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18 [ ] SECOND-ORDER DIFFERENTIAL EQUATIONS [ ET17

18.1 Second-Order Linear Equations ET 171

. The auxiliary equationis r* —6r +8 =0 = (r-4)(r —2)=0 = r=4,r = 2. Then by (8) the general
solution is y = ¢1% + 6@,

. The auxiliary equation is 7* — 4r +8 =0 = r = 2+ 2i. Then by (11) the general solution is
Y = eh(m cos 2z + ca sin 2z).

. The auxiliary equationis 7> + 8r +41 =0 = 7= —4 4 5i. Thenby ({1) the general solution is
y = ¢ " (e1 cos bz + egsin b).

. The auxiliary equationis 2r° —r —1=(2r + 1}{r — 1) =0 = — 3. Then the general solution is
y = cre” +coe” %2

. The auxiliary equationis 7° — 2r + 1= (r — 1)> =0 = r = 1. Then by (10), the general solution is
y = c1€” + coxe”.

. The auxiliary equation is 3r° — 5r =r(3r —=5) =0 = r=0,r= g, S0y = 1 + 2623,

. The auxiliary equationis 47 +1=0 = r= :l:%i, S0 Y = €1 COS (%m) + egsin (%x)

—3x/4 —3x/4

. The auxiliary equation is 16r° +24r + 9= (4r +3)° =0 = r=-%s0y=ce + eaxe

. The auxiliary equationis 4r* + r=r(dr + 1) =0 = r=0,r = —%, S0y =c1 + cge” ™4,
2

. The auxiliary equation is 9r® + 4 =0 = r =x2i soy = c;cos(2z) + easin(Lx).

. The auxiliary equation is PP—2r—1=0 = r=14% \/5, S0y = cle(H‘/ﬁ)t -+ C2e(1"‘/§)t.

. The auxiliary equationis r® —6r +4=0 = r=3++5s0y= crel3+VBt L o o(3-VE)t

. The auxiliary equation is P rr4l=0 = r= —% + -‘gi, S0y = e 2 {cl cos(lgt) + 2 sin(ﬁgtﬂ.

L6t —r — 2= (2r + 1)(3r — 2) = 0 s0

y = cre */% + c2%*/3, The solutions (e1,¢z) = (0, 1),

(1,0),(1,2), (—2,1) are shown. Each solution consists

of a single continuous curve that approaches either 0 or

o0 as x — +oo.

LY 8 416 = (r — 4)? = 0s0y = 1™ + coze®.

The graphs are all asymptotic to the x-axis as x — —oo,

and as ¢ — o0 the solutions tend to 00
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16. 2 —2r+5=0 = 7 =1+ 2iand the solution is
y = e"{c1cos 2z + ¢z sin2x). Graphs for

(e1,e2) = {1,0),{0,1), (1,—1), (—1, 2) are shown. The

solutions are all asymptotic to the z-axis as x — —o0 and

they all oscillate. The amplitudes of the oscillations

become arbitrarily large as x -— oo and arbitrarily small
as e — —oQ.

&I

L2 450 +3=(2r +3)(r+ 1) =0,50r = —£, » = 1 and the general solution is y = c1e + e
Theny(0) =3 = c +c2=3andy/(0)=—-4 = —32c1 2 =—4,50¢c; = 2and ¢z = 1. Thus the

b il

solution to the initial-vajue problem is y = 2e732/2 L o7,

—3x/2

.r?+3=0 = r = ++/3iand the general solution is
y = €% (c1 cos(VBz) + casin(v3z)} = crcos(vV3z) +casin(v3z). Theny(0) =1 = ¢ =1land
y'(0)=3 = c2 = /3, so the solution to the initial-value problem is y = cos(v3z) + v/3sin(v3z).

L4r? —4r4+1=(2r - 1) =0 = r = 1 and the general solution is y = c16®? + caxe®™?. Then y(0) = 1
= ¢ =landy/(0) = —-15 = 1c1+ce=—1550c2 =—2and the solution to the initial-value problem is

Y= e*/? — 2pe™/?,

L2245 —3=(2r—1)(r+3)=0 = r=1r=-3and thegeneral solutionis y = e16%? 4 g,
Then 1 = (0) = ¢1 +c2and 4 = y'(0) = L1 ~ 3ez2 5061 = 2, ¢2 = —1 and the solution to the initial-value

z/2 _ —3x

problem is y = 2¢e e

L2416 =0 = r = +4iand the general solution is y = €°®(c1 cos 4z + casindx) = | cos 4z + co sindz.
Theny(3)=-3 = -a=-3 = o =3andy’(3) =4 = —dee=4 = cx=—1,s0the
solution to the initial-value problem is y = 3 cos 4x — sin4x.

L r* —2r+5=0 = r =1 2iand the general solution is y = e”(c; cos 2z + ¢ sin 2z). Then
O=gy(m)=¢€e"(c1+0) = c1=0and2=y'(m)=(c1+2c2)e”™ = c2=1/e" and the solution to the

T

- . e’ . s
initial-value problem is y = — sin 2z = "7 sin 2z.
e

L2 +2r+2=0 = r=—1=1and the general solutionis y = e "(c1cosz + ez sinz). Then 2 = y(0) = 1

and1 =¢'(0) =c2 —e1 = ez = 3 and the solution to the initial-value problem is y = ¢~ (2 cos x + 3sinx).

.24+ 12r +36=(r+6)2 =0 = 7 = —6and the general solution is y = c1e *® + caze **. Then
O=y(l=cre *+xe® = c+e=0andl=9y(1)= 6cie® 5ce”® = 6c1+5c2=—¢’ 50

c1 = —e% and ¢ = €°. The solution to the initial-value problem is y = —€%¢ ™% + ®ze ™% = (z — 1) .

.47+ 1=0 = 7= 321iandthe general solution is y = ¢) cos(§z) + czsin(3z). Then 3 = y(0) = ¢; and

~4 = y(m) = ¢2, 50 the solution of the boundary-value problem is y = 3 cos(1z) — 4sin(3z).

124 2r=p(2+7) =0 = 7=0,r=—2and the general solution is y = ¢1 + cze~>*. Then

2 2
1-2 .
1=y(0) =ci+czand2 =y(1) =1 + c2e 2502 = lc;i' o = 1—62. The solution of the
—e —€
9,2 2
boundary-value problem is y = 1-2e + € e,
l—e2 1-¢?
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P =3r+2=(r-2)(r - 1)=0 = r =1 =2andthe general solution is y = c1&” + cz¢°*. Then

l=y(0)=ec1+coand 0 =y(3) = c1® + e3¢ s0co = 1/(1 — ) and ¢; = e3/(e® — 1). The solution of the
xz+3 2x
e
+

boundary-value problem is y = i

. 7* 4+ 100 =0 = 7 = +10i and the general solution is y = c1 cos 10z + ¢ sin 10z. But 2 = y(0) = e1 and
5 = y{m) = ey, so0 there is no solution.

—6r+25=0 = 7 =3+ 4iand the general solution is ¥ = €’ (c1 cos 4z + cz sin4x). But 1 = (0} = ¢;
and 2 = y(n} = 1™ = ¢; = 2/e>", so there is no solution.

L1 —6r+9={(r—-3%=0 = r=23and the general solution is y = c1¢** + coze®*. Then 1 = y(0) =1
3z 3x

and 0 = y(1) = c1e® + cze® = ¢z = —1. The solution of the boundary-value problem is y = €** — ze
.4+ 4r+13=0 = r = -2 3iand the general solution is y = e~ * (c1co83x + ¢z sin3x). But
2=y(0)=crand 1 = y({3) = e "{—c2), so the solution to the boundary-value problem is

y=e **(2cos3z — " sin 3x).

02 —18r+10=0 = r=14+ %z and the general solutionis y = ¢ (c1 cos 3 Z +egsinZ ) Then

=y(0)=crand 1 = y{x) = (é e+ AC Cz) = c3= . The solution of the boundary-value

2
V3er

roblem is y = 2¢7 sm(w) = —— " " sin(g)
P b= V3er 3 \/_ 3/
. (@) Case (A =0): 3"+ My =0 = y"” =0whichhas an auxiliary equation+* =0 = r=0 =
y =1+ cz2z where y(0} = Oand y(L) = 0. Thus, 0 = (0} = ciand 0 = ¢(L) = col. = ¢1 =2 = 0.
Thus, y = 0.
Case 2(X < 0): y" + Ay = 0 has auxiliary equation ¥> = —~A = ¢ = £+/—X (distinct and real since
A<0) = y=ceY > + eV where y(0} = Oand (L) = 0. Thus, 0 = y(0) = ¢; + ¢z (%) and
0=gy(L) = c1eV 4 cpe™V A (),

Multiplying (*) by e¥" > and subtracting (1) gives cg (emL - e‘ﬂL) =0 = ¢z =0and thus
¢1 = 0 from (#). Thus, = 0 for the cases A = 0 and \ < 0,

(b) ¥ + Ay = O has an auxiliary equation T + A =0 = r=2i/A = y=cicosvViz+ casinvVrz
where (0) = 0 and y(L} = 0. Thus, 0 = y(0) = ¢; and 0 = y(L) = ¢z sin VAL since e; = 0. Since we
cannot have a trivial solution, ¢z # 0 and thus sin VAL =0 = A L = na where n is an integer
= A=n*r?/L? and y = ¢z sin(nmz/L) where n is an integer.

. The auxiliary equation is ar® + br 4 ¢ = 0.  4* — 4ac > 0, then any solution is of the form

—b+ /b2 — dac —b — /b2 — dae

y(z) = c1e™® + c2e™" where r; = S T e— and r3 = T But a, b, and ¢ are all positive

s0 both 71 and 7 are negative and lim, . y(z) = 0. Ifb* — dac = 0, then any solution is of the form
y(x) = c1€”® + caze™ where r = ~b/ (2a) < 0O since a, b are positive. Hence limz o0 y(z) = 0. Finally if

b* — dac < 0, then any solution is of the form y(z) = €*(c1 cos Bz + c2sin Bz) where o = —b/(2a) < 0 since
a and b are positive. Thus lim, .o y(z) = 0.
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18.2 Nonhomogeneous Linear Equations ET17.2

1. The auxiliary equation is 7° + 37 + 2 = (r + 2){(r + 1) = 0, so the complementary solution is
yo{z) = cre” * + cpe™". We try the particular solution y,(x) = Az® + Bz + C,soy, = 2Az + B and
y = 2A. Substituting into the differential equation, we have (24) + 3(2Ax + BY+2(4s® + Bx+C) =z or
24z% + (6A + 2B)x + (2A + 3B + 2C) = z”. Comparing coefficients gives 24 = 1,64 + 2B = 0, and
24 +3B +2C =0,50 A= 31, B =-3% and C = I. Thus the general solution is
Ye(@) + yp(x) = cre™® fcoe ™ + 2? = 3x 4+ L
. The auxiliary equation is r* + 9 = 0 with roots 7 = %34, so the complementary solution is
y(x) = c1 cos(3z) + ez sin(3z). Try the particular solution yp(x) = Ac®, 50y, = 34 and y = 9AE™.
Substitution into the differential equation gives 9A4e*® + 9(Ae®*) = €3 or 18 4e%* = 3%, Thus A = % and the
1 3=

general solution is y(z) = y.(z) + yp(x) = ¢1 cos(3z) + c2sin(3x) + ze

. The auxiliary equation is r% — 2r = r(r — 2) = 0, so the complementary solution is y.(x} = e1 + c2e%° . Try the
particular solution y, () = Acosdx + Bsindz, so y, = —4Asindx + 4B cos4r
and y; = —16A cosdz — 168 sin 4z. Substitution into the differential equation
gives (—16A cos 4z — 16Bsindxz) — 2(—4Asindx + 4B cosdxr) = sindr =
(—16A — 8B)cosdr + (84 — 16B)sindx = sindz. Then —164A — 8B =0and84 ~ 16B=1 = A= 5

L

35 8in 4z.

and B = — . Thus the general solution is y(z) = ye(#) + ya(z) = c1 + c2¢® + 35 cosdz —

. The auxiliary equation is r2 + 6r + 9 = (r + 3)* = 0, so the complementary solution is
ye(z) = c1e73 + caze ™3, Try the particular solution yp(z) = Az + B, soy;, = Aand g, = 0. Substitution into
the differential equation gives 0 + 64 + 9(Az + B) = 1 + z or (9A)x + (6A + 9B} = 1 + 2. Comparing
coefficients, we have 94 = 1and 64 + 9B =1.s0 A=z and B = % Thus the general solution is
y(z) = c1e™ + cowe™ + 2T+ 3.

. The auxiliary equation is 7° — 4r + 5 = 0 with roots r = 2 = %, so the complementary solution is
ye(z) = ¥ (c1 cos T + casinz). Try y, (z) = Ae ., s0y, = —Ae™" and y, = Ae™". Substitution gives
Ae™" —A(~Ae ") +5(Ae ") =e " = 104e™" =e® = A= . Thus the general solution is

€

2 (¢rcosz + casing) + 5%

y(z)=c
. ye(z) = e ®{erz + ¢2). Try yp(z) = z° (Az + B) e ™™ so that no term in g, is a solution of

the complementary equation. Then y, = [—Ax® + (34 — B)z® 4+ 2Bxle™,

vy = [A2® + (B - 6A)2” + (6A — 4B)x + 2BJe™" and substitution gives

[Az® + (B — 64)z? + (6A — 4B)z + 28] + 2[—Az® + (34 — B)z® + 2Ba] + (Az® + B2*) =z =

6Az + 28 = . Soyp, (z) = z*(}z) e and the general solution is y(z) = €% (12 + ¢2) + gz’e ™
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7. The auxiliary equation is 7% + 1 = 0 with roots r = =4, so the complementary solution is
Yelz) = cr1cosx + czsina. Fory” + y = €® try y,,, (z) = Ae”. Then y,, =y, = Ae” and substitution gives
Ae® + Ae® =€ = A=l soy, (z)=1e" Fory”’ +y=2x%tryy,,(z) = Az® + B2® + Cz + D.
Then g, = 3Az* + 2Bz + C and ¢/}, = 6Az + 2B. Substituting, we have
6Ar + 2B+ Az’ + B +Co+D =2 0A=1,B=0,644+C=0 = C=—6,and2B+D =0
= D = 0. Thus yp,(x} = z* — 6x and the general solution is
¥{(2) = ye(x) + Yp, (&) + ypy(x) = C1cosz + cosinz + ge” +2° — 6. Bu 2 = y(0) =1 + 2 = a=
and0 = y'(0) =c2 +3 —6 = ¢z = 4. Thus the solution to the initial-value problem is
ylx) = %cos:c + 1—21 sinx + %er +a® — 6.

. The auxiliary equation is r* — 4 = 0 with roots 7 = =2, so the complementary

solution is y(z) = c1e®® + eae™*. Try yp(z) = e*(Acosz + Bsinz), so
Yp — e"(Acosz + Bsine + Beosz — Asinz) and ) = €"(2B cosx — 2Asinx). Substitution gives
e*(2Bcosx — 2Asinz) — 4e”(Acosz + Bsina) = e cosz =

(2B —4A)e" cosx + (—2A —4B)e"sinz =e"cosz = A=-1,B= 15- Thus the general solution is

Y(z) = c16® 4 ce™ ™ + e"(—Lcosz + Lsinz). But 1 = 4(0) = ¢; + ¢ ~ £ and

2=y'(0) = 2c; — 2c2 — 5. Thene; = £, ¢z = £, and the solution to the initial-value problem is

ylz) = 2e* + Le ¥ + (- Lcosz + +sinz).

. The auxiliary equation is 2

—r = 0 with roots 7 = 0, 7 = 1 so the complementary solution is y.(x) = c1 + cze”.
Try yp(z) = z(Az + B)e” so that no term in y,, is a solution of the complementary equation. Then

yp = (Ax? + (24 + B)z + B)e® and vy = (Az® + (4A 4+ B)z + (2A + 2B))e”. Substitution into the
differential equation gives (Az® + {44 + B)z + (24 + 2B))e® — (Az” + (24 + B)z + B)e® = ze® =
(2Az + (24 + B))e® =ze” = A =3, B=—L Thusyp(z) = (12 — z)e” and the general solution is
y(r) = c1 4 c2¢” + (32° —z)e”. But 2 =y(0) = ¢1 + cpand 1 = (0} = o — 1, s0 ¢z = 2 and ¢1 = 0. The

solution to the initial-vaiue problem is y(z) = 2¢% + (32° — z)e® = e"(3z” —z +2).

L Yolw) = cre” +epe *F Fory” +4' — 2y = wury yp, (2} = Az + B. Theny,, = A, yp, = 0, and substitution
gives0+ A~-2(Az+B)=z = A=-3B=—1s0y,(z)=—3z— L Fory” iy —2y=sin2ztry
Yra(2) = Acos 2z + Bsin2x. Theny,, = —2Asin 2z + 2B cos 2z, yj, = —4A cos 2z — 4B sin 2z, and
substitution gives (—4A cos 2z — 4Bsin 2z} + (—2Asin 2z + 2B cos 2z) — 2(A cos 2z + Bsin2z) = sin 2z
= A= -3, B=—% Thus y,, (z) = — % cos 2z + — sin 2z and the general solution is
y(x) = cre® 4 epe™® — 1p — 3 — & cos2z — 2 sin2z. But1 = y(0) = c; +¢2 — 1- % and
0=y(0)=e1-2c2~ 5 —-3% = ¢ =L ande; = L. Thus the solution to the initial-value problem is

17 = 1l _—2x 1 1

17 r 1 _ 1 _l__ mi .
y(a:)—158 + ge 3T — 7 g Cos 2x 20sm2a:.
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"M y.{x) = cre”** £ ere ™. Try yp(z) = Ae®. Then
hel

10Ae® = €%, s0 A = & and the general solution is

y(z) = cre™*/* + eze” " + 75€”. The solutions are all composed

of exponential curves and with the exception of the particular

solution (which approaches 0 as x — —-00), they all approach

either oo or —oo as £ — —oo. As © — 00, all solutions are

Le®,

asymptotic to yp = 75

. The auxiliary equation is (2r + 1)(r + 1) = 0,s0r = —1,— % and y.(z) = c1e™* + cae™®/2, For
2 + 3y +y =1, ry yp, (x) = A; substituting gives yp, (z) = 1. For 2y 4+ 3y + y = cos 2z try
vy = Acos2r + Bsin2r = 1y, = —2Asin2x + 2B cos 2z, Yp, = —4Acos 2z — 4B sin 2z,
Substituting into the differential equation gives cos 2 = (68 — 7A) cos 2z + (—TB —6A)sin 22,
Then solving the equations 68 — 7A = 1 and —7B — 6A = 0 gives A = 85,
B = & Thus, yp, (z) = —g5 cos 2 + g sin 2z and the general solution is
y(z) =cre™ + e 2 41 - L cos2:c+ g5 sin 2.

The graph shows y, = ¥, + Yp, and several other solutions. Notice that all solutions are asymptotic to yp as

r — 20

. Here ye(x) = 1 cos 3z + ¢z sin 3z. For ' + 9y = €?® try yp, () = Ae*® and for y” + 9y = 2” sinz uy
Yo (z) = (Ba® + Cx + D)cosz + (Ex® + Fz + G)sinz. Thus a trial solution is
Up(T) = Yp, (£) + typy () = Ae®™ + (B2 + Cx + D) cosz + (Ex® + Fz + G) sin.

. Since yo(x) = 1 + coe” ¥ try yp(z) = (Az + B)e " cosmz + (Cz + D)e” “sinnz.

. Here yc(x) = ¢1 + cpe ™%, Fory" + 9y’ = 1ty yp, () = Az (since y = A is a solution to the complementary
equation) and for y” + 9y’ = ze® try yp, (z) = {Bz + C)e*.

. Since yo{x) = c1€ + c2e¢ ™ try y,(z) = z(Az* + Bz + Cz + D)e” so that no term of yp () satisfies the

complementary equation.

. Since y.(z) = e “(c1co83T + czsin 3x) we try

yp(z) = z{Az® + Bz + C)e " cos 3z + z(Dx* + Ex + F)e™” sin 3z (so that no term of yj, is a solution of the

complementary equation).
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18. Here y.(x) = c1 008 27 + ez sin 2. For ¢ + 4y = 3 try yp, (2) = Ae3® and for ¢ + 4y = z sin 20 try
Yp,(x) = 2(Bx + C) cos 2z + z( Dz + E) sin 2x (so that no term of yp, is a solution of the complementary
equation).

Note: Solving Equations {7} and {9) in The Method of Variation of Parameters gives

G G
wp= et up=
a(yryy ~ ya1)) a (y1y5 — yeyi)

We will use these equations rather than resolving the system in each of the remaining exercises in this section.
19. (a) The complementary solution is y.(x) = ¢1 cos 2z + ez sin2x. A particular solution is of the form
Yp(#) = Az + B. Thus,4Az +4B =2 = A=1iandB=0 = y,(x} = 1. Thus, the general
solution is ¢ = ye + yp = €1 cos 2z + e sin 2z + 1z,
(b) In (a), y.(x) = c1 cos 2z + ez 5in 22, s0 set y1 = cos 2z, y2 = sin 2¢. Then
Y1yh — payl = 2cos” 2z + 2sin® 2z = 2sou] = —izsin2r =
ur(z) = ~5 fwsin2zde = —§(~wcos2x + §sin2x) [by parts] and up = Lz cos2z
= uz(x) = 3 [rcos2ede = L {xsin2z + Lcos2x) [by parts]. Hence
Yp(z) = —5(—2cos 2z + § sin 2x) cos 2z + 1 (sin2z + L cos 2z) sin 22 = 1z, Thus

y(x) = ye(x) + yp() = 1 cos 2 + cosin 2z + 1z

2. @ Herer’ —3r+2=0 = r=1or2and ye(r) = c1€®® + coe®. We try a particular solution of the form
Yp(z) = Acosr+ Bsinx = 1y, = —Asinz + Bceoszand y) = —Acosx — Bsinz. Then the equation
—- 3y’ + 2y = sinz becomes (A — BB)cosx + (B + 3A) sinz =sinrx = A-3B=0and
B+3A=1 = A=2andB= & Thus, y,(z) = Lcosz+ & L sin z. Therefore, the general solution is
Y(2) = ye(x) + yo{) = c16% + coe™ + o COST + 5 L G sinz.
(b) From (a) we know that y.(z) = c1¢®* + cpe®. Setting y1 = €°*, 3 = €*, we have

1 sin xe® o
VY — Yoyt = €3 — 2% = % Thusu) = — =~ — sinze % and
—e
: 2

, _ singe™ S Ty _1,-z :
Uy =~ = —sinze™® Then ui(x) = fe **sinzdz = ¢ 7 (~2sinz —cosz) [by
parts] and up(z) = — [ e " sinxdr = u%e—m(-sina: - (‘os;c) Thus
yp(z) = —(—2 sinz — cosz) + £ (sine + cosz) = 75 8inx + = cos x and the general solution is

(&) = ye(x) + yp(x) = c16® + cae” + Oblnm+—coa.a:

A @r’—-r=r(r—-1)=0 = r=0,1s0the complementary solution is y.(x) = c;€” + coze®. A particular
solution is of the form y,(z) = Ae®®. Thus 44e?* — 44e® + Ae®® = ¥ = Ae®* —e® o A=

= yp(z) = €. So a general solution is y(z) = ye(x) + yp{x) = c16° + core® &2

(b) From (a), yc(z) = c1e” + c2ze”, sosety1 = €, yo = xze®. Then, yiys — Yoyl = € (1 4 @) — we® =
and so u’1 =—re” = w(x)=— [xe"dr= —(r— 1)e” [byparts] and u} = e =»
w2(x) = [ dr = e®. Hence yp (z) = (1 — z)e*® + ze® = ¢’ and the general solution is
y(x ) = Ye(@) + p(z) = c1€” + came™ + €
2 (Herer’ —2r+1=(r+1)?=0 = r=—landye(z)=c, + coe® and so we try a particular solution of

the form yp(z) = Aze®. Thus, after calculating the necessary derivatives, we get y”’ — y/ = e* =

Ae*(2+z) — Ae"(1 +x) =¢® = A= 1 Thus yy(z) = xe® and the general solution is
y(x) = 1 + c2e” + xe”,
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(b) From (a) we know that y.(z) = c1 + cze%, so setting y1 = 1, y2 = €°, then y1y5 — y2y) = € — 0 = €. Thus
u) = —e*"/je® = —e” and uy = €“/e* = 1. Then ui(z) = — [ e®dx = —e® and uz(x) = x. Thus

yp(x) = —€® + ze® and the general solution is y(z) = c1 + c2e® — e¥ + xe™ = ¢1 + cze”™ + xe”.

23. As in Example 6, yc(a:) = ¢ysinzx + epcosx, 50 set ¢y = sinx, y2 = cosz. Then
. SEC T COS T
yi1ys — Yoy = —sin®z —cos*z = —1,s0u} = ——— = 1 = wz)=rand
secxsinz
-1

yp(x) = zsinx + cosx In(cos x) and the general solution is y(z) = (1 + z)sinz + [cz + In{cos x)] cos z.

Uy = = —tanz = wu2(z)=— [tanzdr =In|cosz| = In(cosx}on 0 < z < 5. Hence

2
. . . cotzrcosz cos T
. Setting 31 = sinz, y2 = cosz, then 115 — Yoy = —sin®z — cos®z = —1. Thus u} = — 1 = nz

cotrsinx cos?x

and uh = ———— = —cosz. Then ui(z) = / dz = f(cscz — sinz) dz = In{cscz — cot ) + cosz

-1 sinzx
and uz(x) = —sinz. Thus yp(x) = [cosz + In{cscx — cot x)] sinz + (— sinz)(cos ) and the general solution
isy(z) = c1sinx + ¢z cos x + sinz In{cscx — cot x).

_625': _ e = and
(1+e-2)e3* 1+e®

Lyl = €% y2 = e and yiyh — yayt = 3. Soup =

e = _ , e’ e’
’U.l(.’L') = /_ dz = [n(]‘ te "”) uz = (1+e‘m)83:€ = e3T L p2z §0

uz(z) = / — _dr= ln(8 + ) —e “=In(l+e ") —e . Hence

1+e®

Ef33: + 62:.." ex

yp(x) = " In(1 4+ e7%) + e**[In(1 + e™*) — €] and the general solution is

y(z) = [er + In{1 + e ®)e® + [e2 — ™% + In(1 + e )]e*.

cyr=e Ty —e Pand yiyh — eyl = —e ¥ Sou) = - = e®sine” and
4 [ o et 4

sine® e
’u,fz = —{ )

2 .
—— = —¢ "sine*. Hence w1 (z) = [ e sine*dx = —cose” and

—e
uz(z) = [ —e** sine”dz = €” cose” — sine”. Theny,(z) = —e “cose” — e **[sine” — e* cos e”| and the
general solution is y(x) = {c1 — cose®)e ™ ® + [cz — sine” + e” cose¥]e **.

x -

[ [
sy =e Sy =c®andyiyy — oy = 2. Souy = ——,up = — and
2z 2x

yp(r) = —e 7 / ;—x dx + e““/ egx dz. Hence the general solution is

ylz) = (01 - / -g; d:l’:) e ™+ (cz -I-j 6233 dr) e®.

T yp = ze 2 and hyh — Yoyt = e . Then v} = —

~2m$8_2x 1 1
— = ——sou(r) =z and
rie ** x

—2x —2x 1 —2z —2z

1 L
£ ¢ = — soug(x) = —— . Thus yp(x) = ¢ . = - and the general solution is

7
Wy = .
wle—4e x? 2x2

y(z) = e [ + caz + 1/(22)).
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18.3 Applications of Second-Order Differential Equations ET17.3

1. By Hooke’s Law k{0.6) = 20 so k = 43¢ is the spring constant and the differential equation is 3z" + 12z = 0.
The general solution is z(t) = ¢1 cos(t) + ¢z sin{42t). But 0 = (0) = c3 and 1.2 = 2/(0) = Ley, s0 the

position of the mass after t seconds is z(t) = 0.36sin{¢).

. k(0.3) = 24.3 or k = 81 is the spring constant and the resulting initial-value problem is 4z + 81z = 0,
x(0} = —0.5 (since compressed), x’(0) = 0. The general solution is z(t) = ¢1 cos(2¢} + c2 sin(2¢). But

—0.2 = 2(0) = ¢; and 0 = 2'(0) = Zco. Thus the position is given by z(t) = —0.2 cos(4.5¢t).

. k{(0.5) = 6 or k = 12 is the spring constant, so the initial-value problem is 22" + 14z’ + 12z = 0, 2(0) = 1,
z'(0} = 0. The general solution is z(f) = c1e™* + coe™". But 1 = 2(0) = ¢1 + ¢z and 0 = ' (0) = —6ey — co.

Thus the position is given by x(t} = —ée‘ﬁt + %evt

. (a) The differential equation is 3z" + 30z’ + 123z = 0 with (b)

general solution z(t) = e "*(cy cos 4t + ¢z sin 4¢). Then
0 = z(0} = ¢; and 2 = 2/ (0) = 4cz, so the position is

given by z(t) = se ™ sin 4¢.
0

—0.05

. For critical damping we need ¢ — dmk = 0orm = c*/(4k) = 142/(4-12) = £ kg,

. For critical damping we need ¢ = dmk orec = 2vVmk = 23 - 123 = 6 /41,

. We are givenmm = 1, k = 100, z(0) = —0.1 and (0} = 0. From (3), the differential equation is
d*z dx
ey +c— 7 + 100z = 0 with auxiliary equation 7 + er + 100 = 0. If ¢ = 10, we have two complex roots
= —5 =% 5 v/34, s0 the motion is underdamped and the solution is z = ¢~5¢ [e1 cos(5 \/ﬁt) + ca2sin(5 \/Et)]

Then —0.1 = z(0) = e; and 0 = 2’ (0} = 532 — 5e; = cz:—m—l\/g,so

r=e 5t {—0.1 cos(5v/3¢) — #\/5 sin(5 \/it)} - If ¢ = 15, we again have underdamping since the auxiliary
equation has roots r = L% + %ﬁi. The general solution is ¢ = e~ 15%/2 [q cos(hzﬁt) + 2 sin(‘%ﬁtﬂ, $0

—0l=z{0)=crand 0 =2'(0) = 5‘2/_('2 Le = = Thus

p 10\/'

x =182 {—0.1 cos(s—‘éﬁt) 10\/_ sm(lt)}. For ¢ = 20, we have equal roots r; — vz = —10,

so the oscillation is ¢ritically damped and the solution is & = (¢1 + cat)e™%". Then —0.1 = z(0) = ¢; and
0=2'(0)=-10c1 +c2 = ca=-1s0z=(-0.1—-t)e ' Ifc = 25 the auxiliary equation has roots
r1 = =5, 72 = —20, so we have overdamping and the solution is = ¢;e” %% + e3¢~ 2% Then

—Otl=z(0)=c1+c2and 0 =2'(0) = ~Bey —20ca = ¢ = —% and ¢y = %,
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S0x = —-135 —ht g L 30 e 20 If ¢ = 30 we have roots

0.02
e

= —15 % 5+/5, so the motion is overdamped and the

solution ism:cle(_15+5‘/5) + ¢z e( 15-5 V)t . Then 0]

0.1 =2(0) =¢1 + ¢z and
0=2(0)=(-15+5v5)e1 + (-15-5VB) 2 =
e, = =3=3¥3 and ey = _-uiso

100

x:( 5—%/") (- 15+5\/5)t+(_

100

100

8. We are given yn = 1, ¢ = 10, z(0) = 0 and x’(0) = 1. The differential equation is Z? + 10 Z—f + kx = 0 with

auxiliary equation r% + 10r + k = 0. k = 10: the auxiliary equation has roots r = —5 4 1/15 so we have
overdamping and the solution is z = c1e{™8 T VI8)t 1 )e(=5= VI8 Enering the initial conditions gives

01:2—\;ﬁaﬂdcz=—;ﬁ,s0$:2\}36("5'“/3% 2\/—6( 5-VTE)t k= 90: 7 = =5+ /5 and the

solution is z = ¢1e{=* T V)t 4 ¢,e(=5 = V5)t g5 acain the motion is overdamped. The initial conditions give

1 2—35 and ¢ = —24\/5, 80 T = 2—1\/——5{3(‘5+ VBt _ me(“”* VE} L = 25: we have equal roots

1 = ry = —5, so the motion is critically damped and the solution is £ = (¢ + cat)e™"*. The initial conditions
givecp =0andecy = 1,502 = te " k=30r=-5% \/51 50 the motion is underdamped and the solution is
T = e~ 0t [(;1 cos(\/gc) + ¢z sin(\/g t)] The initial conditions give ¢; = 0 and ¢z = ﬁ, 50

@ = e~*sin{v/5t). k = 40: r = —5 + /151 so we again have underdamping. The solution is

z=e "[c, cos(\/ﬁt) + eo sin(\/ﬁt)} , and the initial conditions give ¢; = 0 and ¢; = 711—-; Thus

T \/ﬁ sm(\/_t)

9. The differential equation is mz" + kx = Fp coswot and wo # w = +/k/m. Here the auxiliary equation is

mr? + k = 0 withroots ++/k/mi = 2wi s0 z.(t) = 1 coswt + ¢z sinwt. Since wo # w, try
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xp(t) = Acoswal + Bsinwet. Then we need
(m) (—w§) (Acoswot + Bsinwot) + k{A coswot + Bsinwot) = Fy coswot or A{k — mw() = Fo and

k .
Bk —mw3) = 0. Hence B =0and A = B s = fo 5+ since w? = —. Thus the motion of the
k—mwi m(w?—wj) m

mass is given by z(t) = ¢1 coswt + casinwt + 3+ COS wol.

m{w? — w3)

. As in Exercise 9, z.{t) = c1 coswt + ¢3 sinwt. But the natural frequency of the system equals the

frequency of the external force, so try z,(t) = ¢(A coswt + Bsinwt). Then we need

m(2wB — w? At) coswt — m{2wA + w? Bt) sinwt + kAt coswt -+ kBtsinwt = Fy coswt or 2mwB == Fp and
—2mwA = 0 (noting —mw? A + kA = 0 and —rnw? B + kB = 0 since w? = k/m). Hence the general sotution is
x(t) = c1 coswt + ez sinwt + [Fot/(2mw)] sinwt.

- From Equation 6, z(t) = f(t) + g(¢) where f(t) = e1 coswt + c2 sinwt and g(t) = cos wot. Then

ml{w? — w3)
[ is periodic, with period 2“)—” and if w # wy, g is periodic with period i—’(’). If wig is a rational number, then we can

say 22 =% = g = % where g and b are non-zero integers. Then
W b gy

e(t+a 2= flt+a-2) 4 g(t+a- 2) = (t)+g(t+bw-2")

= f) +g(t+b ) = £(2) + g(t) = 2(t)

s0 z(t) is periodic.

. {a) The graph of z = c1e™ + cate™ has a f-intercept when cie™ + cate™ = 0 ecr ety =0 &

€1 = —cat. Since ¢ > 0, x has a ¢-intercept if and only if ¢; and c2 have opposite signs.

(b) For £ > 0, the graph of  crosses the t-axis when cie™! + c2e™! =0 o ™2 = —¢1e"tt o

er1 t

€ = —¢ prer = el By T >re = r1—7p>0andsincet > 0, e"1-72)t ~ 1 Thus

le2| = |e1] €172 > ¢y, and the graph of x can cross the t-axis only if jea| > |e1].

. Here the initial-value problem for the charge is Q" + 20Q" + 500Q = 12, Q(0) = Q'{0) = 0. Then

)=
Qc(t) = e " (crcos 20t + c25in20t) and try Q, (1) = A = 5004 =120r A = o=

The general solution is Q(t) = e™"%(c1 cos 20¢ + 2 sin 20¢) + 75 But 0 = Q(0) = ¢1 + 72 and
Q' (2} = I{t) = e "™ [(—10c1 + 20¢2) cos 20t + (—10c; — 20¢; ) sin 20t] but 0 = Q"(0) = —10¢; + 20c;. Thus
the charge is Q(t) = —3k;e ™% (6 cos 20t + 35in 20¢) + 3 and the current is I{t) = e 1% () sin 20t.
#4. (a) Here the initial-value problem for the charge is 2" + 24Q’ + 200Q = 12 with Q(0) = 0.001 and Q’(0) = 0
Then Q.(t) = e % (crcos 8t + cosinSt) andry Q,(8) = A = A=2 + and the general solution is
Q(t) = e ®(c1 cos 8 + casin8t) + 2. But 0.001 = Q(0) = ¢+ = soc1 = —0.059. Also

Q'(t) = I(t) = =% [(—6c1 + 8¢2) cos 8t | (—6ca — 8ey) sin 8] and 0 = Q'(0) = —6¢; + 8¢z s0
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ca = —0.04425. Hence the charge is Q(¢) = —e™%*(0.059 cos 8¢ + 0.04425sin 8t) + 53—0 and the current is

I{t) = e~ %(0.7375) sin 8¢.

(b)Y 008

o N 713
—0.05
charge, Qit) corrent, fif = Q'r)

15. As in Exercise 13, Q.(t) = e *%(c1 cos 20t + ¢z sin 20¢) but E(t) = 12sin 10¢ so try
Qp(t) = Acos 10t + Bsin10¢. Substituting into the differential equation gives
{=100A + 2008 + 5004) cos 10t + (—1008 — 2004 + 5008) sin 10t = 12sin 10¢ = 4004 + 2008 =0
and 4008 — 200A = 12. Thus A = — 250, B = 3 = and the general solution is

Q(t) = e 1% ¢y cos 20t + e2 5in 20t) — ﬁ cos 10 + 13 sin 10£. But 0 = Q{0) = ¢; ~ 2-socy =

3
250~
Also Q'(t) = £ sin10t + £ cos 10t + e-m*{(—mcl + 20¢2) cos 20t + (—10cq — 20cy ) sin 20t] and
0=0Q"(0) =% — 10c1 +20cz s0 ¢z = . Hence the charge is given by

Qi) =e ' [250 cos 20t — £ sin 20t] — 72 cos 10 + 135 sin 10¢.

250 125

16. (a) As in Exercise 14, Q.(t} = e"®"(c1 cos 8¢ + co sin 8¢) but try Qp(¢) = A cos 10¢ + Bsin 10¢.
Substituting into the differential equation gives
(—200A + 240B + 200A4) cos 10f + (—2008 — 240A + 200B) sin 10t = 12sin 10t, so B = 0 and
A = — L. Hence, the general solution is Q(t) = e **(c1 cos 8¢ + ¢ sin 8t) — 55 cos 10¢. But
0.001 = Q(0) = o1 — &, Q'(t) = & **[(—6c1 + 8Bca) cos 8t + (—6cz — 8cr) sin 8] — 4 sin 10¢ and
0= Q'(0) = —6¢1 + Beg, so c: = 0.051 and ¢a = 0.03825. Thus the charge is given by
Q(t) = e (0.051 cos 8t + 0.03825sin 8t) — 25 cos 10L.

(M 006

WAN]
LVVY

-0.06

17. z(t) = Acos{wt +6) & x(t) = Ajcoswtcosé —sinwisind] < z(t) = A(% coswt + _c;:_ sinwt)

where cos§ = e1 /A andsiné = —e2/A & () = e1 coswt + casinwt. (Note that cos® § +sin*é6 =1 =

o+ i = A%)
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d*g
18. (a) We approximate sin 8 by 6 and, with L = 1 and g = 9.8, the differential equation becomes —— pre) + 9.8 = 0.

The auxiliary equationis r* + 9.8 =0 = r = £+/0.81, so the general solution is
6(t) = c1cos(v9.8t) + e2sin(v9.8¢). Then0.2 = §(0) =cyand 1 = ¢'(0) = vV98Be2 = 2=
50 the equation is () = 0.2 cos(v9.8¢) + —1=sin(V9.8¢).

(b) 0'(t) = —0.2v/9.8sin(v/9.81 ) + cos(+/9.8¢) = O or tan(+/9. 8t) = , so the critical numbers are
t= = tan”’ (ﬁ) + —&=  (n any integer). The maximum angle from the vertical is

B(ﬁ tan~! (\/%—s)) 7z 0.377 radians (or about 21.7°).

(c) From part (b}, the critical numbers of #(t} are spdced = apart, and the time between successive maximum
values is 2( \/5*) Thus the period of the pendulum is F /s 2.007 seconds,

(d6(t)=0 = 02cos(v88t)+ —=sin(v88t} =0 = tan(v98t)=02v98 =
t= ﬁ [tan™'(~0.2+/0.8} + 7] ~ 0.825 seconds.

(e) 6(0.825) =~ —1.180 rad/s.

18.4 Series Solutions ET17.4

1. Lety(x) = Z cnx™. Then y'( E nc,x™ ' and the given equation, ' — y = 0, becomes
n=>0

0 ==
> nienz™ ™1 — 37 enx™ = 0. Replacing n by 7 + 1 in the first sum gives Z (n+ Depyrz™ Z ent™ =0,

n=1 n=( =0
20

s0 ), {(n+1)eny1 — ealz™ = 0. Equating coefficients gives (n + 1)cat1 — cn = 0, so the recursion relation is
n=0

Cn 1 )]
me1 = ——,n=01,2 =g, 0= S0 = —, 03 = —
Cn+1 1 , Then ¢1 = co, c2 €L = 53

- Co . .
in general, ¢, = =+ Thus, the solution is
.

o

[
y(mzz Z O!aznzconziﬂ%:

n=0 n=0
(e =]

. Let y(z) cha: Theny =zy = ¢ —ay=0 = chnm I—J:chm =0or

n=10 n=1 n=20

Y nepz™ Tt — Z cnz™ =, Replacing n with n 4+ 1 in the first sum and n with n — 1 in the second

n=1

B (o) (=] O X0
gives 3. (n+ L)eps1z™ — 3 cnaz” =00rer + Y, (n+1enrz” — Y cno12™ = 0. Thus,

n=>0 n=1 n=1 n=1
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c1+ Y. [(n+ 1)cnt1 — en—1] ™ = 0. Equating coefficients gives ¢; = Oand (n + 1} cnt1 — cn—1 = 0. Thus,
n=1
Cr—1
,n
n-+1
AISO,CQI%O,Q:EZ:,EEL <o

— — i — CD
1 4.2 2.20%T %6 T 6.4.2 .3

the recursion relation is ¢ 41 = ..Butey = 0,50¢3 = 0and cs = (0 and in general capny1 = 0.

. Co
and in general c2, = prae b Thus, the

solution is
o

y(I)=ZCﬂI ZCQ”‘T’HZZQn. nl Z

=0 n=0 n=20 =0

oc o0
. Assuming y{z Z cpx wehave v/ (2) = Y nenz™ ' = Y (n+4 1)cny12™ and
n=1 n=0

n=0

[ s] OC
—a?y=— 3 eaz™? = — 3 cu_2z™. Hence, the equation y' = z’y becomes
e

o [+=]
(n+ Deas1z™ — 3. cnoaz™ =0o0rct +2c2z+ Y [(n 4+ 1)}eny1 — cn_2] 2™ = 0. Equating coefficients

n=12 =2
. Cn- .
givescr = cz =0and ¢pi1 = +21 forn=2,3,.... Bute; = 0,50 ¢4 = 0 and ¢ = 0 and in general
n

cant1 = 0. Similarly c; = 050 £3p12 = 0. Finally e3 = %0, s = C_E:: = % = 5%

Co Co L
CERETRRE and e3n, = prat Thus, the solution is

n=0
L Lety (z) =320 jenz™ =y (z) =30 nenz™ 0 =3 2 (n 4 1)en1a™. Then the differential
equation becomes (x - 3} 3>°% (n+ 1)eap12™ +23 o jcnz” =0 =
3 (A Dz =32 (n+ Depiz™ +23 00 pena” =0 =
Yo nenst — Y0 3 n 4 Deppia™ + 300 (262" =0 = 37 [(n42)en —3(n 4 Ljenr1] 2" =0
(since 320 menx™ = Y20 neqz™). Equating coefficients gives (n + 2)cn, — 3(n + 1)en1 = 0, thus the

(n+2)cn
3n+1)°

2cy 3c1 3o
n=0,1,2,.... Thenc; = T,Cg =§r2—) = ?’

recursion retation is ¢p41 =

|4
dea 4;;0, = %j) = %, and in general, ¢, =

{n+ 1lco

30 . Thus the solution is

o0 o0 O
n n+1l , n+1 . 9eo
T :E Cal = E .| Note that ¢ r = for |z| < 3.
y() n Un:[’ OZ 3_1:)2 J |

311 3n

n=>0 n=0
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CLety(x) =30l ez = ¢ (x) = Y0 neaz™ Tandy” (z) = T (n + 2)(n + 1entaz™. The
differential equation becomes 37> \(n + 2)(n + L)cnqoz™ + 2320 neaz™™ ' + 120 ena™ = 0or
meo l(n + 2)(n 4+ Denyz + nea + caz™ (since 300 | neaz™ = 3oy nenz™). Equating coefficients gives

—(n+llen  cp

2 3 n — U, th i lati IS Cn = = — s
{n+2)(n + enyz + (n + 1)en = 0, thus the recursion relation is ¢,y 2 CEDICES) 1

n=10,1,2,.... Then the even coefficients are given by ¢z =

-1} .
and in general, c2,, = = ( 5 ) 'CO. The odd coefficients are ¢3 =
. !

(643 ()] . [853] (—2)” n!c1
Cy = — == = — =

7 3.5.7 : TN SR T T @2n+ 1) (2nr 1)

. The solution is

0 o0
cLety(z) = 3 caz™ Theny”(z) = ¥ n(n— ez ? = Y (n+2)(n+ )eqs22™. Hence, the equation
n=0

n=40 n=2
" o e
y = ybecomes 3 (n+2)(n+ 1)cptaz™ E cng” = Z [(n+2)(n+ 1)cpsz — crlz™ = 0. So the
n=0 =0

. . . C . ] C2 Co
recursion relation is ¢,z = i 0,1,.... Givenegandey, cg = ——, ¢4 = =

m+2)n+1) "~ 2. 1%~ 71.3

(14 Ic_ﬂ s — CO dndc € .C_S--_..Cl_—ﬂ.c—c_s—ﬂ
6T )l T T 32 54 5.4.3.2 57 7.6 T
C1

(2n + 1)

ey

Contl = . Thus, the solution is

oG 2'n+1

y(x) = Z enz” = Z Conz™™ + Z can12”" T = ¢ Z (2 +(‘1 Z {2n+1
n=0

n=1[0F} n={

The solution can be written as y{z) = co coshz + ¢; sinhz

em c" E __ - —
[ory(m):cu +2 te 26 _ co-;-qez co 26164].

clety (@) =37 gena™ Theny” = Y72 n(n — 1) caz™ % 2y’ = 3022 ne,z™ and
(22 + 1)y =52 n{n—1)eaa™ + 5222, (n+2) (n + 1) cnyzz™ The differential equation becomes

(n—1)e,

molin+2)(n+1)enra+ [n(n—~ 1) +n —1]ca) z" = 0. The recursion relation is Cnpz = — 5
n

’

n:O,l,Q,....Givencoandcl,6226—20,64:— 2 e = = (-1) 300
(2?1—3)!00
22n-2pl(n - 2)!

=(-1)""! for

27272l (n - 2)!
=  can41 = 0forn =1,2,.... Thus the solution is

"2 =3)! 5,
22n=2pl{n — 2)!

(m)—co+c1$+(u? +(x)z(

n=2

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
654 O CHAPTER18 SECOND-ORDER DIFFERENTIAL ECUATIONS ET CHAPTER 17

[=

8. Assuming y(z }: enx™, Y (z) = Z (n — Vewx Z (n+2)(n+ 1)ent2x™ and
n=0 n=2

o0
—zy{z) = — ' ~ Y cn-12". The equation " = xy becomes

n=1

o0 o =)
Y (n+2)(n+ Depsga™ — Y en1z” =00r2ca+ ¥ [(n+2}(n+ 1)cnsz — ca1]a™ = 0. Equating

n=>0 n=1 n=1
Cn—1

coetficients gives c2 = 0and cpqz = m

forn=12,.... Sinceca =0,

- . Co C3 o
nrd = =0,1,2,.... , , LA .
Cans2 = 0forn =0 Given ¢g, c3 = 3 2c6 65 F5.33
<0 Givencc—c—lc—ﬂ'—*
3n(3n- )(3n—3)(3n —4)-----6-5-3-2' RT3 T e
C1

B3n+1)3n(Brn—2)(3n—-3}...7-6-4.3°

C3n =

Cantl = The solution can be written as

y(w) = co Z (3n —2)(3n (—3753! 4.1 N )3n — ) 8.5.92 _ontt

n=0

s =} [» &
. Let y(x Z cnx™. Then —xy'{z) = —= Z nenT - ¥ neax™ =— Y nepz™,

n= n=1 n=1 n=0
o

3 (n+2)(n + 1)enyez™, and the equation y”' — gy’ — y = 0 becomes

n=~0

3 [(n+2)(n + 1}ent2 — nen — en]z™ = 0. Thus, the recursion relation is
n=>0

Ny + Cn _ en(nd1)
m+2)(n+1)  (n+2)n+ 1) n+

Crag = 5 forn=0,1,2,.... One of the given conditions is

i n _ _ _ _ Co 1
y(O):l.Buty([]):?;cn(o) =cog+04+0+---=cps0c0 = 1. Hence,cz_-:?»v =T =T

s = C—g _ L The other given condition is %' (0) = 0. But

2.4.6 T ool
= chn(o)"_1 =1 +04+0+ - =cy,s50ci = 0. By the recursion relation, ¢z = %1 =0,e5=0,...,

can+1 = 0form =0, 1, 2,.... Thus, the solution to the initial-value problem is

[ea]

o0 o0 2n [=.+] 2/2
= Zocnsr:” = Z Conz™ Z S ™ Z o= /2

n=20 n=10

10. Assuming that y(z 2: cpx™, we have 2%y = Z enx™ 2 and

n==0 n=20

V'(@= 3 nn- e T= T (n+ 40+ 3erraa™

n=2 -

=2 +6ear+ Y. (n+4){n+ 3cppax” 2
n=>0
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Thus, the equation 3"’ + z°y = 0 becomes 2¢p + 6eaz + n 4 4){n + 3)cars + cn] 2" =0, So
d =0

Cn

¢y = ¢3 = () and the recursion relation is Cntig = —m,
T i

n=01,2....

But e; = y'{0) = 0 = ¢z = c3 and by the recursion relation, €4n 11 = Cany2 = Canpaz = 0forn =0,1,2, .. ..
Also, co = y(0) =1, s0

om0 _ 1 _ 6_4_(——1)2 Can = 0"
4 n 4n(dn — 1)(4n — 4)(dn — 3)

43T 4% s 1T 81437
Thus, the solution to the initial-value problem is

4n

X 50 [s. o3
- 'n'nz 4nIl —1 " z
viz) HZ::OC “ C”Ef“"“’ 2.1 4n(dn — 1){(dn —4){(dn—5} - ----4-3

n=1

20 [£.o] oo
. Assuming that y(x) = " cnz™ wehavezy =z 3 eaz™ = Y. cnz"t?,
n=>0 n=0 n=20

[s %] [+ =}
2y =2 Y neax™ ' = 3 nepx™ !,

n=1 n=0

nln—1enz” 2 = Y (n+3)(n + 2)cnysz™!  [replace n with n + 3]

n=-—1

=202+ Y. (n+3)(n+2epzz™t,

n=0

and the equation y + 2y’ + xy = O becomes 22 + 3 [(n+ 3)(n + 2enis + nen +ea] 2" = 0.
n=10

) . —NCy — Cp (n+1)e,
So ¢2 = 0 and the recursion relation is e,y 3 = =— ,h=10,12,....
: B mTdn+2) n+dn+2) "

But ¢y = 5(0) = 0 = ¢; and by the recursion relation, ¢3, = canz = O0forn=20,1,2,... .

Also, 1 = ¢'(0) = 1, s0

o 2e _ 2-5 22257
S R T e v R A TR

. Thus, the solution is

(3n — 1)%z*" !
(3n+ 1)!

12. (a) Lety(z) = ¥ cnz™ Thenz?y’(z) = 3 n(n — 1ens” = (n+2){n+ enyoz™2,
n=1{_ n—2 0

oc o oo
zy'(z) = 21 nenzt = Yy 1(n +2)eni22™™ =iz + 3 (4 2)ear2x™?, and the equation
n= n=-— n=0

22y +zy + 2y = Obecomes ez + 3. {[{(n+2)(n+ 1)+ (n+ 2)|carz + cn}z™? =0.S001 =0
n=140

Cn

and the recursion relation is ¢pyp2 = ———— |
(n+2)°

n=0,1,2,....Bute; =y (0) = 050 cgneq = 0 for
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1
4222

g 1
= {—1) mv

1 c
n=>012,.... Also,co = y(0) = 1,s0¢3 :—52*,C4=—4—2 =(-1)"

1 1

— 3 _ . .
—1) (3N ccon = (=1)7 5. The solution is

22n (nl)

yw) = Y ens” = 3 (1) s
n=0 n—=0

{b) The Taylor polynomials Ty to T12 are shown in the graph.

Because Tio and T2 are close together throughout the

interval [—5, 5], it is reasonable to assume that T1 is a good

approximation to the Bessel function on that interval.

18 Review

CONCEPT CHECK

. (@) 2y + by’ + cy = 0 where a, b, and ¢ are constants.
M ar*+br+ec=0

(¢) If the auxiliary equation has two distinct real roots r1 and ro, the solution is y = c1e™” + ¢2e"27. If the roots
are real and equal, the solution is y = c1e™ + coxe™ where r is the common root. If the roots are complex, we
can write 7y = ¢ + if and r2 = a — i3, and the solution is y = "% (1 cos Bz + ez sin ).

. {a) An initial-value problem consists of finding a solution y of a second-order differential equation that also satisfies
given conditions y(zg) = yo and y' (o) = y1, where yp and y; are constants.
(b) A boundary-value problem consists of finding a solution y of a second-order differential equation that also
satisfies given boundary conditions y(xe) = yo and y(z1} = y1.
. (a) ay” + by’ + cy = G{x) where a, b, and ¢ are constants and G is a continnous function.

(b) The complementary equation is the related homogeneous equation ay” + by’ + cy = 0. If we find the general
solution y,. of the complementary equation and ¥, is any particular solution of the original differential equation,
then the general solution of the original differential equation is y(z) = yp(x) + y(z).

{c) See Examples -5 and the associated discussion in Section 18.2 [ET 17.2].

{(d} See the discussion on pages 1188-1190 [ET 1152-1154].

. Second-order linear differential equations can be nsed to describe the motion of a vibrating spring or to analyze an
electric circuit; see the discussion in Section 18.3 [ET 17.3].

. See Example 1 and the preceding discussion in Section 18.4 | ET 17 .4].
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TRUE-FALSE QUIZ

. True. See Theorem 18.1.3 | ET 17.1.3].
. False. The differential equation is not homogeneous.
. True. coshz and sinh z are linearly independent solutions of this linear homogeneous equation.

. False. y = Ae” is a solution of the complementary equation, so we have to take y,{x) = Axe”.

EXERCISES

. The auxiliary equationis r® —2r —15=0 = (r—5}r+3)=0 = 7 =257 = —3. Then the general

. . 5 —_
solution is 4 = 1> + o737,

. The auxiliary equation is 7* +4r + 13 =0 = 7= -243i,s0y = ¢ % (¢, cos 3z + ¢z sin 3x).

. The auxiliary equation is r* + 3 = 0 = 7 = ++/34. Then the general solution is

y = c1cos(V3z) + casin(v3z).

. The auxiliary equation isdr’ +4r +1=0 = (2r+12=0 = r= f%, so the general solution is

y = r:le_”/2 + CQze’“’/Q.

TP —dr+5=0 = r=21tis0y(r) = e (cicosz +czsing). Try yp (z) = Ae® = Yy = 2Ae*”
and y, = 4A4e**. Substitution into the differential equation gives 44e®* — 84e®® + 5Ae® =¥ = A=1

=(

and the general solution is y(x) = €**(e1 cos z + ez sinz) + €2*.

P =2=0 = r=1r=-2andy.(x) = cre” +cae X Tryyy(z) = Az> + Bz + C =
Yp = 2Az + Bandy, = 2A. Substitution gives 24 + 2Ax + B — 242> — 2Bz — 20 = 1* =

2z 2 3

A= B = -3}, C = —3 so the general solution is y(x) = c1e” + coe 2® — 122 1z 3

1
2
i —2r4+1=0 = r=1and y.(z) = c1e” + cowe®. Try yp(z) = (Az + B)cosz + (Cz + D)sinz =
¥p =(C~ Az — B)smz + (A+ Cx + D)coszand y = (2C — B ~ Ax)cosz + (—24 — D — Cz)sinz.

Substitution gives (-2Cz + 2C — 24 — 2D)cosx + (2Ax — 24+ 2B — 2C)sinz = xcosx = A =0,

1

B = (' = D = —3. The general solution is () = c1e® + caze® — L cosz — L{z + 1)sina.

7P+ 4 =0 = r=12iand y(x) = c1c082x + ¢z 5in 2z. Try yp(z) = Az cos 2z + Bz sin 2z so that no
term of yy, is a solution of the complementary equation. Then y, = (A + 2Bz) cos 2z + (B — 2Ax) sin 2z and
Yp = (4B — 4Az)cos 2z + (~4A — 4Bir) sin 2z. Substitution gives 4B cos 2z — 4Asin 2z — sin2x =

A= —% and B = 0. The general solution is y(z} = ¢; cos 2z + ¢ sin 2z — Sz cos2a.

P er—6=0 = r=-2r=3andye(z) = c1e™® + c2e™. Fory’ —y' — 6y = 1, try Yp, () = A. Then
Yp, (2) = yy, {&} = 0 and substitution into the differential equation gives A = —z. Fory”" —y —6y=e " uy

Yy (z) = Bre * (since y = Be™>" satisfies the complementary equation). Then g, = (B — 2Br)e " and

Yp, = (4Bz — 4B)e™>7, and substitution gives —5Be™** = e~ ** = B = —L. The general solution then is

y(@) = c1e™® + cae® +yp, (2) + Yy, (7) = 1675 + 026® —
. Using variation of parameters, ye(x) = c1cosx + cosinz, u1(z) = —cscrsinz = —1 = 4 (z) = —z, and
CSC X COsST

wh(x) = — = cotz = wuz(z)=In[sine| = gy, =—zcosz + sinxzln|sinz|. The solution is

y(z) = (c1 — x)cosz + (c2 + In|sinz|) sin z.
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11. The auxiliary equation is 7° + 6r = 0 and the general solution is y{(z) = c1 + coe™ % = ki + koe %D Bt

3=y(1) =k +koand 12=1y'(1) = —6k2. Thus k2 = —2, k1 = 5 and the solution is y(z) = 5 — 2e8(-1),

. The auxiliary equation is 2 — 6r 4+ 25 = 0 and the general solution is y(z) = €% (c1 cosdz + ep sindx). But

= y(0) = ¢y and 1 = ' (0) = 3c1 + 4cz. Thus the solution is y(x) = e** (2 cos 4z — 2 sindx}.

. The auxiliary equation is 72 — 5r -+ 4 = 0 and the genera! solution is y(z) = c1€” + ¢2¢™®. But

0 =y(0) =ci +czand | = ¢’ (0) = ¢1 + 4ca, so the solution is y(z) = 3(e®® —e®).

. ye(x) = ) cos(x/3) + cosin(x/3). For 9y” + y = 3, try yp, (x) = Az + B. Then yp, (x) = 3. For
9y +y = e " Ay Yp, (¥) = Ae™%, Then 9Ae ™" + Ae™ = e ” or yp,(z) = F5e~°. Thus the general solution

is y(z) = ¢1 cos(z/3) + ez sin(2/3) + 3z + e % But1 = y(0) = e1 + 15 Loand 2 =y/'(0) = jea+ 3 — .50

¢1 = & and ¢z = —ZL. Hence the solution is y(z) = {5[9cos(x/3) — 27sin(x/3)] + 3z + fre ",

CLety(x) = 302 Jeaz™ Theny” (z) = Y00 n(n — Denz™ " =30 (n+ 2)(n + 1)cas2z™ and the
differential equation becomes ¥~ [(n + 2)(n + 1}eng2 + (n + 1)en]z™ = 0. Thus the recursion relation is
Cngz = —Cp/(n+2)forn=20,1,2,.... Butcyg = y(0) = 0,80 c3n, =0forn =0,1,2,.... Also

—1)%  (-1)%2%% (—1)* 2" n!

1 ( _
T3.5.7 @ ot T oy

/ 1 (=1)°
c1 =y (0)=1,50c3=-—%,05 = ~—,e7

-1
3735 for

o0 (==

. -1)"2%n! 5,
n=0,1,2,.... Thus the solution to the initial-value problem is y{x) = Z CnX” = Z (()—n 2t
o

!
= 2n 4+ 1)

L Lety{z) = 3.0° jenz™ Theny” (z) = 37 jn(n—1cnz™ ™" =37 ((n+ 2)(n + 1)caiaz™ and the
differential equation becomes 37 o [(n + 2)(n + 1)cnsz — (n + 2)cﬂ]a: = 0. Thus the recursion relation is

C . Co
Cniz = ﬁ forn=0,1,2,.... Given cg and ¢1, we have ¢ = 10 =

2" Hm —1)!
(2n — 1)1

. Similarly 3 = —

o0 yn—1 2
. 2?1 _ r ul
soy(zr) = clwemzfz +¢o + o Z %

n=1
. Here the initial-value problem is 2Q" + 40Q" + 400Q = 12, @ (0) = 0.01, Q'(0) = 0!. Then
Qc(t) = e """ (1 cos 10t + ca sin 10t) and we try Qp () = A!. Thus the general solution is
Q(t) = e *%(c1 cos 10t + c25in10t) + 1351 But 0.01 = Q'(0) = 1 + 0.03and 0 = Q"(0) = ~10c; + 10cz,

s0 €1 = —0.02 = cz!. Hence the charge is given by Q(t) = —0.02e™"%{cos 10t + sin 10¢) + 0.03.
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18. By Hooke’s Law the spring constant is k = 64 and the initial-value problem is 2z" + 16x" + 64z = 0, z(0) = 0,
z'(0) = 2.4, Thus the general solution is z(¢) = e™**(¢; cos 4t + ¢z sin 4t). But 0 = z(0) = ¢; and
24=2(0) = —4e; +4c2 = c1 = 0, c2 = 0.6. Thus the position of the mass is given by
z(t) = 0.6e* sin 4t.

19. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density p as

mass of earth M

follows: p = = .
OHOWS: 0= Jolume of earth inR?

If V.. is the volume of the portion of the earth which lies within a

3 A”r
Mr ThusFrsz Imz_GMmr-

distance 7 of the center, then V,, = $7r® and M, = pV; = T . 7

{b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of

2 GM
Motion, m %t_g =Fy, = _Tm y, 50y (t) = —k2y (t) where k2 = C;—? At the surface,
GMm
R

g

GM
s0g = ST Therefore &% = I3

—mg=Fr=—

(c) The differential equation i 4+ &%y = 0 has auxiliary equation r* + k% = 0. (This is the  of Section 18.1
LET 17.1], not the r measuring distance from the earth’s center.) The roots of the auxiliary equation are +ik, so
by (11) in Section 18.1 [ET 17.1], the general solution of our differential equation for £ is
y(t) = c1cos kt + ca sin kt. It follows that i (t) = —c;k sin kt + c2k cos kt. Now y (0) = R and 3/ (0) = 0,
soc1 = Rand cok = 0. Thus y(t) = Rcoskt and y'(t) = —kRsin kt. This is simple harmonic motion (see
Section 18.3 [ ET 17.3]) with amplitude R, frequency k, and phase angle 0. The period is T = 27 /k.
R ~ 3960 mi = 3960 - 5280 fr and g = 32 ft/s®, so k = \/g/R ~ 1.24 x 10735~ and

T =2n/k = 5079 s =~ 85 min,
(dyy(t) =0 < coskt=0 & Fkt= I+ wnforsomeintegern =

y'(t) = —kRsin(Z + wn} = £kR. Thus the particle passes through the center of the earth with speed
kR~ 4.899 mi/s a2 17,600 mi/h.
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