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15 [0 PARTIAL DERIVATIVES L] ET14

15.1 Functions of Several Variables ET 141

1. (a) From Table 1, f(—15,40) = —27, which means that if the temperature is —15°C and the wind speed is

40 km/h, then the air would feel equivalent to approximately —27°C without wind.

(b) The question is asking: when the temperature is —20°C, what wind speed gives a wind-chill index of —30°C?

From Table 1, the speed is 20 km/h.

(c) The question is asking: when the wind speed is 20 km/h, what temperature gives a wind-chill index of —49°C?

From Table 1, the temperature is —35°C.,

{(d) The function W = f(—5, v) means that we fix T at —5 and allow v to vary, resulting in a function of one
variable. In other words, the function gives wind-chill index values for different wind speeds when the
temperature is —5°C. From Table 1 (look at the row corresponding to T° = —5), the function decreases and

appears to approach a constant value as v increases.

(¢) The function W = f(T, 50) means that we fix v at 50 and allow T to vary, again giving a function of one
variable. In other words, the function gives wind-chill index values for different temperatures when the wind
speed is 50 km/h . From Table 1 (look at the column corresponding to v = 50), the function increases almost

linearly as T increases.

. (a) From the table, f(95,70) = 124, which means that when the actual temperature is 95°F and the relative

humidity is 70%, the perceived air temperature is approximately 124°F.
(b) Looking at the row corresponding to T' = 90, we see that (90, h) = 100 when h = 60.
(c) Looking at the column corresponding to A = 50, we see that f(T, 50) = 88 when T" = 83.

(d) I = f(80, h) means that T is fixed at 80 and h is allowed to vary, resulting in a function of h that gives the
humidex values for different relative humidities when the actual temperature is 80°F. Similarly, I = (100, k)
is a function of one variable that gives the humidex values for different relative humidities when the actual
temperature is 100°F. Looking at the rows of the table corresponding to T = 80 and T' = 100, we see that
f(R0, h) increases at a relatively constant rate of approximately 1°F per 10% relative humidity, while £(100, k)
increases more quickly (at first with an average rate of change of 5°F per 10% relative humidity) and at an

increasing rate (approximately 12°F per 10% relative humidity for larger values of h).
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3. If the amounts of labor and capital are both doubled, we replace L, K in the function with 2L, 2K, giving
P{2L, ZK) — 1'01(2L)D.75 (QK)0,25 - 1.01(20'75)(20'25)[‘0'75}(0'25 — (21)1.01LD.75K0.25
=2P(L,K)

Thus, the production is doubled. Tt is also true for the general case P(L, K) = bL*K* ~*:

P{2L,2K) = b(2L)%(2K)'~® = b(27)(2 ") LK = (2T BRI KT = 2P(L, K).
4. We compare the values for the wind-chill index given by Table 1 with those given by the model function:

Modeled Wind-Chill Index Values W (T, v)
Wind Speed (km/h)

25 30

Actual temperature (°C)

The values given by the function appear to be fairly close (within 0.5) to the values in Table 1.

5. (a) According to the table, f(40, 15) = 25, which means that if a 40-knot wind has been blowing in the open sea

for 15 hours, it will create waves with estimated heights of 25 feet.

(by h = f(30, %) means we fix v at 30 and altow ¢ to vary, resulting in a function of one variable. Thus here,
h = f(30,1) gives the wave heights produced by 30-knot winds blowing for ¢ hours. From the table (look at the
row corresponding to v = 30), the function increases but at a declining rate as ¢ increases. In fact, the function

values appear to be approaching a limiting vatue of approximately 19, which suggests that 3(-knot winds cannot

produce waves higher than about 19 feet.

(c) h = f{v,30) means we fix ¢ at 30, again giving a function of one variable. So, k = f(v, 30) gives the wave
heights produced by winds of speed v blowing for 30 hours. From the table (look at the column corresponding
1o £ = 30), the function appears to increase at an increasing rate, with no apparent limiting value. This suggests

that faster winds (lasting 30 hours) always create higher waves.
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6. () f(1,1)=In(1+1-1)=In1=0
(b) fle,1) =In{fe+1-1)=Ilne=1

{c) In(x + y — 1) is defined only when z +y — 1 > 0, that is,
y > 1 — z. So the domain of fis {(x,y) |y >1—=z}.

(d) Since In(x + y — 1) can be any real number, the range is [R.

. (@) £(2,0) = 22630 = 4(1) =4

3zy

(b) Since both = and the exponential function are defined everywhere, x%¢**¥ is defined for all choices of values

for x and y. Thus, the domain of f is R2.
(c) Because the range of g{x, y) = 3zy is R, and the range of €7 is (0, oc), the range of e?(=¥) = ¢37¥ i5 (0, 00).

The range of z* is [0, 0c), so the range of the product z2e*®¥ is [0, 00).

. v/ 1+ 2z —y?is defined only when 1 + z — ¢* >0 =

z > y* — 1, so the domain of f is {(z,y) | z > y* — 1}, all

those points on or to the right of the parabola z = 3 — 1.

The range of f is [0, o).

) (a) f (25 _156) =e 6_22_(_1)2 = eﬁ =€,

(b) eV 2=z ~v? {5 defined when z — 2% — y> >0 = 2z > 2%+ 42 Thus the domain of f is

{(z,y,2) | z 2 2* +4°}.

(¢) Since /z — 22 — y2 > 0, we have &V>~%"~%" > 1. Thus the range of f is [1, co).

() g(2,-2,4) =In(25-2° - (-2)° —4®) =In1 =0.

(b) For the logarithmic function to be defined, we need 25 — x® — y* — 2 > . Thus the domain of g is

{(z,y,2) | * +y* + 2% < 25}, the interior of the sphere z* + y* + 2% = 25.

(c) Since 0 < 256 — 2* —y® — 2% < 25for (x, y, 2) in the domain of g, In(25 — £° — 4* — %) < In25. Thus the

range of g is {—o0, In 25].
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1. /r + y is defined only when x + y > 0, or
y > —x. So the domain of f is

{(z.9) |y 2 -z}

13. In (9 — ® — 9y*) is defined only when

9— 2% —9y® > 0,0r fz> +y° < 1. Sothe

domain of fis {(z,y) | 52° +¥° < 1}, the

interior of an ellipse.

3z + by

15 ————
2+ 2 -4

is defined only when

2+ y* —4 40, 0rz® + y? £ 4. So the domain

of fis {(z.9) | 2* + 47 # 4.

12. Weneedz > Oand y 2> 0, 50
D ={(z,y) | £ > 0and y > 0}, the first

quadrant.

xz— 3y
14.

T+ Iy

or r # —3y. So the domain of f is

{(z, )|z # 3y}

is defined only when x + 3y £ 0,

16. Weneedy —x > 0ory >zandy + x > 0
or x > —y. Thus

D={(x,y) | —-y<z<yy>0}
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17. \/y——mz is defined only when y — z* > 0, or
y > 2. In addition, f is not defined if 1 — 2 =0
= z = 1. Thus the domain of f is
{(m,y) |y > ?,x £ :I:l}.

19. Weneed 1 —x® —y* —2z* > Qor
2y + 22 <150
D= {(m,y,z) | 2+ 422 < 1}
(the points inside or on the sphere of radius 1,

center the origin).

21. z = 3, a horizontal plane through the
point (0,0, 3).

18. f is defined only when z® + 4* -1 >0 =
P?+y?>landd -2 -4* >0 =
z? 4+ 9* < 4. Thus
D= {(m,y)|1§a:2+y2 <4}

20. f is defined only when 16 — 4z — 4y* — 2* > 0

PN
4

¥y =
4 + 6 < 1. Thus,

2 2 2
D= {(m,y,z) % +%+;—6 < 1},thatis,

S N T 2
the points inside the ellipsoid 71 + T + 6= 1.

22, 2 = y, a plane which intersects the yz-plane in the
line z = y, © = (. The portion of this plane that
lies in the first octant is shown.
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B.z2=1-zx—yorx+y+z=1,aplane with 24, z = cosz, a “wave.”

intercepts 1, 1, and 1.

2.2=3—22— yz, a circular paraboloid with vertex
at (0,0, 3).

\

; ¥
W00 030

21, z = 4x” + y* + 1, an elliptic paraboloid with 28. 2= /16 — 2% — 16y s0oz > Oand
vertex at (0,0, 1). 2% + % + 16y* = 16, the top half of an ellipsoid.
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30. All six graphs have different traces in the planes x = 0 and y = 0, so we investigate these for each function.
(@) f(z,y) = |z| + ly|. Thetraceinz = 0is 2 = |y|, and iny = 0is z = ||, so it must be graph VI.
(b) f(z,y) = lzy|. The traceinz = 0is z = 0, and in y = 0 s z = 0, so it must be graph V.

1 1 . .
= ————— Thetraceinz =0isz = ——,andiny =0is z =
(©) f(z,y) T 7 1T Yy

see that f is close to O for large values of z and y, so this is graph L.

;. In addition, we can
1+ o2

() fz,y) = (> —*)®. Thetrace inx = O is z = ¢, and in y = O is z = z*. Both graph Il and graph IV seem
plausible; notice the trace in z = 0is 0 = (z% — y*)* = y = 4, so it must be graph IV.

(e) f(z,y) = (x —y)%. Thetrace inz = Ois z = y*, and iny = 0 is 2 = =®. Both graph I and graph IV seem
plausible; notice the trace in z = 0is 0 = (z —y)® = y = , so it must be graph IL.

(Y f(x,y) = sin{|z| + |y|). The trace in x = O is z = sin |y|, and in y = 0 is z = sin |z|. In addition, notice that

the oscillating nature of the graph is characteristic of trigonometric functions. So this is graph III.

. The point {—3, 3) lies between the level curves with z-values 50 and 60. Since the point is a little closer to the level
curve with z = 60, we estimate that f(—3, 3} = 56. The point (3, —2) appears to be just about halfway between
the level curves with z-values 30 and 40, so we estimate f(3, —2) ~ 35. The graph rises as we approach the origin,

gradually from above, steeply from below.

. If we start at the origin and move along the z-axis, for example, the z-values of a cone centered at the origin
increase at a constant rate, so we would expect its level curves to be equally spaced. A paraboloid with vertex the
origin, on the other hand, has z-values which change slowly near the origin and more quickly as we move farther
away. Thus, we would expect its level curves near the origin to be spaced more widely apart than those farther from

the origin. Therefore contour map I must correspond to the paraboloid, and contour map II the cone.

. Near A, the level curves are very close together, indicating that the terrain is quite steep. At B, the level curves are

much farther apart, so we would expect the terrain to be much less steep than near A, perhaps almost flat.

yh

©
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3.

37. The level curves are xy = k. For k = 0 the 38. The level curves are k == x> — 3. When k = 0,
curves are the coordinate axis; if k£ > 0, they are these are the lines y = +x. When k£ > 0, the
hyperbolas in the first and third quadrants; if curves are hyperbolas with axis the z-axis and
k < 0, they are hyperbolas in the second and when k& < 0, they are hyperbolas with axis the

tourth quadrants.

39. Thelevelcurvesarey —lnz =kory =lnz + k. 40. The leve! curves are e¥/< = k or equivalently

v y = xlink (x # 0), a family of lines with slope
In &k (k > () without the origin.
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N k= zryorforz+y>0,k =x+y. 42. k =yseczory =kcosz,x # 5 +nw
ory=—z+k°. (n an integer),
Note: k > Osince k = /= + y.

)

DN

8. k=1 —3% orz — k= y?, afamily 84, For k #£ Oand (z,y) # (0,0), k = %
x Yy

of parabolas with vertex (k, 0).
$2+y2—%:0 o 2+ (y-=

of circles with center (0, 5 ) and radius o (without the

)2 = 4—;72, a family

origin). If & = 0, the level curve is the z-axis.

¥

Vora
AN

85. The contour map consists of the level curves k = z* + 9y*, a family
of ellipses with major axis the z-axis. (Or, if k = 0, the origin.)
The graph of f (x, ) is the surface z = z* + 9y°, an elliptic
paraboloid.

If we visualize lifting each ellipse k = 2? + 9y of the contour map
to the plane z = k, we have horizontal traces that indicate the shape
of the graph of f.
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46. ¥ The contour map consists of the level curves k = /36 — 922 — 4y?

=  9z% + 4y* = 36 — k*, k > 0, a family of ellipses with major
axis the y-axis. (Or, if & = 6, the origin.)

The graph of f(x,y) is the surface 2 = /36 — 92? — 4y?, or equivalently the upper half of the ellipsoid
922 + 4y? + 22 = 36. If we visualize lifting each ellipse k = /36 — 922 — 4y of tha contour map to the plane

z = k, we have horizontal traces that indicate the shape of the graph of f.

47. The isothermals are given by k = 100/ (1 + z* + 2y°) or ¥

x? + 2y = (100 — k)/k (0 < k < 100), a family of eliipses. —
-]

-
=

. . &
48. The equipotential curves are k = ——=———=or

/2 — 2 _.yZ

L2 ,2_2432,,- o
Lty =7 A , a family of circles ¢k > ¢/r).

Note: As k — oc, the radius of the circle approaches r.

8. f(z,y) =" +¢°

Note that the function is ©) along the line y = —x.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 15.1  FUNCTIONS OF SEVERAL VARIABLES ET SECTION141 O 353

80. f(z,y) = sin{ye ")

" i, Gt \u‘..‘-
‘ \.\\\“‘:\‘;\\‘\';"""‘:‘-

HEY P AV AT

i

W

Cross-sections parallel to the y2z-plane (such as the left-front trace in the first graph above) are sine-like curves. The
periods of these curves decrease as « decreases.

5. f(z,y) = zy® — 2°

N/

/N

The traces parallel to the yz-plane (such as the left-front trace in the graph above) are parabolas; those parallel to the
zz-plane (such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey

-2

sitting on the surface near the origin has places for both legs and tail to rest.

2. f(z,y) = ay® — ya’

The traces parallel to either the z-plane or the zz2-plane are cubic curves.

53. (a) B Reasons: This function is constant on any circle centered at the origin, a description which matches
{b) I only B and IIL.

54. (a) C Reasons: This function is the same if « is interchanged with y, so its graph is symmetric about the

(by 1l plane x = y. Also, 2(0, 0) = 0 and the values of z approach 0 as we use points farther
from the origin. These conditions are satisfied only by C and 1I.
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55.

(@) F Reasons: z increases without bound as we use points closer to the origin, a condition satisfied only
Vv by Fand V.

. (a) A Reasons: Along the lines y = i—%m and x = 0, this function is 0.

(by VI

.(a) D Reasons: This function is periodic in both x and y, with period 27 in each variable.

by IV

. (a) E Reasons: This function is periodic along the z-axis, and increases as |y increases.

(b) 1

. k =z + 3y + 5z is a family of parallel planes with normal vector (1,3, 5).

k= 2% + 3y* + 522 is a family of ellipsoids for & > 0 and the origin for k = 0.

.k = z% — y* + 22 are the equations of the level surfaces. For k = 0, the surface is a right circular cone with vertex

the origin and axis the y-uxis. For k > 0, we have a family of hyperboloids of one sheer with axis the y-axis. For

k < 0, we have a tamily of hyperboloids of two sheets with axis the y-axis.

.k = % — 42 is a family of hyperbolic cylinders. The cross section of this family in the zy-plane has the same graph

as the level curves in Exercise 38.

. (a) The graph of g is the graph of f shifted upward 2 units.

{(b) The graph of g is the graph of f stretched vertically by a factor of 2.
{c) The graph of g is the graph of f reflected about the xy-plane.

(d) The graph of g(z,y) = — f{x,y) + 2 is the graph of f reflected about the zy-plane and then shifted upward
2 units,

. {a) The graph of g is the graph of f shifted 2 units in the positive z-direction.

(b) The graph of g is the graph of f shifted 2 units in the negative y-direction,

(¢) The graph of g is the graph of f shifted 3 units in the negative z-direction and 4 units in the positive
y-direction.

. fle,y) =3z — z* — 497 ~ 102y

Wi

VD

l |ll|||
\
\"h.\.

‘ it nu‘ ‘

mi _ l‘l 'IL“!In!.t.t
'0"“'*" _ | || h'lh'h!‘ A

.l N ‘
\“‘\"ﬂ' -- |

Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph,

the maximum value appears to be approximately 15, Both hilltops could be considered local maximum points, as
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the values of f there are larger than at the neighboring points. There does not appear to be any local minimum point;
although the valley shape between the two peaks looks like a minimum of some kind, some neighboring points have

lower function values.

66. f(x.y) = wy'(a—°‘2_”’2

Three-dimensional view Front view

The function does have a maximum value, which it appears to achieve at two different points (the two “hilitops™).
From the front view graph, we can estimate the maximum value to be approximately (.18, These same two points
can also be considered local maximum points. The two “valley bottoms™ visible in the graph can be considered local
minimum points, as all the neighboring points give greater values of f.

flzy) = %%5 As both « and y become large, the function

values appear to approach 0, regardless of which direction is
considered. As {(x,y) approaches the origin, the graph exhibits

asymptotic behavior. From some directions, f(x,y) — oo, while

in others f(x,y) — —oo. (These are the vertical spikes visible in

the graph.) If the graph is examined carefully, however, one can

see that f(z, y) approaches 0 along the line y = —z.

flz,y) = ;—%3 The graph exhibits different limiting values

as x and y become large or as (x, y} approaches the origin,
depending on the direction being examined. For example,

although f is undefined at the origin, the function values appear to

be é along the line y = x, regardless of the distance from the

origin, Along the line y = —z, the value is always — % Along the

axes, f(z,y) = 0 for all values of {z, y) except the origin. Other
directions, heading toward the origin or away from the origin, give

various limiting values between —3 and %.
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69. f(x,y) = e 1 First, if ¢ = 0, the graph is the cylindrical surface 2 = e (whose level curves are parallel

lines). When ¢ > 0, the vertical trace above the y-axis remains fixed while the sides of the surface in the z-direction
“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The level curves of the surface are

ellipses centered at the origin.

¢ = 0.5 (level curves in increments of 1)

For ¢ — 1 the level curves are circles centered at the origin.

¢ =1 (level curves in increments of 1)
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When ¢ > 1, the level curves are ellipses with major axis the y-axis, and the eccentricity increases as ¢ increases.

¢ = 2 (level curves in increments of 4)

For values of ¢ < 0, the sides of the surface in the z-direction curl downward and approach the zy-plane (while the

vertical trace x = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0,0, 1). The

level curves consist of a family of hyperbolas. As ¢ decreases, the surface becomes flatter in the z-direction and the

surface’s approach to the curve in the trace z = 0 becomes steeper, as the graphs demonstrate.

¢ = —0.5 (level curves in increments of 0.25)

¢ = —2 {level curves in increments of 0.25)
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70. First, we graph f(z,y) = /22 + y2. As an alternative, the z° + 3° expression suggests that cylindrical

coordinates may be appropriate, giving the equivalent equation z = v'r? = r, r > 0 which we graph as well.

Notice that the graph in cylindrical coordinates better demonstrates the symmetry of the surface.

f(x,y)zsin(\/aﬂ2+y2) flz,y) = \/TlTy—?

Notice that each graph f(x,y) = g(\/ 2 + 12 ) exhibits radial symmetry about the z-axis and the trace in the

zz-plane for z > 0 is the graph of z = g{z}, # > 0. This suggests that the graph of f(z,y) = g(\/:c2 + yg) is

obtained from the graph of g by graphing z = g(z) in the zz-plane and rotating the curve about the z-axis.
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P P L\ P L\"
_ @ l—a L o —_y [ R _—— b _—
M. () P = bL*K = X bLeK = e b(K) = an ln( (K) ) =

ln% = hlb+aln(%)

{b) We list the values for In(L/K) and In( P/ K) for the years 1899-1922. (Historically, these values were rounded
to 2 dectmal places.)

Year |  =In(L/K) | y =In(P/K) Year | z =In(L/K) | y=In(P/K)
1899 0 0 1911 —0.38 —0.34
1900 —0.02 —0.06 1912 —0.38 —0.24
1901 —0.04 —0.02 1913 —0.41 —0.25
1902 —-0.04 0 1914 —0.47 —-0.37
1903 —0.07 -0.05 1915 —-0.53 ~0.34
1904 —-0.13 —-0.12 1916 -0.49 —0.28
1905 —0.18 —0.04 1917 —0.53 -0.39
1906 —0.20 —0.07 19138 —0.60 —0.50
1907 —0.23 —0.15 1919 —0.68 ~0.57
1908 -0.41 --0.38 1920 ~0.74 —0.57
19039 —0.33 —0.24 1921 —1.05 —0.85
1910 ~0.35 -0.27 1922 —0.98 —0.59

After entering the (x, y) pairs into a calculator or CAS, the resulting least squares regression line through the
points is approximately y = 0.75136x + 0.01053, which we round to y = 0.75x -+ 0.01.

{c) Comparing the regression line from part (b) to the equation y = Inb + oz with z = In(L/ K} and
y = In(P/K), we have o = 0.75and Inb = 0.01 = b= ™% = 1.01. Thus, the Cobb-Douglas
production function is P = LK~ = 1.01L* K%,

15.2 Limits and Continuity ET14.2

1. In general, we can’t say anything about f(3,1)! , l)im(3 b f{z,y) = 6 means that the values of f{x,y) approach
)L,

6 as (x, y) approaches, but is not equal to, (3,1). If f is continuous, we know that  lim  f(x,y) = f(a,b), so

(z,y)—{a,b)
liIIl f Yy = f :;,1 = 6.
(x,y}—(3,1) ( ' ) ( )

2. (a) The outdoor temperature as a function of longitude, latitude, and time is continuous. Small changes in longitude,
latitude, or time can produce only small changes in temperature, as the temperature doesn’t jump abruptly from

one value to another.

(b) Elevation is not necessarily continuous. If we think of a cliff with a sudden drop-off, a very small change in
longitude or latitude can produce a comparatively large change in elevation, without all the intermediate values

being attained. Elevation can jump from one valve to another.

(c) The cost of a taxi ride is usually discontinuous. The cost normally increases in jumps, so small changes in

distance traveled or time can produce a jump in cost. A graph of the function would show breaks in the surface.
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3. We make a table of values of f{x,y) = 22y

for a set of (x, y) points near the origin.

=02 | -0.1 [ -005 0.05 0.1 0.2

—2.551 | —2.525 | —2.513 —2488 | —2.475 | —-245]

—2.525 | —2.513 | —2.506 —2.494 | —2.488 | —2475

—-2513 | —-2.506 § —2.503 —2497 | —2494 | —2488

—2.500 | —2.500 | —2.500 =2500 | -2.500 | ~2.500

-2488 | -2494 | —2.497 | —2.500 | —2.503 | 2506 | —2.513

Gl | 2475 —2488 | —2.494 1 —2.500 | 2506 -2.513 | ~2.525

0.2 | —2451 | -2.475 [ —2.488 | —2.500 | —2.513 | —2,525 | —2.331

As the table shows, the values of f(x, y) seem to approach —2.5 as (x, y) approaches the origin from a variety of
different directions. This suggests that ( l)in%0 o flzy) =—2.5.
.y )—{0,

Since f is a rational function, it is continuous on its domain, f is defined at (0, 0}, so we can use direct substitution

0°0% + 0%0° — 5 5o
to establish that (m,yl)iin(n‘n) fle,y) = ﬁ =y verifying our guess.

2
Ty > fora set of (z,y) points near the origin.

. We make a table of values of f(r,y) = o
T Yy

¥ | —-03 | -02 | -01 0.1 0.2 0.3

-03 0.667 | 0.706{ 0.545| 0. —0.545 | —0.706 | —0.667

—(.2 0.545| 0667 0667 0. —0.667 | —0.667 | —0.545

-1 0316 0444 0.667 ~0.607 | —0.444 | —0.316

¢ 0.000 [ 0.000 (| 0.000 0.000 [ 0.000( 0.000

¢.1 [ -0316 | —0.444 | —0.667 | 0.000 0.667 | 0444 03i6

02 [—0.545] —0.667 | —0.667 | 0.000 0.667 | 0.667| 0.545

0.3 | ~0.667 [ -0.706 | -0.545 | 0.000 0545 | 0706 | 0.667

It appears from the table that the values of f(x,y) are not approaching a single value as {z, ¥) approaches the
origin. For veritication, if we first approach (0, 0) along the z-axis, we have f(x,0) = 0, so f(z,y) — 0. Butif we
22°
different values along different paths to the origin, this limit does not exist.

2 .
=3 # 0),50 f(x,y) — 2. Since f approaches

approach (0,0) along the liney = x, f(xz,z) =

. flz,y) = 2° + 42®y — 5xy® is a polynomial, and hence continuous, so
lim  flx,y) = f(5,-2) = 5° +4(5)%(~2) — 5(5)(—2)* = 2025.
{wiy}—(5,-2)
. & — 2y is a pelynomial and therefore continuous, Since cost is a continuous function, the composition cos(z — 2y)
is also continuous. Ty is alse a polynomial, and hence continuous, so the product f(z,y) = zycos{x — 2y) isa

continuous function. Then( %im{6 3 flz,y) = f(6,3) = (6){3) cos(6 — 2. 3) = 18
I’y i 1
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. flz,y) = 2% (x® + ). First approach (0, 0) along the z-axis. Then f(x,0) = z%/z* = 1forz # 0, so
flz,y) — 1. Now approach (0, 0) along the y-axis. Then for y # 0, f(0,y) = 0, so f{x,y) — 0. Since f has two
different limits along two different lines, the limit does not exist.

flz,y) = (z° + sin® ) /(22* + y?). First approach (0, 0) along the z-axis. Then f(z,0) = z*/2z° = 1 for

2 : 2
z # 0,50 f(z,y) — 3. Next approach (0, 0) along the y-axis. Fory # 0, f(0,y) = 5132 LA (Sl%) and
li L siny = 1,50 f(z,y) — 1. Since f has two different limits along two different lines, the limit does not exist.
=0y

. flz,y) = (zycosy)/(3z* 4+ y*). On the z-axis, f (x,0) = Oforx £ 0, so f(x,y) — 0as (z,y) — {0,0) along

the z-axis. Approachmg (0,0) along the line y = =, f(z,x} = (2% cosz)/42* = L cosx forz # 0, s0

flz,y) — 3 along this line. Thus the limit does not exist.

. flz,y) = 62%y/(22* + y*). On the z-axis, f(z,0) = 0 forz # 0, so f(z,y) — Oas (z,7) — (0,0) along the
x-axis. Approaching (0,0} along the line y = z gives f(z,x) = 6x7/(3z') = 2 for x # 0, so along this line
f(z,¥) — 2as (z,y) — (0,0} Thus the limit does not exist.

. flz,y) = % We can see that the limit along any line through (0, 0) is 0, as well as along other paths
ety

through (0, 0) such as x = y* and y = z°. So we suspect that the limit exists and equals 0; we use the Squeeze

Theorem to prove our assertior. ) < \/ﬁ:—y_j < |z| since |y| < /22 + y2, and |z| — O as (x,y) — (0,0).
e +y
So lim z,y) = 0.
(Isy)—'(ﬂsﬂ)f( ¥)
flzyy) = (2 =y + v = (2P ) (2 — P/ (27 +yP) = 2% -y for (z,y) # (0,0). Thus the limit
as {x,y) — (0,0)is 0.
2xty

1.4+ 2
9z

flz,z*) = v = 1forz # 0,50 f(z,y) — 1as (x,y) — (0,0) along the parabola y = z*. Thus the limit

doesn’t exist.

. Let f(x,y) = . Then f(z,0) = 0forz # 0,50 f(z,y) — 0as (z,y) — (0,0) along the z-axis. But

2 2
T sin
. We can use the Squeeze Theorem to show that  lim Yo

(o) (0,0) T2 + 242

2 -2 2 2 . 2
T sin , . x .

AL 4 < sin? y since — 52 lim -g;%
¢ + 2y (z.4)—(0,0) 2 4+ 2y

— $2+2y2
2 2 2 2 W
Hm r Y = lim Ty YT Y ti+}
(z)—(0,0) /g2 + 42 +1 -1 ()= 000y 2+ g2+ 1 -1 /a2 4yt +14+1

(« +y)(\/a:2+y +1+1)
= lim

(z,9}—{0,0) x? - y?

< 1,andsin®y — Gas (z,y) — (0,0), so =0.

= lim ( :1:2+y2—f—1+1)=2
 (ay) (0.0

. flx,y) = xy* /(2 + y®). On the z-axis, f (z,0) = 0 forz £ 0, so f(x,y} — Oas (z,y) — (0,0) along the
T-axis. Approaching (0,0) along the curve = = * gives f{y*,y) = 2%/2® = 1 for y 5 0, so along this path
flaz.y) — 5 as (z,3) — (0,0). Thus the limit does not exist,
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17. ¢ *Y¥ and sin{wz/2) are each compositions of continuous functions, and hence continuous, so their product
flz,y,2z) = e “¥sin(x2/2) is a continuous function. Then
lim z,y,2) = £(3,0,1) = e BOgin(z.1/2) = 1.
ey T2 =£3,01) (= 1/2)
2 2 a2 2
r +2y° + 32 z+0+0
———F— . Th 2,0,0) = 57—
w2+ y?+ 22 en f(2,0,0) 2+ 0+0
04 2y2 +0
0+42+0
{z,y,2) — (0,0,0) along the y-axis. Thus, the limit doesn’t exist.

- flzyy,2) = =1forx #£0,s0 f(x,y,2) — Las

(x,y,2) — (0,0,0) along the z-axis. But f(0,y,0) = =2fory # 0,50 flz,y,2) — 2as

2 2
) _ryty txz
.f(x.y,z)— :B2+y"’-+z4

flx,y, 2} — 0. But f(z,z,0) = 22/(2c%) = L forz # 0, s0 as (z,y,2) — (0,0,0) along the line y =z, 2 = 0,

f{z,y, 2} — 3. Thus the limit doesn’t exist.

. Then f(x,0,0) = 0/z® = 0 forz # 0, soas (z,¥, z) — (0,0, 0} along the z-axis,

ry +yz+zx
T2 _+_y2 + 22 )
flz,y,2) — 0. But f(x,2,0) = 2°/(22°) = } forz # 0,s0as (x,y, 2) — (0,0,0) along the line y = z. z =0,

f(z,y, z) — 3. Thus the limit doesn’t exist.

. fla,y, 2) = Then f(x,0,0) = 0forz # 0, s0as (z,y,2) — (0,0,0) along the r-axis,

From the ridges on the graph, we see that as (z,y) — (0, 0) along
the lines under the two ridges, f(z, y) approaches different values.

So the limit does not exist.

From the graph, it appears that as we approach the origin along the
lines z = 0 or y = 0, the function is everywhere (}, whereas if we
approach the origin along a certain curve it has a constant value of
about 1. [In fact, f(y*,y) = %/ (24°) = § fory £ 0,50

flz,y) — 1 as (x,y) — {0,0) along the curve z = y°.] Since
the function approaches different values depending on the path of

approach, the limit does not exist.

. hiz,y) = g(f(z,y) = (22 + 3y ~ 6)° + /2x T 3y — 6. Since f is a polynomial, it is continuous on R*

and g is continuous on its domain {¢ | ¢ > 0}, Thus h is continuous on its domain
D= {{x,y) | 2z +3y — 6 >0} = {{z,y) { y > — £z + 2}, which consists of all peints on or above the
line y = —%.’L’ + 2.

Ch{xy) = g(f(z,y) = (\/xg —y— 1)/(\/12 -y+ 1) . Since [ is a polynomial, it is continuous on R?

and g is continuous on its domain {¢ | £ > 0}, Thus & is continuous on its domain

D= {(zy) | -y > 0} = {(:c, y) |y < 3:.2} which consists of all points below or on the parabola y = z°.
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From the graph, it appears that f is discontinuous along the line

y = z. If we consider f{z, y) = e'/®™¥) as a composition of
functions, g(z,y) = 1/(x — y) is a rational function and therefore
continuous except where x — y =0 = y = z. Since the
function h(t) = €' is continuous everywhere, the composition
h{g(z,y)) = eV =¥ = f(z,y) is continuous except along the

line 4y = x, as we suspected.

We can see a circular break in the graph, corresponding

approximately to the unit circle, where f is discontinuous.

[Vote: For a more accurate graph, try converting to cylindrical

S coordinates first.] Since f(z,y) = =
SRR 1—a2 -~y
SIS 2

3 is a rational

function, it is continuous except where 1 —z° —y* =0 =

x? 4 9/* = 1, confirming our observation that f is discontinuous

on the circle z° -+ y2 = 1.

sin(zy)

. The functions sin(zy) and * — y* are continuous everywhere, so F(z,y) = - 5
et —y

is continuous except where

1
e -yt =0 = y?=¢€" = y=+ve® = +e 2. Thus F is continuous on its domain
{(z,y) | y # 2/}

T —

_ Y
R P

never zere).

is a rational function and thus is continuous on its domain B? (since the denominator is

. F(z,y) = arctan(z + V¥ ) = g{f(z,y)) where f(z,y) = = + /9. continuous on its domain {{x,y) | ¥ > 0},
and g(t) = arctant is continuous everywhere. Thus F is continuous on its domain {(x,y) | ¥ > 0}.

3

2 . . . - - . Y )
. e ¥ is continuous on R? and \/z + y? is continuous on its domain { (z,y) | z +y* > 0} = {(z,y) | z > 32}

so F(x,y) = e Y 4 vz + y? is continuous on the set {(z,y) | = > —y°}.

. Glz,y) = In{a® +y* — 1) = g(f(z,y)) where f{z,y) = 2° + y* — 4, continuous on R?, and
g(t) = Int, continuous on its domain {¢ | ¢ > 0}. Thus G is continuous on its domain
{(z,1) | 2* +4* —4> 0} = {(z,y) | 2° + y* > 4}, the exterior of the circle 2% + y? = 4.

. Glz,y) = g(f(z,y)) where f(z,y) =« + y% continuous on R?, and g(¢) = sin~' ¢,
continuous on its domain {# | —1 < ¢ < 1}. Thus G is continuous on its domain
D={{(z,y) | -1<z®+y* <1} = {{z,y) | 2* + y* < 1}, inside and on the circle = + 3 = 1.

. /¥ is continuous on its domain {y | y > 0} and =? — 5* + 2? is continuous everywhere, so

VU
_y2+z

{@y2)ly20y#VaZ+22}

flz,y,2) = - 5 is continuous fory > Oandz® — ¢ + 22 £ 0 = 47 # 27 + 2% thatis,
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M. fz,y,2) = VT + y+ z = h(g{z,y, z)) where g(z,y, z) = = + ¥ + 2, continuous everywhere, and h(t) = v/t
is continuous on its domain {¢ | ¢t > 0}. Thus f is continuous on its domain {{z,y,2) |z +y+ 2z > 0}, so f is
continuous on and above the plane z = —z — y.

2,3
T .
e it (2,9) # (0,0) . o .
fle,y) = xt+y The first piece of f is a rational function defined everywhere except

L if (z,3) =(0,0)
at the origin, so f is continuous on R? except possibly at the origin. Since 22 < 2z + y?, we have

|*y/(22° + y*)| < |y*|. We know that |y®| — D as (z,) — (0,0). So, by the Squeeze Theorem,
2.3

. _ oy o . |
lim r,y)= lim ———— =0.But f{(0,0) = 1, so f is discontinuous at {0, 0). Therefore, [ is
(z.y)—(0,0) fay) (z.)—(0,0) 222 4 2 10,0) ! (0,0) f

continuous on the set {(z,y) | (z, %) # (0,0)}.

Ty .
S {5y # (0,0) ‘ o o

flz, ) =< T Yy The first piece of f is a rational function defined everywhere
0 if (z,%) = (0,0)

except at the origin, so f is continuous on R? except possibly at the origin. f(z,0) = 0/z% = 0forz # 0, so
f(z,y) — Das (x,y) — (0,0) along the z-axis. But f(z,z) = z*/(32%) = 1 forz # 0,50 f(z,y) — 3 as

{z,y) -+ (0,0) along the line y = z. Thus , l)im(G 0 f{z,y) doesn’t exist, so £ is not continuous at (0,0) and the
Z.y)—1U,

largest set on which f is continuous is {{(z, v} | (z,y) # (0,0)}.

3, .3 3 3

. 08 0 0 . .
im L1V g (reosf)” + (rsind) = lim (rcos®8 +rsin®8) =0
(z.)—(0,0) T2 +y2 ot T2 Ot

Inr?
- lim o +9*)In(z® + v*) = lim 7%lnr® = lim
(*'y)—‘(ﬂvo)( v In v PO+ ros0+ 1/72

2
Tl_i}(r)ﬁ % [using I'Hospital’s Rule] = T_l_iga (—r*)=0

lim .'cyz ~ im (psin ¢ cos#)(psin ¢ sin 6){p cos ¢}
(22— (0,00 T2 +y2 + 22 ot p?

= lim (psin® ¢ cos¢sin@cosd) =0

p—0t

. 2 2 : 2
. sm{xr” + . sin(r L . .
lim % = lim %),whlch 15 an indeterminate
(z,)—={0,0) T+ Yy r—0t T

torm of type (/0. Using I'Hospital’s Rule, we get

sin(:z) H o 2r cos{r?)

lim

r—0t T

= lim cos(r®) = 1.
r—0t 2r r—0t

Or: Use the fact that lim sin § = 1.
—0 9

. Since [x — a|® = |x|* + |a}* — 2{x||a|cos® > |x|* + |a]* — 2|x]||a] = (Ix] — |a|)%. we have
IIx| — |a}| < |x —al. Let e > 0 be given and set & = ¢. Then whenever 0 < |x — a| < §,
Ix| — |a]| < |x —a] < & = e Hence limy_q |x| = |a] and f (x} = |x] is continuous on R™.
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42. Let € > 0 be given. We need to find & > 0 such that | f (x) — f (a)| < « whenever |x —a| < éor
le-x—c-a| < ewhenever|x—a| <6 But|le-x—c-a|=c-(x~—a)|and |c- (x —a)| <|c||x —a|by
Exercise 13.3.57 [ ET 12.3.57] (the Cauchy-Schwartz Inequality). Let ¢ > 0 be given and set § = €/ |c|. Then
whenever 0 < |[x —a| < 8, [f(x)—f{a)|=lc-x—c-a| <|c||x —a| <|c|§ =|e|{¢/|c|]) =€ So fis

continuous on R™,

15.3 Partial Derivatives ET14.3

1. (a) 0T/ Oz represents the rate of change of T when we fix y and ¢ and consider T as a function of the single
variable i, which describes how quickly the temperature changes when longitude changes but latitude and time
are constant. 97T/ &y represents the rate of change of T when we fix z and ¢ and consider T' as a function of y,
which describes how quickly the temperature changes when latitude changes but longitude and time are
constant. 8T/ 3t represents the rate of change of T when we fix z and y and consider T as a function of ¢,

which describes how quickly the temperature changes over time for a constant longitude and latitude.

(b) f-(158,21,9) represents the rate of change of temperature at longitude 158°W, latitude 21°N at 9:00 am. when
only longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an
increased air temperature, so we would expect f; (158, 21,9} to be positive. f,(158, 21, 9) represents the rate of
change of temperature at the same time and location when only latitude varies, Since the air is warmer to the
south and cooler to the north, increasing latitude results in a decreased air temperature, so we would expect
fy (158,21, 9) to be negative. f:(158, 21, 9) represents the rate of change of temperature at the same time and
location when only time varies. Since typically air temperature increases from the moming to the afternoon as

the sun warms it, we would expect f; (158,21, 9) to be positive.

£(92 + h,60) — £(92,60)
h

2. By Definition 4, fr(92,60} = rl;imo . which we can approximate by considering i = 2

and b = —2 and using the values given in Table 1: f+(92,60) 1(94,60) — /{92, 60) _ 1108 =3

2 2 ’

(90,60) — f(92,60) 100 — 105
) =2
approximately 2.75. Thus, when the actual temperature is 92°F and the relative humidity is 60%, the apparent

temperature rises by about 2.75°F for every degree that the actual temperature rises.

Similarly, fy(92,60) = }:H}) f{92,60 + h}i — £(92,60)

h=5andh = 5 fu(o2,60) ~ {0209) = f(92,60) _ 108 = 105 _

f(92,55) — f(92,60) 103 — 105
-5 N -5
approximately 0.5. Thus, when the actual temperature is 92°F and the relative humidity is 60%, the apparent

Fr(92,60) = !

= 2.5. Averaging these values, we estimate fr (92, 60) to be

which we can approximate by considering

0.6,

fH(92, 60) ~

= 0.4. Averaging these values, we estimate f (92, 60) to be

temperature rises by about 0.5°F for every percent that the relative humidity increases.
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F(—15 + h,30) — f(—15,30)
h
considering A = 5 and h = —5 and using the values given in the table:
f(=10,30) - /(-15,30) _ ~20-(=26) _6 _
5 - 5 5 7
fr(—-15,30) = £(=20,30) _ﬁf(_lf)’ 30) = —33 - 2_26) = :—; = 1.4. Averaging these values, we
estimate fr(—15, 30) to be approximately 1.3. Thus, when the actual temperature is —15°C and the wind

3. (2) By Definition 4, fr{—15,30) = }l}n}) , which we can approximate by

fr(~15,30) ~

speed is 30 km/h, the apparent temperature rises by about 1.3°C for every degree that the actual temperature
rises.
F(—=15,30 4+ h) — f(—15,30)
h
_ _ ) _ f(-15,40) - f(-15,30) 27 —(-26) 1 _
h=10and h = —10: f,(—15,30) ~ 0 = T =15 =

—15,20}) — f(—-15,30 —24 — (26 2

estimate f,,{—15, 30) to be approximately —0.15. Thus, when the actual temperature is —15°C and the wind

Similarly, f.(--15,30) = &m}) which we can approximate by considering

-0.1,

= —0.2. Averaging these values, we

speed is 30 km/h, the apparent temperature decreases by about 0.15°C for every km/h that the wind speed

ncreases.

(b) For a fixed wind speed v, the values of the wind-chill index W increase as temperature T increases {look at a

aw . .. . .
column of the table), so — is positive. For a fixed temperature T, the values of W decrease {or remain

ar

i ow . .
constant) as v increases (look at a row of the table), so o i negative (or perhaps 0).
v

(c) For fixed values of T, the function values f(T, v) appear to become constant (or nearly constant) as v increases,
so the corresponding rate of change is 0 or near 0 as v increases. This suggests that lim (§W/dv) = 0.
v— o

4. (a) Oh/Ov represents the rate of change of & when we fix ¢ and consider h as a function of v, which describes how
quickly the wave heights change when the wind speed changes for a fixed time duration, 8h/8t represents the
rate of change of h when we fix v and consider / as a function of ¢, which describes how quickly the wave
heights change when the duration of time changes, but the wind speed is constant,

£(40 + R, 15) — £(40,15)
h

k= 10 and h = 10 and using the values given in the table:
. f(50,15) ~ £(40,15) 36 —25 _
~ 10 1

_ f(30,15) — f(40,15) 16 —25
~ —10 T

Thus, when a 40-knot wind has been blowing for 15 hours, the wave heights should increase by about 1 foot for

(b) By Definition 4, f,(40,15) = }lin}) which we can approximate by considering

Fo(40,15) 1.1,

Ffu(40,15)

= 0.9. Averaging these values, we have f,(40, 15) = 1.0.

every knot that the wind speed increases (with the same time duration}. Similarly,

£1(40,15) = tim LU 15+ 1) — F(40,15)
‘ h—0 h

which we can approximate by considering

f(40,20) — f(40,15) _ 2825 _

h=5and h = —-5: f,(40,15) = z :

0.6,
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fe{40,15) ~ f140,10) —Sf(40, 1) _ 21 _5 = ().8, Averaging these values, we have f;(40,15) = 0.7.

Thus, when a 40-knot wind has been blowing for 15 hours, the wave heights increase by about 0.7 feet for every

additional hour that the wind blows.

() For fixed values of v, the function values f(v,t) appear to increase in smaller and smaller increments, becoming

nearly constant as ¢ increases. Thus, the corresponding rate of change is nearly 0 as ¢ increases, suggesting that

lim (8h/0¢) = 0.

. (a) If we start at (1, 2) and move in the positive z-direction, the graph of f increases. Thus f. (1, 2) is positive.

{b) If we start at (1,2) and move in the positive y-direction, the graph of f decreases. Thus f, (1, 2) is negative.

. (a) The graph of f decreases if we start at (—1, 2) and move in the positive x-direction, so f;(—1, 2) is negative.

{b) The graph of f decreases if we start at (—1, 2) and move in the positive y-direction, so f,{—1, 2} is negative.

(C) foz = 5‘5’; (fz). 80 fz is the rate of change of f; in the z-direction. f: is negative at (—1,2) and if we move in
the positive z-direction, the surface becomes less steep. Thus the values of f; are increasing and fro(—1,2) is

positive.

(d) fyy is the rate of change of f, in the y-direction. f, is negative at (—1, 2) and if we move in the positive

y-direction, the surface becomes steeper. Thus the values of f, are decreasing, and fy,,(—1, 2) is negative.

. First of all, if we start at the point (3, —3) and move in the positive y-direction, we see that both b and ¢ decrease,
while @ increases. Both b and ¢ have a low point at about (3, —1.5), while @ is { at this point. So ¢ is definitely the
graph of f,, and one of b and c is the graph of f. To see which is which, we start at the point (—3, —1.5) and move
in the positive z-direction. b traces out a line with negative slope, while ¢ traces out a parabola opening downward.

This tells us that b is the z-derivative of ¢. So ¢ is the graph of f, b is the graph of f2, and q is the graph of f,,.

. fz(2,1) is the rate of change of f at (2,1} in the x-direction. If we start at (2, 1), where f(2,1) = 10, and move in
the positive z-direction, we reach the next contour line (where f(z,y) = 12) after approximately 0.6 units. This
represents an average rate of change of about 5'_2—6. If we approach the point (2, 1) from the left (moving in the
positive z-direction) the output values increase from 8 to 1 with an increase in x of approximately 0.9 units,
corresponding to an average rate of change of %. A good estimate for f,(2,1) would be the average of these two,
s0 f.(2,1) =~ 2.8. Similarly, f,(2, 1) is the rate of change of f at (2, 1) in the y-direction. If we approach (2,1)
from below, the output values decrease from 12 to 10 with a change in y of approximately 1 unit, corresponding to
an average rate of change of —2. If we start at (2, 1) and move in the positive y-direction, the output values decrease
from 10 to 8 after approximately 0.9 units, a rate of change of Efg. Averaging these two results, we estimate

f,(2,1) »~ -2.1.
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9. fla,y) =16 —da® —¢* = folr,y)= Srand f{z,y) = -2y = f=(1,2) = Band f,(1,2) = -4
The graph of f is the paraboloid z = 16 — 4x* — y” and the vertical plane y = 2 intersects it in the parabola
z = 12 — 427, 3y = 2 (the curve (1 in the first figure).
The slope of the tangent line to this parabola at (1,2, 8) is fz{1,2) = —8. Similarly the plane x = 1 intersects the
paraboloid in the parabola z = 12 — %*, z = 1 (the curve C2 in the second figure) and the slope of the tangent line

at (1,2,8) s £,(1,2) = —4.

11,2}

ey = (-2 -4 = falzy) = —eld -0 - 47) VP and f(ey) = —dy(4 -2 - 4yt
= £.(1,0) = —%3, £,{1,0) = 0. The graph of f is the upper half of the ellipsoid z° + x* + 4y* = 4 and the
plane y = 0 intersects the graph in the semicircle 22 + 22 = 4, z > 0 and the slope of the tangent line T} to this
semicircle at (1,0, ﬁ) is fz{1,0) = —\%. Similarly the plane x = 1 intersects the graph in the semi-ellipse

2% + 4y = 3, z > 0 and the slope of the tangent line 7% to this semi-ellipse at (1, 0, \/ﬁ) is f(1,0) = 0.

Note that the traces of f in planes paraliel to the xz-plane are parabolas which open downward for ¥ < —1 and

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 153 PARTIAL DERIVATIVES ETSECTION143 O 369

upward for ¢ > —1, and the traces of f, in these planes are straight lines, which have negative slopes for y < —1
and positive slopes for y > —1. The traces of f in planes parallel to the yz-plane are parabolas which always open
upward, and the traces of f, in these planes are straight lines with positive slopes.

12. f(z,y) = e Y o fz= m(—?re’f’”z#yz) Lemaiy = c_IZ_yz(l —22%), fy, = —23:ye_“=2_y2

RO

> AR -
K2

Note that traces of f in planes parallel to the xz-plane have two extreme values, while traces of f, in these planes
have two zeros. Traces of f in planes parallel to the yz-plane have only one extreme value (a minimum if < 0,
a maximum if z > 0), and traces of f,, in these planes have only one zero (going from negative to positive if z < 0

and from positive to negative if z > 0).
- f(I,y) =3z — 2y4 = f:c(iﬂ,y) =3-0=3, fy(l',y) =0~ 8y3 = —8y3

Sflzy) =2 +32% + 3oyt = fola,y) =52 +3-32° 7 431yt =52t + 9272 + 3yt
folz,y) =0+ 32 - 2y 4 3z - 4y° = 62y + 1229°.

Sy 0z _ 3y 02

=% == = 3xedY
3r € By Te

.z =ylnz = &=2,&=1nm

dx z’ Iy

Sy = o gy = REtp o) %

T+y (z +y)? (z+y)?

ey CDErY) @ oyd) 2%
fy( ,y) - ($+y)2 - ($+y)2

L flry)=2¥ = folz,y)=yx¥h fylz,y) =¥ Inx

. Sw ow . .
. w=sinacosB = — —cosacosf, — = —sinasinf

Oo as
st?
82 +t2
£2(g? 2y g2 4 2.2 2 2y 42 3
fulsrt) = (8" +t7) —st"(25) _ " —s"t ,ft(s,t)=28t(8 +t%) 23t (2t) 257t
(52+t2)2 (52+t2)2 (82+t2) (32+t2)2

S,t):
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272
re 4 52

2r

—_ +In(r? + 52),
e tIn(r* + 5%)

2. f(r,s) =rin(r*+s%) = fo(r,s)=7- +1In(r? + %) 1=

2s _ 2rs
2+ g2 T or2 g2

fs(’r,s) =Tr-
1 i Vit

 f(z,t) = arctan{z Vi) = fﬂwbm R

k]

SN SN ( PRSY2 ) L
L+ (o) (3°) - e

du w wy Ou
w/t w/t -2 w/t w/t w/t w/t
= g e et et L= et o et e (1=7) 0 =

. u = te

€T X
. fz,y) = f cos(t)dt =  fulzy) = (% / cos(t’) dt = cos(z”) by the Fundamental Theorem of
Y y

Calculus, Part 1; fy(z,y) = (,%/ cos(tz) dt = —5% cos(t?) dt = — cos(y?).
y

Sy, 2) =2yt +3yz = felm,y,2) = 4720 fule,y,2) = 22y2° + 32, fa(z,y,2) = 3my®2% + 3y
L f(r,y,2) = 2°e¥ = fu(z,y,2) = 2ze¥E, f(x,y, 2) = 22e¥¥(2) = 2Pze¥,
fe(@,y,2) = 2e¥7 (y) = a’ye?”

Sw 1 Ow 2 Jw 3
. =1 +2 +3 = — " —— = — —— = ——
w = Infe Y ?) dr z4+2y+3z Oy z+2y+32 Oz T+ 2y+ 3z

Lw = ri st 42 = @=1(2+32+t2)_1/2(2r):—r ow c

or Vit + st 482 05 Vs g

ow 2

ot /72 4 2 + 12
. du

sinf = — = tsind,

dx

du

5 = ze feosl

, w = xe” —ze 'siné,

%_—.

y/z _ y/z
Lu=o¥ = oy, = Em(y/z)_l, ty = 2 lng- 1 -z Inz, u, = 2¥*Inz . ¥ 7y9:‘ Inz
z z 2 22 22
ey nt) — sy tan(yt) = falm gz t) = v tan(y)
folz,y,2,t) = zyz®  sec® (yt) - t + z2” tan(yt) = xyz tsec? (yt) + z22 tan(yt),
felw,y, 2, t) = 2eyztan(yt), felz,y, 2, 1) = zyz® sec?(yt) - y = zy® 2% sec?(yt).
2
ay
. fle,y, 2,0) = =
flay, 2 t) = =
: 2y
t+22°
2

2Iy2 o _ Y
T 227 felz,y,2,t) = 2y (=1){t + 22)72(1) = T

fI(J:?y!zrt): fy(I,y,Z,t)Z

¥
t+ 227

fz(:anazst) = myz(_l)(tJr 23)_2( ) ==

Lu = /22 + 22+ +x2. Foreachi =1...., 17,

Uy, = %(Z‘% + ,'C% + Cee 4 xﬁ)"l/z(Q:Cz) = \/I2 = :Ezm:_ + ="
1 2T T I
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34. w = sin(awr + 222 + - + nzy). Foreachi = 1,..., n, ug, = tcos(zy + 222 + - - 4 na).

B flry) = VEFE = faloy)= 3@ +47) V2 (2) = 33

AV S

_r
[ +y2’
3. f(x,y) =sin(2x +3y) = fyl@,y) = cos(2x + 3y) - 3 = 3cos(2z + Jy), so
fu(—6,4) = 3cos[2(—6) -+ 3(4)] = 3cos0 = 3.
x

B fwys) === =aly+)t > Loy =D+ s —m

y+ z

S0

3 1
fz(312= 1) = _(2+ 1)2 = 75'

38. f(u,v,w) = wtan(uw) = fu(u,v,w) = wsec*{uv) - u = uwsec’ (uv), so
F0(2,0,3) = (2)(3)sec?(2-0) = 6.
3. flz,y) =2 -y + 24 =

2 ., 2, 2 _ 2
I (zy) = Jim LEEBY Z @Yy (b h) - by 2y - @ - eyt 2y)
h—0 h h—0 h
= lim ___—h(Qm y+h)
h—0} h

hm(?a:—y+h) =2x—vy

fay+h)— flay) 2 sy +h) +2y+h)? - (@7 -2y + 27)
h h—D h

i My — x4+ 2R)
B0 h

=’111LI})(4y—:E+2h) =4y -z

0. fr,y)=3z—-y =

fulzyy) :;l;ii.% f(-‘lf-i-h,y})t_ flz.y)
= po \/B{ET—_‘/?”E__ VIE R -y +V3T =y
h V3@+h)—y + Bz =y

3

flz,y+h)— flz,y)
h
VAR y+h — 3 -y \/3:1"——(y+h + 3z —y
i BN TR e

, —_
fylz,y) = Jim

h

= lim

-1
h—t /3y — y+h +/3r—y 2\/3$*y

. . a4, . a C
N 22 +y* + 22 =3zyz = éj;(wz+y2+zg)=%(3:cyz) = 2$+0+2z%=3y(:{'%+z-1)

a " Bz

9z 9z 9z 0z  3yz—2x
2z 2 — 3zy o = dyz — 2 2z — == = =R
< 2z 5 Y o Jyz—2r & (22— 3zy) o Jyz — 2z, s0 9z = 22~ 3ay
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i(m2+y2+z2):6—i(3myz) = 0+2y+222—;~3$(yg—z+z-1) =
dz Oz 3zz—-y

=32z 2 22 — 3xy) = 2= L
w2y & (20 3zy) Oy 2z — 3xy

2zd— — Swyd 7y

By By = 3zz — 2y, so

e] J 0z 1 Oz
-yz=In(xtz) = o-(yz) = oo (nlz +2)) = y%—$+z(1+%) &
1

( 9z Y(e+z) 1
) T z+z Of)x_y—l/(:c+z)_y(:c+z)—l'

ad a az 1
3 (yz)—a—{ln(.L+z)) = 5-+z 1= +z(0+5§

()z_ z(x + z)
dy y—l/(£+z) 1—y(m+z)'

. & — 2z = arctan(yz} —> 3_03: (x—2)= 8—8? (arctan(yz)) = 1- % = z 5
Y a9z y+ 149222\ 9z dz 1+ 222
_— 1 _ = B EEEEEE—— —_— . _— = —_—_—
1+ y?22 * ) oz = ! ( 14 222 5 T T+ Y+ y2a?

Oz 1 dz

J
= (arctan(yz)) = O—a—yzm.( =4z 1) o

8y
@ - _ v+ 14 3222 s o 9z z
l—f—y 22 yz2 dy ' 1+ y2z2 Hy dy 4 y+y2z?

Ay

. g . 2 ,
csin(zyz) =+ 2y + 3z = e (sin(zyz)) = e {r+2y+32) =

cos(ryz) - y(.): % + z) =143 gf < (xycos(zyz) — 3) g; =1 — yzcos(xyz), so

9z _ 1 —yzcos{zyz)

8x  axycos(zyz) — 3

(% (sin(zyz)) = (r+2y+32) = cos(zyz)- :c(y g—; + z) =243 g_y &

z 2 —zzcos{wyz)

d_
0z 9z
dy Oy  zycos(zyz) — 3’

(rycos{zyz) — 3) — = 2 — zz cos(xyz), so

i) ' 5] '
(@) z=fe)+9(y) = ﬁzf(ﬁ),;i:Q(y)

o df d] / s
b)z=flx+y) Letu= 2z +y. Thenéé :-d—iizd—i(l):f(u):f(w+y),

dz df Ou df

= dg = W= = et
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0z ’ Jz _ '
8. (a) z = f{x)gly) = Pl f'(z)gly). B flz)g' ()

Ou Ju Oz df ou  df ; .
(b) z = flzy). Letu = zy. Then-éw—yanda—y-ﬁmHncea—g&£=@'yﬁyf(“)=yf($y)
dz df Ou  df

dd_y—(_iaa—y:@-w:wf(u)zwf (zy).

du 1
(L)z-f(y) Letu-; Then 7z ; an B_y
af’

Do (2. alleh)

. Hence —

ou _ z Oz _ df Ou _
2 dr  dubdz

By duoy U\ y?

ey =at 300 S fa(ory) = 42— 6a®, fy(2,y) = ~90%7. Then fus(z, y) = 1227 — 6%,
Foylz,y) = =18247, fyz(z,y) = —18zy°, and fyy (z,y) = —182°y.
3 5
_ = . Th
3215y V@) = 3y Then

9 15 15
mey(Iay): Bz g fyalz,y} = @

flx,y) = In(Bz +5y) = folz,y)=

fealz,y) = 3(—=1)(3z + 5y)"*(3) = —

25

and fyy(-:ca y) = —W

= — =zz+y)™t = zw*1($+y)_1($) Y ad

Ty BT L e =y
2y 1(w+y)2—y(2)(w+y),w+y—29_ z -y

CED [(z + )2 (x+y)?  (z+y)¥
—z(2)(z+y) 2 tay+y’ (zryle-y) _ z-y
[(z +y)?)? (z +y)? @+y?  @ry? "
2T
(x+y)*

a(-1)z +y) =

Then 2ee = y(—2)(z +y) ° =

and

Zyz = —
zy = —w(-2)(z +y) 7 =

,z = ytan2z = zp = ysec?(2z) - 2 = 2ysec?(2z), zy = tan2z. Then
Zex = 2y(2) sec{2x) - sec(2z) tan(2z) - 2 = 8ysec?(2z) tan(2z), 2z, = 2sec’(2z),

2ye = sec?(2x) - 2 = 2sec?(2x), and z,, = 0.
u=e¢ *sint = 1w, = —e %sint,u; = e ®cost. Thenuyss = e ?sint, uy,, = —e °cost,
Urs = —e *cost, and up = —e °sint.

1

v = ety m vy = o+t Ve
Yy x 2( y°) 2.z 1 2

1

_ Y S —_—r
v = 3o+ )Y = o Then v = 3(=3) 0+ = g

- 1 2y-3/2(9,) _ Y — (1 L I
vey = 5{—z){z +v°) (29)*_ Az +y2)3/2’v?”3*y( 2) @+ = 2z + )2

i 2 — gyl + 2y 29 2y _ .2
and vy, = Y TTY vy E+y) 52 a4yt -yt

(Var i) R T
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53. u = wsin(z + 2y} = w. =z -cos(z + 2y)(1) + sin{z + 2y) - 1 = zcos(z + 2y) + sin(z + 2y).
Ugy = x(—sin(z + 24){2)) + cos{z + 29)(2) = 2cos(x + 2y) — 2zsin{z + 2y) and
uy = xcos(z + 2y) (2) = 2z cos(z + 2y),
Uye = 22 - (= sin(z + 2y)(1}) +cos(z + 2y) - 2 = 2cos(x + 2y) — 2z sin(z + 2y). ThUs Usy = Uye.
cu=xly? 22y = we =43%y® - 20wy, = 8%y — 10! and uy, = 22ty — 102y, uye = 825y — 10y°
Thus tyy = tye.
. u=In/x? +y? = 111(3:2 —i—yz)l”z = %111(:172 +y2) R — %?i—yz C2p = ﬁyr

y —
2 + y2’

2xy
(x? 4+ y2)*

%2. Thus tioy = Uysz.
(2% + )

1 1
anduy, = ———— -2y =

. oy =2
Uy = .'I:(—l)(.?nz + yz) (2y) = — 272 + g2

e = y(~1) (2 +9%) C(20) = -

L= aye? = wp = Yo, uey = ye¥ +e¥ = (y+ De¥ and uy = z{ye? +e¥) = x(y + 1)e¥,

Uyz = (y + 1)e¥. Thus tgy = Uy
Cfley) =3ayt + o'yt = fr =3yt + 3070 fue = 60y, feay = 122y and f, = 1223° + 22%y,
Fou = 362" + 227, 0y = T22y.
o t) =2t = fi =2 (—ee™ ), fu = 2% (PeT), fir = £ (—cte ) = —
fro = 22(—ce™), fror = 2(—ce™ ) = —2ce™ ¢,
c flxyy o 2) = cos(de + 3y + 22) =
fo = —sin{de + 3y + 22)(4) = —4sin{dx + 3y + 2z),
Sy = —4cos(dx + 3y + 22)(3) = —12cos{4x + 3y + 2z2),
Jrye = —12(=sin(dz + 3y + 22})(2) = 24sin{dx + 3y + 2z) and
fy = —sin{dx + 3y + 22)(3) = —3sin(dz + 3y + 22),
Jy= = —3cos(4r + 3y + 22)(2) = —6 cos(dx + 3y + 22),
fyzz = —6(—sin{dz + 3y + 22))(2) = 12sin{dz + 3y + 2z).

. flr s, t) = rin(rs??) =

2,3
. s°¢
fr=r1- e (%) + In{rs?t?) -1 = ::%3 + In(rs?t*) = 1 + In(rs?t?),

: 2 2
(2rst?) = L= 287, frae = =257 = 2 and froe =0,

f?'s =

7.“’.21{3
ap = T8 G du — T . .z ré rf .
u=¢"sing = 50 = ¢ cosf +sinf - €™ (r) = € (cosf + rsinf),

o* .

or gg = ¢™ (3inf) + (cosd + rsinf) ¢ (8) = ¢ (sinf + Hcos§ + rfsin 9),
R
dr2o0

r=uyy o wm=ulv—w)? =

&z

dvow *(_%(U - “’)73/2(1)) = du(v —w)™"?

" (#sin8) + (sinf + O cosd + rfsind) - €™ (0) = 0™ (25in6 + O cos B + résinb).

Oz _ iy
e :u[%(1~~w) l/2(71)} = —sulv—w) /3

9z _
udede = 10w
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Ow = ~(y+22)7*(1) = ~(y+22)77,

x 1 P
L= = 2 & 92)7t, L
63. w e z{y + 22) = B {y + 2z) By e

63'0'.) . -3 . -3 _ 4

w Fuw

=a(=1)(y+22)7°(1) = ~w{y +22)7%, Bray - W 22) % 5 e By

Fu . Ou -
= 0. Otherwise — = cx®y"z° 7,

cu =Y’z Ifa=0,0rifb=0Oor l,orif c =0, 1,0r 2, then Bz By? 828 9z

&u e b o2 OPu
‘a? = C(C - 1).‘1’,‘ ybz 2, -ézg
u
oy? 923

u

a b _ec— a,b—1,¢-3
ZC(Cfl)(Cvz).’L' vz S,W :bC(C—l)(C—2)CL' Y z P
Fu

. o . _ a b—2_c—3 -
= b= De(e = e =2y and 55

= ab(b— 1)ec(e — 1){e — 2)z® " 1yb 28,
f3+R,2) - f(3,2)
)

. J(35,2) - f(3,2)  224-175 _
~ 0.5 - 05

. - 2—-17.
R (25, 230 5f(3’ 2) _ 102 3 57 5 14.6. Averaging these values, we estimate f-(3,2) to be

. By Definition 4, f:(3,2) = illlin%] which we can approximate by considering b = 0.5

and h = —0.5: f,(3,2) 9.8,

f=(3,2)

F3+h,22) — F(3,2.2)
h
F(35,2.2) — £(3,2.2)  26.1-159

considering h = 0.5 and h = —0.5: f,(3,2.2) =~ 0% = 0% =204,

approximately 12.2. Similarly, f.(3,2.2) = lim which we can approximate b
Y R y

2.5,2.2) — f(3,2.2)  9.3-15.9
—-0.5 - -0
To estimate fz, (3, 2), we first need an estimate for f.(3,1.8):
_ f(35,1.8) - £(3,1.8) _ 200-181 _
~ 0.5 05

.0, 1.8) — f(3, 1. b5 —181
= f25,1 8)0 5f('3, 1.8) L 12 E)mo ;8 = 11.2, Averaging these values, we get fz(3,1.8) = 7.5.

fz(3,2.2) = i = 13.2. Averaging these values, we have f-(3,2.2) ~ 16.8.

£:(3,1.8) 3.8,

f=(3,1.8)
Now fry(z,y) = 6% [fz(x,y)] and f.(=z,y) is itself a function of 2 variables, so Definition 4 says that

(T yt+h) = fulz, )
h

f={3,2+h) - fe(3,2)
h

a x
fesla9) = 5 [fal)) = Jim I

We can estimate this value using our previous work with h = 0.2 and h = —0.2:

f2(3,2.2) - f2(3,2) _ 16.8-122

0.2 02

f2(3,1.8) — f2(3,2) 7.5-12.2
-0.2 =02

= fau(3,2) = lim

foy(3,2) =

23,

fry(3,2) m

approximately 23.25,

= 23.5. Averaging these values, we estimate f.,(3,2) to be

. (@) If we fix y and allow z to vary, the level curves indicate that the value of f decreases as we move through P in
the positive x-direction, so f; is negative at .

{b) If we fix = and allow y to vary, the level curves indicate that the value of f increases as we move through P in
the positive y-direction, so fy, is positive at P,
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a
(C) fu::c - E
points to the right of P the level curves are spaced farther apart (in the z-direction) than at points to the left of

(fz), so if we fix y and allow  to vary, frr is the rate of change of fo as x increases. Note that at

P, demonstrating that f decreases less quickly with respect to x to the right of P. Sc as we move through P in

the positive z-direction the (negative) value of f; increases, hence e (fr) = fez is positive at P.

(d) foy = (% (fx), soif we fix = and allow ¢ to vary, fz,, is the rate of change of f; as y increases. The level

curves are closer together (in the z-direction) at points above P than at those below P, demonstrating that f
decreases more quickly with respect to x for y-values above P. So as we move through P in the positive
y-direction, the (negative) value of f» decreases, hence f., is negative.

&) fuy = &% (fy), so if we fix z and allow y to vary, fy, is the rate of change of fy as y increases. The level

curves are closer together (in the y-direction) at points above P than at those below P, demonstrating that f
increases more quickly with respect to y above P. So as we move through P in the positive y-direction the

(positive) value of f, increases, hence 82 (fy) = fuy is positive at P.
Y

—alk?: —a’k

2.2
Lu=e —kPe TR

. 2 . - T
sinkr = up=ke teos ki, Uze = sinkz, and us = —a’k%e”® * tsinka.

Thus a®uzs = te.
. (a) u=x +y2 = Uy = 20, Uy = 25 Uy = 24, Uyy = 2. Thus vz + uy, # 0and u =w2+y2 does not
satisfy Laplace’s Equation.
by u = z* — 3* is a solution: e = 2, Uyy = —2 80 Uza + Uyy = 0.
(¢} u = z® + 3zy* is not a solution: u, = 322 + 347, Uz = 6y uy = 6y, tyy = 6.
1 1 T
d =] 2 2 is a solution: 1y = - -2 2—1/22 o
(d) u = In y/z? 4 y? is a solution: u \W(Z)(T +y°) 4 (22) g
(z> +4%) —2(22) _ y* -2’ -y’
Upy = = - . By symmetry, tyy = ————,
*r (22 + y2)2 (z2 +y2)2 Y8y 1Y Uy (x2 + y2)2

(&) u = sinxz coshy + coszsinhy is a solution:

S0 Ugg + Uyy = 0.

Uz = cosx coshy — sinzsinhy, uy; = —sinz coshy — cosz sinhy, and u, = sinxsinhy + cosrcoshy,

Hyy = sinxcoshy + cosxsinhy.

(flu=e "cosy —e Ycosxisasolution: u = —€ “cosy +e YSinZ, gz =€ " cosy+e ¥eosz, and
Uy = —€ Tsiny +e VoS, Uyy = —€¢ " cosy —e Ycosa.
1 . .
_ N2 2 2y=3)2 2y
= e e = (—3 ) (2 g+ 22 T(22) = a2+ P+ ) 3/2 and

"‘332+y2+22

e = (@ 4 2V a(= ) P 4 ) ) = Y 22
4 E: 2 ($2+y2+z2)5/2.
2 _ 2 2 _ .2 2
29 e z and u,, = 2z T yr .
(22 + 42 + 22)5/2 (22 + y? + 22)5/2
22’;2—yz-—z2+2y2_$2_Zz+222_w2_y2 B

(352 + y2 + 22)5/2

By symmetry, uy, =

Thus tgy + Uyy + Uzz — 0.

70. (a) u = sin(kz)sin{akt) = u; = aksin(kz) cos(akt), ue = —a®k* sin(kx) sin(akt),

Uy = kcos{kx) sin(akt), uzr = —k?sin(kx) sin(akt). Thus wy = a®uze.
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(a®t? — 2%) — t(2a%1) at? + 2?
Uy = = - ]
(a2i? — £2)2 (a2t2 — x2)?
—2a%H(a’t? — %)% + (a®? — 2%)(2)(a®® — 2%)(2a°t) _ 2a*t® + 6a’ta?
(@212 — g2} - at? — r2?
2zx
(a2t2 — 32)2’
2t(0®® - £°)* — 2z (2) (a®F° — &%) (—2x)  20%° — 2z + 8tz 2% + 6ta?
(a2t? — z2)* - (a2t? — 22)3 - (a2t — ;1:2)4'

M u=

a?#? — p?

1

Uty =

uy = t(—1)(a’t* — 2*)73(22) =

Upzx =
_ 2
Thus w:: = a*tigy.

©u=(z—at)’+(z+at)® = w = —6a(z—at)® + ba(z + at)’,
ure = 30a®(z — at)* + 30a*(z + at)*, us = 6(z — at)® + 6(z + at)®, uzx = 30(z — at)® + 30(x + at)®,
Thus Uy — agum.

ﬂ2

(z + at)2’

(d) v = sin{x — at) + In(z -+ at) = wu; = —acos{r—at)+ - jat’ 1y = —a’sin(z — at) —

Uy, = cos(z — at) + JUze = — sin{z — at) — . Thus wse = 0tz

x+ at

_
(z + af)?

f(”U) + g(’w)] — df(v) @ dg( ) a_w = af’(v) — ag"(w) and

a
M. Letv = t w =gz —at. Thenu, =
v=2+at,w=g-—at Thenu, Bt dv 8t " dw Bt

6 ’ _ 7
Usr = laf (U)Bt ag (w)i _ alaf"(v) + ag” (w)] = a®[f"(v) + ¢"(w)]. Similarly, by using the Chain Rule we

have u; = f'(v) + ¢'(w) and uze = f'{v) + ¢" (w). Thus us = a®uga.

72, Foreachid, i =1,... ,n, Oufdz; = q;eM 1102821 " Hann 45d 92y /822 = g2e®1%1T0252 +anZn They
Pu  Pu 8%u
sz T B2 +-+ a2z (af + a3 + - + ap Jem@1tozEztTangn . gaizitazeztotansn 4 gince
72 72 2

eftai+ +a2=1

B. 2, = ¥ + ye®, 2o, = ye*, 8°2/82° = ye”. By symmetry z, = ze¥ + %, Zyy = xe¥ and 3%2/8y® = ze¥.
Then §°z/828y* = e¥ and &°2/8x*9y = e*. Thus z = ze? + ye™ satisfies the given partial differential

equation.

9P _

aP
T4 P =bL"K" so — = abL* K"
b , SO oL abLl®"" K7 and K

BbLEKP~1 Then

oP oP a-11-8 o -1 l4a—1 -8 aprle8—1
Lﬁ+K5E-L(abL K )+K([BbL K )=abL K® 4 8bLOK

= (a+ABL°K® = (a+ B)P

15. If we fix K = Ky, P(L, Ko) is a function of a single variable L, and % =a % is a separable differential

. dP dL apr dL
equation. Then B Eep & / 7= /a - In|P|=ealn|L| + C (Ko), where C(Kp)

can depend on Ky. Then [P| = ¢ ML+ CtKo) ang since P > 0 and I > 0, we have

P = e InLpClH0) — (O(Ko)gln L7 _ C1(Ko)L* where Cy (Kq) = e“Ho),
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76. (2) 8T8z = —60(2z)/(1 +2* +y*) % s0at (2,1), T = —240/(1 + 4+ 1)* = - &
(by 9T /Oy = —60(2y)/ (1 + z° + y*), so at (2,1), T, = —120/36 = — 2. Thus from the point (2, 1) the

temperature is decreasing at a rate of 239 °C/m in the z-direction and is decreasing at a rate of % °C/m in the
y-direction.

. By the Chain Rule, taking the partial derivative of both sides with respect to ; gives

AR™' R  8[(1/R1) + (1/Rs) + (1/Ra)] OPRﬁga_R OR R?

= = —R7% Thus — = —.
aR OR; B8R, aR; L R TR

mRT P —-mRT , mRT 8V _mR _ PV 8T V

ST SR A
S@_PQ_V_’BT B —mRTEl_IjL _ —mRT
Savaeror T v: P mR_ PV

mRT OP mR . _ mRT
T,soa—T—wI/_—.Also,PV—mRi' = V= P

gV mR _. PV gP 8V PV mR mR
andgf—?.SmceT_@,wehaveTgip—a—T—mR v =mR.

T mR 9P T mR
= —1,since PV = mRT.

. By Exercise 78, PV = mRI' = P =

. %—‘g = 0.6215+0.39650 . When T’ = —15°C and v = 30 km/h, ‘?9—‘;/ = 0.6215 +0.3965(30)" " ~ 1.3048,

s0 we would expect the apparent temperature to drop by approximately 1.3°C if the actual temperature decreases by

i°C. % = —11.37(0.16)v~%%* + 0.39657(0.16)v "** and when T = —15°C and v = 30 km/h,

%—W = —11.37(0.16)(30)~%* + 0.3965(- 15)(0.16)(30) ** =~ —0.1592, so we would expect the apparent
(o

temperature to drop by approximately 0.16°C if the wind speed increases by 1 km/h.

oK .. OK K 0K 9K | .,
VOB iy 9By =m. Thus o= . 28 _ 1y, o g
om ~ 2 gy W gpr =m T oo Gy mEVm

2 2,2«

- B 4?2

. The Law of Cosines says that a® = b* 4 ¢* — 2bccos A. Thus agL ) T+ 3 abeos 4) or
a @

2a = —2be(—sin A) %, implying that 04 = ?’ . Taking the partial derivative of both sides with respect to
da da  besind
0A  ccosA-b 0A becosA—c

8b  besinA - By symmetry Be  besinAd

b gives 0 = 2b — 2¢(cos A) — 2be(—sin A) %—:— Thus

ey =2+ dy = fay(zy) =4damd fy(z,y) =3z —y = fy=(z,y) = 3. Since fzy, and fy. are
continuous everywhere but f, (x, ¥} # fy={z, y), Clairaut’s Theorem implies that such a function f(z, y) does not

exist.

. Setting = = 1, the equation of the parabola of
intersectionis z = 6 — 1 — 1 — 2y% = 4 — 2y,
The slope of the tangent is dz/0y = —4y, so at
(1,2, —4) the slope is —8. Parametric equations
for the line are therefore z = 1,y = 2 + £,
z=—4— 8t
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85. By the geometry of partial derivatives, the slope of the tangent line is fz(1,2). By implicit differentiation of
4r® + 2% + 2° = 16, we get 8z + 22 (82/8z) =0 = 0z/0z = —4x/z,s0o when z = 1 and z = 2 we have
0z/0r = —2. Sothe slope is fz(1,2) = —2. Thus the tangent line is given by z — 2 = —2(z — 1), ¥ = 2. Taking

the parameter to be £ = 2 — 1, we can write parametric equations for thisline: r = 1+ ¢,y =2, z = 2 — 2¢.
86. T'(x,t) = Ty + The” * sin{wt — Ax)
(@) 8T /8x = Tre™* [cos(wt — Az)(—A)] + T1(=Ae™*®) sin(wt — Az)
= —ATie™ [sin(wt — Az) + cos{wt — Az)]
This quantity represents the rate of change of temperature with respect to depth below the surface, at a given
time t.

(b) DT/8t = Tye™* [cos(wt — Az){w)] = wTie *® cos(wt — Ax). This quantity represents the rate of change of

temperature with respect to time at a fixed depth z.

a {oT

= -1 (tf"‘“te [cos(wt — Ax)(—A) — sinwt — Az}~ A)]
+ e (=X) [sin(wt - Azr) + cos(wt — Ax)])

= 2X*Tie ™™ cos(wt — Az)

But from part (b), T}, = wTie ™" cos(wt — Az) =

%ETM' Sowithk = %, the function T satisfies the heat

equation.

Note that near the surface (that is, for small ) the
temperature varies greatly as £ changes, but deeper

{for large ) the temperature is more stable,

(e) The term —Ax is a phase shift: it represents the fact that since heat diffuses slowly through soil, it takes time for
changes in the surface temperature to affect the temperature at deeper points. As z increases, the phase shift also
increases. For example, at the surface the highest temperature is reached at ¢ 2 100, whereas at a depth of 5 feet

the peak temperature is attained at ¢ = 150, and at a depth of 10 feet, at ¢ =5 220.

81. By Clairaut’s Theorem, fo., = (fmy)y = (fw)y = fyay = (fy}my = (fy)yz = fyva-
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88. (a) Since we are differentiating r2 times, with two choices of variable at each differentiation, there are 2™ nth order
partial derivatives.

(b) If these partial derivatives are all continuous, then the order in which the partials are taken doesn’t affect the
value of the result, that is, all nth order partial derivatives with p partials with respect to x and n — p partials
with respect to y are equal. Since the number of partials taken with respect to x for an nth order partial
derivative can range from 0 to n, a function of two variables has n + 1 distinct partial derivatives of order n if
these partial derivatives are all continuous.

(c) Since nt differentiations are to be performed with three choices of variable at each differentiation, there are 3"
nth order partial derivatives of a function of three variables.

Let g(x) = f(z,0) = z(z?)%/2” = x |z|~*. But we are using the point (1, 0), so nezr (1,0}, g() = z~2. Then
—22 % and ¢'(1) = —2, so using (1) we have f»(1,0) = ¢'(1) = -2.

- 3 1/3
. f=(0,0) = lim [(0+h,0) ~ 7(0,0) = lim W40 7 =0_
A—1 h h—0 h

Or: Let g(z) = f(2,0) = ¥2® + 0 = z. Then ¢'(z) = 1and g'(0) = 1s0, by (1}, f(0,0) = g'(0) =1

¥,
e

4
iy

7
Tt
e

(3z%y - y*)(a® + ) — @y —my")(20) _ 'y + ey’ —y°

(b) FOI' (.T‘.?j) # (07 U)v fﬁﬂ(lﬂy) = (Ig + yg)z (Z'Q + y«z)z

, and by

2% — 4x’y? — oy
(2% + y2)?

symmetry fy(z,y) =

(c) f»(0,0) = lim f(h,0) = £(0,0) = lim M;)_MQ =0and f,(0,0) = ’Ei_% F.0) = £(0,0) 0.

h—0 h h—0

h

(@) By (3). f2y{0,0) = %% i £=0M) - £2(0.0) _pp (Eh° - 0)/kt

h—1D h—0 h
a _ 54
fy(0,0) = 3% = lim fy(h0) = £,(0,0) lim %{L_ =1

A0 h h—0

= —1 while by (2),

(e) For (i, ) # (0,0), we use a CAS to compute
.TJ6 + 9m4y2 _ 4$2y4 +4y6
(22 +y2)® '
Now as {x, ) — (0,0} along the z-axis, fey{z,y) — 1 while as

fr,y(CC, y) =

(2,3) — (0,0) along the y-axis, fry(z,y) — 4. Thus fzy isn’t

continuous at {0, 0) and Clairaut’s Theorem doesn’t apply, so there is
no contradiction. The graphs of fzy and f,. are identical except at

the origin. where we observe the discontinuity.
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15.4 Tangent Planes and Linear Approximations ET14.4

Lz=flzy) =42’ —y* +2y = folz,y) =8z, fy(z,y) = 2y + 2,50 fu(—1,2) = —8, fy(—1,2) = -2.
By Equation 2, an equation of the tangent plane is z — 4 = f»(—1,2}z - (- D] + fu(-1,2)(y - 2) =
z—4=-8z+1)—-2(y—-2)orz= —8x — 2y.

2 z=flz,y) =92+  +6x -3y +5 = folr,y)=182+6, fy(z,y) =2y — 3,50 f(1,2) = 24 and
fy(1,2) = 1. By Equation 2, an equation of the tangent plane is z — 18 = f,.(1,2)(z — 1) + £,(1,2)(y — 2) =
z—18=24(z—- 1)+ gy —2)orz=24x+y— 8.

T

VA=t — 22

Ty = 24— 2? = 2?2 (—dy) = 2l o fo(1,=1) = —Land £, (1, —1) = 2. Thus, an

VA -2 =22
equation of the tangent plane is z — 1 = fz (1, —-1)(zx — 1) + fu(1,-1)[y — (-1)] =
z—l=-lz-1)+2y+Dorz—2y+2=4.

Li=fley) = VIS -3 = foloy) = §(d—o? - ) (20) = -

4 z=flz,y)=ylnz = f.z,y)=y/z fy(z,y) =Inz,s0 f-(1,4) =4, f,(1,4) = 0, and an equation of
the tangent plane is z — 0 = fz(1,4)(x — 1) + fu(1,4}y—4) = z=4(x - 1)+0(y—4)orz=4z—4.

5 2= flz,y) =ycos(z —y) = fr=y(-sin(x—y)(1)) = —ysin(z - y),
fy = y(—sin(x — y)(—1)) + cos(x — ¥} = ysin(x ~ y) + cos(z — y), s0 f{2,2) = —2sin(0) = 0,
fy(2,2) = 2sin(0) + cos(0) = 1 and an equation of the tangent planeis 2 — 2 = 0(x — 2) + 1(y — 2) or z = .

6.z=flz,y)=c" " = folzy) =2V fylay) = ~2pe” Y50 fo(1,-1) =2 f,(1,-1) = 2.
By Equation 2, an equation of the tangent plane is 2 — 1 = fo (1, ~1)(z — 1) + f,(1, - )]y — (=1)] =
2—1=2(z-1)+2(y+Vorz=2z+2y + 1.

1 z=flmyy=o"+ay+3y 5o folz,y) =22 +y = fu(l,1)=3 file,y)=a+6y = f(1,1)=7
and an equation of the tangent plane is z — 5 = 3(z — 1) + 7(y — 1) or z = 3z + Ty — 5. After zooming in, the
surface and the tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we

zoom in farther, the surface and the tangent plane will appear to coincide.

1
1+ (xy?

1
=— (2
¥ 2 7

11 = 3 fu(1,1) = 727 = 1, so an equation of the tangent plane is z — %

B 2 = f(x,y) = arctan(xy®) = f. =

)2 (y2) L fy

= 1+ x2y?’
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=2z +y— 3+ I. After zooming in, the surface and the tangent plane become almost indistinguishable. (Here
the tangent plane is above the surface.) If we zoom in farther, the surface and the tangent plane will appear to

coincide.

8. flz,y) = e~ T/ 15(gin2 & 4 cos?y). A CAS gives
Y g

(g2 2 B .
fo = —2e =M (4gin? 5 4+ zcos® y — 15sinzcosx) and

= —1—";6_(12“"2)/15(3; sin x + ycos® y + 15 siny cosy). We use the CAS to evaluate these at (2, 3), and then
substitute the results into Equation 2 in order to plot the tangent plane. After zooming in, the surface and the tangent
plane become almost indistinguishable. (Here, the tangent ptane is above the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

Vv 1+ 4x? + 492 gt a4 2 4202
———~:|_--~f—i—my—.ACASgivesfx:4I(1 Ity — ¢ 4$y)a

0. f{z,y) = nd

14z +y V1 4z +4y? (1 + 2t +y4)?
4yl — 3yttt — ot - 4’1:23;2)

fy = . We use the CAS to evaluate these at (1, 1), and then substitute the results
V14422 + 4y? (1 + 21 + y*)?

25 — 8z —
_Ef;:_ﬁ. After zooming in, the surface and the

tangent plane become almost indistinguishable. (Here, the tangent plane is shown with fewer traces than the

into Equation 2 to get an equation of the tangent plane: z =

surface.) If we zoom in farther, the surface and the tangent plane will appear to coincide,
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M. f{x,y) = x/y. The partial derivatives are fo(z,y) = /¥ and fy(z,y) = s0 fz(1,4) = 2 and

v
fy(1,4) = 3. Both f, and f, are continuous functions for y > 0, so by Theorem 8, f is
differentiable at (1, 4). By Equation 3, the linearization of f at (1, 4) is given by

Lizy) = L+ (LYo - D+ (LYW -4 =2+ 20~ Y+ jy-4) =22+ jy - L.

L flz,y) = g The partial derivatives are fa(z,y) = i and fy(z,y) = By .50 f2(6,3) =  and £,(6,3) = - 4.

Both £, and f, are continuous functions for y # 0, so f is differentiable at (6, 3) by Theorem 8. The linearization
of f at {6, 3) is given by
L(z,y) = f(6,3) + f=(6,3)(z — 6) + fy(6,3)(y —3) =2+ 3(z —6) — F(y—3) = jo— 2y + 2

. f(z,y) = " cos zy. The partial derivatives are fz{x,y) = “(coszy — ysinzy) and f,(z,y) = —ze* sinzy, so
f2{0,0) = 1 and f,(0,0) = 0. Both f, and f, are continuous functions, so f is
differentiable at (0, 0) by Theorem 8. The linearization of f at {0, 0) is given by
Lz, y) = f(0,0)+ f=(0,0)(z —0) + fy(0,0)(y —0) =1+ Uz - 0)+ 0y~ 0) =z + 1.

. f(z,y) = VT + e = (z + *¥)'/2. The partial derivatives are f,(z,y) = Ha +e™)™Y% and
folz,y) = 5(z+ ) V2 4e™) = 26" (z + €)%, 50 £2(3,0) = L(3+€%)7%/? = L and
fu(3,0) = 2e°(3 + ¢”)"?/? = 1. Both f, and f, are continuous functions near (3,0,
so f is differentiable at (3, 0) by Theorem 8. The linearization of f at {3,0) is
Lz, y) = f(3,0) + fo(3,00(z - 3) + f4(3,0)(y — 0) =2+ J(z - )+ Wy - 0) = je +y + §.

. f(z,y) = tan~! (z + 2y). The partial derivatives are f=(z,y) = Tz 7202 ($1+ 29)7 and

2
fulz,y) = T T2 $0 f2(1,0) = 3 and f,(1,0) = 1. Both f. and f, are continuous
functions, so f is differentiable at (1, 0), and the linearization of f at (1,0) is
Liz,y) = fLO)+ fo(L,O) & - 1) + (1, 0)(y - 0) = § + 3(z - 1) + 1(y) =

f(z,y} = sin(2z + 3y)}. The partial derivatives are f(z,y) = 2 cos(2x + 3y) and

fulz,y) = 3cos(2z + 3y), so f»(—3,2) = 2and f,(—3,2) = 3. Both f, and #, are continuous
functions, so f is differentiable at (-3, 2), and the linearization of f at (—3,2) is

Liz,y) = f(=3,2) + fo(-3,2)(z + 3) + fo(-3,2)(y - 2) =0+ 2(z + 3) + 3(y — 2) = 2z + 3.

Ty
fey) = V20— T > fulmy) = e and fy(2y) = e S
(z,9) Y (z,y) 20— 22 = 7 ful,9) 20 — 22 — 7y?

s0 f2(2,1) = —2 and f,(2,1) = = —Z. Then the linear approximation of f at (2, 1) is given by

fley)= 20+ 2, 0@-2)+ [2,Dy-1)=3 - 2(z-2)-{(y—-1)
=-f2 -+ %

Thus £(1.95,1.08) ~ —2(1.95) — 1(1.08) + 22 = 2,848,
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and fy(2,9) = —— 50 fo(7,2) = 1 and £, (7,2) = =3.

18 f(x,y) =In(z—3y) = fulz,y)= e

T — 3y
Then the linear approximation of f at (7, 2) is given by
flz, )= f(1,2) + fo(7,2) (= = T) + (7, 2)(y — 2)
=0+ 1{x—-7)-3y—-2)=z—3y—-1
Thus £(6.9,2.06) ~ 6.9 — 3(2.06) — 1 = —0.28. The

graph shows that our approximated value is slightly greater

than the actual value.

€&
2 2 2 = e SV —
'f(mayaz)— T +y +z fx(m:ysz)_‘ $2+y2+22!fy($1yrz)
z

flo,y,2) = —, 50 f2(3,2,6) = %, £4(3,2,6) = 2, and £.(3,2,6) = 2. Then the lincar

Vit +y? 4 2*

approximation of f at (3, 2, 6) is given by

flo,y,2) = £(3,2,6) + f(3,2,6)(z — 3) + f,(3,2,6)(y — 2) + £:(3,2,6)(z - 6)
=T+ 3z -+ 2y-2)+Ez-6=2z+3y+ %z

Thus /(3.02)% + (1.97)2 + (5.99)2 = (3.02,1.97,5.99) ~ 2(3.02) + 2(1.97) + £(5.99) = 6.9914.

. From the table, f(40,20) = 28. To estimate f, (40, 20) and f;{40, 20) we follow the procedure used in

f(40 + R, 20) — f(40,20)

h

£(50,20) — f(40,20) 40— 28 _
10 T

Exercise 15.3.4 [ ET 14.3.4]. Since f,{40,20) = }lLiHB

, we approximate this quantity

with h = 10 and use the vaiues given in the table: f,(40,20) ~ 1.2,

£(30,20) — £(40,20) 17 -28
—10 10
£(40,20 + k) — £(40, 20)
h
£2(40,20) ~ f(4(),3(])1—0f(40,20) _ 31;028 — 03, £,(40,20) ~ f(40,15):5f(4m,20) _ 25_—528 .

Averaging these values gives f;(40, 15) == 0.45. The linear approximation, then, is

fo{40,20) =~ = 1.1. Averaging these values gives f,(40,20) ~ 1.15.

Similarly, fi(40,20) = F{in}) ,soweuse h = I0and h = -5

0.6.

Flu,8) = £(40,20) + £.(40, 20)(v — 40) + £,(40,20)(t — 20)
A 28 + 1.15(v — 40) + 0.45(f — 20)

When v — 43 and £ = 24, we estimate f(43,24) & 28 + 1.15(43 — 40) + 0.45{24 — 20} = 33.25, so we would
expect the wave heights to be approximately 33.25 ft.

. From the table, f{94,80) = 127. To estimate f(94,80) and fx (94, 80) we follow the procedure used in

Section 153 [ ET 14.3]. Since fr(94,80) = gin}] FO4+h, 80’1 — f(94,80)

, We approximate this quantity
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£(96,80) — f(94,80) _ 135 — 127 _

4
2 2 ’

with A = %2 and use the values given in the table: f(94,80) =

92,80) — £(94,80) 119 —127 _

5 —3 4.

fr(94,80) = il

lim F{94,80 + h) — f(94,80)’

h—0 h

£(94,85) — £(94,80) 132 -127 _
5 - 5 -

Averaging these values gives fr(94, 80) ~ 4. Similarly, fr (94, 80) =

so we use h = 5 fy(94,80) ~ 1,

fr(94,80) =~ £(94,75) —5f(94,80) _ 122 _5127 = 1. Averaging these values gives fr (94, 80) == 1. The

linear approximation, then, is
F(T,H) = f(94,80) + fr(94,80)(T — 94) + fu(94,80)(H — 80)
=127+ 4(T —94) + L{H — 80)

Thus when T = 95 and H = 78, f(95,78) = 127 + 4(95 — 94) + 1(78 — 80} = 129, so we estimate the heat
index to be approximately 129 °F.
. From the table, f(—15,50) = —29. To estimate f7{—15, 50) and f,(—15, 50) we follow the procedure used in

Section 15.3 [ET 14.3]. Since fr(~15,50) = lim f(=15+h, 50’1 = f(=15,50)

, we approximate this quantity

with b = £5 and use the values given in the table:

Fr(—15,50) ~ F{=10,50) - f(=15,50) _ —22 _5(_29) _

fr(-15,50) = {20 50)_“5“‘15’50) il 15(‘29) _

1.4,

1.2.

Averaging these values gives fr(—15,50) ~ 1.3. Similarly f,(—15,50) = Fllirno F(-15,50 + hfz = {=15,50) S0

we use h = £10: fu,{—15,50) = f(_15’60)1_0f(_15’ 50) = =30 _10(_29) = -0.1,
fo(—15,50) =~ f(_15’40)_‘10f(“]5’ 50) _ ’27:1(0_29) =-0.2.

Averaging these values gives f,{(—15, 50) &~ —0.15. The lingar approximation to the wind-chill index function,

then, is
F(T,v) me f(—15,50) + fr{—15,500T — (—15)) + f.(—15,50)(v — 50)
A~ =294 (1.3) (T + 15) — (0.15) (v — 50)
Thus when T' = —17°C and v = 55 km/h, f(—17,55) ~ —29 + (1.3)(—17 + 15) — (0.15)(55 — 50) = —32.35,
5o we estimate the wind-chill index to be approximately —32.35°C.
Lz =2 In(y?) =

_ 9= 9z, o2 o2 3 1 a8y 2 23
dz = 8$dm+ aydy—S;?: In(y*)de + z y2(2y)dy73a: In(y*) dx + y dy.

.U = YCOSTY =>
v v

dv = %dm+ —aady = y(—sinzy)ydz -+ [y(— sinzy)r+cos zy| dy = —y* sinzy dz + (cos zy — xysin xy) dy

@fdt-f— Q—qidﬂzetsinﬁdt—i-etcosﬂri&

B u=¢esinf = duzat 50
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T
26. u = ——
4 s+ 2t

du:@d}rﬁt @ds-)- @dt
"

1 _2 -2
5 S 5 pg dr +r(=1){s+2t) “ds + r(—1){s +2¢)7°(2)

1 r 2r
—dr ds — dt
T Grar® T Gl

. w=Inyr? +y2+22 =

ﬁ dr + @ dy + QE dz
A dy z

diw =

o
1\ 223+ g )T e 4 (@ + 20 TP dy + 2e(a + P 1+ 2) P de
T2 (22 + 42 4 22)1/2

_rdr+ydy+z2dz
- a;2+y2+z2

L w = ayett =
dw = E de + d_w dy + —B—E dz = (zyze™® + ye®*) dx + ze®* dy + z°ye** dz
ox dy 3z

= (@2 + Dye™ dr + ze™* dy + z°ye™* dz.

. dr = Ar = 0.05,dy = Ay = 0.1, z = 52° + ¥, 2, = 10z, z, = 2y. Thus when z = 1 and
y=2,dz = z:(1,2) dr + 24(1, 2) dy = (10)(0.05) + (4)(0.1) = 0.9 while
Az = f(1.05,2.1) — £(1,2) = 5(1.05)° + (2.1)* — 5 — 4 = 0.9225.

Cde = Arx = —0.04,dy = Ay =005, 2 =2 —zy + 3’ 2. = 20—y, 2y = 6y — =
Thus when = 3and y = —1, dz = (7)(—0.04) + (—=9)(0.05) = —0.73 while
Az = (2.96)% — (2.96)(—0.95) + 3{—0.95)* — (9+ 3 + 3) = —0.7189.

[3 A .
.dA = g—A dx + 89— dy = ydz +xdyand |Az| < 0.1, |Ay| < 0.1. Weuse dz = 0.1, dy = 0.1 with
i Ay
z = 30, y = 24; then the maximum error in the area is about dA = 24(0.1) + 30(0.1} = 5.4 cm?,
. Let S be surface area. Then S = 2(zy + 2z + y2) and dS = 2(y + 2) dz + 2(z + z) dy + 2(z + y) dz. The
maximum error occurs with Az = Ay = Az = 0.2, Using dr = Az, dy = Ay, dz = Az we find the maximum

error in calculated surface area to be about dS = (220)(0.2) + (260)(0.2) + {280)(0.2) = 152 cm®.

. The volume of acanis V = w2k and AV = dV is an estimate of the amount of tin. Here
AV = 2rrhdr + xr? dh, so put dr = 0.04, dh = 0.08 (0.04 on top, 0.04 on bottom) and then

AV == dV = 2x(48)(0.04) + 7{16)(0.08) = 16.08 ecm®. Thus the amount of tin is about 16 cm®.

. Let V be the volume. Then V = rr?h and AV =~ dV = 2wrhdr + mr® dh is an estimate of the amount of metal.
With dr = 0.05 and dh = 0.2 we get dV = 2x(2)(10)(0.05) + 7(2)%(0.2) = 2.807 =2 8.8 cm®.

. The area of the rectangle is A = zy, and AA = d A is an estimate of the area of paint in the stripe. Here
dA = ydx + xdy, so with dz = dy = 352 = L AAd ~ dA = (100)(3) + (200}(3) = 150 ft>. Thus there are

approximately 150 ft* of paint in the stripe.
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36. Here dV = AV = 0.3,dT = AT = -5, P = 8.31 % 50

8.31 831-T 5 310 3
d,Pm( v )dT— V2 dV-SSl[—E—m-m] ~ —8.83.

Thus the pressure will drop by about 8.83 kPa.

. First we find % implicitly by taking partial derivatives of both sides with respect to R1:

0 (1] _OUR)+(/R) 4+ (URs)] _ o, 0R _ ., _ OR _R
aRL[R}* B8R > REsg =R T R TR
R* B8R R® 17 200

8R2 R—%,BRS“E When K1 = 25, Rz = 40 and R3 = 50, I_Q—ﬁ < RZT?'

Since the possible error for each R; is 0.5%, the maximum error of R is attained by setting AR; = 0.005R;. So

OR dR OR 1 1 1
A — A =/ il S E
R=dR= ER] R1 + Rg AR2 + R3 QR:; (0 005)R |:R1 R2 R3:|

Then by

symmetry, —— ohms.

= (0.005)R = -+ =~ 0.059 ohms
17

. Let z,y, z and w be the four numbers with p{x, y, z, w) = zyzw. Since the largest error due to rounding for each
number is 0.05, the maximum error in the calculated product is approximated by
dp = (yzw)(0.05) + (zzw)(0.05) + (xyw){0.05) + (zy=z)(0.05). Furthermore, each of the numbers is positive
but less than 50, so the product of any three is between 0 and (50)®. Thus dp < 4(50)(0.05)} = 25,000.

Az = fla+ Az, b+ Ay) - fa,b) = (e + Az + (b + Ay)? — (a® +b7)

=a’ +2a Az + (Az)? + 8% + 26 Ay + (Ay)? — 0 — b* = 2a Az + (Az)® + 2b Ay + (Ay)?

But fo(a,b) = 2e and fy(a,b) = 2band so Az = fz(a,b) Az + fy(a,b) Ay + Az Az + Ay Ay, which is
Definition 7 with £ = Ax and £2 = Ay. Hence f is differentiable.

. Az = f(a+ Az, b+ Ay) — fla,b) = (a + Az)(b+ Ay) — 5(b + Ay)? — (ab — 56%)
=ab+aly+bAz + Az Ay — 5b° — 10b Ay — 5(Ay)? — ab + 5b?

= (@ —10b) Ay + b Az + Ax Ay — 5 Ay Ay,
but fr(a,b) = band fy(a,b) = a — 10band so Az = fz(a,b) Az + fu(a,b) Ay + Az Ay — 5Ay Ay, which is
Definition 7 with ey = Ay and 2 = —5 Ay. Hence f is differentiable.

. To show that f is continuous at {(a, b) we need to show that ( %Hn 5 flz,y) = f(a,b) or equivalently
T, G

¥ + Ar, b+ Ay) = . B). Si is differentiable at (a, b),
(AI,ALI)I}—&(O.U)f(a T y) = f(a,b). Since f is di i (a,5)

fla+ Az, b+ Ay) — fla,b) = Az = fo(a,b) Az + fy(a,b) Ay + e1 Az + e2 Ay, where €; and e; — ( as
(Az, Ay} — (0,0). Thus fla + Az, b+ Ay) = f(a,b) + fi(a,b) Az + fy(a,b) Ay + &1 Az + 2 Ay. Taking

the limit of both sides as (Az, Ay) — (0,0) gives A Alir)n ( )f(a + Az, b+ Ay) = f(a,b). Thus f is
x,Ay)—{0,0

continuous at (a, b).

Q'(a);{%w:hmgg—o ; Mﬁlzﬁmﬂ%o

= (0 and lim = (. Thus

h—(} h—0 h h—0
f2(0,0) = £,(0,0) = 0. To show that f isn’t differentiable at (0, 0) we need only show that f is not continuous

at (0, 0) and apply Exercise 41. As (x,y) - (0,0) along the z-axis f(z,y) = 0/z> = 0 for z # 0 so
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Flz,y) — 0as (z,y) — (0,0) along the x-axis. But as (x,y) — (0,0) along the line y = =,

flx,z) =2%/(22%} = § forz # 0o f(z,y) — 3 as (z,y) — (0,0) along this line. Thus (w,y%Lm(U,U) flz,y)

doesn’t exist, so f is discontinuous at {0, 0) and thus not differentiable there.

x? + %)y — oy(2x 2 gt .
{b) For (z,7) # (0,0), folz,y) = ( (32 )Jlrl ya)zy( ) = %’ig " y2}2)' If we approach (0, 0) along the y-axis,

3
then f(a,y) = £o(0,) = % = £ 50 fu(e,y) = 00w (2,0) = (0,0). Thus _ lim - fe(a,) does
m,y -
(2 +y")e —2y(2y) _ 2(@® —y°)
(2 +¢2)? (z? +9%)?
3
. 1
for {x,y) # (0,0), and if we approach (0, 0) along the z-axis, then f, (x,y) = fo(z,0) = % == Thus

not exist and f,(x,y) is not continuous at (0, 0). Similarly, fy{z,y) =

, % m oo fu(x, y) does not exist and f,{x, y) is not continuous at (0, 0).
T,y

15.5 The Chain Rule ET 145

Lz=sy+ap’z=2+t"y=1- =
dz _ 8zdz+6zdy
dt  drdt Oy dt

2=+t z=ety=e =

dz Bzdx 0Ozd _ _ _
L W L@y ) M) + ) ) e ) =

(2zy + ) (4?) + (2? + 22y)(=3t?) = 4(2zy + ¥*)® — 3(2? + 2zy)¢*

2ze® — 2ye®t
Va4 y?
3. z:sinzcosy,m:ﬂ't,y:\/{ =
ds _0zdr | Ozdy

— + = COs8T S 1,4-1/2 1
it 5 T+ '11 'n ¢ 1/2 _ n : .
ST CO u- sm & S y t = W COS & CO -— —— 81N T Sin

2+t
4 z=zrIn(z + 2y), x = sint, y = cost =
dz Oz dz azd_y_{ 1

1 .
at 8mdt+6_ydt_ m+2y+1-1n(2:+2y)]cost+:c-$+2y(2).(_umt)

= + In{x + 2y)} cost — 2z
T

{sin ¢)

:c+2 + 2y

5. w=xc"* z=ty=1—-tz=11+2t =

dw Owdr  Owdy 0Owdz ov/ a1 / Y / T 2xy
— *. 2t + ze¥/? (D 4zed/*(—Z) 2=V (2 - = - =2
dt T Drdt Oydt  0zdt +ae?*( 2 ) (e (=) 2= 2 2

6. w=ay+yzt,z=¢€,y=e'sint,z =ecost =
dw Owdr dwdy Owdz

T o di d_ya+d_ﬁ y-e' +(x+2z°) - (e'cost +e'sint) + 2yz - (—e'sint + e’ cost)

= e [y + (x + 2%)(cost +sint) + 2yz(cost — sint)]

lLz=z4+aey+yiz=s+ty=st =
Bzmazam 9z dy
ds  Or s dya

8z Oz 0r
W eal T eyt - M1) + (2 +2y)(s) = 2z +y + x5 + 2ys

= (22 + y)(1) + (z + 29)(t) = 2z + y + =t + 2yt
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. z=z/y.x=set,y=1+se”
05 _0:0x sy _1
ds oOzxrds Jyds
be _ 00w 0:0y _
ot dxr ot Oy ot

. z = arctan(2z + y), ¢ = §°t, y = slnt =

Jz d20r | 020y 2 9t + 1 4st 4+ Int

95 0xds  Oyds 1+ (2z+y)? 1+ @2z +gP2 1+ (22 +y)?
8z 920z 020y _ 2 1 s 25" +s/t

Bt a0t Togor 1t (rty)? 1+ Qotyr t 1+ (2ztyP

Lz=eVtany,z=s5+2 y=s/t =

a 1 Y
6—': =ye ™ tany - 1 + (e"¥ sec’ y + ze¥ tany) - 7= ye Y tany + c;t_ (sec® y + xtany)

) _
B_i =ye™Vtany - 2 + (" sec’ y + ze*? tany)(t—:) =2ye™ tany — s

TY

3 (sec’y + ztany)

.z=¢e cosf,r=st0=+v52 11 =

9z — 82’@ +QE_8_Q :e’“cosﬂ-t-l-er(—SiDG)-

o _ 0% 3, 2y—1/2
9s ~ 9r0s 90 Bs (o7 +£7)777(2s)

1
2

) 3
=te" cosf — " sinf- —— = e’"(tcosﬁ—

/82 12

5
———=sind
V2 + 2 )

Oz 0200 0200 _ . " sing) . 1(s? 4 2)-1/2
6twarat+868tie cosfl - s+ e"(—sinf) - 5(s° t7) (2t)

= sercosﬂ—ersint?-; =er(scost9-— —imwwsinﬂ)
Ve CESE

.z=sinatan3, a=3s+t,8=5-1t =

0r _ 9200 | 0208 _

ds Oads 03 0s

0z 0Oz0a 0233

o daot ogot

=cosatan -3+ sinasec’ 8- 1 = 3cosatan3 + sinasec? 4

=cosatan B 1+sinasec’ 3-{—1) = cosatanf — sinasec? 8

. Whent = 3,z = ¢(3) = 2 and y = h(3) = 7. By the Chain Rule (2),

dz _ Ofdx afdy troy
G Rt R - LTI+ LR TIHE) = 6)6) + (-9)(~4) =62

. By the Chain Rule (3), — BW 6—W 6_u + B—W @ Then
Os du Os dv ds

Wa(1,0) = Fo(u(1,0),v(1,0)) us(1,0) + Fu(u(1,0),v(1,0)) vs(1,0)
= Fu(2,3)u.(1,0) + F(2,3)v.(1,0) = (—1}(—2) + (10)(5) = 52

Similarl oW 8W@+6—W@
Yot T 9w ot | v o

Wi(1,0) = Fu(u(1,0),0(1,0)) ue(1,0) + Fu(u(1,0),v(1,0)) (1, 0)
= Fu(2,3)ue(1,0) + Fu(2,3)ve(1,0) = (—=1)(6) + (10){4) = 34
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15 g{u, v} = flz(u,v),y(u, v}) where z = e* +sinwv, y = * + cosv =

% _ dg 8fox afdy
B sinv. By the Chain Rule (3), 5 Bz Bu + = By e . Then

9u{0, 0) = fI(I(Oa 0)’ y(O: 0)) z.{0,0) + fy(w(oa 0), y(0= 0)) yu(U, 0)
= fa(1,2)(e") + £,(1,2)(e%) = 2(1} + 5(1) =7

Similarly gg gi gi + g% Then

gl’(ov 0) = fI(x(O? 0): y([], 0)) ‘TU(UT 0) + fy(w(O, 0)3 y(01 0)) yv(0= 0)
= f=(1,2){cos 0} + f,(1,2)(—sin0) = 2(1) + 5(0) = 2

16. g(r,s) = f(z(r,s),y(r,s)) wherex = 2r — s,y =s" —dr = 9 _ =2, bz _ =—1, % _ —4, 9y _ 2s. By

ar ds ar Os
af oz | 81 By
8z or * oy 8y ar - Then
g-(1,2) = fa(z(1,2),9(1,2)) 2r(1,2) + fu(x(1,2),y(1,2)) y-(1,2)
= £(0,0)(2) + £,(0,0)(—4) = 4(2) + 8(—4) = —24

of 0z Of oy
2 0s T Oy B nen

the Chain Rule (3) % =

Similarly % =

9s(1,2) = fa(2(1,2),9(1,2)) 2,(1,2) + fy(x(1,2), y(1,2}) ys(1,2)
f2(0,0)(=1) + £,(0,0)(4) = 4(-1) + 8(4) = 28

. = flz,y),z=a2(rsthy=ylrst) =
VAN Ou_0uds Dudy du_Oud  Oudy
TPz dr Oy d Bs  Oxds | Oy s’
X ¥
ou_ouds _dudy
T Oz Bt By Ot

w= flz,y,2), z =2(t,u), y = y(t,u), 2 = z(t,u) =
Bw _duwdr  Dwdy  owd:
o  oxr ot By ot Oz ot

_dwdx  wdy  wd

Oz Bu Oy du Oz Ou

v:f(p,q,r),p:p(m,y,z},q:q(w,y,z),r:T(:r,y,z) =
_Ovdp Ovdg Sudr Gv _Gudp dudg  Oudr

dz  Hpdz  Oqdx | Ordx By_6p6y+8_q-8—y ar dy’

%0 0, duir
T Opdz  Oqdz  Or oz
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u= f(s,t), s =s{w,x,y,2), t = t{w,z,y,2) =

/\ du _ Ouds Oubdt du Ouds Oudt
g

Sw Osow ' Ot ow 0r OsOx Ot B

5 i
//\\ //\\ Qu _Guds Oudlt Ou Ouds Oudt
w X y z w X ¥y z 9z ' ot Oz

8y—638y+3?3_y’$_a8z+8t32

.2 3 .2 3. _ w %_%5_17 0z 9y 3y¢,,2 2
2t. =z tay’.z=w +tw,y=utve = au“a;cau+aya = (Zx -+ y7)(v®) + (3zy*)(1),

9z _0z0r 8z 0y
dv  Brov | dyow

0z Oz dx 0z dy
o~ wow ' Oy ow

= (2z + y*)(2uv) + (3zy°) (™),

=(2z+ ys)(sz) + (3xy*)(ve®). Whenw = 2, v = 1, and w = 0, we have & = 2,

= (31)(1) + (54)(1) = 85, 22 — (31) (4) + (30)(1) = 178, 22 = (31)(0) + (51)(1) =

dz
=3,
y= 50 — Fw

Ou

cu = (r? +s)1/2r—y+mcost,s=m+ysint =
Su d du &

= Sh el SEEE = 12 + ) TR ) (cos ) + A(F + 57)T2(28)(1) = (rcost + ) VAT T S,

_@g+auas

T Ordy  Os Oy

ou_dudr  ouds

ot  Or ot 0s ot

= %(7’2 + 883 (2r) (1) + %(1"2 + s%)7V2(2s)(sint) = (v + ssint)/ V72 + 62,

—rxsint 4+ sycost
Vit

Whenr =1, y=2and{ =0Owehaver = 3 and s = 1, so:)a—u:i a—u:%s»«w and@z 2

9z~ V10 8y V10 0t V10
.R:ln(u2+v2+w2),u:$+2y,v=2:n—y,w=2scy =
8R OROu OROv OROw 2u 2u 2w
g _divve gadv  daow 1 v
dr 6u8$+8v8m+3w63: u2+v2+w2()+u2+v2+w2(2)+u2+02+w2
_ 2u+ v+ dwy
w4 pw?
OR OROu OROv  OROw 2u 2v
Y0—t =~z (2) +
By T Oudy ' Ovoy 6w3y u? + o2 + w? u? + v? 4+ w?
4w - 2v + dwr
_u2+v2+w2'

=27+ 5%) 7 V22r)(—wsint) + (r® + %) T3(25)(y cos t) =

(2y)

(- +

Whena::y:1wehaveu:3,v=1,andw=2,50@:gand@:g.
dr 7 gy 7

2
M=ze¥F r=2uwv,y=u—-v,z=utv =

OM BMdm_’_BMaer@%
Ou Oz Ou Oy Ou | Bz Ou

= ey (20 + & — 2z2),

OM _0MOz  OM3y  OMOz _
Bv Bz Ov | Oy Oov | 9z ow

— ey (2u — x — 2z2).

— v’ {2v) + a:ey'zz(l) + m(—22)e’-""722(1)
¥=2" (Qu) + 2e¥ =% (—1) + 2(—22)e? =" (1)
oM

Whenu =3,v=—Iwehavex = -6,y =4,and z = 2, soa—M—IG nd — = 36.
Ou av
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ou Ox

dz p

ou dx
Bz Or

Ju Ox
Az A0

ou 0y
dy dp
du dy
8:; ar

u by
oy 08

—prcosfl,y=prsind, z=p+r

du Oz
Bz or
Ju Oz
3z 99

=

= (2z)(rcos @) + (z}(rsinf) + (y)(1) = 2zrcost + zrsind + y,

= (2x)(pcosf) + (2)(psind) + (y)(1) = 2zpcosd + zpsinf -+ y,

= (2z)(—prsind)

+ (2){prcosf) + (y)(0) = —2zprsing + 2prcosf.

du
dp

= 36, QE—M ndQE—S(}.

Whenp = 2,r = 3, and# =0wehavex =6,y =0,and z = 5, 50 — 3r 28

. Y = wtan
a
dr

=

v)(1) +

71(uv) u=r+s,v=s+tt,bw==t+r
Y du N Y dv | OY dw
du or T ou or | Gw or
T
1+ w22
oY o
Ju Os
wiv + u)
1+ u?v?
JdY Ju

= Ou ot
UL

1+ u2v?

*1+(uu 2(

—1-1~(—)(u) 0) + tan™ ! (uv)(1)

tan™" (uv)

JY dv

oY ov | Y 0w
dv Os

Bw Os

we
1+ w20?

wu

]_ —————
1)+ 1+ u?e?

(1) + tan™ " (uv)(0)

LYo, OV ou
Ov Ot Bw Ht
’l(uv)

v2( bV + (1) + tan™ {un)(1)

+ 2 2
+ tan
ay

Whenr = 1,s=0,andt =1, wehaveu =1,v =1, and w = 2, SOE—IJr

v _
Bs

s

4’
/Ty = 14 2%y, solet F(x,y) = (zy)/* =1

F_ slay) V) 2wy
= Iy () - a2

— 2y = 0. Then by Equation 6

y— 4oy oy _ Hay)? -y
r—2z2 /Ty x— 2227y

= solet Fle,y) =" +2%y° =* = 0. Then

dy _

dr

.y5+$2y3:1+ye
Fy

B,

—1—ye
_ — 2zy°
o 5y4 + 3z2y? — er?’

2y meer?' meemz

dy .
Syt + 3x2y?

dr

_ pu?

, cos{r — y) = xe¥ solet Fz,y) = cos{z —y) — ze¥ = 0.
dy _ _Fr _sin{z —y) +e¥

—sinfz — ) — ¥
Then & — _F= sin{z —y) — e _ 8 .
1) —ze¥  sin(z — y} — ze¥

—sin{z — y)(—

de  F,

. sinx 4 cosy = sinxcosy. so let F{z,y) = sinx + cosy — sinweosy = 0. Then
dy Fe

B COST — COS T COSY
dx Iy

_ cosz(cosy — 1)
~ siny(sinz —1)°

—siny +sinxsiny

a2 +y? + 2% = 3ayz.solet F(z,y,2) = z? +y? + 27
oz _ Fu yz — 2x Oz _
or  F. 2z — 3zy By

— 3zyz = (. Then by Equations 7
By _
F.

_2r—3yz _

2y —3zz _ Jwz -2
2z — 3zy

22 — 3zy

2z — 3zy’
cayz = cos(z +y + 2). Let F(z,y,2) = zyz —cos(z + y +2) = 0,50
82_7&__yz+sin(m+y+z) %_ 7;rz+sin(sr;+y+z)

F. :cy+sin(;c+y+z)’8y— zy+sin(z +y+z)
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33. £ — 2z = arctan(yz), so let F(x,y,2) = ¢ — z — arctan(yz) =— 0. Then
9z F, 1 14y

dr B 1 T 14y Ly222
B L
;(z) d
1+ (yz)? 144222 z

- ! 1+ 4y Lty byt
D) ===
1+ (yz) 1+ y222

»yz=In(z+z),solet Flz,y,2) =yz—In(z+2) =0. Then% =

_ z{x + z)
I ylz+2)—1
T+ 2z

y —

T _oris ordy
dt Bz dt | By dt’
dr 1 _ 1 1

After3seconds,z = VI+i=v1+3=2y=2+1t=2+13)=3 == = ==,
er 3 seconds, x + + y=2+3 + 5(3) # I o s i

. Since « and y are each functions of ¢, T'(, y} is a function of ¢, so by the Chain Rule, —

dy 1 dT dz dy
=3 Then ° T(ZS)dt Ty(2,3) 5 =

of 2°C/s.

. (a) Since OW/IT is negative, a rise in average temperature {(while annual rainfall remains constant) causes a

and 4(3) +3(3) = 2. Thus the temperature is rising at a rate

decrease in wheat production at the current production levels. Since W /3R is positive, an increase in annual
rainfall (while the average temperature remains constant) causes an increase in wheat production.

(b) Since the average temperature is rising at a rate of 0.15°C/year, we know that dT'/dt = 0.15. Since rainfall is
decreasing at a rate of 0.1 cm/year, we know dR/dt = —0.1, Then, by the Chain Rule,
dW _ oW dTl OW dR

dat T or 4t T OR @
decrease at a rate of 1.1 units/year.

= (—2)(0.15) + (8)(—0.1) = —1.1. Thus we estimate that wheat production will

aC

. C = 14492 + 4.6T — 0.0557 % + 0.000297 % + 0.016D, so T = 4.6 — 0.117 + 0.000877 % and

g—g = 0.016. According to the graph, the diver is experiencing a temperature of approximately 12.5°C at

t = 20 minutes, so oC =4.6 — 0.11(12.5) + 0.00087(12.5)* =~ 3.36. By sketching tangent lines at ¢ = 20 to the

ar
D 1
graphs given, we estimate (it—t P 2 and ar o =] _L . Then, by the Chain Rule,

dt 10°
dD
(fif gg (fg gg — A (3.36){—35) + (0.016) (1) = —0.33. Thus the speed of sound experienced by the

diver is decreasing at a rate of approximately 0.33 m/s per minute.

dv. oV @ 4 av dh _ 2arh
dt  Ordt ' Bhdt 3
39. (a) V = fwh, so by the Chain Rule,

v _ovidt oVdw oVdh . dl
dt  afdt Bwdt  ohdt  “ar

=2-2.241-2-241.2-(~-3)=6m’

38. V = nr?h/3, s0 1.8+ —--( 2.5) = 20,1607 — 12,000m = 8160 in’/s.
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(b) S = 2(fw + £h + wh), so by the Chain Rule,

dS _0Sdf  8Sdw  0Sdh d o
at aedt+%ﬁ+ag—2(W+h)dt+2(€+h) Y 4o+ w) B

=2(2 4+ 2)2+ 2(1 4 2)2 + 2(1 + 2)(—3) = 10 m?/s

L =C+w+h = zLil-fi 2e—+2 d—w+2hﬁﬁ2(1)(2)+2 24{2) +2(2)(-3) =0 =

dLfdt = O m/s.

Vv di 8Idv 8IdR 1dV VdR 1dV IdR

J= =~ U M Tl A gy _len

R T 4 ovd ORaé Rda Rda Rd Rd
= 2-(-0.01) - 288(0.03) = —0.000031 A/s

400

dpP dT T dV 8.31dT T dP
vy = 0.05, ri 0.15, V—831—13 TP @ 831—d— Thus when P = 20 and T = 320,

v 0.15  (0.05)(320)] _
o = 831 S 200 ~ —0.27 L/s.

. Let z and y be the respective distances of car A and car B from the intersection and let z be the distance between the
two cars. Then dz/dt = —90, dy/dt = ~80 and z% = 2% + °. When z = 0.3 and y=104,z=+v0.25=0.b
and 2z (dz/dt) = 2z (dx/dt) + 2y (dy/dt) or dz/dt = 0.6(—90} + 0.8(—80) = —118 km/h.

. (a) By the Chain Rule, % = g% cosf + gz sin g, % = z {-rsinf) + g—; rcos f.

Iz z dz 2 dz Oz (92 2
b J— — _ 2 _ in2
( ) (31") (a ) 9+2 Ty COSQSII]G—{- ( ) 51 8,

g92\° [0z 9z Dz A
(@) = (6‘3) r? sin 8—2£6—yr cos@sin@ + (()y) 7 cos” 6. Thus

() [ (Y et vmto- (3 - (B)

LAY
or
du du ) Ju  Ou

. o
44. By the Chain Rule, B_Z =5 e’ cost + 3 e sint, = Da (—e®sint) + g—; e’ cost. Then

ou\* ou\* 26 o Oudu 4

(E) = (a) e“® cos t+2%5§e

au\? Buggs_z dudu 4, . 225.2
(E) = (55) e“? sin t—-28—$8—ye costsint + (—;) e sin” ¢, Thus
Su\? ou\* _2g o\ Au\*

{(5-) *(a)} -(52) < (&)

8z dzou dz dz  dz
su=emy then dr  dudr du an Oy du (

Ou
B

2
) e%* gin® ¢ and

*costsint + (

—1). Thus —
) uc;aI
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g‘z—%.’.%and%—@_?ﬁ hus?ﬁ_aﬁ— %zﬁ _6_.2.2
“8s Oz Oy ot  ox Oy ds ot \ oz &y /)’

4]. Letu =z +at,v = z — at. Then z = f(u) + g(v), so 8z/0u = f'{u) and 8z/Ov = ¢'(v).

dz Oz0u  020v

.

af'(u) - ag/(v) and

o =g o - = GG - LU = i)

L. o 62 62 62
Similarly 5% = f'(u) +¢'(v) and 5% = f"(u) +¢"(v). Thus 25 = a® 2.

. By the Chain Rute, % = e’ cost % + e*sint % and gt —e®sint % + e®cost gy Then

Fu = g¥ costa +e° costE @ + e° smta—+e smtg @
Bs? ox ds \ O Jy ds\ Oy /)

d {ou 3 u Oz &*u By Ju 8*u
Bmm(bﬁé)_ﬁg‘i%_‘_éﬂﬁ;a ecost82+e smtmand

9 (Ouy _ 92_”@+ u oz e 51nt62 +€5005tﬂ Also. by continuity of the nartials
ds\0y) 2 0s  xdyds Oy Bz Oy’ » DY Y partials,

Fu Fu
8z Oy ay 8y oz’ Thus

52 dz

o s a s 8%u o?
—u:e cost—u—l-e cost(e cost—+e sint u )+essinta—ﬂu

Ox2 dx dy dy

2, 2
+essint(e Smtg > +83C05t8(:9rgy)

B Ju s . . Ou Fu u
=e costa + € 51nt6—y+e cos’ tﬁ —|-2e costsmtam ”

Similarly

a—%i-—fescosta—u esmt2 Ouy _
otz bz Ot \ Oz

—fescost-@f —esint| —€° qmt@—l-e cost Ou
dx dx? Oz dy

du 8% Fu
—e’sint — + e’ cost| e’ cost — — e’ sint ———
Sy + ( dy? ¢ P B Ay

2 2 2

Ou . Ou 5 . d“u . a
= —e®cost — —e’sint — + €% sin’t —— — 2> costsint v +e2scosth

ax By S S 91 By ENZ

v 8 8y Fu Py Fu
_.23 .
Thus e (_832 + vy ) (cos® t + sin t) ( 322 + ——6y2) = a2 + _6y2 , as desired.
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Oz Oz dz
49, = £2s+6—yQ?‘.T'hen

&z a0z a [ Oz
aras*E(Ea?%)JrE(a 2)
9%z Bz d 92\ y 8z o
= o2 or S+6y(a )arz o =T o or
0%z 9%z 522 9z

= — 44*
4rs@m2+6y8 3 -f-O-+-4Tsa : ¥ 3ray r
2 62 Ve

o e . a oz
By the continuity of the partials, Z o yrs 22 +4rs — + (4r + 45%)

dros dx? dy? Ox Oy N

50. By the Chain Rule,
Oz

Oz dz |
(a) p (—azcos(iJra—ysmG

Oz Oz Oz
b — = — — sl _—
(b) 50 a:E?Slng-f-ay?"COSB

5z 8z a {8z dz .,
© 2r06 ~ B00r ~ o6 (% cosf+ gy o 9)

. .0z o {0z dz d {0z
f—smf)%ﬁ%: 9%(8 )+wb93_y 8_(8_3,1)

Pioc | o 0y
dz2 80 Oy dx 69

s 8z . 8%zoy Oz Oz
_—smfiﬁ%—COS@( )"'COSQ 9—8_—5 +8m3y5§

dy

2 a2
= —sinf)gwi +c059(—rsm83—5+rc059 &z ) +c059&

ox ox? Oy Ox Oy

. 8%z
+ sind (rcosf)é?-;g -
Oz 5 2
= —51n8a —rcosﬂslnﬂ-é—,z + rcosZ 6
2

+rc0595in98—y§
72
:cos@gz-~sin8%+rcosﬂsin0(g— )+r(cos 6 —sin®f) ——

dy Oz oy?  Ox* 5 633

8z Oz 8z 8z dz
1. — =-"=- + = — = —— rsi — }
5 - = A cos @ By sin @ and 56 = amrs1119+ ByTCOSH Then

8%z 8%z 3%z . Pz 9%z
oz =cosf (W cosf + —— By s smH) +sin @ (ﬁ sind + B By‘ cosé)

9 2
= CO8 9———+2c0555m9 oz
dr

82

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
SECTION 155 THE CHAIN RULE ET SECTION 145

2 2
% = —rcosf)% + {—rsind) (g z (— r51119)+ Oz

Oz

2

(Bz

503 reosf +

~rsin9-c?-z- +rcosd

Fz B
dy Jz Oy

2

= —'rcosﬂi —rsing —

dr

1822 1

r2 96%

o
dr2

_ bz

dt Oz ot

dz Ox
dr ot

Q’IQJ &IQv

oz
ot

QJIO. Q:»|QJ

) -
(%)

dz O

39 dr ot
_(Fzon
~ \ Ox2? Bs

(

dx
ot

8%z
as ot

(b

r ar

w)
)dzz:

+ Byasca

z
+r?co

0 2
Oz Oy 50

2
+7' sin E)E-% cosfsind -—
Oy

Oy oz

1

2 2
= (cos® f + sin® #) % + (sin” 6 + cos” ) %

(e

os —

Jz
oz

Oz Jz
93—+S 98_

dz
sind o- +

1

)

2

2
= 8 z 8 ‘: as desired.

0z 8y
dy ot Then

it
“la

Oz dy
dy at
&z 0z
2 oz

)

0
* o

8231 Oz
By o2 By
Pooz | 0 (on)’
ot oz By ot

8%z 3y 8z 9z
ay Bt 9z

dz \ Oy

Bt

0%z oy ou
Oz dy Ot bt
32y dz
812 By

oy 0z

&z Bz dy
a? Ay

By oz bt ot

0z o 0y
dxdy 8t
dz oy

By Bt)

3’z oy &z oz

Oz Jy Os

dy | 0z Oy
gt Oy dsot

% 8z
8z Os 8t

Oz

)%

(20
2 ds

)

#z 9y By
3y2 ds 8t

0z Oy
Oy ds Ot

dz &z
+ B o

&z
Oz Ay

dy Br
ds Ot

_ o000
T 822 9s Ot

(5:5 3t )

Ot 3s
53. (a) Since f is a polynomial, it has continuous second-order partial derivatives, and
Fltz, ty) = (t2)° (ty) + 2(t2) (ty)? + 5(ty)® = 32y + 2%y + 56%°
=12y + 22y° + 5y°) = £ f (z,9)

Thus, f is homogeneous of degree 3.
(b) Differentiating both sides of f{tx,ty) = ¢ f(z, y) with respect to ¢ using the Chain Rule, we get

A e}

0
B (tz,ty) = &

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
398 [ CHAPTER15 PARTIAL DERIVATIVES ET CHAPTER 14

o Bex) | 8 L 0 _ 9 . o B
a—(m f(ta:,ty) : H + m f(t‘frty) Bt 6(t.’,]3) f(t 7ty) +y B(ty) f(fl‘, ty) =nl f(ms y)

- -l 9 _
Settingt = 1: & O flz,y)+y 5y [z, y) =nflz,y)

54. Differentiating both sides of f{tz,ty) = t" f(x,y) with respect to ¢ using the Chain Rule, we get

o atr) O d(ty)

51 ) fliz,ty) +y %y) flte, ty) = nt" "1 f{z,y) and

differentiating again with respect to ¢ gives

2 (tx) P a(ty)
[d( F T W) = B ) ]

I oftr) & )] ms
*”{a(m)a(ty)f(* ), a(ty)zf(tw,ty)-—w—at ]—n(n D" f(z, y).

f(tl‘, ty) : ot

Setting ¢ = 1 and using the fact that fy. = fzy, we have 22 fox + 22y foy + 37 fy = n(n — 1) f(z,3)-

. Differentiating both sides of f(tx,ty} = t" f(x,y) with respect to x using the Chain Rule, we get

D pe) = S ] @

ETS| ((‘z.ﬂ) fltz, ty) - a (t: : z,ty) - O (ty) — " _2 fla,y) o tfoltr,ty) = " fa (2, ).

Az oz
Thus fe(te, ty) = t" " fulz,y).

Fr
. Pz, y, z) = s assumed to define z as a function of z and y, that is, z = f(z, ). Soby (7), % =~ since
X

P, # 0. Similarly. it is assumed that F(z, y, z) = 0 defines z as a function of y and z, that is x = h(zx, z). Then

O dy
F(h{y, z},y, z) = 0 and by the Chain Rule, F. — By + Fy == By + I g—; =10. Bu tg—; =0a dg =1,s0
Fy g—i + /=0 = g—; = -% A similar calculation shows that g—g = —%. Thus

Q‘E%% T EZ_ =1
dx Oy dz : Fy -

15.6 Directional Derivatives and the Gradient Vector ET14.6

1. First we draw a line passing through Raleigh and the eye of the hurricane. We can approximate the directional
derivative at Raleigh in the direction of the eye of the hurricane by the average rate of change of pressure between
the points where this line intersects the contour lines closest to Raleigh. In the direction of the eye of the hurricane,
the pressure changes from 996 millibars to 992 millibars, We estimate the distance between these two points to be
approximately 40 miles, so the rate of change of pressure in the direction given is approximately

92— 986 _ _0).1 millibar/mi.

2. First we draw a line passing through Muskegon and Ludington. We approximate the directional derivative at

Muskegon in the direction of Ludington by the average rate of change of snowfall between the points where the line

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 156 OIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ET SECTION146 O 399

intersects the contour lines closest to Muskegon. In the direction of Ludington, the snowfatl changes from 60 to
70 inches. We estimate the distance between these two points to be approximately 28 miles, so the rate of change of

annual snowfall in the direction given is approximately 728 =~ 0.36 in/mi. [If we talk of snowfall (rather than

annual snowfall}, the units are (in/year) /mi.]

. D f(~20,30) = Vf (20,30} - u = fr(~20,30)( &5 ) + £u(=20,30)( L5).

F(=20 + h,30) — f(—20,30)
h

fr(—20,30) = J'lin%] , $0 we can approximate fr{—20, 30) by considering b = +5
L —

and using the values given in the table: fr(—20,30) =~ 1(=15,30) ; £(-20,30) _ 26 75(733) = 1.4,

fr{-20,30) =~ 1(=25, 30);5f(_20’ 30) = =39 12733) = 1.2, Averaging these values gives
f(—=20,30 + k) — f(—20,30)
h

fr(—20,30) ~= 1.3. Similarly, f,(~20,30) = }{m:.) . SO We ¢an approximate

F(—20,30) with b = +10:

£2(-20,30) = f(~20,40)1—0f(—20,30) _-u —10(—33) _ o1

fo(—20,30) ~ f(=20, 201_1(‘{(_20’30) i :1(0733) = —0.3. Averaging these values gives

£4(—20,30) = —0.2. Then Dy f(—20,30) ~ 1.3(—}5) + Po.z)(ﬁ) ~ 0.778.

flry)y =2y — ' = folz,y) = 22° and f,{z,y) = 327y — 49°. If u is a unit vector in the direction of
6 = %, then from Equation 6, Dy f(2,1) = f2(2,1) cos(Z) + f,(2, Dsin(T) =4. 32 4 8. 2 — 6/2,
5
- ’ = or — 4 = Ly 215 —4 #1/25 e ———
f@w) = VBE = La(ey) = §6r - )" 50) = gt and

Fu(z,y) = L(5x — 4y) 713 (—4) = ~ - If s a unit vector in the direction of & = —Z, then from

o — 4y
Equation 6, Dy f(4,1) = f2(4, 1} cos(—Z) + f,(4,1)sin{-F) = ¢ - —‘2@ +(-3){(-3) = 54“@ + %

cfleyy) = asin(zy) = fa(z,y) = zcos(zy) - y + sin(zy) = zycos(zy) + sin(zy) and

fu(z,y) = zcos(zy) - = 2” cos(zy). If u is a unit vector in the direction of 8 = % then from Equation 6,

Du £(2,0) = £2(2,0) cos T + f,(2,0)sin T =0+ 4(3@) ~ 23,

- flzy) = 5ay® — 42y

(@) Vf(z,y) = (folz,9), fy(z,9)) = (59° — 1207y, 10zy — 42*)

(b) VF(L,2) = (5(2)* —12(1)*(2),10(1)(2) — 4(1)*) = (~4,16)

(c) By Equation 9, Dy £(1,2) = Vf(1,2) - u = (—4,16) - (5%, 22} = (-4)(5) + (16)(12) = 122,
. f{z,y) =ylnz

@ V(@ y) = {folz9), flz,p)) = (y/z,lnz) (b)) VI(1,-3) = (F},In1) = (-3,0)

(c) By Equation 9, Dy f(1,-3) = Vf(1,-3) -u = (=3,0) - (-4,2) = 12,
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9, f(z,y,2) = ce™*
@ VI(@,y,2) = (Fal2,y,2), fyle,9,2), fo(2,4,2)) = (29, 2wze™, 2ye?”*)
(b) V£(3,0,2) = (1,12,0)

(¢) By Equation 14, Do £(3,0,2) = V£(3,0,2) -u = (1,12,0) - (}, -

fle,y2)=Vr+yz=( 'c+yzl/2
(@) Vf(z,y, 2 (% z+y2)T (1), f(e +y2) TV (2), 3@+ y2)

={1/(2vz+yz),z/ 2vx +yz), 9/ (2/x +yz))
) VF(1,3,1) = (45,3
(¢) Duf(1,3,1) = Vf{1,3,1) u={

o) =142 = Viny) = (252 3y = (28,2//F). VIG3,4)

and a unit vector in the direction of visu = T 4,-3) = (%, —%) 50

Dy f(3.4)=Vf{3,4)-u= (4,3
fla) =+ = Vi) = (
vector in the direction of v = (—1,2) isu =

D f21)=ViR ) u=(42) (- L, F)= tht =

. g(s,t) = %t = Vg(s,t) = 2seti+ s%e'§, Vg(2,0) = 41+ 4], and a unit vector in the direction of v is
u= (i +j)50 Dug(2,0) = Vg(2,0) - u= (4i +4j) - (i +§) = 5 = 42

g(r,0) = e "sinf = Vg(r,8) = (—e "sinb)i+ (e cos0) ], Vg(0,%) = —35/5 i+ %j, and

. . . . . . 1 . o
a unit vector in the direction of visu = —= (31 —2j).s0

Dug(0,3) =¥g(0,3) u=(-Fi+ 1) FA6i-2) = - 28 - J5 = -5

\/$2+y2+z2 \/$2+y2+22 \/I2+92+z2
V£(1,2,-2) = (4,2, -2} and a unit vector in the direction of visu = 3(-6,6, -3) = (-2,2, -3}, s0

D, f(1,2,-2) = Vf(1,2,-2). u—(l 2 w§>(*% 1 4

3 13

oz _ I = .
.f(a:,y,z)—y+z = Vf{z,y.2) <y+z’ e w+ )2>‘

Vf(4,1,1) = (3, -1, ~1), and a unit vector in the direction of v is u = r(l 2,3),
Dy f(4,1,1) = Vf(4,1,1)-u=(3,-1,-1) - 75(1,2,3) = - 57

2
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17 g(z,p,2) = (z+ 2y +32)%% =
Vo(z,y,2) = <%(:c + 2y + 3z)/2(1), a4+ 2y + 32)1/2(2), 3z +2y+32)1/2(3)>
=3+ 2y +32,3 Ve 2y + 32,5/ ¥ 2y + 32 ), Vg(1,1,2) = (2,9, 2},
and a unit vector in the directionof v = 2j—~ kisu = %j — ==k, s0

5
Dag(1,1,2) = (3,9.%) (0. %) =

. Dy f(2,2) = V£(2,2) - u, the scalar projection of V f(2, 2)
onto u, so we draw a perpendicular from the tip of V £(2, 2)

to the line containing u. We can use the point {2, 2) to

determine the scale of the axes, and we estimate the length of

the projection to be approximately 3.0 units. Since the angle between V {2, 2) and u is greater than 90 °, the scalar

projection is negative. Thus Dy, f(2,2) = -3,

fley) = ey = Vi(zy) = <%(:ﬂy)*”2(y), %(:vy)'”z(w)> = <

Yy z
T Bty -V
2+v/zy 2 \/$y>
V£(2,8) = {1,1). The unit vector in the direction of PQ = {5 — 2,4 — 8) = (3, -

Du f(2,8) = V[(2.8)-u=(L1)-{§-5) = &

 fleyy,z) =2+t + 22 = Vf(r,y,2) = (22,2y,22), 50 VF(2,1,3) = {4,2,6}. The
—
unit vector in the direction of PO = (~2,~1,-3) isu = —=(-2,-1,-3), 50

Dy £(2,1,3) = VF(2,1,3) - u = {4,2,6) . 7%(—2, -1,-3) = A% = -2+v14.

Sy =vr =9’z = Vi(z,y) = (= 27 ") = (~y¥2?, 2y/2).

Vf(2,4) = {(—4,4), or equivalently {—1, 1), is the direction of maximum rate of change, and the maximum rate

is [V£(2,4)] = VIB+ 16 = 4 2.

flpg)=ge P +pe”? = Vfipg) = <—q6_iD +e % e pe_q').
V £(0,0) = (1, 1) is the direction of maximum rate of change and the maximum rate is |V (0, 0)} = /2.

. flz,y) = sin(zy) = Vfz,y) = {ycos(zy), x cos(zy)}, VF(1,0) = {0,1). Thus the maximum rate of
change is |V f(1,0})] = 1 in the direction {0, 1}.

L fley ) =2yt = Vf(zy,2) = 202, 327y 2" 42%82%), V(1,1,1) = (2,3,4). Thus the
maximum rate of change is |V f(1, 1, 1}] = +/29 in the direction {2, 3, 4).

2.3 3 2.2
_ 2.3 _ /¥y 2zy:® dmyT®\ /1 23
. f((l’," y! Z) - ln(ﬂ:y 2 ) = vf(a“? y: z) - <Iy22’3’ .’.E'yZZS, wyzza > - <E: ;7 ; -

Vf(1,-2,-3) = {1,—1,—1) is the direction of maximum rate of change and the maximum rate

is [VF(1,-2,-3)| = V3.
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26. f(r,y, =) = tan(z + 2y + 32) =
Vi(z,y,2) = (sec’(x + 2y + 32)(1),sec’(z + 2y + 32)(2), sec’(z + 2y + 32)(3)).
V£(=5,1,1) = {sec*(0), 2sec®(0), 3sec’(0)) = (1,2, 3) is the direction of maximurn rate of change and the
maximum rate is |V f(—5,1,1)] = /14,

. (a) As in the proof of Theorem 15, Dy f = |V f] cos 8. Since the minimum value of cos § is —1 occurring when
= m, the minimum value of D, f is — |V f| occurring when # = r, that is when u is in the opposite direction
of ¥ f (assuming V f # 0).

) flz,y) =2’y —2’y® = Vf(z,y)= (4:5'33; — 2z, 2" — 3:1:2y2>, so f decreases fastest at the point
(2, —3) in the direction —V f(2, —3) = — (12, —92) = {—12,92).

 flz,y) = 2f Lsiney = folx,y) = 22 + ycosay, fy{z,y) = zcosxy and
f{1,0) = 2(1) + (0} cos 0 = 2, f,{1,0) = (1) cos 0 = 1. If u is a unit vector which makes an angle # with the
positive z-axis, then D, f(1,0) = f=(1,0}cosf + fy(1,0)siné = 2cos @ + sinf. We want Dy f(1,0) = 1, 50
2cosf+sinf =1 = sinf=1-2cosf = sin’f=(1-2cos)? =
1—cos’@=1—4cosd +4cos>@ = bHcos @ —4cosf=0 = cos@(bcosh—4)=0 =

cos@=0orcosf=2 = f=Zorf=2r—cos '(3) =564

. The direction of fastest change is V f(z, y) = (2z — 2)i+ (2y — 4} J, so we need to find all points (z, y)} where
Vf(x,y)isparalleltoi+j < (2e—-2Yi+Qu—-4)j=k(i+]J) <& k=2z—2andk =2y —4 Then
2r—-2=2y—4 = y==x+1,sothedirection of fastest change is i + j at all points on the line y = = + 1.

. The fisherman is traveling in the direction (—80, —60). A unit vector in this direction i3
u = ;2:{—80, ~60) = { -2 — 2% and if the depth of the lake is given by f(z,y) = 200 + 0.02z* — 0.001y",
then V f (2, y) = (0.04z, —0.003y*}. Dy f(80,60) = V f(80,60) - u = (3.2, -10.8) - (—#,—2) = 3.92. Since
Dy F(80,60) is positive, the depth of the lake is increasing near (80, 60) in the direction toward the buoy.

.T:Aandmﬂ_ T(1,2,2) = 280}6:36(1

et y? 422
_ (134*1!1)
ﬁ »

DyT(1,2,2) = VT(1,2,2) -u= [—360(332 + 428 Py, z)} (122)

01,2,2)- &0, -1,1) = 7%

(b) From (a), VT = —360{z* + y* + 27) _3/2(:::, y, z), and since {&, y, z) is the position vector of the point
(z,y, ), the vector — {z,y, z), and thus VT, always points toward the origin.

VT = —400e ® 3 957 {z, 3y, 92)
(@ u = —=(1,-2,1), VT(2,-1,2) = —400e **(2, -3, 18) and

400e %3 52006
D, T(2,-1, - 26) = °
( ( V6 )( ) 3etd C/m.
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(b) VI'(2,—1,2) = 400e~**(—2, 3, —18) or equivalently (-2, 3, —18).

() |VT| = ADOe—=" — 3 —92% fra 92 + 822 °C /m is the maximum rate of increase. At (2, ~1,2) the

maximum rate of increase is 400e”*34/337 °C /m.

. VV(z,y,2) = (10z — 3y + yz,zz — 3z, zy), VV(3,4,5) = (38,6,12)
{a) DuV{3,4,5) = (38,6,12) - %(1, 1,-1) = %
(b) VV (3,4, 5) = {38, 6, 12) or equivalently {19, 3, 6).

(©) [VV(3,4,5)| = V382 + 62 + 127 = /1624 = 2 /406

2 = flz,y) = 1000 — 0.01z? — 0.02¢* = Vf(z,y) = (=0.02z, —0.04y) and Vf(50,80) = (-1, —3.2)

{(a) Due south is in the direction of the unit vector u = —j and
Dy f(50,80) = Vf(50,80) - {0,—1) = (—1,-3.2) - {0, ~1} = 0 + 3.2 = 3.2. Thus, if you walk due south
from (50, 80, 847) you will ascend at a rate of 3.2 vertical meters per horizontal meter.

{(b) Northwest is in the direction of the unit vector u = \/-( 1,1) and
D, f(50,80) = V f(50,80) - ( L1y =(-1,-3.2). E(fl,l) = 73\/—— —1.56. Thus, if you walk
nerthwest from {50, 80, 847) you w1l[ descend at a rate of approximately 1.56 vertical meters per horizontal

meter.

(€) VF{50,80) = {—1,—3.2) is the direction of largest slope with a rate of ascent
|V f(50,80)] = +/11.24 = 3.35. The angle above the horizontal in which the path begins is given by
tan# ~3.35 = 6 ~tan"'(3.35) ~ 73.4°.

— —
. A unit vector in the direction of AB is i and a unit vector in the direction of AC is j,
Thus D f(1,3) = f=(1,3) = 3 and Dz F(1,3) = f,(1,3) = 26. Therefore
VF(1,3) = {f2(1,3), fu(1,3)) = (3,26), and by definition, D f(1,3} = Vf - u where u is a unit vector in the

13713

—_—
direction of AD, which is {3, §3). Therefore, D— f (1,3) = (3,26) - (5, 33) =3 - 5 + 26 -

. The curve of steepest ascent is perpendicular to all 4]

of the contour lines.

dau + bv dau + by)
oz

. (@) Viauw + bv) = <

) (s
o 00 <av >m+m

Az’ By oz’ Oy

u—aﬂ—v%a—u-l— dv v Vu+uV
ay/ = '\ Bz By Bz gy T UYETUVY

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

404 (1 CHAPTER15 PARTIAL DERIVATIVES ET CHAPTER 14

du Ou_ v U<@3_“>_U<QE@
Var Y3z 0y ”ay>: oz’ By oz’ By

’ 2

v 2

v

o a(un) a(un) _ "—1?.3 n_lc')_u _ no1
@ v < gz oy ) \™ e gy )T Ve

. If we place the initial point of the gradient vector V (4, 6) at (4, 6), the vector is perpendicular to the level curve of
f that includes (4, 6), so we sketch a portion of the level curve through (4, 6) (using the nearby level curves as a
guideline) and draw a line perpendicular to the curve at {4, 6). The
gradient vector is parallel to this line, pointing in the direction of
increasing function values, and with length equal to the maximum value
of the directional derivative of f at (4, 6). We can estimate this length by
finding the average rate of change in the direction of the gradient. The
line intersects the contour lines corresponding to —2 and —3 with an

estimated distance of 0.5 units. Thus the rate of change is approxi-

2-(-3)

mately — 05

= 2, and we sketch the gradient vector with length 2.

. Let Fx,y,2) = 22 + 2% + 322, Then ©% + 24° + 322 = 21 is a level surface of F. Ffz,y,2) =2z =
Fo(4,-1,1) =8, Fy(z,y,z) =4y = F,(4,-1,1) = —4,and F,(z,y,2) =62 = F.(4,-1,1)=6.
{a) Equation 19 gives an equation of the tangent plane at (4, —1,1) as 8(x — 4) — 4[y — (-1)]+6(z — 1} =0

ordr — 2y + 3z = 21.

(b) By Equation 20, the normal line has symmetric equations
r—4 y+1 _z—lorm—47y+1 z-1
8 -4 7 6 4 -2 37

. Let F(2,y,2) = y* + 2% — x. Then z = y? 4 2% — 2 is the level surface F(z,y, 2) = 2.
Folz,y,z) = -1 = Fe(-1,1,0)=~1, Fy(z,y,2) =2y = F,(-1,1,0)=2,
and Fi(z,y,2) =22z = F{-1,1,0) =0
(a} An equation of the tangent plane is —1{x + 1) + 2(y — 1} +0(z —0) =0 or —z + 2y = 3.
1 y-1

{b) The normal line has symmetric equations ad +1 5

L,z =0,

. Let Fx,y,2) = 2° — 2y° + 2% + yz. Then 2® - 24° + 2% + yz = 2 is a level surface of F
and VF(z,y, z) = (22, -4y + 2,2z + y).
(a) VF(2,1,-1) = (4, -5, —1} is a normal vector for the tangent plane at (2, 1, —1), so an equation of the tangent
planeis d{z —2) —5{y — 1) —~ Lz + 1) =0orde — 5y — 2z = 4,
(b) The normal line has direction (4, —5, —1), so parametric equations arex = 2+ 4¢, y =1 —5¢t, 2 = —1 — ¢,
r—2 y—1 2z2+1

and symmetric equations are = .
Y d 1 5 T
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42. Let F(z,y,2) = ¢ — z — 4arctan(yz). Then x - z = 4 arctan (yz) is the level surface F' (x,y, 2} = 0,
4z 4y
and VF(SC,y, z) = <1, _W’ e Tyzzﬂ>
(a) VF(1 +m,1,1) = (1, -2, —3) and an equation of the tangent plane is
le—{(1+m))—2(y—-1)-3(z—-1)=00rx—2y—3z=-4+nx
{b) The normal line has direction {1, —2, —3), so parametric equationsarez = 1+ 7 +t, y=1—-2{, 2 =1 - 3L,
y—1 z-1

and symmetric equationsare x — 1 — 7 = 7 3

. Fz,y,2) = =z +xe¥cosz = VF(z,y,z) = (e¥cosz,ze? cosz, -1 — ze¥ sin z},
VF(1,0,0) = (1,1, 1)
(@ l{z-1}+ U {y—~0)—1(z—0)=0o0rz+y—2=1

byr—1l=y=-z

ey N vR0,0,1) = (—1,1,-1)
:C“f*z’ ’y $+z * P - y -y N
@W(-Dz-0O+(VDw-0-1z-1)=00rz—y+z=1.

 F(z,y,2) —yr—In(s+2) = VF(z,y,z):<

(b) Parametric equations are x = —¢, y = {, z = 1 — { and symmetric equations are ;TI
or—r=y=1-—2z
» Flz,y,2) = zy + yz + 2z,
VE(z,y,2) ={y+zz+zy+zx),
VF(1,1,1) = (2,2, 2), so an equation of the tangent plane
152r + 2y + 2z =6 orx + y + 2z = 3, and the normal line is

givenbyr—1l=y—1=z—lorz=y ==z

. F(x,y,2) = zyz, VF(z,y, 2} = (yz, xz, yz),
VF(1,2,3) = {6,3,2), so an equation of the tangent plane
is 6 + 3y + 2z = 18, and the normal line is given by
z—-1 y—-2 -3

6 3 2
z=3+2t

orx =146t y=2+ 3,

e R
T
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47.

. Vglz,y) = {1, —2y), Vg(3, —1) = {1, 2}. The tangent line has

Vf(x,y) = {2z,8y), Vf(2,1) = {4,8). The tangent line has
equation Vf(2,1) - {z -2,y — 1} =0 = \

/N

]

-

4{x - 2) + 8{y — 1) = 0, which simplifies to x + 2y = 4, x+2y=4
I
N

equation Vg(3,-1) - {z -3,y + 1} =0 = \ x=y'+2
o 2Vg3.—1
1{z — 3) + 2{(y + 1) = 0, which simplifiestox + 2y = 1.
x+2y=1

2$0 ng QZ()

. VF{ro, Y0, 20) = <—— — —> Thus an equation of the tangent plane at (o, yo, 20) 18

a2’ B2 2

2 2 2
2“ z+ %%0 + % =2 - - ) = 2{1) = 2 since (zq, yo, 20) is a point on the ellipsoid. Hence

— sc —|— 02 y + — z = 1 is an equation of the tangent plane.

2;!39 2’y0 *220

. VF (i, yo, 20) = <?, B2 >, so an equation of the tangent plane at (o, Yo, o) 1%

o 0
c_) 20r—3:+55y—§z—1.

-1 . .
=2~ ,—— ), s0 an equation of the tangent plane is
¢

— — Or —— +_

28 2 2:cu 20 Eg
2490 — 49 40
B2 ¢ V= ot

2xq 2 z+
the equation can be written as —;~ x + % Yy = —C—Q_
a?

. Since V f(xzo, yo, 20) = {2z0, 4yn, 620} and (3, —1, 3) are both normal vectors to the surface at (o, yo, 20), We

need (2z0, 4y0,620) = ¢ {3, —1,3) or {zo, 2y, 320) = k{3, —1,3). Thus zo = 3k, yo = —3k and z0 = k. But

i 422 +328 =1or (9+3+3)k* =1L sok= iﬂg and there are two such points: (:tﬁf,é,qzsj—\l/ﬁ,j:ﬁ?).

. Vf(xo,%0,20) = {2xq, —2y0, 420) and the given line has direction numbers 2,4, 6, so

20, —2yo,420) = k(2,4,6) orzo = k. yo = —2kand zo = 3k. Butad — i + 228 = lor (1 -4+ )k’ =
2 2
sok = :t\/g = i—‘[aﬁ and there are two such points: (:l:l/—_3'°",:f:4£236 , :H/—:f).

. First note that the point {1, 1,2) is on both surfaces. For the ellipsoid, an equation of the tangent plane at (1,1,2) is

6z + 4y + 4z = 18 or 3z + 2y + 2z = 9, and for the sphere, an equation of the tangent plane at (1,1,2) is
(2-8)r+(2—-6)y+(4—8)z=-180r —6x — 4y — 4z = —18 or 3z + 2y + 2z — 9. Since these tangent

planes are the same, the surfaces are tangent to each other at the point (1,1, 2).
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55. Let (o, Yo, 20) be a point on the cone [other than {0, @, 0}]. Then an equation of the tangent plane to the cone at this
point is 2z9x + 2oy — 2202 = 2(30 + 5 — zo) But 2% + ¥§ = 23 so the tangent plane is given by

Tox + Yoy — zoz = 0, a plane which always contains the origin.

. Let (zo, Yo, z0) be a point on the sphere. Then the normal line is given by z 2_ T y2— %o z2— %0 For the
To Yo 20

center (0, 0, 0} to be on the line, we need S [ R equivalently 1 = 1 = 1, which is true.
2xg 20 22z

. Let (z0, yo, zo) be a point on the surface. Then an equation of the tangent plane at the point is

T Y 2 yTot ,/yo + /20 L.
+ + . But /T VYo + +/z0 = +/c, so the equation is
2ﬁ NN ot v ve a

\/_ \ﬁf \/% = y/c. The z-, y-, and z-intercepts are \/exy, /cyo and /2o respectively. (The z-intercept

is found by setting y = 2z = 0 and solving the resulting equation for =, and the y- and z-intercepts are found

similarly.) So the sum of the intercepis is v/c(\/Za -+ /Jo + /20 ) = ¢, a constant.

. Here the equation of the tangent plane to the point (g, yo, Zo) 1S Yo2ok + ZoZo¥ + ToYoz = 3ToYazo OF

= + Y + 2 = 1. Then the z-, y-, and z-intercepts are 3xo, 3y and 3z respectively, and their product is
3o 30 REN

2Txo1020 = 27¢%, a constant,

I fz,y,2) = 2 — 2% — y? and g{x, v, z) = 422 + % + 22, then the tangent line is perpendicular to both V f and
Vgat (—1,1,2). The vector v = Vf x Vg will therefore be parallel to the tangent line, We have:
Vi(e,y,2) ={-2z,-2y,1} = Vf(-1,1,2)={2,-2,1),and Vg(z,y, 2) = (8z,2y,2z) =
i jk
Vg(—1,1,2) = {—8,2,4). Hencev=Vf x Vg=| 2 -2 1|=—-10i-16j — 12k. Parametric equations
-8 2 14
are:x = —1 - 10,y =1 — 16¢, 2 =2 — 12¢,

60. (a) Let f{z,y,2) =y + zand g(z,y, z) = #° + y”. Then the required  (b)

T
tFr1

tangent line is perpendicular to both ¥V f and Vg at (1, 2, 1) and the

|
A1)

vector v = V f x Vg is parallel to the tangent line. We have
Vilx,y,2)={(011 = Vf(1,2,1) ={0,1,1), and
Volz,y, 2} = (22,2y,0) = Vg(1,2,1) = {2,4,0). Hence

11

IR MR LAY

FRIEERURTL

AT

ijk )
v=VfxVg=|0 1 1|=-4i+2j— 2k. So parametric [\
240 ‘

equations of the desired tangent lineare x = 1 — 4¢, y = 2 + 2¢,
z=1-72t

61. (a) The direction of the normal line of F is given by V£, and that of G by VG. Assuming that
VF # 0 # VG, the two normal lines are perpendicular at Pif VF - VG =0at P <
(OF [0z, 0F /8y, OF |0z} - (0G [0x,0G [0y, 0G[dz) =0t P & F,G.+ F,G,+F.G,=0atP,
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®Here F =2+ —22and @ = a® +y* + 22 = r%, 50

VF-VG = (2z,2y,—22) - {22,2y,22) = 4z° + 4y* ~ 42" = 4F = 0, since the point {z, y, z} lies on the
graph of /7 = 0. To see that this is true without using calculus, note that G = 0 is the equation of a sphere
centered at the origin and £ = 0 is the equation of a right circular cone with vertex at the origin (which is
generated by lines through the origin). At any point of intersection, the sphere’s normal line (which passes
through the origin) lies on the cone, and thus is perpendicular to the cone’s normal line. So the surfaces with

equations &' = 0 and G = 0 are everywhere orthogonal.

62. (a) The function f{z,y) = (xy)'/? is continuous on R? since it is a composition of a polynomial and the cube root
function, both of which are continuous. (See the text just after Example 15.2.8 [ET 14.2.8].)
o fo+R0)-f0,00 . (h-0)2-0
10,0 = i LOERE IO iy C0

L (0,04 h)— f(0,0) . (0-A)YP 0
Ful00) = fim, 2 L —

and are equal to 0. Now let u be any unit vector other than i and j (these correspond to f, and f, respectively.)
Then v = ai~+ bj where a # 0 and b # . Thus
_ 2 3
[0+ ha,0+hb) — J(0.0) . /(ha)(BE) _ | ¥ab
h h—0 h h—0 h1/3
exist, so Dy, £(0,0) does not exist.

:0’

= 0. Therefore, f-(0,0) and f,,{0, 0} do exist

Da £(0,0) = Jim

and this limit does not

Notice that if we start at the origin and proceed in the direction of
the z- or y-axis, then the graph is flat. But if we proceed in any
other direction, then the graph is extremely steep.

63. Let u = {a,b) and v = (¢, d). Then we know that at the given point, Dy f = Vf - u = af, + bf, and
Dy f =V [ v =cfs+ dfy,. Butthese are just two linear equations in the two unknowns f; and f,, and since u

and v are not parallel, we can solve the equations to find Vf = {fx, f,) at the given point. In fact,

vf o (dDaf=bD S aDyf-cDuf
- ad — be ’ ad — be ’

64. Since z = f(x,y) is differentiable at xo = (o, yo), by Definition 15.4.7 [ET 14.4.7] we have
Az = fi(xo,yo) Ar + fy(xo, w0) Ay + €1 Az + €2 Ay where €1, 82 — 0 as (Az, Ay) — (0,0). Now
Az = f(x) — f(xo), (Az, Ay} = x — x0 so (Az, Ay) — (0, 0) is equivalent to x — x¢ and
{f=(xo,40), fu(zo, )} = Vf(Xo). Substituting into (15.4.7 [ET 14.4.7]) gives
f(x) = fxo) = Vf(xo0) - (x — x0) + {e1,€2) - {Ax, Ay) or
{e1,82) - (x = Xo) = f(x) — f(x0) = Vf{x0) - (x — %), and s0
f(x) — f(xa) = Vf(xo) - (x —x0) _ (e1,82) - (X — Xo)

Xy . .
= . But is a unit vector so
|X—X[)| |X—X(]l lX—X()‘
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i E1€2) - (X = Xo)
X—XQ 1){ - XU|

b F00 = ) = Vf (k) (x—%0) _

H—X() |x — xOl

= O since £1,e2 — 0 as x — xp. Hence

15.7 Maximum and Minimum Values ET14.7

1. (a) First we compute D{1,1) = foz(1,1) fyu (1, 1) — [f24(1, 1}]* = (4)(2) — (1)* = 7. Since D(1,1) > 0 and

fez{l,1) > 0, f has a local minimum at (1,1} by the Second Derivatives Test.
(b)Y D(1,1) = faz(1,1) fyu(1,1) — [fzy (1, 1)]* = (4)(2) — (3)* = —1. Since D(1,1) < 0, f has a saddle point
at {1, 1) by the Second Derivatives Test.

- (@) D = g2a(0,2) gy5(0,2) — g2y (0, 2)1% = (—1)(1) — {6)* = —37. Since D < 0, g has a saddle point at (0, 2)
by the Second Derivatives Test.

(b) D = g5z (0,2) gy (0,2) — [gy(0,2)]* = (—1)(—8) — (2)* = 4. Since D > 0 and g,.(0,2) < 0, ghas a
local maximum at (0, 2) by the Second Derivatives Test.

() D = g22(0,2) gy (0,2) — [924(0,2)]% = (4)(9) — (6)% = 0. In this case the Second Derivatives Test gives no
information about g at the point (0, 2}.

. In the figure, a point at approximately (1, 1) is enclosed by level curves which are oval in shape and indicate that as
we move away from the point in any direction the values of f are increasing. Hence we would expect a local
minimum at or near (1, 1). The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin,
the values of f increase in some directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have f(z,y) =4+ 2° +9y* —3zy = fo(z,y) = 327 - 3y,
fylz,y) = 3y* — 3z. We have critical points where these partial derivatives are equal to 0: 3z% — 3y = 0,

NV 3 =0 =

3y® - 3z = 0. Substituting y = x* from the first equation into the second equation gives 3(z

3z(z° ~1)=0 = =z =0orxz = 1. Then we have two critical points, (0,0) and (1, 1). The second partial
derivatives are fr.(z,y) = 6z, foy{z,¥) = =3, and fy,(z,y) = By, so

D(@.y) = fex(z,y) fuu(@.) — [for (2, 1)]* = (62)(By) — (—3)" = 362y ~ 9. Then

D(0,0) = 36(0)(0) — 9 = —9,and D(1,1) = 36(1){1} — 9 = 27. Since D(0,0) < 0, f has a saddle point at
(0,0} by the Second Derivatives Test. Since D(1,1) > 0 and fzz(1,1) > 0, f has a local minimum at {1, 1).

. In the figure, points at approximately (—1, 1) and {—1, —1} are enclosed by oval-shaped level curves which indicate
that as we move away from either point in any direction, the values of f are increasing. Hence we would expect
local minima at or near {—1, £1). Similarly, the point {1, 0) appears to be enclosed by oval-shaped level curves
which indicate that as we move away from the point in any direction the values of f are decreasing, so we should
have a local maximum there. We also show hyperbola-shaped level curves near the points (—1,0), (1,1), and
(1, —1). The values of f increase along some paths leaving these points and decrease in others, so we should have a
saddle point at each of these points.

To confirm our predictions, we have f(z,y) = 3z — 2° — 24° +9* =  f.(z,y) = 3 - 3%,
fylz,y) = —4y + 43°. Setting these partial derivatives equal to 0, we have 3 — 32° =0 = z = 41 and
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—4y+4y* =0 = y(y*—1)=0 = y= 0,1 Soourcritical points are (+1,0), (1, £1). The second
partial derivatives are f...(x,y) = —6z, fry(z,y) = 0.and fy, (z,1) = 125 — 4, 50
D(2,) = foul(@,y) fun(2,3) — oyl 9)]2 = (~62)(124 — 4) ~ (0) = —720y? + 242, We use the Second

Derivatives Test to classify the 6 critical points:

Critical Point D fox Conclusion

24 | =6 | D> 0, for <0 £ has a local maximurmn at (1, 0)
—48 D<0 £ has a saddle point at (1, 1)
—48 D <0 f has a saddle point at (1, -1)
—24 D <0 f has a saddle point at (—1,0)

48 D>0fiz >0 f has a local minimun at (—1, 1)

48 D>0, fer>0 f has a local minimum at (—1, —1)

Cf(zy) =9 =20+ 4y —2® — 4y = fo=—2— 2,
Ju =4 =8y, fae = =2, foy =0, fyy = —8. Then f; = O and

#,
fy=0implyz=—landy = % and the only critical point is e

) TITITAted
1 2 2 “ AT
(—1,3)- D(@,y) = facfyy — (f2y)" = (=2)(—8) — 0% = 16, and rﬂ’""m’,‘,?',“'r

]
since D(—1,1) =16 > Oand fra (~1,1) = —2 <0, y

7(=1,1) = 11 is a local maximum by the Second Derivatives Test.

L flay) = 2Py 41227 — 8y = fo = 327y + 24x,
fy =1 =8, foro = bzy + 24, fo, = 322, fu, = 0. Then f, =0
implies ¢ = 2, and substitution into f, = O gives 12y +48 =0 =
y = —4. Thus, the only critical point is (2, —4}.
D{2,—4) = (—24)(0) — 12° = ~144 < 0, 50 (2, —4) is a saddle

point.

ey =24yt day 12 = fo=42% — 4y,
y = 3 - zr — 21 Ty = T = 2. z = \ “"‘ N '
Fo = 4y° — 42, for = 1222, fo, = —4, fuy = 1242 Then fo = 0 ‘1 ‘.‘.‘..'.".‘,%"’F!I

i}
h
If
e, U '
~u

i

7

. SR S . " . . o I :""'f
implies ¥y = «”, and substitution into fy, =0 = = =y~ gives ‘}‘%ﬁ%ﬁo‘o‘!“

P-z=0 = zz*-1)=0 = z=0orz==+L 0%
Thus the critical points are (0,0}, (1,1), and {—1, —1}. Now g

D(0,0) =00~ (~4)® = —16 < 0, s0 (0, 0) is a saddle point.

D(1,1) = (12)(12) — (=4)* > 0and fr.(1,1) = 12> 0, s0

f(1,1) = 0is alocal minimum. D(-1,—1) = (12){(12) — (=4)* > Oand far = (—1,—=1) = 12 > 0, 50

fi=1,=1) = 0is also a local minimum,

)
A
A

7
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8. flr,y) =€ " ¥ o f= —2petv oV
Jy = (4= 2)e" =" [y, = (4? - 2)e=" V",
foy = —22{4 — 2y)e4y“”2"y2,
fow = (442 — 16y + 14)e**~="~¥" Then f, = Oand f, = 0
implies £ = 0 and y = 2, so the only critical point is (0, 2).
D(0,2) = {(—2e*)(~2¢") - 0° = 4e® > O and

fze(0,2) = —2e* < 0,50 £(0,2) = e is a local maximum.

9 flz.y)=(l+ay)z+y) =z +y+2’y+azy’ = TR
fe=142zy+y° fy =1+2° 4+ 2xy, fra = 2y, fay = 204 2y, .i.o.%‘QQ\\

ol
fyy = 2z. Then f, = O implies 1 + 2zy +y* = Oand f, =0 e

implies 1 + 2 + 2y = 0. Subtracting the second equation from the

firstgivesy®> — 22 =0 = y =tz butify = z then \‘\\ W

W

I+2zy+3° =0 = 1+ 3z? = 0 which has no real solution. If “A‘.‘!—

y=—zthenl+2zy+y* =0 = 1-22=0 = z=+1,
so critical points are (1, -1} and (—1,1}. D(1,—1) = (=2}(2) — 0 < 0and D(-1,1) = (2)(-2) — 0 < 0,
so (—1,1) and (1, —1) are saddle points.

10 f(z,y) =22° + 2 + 522 +4° = fo = 62® +4° + 10z,
fy =22y + 2y, fzz = 125 + 10, fyy = 22 + 2, foy = 2y. Then
fu = 0implies y = 0 or & = —1. Substituting into f; = 0 gives the
critical points (0,0), (—3,0), (—1,£2). Now D(0,0) = 20 > 0
and fzz(0,0) = 10 > 0, so f(0,0) = 0 is a local minimum. Also
Fee(—2,0) <0, D(-2,0) > 0, and D(—1,%2) < 0. Hence
f(=%,0) = 42 is a local maximum while (—1, +2) are saddle

points.

N flz,y) =1+2zy-2* -y = fo=2y-2a,
fy =22 = 2y, foe = fyy = 2, fzy = 2. Then fr = 0and
fy = 0implies x = y so the critical points are all points of the form
(zo,z0). But D (x0,x0) = 4 — 4 = 0 so the Second Derivatives
Test gives no information. However
I+2zy—a® -y’ =1—(z—y)*and 1 — {z — y)* < 1forall
(z,y), with equality if and only if = y. Thus f(zo,zo} = 1 are

local maxima.
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2 flz,y) =zy(l-z-y) = fo=y=-2y—y"
fy=x—a = 2ay, foo = -2y, fyy = —2¢, fzy =1 - 22— 2.
Then f, = O implies y = 0 or y = 1 — 2. Substituting y = 0 into
fy =0gives & = 0 or z = 1 and substituting = 1 — 2z into
f, =0gives 3z —z =0soz =0or é Thus the critical points are
(0,0), (1,0), (0,1) and (3, 3).
D(0,0) = D (1,0) = D{0,1) = —1 while D {1,1) = L and fo.. (3,3) = —2 < 0. Thus (0,0),{1,0)

and (0, 1) are saddle points, and f (3, 3) = 35 is a local maximum.

. f(z,y) =" cosy = fr=¢€"cosy. fy = —€"siny.
Now fr = 0implies cosy = O or y = § + na for n an integer.

But sin{% + nw Q, so there are no critical points.
) P

2 2 -3,—2
Sy =s s G 2 fesl oty N

il

fu=2— 227y for =24 627y R, fip = 2462 7y Y,

fey = 4272y 73 Then f, = Oimplies 2z*y* —2 =0 orz*y* = 1

or 4> =z *. Note that neither = nor y can be zero. Now f, =0

implies 2z%y? ~ 2 = 0, and with 4% = x™* this implies

20079 —2=Qorz® =1 Thuse =tlandifz =1,y = +1;

ifz = —1, y = £1. So the critical points are (1,1), (1, —1},(—1, 1) and {—1, —1). Now
D(+1,41)y = D(£1,T1) = 64 — 16 > O and fo; > 0 always, so f(+1,+1) = f(d:1, F1) = 3 are local

mintma.

. fx,y) =asiny = fr=siny, fy = zcosy, fee =0,
fyy = —zrsiny and f, = cosy. Then f; = 0if and only if
y = nw, n an integer, and substituting into f, = O requires z = 0
for each of these y-values. Thus the critical points are (0, n7), n
an integer. But D(0, nr) = — cos?{nr) < 0 so each critical point

is a saddle point.
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6. f(z,y) = (22 -2} 2y - ") = [o=(2-22)(2y - ),
fy =2z = 2*)(2 = 29), fae = =202y — ), fuy = —2(2z — 2°)
and fzy = (2 —22)(2 — 2y). Then f; = Oimpliessz =lory =0
ory=2andwhenz =1, f, = Oimpliesy = 1, wheny = 0,
fy = 0implies z = 0 or x = 2 and when y = 2, f, = 0 implies
x = 0 or x = 2. Thus the critical points are (1, 1), (0,0), (2, 0),
(0,2} and (2, 2). Now D(0,0) = D(2,0) = D(0,2) = D{2,2) = —186 so these critical points are saddle points,
and DX(1,1) = 4 with f.-(1,1) = —=2,s0 f{1,1) = 1 is a local maximum.

f(-'ﬂ,'y) _ (272 + y2)ey2_z2 = fr _ (:L‘Z + y2)ey2_;p2(_2$) i 2.’L’6y2_$2 _ 2mey2LI2(1 _ mz _ yE)‘

: 2 2 2 2 z 2
Sy = (2 +97)e? "7 (2y) + 2ye? T =2pe¥ "7 (1+ 27 + 47,

fow = 22e% % (=22} + (1 - 2® - yz)(2m(—2mey2_m2) + Qeyz_mZ)

=2e%" "7 (1 — 22 — y?)(1 — 222} — 222),
Joy = 22e¥" 7 (<29) + 2e(2y)e¥ T (1~ 2® — ") = —daye’” ~* (® + ),
fou = 2yey2_“’2 (2y) + (L+ 2% + %) (Qy (dey'z"‘.z) + 2ey2“”’2)
= 2¢v " (1 + 2 + ) (14 2¢°) + 297).
fy = 0implies y = 0, and substituting into f; = 0 gives
e (1-2?) =0 = z=0orz=+l
Thus the critical points are (0, 0) and {+1, 0).
D(0,0) = (2)(2) =0 > 0and f,2(0,0) = 2> 0,50 f(0,0) =
is a local minimum. D(£1,0) = (—4e ')(4e ') — 0 < 050
(£1,0) are saddle points.

 flz,y) =2hyge ™ Y =

fa = a:zye‘”’z”HQ(—2$)+2$ye_12_92 = 2$y(1—az2)e'“"2“y2, 7_‘, ,n‘\

fo = 2ye =V (2y) + 22em Y = g2(1 - 2P)em T Y, ' -4 “‘t'l""l,"“_ '
fer = 2y(2z" — 522 + 1) V', o df
fay = 20(1 = 2)(1 = 2yP)e™ ¥,
Jyw = 25‘“29(2?]2 -3} "
fz =0impliesz =0,y = 0, orz = 1. If z = 0 then f, = 0 for any y-value, so all points of the form (0, y) are
critical points. If y = O then f, =0 = 227 =0 = z=050 (0,0) (already included above) is a
critical point. If ¢ = +1 then (1 — 2p%)e™ "% =0 = y= i\/_, $0 (1 :i:\—%) and (—l,i%) are critical

points. D(0,y} = 0, so the Second Derivatives Test gives no information. However, if y > 0 then
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:cgye*”’hy‘z > 0 with equality only when z = 0, so we have local minimum valves f(0,y) = 0, y > 0. Similarly,

if y < Othen mzye““‘z_yz < (0 with equality when = = 0so f(0,y) = 0, y < 0 are local maximum values, and

(0,0) is a saddle point.
D(ﬂ, \/LE) — Re~? 0, fm(il, —15) — _2/2e~¥? < (and
D(il, —%) =873 >0, frr (il,mﬁ) =222 > 0,50 f(ﬂ:l, %) = 538‘3/2 are local maximum

points while f(:l:l, —%) = —%6—3/2 are local minimum points.

19. f(z,y) = 3a?y +4° — 32% — 3y 1+ 2

AN \\\\\&

PRLERLAN

From the graphs, it appears that f has a local maximum f(0, 0) =2 2 and a local minimum (0, 2) =~ —2. There
appear to be saddle points near (£1,1).

fr = 6xy — 62, f, = 327 + 3y* — 6y. Then f, = Oimpliesz = 0 or y = 1 and when z = 0, f, = 0 implies
y=0o0ry = 2; wheny = 1, f,, = 0 implies * = 1 or z = £1. Thus the critical points are (0, 0), (0, 2), (£1,1).
Now fzo = 6y — 6, fyy = 6y — 6 and fry = 6z, s0 D(0,0) = D(0,2) = 36 > O while D(£1,1) =-36 < 0
and f7:(0,0) = —6, fz2(0,2) = 6. Hence (£1, 1) are saddle points while f{0,0) = 2 is a local maximum and

f£(0,2) = —2is a local minimum.

2. f(z,y) = aye =V

hY
NS4

177 7”

W A RN
2L LT
N
AY

NN Y
R

0
¥

There appear to be local maxima of about f(+0.7, +0.7) = (.18 and local minima of about
F(£0.7, F0.7) = —-0.18. Also, there seems to be a saddle point at the origin,

= ye"‘”z*l’i’(l -27%), fy = mc’“g’yz(l - 2y%), foz = 2:L"ye”$2”7"'2 (2z* - 3),

foy = wac‘wZ_yz (247 — 3). fuy = (1 — 2m2)e_‘“2_-"’2(1 — 2y*). Then f, = O impliesy = O orz = :I:%.

Substituting these values into f, = () gives the critical points {0, 0), (— +-

1 1
/2 ﬁ)’ (*"—2,iv—,§) Then
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202 %) [4z%y?(22® — 3)(2¢° — 3) — (1 — 22°)*(1 — 2°)?], s0 D(0,0) =

5) > 0md D(~25, £ ) > 0. But fru (5, &) <0, fuu( 50— 55

%) > 0and for (—‘%, —%) < 0. Hence (0,0) is a saddle point;

f(ﬁ,wﬁ) = f(f%,% = — 3= are local minima and f(%,ﬁ) =

local maxima.

. flz,y) =sinz +siny+sin(z+y),0 <z <2r, 0 <y < 2

From the graphs it appears that f has a local maximum at about (1, 1) with value approximately 2.6,

a local minimum at about (5, 5) with value approximately —2.6, and a saddle point at about (3, 3).

fo = cosx 4+ cos(z +y), fy = cosy + cos(z +y), fer = —sinz — sin(z + y), fyy, = —siny —sin(z + y),
fey = —sin(z + y). Setting f. = G and f, = 0 and subtracting gives cosz — cosy = Jorcos z = cosy. Thus
r=yorrxr=2r -y Ifx =y, fr = 0becomes cosx + cos2x = Qor 2cos?x +cosz —1 = 0, a quadratic in
cosz. Thus cosz = —lor 3 and z = 7, ¥, or 3T, yielding the critical points (7, =), (%, %) and (3F, 32).
Similarly if x = 27 — y, fz = 0 becomes (cos z) + 1 = 0 and the resulting critical point is (m, 7). Now
D{z,y) = sinzsiny + sinzsin(z + y) +sinysin(z + y). So D{n, x) = 0 and the Second Derivatives Test
doesn’tapply. D(%, %) =% > Oand fre{%,5) < Oso f(3.3) = 342@ is a local maximum while

D(%r%) = % > 0 and fm(%ﬂa%ﬂ) >0, s0 f(%",%") = —%ﬁ is a local minimum.

22 f(xr,y) =sinz+siny+cos(zr+y),0<z <5, 0<y< 3

T R

A\

From the graphs, it seems that f has a local maximum at about {0.5,0.5). f, = cosz — sin(z + ),

fy =cosy —sin(z + ), fzz = —sinz — cos(z + y), fyy = —siny — cos{z + y),
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Jey = —cos{z + y)}. Setting fr = 0and f, = 0 and subtracting gives cosz = cosy. Thus x = y. Substituting
r=yinto fr = 0givescosz —sin2z = Dorcosz({l — 2sinz) = 0. Butcosz #Qfor0 <z < 7 and

s

1—2sinz = 0 implies x = &+

so the only critical point is (%, %) Here fm(lﬁr—, %) == ~1 < Oand

D(Z, %) = (~=1)* ~ L > 0. Thus £(Z,Z) = £ is a local maximum.

L fley) =2t -5t P+ 3242 = folry) =42 10z +3and fy(z,y) =29 f, =0 = y=0,
and the graph of f. shows that the roots of f; = 0 are approximately x = —1.714, 0.312 and 1.402. (Alternatively,
we could have used a calculator or a CAS to find these roots.} So to three decimal places, the critical points are
(=1.714,0), (1.402,0), and (0.312,0). Now since frr = 1227 — 10, fo, = 0, fyy = 2, and D = 24x% — 20, we
have D(—1.714,0) > 0, fzz(—1.714,0) > 0, D{1.402,0) > 0, foz(1.402,0) > 0, and D{0.312,0) < 0.
Therefore f(--1.714,0) = —9.200 and f(1.402, 0) = 0.242 are local minima, and (0.312,0) is a saddle point.
The lowest point on the graph is approximately (—1.714, 0, —9.200).

12

flzy) =5 102y - 42® + 3y —y' = folz,y) = —10y — 8z, f(z,y) = —10z + 3 — 49",
Now fo =0 = a= f‘i’y, so using a graph, we find solutions to
0=fy(—3y,y) = -10(-3y) + 3 — 45° = -4y + 2y + 3. (Akternatively, we could have found the roots of
fo = fy = Odirectly, using a calculator or a CAS.) To three decimal places, the solutions are y = 1.877, -0.245
and —1.633, so f has critical points at approximately (—2.347,1.877), (0.306, —0.245), and (2.041, —1.633).
Now since foo = —8, foy = —10, fyy = —12¢°, and D = 961> — 100, we have D{-2.347,1.877) > 0,
D(0.306, —0.245) < 0. and D(2.041, —1.633) > 0. Therefore, since f., < 0 everywhere,
F(—2.347,1.877) =~ 20.238 and f(2.041, —1.633) ~ 9.657 are local maxima, and (0.306, —0.245} is a saddle
point. The highest point on the graph is approximately (—2.347,1.877, 20.238).

B flry)=2v+42" —y* + 2y — 2t -yt = fola,y) =2+ 8z + 2% — 428,

folz,y) = -2y + 42y — 4% Now f, =0 < 2y(2y2—2m+1)=0 = y:OoryQIm—%.
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The first of these implies that f- = —42® -+ 8z + 2, and the second implies that

f:=2+8x+ 2(:1; - %) — 4z® = —42® + 10x + 1. From the graphs, we see that the first possibility for f has
roots at approximately —1.267, —0.259, and 1.526, and the second has a root at approximately 1.629 (the negative
roots do not give critical points, since y = x — % must be positive}. So to three decimal places, f has critical points
at (—1.267,0), (~0.259,0), (1.526,0), and (1.629, +-1.063). Now since fo = 8 — 122%, fo, = 4y,

fyy = 4z — 1242, and D = (8 — 122%)(4x — 12¢%) — 1637, we have D(-1.267,0) > 0, fzz(—1.267,0) > 0,
D(-0.259,0) < 0, D{1.526,0) < 0, D(1.629, £1.063) > 0, and f.(1.629, £1.063} < O. Therefore, to three
decimal places, f{—1.267,0) = 1.310 and f(1.629, +1.063) =~ 8.105 are local maxima, and {—0.259,0) and
(1.526,0) are saddle points. The highest points on the graph are approximately (1.629, +1.063, 8.105).

VRN
Q'Glﬁ;"mé\\;\\l

5. flz,y) =" +y' - +dcosy = folz,y) =€ — 327 and f,(x,y) = 4y° — 4siny. From the graphs, we
see that to three decimal places, f. = 0 when z =~ —0.459, 0.910, or 3.733, and f, = 0 when y = 0 or £0.929,
{Alternatively, we could have used a calculator or a CAS to find the roots of f, = 0 and f, = 0.) So, to three
decimal places, f has critical points at (—0.459, 0}, (—0.459, £0.929), (0.910, 0), (0.910, +0.929), (3.733, 0),
and (3.733, £0.929). Now fux = € — 62, fuy = 0, fy = 12y* — dcosy, and D = (&® — 6x)(12y% — 4 cosy).
Therefore D(—0.459,0) < 0, D(~0.459, +0.929) > 0, foz(—0.459, £0.929) > 0, D(0.910,0) > 0,
f2(0.910,0) < 0, 2(0.910, +0.929) < 0, [X(3.733,0) < 0, 2(3.733, £0.929) > 0, and
Jee (3,733, £0.929) > 0. So f(—0.459,+0.929) = 3.868 and f(3.733, +0.929) =x —7.077 are local minima,
£(0.910,0) ~ 5.731 is a local maximum, and (—0.459, 0}, (0.910, £0.929), and (3.733, 0) are saddle points. The
lowest points on the graph are approximately (3.733, £0.929, —7.077).

2]. Since f is a polynomial it is continuous on D, so an absolute maximum and minimum exist, Here f, = 4, fy = —5
so there are no critical points inside I). Thus the absolute extrema must both occur on the boundary. Along Ly,

z=0and f(0,y) =1 — 5y for 0 < y < 3, a decreasing function in y, so the maximum value is f (0,0) = 1 and
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the minimum value is £{0,3) = —14. Along Ly, y = O and f(x,0) =1 + 4z for0 <z < 2,an increasing

function in z, so the minimum value is £(0,0) = 1 and the ¥4
maximum value is f(2,0) = 9. Along Ly, y = —2z + 3 and
flz,—3z+3) = £z — 14 for 0 <z < 2, an increasing function
in , so the minimum value is f(0,3) = —14 and the maximum

value is f(2,0) = 9. Thus the absolue maximum of f on D is

£(2,0) = 9 and the absolute minimum is f(0,3) = —14.

. Since f is a polynomial it is continuous on L), so an absolute
maximum and minimum exist. fo =y — 1. f, =z — 2, and
setting fr = f, = 0 gives (2,1} as the only critical point, where
f(2,1) =1 Along Li:z =1and f(l,y) =2 —yfor0 <y <4,

a decreasing function in y, so the maximum value is f(1,0) = 2

L,

and the minimum value is f(1,4) = —2. Along La: y = 0 and

Lo L (5.0

f(z,0) =3 — zfor 1 <z <5, adecreasing function in z, so the
maximum value is f(1,0} = 2 and the minimum value is

£(5,0) = —2. Along La,y =5 —zand f(z,5 —a) = —2® + 62— 7= —(x ~ 3)> -+ 2for 1 <z < 5, which has
a maximum at z = 3 where f(3,2) = 2 and a minimum at both z = 1 and 2 = 5, where f(1,4) = £(5,0) = —-2.
Thus the absolute maximum of f on D is f{1,0) = £(3,2) = 2 and the absolute minimum is

£(1,4) = f(5,0) = 2.

. felz,y) = 22 + 2zy, fi(z,y) = 2y + «°, and setting fz = f, =0
gives (0, 0) as the only critical point in D, with f(0,0) = 4.

On L.y = —1, f{z,—1) = b, a constant.

On Ls: & = 1, f(1,5) = v* + vy + 5. a quadratic in y which attains its

maximum at {1,1), £(1,1) = 7 and its minimum at (1, —1), f(1,—3) = 4.

On Ls: f(x,1) = 22 + 5 which attains its maximum at {—1, 1} and (1,1)

with f(£1,1) = 7 and its minimum at (0, 1), (0,1} = 5.

On Ly f(—1,3) = y* + y + 5 with maximum at {—1,1), f(—1,1) = 7 and
1

minimum at (-1, —1), f(-1,-3) = 1747 Thus the absolute maximum is attained at both (+1, 1) with

F(£1,1) = 7 and the absolute minimum on D is attained at (0,0) with f(0,0) = 4.

. fe(z,y) =4 — 2x and fy(x,y) = 6 — 2y, so the only critical point is (2, 3) (which is in D)) where f(2,3) = 13.
Along L1: y = 0,50 f(x,0) = 4z — 2° = —{x — 2)* + 4,0 < z < 4, which has a maximum value when z = 2
where f(2,0) = 4 and a minimum value both when z = 0 and & = 4, where f(0,0) == f(4,0) = 0. Along L2:
z =450 f(4,9) = 6y —v° = —(y — 3)* + 9,0 < y < 5, which has a maximum value when y = 3 where
f(4,3) = 9 and a minimum value when y = 0 where f(4,0) = 0. Along L3: y = 5, so
flz,5) = —2® + 42+ 5= —(z ~ 2)* + 9,0 < z < 4, which has a maximum value when = = 2 where

f(2,5) = 9 and a minimum value both when z = 0 and = = 4, where f(0,5) = f(4,5) = 5.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 157 MAXIMUM AND MINIMUM VALUES ETSECTION147 O 419

Along Lyt 2 = 0,30 f (0, ) = 6y —y° = —(y — 3)* +9,
Ly

0 < y < 5, which has a maximum value when y = 3 where
f£(0,3) = 9 and a minimum value when y = 0 where f(0,0) = 0.
Thus the absolute maximum is £(2,3) = 13 and the absolute

minimum is attained at both (0, 0} and (4, 0), where

f(0,0) = f(4,0) =0

. flzy) = z* + y* — 4zy + 2 is a polynomial and hence continuous

on [, so it has an absolute maximum and minirmum on D. In

Exercise 7, we found the critical points of f; only (1,1) with
f(1,1) = Ois inside D. On L1: y = 0, f{z,0) = z* + 2, L L,
0 < z < 3, apolynomial in x which attains its maximum at ¢ = 3,
f(3,0) = 83, and its minimum at z = 0, f{0,0) = 2. On Ls:

z =23, f(3,y) = y* — 12y + 83,0 < y £ 2, a polynomial in y

which attains its minimum aty = /3, f(3, ¥/3) = 83 — 9 ¥/3 & 70.0, and its maximum at y = 0, f(3,0) = 83.

©.0) L (3.0)

On Lz y=2 f(x,2) = z* — 82 4 18,0 < z < 3, a polynomial in z which attains its minimum at z = /2,

F(¥2,2) =18 -6 V2 = 10.4, and its maximum at z = 3, f(3,2) = 75.On Ly: 2 = 0, f(0,y) = y* + 2,
0 < y < 2, a polynomial in y which attains its maximum at y = 2, f(0,2) = 18, and its minimum at y = 0,
f(0,0} = 2. Thus the absolute maximum of f on D is f(3,0) = 83 and the absolute minimum is f{1,1} = 0.

. fr =y* and f, = 27y, and since f» =0 < y =0, there are no
critical points in the interior of ). Along Ly, y = Oand f(z,0) = 0.
Along La, z = Oand f(0,y) = 0. Along L3, y = v/3 — 22, so let
g(z) = f(z,v3-2%) =3z —z° for 0 < x < v/3. Then

g {r})=3-32"=0 & z =1 The maximum value is

f(l, \/E) = 2 and the minimum occurs both at z = O and z = /3 L, (J3'.0} *

where £(0,4/3) = f(+/3,0) = 0. Thus the absolute maximum of f

on Dis f ( 1, \/5) = 2, and the absolute minimum is O which occurs at all points along L, and L,.

. fo(z,y) = 62" and fy(z,y) = 4y*. Andso f, = 0 and f, = 0 only occur when z = y = 0. Hence, the only
critical point inside the disk is at x = y = 0 where £(0,0} = 0. Now on the circle z* + y* = 1,y° =1 — z% so let

glr)=flr,y) =22 + (1 -2*) = 2"+ 22° - 222 +1,-1 <2 <1, Theng'(x) =42® + 62° ~de =0 =

z=0,-20rl f(0,+1)=g(0) =1 f(%,i%) = g(1) = 12, and (2, —3) is not in D. Checking the

16°

endpoints, we get f(—1,0) = g(—1) = —2and f{1,0) = g(1) = 2. Thus the absclute maximum and minimum
of fon D are f(1,0) = 2and f{-1,0) = -2.

Another method: On the boundary z° + 3° = 1 we can write z = cos#, y = sind, so

flcos#,sinf) = 2cos® @ +sin* 6,0 < 0 < 2m.
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M. fa(z,y) = 322 —3and f(x,y) = —3y° + 12 and the critical
points are (1,2), (1, ~2), (=1,2), and (-1, —2). Butonly (1,2)

and (—1,2) are in D and f(1,2) = 14. f(—1,2) = 18. Along Ly:
r=—2and f(—2,y) = —2 — ¢ + 12y, =2 < y < 3, which has

a maximum at y = 2 where f(—2,2) = 14 and a minimum at

y = —2 where f(~2,-2) = —18. Along L»: z = 2 and y/
(—2,-2)

F(2,y) =2 —y* +12y,2 < y < 3, which has a maximum at

y = 2 where f(2,2) = 18 and a minimum at y = 3 where f(2,3) = 11. Along La: y = 3 and

Flz,3) = 2® — 3z + 9, =2 < & < 2, which has a maximum at # = —1 and x = 2 where

f(~1,3) = f(2,3) = 11 and a minimum at # = 1 and z = —~2 where f(1,3) = f(-2, 3N="

Along Ly y = z and f{z,z) = 9z, —2 < & < 2, which has a maximum at z = 2 where f(2,2) =18anda
minimum at z = —2 where f(—2, —2) = —18. So the absolute maximum value of f on D is f(2,2) = 18 and the

minimum is f(—2, -2) = —18,

fay) =@ 1) - (-2 -1)? = fulz,y) = -2’ - 1)(2) - 22’y — = — 1)(2zy — 1) and
fy(z,y) = —2(z®y — 2 — 1)z*. Setting fy(2,y) = 0 gives eitherz = O or z%y —x — 1 = 0. There are no

r+1

critical points for z = 0, since f-(0,y) = —2, so we set iy —x—-1=0 & y= =

(x #£ 0), 50

_ 2 2 $+1 $+1 _ 2
7) =—2{z" — 1)(2x) — 2(33 T 1) (23: ol 1) = —4z(x® — 1). Therefore

fzlz,y) = fo(z,y)} = 0 at the points (1, 2} and {—1,0). To classify these critical points, we calculate
fexlz,y) = —122% — 122%y° + 122y + 4y + 2, fyy(z,y) = —22%, and fo (z,y) = —8uy + 627 + 4z.

In order to use the Second Derivatives Test we calculate
D(=1,0) = foe(=1,0) fyy(—1,0) = [fay(—1,0)}"
=16 >0,
fez(—1,0) = =10 < 0, D(1,2) = 16 > 0, and
Fee(1,2) = =26 < 0, so both (—1,0) and (1, 2) give local

maxima.

. f(z,y) = 3we? — 2 — €% is differentiable everywhere, so the
requirement for critical points is that (1) fr = 3e¥ — 3z% = 0and
(2) fy = 3uwe¥ — 3¢ = (. From (1) we obtain ¥ = %, and

then (2) gives 32° - 32° =0 = z=1or0,butonlyz = Lis

valid, since = 0 makes (1) impossible. So substituting z = 1
into (1) gives y = 0, and the only critical point is (1, 0).

The Second Derivatives Test shows that this gives a local maximum, since
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D(1,0) = [—6z(3ze¥ —9e™) — (3ey)2](1 o = 27> 0and f5:(1,0) = [-62], 5y = —6 < 0. But f(1,0) = 1

is not an absolute maximum because, for instance, f(—3,0} = 17. This can also be seen from the graph.

. Let d be the distance from (2,1, —1) to any point (x,y, z) on the plane z + y — z = 1, s0

d= /(T —2)2+ (y— 1)2 + (2 + 1)2 where z = z + y — 1, and we minimize

& =flr,y) =@ -2 +(y - 1)* +(x+y)° Then fo(z,y) =2(z — 2) + 2(z + y) = 4z + 2y — 4,
Folz,y) = 2(y — 1) + 2(x + y) = 2z + 4y — 2. Solving 4z + 2y — 4 = 0 and 2z + 4y — 2 = 0 simultaneously
gives # = 1, y = 0. An absolute minimum exists (since there is a minimum distance from the point to the plane)

and it must occur at a critical point, so the shortest distance occurs for z = 1, y == 0 for which

d=/1-22+(0-12+ (1402 =+3.

. Here the distance d from a point on the plane to the point (1,2,3) isd = \/(z — 1)2 + (y — 2)% + {z — 3)?,

where z = 4 — & + y. We can minimize &% = f(z,y) = (z = D® + (y ~ 2)2 + (1 — z + y)%, 50
folz,y) =2z — 1)+ 2(1 —z+ y)(-1) = 4o — 2y — 4 and
foleyy =2y —2y+2(1—x+y) =4y — 2z — 2. Solving 4z — 2y —4 = Danddy -2z —2 =10

5

. . _ 5 _ 4 [y . . 4 . .
simultaneously gives z = 3 and y = 3, so the only critical point is (5, 5) This point must correspond to the

minimum distance, so the point on the plane closest o (1,2, 3) is (—g, g, 11).

. Minimize d? = 2% + 3? + 2% = 2% + 4® + zy + 1. Then f. = 2z + y, fy = 2y + « so the critical point is (0, 0)
and D(0,0) = 4 — 1 > 0 with f-(0,0) = 2 so this is a minimum. Thus z* = 1 or z = +1 and the points on the
surface are (0,0, £1).

. Since z = 1/(z%y*) on the surface, we minimize d*> =2 + y* + 22 = 2* +y* + 2z 'y = f(z,y).

4 4 4 4
= 2» — ——, fy = 2y — ——, so the critical points occur when 22 = —— and 2y = ——
Iz = o Ty y G critical poi ur when 2z . and 2y T or

2

oyt =2=a2Nf 502 = = z=2yandz'"=2 = z=42"1°y= +2'/19 The four critical

points are (+2'/1°, +2'/1%)_ The absolute minimum must occur at these points (there is no maximum since the

surface is infinite in extent). Thus the points on the surface closest to the origin are (£21/19, £21/10 9-2/5)

. &+ 1+ z = 100, so maximize f(z,y) = xy(100 — z — y). f= = 100y — 2xy — y*, fy = 100z — z* — 2zy,
fea = =2y, fuy = -2z, fzy = 100 — 22 — 2y. Then f, = Qimplies y = 0 or y = 100 — 2z. Substituting y = 0
into f, = 0 gives z = 0 or = 100 and substituting y = 100 — 2z into f, = 0 gives 3z — 100z =0soz = Cor
220 Thus the critical points are (0,0), (100,0), (0, 100) and (132, £52).

D(0,0) = D(100,0) = D(0,100) = —10,000 while D(132, 130} — 10000 nq £, (190 100) — _ 200 - g,
Thus (0,0), (100,0) and (0, 100) are saddle points whereas f (122,432} is a local maximum. Thus the numbers are

100

r=y=z=3%
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42. Maximize f(z,y) = z%¢" (100 — 2 — ¢)°.
fo=az® 'y"(100 — 2 — y)* — ex®y? (100 — z — )7 = 227 192(100 — = — y)¢ (100 — z — y) — cz]
and f, = 2°y*" (100 — = — y)* " [B(100 — = — y) — cy]. Since z, y and z are all positive, the only critical point
100 — y and y = 1006 100a ’ 1006
+ec a+b+e at+tbtec at+b+e
100a 1006 100¢

— , = . 2= .
a+b+cy a+b+e a+b+c

oceurs when ¢ = a . Thus the point is (

) and the numbers are

. Maximize f(z,y) = zy(36 — 92° — 365)'/*/ 2 with (2, y, ) in first octant. Then

i - y(36 — 9% — 36y%)1/2 N —92%y(36 — 9a® — 36y") 12 _ (36y — 182"y — 36¢°)
¥ 2 2 2(36 — 9z — 36y2)1/2

36z — 92° — T22y° , 2 g* :
= 2(36T— 9;; — 36;?)}1/2' Setting fr == O gives yy = Qory® = 29: but 4 >> 0, so only the latter solution

and

applics. Substituting this y into f, = O gives 2* = forz = 2,y = 5 and then 2% = (36 — 12 -12)/4 = 3.

The fact that this gives a maximum volume follows from the geometry. This maximum volume is

v = 0)29)22) - 8( %) () (vB) = &2

(a2b‘202 o b2c2$2 _ a262y2)1/2

52 . Then
a

. Here maximize f(x,y) = zy

a2b2 _ 2!;)23:2 _ GQyQ
asz((l2b2C2 _ b2C2m2 _ a202y2)1/2

a'ZbZ . 2a2y2 __ b2$2
a2b2(a2b262 — h2p2p2 a‘202y2)1/2

= ye and f, = zc? .Then f; =0
a’b® — 2b%a®

(with z, 7 > 0) imphies 3% = >
a

and substituting into f, = 0 implies 36%z% = a*b? or z = »\}? a,
Y = % band then z = ﬁ c. Thus the maximum volume of such a rectangle is V' = (2x)(2y)(22) = %@ abe.

. Maximize f{u,y) = x—; (6 — x — 2y), then the maximum volume is V = zyz.

fo=5(6y — 22y —¢*) = 3y(6 — 2z — 2y) and f, = 12 (6 — & — 4y). Setting f- = Oand f, = O gives the
critical point (2, 1) which geometrically must yield a maximum. Thus the volume of the largest such box is

V={(2)1)(3) =4

3 3

-y

. 32
. Surface area = 2(wy + 2z + y2z) = 64 cm?, so 2y + vz + yz = 3orz = . Maximize the volume

32—z

¥ 2 _ 3 .22 _ 2
Flz,y) = zy . y-ThBﬂfm=32y 2xy” — 7y _ 032 —2ry—=x

+y (z+y)? N TERYE

2 32— 27y — °

o= pl 2y F
(z+y)?

32(4x?%) — (32 — 2°)(12?) — {32 — 2®)® = O or 3z* + 642> — (32)% = 0. Thus z* = Horz = %,

and

2
-~ T T .
o7 and substituting into f, = 0 gives

o]

. Setting f» = 0 implies y =

Y= %4/1% = % and z = %. Thus the box is a cube with edge length % cIm.
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. Let the dimensions be z, y, and z; then 4x + 4y + 4z = c and the volume is
V=uryz=ay{jc—z—y) = texy— 2’y —zy*, 2 >0,y > 0. Then V, = Icy — 22y — y* and
Vy=qcz—z° = 2zy, 50V, =0=V, when 2z + y = fcand x + 2y = Lc. Solving, we getx = L,y = ¢
and z = ;¢ — & — y = 5. From the geometrical nature of the problem, this critical point must give an absolute

maximum. Thus the box is a cube with edge length 1—120.
. The cost equals Szy + 2(zz + yz) and zyz = V,s0 Clx,y) = by + 2V (z +v)/(zy) = bay + 2V{(z~  +y~1).
Then C; = 5y - 2Vx %, Cy = 5z — 2Vy 2, fr = Oimplies y = 2V/(5z%), f, = O implies z = %V = 1.

Thus the dimensions of the aquarium which minimize the cost are & = y = { % V units, 2 = V173 (3

)2/3
. Let the dimensions be x. y and z, then minimize xy + 2(zz + yz) if 2yz = 32.000 m®. Then
flz,y) = zy + [64.000(z + y)/zy] = 2y + 64,0000z +y7 "), fo = y — 64,000z 2, f, = z — 64,000y 2.
And f, = 0 implies y = 64,000/z*; substituting into f, = 0 implies «° = 64,000 or & = 40 and then y = 40.
Now D(z, y) = [(2)(64,000)]*z 3y~ — 1 > 0 for (40, 40) and f,.,(40,40) > 0 so this is indeed a minimum.
Thus the dimensions of the box are ¢ = y = 40 em, z = 20 cm.
. Let x be the length of the north and south walls, ¢ the length of the east and west walls, and = the height of the
building. The heat loss is given by h = 10(2yz) + 8(2xz) + 1(xy) + 5(xy) = bzy + 162z + 20y2.
The volume is 4000 m®, so xyz = 4000, and we substitute z = %ﬂ” to obtain the heat loss function
h{x,y) = Gzy + 80,000/x + 64,000/y.
(@) Since z = 470 > 4,0y <1000 = y <1000/z.
Also z > 30 and y > 30, so the domain of h is
D={{x,y} |z >30,30 <y <1000/x}.

(b) h(z,y) = bzy + 80,000z ' + 64,000y~ = h, =6y — 80,000z 2, by, = 6z — 64,000y 2.

. 80,000 oo .
he = 0 implies 6y = 80,000 = y = 622 and substituting into i, = 0 gives

6 : 3 80,0002 50,000 / 50,000 3/ 50
6‘7‘_64‘000(@6) = &I :m:a_.é_‘so‘r:-]_,s_::lod_‘{ = y

and the only critical point of £ is (10 e %) 7 (25.54, 20.43) which is not in D. Next we check the

boundary of ). On L1: y = 30, h(x, 30) = 180x + 80,000/x + 6400/3, 30 < z < 1_20. Since
B (z,30) = 180 — 80,000/2% > 0for30 < z < %0, f{x, 30) is an increasing function with minimum

h(30,30) = 10,200 and maximum A (132 30) ~ 10,533. On Ly: y = 1000/,
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h{z,1000/z) = 6000 + 64z + 80,000/x, 30 <z < %0. Since ' (z, 1000/z) = 64 — 80,000/x* < 0 for
30 < z < 2% h(x,1000/x) is a decreasing function with minimum h(l—go, 30) ~ 10,533 and maximum
h(30,29) 2 10,587. On Lz: = 30, h(30,y) = 180y + 64,000/y +8000/3,30 < y < 0,
R (30, ) = 180 — 64.000/y* > 0 for 30 < y < 432, s0 ~{30, y) is an increasing function of i with minimum
(30,30} = 10,200 and maximum h(30, 100} ~ 10,587. Thus the absolute minimum of A is
h(30,30) = 10,200, and the dimensions of the building that minimize heat loss are walls 30 m in length and
height 220 — 22 ~ 4.44 m.

(¢) From part (b}, the only critical point of &, which gives a local (and absolute) minimum, is approximately

h(25.54,20.43) = 9396. So a building of volume 4000 m? with dimensions z = 25.54 m, y ~ 20.43 m,

4000

% " 135 54)(20.13)

22 7.67 m has the least amount of heat loss.

. Let z, . z be the dimensions of the rectangular box. Then the volume of the box is xyz and
L=yr+y¥+iz2 = LP=z2"+y*+2° = z=./L? 1?2 Substituting, we have volume

Viz,y) = wy /L~ 22—y, 2,9 > 0.
Lep2 2 2y-1/2 0‘329
Ve=ay- (L7 = = ") (22 +y L2 e myt =y It oyt - —eeee—
V -t -y

2
A R S E—
[L2 — 2 — o2

Ve = Oimplies y(L2 — 22 — y®) = 2%y = y(L? -2z —y") =0 = 22°+y’ = L* (sincey > 0), and
V, = 0 implies (L2 —z2? —y?) = ry? = x(l?-zf - ) =0 = z?+2y° = L* (sincez > 0).
Substituting y? = L? — 2z7% into 2% + 2y° = Ligivesz? +2L% —de? = [F = 22 =L = z=L/V3
(since > 0)and then y = /1.2 — 2(L/\/§)2 = L/+/3. So the only critical point is (L/v/3, L/v/3) which,

from the geometrical nature of the problem, must give an absolute maximum. Thus the maximum volume is

V(L/V3, L/VE) = (L/V3) \/LT— (L/v3)* — (L/v3)" = L*/(3+/3) cubic units,

. Since p+ ¢ + 7 = 1 we can substitute p = 1 — r — g into P giving
P=Plgr)=2(1-r—qg+2(1—r—gq)r +2rq=2q— 2¢° + 2r — 2r? — 2rq. Since p, g and r represent
proportions and p + g+ r = 1, we know g > 0,7 > 0, and ¢ + r < 1. Thus, we want to find the absolute
maximum of the continuous function P(g, r) on the closed set [ enclosed by the lines ¢ = 0, r = 0, and

g+ v = 1. To find any critical points, we set the partial derivatives equal to zero: Py(g.7) =2 — 4¢ — 2r = O and

P.(g,7) = 2 - 4r — 2q = 0. The first equation gives r = 1 — 2¢, and substifuting into the second equation we have
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2-4(1-29)-2¢g=0 = g=

SECTION15.7  MAXIMUM ANC MINIMUM VALUES  ET SECTION 14.7

3. Then we have one critical point, {

11
33

0 4%

), where P(3, 1) = 2. Next we find

the maximum values of P on the boundary of D which consists of three line segments. For the segment given by

r=00<qg<1Plgr}=Plg

,0)=2¢g— 2¢%,0 < g < 1. This represents a parabola with maximum value

= % On the segment ¢ = 0, 0 < 7 < 1 we have P(0,r) = 2r — 2r? 0 < r < 1. This represents a

parabola with maximum value P (0, §

Plq,r)

= 2. Finally, on the segment ¢ + 7 = 1,0 < ¢ < 1,

= P(g,1 - q) = 29 — 2¢°,0 < g < 1 which has a maximum value of P(1, §)

—1 :
= 5. Comparing these

values with the value of P at the critical point, we see that the absolute maximum value of P(g,r} on D is 3.

. Note that here the variables are 7z and b, and f(m, b) =

fn = i —2z;[y; — (max; + b)) = Oimplies 3 (ziys

i=1
I

22 2y

i=1

and f, =

T
the two desired equations. Now fim = Z 222, for = 3 2=2nand frp =

L

> lw
t=1
i=1

=1 T=

i=1 t=1

— (ma; + b))
2 _ S
—mzi —bri) =00r Y. 2.3

— (mx, + b)] = 0 implies Z yi=m Z x; + E b—m( i

1

Then

:miquLbZa:i

i=1 i=1 i=1

sr;i) + nb. Thus we have

=1

Y 2x,. And frm(m,b) >0

i=1

2

i=1

always and D{m, b) = 4n(

n 2 Ti n 2
a:f) -4(2 ;r;,;) :4[71(2 :cf)—(z .1:;-) ] > {) always so the
i=1 =1 i=1

n
solutions of these two equations do indeed minimize 5~ d?.

i=1
. Any such plane must cut out a tetrahedron in the first octant. We need to minimize the volume of the tetrahedron

that passes through the point (1, 2, 3). Writing the equation of the plane as Iy g + 2 = 1. the volume of the
& C

1 2
tetrahedron is given by V' = jgf But (1, 2,3) must lie on the plane, so we need ~ + = 5 + é =1 (%) and thus can
a

d b

think of ¢ as a function of ¢ and &. Then V,, = 5 (c +a Q_) and V, = 6 ( +b 8—) Differentiating () with

de dc —¢?
~32 ~29¢ oc
da 0 = o 3a%’

respect to & we get — and differentiating (*) with respect to b gives

. o2 2
=0 = §£= 2C.ThenVa—g(c+a3—c

2 de
' b 352 o2

) T N =
2b 3 P

a
HEY

and then b = 6, ¢ = 9. Thus the equation of the required plane is g + % + S =lorbr+3y+22=18

):O = ¢ = 3a, and

. e

W = 352

) =0 = c=2b Thus3a = 2bor b = 2a. Puiting these into (x) gives f=lora=3
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APPLIED PROJECT Designing a Dumpster

Note: The difficulty and results of this project vary widely with the type of container studied. [n addition to the variation
of basic shapes of containers, dumpsters may include additional constructed parts such as supports, lift pockets, wheels,
ete. Also, a CAS or graphing utility may be needed to solve the resulting equations.

Here we present a typical solution for one particular trash dumpster.

1. The basic shape and dimensions {in inches) of an

actual trash dumpster are as shown in the figure.

N —

42 2

AN e——
The front and back, as well as both sides, have an exira one-inch-wide flap that is folded under and welded to

the base, Tn addition, the side panels each fold over one inch onto the front and back pieces where they are welded.
Each side has a rectangular lift pocket. with cross-section 5 by 8 inches, made of the same material. These are
attached with an extra one-inch width of steel on both top and bottom where each pocket is welded to the side sheet.
All four sides have a “lip™ at the top; the front and back panels have an extra 5 inches of steel at the top which is
folded cutward in three creases to form a rectangular tube. The edge is then welded back to the main sheet. The two
sides form a top lip with separate sheets of steel b inches wide, similarly bent into three sides and welded to the
main sheets {requiring two welds each). These extend beyond the main side sheets by 1.5 inches at each end in
order to join with the lips on the front and back panels. The container has a hinged lid, extra steel supports on the

base at each corner, metal “fins” serving as extra support for the side lift pockets, and wheels underneath. The
volume of the container is V = 1(40 + 49) x 42 x 72 = 134,568 in® or 77.875 ft.

. First, we assume that some aspects of the construction do not change with different dimensions, so they may be
considered fixed costs. This includes the lid (with hinges), wheels, and extra steel supports. Also, the upper “lip” we
previously described extends beyond the side width to connect to the other pieces. We can safely assume that this
extra portion, including any associated welds, costs the same regardless of the container’s dimensions, so we will
consider just the portion matching the measurement of the side panels in our calculations. We will further assume

that the angle of the top of the container should be preserved. Then to compute the variable costs, let & be the width,
i the length, and = the height of the front of the container. The back of the container is ¥ inches, or % ft, taller than
the front, so using similar triangles we can say the back panel has height z + 1—9;:1:. Measuring in feet, we want the
volume to remain constant, so V = 4{z + z + o) (z)(y) = zyz + 3 2y = 77.875. To determine a function
for the variable cost, we first find the area of each sheet of metal needed. The base has area zy ft2. The front panel
has visible area yz plus ﬁy for the portion folded onto the base and %y for the steel at the top used to form the lip,

so (yz + 5y) ft* in total. Similarty, the back sheet has area y(z + Sz} + Ly + Sy =yz + Zazy + Lu.
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Each side has visible area % [z + (z + %m)] {x}, and the sheet includes one-inch flaps folding onto the front and

back panels, so with area —z and -L 5+ 3 14 x), and a one-inch flap to fold onto the base with area l—llx The lift
pocket is constructed of a piece of steel 20 inches by x {t {including the 2 extra inches used by the welds). The
additional metal used to make the lip at the top of the panel has width 5 inches and length that we can determine
using the Pythagorean Theorem: z® + (% z)” = length?, so length = Y28 ¢ 1.0227z. Thus the area of steel

needed for each side panel is approximately

é[z+(z—}-%x”(:r)Jrl—lﬂerl—lQ(erl'—Zm)+E.r+ .I‘+12(10227.L)~.7;Z+—:r‘ + 32+ 2194z

We also have the following welds:

Weld

Front, back welded to base 2y
Sides welded to base 2z
Sides welded to front 2z
Sides welded to back 2(z + Zx)
Weld on front and back tip 2y
Two welds on each side lip 4(1.0227x)

Two welds for each lift pocket 4x

Thus the total length of welds needed is
2+ 2+ 22 4 2(z + ga) + 2y + 4(1.02277) + 43 =~ 105192 + 4y + 42
Finally, the total variable cost is approximately
0.90(zy) + 0.70[(yz + 3y) + (yz + Sey + 4y) + 2{xz + £ + 12 4 2.104z)]
+ 0.18(10.519z + 4y + 42)
= 1.05zy + L4yz + 1.42y + 1.4zz + 0.152° + 0.953z + 1.965z

We would like to minimize this function while keeping volume constant. so since zyz + 55 :r y=T7.875

. T7.875 .. . S .
we can substitute z = ~ 5g T giving variable cost as a function of  and y:
Y

109.0 109. 74.2
Clr,y) = 092y + —— + 1.42y + _072 + _y + 4.86:. Using a CAS, we solve the system of equations

Ce(z,y) = Oand Cy(z, y) = 0; the only critical point within an appropriate domain is approximately (3.58, 5.29).
From the nature of the function C' (or from a graph) we can determine that € has an absolute minimum at

(3.58, 5.29), and so the minimum cost s attained for x 22 3.58 ft (or 43.0 in), y &~ 5.29 ft (or 63.5 in), and

2% giieiee — o5 (3.58) & 3.73 ft (or 44.8 in).
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3. The fixed cost aspects of the container which we did not include in our calculations, such as the wheels and lid,
don’t affect the validity of our results. Some of our other assumptions, however, may influence the accuracy of our
findings. We simplified the price of the sieel sheets to include cuts and bends, and we simplified the price of welding
to include the labor and materials. This may not be accurate for areas of the container, such as the lip and lift
pockets, that require several cuts, bends, and welds in a relatively small surface area. Consequently, increasing some
dimensions of the container may not increase the cost in the same manner as our computations predict. If we do not
assume that the angle of the sloped top of the container must be preserved, itis likely that we could further improve
our cost. Finally, our results show that the length of the container should be changed to minimize cost, this may not
be possible if the two lift pockets must remain a fixed distance apart for handling by machinery.

. The minimum variable cost using our values found in Problem 2 is ('(3.58, 5.29) ~ $96.95, while the current
dimensions give an estimated variable cost of C(3.5,6.0) = $97.30. If we determine that our assumptions and
simplifications are acceptable, our work shows that a slight savings can be gained by adjusting the dimensions of the

container. However, the difference in cost is modest, and may not justify changes in the manufacturing process.

DISCOVERY PROJECT Quadratic Approximations and Critical Points

1. Qle,y) = fo.b) + fula,b)(w — @) + Fula, )y — b) + 3 faela, b)(z — a)

+ fay(a,b)(z -~ a)(y — b} + %fyy(“a o)y — 5)23

Qr (@,y) = frla,b) + 3 frz(a,0)(2)(2 — @) + fey(a:b)(y — )
= fula,B) + foz(a,b)(z — @) + foy(a,b){y — b)
At (a, b) we have Qz(a,b) = fo(a,b) + fea{a,b) (@ — a) + fuy(a,b)(b = b) = fa(a, b).
Similarly, @y (x,4) = fy(a,b) + foy(a.b){z — a) + fyy(a,b)(y — b} =
Qula.b) = fi{a,b) + fayla,b)(a — a) + fin(a, b)(b—b) = fy(a,b).

For the second-order partial derivatives we have

Qurfs4) = 7 [fol,b) + Fonl B}z = @) 1 frala, )y = D] = fra(a,D)

( ):fwif(aab)

Quylr,y) = [fela,b) + fanla,b)(x —a) + foy(a,b)(y — b ) = fzy(a,b)

= Qu
8
By

= me(ﬂ, b) - f-’fy(a'vb)
Quyla ) = -a% Fy(@,8) + fuy(@b)(@ — a) + foy(arb) (g = B)] = fyn(a,B)

= Qyyla,b) = fyy(a,b)
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2. (a) First we find the partial derivatives and values that will be needed:

2

fla,y) =e ¥ f(0,00=1
folw,y) = ~2pe™= " £2(0,0) =0
fulw,y) = —2ye= =9 £,(0,0)=0
Foul,y) = (422 — 2)e™" fex(0,0) = ~2
Fry(2,y) = daye™ V" f24(0,0) =0
Funlz,y) = (@g? — 2= ¥ fu(0,0) = -2
Then the first-degree Taylor polynomial of f at (0, 0) is
L(z,y) = 1(0,0) + f2(0,0)(z — 0) + f,(0,0)(y — 0} = 1 + (0)(x — 0) + (0){y - 0)
=1
The second-degree Taylor polynomial is given by
Qlz,y) = [(0,0) + f2(0,0)(z — 0) + £,(0,0)(y — 0) + § fuz (0, 0)(z — 0)°
+ fay(0,0)(z ~ 0)(y — 0) + 3 fuy (0, 0)(y — 0)?

As we see from the graph, L approximates f well only for

points (x,y) extremely close to the origin. ( is a much

QO]
22 O - better approximation; the shape of its graph looks similar

Ao
%{#ﬁ?‘?‘.“:‘ Al ’ to that of the graph of f near the origin, and the values of
i v

Wt

R . significant radius of the origin.

2 appear to be good estimates for the values of f within a

3. (a) First we find the partial derivatives and values that will be needed:

fle,y) = ze? fL,0)=1 fralzy) =0 far(1,0) =0
falz,y) = e* f=(1,0) =1 fay(z,y) =€ Jay(1,0) =1
flz,y) =2 fy(1,0)=1 foo(e,y) =me’  fuy(1,0) =1
Then the first-degree Taylor polynomial of f at (1,0) is
L{z,y) = f(1,0) + f{1,0)(x — 1) + f,,(1,0)(y — 0)
=1+{1)z-1)+ 1)y -0)
=z +y
The second-degree Taylor polynomial is given by
Qe y) = £{1,0) + fo(1,0)(z — 1} + £, (LO)(y — 0) + 3 fou (1,0)(z — 1)*
+ feul1,0)(@ = 1){y = 0) + 3 £y (1, 0)(w — 0)°

=3y +x+ay
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{(b) L{0.9,0.1) =094+ 0.1 =10
((0.9,0.1) = £(0.1)* +- 0.9 + (0.9)(0.1) = 0.995
£(0.9,0.1) = 0.9¢>! ~ 0.9947

As we see from the graph, L and ¢} both
approximate f reasonably well near the point
(1,0). As we venture farther from the point,
the graph of @) follows the shape of the graph

of f more closely than L.,

: - . b
4. (a) f(z,y) = az® + by + cy” —a[a:2+ —oy+ Esz
2+b + b 2 b 2+c 2
= H - X1 —_ — — —
alx P Y Qay zay ay
b 2, ¢ ol _ by dac —~ b2\ 4
—qEV TLv=ellrt oY) Hl gz )y

2
(b) For D = 4ac - b, from part (a) we have f (z,y) = a (93 + -2% y) + (?];)yz AL >0,

[) - b 2 b 2 D
(‘4'&‘2‘)92 > 0 and (u:+ %y) > 0,50 [(a:-}— %y) + (@)yz] > 0. Here ¢ > 0, thus

flz, 1) =a (:c -+ %y) + (%)yzl > 0. We know f(0,0) = 0, so f(0,0) < f(x,y) forall (z,y), and

by definition f has a local minimum at {0, 0).

2
(c) Asinpart (b), ||z + b ¥y + L y*| > 0, and since @ < 0 we have
2a 4a?

4a?

b \? D : .
flx.y)=a (m + 2_’ y) + ( )gf} < 0. Since f{0,0) = 0, we must have f{D,0) > f(x,y) for all
{1
{:r,y), so by definition f has a local maximum at (0, 0).

(d) flz,y) = az® + by + cy® 50 folz,y) = 2ez + by =  f(0,0) = Oand fy(x,y) = br + 2y =
J4(0,0) = 0. Since f(0,0) = Oand f and its partial derivatives are continuous, we know from Equation 15.4.2
[ET 14.4.2] that the tangent plane to the graph of f at (0, 0) is the plane z = 0. Then f has a saddle point at
(0,0) if the graph of f crosses the tangent plane at (0, 0), or equivalently, if some paths to the origin have
positive function values while other paths have negative function values. Suppose ws approach the origin along

the z-axis; then we have y =0 =  f{z,0) = ax® which has the same sign as a. We must now find at least
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one path to the origin where f(x,y) gives values with sign opposite that of a. Since

b N [ DY .. - , b
flz,y)=a (zr%—%y) +(@)y , if we approach the origin along the lmexzfﬁy,we have

2
=a _b ¥+ L2 y) + _1_1 v = D y2. Since D < 0, these values have signs
2a 4q? 4a

opposite that of a. Thus, f has a saddie point at (0, 0).

5. (a) Since the partial derivatives of f exist at {0,0) and (0,0} is a critical point, we know f(0,0) = 0 and
F4(0,0) = 0. Then the second-degree Taylor polynomial of f at (0, 0) can be expressed as
Qz.y) = (0,0} + f2(0,0)(z — 0} + £4(0,0)(y = 0) + 3 fur(0, 0}z — 0)°
+ £uy(0,0)(@ = 0)(y = 0) + 3 fu(0,0)(y — 0)°
= 5 220,00 + foy (0,0)2y + 5 £, (0,005

(b} Q(z,y) = 1 foul0,002% + f2y (0,0)zy + 3 f,,,(0,0)y? fits the form of the polynomial function in
Problem 4 witha =  f22(0,0),b = f4,(0,0), and ¢ =  f,,,(0,0). Then we know @ is a paraboloid, and
that () has a local maximum, local minimum, or saddle point at (0, 0). Here,
D = dac = 5 = 4(3) Fex(0.0) (5)fu(0.0) ~ (s (0,0 = fou(00}£(0.0) = o (0.0)", andi
D> 0witha =3 fez(0,0) >0 = f2:(0,0) > 0, we know from Problem 4 that (} has a local minimum
at (0,0). Similarly, if D > 0anda <0 = fz(0.0) < 0, Q has alocal maximum at (0, 0), and if D < 0,
(2 has a saddle point at (0, 0).

(¢) Since f(z,y) ~ Q{z,y) near (0,0), part (b) suggests that for D = fz(0,0) fuy (0,0) — [f2y (0,0)]%,if D > 0
and f-{0,0) > 0, f has a local minimum at {0, 0). If D > 0 and f.,(0,0) < 0, f has a local maximum at

(0,0} and if D < 0, f has a saddle point at (0, 0). Together with the conditions given in part (a), this is
precisely the Second Derivatives Test from Section 15.7 [ ET 14.7].

15.8 Lagrange Multipliers ET14.8

1. At the extreme values of f, the level curves of f just touch the curve g(z,y) = & with a common tangent line.
(See Figure | and the accompanying discussion.) We can observe several such occurrences on the contour map, but
the tevel curve f(x,y} = ¢ with the largest value of ¢ which still intersects the curve g(z, y) = 8 is approximately
¢ = 59, and the smallest value of ¢ corresponding to a level curve which intersects g(x, y) = 8 appears to be
¢ = 30. Thus we estimate the maximum value of f subject to the constraint g(x, y) = 8 to be about 59 and the
minitmum to be 30.

2. (a) The values ¢ = =1 and ¢ = 1.25 seem to give curves which

are tangent to the circle. These values represent possible

extreme values of the function z* 4 y subject to the

constraint z? + y? = 1,
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(b) Vf = (2r,1), A\Vg = (2Ax,2)y}. So 2z = 2hz = either A=1lorz =0.1f A =1 theny = 1 and so
z= i% (from the constraint). If z = 0, then y = Z1. Therefore f has possible extreme values at the points

(0,41) and (:i:ﬁég, é) We calculate f(:i:ﬁ i) = 2 (the maximum value), £(0,1) = 1, and

22

f{0, —1) = —1 (the minimum value). These are our answers from (a).

3 flzy) =22 — i gla,y) =2 +yP =1 = Vf={2r 2y, AVg= {2z, 2Ay}. Then 2z = 2)z implies
r=0o0r)=1 1tz =0, thenz®+ y* = 1 implies y = +1 and if A = 1, then —2y = 2)y implies y = 0 and thus
z = +1. Thus the possible points for the extreme values of f are (+1,0), (0, £1). But f (+1,0) = 1 while
7(0,£1) = —1 50 the maximum value of f on 2 + 3 = 1is f(4£1,0) = 1 and the minimum value
is £(0,+1) = —1.

8 fla,y) =Ax+ 6y, g(z.y) =«® +y* =13 = Vf=/{(4,6), A\Vg = (2Az,2)y). Then 2Az = 4 and

2 y = 6imply x = % andy = —; But 13 = 2% + 3 = (%)2 + (;)2 = 13= ; = A=zl s0
£ has possible extreme values at the points (2, 3}, {(—2, —3). We compute f(2,3) = 26 and f(-2, —3) = ~26,
5o the maximum value of f on 22 + y* = 13 is £(2,3) = 26 and the minimum value is f(-2, —3) = ~26.

5. flz,y) =2’y gle,y) =2 +24° =6 = Vf= <23:y,;c2>, AV g = (2Ax,4hy). Then 2y = 22z implies
= 0or\=y Ifz=0,then z° = 4\y implies A = 0 or y = 0. However, if y = 0 then g(z, y)=0,a
contradiction. So A = Q and then g(z,y) =6 = y= +/3. If A = y. then z? = 4y implies z° = 4y°, and so
glo,y) =6 = 4y + 29*=6 = y*=1 = y= =11 Thus f has possible extreme values at the points
(0,4+/3), {2, 1), and (£2, —1). After evaluating f at these points, we find the maximum value to be
f(£2,1) = 4 and the minimum to be f(£2, -1} = —4.

B flry) =22 +yglzy) =t +y* =1 = Vf=(22,2y). A\Vg = {4xa® 42y}, Then r = 2Az” implies

1 . . . : .
r=00rA= 727 Ifx =0, then ! +y* = Limplies y = +1. Buty = 2Ay” impliesy = 0sox = tlor
X
1 2 _ 2 4 : ;
A= 5 and ¥ =y and 22* = Loz = i%\/ﬁ. Hence the possible points are (0, £1), (+1,0). (:hj\:?::t%)
with the maximum value of f on #* + y* = 1 being f(:t?ﬁ, j:%) == +/2 and the minimum value being
£(0,41) = f(£1,0) = 1.
L fleyy, 2y = 20 + 6y + 10z, g(a,y, 2) = 24y +22 =35 = Vf={(2610),

1 3
AVyg = 22z, 2hy, 222). Then 2Az = 2, 2Ay = 6, 2Az = 10 imply x = " y=7 and z = % But

1V 3V /5y 35
Bty = (X) + (X) + (X) = 35= 2 = A = =1, so f has possible extreme values
at the points (1,3,5), (—1, —3, —5). The maximum value of f on 2% + y* + 2% = 351s £{1,3,5) = 70, and the

minimum is f{—1, -3, -5) = —70.
. flz,y,z) = 8z — 4z, gz, y, 2) = ° + 10y* + 22 =5 = Vf={(80,—4),AVg = (2Ax, 202y, 2Az).

4 2
Then 2Ar = 8, 20Ay = 0, 2hz = —4 imply = = Y= 0,and z = e But

1\’ 2\ 20
5= 4 10y° + 2% = (X) +10{0)" + (———) = 5 = A= +2 so f has possible extreme

X A
values at the points (2,0, —1). (=2, 0, 1). The maximum of f on 22 + 1007 + 2% =5is f(2,0,—1) = 20, and the
minimum is f(—=2,0, 1) = —20.
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9. fla,y, 2) = ayz gla,y,2) =a* + 27 +322 =6 = Vf = {yz,xz,2y). \Vg = {2Az,4)y,6Az). Then
Vf = AVgimplies A = (y2)/(2z) = (z2)/(4y) = (ry)/(6z) or 27 = 2y* and 2 = %yg. Thus

22 4 2y + 322 = 6 implies 637 = 6 or y = +1. Then the possible points are (\/5, +1, \/g)

(\/5, +1, —\/g), (—\/5, +1, \/g), (—x/i, +1, —\/%) The maximum value of f on the ellipsoid is %

occurring when all coordinates are positive or exactly two are negative and the minimum is — % occurring when 1

or 3 of the coordinales are negative.

10. flz,y,2) =2y 2% gz y,2) =2+ +2° =1 = VF= (202" 2y2°2%, 222%y°),
AVg = {2Ax,2Xy,2X2). Then V§ = AVg implies (1} A = 4%2% = 2?27 = 2% and A # 0. 0r (2) A = 0 and

2

one or two {but not three) of the coordinates are 0. If (1) then % = y =z = -l-. The minimum value of f on the

sphere occurs in case (2) with a value of 0 and the maximum value i 18 55 Wthh arises from all the points from (1),
at e ; L L1 i _ 1 _ 1
that is, the points (:t\/— 7 \/—) (j:\/j, ﬁ’\f) (:t\/-, 7 \/3)

Cfaep ) =22yt PR glay ) =2t 4yt L= =
V= {2z,2y,22), \Wg = (42z”, 4y, 4027,
Case I: If 2 # 0.y # 0and z # 0, then V§ = AVg implies A = 1/(22%) = 1/(2¢*) = 1/(22%) or

22 1
—y*=z?and3z* = lorz = i7 giving the points (j:7 L,%) | £ \% ~i %)
L1 4 .t 1 i R
(:t\/_, 35 \/_) (i%, et %) atl with an f-value of v/3.
Case 2: If one of the variables equals zero and the other two are not zero, then the squares of the two nonzero
coordinates are equal with common value —= \/_ and corresponding f value of v/2.

Case 3. If exactly two of the variables are zero, then the third variable has value +1 with the corresponding f value

of 1. Thus on z* + 3* + 2% = 1, the maximum value of f is +/3 and the minimum value is 1.

ey =ty St gle ) = R =1 =

Vf= (43:3, 49°, 4z3>, AVg = (2Ax, 2My, 2X2).

Case 1: fx # 0,y # 0and z # O then Vf = AVg implies A = 22 = 257 = 222 orx® = 3% =

yielding 8 points each with an f-value of =.

Case 2: If one of the variables is 0 and the other two are not, then the squares of the two nonzero coordinates are

equal with common value % and the corresponding f-value is %

Case 3: If exactly two of the variables are (), then the third variable has value 11 with corresponding f-value of 1.
1

Thus on 2% + 4% + 27 = 1, the maximum value of § is 1 and the minimum value is 5

Syt =r+yt+z+rtglzyzt) = 1y A4 =1 = (1,111 = (2x, 2y, 22z, 2A8), s0
A=1/(22) = 1/(2y) = 1/{22) = 1/(2) and z = y = z = £. But 2% + ¢* + z% + ¢* = 1, s0 the possible points
re (£3,*5, %5, £5). Thus the maximum value of fis f(£, 3,1, 1) = 2 and the minimum value is
fl=3 55 3) =2
- flar e, xe) = @1 +;r:g+---+$n,g(ac1,$2,...,:cﬂ)zzcﬁf‘-i—at%—}---n—i—m;‘);:l =
(L 1,..., 1) = 2hr1,2he2, ..., 2 e}, 80 A = 1/(2z1) = 1/(2%2) = -+ = 1/(22n) and
Tl =g = " = Ln. But$f+:1:%+---+mf,,:1,sowi=i1/\/ﬁfori:1....,n. Thus the
maximum value of fis f(1A/n, 14/, ..., 1A/n) = \/n and the minimum value is
—1A/m,~1AMm, ..., —14/n) = —/n.
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15, flo,y,z) =c+ 2y gxy,z) =z+y+z=Lhz,y2) =y +2°=4 = Vi=(,20),
AVg = (A A A) and uVh = (0,2, 2pz). Then 1 = X, 2 = A+ 2py and 0 = A + 2uz so py = 3 = —pzor

y=1/(2u),z = —1/(2u). Thus x +y + z = 1 implies = 1 and y* + 2° = 4 implies p = iﬁ Then the

possible points are (1, =v/2, F4/2 ) and the maximum value is f (1, v2,—v2) =1 + 2 /2 and the minimum
valueis f (1, —v2,v/2) = 1-2v2.

 flzy,2) =30 —y =3z, g9z, y,2) =z +y—z=0h(z,y,2) = 2 +2:2=1 = Vf={(3-1,-3),
AVg = (A A, =N, uVh = (2uz,0,4pz2). Then 3 = A + 2ux, —1 = dand =3 = —A +4puz,50 A = —1,

o4 1
pz = —1, yx = 2. Thus k{r,y, z) = 1 implies F +2(E) =lorp=+v6s0z= $%;$ = i%;and

glz,y,2) = Oimplies y = $ﬁ Hence the maximum of f subject to the constraints is
f(—?, ——3§, —%) = 2+/6 and the minimum is f(—lé—g, Jg, %) = —2/6.
CFzy2) =yz tay gley,z) = oy = Lk{e,y,z) =y +2° =1 = Vf={(y,z+zy),

AVg = Oy, A, 00, pVh = {0, 2uy, 2pz2). Theny = Ay implies A = 1 [y # 0 since g{z, y, 2} = 1],

T+ 2= Ar+2uyandy = 2uz. Thus p = z/(2y) = y/(2y) ory® = 2%, and so y° + 2% = limplies y = & \}-,

i\/— Then zy = llmphes.r—:l:\/ﬁand the possible points are (i\f ﬂ:\/-,‘/z) (:I:\/_ 41 —\/,-)

Hence the maximum of f subject to the constraints is f{ +/2, £, £~ ) = 2 and the minimum is
] Vi TE) T 2

F(=vEth74) =4
Note: Since zy = 1 is one of the constraints we could have solved the problem by solving f(y, z) = yz + 1 subject
to yz +22 =1

Cflry) =20+ 3y  —dr -5 = Vf={dz—4,6y)={0,0) = =z=1,y=0 Thus (1,0)is the only
critical point of £, and it lies in the region * + y* < 16. On the boundary, g(z,y) = 2* + y* = 16 =
AVg = (2Az,2My),s06y = 2 y — eithery =00or A =3.If y =0, thenx = £4:if A = 3, then
dr—4 -2 = «=-2andy= =23 Now f(1,0) = —7, f(4,0) = 11, f(—4,0) = 43, and
J(=2,£2/3) = 47, Thus the maximum value of f(z,y) on the disk 2* + y* < 16is f(-2,+2 \/3-) =47, and
the minimum value is f(1,0) = =7.

. f{z,y) = ¢~ "¥. For the interior of the region, we find the critical points: f, = —ye™ ™, f, = —mze”
s0 the only critical point is (0, 0), and £{0,0) = 1. For the boundary, we use Lagrange multipliers.
gle,y) =t +4y* =1 = AVg = (2)x,8)y), sosetting Vf = AVg we get —ye™ ¥ = 2\x and
—re "% = 8Ay. The first of these gives e™*¥ = —2Xx/y, and then the second gives —z{—2Az/y) = 8hy =

z? = 44, Solving this last equation with the constraint z° + 4y* = 1 gives v = :l:vl,§ andy = iﬁ. Now

f(i%e ¥$) ~ 1.284 and f(:i:— iET) = e~ Y* 2 0.779. The former are the maxima on the

region and the latter are the minima.
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20. (a) The graphs of f(z,y) = 3.7 and f{z,y) = 350 seem to be tangent

: : - =350 )
to the circle, and so 3.7 and 350 are the approximate minimum and N

maximum values of the function f(z, y) subject to the constraint
(-3 +{y—3)7° =09
(b) Let g(xx, y) = (& — 3)% + (y — 3)%. We calculate f,(z,y) = 3z° + 3y.

fu(z,y) = 3y* + 3z, gz (2, y) = 2z — 6, and g (z,y) = 2y — 6,

and use a CAS to search for solutions to the equations

gla,y) = (2 — 3% + (y —3)* =9, f= = Ag», and f, = g, .The solutions are

(z,y) = (3~ 32,3 3/2) = (0.879,0.879) and (z,y) = (3 + 2v2,3+ $v2) = (5.121,5.121),
These give f{3 — 2v2,3 - 2v2) = 21 _ 213./5 » 3673 and

f3+ %\/5, 3+ %\/ﬁ) = 281 4 228./2 = 347.33, in accordance with part (a).

21 P(LK) =bL"K'"" ", g(L,K)=mL+nK =p = VP={abl" 'K'™* (1 - a)bL“K "),
AVg = (Am, An). Then ab(K/L)' ™ = dmand (1 — a)b(L/K)® = Anand mL + nK = p. so
ab(K/LY' " %m = (1 — a)b(L/K)*/norna/[m(l —a)] = (L/K)*(L/K)'"®or L = Kna/[m(l — a)}.
Substituting into mL + nK = pgives K = (1 — a)p/n and L = ap/m for the maximum production.

2 C(L,K)=mL+nK,g(L,K) =bL*K'™™ =Q = VO = (m,n),

l—-o i
b K A — oo e T (LY (K
AVg = <)\abe K2 7% M1 - a)bL*K > Then ab (K) (1 (1)5( L) and

m(l — a) K K

[ e o
e

(1—-a)
¢ _ Qm™(1 — a)® and I — Qm* 11— a)*? Qn' ot

(na/[m(l — Q)DC‘ b a® hno—lge—1 o b,rnl—u(l . a)l—a

minimizes cost.

l—c o
BLAKI — g o —Jﬁ—-v(ﬁ) (f) o L= Ere o

m(l — «)

Hence K =
ence 7

23. Let the sides of the rectangle be x and y. Then f{z,y) = a2y, glz,y) =22+ 2y = p = Vfiz,y) = ly, 1),
AVg = (2X,2)). Then A = 3y = 1z implies @ = y and the rectangle with maximum area is a square with side

length le'

. Let f{wyy,z) = s(s—a)(s —y)(s —2), g{z,y,2) =z +y+ z Then
Vi={s{s —y)s—~z),—s(s —z){s —z),—s(s — z)(s — y}}, A\Vg = {X, A, A}). Thus
(D {s—ylls—z)=(s—xzHs—z)and (2) (s —x}(s ~— 2) = (5 — x)(s — y). (1) implies x = y while (2)

implies y = z,s0 ¢ = y = z = p/3 and the triangle with maximum area is equilateral.

. Let flz,y,2) =d* = (x — 2} + {y — 1)? 4 (2 + 1)°, then we want to minimize f subject to the constraint
glz,y,2) =z+y—2=1.VFf=AVg = (2(z-2),2(y~1).2(z+ 1} =x{1,1,-1), 50z = (A + 4}/2,
A+d AE2  At2

y=(A+2)/2, 2 = —(A+2)/2. Substituting into the constraint equation gives 5 + 2 5

= 3A+8=2 = A= -2sox=1y=0and z = 0. This must correspond to a minimum, so the shortest
distance is d = /{1 —2)2 + (0 — 1)2 + (0+ 1) = /3.

1
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26. Let f(z,y,2) =d? = (x — 1)* 4+ (y — 2)* 4+ (2 — 3)°, then we want to minimize f subject to the constraint
gz, y,2) =z —y+2=4.Vf =2V = (2z-1}2(y-2),2(z-3))=r{l, -1 1) s0z = (A+2)/2,

42 4—A A+6
_ —4
) 5 T3 =

y = (4 —X)/2,z = (X + 6)/2. Substituting into the constraint equation gives

1

A= %. S0 T = % Y and z = L. This must correspond (o a minimum, so the point on the plane closest to the
2

point (1,2,3)is (2,3,

Cflmy, ) =2ty gy g) =2 oy —1=0 = Vf={2r2y 22 = AVg=(-Ay, —Az, 22z}
Then 2z = 2Az implies z = O or A = L, If z = 0 then g(z, ¥, 2) = 1 implies zy = —1 orz = —1/y. Thus
9z = —Ayand 2y = —Az imply A =2/y? = 2yfory =1L,z =1 IfA =1, then2z = ~yand2y = —x
imply z = y = 0, so z = 41, Hence the possible points are (+1,F1,0), (0,0, £1) and the minimum value of f is
£(0,0,£1) = 1, so the points closest to the origin are (0,0, £1).

oy ) =2 Y+ 2 gley ) =Yz =1 =
VS = (2x,2y,22) = AVg = (2Xzy’z, 22x?yz, Ar*y?). Then MRz =1 Az%z = land Azx?y? = 2z 50
¥z = z%zand ¢ = y. Also 2z/1 = Az?y?/(Aa?z) 50222 = y® and y = +v2 2z Butz°y’z = 1 implies
2> 0and 42° = 1. Thus the points are (£2'/1%, £2'/°,272/5) and the minimum distance is attained at each

of these.

flr,y, ) =ayzogle,y,2) =z +y+2=100 = Vf=(yzzz,2y) = AVg = (A, ) A). Then
)\=y.zzmz:ryimpliesm:y:z:1_—2“.

L fz,y,z) = 2%y’ g,y 2) =z +y +2 =100 =
Vf= <a:1:‘17]ybzc,bm“yb'lz“,cm”ybzc_l> = AVg = (A, A, A). Then

A= am“"y"z“ - b;,;“yb‘lz“ = .«_:m‘"y”z“1 orayz = brz = cxy. Thus z = a—;", z = C—;”, and
ay cy 1006 100a 100¢

< +y+ S 100 implies that y =

aibre T T et o™ z—mgivesthemaximum_

. If the dimensions are 2z, 2y and 2z, then f{x,y, z) = 8zyz and g(zx,y, z) = 9r® +36y° +42° =36 =
Vf = (Syz,8rz,8xy) = AVg = {18z, T2y, 8Az). Thus 18Az = 8yz, 72Ay = Bxz, BAz = By so 2 = 49*,

22 = 0y% and 3642 + 36y% + 36y° = 3B ory = ﬁ {y > 0). Thus the volume of the largest such rectangle is
V(22 _ 6.
8(35) (%) () =163
2 2 2 25222: 262(22

Sl y, 7) = 8zyz. gle,y, 2) = bz + a®e*y +a
V/f = (8yz,8az, Rey) = AVg = (20b°c*z, 2ha’c’y, 2ha®b?z). Then dyz = Ab*c’x, 422 = Aa’c?y,

=

. 4yz dxrz dzy Y x z y ay :
dzy = Aa®bz imply A = — = L = of =— = — and — = —— . Th =2 »=
o # mpLy bie2r  a?cly  a?b?z  bir  a%y an ey b2z WE=5 5%

, . . b c .
a?c?y? + Faty? + o’y = dfPt ory = z = —= and the volume is ai\/i abe.

V3
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8. flz,y,2) = zyz, g{z,y,2) =x+ 2y +32 =6 = Vf={yz,zz,xy) = \Vg = {},2X,3X).
Then A = yz = 32z = 3y implies 2 = 2y, z = Zy. But2y +2y+2y=6soy=10=22=2 and the

volume 15 V = %.

Sflr,y, 2) =2y gl gy, 2) =y +yz +x2 =32 =
Vf={yz,zz, 2y} = AVg = {Aly + 2), Mz + 2), A(z + y}). Then (1) My + 2) = y2,(2) Az + z) = zz and
(3) Mz +y) = zy. And (1) minus (2) implies My — x) = z{(y —x) soz = yor A = z. If A = z, then (1) implies
z(y + z) = yz or z = 0 which is false. Thus z = y. Similarly (2) minus (3) implies AM(z —y) = z(z —ylsoy =z

or)\:a:.Asabove./\#a:,soa::y:zand&cg=320r$=y=z:%cm.

flx,y, 2 = eyz, g(z,y,z) —dlz+y+z2)=c = Vf={yz,zz,zy}), AVg = (4, 4X 4A}. Thus

AN =yz =z =2Yorr =y =2 = Tlgc are the dimensions giving the maximum volume.

. C(r,y,2) = bxy + 222+ 2yz, g(z,y, 2} =oxyz =V =
VC = by + 22,51 + 22,25 + 2y) = AVg = (dyz, Azz, Azy}. Then (1) Ayz = by + 22, (2) hrz = bz + 22,
(3 Azy =2{x+yland (4) ryz = V. Now (1}—(2)implies Az{y —x) = 5{y —x),s0x =yor A =5/z but z
can’t be 0, so x = y. Then twice (2) minus five times (3) together with x = y implies Ay(2z — 5y) = 2(2z — by)

which gives z = %y [again A # 2/y or else (3) implies y = 0]. Hence %ya = V and the dimensions which

e . . ry2/3 .
minimize costare £ = y = {/ £V units, z = V1/3(§) /3 units.

. If the dimensions of the box are given by z, y, and =, then we need to find the maximum value of f(z,y, z) = zyz

(.4, z > 0) subject to the constraint L = /22 + 42 + 22 org(a, ., 2) =2 + 2 + 22 = L2 Vf=AVg =

{yz,zz,xy) = A2z, 2y, 2z}, s0yz = 2Az = A= %E zz=2hy = A= g and zy = 2Xz =
€L Y

LY yz _ 1z 2 2 ¢ yz zy
A= =—".Thus A = = = — = SINC = — S = el =
5, Thus 2%~ 3y = z =y f[sincez#0] = x=yandA Sy = 5, T r=2

[since y # 0]. Substituting into the constraint equation gives 2% + 2® + 2 = L* = 2® = L*/3 =

z = L/v/3 =y = z and the maximum volume is (L/\/g)q =L3/(3V3).

. Let the dimensions of the box be z, y, and z, so its volume is f{x,y, 2) = ryz, its surface area is
glx,y. 2} = 2y + yz + xz = 7560 and its total edge length is h{z,y,2z) = 2 + ¥ + z = 50. Then
Vf={yz,xz,zy} = AVg+uVh = Aly + 2), Mz + 2}, Mx +v)) + {u, 1, ). So (1) yz = My + 2) + 1,
(2} rz = Alz + 2z) + p,and (3) zy = A(z + y) + . Notice that the box can’tbe acube orelsez =y =z = %
but then oy + yz + rz = % # T50. Assume x is the distinct side, that is, ¢ # y, x #£ z. Then (1) minus (2)
implies z (y — ) = Aly —z) or A=z, and (1) minus 3y implies y{z —z) = Az —z)or A=y Soy=z= A

and z + y + 2 = 50 implies = = 50 — 2A; also xy + yz + zz = 750 implies z(2)) + A* = 750. Hence
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o 22
5(]—2/\—%\4Lm3)\2100)\+750:03nd/\—w

(:(50F10v10),1(50 £ 5+/10),2(50 £ 5+/10)). Thus the minimum of £ is
F(3(50-10v/3),1(50 +5v/10), (50 + 510)} = & (87.500 ~ 2500 v/10 )., and its
maximum is f (% (50 +10v/10), 1(50 — 5+/10) , 2 (50 — 5/10)) = & (87,500 + 2500 ,/10).

Note: If either ¢ or z is the distinct side, then symmetry gives the same result.

, giving the points

. We need to find the extreme values of f(x,y,2) = z? + 4% + 2% subject to the two constraints
gle,y,2) =x+y+22=2and h(z,y,2) = 2> + ¥ — 2 = 0. Vf = 22,2y, 22). AVg = (X, A, 24} and
uNh = (2pr, 2py, —p). Thus we need (1) 2z = A+ 2ua, (2) 2y = A+ 2uy. (3) 22 =2X —p,
@) 2 +y—+2z=2and(5) z?+¢y? -z =0 From(D)and (2),2(x —y) = 2u(z ~y).s0iflz £y, u = 1.
Putting this in (3) gives 2z = 2A — 1 or A = z + 3, but putting ¢ = 1 into (1) says A == 0. Hence z + 3 = O or
z = —1. Then (4) and (5) become z -+ y — 3 = Oand z° + y* + § = 0. The last equation cannot be true, so this
case gives no solution. So we must have = = y. Then (4) and (5) become 2x + 2z = 2 and 222 ~ z = 0 which
imply z =1 —wandz =22 Thus 22 = 1 —zor 22+ 72— 1= (22— D)(z+ 1) =0sox = L orz = —1.
The two points to check are (5,3, 3) and (—1,-1,2): f(3,3,3) = 2and f(-1,-1,2) = 6. Thus (3, 3, 3) is
the point on the ellipse nearest the origin and (—1, —1, 2) is the one farthest from the origin,
40. (a) Parametric equations for the ellipse are easiest to determine

using cylindrical coordinates. The cone is given by z = r, and

the plane is 4rcos 8 — 3rsin# 4+ 82 = 5. Substituting z = r

into the plane equation gives 4rcosd — 3rsin@ +8 =5 =

5

- dcosf — 3sinf + 8

Since z = v on the ellipse,

parametric equations {in cylindrical coordinates) are

5
f=t.r=z= L0 <t < 2n.
" dcost — 3sint + 8 — s

{b) We need to find the extreme values of f(x,y,z) = 2 subject to the two constraints
gl y,2) =4r — 3y +8z=5and h(z,y. 2} = +4° - 22 = 0. Vf = A\Vg+uVh =
(0,0,1) = M4, —3,8) + u(22,2y, ~22), soweneed (1) 4A + 2ux =0 = &= 22
() 3+ 2uy=0 = y=32.03)8\ 2uz=1 = 2= () 4z -3y+8:=5and
(5) o2 + 4° = z°. [Note that i # O, else A = 0 from (1), but substitution into (3) gives a contradiction, |

Substituting (1}, (2), and (3) into (4) gives 4(—%") — 3(2“) < g(SA 1) =5 = u= 39;\0_8 and into (5)

a2 oz 2
gives (2] + (2) = (32) 5 16X+ = (8 -1F = 9 -1A+1=0 =

it
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4

()r)\:%_[f)\:l—l:sthenu:—%andmz—g,yzﬁl—%,zz%.IFA:%[hﬂnp‘,:%andﬂ’!:*ﬂ

3

y = 1, z = 2. Thus the highest point on the ellipse is (— 3,1, 2) and the lowest point is (5, — 15, 13)-

. flo oy, z) = ye" % gla,y, 2) = 92° + 4y° + 362 =36, h(x,y,2) =ay +yz = 1.
Vf=AVg+uVh = (ye % " % —ye™ *) = A18z, 8y, T2z) + p{y, v + z,y). so ye* ™ * = 18Ax + py,
e* 77 = 8Ay + plw + 2), —ye* T = T2hz + uy, 927 +dy® + 3622 = 36, zy + yz = 1. Using a CAS to solve
these 5 equations simultaneously for i, i, 2, A, and p (in Maple, use the allvalues command), we get 4

real-valued solutions:
xe20.222444, y = —-2.157012, 2=/ —0.686049, A=~ —0.200401, p =~ 2108584
R —1.951921, y = —0.545867, =z == 0.119973, A= 0.003141, g~ —0.076238
2 =2 0.155142, y~=0.904622. =z~ 0950293, A= —0.012447, p =~ 0.489938
a2 1138731, y= 1.T68057, =z = —0.573138, A =~=0317141, p =~ 1.862675
Substituting these values into f gives f{0.222444, ~2.157012, —0.686049} =~ —5.3506,
f(—1.951921, —0.545867,0.119973) ~ —0.0688, f(0.155142, 0.904622,0.950293) ~ (.4084,
F(1.138731, 1.768057, —0.573138) =~ 9.7938. Thus the maximum is approximately 9.7938, and the mininum is
approximately —5.3506.
Sy ) =+ y+zg(n,y,z) =2t -yt -2 =0 kle,y,z) =2? + 2% =4,
Vfi=AVg+uVh = {(1,1,1) = A2z, -2y, -1 + u(22,0,2z2), 50 1 = 2Ax + 2uzx, 1 = -2y,

1= —XA+2uz z? -y = 2, 2% + z° = 4. Using a CAS to solve these 5 equations simultaneously for z. y, z. A,

and g, we get 4 real-valued solutions:

r = —1.652878, y= —1.964194, =z~ —1.126052, A = 0.2545H57, p == —0.557060
r=—1.502800, y= 0968872, =z~ 1.319694, A= —0.516064, p =~ 0.183352
T2 —0.992513, y= 1.649677, =z~ —1.736352, A= —0.303000, p= —0.200682
o 1895178, gy 1.7T18347, 2 = 0.638984, A~ —0.200977, p = 0.554805
Substituting these values into f gives f{—1.652878, —1.964194, —1.126052) =z —4.7431,
F(—1.502800,0.968872, 1.319694) ~ 0.7858, f(—0.992513,1.649677, ~1.736352) ~ —1.0792,
f(1.895178,1.718347, 0.638984} == 4.2525. Thus the maximum is approximately 4.2525, and the mininum is
approximately —4.7431.
43. (a) We wish to maximize f(z1,22, ..., 2n) = {/T1Z2 - - T, subject to

glri, 22, ... &) =21 b a2+ +xn =candx; > 0.

14 1_
Vf:<?l1($1x2..._rn)n 1(1:2...xn)’%(gglxg...xn)n 1(,J Ty
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and AVg = (A, A, ..., A}, so we need to solve the system of equations

1 _——
E(.Ll.LQIn)l; 1($2_..mn):)\ = mi/n fn

1 1
;(.’L‘lﬂ:Q-.-:ﬂn)n 1(:):1333"'$n):}\ = Ei/nl‘;/n---

1 1_ n
“{x1xy - a)" (@1 Tpo1) =X a:i/ 1/"--- /™= nAzrn
[

This implies nAz; = nAzy = - -+ = nAza. Note X # 0, otherwise we can’t have all z; > 0. Thus
[

I:IZI‘Z:"':mrL-BUI$1+:E2+"'+:En:C = nT1 =c = r] = —- =Xz =F3 == In.
n

. . fc ¢ ¢ .
Then the only point where f can have an extreme value is (h, - —). Since we can choose values for
n'n n

(x1,72,... ,2a) that make f as close to zero (but not equal) as we like, f has no minimum value. Thus the

. , c c c ¢ c
maximum value is f{—,—, ..., )= == — = —,
non n non nooon

{b) From part (4, £ s the maximum value of f. Thus f(z1, 22, ..., %n) = L1z &n < £ But
Tt

i
T+ X2+ 0+ Tn \
Tyt aet T =650 ¥rire Ty S . These two means are equal when f attains
n

. . c . . c c c .
its maximum value =, but this can occur only at the point (—, T, —) we found in part (a). So the means
T n n n

c
are equal only when @, = o = @3 — -+ = Tp = —,
T

n

T n
44, () Let f(r, .o To Y1y Yn) = 2 Zitgi glen, ..., Tn) = 3 27, and h(z1,...,20) = 3. y?. Then

i=1 i=1 i=1

i
V=V Y ay = {y,yz,...  Yn,&1,22,... ,Tn), Vg =V Z x? = (2r1,2r2,... ,22,,0,0,...,0}

a1

and Vh =V Z yl = 0,0,...,0,2y1,2y2,...,2un). SoVf = AVg + pVh & y; = 2Axz;

1 =1

n n n
andz; = 2up, 1 <i<nThenl= Y yi= Y AA2f=4 Y 2} =43 = A=+3.
i=1 i=1 i=1
Ifa=1 lhr,n e —2(%) ;=i 1 <1 <n. Thus z Tiys = 3. z? = 1. Similarly if A = f% we get
i=1 i=1

yi = —z; and }: xyy; = —1. Similarly we get po = £3 giving ys = =2, 1 <i < n,and ) xys = £1

i=1 i=1

T
Thus the maximum value of Y 233 is L.
=1

{b) Here we assume Z 2 £ (and E b2 4 0. (If E aZ = 0, then each a; = 0 and so the inequality is trivially

ix=1 1=1 i=1

b

from (), > xiyi = Y \/Z—ai/ﬁ <1 < Y ab < \/Z—a\/ﬁ

b
= Y y?-= = = 1. Therefore,
20

2
a
true.) x; = ! = Zq:f = Z_; =1l andy; =
i

S a2
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APPLIED PROJECT Rocket Science

1. Initially the rocket engine has mass M, = M; and payload mass P = My + M3 4+ A. Then the change in velocity
_ (1-5)M,
My + Ms+ A+ M,
can consider the rocket engine to have mass M, = M, and the payload to have mass P = M3z + A. The resulting
(1 - 8)M,
C Ms+ A+ M,

resulting from the first stage is AV, = —c¢ln (1 ) . After the first stage is jettisoned we

change in velocity from the second stage is AV: = —¢ln (1 ) . When only the third stage

(13)1113).

remains, we have M, — Mj and P = A, so the resulting change in velocity is AV; = cln(l TUATM
A3

Since the rocket started from rest, the final velocity attained is

vf = AV + AVs + Al
= cln(l (L~ SHM ) +{—c) 1n(l (A =9Ms )Mz )

Mo+ My + A+ M T My + At M,

(1- S)M
+ (*C) lll(l — —-Z‘“;Tﬁa)

ol Mt M+ Ms+ A - (1~ SYM; tin M+ Ms+ A - (1-S)M
Mi+M;+ M+ A Mz+ M3+ A

Myt A—(1-S8)Ms
* ln( Ms + A )]

_ {ln( M+ Mo+ Ms+ A ) +hl( M+ Mg+ A )+h’l( Ms;+ A )}

SMy + Mz + M+ A SAMs+ Mz + A SMy+ A

Mt M2t Ms + A My +M;4+ A _ M3+ A

dN; = =272
M = L+ A

Z.Dﬁ ]V = =
N = o + Mo+ Mat A 2 SMy+ et A"

Then

(1_3) My +Mzy+Ms+ A
(1 - 8N _ SMi+ Mo+ M3+ A
1-8N; 1_SM1+]\J2+M3—!—A
SMi+ Mo+ Mz + A
B (1 — S)(M, + Mz + M3 + A)
COSMi My + Ms + A— S(My 4+ My + Ma + A)

{1 -85) My Mo+ Mz +A) My +Ma4+Mz+ A
(1-SYMya+My+A) —  Ma4Mz+ A

as desired.

Similarly,

(lfS)Ng _ {1“5)(M2+17\f."[3 +A) . (I—S)(ﬂf[2+ﬂf'2+z4) _ Mo+ M+ A
1-SN>  SMa+Ms+A-SMz+Ms+ A (1 -8)(Ms+A) ~ M3+ A

and

(1-85)Ns  (1-8)(Ms+A)  (1-S)Ms+A4A) M+ A
1-SNs  SM3+A-SM;+4)  (1-854) ~ A
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Then

M+A M AMAM+A M+AMA+M+A M+tMi+A Mat A
A A T Mo+ Mz+ A Ms+ A A

C(1-S5)Ni (1-S)Na (1-S)Ns _ (1 — S)>N1N2Ns

1-SN; 1-8N, 1-8N; _ (1—SN1)(I- SN:)(I— SNs)

3. Since A > 0, M + A and consequently M1A

1 is minimized for the same values as M. ln x is a strictly increasing

M+ A M+ A
function, so 111( X ) must give a minimum for the same values as ;1'_ and hence M. We then wish to

j; A) subject to the constraint ¢ (In Ny + In N2 + In N3) = vy, From Problem 2,
mfM+Ay (1—8)* NiN2N;3
A L (1= SN (1~ SNo) (1= 8§Ns)
=3m(l—5)+InN, +InNz+ N3 —In(1 — SN} — In(1 — SN2) — In{1 — SN3)
M+ A

minimize In (

Using the method of Lagrange multipliers, we need to solve V [ln(

>:| = AV[C(ln Ni+InNo +In N3)]

with o(ln Ny + In N2 + In N3) = vy in terms of Ny, Na, and N3. The resulting systern is

1 S c 1 S c 1 ) c
ST A M 15NN, N TITsN, W,

c(ln Ny +InNa + In N3) = vy
One approach to solving the system is isolating cA in the first three equations which gives
SN, SNy SN3 Ny Ne N3

——=cA=l+ — =14+ —— = = =
I sN ¢ 1-5N;, 15N, 1-SN, 1-8N, 1 5N
Ny = Nz = Ny (Verify!). This says the fourth equation can be expressed as ¢(In N1 + In Ny + In Ny = v =

1+

=

JelnNy =vy = InN; = g—f Thus the minimum mass M of the rocket engine is attained for
C

Ny = Ny = N3 = evs/(3),

. Using the previous results,
3
. 31 ve/(3c)
M+ A (1 — SNy NaNy (1-35) [e ! } (1-8§Perrle
fred = = N en
A (1—SN1)(1 —8N2)(1 — SN3) 1~ Sevf/(sa]i* [1- Se"”f/(SC)]B

A1 = §)es e
[1— Senf/(sc)]3

M=

A1 - 0.2)36(] 7.500/6000)

. {a) From Problem 4, M = :
{1- 0,26[17.500/(3.6500)])3

—A=0904A4 - A=189.4A

My + A (17.500/(3-6000)] Mz + A A(1 — %735
ST A ) = Son LA = ® 3 .
SMs + A ‘ CoE=A = M= Gommm g N 3494 Then
My +Mz+A  My+349A4 A oAM= 4.49A(1 — 635/36}
SMy+Ms+ A 0.2M>+3.494 + A M2 T T 035736 _ 1
and Ny = Mt Me+ M+ A M 1415674 +3.494+ 4
TT GM; F Mo+ Ms+ A 0.2M; - 15.67A+ 34944 A
20.16A(1 — *5/38)
My =
0.2635/36 —1

(b) First, N3 =

Ny

= 15.674

~ 70.36A.
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Ms+ A o, 24700/(3-6000) _ M;+ A
SMs;+ A 02Mz+ A
_247/180 13. A
M3=A(1 € )213.9A,N2= Ma+M;+ A _ My +13.9A +
0.2€247/180 _ | SMy+Mz+A  02M;+1394+ A
14.94(1 — £247/180) Mi+Ma+My+A My +2084+13944+ A
T ().2e247/180 _

SMi4+ M+ Ms+ A 02M, 42084+ 1394+ A
222.9A(1 — £217/180y

M, = 0902477180 ] ~~ 3110A. Here A = 500, so the mass of each stage of the rocket engine is

approximately A1 = 3110{500) = 1,550,000 Ib, M2 = 208(500) = 104,000 Ib, and
Mz = 13.9(500) = 6950 Ib.

6. Asin Problem 5, V3 =

=2 208A, and N3 =

APPLIED PROJECT Hydro-Turbine Optimization

1. We wish to maximize the total energy production for a given total flow, so we can say Qr is fixed and we want to
maximize KW + KW, + KWs. Notice each KW, has a constant factor (170 — 1.6 - IO"GQ%), so to simplify

the computations we can equivalently maximize

KWy + KWa + KWs
170 — 1.6 - 10-9Q2.

f(Qla Q21 Q3) =

= (—18.89 + 0.1277Q; — 4.08 - 107°Q})
+ (—24.51 -+ 0.1358Q2 — 4.69- 107°Q3)
+ (~27.02 + 0.1380Q3 — 3.84 - 107° Q%)

subject to the constraint g((h, (F2, @3) = Q1 + Q2 + Q3 = Q1. So first we find the values of (1, (Q2, {3 where
V(Qr, Q2,Q3} = AVg(Q1, Q2,@3) and Q1 + Q2 + @3 = Qr which is equivalent to solving the system

0.1277 — 2(4.08 - 10 *)Q; = A

0.1358 — 2(4.69 - 10 5)Qy = A

0.1380 — 2(3.84 - 107°)Q3 = A

Q1 +Q2+Q:=Qr

Comparing the first and third equations, we have 0.1277 — 2(4.08 - 10™%)Q; = 0.1380 — 2(3.84- 107%)Q3 =
1 = —126.2255 + 0.9412¢)3. From the second and third equations,
0.1358 — 2(4.69-107°)Q2 = 0.1380 — 2(3.84 - 107°)Qs = Q2 = —23.4542 + 0.8188(Q;. Substituting
into Q1 + Q2 + Qs = Qr gives (—126.2255 + 0.9412Q3) + (—23.4542 + 0.8188Qs) + Q3 = Qp =
2.76Q3 = Qr + 149.6797 = Q3 = 0.3623Q 4 54.23. Then
1 = —126.2255 + 0.9412Q): = —126.2255 + 0.9412(0.3623Qr + 54.23) = 0.3410Q7 — 75.18 and
Q2 = —23.4542 4 0.8188(0.3623Q 1 + 54.23) = 0.2967Q + 20.95. As long as we maintain
250 < Q1 < 1110, 250 < )2 < 1110, and 250 < 3 < 1225, we can reason from the nature of the functions

KW; that these values give a maximum of f, and hence a maximum energy production, and not a minimum.
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2. From Problem 1. the value of ¢, that maximizes energy production is 0.3410¢}T — 75.18, but since
250 < (1 < 1110, we must have 250 < 0.3410Q7 — 75.18 < 1110 = 325.18 < (0.3410Qr < 1185.18 =
953.6 < Qr < 3475.6. Similarly, 250 < Q2 < 1110 = 250 < 0.2967¢)7 +20.95 < 1110 =
T72.0 < Qr < 36705, and 250 < Q3 < 1225 = 250 < 0.3623Qr + 54.23 <1225 =

540.4 < Q7 < 3231.5. Consolidating these results, we see that the values from Problem | are applicable only for

9n3.6 < Q1 < 3231.5.
. If Q1 = 2500, the results from Problem 1 show that the maximum energy production occurs tor

Q1 =0.3410Q+ — 75.18 = 0.3410(2500) — 75.18 = 777.3
(2 = 0.29670 + 20.95 = 0.2967(2500) + 20.95 = 762.7

Qs = 0.3623Q7 + 54.23 = 0.3623(2500) + 54.23 = 960.0

The energy produced for these values is KW, + KWy + KWy ~ 8915.2 4 8285.1 + 11,211.3 =~ 28.411.6. We
compute the energy production for a nearby distribution, €1 = 770, (2 = 760, and 3 = 970

KW, + KWo + KWy ~ 8839.8 4+ 8257.4 + 11,313.5 = 28,410.7. For another example, we take ¢} = 780,
(J2 = 765, and Qa3 = 955: KW, + KW, + K W3 = 8942.9 4 8308.8 + 11,159.7 = 28,411.4. These
distributions are both close to the distribution from Problem | and both give slightly lower energy productions,

suggesting that Q1 = 777.3, Q2 = T62.7, and Q3 = 960.0 is indeed the optimal distribution.
. First we graph each power function in its domain if all of the 14000  Turbine 3

flow is directed to that turbine (so @; = Q7). 12000 - Turbine 1
L0000 - Turbine 2

8000+
water flow of 1000 tt*/s, Turbine 3 produces the most power, aoooTl

1
) - 000 |
approximately 12,200 kW. In comparison, if we use all three ;0001\ /

turbines, the results of Problem | with Q7 = 1000 give

If we use only one turbine, the graph indicates that for a

Power (kw)

0| 200 400 600 800 1060 1200
Q1 = 265.8, (J2 — 317.7. and Q3 = 416.5, resulting in a Water Flow (It'.s)

total energy production of KW, + KW, + KW; ~ 8397.4 kW. Here, using only one turbine produces
significantly more energy! If the flow is only 600 ft*/s, we do not have the option of using all three turbines, as the
domain restrictions require a minimum of 250 ft*/s in each turbine. We can use just one turbine, then, and from the

graph Turbine 1 produces the most energy for a water flow of 600 ft>.

. If we examine the graph from Problem 4, we see that for water flows above approximately 450 ft%/s, Turbine 2
produces the least amount of power. Therefore it seems reasonable to assume that we should distribute the incoming
flow of 1500 ft*/s between Turbines | and 3. (This can be verified by computing the power produced with the other

pairs of turbines for comparison.) So now we wish to maximize KW, + KW subject to the constraint

Q1 + Q3 = Q where Q1 = 1500.
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As in Problem 1, we can equivalently maximize

KW, + KW,
170 16- 10502

f(@,Qs) =

= {~18.89 + 0.1277Q1 — 4.08 - 107°Q7) + {-27.02 + 0.1380Q; — 3.84 - 107°Q3)

subject to the constraint 9((:, Q3) = Q1 + Q3 = Q7.

Then we solve Vf(Q1,Q3) = AVg(Q1,Qs) = 0.1277 —2(4.08-107°) Q, = Aand
0.1380 — 2(3.84 - 107°)Qs = A, thus 0.1277 — 2(4.08 - 107)Q; = 0L1380 — 2(3.84- 107°)Q3 —
1 = —126.2255 + 0.94120);. Substituting into @1 + @3 = Qp gives —126.2255 + 0.9412Q03 + @3 = 1500
= (3 = 837.7, and then 1 = Q7 — Qs = 1500 — 837.7 = 662.3. So we should apportion approximately
662.3 ft*/s to Turbine | and the remaining 837.7 ft*/s to Turbine 3. The resulting energy production is
KW + KWy & 79562.1 4+ 10,256.2 = 18,208.3 kW. (We can verify that this is indeed a maximum energy
production by checking nearby distributions.) In comparison, if we use all three turbines with Q¢ = 1500 we get
O = 436.3, Q2 = 466.0, and (@3 = 597.7, resulting in a total energy production of
KW, + KW, + KWy 2 16,538.7 KW. Clearly, for this flow level it is beneficial to use only two turbines.

. Note that an incoming flow of 3400 ft*/s is not within the domain we established in Problem 2. so we cannot simply
use our previous work to give the optimal distribution. We will need to use all three turbines, due to the capacity
limitations of each individual turbine, but 3400 is less than the maximum combined capacity of 3445 £t%/s, so we
still must decide how to distribute the fiows, From the graph in Problem 4, Turbine 3 produces the most power for
the higher flows, so it seems reasonable to use Turbine 3 at its maximum capacity of 1225 and distribute the
remaining 2175 ft3/s flow between Turbines | and 2. We can again use the technique of Lagrange multipliers to
determine the optimal distribution. Following the procedure we used in Problem 5, we wish to maximize
KW, + KW; subject to the constraint ¢ + Q2 = @ where Qr = 2175, We can equivalently maximize

KW, 4+ KW,
170 — 1.6 - 10-5Q%

FlQ1,Q2) =

= (-18.89 +0.1277Q1 — 4.08 - 107°Q7) + (~24.51 + 0.1358Q2 — 4.69- 10 °Q3)

subject to the constraint g{Q1, Q2) = Q1 + Q2 = Q. Then we solve Vf(Q1,Q2) = AVg(Q1,Q2) =
0.1277 — 2{4.08 - 107°)Qy = X and 0.1358 — 2(4.69 - 107°)Q2 = A, thus

0.1277 — 2(4.08 - 107°)Q1 = 0.1358 — 2(4.69 - 107°)Q; = Q1 = —99.2647 + 1.1495Q,. Substituting
into ¢1 + Q2 = Qr gives —99.2647 + 1.1495Q2 + Q2 = 2175 = (Q, & 1058.0, and then ; =~ 1117.0.
This value for ()1 is larger than the allowable maximum flow to Turbine 1, but the result indicates that the flow to
Turbine | should be maximized. 'Thus we should recommend that the company apportion the maximum allowable
flows to Turbines 1 and 3, 1110 and 1225 ft*/s, and the remaining 1065 ft%/s to Turbine 2. Checking nearby

distributions within the domain verifies that we have indeed found the optimal distribution.
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15 Review ET14
CONCEPT CHECK

. (1) A function f of two variables is a rule that assigns to each ordered pair (z, y) of real numbers in its domain a
unique real number denoted by f(x,y).

(b) One way to visualize a function of two variables is by graphing it, resulting in the surface z = f(x,y). Another
method for visualizing a function of two variables is a contour map. The contour map consists of level curves of
the function which are horizontal traces of the graph of the tunction projected onto the zy-plane. Also, we can
use an arrow diagram such as Figure 1 in Section 15.1 [ET 14.1].

. A function f of three variables is a rule that assigns to each ordered triple (z,y, 2} in its domain a unique real
number f (i, y, z). We can visualize a function of three variables by examining its level surfaces flz,y.2z) =k,

where k is & constant.

lim b f{x,y) = L means the values of f{z,y) approach the number L as the point (z,y) approaches the point
(zy)—(a,

{u, b) along any path that is within the domain of f. We can show that a limit at a point does not exist by finding two
different paths approaching the point along which f(x,) has different limits.

. (2) See Definition 15.2.4 [ET 14.2.4].
(b If £ is continuous on R?, its graph will appear as a surface without holes or breaks,
. (2) See (2) and (3) in Section 15.3 [ET 14.3].
{b) See “Interpretations of Partial Derivatives™ on page 948 [ET 912].
(¢) To find f., regard y as a constant and differentiate f(z, y} with respect to . To find fy;, regard z as a constant
and differentiate f(xz,y) with respect to y.
. See the statement of Clairaut’s Theorem on page 952 [ET 916].
. (a) See (2)in Section 15.4 [ET 14.4}.
(b) See (19) and the preceding discussion in Section 15.6 [ET 14.6].
. See (3) and (4) and the accompanying discussion in Section 15.4 [ET 14.4]. We can interpret the linearization of I

at {a, b) geometrically as the linear function whose graph is the tangent plane to the graph of f at (a,b). Thusitis
the linear function which best approximates f near (a, ).

. (a) See Definition 15.4.7 [ET 14.4.7].
{b) Use Theorem 15.4.8 [ET 14.4.8].
. See (10) and the associated discussion in Section 15.4 [ET 14.4].
. See (2) and (3) in Section 15,5 [ET 14.5].
. See (7) and the preceding discussion in Section 15.5 [ET 14.5].

. (a) See Definition 15.6.2 [ET 14.6.2]. We can interpret it as the rate of change of f at («xy, y0) in the direction of u.
Geometrically, if P is the point (zo, yo, f(zo.yo}) on the graph of f and C is the curve of intersection of the
graph of f with the vertical plane that passes through P in the direction u, the directional derivative of f at
(0, o} in the direction of u is the slope of the tangent line to C' at P. (See Figure § in Section 15.6 [ET 14.6].)

(b} See Theorem 15.6.3 [ET 14.6.3].
. (a) See {8) and (13} in Section 15.6 [ET 14.6}.
{b) Dy f(ﬁ:a y) - Vf(.l ’,U) -uor Dy f(ms Y, 2) - vf("cya z) -u

(¢} The gradient vector of a function points in the direction of maximum rate of increase of the function. On a graph

of the function, the gradient points in the direction of steepest ascent.
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. (a) f has a local maximum at (a,b) if f(z,y) < f(a,b) when (x,y) is near {a, b).

{b) f has an absolute maximum at (a, b) if f(z,y} < f(a,b) for all points (z, y) in the domain of f.

(¢} f has alocal minimum at (a, b) if f(z,4) > f(e,b) when (x,y) is near (a, b).

{(d} f has an absolute minimum at (a, b) if f(x,y) > f(a,b) for all points (z, y) in the domain of f.

() f has a saddle point at {g, b) if f(a,b) is a local maximum in one direction but a local minimum in another.

. (2) By Theorem 15.7.2 {ET 14.7.2], if f has a local maximum at (a, b) and the first-order partial derivatives of f
exist there, then f. (e, b) = 0and f,(a,b) =0.

(b) A critical point of f is a point (e, b) such that f.{a,b) = 0 and f,(a,b) = 0 or one of these partial derivatives
does not exist.

. See (3)in Section 15.7 [ET 14.7].

. (a) See Figure 11 and the accompanying discussion in Section 15.7 [ET 14.7].

(b) See Theorem 15.7.8 [ET 14.7.8].

(c) See the procedure outlined in (9) in Section 15.7 [ET 14.7].

. See the discussion beginning on page 1001 [ET 965]; see the discussion preceding Example 5 in
Section 15.8 [ET 14.8].

TRUE-FALSE QUIZ

fla,b+h) - f(ab)
h

from Equation 1533 [ET 1433). Leth=y—b Ash -0,y — b

Then by substituting, we get f,(a,b) = lin}J M:%ﬂﬁ;@l
y— -

. True. f,{a,b) = &llnu

. False. If there were such a function, then f., — 2y and f,. = 1. So f., # fys, which contradicts Clairaut’s
Theorem.

Of

dydr’

. True. From Equation 15.6.14 [ET 14.6.14] we get Dy f(z,y,2) = Vf(z,y,2} - (0,0, 1) = f.(z,y, 2).
. False. See Example 15.2.3 [ET 14.2.3].

. False. f., =

. False. See Exercise 15.4.42(a) [ET 14.4.42(a)].

. True. If f bas a local minimum and f is differentiable at (a, b) then by Theorem 15.7.2 [ET 14.7.2], f.(a,b) =0
and f,(a,b) = 0,50V f(a,b} = (f=(a,b), fy{a, b)) = {0,0) = 0.

. False. If f is not continuous at (2, 5), then we can have (m,y]jiil%lf")j flz,y) # F(2,5).

(See Exampte 15.2.7 [ET 14.2.7].)

. False. V f(x,y) = {0,1/y).

. True. This is patt (¢) of the Second Derivatives Test (15.7.3 [ET 14.7.3]).

. True. Vf = {cosz, cos y}, so |V f| = y/cos? z + cos? y. But |cos ] < 1,50 |V | < v/2. Now

Dy f(z,y) =Vf -u=|Vf||u|cos@ but uisaunit vector, so |Dy fz,y)] < v2-1-1= 2

. False. See Exercise 15.7.35 [14.7.35].
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EXERCISES

1. The domain of sin "'z is —1 < = < 1 while the 2.D={{z,y,2)|z> z® + y*}, the points on

domain of tan™" y is all real numbers, so the and above the paraboloid z = 2% + 3.

domain of f(z,y) =sin™'z 4 tan~? yis

{my) | -1z <1}

3 z= f(x,y) =1 -2z — ¢, a paraboloid with 4 2= f(z,y) = Vx? +y2 - 1,502z > Oand

vertex (0,0, 1). 1 = z% + y? — 2% Thus the graph is the upper

half of a hyperboloid of one sheet.

B, Letk = e~ = e~ ™ *¥°) be the level curves. Then B. k= 2% + 4y or 4y — k/4) = —=2°, a family of

—Ink = ¢ =z° + y*, so we have a family of parabolas with vertex at (0, k/4).

concentric circles.
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9. f is arational function, so it is continuous on its domain. Since f is defined at {1, 1), we use direct substitution to

evaluate the limit:  lim 2oy __21)A) _ 2
(w)—(1,1) 22 +2y2  124+2(1)2 3

10. As (z,y) — {0,0) along the z-axis, f(z,0) = 0/2% = 0 forz # 0, so f(x,y) — 0 along this line. But
flz,z) = 22%/(32%) = 2,50 as (z,y) — (0,0) along the line x = y, f(z,y) — 2. Thus the limit doesn’t exist.

T(6+h,4) ~ T(6,4)

1 h , so we can approximate T, (6, 4) by considering h = +2 and using the

M. (a) T,(6,4) = ’llin

T(8,4) — T(6,4) 86 —80
2 T2 T

values given in the table: T, (6,4) ~ 3,

T(4,4) = T(6,4) 7280
—2 )

T:(6,4) = = 4. Averaging these values, we estimate T,(6, 4} to be

lim T(6,4+ h}~T(6,4)
h—0 h

T{6,6) —T(6,4) _75-80
2 2

approximately 3.5°C /m. Similarly, T}, (6,4) = , which we can

approximate with b = £2: T,(6,4) == —2.5,

T(6,2) —T(6,4 87 — & . .
T,(6,4) ~ ( )_2 (6,4) =" 0 = —3.5. Averaging these values, we estimate T,,{(6, 4) to be

approximately —3.0°C /m.

(b) Here u = <—}3 %> so by Equation 15.6.9 [ET 14.6.9].

D T(6,4) = VT(6,4) - u = T,(6,4) ﬁ + T;(6,4) —=. Using our estimates from part (a), we have
D, T(6,4) = (3.5) % + {(—3.0) ﬁ = T\I/E 2 0.35. This means that as we move through the point (6, 4} in

the direction of u, the temperature increases at a rate of approximately 0.35°C /m.
Alternatively, we can use Definition 15.6.2 | ET 14.6.2]:

T(b‘-&—h%,él-%h%) —T(6,4)

- , which we can estimate with h — +2 /2. Then

DaT(6,4) = lim

T(8,6) — T(6, 4 -
DuT(6,4) ~ L& )2\/5(’ )282\/580:0,&,1"(6,4)@

T(4,2)-T(6,4) 7480 3
—2+/2 SN NG
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a . Te(z,y+h)—Tel(x, T.(6,4+ h) — Tn(6,4
(€) Teylm,y) = a_y [Tm(m,y)] _ ;lllfh (x,y 2 (z,y) ( fz (6,4)

which we can estimate with b = +2. We have T,.(6,4) = 3.5 from part (a), but we will also need values for
T:(6,6) and T (6,2). If we use h = 2 and the values given in the table, we have

T,(6,6) ~ T(8,6) ;T(ﬁ,ﬁ) _ 80 = T 5. 1,(6.0) ~ T(4,6):2T(6,6) _ 68_—275 _

Averaging these values, we estimate T, (6, 6) == 3.0. Similarly,

, — Z — T(6, 4 -
76,2~ TOD L0 N0 =8y 57,069 TRD_TO2) 18T

Averaging these values, we estimate 7{6,2) ~ 4.0. Finally, we estimate T, (6,4):

To(6,6) - T.(6,4) 3.0 — 3.5
Ty (6,4) ~ {6,6) 5 6,4) _ 5 = —0.25,

T.(6,2) — T,(6,4 4.0 - 3. .
Tey(6,4) =~ { )72 (6,4) = ) = —0.25. Averaging these values, we have

L850 Tpy(6,4) = }11111%)

3.5.

6.5.

Ty (6,4) = —0.25.

12. From the table, T(6,4) = 80, and from Exercise || we estimated T,,(6,4) = 3.5 and T,,(6,4) = —3.0. The linear

approximation then is
T{x,y) = T(6,4) + Te(6,4)(z — 6) + Ty,(6,4)(y — 4) =~ 80 + 3.5(x — 6) — 3(y — 4)
=3.5r -3y + 71

Thus at the point {5, 3.8), we can use the linear approximation to estimate
T{5,3.8) = 3.5(5) — 3(3.8) + TL = 77.1°C.

1

z,y) = +/2¢ =l )V = — ligm 4 ,2y-1/2 _ Y
fley) =24+ = fo = 120+ y7)7YA(2) \/m,fy 12z +y*) 72 (2y) N

L u=¢ ' sin2¢0 = wu, = —e "sin2#@, ug = 2" cos 26

. g(u,v) = wtan™'v = g, =tan"lu, g,

i

-Tpygr)=pn{g+c") = T,=In(g+e), T, = p fewTr “ite

. C = 1449.2 + 4.67 — 0.0557°% + 0.000297 * + (1.34 — 0.01T)(S — 35) 4+ 0.016D) =
AC/IT = 4.6 — 0.11T +0.00087T 2 — 0.01{S — 35), 3C/8S = 1.34 — 0.017T, and HC/OD = 0.016. When
T = 10,5 = 35, and D = 100 we have 8C/8T = 4.6 — 0.11{10) + 0.00087(10)* — 0.01(35 — 35) ~ 3.587,
thus in 10°C water with salinity 35 parts per thousand and a depth of 100 m, the speed of sound increases by about
3.59 m/s for every degree Celsius that the water temperature rises. Similarly, 8C /98 = 1.34 — 0.01(10) = 1.24,
s0 the speed of sound increases by about 1.24 m/s for every part per thousand the salinity of the water increases.
AC /01 = 0.0186, so the speed of sound increases by about 0.016 m/s for every meter that the depth is increased.

19. flz,y) =42® —ay® = fo =122 — ¢, fy = =22y, foo = 247, fy = —22, a0d fopy = fyo = —2u.
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- - - -2 -2
Lz=xe ¥ = 2z, =¢ %, zy = —2ze W oy =0, 2yy = dze”™ ¥, and zgy = zye = —2e7°Y,

. f(-T-,y, Z) — :Ekylzm = f:r — ka-lylzm’ f-y — lIkyl_lzm, fz — mmkylzm—l,
fan = k(k = D25, £, = 11— Dby 2™, oo = mm - Da*y' 2™, fuy = fyo = blz* 7y 712",

or = foo = kma® 1y 2™ and fy. = foy = mafytlzm L
Y ¥ y

.v=rcos(s +2t) = v =cos(s+2t),vs = —rsin(s + 2t), v = —2rsin(s + 2t), v,.r =0,
Vss = —TCO8(8 + 2t), gy = —4r cos(s + 2}, vrs = Vor = —sin{s + 2t}, Uy = v = ~2sin(s + 2t), and
Vst = Uts = —2r cos(s + 2¢).

Lu=1Y = uy=yr¥ L u, =c¥inzand (x/y)us + (Inz) tuy = 2¥ + 2¥ = 2u

2 2
: ‘ +z
VERH Yt = p = e, .

= (22 + 42 + 22)3/2°

By symmetry, p,, =

(22 42 + 22)3/2
1'2 +y2 +2’2 W -
242 4 22)32 0 (p2 fy? 4 22)Y/2

Poe T Pyy T Pz :2(.’13

L (@) zy =624+ 2 = 2 (1,-2)=8andzy, = -2y = z,{1,—2) =4, so an equation of the tangent plane is
z—1=8xz—-1)+4(y+2)orz=8x+4y+ 1

(b} A normal vector to the tangent plane (and the surface) at {1, —2, 1) is (8,4, —1). Then parametric equations for

the normal line there are x = 1 4 8¢,y = —2 + 4¢, z = 1 — ¢, and symmetric equations are
z—1 y+2 -1
&8 4 0 -1

. (@) 2, =e"cosy = 2:.(0,0}=1andz; = —e"siny = z,(0,0) = 0, so an equation of the tangent plane
sz-1=1{z-0)+0y—-0orz=z+1

(b) A normal vector to the tangent plane (and the surface) at (0,0, 1} is (1,0, —1}. Then parametric equaticns for
the normal line there are x = ¢, y = 0, z = 1 — ¢, and symmetric equationsarez = 1 — z, y = 0.

. (@) Let F(z,y,2) = 2% + 2y° — 32% Then Fy = 2z, Fyy = 4y, F, = —62, 50 Fy(2,-1,1) = 4,

F(2,-1,1) = —4, F(2,-1,1) = —6. From Equation 15.6.19 [ET 14.6.19], an equation of the tangent plane
is 4(z — 2) — 4(y + 1) — 6(z — 1} = O or equivalently 2z — 2y — 32 = 3.

-2 y+1 z-1

4 -4 -6

(by From Equations 15.6.20 [ET 14.6.20], symmetric equations for the normal line are il

(@) Let Flz,y,2) =xzy+yz+zz. Then F, =y+ 2, Fy=x+z F. =z +y,s0
F:(1,1,1) = F,(1,1,1) = F:(1,1,1) = 2. From Equation 15.6.19 [ET 14.6.19}, an equation of the tangent
planeis 2{z — 1) + 2(y — 1) + 2(z — 1) = 0 or equivalently x + y + z = 3.

(b) From Equations 15.6.20 [ ET 14.6.20], symmetric equations for the normal line are z ; 1 =¥ ; 1 =z ; 1

or equivalently » = y = z.

. {a) Let F(z,y,2) = x + 2y + 3z — sin(xyz). Then Fr = 1 — yz cos(zyz). £y = 2 — xzcos(zyz),

F. =3 — zycos(zyz), so Fr(2,-1,0) =1, F,(2,-1,0) = 2, F,(2, —1,0} = 5. From Equation 15.6.19
[ET 14.6.19], an equation of the tangent plane is 1(x — 2) + 2(y + 1)+ 5(z —0) =Qorz + 2y + 5z = 0.
t—2 y+1 =z

(b) From Equations 15.6.20 [ ET 14.6.20], symmetric equations for the normal line are 5 5
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30 Let f(x,9) = o + 22y. Then f,.(z,y) = 32* + 2y and
fulz,y) = 22,80 f2{1,2) = 7. f,{1,2} = 2and an
equation of the tangent plane is 2 — 5 = T(x — 1) + 2{y — 2)
or 7x + 2y — » = 6. The normal line is given by
-1 y—2 z-—35

7 2 -1
z=—145.

orx=Tt+1,y=2t+2

CF(a,y, 2y =2 +y + 25 VF(z0, 90, 20) = (220, 250, 220) = k{2, 1, =3} orzo = k.yo = Skand 2o = - 3k.

Butzf + 43 +25 =lLso Zk®*=1land k= i\/g. Hence there are two such points: (i 2, :i:\/%, ¥\/%).

Lz=xtan"ty = dz = (2wtan"ly)de + [2%/ (4% + )] dy

Jeyz) = VE T2 s falny,z) = 30T 2R fyla,y, ) =

=, and

:1:3
y2 + ‘22

:-‘.'IS . .
falw,y,2) = T 50 f(2,3,4) = 8(3) = 40, £2(2,3,4) = 3(4) V25 = 60, £,(2,3,4) = 2} = 2
and f,(2,3,4) = % = q’—f Then the linear approximation of f at (2, 3, 4) is
flz,y,z) 2 F(2,3,4) + fo{2,3,)(x — 2) + £,(2,3,4) (v — 3) + f2(2,3,4) (= — 4)
=40+60(x—2)+ L(y—3)+ £ (z - 4) = 60z + Fy + 32— 120

(1.98)*/(3.01)2 + (3.97)2 = £(1.98,3.01,3.97) ~ 60(1.98) + Z(3.01) + 32(3.97) — 120
— 38.656
A 8A . . _ .
L) dA = O dax + % dy = sydr + sxdy and |Az| < 0.002, |Ay| < 0.002. Thus the maximum error in the

calculated area is about dA = 6(0.002} + £(0.002) = 0.017 m? or 170 cm®,

(M z= /224y’ dz = ———= dr + ——=—=dy and |Az| < 0.002, |Ay| < 0.002. Thus the maximum
y e g |Az| |

error in the calculated hypotenuse length is about dz = %(0.002) + 12 (0.002) = %27 ~ 0.0026 m or
(.26 cm.

2 2
(362 + 4) + —& (2t)=a‘+27y(3t2+4)—2 L

22 zZ

2y

1 Jzt —
2z

;= m (2¢

y+

= (~ysinzy — ysinz){2u) + (—zsinzy + cosz) = cosz — 2uysinz — (sinwxy) (x + 2uy),
= (—ysinxry —ysinz)(1) + (—zsinzy + cosx}(~21) = —wcosx + (sinzy)(2vr —y) —ysinz

. dz Ozdr Ozody
. > i —_ = - . W T & [, o= = = ¢ i - ) s
By the Chain Rule, 95 = Bz Da + By Bs hens =landt =2, 2 =g(1,2) =3and y = h(1,2) = 6, 50

0 i 634 . (5.6 A 2) — (1) 4 (55 — i, Sivta, 0% D207 920U
B Fo(3,6)g5(1,2) + £, (3,8) ho(1,2) = (7)(=1) + (8)(—5) = —47. Similarly, 5% " a Ot + Gy 5 50
iz

5 = Jo(3.6)0:(1,2) + £, (3,6) he(1,2) = (T)(4) + (8)(10) = 108,
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Using the tree diagram as a guide, we have
ow JSwdt  Owldu

B " ot op | oudp
f u v Gw  HSw bt Owdu
VZANNWZANNVZAN 0 9idq " Guda
7 4 r s p g r s p g r s a_wza_wﬁ+aiu_fiﬂ+
Or Ot adr  Ouor

dw Owdt Owdu Owdv

9s ot ds T uvs | v s

2_ 2 %_ _ 22 L df
y),ayfl 2yf'(x" —y°) [wheref—d(mz_y2)

. Then

j': +I*§§ _ QLE?}fr(-Tr? _y2) +r— 2$yf'($2 _ yl’) =1

LA = lfry sinf, dr/dt = 3, dy/dt = -2, d6/d¢ = 0.05, and

dA

i {ysing) Z—t + (zsinf) Ej{—t- + {zycosh) fig] Sowhenz = 40, y =50and § = =

= - [(25)(3) + (20)(—2) + (1000+/3 )(0.05)] = 2—5—1;—0—@ =7 60.8 in®/s.

Fa_ 0 (02, oz -y (02
Oz2 —JB;E Ju v 22 Oz \ dv

2 2, _ _ 2, 2
Lo (Q N 32_y)+_y(2_v &= )

v ou? y dv du x2 dv? 2 Hudv y
T2 YV e T 2 outn e

=z 62 18z

Also == = — 2=,

§0 By = Bu + o and

B b (0N 10 (05N _ (B G 1\ (01 o
o2 oy \au) T zog\dv)  \8u2" T Buduz)  w\Pz  Oudv-
3z 8z 1 &z
— 2_ Y=
T B2 + du8v+$28'u2

2

Thus
52 - 9%z 2y 2, 2, 2 a2 2
2 & 2 Oz 2 20 2 O y~ 0z 2 0 2 82
2 2=y - iy —= -2+ = Ty
Ox? 8y z Ov Su? Judv  z2 M e du dv

_ 20z 12 0%z 0z 8%z

g = G, WA |

x Ov 4 du v v v uy du v

. U 2
since y = xv = — ory* = uwv.
Y

F, TYz 3 3 STYE
. F(x,y,2) = ¥ — g2t — 2?2 =0, SO&:———=- 'yze 2z = 2wz’ yze
Oz E. ryesVe — dyz® — 32222 pyeT¥F - 4dyzd — 3rizl
and [ rze*¥® — 2* B 2t — zze™?
Oy F.  zye*v: —4yz3 — 31222 T Tyesvr — dyad — 31222
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2z /Y
8.Vf= <z2 geovy ZEE
VY NG
44. (a) By Theorem 15.6.15 { ET 14.6.15], the maximum value of the directional derivative occurs when u has the same
direction as the gradient vector.

{b) It is a minimum when u is in the direction opposite to that of the gradient vector (that is, u is in the direction
—V f). since Dy, f = |V f| cos @ (see the proof of Theorem 15.6.15 [ ET 14.6.15]) has a minimum when
@ =m.

(¢) The directional derivative is 0 when u is perpendicular to the gradient vector, since then Dy, f =V f - u=10.

{d) The directional derivative is half of its maximum value when Dy f = [V f|cosd = 2 [Vf| &

-1 -
cosb=z o =73

= {14/, —2y), Vf(1,5) = (1,10}, u = 1(3, —4}. Then Dy f(1,5) = .

V= ey +VI+ 2,0t e/ (2VT+2)). VF(1,2,3) = (6,1, 1), andu = (£, 5, ~3). Then
D f(1,2,3) =

LV = 2oy, 2t +1/(2/4)). IVf(2,1)] = | (4, 3 )]. Thus the maximum rate of change of f at (2, 1) is ﬁ in

the direction (4, 2).

. Vf = {zye™, 2ze™ ™Y}, V£(0,1,2) = (2,0,1) is the direction of most rapid increase while the rate is

12,0, 1| = \/5

. First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional
derivative at Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed
between the points where this line intersects the contour lines closest to Homestead. In the direction of the eye of
the hurricane, the wind speed changes from 45 to 50 knots. We estimate the distance between these two points to be
approximately 8 miles, so the rate of change of wind speed in the direction given is approximately

50245 - 5 = (.625 knot/mi.

. The surfaces are f(x,y,2) =z — 22° +y* = 0and g(z,y, 2) = z — 4 = 0. The tangent line is perpendicular to
both V f and Vg at {—2,2,4). The vector v = Vf x Vg is therefore parallel to the line.
Vi(e,y,2) = (~4z,2y, 1} = Vf(-2,2,4) = {8,4,1), Vg(z,y,2z) = (0,0,1) =
ij k
Vg{—2,2,4) = (0,0,1). Hence v = Vf x Vg = |8 4 1| =41 - 8j. Thus, parametric equations are:
001
z=-2+4+4t,y=2-8tandz =4.

flz,y)=2" —2y+y* +9r -6y + 10 = f.=220-y+9

fy=—24+2y—6, fou =2 = fyy, foy = —1. Then f; =0and

!
fiy = 0imply y = 1, x = —4. Thus the only critical point is (—4, 1) N t’iz:’/
R /

s
R
N
3 \'gur.nl F1HFHHAY
3 \\\ \\ cr. ’,,l" ’l.‘ I{’:’}Z”
\\ i

and foo(~4,1) >0, D(—4,1) =3 > 0,50 f(—4,1) = -1lisa

local minimum.
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52. fla,y) =2° - 6zy +8° = f.=32% — 6y, f, = —6x + 249,
fer = 62, fyy = 48y, foy, = —6. Then f, = 0 implies y = 2%/2,
substituting into f, = 0 implies 6z (z” — 1} = 0, so the critical points
are (0,0), (1,4). D(0,0) = —36 < 00 (0,0) is a saddle point while
fez (1,3} =6 >0and D(1,3) = 108 > 0o f(1,3) = —1isalocal
minimuim.

. flay) =32y — 22y — oy’ = f. =3y - 22y — 4%,
fo =32~ 2%~ 22y, fou = 24, fyy = 28, foy =3 — 2z — 2y. Then
f= = Oimplies 4(3 — 20 — y) =0soy = 0 ory = 3 — 2z. Substituting
into f, = 0implies z(3 — z) = 0 or 3x(—1 + ) — 0. Hence the critical
points are (0,0), (3,0), (0,3) and (1, 1).
D(0,0) = D(3,0) = D(0,3) = —9 < 050 (0,0). {3,0), and {0, 3) are
saddle points. D(1,1) =3 > Oand fo(1,1) = -2 < 0,50 f(1,1) =1

is a local maximum.

ay) = @yt = fo=22eV?, fy =2 4 27 1 y)/2,
fow = 26¥"2, fu = e¥ (4 + 2% + ) /4, foy = ze¥/% Then fu = 0 s
implies =z = (), s fy = 0implies y = —2. But f,.(0, -2) > 0, : ““““:‘\:w““\
D0, -2)=e % 0> 0s0 f(0,-2) = —2/e is a local minimum. ] \“\‘:‘\‘“:.‘“‘.\\‘\‘\“‘“ et

Shecy S
= “‘\\\““: o]

. First solve inside D. Here f, = 4y2 - 2:1:y2 — y3,
f, =8xy —2z°y — 323> Then f, = Oimplies y = Qory = 4 — 2z,
but y = 0 isn’t inside D. Substituting y = 4 — 2z into f, = 0 implies
z=0,z=2orx=1butz =0isn’tinside D, and whenz =2,y =0
but (2,0) isn’tinside D. Thus the only critical point inside D is (1, 2) and

f(1,2) = 4. Secondly we consider the boundary of D.

On Ly, f(#,0)=0andso f =0onL;.On Ly, z = —y + 6 and
fl=y+6,y) = 4*(6 — y)(~2) = —2(6y* — y*) which has
critical points at y = O and y = 4. Then f(6,0) = 0 while f(2,4) = —64. On L3, f{0,y) = 0,50 f = O on La.
Thus on D the absolute maximum of f is f(1,2) = 4 while the absolute minimum is f(2,4) = —64.

. Inside D: f, = 2z V' (1 — 2% — 2y%) = 0 implies z = O or2® + 2y = 1. Then if x = 0,
fu=2ye ™ V(2 - 2% - 2y%) = Oimplies y = 0 or 2 — 2* = 0 giving the critical points (0, 0}, (0, +1). If
z® + 2y* = 1 then f, = Oimplies y = 0 giving the critical points (£1,0). Now £(0,0) = 0, f(+1,0) = e and
f{0,£1) = 2e~*. On the boundary of D: z* 4+ y* = 4,50 f(z,y) = e~ *(4 + 4) and f is smallest when y = 0
and largest when 3 = 4. But f{+2, 0) = 4e™4, (0, +2) = 8¢ ™%, Thus on D the absolute maximum of fis
f(0,£1) = 2e " and the absolute minimum is £(0,0) = 0.
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57. f(x,y) =2° — 3z +y* — 29°

.
ja "
o
)

(@)

y —15

NN AR
T LTI

1l
y

O AN NS SN SR

From the graphs, it appears that f has a local maximum f(—1,0) & 2, local minima f{1, +1) = —3, and saddle
points at (—1,+1) and (1, 0).

To find the exact quantities, we calculate f, = 32° ~3=0 <« z=+4land f, = 1 — 4y =0 <

y = 0, +1, giving the critical points estimated above. Also fr = 62, fry = 0, fuy = 12y° — 4, so using the
Second Derivatives Test, D{—1,0} = 24 > 0 and fz,(—1,0) = —6 < 0indicating a local maximum
F(=1,00=2; D{1,+1) = 48 > O and fgz:(1,+1) = 6 > 0 indicating local minima f(1, £1) == —3; and
D{~1,£1) = —48 and D(1,0) = —24, indicating saddle points.

Cfzy) =124 10y - 22° —8zy —y* = fulz,y) = —dz — 8y, fylz,y) = 10 - 8z — 4y®. Now
fz{z,¥) =0 = 1z = —2z, and substituting this into f,(z, y) = O gives 10 + 16y - 4 =0 &
54 8y —2y° = 0.

-2y

From the first graph, we see that this is true when y /= —1.542, —0.717, or 2.260. (Alternatively, we could have
found the solutions to f, = f, = 0 using a CAS.) So to three decimal places, the critical poinis are

(3.085, —1.542), (1.434, —0.717), and {—4.519, 2.260). Now in order to use the Second Derivatives Test, we
caleulate fop = —4, foy = —8, fyy — —12¢°, and D = 48y* — 64. So since D(3.085, —1.542) > 0.

D{1.434, -0.717) < 0, and D(—4.519,2.260) > 0, and f., is always negative, f{z, y) has local maxima
f(—4.519,2.260) =~ 49.373 and f(3.085, —1.542) = 9.948, and a saddle point at approximately (1.434, —0.717).
The highest point on the graph is approximatety (—4.519, 2.260, 49.373).

(o) =2y gle,y) =2 +yP =1 = Vf={(2zy,z") = AVg = (2Az,2y). Then 2xy = 2Az and
¥ =2 yimply A = 2?/(2y) and A = yif z # O and y # 0. Hence z* = 2y*. Then z® + y* = 1 implies
Wy =1soy = :I:ﬁ and & = :i:\/g. [Note if z = 0 then * = 2)y implies y = 0 and f (0,0) = 0.] Thus the

possible points are (j: \/g, iﬁ) and the absolute maxima are f (:t \/g, —%) = %‘ while the absolute minima

are f(:!: %,—%) = —%.
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60. flz,y) =1/z+1/y. glz,y) =12+ 1/ =1 = Vf={(-z7% -y ?)=aVg=(-2xz% -2x7%).

Then —z > = 2z orz =2 and —y % = -2y 2 ory =22 Thusz = g, s0 1/ + 1/y° =2/2% =1
implies = = £+/2 and the possible points are (:l:\/ﬁ, +/2 ). The absolute maximum of f subject to
z 2 +y ?=Llisthen f(v2,v2) = V2 and the absolute minimum is f(—v/2, —/2) = —v2.
Cflay,2) = yz g(z,y,2) =2 + P + 22 =3. Vf = AVg = (yz, zz,0y) = M2x,2y,22). any of z, v,
b _xz _ Ty

2r 2y 2z
2

2%z = 22?2z = y* =%, and similarly 2yz2 =2%y = 2% = 2% Substituting into the constraint equation

or z is zero, then & = y = z = ( which contradicts z? + ’yz +22=23. Then A ==

givesz? + 2 + 22 =3 = 2% =1 =1y" = 2% Thus the possible points are

(1,1, £1), (1,-1,41), (=1,1,+1), (=1, =1, +1). The absolute maximum is

FLL1) = f{l,-1,-1) = f(—1,1,—1) = f(—1,-1,1} = 1 and the absolute minirmum is
Ff(1,1,-1)=f(1,-1,1) = f(-1,1,1) = f(-1,-1,-1) = —1.

 flzy ) =2t + 290 + 328 glzy,2) —z+y+z=Lhlnyz)=c—y+2:=2 =
Vi=2c4y,62) =AVg+uVh=A+p,A—p A+ 2piand (1) 20 = X+ 4, (2) 4y = A — p,

3V 6z=A4+2pu. ) z+y+2=1(5 = —y+ 2z = 2. Then six times (1) plus three times (2) plus two times
(3) implies 12(z + y + 2z) = 11X + T, 50 (4) gives 11X 4+ 7p = 12, Also six times (1) minus three times (2) plus
four times (3) implies 12(x — y+ 22) = TA + 17,u, so (5) gives TA 4+ 17u = 24. Solving 11A + Ty = 12,

T+ 17,u = 24 simultaneously gives A = 23, U=

z = 13 giving on]y one point. Then f(ﬁ, —%, 13) = 2. Now since (0,0, 1) satisfies both constraints and

18 6 11y _
f((), (J, 1)=3> 2 f($, —5.3%) = 2 is an absolute minimum, and there is no absolute maximum,

52 Substituting into (1), (2) and (3) implies z = Boy=-£,

Sy ) =+t 2 gy ) =it =2 =
Vf = {(2z,2y,2z) = AVg = (\y*2°, 2hxyz®, 3Azy’2?). Since zy®2® = 2,2 £ 0,y #0and 2 # 0, s0

_ 2.3 v L3 P 2 - 1 . 2 2 2.2
(1) 2o = Ay"z°.(2) 1 = Axz”,(3) 2 = 3Azy 2. Then (2) and (3) imply P {Tifnwgf_z ory” = 327 50

. . 2 2
Yy =z \/g Similarly (1) and (3) imply y223 = _';:E—y?z" or3z? = 2250z = i%z. But $y223 =2sozand 2z

must have the same sign, that is, z = %z. Thus g(x,y, z) = 2 implies % 2(22%)2° = 20r 2 = £3'/* and the
possible points are (£371/% 871/4/2 +31/4) (3774 _3-1/4,/3 +31/%) However at each of these points
f takes on the same value, 2 /3. But (2,1, 1) also satisfies g(x, v, z) = 2 and £(2,1,1) =6 > 2/3. Thus f has

an absolute minimum value of 2 v/3 and no absolute maximum subject to the constraint zy°2* = 2.
. : o 2 N 2
Alternate solution: g{x,y, z) = zy*2® = 2 implies 4% = —» so minimize f(x,z) = % 4 — + 2%, Then
Tz xrz

2 6 4 24 6 L
f$:2:l,‘*‘;5;§,fz:—;"zq +22,fm:2+;3';§,fzz:—+2andfzz:W.Nowfx:(]lmplles

1

22327 — 2 = Qor z = 1 /2. Substituting into f, = 0 implies —6z”° + 2z ' =0orz = 5 0 the two critical

N 2

points are (i%ﬂ,ﬂ/ﬁ). Then D(i%ﬁ,i%) — 22+ - (765) > 0 and

. .. . 2 .
j (i*f\/_g, + {75) = 6 > 0, so each point is a minimum. Finally, 4* = 3> 80 the four points closcst to the
€I

origin are (:I: \/_) ( L :l:\/_)

. V = zyz, say z is the length and z + 2y + 22 < 108, x > 0, y > 0, 2z > 0. First maximize V subject to
x + 2y + 2z = 108 with z, y, 2 all positive. Then {yz, zz, 2y} = (X, 2), 27} implies 2yz = xz orx = 2y
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and zz = xy or z — y. Thus g(x,y, z) = 108 implies 6y = 108 or y = 18 = 2, & == 36, so the volume is

V == 11,664 cubic units. Since (104, 1, 1) also satisfies g(z, ¥, z) = 108 and V/(104, 1, 1) = 104 cubic units,
(36,18, 18) gives an absolute maximum of V subject to g{xx, y, z) = 108, Butif x 4+ 2y + 2z < 108, there
exists & > 0 such that @ + 2y + 2z = 108 — o and as above 6y = 108 — o implies y = (108 — ) /6 = z,
= (108 — a)/3 with V = (108 — a}¥/ (6% - 3) < (108)%/(6* - 3) = 11,664. Hence we have shown that the
maximum of V subject to g(z, y, z) < 108 is the maximum of V subject to g(x, ¥, z) = 108 (an intuitively
obvious fact).

The area of the triangle s %ca sin & and the area of the rectangle is be.

Thus, the area of the whole object is f(a, b, ¢} = %ca sinf + be. The

perimeter of the object is g(a, b, ¢) = 2a + 2b + ¢ = P. To simplify

sin  in terms of a, b, and ¢ notice that 2 sin® # -+ (%c)2 = =
c sinf = \/4u —¢2. Thus f(a,b,c) = \/_EL2 —c? + be.

(Instead of using 6, we could just have used the Pythagorean Theorem.) As a result, by Lagrange’s method, we must

find a, b, ¢, and ) by solving Vf = AVg which gives the following equations: (1) ca{4a® — ¢*)71/2 = 2),
(2) e =2X (3} 1{4a® — )2~ Le*(4a® —®) P + b= X and (4) 2a + 2b+ ¢ = P. From (2), A = ;e and
so (1) produces ca{da® —c2)™ "2 =¢ = @’ - =a = 4’ -F=d® = (5)c=+3a

c? c X ﬁa

Similarly, since (40,2 - (:2)1/2 =gand A = %c, (3) gives e + &= —, s0 from (5) - — — +b=

4  4da 2’ ' 4 2
a V3a @ oL ]
- - =—b = (B)b= 3 (14 v/3). Substituting (5) and (6) into (4) we get;

2 2
. o P 2\/‘3
2a+a(1+\/§)+\/5a:P = 3a+2vV3a=P = a= Pdndthus

3+2v3 3
(2‘/'3*3)(1“/5);)*3*&
6 6

b=

Pande= (2 +3)P.

8. (0 r(t) = 2(0)i 4 y(Di 1 fEyt)k = v=a Gy By (fx L5, )

(by the Chain Rule). Therefore

K“%m“"ﬁ-"?K‘éﬂ*(iiﬁ (541 2)]
glosn($) -oea($) (%) o))

dv  d’r A2y dx dr dy dy 2 d* d?y
b - = T wa 2oy —— vl =7 @
0ra=Tr =i+ it |f ( ) 2fydtdt+fyy(dt) e g |k

{c) If 2 = x* + 4, where & = tcost and y = tsint, then z = f(zx,y) = t*.
r=tcosti+tsintj+ 2k = v:(cosi—tsint)i—i—(%inf#—tcosf)j—}—i!tk,

K= r;[(cost —¢sint)? + (sint +teost)? + (2t)%] = 1+t2 + 4%y = L(l + 5¢2), and

a=(-2smt—tcost)i+ (2cost —tsint)j+ 2k Notlce that it is easier not to use the formulas
in (a) and {(b).
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1. The areas of the smaller rectangles are 4, = zy, As = (L - x)y,
As= (L — o)W —y), Ay =x{W —y}. For 0 <z < L,
0<y<W,let

flz, ) :A%+A3+A§+A3
=2’y + (L =2’y + (L -2 (W —y)* + *(W — y)?
= [&® + (L - 2)*|ly® + (W - p)*]

Then we need to find the maximum and minimum values of f(z,y). Here

folzy) =2z -20L - )| + (W -9)*]=0 = 4x—2L=0o0rz= 4L, and

Flmy) =[2*+ (L —2)?|2y —2(W —g)] = 0 = 4y —2W =0ory = W/2. Also

frz = 402 + (W - )2, fyy = 42 + (I — 2)?], and fop = (42 — 2L)(4y — 2W). Then

D =16 + (W - y)*|[a® + (L — 2)%] — (42 — 2L)*(4y — 2W)*. Thus whenz = JLand y = 1 W,

D> 0and fop = 2W?2 > 0. Thus a minimum of f occurs at (EI,L, %W) and this minimum value is

f(%L, %W) = iLzVVz. There are no other critical points, so the maximum must occur on the boundary. Now
along the width of the rectangle let g(y) = f(0,9) = f(L,y) = L*[y* + (W —4)?],0 <y < W. Then

gy =LRy—2W—-y))=0 & y=3W. Andg($)} = 1L*W?>. Checking the endpoints, we get

g{0) = g(W) = L*W?, Along the length of the rectangle let h(z) = f(x,0) = f(z, W) = W2[z? + (L — 2)%,
0 <z < L. Bysymmetry K'(z) =0 < = 4Land h{3L) = 1L*W?. At the endpoints we have

R{0) = h(L) = L*W?. Therefore L*W? is the maximum value of f. This maxirum value of f occurs when the

“cutting” lines correspond to sides of the rectangle.

2. (a) The level curves of the function C'(z, y) = o= (@ +2y%) /104

22 42y} /104 . i
are the curves e~ % t27)/20% — (K is 4 positive constant),

This equation is equivalent to z° + 2y°* = K =

3:2
=1, where K = —10*Ink,

a family of ellipses. We sketch level curves for K = 1, 2,
3, and 4. If the shark always swims in the direction of

maximum increase of blood concentration, its direction

at any point would coincide with the gradient vector. Then we know the shark’s path is perpendicular to the level

curves it intersects. We sketch one example of such a path.
459
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(b VC = —%;e'(xzﬂyz)/w‘l {zi+ 2yj}). And VC points in the direction of most rapid increase in

concentration; that is, V(' is tangent to the most rapid increase curve. If #(¢) = &(t)i +y(t)jisa

- o d de, dy,. dr
parametrization of the most rapid increase curve, then d—: = d_:: + d_?: j is tangent to the curve, so pri AVC

2

L~ +20%)/10% | 9.y Therefore

dx = X _i e-(12+2y2)/104]m and @ — )\[_ o1

dt 104 dt
dy _ dy/dt y dy _
dCL'_dl'/dt_sz‘ = y

y(zo)=yo = yo=kri = k=wyo/x} (z0o=0 = yo=0 = thesharkis already at the

y 2 dz = In|y| = 2In|z| so that y = kx* for some constant k. But
T

origin, s0 we can assume xg # 0.) Therefore the path the shark will follow is along the parabola

y = yolz/0)”.

3. (a) The area of a trapezoid is 3 h(by + b2), where h is the height (the distance between the two parallel sides) and
b1, by are the lengths of the bases (the parallel sides). From the figure in the text, we see that k = xsin#,
by = w — 2z, and bs = w — 2x + 2z cos §. Therefore the cross-sectional area of the rain gutter is

A(z,0) = 2rsin@ [(w - 2x) + (w ~ 2z + 2z cosF)] = (zsind)(w — 2z + z cosb)
—wrsin® — 22° sinf + z° sinfcosd, 0 < x < %w, 0<8< ’2—r
We look for the critical points of A: 3A4/0x = wsinf — 4z sind + 2z sin 6 cos 6 and

BA/80 = wrcosf — 2x% cos B + 22 (cos® @ —sin® 0),500A/0z =0 & sin@(w—4dr+ 2zcosf) =0

o cosf— W _,_ = 0<0<3 = sing>0)If inaddition, #4/00 = 0, then

2r

0=wzcost — 2r’cosh | :c2(2 cos’ 9 — 1)

—uwe(2- 2) 2 (2 E) 4o [2(2_ uyt 1]

4 2
:21{)3:*%102-4.’,L'2+w;c+;p2[8__£).+;_)2_
x €T

- 1} = —wz + 3x° = z(3z — w)

Since x > 0, we must bave z = %w, in which case cos & = % sof = 3,sinf = -‘é, k= Jéw, b = %u,
b = fw and 4 = ll’gwg. As in Example 15.7.6 { ET 14.7.6], we can argue from the physical nature of this
problem that we have found a local maximum of A. Now checking the boundary of A, let

g(6) = A(w/2,6) = Jw’sinf — w?sind + Lw’sinfcosd = %wz sin26,0 < 8 < 7. Clearly g is

maximized when sin 26 = 1 in which case A = %wr". Also along the line 8 = g let

hiz) =Alz,2)=wz—22°, 0<z<iw = W@ =w-42=0 & z=1lwad

2 . . .
h(%w) = w(:}w) — 2(%10) = %wz. Since éwz < -\g wz, we conclude that the local maximum found earlier
was an absolute maximum.

(b) If the metal were bent into a semi-circolar gutter of radius r, we would have w = «r and

= —, Since — > , it would be better to bend the metal into a gutter with a

A= L2 m‘)z w? w? 3w
2 27 2 12

semicircular cross-section.
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4. Since (x 4+ y + 2)7/(x® + y* + 2°) is a rational function with domain {(x, y, 2) | (&, y. 2) # (0,0,0)},

£ is continuous on R? if and only if lim flz,y, 2} = f(0,0,0) = 0. Recall that
(z,3.2)—(0.0,0)

{(a+b)? < 2a* + 20 and a double application of this inequality to (z +y + z)?

gives (2 +y + 2) < 4x® + 497 + 227 < 4(2? + y* + 2%). Now foreach r,

‘(£+y+z)'r| — (‘w+y+z‘2)ﬂ(2 — [(m+y+z)2}7‘/2 S [4($2+y2+z2)]1‘/2 — 21v($2+y2 +22)7‘/2
for {x,y, 2) # (0,0,0). Thus

(z+y+2) | _ He+ty+2)] @+ +257% 0 9 et
|f($ayaz)—0‘: $2+y2+22 _$2+T}2+ZQ 52 $2+y2+22 '_2(33 +y +Z)

for (z,y,2) £ (0,0,0). Thus if (r/2) — 1 > 0, thatis » > 2, then 27(x? + 32 1 2%)"/P =1 - 0 as

(,y,2) — {0,0,0) and so ( l)im( ) (x4 y+2) /(z® +y* + z%) = 0. Hence for r > 2, f is continuous
r,4,2)—(0,0,0

on B, Now if 7 < 2, then as (z,, 2z} — {0,0,0) along the x-axis, f(z,0,0} = 2"/z% =" % forz # 0. So
whenr = 2, f(x,y,2) — 1 #0as (z,y,2) — (0,0,0) along the z-axis and when r < 2 the limit of f{x,y, 2} as
{x,y,z) — (0,0,0) along the z-axis doesn’t exist and thus can’t be zero. Hence for v < 2 f isn’t continuous at
(0,0, 0) and thus is not continuous on R,

. Let g(z,y) = :Cf(-g-) Then gz (z,y) = f(%) ""’Efr(g)(_%) - f(g) -5 f’(%) and

€T xr i x

1
gplz,y) = x=f’ (%) (1) = f (%) Thus the tangent plane at (o, yo, za ) on the surface has equation

et () = [(2) ~wr s (2] a1 £ (2 ) w)

[f(ﬂ) - yomalf’(z—n)] T+ [f'(@)]y — z = (. But any plane whose equation is of the form
0

ey} o

ax + by + cz = 0 passes through the origin. Thus the origin is the common point of intersection.

6. (a} At {x1, 31, 0) the equations of the tangent planes to z = f(x,y) and z = g(z,y) are

Proz— f(r, ) = folon, e — o) + fylz,m) ly — )
and Prz —glany) = ge(@n, (@ — o) + gy(@, 1) (y — 1)
respectively. P intersects the zy-plane in the line given by
felziy)(e —z) + (e y — 1) = —flz1, 1), 2 = 0; and P; intersects the xy-plane in the line

given by gz (z1, y1)(z — 1) + gy(z1, 11 )y — y1) = —g{x1, 1), z = 0. The point {x2, y2, 0} is the point of
intersection of these two lines, since (2, 2, 0) is the point where the line of intersection of the two tangent

planes intersects the zy-plane. Thus (x2, y2) is the solution of the simultaneous equations

felzy, y) e — 20} + fulm, n)(ye — 1) = — flz,n)
and gz{z1 ) (e — 21} + gy{zr, My — 1) = —glw1, v1)

For simplicity, rewrite f.{(z1,41) as f» and similarly for f, gz, gy, f and g and solve the equations
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(fa)(@z — @) + (fy)(y2 —yn) = —f and (gz) (22 — 21) + (gu)(y2 —11) = —¢
gf:r _ fgz

simultanecusly for (22 — z1) and (y2 — ). Thenye — 4y = ——— or
ga:fy - f:cgy

_ 9fz — fgx _ (fulgfe = fg=) __f
fa:gy'“ngy and (fT)(:E‘Z El)+ gmfy_fwgy /5o

—f = [(fu)lgfs = fg=)/{gfu — fwgy)] _ oy — fuy _ _ foy — fug
fa B Gafy — fogy Hence z2 = 21 fegy — gmfy.

Y2 =y

o — X1 =

(b) Let f(z,y) =" +y¥ — 1000 and g(z, y) = =¥ + y™ — 100, Then we wish to solve the system of equations
d
Flx,y) =0, g(z,y) = 0. Recall . [2"] = £"(1 4+ In z} (differentiate logarithmically), so

Felz,y) = 2%(1 + Inxz), fylz,y) = y¥{1 + Iny), g=(z,y) = y2¥~ ! + 4" Iny, and
gy(z,y) = ¥ Inz + zy" . Looking at the graph, we estimate the first point of intersection of the curves, and
thus the solution to the system, to be approximately (2.5, 4.5). Then following the method of part (a), z1 = 2.5,

y1 = 4.5 and

£(2.5,4.5) g,(2.5,4.5) - f,(2.5,4.5) g(2.5,4.5)

~ 244767411
F=(2.5,4.5) g,(2.5,4.5) — £,(2.5,4.5) g-(2.5,4.5) 7BTAT

I — 25—

£2(2.5,4.5) g(2.5,4.5) — f{2.5,4.5) g=(2.5,4.5)

~ 4.555657467
Fe(25,4.5)9,(2.5,45) — £,(2.5,4.5) go (2.5, 4.5) ?

2 =4.5 —

Continuing this procedure, we arrive at the following values. (If you use a CAS, you may need to increase its

computational precision.)

T = 2.5 = 4.5

xg = 2447674117 | yo = 4.555657467
T3 = 2.449614877 | y3 = 4.551969333
x4 = 2.449624628 | y4 = 4.551951420
s = 2.449624628 | ys = 4.551951420

Thus, to six decimal places, the point of intersection 1s (2.449625, 4.561951). The second point of intersection

can be found similarly, or, by symmetry it is approximately (4.551951, 2.449625).

ou_onon oudy  owde _ou_ ou
Br Oxdr  OByor  0zor oz v gy trvan

1 (a)y xr =rcosf, y =rsinf, z = z. Then

Pu By  Fu Bz] +sing [62u dy  Pu dz  u 02

3y0z Or | D20z Or o2 or By or | Dz0y or

cos@sind

Oy 0x

(?j = —@rsin9+ ,a—urcosﬂand
dr My
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*u a%, > u Py, ou du
— = + == i - — f— — 4.5
50 a2 sin% @ 97 r?cos?d — 2 By oz r*sinf cos @ B T COoS 3y 7 sin 0

GPu 10w 10 du
or2  ror  r2oet 022
2 2 Bucosf Husinb

Fu 9%u *u
= — 29+ 2 fsinf + — fdind
952 cos? @ + — 57 sin“ # + B 0z cos@sinf + v + B T

2 2 Oucosf  OQusing 5y

0“u 9%y & u
+ﬁsm 9+8y cos? 8 — 2(9 6xsm9c059_:9—; . B_yT-l—@

B 9u n P n &
T fz2 gy?  0z°

(b} z = psingrcosf, y = psingsiné, z = pcoso. Then

Ou Oudr Oudy Oudz Ou . du . S
8p Ba: ap Jy 9p Bz Bp Bz sin ¢pcos @ + _By sin@sing + B2 cos ¢, an

u
ap )

Pudzr Fu By Fu %}

= [ -
= sin ¢ cos [d 2 5p  Byozdp | 8207 0p

+ sin¢gsiné @@—# & 8_:r:+ Pu 9z
A2 0p Oxdydp Oz8ydp

#udz  u oz Fu Oy

+cosé [5?570 + 6:1:825;3- + Oy Oz E%}

2 2 2
:23(3(;; sinqusinﬂcosﬂ—}—Zaa;; 8111¢cosd)c059+28 5%
2 2

O“u Fu 0%u
+6—sm qbcos 9+6 qun qbsm f# %5?00% o

sin ¢ cos ¢ sin 8

. v Ou Ou . du
Similarly 3% " Oz peosocost + B_y peos¢sind — o psin @, and

2

J°u
5 02 0 quﬁCO&,qﬁco&,B

2 2

ou
522

02 02
9 ) dd o’ cos® psinfcosf — 2 ——

(3 ¢ C y
COS qb COS 9 + COE ¢ c311’1 B
p ) 2 p

a2
+ g—p sin” ¢ — g—p%mthoqﬂ— %psmqﬁsw g g—pcosq&

du du . du . .
And %= B2 psingsind + 3y psin ¢ cos @, while

&*u du

W:WZ By O p251n qbcos@am@—i—a 2,0 sin® ¢sin” ¢
2
—1;p28in2q500529~@psinq&cosﬁ‘— g%psinqbsinﬂ

t oy Bz
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Therefore

FPu 2 0u cot ¢ du 1 9%u 1 &u

o2 T pop T 06 FogE | Fene ot

2
= % [{sin? ¢ cos® §) + (cos” ¢ cos® B) + sin® 0]

2 2

O u [(sin® ¢sin® §) + (cos® gsin® B} + cos® ] + M [cos® ¢ + sin® ¢]

N ay® 927

dx psing

Au [2sin? ¢ cosf + cos® dcosf — sin® peosd — COSB]

Ju |2 sin? ¢sinf + cos” ¢sinf — sin” psin@ — siné
Ay psing

But 2sin? gcosf + cos® peosh — sin® ¢ cos@ — cosd = (sin® ¢ + cos® ¢ — 1) cos & = 0 and similarly the
coeflicient of du/dy is 0. Also sin® ¢ cos® @ + cos® ¢ cos® @ + sin” 0 = cos® @ (sin® ¢ + cos® ¢) +sin’ 6 =1,

and similarly the coefficient of 6211,/('91;2 is 1. So Laplace’s Equation in spherical coordinates is as stated.

8. The tangent plane to the surface xy° 2% = 1, at the point (o, yo, Z} is
yazg (e — o) + 2woyozi(y — yo) + 2zoydzo(z —20) =0 =
(yﬁzg)w + (Qwoyozg)y + (2;1:03;%20)2 = 5xoyizs = 5. Using the formula derived in
Example 13.5.8 [ ET 12.5.8], we find that the distance from ((}, 0, 0) to this tangent plane is

= 22
‘OSCU?JOZ{) i

VE3)2 + (2z0y022)® + (2z0y3z0)?

D{zo.ya, 20) =

When D is a maximum, D? is 2 maximum and V.D® = 0. Dropping the subscripts, let

. 25(zyz)? . . 5
flz,y,z) =D = AT :ifgz )+ g Now use the fact that for points on the surface zy*z* = 1 we have

25z B 252%y°
1 4 oy b da? 4 4adyd

= 4 = 4 dxiy?
r oy

. 1 )
= —.twget f(z,y) = D* =
S e flz,y)

NowVD* =0 = f,=0

S0zy? (y? + 4a® + 42®y?) — (8w + 122%¢*)(252%4?)

and fy = 0. fr =0 (47 £ 422 & 422

=0 =

oyt (y + 40 42yt — e+ 627yt =0 = myt -2 =0 = w1l - 2% =0 =
1 = 2y%«? (since = = 0, y = 0 both give a minimum distance of 0). Also fu=0 =

5Ox?y(y? + 4a® + 42%yh) ~ (2y + 162°y°)262%y*
(y2 + 4:‘[,.2 + 4:1;39.4)2

=0 = dz'y—4z%°" =0 = w4y(1—$y4)=0

= 1 =ay". Now substituting z = 1/y into 1 = 2y°2% weget 1 = 2y~ 10 = y=242Y10 =

=25 : 1 1  ol/s _ Lnl/ib
r=2 — —?ﬁwm—z = z=£27"
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Therefore the tangent planes that are farthest from the origin are at the four points (27275, £2%/10, £9/10) These
points all give a maximum since the minimum distance occurs when zg = 0 or y = 0 in which case D = 0. The
equations are (2/°2%/5)z 1+ {(2)(272/°) (2119 (21%)]y = [(2)(27%/5) (2%} (211 )2 =5 =

(2¥/5)z + (29/10)y + (2912 = 5.

. Since we are minimizing the area of the ellipse, and the circle lies above
the x-axis, the ellipse will intersect the circle for only one value of y. This

y-value must satisfy both the equation of the circle and the equation of the

2 2 2
ellipse. Now % + % =1 = z*= g—g (4% — ). Substituting into
45

2

the equation of the circle gives 2—2 (b2 - y2) +yP -2y =0 =

b2 a2

(_—b_zi) y* — 2y + a® = 0. In order for there to be only one solution to this quadratic equation, the discriminant
2_ 2

must be 0, so 4 — 4a” TR 0 = b —-a’* +a* = 0. The area of the ellipse is A(a, b) = wab, and we

minimize this function subject to the constraint g{a,b) = b* — a®b* +a* = 0.

wh

Now VA = AVyg <« wb= A(da® — 2ab?), ma = A\(2b— 2ba®) = (1) A ~5al2z — )"

e 7y (3) b2 — a®b* + a* = 0. Comparing (1) and (2) gives mb =" -

2 A= 0
@ 26{1 — a 2a(2a? — b%) 201 - a?)

b? = dret & o = % b. Substitute this into (3) to get b = % = a=,/3.
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