The tangent vectors to the respective curves at (1,0, 4) are r} (1) = {1,—1,2) and

rh(2) = (~1,1,4). Socos6 = bz (=1~ 1+8) = ;5 = Fr and 0 = cos ™ (&) ~ 55°

Note: In Exercise 31, the curves intersect when the value of both parameters is zero. However, as seen in this
exercise, it is not necessary for the parameters to be of equal value at the point of intersection.

- fy (16631~ 987§ + 25t k) dt = (fol 16t dt) i— (fnl 9t? dt)j + (fol 254 dt) k

= [4t4]] i— [3t%], j + [5t°], k =4i-3j+5k

1

4 2t _ —1,- 21111
fu (le it k) dt = [4tan™ "+ In(1 +t*) k]

=[4tan ' 1j+In2k] — [4tan ' 0j+Inlk] =4(F)j+In2k - 0j -0k =7j+In2k
.f”/2(3sm tcosti+ 3sintcos®tj+ 2sintcostk)dt

=( /% 3sin? tcostdt)1+(f"/ 3sint cos’ tdt) (foﬂ/22sintcostdt)k

= [sin® t];r i+ [~ cos® t] j+ [sin® t]”/z k
(=0} i+ 0+ )j+(l-0k=itj+k

(Vi e+t K) dE = [t3/2 —t k]j+([ e + et at)

=(£-3i-(4 —1)k+(-—4e“4+e_1—e"4+e‘1)j—%i+e“1(2—5e‘3)j+%k

i+ 2tj+Intk) dt = ([e'dt)i+ (f2tdt)j+ ([Intdt) k

=e'i+t?j+ (tInt — t) k + C, where C is a vector constant of integration.

. f(cosmti+sinwtj+tk)dt = ([ cosmtdi)i+ (fsinntdt)j+ ([tdt)k
= ;51n7rt1—;coswrt_}+5t2k+c

‘) =Li+42- 1k = r(t) =271 +¢*j~ 13k + C, where C is a constant vector.
Butj =r(0) = {(0)i+ (0}j — (0)k + C. Thus C = j and
rit) = 3%+t - Pk+j=3i+ '+ 1)j - 1Pk

L r'(t) =sinti—costj+2tk = r(t) = {-cost)i— (sint)j+t’k+C.
Buti+j+2k=r(0)=-i+(0)j+(0)k+C. ThusC =2i+j+2kand
r(t) = (2~ cost)i+ (1 —sint)j+ (2 + %) k.
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For Exercises 41-44, lat u(t) = (u1(t), u2(t), us(t)) and v{¢) = {v1(t), v2(t), vs(t)}. In each of these exercises, the procedure
is to apply Thearem 2 so that the corresponding properties of derivatives of real-valued functions can be usec.

a. % [u(®) + V()] = < ur(0) + va (6, ua(t) + va(e), us(t) + va(e)

dt
= (& 100+ 01 01, 3 iat) + 2001 5 )+ )
= (u
= (u

)+ vi(t), ua(t) + va(t), us(t) +va(e)
us (

1(t) 2
1), u (8, us () + {1 (1), va(t), va(t)) = u'(t) + v/(2).

F(ur(t), f(thua(t), f(t)us(t))

FOu®] S w0, & [f(t)Us(t)]>

“(E)ur(t) + FOuL (L), f(Oua(t) + F(E)uae), £ (Bus(t) + f(Hua(t))
( ) (ua (2), ua(t), ua(8)) + f(t) (ui (t), ua(t), us(8)
() u(t) + feyu'(e)

= gg {ua(t)vs(f) — us(tyva(t), ua(t)v1(E) — wr(t)va(t), ma(thva(t) — ua(t)n(#))

{uvs(t) + ua(t)va(t) — ua(t)va(t) — us(t)ualt),
ua(thur{t) +us(t)ol (t) — wi(t)vs(t) — ua(t)vs(t),
u (E)vz(t) + ur ()va(t) — ua(thva () ~ v2(t)vi(t))
= {ug(t)vs(t) — ua(tva (1), us(t)oa(t) — wa (Bhva(t), ur(t)va(t) — ua(t)ur(t))

+ {uz(t)v5 () — ua(t)va(t), ua(t)ol (£) — wa (t)va(t), wa (va(t) — wa(t)v1 (1))
=u'(t) x v(t) +u(t) x v'(t)

Alternate solution: Let r(t) = u(t) x v{t). Then
r(t + h) —r{t) = [u(t + h) x v{t + k)] — [u(t) x v(t)]
=[u(t+h) x v(t+ h)) — [u(t) x v(&)] + [ut + h) x v{t)] — [ult + k) x v(t)]

=u(t+h) x [v(t+h) - v{)] + [ult + k) —ut)] x v(i)
(Be careful of the order of the cross product.)
Dividing through by A and taking the limit as 2 — 0 we have

ooy WEFR) X [VE+R) = V()] | . [ult+ k) —u(f)] x v(t)
= h i h

= uft) x v/(£) + u'(t) x v(t)

by Exercise 14.1.41(a) [ET 13.1.41(a)] and Definition 1.
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S O] = 3 G (OL i) w7 0) = (S a0, 5 a0, 5 7 6))

= {(f' (O {(F D), F(ua(f@), F (Dua(F(2))) = F () u'(t)
()] =u'(t)-v(t) +u(t)-v'(t)  [by Formula 4 of Theorem 3]

= (—4tj+9t?k) - (ti+costj+sintk) + (i —2t*j + 3t°k) - (i —sintj + cost k)

= --dtcost + 9t*sint + 1 + 2t sint + 3t* cos t

=1—4fcost+ 11¢*sint + 3t cost
=u'(t) X v(t) + uft) x v'(t)  [by Formula 5 of Theorem 3]
=(-4t]+ 9% k) x (ti+costj+sintk) + (i—2t%j+ 3t k) x (i —sintj+ costk)
= (—4tsint — 9% cost)i+ (9 — 0)j+ (0 + 4t°) k

+ (—2t°cost + 3t*sint) i+ (3t> — cost)j + (—sint +2t*) k
= [(sint)(3® — 4t) — 11t* cost]i + (12t* — cost)j+ (6t —sint) k
; % [p(t) x r'(£)] = r'(t) x ¢'(t) + r(t) x r”(¢) by Formula 5 of Theorem 3. But r'(t) x r'(t) = 0

{(see Example 13.4.2 [ET 12.4.2]). Thus, % () x '(2)] = r(t) x " (2).

£ (ale) v (&) x W) = (1) [v(0) x wB)] +u(t) - 5 [v(0) x w (0]
=u'(#) [v(t) x w(t)] +u(t) - [v'(t) x w(t) + v(t) x w'(¢)]
=u'(t) - [v(t) x w(t)] +u(t) - [v'(1) x wit)] +ua(t) - [v(t) x w'(t)]

=u'(t) [v(t) x w(t)] - v'{t) - [u(t) x w(t)] + w'(t) - [u{t) x v(t)]

1
t)|

. Since r(t) - () = 0, we have 0 = 2r(t) - r'(t) = % [r(t) -r(t)] = p |r(t)|%. Thus r(¢)[*, and so |r(t)|, is a

S IR = 5 (6@ T = le(e) e (O] 2r(0) £ (0)] = o x(0) (1)

constant, and hence the curve lies on a sphere with center the origin.

. Since u(t) = r(t) - [r'(¢) x ()],
W(E) = ¥ (1) [F(8) % (9] + e(e) - % [ (D) X 2(0)
=0+ r(t)- () x " (t) + ' (t) x ©'"(¢)] [since r'(t) L r'(¢) x " (t)]

=r(t)- [r'(t) x £ (¢)] [since r”(t) x r’(t) = 0]
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14.3 Arc Length and Curvature ET133

1. r'(t) = {2cost, 5, —2sint) = [r'(t)| = /(2cost)? + 52 + (—2sint)? = 1/29. Then using Formula 3, we
have L = (2% |[¢'())|dt = [*%, V294t = V20¢t] ", = 2029,

. /() = (2t,cost +tsint — cost,—sint + fcost + sint) = (2t,tsint, tcost) =
I’ (£)] = /(20)% + (¢sint)? + (tcost)? = /42 + £2(sin® ¢t + cos?t) = V5 [t| = VBt for 0 <t < m. Then

™ t2 " \/5 P
using Formula 3, we have L = [ |¢'(t)|dt = N Votdt = 5 — 5| =g T
0

L r(t) = V2itelj—ek =
|r'(t)} = \/(\/5)2 +(e)2 4 (—e 2 =v2tet e 2= /let+e )2 =¢"+e "(sincee’ +e7" >0)
Then L = [, |r'(t)| dt = Jolet +e ) dt = [ef - e*t]; —e—e "l

1+2t%2 1428
r'(t) = (2¢,2,1/8), [P’ (8)] = V412 + 4 + (1/8)% = 4|_f\ = +t forl <t <e.

e 2 [
L:/ 1+t2t dt:/ G+2t)dt= [Int+#]] =
1 1

r(t) = 2tj+3°k = |¢'(t)] = VA2 + 0t* = t/4 + 9t (since t > 0). Then
1

L=fl[F@t)dt= [[tvV/I+92dt= - %(4+9t2)3/2} = L (1832 — 43/%) = L(13%/2 - 8).
O

P(t) =121+ 12vEj+ 6tk = [|r'(t)] = 144 + 144% + 36t = \/36(t + 2)2 = 6t + 2| = 6(t + 2) for
0<t<1ThenL=f [F'(t)dt = f)6(t+2)dt = [362 +12] = 15.

. The point (2, 4, 8) cotresponds to ¢ = 2, so by Equation 2, L = f; V(12 + (2t)2 + (3t2)2 dt.
I f t) = \/ 1+ 42 + 9¢4, then Simpson’s Rule gives

Lo~ 10 3 [f(O) +4£(0.2) + 2£(0.4) + - -- + 4£(1.8) + f(2)] = 9.5706.

. Here are two views of the curve with parametric equations x = cost, y = sin 3t, z = sint:

The complete curve is given by the parameter interval [0, 2], so
= foz” v (—sint)? + (3cos 3t)? + (cost)? dt = 02" V1 + 9cos? 3tdi = 13.9744.

Lr'(t) =2i-3j+4kand £ = |¢'(t)| = VI+ 9+ 16 = v29. Then
s=s(t) = f[;' ir'(u)| du = fot V29 du = /29 ¢. Therefore, t = ﬁs, and substituting for ¢ in the original

equation, we have r(¢(s)) = sH— ( \/Eé—gs)j + (5 + \/%s) k.
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10. v'(t) = 2e**(cos2t — sin2t) i + 2e*'(cos 2t + sin 2t) k,
48— |r'(t)| = 2¢* \/(cos 2t — sin 2t)2 + (cos 2t + sin 2t)? = 2¢* V' 2c082 2t + 2sin® 2t = 2+/2 €%,
s=s(t) = [, [P'{w)du= [, 2v2e™du= \/562“]; =v2(*-1) =
—% +1=¢€" = t= %ln( —"ﬁ + 1). Substituting, we have

r(t(s)) = 62(%1n(7"’;‘1+1)) cos 2 (%ln(% + 1)) i+2j+82(12‘1n(‘\)"§'+1)) cin 2 (% ln(';sfz + 1)) K

= (& +1)cos(n( 5 +1))i+25+ (g +1)sin(n( 5 +1) )k

r'(t)l = /(Beost)2 + 16+ (—3sint) = O+ 16 =5and s(t) = f; [r'(u)|du= [/ 5du=5t =
#(s) = 1s. Therefore, r(t(s)} = 3sin{3s} i+ $sj+ 3cos(3s) k.

, -4t =22 42,
12. ¢'() = (t2+1)21+ (t2+1)2']’

ds_ -4t 17 (-2 +2]% Jart4s+4 4P +1)?
F 1= \/ ) (@) "\/ CESI RO

B 4 2
BT R SR T |

Since the initial point (1, 0) corresponds te £ = (, the arc length function

‘r (u)| du= | ———du=2arctant. Thenarctant = s = ¢ = tan is. Substituting, we
0 u? + 1 2 2

2tan(1 ) ‘ _ 1 — tan® (

t j= Ztam( )
an®(2s) + 1 1+ tan?(

sec?(3s)

1
%),
39)

= [cos®(4s) —sin®{1s)] i+ 2sin(1s) cos(1s)j = cossi+sinsj

With this parametrization, we recognize the function as representing the unit circle. Note here that the curve
approaches, but does not include, the point (—1,0), since cos s = —1 for s = 7 + 2k (k an integer) but then
t= tan(%s) is undefined.

13. (a) '(t) = (2cost,5, —2sint) =  |r'(t)] = V4cos?t + 25 + 4sin® £ = /29, Then

_ '
T(t) = TIa] \/— {2cost,b,—2sint) 0r<\/—cost 73, ‘/—smt>

T'(t) = —55 (=2sint, 0, —2cost) = |T’(t)\:\/LZ_Q\/4sin2t+0+4coszt:‘/L2—g.Thus

T'(t) _ 1/v29
T(®)  2/v29
T (&)] _ 2/v29 _ 2

® =150 = v 2

N(t) = (—2sint, 0, —2cost} = (—sin¢, 0, — cost).
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14 (a) r'(t) = (2t tsint, tcost) = |U'(t)] = V/4t2 + ¥sin® £ + t2cos? t = V52 = /B¢
: r'(t) 1 . 1 _
since t > 0). Then T(t) = = —— {2t,tsint,fcost) = 2,sint, cost}.
( ) ( ) h,,(tn \/gt ( ’ ) V5 ( )
0,cost,—sint) = |T'(t)| = ﬁ\/l)—r-coszt-i—sin% = :%g Thus
_ 1B
1/v5
IT®_ YVE 1

OO =001 = Ve B

T() = %

{0, cost, —sint}) = (0, cost, —sint).

15. @) =(V2,e, -t = |f(t)j=v2+eFt+e 2= /(et+e )2 =¢"+e " Then

t
(VZe', e, ~1) (after multiplying by %) and

T(t) = :, 1 (V2,et,—e7) =

e +et e i1 + 1

2t 2e* t 2t
\/—8 2e >—m<\/§€,e ,—1>

L [(e” +1) <\/§6t,262t,0> — 2¢% <x/§ez, e, —1>]

- (ezt + 1)2

= (cﬂt—il)z <\/§e’t (1 — em) ,2821, 262t>

—62"‘+1<

Then

1
v 2e%t(1 — 2e2t + edt) + dedt + dett = (—;;—;-_—1-)-5\/292*(1 + 262t + ett)
e

TOI= e

2t t
_ 1 9e7t (14 ¢2)? = V2et(l+e _ V2e
(eZt + 1)2 e?t + 1)2 et +1

Therefore

T'(t) 41 1 2 o 2t
NO =T :eﬁet @ (VI .22

—_— \/_e 1-e* 262t,262t>
\/_e* e”—l—l (

1 <1Ae2t, 28t,\/§8£>

T et 1

|Tl(t)| _ \/iet ' 1 B \/iet B \/5821 _ \/ﬁer
e (2} T et ] et et edt L2t Lg—t gt D2t L] (€2t +1)2°

(b) K(t) =

16. (a) T(t) = |'8| m( 2,1/t = 2t2|t} {2t,2,1/t}. But since the
1

21‘,2—4-1 <2t2, 2fi, 1> Then

1
(2t2 + 1)2

k-component is In ¢,  is positive, |t| = ¢ and T(t) =

T'(t) = (4t,2,0) — (262 + 1) 77 (48) (26%,2¢,1) = (48,2 ~ 4¢%, ~4t), 50

22 + 1
T'(t) (4t,2 — 4¢%, —4t) 1
T J(at)2 + (2 — 42)2 + (—4t)2 22 +1

N(t) = (2t,1 — 2%, —2t).

O t Yo%
(1) = rOl ~ 2E+1 (2t2+ 1) T (2t2 4 1)2
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17. /() = 2ti+ k, r(t) = 24, |o/(t)| = /(26)2 £ 02 + 12 = VA2 + 1, 0/(8) x v (t) = 2§, |r' () x "(t)| = 2.

_ i <" _ 2 _ 2
Then x(t} = rOF (m)s T @y

et =i 4§ 2tk o (t) = 2k, Y (8)| = 12412 + (24)2 = VAT + 2,
r'(8) x r'(t) = 2i — 2§, [F'(t) x ()| = V22 + 22 + 0% = /8 = 2/2. Then
a(t) = v () x ¢ (t)] 2v2 2v/2 1

rOF | (VaEEZ) (VavaE i) @2+ DV

. r'(t) = 3i+4costj—4sintk, r(t) = —4sintj - 4costk,
Ir'(¢)] = V/9 + 16cos?t + 16sin® t = O+ 16 = 5,1'(¢) x /() = —16i + 12costj — 12sintk,
') xr"(t)] _ 20 4
I ()] 55 25

Ir'(£) x r”{t)] = /256 + 144 cos? ¢ + 144sin? t = /400 = 20, Then «(t) =

. r'(t) = (e’ cost — e'sint, €' cost + e* sint, 1). The point (1,0,0) corresponds to t = 0, and
F0)={1,1,1) = [|F(0)=v1I2+12+12=+3
r"(t) = (e cost - e'sint — e’ cost — e sint, e’ cost — e’ sint + e’ cost + ' sint, 0)
= (—2e’sint,2e' cost,0) = r"(0) ={(0,2,0).
r(0) x r"(0) = {-2,0,2).  [F'(0) xr"(0)] = V(~2P + 02+ 22 = VB =2V2.
Then x(0) = ["(0) r';((})| = 2\/53 = 2v2 or 2\/6.
POF (V3 aval 9

Lr(t) = (1,2t,3t2). The point {1, 1, 1) corresponds to ¢ = 1, and
f(1)=1{1,2,3) = |()|=vI+4+9=+14 r"(t)=(0,2,6t) = r’(1)={0,2,6).
r'(1) x (1) = (6,—6,2), s0 jr’ (1) x r’(1)] = /36 + 36 + 4 = +/76. Then
_FOxr) _ VT _1 16

(1) rQP? vird TVia

——— r(t)=<t,4t3/2,—t2> = r’(t)=<1,6t1/2,~2t>,

()= (0,375, —2), (0" = (14 36+ 4)°",

r’(t) x r"(t) — <_12t1/2 + 6t1/2,2,3t'1/2> -

2 1/2
|I"(t) X l."H(t)l — !36t+ 4+9t-—1 — [M]

t

y 10773 . 0
_ @ x o) _ (3687 +4t+ 9\ i R RS
o eeP t (1+ 36t + 4t2)3/2 ~ £1/2(1 + 36¢ + 412)3/2°

The point (1,4, —1) corresponds to ¢ = 1, so the curvature at this point is k(1) = i _E%;-_f :)39/2 =1 T/H

K(t)

z) =3, fl(x) = 322, f'(z) = _ | ()] _ 6 |z|
B f(z) ==z, f'(z) = 327, f'(x) = b2, k(x) [1+(f’($))2]3/2 T on
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4. f(z) = cosz, f'(x) = —sinz, f'(z) = —cosz,

() = "(z)| _ |- cos z| N |cos z|

1+ (@2 [+ (csino)P? (1 sin )32

. flz) = 42°2, f'(z) = 102%%, f"'(z) = 15272,
| ) 132 153

L _
(@)2P? T 1+ (100322 (1+10023)3/7

}
-
" ()] |zt L 1 _(2)*? || z

= i+ (yf(m))z}g/z Tl | (L1228 2 (@2 +1)32 (22 +1)3/2 (22 4 1)3/2
(since = > 0). To find the maximum curvature, we first find the critical numbers of x(z):

PGk k.1 ot e ) O G Vil Y ek D St
(22 + 1)3/2] (x2 +1)3 (z2 1 1)5/2°

k' {x) =0 = 1—2z% = 0, so the only critical number in the domain is z = 715 Since () > 0 for

1, ’ 1 : : : | :
0<z<zandr'(z) <Oforz> -, k() attains its maximum at z = 7 Thus, the maximum curvature

x
occurs at (—f %) Since mhﬂn;o W = 0, k(x) approaches 0 as & — o0,

" x
. Since y' = y" = €”, the curvature is x(z) = v (=)l = € = e®(1 4 =) 732,

1+ (@) (el
To find the maximum curvature, we first find the critical numbers of n(m)'
_ _ o1+ e% - 3e%® 1-2e%
’ _ =z 2x,-3/2 xf_ 3 2cy—5/2 2 _ -
K (@) =" (L+ )75 4 &% (—3) (1L +e¥)7>5(2e%) = € (1 + e22)5/2 —e”(1+e2r)5/2.

k'(z) = 0when1 — 2" =0,s0€ = ; orz = —3In2. Andsince 1 — 2¢** > 0forz < —;In2and

1—2* < 0forz > —l In 2, the maximum curvature is attained at the point

(—% In2, e(_h‘z)/z) = ( 11n2, \/_) Since mILngo e®(1 4 €¥) "2 = 0, k() approaches 0 as £ — oo.
. We can take the parabola as having its vertex at the origin and opening upward, so the equation is
If @) |20 _ 2a

[1 + (fl 2]3/2 [1 ~+ (2a$)2]3/2 - (1 + 4a2$2)3/2’
thus £(0) = 2a. We want x(0) = 4, so a = 2 and the equation is y = 2z°,

f(z) = az®, a > 0. Then by Equation 11, x(z) =

29. (a) C appears to be changing direction more quickly at P than ¢}, so we would expect the curvature to be greater
at P.

{(b) First we sketch approximate osculating circles at P and
¢). Using the axes scale as a guide, we measure the radius
of the osculating circle at P to be approximately 0.8 units,
thus p = 1 = K= E =] L ~ 1.3. Similarly, we

I3 p 08
estimate the radius of the osculating circle at () to be
1
¥ 14

1.4 units, so &k = = 0.7,
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K(z) = _ e Tlz -2
L+ )"~ Bre=(-appe

of the curvature here is what we would expect. The graph of

The graph

ze~ 7 is bending most sharply slightly to the right of the

origin. As & — o0, the graph of ze™* is asymptotic to the
x-axis, and so the curvature approaches zero.

= y =424 = 122%, and
B ly"| 128
w(z) = T ()7 ~ (1T 1628772 The appearance of

the two humps in this graph is perhaps a little surprising, but it

is explained by the fact that y = 2* is very flat around the

—l.ZL

origin, and so here the curvature is zero.

. Notice that the curve @ is highest for the same z-values at which curve b is turning more sharply, and a is 0 or near 0
where b is nearly straight. So, @ must be the graph of y = x(x), and b is the graph of y = f(z).

. Notice that the curve b has two inflection points at which the graph appears almost straight. We would expect the
curvature to be 0 or nearly 0 at these values, but the curve a isn’t near 0 there. Thus. ¢ must be the graph of
y = f(z) rather than the graph of curvature, and b is the graph of y = x{z).

34. (a) The complete curve is given by 0 < ¢ < 2. Curvature
appears to have a local (or absolute) maximum at 6
points. (Look at points where the corve appears to turn

more sharply.)

{b) Using a CAS, we find (after simplifying)

3v2,/(Gsint + sin5)
t) = (T .
e (9cos bt + 2 cos 4t + 11)3/2 (To compute

cross products in Maple, use the Linalg package and

the crossprod (a, b) command; in Mathematica,

use Cross [a, bl.) The graph shows & local (or

absolute) maximum peints for 0 < ¢ < 27, as observed

in part (a).
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35. Using a CAS, we find (after simplifying)

6+/4cos2t — 12cost + 13

w(t) = (17 — 12 cos t)3/2

. (To compute cross

products in Maple, use the Linalg package and the

crosgprod{a,b) command; in Mathematica, use

Cross [a, b].) Curvature is largest at integer multiples of 2.

36. Here r(t) = (f(£), g (), '(£) = (£ (£), g’ (1)), " (8} = (F"(£), 9" (&),
3

' (2))° = [\/(f’(t))2 T (gf(tm] = [(F/ ()2 + (¢ @))% = (& + ¢*)** and

(8 x 27 (1) = (0,0, F'(£) g (&) — £ () g (B)] = [(&f — #9)°]""° = |&5 — .

| — g|
(¢2 + 92)3/2'

Thus «(t) =

37. x =e'cost = & =e'(cost—sint) = & =e'(—sint—cost)+e'(cost —sint) = —2e'sint,
y=e'sint = §=e'(cost+sint) = §=e'(—sint+ cost) + e'(cost+sint) = 2e cost. Then

lig - 9| |e'(cost —sint)(2e’ cost) — e'(cost + sin)(~2¢' sin #)|

r(t) =

- (2 + 42)*? B ([et{cost — sint)]? + [et(cost + Sint)P)s/2

12¢%*(cos® t —sintcost +sintcost + sin® t)|

[€2t(cos? ¢ — 2costsint + sin’ ¢ + cos? t + 2costsint + sin® ¢)

|2¢2(1))| 9¢2t 1

- [€2t(1 + 1)}3/2 - e3t(2)3/2 = J2et

]3/2

Ber=1+t2 = =3t = =6t y=t+4t> = ¢=1+2t = 4§ =2 Then

g — g _ [BH@) -+t -6 6
(2 +92)°7  [(302)7 + (L2017 (980 48 4 4 1)

k(t) =

B 6t + ¢
T(98 442 + 4t + 1)3/2

(2t,2¢%,1)  (2t,2¢%,1)

l't)
39, (1,2,1) corresponds tot = 1. T (t) = r( = =
(t.5.1) P ® () T VA r 41 2t2 + 1

so T(1)

T'(t) = —4¢(2* + 1)72 (2¢,2¢%, 1) + (2t* + 1) ' (2,4£,0)  [by Theorem 14.2.3 [ET 13.2.3] #3]

= (262 + 1)72 (—8t2 + 4t + 2, -8t° + 8> + 4¢t, ~4t) = 2(26" + 1)72 (1 - 2%, 2¢, -2t}

N(t) = T'(t) 202t +1)72 {1 — 2¢%,2t, -2t) {1 -2 2, -2t)
IT/(8)]  2(262 + 1)-2,/(1 — 263)2 + (20)% + (—2t)2 /1 — 4t + 41 1 8¢2

(1 —28%, 26, -21)
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40. (1,0,1) corresponds to t = 0. v(t) = e’ {1,sint, cos t), s0
r'(t) = e*{1,sint,cos t) +€*{0,cost, —sint) = e*{1,sin¢ + cos ¢, cost — sint) and

r'(t) e*{1,sint + cost,cost — sint)

T(t)= =
[T'()l  et\/1+sin?¢+ 2sintcost + cos? t + cos? ¢ — 2sintcost -+ sin’ ¢

_ {(1,sint + cost, cost —sin t)

7 :

>. T'(t) = —»= (0 cost — sint, — sint — cost). so

% {0,cost ~sint, —sint — cost}

B %\/02 + cos?t — 2costsint + sin®t + sin® ¢ + 2sint cost 4 cos? t

(0 cost —sint, —sint — cost}.
andB(0) =T(0) x N(0) ={—-%, L L}
VB’ V6 Ve

. (0,7, —2) corresponds t0 £ = w. r(t) = {2sin 3¢,t,2c0s3t) =

Ty = S (Beos3b 126538 _ 4 5 a1 —6ein3e).
Ir’(t)l V36c02 3t + 1 + 36823t VT
T(m) = \/— (—6,1,0) is a normal vector for the normal plane, and so (—6, 1, 0) is also normal. Thus an equation
for the planeis —6 (x —0) + 1{y — 7} + 0(z + 2) =0ory — 6z = 7.
/182sin® 3t + 182 cos? 3t 18
V37 VAT

T'(t) = \/% (—18sin3t,0,—18cos 3ty = |T'(t}| =

{—sin3t,0, — cos 3t}. So N(=} = (0,0,1} and

B(x) = # {(—6,1,0) x {0,0,1) = \/% (1,6,0). Since B{x) is a normal to the osculating plane, so is {1, 6,0)
and an equation for the plane is 1{x — 0) + 6(y — #»} + 0{z + 2) = 0 or = + 6y = Gw.

Lt=Tlat(1,1,1). r'(¢) = (1,2t ,3¢%). (1) = (1,2,3) is normal to the normal plane, so an equation for this
planeis 1{z - 1) +2(y — 1} +3(z - 1) =0,orx + 2y + 32 = 6.

T(t) = r'(t) _ 1
[r'{t)] 1+ 42 + 912

1 1 3 2 4 1 3
—5(8t+36t%),2(1 + 42% + 9t*) — (8¢ + 36t°)2¢,
(1+4t2+9t4)3/2< 7 ¥ )l )

{1,2t,3t%). Using the product rule on each term of T(t) gives

T'(t) =
6¢(1 + 4t +9t*) — (8t + 36t%)3¢%)

-2
(1ay272

1
= Grazrompe

— 18%,2 — 18¢%, 6t + 12¢%) = (11,8,—9) whent = 1.

|| T(1) || {11,8,—9) and T(1) || (1) = (1,2,3) = anormal vector to the osculating plane is

(11,8, 9% x (1,2,3) = (42, —42, 14) or equivalently (3, —3, 1}. An equation for the plane is
(z—-1)—-3(y—1}+(z—1)=00r3z-3y+2=1
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43, The ellipse is given by the parametric equations x = 2 cost, y = 3sin{, so using the result from Exercise 36,

&y —&y| _ |(—2sin#)(—3sint) - (3cost)(—2cost)] _ ]
@+ 2)? (4sin? ¢ + 9 cos? t)3/2 (4sin® t + 9 cos? t)3/2

At(2,0),t = 0. Now £(0) = & = 2, so the radius of the 5

~

osculating circle is 1/k{0) = 2 and its center is (—2,0). Its )

equation is therefore (z + g)z +y* =81 A1(0,3),t =3, and

= § = 3. So the radius of the osculating circle is % and its

. : o 2
center is (0, 3 ). Hence its equation is z° + (y — 3)° = 2.

5

2 ’ 1 . 1
= 3 =zandy” =1, so Formula 11 gives x(z) = m

@

#(0) = 1 and the osculating circle has radius 1 and center (0, 1), and hence equation z% + (y — 1)2 = 1.
1

1
(1+12)%2 ~ 22
so the normal line has slope —1. Thus the center of the osculating

TR So the curvature at (0, 0) is

1

The curvature at (1,4) is k(1) = . The tangent line to the parabola at (1, 1} has slope 1,

. N . . . . L L
circle lies in the direction of the unit vector <— 73 ﬁ> The

circle has radius 2 x/ﬁ, s0 its center has position vector

(1,4 + 2\/§<_%, \_},5) = (-1, 2). So the equation of the

o3

circle is (z +1)* + (y — &)

. The tangent vector is normal to the normal plane, and the vector {6, 6, --8) is normal to the given plane. But
T(t) || ¥'(t) and (6,6, -8} || (3,3, 4}, so we need to find ¢ such that r'(t) || (3,3, —4). r(t) = (¢’ 3¢t,t*") =
r'(t) = (3t%,3,4t%) || (3,3, —4) when ¢ = —1. So the planes are parallel at the point r(—1) = (-1, -3, 1).

. To find the osculating plane, we first calculate the tangent and normal vectors.

In Maple, we set x: =t*3; y:=3+*t; and z:=t"4; and then calculate the components of the tangent vector
(3t,3,4t%)
V16t + 91 + 9

T'(t) {—6t(8t% — 9),3(48¢° + 18¢%), 36¢2(¢* + 3))
IT'()]  /1444(8¢5 — 9)2 + 9(065 + 3613)2 + 5,184¢12 + 31,104¢% + 46,656¢F

T(t) using the dif f command. We find that T(t) = . Differentiating the components of T'(t),

we find that N{t) =

In Maple, we can calculate B(t} = T{(t) x N(t) using the 1inalg package. First we define T
and N using T:=array{[f,g,h]}; and N:=array{[F,G,H]) ; where £, g, h, F, G, and H are the
components of T and N, Then we use the command B: =crossprod (T, N} ;. After normalization and

simplification, we find that B(t) = b{6¢, —2t°, —3}, where

b= /1618 + 914 4 9
/ 162(8t8 — 9)2 + (9615 + 3623)2 + 576112 + 345618 + 5184¢4
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In Mathematica, we use the command Dt to differentiate the components of r(t) and subsequently T'(¢), and then
load the vector analysis package with the command << Calculus'VectorAnaiysis'. After setting
T={f,g,h} and N={F, G, H}, we use CrossProduct [T, N] to find B (before normalization).

Now B(t) is paralle] to {6¢, - 2t%, —3), so if B(¢) is paraliel to {1, 1,1) for some t, then 6t =1 = ¢ = 3
but ~2(3) % £ 1. So there is no such osculating plane.

T|dT

dT| |dT/dt| |dT/dt| dT/dt ’ dt ‘ “&? _ dT/dt _dT .

=|—]| = = N= N = = —— by the Chain Rule,
ds ds/dt’ dsjat N = arja " dT[ds _ dsjdt  ds °

dt dt

. For a plane curve, T = |T{cos¢i+ |T|sin¢gj = cos¢i +singj. Then
% (d¢)(d¢) (- sm¢1+cos¢'.])(d¢) and % —|—sm¢l+cos¢jl‘d¢’ \ ’ Hence for a

plane curve, the curvature is k = |d¢/ds|.

d dB dB
.(a)|Bj=1 = B-B=1 = e (B-B}j=0 = 2;!—; -B=0 = EJ“B

BB=TxN =

dB d d 1 d
B =3 (TXN =3 (TxN) 7 = (T xN) o

Z[(T'xN)+(TxN’)]|r,—1t)|=[(T’x.I.T-’..)_F(Tfo)] I _TxN

| @) ()]

dB

©B=TxN = TLN,B.LTadB L N.SoB, T and N form an orthogonal set of vectors in the

three-dimensional space IR®. From parts (a) and (b), dB/ds is perpendicular to both B and T, so dB/ds is
parallel to N. Therefore, dB/ds = —7(s)IN, where 7(3) is a scalar.

(dy SinceB =T x N, T L N and both T and N are unit vectors, B is a unit vector mutuaily perpendicular to
both T and N. For a plane curve, T and N always lie in the plane of the curve, so that B is a constant unit

vector always perpendicular to the plane. Thus dB/ds = 0, but dB/ds = —7(s)N and N # 0, 50 7{s) = 0.

LN=BxT =

dN d (BxT)= dB xT+B x d—T [by Theorem 14.2.3 [ET 13.2.3] #5]
ds  ds ds ds

= —-1N x T+ B x &N [by Formulas 3 and 1]
-T(NxT)+&x(BxN) [by Theorem 13.4.8 [ ET 12.4.8] #2]

BuuBxN=Bx(BxT)=(B-T)B—- (B-B})T [byTheorem I34.8[ET 124.8]#6] =-T =

dN/ds =7{T x N) - kT = -s T + 7B.
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Sl@r=sT = "="T+s5T' =5"T+5+ %s’ = 5" T + x(s")2 N by the first Serret-Frenet formula.

{(b) Using part (a), we have
v x " =(s'T) x [s" T + w(s')* N
= [(s'T) x (s" T)] + [(s'T) x (x(s")* N)] [by Theorem 13.4.8 [ET 12.4.8] #3]
=('WT x T+ 5P (T xN)=0+k(')’B=«(s)*B
(c) Using part (a), we have
=" T+u(s N =" T+s" T +&'(s N+ 2ks's" N+ r(s)? N’
=5"T+ 3"% 8 + 1 (8" N+ 265's" N + s(s')? % s
=" T+ N+ k()2 N+2x8's" N+ (s (—kT+7B) [by the second formula]
=[a" — k()T + [3rs’s” + £ () IN 4+ k7(s)° B

!

(d) Using parts (b) and (c) and the factsthat B- T =0,B - N =0,and B-B =1, we get
{(r' xr”)-r" k(8B {[s" — &°(s)] T + Bus's" + &' ('] N+ rr(s')* B}
I’ x r|? {r(s')3 BJ®
_ k() kr(s)

[k(s")%)"

=T

52, First we find the quantities required to compute «:

r'(t) = (—asint,acost, b} = r'(t) = (—acost,—asint,0) = r’’(t) = (asint, —acost,0)

|t'(2)| = /(—asint)? + (acost)? + b2 = va? + b2
i ik
r'(t) xr'(t)=| —asint acost b|=absinti—abcostj+a’k

—acost —asint 0

e’ () % £”(2)| = V (absint)? + (—abcost)? + (¢2)2 = v/a?h? + at
(r'(t) x r"(1)) - r'"(t) = (absin{)(asint) + (—abcost)(—acost) + (a®)(0) = a*b

Then by Theorem 10,

s(t) = [r'(t) x ¢ (¢)]  va*bh? +a* ava? 4 b a

0 (Vae2) (Ve BE)S a bR

which is a constant,

From Exercise 51(d), the torsion T is given by

GRS S E A a’b b

T (V@FETa) @tp

% p]

which is also a constant,
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83.r=(t, 1% 1) = r=(,)r=012)1"=(0,02 = rxx=(-21) =

L xr) e (,-24,1)-(0,0,2) 2
T e xR 4Tl 44241

. r = (sinht,cosht, #) = r' = (coshi,sinht, 1), r" = (sinht,cosht, 0}, r"’ = {cosht,sinht,0) =

r' x r” = (— cosht,sinht,cosh® £ — sinh®t) = {—cosht,sinht,1) =

|’ xr”| _ {{~cosht,sinht,1)] _ V/cosh®t+sinh®t+1 1 1

v |{cosht,sinht,1)]* (cosh®t + sinh? ¢ + 1)3/2 " cosh®t+sinh?t+1  2cosh®t’

(r' xr")-r"" _ (—cosht,sinht,1) - {cosht,sinh¢,0)  —cosh®t +sinh®t =~ -1
e > cosh?t +sinh® ¢ + 1 2cosh? ¢ 2 cosh® ¢

So at the point (0,1,0),f = 0,and k =  and 7 = —3.

. For one helix, the vector equation is r{t) = (10cost, 10sint, 34¢/(27)) (measuring in angstroms), because the

radius of each helix is 10 angstroms, and z increases by 34 angstroms for each increase of 27 in £. Using the arc

length formula, letting ¢ go from 0 to 2.9 x 10% x 2x, we find the approximate length of each helix to be

2.9x10% x 27 2.9x10% x 27
L :/ |v'(t)| dt = f \/(~1(]sinf;)2 + (10cos)? + (
0 0

2.9x10%x 27
:\/100+(%)2t} = 2.9 x 10° x 27 1/ 100 + (2)*

0

22 2.07 x 10*® A — more than two meters!

0 if <0

56. (a) For the function F{z}) = ¢ P(z) if 0<z <1 tobe continuous, we must have P(0) = 0and P(1) =1.
1 ifx>1

For F’ to be continuous, we must have P'(0) = P'(1) = 0. The curvature of the curve y = F(z) at the point

(z, F(x)) is w(x) = ( l[F (33)}|2)3/2_ For x(z) 1o be continuous, we must have P”(0) = P"(1) = 0.
1+ [F'(x)
Write P(z) = ax® + bz* + cz® + dz® + ez + f. Then P'(z) = 5az* + 4bz® + 3cz” + 2dz + e and

P"(x) = 20az® + 12b2? 4 6¢cx + 2d. Our six conditions are:

P(0)=0 f=0 (M
P(1)=1 a+b+et+d+e+f=1

P(0y=0 e=0

P'(1}=0 S5a+4b+3c+2d+e=0

P70} =0 d=10

P'(1)=0 20a +12b+6c+2d =10

From (1), {3), and (5), we have d = e = f = 0. Thus (2), (4) and (6) become (7) a +b+c =1,
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(8) 5a + 4b+ 3c = 0, and (9) 10a + 6b + 3¢ = 0. Subtracting (8) from (9) gives (10) 5a + 2b = 0.
Multiplying (7) by 3 and subtracting from (8) gives (11) 2a + b = —3. Multiplying (11} by 2 and subtracting
from (10) gives a = 6. By (10), b = —15. By (7), ¢ = 10. Thus, P{z) = 62® — 15z* + 10z*.

14.4 Motion in Space: Velocity and Acceleration ET134

1. (@) Ifr{t) = x(t}i + y (t) j + 2(¢) k is the position vector of the particle at time ¢, then the average velocity over
the time interval {0, 1] is
Vare = r(li - ;(O) _ (4514 6.0j + 3.0k) —1- (2.71+9.8j+3.7k) = 1.8 - 3.8§ — 0.7k, Similarly,
over the other intervals we have

05,15 vae = r(l) —r(0.5) (45i+6.0j+3.0k) —(3.51+7.2j+3.3k)
AT 05 0.5
=2.0i-24j-06k
1,2 Veem r(2) -r(1)  (7.3i+78j+2.7k) - (4.5i1+6.0j+ 3.0k)
e T e T 1
=28i+18j—0.3k
115 Ve = r(1.5) -~ r(l)  (59i+64j+28k) - (4.5i+6.0j+3.0k)
PR TR T 51 T 0.5

=28i+08j-04k

(b) We can estimate the velocity at { = 1 by averaging the average velocities over the time intervals [0.5, 1] and
[1,1.5]: v(1) &~ £[(2i — 2.4j — 0.6k) + (2.8i + 0.8) — 0.4k)] = 2.4i — 0.8 — 0.5 k. Then the speed is
[v(1)] & /(2.4)2 + (—0.8)2 + (—0.5)2 =~ 2.58.

2. (a) The average velocity over2 <t < 2.4 is

r(2.4)—r(2)
24 -2

in the same direction but 2.5 times the length of

[r(2.4) — r(2)].

= 2.5[r(2.4) — r(2}], so we skeich a vector
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r(2) — r(L.5)
2-15
direction but twice the length of [r(2) — r{1.5)].

(b) The average velocity over 1.5 <t < 2is = 2Ir(2) — r{1.5)], so we sketch a vector in the same

(c) Using Equation 2 we have v(2) = }LEI}) w

{d) v(2) is tangent to the curve at r(2) and points in the direction of
increasing ¢. Its length is the speed of the particle at ¢ = 2. We can
estimate the speed by averaging the lengths of the vectors found in
parts (a) and (b) which represent the average speed over 2 <¢ < 24
and 1.5 < t < 2 respectively. Using the axes scale as a guide, we

estimate the vectors to have lengths 2.8 and 2.7. Thus, we estimate
the speed at ¢ = 2 to be |v(2)| & (2.8 + 2.7) = 2.75 and we draw

the velocity vector v(2) with this length.

Lrty={-1,t) =
v(t) =r'(t) = (2, 1),

a(t) =r"(t) = (2,0,

v(t)] = VAZE + 1

4 rit) =(2-t,4vt) =
vit) = () = (~1,2/VE),
a(t) = v (t) = (0,-1/8/2),

Iv(t)| = /1 + 4/t

5 r(t)=clite ) = Att =0

t

vity=e'i—e "] vi0)=1i-},

a(t)=e'i+e*j a(0)=i+j

VB = VEF T e T = et e F T

t

Sincex =¢',t =Inzandy = e” —e~ 10T — 1/z,andz > 0,y > 0.
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6. r(f) =sinti+2costj =

v(t) =costi—2sintj, v(%) =

a(t) = —sinti—2costja(f) = —1i— 3]

[v(t)| = Vcos?t + dsin®t = /1 + 3sin®¢
And 2° + y%/4 = sin? t + cos® t = 1, an ellipse.

.r(t) =sinti+tj+costk =
v(t) =costi+j—sintk, v(0) =i-+]
a(t) = —sinti—costk, a(0) = -k
[v(t)] = Veos? t +1 +sin’t = /2
Since 22 4+ 2% = 1, y = t, the path of the particle is a helix

about the y-axis.
ety =ti+2j+ttk =
v(t) =i+ 2tj+ 3%k, v(1) =i+ 2j+3k
aft)=2j+6tk,a(l)=2j+6k
iv(t)] = v1+ 482 + 9¢%
The path is a “twisted cubic”
(see Example 14.1.7 [ET 13.1.7]).

Lr(t) = (241,85, 1) = v(t) =r'(8) = (2¢,3t%,2t), a(t) = v/(t) = (2,6t,2),
[v(t)] = +/(2t)2 + (3t2)2 + (26)2 = VOt + 8E2 = |t| BEZ + 8.
. r(t) = (2cost, 3¢, 2sint) = v(t)=r'(t) = (—2sint,3,2cost), a(t) = v/(t) = (—2cost,0, —2sint),
V()] = V4sin®t + 9+ 4cos?t = V13,
cr(t) = V2ti+elj+etk = v(t)=r(t)=V2itej—etkalt)=v(E)=ej+elk,
[v(£)] = V2 + €2t +e—2t = \/(e‘ +et)2 =gl 47t
Lr(f) = fitIntj+tk = vi)=r'{) =21+t "+ ka(t) =v(t) =2i-t7],
v(t)| = VA2 +t-2 + 1.
) = e'{cost,sint, t}) =

Lt
t) =r'(t) = e'{cost,sint,t} + ' {—sint, cost, 1) = e'{cost — sint,sint + cost,t + 1)
)

o
a(t

v'(t) = e'{cost — sint — sint — cost,sint + cost + cost — sint,t + 1 + 1)

e'{—2sint,2cost,t + 2)

v(t)| = etv/cos? t +sin?t — 2costsint + sin ¢ + cos? £ + 2sinfcost + £2 + 2t + 1
=e'ViZ+2t+3
. r{t) = tsinti+ tcostj+t*k = v(t) =r'(t) = (sint + tcost)i+ (cost —tsint)j+ 2tk,
a(t) = v'(t) = (2cost — tsint)i+ (—2sint —tcost)j + 2k,
[v(t)] = \/(sin®t + 2t sintcost + t? cos?t) + (cos? ¢t — 2t sintcost + t2sin?t) + 4t2 = /HtZ + 1.
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15.a(t) =k = v{t)=[a(t)dt=[kdt=tk+ciandi—j=v(0)=0k+eci,s0c;=i-jand
vit)=i—j+tk r(t)=fv(t)dt=f(i—j+tk)dt:ti——tj+%tzk—i-cz.ButU:r(D)=0+cz,
socz =Oandr(t) =ti—tj+ 3t°k

16. a(t) = —10k = v(i) = f(-10k)dt = —10tk +c1,andi+j—k=v(0)=0+cy,s0cr =i+j—k
andv(f) =i+j— (10t + 1) k.
r(t)zf{i+j—(10t+1)k]dtzti+tj—(5t2+t)k+cz.But2i+3j=r(0):0+cz,50(:2=2i+3j
andr(t) = (¢ +2)i+(t +3)j - (5 +t) k.

17. (@) a(t) =i+ 2j+ 2tk =

v(t)= [(i+2j+2tk)dt =ti+2tj+t°k+ci,and
0=v(0)=0+ci,s0c; =0andv(t) =i+2tj+ 'k
r(t) = f(ti+2tj+ek)dt = 12i+£j+ 3tk + ca.
Buti+k=r(0)=0+cz,s0c2 =i+ kand

r(t) = 1+ 38°) i+ £+ (1+ 30k

18. (a) a(t) =ti+t*j+cos2tk =

v(t) = f(ti+1t*j+cos2tk)dt
__2'+£‘+ i
Tty

andi+ k =v(0) =0+ ¢, 50c; =i+ kand
vit)= (32 +1)i+ 375+ (1 + 3sin2f) k. S
r(t) = [ [(32 4+ )i+ 325+ (1+ Jsin2e} K] dt = (§8° + 1) i+ 52" 5+ (¢ — feos2t) k+e2

Butj=r(0)= 1k+ezsoco=j+ikandr(t)= (3t +¢)i+ (1+ 75t")j+ (§+¢t - feos2t)k

19. r(t) = (¢%,5¢,82 — 16t) = v(t) = (2t,5,2t — 16},

Iv(t)l = V412 + 25 + 412 — 64f + 256 = +/8t% — 64¢ + 281 and

% [v(t)] = 4(8t* — 64t + 281)*/*(16¢ — 64). This is zero if and only if the numerator is zero, that is,

16t — 64 = 0 or t = 4. Since Edi |v(t)| <Ofort < 4and gz [v(t)| > Ofor¢ > 4, the minimum speed of /153 is

attained at ¢ = 4 units of time.

20. Sincer(t) = t3i+ t2j+ 2k, a(t) = r’(t) = 6ti + 2j + 6t k. By Newton’s Second Law,
F(t) = ma(t) = 6mti+ 2mj+ 6mtk is the required force.

21. |F(t)] = 20 N in the direction of the positive z-axis, so F(t) = 20k. Alsom = 4kg, r(0) = 0and v(0) =i-}.
Since 20k = F\(t) = 4a(f), a(t) = 5k. Then v(t) = 5tk + ¢y wheree; =i — jso v(t) =i — j+ 5tk and the
speed is [v(t)| = V1 + 1+ 25t2 = /2502 + 2. Alsor(t) = ti—tj+ 2t°k + cp and 0 = r(0}), s0o ¢z = 0 and
rit) =ti—tj+ 3’k
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22, The argument here is the same as that in Example 14.2.5 [ET 13.2.5] with r(¢) replaced by v(t) and r’(¢) replaced
by a(t).

Z3. |v(0)| = 500 m/s and since the angle of elevation is 30 °, the direction of the velocity is 3 (V3i+ J). Thus
v(0) = 250(v3i+ J) and if we set up the axes so the projectile starts at the origin, then r(0) = 0. Ignoring air
resistance, the only force is that due to gravity, so F(¢) = —mgj where g ~ 9.8 m/s*. Thus a{t}) = —gj and
v(t) = —gtj + c1. But 250(v/3i +j) = v(0) = c1, so v{t} = 25031+ (250 — gt) j and
r(t) =250v3ti+ (250t — Lg%} j + c2 where 0 = r(0) = co. Thus r(t} = 250 V3¢i + (250t — 1gt%) j.
(a) Setting 250t — §gt° = O givest =0 or¢ = 22 ~ 51.0s. So the range is 250 v/3 - 222 ~ 22 km,

d

dt
Thus, the maximum height is (250)(250/g) — g(250/g)*% = (250)%/(2¢) ~ 3.2 km.

(b) 0 = — (250t ~ 1 ¢t*) = 250 - gt implies that the maximum height is attained when ¢t = 250/g = 25.5 s.

(c) From part (a), impact occurs at ¢t = 500/g = 51.0. Thus, the velocity at impact is
v(500/g) = 250 /31 + [250 — g{500/¢)]j = 250+/3i — 250 and the speed is
|v(500/g)} = 250 /3 + 1 = 500 m/s.

. As in Exercise 23, v(t) = 250 /31 + (250 — gt) j and r(t) = 250 v3¢i + (250t — 1¢t°} j + co. But
r(0) = 200j, s0 c2 = 200 and r(t) = 250 v/3¢i + (200 + 250t — 2g¢%) j.

/5002 1600
(2) 200 + 250t — 1gt* = 0 implies that g¢* — 500¢ ~ 400 = D or ¢ = 500 + 522 + 1600

. Taking the

500 + /250,000 + 1600g
29
V250,
(250 v/3) 500 + 2502300+ 16009 . 50 4 1mn.

positive {-value gives { =

~2 51.8 s. Thus the range is

d
(by 0 = o (200 + 250t — 1g¢*) = 250 — gt implies that the maximum height is attained
when ¢ = 250/g ~ 25.5 s and thus the maximum height is
250 250\ * 2
200 + (250) (—) -9 (ﬂ) = 200 + (250)7 ~ 3.4 km.
g 2\ g 29
Alternate solution: Because the projectile is fired in the same direction and with the same velocity as in

Exercise 23, but from a point 200 m higher, the maximum height reached is 200 m higher than that found in
Exercise 23, that is, 3.2 km + 200 m = 3.4 km.

500 + /250,000 -+ 16009
2g

- b -

250v/3i 4 [250 - o 500 + \/2502000 T1600g ;

g

{c) From part (a), impact occurs at £ = . Thus the velocity at impact is

.50 [v| & 1/(250)2(3) + (250 — 51.8¢)2 = 504 m/s.

. As in Example 5, r(t) = (vo cos 45 °)ti + [{vosind5 °}t — 39t%] j = ; [vov2ti+ (vovZ¢ — gt?) j|. Then the
UO\/§ Um/ﬁ
g g

ball lands at t = s, Now since it lands 90 m away, 90 = %'U[) V2 or va = 90g and the initial velocity

is vp = /90g = 30 m/s.
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26. As in Example 5, £(t) = (vo cos30°)ti + [(vosin30°}t — 2gt%] j = 1 [vov3ti+ (vot — gt*) j| and then

v(t) =1'(t) = % [vo 31+ (vo — 2gt) } The shell reaches its maximum height when the vertical component of

velocity is zero, so 3{wg — 2gt) =0 = t= -;—9. The vertical height of the shell at that time is 500 m, so
g

2 2
%[UO(;—”) —g(%’ﬂ) ] =500 = g—; =500 = vy = +/4000g = 1/4000{9.8) ~ 198 m/s.
g g

. Let & be the angle of elevation. Then vg = 150 m/ s and from Example 5, the horizontal distance traveled by the

v sin 20 . 150% sin 2 800g
) 1502

180 — 20.4 = 159.6 °. Two angles of elevation then are @ = 10.2° and o = 79.8°.

projectile is d = Thu =800 = sin2a= A2 0.3484 = 2am204°or

. Here vg = 115 ft/s, the angle of elevation is v = 50 °, and if we place the origin at home plate, then r{0} = 3.
As in Example 5, we have r () = —%gtzj +tvo+Dwhere D =r{0) =3jand vp = vgcosai+ ygsinaj, so
r(t) = (vocos a)ti+ [(vosina)t — 19t + 3] j. Thus, parametric equations for the trajectory of the ball are

z=(wcosa)t,y= (vgsina)t — %gt2 + 3. The balt reaches the fence when z = 400 = (vgcosa)t = 400

400 400
wocosa  115cos50°

y = (vosina)t — 1gt* + 3 == (115sin 50 °)(5.41) — $(32)(5.41)® + 3 &~ 11.2 ft. Since the fence is 10 ft high,

the ball clears the fence.

= f=

7 5.41 s, At this time, the height of the ball is

29. (a) After ¢ seconds, the boat will be 5t meters west of

point A. The velocity of the water at that location is

12-(5t)(40 — 5t) . The velocity of the boat in still

water is 5 i, so the resultant velocity of the boat is

OL J40

v{t) =5i+ ;3 (5t)(40 — 5¢)j =51+ (2t — &%) ;. -3

Integrating, we obtain r(t) = 5¢i+ (3£ — £43)j+ C.
If we place the origin at A (and consider j to coincide with the northern direction) thenr(0) =0 = C=0
and we have r(t) = 5ti + (31% — L%} j. The boat reaches the east bank after 8 5, and it is located at
r(8) = 5(8)i+ (2(8)? — £ (8)%) j = 40i + 16 j. Thus the boat is 16 m downstream.

(b) Let o be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by
5{cosa) i+ B(sina) j. Att seconds, the boat is 5(cos a)t meters from the west bank, at which point the

velocity of the water is 3= {5(cos a)t][40 — 5(cos @)t] j. The resultant velocity of the boat is given by

v(t) = 5(cosa) i+ [Bsino + 35 (5t cos o) (40 — 5tcosa)] j

= (5cosa)i+ (bsina + Stcosa — St° cos” ) j

Integrating, r(t) = (5¢cos @) i+ (5tsina + 4t cosa — 15" cos® @) j (where we have again placed
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40 8
the origin at A). The boat will reach the east bank when 5tcosa =40 = (= = .
Scosax  cosa

2

In order to land at point B (40, 0) we need 5t sin o + %tz coser — fgt‘g cos“a=0 =

2 3
5( -2 Veina+3(—2_) cosa—i(——) cosPa=0 = ;(403ina+48—32)=0 =
cos o 4\ cosa 18 cosa COS v

40sina+16 =0 = sina=—2 Thusa =sin"'{—2) ~ —23.6°, so the boat should head 23.6 ° south

of east (upstream).

The path does seem realistic. The boat initially heads upstream to

counteract the effect of the current. Near the center of the river, the

current is stronger and the boat is pushed downstream. When the

boat nears the eastern bank, the current is slower and the boat is

able to progress upstream to arrive at point B, 12

30. As in Exercise 29(b), let  be the angle north of east that the boat heads, so the velocity of the boat in still water is
given by 5{cos &) i + 5(sin ) j. At ¢ seconds, the boat is 5(cos o)t meters from the west bank, at which point the
velocity of the water is 3sin(mz/40) j = 3sin[r - 5(cos a)t/40] j = 3sin(Zt cos ) j. The resultant velocity of

the boat then is given by v(t) = 5{cosa)i + [5sina + 3sin(Stcosa)] j. Integrating,

r(t) = (5tcosa)i+ [5tsina _
TCOS ¥

cos(%tcos a)] j+C.

24
If we place the originat Athenr{0) =0 = - J+C=0 =» C= 2 Jand
T Cos o T COS &

4
r(t) = (5tcosa)i+ [Stsina S
T

o cos(%t cos a) +

'n'cosa] J-

The boat will reach the east bank when 5tcosa =40 = = c 8 . In order to land
08

at point B (40, 0) we need Stsino — 24 cos(%tcosa) + 24 =0
T COS & T Cos

8 . 24 T 8 24
= 5 sin o — cos|=—{ —— Jcosex| + =0 =
cos a T COS QY 8\ cosax T CO8 o

(405ina—%005ﬂ+%)=0 = 408ina+£8-:0 = sina:——S—.Thus
COS & by T T %14

6
a=sin"! (—5—7r) == —22.5°, so the boat should head 22.5 ° south of east.

cr(t) = (3t — )i+ 32 = r'(t) = (3-3t)i+6t],
' (1)) = /(38— 3t2)2 + (6£)2 = /O + 1822 + 0t% = /(3 — 3t2)2 = 3 + 3¢%,
r(t) = ~6ti+ 6], r'(t) x r’(t) = (18 + 18t*) k. Then Equation 9 gives
S r{t) r"(t) (3 —3t7)(—6t) + (6t)(6) 18t + 18°  18t(1+¢%)
T 3432 T U343tz 3(1+1t2)
[r'(¢) x r” (1) _ 18+ 188%  18(1+¢)
@) T 3432 T 3(1+42)

6t [OI‘ by Equation 8,

ar =7 = % [3+3t%] =6t| and Equation 10 gives an =
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et = (14 8)i+ @ —20)§ = ) =i+ (2t —-2)i ()] =12+ (26~ 2)2 = VA2 -8t + 5,

"(t) - (¢ 2(2t — 2 .
r’(t) = 2j,r'(¢) x r”(t) = 2k. Then Equation 9 gives ar = i) () XA ) and Equation 10

()] V-8t +5

' 1
gvesay _ FE @] 2

I20] VAt —8t+ 5

.r(t) =costi+sintj+tk = r'(t)=—sinfi4costj+k, |r'(t) = Vsin?t +cos?t+ 1 =2,
r’(t) = —costi—sintj, r'(t) x r(t) = sinti — costj + k.

Then ar = r'(t) - r”(t) __ sintcost - sinfcost _

= = 0 and

|r'(£)] V2
. r'(t) x £”(t)]  sin®i+cos?t+1 42
N = = = —
Ir'{t)] V2 V2
Lr(t) =ti+ 2§+ 3tk = r{t)=1+2tj+3k |C(t) = /124 (2t)2 + 32 = V42 + 10, (¢} = 2j.

! H ! 1
r' (t) x r'’(t) = —6i + 2k. Then ay = m(t) ) _ At anday = () x ="(0)] _ 210

' (t)] 42 + 10 vl VaeEr 1o

cr(t) =i+ V2tj+etk = r{t)=ei+V2j—etk

=1.

[r(t) = Ve +2+e 2 = /et +e )2 =€ +e ', r(t) =e'i+e 'k
2t -2t t o —tyguf ot

Then ar = < £ = (e te)e ~e) = ¢! — e = 2sinht and
et +e—t et +e—t

|V2e™i— 25— 2" k|  (/2(e~2 L2+ %) et et
aN el — oy f

2 — =2
et + et et + et et + e—t \/_

.r(t) =ti+cos®tj+sin®tk = r'(t) =i-—2costsintj+ 2sintcostk =i— sin2tj+ sin 2tk,
|r'()] = V1 + 2sin®2¢, r"(t) = 2(sin® ¢t ~ cos®t)j + 2(cos®t —sin®t) k = —2cos 2t j + 2 cos 2t k. So

2gin2tcos 2t + 2sin2tcos 2t 4sin2tcos 2t [—2cos2tj — 2cos2tk| 22 |cos 2t
T = = = =
V1+2sin? 2t V1 + 25in? 2t

and axn

. The tangential component of a is the length of the projection of a onto T, y

so we sketch the scalar projection of a in the tangential direction to the

¢
<

curve and estimate its length to be 4.5 (using the fact that a has length 10

as a guide). Similarly, the normal component of a is the length of the

projection of a onto N, so we sketch the scalar projection of a in the

normal direction to the curve and estimate its length to be 9.0. Thus

ar ~ 4.5 cm/s® and an ~ 9.0 cm/s?.

. L(t) =mr(t) x v(t) =

L'(t) = m[r'(t) x v(t) + 1 () x v'(t)] [by Theorem 14.2.3 [ ET 13.2.3] #5]
= mlv(t) x v(t) + £{t) x v'(£)] = m[0 + £(t) x a (8)] = (8

So if the torque is always 0, then L’ () = 0 for all ¢, and so L{¢) is constant.
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39. If the engines are turned off at time ¢, then the spacecraft will continue to travel in the direction of v(t}, so we need

1 8t
— / =i -] PICENEEY)
a t such that for some scalar s > 0, ¢() + s v(t) = (6,4,9). rt) =i+ t']+ (12 +1)2 k=
3 4 Bst
)+ sv(t) = <3+i+5,2+]nt+ 3’7“ 241 T {12 +1)2

BB -0t _ 4 . 24— 12¢% — 4
(t2+1)2 - (t2 +1)2

> = 3J+t+s5=6 = s5=3-1t

=2 & '+ 8212t + 3 = 0. Itis easily seen that

t = 1is a root of this polynomial. Also 2 +1In1 4 EI—l = 4, s0 ¢ = 1 is the desired solution.

0. (a) m % = % Ve & dv _ :] a; ; V.. Integrating both sides of this equation with respect to ¢ gives

v(t) m(t)
d_v du = — = [ dv = v, / d_m [Substitution Rule] =

(® mio) ™

t)"e = V(t)=V(0)_1( ((t)})

(b) [v(t)] = 2|ve|, and |v{0)| = 0. Therefore, by part (a), 2|ve| = 'wl ( ((t))) =

v = 1n(—2£8—) |vel. [Note: m(() > m(t) so that 1“(%2%))) > 0] = m(t) = e 2m(0).

_ .2
M =1 — e~ ? is the fraction of the initial mass that is burned as fuel.

Thus m(0)

APPLIED PROJECT Kepler's Laws

1. Withr = (rcosf)i+ (rsin€)jand h = ak where o > 0,

(@h=rxr ={rcosf)i+ (rsind)j) x [('r’cosfi —rsinﬁi—f) i+ (r’sin@-l—rcosﬂ %)J]

df do ]
= |rr' cos@sinf + r? cos BE — rr’ cos@sind + rsin gdt] k=r dtk

(b) Since h = ak, & > 0, & = |[h|. But by part (a), @ = |h| = r* (d8/dt).
() Aty =1 |, 99 r|? do = 3 ft‘; 72 (d6/dt) dt in polar coordinates. Thus, by the Fundamental Theorem

dA dé?
f Calculus, — = .
of Calculus, 7 =T

2
(d) % = %% =5 = constant since h is a constant vector and k = |h).

2. (a) Since dA/dt = 1h, a constant, A(t) = $ht + c1. But A(0) = 0, so A(t) = $ht. But
A(T) = area of the ellipse = mab and A(T') = AT, so T = 2mab/h.
(b} h*/(GM) = ed where e is the eccentricity of the ellipse. But a = ed/(1 — €*) ored = a(1 — €*) and
1 —e? = b%/a®. Hence h*/(GM) = ed = b*/a.

47rab_422b2 =4’JT23

2 -
T h? G’Mb2 Gm”
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2
3. From Problem 2, T = é—?;—daa. T = 365.25 days x 24 - 60° Eez{;—;ds a2 3.1558 x 107 seconds. Therefore

- GMT? _ (6.67 x 107 1)(1.99 x 10*")(3.1558 x 107)*
T oarr 7 A2
Thus, the length of the major axis of Earth’s orbit (that is, 2a) is approximately 2.99 x 10'' m = 2.99 x 10® km.

~3.348 x 108 m® = a=~ 1496 x 10" m.

. We can adapt the equation T2 = éi;[ae' from Problem 2(¢) with Earth at the center of the system, so T is the
period of the satellite’s orbit about Earth, M is the mass of Earth, and « is the length of the semimajor axis
of the satellite’s orbit (measured from Earth’s center). Since we want the satellite to remain fixed above a particular
point on Earth’s equator, T must coincide with the period of Earth’s own rotation, so T = 24 h = 86,400 s.
The mass of Earth is M = 5.98 x 10** kg, so
. (TQGM) 13 N [(86,400)2(6.67 x 10711)(5.98 x 10?%)

472 472

orhit, the radius of the orbit is @, and since the radius of Earth is 6.37 x 10° m, the required altitude above Earth’s
surface for the satellite is 4.23 x 107 — 6.37 x 10° & 3.59 x 107 m, or 35,900 km.

1/3
2~ 4.23 x 107 m. If we assume a circular

14 Review ET13
CONCEPT CHECK

1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find
the derivative or integral, we can differentiate or integrate each component of the vector function.

. The tip of the moving vector r(¢) of a continuous vector function traces out a space curve.

. {a) A curve represented by the vector function r(t) is smooth if r’(t) is continuous and r'(¢) # 0 on its parametric
domain (except possibly at the endpoints).

{b) The tangent vector to a smooth curve at a point > with position vector r(¢) is the vector r’(t). The tangent line
_
e ()|

at P is the line through P parallel to the tangent vector r’(£). The unit tangent vector is T(t)

. (a)-(f) See Theorem 14.2.3 [ET 13.2.3].
. Use Formula 14.3.2 [ET 13.3.2], or equivalently 14.3.3 [ET 13.3.3].

. dT . .
. {a) The curvature of a curve 1s k = Td—‘ where T is the unit tangent vector.
s

(b) (1) = "f%)) (©) w(t) =

[r'(t) x £"(#)]
@)l

_ £ (z)]

(d) N(ﬂ?) - [1 + (f;(m))zl;;/z
_ T
T

(b) See the discussion preceding Example 7 in Section 14,3 [ET 13.3].

. (a) The unit normal vector: N(t) The binormal vector: B(t) = T{t) x N(¢).

. (a) If r(f) is the position vector of the particle on the space curve, the velocity v() = r'(#), the speed is given
by |v(t}|, and the acceleration a(t) = v'{t) = r" ().

{b) a = arT + axN where ar = v’ and ay = wv°.

. See the statement of Kepler’s Laws on page 912 [ ET 876].
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TRUE-FALSE QUIZ

. True. If we reparametrize the curve by replacing « = t°, we have r(u) = ui+ 2uj + 3uk, which is a line through
the origin with direction vectori+2j + 3 k.

. True. ' (t) = {1, 3t%, 5t4) is continuous for all ¢ (since its component functions are each continuous) and since
z'(t) = 1, we have r'(t) # O for all ¢.

. False. r'(t) = (—sint, 2¢,4¢%}, and since r'(0) = (0,0, 0) = 0, the curve is not smooth.

. True. See Theorem 14.2.2 [ ET 13.2.2].

. False. By Formula 5 of Theorem 14.2.3 [ET 13.2.3], g{ [u(t) x v(£)] =u' (t) x v(t} +u(t) x v'{t).

d
. False. For example, let r(#) = {cost,sin ). Then [r()| = v/cos?t +sint =1 = = |r(t)| = 0, but

I’ (t)| = |(—sint,cost)| = \/{—sint)? + cos?t = 1.

. False. & is the magnitude of the rate of change of the unit tangent vector T with respect to arc length s, not with
respectto £,

. False. The binormal vector, by the definition given in Section 14.3 [ET 13.3], is
B{t)=T({#) xN(@#) =—[N({#) x T(z).

. True. See the discussion preceding Example 7 in Section 14.3 [ET 13.3].

. False. For example, r1(t) = (t,t) and ry{t) = (2t, 2t) both represent the same plane curve (the line y = x), but the
tangent vector r} (¢} = (1, 1) for all ¢, while r5(¢) = {2, 2). In fact, different parametrizations give parallel tangent
vectors at a point, but their magnitudes may differ.

EXERCISES

. (a) The corresponding parametric equations for the curve are x =,

y = cos 7, z = sin 7t. Since y° + 2° = 1, the curve is contained
in a circular cylinder with axis the z-axis. Since x = ¢, the curve is

a helix.

by r(t) =ti+cosmtj+sinwtk = r'(t)=i-nmsinntj+ rcoswtk =

r"(t) = —n® cos mtj — wisin wtk

. (a) The expressions /2 — £, (e* — 1)/t, and In(t + 1) are all defined when2 — ¢ >0 = t<2,t# 0, and
t+1>0 = t> —1. Thusthe domainof ris {(—1,0) U (0,2].

: . A e
(b) }gr{})r(t) = <}1_rf[1) V2 —t, P—r.% ; ,th_{%ln(tﬁ— 1)> = <\/2—O,!1_% T,ln((] + 1)> = (v/2,1,0)

(using I'Hospital’s Rule in the y-component).

- to ot
(c)rl():<%\’2—t,£udln(t+1)>=< 1 te—e+l 1>

dt t dt T2t 2 Tt+1
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3. The projection of the curve  of intersection onto the xy-plane is the circle z? + ¢ = 16,z = 0. So we can write
z = 4cost, y = 4sint, 0 < t < 2m. From the equation of the plane, we have z = 5 —z = 5 — 4 cost, s0
parametric equations for C are x = 4cost, y = 4sint, z = 5 — 4 cost, 0 < ¢ < 2, and the corresponding vector
function is r{t) = 4costi+4sintj+ (5 — 4cost) k, 0 <t < 2m.

4. The curve is given by r(t) = (£*,t*,£*), sor'(t) = (2t,4¢%,3t%).

The point (1,1, 1) corresponds to ¢ = 1, so the tangent vector there
isT'(1) = (2,4,3). Then the tangent line has direction vector

{2, 4, 3) and includes the point (1, 1, 1), so parametric equations are
=142 y=1+4t,2=1+ 3¢

1 1 1 1
5.f (tzi+tcos wtj+ sin wtk) dt = / t2dt)i+(/ tcoswtdt)j+(/ sin wtdt)k
0 0 o 0

[% ] (%sin Trt](ll—f[)l%sin wtdt)j-!— [—-Tl;cos ﬂ't}; k
=3i+[Leosnt] j+2ik=1i-%j+ 2k

where we integrated by parts in the y-component.

6. (a) C intersects the zz-plane wherey =0 = 2t—1=0 = ¢t= 1, sothe pointis
(2-(3)°.0,m1) = (4,0,~n2).

(b) The curve is given by r(t) = (2 — ¢*,2¢ — 1,Int), so r'(t) = {(—3t*,2, 1/¢t}. The point (1, 1, 0) corresponds
to £ = 1, so the tangent vector there is r'(1) = {—3,2, 1}. Then the tangent line has direction vector {—3, 2, 1)
and includes the point (1, 1, 0), so parametric equationsare x = 1 — 3t,y =1+ 2t,z = ¢.

(c) The normal plane has normal vector r'{1} = (-3, 2, 1) and equation —3(z — 1) + 2(y — 1) + 2 = O or
3x—2y—z=1

1 t=1at(1,4,2)andt =4at(2,1,17),s0

4
1 16
= — —_ 2
/1 TR G
e s
~ 3 > l\/ +16+4 + 4

72 15.9241

(1) = <3t1/2, —2sin 2t,2c052t>, r'(t)] = /O + 4(sin? 2t + cos? 2¢) = +/Of © 4. Thus

13
= Jy VO a = [ f = 3] U= 209 -8)

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

34 O CHAPTER14 VECTORFUNCTIONS ETCHAPTER13

9. The angle of intersection of the two curves, 6, is the angle between their respective tangents at the point of
intersection. For both curves the point (1,0,0) occurs when ¢t = 0. ri{t) = ~sinti+costj+k =
ri(0) =j+kandry(t) = i+2tj+ 3k = r3(0) =i r(0)-ry(0) = (j+ k)i = 0. Therefore, the
curves intersect in a right angle, thatis, 8 = 7.

. The parametric value corresponding to the point (1,0,1) is ¢ = 0.
r'(t) = e'i+ e'(cost +sint) j + e*(cost — sint) k
= |r'(t)] = e'\/I + (cost +sint)? + (cost —sint)2 = /3 €'
and s(t) = fot e'V3du=+3e 1) = t= ]n(l + %s). Therefore,

r{t{s)) = (1 + %5) i+ (1 + ﬁs) sinln(l + :%Es)j + (1 + %3) cosln(l + \“}“53) k.

_re _ (el (Fh1)
. (a) T(t) - |l"(t)l - |(t2,t, 1)‘ - t4+t2+1

(b) T'(t) = — (¢ + ¢ + 1)732(4> + 2) (3, ¢,1) + (t* + £* + 1)7/%(2t,1,0)

e it S S
_(t4+t'~’+1)3/2( " >+(t4+t2+1)1/2( ' 1.0)
(~2t% — % ~ott — 42, 26 —t) + (28 + 287 + 2,4 + 42 +1,0)

(t4 + 2 + 1)3/2

(2t,—t* +1,-2¢> —¢)
(t4 + tﬂ + 1)3/2

()] = VA +15 -2+ 1+ 45 + 42 + 12 B 4 4t6 + 214 + 512 ond
- (t4 4+ 2 +1)3/2 - (t4 +42+1)3/2 7
N(t) = (2,1 -4, -2t° ~ t)

T VB + 4t + 2% 1 582

|T/(t)] V18 + 446 + 24 + 542

@) =T0n) T @ e e

, Using Exercise 14.3.36 [ET 13.3.36}, we have r'(¢) = {(—3sint,4cost), r’”’(t) = (-3 cost, —4sint),

3
e (1) = (v 9sin? ¢ + 4 cos? t) and then

[{(—=3sint)(—4sint) — (4cost}(—3cost)| 12
(9sin? ¢ + 16 cos? t)3/2 "~ (9sin2t 4 16 cos? £)3/2°

k{t) =

At(3,0),t =0and x (0) = 12/(16)*% = £ = 2 A1(0,4),t = Fand (%) = 12/9** = 8 = .

r__ 3 0 _ 2 _ ‘yﬂl — |12932‘ = i
By =1Ly = e and k) = T T W e ~1) = T
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1222 — 2|

W 5l®) = T @ — 2P

=» (0) = 2. So the osculating 0.55

~

circle has radius % and center (0, - 1). Thus its equation is /

2+ (y+1) =1

-1.2

. r(t) = (sin2¢,t,cos2t) = r'(f) = {(2cos2t,1,-2sin2t) = T(t) = 715 (2cos2t,1,—2sin2t) =
T (t) = ﬁ {~4sin2t,0,—4cos2t) = N(t)= (—sin2t,0,—cos2t). So N =N (r) = (0,0,—1) and
B=TxN= ﬁ {—1,2,0). So a normal to the osculating plane is (—1, 2,0} and an equation is

“Hz-0)+2{y—m)+0{(z—1)=0ora—2y+2r =0.
. (a) The average velocity over [3, 3.2] is given by

r{3.2) —r(3)

a3 = 5(r(3.2) — r(3)], so we draw a average
velocity
vector with the same direction but 5 times the length

of the vector [r(3.2) — r{3)].

r(3+h)— r(3).

(b} v(3) = r'(3) = lim A

!
¢y T(3) = T(8) a unit vector in the same direction as

' (3))’
r'(3), that is, parallel to the tangent line to the curve at

r(3), pointing in the direction corresponding to

increasing ¢, and with length 1.

vty =tInti+tj+etkv(t) =r'(f) = (1 +Int)i+j—e 'k,

v(t) = /(1+ )2+ 12 + (—e~%)2 = /2 + 2Int + (In)2 + =2, a(t) = v/(t) =

v(t) = [a(t)dt = [(6ti+ 126 ] — 6tk)dt = 3t i + 4t°j — 3tk + C, but
i-j+3k=v(0)=0+C,50C=i-j+3kand

vty =B+ i+ @ - Di+ 3 -3")k r(t)=[v{t)dt = +1)i+ (" —)j+ (3t - )k +D.
Butr(0) =0,s0D =0andr(t) = (t° + )i+ (t* ~t)j+ (3t — ) k.

19. We set up the axes so that the shot leaves the athlete’s hand 7 ft above the origin. Then we are given r(0) = 7j,
|v(0)| = 43 ft/s, and v(0) has direction given by a 45 ° angle of elevation. Then a unit vector in the direction of

v(0) is ﬁ(i +J) = v(0)= % (i+ Jj). Assuming air resistance is negligible, the only external force is due
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to gravity, so as in Example 14.4.5 [ ET 13.4.5] we have a = —g j where here g = 32 ft/s*. Since v'(t) = a(t), we

integrate, giving v(t) = —gtj+ C where C = v(0) = %(1 +j) = v{)= f i+ (\/- gt)j. Since
r'(t) = v(t) we integrate again, so r(¢) = 73— ti+ (-f%t - %gﬁ)j +D.ButD=r(0)=7j =

o 43 4 43 2
r(t) = i+ (%t - 19t +7) .
(a) At 2 seconds, the shot is at r{2) = %(2) i+ (%(2) - 19(2)* + 7)j ~ 60.81+ 3.8}, so the shot is about
3.8 ft above the ground, at a horizontal distance of 60.8 ft from the athlete.

(b) The shot reaches its maximum height when the vertical component of velocity is (- T gt=0 =

=B . = 0.95 5. Then r(0.95) =~ 28.9i + 21.4 §, so the maximum height is approximately 21.4 ft.

T V2yg

{c) The shot hits the ground when the vertical component of r(t) is 0, so :‘/"-t -3 gt2 +7=0 =

—168% + \/—t +7=0 = t=211ls r(2.11)~64.2i — 0.08], thus the shot lands approximately 64.2 ft
from the athlete.

L () =14 254 2tk o (1) =2k, |r'(t)] = V1+4 + 482 = /482 + 5.
() r(t) 4t @ xe"@®)]  4i-2 2V

= anday = = = .
il T VaE+s ' (5)] Vi +5 JitZ+5
. (a) Instead of proceeding directly, we use Forrnula 3 of Thecrem 14.2.3 [ET 13.2.3]:

r(t) =tR(t) = v=r'(t)=R(t)+tR'(t) =coswti+ sinwtj+tva.

Then ar =

(b) Using the same method as in part (a) and starting with v = R(t) + t R'(¢), we have
a=v =R'({#) +R' @) +tR"(t) =2R'(#) +tR"(t) = 2vqg + taa.
(c) Here we have r(t) = e ' coswti+e 'sinwtj = e " R(t). So, as in parts (a) and (b),
v=r(t)=e¢ 'R(t) —e ' R(t) = e R (t) —R(t)}] =
a=v =e ‘[R"(t) - R/(t)] ~ e '[R'(t) - R()] = ¢ "[R"(t) — 2R/(t) + R(2)]
—eta;—2tvyi+e 'R

Thus, the Coriolis acceleration {the sum of the “extra” terms not involving ag) is 2 'vy+e TR

if <0

0 if z<0
2 L )
1-z 1f0<$<\/§ N F'(z) = —x/vV1— a2 if[)<;c<%
V22 ifz>—%

. 1
V2 -1 1fm>ﬁ

2. (a) Fiz) =

0 if 2 <0
Fz) = -1/(1-2})? fo<z< %

0 ifw>715

since %[-w(l —2y VY = (1= 2V 21— 2?) ¥ = (1 = 2?) Y2

Now lim v1—xz?=1=F(0)and lim +1-2z?= \/- = F(\/-) s0 F is continuous. Also, since
z—0+ :c—»(l/\/i) -
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lim F'{z)=0= lim F'{(z)and lim F'(z)=-1= lim F'(x), F'is continuous. But
z—0+ x—0— x—-o(l/\/i)i ;c—»(l/\/i)+
miilg+ Flizy=-1#0= Il—i’I(l]’li F"(z), so F" is not continuous at z = 0. (The same is true at & = ﬁ.)
So F does not have continuous curvatute.

(b) Set P(z) = az® + bz* + cx® + dz® + ez + f. The continuity conditions on P are P(0) = 0, P(1) = 1,
P’(0) = 0and P’(1) = 1. Also the curvature must be continuous. For x < Oand x > 1, k(z) = 0; elsewhere
_ 1P|
O T PR

so we need P(0) = 0and P”(1) = 0.

The conditions P(0) = P'(0) = P"(0) = 0imply thatd = e = f = 0.
The other conditions imply thata + b+ ¢=1,5a + 4b+ 3c =1, and
10a + 66 + 3¢ = Q. From these, we find thata = 3, b = —8, and ¢ = 6.

Therefore P(x) = 3z° — 82" + 627, Since there was no solution with

a = (), this could not have been done with a polynomial of degree 4.
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[0 PROBLEMS PLUS

1. (a) r(t) = Reoswti+ Rsinwtj = v =r/(t) = —wRsinwti+wRcoswtj,sor = R(coswti+ sinwtj)

and v = wR(— sinwti+ coswtj). v-r = wR*(— coswtsinwt + sinwtcoswt) = 0,50 v L r. Since r

points along a radius of the circle, and v L r, v is tangent to the circle. Because it is a velocity vector, v points
in the direction of motion.

{b) In (a), we wrote v in the form wR u, where u is the unit vector — sinwt i + coswt j. Clearly
iv| = wR |ul = wR. At speed wR, the particle completes one revolution, a distance 27 R, in time
2rR 2w
T=—=—.
wh w
(c)a= Z—: = —w?Rcoswti— w?Rsinwtj = —w2R(coswti +sinwt j),soa= —w?r. This shows that a is
proportional to r and points in the opposite direction (toward the origin}. Also, |a| = | = w*R.

(d) By Newton’s Second Law (see Section 14.4 [ET 134}), F = ma, so
m(f...!R)2 - m]v!2
R R

2
2. (a) Dividing the equation |F|sin @ = E;—R by the equation |F| cos # = mg, we obtain tan § =

|F| = m|a] = mRw® =

Yk
Ry’
sov% = Rgtan6.
(b) R=400ftand @ = 12°,s0vg = /Rgtan0 ~ /400 - 32 - tan 12 ° ~ 52.16 ft/s = 36 mi/h.
{c) We want to choose a new radius F; for which the new rated speed is % of the old one:
VHigtan12° = 3,/Rgtan12°. Squaring, we get Rigtan12° = 2Rgtan12°, s0
R = 2R = 2(400) = 900 ft.

d d .
3. (a) The projectile reaches maximum height when 0 = ?d% =5 [{vosina)t — 3 gt?] = vosin o — gt; that is, when

: . ; 2 2 .2
1 . . .
¢ =20 nd y = (o sina) ( o Sma) — —g(vo Sma) =252 2 his is the maximum height
g 2 g 29
attained when the projectile is fired with an angle of elevation . This maximum height is largest when o = 5.

2

; . LU
In that case, sin @ = 1 and the maximum height is 2—0.
g

(by Let R = vj / g. We are asked to consider the parabola 2 + 2Ry — R* = 0 which can be rewritten as
1

y = 3R z% + }; The points on or inside this parabola are those for which — R < z < R and

-1 T . . .
<y < IR ¢ + —g When the projectile is fired at angle of elevation o, the points (z,y) along its path

satisty the relations x = (vg cosar) t and y = (vesina)t — 3gt*, where 0 < t < (2upsina)/g (as in
Example 14.4.5 [ET 13.4.5]). Thus |z| < |vo cosa (21)0%) = v—ggsin 20| < % = | R|. This shows
that ~-R <z < R.

For ¢ in the specified range, we also have y = t(vo sine — %gt) = %gt(@ — t) > 0and

T 1

. T g
= (vosina -=
y= (v )vgcosa 2(

z* + (tana) .

2
g 2

= (tana)x — = -

) ( ) 2uf cos? & 2R cos?

g COS (¥
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Thus

2 2Rcos? o 2R 2

2 2 2 2
x 1 R z°(1—sec®a)+2R(tana)z— R
= — — t e
2R(1 COS?a)—i—(ana)x
_ —(tan’ @)z’ + 2R (tana) T - R*  —[(tano)z — R]? <0
- 2R a 2R =
‘We have shown that every target that can be hit by the projectile lies on or inside the parabola
1

1 R
y=-3% x? + —. Now let (a, b) be any point on or inside the parabola y = ~3F z? ey . Then

—R<a<Rand0<b< —g—lﬁ a® + E . We seek an angle o such that (a, &) lies in the path of the projectile;

that is, we wish to find an angle « such that b = —

- R
):———1—:1:2+—Lw2+(tana)a:——

2 2R

ma + (tana)aor

-1 . . .
equivalently b = oR (tan® & 4+ 1)a® + (tan a) a. Rearranging this equation we get

2R 2R
equation for tan « has real solutions exactly when the discriminant is nonnegative. Now B*—4AC >0 &
(—2aR)? — 4d*(a® + 2bR) > 0 & 4a*(R*-a’—-20R) >0 & —-a’-2R+R*>0 &

1

b< —=(R*-ad?) & b<

— 2R _ZR
1

Ry % + E . Tt follows that (a, b) lies in the path of the projectile when tan « satisfies (+), that is, when
2aR + \/402(R2 —a?-2bR) —2bR - a?
2a? N '

2 2
L_tan’a —atana + (-— + b) = 0 or a’(tan @)? — 2aR(tana) + (a® + 2bR) = 0 (*) . This quadratic

R
a? + = This condition is satisfied since {a, b) is on or inside the parabola

tana =

If the gun is pointed at a target with height k at a distance I downrange,

then tan ¢ = h/D. When the projectile reaches a distance D downrange

(remember we are assuming that it doesn’t hit the ground first), we have
D

D D=z=(vocosalt,sot = and
Vo COS O

gD?

= (vpsina)t — 1gt* = Dtana — —F——
y= (v 29 2v¢ cos? a

. Meanwhile, the target, whose z-coordinate is also D, has

g?

fallen from height k to height h — 2 gt? = 902 oo o
allen from height / to heig 39t° = Dtano — 202 cos?

. Thus the projectile hits the target.

4. (a) As in Problem 3, r(t) = (vgcosa)ti+ [(vosina)t — 2gt?| . so # = (vo cos )t and
y = {vosina)t — —gt2 The difference here is that the projectile travels until it reaches a point where > 0
andy = —(tan@)z. (Here 0 < 0 < %.) From the parametric equations, we obtain ¢ = xs and
Uy COS &
_ (vgsina)z gr* (tan )z
T woosa 2uicos? o
_gzt
202 cos? o

gz*
202 co8? v

. Thus the projectile hi¢s the inclined plane at the

g’

oint where (tan a)x —_—
P ( ) 2v3 cos? o

= —(tan #)x. Since = (tana + tan @)z and z > 0,

2 2 2
we must have ~—2°—— = tan o + tan . It follows that z = —9—> %

tana + tan @) and
2vd cos? o ( )
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fm — = 2vp cos (tan c + tan #). This means that the parametric equations are defined for ¢ in the
Ty COS (¥ g

209 COS &

interval [0, (tana + tanf)|.

{b) The downhill range (that is, the distance to the projectile’s landing
point as measured along the inclined plane) is R(a) = x sec §, where

z is the coordinate of the landing point calculated in part (a). Thus

2 2
_ ZucosTa (tan @ + tan @) sec 8 =
g g

Qv ( sinacosa  cos? asind )

cos @ cos2 @

R(a)

2v cos asin(a + 6)
gcos? f

_ 208 cos a
gcos? f

(sinacosf 4+ cosasind) =

(o) is maximized when

208

! —
Rle) = gcos? 8

(- sinarsin(a + 8) + cos acos(a + 6)]

Qud
gcos?é

20§ cos{2a + 6)
cos[fa+0)+a] = T geos?d

This condition implies that cos(2a + §) =0 = 20+6=2 = a=3(%-0).

{(c) The solution is similar to the solutions to parts (a) and (b). This time the projectile travels until it reaches a point
where z > 0 and y = (tan #)x. Since tan§ = — tan(—8), we obtain the solution from the previous one by
replacing @ with —6. The desired angle is & = £ (3 + 6).

(d) As observed in part (c), firing the projectile up an inclined plane with angle of inclination & involves the same
equations as in parts (a) and (b} but with @ replaced by —8. Se if R is the distance up an inclined plane, we know

Rgcos® 8
= oi=
T Scosar sin{a — @)

2v3 cos asin(a — 6)
gcos?(—8)
(and hence vg is minimized) with respect to o when

from part (b) that R =

. v} is minimized

0= d (03 = Rgcos® 6  —(cosacos (& — §) —sinasin (a — 6))
B Yo/ = 2 [cos arsin(a — #)]?

do

_ —Rgcos*d ~cosla+(a—0)] _—Rg cos? @ __ cos(2a — 8)
N 2 [cosasin(a — §)]2 2 [cos arsin{e — 8}]2

Since § < a < I, thisimpliescos(2a ~0) =0 & 2a-0=2 = o=1(Z+4). Thus the initial

speed, and hence the energy required, is minimized for o = 1 (Z + 8).

2
5. (a)mﬁ'=—mgj—k£l = i(m@+kR+mgtj)=0 = m@+kR+mgtj=c

dt? dt dt dt dt
(c is a constant vector in the xy-plane). At ¢t = 0, this says that m v(0) + kR(0) = ¢. Since v(0) == v and

R(0) :0,wehavec:mv0.Theref0re@+ £R+gtj :vo,orfi—R +ﬁR=v0 —gt].
dt m dt m

/mys BB K (jmyt g lk/m)e
dt m

(k/mt (k/m)t

(b) Multiplying by € gives € vp — gte jor

d . .
p (e®/mER) = eB/MItyy _ gtel*/™It i Integrating gives
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2
eimit g — % elk/mit o _ [ng telk/m)t _ ——77;29 e("/m)‘] j + b for some constant vector b.

2 2
Setting £ = 0 yields the relation R(0) = % vy + %gj +b,sob= —% vo — -ﬂ;—zgj. Thus

2
(k/m)tp _ E[ (efm)t _ ] _ | ™, tkymye TG ( (k/m)t _ :
c R X e 1| va [k:te e e 1) jand

% [1 - e_k”m] vo + Tg [13(1 — e ht/my _ t] J
. By the Fundamental Theorem of Calculus, r'(t) = {sin(mt%/2), cos(mt%/2)}, |r'(t)| = 1 and so T(¢} = r'(t).
Thus T'(#) = it {sin(mt?/2), cos(xt?/2)) and the curvature is & = |T'(¢)| = /(nt)2(1) = = [¢].
L@a=-g] = v=vo—gtj=2i-gtj = s=so+2i—3gt?j=35j+2i- 19’ =
s = 2ti 4 (3.5 — 1gt%) j. Therefore y = 0 when t = \/7/g seconds. At that instant, the ball is

2./7/g =5 0.94 ft to the right of the table top. Its coordinates (relative to an origin on the floor directly under
the table’s edge) are {0.94,0). At impact, the velocity is v = 2i — /7g ], so the speed is

[v| = A+ Tg =~ 15 ft/s.

Zi dy _ _dy/dt _—¢t =¢ 2‘ /9 = _\é@.Thuscow:—\/g—g

(b) The slope of the curve when ¢ = p 8 dr = dr Jdt =

and @ = 7.6°,

(¢) From (a), |v| = v/4 + 7g. So the ball rebounds with speed 0.8 /4 + 7g ~ 12.08 ft/s at angle of inclination
90° — 0 = 82.3886 °. By Example 14.4.5 [ ET 13.4.5], the horizontal distance traveled between bounces is
2

v Sin 2a

d= , where 19 &~ 12.08 ft/s and o ~ 82.3886 °. Therefore, d ~ 1.197 ft. So the bali strikes the floor

at about 2 /7 /g + 1.197 == 2.13 ft to the right of the table’s edge.

. As the cable is wrapped around the spool, think of the top or bottom
of the cable forming a helix of radius R + r. Let h be the vertical /
distance between coils. Then, from similar triangles,
2r 2r(r + R)
42 h
B 2rr(r + R)
Bl V7 (r + R)2 — 12

h?r? = =?(r + RP(R® — 4r%)

=

If we parametrize the helix by z(t) = (R + r) cost, y(f) = (R + 7} sint, then we must have 2(t) = [h/(27)]t.

The length of one complete cycle is

0

P R e F T T e (t)pdt:f:" \/(R+r)2+ (%)2 dt = 2W\/(R+r)2+ (%)2

P(Rtr)? r 2r*(R + 1)’
- - TR b LWL S =
o \/(R“) T e e e L = T ey e

The number of complete cycles is [L/£], and so the shortest length along the spool is

b LY _  2nr(R+r) Ly/m3*(R+71)? —r?
Heﬂ_ TR+ 7r)? —r? 2n2(R +1r)?
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