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17 [0 VECTOR CALCULUS

17.1 Vector Fields

LRz, y)=3(+])
All vectors in this field are identical, with length % and

direction parallel to the line y = x.

2 F(z,y)=i+z]
The length of the vector i + & j is +/1 + 2. Vectors are

tangent to parabolas opening about the y-axis.

3 F(x,y) :yi—{—%j.

The length of the vector yi+ 3 jis /32 + 1. Vectors

are tangent to parabolas opening about the x-axis,

4 F(a,y) = (- )i+ 2]
The length of the vector (z — y)i+ zjis

V(& — ¥)? + z2. Vectors along the line y = z are

vertical.
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yi+zxj
/m2 +y2

The length of the vector

5- F(.’E, ’y) =

yi+zj

Ve

is 1.

NS

1 F(x,y,2)=]
All vectors in this field are parallel to the y-axis and

have length 1.

9‘ F(:L’, Y, z) = yj
The length of F(z, y, z) is |yl. No vectors emanate
from the zz-plane since y = ( there. In each plane

y = b, all the vectors are identical.

yi—zj
/I2+y2

All the vectors F(z, y) are unit vectors tangent to

circles centered at the origin with radius /22 + y2.

6 F(z,y) =

¥

”
N

8 F(z,y,2)=2]
At each point (z,y, z), F(z,y, z) is a vector of
length |z|. For z > {, all point in the direction of the
positive y-axis while for z < 0, all are in the

direction of the negative y-axis.

10. F(z,y,z)=j—1i
All vectors in this field have length /2 and point in
the same direction, parallel to the xry-plane.

o4

11. F(z,y) = {y, x} corresponds to graph IL. In the first quadrant all the vectors have positive - and y-components, in

the second quadrant all vectors have positive z-components and negative y-components, in the third quadrant ail

vectors have negative z- and y-components, and in the fourth quadrant all vectors have negative z-components and

positive y-components. In addition, the vectors get shorter as we approach the origin.
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. F(z,y) = (1,siny} corresponds to graph 1V since the x-component of each vector is constant, the vectors are
independent of x (vectors along horizontal lines are identical), and the vector field appears to repeat the same pattern

vertically.

. F(z,y) = {x — 2,z + 1) corresponds to graph I since the vectors are independent of y (vectors along vertical lines

are identical) and, as we move to the right, both the z- and the y-components get larger.

. F(x,y) = {y, 1/x) corresponds to graph Il As in Exercise 11, all the vectors in the first quadrant have positive z-
and y-components, in the second quadrant all vectors have positive z-components and negative y-components, in
the third quadrant all vectors have negative - and y-components, and in the fourth quadrant all vectors have

negative r-components and positive y-components. Also, the vectors become longer as we approach the y-axis.
. F(z,y,2) =i+ 2j + 3k comresponds to graph IV, since all vectors have identical length and direction,

. F(z,y,2z) =i+ 2j+ z k corresponds to graph I, since the horizontal vector components remain constant, but the
vectors above the zy-plane point generally upward while the vectors below the xy-plane point generally
downward.

. F(x,y,z) = xi+ yj+ 3k corresponds to graph III; the projection of each vector onto the zy-plane is 21 + y J,
which points away from the origin, and the vectors point generally upward because their z-components are all 3.

. F(z,y,2) = x1+ 9] + 2z k corresponds to graph II; each vector F(zx, y, z) has the same length and direction as the

position vector of the point (x, y, z), and therefore the vectors all point directly away from the origin.

4.5

The vector field seems to have very short vectors near the line y = 2x.

For F(z,y) = (0,0) we must have ¢ — 2xy = 0 and 3zy — 6z° = 0.

The first equation holds if y = 0 or y = 2z, and the second holds if
x = 0 or y = 2z. So both equations hold [and thus F{z,y) = 0] along

F

A

\

\

|

|
“
[

)

i

the line y = 2z.

U D
et R

From the graph, it appears that all of the vectors in the field lie on lines

through the origin, and that the vectors have very small magnitudes near
the circle [x| == 2 and near the origin. Note that F(x) = 0 &

rir—2)=0 & r=0or2,soas we suspected, F(x) = 0 for

|x| = 2 and for |x| = 0. Note that where »* — r < 0, the vectors point

towards the origin, and where 2 — r > 0, they point away from the

origin.

1 " 2
x + 2y T+ 2y
2 Vf(z,y)= folo, )i+ fylz,y)j= [:c“(-—,@e“ﬁx) + aw““le“am] i+0j=(a—Br)z> e Pi

B V@, 2) = ol y,2) i+ fol@,9,2) i + falzyy, 2) K
i R 2

T
= i+ I+ k
\/;1:2 +y2+22 \/x2+y2+z2 /$2+y2 4 22

. Vi(x,y) = felz.y)i+ fy (z,0)] =

j
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24 Vf(m,y,z) - fﬂﬂ(mr'y:z)i_*_ f’y(m’yaz)j + fz(a:,y,z)k

= (e )1 a(sn ) (1) i-alm?) (-5

_ YN Zlan ¥y 5 ﬂ(
7((:082)1 z(smz)‘]+22

5, fle,y)=zy—2z =
Viz,y)=(y—2)i+=j
The length of V f(x,y) is mand
V f(z,y) terminates on the line y = = + 2 at the
point (z +y — 2,2+ y).

21. We graph V f along with a contour map of f.
6
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The graph shows that the gradient vectors are
perpendicular to the level curves. Also, the gradient
vectors point in the direction in which f is increasing
and are longer where the level curves are closer

together.

Viz,y) = 5@ +y)i+ 3@+
The length of V f(z,y) is

y 3(x +9)? = J5 |z + yl. The vectors are

perpendicular to the line y = —z and point away
from the line, with length that increases as the

distance from the line y = —x increases.

4

/'/2

2. /;‘///
A

-4 )

././

28. We graph V f along with a contour map of f.

The graph shows that the gradient vectors are
perpendicular to the level curves. Also, the gradient
vectors point in the direction in which f is increasing
and are longer where the level curves are cioser

together.
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. flz,y) =2y = Vf(z,y) =yi+ ] Inthe first quadrant, both components of each vector are positive, while
in the third quadrant both components are negative. However, in the second quadrant each vector’s z-component is

positive while its y-component is negative (and vice versa in the fourth quadrant). Thus, V f is graph TV.

. flz,y) =2 —y* = Vf(r,y) = 2xi— 2yj. In the first quadrant, the z-component of each vector is positive
while the y-component is negative. The other three quadrants are similar, where the z-component of each vector has
the same sign as the z-value of its initial point, and the y-component has sign opposite that of the y-value of the
initial point. Thus, V f is graph TIT,

Sy =2 +y* = Vf{z,y) =2zi+ 2yj. Thus, each vecior V f(x, y) has the same direction and twice
the length of the position vector of the point (,y), so the vectors all point directly away from the origin and their

lengths increase as we move away from the origin. Hence, V f is graph II.

ey =Rty = Vi) =

* i_;.#
VR4t 2t g2

1 . .
IV f{z,y)| = ﬁ V&2 +y? = 1, so all vectors are unit vectors. In addition, each vector V f(zx,y) has the
T Y

j. Then

same direction as the position vector of the point (z, y), so the vectors all point directly away from the origin.
Hence, V f is graph 1.

. (a) We sketch the vector field F(x, y) = i — yj along with
several approximate flow lines.The flow lines appear to be
hyperbolas with shape similar to the graph of y = +1/z,
so we might guess that the flow lines have equations
y=0C/z.

(b) If z = z(t) and y = y(¢) are parametric equations of a flow line, then the velocity vector of the flow linc at the
point (z,y) is z'(t) i + ' (¢) j. Since the velocity vectors coincide with the vectors in the vector field, we have
)i+ ()j=zxi-yj = dz/dt=az, dy/dt = —y. To solve these differential equations, we know
defdt=x = dz/r=dt = Inlz|=t+C = z=+e'T% = Ae! for some constant 4, and
dyfdt=—y = dy/ly=—-dt = Inlyl= t+K = y==xe ¥ = Be * for some constant B.
Therefore oy = Ae*Be™" = AB = constant. If the flow line passes through (1, 1) then
()(1)=constant =1 = oy=1 = y=1/z,z>0.

34, (a) We sketch the vector field F(x,y) = i 4 x j along with
several approximate flow lines.The flow lines appear to be
parabolas.

e w Pl o rel

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
568 O CHAPTER17 VECTORCALCULUS ET CHAPTER 16

(b) If z = z(t) and y = y(t) are parametric equations of a flow line, then the velocity vector of the flow line at the
point {x, y) is ='(¢) i + y'(t) . Since the velocity vectors coincide with the vectors in the vector field, we have
dx d_y dy dy/dt =

! i ! i=1 j —_— = ‘Th - ==
rMi+y't)j=it+zj] = 7 v = % Thus = = dojd " 1 T

(c) From part (b), dy/dx = z. Integrating, we have y = %mg + c. Since the particle starts at the origin, we know

{(0,0) is on the curve, so 0 =04+ ¢ = ¢ = 0 and the path the particle follows is y = %mz.

17.2 Line Integrals ET 16.2

=¢?andy =¢,0 <t <2, s0byFormula3

fyds_f \/ dt)zdt=[)2t\/mdt
=f02t\/4£2—+1dt=f§(4t2+1)3/2] L1717 - 1)

2 o Yds= [}, & VABETEOPdt = [}, VIS + 08 dt = [t v/16F + Ot

1
= (1682 +9)°2] = (2577 —13%7%) = (125~ 13V/13)

3. Parametric equations for C are ¢ = 4 cost, y = 4sint, — 3 <t < Z. Then

Jozytds= f’r/22(4 cost)(4sint)* /(- 4smt)2 + (4 cost)dt

= f"iz;z 4° cos t sin* t\/lﬁ (sin®t + cos? t)dt

/2 s . /2
=4° v'J{'/Q (sin* tcost)(4) dt = (4)%[2 sin® 1] s
4. Parametric equations for Carex = 1+ 3¢,y =2+ 56,0 <t < 1. Then

Joyetds = [} (2+5t) e T3 1 52dt = V34 [ (2+ 5t)e! 3 dt
Integrating by parts withu = 2+ 5t = du=>5dt, dv=¢'"" = o= 1e'*3dtgives
foyetds= V34 [3(@2+5t)e L+t geHat]o
4
=VB[(F-)e' - (G- el = 4 (106 - )
5. If we choose z as the parameter, parametric equations for C arexz = z,y = z° for 1 < z < 3 and
fo(ey+Inz)dy= [ (z-2* +nz)2xde = [} 2(z* +2Ine)de
=2(Lz% + Le?ng — 147 N (by integrating by parts in the second term)
5 2 v 1
=2(# 423 -8 -1 4+1) =94 1913

6. Choosing y as the parameter, we have z = e¥, y = 3,0 < y < 1. Then
[ aevdz = [} e¥(e¥)eVdy = [y eV dy = % 3“]0 3(e* - 1).
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C=C1+Cs
OnCrz=z,y=0 = dy=0dr,0<z<2
CnCrz=zy=2r—4 = dy=2dr,2<z<3.

Then

fca:yd:c-f-(x-y)dy:fcl zyde + (z—y)dy + [o, zydz + (z —y)dy

= [Z(0+0)dz + ] [(22® — 42) + (= + 4)(2)] de

mf;(2$2—6x+8)dw=%

C=C+C
OnCi:z=cost = dr= —sintdf,y=sint =
dy=rcost dt,0 <t <.
OnCrzg=~1-t = de=—dt,y=3t =
dy=3dt,0<t <1,

1,0} 0

Josinzdz +cosydy = [, sinzdz + cosydy + Jo, sinzdz + cosydy
= [ sin(cost){— sintdt) + cos(sint) cost dt
+ [y sin(—1 — t)(—dt) + cos(3t)(3 dt)
= [ cos(cost) + sin(sint)] - + [—cos(—1 —t) + sin(3t)];
= —cos(cos7) + sin(sin7) + cos{cos 0) — sin(sin 0)
— cos{—2) + sin(3) + cos(~1} — sin{0)
= —co8(—1) + sin0 + cos(1) — sin0 — cos(—2) + sin 3 + cos(—1)
=—cosl4cosl —cos2+sin3+cosl=cosl—cos2+sind

where we have used the identity cos(--8) = cos8.

3. z =4sint,y =4cost,z =3t,0 <t < Z. Then by Formula 9,

x/2 g g\ 2 dz\ 2
3d =[ dsint)(4cost)’y) [ E 2y &
fc zy ds ; {4sint)(4cost) I + i + = dt

w/2
= f 4% cos® tsint /(4cost)? + (—4sint)2 + (3)2 dt
0

/2
= / 256 cos® ¢ sin ¢ \/lﬁ(cos'-’ t + gin? t) + 9dt
0

=1280 [/ cos® tsint dt = —320cos*]7'% = 320
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10. Parametric equations for C are z = 4,y = 6 — 5, z = —1+46t,0<t<1. Then
forPzds= f; (4t)°(6t — 1)\/42 + (=5) + 6% dt = VTT [ (96> — 166%) dt

\/_[96——16 ]:%‘i\/ﬁ

0

11. Parametric equations for C are ¢ = f,y = 2,z = 31,0 < ¢ < 1. Then

fc re¥® ds = fol te?E) 171792 1 32 dt = \/ﬁfol teﬁtgdt
_\/_[1 e ]Om{%—“(eﬁ—l)

12, /(do/dt)? + (dy/dt)? + (dz/dt)? = /12 + (28) + (3t2)2 = V1 + 412 + 9t*. Then

Jo2z+92)ds = Sl @+ )T+ a2+ 9t0dt [let uw=1+4t" + 0t = Ldu=(2t+9°)dt]
14
= [*dvude= 1] =304 - 1)

13. [, oPyyzdz = [ ()2 (I - 2tdt = [ 267 dt = §¢'°

W [ zde+zdy+yde = f) 2 2tdt + 1232 dt +>-2tdt = [ (2° + 5¢*) dt
= (3 t4+t5] t+1=12

OnCyz=14t = der=dt,y=3t = dy=3dt,z2=1
= de=0dt,0<t <1
2,5.2) OnCrz=2 = de=0dly=3+2t =
dy=2dt,z=1+t = de=dt,0<t<1.

x
Then [, (z +yz)dr + 2zdy +xyzdz
= fcl(x+yz)dz+2;cdy+:f:yzdz+fcz(m+yz)dm+2mdy+a:yzdz

= [y (1+t+36)(1))dt +2(1+t) - 3dt + (1 +)(3t)(1) - 0t
+ fo (2+ (3 +26)(1+1)) - 0de +2(2) - 24t + (2)(3 + 20)(1 + t)dt
= [ (10t + T)dt + [ (42 + 10¢ + 14) dt

= B2+ 7], + [467 + 512+ 14t] =12+ L = &

OnCyz=t = de=dt,y=2t = dy=2dt,z=—-1
= dz=-d,0<t <1,

OnCorz=1+2t = de=2dt,y=2 =
dy=0dt,z=-14+t = de=dt,0<t<1,
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Then [, z’dz+y*dy+ 2% d»
= fe, a:zdx-i-y'Zr;ly+220l2:+fc2 zidr +yPdy + 22 dz

= fo thdt + (207 - 2dt + (=1)*(=dt) + [1(1 + 2% - 2dt + 22 - 0dt + (—1 + )7 dt

= [y 87 dt + [1 (92 + 6t + 3)dt = [5¢%] + [3¢% + 31% + 3¢], = 2

. (a) Along the line £ = -3, the vectors of F have positive y-components, so since the path goes upward, the
integrand F - T is always positive. Therefore 101 F.dr= fCl F - T ds is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is,
opposite the direction to the path. So F - T is negative, and therefore [ o F.dr={ o, F - Tdsis negative,

. Vectors starting on €'} point in roughly the same direction as C1, so the tangential component F' - T is positive.
Then [, F-dr= [ ¢, F - T ds is positive. On the other hand, no vectors starting on Cz point in the same direction

as Cz, while some vectors point in roughly the opposite direction, so we would expect /. s F.dr=| Oy F-Tdsto

be negative,

r(t) =21~ 2], 0 F(r(t)) = () (=#3) i~ (=) VEj= "% i +* jand r'(t) = 2ti — 3£},

Thus [, F-dr = [ F(r(t) - /(8 dt = f) (- 26" = 3t%) dt = [- 2% - 3¢7]) = — 52,

LF(e(0) = () (@) i+ O i+ () k=5i+ 4+ 8k r'(8) =i+ 2tj + 3%k
Thus [ F-dr = [>F(r(t)) - r'(¢)dt = {7 +26° 4 36%) dt = te]i = 64,

 JoFodr = f) {sint® cos (—£2) ,1*) - (3%, 2t, 1) dt

= fol (3t*sint® — 2t cost? + 1) dt = [—cost® — sint? + %t‘%]; =% cosl-sinl

. foF-dr = [ {cost,sint, —t) - {1, cost, —sint) dt = Jy (cost +sint cost —tsint) dt

= [sint + 3 sin®¢ | (sint — tcost)|] ==

. We graph F(2,y) = (# — y) i + 7y j and the curve C. We see that most of the vectors starting on C' point in
roughly the same direction as C, so for these portions of C' the tangential component F - T is positive. Although
some vectors in the third quadrant which start on C point in roughly the opposite direction, and hence give negative
tangential components, it seems reasonable that the effect of these portions of C is outweighed by the positive
tangential components. Thus, we would expect [, F -dr = [ F - T ds to be positive.

To verify, we evaluate f,. F - dr. The curve C can be represented by r(t) = 2costi+ 2sintj, 0 < t < 22,
so F(r(t)) = (2cost — 2sint) i+ dcostsintjand r'(t) = —2sinti + 2costj. Then

~ JoFdr= [ Fxe(t)) r'(1) dt

_ [3w/2

= fo " [~2sint(2cost — 2sint) + 2 cost(4 cost sint)] dt

= 4f037r/2(sin2 t —sintcost + 2sintcos® t) di

=37 +% [usingaCAS]
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T . Y
+
\/m‘z +y21 /2 +y2

In the first quadrant, each vector starting on C points in roughly the

24. We graph Fix,y) = jand the curve C.

S

same direction as (, so the tangential component F - T is positive.

NS N
NN SN R
R

In the second quadrant, each vector starting on C points in roughly

"
RN WU S A

N
N
N
\

the direction opposite to C, so F - T is negative. Here, it appears

N
It

that the tangential components in the first and second quadrants

-03

counteract each other, so it seems reasonable to guess that |, cF - dr= J o F - Tds is zero. To verify, we evaluate
fi. F - dr. The curve C can be represented by r(2) = ti+ (1+ )i, -1 <t <150

t 1+ ¢
\/t2+(1+t2 \/tﬂ (1+¢2)?

/(.‘ F . dr= [_11 F(r(t)) - r'(t)dt
2t(1 +1%)

[ 7=
-1 \/t2 (14 t2)° \/t2+ 1+12)?

L3+ 2%)

1 VP32 41

F(r(t) jand r'(t) =i+ 2¢j. Then

di

dt = 0 [since the integrand is an odd function]

2. () [, Fde= [} {*06) (30 dt = [ (2t +3¢7)at = [0 + %ts]; — U1/

(b) £(0) = 0. F(r(0)) = {e™*,0):

o) = b 3 7)) = ()
r{l} = (1,1), F(r(1)) = {1, 1}.

In order to generate the graph with Maple, we use the PLOT

command (not to be confused with the plot command) to define

each of the vectors. For example,
v1:=PLOT{CURVES{[[0,0], [evalfil/exp(1})),011})

generates the vector from the vector field at the point (0, 0) (but without an arrowhead) and gives it the name
v1. To show everything on the same screen, we use the display command. In Mathematica, we use
ListPlot (with the PlotJoined - > True option) to gencrate the vectors, and then Show to show

everything on the same screen.
26, () [, F-dr= [' (26,6%,3t) (2,3, -2t)dt = [ (4t + 3t —6t%) dt

= |2 -] =2
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(b) Now F(r(1)) = (2¢,1*,3t), so F(r(-1)) = (-2,1,-3), F(r(-3)) (1,3, 2),
and F(r(1)) = (2,1, 3).

i

27. The part of the astroid that lies in the quadrant is parametrized by z = cos®t, y = sin®¢,0 <t < z.

0+

0
¥

; d
Now % = 3cos®t(—sint) and d—:i: = 3sin®tcost, 50

2 2
\/(daz) _'_(f_?i) = v/9cost tsin? t + Osin® tcos2t = Jcostsint /cos? t + sin® ¢ = 3costsint.

dt dt

Therefore [, z%y®ds = fo’rm cos” tsin'® ¢ (3costsint) dt = fraress T

28. We parametrize the line as r(t) = (1,2, 1} +¢((6,4,5) — (1,2,1}) = (1 +5)i+(2+2t)j+ (1 + 40 k,
0 <1t < 1. Using a CAS, we calculate

1
_ 4 242t 2 2 .
fCF-dr—/o <(1+5t) e ,1n(1+4t),\/(2+2t) +(1+48) > (5,2, 4) dt

_ 5235¢*  6285¢2 . 9vBsinh ™! (&) 9vEsinh~? (§) L85 MVIT 445

4 4 25 25 2 5 5 —2

_ 5235¢" _ 6285 18VHbIn3 9v51n(14 4+ v205) L 55 14V41-4VF

4 4 25 25 2 3 2

The first answer is the one given by Maple. The two answers are equivalent by Equation 7.6.3 [ET 3.9.3].

29. A calculator or CAS gives [ zsinyds = ff Intsin (e *) /(1/1)2 + (—e—t)2 dt ~ 0.052.
30. (a) We parametrize the circle C' as r(t) = 2costi + 2sintj, 0 <t < 27, So F(r(t)) = (dcos®t,4costsint),
r'(t) = (—2sint,2cost),and W = [, F - dr = (;%(—Sc:osz tsint -+ 8cos® tsint)dt = 0.

b ] - . From the graph, we see that all of the vectors in the field are

perpendicular to the path. This indicates that the field does no work

on the particle, since the field never pulls the particle in the direction

in which it is going. In other words, at any point along C,F - T = 0,

and so certainly [ F-dr =20,
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31. We use the parametrization z = 2cost, y = 2sint, -5 <t < 3.

2 2
Then ds = \/(i—i) + (-d&%) dt = /(-2sint)? + (2cost)? di = 2dt, s0

L — kg . /2
= [okds =2k " ,/732 dt = 2k(n), T = 3¢ [, akds = 5= fuﬁ2(2cost)2dt = 511;[4Slnt]_/7r/2

7= 52z [oykds = 5= fﬁ2(2sint)2dt = 0. Hence (z,3) = (2,0).

. We use the parametrization £ = rcost, y = rsint, 0 <t < %

2
Then ds = \/(%) + (dt) dt = /(—rsint)? + (rcost)? dt = rdt, so

/2

m= [, a:+y)ds—f0 rcost+rsmt)rdtwr2[smt—cost] =2r,

/2 ¢t sin2t 2t]™*
=$fc:v(:r+y)ds=i/ (r2cos2t+7'2costsint)rdt=E L s
0

272 2127 4 4 |,

— r—(—w;—?),and

7= QL,,.zfcy( ds-— f"/z (rZsintcost + r’sin® t)rdt

12
& "2 1 8

_r __cos?t
)

B sm2t}"/2 _r{r+2)

0

Therefore (%, ) = (T(W; 2) , T(W;— 2))

1
.(a)E:if :zp(:c,y,z)ds,g:l/ yp(m,y,z)dsj:——/ zp{x,y, 2) ds where m = [ p(x,y, 2) ds.
m Jjo m Jjo m Jfo

®ym= [ kds=k [7" /asin?t + dcos?t + 9 dt = k+/13 [™ dt = 2wk V13,

27 2r
k213 sintdt = 0,7 = k213 costdt = 0,

1
onk /13 /0
k \/_ (3t) dt = ( %) = 3. Hence (%,7,Z) = (0,0,3n).

- v
217?;:\/_/

m= [, (@ 4y + ) ds = [T +1) J(DE+ (—smt)? + (cost)2dt = [77(t* +1) V2t
=2 (8% + 2r),

/ \/_t+t)dt—47r4+2”2—3ﬁ(2ﬂ2+1)

ﬁ(—ﬂ'“-{-Z‘rr 813 + 2m Am? +3

3 2
—_—— Vv2ecost)(t? + 1) dt =0, and
22 41r2+3)/0 ( )( )

2
QSmt)(t + 1) dt = 0. Hence (z,¥,%) = (M—),O,O).

2 ﬁw(4w2 +3) ] 4m? +3
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35, From Example 3, p(z,y) = k(1 — y), z = cost,y =sint,andds = dt, 0 <t <n =
L= [oy*p(x,y)ds = [ sin® t k(1 —sint)]dt = k [ (sin® ¢ — sin®t) dt

Let u = cost, du = —sint df

1
1— -
ka( cos 2t) dt ~ kfo (1 cos t)smtdt in the s inteer

=k[5+J -] = k(5 - )

I =f. ’p(z,y)ds =k Iy cos?t (1 - sint)dt = £ Jo (1+cos2t)dt — k [ cos® tsint dt
=k(% — 2}, using the same substitution as above.

36. The wire is given as = 2sint, y = 2cost, z = 3¢, 0 < ¢t < 27 with p(z,y, z) = k. Then

ds = \/(2cost)? + (—2sint)? + 32 = \/4(cos?t + sin?t) + 9 = /I3 and

I = [ (¥* + 2)p(z,y, 2 ds—fo (4cos®t + 9%)(k)v13dt = Vi3 k[4(1t + 4 sin 2t) +3t3]
= V13 k(4 + 247%) = 4 /13 7k(1 + 67°)

I = [o(a® + 2)p(x,y, 2) ds = [§ (4sint + 9¢%) (k)v/13dt = VIBk[4(4t — Lsin2t) +3°]2"
= VI3 k(47 + 247°) = 4 V13 k(1 + 67%)

I. ‘“fc z° +yH)p(z, y,z)ci!smf0 (4sin®t + 4 cos? t){k \/_dt_-dn/-_kf dt = 8713k
3 W =[,F dr= [ "(t—sint,3 —cost) - (1 — cost,sint)dt

= fI™(t ~ tcost — sint +sintcost + 3sint — sint cost) dt

y integrating by parts
in the second term

= [2"(t — tcost + 2sint) dt = [3t° — (tsint + cost) H2cost]§“ [b

= 27?2
Br=zry=2%-1<z<2

W =ffl (wsinm2,$2>-(1,2m)dm le(wsma: +20%) de = [—-—cos:c +3 4]?_1
= (154 cos 1 — cos4)

39, r{t) = (1+26,44,20),0 <t < 1,

W= [ F-dr=[](6t, 1441 +6t)-(2,4,2) dt = [, (12¢ + 4(1 + 4¢) + 2(1 + 6t)) dt
= [, (40t + 6)dt = [20¢* + 6¢], =

40. r{t) =2i+¢j+5tk, 0 <t < 1. Therefore

1 1
= Y 11U - 26¢
W—j(;F dl‘—fo @+ 2602372 (O,l,5)dt—K/0 Wdt

= K[-(4+26*)" 1f2]0
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41. Let F = 185 k. To parametrize the staircase, let
x = 20cost,y = 20sint, z = %t = lft, 0<t<br =
W= [.F-dr= [ (0,0,185) - (—20sint, 20 cost, 12} dt = (185)2 [ dt = (185)(90)
22 1.67 x 10* ft-Ib
. This time m is a function of ¢: m = 185 — ¢ = 185 — 2-¢. Solet F = (185 — - t)k. To parametrize the
staircase, let x = 20cost, y = 20sint, z = %t = l—ft, 0 <t < 6m. Therefore
W= [.F-dr=[ (00,185 — £t) - (~20sint,20cost, 2} dt = 12 7 (185 — Lt) dt
= 151850 — 27|07 = 90(185 — §) ~ 1.62 x 10* fi-Ib
. (a) r(t) = {cost,sini), 0 < ¢ < 2w, and let F = (a, b). Then
W= /[ F-dr= 02" {a,b) - (—sint,cost) dt

2w

=[5 (—asint + bcost) dt = [acost + bsint|

2%
0

=a+0-a+0=0
{b) Yes. ¥ (z,y) = kx = (kz, ky) and
W= [ F.dr=[2" (kcost,ksint) - (—sint,cost)dt
= [*"(~ksintcost + ksintcost)dt = [2" 0dt =0

. Consider the base of the fence in the ry-plane, centered at the
origin, with the height given by z = h (x, y}. The fence can be
graphed using the parametric equations
z = 10cosu, y = 10sinu,
z = v[4+ 0.01((10cos u)? — (10sinu)?)]
v(4 + cos® 1 — sin® u)
=y(d+cosu), 0<u<L2r, 0<v <]
The area of the fence is f, h(z,y) ds where C, the base of the fence, is given by = = 10cost,
y = 10sin{, 0 <t < 2w, Then

Jo bz, y)ds = [77 [4+0.01((10cost)* — (10sint)®)] /(—10sint)? + (10cost)? dt
= [27 (4 + cos 2t) VIOO dt = 10[4t + £ sin2¢]”
=10{8x) = 807 m’

If we paint both sides of the fence, the total surface area to cover is 160w m?, and since 1 L of paint covers 100 m*,

we require 18 = 1.6m ~ 5.03 L of paint.

45. The work done in moving the object is f, F - dr = [, F - T ds. We can approximate this integral by dividing C

into 7 segments of equal length As = 2 and approximating F - T, that is, the tangential component of force, at a
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point (z3,y;") on each segment. Since € is composed of straight line segments, F - T is the scalar projection of
each force vector onto C. If we choose (7, y') to be the point on the segment closest to the origin, then the work
7
doneis [ F-Tds~ Y [F(zl,y!) T}, u5)]As=2+2+2+2+1+1+1](2) = 22. Thus, we
i=1
estimate the work done to be approximately 22 J.
. Use the orientation pictured in the figure. Then since B is tangent to any circle that lies in the plane perpendicular
to the wire, B = |B| T where T is the unit tangent to the circle C: x = rcosf, y = rsin . Thus
B = |B| {—sin#8,cos#). Then
JoB-dr= 02” |B| {—sin®, cos @) - {~rsinf,rcosd} df = 0% |B|rdf = 2xr |B|. (Note that {B] here is the
magnitude of the field at a distance r from the wire’s center.) But by Ampere’s Law | o B -dr = u,I. Hence
IB| = o/ (2mr).

17.3 The Fundamental Theorem for Line Integrals ET 16.3

1. C appears to be a smooth curve, and since V f is continuous, we know f is differentiable. Then Theorem 2 says that
the value of |, o V[ - dr is simply the difference of the values of f at the terminal and initial points of C'. From the
graph, this is 50 — 10 = 40.

. C is represented by the vector function r(t) = (#* + 1) i+ (* +#)j,0 <t < Lsor'(t) = 241 + (3% + 1) .
Since 3t + 1 # 0, we have r'(t) # 0, thus C is a smooth curve. V£ is continuous, and hence f 1s differentiable,
so by Theorem 2 we have [, Vf -dr = f(r(1)) — f(r{0)) = f(2,2) ~ f(1,0) =9 -3 =6.

. 0(bx + 5y) /Oy = 5 = 8(5z + 4y)/Bz and the domain of F is R which is open and simply-connected, so by
Theorem 6 F' is conservative. Thus, there exists a function f such that Vf = F, that is, f,,(x, %) = 6z + 5y and
fy(zyy) = 5z + 4y, But fo(z,y) = 6z + 5y implies f(x, y) = 3 + 5zy + g{y) and differentiating both sides
of this equation with respect to y gives fy(z,y) = 5z + ¢'(y). Thus 5z + 4y = 5z + ¢'(y) s0 ¢' () = 4y and
g{y) = 2y* + K where K is a constant. Hence f (z,y) = 3z + 5zy + 2y° + K is a potential function for F.

. 8(a® + dxy) /Oy = 4z, O(dzy — y°)/8z = 4y. Since these ate not equal, F is not conservative.

. O{zeY) /Oy = ze¥, O(ye™)/Ox = ye”. Since these are not equal, F is not conservative.

. O(e¥) /0y = ¥ = d(xe¥)}/Oz and the domain of F is R?. Hence F is conservative so there exists a function f such
that Vf = F. Then fz(x,y) = e” implies f(z,y) = ze¥ + g(y) and f,(z,y) = ze¥ + ¢'(y). But f,(z,y) = ze¥
sog'(y) =0 = g(y) = K. Then f(z,y) = z¢¥ 4 K is a potential function for F.

. O(2xcosy —ycosx)/dy = —2zsiny — cosx = &(—=z” siny — sinx)/z and the domain of F is B%. Hence F
is conservative so there exists a function f such that Vf = F. Then f.(z,y) = 2rcosy — ycosz implies
flz,y) = ° cosy — ysinz + gy) and f,(z,y) = —2?siny — sinz + ¢'(y). But f,(z,y) = —x*siny — sinx
sog'(y) =0 = g(y) =K. Then f(z,y) = 2° cosy — ysinz + K is a potential function for F.

. O(1 + 22y + Inw) /8y = 2z = 3(2*) /Oz and the domain of F is {(z, y) | z > 0} which is open and
simply-connected. Hence F is conservative, so there exists a function f such that Vf = F. Then
felz,y) = 1+ 2zy + Inz implies f(z,y) = z + 2’y + zlnz — z + g(y) and f, (z,y) = 2% + g'(y)- But
fylzy) =2s0g'(y) =0 = g(y)=K.Then f(z,y) =2’y f zlnz + K isa potential function for F.
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9. 9(ye* +siny)/0y = €” + cosy = 8(e” + x cosy)/0z and the domain of F is R2. Hence F is conservative so
there exists a function f such that Vf = F. Then fa(z,y) = ye® + siny implies f(z,y) = ye® +z siny + g{y)
and f,(z,y) = e” + zcosy + g'(y). But fy(z,y) = €* + zcosysog(y) = K and f(z,y) = ye* +zsiny + K
is a potential function for F.

Ay cosh vy + sinh zy)
. b5

and the domain of F is R®. Thus F is conservative, so there exists a function f such that Vf = F. Then

fo(z,y) = xycoshxy + sinhxy implies f(z,y) = zsinhzy + gly) = fulz,y) = 2% cosh zy + ¢'(y). But

folx,y) = 2® coshzy so g{y) = K and f(z,y) = zsinh zy + K is a potential function for F.

8(x* cosh zy)
Oz

= g2y sinh zy + z cosh xy + x coshxy = rysinh zy + 2z coshzy =

. g . . -
. (a) F has continuous first-order partial derivatives and 6% 2zy = 2z = Pz (x*} on R?, which is open and

simply-connected. Thus, F is conservative by Theorem 6. Then we know that the line integral of F is

independent of path; in particular, the value of | o F - dr depends only on the endpoints of (. Since all three

curves have the same initial and terminal points, [, F - dr will have the same value for each curve.

{(b) We first find a potential function f, so that Vf = F, We know fo(z,y} = 2zy and fy(z,y) = z>. Integrating
fx(, y) with respect to x, we have f(z, y) = z°y + g(y). Differentiating both sides with respect to y gives
folz,y) =2+ ¢'(y). sowemusthave z° + ¢'(y) = 2> = ¢'(y) =0 = g(y) = K,aconstant.
Thus f(z,y) = x?y + K. All three curves start at (1,2) and end at (3,2), so by Theorem 2,

J. F-dr= f(3,2) — f(1,2) = 18 — 2 = 16 for each curve.

) fo(x,y) = yimplies f(z,y) = zy + g(y) and fy(z,y) =z + ¢'(y). But fi(z,y) =z + 2y so
J =2y = gly)=9°+ K. Wecantake K = 0,50 f(z,y) = zy + y°.
by [, F-de=f(2,1) - f(0,1)=3-1=2
(@) fa(r,y) = 2*y* implies f(z,y) = 2a*y* + g(y) and fy(z,y) = «*y* + ¢'(y). But £, (z,y) = 2%y’ so
d(y) =0 = g{y) = K, aconstant, We can take K =0, s0 f(x,y) = ia:4y4.
{b) The initial point of C is r(0} = (0, 1) and the terminal point is r(1) = (1,2}, so
JoF-de=f(1,2) - f(0,1) =4 - 0=4.

. (@) folz,y) = y2/(1 + 2?) implies f(z,y)} = y*arctanz + g(y) = fy(x,y) = 2yarctanz + ¢'(y). But
fulz,y) = 2yarctanzso ¢'(y) =0 = g{y) = K. Wecantake K = 0, so f(z,y) = y* arctan z.
(b} The initial puint of C is r(0) = (0,0) and the terminal point is r(1) = (1, 2), so
JoFdr=f(1,2) - f(0,0) =4arctanl —0=4-7 =m.

(@) folw,y, 2) = yz implies f(x,y,2) = 2yz + g(y, 2) and 5o fy(z,y, 2) = 72 + gy (v, 2). But fy (z, 4, 2) = z2
(

50 gy (1,2} =0 = g(y,z) = h(z). Thus f(x,y,2) = zyz + h{z) and f.(z,y, 2) = zy + h'(2). But
[,y 2) = oy + 22,50 B (2) =22 =  h(z) = 2% + K. Hence f(x,y,2) = xyz + z* (taking K = 0).
) f.. F-dr=f(4,6,3)— f(1,0,-2) = 81 —4 = TT.

. () folr,y,2) = 20z + 37 implies f(z,y,2) = 2%z + zy* + g(y, z) and so fy (z,y, z) = 2zy + g, (y, 2). But
fulm,y,2) = 2zysogy(y,2) =0 = gy, 2) = h{z). Thus f(z,y,2) = °2 + zy* + h(z) and
folm,y,2) = x® + h'{(2). But f(z,y,2) = 2% + 3z°, s0 K'(2) = 32° = h{z) = 2* + K. Hence
Flay, 2) = 2% 2 + zy* + 2° (taking K = 0).

(b} t = O corresponds to the point {0, 1, —1) and ¢ = 1 corresponds 1o {1, 2, 1), so
[ Fodr=f(1,2,1) = f(0,1,-1) =6~ (-1) =T
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. (@) fo(z,y,2) = y® cos z implies f(x,y, z) = xy* cos z + g(y, z) and so fulz,y,2) = 2zy cos z + g, (y, 2). But
fulz,y, 2} = 2zycoszs0 gy (1,2) =0 = g(y,2) = h(z). Thus f(z,y, z) = zy° cos z + h(z) and
fz(z,y,2) = —zy?sinz + b’ (2). But fo(z,y,2) = —zp®sinz,s0h'(2) =0 = h(z) = K. Hence
flz,y,2) = zy* cos z (taking K = 0).

(b) r(0) = {0,0,0), r(m) = (x*,0,7} s0 [, F - dr = f{n?,0,7) — £(0,0,0} =0—0 = 0.

- (@) fex, y, 2) = e¥ implies f(x, y, z) = ze¥ + g(y, 2) and so fy{x,y,2) = ze¥ + g, (y, 2). But
fulz,y,2) = ze¥ 50 gy(y,2) =0 = g(y,2) = h(z). Thus f(z,y,z) = ze¥ + h{z) and
fo(@,y,2) =0+ R'(2). But f.(z,9,2) = (z + D)e*,so h'(2) = (2 + 1)e* = h(z)=ze* + K
(using integration by parts). Hence f(x,y,z) = ze¥ + ze® (taking K = 0)).

(b) r(0) = (0,0,0),r (1) = {1,1,1) s0 f, F-dr = £(1,1,1) — £(0,0,0) = 2e — 0 = Ze.

. Here F'(z,y) = tanyi + zsec’ yj. Then f(z,y) = z tany is a potential function for F', that is,
Vf = F so F is conservative and thus its line integral is independent of path. Hence
Jotanydz + zsec’ ydy = [ F-dr=§(2,%) - £(1,0) = 2tan Z —tan0 = 2.

. Here F(z,y) = (1 —ye )i+ e *j. Then f(z,y) = = + ye ™7 is a potential function for F, that is,
Vf = F soF is conservative and thus its line integral is independent of path, Hence
Jo(l—ye™)dz+e"dy = [ F-dr=f(1,2) — f(0,1) = (1 +2e~") = 1 = 2/e.

- Flz,y) = 24*%1 4 32 §j, W = [, F - dr. Since 8(24°/%)/8y = 3,/ = (3z V¥ )/ 0, there exists a
function f such that Vf = F. In fact, fo(z,y) = 26°% = f(z,y) = 204*/? + gly) =

fu(z,y) = 32y + ¢'(y). But f, (x,y) = 3z Visog'(y)=0org(y) = K. Wecantake K == (0 =
flz,y) = 20y*. Thus W = [ F-dr = £(2,4) - f(1,1) = 2(2)(8) — 2(1) = 30.

2 2
. F(z,y) = 'gi i— %j, W = [, F . dr. Since i (_Z_!_) —__9 (—gy).there exists a function f such

Oy\x2/ =z* Oz
that Vf =F. Infact, fo =472’ = fle,y)=—4"/z+9ly) = fy=-/z+dE) = ¢ =0,
so we can take f(z,y) = —y?/x as a potential function for F. Thus

W= [ F-dr=f(4,-2) - f(1,1) = ~ [(~2)%4] + (1/1) = 0.

x

- We know that if the vector field (call it F) is conservative, then around any closed path C, Jo F . dr = 0. But take
C 1o be some circle centered at the origin, oriented counterclockwise. All of the field vectors along C oppose
motion along C, so the integral around C will be negative. Therefore the field is not conservative.

From the graph, it appears that F is conservative, since around all closed

paths, the number and size of the field vectors pointing in directions similar to
that of the path seem to be roughly the same as the number and size of the

vectors pointing in the opposite direction. To check, we calculate

Ts)
8—y(2;cy+siny)-—~2m+cosy, 0 T’ +zcosy) = 2z + cosy

7a

Thus F is conservative, by Theorem 6.
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25. From the graph, it appears that F' is not conservative. For example,

R
N
W
W
N
AN

any closed curve containing the point (2, 1) seems to have many field

vectors pointing counterclockwise along it, and none pointing

N R
N
N
N
Pl
SN

J A e

clockwise. So along this path the integral [ F - dr # 0. To confirm

N
 SPCITEE S

ey N AN
PR R N S NN
PP el NN

o -
P ir'd

our guess, we calculate

i bt P

o~

|
w

g x -2y _ —y 2 _ -2 —21° — 1y
By 72 (@~ 2y) 2 L0232 712 2 4 ,2y3/2°
Y\ J/1+x2+y (1422 +9?2) V1i4+zi+y2 (1+224+y?)

Kkl x—2 PP —z N 1 1+t +2
Oz \ 1+ +42 (1+ 22 +y2)*? V122 +42 (1+ 22 +92)%%
These are not equal, so the field is not conservative, by Theorem 3.
. V{z,y) = cos(z — 2y)i— 2cos(z ~ 2y)j
{a) We use Theorem 2: fC1 F.dr = fcl Vf-dr = f(r(b)) — f(r(a)) where C; starts at{ = e and ends at ¢ = b.
So because £(0,0) = sin0 = 0 and f(m, 7) = sin(x — 27) = 0, one possible curve C} is the straight line from
(0,0) to (m,7); that is, v(t}) = mti+7tj, 0 < < L
(b)Y From (a), fc-_,, F . dr = f(r(b)} — f(r(a)). So because f(0,0) = sin0 = 0 and f(%,0) =1, one possible
curve Cy is r(t) = 2ti, 0 < t < 1, the straight line from {0,0) to (%,0).
. Since F' is conservative, there exists a function f such that F = V f, thatis, P = f;, Q@ = fy ,and R = f.. Since
P, Q and R have continuous first order partial derivatives, Clairaut’s Theorem says that
BP[OY = foy = fyz = 0Q/0x,0P[82 = for = fox = OR/Ox, and 8Q/8z = fy= = foy = OR/Dy.

. Here ¥(i,y, z) = yi+ j + zyz k. Then using the notation of Exercise 27, 3FP/9z = 0 while R /dz = yz.
Since these aren’t equal, F is not conservative. Thus by Theorem 4, the line integral of F is not independent of
path.

. D = {(z,y) | * > 0, y > 0} = the first quadrant (excluding the axes).
(a) D is open because around every point in I? we can put a disk that lies in D.
(b) D is connected because the straight line segment joining any two points in D lies in D).
(¢) D is simply-connected because it’s connected and has no holes.
. D = {(z,y) | = # 0} consists of all points in the zy-plane except for those on the y-axis.
(a) D is open.
(b) Points on opposite sides of the y-axis cannot be joined by a path that lies in I, so D is not connected.

(¢} I is not simply-connected because it is not connected.

. D={(z,y) | 1 <z’ +y* < 4} = the annular region between the circles with center (0,0) and radii 1 and 2.
{a) D is open.
{(b) D is connected.

(¢) D is not simply-connected. For example, z° + y* = (1.5)? is simple and closed and lies within D but encloses
points that are not in D. {Or we can say, D has a hole, so is not simply-connected.)
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3. D= {(z,y) |7 +3* <lord <z® +4* <9} = the points on or inside the circle z% + y? = 1, together with
the points on or between the circles 22 + 4> = 4and 22 + ¢° = 9.
(a)} D is not open because, for instance, no disk with center {0, 2) lies entirely within D.
(b} D) is not connected because, for example, (0, 0) and (0, 2.5} lie in D but cannot be joined by a path that lies

entirely in D.

{c) D is not simply-connected because, for example, z* + y* = 9 is a simple closed curve in D but encloses points
that are not in .
Yy 8P Y — 2

_y 9P _ y-a® z  9Q_ y-o P _0Q
22 +y2" By (a2 +y?)?

22 442" B (z2 4 ¢2)? “Sa_y“ Ox’
(b) Ci:x =cost,y =sint,0 <t < w, Co; z=cost,y=sint, t=2xtot = Then

/ F-drz/ (—smt)(—smt)+(cost)(cost)dt:/ dt:vrand/ F-dr:/ g = —
(&5} Q 0 Co 2

R (a) P =— and @ =

cos?t +sin?t

Since these aren’t equal, the line integral of F' isn’t independent of path. (Or notice that
/. o, Fdr= 02” dt = 2 where Cj is the circle 2° + y* == 1, and apply the contrapositive of Theorem 3.)

This doesn’t contradict Theorem 6, since the domain of F, which is R? except the origin, isn’t
simply-connected.

34. (a)Here F (r) = cr/|r{’ andr = zi + yj + 2 k. Then f(r} = —c/|r| is a potential function for F, that is,
V[ = F. (See the discussion of gradient fields in Section 17.1 [ ET 16.1].) Hence F is conservative and its line
integral 1s independent of path. Let Py = (21, y1,21) and Py = (z2, y2, 22).

W= [ F-dr=f(Py)— f(P) = — et : mzc(l 1).

(@ +y3 + 23) (=f +yi +27) b d;

(b) In this case, c = ~{(mMMG) =

1 1
W= _mMG(1.52 x 108 ~ 147 x 108)

= (5.97 x 10*") (1.99 x 10°°) (6.67 x 107"} (~2.2377 x 107'°) ~ 1.77 x 10% )
(c) In this case, ¢ = g =
W = qu(w—llg -~ m) = (8.985 x 10"°)(1){—-1.6 x 107%) (~10'?) ~ 1.4 x 10*].

17.4 Green's Theorem ET16.4

1. (a) : Ciz=t = de=dt,y=0 = dy=0dt,0<t<2
Coox=2 = de=0dt,y=t = dy=dt,0<t<3
Caiz=2—-t = de=—dt,y=3 = dy=0dt,0<t<2.
Ciz=0 = dr=0dt,y=3—-t = dy=—dt,0<t<3.

Thus §, zy° dz + 23 dy = $ ry® dx + 2% dy
C1+C2+C3+Cy

= Jo 0dt+ [ 8dt+ [Z—9(2 —t)dt + [P0dt
=0+24-18+0=6
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() §ozy’dz +a*dy = [[, [3% («*) - & (my2)] dA = [} [2(32® — 2zy) dydz
= [2(92% —9z)dz =24—18=6

2 (a) x = cost, y = sint, 0 < ¢t < 27 Then
$oyde —xdy = JoT sint(—sint) — cost(cost)]dt = — o7 dt = —2m.

(b) fyde —xdy= [f, [% {(—z) - a% (y)] dA = -2 [[, dA = -2A(D) = —2x(1)* = —2x
3 (a ¥ L2 Ciiz=t = dr=dt,y=0 = dy=0d,0<Ei<1
({1,

Cpzrc=1 = de=0dt,y=t = dy=dt,0<t<2

Cooz=1—t = do=-dt,y=2-2t = dy=-2dt,0<t<L

¢, Loy ¥

Thus forydz +zy’ dy = § zydz + %y  dy
C1+C2+C3

= [fodt+ [Pdt+ [} [~ -t)2-2t) — 20 —1)*(2 - 2t)*] dt
=0+ [+ 300"+ 30 -0 =4 -9 =3
(b) §, zyde + 2y’ dy = [[ [i(asgya) -2 (:cy)] dA = fﬂl 2x(2wy3 —x)dydz
=y [y —a:y]y 2"’dm,_.f0 8z° — 22°)dx = =

L (aCr:x=0 = de=0dty=1-t =
dy=—-dt,0<t<1
Co:x=t = dr=diy=0 = dy=0d,0<t<1
Cyiz=1-t = dr=-dy=1-(1-t)> =2t-12
dy=(2-2t)dt,0<t<1
Thus

$ordr+ydy = § axdr+ydy
C1+C24+C3

= [y (0dt + (1= t)(—dt)) + [y (tdt +0dt) + [ (1 — £)(—dt) + (2t ~ £*)(2 ~ 2t) dt)
= (38 —t]o + 38, + [3¢* — 26 + 36 1],
=—i+is(i-24%-1)=0

(b) fcﬂrdm+ydy=f/D [% (y) - (%(E)] dA = [[,0dA=0

5. We can parametrize C as ¢ = cosf, y = sinf, 0 < # < 2. Then the line integral is
§. Pdz+Qdy= [ cos* sin® @ (—sin @) do + f7"(— cos” Osin® ) cos § df = — 2, according to a CAS.
The double integral is

1~-:r:'2
() [t -sisini

verifying Green's Theorem in this case.
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6. Since y = 2” along the first part of C and y = « along the second part, the line integral is

$o Pdz +Qdy= fol [:c4 sinz + z* sin(a;z)(2:c)] dxr + flo(a:2 sinz + z? sin z) dx
= —16cosl — 23sinl + 28

according to a CAS. The double integral is
Ia (gﬁ - g—;’) dA = [} [%(2zsiny — 2ysinz)dydz = —16cos 1 — 23sin 1 + 28
1. The region D enctosed by C'is [0, 1] x [0, 1], so
Joetde+2ze? dy = [[ [ (2ze¥) — £ (e¥) ] dA= [} f1(2e" — e¥) dydz
= o [l etdy=()(e' - ) =e -1
. The region 1 enclosed by C'is given by {(z,y) |0 < 2 < 1,3z < y < 3}, 50
Jo#*y da+ 4z’ dy = [[, | & (doy) - & @) dA= [ fo (4 - 2x¥y)dyde

=f01[y4_$29‘2 zzz dw—f0(81—9:1: —72x)da:—81—3— :3—5—

8 fo (v %) dot (20 4 cony®) dy = [T, [ 2o+ cons?) - (%)) da

= Jo S @ - Vdedy = [ (y/* - y*)dy = }

- foze T da + (' + 22797 dy = [f, [5@; (z* + 22%y%) — 3% (we_z“’)] dA = [f, (4z° + 4z — 0) dA
=4ff z(@x* +y*)dA = 4_]'02" ff (rcos 8)(r?) r dr d

= 4f02" cos 0 db f12r4 dr = ii[sin{?]fj7r %rs]f =0

cJovtde - 2Pdy = [, [3:: (—z%) - ay( ]dA [J p(—3% = 3¢y*)dA = f foz(—3r2)rdrd9

=3 [37do [P dr = —3(2m)(4) = —24n
. Josinydz +zeosydy = ff, {% (T cosy) — a%(siny)} dA= [[(cosy —cosy)dA = [ 0dA=0

. Fz,y) = (VZ+y",2° + /§) and the region D enclosed by C is given by
{(z,9) |0 <z < 7,0 <y <sinz}. C is traversed clockwise, so —C gives the positive orientation.
JoFdr=-[ o (Ve+y)de+ (o + Vo) dy =~ [f, & (22 + V§) - & (Vo +3°)] da
=—Jr sm:t(zx ~ 3¢y%)dydz = —Jr [2zy ~ y ]y—sm:dm
= - fo"(2a:sin:c — sin® r)dr = — fo (2zsinz — (1 — cos® z)sinz}dz
— [2sine — 2z cosz + cosx — § cos® z];  [integrate by parts in the first term]

——(r-2+2) =t -2
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14. F(z,y) = (y* cosz,z” + 2ysinz) and the region D enclosed by C is given by
{(z,y) |0 <z <2,0 <y <3z} C is traversed clockwise, so —C' gives the positive orientation.
[oF-dr=—[_,(y°cosz)dz + (2* + 2ysinz) dy
=-[f, [5"3; z? + 2ysing) — £ (y2 cosm)] dA
=—ffD(2x+2ycos:z—2ycosa:)dA—Afo “ 2z dy dx
=—f02m[]yam :—foﬁwdm=—:c3]§:—16

0

15. F (z,y) = (¢” + 2y, e¥ — z3?) and the region D enclosed by C is the disk z* + y* < 25.

C is traversed clockwise, so —C gives the positive orientation.
JoFode=—[ (" +a’y)dz+ (e - xy?) dy
=—[/p [53; (e¥ — xy®) — -a%(e"” +sr:2y)] dA=— [f (—y® —z")dA
= [[,(&* +v*)dA= 2 Sy rdrdd = 2mdp fSridr = 211'[%1"4}; =%y
.F(r,y) = <y —In(z? + %), 2tan ! (%)) and the region D enclosed by C is the disk with radius 1 centered
at (2,3). C is oriented positively, so

JoF dr= [ (y- In{z? + y*)) dz + (2 tan ! (%)) dy

~ [ [ (o () - g - nta® 7)) a4
ff[(lly;/m))_( mz+y)}dA f/[szry 1+%yy2 »

=—[f,dA = —(areaof D} = -

. By Green’s Theorem, W = [ F -dr = [ z(z + y) dz + 2y dy = [[ ,(v° — z) dy dz where C'is the path
described in the question and IJ is the triangle bounded by C'. So

W= [0 o T - dyde = [y [3® —ay] 20" de = fy (31— 2)° —2(l-2))da
- i + 5 = (-4 5) - (-H) =%

. By Green'’s Theorem, W = [.F-dr = [, xdx + (2 4+ 32y°) dy = [f ,(32° + 3y — 0) dA, where D is
the semicircular region bounded by C. Converting to polar coordinates, we have

W =327 rdfdr = 3n[1r] = 127,

. Let (71 be the arch of the cycloid from (0, 0) to (27, 0), which corresponds to 0 < ¢t < 2w, and let Cz be the
segment from (27, 0) to (0,0),s0 Ca is givenbyx =21 ~ ¢,y = 0,0 < ¢ < 27, Then C = C; U ) is traversed
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clockwise, so —C is oriented positively. Thus —C encloses the area under one arch of the cycloid and from (5) we

have
A=—§ cyde= [, ydo+ [, yde= JE7(1 = cost)(1 — cost) dt + 27 0(—dt)
= 02”(1—2cost+cos2t)dt+0=[t—?sint+%t+ﬁsin2t}§”=3w

A=¢ xdy = fozw(f;cost — cos 5t)(5 cost — 5 cos 5t) dt

= 02”(25 cos? t — 30 cost cos 5t + 5cos? 5t) dt

= [25(3¢ + 7 sin 2t) ~ 30(} sindt + £ sin 6t) + 5(3t + & sin10¢)] 3"

[Use Formula 80 in the Table of Integrals)
= 30m

an)
P,

21. (a) Using Equation 17.2.8 [ ET 16.2.8], we write parametric equations of the line segment as z = (1 —thxy + txo,
y= {1~y +ty2, 0 <t < 1. Thendz = (x2 — z1) dt and dy = (y2 — 11) dt, s0

Jomdy —yde= [ [(1 = t)ws + tea)(ye — ya) dt + [(1 — )y + tye)(z2 — 1) dt
= fo (@1(y2 — 1) — p(z2 — 21) + tllyz — 9:1)(@2 — 31) — (22 — 21 )2 — w1)]) dt
=, (@1y2 — zay1) dt = 2192 — T2t
(b) We apply Green’s Theorem to the path C = Cy U Cy U - - - U C,,, where (; is the line segment that joins
(i, ¥i) 10 (Tig1,yi11) fori = 1,2, ..., n ~ 1, and C,, is the line segment that joins (Zn,yn) to (z1,71).
From (5), 5 [, xdy — ydz = [[, dA, where D is the polygon bounded by C'. Therefore
area of polygon = A(D) = [f dA =1 [ zdy —yd=
= —é-(_fc1 rdy — yd:r:+f02 zdy —ydz+--- +an_1 :r:dy—yd:c-i—fc," a:dy—yda:)
To evaluate these integrals we use the formula from (a) to get
A(D) = gi(z1y2 — Z2gn) + (%2yz — T3y} + - + (Tn-1Yn — Talno1) + (Eny1 — T1yn))-
0 1-2.00+(2:3-1-1)+(1-2-0:3)+(0-1—(-1)-2) +(~1-0-0-1)]
30+5+2+2) =1

. By Green’s Theorem, 57 §.2°dy = 35 [[,2zdA= L [f zdA=7Zand
~sa fo Vi de =55 [[p(-2)dA= [[pydA=7.

.Here A= 3(1)(1) =3 andC=C1 +Co + Cag, where Criz =2,y = 0,0 < z < 1;
Corz=z,y=1l-z,z=1wz=0andCs:x =0,y = 1toy = 0. Then
T=35zfordy= [, 2* dy + Jg, =° dy + fo, 2°dy =0+ J @) (~dz) + 0= 3- Similarly,
y= —ﬁfcyzdm:fcl yzd:i:-i—fczyzd:x+fcsy2d$=0+flo(l—a:)2(—d:c)+0= 1
Therefore (£,7) = (3, 1).
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M A= 50T =y § 2Pdyand Y= -z f v de
Orienting the semicircular region as in the figure,
=2 dy

z §01+Cz

= 1[0+ fy(a® cos 2 t)(acost)dt| =

and
¥=—-=1s [ffaod:z + [4 (a®sin® t){—asint) dt] =2 [Tsin®tdt = 2[~cost + §(cos’ )] =
Thus (Z,7) = (0, 32).

. By Green’s Theorem, —3p §,. yde = —3p [ (~3y°)dA = [[, v pdA = I, and

lpg.a*dy=131pf[,(32%)dA = [[,2°pdA =1,

. By symmetry the moments of inertia about any two diameters are equal. Centering the disk at the origin, the

moment of inertia about a diameter equals

Iy=3pfoa’dy = 3p Jy (o’ cos" t)dt = 3a*p [ [§ + 3 cos 2t + § cos dt] dt

1,4, BEm) _ 1
=3aprTy = gTap

. Since C is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that
doesn’t contain the origin but does contain D. Thus P = —y/(x* + %) and Q = z/(z” + y*) have continuous
partial derivatives on this open region containing 1) and we can apply Green’s Theorem. But by Exercise 17.3.33(a)

[ET 16.3.33(a)], 8P/8y = 8Q /0,50 § F - dr = [f,0dA=0.

. We express D as a type Hregion: D = {(z,y) | f1(y} < 2 £ foly), ¢ < y < d} where f; and f> are continuous

functions. Then /f QdA f [ffz(y) 9 da:dy—f [Q(f2(y), ) — QUA(y),y)] dy by

1{y)

the Fundamental Theorem of Calculus. But referring to the figure,

$:Qdy = ) Qdy. Then f, Qdy = [7 Q(fi(y),v) dy,

C1+C2+C03+C,
Jo, @y = [, Qdy = 0.and [, Qdy = [ Q(f2(y), ) dy. Hence
$.Qdy = [P QUf2(),4) — QUAW), v) | dy = [[,(8Q/z) dA

x=fiiy} G,

. Using the first part of (5), we have that [[ dzdy = A(R) = [, xdy. Butz = g(u,v), and

Gh dh

dy = Bu du + Bu dv, and we orient 35 by taking the positive direction to be that which corresponds, under the
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mapping, to the positive direction along R, so

Oh Bh oh
zd =f U, v ( du+—dv) =/ u, v} — du + g(u,v) — dv
[ stu=[ o) . [ o) Gy dut gfo,0) 5
=4 / f [ ( 3:) g ( {(u,v) Bh)] dA [using Green’s Theorem in the uv-plane]

~ dg Oh 32 dg Oh &h . .
= :i:ffs (Bu B + g(u, glu,v) =—— 5000 ) dA  [using the Chain Rule]

) dA [by the equality of mixed partials] = / / ole, y) d dv

The sign is chosen to be positive if the orientation that we gave to &S corresponds to the usual positive orientation,

and it is negative otherwise. In either case, since A(R) is positive, the sign chosen must be the same as the sign of

oz, y) 3($ y
Bl v} Therefore A(R // dedy =

17.5 Curl and Divergence

i j k
L(@carldF=VxF=98/0x 0/dy 0/0z|=(—2"~0)i-(~2cy—zy)j+ (0—z2)k
Ty G —x?y
= _;czi+3.ryj—:1;zk

VF = s LA AP Y _
dvF=V F—ax(xyz)+ay(0)+az( 'Y =yz+04+0=yz

i j Kk
2 @culF=VxF=|08/0x 8/0y 8/0z|=(zz* — 2y®)i — (yz? — T’y i+ (P2 —2?22)k
*yz zyz zy?

=o(2® —y?)i+y(e® - 22)j+ 2007 - 27k

. a d d
b — .F = 2 2 2y —
(b)ydivF =V =5 (xyz) + 3y (zy*z) + 5 (Tyz") = 2zyz + 2zyz + 2oyz = 6xy2

i j k
d@ceurlF=VxF=|9/0x 0/0y 08/0z |={(z—-y)i-@w—-0j+(1-0)k
1 x+4yz zy—+/2
=(z-yl-yi+k

. d a i}
(b)dwF—V-F—%(1)+a—y(m+y2)+a(:cy—\/E):z—
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i j k
4 @culF =V xF=|d/0z 8/0y 00z
0 coszz —sinzy
= (—rcoszy+ zsinzz)i— (—ycoszy — 0}j + (—zsinzz —O)k

= z(sinzz — cosxy)i+ ycoszyj— zsinzz k

. e} 7 3 . _ _
(b)dwF_V'-F—a%(O)+6—y(cosrz)+6 (-sinzy) =04+0+0=0

i j k

5. @crlF=VxF=| 8/6z 8/8y 8/8z|=(0-0)i—(0-0)j+ (e"cosy—e"cosy)k =0

esiny e“cosy z

{b) divF:V.F=%(emsiny)—k%(e”ccsy)ﬂ-a%(z):ezsiny—e”siny+1=1

i j k
6. @culF=VY xF= a/0x 8/0y 8/0z
x y z
$2+y2+22 m2+y2+z2 $2+y2+22
H

= m [(—2yz + 2'yZ)i - (—23’:2 + 2$2)j + (—Z:cy + 2Iy) k] =0

. . z o ] 3 %
®dvE=V-F= EE(x2+y2+z2) +6y(322+y2+22) N 32(w2+yi+22)

P22 PP+ -2 PP 42722
(22 + 2 + 22)° (22 4 42 + 22)° (22 + 42 + 22)?

. m2+y2+22 _ 1
(2 +42 +22)° 2 +y?+2?

i j k
1. @ecurlF=VxF=|8/6c 8/0y 8/0z |= (3‘3-—0)i—(£
Yz ryz
Inz In(xy) In(zyz)

_/1 .11
T \y z'zx
1 T

. I 0 d 1z
b divF =V .F= P (Inz) + By (In{zy)) + P (In{zyz)) = -+ P

i J k
8 @curlF=VxF=|8/8c 8/0y 8/0zi=(2¢¥ —2)i—(0—-0)j+ (z—zxe ¥(~1)}k
ze ™V  zz  z2eY

= {ze¥ — z,0,2 + ze™V)

VFoU.Fe (ze-vy4 2 D ev) = v V¥ g eV
(bydivF =V F—aw(xe )+6y(:rz)+az(ze)-—e +04+e¥=¢¥+te
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9. if the vector fieldis F = Pi+ Qj + Rk, then we know R = 0. In addition, the z-component of each vector of F

is 0, so P = (, hence ?9—5 = %—1; = %g = % = %g’ = % = 0. ) decreases as y increases, so % < 0, but

0Q _ 90 _

doesn’t change in the z- or z-directions, so — = =0,
Q & dr dz

. 9P 8Q B8R __ 8Q
(@ divF = 5o 4 58+ 57 =04+ 32 +0<0

_ (B8R _9QN\; (9P OR\. (0Q 0PN, 0 Vit (0— 00— 0k —
(b)curlF—(ay 3z)1+((9z am),]+(8$ 6y)k—((] 0i+{(0-0)j+{(0-0)k=0

10. If the vector field is F = Pi+4 Qj + Rk, then we know R = 0. In addition, P and @ don’t vary in the z-direction,
OR _8R _OR 0P 0Q

S0 e B_y =% 5. = Bz = 0. As z increases, the z-component of each vector of ¥ increases while the

9Q

. ar . .
y-component remains constant, so B2 > 0 and B 0. Similarly, as y increases, the y-component of each vector
i z

. . . i/ apP
increases while the z-component remains constant, so oQ >0and — =0.

Sy By

WwF= 2P  0Q OR_09FP 8Q
(a)dlvF—am-i-ay-l-azAaw+ay+0>0

= (OB _9RY; (8B _OR\. (9Q 0PN\, 0 03ii(0-0vit(0_ 01k
(b)curlF—(ay 6z)l+(6z 6:c>‘]+<6m ay)k_(o 0)i+(0-0)j+(0-0k=0

- If the vector field is F = Pi+ Qj + Rk, then we know R = 0. In addition, the y-component of each vector of F

. aQ aQ BQ aR dR 8R . . arP
_ — — — — — = Q. p
150, so Q = 0, hence = ; = = 3 = ) = 0. P increases as I INCICases, so 3 > 0, but

doesn’t change in the z- or z-directions, so or = 9P =[.
dxr Oz
(a)divF:a—}3+?Q+@ =04+0+4+0=0
dx Oy Oz

= (QB_0Q\, (9B _0R\., (0Q 0P
(b)curlF_(ay Bz)l+(62 8:5)‘]+(8:v By)k

=(0—0)i+(0—0)j+(D—a—P)k:—%k

Ay 8y

N ar. . T . N
Since — > 0, ——k is a vector pointing in the negative z-direction.

By dy
. {a) curl f = V x f is meaningless because f is a scalar field.
(b) grad [ is a vector field.
(c) div F is a scalar field.
(d) curl {grad f) is a vector field.
(e) grad F is meaningless because F' is not a scalar field.
(f) grad (div F) is a vector field,
(g) div(grad f) is a scalar field.
(h) grad (div f) is meaningless because f is a scalar field.
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(i) curl (curl F) is a vector field.

(j) div(div F) is meaningless because div F is a scalar field.

(k) {(grad f) x (div F) is meaningless because div F is a scalar field.
(I div{curl (grad f)} is a scalar field.

i j k
Ll F=V xF=|8/8z 8/8y 8/0z|=(z—-2)i-(y—-y)i+(z—2)k=0
yz Tz TY
and F is defined on all of R® with component functions which have continuous partial derivatives, so by Theorem 4,
F is conservative. Thus, there exists a function f such that F = V f. Then fz(z,y, 2) = yz implies
flz,y,2) = zyz + gy, 2) and fy(z,y, 2) = 22 + gy (y, 2)- But fy(z,y,2) = 22,50 g(v, 2) = h(2) and
flz,y, 2) = zyz + h(z). Thus f.(=,y, 2) = zy + K’ (2) but f(z,y,z) = Ty so h(z) = K, a constant. Hence a
potential function for F is f(z,y,2) = zyz + K.
i J k
.l F=V xF=|8/8z 8/8y 8/02|=(0-0)i~(22-62)j+(0-0k=4zj#0,
3z cosy 2xz
so F is not conservative.
i j k
LcurlF =V xF=|8/0z 08/dy 9/82|=(2y—2y)i—(0-0)j+ (2 — 2z) k = 0, F is defined on all
2ry x4 2yz y?
of R®, and the partial derivatives of the component functions are continuous, so F is conservative. Thus there exists
a function f such that Vf = F. Then fu(z,v, z) = 2zy implies f(z,y, 2) = 2y + g(y, 2) and

Jo(@rwr2) = 27 + gy (y, 2). But fulz,9,2) = @ + 2z, 50 gy, z) = %z + h(z) and

flz,y,2) = 22y + y2z + h{z). Thus f.(x,y,2) = y* + A/ (2) but fo(z,y,2) = y° so h(2) = K and

flay,2) =2y + y*z + K.

i J k
Loul F =V xF=18/8z 8/8y 8/82  =(0-0)i-— (e —e*)j+ (0—0)k = 0and F is defined on all of

e’ 1 xe®

R® with component functions that have continuous partial deriatives, so F is conservative. Thus there exists a
function f such that Vf = F. Then f.(z,y, z) = e® implies f(z, v, 2) = ze” + g(y,z) =

ful®,y, 2) = gy (3, 2)- But fy(z,y,2) = L,s0 g(y, z) =y + h(z) and f(z,y, z) = ze” + y + h(z). Thus
Folx,y,2) = xe® + B (2) but f.(x,y, 2z) = ze?, so h{z) = K, a constant. Hence a potential function for F is

f(z,y,2) =z +y+ K.
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i j k
1. culF =V xF=|08/0x 8/8y 0/0z =(0-0)i—(0-0)j+(—e " —e " )k=-2""k+#0,
ye ¥ e 2z
s0 F is not conservative.
i j k
LculF =V xF=| 8/0z a/dy 0/0z
YCOSTY =TcCosTy —s8inz
=(0-0})i—(0—-0)j+ [(—zysinzy + cosxy) — (—zysinzy + cosxy) k = 0
F is defined on all of R?, and the partial derivatives of the component functions are continuous, so F is
conservative. Thus there exists a function f such that Vf = F. Then f.(z, ¥, 2) = y cos zy implies
fle,y,2) =sinzy + gy, 2) = fylx,y,2) = xcoszy + gy(y, 2). But fy(x,y, 2) = zcosxy, so
gy, z) = h(z) and f(x,y,z) = sinzy + h(z). Thus f.(z,y,2) = k'(2) but f,(z,y, 2z) = —sin z so
h(z) = cos z + K and a potential function for F is f(z,y, z) = sinzy + cosz + K.

. No. Assume there is such a G. Then div(curl G) = y* + 2% + 2® # 0, which contradicts Theorem 11.
. No. Assume there is such a G. Then div(curl G) = xz # 0 which contradicts Theorem 1 1.

i J k
ccurlF = |8/0z 3/0y 0/0z]=(0—-0)i+(0~0)j+(0-0)k=0.

flx) gly)  h(z)
Hence F = f{x)i+ g(y)j + h{z) k is irrotational.

Cdive = w2 | (@ 2) | Ah(z,y)

pm 3y 5a = 0 so F is incompressible.

For Exercises 23-28, let F(x,y,2) = P1i+ Q1j + Rikand G(z,y,2) = P2 i+ Q2j+ Ra k.

. NP+ P, & IR

2. div (F + G) = 2 la;: 2) (Qla‘: Q) A 1(; Ra)
_foP 0@y | 8R 0Py  0Q2  ORa\ . .
_(_Bz +_6y +“c‘)z )+(6m +—6y + o =divF +divG

dR; O\, oP, 9OR,\. o 8P
curl F + = [{Zn _ % gha _gm %1 _ 0
A cur curl G [( dy 8z )l+(82 8.1")J+(3m By)k]

Ry 0Q\;, (9P ORs\. (9Qs 0P
+{(6y 8z)l+(6‘z Bm)‘]+(8:c 8y)kJ

Oz Oz

_ [3(R1 +Ra) B +Qz)} - [8(131 +P)  O(Ri+ Rz)]j

By dz

n [5(Q1 +Q2) 9P+ P)

oz By } k = curl (F + G)
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25.div(fF)=a(£fl) B(Jgfjl) a(.;fl)

dP, af A6 af OR; af
(f‘—l+P1 ) (f +Q13_y) (f—+Rlaz)

Oz

oPn  0Q1 Oy of af af\ _ . .. .
=G+ + )+ manmy (GGG ) = rave s

2. curl (fF) = [

3(2‘;’31} _ (J;i?l)] 4 [3(39’;"1) _ 3(251)]j+ [3(1(;31) 3(3;?)]

OR f 01 of apr of OR afy.
[f—1+R1—-— -yl a] [f—+P18—— —B;‘—Rlam].]

[fan-I—Q of fapl_ (;ﬂk

:fl:aRl an]._l_f[%_@]._i_f[an 3P1]k

By 0z 9z Oz dr Oy

of o 0fl, [p0f oI of _pof
|mg et gl mEs [og-ng]

=feuriF + (Vfix F

8/0x 0/0y /02
2. div(iFxG)=V . (FxG)=| P Q1 R
P, Q: R

¢ R aJ
= [Ql ORe + K2 o _ 2t — By Qz]
Ox T

91@ Rl glP R 5| &

=L + =
Oz Q2 Rs % | P, Ry 9z | p, Q2

7]

[ g2 OB
oy

ap BQ 1

+Q2"———P2 — 1=

2
_[p (08 _ 0y 0P, R 0 9h
- |G- ) e (az 6w)+R"(6w ay)]

ORy 0@z, 5 (0P _ORe Q2 oR

_[Pl(%m 6‘2) Ql( Oz 6‘;c)+R(3z 6y)]

=@G-curlF -F -curl G

+ [P1 OF, ]

8. div(V [ x Vg) = Vg -curl (Vf) — Vf - curl (Vg) [by Exercise 27] = 0 (by Theorem 3)
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i j k
29, curlcurlF =V x (VX F) = 9/0x O/ 8y 8/8z

6R1/61J—8Q1/32 BPl/Bz —6R1/8$ 3@1/81‘ —8P1/6y

P PR Fn PR\, (PR 8 PQ IR
dzdy 0=z dx? Ox0y

= (6y6:1: "¢ 92 | 200

dzdz 0z Oyt | Oydz

&P &R #R 5?2
+ ( 1 1 L, d Q1) K

Now let’s consider grad div F — V2F and compare with the above.
(Note that V*F is defined on page 1130 [ ET 1094].)

) PP 9’ | R 9P Q1 0°R;
F - 9F = i j
grad div [ ( 8r? ' dxby  Oz0z ) It (3y5m oy * Byﬂz)

’P  9*Q1 'R,
+ (62:83: * 020y oz ) k]

o SR o SR o SR Q1 Q1 P\ .
_[(83:2 T 322)l+(62:2 Yo T )J

8*Ry  &R:  O°R,
+((9J:2 N dy? T o )k}

_ (62621 N R PR 82P1) - (32131 PR P 32@1) .

Bxdy  Fxdz  Oy? 022

dyoz * Oydz Oz 022
(32P1 8Q, R, azRg)k

dz0r 028y 8z &y?

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed
and comparing, we have curl curl F = grad div F — V2F as desired,

a, 0. &8 : . _ _
30. (a)V‘r—(a1+ay‘]+ak)-(a:1+yJ+zk)—1+1+l—3

(b)) V-(rr) =V- /a2 +y> + 23 (zi+yj+ zk)

2 2
- x 7L 2 o a2 ¥ 2 L2 1 22
( ——_;1:2+y2+z2+ TeF+yc+22) + —_$2+y2+22+ T+ Y+ 2

2
+ —z“—-f- x4 y2 4 22
Vit +y? 4 22
1 2 2 2 2 2 2
\/ﬁ@ix + 4y +4z)=4 Td 4 y? + 2% = 4r
£Z

Another method:

By Exercise 25,V - (rr) = div(rr) = rdive+r-Vr =3r 4 r- ; [see Exercise 31(a) below] = 4r.
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(c) 8 = V2 (1,2 Jryz +Zz)3/2

= 236+ g+ 0] + B[+ + ) )

+ 2 [36 P17 (22))

= 3[%{:1:2 + %+ 227220 () + (2% + 7 + z2)1/2]
+a[3(a? + 4 + )T ) + @+ )
+3[3@ 47+ )22 + (@ + 212
=3z + 4%+ %)V 42?4 4y + 427 = 1202 + P + 22)1/2

= 12r

Another method: 2 (z* +y° + 222 =3z /24yt + 22 = VrP=38r(zi+yj+zk) =3rr,
so V2r® =V . Vr® = V- (3rr) = 3(4r) = 12r by part (b).

Y z

T
i+ j + k
Va?+y?+ 22 \/5:2+y2+z2'} Vie? +y? + 22

N (aVr =V /2 +42+22=

_zidyjtzk _r

"‘5172 +y2+22 r

:‘1.2+y2 +22
1
—— (%) ————— (2
2 $2+y2+32 . 2 $2+y2+22
i—
x? 4+ y? + 22 22 4 y? 4 22

zi+yj+zk r

T (22 4y +22)32 T 3

(d) Vinr = Vin(z* +y* + :/':2)1/2 =1Vin(z® +y* + %)

-2

— L Y

( i+ z k_:zi+yj+zk_r
w? +y?+ 2t wP iyt

‘}+m:2+y2+z2 - 2 4+ 2 + 22 T2
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Rr=zityj+zk = r=ir|=/22+y?+22 50

T ¥

z
_ . . K
(22 + 42 | 22)p/2 I+ (22 1 42 + 22)p/2 J+ (22 + 2 + 22)p/2

x _(m2+y2+22)—pw2_rz—pm2

Then %(mg +y? 4 222 (a2 + 42 +22) ez et

. Similarly,

p 2,2 3 .2
i Y _T —py and ﬁ . z A . Thus
8y (372 + y2 + z2)p/2 rp+2 Oz (1.2 + y2 + z2)p/2 rp+2

diVFmv‘F:TZ_p:rQ T27Py2 T’2—p22_37'2—p$2*py2—p22
-rp+2 T-P+2 TP+2 o TP"I‘?

3r? — p(z? + 4% + 27) _ 3 -pr® 3-p

7-;D+2 TP"}*? - rp

Consequently, if p = 3 we have divF = 0.

33. By (13), 4, f(Vg) - nds = [ div(fVg)dA = [ ,1f div(Vg) + Vg - V] dA by Exercise 25. But
div(Vg) = V*g. Hence [f , fV3gdA = $. f(Vg) -nds - [ Vg VfdA.

34. By Exercise 33, [, fV2gdA = §_ f(Vg) -nds — [ Vg - VfdAand

Ifp9VfdA=¢.9(Vf) -nds~ [ Vf VgdA. Hence

[ 5 (FV? =gV} dA=§.[f(Vg) n—g(Vf)-nlds+ [[, (Vf-Vg—Vg Vf)dA
=$-1/V9—gVf] nds

35. (a) We know that w = v/d, and from the diagram sin 6 = d/r = v =dw = (sm#)rw = |w x r|. But v is
perpendicular to both w and r, sothat v =w x r.

ijk
(byFrom{a),v=wxr={0 0 w =(O-z—wy}i+(wa:—[]-z)j+(O-y—m-())kz—wyi—}—w:cj
Ty z
i j k
(eurlv =V xv=3/0z /8y 8/0z
—wy wr 0

= -(% (0) - (% (wz)J i+ [5(2 (—wy} — a—i (0)] j

= fw—(—w) k = 2wk =2w
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36. LetH — (hl, ha, hg) and E = <E1, Ea, Es).
i j k
18H 1

(a) Vx(VxXxE)=Vx{curlE) = V x (_EE) = a/éx  0/oy  0/0z

dhy/Ot Ohg /(‘% ahgfat
1 82h3 hy \ 9hy  O%hz )\, 8ha  *h
== = i+ - j+l =—= - k
c ot 8z0t dzt Oz ot ox ot Oyot

_ 10 [(8hs Bk dhi  Ohs\.  (Ohe Oh
——;a[(———%(az—am)w(ax o )

{assuming that the partial derivatives are continuous

so that the order of differentiation does not matter]

_ 10 - 18 [10E\  10°E
T ot T T cot\c ot e gt2

i j k
10E 1
MV x({(VxH)=V x (curlH) =V X (——) =7 /0w /oy 8/0z
OF.1/8t OE/0t OFE3/0t

_1 82E3_62E2 . 62E1W32E3 fp azEziazEl K
“ei\Byot 920t 920t~ dzot ) \Bzar  Byor

c Ot

_10[(0B; 8B\, (0B OB\, (9B 9B\
Teoti\ oy oz 3z oz )T\ oz T By
[assurning that the partial derivatives are continuous

so that the order of differentiation does not matter)
= 12curl]i} 12 —l OH l_62H
T e bt T et c Ot c2 ot?

{¢) Using Exercise 29, we have that curl curl E = grad divE — VEE =

PFE 1 &*E

VZE = graddivE — curlcurl E = grad 0 + — 1 [from part (a)] = poir

o2 8t2

H | . 1 8*H

{(d) As in part (c), VH = graddivH — curlcurl H = grad0 + — ! [using part (b)] = - ¥
[

2 3t2

37. For any continuous function f on R, define a vector field G{z,y, 2) = (g(z, y, z), 0, 0) where
Y, Z) fO ,y, Z) dt. Then

div G = d_(i* (g{z,y,2)) + 6%; (0) + 82 fo flt,y,2)dt = f(z,y, z) by the Fundamental Theorem of

Calculus. Thus every continuous function f on R? is the divergence of some vector field.
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17.6 Parametric Surfaces and Their Areas ET16.6

1. r{u,v) = ucosvi+ usinvj+ u® k, so the corresponding parametric equations for the surface are
T = ucosv,y = usinv, z = u”. For any point (z, y, z} on the surface, we have

2

z° 4+ y* = u® cos? v + u?sin? v = w? = 2. Since no restrictions are placed on the parameters, the surface is

z = x* + y?, which we recognize as a circular paraboloid opening upward whose axis is the z-axis.

2 r{u,v)={1+2u}i+(—v+30)j+ (2+4u+5v)k={1,0,2) +u{2, —1,4) + +(0,3,5). From Example 3,
we recognize this as a vector equation of a plane through the point (1, 0, 2} and containing vectors a = {2, -1, 4)
and b = (0, 3,5). If we wish to find a more conventional equation for the plane, a normal vector to the plane is

i jk
axb=|2 -1 4|=-17i-10j+6k
0 3 5

and an equation of the plane is —17(z — 1} — 10(y — 0) + 6(z — 2} = O or — 17z — 10y + 6z = —5.

3. r(x,8) = {x, cosf,sin ), so the corresponding parametric equations for the surface are
t =z,y = cosf, z = sind. For any point (z, y, z} on the surface, we have y° 4 2° = cos?# + sin? 0 = 1, so any

vertical trace in x = k is the circle y2 + 22 = 1, x = k. Since z = x with no restriction, the surface is a circular

cylinder with radius 1 whose axis is the x-axis.

4 r(z,0) = {x,zcos 8, zsinB), so the corresponding parametric equations for the surface are & = z, y = z cos 6,

2cos? 0 + 2% 5in% @ = 22, With > = z and

z = z sin §. For any point {x, y, z) on the surface, we have y? + 2% =
no restrictions on the parameters, the surface is 2° = ¢ + 22, which we recognize as a circular cone whose axis is

the x-axis.

B.or(u,v) = (u®+L¥+Lutov), - 1<u<l-1<v <L
The surface has parametric equations z = u* + 1,y = v> + 1,
z=u+v,-1<u<l, -1 <y <1 If we keep 1 constant at
ug, ¢ = ug + 1, a constant, so the corresponding grid curves must
be the curves parallel to the yz-plane. If v is constant, we have

¥ = v + 1, a constant, so these grid curves are the curves parallel

to the xz-plane.

6 r(u,v)= <u+v,u2,v2>, —-1<u<l,~-1<pv <1,

2

L]

The surface has parametric equations = u + v,y = u
z=19% -1 <u<l —1<v <1 Ifu=wugis constant,
y = uf = constant, so the corresponding grid curves are the

curves parallel to the zz-plane. If v = vy is constant,

z = v = constant, so the corresponding grid curves are the

curves parallel to the zy-plane.
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7. r{u,v) = (cos® ucos® v, sin® ucos® v, sin® v).

The surface has parametric equations z = cos® u cos® v,

y =sin® ucos® v, z = sinv, 0 < < 7,0 < v < 27, Note

that if v = vg is constant then z = sin® v is constant, so the

corresponding grid curves must be the curves parallel to the

xy-plane. The vertically oriented grid curves, then, correspond
to 1 = ugy being held constant, giving & = cos® ug cos® v,
y = sin® ug cos® v, z = sin® v. These curves lie in vertical

planes that contain the z-axis.

. r{u,v) = {cosusinv, sinusin v, cos v + Intan(v/2)).
The surface has parametric equations & = cosu sin v,
y =sinusiny, z = cosv + lntan(v,/2),0 < u < 2,
0.1 < v < 6.2. Note that if v = vy is constant, the parametric

equations become x = cos usin vp, ¥ = sin usin vy,

z = cos v + In tan(wva/2) which represent a circle of radius

sintg in the plane z = cosg + In tan(vy/2). So the circular

grid curves we see lying horizontally are the grid curves with v
constant. The verticatly oriented grid curves correspond to

u = up being held constant, giving £ = cos ug sinw,

¥ = sinwug sinv, z = cosv + Intan(v/2). These curves lie in

vertical planes that contain the z-axis.

. & = cos usin 2v, y = sinwusin 2v, z = sinv.
The complete graph of the surface is given by the parametric

domain ¢ < u < 7,0 < v < 2w. Note that if v = v is

constant, the parametric equations become ¢ = cos u sin 2ug,

y = sinw sin 2vq, z = sin vy which represent a circle of radius U constant

sin 2vg in the plane z = sin vg. So the circular grid curves we

see lying horizontally are the grid curves which have y 0

v constant. The vertical grid curves, then, correspond to u = ug v constant
being held constant, giving z = cos o sin 2v and

1y = sin ug sin 2v with z = sin v which has a “figure-eight”

shape.
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10. x = usinucosv, y = ncosucosv, z = usinv,
We graph the portion of the surface with parametric domain
0 <wu<4dr 0<v <27 Note that if v = vp is constant, the
parametric equations become z = wsin © cos vy, ¥ = U COS U COS Vg,
z = usinvg. The equations for z and y show that the projections

onto the zy-plane give a spiral shape, so the corresponding grid

curves are the almost-horizontal spiral curves we see. The vertical 10

grid curves, which look approximately circular, correspond to u COﬂgtam
u = ug being beld constant, giving & = uy sin up cos v, 1 constant

. 10
Y = g COS Up COS U, 2 = Ug sin v, 10

. r{u,v) = cosvi+ sinvj + uk. The parametric equations for the surface are & = cosv, y = sinv, z = u. Then
2’ +y° = cos® v + sin’ v = 1 and z = u with no restriction on w, so we have a circular cylinder, graph IV. The
grid curves with u constant are the horizontal circles we see in the plane z = . If v is constant, both 2 and y are

constant with z free to vary, so the corresponding grid curves are the lines on the cylinder paralle] to the z-axis.

. r(w,v) = wcosvi+usinvj+ uk. The parametric equations for the surface are £ = ucosv, y = usinv, z = w.

Then 2% + y* = u? cos® v + u? sin® v = u? = 22, which represents the equation of & cone with axis the z-axis,

graph V. The grid curves with u constant are the horizontal circles we see, corresponding to the equations

x® + y* = u® in the plane z = w. If v is constant, z, y, z are each scalar multiples of v, corresponding to the

straight line grid curves through the origin.

. r(u,v) = ucosvi+ usinvj + vk. The parametric equations for the surface are & = wcosv,y = usinv, z = v.
We look at the grid curves first; if we fix v, then x and y paramelrize a straight line in the plane z = v which
intersects the z-axis. If u is held constant, the projection onto the xy-plane is circular; with z = v, each grid curve is

a helix. The surface is a spiraling ramp, graph 1.

2 2

.z =u’ y = usinv, z = ucosv. Then y? + 2% = u?sinv? + u? cosv? = w2, s0 if u is held constant, each grid
curve is a circle of radius « in the plane x = u°. The graph then must be graph IIL If v is held constant, so v = g,
we have y = usinvg and z = ucos vo. Then y = (tan vo)z, so the grid curves we see running lengthwise along

the surface in the planes y = kz correspond to keeping v constant.

. & = (u—sinu)cosv, y = (1 — cosu)sinv, z = u. If u is held constant, x and y give an equation of an ellipse in
the plane 2 = w, thus the grid curves are horizontally oriented ellipses. Note that when u = 0, the “ellipse™ is the
single point (0,0, 0), and when u = 7, we have y = 0 while z ranges from — to , a line segment parallel to the
z-axis in the plane z = m. This is the upper “seam” we see in graph II. When v is held constant, > = w is free to

vary, so the corresponding grid curves are the curves we see running up and down along the surface.

-z = (1 —u)(3+cosv)cosdmu, y = (1 — u)(3 + cosv)sindmu, z = 3u + (1 — w) sinv. These equations

correspond to graph VI: when u = 0, then 2 = 3+ cosv, y = 0, and z = sin v, which are equations of a circle with

radius 1 in the zz-plane centered at (3,0, 0). When u = % then x = % + % cosv,y =0,and 2 = % + % sin v,

which are equations of a circle with radius 3 in the zz-plane centered at (2,0, 2). Whenw = 1,thenz =y =0

and z = 3, giving the topmost point shown in the graph. This suggests that the grid curves with u constant are the

vertically oriented circles visible on the surface. The spiralling grid curves correspond to keeping v constant.
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17. From Example 3, parametric equations for the plane through the point (1,2, —3) that contains the vectors
a=(LI,—Dandb={(l,-L,Daecz=1+u{l)+o(l)=1+u+v,y=2+u(l)+ov(-1)=2+u—uv,
z==34+u(-1)+v(l}=-3-u+uv

. Solving the equation for z gives 22 = 1 — 22% — 4y = 2z = —/1 — 222 — 4y2 (since we want the lower half

of the ellipsoid). If we let z and y be the parameters, parametric equations are * = &, §¥ = ¥,
z=—/1— 222 — 432
2

. 1
Alternate solution: The equation can be rewritten as +22=),andifweletz = — ucosv

(1/v2) (1/2 V2
andy:%usinv,thenz:—\/1—2$2—4 2=—\/1—u2coszvmu2sin2'u:—\/l—uz,whereﬂgug1

and 0 < v < 27,

. Solving the equation for y gives 3 = 1 — z° +2° = y =+/1 — 22 + 22. (We choose the positive root since

we want the part of the hyperboloid that corresponds to y > 0.) If we let  and z be the parameters, parametric
equations arez = x. 2 =z, ¥y = V1 — x? + 22,

Lz =4 -1y% 227 y =y, 2= 2 where y® + 22% < 4since z > 0. Then the associated vector equation is

r{y,z) = (4 -y* - 229)i+yj+zk

. Since the cone intersects the sphere in the circle 22 + 3* = 2, z = /2 and we want the portion of the sphere above

this, we can parametrize the surfaceasc =z, y =y, z = m where 22 + y? < 2,
Alternate solution: Using spherical coordinates, z = 2sin¢cos#, y = 2sin¢sinf, z = 2cos ¢ where 0 <
and 0 < 8 < 27,

. In spherical coordinates, parametric equations are & = 4sin ¢ cosf, y = 4sin ¢ sinf, z = 4 cos ¢. The intersection
of the sphere with the plane » = 2 corresponds to 2 = 4cos¢p =2 = cos¢ = = ¢ = %. By symmetry,
the intersection of the sphere with the plane z = —2 corresponds to ¢ = 7 — £ = =T, Thus the surface is described

T 2w
by <f#<2m <0< 5.
. Parametric equationsare r = =,y = 4cosf, z = 4sinf, 0 <z < 5,0 < 4 < 27,

. Using & and y as the parameters, z =,y =y, 2 = = + 3 where 0 < * + y2 < 1. Also, since the plane intersects
the cylinder in an ellipse, the surface is a planar ellipse in the plane z = & + 3. Thus, parametrizing with respect to s
and @, we have x = scosf, y = ssinf, 2 =3 + scosfwhere 0 < s < land (0 < 8 < 27,

. The surtace appears to be a portion of a circular cylinder of radius 3 with axis the z-axis. An equation of the

cylinder is ° + 2° = 9, and we can impose the restrictions § < 2z < 5, y < 0 to obtain the portion shown.

To graph the surface on a CAS, we can use parametric equations x = u, ¥ = 3 cos v, £ = 3sinv with the parameter
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domain0 <4 <5, 3 <v< 37” Alternatively, we can regard x and z as parameters. Then parametric equations
arer =r,z2=2z4§=—v9— 22, where0 <z <5Hand -3 < 2 < 3.
26. The surtace appears to be a portion of a sphere of radius 1 centered at the origin. In spherical coordinates, the sphere

has equation p = 1, and imposing the restrictions 3 < # < 2m, & < ¢ < 7 will give only the portion of the sphere

shown. Thus, to graph the surface on a CAS we can either use spherical coordinates with the stated restrictions, or

we can use parametric equations: x =singcost, y = sin¢sind, z =~ cos¢h, § <6 <21, 7 < ¢ <.

21. Using Equations 3, we have the parametrizationz — z,y = e " cosf, 2 = e “sin8,0 < 2 < 3,0 < ¢ < 27,

28. Letting ¢ be the angle of rotation about the y-axis, we have the parametrization z = (432 — y*) cos 4, y = v,

z:(4y2—y4)sin9,—2§'yS2,059§27r.

29. (a) Replacing cos u by sin u and sin u by cos u gives parametric equations
z = (2+sinv)siny, y = (2 + sinv) cosu, z = u + cos v. From the graph, it
appears that the direction of the spiral is reversed, We can verify this observation
by noting that the projection of the spiral grid curves onto the xy-plane, given by
x={2+sinv)sinu, y = (2 + sinv) cosu, z = 0, draws a circle in the
clockwise direction for each value of w. The original equations, on the other hand,

give circular projections drawn in the counterclockwise direction. The equation for

z is identical in both surfaces, so as z increases, these grid curves spiral up in

opposite directions for the two surfaces.
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(b) Replacing cos u by cos 2w and sin u by sin 2u gives parametric equations
x = (2 +sinv) cos 2u, y = (2 + sinv) sin 2u, z = u + cos v. From the graph, it

appears that the number of coils in the surface doubles within the same parametric

domain. We can verify this observation by noting that the projection of the spiral

grid curves onto the zy-plane, given by z = (2 + sinv) cos 2u,

4104
W\
B

W
AN

3

y = (2 + sinv) sin 2u, z = 0 (where v is constant), complete circular revolutions

I
-
v

for 0 < u < 7 while the original surface requires 0 < u < 27 for a complete

N
&

N

W

revolution. Thus, the new surface winds around twice as fast as the original
surface, and since the equation for z is identical in both surfaces, we observe twice

as many circular coils in the same z-interval.

30. First we graph the surface as viewed from the front, then from two additional viewpoints.

The surface appears as a twisted sheet, and is unusual because it has only one side. (The Mobius strip is discussed in

more detail in Section 17.7 [ET 16.7].)

cr{u,e) = (uto)it+3uij+(u—-vk
r.,=i+6uj+kandr, =1—k,so
ry X r, = —6ui+ 2j — 6uk. Since the point (2, 3, 0)

corresponds to v = 1, v = 1, a normal vector to the surface at

{(2,3,0)is —61 4 2j — 6k, and an equation of the tangent plane is

—br+2y—6z=—-6ordr—y+3z=3

cr(u,v) =wdit et uwk = p(L1)=(1,1,1).

ry = 2ui+vkandr, = 2vj+ uk, s0 a4 normal vector to the

surface at the point {1,1,1) is
ro{l,1) xr(1,1) = (2i+ k) x (2j+ k) = —-2i —2j+4k.
Thus an equation of the tangent plane at the point (1,1,1) is

“2Arx—-1)-2y—-1+4z—1)=00rz+y—2z=0.
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33 r{u,v) =u’i+ 2usinvj+ucosvk = r(l1,0)=(1,0,1).
r, =2ui+4 2sinvj+cosvkandr, = 2ucosvj — usinvk,
so a normal vector to the surface at the point (1,0,1) is

r.{1,0) x r,(1,0) = (2i+ k) x (2j) = —2i + 4k.

Thus an equation of the tangent plane at (1,0, 1) is

2x-1)+0y—-0)+4(z-1)=00r —z+2z=1.

L r(u,v) =wvitusinvj+wvcosuk = r(0,m)=(007x).
ry =vi+sinvj—vsinukandr, = ui+ ucosvj+ cosu k, so
a normal vector to the surface at the point {0,0, 7) is
r.(0,m) x ry(0,7) = (wi) x (k) = —=j. Thus an egnation of the

tangent plane is —w(y — 0) = 0ory = 0.

. Here z = f(x,y} =4 —x — 2y and D is the disk z° } 3 < 4. Thus, by Formula 9,

AS) = [ VT+ (1P +(-2)2dA= V6 [f,dA= V6 AD) = 46

.1y = (0,1, =5}, r, = {1,~2,1),and ry, x r, = (—9, 5, —1}. Then by Definition 6,

1 1 1 1
A(S)z// |ru><rv|dA:]f E(—Q,—S,-l)|dudv=\/107/ du/ dv — /107
D 1] 0 0 0

cz=flryy)=zywitho <z’ 4y’ < Lsofo=y, fy=2 =

r=1

27 pl -2
A(S):/f 1+y2+:n2dA_—.f / \/T2+1rdrd9:/ [13 (r2+1)3/2] do
D 1] 0 [ -

r=0)

=fozr%(2\/§1)d9=%”(2\/'—1)

L 2= flz,y) =1+ 3z 4+ 2y° with0 < 2 < 2y, 0 < y < 1. Thus, by Formula 9,
AS) = [[, /T3 + (@) 2dA = f) [ /10 + 162 dedy = [} 2y /10 + 1632 dy
i
= & - 310+ 169)"?] = £ (262 - 10°/2)
.z = flx,y) = % — 22 with 1 < 2% + 32 < 4. Then
AS) = [[pV1+ 4z + 42 dA = [ [T+ &2 rdrdd = [T d [P V1+ 42 rdr
PR 23/2)® _ n (17 /77— 5/5
= [0]y" [Ha+a™? = 2(17VIT-5VE)
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40. A parametric representation of the surface is z = ¥ + 2%, y =y, 2 = z with 0 < v +22 <9
Hencery xr, = (2yi+j) x (2zi+ k) =i —2yj—2zk.

9 [0y

Note: In general, if z = f{y,z) thenry xr, =1— 3y -3,

A(S) = // \/1+ of +(~»~f-) dA. Then

A(S) = ff 14+ 4y? + 422 dA = \/1+4T2Tdrd9

0<y2 4229

3
= [3T b JS e VTF I dr = 2m | (1 + 4r?)?] = 5(37V37 - 1)

. A parametric representation of the surfaceis ¢ = x, y = 4z + 2 z=zwith0<z<1,0£2z<1.

Hencery xr, = (i+4j) x (22 + k) =4i—j+2zk.

. af, . 08
Note: In general, ify = f(x,2) thenry xr, = 8_3{ i—-j+ :9_‘: k and

= ) B
A(S) = [ [I V1T + 422 dade = f) V1T + 422 dz
VT4 422 + S22+ VB2 417 m - (24 V2 ) - In V7]

. Let S be that portion of the surface which lies above the plane z = 0. Then A(S) = 24(8:) by symmetry.

)
z a
— 2 2 = s
On 51,z = Va2 — 22 50 |rp X 1yl 1+ 72 ok Hence

a

A(Sy) = f[ Tt /f\/“r“mdydmf—

0<a? + 3% <a?

2a dx = 4a’.

Thus A (§) = 8a?.

Alternate solution: If A{(Sz) is the surface area in the first octant, then A(S}) = 8A(S:). A parametric
representation of the surface in the first octant is & = asiné, y = ¥, z = a cos § ( being the angle in the zz-plane

measured from the positive z-axis), where 0 < & < Z and 0 < y < acos 8. The restrictions on y follow from:
22 +y? <a?ora?sin® @+ y? < a?soy? < a®(1 —sin? §); thus in the first octant 0 < y < acosf. Then
r, x rg — (—asin®, 0, —acos®) and A{S;) = W/Q MOSB adydd = 7r/2 a’ cos0df = a*

Hence A(S) = 8a®.

. Let A{S7) be the surface area of that portion of the surface which lies above the plane z = (. Then

A(S) = 2A(S)). Following Example {0, a parametric representation of 5 is ¢ = asin¢cos 8, y = asin ¢ sin 6,
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z=acosgand |ry x rg| = a’ sin¢. For D, 0 < ¢ < Z and for each fixed ¢, (x — %a)2 +yf < (%a)2 or
[asingcosd — %a]2 + a?sin’® ¢sin® 0 < (a/2)* implies a? sin® ¢ — a sinpcos @ < 0 or
sing (sing —cosf) < 0. But0 < ¢ < Z,s0cos6 > sin<;501'sin(-’2E +9) >singorg— 5 <8<~ o

Hence D ={(¢.8) |0< ¢ < 3, ¢—Z <9< I — ¢} Then
A(S1) = fl;r/zf‘;tf(zi/;;ﬁ a’singdfdo = a® W/Z {m — 2¢) sin¢g dop
=a” [(—x cos ¢} — 2(— qbcosa&—l—qlnqt))}"/z a’(m—2)

Thus A(S) = 2a* (7 — 2).

Alrernate solution: Working on 51 we could parametrize the portion of the sphere by x = z, y = v,

2 2

:\/112—slzz—yz.Then|r:,,><ry|:\/1-}-a2_z2 + = Y = g and

-2 a?—x? g2 a2 — 2 — g2

/2 & cos @

A(Sl)sz 2 _dA= el rdrdd
0< (2 (a/2)? +92 < (a/2)2 /a2 — 2% — 2 —r/2.J0 va? —r?

r=ac056'
= 7[5, —ala® 1) df = ["/%, a®[1 - (1 - cos 6)'/%) B

r=4

—fﬁo{-,z/z (1 —lsin@]) df = 2a 2f"/2{1—siné))d6=2a2(325 —1)

Thus A(S) = 4a®(% - 1) = 2a*(x - 2).
Notes:

{1} Perhaps working in spherical coordinates is the most obvious approach here. However, you must be carefu]

in setting up D,
(2) In the alternate solution, you can avoid having to use |sin #| by working in the first octant and then

multiplying by 4. However, if you set up S as above and arrived at A(S1) = a®n, you now see your error.

M. r, = {cosv,sinv,0),r, = (—usinv,ucosv, 1), and ry x ry, = {sinv, — cosv, u). Then

S)=/W/l\/1+u2dudv:/Tdvfl\/l+u2du
0 Jo Jo 0
:ﬂ-[% uz+1+%ln1u+\/u2+1H:=%[\/5%—111(1%—\/5)]

4. ry = {v,1,1), 1o = {t,1, 1) and ry, X T, = (=2, + v,v — u}. Then
S)=Jf iz VAT BT 207 A = (7 [T o VAT D drdf = [T d [} r VI 2 dr
__27r[ (1+2r )3/2] - (6\/_ ):w(zx/“'—%)

© Brooks/Cole UK under business license to TT inc.

605




Intended for the sole personal use of the stipulated registered user only.
606 1 CHAPTER17 VECTOR CALCULUS ET CHAPTER 16
86. z = f(x,y) = cos(z® + y*) with 2z + 4* < L.
A(S) = [f, V1 + (—2zsin(z? +y2))? + (—2ysin(z? + y?))2 dA

= {f, V' 1+ 4dx?sin?(x2 + y2) + 4y2sin®(22 + y2) d4

= [f, 1+ 4(2? + y?) sin*(a? + y?) dA

= [P T A sin? (7 2) rdrdf = [77dO [ r/T+ 4rZsin®(r2) dr

=2 [\ r /1 + 4r?sin®(r?) dr ~ 4.1073

4. =z = fz,y) = e ¥ with2? + ¢* < 4.

A(S) = flp 11 (- 2me = 9) + (~2gem=*-v) dA

= fp V1+4(2? + y2)e 2T dA
- 0%- f(;z \/WT{)&' df = fuzw d6 fgz"" 1 + dr2e—2r2 gp
=2 [2r 1+ 4r2e=27? dr ~ 13.9783

1+z° 2%
48, Let f(.'E,y) = ryz Then f:r = W’

. Dy 2y(1 + z%)
= (1+z%)| - = — ;
We use a CAS to estimate

I VT 72+ 7 dydo ~ 2.6959.

In order to graph only the part of the surface above the

square, we use — (1 — [z|) < ¢y <1 — |&] as the

y-range in our plot command.

49. (a) The midpoints of the four squares are (1, 1), (1,2), (3,1}, and (2, 3); the dertvatives of the function

flz,y) = o* + o7 are fo(z,y) = 2z and f,(z,y) = 2y. so the Midpoint Rule gives

AS) = [} [T @y + (@ 9 + ldyda

(b) A CAS estimates the integral to be

A(S) = [y J) /TE+ JZ+ Ldydz = [} fy /427 + 4y? + L dydz ~ 1.8616. This agrees with the

Midpoint estimate only in the first decimal place.
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50. r(u,v) = {cos® ucos® v, sin® u cos® v, sin® v}, s0 Ty, = {—3cos” usinucos® v, 3sin” wcos ucos® v, 0),
r, = {—3cos’ ucos® vsinv, —3 sin® ucos’ vsinv, 3sin’ v cos v}, and

r. % ry, = {9 cosusin® ucos’ vsin® v,9 cos® usin ucos* vsin® v,9 cos® usin® u cos® vsinv). Then

Irw X ry| =9 v/ cos? usin® ucos® vsin® v + cos? usin? u cosd v sin® v + cost u sin® u cos'® vsin? v

=9 \/cos2 usin® ucos® vsin? v (sin? v + cos? usin® 4 cos? v)

2

4 P . . .
= 9cos? vjcosusinusiny| v/sin? v + cos? usin? u cos? v

Using a CAS, we have

2 . . ; -
A(S) = [T J77 9cos® v |cosusin usinv] v/sin? v + cos? usin® u cos? v dv du ~ 4.4506.

51. z = 1 + 2z + 3y + 437, so

A(S)—f[g\/1+(g§)2+(g;) dA = /14 fol VITA+ (3+8y) dyde

= [} [} /14 + 48y + 6432 dy de. [

Using a CAS, we have

Sl VI 48y + 64y dydz = £ V14 + B1n(11V5 +3V14VE) - B 1n(3v5 + vI1VE)

A/‘* 15 V54370
or 14 4 3 In YRS,

52. (a)r, = acosvi+bsinvj+2uk, r, = —ausinvi+ bucosvj+ 0k, and

r, X r, = —2bu’cosvi— Zau?sinvj + abuk.

A(S) = [27 2 fru x vyl dudv = [77 [2 \/4b%u cos? v + daPutsin® v + a?bPu? du du

(b) £* = a*u®cos® v, 3 = b*u’sin®v, 2= u® = z¥a® 4 ¥%/b? = u® = z which is an elliptic paraboloid.

Tofind D, noticethat ) < u <2 = 0<z<4 = 0< zz/a2 + yz/b2 < 4. Therefore, using Formula 9,

b 4-—(12/a2
we have A(S) = / ] V14 (22/a?)2 + (2y/b2)2 dy dz.

b 4~—(:1:2/a

{c) (d) We substitute ¢ = 2, b = 3 in the integral in part (a) to get

A(S) = 02" joz 2u+/9u? cos? v + du2 sin® v + 9 du dv. We

use a CAS to estimate the integral accurate to four decimal

places. To speed up the calculation, we can set Digits:=7;
(in Maple) or use the approximation command N {in

Mathematica). We find that A(S) =~ 115.6596.
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B3. (a) x —asinucosvy, y = bsinusiney, z = ccosu =
2 2
+

C2

xr _ . 2 B . 2 2
— + = (sinucosv}® + (sinusinv)® + (cosu)

a b2

=sinfu+cosfu=1

and since the ranges of u and v are sufficient to generate the

entire graph, the parametric equations represent an ellipsoid.

{c) From the parametric equations {(witha = 1,5 = 2, and ¢ = 3), -
we calculate r,, = cosucosvi+ 2cosusinyj— 3sinuk and *
r, = —sinusinvi+ 2sinucosvj. Sory x r, = 6sin® ucosvi+ 3sin® usinv j + 2sin ucosuk, and the

surface area is given by

A(S) = Ogﬁfoﬂ Ity X ry| dudu

"Iy /36 sin* wcos? v + 9sin® usin? v + 4 cos? usin? u du dv

54, (a) * = acoshucosv, y = becoshusiny, z = csinhuy =

w2 2 2

x z
=+ 1;—2 - = = cosh? ucos® v + cosh? usin? v — sinh?
C

=._cesh2 u—sinh?u=1

and the parametric equations represent a hyperboloid of one sheet.

r, = sinhwcosvi+ 2sinhwusinv j+ 3 coshuk and

r, = -~ coshusinvi+ 2coshucosv j, so
ry x ry = —6cosh? ucosvi — 3cosh® usinvj + 2coshusinh u k. We integrate between

w=sinh™!(~1) = —In(1+ v/2) andw = sinh ™ 1 = In(1 + v/2}, since then z varies between —3 and 3,
as desired. So the surface area is

27 ]n(l—!—\/_
f f Ty x 1| dudv
In 1+\/‘

2r pln(1+ vE)
/ f \/36 cosh? ucos? v + 9cosh? usin? v + 4 cosh? usinh? udu dv
ln 1+ \/_

55. r(u,v) = (cos® ucos® v, sin’® wcos® v, sin® v}, so r, = (—3cos® usinucos® v, 3sin® v cosucos® v, 0},
Iy = <73 cos® u cos® vsinv, —3 sin® u cos® vsinv, 3sin® v cos v), and

Ty X Ty = (9 cosu sin® ucos vsin? v, 9cos? wsinwu cos? vsin? v, 9 cos® u sin® u cos® v sin "U>. Then

|ty x Ty =9 \/(:os2 wsin? ucos? vsin? v + cos? usin? wcosP vsin? ¢ + cost usin? u cos'? v sin? v

=9 \/c032 usin? u cos® vsin? v (sin? v + cos? usin? u cos? v)

2

4 . . . '
=Ocos v|cosusmusmfu\\/51n2v+c052u51n U Cos? v

Using a CAS, we have A(S) = [ [™ 9cos® v |cos usin usinv| V/sin? v + cos? u sin® u cos? v dv du = 4.4506.
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56. (a) Here z = asina, y == |ABJ, and z = |OA|. But

|AB|
0B
|04

y = |OB|sinf = (b+ acosa)sind. Similarly cos 8 = OB 50

|OB| = 10C| +|CB| =b+acosaandsind = so that

z = (b+ acos @) cos f. Hence a parametric representation for the
torusis z = bcos@ + acosacosd, y = bsinf + acosasin g,

z=asina, where ) <o < 27,0 <0 < 2.

(b)

(¢)x = bcosB + acosacost, y = bsinf + acosasin g, z = asinea, so

re = (—asincocosd, —asinasing, acosa), rg = (— (b+ acosa)sind, (b+ acosa)cosf, 0) and
2 2\ . 2 . 2 o\ s
ro X rg = {—abcosacosf — a” cos acos )i+ (—absinacosd — a’sinacos 0)
2 . 2 2 A .2 . 2 .2 B

+(—abcos asind — a” cos® avsinf cosd — absin® asind — a” sin aschosG)k

=—a(b+acosa)[{cos@cosa)i+ (sinfcosa)j+ (sina) k|

Then |ra x rg| = a(b+ acosa) v/cos? fcos? a + sin® fcos? a + sin® o = a (b + a cos ).

Note: b > a, —~1 < cosa < 150 |b+ acosal = b+ acosa. Hence

A(S) = [T 2" a(b+acosa)dadf = 2n faba + a* sinoz]f}1T = 4n%ab.
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17.7 Surface Integrals ET 16.7

1. Each face of the cube has surface area 2° = 4, and the points P} are the points where the cube intersects the
coordinate axes. Here, f(x, ¥, 2z) = /22 + 2y2 + 322, so by Definition 1,

S s f@,y,2)dS ~ [£(1,0,0)](4) + [f(=1,0,0)](4) + [£(0, 1,0)](4) + [f(0, —1,0}](4)
+[£{0,0,1)](4) + [£(0,0, —1}](4)
:4(1 +1+2\/§+2\/§) =8(1+\/§+\/§) =~ 33.170

. Each quarter-cylinder has surface area 3 [27(1)(2)] = n, and the top and bottom disks have surface area m(1)? =
We can take (0,0, 1) as a sample point in the top disk, (0,0, —1) in the bottom disk, and (£1,0,0), (0, £1,0) in
the four quarter-cylinders. Then [/ s f(z,y, 2} dS can be approximated by the Riemann sum
F(1,0,0)(x) + f{=1,0,0)(r) + f(0,1,0) (m) + £(0,—1,0)(w) + (0,0, 1)(r) + f(0,0, = 1)

=(2+24+3+3+4+ 47

)
= 187 ~ 56.5.

. We can use the zz- and yz-planes to divide H into four patches of equal size, each with surface area equal to % the

surface area of a sphere with radius v/50, so AS = z(4)x(v/50 )2 = 25#. Then {43, 44, 5) are sample points in
the four patches, and using a Riemann sum as in Definition 1, we have

[] 1 F(z.y,2)dS = £(3,4,5) AS + £(3, —4,5) AS + £(—3,4,5) AS + f(~3,—4,5) AS
= (T+ 8+ 9 + 12)(25%) = 9007 ~ 2827

. On the surface, f{z,y,2) = g(\/;ﬁ +y2 4+ zz) = g(2) = —5. So since the area of a sphere is 471,
I fle,y,2)dS = [[49(2)dS = =5 [[ dS = —5[4n(2)*] = —80m.

b z=142x+ 3yso 9z = 2 and 0z = 3. Then by Forrula 2,
Ox dy

]f rzyzdS:/f $2y2\/(%)2+(%)2+1d14

s Or By
ﬁfﬂ o 2'y(142x +3y) VA+ 9+ Ldyde
ﬂ\/ﬁfo fo(a: y + 22y + 32%y?) dy dx
=\/ﬁf0 [32%9° + =%y +:r:y] dsc

:\/ﬁﬁ)(mm + 4z )daf;:\/l_[w:zra'Jr:c] =171/14

6. Sistheregionintheplane2z +y+2z=20rz=2-2z —yover D = {(z,y) |0 < < 1,0 < y < 2 — 2z}
Thus

JfszydS = [fyzy/ T2+ (-1 +1dA
=6 [} [2° 2$$ydyd$—\/_f0 1oy g

y=0

=32@f01{4a:—8x2+4x3)d93:32@(2+%+1) :yé_é
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1. Sis the part of the plane z = 1 — x — y over the region D = {(z,y) | 0 <z < 1,0 <y <1 — z}. Thus

[fevzdS=[fu(l -z~ /(-1)2+(-1)> + 1dA
=3l s " (y—wy—yz) dydz = V3 [; [3y°

1

—\/_f (1-1z) dx:—%f(l—sc)“] =

0

8 = §($3/2 + 4%/%) and

ﬂgyd5=fny\/(\/5)2+ (Vi) +1dA= [} [JyVTTyFldedy

= fo [ T+y+ 1)3/2L dy = fo 3y[ Y +2)3/2 (y+ 1)3/2] dy
Substituting « = y + 2 in the first term and ¢ = y + 1 in the second, we have

=£ 23(u — 2)113/2du -2 ff(t — 1)1&3/2 dt

2
2.7/2 2.8/2
3 [?f — 5t ]

2{2 W'’ _ 4 5/2]
3 1

2

=3[367 -2 - 4 ) - 3 - B - )]

(;§f+385f ):%(9\/5—!—4\/“—2)

9. Sis the portion of the cone 2% = % + 3 for 1 < z < 3, or equivalently, S is the part of the surface z = 1/z? + 42
over the region D = {(z,y) | 1 <z® +¢* < 9}. Thus

//33222115 ff m+y)¢(m)2+(ﬁ)z+ld¢4

ff a:+y)1,'m2_ty2+1dA // V222 (2 + )

—\/_f f1 (rcos8)? rdrd@—\/_f cos Gdﬂf r®dr

= \/ﬁ [%9 + isin 2!9]3Tr [%TBE’ = \/i(‘,'r) . %(36 1) = 36’43\/5 -

10. Using y and 2 as parameters, we have r(y, z) = (y +22°)i+ yj+ 2k, 0<y < 1,0< 2 < 1.
Thenry xr, =(i+j) x (4d2i+k)=i—j—4zkand iry x r,| = v/2 + 1622. Thus

[lszdS = [y Js V2V 1622dydz = [ /25 1627 dz = [ﬁ . %(2+1622)3/2

= L1832 - 2% = 18/

1. Using x and z as parameters, we have r(z, z) = zi + (2% + 22)j + 2k, 22 + 2% < 4. Then
re X1, =(i+20]) x (22j+k)=2ri-j+2zkand [t X r.f = V422 + 1+ 427 = /1 + 4(2? + 22).
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Thus

[fsvdS = [ (@ +22)11a@+225)dA= [27 [ VI +arirdrdd

z24z2<4

= Ohdef 1+4r2rd1"—2'n“f 21+ 4r2rdr
letu=1+4+47> = r2=%(u-1)and§du=rdr]
=2r {17 Lu—1)yu- bdu = L [T - u}?) du

7 by
=ﬁﬁ{§u5/2—%u3/2}1 —ir [ (17)3/2 — 2(17)3/2 g_,r_%} =6—0(391‘/ﬁ+1)

12. Here S consists of three surfaces: 5, the lateral surface of the cylinder; Sa, the front formed by the plane
x +y = 2; and the back, 53, in the plane y = 0. On S;: using cylindrical coordinates,
r{f,y) —sinfi+yj+cosfk 0<6<2r,0<y<2-sinf,|rs xr, = land

I, zydS = J27 [2508 (sin @) y dy dO = 7 [2sin0 — 2sin® 6 + L sin 6] df = ~2m
OnSo:r(z,2) =zi+ (2 —x)j+zkand |rg x r,| = |—i — ji = +/2, where % + 2° < 1 and
ff rydS= ff (2751:)\/5(1/1:] fo 2 (2rsin@ — v sin® §) r dr d

2422 <12

_\/_j [2sind — ] sin® B}dt?—m-{?r
Onngy:Osoffsazcyd8=(].Henceffsrryd.’S:—2#—34@7r:——i(8+\/§)7r.

. Using spherical coordinates and Example 17.6.10 [ ET 16.6.10] we have
r(¢,8) = 2sin¢cosfi+ 2singsinfj + 2cosdk and |ry X rg| = 4sing. Then

[fs(@®z + y22)dS = [T [7/* (4sin? ¢)(2 cos ¢)(4sin ¢) dp df = 16w sin’ g];/* = 16m.

. Using spherical coordinates, r(¢$, 8} = singcosfi+singsinfj+cosgk, 0 < ¢ < %,
0 <68 < 2w, and |ry x rg| = sin¢ (see Example 17.6.10 [ET 16.6.101). Then
[fgayzdS = [ [T/ (sin® pcos pcos Osinf) dg do = O since [ cosOsingdf = 0.

. Using cylindrical coordinates, we have r(#,z) = 3cosfi+ 3sinfj+ zk, 0< 8 < 2r, 0 <2< 2,
and |rp x r,| = 3.

ffs(w?y—i—zg)dS:f fo (27 cos® @sin 6 + 2°) 3dz df = f (162 cos” fsin @ + 8) db = 167

. Let 5, be the lateral surface, S the top disk, and 53 the bottom disk.
OnS:r{f,2) =3co801+3sindj+:2k 0 <2, 0<2<2 |rpgxr,| =3,
[fs @ +y* +2)dS = 7 [7(9+2%) 8d2df = 2n(54 + B) = 124n.
On Sa:r(d,r) =rcosfi+rsinfj+2k 0<r<3,0<8<2x, |I'9Xl‘,~|=?",
o, @ 42+ 22)dS = [77f(r* + 4)rdrds = 2m (% +18) = 182n.
On Ss:r(0,7r) =rcos@i+rsinfj,0 <r <3,0<80 < 2nm, |y x rr\ = F,
Ifs, (2 +y* + 23 dS = j'ozwfg(rz +0)rdrdf =2n(8) = &x,

Hence ff (z* +y° +2%) dS = 124m + 1837 + 87 = 241,

r{u,v) = witusinvjtucosvk 0<u<1,0<u< #/2 and

r, xry = (2ui+sinvj+cosvk) x (ucosvj—usinvk) = —ui+2u?sinvj+ 2u’ cosvkand
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Ity X ry| = Vu? + dut sin? v + dud cos? v = /2 + dud(sin® v + cos? v) = u+/T + 4u? (since u > 0). Then

ffsyzdsS = fﬂz fol(usin vi{ucosv) - uv1+ du?dude = fol w1+ 4 du foﬁlz sinv cos v dv

lett =1+ 4u® = u2=i(t—l)and%dt=udu]

-1‘15 é . Zl(t — ])\/Edt foﬂ/2 sinvcosvdy = é flr) t3/2 - \/f) dt fUW/2 sin v cos v dv

5
= 3 357 - 307 e’ o]0 = H(305)77 - 357 - 2+ 3) - 301-0)
wVo+ 7
. T, —cosvi+sinvj, r, = —usinvi4+ucosvj+k = r,xr,=sinvi—cosvj+uk =
It x ro = v1+u2, 50 [fo /1422 +y2dS = fuﬂfol Vit u? Vi+uldudo = §m.
 Fx,y,2) =ayi+yzj+zrk 2 = g(z,y) = 4 — 2% —y?, and D is the square [0, 1] x [0,1], so by Equation 8
[[oF-dS=[[ [-zy(—2x) — yz(—2y) + zz]dA
=fo o2yt 24— — ) 4ot — o — ) dyda
=Jo (32" + Jz -2+ ) de = 13
F(r,y,2) =2yi+ 4 j+yzk, 2 = g(z,y) = ze?, and D is the square [0, 1] x [0, 1], so by Equation 8
[foF-aS= [[ [—xy(e¥) — 42° (xe¥}) + yz]dA = ful fol(kwyey — dxte¥ + zye?) dy da
=fo [~42%e ]V da=(e—1) f{(-4a)dz =1~

CF(z,y,2) =xze¥i-aze’j+ 2k z=glzy) =1 -z —yand D= {{z,y) [0 <z < 1,0<y <1z}

Since § has downward orientation, we have
[lsF-dS=—[f,[-z2e"(-1) = (—z2e¥) (- 1) + z]dA = — [} [[7°(1 — 2z~ y)dydz
jo (32° —x+3)de = -

- F(z,y,2) =zityj+ 2k z =gz, y) = /22 + 32 and D is the disk {(z,y) | 2% + 32 < 1}. Since S has

downward orientation, we have

//F w= ff[ ( ;Cz_,_y)_y(ﬁ)Jrz‘l dA
f/ lzzlz (VE+37) A= - f /( T4)rdrd9
=—[02de fol(rs_rz)dT:—Qﬂ-(% :
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B.Flr,y,z)==zi—z2j+yk z=g(z,y) = /4 — 2% — y? and D is the quarter disk
{(z,9)|0 <z <2,0<y <V4—z2}. §hasdownward orientation, so by Formula 8,

[fF-dS=—[[, {—w - - AT (-22) - (—2) 3@ -2 - y7) P (—2y) +y] dA

VA4 —z?—y?
,ffD (z2 +4?)) "2 dA = —f(;”/z foz(rcosé?)z(fL—TQ)_I/ZTdeQ
—foﬂ/g cos® 6 do f02 (4 —r?) V2 g

letu=4—r* = r*=4-vand—31du=rdr]

//( eV )

T e [0 300 0

— [40+ 4sin26]5" (1) [8 v~ 2 3/2}4

24, F(z,y,z) =azzitaj+yk
Using spherical coordinates, & is given by x = 5singcos 8, y = Ssingsinf, z = Hcos g, 0 < 0 <,
0<d<m Fir(o, )= (bsindcos){beosd)i+ (5singdcosd)j—+ (5sinesind) k and
ry X ro = 25sin® ¢cosfi-+ 25sin® sindj + 25 cos sin gk, so
F(r($,8)) - (ry x rg) = 625sin® ¢ cos ¢ cos® # + 125 sin> ¢ cos B sin § + 125sin? ¢ cos ¢sin b
Then
JfsF-dS = [f, [F(:(6,6)) - (e x x0)] dA
= [ 5 (625sin® ¢ cos ¢ cos® 6 + 125sin® ¢ cos§sin 6 + 125sin® ¢ cos ¢ sin §) df do

=125 f [5sin” pcos ¢ (30 + 1 sin 26) + sin® ¢ (£ sin®8) + sin® peos (-~ cost?)]
=125 f7 (2xsin® ¢cos ¢ + 2sin® ¢ cos ¢) dop
=125[37 - ;sin" @ +2- 3sin®g]] =0

. Let S; be the paraboloid y = 2° + 2%, 0 < y < 1 and 53 the disk 2?4+ 2% <1, y = 1. Since S is a closed

surface, we use the outward orientation, On S1: F(r(z,2)} = (2 + z%)j — zkandrz x r, = 2zi —j+ 22k

(since the j-component must be negative on 51). Then

][5,1 F.dS= [f [—(z"+2%)—2%dA=— Ozﬂfol(ﬂr‘2 + 2r? cos® 0) r dr df
m2+2251

=—[F i1+ 2cos?)df = — (2 +Z) = —x

2

On S2: F(r{z,z)) =j— zkandr; xry =j. Then [, F-dS= ff (1)dA=rm.
224221

Hence [[.F-dS=—7+7=0.
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26. Here S consists of three surfaces: S1, the lateral surface of the cylinder; Sz, the front formed by the plane

 + y = 2; and the back, Ss, in the plane y = 0.
On S;: F(r(f,y)) =sinfi+yj+5kandre xry =sinfi+ cosfk =

fls, F-dS=f7" [75"%(sin® 0 + 5 cos §) dy df
= [ (2sin?8 + 10cos8 — sin® @ — 5sinfcosf) df = 2

OnSa: F(r(z,2))=2i+(2-2)j+5kandr, xry =i+].
ffSQF-dS= I Je+2-2)dA=2r

z2 422 <1

On S3: F(r{z,z)) =zi+5kandr; x 1, = —j soffsaF-dS:O. Hence [f F-dS = 4r.

- Here 5 consists of the six faces of the cube as labeled in the figure. On 5;:
F=i+2yj+3zkr,xr, =iand [f; F-dS=[" [ dydz=4;
Sp:F=gri+2j+3zkr.xr. =jand [fo F-d8=[1 [ 2dzdz=38;
SoF=zi+2yj+3kr.xr, =kand [f; F-dS= ' [! 3dedy=12
Sy F=-i+2yj+ 3zk,r, xry:—iandffS4F-dS=4;

S;:F=ri-2j+3zk r, xr, :—jandffssF-dSZS;
Se: F=zi+2yj—3kr, xr, = —kand ff; F-dS = [ [! 3drdy=12.
Hence [[ F-dS =37 [[. F-dS =48

. ry =cosvi+sinvj,ry = —usinvi+ucosvj+k = r.xr,=sinvi-cosvj+ukand

F(r{u,v}) = usinvi+ ucosvj+ v’ k. Then
JJoF-dS :fowfol(usinzv—ucos2v+m)2) dudv:fowfﬂl(—ucos2v+uv2) du dv
= [y {—5cos2v+ Jv®] dv = 37°

.z =1y = 8z/0z =y, 0z/0y = x,s0 by Formula 2, a CAS gives
ffS ryz dS = folfgl zy (zy) Vy? + 2% + ldr dy ~ 0.1642.

. As in Exercise 29, we use a CAS to calculate

Jfs2®yzdS = [} [} 2%y (ay) /3% + 22 + 1dzdy
=wmV3-In(1+v3) - grln(vV2+1) + 2L V2 Ln2
. Weuse Formula2 withz =3 — 22 — y* = 8z/6z = —4z, 0z/dy = —2y. The boundaries of the region

3222 —y? > 0are /3 <2< \/gand -3 - 222 <y < /3~ 222, so we use a CAS (with precision

reduced to seven or fewer digits; otherwise the calculation takes a very long time) to calculate

2 2 2 Va2 pvs-mto 2342
Ty z dS:[ 27y (3~ 22° — 7)) /1622 + 4y? + 1 dy dz ~ 3.4895
//S —1/3/2J /3 — 222 ( ) v
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32. The flux of F across S is given by [, F-dS = [[,F-ndS. Nowon S, z = g(z,y) =2 /1 — 142, 50
Bg/Px = 0and 8g/dy = —2y(1 — y*)~ /2. Therefore, by (8),

fst'dS=ffzf11(-wzy[-%(l y)”“‘] {2 l—yz]Qem/f’)dydm

= 1(167 + 80¢*® — 80e7%/%)

N AL ll' L
\\\I N \I" u'{n
\:}\I‘ iU L H|I‘

N
- \" 3:' /,J
T v . Wt

33. If S is given by y = h{z, 2), then S is also the level surface f(z,y,2) =y — h(z,2) = 0.
n= V(z.y,2) = “heltd he k, and —n is the unit normal that points to the left. Now we proceed as in

Vi{z,y,2)| VRZ + 1+ hZ

the derivation of (8), using Formula 2 to evaluate

JfsF-dS = [[;F-ndS

oh, . Oh

R\ 2
(5) dA

...._.._1‘7-]+—k 2
_ . . ox az Oh
_/D(P1+QJ+Rk) - 2\/((%) +14
+1

J(&) e (3)

where D is the projection of f(z, y, z) onto the zz-plane. Therefore

[[ras[[ (P2 -q+n2)us

34. If Sis given by = k(y, z), then S is also the level surface f(x,y,2) = ¢ — k{y,2) = 0.
Vilr,y,z) i-kj-kk
IVi(zy,2)  JT+k2+E2

forward. Now we proceed as in the derivation of (8), using Formula 2 for

[f,F-d8=ff,F-ndS

n= and since the z-component is positive this is the unit normal that points

; Bkj Bk:k
— o J T 5 E 2 2
Z/ (Pi+Qj+ RK) Oy” 0z \/H(%) +(%) A
D 2 2 dy Oz
(R (O
Oy Oz

where I is the projection of f{z,y, z) onto the yz-plane. Therefore

[/SF-ds—//D (P—Qg—;—R‘Z\—’:)dA
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3/.m= [, KdS =K -4n(Lad?®) = 2ma®K; by symmetry M., = M,, = 0, and

May = [f 2K dS = K [ [T (acos ¢)(a® sin ¢) ddf = 2rKa® [~} cos 2] = nKd®.

Hence (z,7,z) = (0,0, 1a).

2, .2
Sisgivenbyr(z,y) =zi+yj+ Vo2 + vk |ro X1y = 1+$T$—-‘T-”—2—:x/§so
Y

m=[ls(10-V@Z+@)as= ] (10- /@) VEdA

1<a? +y2 <16
2"f1 10—r)rdrd9—27r\/-[rz—%rﬂi:lﬂS\/ﬁw
. (a) Iz = ffg(mz +UZ)P(-’B,’% Z) ds

® L = [y +y)(10- V@ Ty Yas =[] @+ (10~ /F 152 ) VEdA

1<z% +y2 <16

o [EV2(10r% — rt) drdd = 227 (8R) = 88,5,

. Sisgivenbyr(z,y) =zi+yj+ /22 +y?kand |r, x | = V2.

(@m= ([ kdS =k ff V2dS = v/2a>kr; by symmetry My, = My, = 0, and

0S$2+y2<a2

My, = [f zkdS = kf fo 2r? drdf = 2v2a%km. Hence (T,%.%) = (0,0, 2a).

(0) I = [ s(z® + 42 )kdS = [77 [* V2 ke drdf = 27 V2 k(1a*) = L2 rka.

L plT,y,2) = 1200, V =yi+j+zk F = pV = (1200)(yi + j + zk). S is given by
r{z,y) =zi+yj+[9-1(=z + ")k 0<a® +y’ <36andr, x1y = $zi+ iyj+ Lk

Thus the rate of flow is given by

JfF-dS= [ (2000 (3zy + Ly + [9— L{e? +4%)]) dA

0<x? +y2? < 36
= 1200fD 2 [3r°sinfcos + Lrsind +9 — ir?|rdedr
=1200 fﬂs 2m(9r — r®) dr = (1200)(27)(81) = 194.4007

. p(x,y,2) = 1500, F = pV = (1500)(—yi+ xj + 2zk). S is given by
r{¢,0) = 5singcosP@i+ bsingsindj+ Heosgpk, 0 < ¢p < 7,0 <6 < 27, and

re x rg = 25sin® pcosfi + 25sin® ¢sinf j + 25sin ¢ cos ¢ k. Thus the rate of outward flow is

Jfs F - dS = 1500 [ [ (- 125sin® ¢ sin f cos § + 125sin® ¢ sin 0 cos @ + 250 sin ¢ cos? ) dp b

= (3000m)(250)(—3 cos® ¢)] 7 = 500.0007.
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8. S consists of the hemisphere S given by z = /a? — £? — y? and the disk 52 given by
0<22+9y2 <a®2=00n5: E =asinpcosfi+ asingsinbdj+ 2acospk,
Ty x Te = a®sin® pcosdi+ a®sin? ¢sin@j + a® sin ¢ cos d k. Thus

ffs] f "/2 (a®sin® ¢ + 26 sin ¢ cos® ¢) do df

T /2, 3 o« .
=[7 0/(a“smq&—l—a351n¢c052¢)d¢d9:(27r)a3(1+%)=§ 3

OnS::E=zi+yjandry xr. = —kso ff, E-dS=0.

Hence the total chargeis g = €0 [[(E-dS = %mﬁeo.

. Referring to the figure in Exercise 27, on

SuE=it+yj+zkr,xr, —iand [[; E-dS=[] f1 dydz=4;
S3:E=zi+j+zkr, xrm:jandffszE-dS=j;llf_11 drdz = 4;
Sy E=zityj+kr,xr,=kand [[¢ B-dS= [ [1 dzdy=4;
S E=—i+yj+zk,r: xry=—iandffS4E.dS=4.

6
Similarly E-dS= [[. E-dS =4 Hence q = o E-dS—¢c Y. E - dS = 24¢q.
JJ 8 Se 3 = S

. KVu = 6.5(4yj+ 4zk). S is given by r(x,8) = z i+ v6 cos8j + v/6 sin § k and since we want the inward
heat flow, we use r X rg = —v/6 cos#j — /6 sin @ k. Then the rate of heat flow inward is given by

I (—K Vu) - dS = [27 [ —(6.5)(—24) dz df = (27)(156)(4) = 1248

W ou(x,y, 2) =/ /22 +y? + 22,

cx ) ey . cz
F——KVu=-K|- - - k
Vu (x2 | g2 | 22)3/ 1 (z2 +y? + zz)a/z-] (z2 + 42 + 22)3/2

_ cK Ll wid ook
= @ T (xit+yj+zk)

. . .
and the outward unit normal isn = — (zi+ yj + z k).
a

K K
Thus F-n = T ;2 TR (2 +y* +2%),buton S, 22 +4° +2* =a*soF-n = (;—2. Hence the rate of

heat flow across § is // F.dS = 2—12{ ]/ ds = (;—12( {(4ma®) = 4n Ke.
5 s
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17.8 Stokes’ Theorem ET 16.8

1. Both H and P are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve
z* 4 y* = 4, z = 0 (which we can take to be oriented positively for both surfaces). Then H and P satisfy the
hypotheses of Stokes’ Theorem, so by (3) we know [f,, curlF - dS = [, F -dr = [, curl F - dS (where C is
the boundary curve).
. The plane z = 5 intersects the paraboloid z = 9 — z* — ¢ in the circle z% + y? = 4, z = 5. This boundary curve
C'is oriented in the counterclockwise direction, so the vector equation is r(t) = 2costi + 2sintj + 5k,

0 <t <2m Thenr'(t) = —2sinti+ 2costj, F(r(t)) = 10sinti+ 10costj + 4costsint k, and by Stokes’

Theorem,
Jfgeurl F-dS= [ F.dr= [Z"F(r(t)) r'(t)dt = [7"(~20sin® t + 20 cos? t) dt
=20 f;’" cos2tdt =0
. The boundary curve C is the circle 2 + y2 = 4, z = O oriented in the counterclockwise direction. The vector

equation is r(#) = 2costi+ 2sintj, 0 < ¢ < 2m, sor'(t) = —2sinti + 2cost j and

F(r(t)) = (2cost)?e2sn 00§ o (25in¢)2e{2c09 (0 4 (0)2e(2e0s 28It} ) — 40052 ¢ + 45in® ¢ j. Then,
by Stokes’ Theorem,

Jfscurl F-dS= [ F-dr= ["F(c(t)) v (t)dt = 27 (~8cos? tsint + 8sin® tcost)dt
= 8[% cos ¢ + %Sin3 t]z,r =0
. The boundary curve C is the circle z° + 2* = 9, y = 3 with vector equation
r(t) = 3sinti+3j+ 3costk, 0 < ¢ < 27 which gives the positive orientation.

Then F(r(t}) = 729sin® t costi + sin(27sintcost) j + 27sinf costk and

F(r{t)) - r'(t) = 2187sin” tcos® t — 81sin? £ cos t. Thus

ffscurl F-dS = §.F -dr = [Z"F(r(t)) - r'(t) dt

= J37 (2187 sin” tcos® ¢ - 81sinteost)dt = [ (2187(4 sin2t)* - 81sin? teost) dt

= [%(%t - %sin/«lt) —81- % sin® t}zw = g—lf—?(ﬁ’) —-0= %ﬂ‘
- € s the square in the plane z = ~1. By 3), [, curlF -dS = § F -dr = ff_ curlF - dS where
5 is the original cube without the bottom and S, is the bottom face of the cube.

curl F = z°zi + (vy - 22y2) j + (v — ©2) k. For Sz, we choose n = k so that C has the same orientation for

both surfaces. Then curl F-n = y — 22 = 2 + y on Sz, where z = —1. Thus

[fg, curlF - dS = f_ll f_ll(m+y)dmdy=050ffsl curl F - dS = 0.
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6. The boundary curve C is the unit circle in the yz-plane. By Equation 3,
fI s, cul F . 48 = 3§C F-dr=] fsg curl F - S where S, is the original hemisphere and 5 is the disk

P +22<1,z2=0cudF=(x—2%i-(y+e¥sinz)j+ (2zz — ze™¥ cos 2) k, and for S we choose n = i

50 that C has the same orientation for both surfaces. Then curl F - n = z — 2% on S2, where = 0. Thus

[fg,uiF.dS= [ (z—-2*)dA= [[ 0dA=0.

y2+22£1 y2+z251
Alternatively, we can evaluate §,. F - dr: C' with positive orientation is given by r () = (0, cost,sint),

0<t<2m and

ffscurlF-dS=§cF-dr

= for‘)" <e0(c°5‘) cos(sint), (0)* (sint), (0)( (‘OSt)> {0, —sint, cost) dt

2n
=2 0dt=0

1. curl F = —2zi — 2z j — 2y k and we take the surface S to be the planar region enclosed by C', so 5 is the portion
oftheplanexr +y+z=1lover D= {{z,y} |0 <z < 1,0 <y <1—z}. Since C is oriented counterclockwise,
we orient 5 upward. Using Equation 17.7.8 [ET 16.7.8], wehave z = g({z,y) =1 -2z —y, P=-22,Q = -2z
R = -2y, and

fCF-drzﬂ'scurlF-dS=f_]'D[ 22)(—1) — (=22)(~1) + (—2y)] dA
*fo (- 2dyda:——2f0(1—$)dm——
. curl F = ¢” k and S is the portion of the plane 2x + y + 2z =2 over D = {(z,y) |0 < 2 < 1,0 <y < 2 — 22}.
We orient S upward and use Equation 17.7.8 [ET 16.7.8] with z = g(x,y) =1 — 2 — %y:
JoF-dr=ff curlF-dS= [ (0+0+e*)dA= f] [2* e dyds
= _f01(2 — 2z)e® da = [(2 — 2x)e” + 2¢7], [by integrating by parts]
=2¢—4

curl F = (ze®™¥ — 2z)1— (ye™ — y)j + (22 — z) k and we take S to be the disk 2% + y* < 16, z = 5. Since C'is
oriented counterclockwise (from above), we orient S upward. Thenn = kand curl F - n = 27 — z on S, where

2z = 5. Thus

fF-dr:ffscurlF-ndS:ffS (22 — 2) dS:ffs(l{)—5)dS:5(areaofS)=5(ﬂ'-42) = 80w

. S is the part of the surface z = 1 — 2® — y? in the first octant. curl F = 2y — 2z .
Using Equation 17.7.8 [ ET 16.7.8] with g{z,y) = 1 — 2 — 3%, P = 2y, Q = — 2z, we have
[oF dr= ff curlF-dS = ff [-2y(-2x) + (22)(—2y)]dA = [f, 0dA = Q.
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11. (a) The curve of intersection is an ellipse in the plane £ + y + z = 1 with unit normal n = ?}—5 (i+j+ k),
curlF = 2?j + y* kand curl F - n = %(m2 +4?). Then

$oFrdr=[ff; (e +y*)dS =[] (2" +47)dedy
z? +y? <9
= 0% 031"3drd6‘ =2r(&)=8=
{c) One possible parametrization is x = 3cost, y = 3sint,

t=1-—3cost—3sint, 0 << 2r.

12 (a) S is the part of the surface z = y* — x? that lies above the unit disk D.

curl F = zi—yj + (2 — 2*)k = zi — yj. Using Equation 17.7.8 [ET 16.7.8] with g(z,y) = y° — a?,
P =z Q= —y, wehave

JoFde= [ curlF-dS = [ [—a(-2z) — (—y)(2y)]dA = 2 ff (z* +y%)dA
=2 [T [y rPrdrdd =202n) [0, = 7

(¢} One possible set of parametric equations is z = cost,
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13. The boundary curve C is the circle 2> + y2 = 1, z = 1 oriented in the counterclockwise direction as viewed from
above. We can parametrize C' by r(t} = costi+sintj+ k, 0 <t < 27, and then r'(¢)

= —sinti+ costj. Thus
F(r(t)) =sin*ti +costj+k, F(r{t)) - r'(t) = cos? { —sin® ¢, and

$. Fodr= ;w(COSQt—SiHSt)dt-: 02"%(1+c052t)dt—_02"(1kcoszt)sintdt

:%[t+%sin2t]§" — [~ cost+ %cc»s3 t]z?r =

Now curl F = (1 — 2y) k, and the projection I of S on the zy-plane is the disk 2% + ? < 1, so by
Equation 17.7.8 [ET 16.7.8] with z = g(x,%) = 2% + y* we have

Jfecull F-dS = [f (1-2y)dA = f" ['(1 - 2rsin6) rdrdo = 273~ 2sinf)do =
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14. The plane intersects the coordinate axes at z = 1, y = z = 2 so the boundary curve ' consists of the three line
segments C1:r1 () = (1 —8)i+2tJ,0<t <1, Cara(t) =(2-26)]+2tk,0<t < 1, Cs:
ra(t) =ti+(2—-2t)k, 0 £t < 1. Then

$, Fode=[l{(L—t)i+2td) - (—i+25)de+ f[(2-20)]] (—2§+2K)dt + f) (ti)- (i — 2k) dt

=[5t - 1)dt+ [l (4t —4)dt+ [jtdt =2 -2+ L =0
Now curt F = zzi — yz j, so by Equaticen 17.7.8 [ET 16.7.8] with 2 = g{z,y) = 2 — 2z — y we have

ffs curl F - dS = ffD (—2{2 = 2z — y)(—-2) + (2 — 2z — y)(—1)]dA
= [y [T (4x — 42 = 2y + ¢*) dy dw
= fOl [4‘76(2 - 25':) - 43»'2(2 — 233) - (2 - 21;)2 + %(2 _ 21.)3} dr

zfol (Rg® — 122° + 8z — Hda = [%sc4 — 4% + 42? — %x}é =0

15. The boundary curve C'is the circle 22 + 2z = 1, y = 0 oriented in the counterclockwise direction as viewed from

the positive y-axis. Then C can be described by r(t) = costi —sintk, 0 < ¢t < 27, and

r'(t) = —sinti— costk. Thus F(r(t)) = —sintj+ costk, F(r(£)) - r' (t) = — cos®t, and
§.F -dr=[7" —cos’tdt= —it - Lsin2])" = —x

Now curl ¥ = —i — j — k, and S can be parametrized (see Example 17.6.10 [ ET 16.6.10]) by
r(¢,0) = singcosfi+singsindj+cospk, 0 <8 <a,0< ¢ <. Then
Iy X Tg = sin? ¢cos @i+ sin ¢sin@ j + sin ¢ cos g k and

[fgcul F-dS= ff curl F-(ry xrg}dA

xZ4+22<1
= foﬂ fow(— sin? ¢ cos @ — sin® ¢ sin @ — sin ¢ cos ¢) dO de

= [;(~2sin® ¢ — wsinpcos @} dep = [ sin2¢ — ¢ — Tsin®¢|) = -7

. The components of F are polynomials, which have continuous partial derivatives throughout R*, and both the curve

C' and the surface .S meet the requirements of Stokes’ Theorem. If there is a vector field G where ¥ = curl G, then
Stokes” Theorem says . F -dS = [[_ curl G - dS depends only on the values of G on C, and hence is
independent of the choice of 5. By Theorem 17.5.11 [ET 16.5.11], diveuriG = 0,s0divF =0 &

(3az® — 328} + (22 +3by?) + (3cz¥) =0 & (Ba+ 1)z +3by* + (3¢ -3 =0 &

a=-3.b=0c=1
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i j Kk
1. curlF =} 0/6x  8/0y 8/0z | =2yi+2zj+2rkandW = [ F-dr = ([, curlF - dS.
$x+22 y'y_+_m2 zz+y2
To parametrize the surface, let © = 2cosfsin ¢, y = 2sinfsin ¢, z = 2cos ¢, so that
r(¢,0) = 2singcosfi+ 2singsinfj+ 2cospk, 0 < ¢ < 7.0<6< 3, and
ry X re = 4sin® pcosfi + 4sin® ¢sinfj + 4sin ¢ cos ¢ k. Then
curl F(r(¢,0)) = 4sin¢sinfi + 4cos @ j + 4sin ¢ cos Ak, and

curl F - (ry x rg) = 165sin® ¢sinfcosf + 16cos ¢ sin® ¢ sin @ + 16 sin® ¢ cos ¢ cos . Therefore

JfgcurlF-dS = [ cwrlF - (rs x rg)dA

0 0

= 16| J;* sin0 cos 0 g | [ sin® ¢ dg] -+ 16[ [ sin 0 do] [ /% sin 6 cos ¢ dg]

+16 f;7/* cosdd| [ /% sin? g cos g d]

/2

8[~cosd + % cos® ¢]g/2 + 16(1)[4 sin® ¢] o+ 16(1)[4 sin’ ¢] /2

0

=80+ 1+0- 3] +16(3) +16(3) =18+ 18 . 16— 14

- Jely+sinz)de + (2* +cosy)dy +2° dz = [, F-dr, where F(z,y,2) = (y+sina)i+ (2% +cosy)j+ %k
= cwlF = —2zi- 32" ] ~ k. Since sin 2t = 2sint cost, C lies on the surface z = 2zy. Let S be the part of

this surface that is bounded by C. Then the projection of S onto the zy-plane is the unit disk D (z° + y* < 1). C

is traversed clockwise (when viewed from above) so S is otiented downward. Using Equation 17.7.8 [ET 16.7.8]
with g(z,y) = 2zy, P = —2(2zy) = —dxy. Q = —3z*, R = —1, we have
JoFdr=—[[scurlF-dS = — I - (~ay)(2y) — (—322)(2x) — 1] dA
=— [[,(Bxy® +62° —1)dA = fo%fol(Sra cos #sin® § + 6r° cos® 0 — 1) r dr df
= 02” (2 cosfsin®6 + Scos® 0 — 1) rdrdf
= [&sin’ 0+ £(sind - Lsin®6) - %9]3” =

3

. Assume 5 is centered at the origin with radius ¢ and let H; and H be the upper and lower hemispheres,
respectively, of S. Then [ ;curl F - dS = ff curlF-dS + I g, corlF-dS = §, F-dr+§, F-drby

Stokes’ Theorem. But C is the circle 22 + 42 = a? oriented in the counterclockwise direction while C7 is the
same circle oriented in the clockwise direction. Hence 5502 F.dr=— 3961 F-drso f[ curlF - dS = 0as

desired.

- (a) By Exercise 17.5.26 [ET 16.5.26], curl(fVg) = feurl{Vg) + Vf x Vg = Vf x Vg since curl(Vg) = 0.
Hence by Stokes’ Theorem [.(fVg) - dr = [ (Vf x Vg) . dS.

(b) As in (a), curl{(fV f) = Vf x Vf = 0, so by Stokes’ Theorem, [ ,(fVf)-dr = [f g feurl(fV )] - dS =0.
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(c) As in part (a),
curl(fVg + gV ) =curl(fVg) + curl(gV f) (by Exercise 17.5.24 [ET 16.5.24])
={(VfxVg)+(VgxVfi=0 [since u X v = —{v x u}]
Hence by Stokes’ Theorem, [,,(fVg+gVf)-dr = [[ cml(fVg+gVf)-dS=0.

17.9 The Divergence Theorem ET 169

1. The vectors that end near P; are longer than the vectors that start near P1, so the net flow is inward near / and
div F(P,) is negative. The vectors that end near P, are shorter than the vectors that start near P, so the net flow is
outward near P, and div F( %) is positive.

. (a) The vectors that end near P; are shorter than the vectors that start near Py, so the net flow is outward and P is a
source. The vectors that end near P; are longer than the vectors that start near Py, so the net flow is inward and
P, is a sink.

(b) F(z,y) = {z,y*) = divF =V .F =1+ 2y They-value at Py is positive, sodivF = 1 + 2y is
positive, thus Py is a source. At Po, y < —1, sodiv F =1 + 2y is negative, and P5 is a sink.

. divF =3+ +2r =3+ 3z, 50 z
[ffodivFav = [ {5 [1(3z + 3) de dydz = £ (notice the triple integral is
three times the volume of the cube plus three times ).
Tocompute {{ F-dS.onSi:n=1iF=3i+yj+ 22k and
[fg FrdS=[[  3dS=3
Sp:F=3zi+zj+2zkn=jand [[, F-dS=[[; zdS=g;
Sg‘.F=3wi+zyj+2:ck,n=kandffsaF-dS:ff532;cd.5':1;
4:F =0, [f, F-dS=0;8:F=3i+2rkn=—jand [f; F-dS = ff; 0dS=0;
So:F =3zi+ayjn= kand [f; F-dS= ff 045 =0.Thus [[ F -dS = g
LdivE=2zx4+c+1=3z+1%0

[[fgdivFdV = [[[_ (3z+1)dV = 2 3rc089+1)rdzdrd9
:[02 o 7(3rcosd +1)(4 —r3)dfdr
27

=f, 4~ )[37'51119-1—9]9 " dr

=2 f02 4r — rs)dr - 271-[2,»2 _ iral]?

0
=27(8—4)=8&nr

On S;: The surface is z = 4 — z? — %, 2% + y* < 4, with upward orientation, and
F=xi+zyj+(4—2° -y} k Then
[fs, F-dS= [[p[-(z®)(-2¢) — (ey}(~2y) + (4 - 2 — y”)] dA
=[fp[2x(a® + ) +4- (=" +47)] dA = f2" f02 (2rcos@ - r* +4 — %) rdrdd
2

= [F7 [3r®cosf + 20" — %] Z d9— (64‘3039'1'4) ad

=B sing +46]." = 8n
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On S3: The surface is z = ( with downward orientation, so F = z?i 4+ xyj, n = —k and
Js, F-ndS=ff, 0d5 =0.
ThusffSF-dS=ffSlF-dSJrffng-dS:Svr.
LdivF =z +y+ 2,50
[ gdivEdV = [37 [* [M(rcos@ +rsind + 2)rdzdrdf = [77 [} (r*cos® + r?sind + 1r) drdé
= 2" ($cosf+ising+ 1)do=L1(2r) =%

Let Sy be the top of the cylinder, S, the bottom, and S5 the vertical edge. On 81, z = 1, n = k, and
F=zxyi+yj+zk,so

[Jg, F-d8 = [f; F-ndS= [f, xdS= ST [ (reos8) rdrde = [sinﬂ]i"[%r"‘]; =0.0n8;,2z=0,
n=-k,andF = myisoffst-dS = ff520d5=0. Sz is given by r(#, z) = cos @i +sinfj + z k,
0§8§2w,0§z§1.Thenrexrz:cosﬁi+sin9jand

s, F-dS= F.(roxr,)dA= "(cos? @sin § + z sin? §) dz df
D 4]

= 2 (cos? fsin 8 + 1 sin® 9) df =[5 cos® 8+ 3 (6 — §sin20)] " =

Thus [f,F-dS=0+0+% =12,
LdivF =1+1+4+1=3,s0 [ffdivFdV = [ff_3dV = 3(volume of ball) = 3(%) = 4. To find

[/ F - dS we use spherical coordinates. S is the unit sphere, represented by
r(¢,0) =singcos @i+ singsinfj+cosdpk, 0< ¢ <7, 0<8<2x Then
ry X rg = sin’ pcos @i+ sin? ¢sin @ j + sin ¢ cos ¢ k (see Example 17.6.10 [ET 16.6.10]) and
F(r(¢,8)) =singcosfi+ sin¢sinfj + cos ¢ k. Thus

JIsF-dS=[[,F-(ry xro)dA = [7 [T (sin® ¢ cos® @ + sin® sin? 6 + sin ¢ cos® ¢) do df
= [27dg [ sinpdo = (27)(2) = 4

.divF = ai (e®siny} + 3= (e cosy) + £ 32 (y2®) = " siny — % siny + 2yz = 2yz, so by the Divergence
Theorem,

[fsF-dS=[[f dvFaVv = [} [} [? 2yzdzdyde =2f) dz [Tydy [, zdz
=2[c], [3v7], [32°], =2
CdivE = £ (2%2%) + & (22y2°) + £ (22*) = 252° + 222° + 422® = 822, 50 by the Divergence Theorem,
s F-aS=[ffpdivFav = [ [ f° 8ez®dedyde =8 zdz [*, dy [, *dz
=8[32"], [v])7, (3%, =0
. div F = 3y° + 0 + 32, so using cylindrical coordinates with y=rcosf, z =rsind, x = x we have
JIsF-dS=[f[ (3" +32%)dV = [27 [ [% (3r® cos? 6 + 3r? sin? 0) r dz dr dO
=3 (27 de [ ridr [? de=3(2n)(})(3) = &
- div F =32y — 20%y — 2%y = 0,50 [ F-dS = [[f_0dV =0,
- divF = ysinz+ 0~ ysin z = 0, so by the Divergence Theorem, [ F-dS = fff_ 0dV =0.
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12. div F = 2zy + 2zy + 2ry = 6zy, s0
JIsF-dS = [f[gbeydV
= [ I 2T M Geydededy = [27% 6ay(2 — x — 2y) da dy
_fo 2 (19gy — 62y — 12297 de dy = fo [6z%y — 22%y — i 2]2_2  dy
= [N y2- WP dy = -840 +6y° — 8y + 7], =2
13.dvF=34*+0+z* =z +y’s0
JfoF-dS= [ffE:c +y2)dV = (2 (2[5 rdadrdd = 77 [Z 34— r?)drdd

0
dg fD 47" —-Tr )d’f'=27([gﬂ4_%nr-6}§:%7r

14. div F = 423 + 4ay® so
[fF-dS = [[[4x( (@ + 2 dV = [27 [ [T (49 cos ) r dz dr df
= [77 1 (4r® cos? @ + 8r* cos0) drdf = [77 (% cos® 6 + £ cosb) dff = 2x
15. div F = 12222 + 12y%2 + 122% s0
[fsF-dS = fff.122(z® +y° + 2%)dV :f;" N fUR 12(pcos ¢)(p*)p* sin ¢ dp dep 46
=12 (2" d6 )7 sindcos pd [ p° dp = 12(27)[ L sin® 8] [L6°] ¢ =0
16. [[ F-dS = [[[.32+y*+1)dV = [I" [/ [73(p? sin® ¢ + 1) p* sin ¢ dp dgp d¥
=27 f"/z [2 sin® ¢ + 7sin @) dp = 27 [2 (- cos ¢ + % cos® @) — Tcos g /2 =g
W [[F-aS =[],V 2av=[" [* 27" " TP dedyde = 8 VI+ P sin ()

18.

L
i
I|I|||
1 l”

I
(TR

0
0
¥

By the Divergence Theorem, the flux of F across the surface of the cube is

[/F f"m /2 ”/z [cos z cos® y + 3sin’ y cosy cos® z + Bsin? 2 cos z cos® z| dedyde = gn°.

19. For S, wehaven = —k,soF n=F - (- k) = 2%z — y? = —4® (since z = 0 on ;). Soif D is the unit disk,
weget [ F-dS = [y F-ndS= f{, (- yYdA = — 77 [0+ (sin® @) r dr df = — 17, Now
since Sz is closed, we can use the Divergence Theorem, Since
divEF = 7 (2%z) + 5 (59° + tanz) + 2 (:c2z +4*) = 2% + y* + z®, we use spherical coordinates to get
[fs,F-dS = [[[,divEdV = 2% [*/% [} p* . p?sin $dpd¢df = 2. Finally

fst'dSfost'dS_ffslF'ds:EW_ (_Zﬂ)

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 179 THEDIVERGENCE THEOREM ETSECTION169 U 627

20. As in the hint to Exercise 19, we create a closed surface Sz = § U S1, where S is the part of the paraboloid
@ + 4% + z = 2 that lies above the plane z = 1, and $; is the disk z° + y* = 1 on the plane z = 1 oriented
downward, and we then apply the Divergence Theorem. Since the disk .S; is oriented downward, its unit normal
vectorisn = —kand F- (k)= -z = —1o0n 5. So
-[IS] F.dS = ffS1 F-ndS= ffsl(—l)dS = —A(S1) = —m. Let E be the region bounded by S,. Then

[fo,F-dS = [ff divFdV = [[[ 1dV = [ [ [ rdzdbdr = [} [2"(r — r*) dB dr
Thus the flux of F across Sis [ F-dS = ff, F-dS— ff, F-dS=% - (-n)= .

with similar

Smcei— cityjtek di x B i ki
. ]x| (e 424 z2)3/2 Bz \ (22 + y? + 22)3/2 - (22 + y2 + 22)5/2

expressions for 4 y and E el we have
P (sc2 +y2 + 22)3/2 Bz ($2 +y2 4 22)3/2 ’

dlv( S >:3(z +y* +2%) — 3(z* + y* + 2%)
P @yt )"

. We first need to find F so that {f F-ndS = [[ (2x + 2y + 2*)dS.so F - n = 2z + 2y + 2°.
zit+yj+zk

R
B={(z,y,2) | £* +y* + z* <1}, then ffs(2$+2y+z2)d8=fffB dV =V(B) = 3m(1)* = 3.

. {[sa-ndS = [[[, divadV = 0since diva = 0.

3B dS = & [ff,divEay = § [[[,3dV = V(E)

. [fgcurlF-dS = [ff_div(curl F) dV = 0 by Theorem 17.5.11 [ET 16.5.11).

- Jfs Dn fdS = [[(Vf-n)dS = [ffodiv(Vf)dV = [[f, V*fdV

 Jfs(fVg) ndS = [[[ div(fVg)dV = [[[ (FV?g+ Vg V§)dV by Exercise 17.5.25 [ ET 16.5.25].

Jfs(IVg =gV ) -ndS = [[[, [(fV9+Vg-V])— (gVf+Vg-Vf)]dV [byExercise27).
ButVg -Vf=Vf Vg sothat [[(fVg—gV[)-ndS = [[[_(fV?¢g— gV?f)dV.

.Ife=cii+epj+ezkisan arbitrary constant vector, we define F = fe = feii+ fez j + feak. Then

af

divF = div f¢c = 5% + 5_y €2+ 5— cs = V f - ¢ and the Divergence Theorem says

fIgF-d8 = [[[ divFaV = [f.F -ndS= f[[,Vf-cdV.Inparticular, if c = i then

fj'sfi~nd5'=fffEVf-idV = f/fnldS:f//-éﬁdV(wherenzmi+n2j+n3k).

Similarly, if ¢ = j we have/ fnadS = // == dV,and ¢ = k gives // fnzdS = /// of dV. Then

jfsfndS:(ffsfnldS)i+(ffsfn2dS)j+(ffsfngdS)k

(g} (JIL s av )i (] )
:f/fs(%i+a—yj+ak)dV:/fEVde

= 0, except at (0, 0, 0) where it is undefined.

But for 8§, n = =zit+yj+zk ThusF=2i+2j+zkanddivF =1.1If

as desired.
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30. By Exercise 29, [ .pndS = [[f. VpdV, so
F=—ffspmds=—[[[;VpdV =~ [[fx V{egz)dV = - [[[pleg k) dV
=—pg{[f[,dV)k = —pgV(E)k

But the weight of the displaced liquid is volume x density x g = pgV(E), thus F = —Wk as desired.

17 Review ET 16
CONCEPT CHECK

1. See Definitions 1 and 2 in Section 17.1 [ ET 16.1]. A vector field can represent, for example, the wind velocity at
any location in space, the speed and direction of the ocean current at any location, or the force vectors of Earth’s
gravitational field at a location in space.

. (a) A conservative vector field F is a vector field which is the gradient of some scalar function f.
(b) The function f in part (a) is called a potential function for ¥, that is, F = V f.
. (a) See Definition 17.2.2 [ET 16.2.2].
(b) We normally evalvate the line integral using Formula 17.2.3 [ET 16.2.3].
(¢) The mass is m = [, p(,y) ds, and the center of mass is (F,7) where T = — f.zp(x,y) ds,
= Joup(z.y) ds.

(d) See (5) and (6) in Section 17.2 [ ET 16.2} for plane curves; we have similar definitions when C is a space curve
(see the equation preceding (10) in Section 17.2 [ ET 16.2]).

{e) For plane curves, see Equations 17.2.7 [ ET 16.2.7]. We have similar results for space curves

(see the equation preceding (10} in Section 17.2 [ET 16.2]).

. (a) See Definition 17.2.13 [ ET 16.2.13].

(b) If F is a force field, fc F - dr represents the work done by F in moving a particle along the curve (.
(© [ F-dr=[,Pdz+Qdy+ Rdz
. See Theorem 17.3.2 [ET 16.3.2].

. (@) |, ¢ F - dr is independent of path if the line integral has the same value for any two curves that have the same
initial and terminal points.

(b) See Theorem 17.3.4 [ET 16.3.4].

. See the statement of Green’s Theorem on page 1119 [ ET 1083].
. See Equations 17.4.5 [ET 16.4.5].
_{oR  8Q\. ar OR a8 JF _
.(a)curlF—(ay 8z)l+(6z 6m)J+(ax_8y)kVXF
(b)divF——P+6—Q+——V F
dy Oz
(c) For curl F, see the discussion accompanying Figure 1 on page 1129 [ ET 1093] as well as Figure 6 and the
accompanying discussion on page 1160 [ ET 1124]. For div F, see the discussion following Example 5 on
page 1130 [ ET 1094] as well as the discussion preceding (8) on page 1167 {ET 1131].

. See Theorem 17.3.6 [ ET 16.3.6}; see Theorem 17.5.4 [ET 16.5.4].
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. {a) See (1) and (2) and the accompanying discussion in Section 17.6 [ ET 16.6]; See Figure 4 and the accompanying
discussion on page 1135 { ET 1099].

{b) See Definition 17.6.6 [ET 16.6.6].
(c) See Equation 17.6.9 [ET 16.6.9].
. (a) See {1)in Section 17.7 [ET 16.7].
(b) We normally evaluate the surface integral using Formula 17.7.3 [ ET 16.7.3].
(c) See Formula 17.7.2 [ET 16.7.2].
(d) The mass is m = [f p(x,y, 2) dS and the center of mass is (Z,7,%) where T = - [[_ zp(z,y, 2) dS,
9= Jsuplz,u,2)d8. 7 = I [[s2p(x,y, 2} dS.

. (a) See Figures 7 and 8 and the accompanying discussion in Section 17.7 [ET 16.7]. A Mgbius strip is a
nonorientable surface; see Figures 5 and 6 and the accompanying discussion on page 1149 [ET 1113].
(b) See Definition 17.7.7 [ET 16.7.7].
(c) See Formula 17.7.9 [ET 16.7.9].
(d) See Formula 17.7.8 [ET 16.7.8].

. See the statement of Stokes’ Theorem on page 1157 [ET 11211
. See the statement of the Divergence Theorem on page 1163 [ET 1127].

. In each theorem, we have an integral of a “derivative” over a region on the left side, while the right side involves the
values of the original function only on the boundary of the region.

TRUE-FALSE QuIZ

. False; div F is a scalar field.

. True. (See Definition 17.5.1 [ET 16.5.1].)

. True, by Theorem 17.5.3 [ET 16.5.3] and the fact that div 0 = 0,
. True, by Theorem 17.3.2 [ET 16.3.2].

. False. See Exercise 17.3.33 [ET 16.3.33]. (But the assertion is true if D is simply-connected; see
Theorem 17.3.6 [ET 16.3.6].)

. False. See the discussion accompanying Figure 8 on page 1103 [ET 1067].
. True. Apply the Divergence Theorem and use the fact that div F = 0,
. False by Theorem 17.5.11 [ET 16.5.11], because if it were true, then diveurl F = 3 # (.

EXERCISES

. (a) Vectors starting on C' point in roughly the direction opposite to C, so the tangential component F - T is
negative. Thus [ F-dr = [, F - T dasis negative.

{b) The vectors that end near P are shorter than the vectors that start near P, so the net flow is outward near P and
div F (P) is positive.

. We can parametrize C by x = z, y = 22,0 <z <l1lso

fowds= [}z T+ () do = 5(1+4z2)3/2] = L(5+5-1).

1
4]
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3 f.2%2ds = 7r/2(25111t)3{2cost) V{(2cost)? + (1)2 + (—2sint)2dt = f"ﬂ(lﬁsm tcost)y/5 dt
= 4VBsin*t])" =45

4 f.zyde+ydy= fo (zsinz +sinzcosz)dr = —zcosz +sinz — § 0032:1:];/2 =3

5. x = cost = dz = —sinitdt, y = sint = dy = costdt, 0 <t < 27 and
Joz2lyde —ady = Dzﬂ(— cos® tsin’ t — cos® t) dt = 027'(— cos® tsin®t — cos®t) dt = -7
Or: Since C is a simple closed curve, apply Green’s Theorem giving

JI (-1-z*dA= fo "(—r —rtcos?9)db =

2 +y2 <1

- Jo Ty dr + e¥ dy + xzdz2 =fD‘ (\/t4-t2-4t3+e‘2-2t+t4-t3 -3t2) dt

' 2 2 1
= Jy (a5 42t 4 5%) @t = (367 + " 4 %tm]o

Ciio=ty=6z=2t,0<t <1,
Crz=1+2t,y=1,2=24+2;0<t <L
Then

Joyde +2dy +xdz = [ 5tdt + [} (44 4t)dt = ¥

. F(r(t)) = (sint){1 +t)i+ (sin®t)j, v'(t) = costi+ jand
JoF-dr = [7((1+¢t)sintcost +sin® t)dt = [ (3(1+1)sin2t +sin®¢t) de
= [§ (1 +)(—5 cos2t) + {sin2t) + 3t — sin 2| =

Fir(t) = e i+ 2(—)j+ (* + )k o'(t) = 2ti+ 3t j — k and
JoFodr= [}(2te™ —3t° — (17 +£*))dt = [-2te™ — 27" —
L@ Cix=3-3t,y=35t,z=3,0<{<1 Then
W=/ F-dr=[ [3ti+(3-3t)j+ 5tk| - [-3i+Fj+3k|dt=f [-9t+3]at
=1(3%r - 9)
W= [ F.dr= OK/Q(SSinti+3costj+tk) +(~3sinti+ j+ 3costk)dt

= 0"/2(—95in2t+ Jcost + 3icost)dt

= [~2(t - sintcos?) + 3sint + 3(tsint + cost)] )/ = —r 134 & _ 3=
= (1 + zy)e™] = 2we™ + 2Pye™? = £ [e¥ + 2%¢™¥| and the domain of F is R?, so F is conservative. Thus
there exists a function f such that F = V. Then f, (x,y) = e¥ + x2e”¥ implies f{z,y) = e¥ + ze™¥ + g(z) and

then £ (z,y) = aye™ + ™ + ¢'(z) = (1 + zy)e™ + ¢ (x). But fu(z,y) = (1 + zy)e™, 50 g'(z) =0 =
g{x) = K. Thus f(z,y) = € + ze™ + K is a potential function for F.
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. F is defined on all of &3, its components have continuous partial derivatives, and
cul F = (0 — 0)i— (0 —0)j+ (cosy — cosy) k = 0, so F is conservative by Theorem 17.5.4 [ET 16.5.4]. Thus
there exists a function f such that Vf = F. Then f.(z,y, 2) = siny implies f(z,y, 2} = zsiny + g(y, z) and
then fy{z,y, 2) = zcosy + gy(y, z). But fy(x,y,z) = zcosy, s0 gy(y,z) =0 = gf{y,z) = h(z). Then
flz,y, z) = zsiny + h(z) implies f.{(z,y,2) = A'(2). But f.(z,y,2) = —sinz, so h(z) = cos z + K. Thus
a potential function for F is f(x,y,2) = xsiny + cosz + K.

. Since 3% (42°y® - 2zy®) = B2y — 6ay® = £ (2z%y — 32°y® + 4y°) and the domain of F is R, F is
conservative. Furthermore f(x,y) = x%y? — z%y3 + y* is a potential function for F. ¢ = 0 corresponds to the
point (0, 1) and ¢ = 1 corresponds to (1,1),s0 [, F-dr = f(1,1) - f{0,1) =1-1=0.

. Here curl F = 0, the domain of F is &°, and the compoenents of F' have continuous partiat derivatives, so F is
conservative. Furthermore f{x,y, z) = ze¥ + ye® is a potential function for F. Then
Jo Fodr= f(4,0,3) — f{0,2,0) =4 -2 =2,

Cur(t)=ti+t%j,-1<t<1;
Coir(t) = —ti+j -1<t< 1L
Then

fcxy2dm—:c2ydy=f_ll(t5 —2t5)dt+f_11 tdt
= [-§)L, + [3#°], =0

-1

Using Green’s Theorem, we have

/C:my2 de — *ydy = f/D [% (—z’y) — é% (myz)] dA = //D(—wa —2zy)dA

1 g1 1
=f / ——4:cydyda::f [—mez]yfli dx
-1 Jx2 -1 ==

1
=]_1(2a:5*2x)d:c= [%36—1:2]1 =0

-1

o VIt de + 2eydy = [f [% (2zy) ~ a% {(V1+ 23 )] dA = fol ()3”’(2y—0)dyd:r
-1 1
= [y 92%dz = 32%] =3
owtydz—ayidy= [ [&(-e?) - & (Py) a4
2 +y2 <4

= ff (“?Jz*mg)d/‘l:— " 021"3drd9=—-8:rr

2 +42 <4
. curlF = (0~ e ¥cosz)i— (e “cosz—0)j+ (0 —e Fcosy)k=—e Ycoszi—e *coszj~e “cosyk,
divF = —e “siny — e ¥sinz — e *sinx

. If we assume there is such a vector field G, then div(curl G) = 2 + 3z — 2zz. But div{curl F) = 0 for all vector
fields ¥'. Thus such a G cannot exist.
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. L F=P i+ j+ Rikand G = Pyi+ Q2j+ Rak be vector fields whose first partials exist and are

continuous. Then

FdivG — GdivF

_ [p (2P, 8Qe , OR: OF,  0Q;  OR OP; | 9 QR_H
_[P1(8$+3y+d)+Q( 6y+ 2)+R1(8+ 5,

P 6@1 R ap 8@1 OR; \ , ?fl ?_9_ R,
[P2(6$ 6y+6 ) +Q2( 8y+6z i+ R 6:c+8y+ 0z k

and

(G-V)F—(F-V)G:[(Pzapl op (91:’1) +( 6Q1+Q26Q1+R28Q1)j

3 +Q2—+R2 e Ep

+( aRl-l—Qz RzaRl)k
8z

—[( 6P2+Q1 ng"%)i+(PlaQ2+Q18Q2+

o
Jr( 5R2+Q1

Hence

FdivG — GdivF +(G-V)F - (F- V)G

| 5rres) - (a5 e )
dy

ORy P, R aPL |,
(P2 0z R dz) (Pl Oz + B ﬁ)] '

(002 22 - (0,2 g, 222)

- (n 220,20, (P23Q1+Q18Pz)]j

OR; oP; ORs aPy
[(Pﬁa i am) (Pla 325;)

Ry 5Q1 OR, 3@2
(Ql—;-&-Rz By ) (Q2—+R1 By )} k

9
dy

(PiQ2 — Path) — % (PR, — P1R2)] i+ [% (Q1Ry — Q2Ry) — a—i (P1Q2 — Ple)] J

a a
=+ 5; (Ple - P]Rz) - a—‘y (Q1R2 - Q2Rl)} k
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21. For any piecewise-smooth simple closed plane curve C bounding a region D, we can apply Green’s Theorem to

Fiz,y) = f(2)i +9(y)jto get o (@) da + g(v)dy = [f,, [ £ ()~ & F(z)] dA = [, 0dA =0.

_@(fg) | P (fg)  P(f9)
22 V¥(fg) = B2 + By + 52

of of af
= 2 (8$9+fa )+6y (6 g+f6y)+—(6z +f ) [Product Rule]

_8F af g &g  B*f o OF 89
_82:29+2aa+f8x2+6y g+2 Ay By

&g 8% afag
oy T 59 25, 5 +f

’f f  of of 8f of Og Og Og
2 )+g(7+—+ )+2<8:r y’ 62> <3;c ay’ Bz>

[Product Rule]

= fVig+gVif +2Vf . Vg

Another method: Using the rules in Exercises 15.6.37(b) | ET 14.6.37(b)) and 17.5.25 [ET 16.5.25], we have

VHfg)=V -V(fg) =V -(gVf+fVg) =Vg-Vf+ gV -Vf+Vf-Vg+fV-Vg
—gVif+ fV%g+2VS Vg

62 2
23. V2 f = () means that —f— + % 0. Now if F = f,i— f:jand C is any closed path in D, then applying

Green’s Theorem, we get

JoFdr= [, fyde— fady = [f [ai (~f)— 2 (fy)] dA =« [[ o(fon + fu) dA
=— ffD 0dA=0
Therefore the line integral is independent of path, by Theorem 17.3.3 [ET 16.3.3].
24, (a) ° +y* = cos® t + sin®t = 1, 50 C lies on the circular cylinder z2 + y? = 1.
But also ¥ = z, so C' lies on the plane y = 2. Thus  is the intersection of the
plane y = z and the cylinder 2% + y* = 1.
{b) Apply Stokes’ Theorem, [, F - dr = f[_ curl F - dS:
i i Kk
curl F = | 9/0x d/0y 3/0z
2re?? 2226 4 2ycotz —y? csc? 2
={-2y esc’ z — (—2yesc? 2),0,4ze® — 4$e2y> =0

ThereforefCF-dr: ffs0-dS=0.
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B 2= f(x,y) =2 +2ywith0 <z <1,0 <y < 2z. Thus
A(S) = [, VIFdet T adA = [} [ o+ da?dyde = [ 226 + daP dx
1
= §(5+4m2)3f'~’]0: 127 = 5v5).

26. (a)ry, = -vj+ 2uk,ro =2vi—ujand (b)
Fu X Ty = 2021 + 4ur j + 207 k. Since the
point (4, —2,1) corresponds touw = 1, v = 2
(oru=—1,v = —2but r, X r, is the same for
both), a normal vector to the surface at (4, —2,1} is
21+ 8j + 8k and an equation of the tangent plane
is2r +8y+8z=0o0rx+4y+42z=0.
{c) By Definition 17.6.6 [ ET 16.6.6], the area of S is given by
A(S) = fffig’ v (2u2)? + (duw)? + (202)2 dodu = 2 f;fjs ut + du?v? + vidvdu.
(d) By Equation 17.7.9 [ ET 16.7.9], the surface integral is

/fs a8 = /usf_z < 1 _(:*22)2’ 1 +(1()2-);)2’ 1{-}_-?2;?2> (2", 4uv, 20) dvdu

3 g3 24,8 dup’ 2%y
_./0 fﬁ (1+v4 + T a2 + 1+u4) dv du = 1524.0190

2.z = flz,y) =2 + ¢y with0 < 2 + y* <4sor, xry, = ~2z1~ 2y] + k (using upward orientation). Then

[fszdS= ff (@ +y*)Vart+ay? + 1dA= [7° [2r*s/T1+ ar2drdf

% 4 y? <4

= & (391 V17 +1)

(Substitute « = 1 + 472 and use tables.)

28 z=f(r,y)=4+z+ywith0 <z’ +y* <4sor, xr, = ~1 —j+ k. Then

@z +y2)dS=  [[ (*+y)d+2+y)v3dA

x? +y? <4
:f(;z 0217\/gr3(4+rcosl9+rsin9)d9dr=fozgﬂ\/grsdr232,”\/5

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and
JsFdS = [[fp(s ~2)aV = [[f52dV 2 [[fg aV = mz ~ 2(4x2°) = ~S¢x.
Alternate solution: F(r(¢,8)) = 4sing cosfcosdpi— 4singsindj+ 6singcos bk,
ry X rg = 4sin® peosfi+ 4sin? ¢sinfj + 4sin P cos k. and
F.(ry xrg) =16 sin® ¢ cos? # cos ¢ — 16 sin” ¢sin® 8 + 24 sin” ¢ cos ¢ cosf. Then

[fsF-dS= fohf[;"(lﬁ sin® ¢rcos ¢ cos” @ — 16sin® ¢ sin’ f + 24 sin” ¢ cos pcos §) do df

= 02” ${(—16sin’0) df = -G
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2= flz,y) = 2® + y% ra X vy = =21 — 2yj + k (because of upward orientation) and

F(r(z,y)) - (rz x ry) = —22° — 2z9° + z® + . Then

ffF-dS= [ (-22°—2zy* +2*+y°)dA

af4+y?<l
*fo "(—2r° cos® 8 — 2r° cosBsin® @ + r*)rdrdf = fo r*(2m)ydr =%
. Since curl F = 0, [f_(curl F) - dS = 0. We parametrize C: r(t) = costi+sintj, 0 < t < 2r and
§CF-dr=‘G2 (—cos®tsint + sin® t cost) dt = 3(:os t+—sm t] =0
. [JgcurlF -dS = §_ F -dr where C: r(t) = 2costi+ 2sintj+k,0 <t <27, s0r'(t) = —2sinti+ 2cost],
F(r(t)) = 8cos*tsinti+ 2sintj + e? <t ' k and F(r({t)) - v'(t) = —16 cos® t sin® ¢ + 4sint cost. Thus

$.F-dr= fOQ”(—lﬁ cos® tsin®t + 4sint cost) dt

= [~16(—; sintcos®t + & sin2t + £¢) + 2sin’ 1&]3"r = —dn

. The surface is givenbyx +y+z=lorz=1-2 -4 0<2<1,0<y<l—zandr. xr, =i+j+ k
Then
$oF dr=ff curlF-dS = [[ (-yi—zj—zk) (i+i+k)dA

= ff(~1)dA = —(areaof D) = —

1
2
S FodS = [ff 327 + v + 22 dV = [T [ [23r2 + 32%) rdzdrdd =2 [ (6r® + &7} dr = 117

[ divEdV = fff  3dV = 3(volume of sphere) = 4. Then

‘.1:2 + .y2 + z2 S 1
F(r(¢,0)) - (ry x rp) = sin® ¢ cos® f + sin® ¢ sin? § + sin ¢ cos® ¢ = sin ¢ and
S F-dS = f2"[Tsin¢dgdf = (2r)(2) = 4r.
- Here we must use Equation 17.9.6 [ ET 16.9.6] since F is not defined at the origin. Let S1 be the sphere of radius 1

with center at the origin and outer unit normaj n,. Let S be the surface of the ellipsoid with outer unit normal n

and let £ be the solid region between S1 and Sz. Then the outward flux of F through the ellipsoid is given by
s, FomedS =~ ff, F-(-m)dS+ [[[,divFdV. BuF =r/[r[’, so
divF=V-(r|°r) =]V -r)+r- (V™) =ir|*(3) +r- (=3 (r|r[”!) = 0. (Here we have

used Exercises 17.5.30(a) [ ET 16.5.30(a)] and 17.5.31{(a) [ET 16.5.31(a)].) And F - n; = ‘—
r

on Sy. Thus ff F-nadS = [f; dS+ [ff, 0dV = (surface area of the unit sphere) = 47(1)? = 4.

. Because curl F = 0, F is conservative, and if f(x,y,2) = 23yz — 3xy + z%, then Vf = F. Hence
JoFdr= [ . Vf dr=f(0,3,0)- £(0,0,2) =0-4=—
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38. Let C7 be the circle with center at the origin and radius a as in the figure.
Let D be the region bounded by C and C’. Then [J's positively oriented boundary

is C U (—C"}. Hence by Green’s Theorem

/;F-dr—l-f Fd-// (%—@)d}lzﬂ,so
.[CF-dr——/—C’F-dr:/C’F-dr:/@%F(r(t))-r'(t)dt

2a% cos®t + 2a% costsin®t — 2asint
a2

{—asint)

2a%sin® t + 203 cos? tsint + 2acost

(acost)| dt

a2

2r
2
:f 2 g~ 4
0 a

39. By the Divergence Theorem, [/ F -ndS = [[{_.divFdV = 3(volume of E) = 3(8 - 1) = 21.

40. The stated conditions allow us to use the Divergence Theorem. Hence [[; curl F-dS = [{f_ div(curl F}dV =0

since div(curl F} = 0.
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[ 1 PROBLEMS PLUS

1. Let S; be the portion of £2(5) between S(a} and S, and let 25, be its boundary, Also let St be the lateral surface
of Sy [that is, the surface of 5 except S and S(a)]. Applying the Divergence Theorem we have

/f T ds= ff V.= dV. But
C)Sl Sl r

(2 8 8\ z y z
r3  \ 8z’ 3y Oz (22 +y2 + 22)%? (22 4+ 42 + 22)%2 (g2 + 42 +zz)3/2

7(m2+y2+22—322)+(:r2+y2+z2—3y2)+($2+y2+z2—322)
- (22 + 2 + 22)5/2

=0

= f ] T'Bas = / f / 0dV = (. On the other hand, notice that for the surfaces of 351 other than S{a)
88 &1

andS,r-n=0 =

A el el
e

ff —mdS Notice that on S{a), r =a = n——£=——andr-r:r2=a2,
S(a) T a

s TS
s0 that — // - dS = f[ Trds = ff 2ds= 2]/ = ZeaolSla) _ og,
T S(a) at S{ay @ a 5(a) a

Therefore |Q(5)| = ff L2 ds.

. By Green's Theorem

j;‘(y3 —y)dr — 22 dy = //D [8(;13:3) - a(yz’y_ y)] dA = //D(l — 627 —3y%) dA

Notice that for 62> + 3y® > 1, the integrand is negative. The integral has maximum value if it is evaluated only in
the region where the integrand is positive, which is within the ellipse 2% + 3y* = 1. So the simple closed curve
that gives a maximum value for the line integral is the ellipse 6z% + 3y = 1.

. The given line integral 3 [ (bz — cy) dz + (cx — az) dy + (ay — bz) dz can be expressed as Jo F - dr if we define
the vector field F by F(z.y,z) = Pi+Qj+ Rk = %(bz —ey)i+ %(cz; —az)j+ -;-(ay — bx) k. Then define §
to be the planar intertor of C, so S is an oriented, smooth surface. Stokes’ Theorem says
fCF-dr: ffscurlF-dS = ffscurfF-ndS. Now

8R  8Q oP B8R\, (08Q OF
curl /= (By az)”(_a?”ﬁ)”(az By)k

=(za+3a)i+ (3b+3b)j+ (jet+ic)k=ai+bj+ck=n
socurl F-n=n-n=n* =1, hence [f curl F-ndS = ff, dS which is simply the surface arca of S. Thus,
JoFdr =1 f.(bz — cy)da + (cz — az) dy + (ay — bz) dz is the plane area enclosed by C.
637
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638 O PROBLEMS PLUS

4. (a) First we place the piston on coordinate axes so the top of the cylinder is at the origin and z(t) > 0 is the distance
from the top of the cylinder to the piston at time . Let C be the curve traced out by the piston during one
four-stroke cycle, so € is given by r{t) = z(t) 1, a < t < b. (Thus, the curve lies on the positive z-axis and
reverses direction several times.) The force on the piston is AP(t) i, where A is the area of the top of the piston

and P{t) is the pressure in the cylinder at time £. As in Section 17.2 | ET 16.2}, the work done on the piston is
fo, F-dr= [ AP(t)i-2'(t)idt = [} AP(t)2'(t) dt. Here, the volume of the cylinder at time ¢ is

Vit)=Az{t) = V'(t)=AL(t) = ff AP(t)y'(t) dt = f: P{t)V'(t) dt. Since the curve C in the

PV-plane corresponds to the values of P and V attime t, a < ¢t < b, we have
W = [PAP(t) ' (t) dt = [P P(t)V'(t) dt = [, PdV

Another method: 1f we divide the time interval [a, b] into n subintervals of equal length At, the amount of work

done on the piston in the ith time interval is approximately AP(¢t;}[xz(¢:) — x(t:—1)]. Thus we estimate the total

work done during one cycle tobe > AP(t)[z(t:) — z(t.—1)}. If we allow n — oo, we have

i=1

W= lim S AP{)[e(t) — z(ti1)] = lim 3 P(t:)[Az(t:) - Az(tio)

1

= lim Y P(&)[V(t) - V{ti-1)]l = [, PdV

n—oo

(by Let C, be the lower loop of the curve € and Cy the upper loop. Then C' = C'p U Cy. Cr is positively
oriented, so from Formula 17.4.5 [ ET 16.4.5] we know the area of the lower loop in the PV -plane is given by

- §CL P dV. Cy is negatively oriented, so the area of the upper loop is given by

~ (= §o, PaV) = §,, PaV. From part (a),

W= [ PdV =g o, PV = §o PaV +f, PdV =4, PdV (-4, Pav),

the difference of the areas enclosed by the two loops of C'.
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