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7 O INVERSE FUNCTIONS:

Exponential, Logarithmic, and Inverse Trigonometric Functions

7.1 Inverse Functions

1. (a) See Definition 1.

(b) 1t must pass the Horizontal Line Test.

. (@) f ' (y) =2 < f(z)=yforanyyin B. The domain of f~!is B and the range of f =4 is A.
(b) See the steps in (3).

(c) Reflect the graph of f about the line y = .

. f is not one-to-one because 2 # 6, but f(2) = 2.0 = f(6).
. f is one-to-one since for any two different domain values, there are different range values.
. No horizontal line intersects the graph of f more than once. Thus, by the Horizontal Line Test, f is one-to-one.

. The horizontal line y = 0 (the x-axis) intersects the graph of f in more than one point. Thus, by the Horizontal Line

Test, f is not one-to-one.

. The horizontal line y = 0 (the x-axis) intersects the graph of f in more than one point. Thus, by the Horizontal Line

Test, f is not one-to-one.
. No horizontat line intersects the graph of f more than once. Thus, by the Horizontal Line Test, f is one-to-one.

. The graph of f(x) = %(z + 5) is a line with slope % It passes the Horizontal Line Test, so f is one-to-one.

Algebraic solution: If £\ # 2, thenz) +5 £ 22 +5 = {1 +5) # 3(x2+5) =  flo1) # flxa).so f
is one-to-one.

2 b 4

is a parabola with axis of symmetry x = — 5> = — eyl 2. Pick any z-values

equidistant from 2 to find two equal function values. For example, f(1) =4 and f(3) = 4, so fisnot 1-1.

LTI FE T2 = I F oz = glz) # gxe).sogis 1-1,

. The graph of f(z) =1+4z —=x

Lglzy=|z] = g(-1)=1=g(1),s0gisnot one-to-one.
L h(z)=x'+5 = h(1)=6=h{(-1),s0hisnot -1
L1 £ ze = ztF#axi [sincex>0] = 2l +5F25+5 = h(z1) # h(za),sohis 1-1.

. A football will attain every height h up to its maximum height twice: once on the way up, and again on the way
down. Thus, even if t; does not equal £2, f(t1) may equal f(#2}, so f is not 1-1.

. f is not 1-1 because eventually we all stop growing and therefore, there are two times at which we have the same
height.
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482 11 CHAPTER7 INVERSE FUNCTIONS

17. f does not pass the Horizonta! Line Test, so f is 18. f passes the Horizontal Line Test,
not 1-1. so fis 1-1.

| | J

-4

4

. Since f{2) = 9and fis 1-1, we know that 749 = 2. Remember, if the point (2, 9) is on the graph of f, then the
point (9, 2) is on the graph of f~1.

 flz) = +cosz = f'(z)=1—sinz > 0, with equality only if = Z -} 2n7. So f is increasing on R, and
hence, 1-1. By inspection, f(0) =0 +cosl} =1, 50 fHy =0

Ch(xpy=ax+x = W{(x)=1+1/{2vx) > 0on (0,00). Sohis increasing and hence, 1-1. By inspection,
h{d) =4+ VA =650 (6) = 4.

. (a) fis 1-1 because it passes the Horizontal Line Test.
(b) Domain of f = [—3,3] = Range of f'. Range of f = [—2,2] = Domain of f71.
(¢ Since f(—2) =1, f }{1) = 2.

. We solve C = 2(F —32) for F; 2C = F —32 = F = 2C + 32. This gives us a formula for the inverse
function, that is. the Fahrenheit temperature £ as a function of the Celsius temperature C. 17 > —439.67 =
%C + 32 > —459.67 = f::C > —491.67 = (> —273.15, the domain of the inverse function,

2 2 2 2
I v 1 ; m. ; ; m
e = 1 2 ~1-2 5 v‘j‘—cz(l——(J)

V1 —e2/c? 2 m? - m2 mn2

2
/ ™, L. . . S . . _
v=cy1— —2 This formula gives us the speed v of the particle in terms of its mass 7, that is, v = f ).
m

3— 3-
y=fle)=3-2x = 2r=3-y = m:—z—y.lmerchangexundy:y:—2—§.So

3—=r
5

R N Uy
T 2: 413 Y= 5,12

- J(x) = y(2r+3)=4r—-1 = 2ry+3y=4oe-1 =

3 1 Ax
rl=dor-2ry = 3y+l=0H-2y = = yt . Interchange x and y: y — i"H—l.
4 -2y 4 — 2w
_ 3r+1
S Ha) = .
of T w) = T

f@) =103z = y=y10-3z (y20) = y=10-3z = J=10-y" =

xr = —%ylz + L,:J Interchange = and y: y = —%.‘1:2 + %Q SofHry=1z*+ l—gu Note that the domain of f~!

3
isxe > 0.
cy=fle)=2%+3 =

Interchange = and 3 y = |
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1-+x
1+ vz’
1 ; g : i;é xﬁ ; 1 :1— = —1, so the range of f is —1 < y < 1. Thus, the domain of flis
—1< <l

y=i;ﬁ 5 oyl yz)=1-V2 = y+yvr=1-Vo = oty /z=1-y =

2
1-y\* (l—w)
=1 = = [ —=Z | .Interchangex andy: y = | —— ) . So
VI(l+y)=1-y = z= 1+y=>-’17 (1+y) n & Y YT\ fr

the domain is > 0. f(0) = 1 and as x increases, y decreases. Asz — o0,

2
“g) = (1—“’) with—1 <z < 1.
14z

y=fz) =2 —8r,x22 = U'-Bz-y=02>2 =

/6d L Ry uadratic formula with /16
- w [ d = w =2+ %\/16 + 2y. Interchange x and

a=2b=-8,andec= —y

y: y =2+ 3v16+ 2z. So 7 (x) = 24 316 + 2z

Alternate solution {by completing the square): y = 222 -8z, x> 2 = 2 —-dr=y/2,x>2 =

5 1 1:
(m_2)2:x2,4x+4:_y_+4:y_+8:M‘:ﬂzg = $_2=+,‘M
2 2 4 4
\ 1 - 1 1
z =2+ 3y/2yT 16. Interchange z and 2 y = 2+ 5v2x + 16. So f~ ' (2) = 2+ 3v2z + 16.

Y

. d =5 -
2 . 2

o = 4/ ——,since z > 0. Interchange x and y: y = .

-y 1-=z

2
1—

So f~Ha} =

y=flo) =Vl +2z,2>0 = y>0ady’ =z+2r =

x? 4 2z — y* = 0. Now we use the quadratic formula:

-2+ /22 -4-1.
T = \/ 21 (- -1+ /14 g2 Butz > 0,50 the

negative root is inadmissible. Interchange z and y: y = —1 + /1 4+ 2.

So f~! =-1++1+2z2%z>0

. The function f is one-to-one, so its inverse exists and the graph of its inverse

can be obtained by reflecting the graph of f about the line y = .
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34, The function f is one-to-one, so its inverse exists and the graph of its inverse can be obtained by reflecting the graph
of f about the line y = z. For the graph of 1/ f, the y-coordinates are simply the reciprocals of f. For example, if
F(5) = 9, then 1/f(5) = §. If we draw the horizontal line y = 1, we see that the only place where the graphs

intersect is on that line.

) a Fxe = xi#z =  flz1) # f(xz),s0 fis one-to-one.
(b) f(x) =3c%and f(2) =8 = g(8) = 2.50¢(8) =1/f"(a(8) = 1/f'(2) = 7.

/3

3 p=y"? Interchanging » and y givesy = x'/°, (e)

Cyy==mx
so £ (z) = /%, Domuin(g) = range(f) = R.
Range(g) = domain{f) = R.

Wy glz) =2 = g@)=32"" = ¢@®) =4l

=%

as in part (b).

L@ w1 FEr = I -2#12-2 = Vi -2# Ve -2 = flz) # flzz).so fis1-L
1

1 1
————.50¢g'(2) = ==
i3 Y= ey T e

Ky=+vzr—2 = yY=r—-2 = r=y"+2 ey 7

Interchange z and 4 y = z° + 2. Sog{z) = 2 + 2.

(b f(6) = 2,50 g(2) = 6. Also f'(x) =

Domain = [0, oo), range = [2,00).

dglr)=2"+2 = J =22 = 2 =4

0

(@) Sincex >0,z £A70 = xiFai = 99—zt £9—22 = fla) # f{xz),s0 fis -1

1 1 1]

(b fliz) = —2zand f(1) =8 = g¢(8) =Lsog'(B) = RO

Cy=9-2" = =9~y => x=+9— y Interchange x ey ¥
andy: y = V9 — x,50 f ! (x) =9~ z. i
Domain {g) = range (f} = (0,9].

Range (g) = domain (f) = [0, 3].
() g'(r)=-1/(2vV9—z) = g'(8) =—3 asinpart (b).

3

: #ml,l = fler) # f(m2),s0 fis 1-1.

(b) g{(2) = & since f(2) = 2. Also f'{x) = —1/(x - 1)*,50¢'(2) = 1/f'(3)

L@o Frn = m-1Fr2-1 =
Ty —1
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SECTION 7.1 INVERSEFUNCTIONS O 488
©@y=1/(x—1) = xz-1=1/y = =z=1+1/y Interchange (e} 7

zandy: y =1+ 1/z.Sog(z) =1+ 1/z,z > 0(sincey > 1).

Domain = (0, 00), range = (1, c0) .
§@) = ~1/a"s0g(2) = 4.

Lf0) =1 = f{1)=0adflz)=2"+2+1 = f(z)=32"+Land f{0) =1 Thus,

e R S

U=y " Fe 17"

L) =2 = @) =ladflz)=2"-2+2z = f'(x) = 52" — 3z% + 2and f'(1) = 4. Thus,

-1 1 __ 1
™Y@= Fr) <

.f(D):S = f71(3)=0,and f(z) = 3 + 2? + tan(nz/2) = f'(z) =2z + Fsec’(mr/2)and
F0) = 51 = 5. Thus, (/1)/(8) = 1/ (71 (3) = 1/7/(0) = 2/.

=2 = FfYy=1land f(z)=v23+zi+z+1 = f'(z)= QJ?;IT%
, _ 3+2+1 _§ 1y . rroe—1 _ ; 2
f(l)———*ﬂ*——2\/H_—1+m—2-ThUS‘(f YR =1t @) =10 =3
gy L1
. f4)=5 = g(5)—4.Thus,g(5)—f,(g(5)) @)
1
f(9(2))

Cf3)=2 = ¢(2) =3 Thus, g'(2) =

4 — _ g’(l;) G.’ . gf(z) —
CO="per T Y Thaer

. We see that the graph of y = f(x) = v&® + 2% + z + 1 is increasing, 50
fis 1-1. Enter £ = +/y® + 2 + y + 1 and use your CAS to solve the

equation for y. Using Derive, we get two (immelevant) solutions involving

imaginary expressions, as well as one which can be simplified to the
following:

-

5\ A
-1

where D = 3+v/3+/27x* — 4022 + 16. Maple and Mathematica each give two complex expressions and one real

expression, and the real expression is equivalent to that given by Derive. For example, Maple’s expression simplifies

o LM 8 — 2M1/3
6 M3

~ V(YD =27 ¥ 20— YD+ 2122 — 20 + ¥/2)

. where M = 10822 + 12 /48 — 12022 + 81z?% — 80.

. Since sin{2n7) = 0, h(x) = sinz is not one-to-one. i'{(x) = cosx > O on (%, I}, so h is increasing and hence -

1-lon [—Z,2]. Lety = f*(x) = sin ™" « so that sin y = =. Differentiating siny = x implicitly with respect to

d d 1 . : .
xgivesusmsyd_iZI = —yzcosy.Nowcos2y+51n2y:1 = cosy = £+/1 — sin? g, but since

d 1 1
cosy > 0on (— ¥ _ —

\/1—sin2y Vv1—z%
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47. (a) If the point (z,y)} is on the graph of y = f(x), then the point (x — ¢, y) is that point shifted ¢ units to the left.
Since f is 1-1, the point (y, x) is on the graph of y = £~ 1(x) and the point corresponding to (z — ¢, y} on the
graph of f is (y, = — ¢} on the graph of f~ 1. Thus, the curve's reflection is shifted down the same number of

units as the curve itself is shifted to the left. So an expression for the inverse function is g Ho)=f'(z)—c

{b) If we compress (or stretch) a curve horizontally, the curve’s reflection in the line y = x is compressed (or
stretched) vertically by the same factor. Using this geometric principle, we see that the inverse of (x) = f(er)

can be expressed as h ™! (z) = (1/¢) f~H(z).

) = o us
48. (a) We know that ¢'{x) = Flale)) Thus,
Cel2) ¢ (w) _ fele) W) ST ele)

SO T PR Flee) @)

(b) fisincreasing = f'(g(x)) >0 = [f'{g(z) J* > 0. fisconcave upward = f"{g(z))

i
g'(z) = S o)) < {0, which implies that g (f's inverse) is concave downward.

T (gl

1.2 Exponential Functions and Their Derivatives

1 (@ f(z) =a” a>0 b R

() (0, 00) (d) See Figures 6(c}, 6(b), and 6{a), respectively.

2. (a) The number e is the value of @ such that the slope of the tangent line at = = 0 on the graph of y = a” is
exactly 1.

(b) e~ 271828 (©) flx) =¢€*

3. All of these graphs approach 0 as ¢ — —oc, all of them pass

through the point (0, 1), and all of them are increasing and
approach oo as © — oo. The larger the base, the faster the
function increases for x > (0, and the faster it approaches 0 as

T — —00,

4. The graph of e~ * is the reflection of the graph of * about

the y-axis, and the graph of 87 is the reflection of that of 8%
about the y-axis. The graph of 87 increases more quickly

than that of ¢® for z > 0, and approaches 0 faster as

Ir — —0CQ.
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B. The functions with bases greater than 1 (3% and 10%) are

increasing, while those with bases less than 1

[(3)7 and (35)°) are decreasing. The graph of (3)7 is the

reflection of that of 3* about the y-axis, and the graph of

(35)° is the reflection of that of 10° about the y-axis. The

graph of 10° increases more guickly than that of 3% for

x > 0, and approaches 0 faster as z — —o0.

. Each of the graphs approaches oo as ¢ — —oc, and each

approaches 0 as o — oo. The smaller the base, the faster the

function grows as x — —oo, and the faster it approaches ( as
X —» CQO.

. We start with the graph of y = 4% (Figure 3) 8. We start with the graph of y = 47 (Figure 3) and

and then shift 3 units downward. This shift then shift 3 units to the right. There is a horizontal

doesn’t affect the domain, but the range of asymptote of y = 0.

y =47 - 3is (—3,00). There is a horizontal y
asymptote of y = 3.

Yy

1

_

¢

. We start with the graph of y = 27
(Figure 3), reflect it about the

y-axis, and then about the x-axis
(or just rotate 180° to handle both
reflections} to obtain the graph of

y = —27% Ineach graph, y = 0

is the horizontal asymptote.
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10. We start with the graph of y = e (Figure 12 ), 11. We start with the graph of y = e” (Figure 12)),
vertically stretch by a factor of 2, and then shift reflect it about the z-axis, und then shift 3 units
1 unit upward. There is a horizental asymptote upward. Note the horizontal asymptote of y = 3.

of y = 1.

¥

y = 2"
. We start with the graph of y = ¢* (Figure 12),

reflect it about the y-axis. and then about the z-axis
(or just rotate 180° to handle both reflections) to

obtain the graph of y = —e ™ ". Now shift this graph

1 unit upward, vertically stretch by a factor of 5,

and then shift 2 units upward. '
y= e y=2+5(1-¢e"%)
. (a) To find the equation of the graph that results from shifting the graph of y = ¢ 2 units downward. we subtract 2
from the original Tunction to get y = e* — 2.
(b) To find the equation of the graph that results from shifting the graph of y = ¢ 2 units to the right. we replace
with :x — 2 in the original tunction to get y — el

(¢) To find the equation of the graph that results from reflecting the graph of y = * about the -axis, we multiply
the original function by —1to gety = —¢”.

(d) To find the equation of the graph that results from reflecting the graph of ¢ = ” about the y-uxis, we replace
with —x in the original function to gety = ¢~ %,

{e) To find the equation of the graph that results from reflecting the graph of y = ¢” about the z-axis and then about
the y-axis, we first multiply the original function by —1 (to get ¥ = —e”) and then replace x with —z in this
equation to get y = —e” .

. (a) This reflection consists of first reflecting the graph about the z-axis (giving the graph with equation y = —¢”)

and then shifting this graph 2 - 4 = 8 units upward. So the equation is y = —e* + 8.
{b) This reflection consists of tirst reflecting the graph about the y-axis (giving the graph with equation y = e’ ")
and then shifting this graph 2 - 2 = 4 units to the right. So the equation is y = e~ tem4),

. (a) The denominator 1 4+ ¢ is never equal to zero because €7 > 0, so the domain of f(z) = 1/{1 + %) isR.

byl —e” =0 & e“=1 < x=0so0thedomainof f(z)=1/(1—¢")is (—o0,0)U(0,0c).

. (a) The sine and exponential functions have domain R. so g(#} = sin{e™*} also has domain R.

(b) The function g(t) = /1 — 2% has domain {t | 1 = 2* 2 0} = {t | 2* < 1} = {t |t < 0} = (~20, 0],
. Use y = Ca* with the points (1,6) and (3,24). 6 = Ca'  [C=£] and24 =0Ca® = 24 = (9)0,3 =

a

4=a® = a=2 [sincea>0] and (= g = 3. The function is f(z) =327
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18. Given the y-intercept {0, 2), we have y = C'a® = 2a*. Using the point (2, %) gives us 2-2* =

9
= a=13 f[sincea>0]. The functionis f(x) =2(3)" or f(z) = 2(3)7".

19. 21t = 24 in, f(24) = 24% in = 576 in = 48 ft. g(24) = 2°* in = 2*4/(12 - 5280) mi =~ 265 mi

20. We sce from the graphs that for x less than about 1.8, g(z) = 5% > f(z) = z°, and then near the point (1.8, 17.1)
the curves intersect. Then f{x} > g(z) from x =~ 1.8 until # = 5. At (5, 3125) there is another point of
intersection, and for z > 5 we see that g{z) > f(z). In fact, ¢ increases much more rapidly than f beyond that

point.
325

15
0

21. The graph of ¢ finally surpasses that of f at = ~ 35.8.

-1.2

. We graph y = €* and y = 1,000,000,000 and determine 1.100,0;)0,000

where ¢ = 1 x 10°. This seems to be true at z =2 20.723, so

e® > 1 x 10° for z > 20.723.

. lim (1.001)® = oo by (3), since 1.001 > 1.

T—00

L Lett = —x°. Asx — 00, t — —o0. So lim e~ :tlim et =0by(11).

=00

e3;c _ 6—3:8 1 _ efﬁx 1 o D
. Divide numerator and denominator by e3*:  lim 5 = lim = =
z—o0 €3 473 peos 1 e 6% 140

1

. Ifwe let ¢ = tanz, thenas x — (n/2)", ¢t — —oo. Thus, 1ir§1
w7 /2) T

Clett=3/(2—x). Asz — 27t = —co. So lim €¥3~% = lim €' = 0by(l1).

z—2t t——oc
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28. Lett=3/(2—z). Asz— 27,t —c0. So lim e3/27% = lim e' = oo by (11).

T2 t—o0

d xz d P J T e ¢
29. By the Product Rule, f(z) = z%e® = f'{z)= x? T (e®)+e o {(z*) = z2e® 4 " (27) = ze®(z + 2).

| ,_(Lim)e® () _ e fwe et _ et
- Bythe Quotient Rule, y = == = ¥ = 07 T T @y )2 @+ 1F

(az®) = 3ax?e®”

a1'3 ' (113 d
LBy (I0),y=¢ = Yy B

Ly =e*(cosuten) = Yy =e*(—sinu-+e)+ (cosu+cu)e” =e*{cosu —sinwu +cu+ c)

-1
il/u = fr(u) — e}/u [;i( ) Pl/u(_&_‘%) — (a?) e1/11,

. By the Product Rule, g(z) = /ze* = =22 = g'(x)=2") + € ( _1/2) = 1z (2 + 1).

. By (]0) F( ) _ tqm?t =
F'(t) = ™™ #{tsin2t) = el SN2 Dcos 2t +sin2t - 1) = et ¥ (2t cos 2t + sin 2t)

/2 k an
:ektall\/&_‘ = y! :ekt.aﬂﬁ o (ktan\/_ ktan\f(ksecz\f _,) 5¢C \/Jj kt Ve

N

1 , 3{3.1‘
l + QCSI = y" ( + 2 3:)—1/2 dd (1 + 2 {m) o (2(‘13"5 i 3 L

e e

-e™ . = —mwe"  sin(e™")

. By the Quotient Rule, y =
(ce®™ + d){ae®) — (ae® +b)(ce™)  (ace® + ad — ace™ — bc)e™ _ (ad — be)e”

(cex + d)? (cex + d)? T eem ¥ d)?
{e* —e™®)(e" —e ™) — (e + e e" +e )
(e — e—x)2

(82m_2+€721‘) _(€2m+2+e—2x) B 4

(e —em2)? T (em ey’
Ly =¥ cosmr = Y = e (—msinmz) + (cosmz){2e’) = e**(2cosmr — mwsinmx).
At (0,1),4 = 1{2 — 0) = 2, so an equation of the tangent line is y — 1 = 2(x — 0}, ory =2z + L.
‘ , x-ef—e"-1 e(z-1) . . . o
= y = > = —=. At{1,e), ¢ =0, and an equation of the tangent line is
r T
y—e=0{z—1),ory=ce.

. d (ffzy) _ 4 (r+y) = 6”21‘{:1:23;’ +y-20)=1+y = w2t vy’ +2myemzy =1+y =

dr dx

1 — 2xye” ‘v
z2e®y — 1

2’e” yy —y =1 2zye” oo y’(iﬂgemzy 1) =1 —2;1:9’6'“"2“ = ¥y =
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Lze? tyet =1 = ze¥y +e¥-ltye” +ey =0 = y(ze¥ +e7) = —e¥ —ye" =
r_ e tye” e+1-1

. = —(e 4 1), so an equation for the tangent line is
xe¥ + e* 0-+1 ( ) 4 g

y—1=—-(e+1){z—0),ory=—(e+ 1)+ 1L

Ac(0, 1),y =—

_y:ez+e—m/2 = yf:em_%e—w/2

2y”—y'fy=2(e"+ie_w/2) _(exg_

.y = Ae ® 4 Bre™® = y =-Ae ™+ Be™® —Bze " =(B-A)e™" - Bre © =
y' = (A—- Ble™® —Be ® + Bze ™ = (A—2B)e " + Bxe ", 50
y' +2 +y=(A—2B)e " + Bae " +2]{(B— A)e * — Bre "] + Ae™* + Bze™® =0,

Ly=e = y =re™ =y =r?" soily = " satisfies the differential equation 3" + 6y’ +8y =0,
then r2e™ + 6re™ + 8™ = (: that is, €"* (r2 + 6r 4+ 8) = 0. Since €™ > 0 for all iz, we must have

r* 4 6r+8=0,0r(r+2}(r+4)=0,s0r = -2 or—4.

Ly = e)\a: = yf — Ae)\m = yl! — )\2(3}:‘ ThllS, Yy +yl — yh' Py e/\m + Ae.\m — )\QEAI Py

BAIL‘(AQ_A_]_) =0 o A= l%ﬁ,sincee)‘m#().

Cfley=e = flz) =2 = f(z)=2-2% =2%" =

f”"(ﬂ?):22-262m:2382z = ... = f(n)(x)zznezc

L flz)=xze ™ = fl@)=z(—eT)+e T =1—-2)" =
flla)=01-a)(—e")+e " (-1)={z—2)e7" = ["@)=(z-2(-e")+e"
9@ =B8—z) (e +e -l =(z—4)e ™ = - = [fMz)=(-1"(@—n) "
So D1%%e™" = (z — 1000)e™*.

. (a) f(z) = e® + z is continuous on R and f{—1) =e ' — 1 < 0 < 1 = f(0), so by the Intermediate Value
Theorem, €* + z = ¢ has aroot in {—1,0).

e*" 4+ Iy
e®n 41
To &= —0.566311, x3 ~ —0.567143 = x4, so the root is —0.567143 to six decimal places.

by flz) =" +x = fz)=¢"+1,802n41 =2n — . Using 71 = —0.5, we get

3 From the graph, it appears that the curves intersect at about « =~ 1.2 or 1.3.

y:\e—xzi w We use Newton’s Method with f(z) = 2* + 2 — 3 — e 50
2 o) =3+ 1+ 2re~®", and the formula is
, ; En+1 = Tn — f{zn)/f (zn). Wetake z1 = 1.2, and the formula gives
=x’+x—
Y @o 2 1.252462, x3 =~ 1.251045, and x4 =~ x5 ~ 1.251044. So the root
4 of the equation, correct to six decimal places, is x = 1.2561044.
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55. (a) m{t) = 24.27%% =
m(40) =24 2740/%5 = 792 mg

d (-
(by m'(f) = 24 (2 t/%) mity=24-277%

dt\ 25
= 24(0.69)(- &) 27*/*

~ 24(0.69)271/% fi( i

) [(7}and (10)]

L mit) = 5 {=56.6, 5)
0 = . = . 60

From the graph, we can determine that

so ' (40) = —%(0-69)2_40/25 ~ —0.22 mg/yr. (t}y=5 = t=56.6yr
mit) =5 == 00.0 ¥T.

From the graph, we estimate that the most rapid increase in the

percentage of households in the United States with at least one VCR
oceurs at about t = 8, To maximize the first derivative, we need to

determine the values for which the second derivative is 0. We'll use

Vit) = and substitute ¢ = 85, b = 53, and ¢ = 0.5 later.

_ e
1+ bect’

a(bee™)

0 ib t)2 |by the Reciprocal Rule]  and
+ be®

VL) = —
(1+ bc“)z et — e 2(1 4 be™) - bee®
[(1 + best)?]”

—abe - cet (1 + bet)](1 + be®) — 2be]  —abc’e (1 — be®)
(1 + beet)d B (1 + bect)3

V7(t) = —abe-

SoV'(ty =0 & 1=bhe” < e =1/b Nowgraphy = e~%%" and y = Z;. These graphs intersect at
t 72 7.94 years, which corresponds to roughly midyear 1988. [Alternatively, we could use the rootfinder on a
calculator to solve e =% = L O, if you have already studied logarithms, you can solve et = 1/b as follows:

et =n(1/b) < t=(1/c)In(1/b) = —21n z; = 7.94 years.

. 1 ,
litn =1,sincek >0 = —kt—-—=-oc = e~k Q.

T oo 1 + ge—kt - 1+a-0

. {a) tlim p(t)
—kt

e k) —1 dp _ _ kY2 —key _ _ kae
(b) p(t) = (1 + ae™™") = T (1+ae™™) “(—kae ") = G ac )P

(©) 1 From the graph of p(t) = (1 + 10e™%*) ™", it seems that
=08 Lo .
F d p(t) = 0.8 (indicating that 80% of the population has heard the

rumor) when £ = 7.4 hours.
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The displacement function is squeezed between the other two

functions. This is because —1 < sin4t <1 =

—Be~t? < et/ ?sindt < Be P2

—10
(b) The maximum value of the displacement is about 6.6 cm, occurring at ¢ = (.36 5. It occurs just before the

graph of the displacement function touches the graph of 8¢~/ (when t = £ = 0.39).

{c) The velocity of the object is the derivative of its displacement (dy 10

function, that s,
;% (88‘”2 sin 4t) = 8[8_”2 cos 44(4) + sin 4t(—%) e"‘/r"] .

If the displacement is zero, then we must have sin 4 = 0 {since

the exponential term in the displacement function is always

positive). The first time that sin 4t = 0 after £ = ( occurs at

I . . . The graph indicates that the
t = Z. Substituting this into our expression for the velocity, and grap

displacement is less than 2 cm from

noting that the second term vanishes, we

getv(§) = 8¢ ™ P cos(4-3)4= ~32¢77/ = —21.6em/s.

equilibrium whenever ¢ is larger than
about 2.8.

59. (a) Using a calculator or CAS, we obtain the model ¢ = ab® with ¢ = 100.0124369 and b = 0.000045145933.
We can change this model to one with base e and exponent In b [b* = e!!™? from precalculus mathematics or

from Section 7.3); Q = ae!™® = 100.012437¢10-00%531¢,

(b) Use Q' (1) = abt In b or the calculator command nDeriv (¥4, X, . 04) with Y;=ab® to get
('(0.04) = —670.63 uA. The result of Example 2 in Section 2.1 was 670 pA.

60. (a) P = ab' with e = 4.502714 x 10720 and b = 1.029953851, 32,000 (P in thousands)

where P is measured in thousands of people. The fit appears to be

very good.

1785 =
0

5308 — 3929 7240 - 5308
b} For 1800: my = —ono — 2222 _ qa7. _ 2 oane
(b) For M= Tens T iren T2 = 110500

So P'(1800) = (m1 + ma)/2 = 165.55 thousand people/ year.

23,192 — 17,063 31,443 — 23,192

For 1850: == T = . — DT Ahrs
or ™= gs0 a0 022 = e 1as0

So P'(1850) =z (my -+ ma)/2 = T19 thousand people/ year.

= 193.2.

= 825.1.

{e) Use the calculator command nDeriv (Y, X, year) with Yi=ab” to get
P'(1800) = 156.85 and P’(1850) = 686.07. These estimates are somewhat less than the ones in part (b).

(d) P{1870) = 41,946.56. The difference of 3.4 million people is most likely due to the Civil War (1861-1865).
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6. flz)—z—¢ = fa)=1-e"=0 & =1 & z=0 Now f'(z) > Oforall # < 0 and

f'{x) < O forall x > 0, so the absolute maximum value is f@y=0-1=-1

0 & *z—-1)=0 = z=LNowg'(r})>0 <«

pe” — e” ze* — "
E(—’—§i>0 & x—-1>0 & z>landg(z) <0 <« T<U & r-Ll<l &
x H

7 < 1. Thus there is an absolute minimum value of g(1) = e atx = 1.
(@) f(z) =2e" = flz)=eFaxe"=¢"(1+2)>0 & 1+x>0 & x> —1so0fisincreasingon
(—1, 00) and decreasing on {—oc, —1).

) f'()=e{l+z)+c* =e*(2+2) >0 & 2+3>0 & x> 250 fisCUon(-2,00)and
CDon (—2¢, —2).

(c) f has an inflection point at (-2, —2e™%).

() flz) = 2% = f(r) =2ze” + 27" = (22 +22)e". f'(z) >0 & z(x+2)>0 & z<~2or

r>0, fl(x) <0 & —2<z<,so0fisincreasing on {—o0, —2) and (0, 0o) and decreasing on (—2,0).

by f(2) = 2z + 2)e” + («? +2x)e” = (2* + 42+ 2)* =0 & P Hdr+2=0 & z=-2+2
f'(z) > 0Owhenz > -2+ V2orz < -2 — V2,50 fisCUon {—o00,—2 — v2) and (—2 + v/2,00) and
CDon (-2 -2, -2+ V2).

(¢) f has inflection points at (—2 +42,(6 -4 ﬂ)e‘“*ﬁ) and (72 —v2,(6+4 \/5)6‘2"‘/5).

Ly = floy = VERY A D ={r|jz# -1} =(-00,—-1)U(=1,00) B. No z-intercept;

y-intercept = f(0) =¢ ' C. Nosymmetry D. lim e V) = Jsince —1/(z+1) — O, soy = 1is

aHA. lim e/ (=) = pgince —1 /(z + 1) = —o0, lim e YD = oo since —1/(z + 1) — o0, 50
- —1 r——1

r=~lisaVA. E. fllz) =e YO /(z+1)® = f'(z) > 0forall zexceptl,so

F is increasing on (—oo, ~1) and (—1,00). E No extreme values H.

G f”(:r) _ e~/ e+1) N 671/(m+1)(_2) _ 76_1/($+1)(2.I' + 1)
(x+ 1) (z+1)3 (z+ 1)3

= f2)>0 & 204+1<0 & z<—3.50fisCUon

(—oc, —1)and {—1,—3),and CD on {—3. cc}. f hasanIP

at(—1.e77).
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66. y = f(x) =€®* —e® A. D=R B. y-intercept: f(0) =0; H.
z-intercepts: f(z) =0 = & =¢" = =1 => =0

C. Nosymmetry D. lim e®® —e® =0,s0y = 0isaHA. No VA.

E. f'(x) = 26% — ¢® ="(2" - 1),50 f(z) >0 & &* >3 (%)

& z>li=-In2and f/(z) <0 & €< o z<lng,so

f is decreasing on (—oo, In %) and increasing on (ln %, oo). F. Local

minimum value f(ln3) = e2In(l/2) _ inll/2) (%)2 —3=-3
G. f'{x) = 4e*" —e®* =e*(4e* — 1),s0 f'(x) >0 &
e >1 & z>Injand f'(z) <0 & z<Ing.

Thus, f is CD on {~oc,In 3} and CUon (In §,00). f has an IP at (ln[—ll, (71)2 -1

(#) If you have not yet learned about logarithms, graph y = e® and y = % find the point of intersection, and use

decimal approximations for the rest of the solution.

Ly=flz)=e* 1 e A, D=R B, y-intercept= f(0) = 2;
no z-intercept  C. No symmetry D, No asymptotes
E. f/(z) =3¢ —2 %, 50 f'(x) >0 & 3% >2%
[multiply by e**}] < €% > % (*) < 5z> ln§ <
1y, 2 L ' 1.2 local
z > ¢ inf~ —0.08L Similarly, f'(z) <0 « z<gzlnj. minimum

f is decreasing on (—oc, § ln £) and increasing on (£ In %, 00). 0

F. Local minimum value f(é In %) = (%)3/5 + (%)72/5 22 1.96; no local maximum.
G. f'(z)=9e* +4¢7% so f"(z) > 0forall z,and f is CUon (—o0,00). No IP
(%) If you have not vet learned about logarithms, graph y = e*® and y = % find the point of intersection, and use

decimal approximations for the rest of the solution.

1.

. The function f(x) = e°* % is periodic

with period 27, so we consider it only on 0 /\_/\ ] I
the interval [0, 27]. We see that it has |/ 7

local maxima of about f(0) ~ 2.72 and

f
- 2ar a9

1
8

f(2m) = 2.72, and a local minimum of

about f(3.14) = .37 To find the exact
values, we calculate f'(x) = — sinze®®*. Thisis 0 when —sinz =0 < =z = 0, 7 or 27 (since we are only

considering z € [0,27]). Also f'(z} >0 & sinz <0 & 0<z<7Sof(0)=/f(2r)=¢
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(both maxima) and f(7) = e“** ™ = 1/e (minimum). To find the inflection points, we calculate and graph

2

cos T

fli(e)y = a{E_i (—sin e 7)) = —cosz ™" — sina(e®*)(—sinz) = 7 {sin” z ~ cos z). From the graph

of f(x), we see that f has inflection points at z = 0.90 and at & == 5.38. These z-coordinates correspond to

inflection points (0,90, 1.86) and (5.38, 1.86).

, flx) = e‘":}*m — (Qasx — —oo, and
f(z) — oo as x — oc. From the graph.

it appears that f has a local minimum of

about f{0.58) = 0.68, and a tocal

maximum of about f(—0.58) = 1.47.

To find the exact values, we calculate

fliz) = (33;2 — '1){:'“”3’“’, whichisOwhen 3z —1=0 & z= i:—lﬁ. The negative root corresponds to the

local maximum f(——\%) — UV S (1B (52\/5/9, and the positive root corresponds to the local

3 . B . .
minimum f(ﬁ) = (VB =1V o =2V3/9 T estimate the inflection points, we calculate and graph

' (z) = di [(d:cz - 1)6""3_“’} = (3z* — 1)6“"‘3_1(3:172 - 1) + e’ T (6z) = e ¥ (92 — 627 + 6 + 1).
«

From the graph, it appears that f” () changes sign (and thus f has inflection points) at z &~ —0.15 and
x 7z —1.09. From the graph of f. we see that these z-values correspond to inflection points at about (-0.15,1.15)
and (—1.09,0.82).

. () As |z| — 00, t = —2%/(20%) — —o0, and ¢' — 0. The HA is y = 0. Since ¢ takes on its maximum value at

¥/ (202) -

x = 0, so does €. Showing this result using derivatives, we have f{z) = ¢~
fllz)=¢ =%/(20%) (—x/a?}). f{z) =0 < a = 0. Because f’ changes from positive to negative at z = 0,
F(0) = 1is a local maximum. For inflection points, we find
1 a2 202 =1 _.2/(a,2 .

) = = ]:6 #2004/ )(—1?/02)] = —e AR SR
ffzy=0 & 2°=0¢°> & w=20 ') <0 & =z <g? & —-o<ax<o. SofisCDon
(—o,a) and CU on {—oo, —o) and (o, 00). IP at (:tcr, e"l/g).

(b) Since we have IP at z = %o, the inflection points move away from the y-axis as o increases.

{c) 2 From the graph, we see that as o increases, the graph tends to

g=15 spread out and there is more area between the curve and the

DA
. J 4 Z-axis.

a =15

. Letw = —3x. Then du = —3dzx, so

—15
ey = -2 et du = —1

I-F» =3 1
Ju 3Jo 3
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Letu = —x2, sodu = —2rdr. Whenz =0, u =0; whenx = 1, u = —1. Thus,

[ize = do= [ er(~hdu) = —3[e);t = —3(e ) = 40~ Vo)

. Letw =1+ ¢e® Thendu = e dzr,so { "1+ et de = [ udu = %113/24—0: %(1+em)3/2+0.

. Letu = tanz. Then du = scc® z dz, so [sec® ze®" " dr = [e¥du=¢" + C = """ + C.

./e jld$=/(1+e_x)dm:$—efm+0

€

1 1 /=
. Letuw = . Then du = -— dx, so] €
T T

.’L'2

dz‘:ffe“du=—e“+0:—elfm+0.

Let —\/EThendu——l—dw so/f'-f-d;r—Efe“du—QP“+C—26ﬁ+C
. U= /2. —2\/5 50 \/;E = = 2e = .

. Letu = ¢°. Then du = e” dz,s0 [ e"sin(e*)dz = [sinudu = —cosu+C = —cos(e”) + C.

, Area = .[01 (e?’“" —ez) dr = [%e‘h - em}; = (éeS — e) — (% - 1) = %e?’ —e+ % ~~ 4.644

 f(z) = 3¢" + 5sinz = f(z)=3¢" —5cosx+C = 2=f{0)=3-54+C = C=450
fl(x) =3e® —Bcosz+4 = flz)=3e"-5sinz+4e+D = 1=f(0)=3+D = D-=-2

50 f{x} = 3¢* — Ssinz + 4 — 2.

Vo= fol () do = ’.’I'fol e dr = %7?[62“’]; = g(e2 —-1)

82 VvV = ful QTr;Ue_Irz de. Letu = 22 Thus du = 2z dr, soV = 7 fol e “du = w[—cf“']; =x(l-1/e).

83. We use Theorem 7.1.7. Note that f{0) = 3+ 0 + e” = 4,50 f~1{4) = 0. Also f'(z) = 1 + ¢”. Therefore,
1 1 1 1

FUT@E) 7O T 2

(f71) (@) =

sin @

. We recognize this limit as the definition of the derivative of the function f(z)} = e
form lim M
a—r T —F

. (a) Let f(z) =¢® — 1 — 2. Now f(0) = e’ — 1 = 0, and for z > 0, we have f'(z) = ¢” — 1 > 0. Now, since
f(0) =0and f is increasing on [0, 00), f(z} 2 0forz >0 = e —1-220 = € >1+z.

at :xx — 1, since it is of the

. Therefore, the limit is equal to f'(7) = (cosm)e*™ ™ = —1.¢e° = 1.

(b For0 <z <1,z* <z, s0 e*” < e* [since € is increasing]. Hence [from (a)] 1 + z* < e < e
So%:fol (1+3:2)da:§fﬁlexzdfcﬁf;ezd:c:e—l<e = %SfoleEdege.
. (a) Let f(z) = €* — 1z — 22 Thus, f'(z) = e” — 1 — x, which is positive for z > 0 by Exercise 85(a).
Thus f(z) is increasing on (0, 00), so on that interval, 0 = f(0) < f(z) =e* — 1 -z — 12* =
e >1+z+ %1‘2.
(b) Using the same argument as in Exercise 85(b), from part (a) we have 1 + z? + %:n“ < ex2 < et

or0<z<il = [f(1+2+1le)de< (e de<[lefdr = B<fledzce-1.
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2 £
87. (a) By Exercise 85(a), the result holds for » = 1. Suppose that ef 214+ -2—' + i forxz = (L
2 k k1 ,
&x T xr
) =e® ~-l—0x—— — ——— . The =" —-1-0—-— =
Let f(x) =¢ T i (k+1) nfir)=c
by assumption. Hence f(x) is increasing on (0, 0c). So 0 < z implies that
F Tl
=fiHh < flz)=e"—-1-2—-— 7 — ————_ and h 2 > : —
FlOY < fx) = | o (k_‘_l)!,an encee’ > 14+x+-- +k‘+(k+l)
2 n
for & > (. Therefore, forz > 0, > 1 4+ + "2—' + :r:_r for every positive integer ., by mathematical
n!
induction.
(b) Taking 2 = 4and z = 1in (a), wehavee =" > 14§ + 5 + 4 =27083 > 2.7.
ah ! 1 1 1 @ &

o
A — = .
TN T R R PE S TR

ok
Ed e
(€)e Z|+I+---+F+

But rler;o TESN = 20, 80 mlLH;o i oc.

7.3 Logarithmic Functions

. (a) It is defined as the inverse of the exponential function with base o, thatis, log, z =y & oY =z
{b) (0, 00) R {d) See Figure 1.
. (1) The natural logarithm is the logarithm with base e, denoted In .
(b) The common logarithm is the logarithm with base 10, denoted log .
(¢) See Figure 3.
. (a) log,, 1000 = 3 because 10* = 1000. Or: log,q 1000 = log,, 10° = 3 by (2).
(b} log, ¢ 4 = 1 because 162 = 4. Or: log,5 4 = log, 16'/% = 1 by (2).
. (a) By (6), Ine "% = —100. (b) log, 81 = 4 since 3* = 8l.
. (a) log; &= =log; 577 = —2by (2). (b) €™ *® =15 by (6).
. (a) log,, 0.1 = —1 since 10" = 0.1
(b) logg 320 — logg 5 = logg 222 = log; 64 = 2 since 8° = 64.
(@) 10g o3 + 108,548 = log (3 - 48) = logy, 144 = 2 since 127 = 144,
(b) log, 5 — log, 90 + 2tog, 3 = log, 5 + log, 3% — log, 90 = log, (5 - 9) — loga, 90
= logz(ﬁ) = logz(l) = —1 since 271 = %

. (a) 2(log23+]og2 5) — 210g2 15 15 I_OI" 9 (logs 3+ logg 5) _ 2log2d 21052 —53.5= 15|

(b) 83 In2 __ Cln(23) — e1na - [Or.- 831112 — (eln‘Z) _ 23 - 8]

.3
. log, (%) = log,(z°y) — log, 22 = log, 2° + log, y — log, 2° = 3log, = + logy y — 2log,

(assuming that the variables are positive)

In /a(b? + e2) = Infa(b? + 22 = L In(a(b® + ¢*)) = 3 [Ina + In(b* + %]
= Ltlna+; In{b* 4 c*)
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cIn(ue)'® = 101In(uv) = 10{Inu + Inv) = 10lne + 10Inv

2
) 1n(_3f.1.)_5 —In3z® —In(z+1)° =3 +Inz? - 5In{z + 1) =3+ 2Inz - 5ln(z + 1)

a a ac
. tog,pa — log b+ log,, c = log, 7 + log,, ¢ = logy, (3 : c) = log,, n

r_ 2
. In(z +y) + ln(z —y) — 2Inz = In{(z + y){z — y)) — Inz* = In{z* — ) —mz® = in = zzy

. 2lnd—n2=In4* - M2=mn16 -2 =Int =In8
. 1113-}-%]118:1r13+11181/3 =Ind+In2=1n(3-2)=1n6

Nz

o 5 lpuf o2 = 12 _ ‘) =ln—5—
Ing -5In{z®+1)=Inz In{z* + 1) n(x2+1)5

1
© 2
L Inz+aliy —bmz=Inz+ny* —Inz® = In(z-y*) - Inz® = In (zy*/2%)

Ine 1 In13.54
=R 0.402430 b) log. 13.54 = 0 1.454240
miz Ini2 (b) log n6

Innw .
{c) log, 7 = o ~2 1.651496

. (a) log,, e

. Inx lnx
. To graph the functions, we use log, x = "GL log, z = i etc.

These graphs all approach —oo as  — 0%, and they all pass through

the point (1, 0}. Also, they are all increasing, and all approach oo as
& — o, The smaller the base, the larger the rate of increase of the

function (for x > 1) and the closer the approach to the y-axis

{as © — 01).

|
. To graph these functions, we use log, = = —] nlmf) and
nl.

!
2 These graphs all approach — oo as z — 0, and
In 50
they all pass through the point (1, 0). Also, they are all increasing,

loggor =

and all approach oo as & — oo. The functions with larger bases

increase extremely slowly, and the ones with smaller bases do so

somewhat more quickly. The functions with large bases approach the

y-axis more closely as ¢ — 0%,

. We see that the graph of In x is the reflection of the graph of ¢® about

the line y = «, and that the graph of log, ; x is the refiection of the
graph of 10" about the same line. The graph of 107" increases more

quickly than that of 7. Also note that log,, z — oo as ¢ — oo more

slowly than In z.
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23. Shift the graph of y = log; & five units to the 24, log,(x — 3): Start with the graph of y = log, =
left to obtain the graph of y = log4(x + 5). and shift 3 units to the right.
Note the vertical asymptote of z = —5.

y =loggx y = log;(z +5) y=log, 7 y = log, (¢~ 3)

¥

25. Reflect the graph of ¥ = Inz about the x-axis to 26. iy = In(10x): Start with the graph of y = Inz
obtain the graph of y = —Inx. and compress horizontally by a factor of 10.
y=lne y=—Inz Or: y = In{10z) = In 10 + In . so we could
start with y = In = and shift In 10 units upward .

¥ 1

y=Inz y = In{10x)

\x

27. y = 5 + In(z — 2): Start with the graph of y = Inx, shift 2 units to the right and then shift 5 units upward.

y=Inz y = Iln{zx — 2) y="5+In(z-2)

¥ H
x=2!

/

/1

28. Reflect the portion of the graph of y = Inz to y=lInz y = In|x|

the right of the y-axis about the y-axis. The

¥ ¥
graph of ¢ = In || is that reflection in addition \ / \ /
0
0] /1 x -1

to the original portion, !
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(@) 2Ine=1 =

be =5 = —z= r=-—1Ink

(@eT_7=0 = e = 2c4+3=In7 = 2x=I7-3 = z=31i(n7-3)

() In(5—2z) = -3 = P s r=5-¢" = z=406-¢")

(@5t =10 o log, 5" P =logpl0 & (z-3)log,ys=1 & z-3=1/log,,5 <
r=3+1/logyy5

ylog{zx+1)=4 & xr+1=10" < z=10,000- 1= 9999

@er =k o 3z+l=Ink & z=3{nk-1)

by log,(mz)=c & mz=2° < z=2m

n(lnr) =1 o M9 =pl o mr=e =e <

e =10 ¢ In (ee"-) =lnl) & eme=e"=mnl0 & Ine"=hinld) < z=In(inl0)

. 2lnz=m2+mBzr—-4) = Ihr’=m[28z 4)] = h2’=kh6z-8) = z°=6r-8 =
?—6z4+8=0 = (z-2){z—~-4)=0 = z=2orz = 4,bothare valid solutions.

=

. In(2z+1)=2-Inz = Inz+h@2r+1)=Ine’ = jz2r+1)]=Ine’ = W+z=e¢

-1+ V14 8¢?
4

2tz —e’=0 = z= [since xz > 0].

L€ = (e & e =m[C(e)] © ar=IC+br+me™ & az=InC+b <
Inl

a—b

LT — e =12 & (7P -Te"+12=0 & (°—3)(e* —4) =0, s0 we have eithere™ =3 &
r=In3ore" =4 & zr=In4

LT =100 = WIn(e*PT)=inl00 = 2+52x=In100 = 5z=mIn100-2 =

z = £(In100 - 2) ~ 0.5210

ar—br=InC & (a-br=bC & z=

LIn(l++/z)=2 = 1+yz=¢ = Jz=e"-1 = z={ 1)%=40.8200
n(e® —2)=3 = &€ -2=€ = &£=€e"+2 = z=In(e®+2) % 3.0049

N 1A A B SO P A A I 1L S ! 37 = $—4:1n—3
r—4 In7

I=4+hﬁx4.5646
In7
(@) e" <10 = Ine®<lnld = x<lnld = =z (-oc,Inlld)

1

(lnz>-1 = ">l = z>e' = ze(l/ex)

L@2<hz<9 = g e = laz<ce’ = ze(efe)

Me* 3 >4 = e ¥>nd = 2-3z>lhhd = -3z>lhi-2 =
x<-3(Ind-2) = wze€(—00,3(2-In4))

. 3 ft = 36 in, so we need x such that log, r = 36 <> z = 2% = 68,719,476,736. In miles, this is
1ft  Llmi

68,719.476,736 in - 2in 5980 F

=2 1,084,587.7 mi.
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86. (2) v(t) =ce ™ = a(t) =o' (1) = —kee * = ~kv(t)
(b) v{0) = ce” = ¢, s0 ¢ is the initial velocity.

(ot =ce ™ =¢/2 = e = s = —kt= ln% =—-In2 = t=(n2)/k

. If I is the intensity of the 1989 San Francisco earthquake, then log,,({/5) = 7.1 =
log,,(167/5) = log,, 16 + log,,({/5) = log,, 16 + 7.1 =~ 8.3.
Il I‘Z

. Let I; and I be the intensities of the music and the mower. Then 10 logw(I—) = 120 and 10 logm(I—O) = 106,
0

I I/I L I , I .
50 1ogu,(l—:) = logm(I;;Iz) = logm([—u) - 1ogm(1—0) =12-106=14 = = 101 =2 25,

oy n : n i n e
L (@) = 100-277F = o0~ 213 = log, (1—66) =3 = t = 3log, (m) Using formula (7), we
In(n/100)

e This function tells us how long it will take to obtatn n bacteria (given the
n

can writc thisas £ = 3 -

number n).

In 500
In2

50,000

=3 t =31 ——
(b} n = 30,000 = t=3log, 100

= 3log, 500 = '%( ) 7 26.9 hours

. _ o, tia _Q‘i _ —tla —t/a _ 72 __t_i _g
.(d)Q_QU(] e ) = gl = =l o aln(l QU) =

t = —aln{l — Q}/Qu). This gives us the time ¢ necessary to obtain a given charge ).
) Q=090 ande=2 = t=-2In{1-0.9(Q0/Qo)) = —2In0.1 2 4.6 seconds.

Lleti=2—2 Asz —2,t =07, lim In(2—z) = lim lnt = —oo by (8).

T2~ i—{)
Clett=u% 5+ 6. Asz - 3Tt =(x—2)(x—3)—07. lim log,, (#° — bz +6) = lim log,yt = —o0
r—3* t—0
by (4).
. lim In{cos) = lul = 0. [In(cos ) is continuous at z = 0 since it is the composite of two continuous

functions. |

lim In{sinz) = —oo since sinz — 07 asx — 07,

r—0

r—0 T— o 00 T

, : 14 2* .12t itz
. lim [In{1 +2°) — In(1 + z)] = lim In o n( lim ~—% ) =In{ lim 54— ] = oo, since the
1+x 1+ - +1

limit in parentheses is oc.

. I]BIJIO {2 +x}—In{l +2)] = :[‘.H—Irléo In (%%) = TIHQO In (%ﬁ—ii) = ln} =Inhl=10

. The domain of f{z) = log,(5z — 3)is {z |5z —3 >0} = {x |z > 2} = (£, 00). Since 5z — 3 takes on all
positive values for 2 in (;i, oc), the range of f is R.

. The domain of G{t) = In(e" —2)is {t|e' 2> 0} ={t|e" > 2} ={t|t>m2} = (In2,0c). Since ¢’ — 2
takes on all positive values for ¢ in (In 2, o). the range of G 1s K.

. {(a) For f{x) = /3 — e%¢, we must have 3 ~e >0 = <3 = 2z<hd = < %ln 3.

Thus, the domain of f is (—oc, 3 In 3.
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by = flz)=v3—e® Inotethaty >0] = 3> =3¢ = ¥ =3-3" = 2= In(3 — y%)
= x = 1In{3-y?). Interchange z and y: y = £ In(3 — z*). So f~' (x) = § In(3 —«?). For the domain of
f~' wemusthave3 —z> >0 = z°<3 = |x|<\/§ = —V3<z<V3 = 0<z2<V3
since z > 0. Note that the domain of 71, [0, x/ﬁ), equals the range of f.

60. (2) For f(z) = In(2+Inx). we musthave 24+ Inz >0 = Inz > -2 = & > e ? Thus, the domain of f
is (€72, 00).
My=flx)=m2+Inz} = c¥=2+lnx = hr=e-2 = z= ¢** =2, Interchange x and
gy = e 2 So f7N(x) = e 2. The domain of ', as well as the range of f, is R.

6. y=In(z+3) = e¥=e" =313 = z=¢-3

Interchange = and y: the inverse functionis y = e® — 3.
62. y =2'% = log,y=10" = log, (log,y) = =.

Interchange = and y: y = log,, (logs ) is the inverse function.
63. S y = & = lny=2" = r= {Iny. Interchange zandy: y = Vinz.

So f ' (z) = Vnz.

cy=(nz), 2> 1 Inzx = VI o= evY_ Interchange & and y: y = eV is the inverse function.

10°

T £ y
T 7 Wyty=10" = 10°(1-y)=y = 107= - ““‘[C'g“’( )

YT 1y 1-y

Interchange = and y: y = log,, (li) is the inverse function.

1€

=1 T Yoyl =l4e = fyrl) =y

- Y

Interchange « and y: y =In (?—;—i) is the inverse function.
€T

f@) =¥ —e® = fx) =36 " Thus, fl{z) >0 & 3T > o
T > o e % < 2r > ln(%) =—In3 & x> u%lni}, so f is increasing on (—%lnS,oo).

Ly =27 —e % 3y =207 437 =y =2 —9e . Thus, iy’ <0 & 27 < 9e T &
e <f o 4qo<ing & x<ilni sofisconcave downward on (—o0, 5 In 3).
. {a) We have to show that — f(z) = f(—x).
2 2 ! 1
_f(;r.}:-ln(:n—{— x +1)—111(($+ x +1) )—lnm
=1n( 1 .x\/a:'~’+1)=hl:cm 2 +1
r+vVzi+1 -2+ 2 —g2 -1

=1n (V;cz +1- sr:) = f(—x)
Thus, f is an odd function.

byLety =In{z+vVz2+1). Thene! =z ++v22+1 & (¥ —a)’=2"+1 &

2y
. e¥ —1 .
e _2ze¥ 42 =2"4+1 & eV =V -1 & z= = 1{e¥ — e7¥). Thus, the inverse

functionis f ' (z) = 3(e* — e7).
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70. Let (a, e"l) be the point where the tangent meets the curve. The tangent has slope —e~* and is perpendicular to

the line 2 — y = 8, which has slope 2. So —¢ ¢ = -2 = e %= $ = =2 = a=Ih{")=In2
1

Thus, the point on the curve is {In 2, 1) and the equation of the tangent is y — 5 = —5(z —In2) or
r4+2y=1+1n2
Ve =2 = In(et T =1n(2) = 1—1—— -Inz=1In2 = 1 =In2,acontradiction, so the given
nz
equation has no solution. The function f{z) = z*/ "7 = (eM*)1/ % = ¢! = e forall 2 > 0, 50 the function

f(z) = '/ '"* is the constant function f(z) = e.

{Inz)?

. Inx .
T — lim (e™*)" = lim e

N0 Tr— o0

. (a) lim 2 = oo since (lnz)* — oo asx — oo.
r—xz

. T . ey —1 . (na)? :
(b) lim =~"¢ = lim {e™=}) "% = lim e~™*" = Osince —(Inz)* - —ocasz — 0.

z—01 r—071 z—0t

. . 1/x .
(¢) lim "% = lim (el"“"') ® — lim e
r—0t r—0t z—0t

(Inz/x

. Inz
} == O since —= — —ooasz — 01, Note that as 2 — 07,
T

It is a large negative number and x is a small positive number, so (ln z)/z — —oc.

p —In« . . R
(d) lim (ln2e)" "% = lim [61“(1“2‘”)} = lim e ™20 — () gince — Mz In(ln2z) — —oc
[ g o}

o0 oS
ag & — 20,
. (a) Let & > 0 be given. We need N suchthat |[a® — 0] < e whenz < N. Buta®™ <& < =z <log,e.
Let N =log e. Thenz < N = z<log,e = |a° -0 =a" <e,50 lim a® =0.

(b) Let A > 0 be given. We need N such that a® > M whenz > N. Buta® > M < x> log, M.
Let N =log M. Thenz >N = z>log, M = 4 > M.s0 lim ¢* = .

Fiande o}

L (a) 2 30 40

1% 10" 0 . 7x 10"

From the graphs, we see that f{z) = 2°! > g(z) = Inz for approximately 0 < x < 3.06. and then
glz} > f(z) for 3.06 < x < 3.43 x 10'® (approximately). At that point, the graph of f finally surpasses the
graph of g for good.

. Inz
(¢) From the graph at left, it seems that —— < (0.1 whenever
)

2 > 1.3 x 10%® (approximately). So we can take

N = 1.3 x 10%®, or any larger number.

BIn(z? —2:—-2)<0 = 0<z?—-2x-2<1 Nowa? — 2z 2 < 1givesz? — 22 — 3 < 0 and hence
(2—-3)(z+1)<0.S50-1<z<3 NowO<z?=22 -2 = 2<1-+3orz>1+ 3. Therefore.
In(z? =22 -2)<0 & —l<z<l-V3orl++v3<r<3

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 7.4 DERIVATIVES OF LOGARITHMIC FUNCTIONS [ 508

76. (a) The primes less than 25 are 2, 3,5, 7, 11, 13, 17, 19, and 23. There

are 9 of them, so m(25) = 9. We use the sieve of Eratosthenes, and 1

P
31

m(100) = 25. 41
m(n) 25 A
—— Wi te £(100) = ———— = 1.15,

i e compute f{100) = 55 T 3:
F(1000) & 1.16, £(10%) =~ 1.13, £(10%) = 1.10, f(10°) ~ 1.08, %

and £(107) ~ 1.07. ol

3
13
23
f2
43
53
93
73
83

bl

7
17
v
37
47
57
67

7

i
97

7
19
29
3
#
59
59
7
89

98] 190

arrive at the figure at right. There are 25 numbers left over, so

(b) Let f(n) =

5
ba]
¥
¥
#
¥
&
7%
%

ARSI RARN R AR AR

BRI REREERRE
SR ERXRRRR ™
KRR RRE SRR [R =
E R EE RS

»#

(c) By the Prime Number Theorem, the number of primes less than a billion, that is, 7:(109)‘, should be close to
10%/ In 10° ~ 48,254,942, In fact, w(10%) = 50,847,543, so our estimate is off by about 5.1%. Do not attempt
this calculation at home.

1.4 Derivatives of Logarithmic Functions

d

1. The ditferentiation formula for logarithmic functions, T
s

(log, z) = , is simplest when u = e because

1
rina

lne = L
Cflz)y =In(z* +10) = f'(z) =

1
cos

L f(8) = In(cos8) = [f'{B#) =

. flx) =cos(lnz) = f{r}=-sin{lnz)- i = —sinlinz)
z
1 d -3 3

S =logll =80 = SO =arne s T T me " B De

1 1 1

2l (z Dm10" zz-1)nlo
5 d 1 1 1
. :51:1 1/5 = ! :_1_1 —4/.}_1 — Lo
flz) = VInz = (lnz) f'(z) = ¢(Inz) dx(ncc) e 7 5r Yna)

1 1_1
5 x 5z
1

 flo)=vrine = f’(w):ﬁ(%)+(lllm)'2 ,:%J“;\l/%:z;;m

z—1

- flx) = logm(i) =logpz —log{zr —1) = filx) =

=Yz =hzr® =L = f(2)=

)

~ 1+41Int
T 1—Int
_a —Int)}{1/t) -~ (1 +1Int){-1/t) _ {(1/8}[(1 — Int) + (1 + Int)] 2

f,(t) - (1 —In t)2 (]_ —In t)z = t(l —1In t)l

- f(2)

(2t +1)°
(3t — 1)
1 12 —6(t + 3)

Fl(f) =3 = -2 4. LA , bined, - ot 2
() %+ 1 : Sty a1 oreombined: o m o)

Pty =1n =In(2t +1)* —In(3t ~ )* = 3In{2t + 1) —4In(3t — 1) =
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12 hiz) = m(z + V2 - 1) =

K (x)

1 (l-l- x )_ 1 _\/3:271-&“93__
4+ =1 VEE—1/) a4+ vzi-1 N

a—&

na+3?
1 —f(atz)—(a—2z) —2a
w(_l)_a+:ﬂ_ (a—xz){at+z)  a?-—z?

=Infla—2)—In{a+z) =

e vy . 1= v
7o ¢ + {1l 4+e¥)-1 T ov

L F(y) =yin(t+e¥) = Fly=uy- +In(1 + e¥)

lnu
~ T+ In(2u)
o M In(2u)]- ¢ —nu- o -2 _ 111 +1n(2u) — Iny]
i) = 1+ In(2w)]? B [1 + In(2u)]?
14+ (In2+Inu)—Inu _ l+1n2
B w1 4 In{2u)]? w1+ In(2u))

- flu)

, . 1 1
.y =In(z*sin’z) = Inz® + In(sinz)®* =4 Inz + 2 Insinz = y' =4 - +2 oSy = — +2cotx

sinz
LAy =83 = A{t) =3t —3'In3
Ly = 10000 = = 1040 (In 10) (sec® 6)

. 1 —10x — 1 10x+1
2 U — | =
‘ - ( 0z) 22— bx? or 5z? 4+ 1 — 2

.y:lr1|2—$—5.’l: 5 _ r — 522

D T TORUE Y (U . S W
. G{u) =1In 3u72—2[ln(du+2) In{3u —2)] — G()_2(3u+2 3u—2)~9u2—4

cy=Inle " +ae) =In(e™*(1+2)) =h(e®)+n{l+z)=—z+h(l+z) =
1 —l-z241 g
I+ 1+z  l+=z

.y" =—14+

, 1 2¢™ In(1 + &%)
ry12 ! £ . -
cy=[In(l1 +e7)* = ¥ =2[In(1+ ") Toe ¢ T {re

. Using Formula 7 and the Chain Rule, y = 5" = ¢/ =5"Y*(ln5)[-1. (—z )] =5 Y/"(In5)/2*

=2 o =2 my L (3) = 2% (In 2)3* (In 3) (22)
dic

y=zlne = ¢ =z1/x)+{(nx) - 1=1+lnz = y' =1/z

Inz o, 2*(1/x) = (Inz)(2x) _ x(1-2lnz) _1-2nz

T2 (2132)2 rd 3
2% (-2/2) — (1 -2Inz)(3z%) 2*(-2-3+6lnx) 6lnx -5

(:L-3 )2 b rd

R S U2 A USRS B B S U
-y =105, ¥ =m0 iz Y o\ 22/ T T 2wl

o
secx tanr +- sec” T
8.y =In(secx +tanz) = 3y = =secr =y’ =secx tanz
secT -+ tanx
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= I —In(z —1) =
-1 (z—- Dl —In{lz - 1)+
1 -1 z—1—{z—1llnz-1)+=z

1—-Infz—-1] - 1-z- .
- [1—In(z — 1)]2 - 1—In(@ — 1)]? T T @ - 1)1 = In(z — 1)]2
C2r—1—{(z~1)In(r-1)
T (z—=1D[1=In(z-1)]°

Dom(f)={z|z-1>0 and 1-In{z-1)#0}={z[z>1 and In(z-1)#1}
={x]x>1 and r-1lse}t={z|z>1 and z#1+e}=(L1+e)U(l+e 0c)

1 1/ 1

§ f(.l") = m f (.CL‘) = *m [Recipmcal RU]C] = 7m.

Dom(f)={z|z>0 and Iz#-1}={z|z>0 and z#1/e}=1(0,1/e)U(l/e, o).
2¥(—2x)
1—x?
Dom(f}:{a:|17w2>0}:{z\|$\<1}:(—1,1).

. f(z)=Inlnlnz = f'(r):ﬁ PR
Dom{f)={z |lnlnz >0} ={z|mz>1}={z |z > e} = (¢,).

z iy Iz —x(l/r) Inx-1 I e

:]nw

223

=2rIn(t — z°) — T3
-z

Cfle)=2in(1 - 2% = f'(z)=2zIn{(l -2+

flzy=a'lnz = f’(m):?mlnx—%mz(%):2z1n;1:+$ = f{I)=2lml1+1=1

1 /1

Ly = fz)=nhe = f(z)=-— (—> = flle}= 1 s0 an equation of the tangent line at (e, 0) is
e

Inz\zx

1 1
y—():;(m—e),ory=—x*l,orl‘*ey=e.
: e

1 , 12 . . . .
o 327 = (2 = 57 = 12, so an equation of a tangent line at (2, 0) is

y—0=12(x — 2) or y =12z — 24.

Ly=hn{z*-7) = ¥ =

L floy =sinz +Inx = f'(x) = cosx + 1/z. This is reasonable,

because the graph shows that f increases when f' is positive, and

f'(x) = 0 when f has a horizontal tangent.

) f(.L') = — elnmcosm =

f'(x) = emmoose [lnz:(—— sinz) + cosm(i)]

— ;ECDS x {COS £

- sin:t:ln:r:]

This is reasonable, because the graph shows that f increases when

£ (x) is positive.
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oy 0

L2046 13-4:123 =

i —

10 2473 - ef 10 2473
= = % — 3 .
Y ?’(2x+1+m4—3) 22+ 1) )(2$+1+m4—3
[The answer could be simplified to 3’ = 2(2ir + 1)* (x® — 8)° (292" + 122 — 15), but this is unnecessary.)

.y:\/;r,—'emz(acQJrl)w = lny:lnﬁqunexz+ln(;l:2+1)w = Iny=3ihz+z’+10n(z* +1)

11 1 ; 2. g wf 1 20x
P . . e — & ,1 1 - 2 :
5 .B+2.1,+10 po] 2 = Y = re (:C + ) (2$+ T+3:2+1

2 ‘ . .
= Mif = Iny= ln(siuz:r, tan® ;c) - ln(clc2 + 1)2 =
(z* +1)

Iny = In(sinz)® + In(tanz)* — ln(:ﬂQ + 1)2 = Iny=2Inlsinz|+4 In|tanz| — 2 111(3:2 + 1) =
1, 1 1 2 1
-y =2 ccosr+4 - csec’r -2 ——— 2 =
Y sin x cosT -+ tanz sec T e 41 *

sin?x tan' z

(r2 +1)°

9 cot 2 + dsec® x 4
ot & -
tang 2+ 1

4 JL'2 -+ ].

2 -1

. 1
= lny=32In{z*+1)-31ln(z"-1) = gy': '3

g :n2+ll & T 414;1:2+1 ~2ry oz J2 41
eV o\ e 1) aVeE—i\e 1) T 1T Ve

y=a" = Iny=Inz* = hy=zhzr = y/y==z(l/r)+(nz)-1 =
Y =y(l+nr) = ¥y =2(1+haz)

x 2 T

, ' y 1/ 1 1-~1Inx

Ly =2 = lnyzllnm = £_I_‘( >+(lrl.73) (—) = 3 =2/ ;u
€ Yy oz z

. . ¥ 1

Ly = 2" = lny=mIhz""" = Iny=sinrinz = = =(sinx)- . + (Inz){cosx) =

y

sin z

; sinx ' sin
y =y +luzeose] = Yy == — tInzcosz

f
y 1
Ly = (sine)® = Iny=zl{sinz) = % =x-—— -cosz + [Inf{sinz)] -
y nxr

y' = (sin x)* [z cot z + In(sin z)]

r

. 1
Ly =(nz} = hny=Ilhz)*® = hy=cinlhz = @ v+ (Inlnx)-1 =
xT

' X ' x 1
=y{ — . =(Inzx —
y y(wlnerlnlna“) = y =(nx) (l]]$+lnlilz)

Lin

LY =X = Iny=Inzlz=(nz)? =

= hy=e‘lne =
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! 1 1 .
Ly = (Inx)*** = Iny=coszln{lnzr) = %—:COSIL'-I;';';°;+(lnhl$)(—81n1:) =
CO8 T

y = (Inz)°s* (—

—sinzln lncr,)
rine

_1 4
x? +y? dr

! ’ 2$+2 ! 7 21
.y:]n(mz+y2) = y = ($2+y2) = y:W;”g”- =4 mgy —&-yzy:2$+2yyr

2r

N W 2, .2 P op = o =
= 2y +yiy -2 =22 = (P+¢° -2y z y P —

1 1 T
2 =y" = ylnr=zlny = y-—a-:+(ln:c)~y’::r:-z—loy'+lny = y’lnmfay’zlny—% =

,_ Imy—y/x
Inz —x/y
f@)=l(z-1) = fE=1/(z-1)=(@E-1)" = [fla=-(=z-1)"7 =
Fra)y=2x-10"°% = YY) =-23z-1)"* = - =
PO = (23 e - ) =
.y =aInz, so D%y = D%y = D® (827 Inx + 7). But the eighth derivative of =7 is 0, so we now have

12k (81:7 In :c) =D (8 TS lnz + 8:.:6) =D’ (8- 72° lnx)

=D° (8-7-6x5111:1:) == D(S!IOIH:E) = 8!/x.

From the graph, it appears that the curves y = {z — 4)* and y = Inx

intersect just to the left of = 3 and to the right of x = 5, at about

=53 Let f(z) =Inz ~ (z —4)%. Then f'(z) = 1/z — 2(z — 4),

so Newton’s Method says that

Ina, — (zx, ~4)°

Tntl = Tn — f(.rn)/f’(?«‘n) = Fn 1/zn — 2(zn — 4)

. Taking

Ty = 3, we get 1 =2 2.957738, x2 = 2.958516 == z3, so the first root is
2,958516, to six decimal places. Taking z¢ = 5, we get o, ~ 5.290755, xp ~ 5.290718 =~ z3, so the second
(and final} root is 5.290718, to six decimal places.

56. vy~ In(—x%) 15 We use Newton's Method with f{z} = In(4 — z*) — z and

T,
22[ / flx)y = n _IIQ (—2x)—1=-1-— 1 Emmz.The formula is

Tn1 = Tn — f(xn)/f (xn). From the graphs it seems that the roots

occur at approximately z = —1.9 and z == 1.1. However, if we use

x1 = —1.9 as an initial approximation to the first root, we get

x2 ~ —2.009611, and f(x) = In(z — 2)® — & is undefined at this point,
making it impossible to calculate 3. We must use a more accurate first estimate, such as x; = —1.95. With this
approximation, we get 1 = —1.95, g = —1.1967495, 3 = —1.964760, 4 =~ x5 ~ —1.964636. Calculating
the second root gives ;3 = 1.1, zo 2_1.058649, o3 &~ 1.OBRO0T, 24 = x5 =~ 1.058006. So, correct to six decimal

places, the two roots of the equation In(4 — %) = x are z = —1.964636 and x = 1.058006.
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Va(l/z) - (Inz)(1/2yz)] _2-Inz

273/2

. 5@) = T2 = f) =
y 20%%(—1/z) — (2 — Inz)(3z"?)  3lnz -8
f (‘L) - 43 = 40572

>0 & lnw>% & > s0fisCU

on (esf". oo) and CD on (0,68/3). The inflection point is (68/3, %e*‘“?’).

. flx) =xlnz, f(z)=Inz+1=0whenlnz=-1 & z= e’ ffla)>0 & Ine+l1>0 &
Inz>» -1 & z>1/c fllz)<0 & Inz+1<0 ¢ x < 1/e Therefore. there is an absolute
minimum value of f(1/e} = (1/e) In(1/e) = —1/e.

.y = f(r) = In(sinx)
A. D={xinR}|sinz >0} ECJ (2nm, (2n+ 1) 7)

= U{—dm, =37) U (=2m, —7) U{0,m) U (2w, 3m) L -
B. No y-intercept; z-intercepts: f(z) =0 < In(sinz) =0 & sine=e¢"=1 & z=2nr+ 3 for

each integer n.  C. fis periodic with period 27, D.  lim  f(z) = —oc and lim f(z) = —oo, 50
z—{2nm)t w— [(2n+1)7] -

the lines r = nm are VAs for all integers . E. f'(x) = $5% — cot . so f'(z) > 0 when 2n7 <z < 2nmw + §
for each integer 1. and f'(x) < 0 when 2nw + = < z < (2n + 1)7. Thus, f is increasing on (2nm, 2n7m — %) and
decreasing on (2n7 + %, (2n 4 1)7) for each integer n.  F. Local maximum values f(2r + 5} = 0. no local

mimmum.  G. f7(x) = —esc?x < 0,50 fis CDon (2nw, (2n + 1)) for each integer n. No [P
. g

H.

A7 37 27 —w

.y =In(tan®z) A. D= {x|xz#nn/2} B, z-intercepts nm + 5. noy-intercept. C. f{—z) = f(r).so the
curve is symmetric about the y-axis. Also f{z + 7} = f{x), so f is periodic with period 7, and we consider parts
D-Gonly for —% <z < 3. D. lim Inftan*z) = —ocand  lim In(tan®z) = oc.

=0 e (m/2)™

2 tan z sec® x 9 sec?

>0 &

lim N In(tan®z) = oo, s02 = 0,z = +% are VA. E. f'(x)
r——(—m/2)

tan? " T tanr
tanz >0 < 0<a<3F,so0fisincreasing on (0,5} and H 3 1
decreasing on {—-2,0). F. No maximum or minimum

2 4 _ —8cos2x

e = = flr)=——F— <0 AN AN VALNWALE
! sinzcosr  sin2z Fle) sin® 2z PAL b\ N
& cos2z>06 —Z<z< I sofisCDon(~%,0)and /Y A
1 i | H ! i

T —

7 X

X=-
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61. y = f(x) =m(l +2*) A. D=R B. Bothintercepts are 0. C. f{—xz) = f(x), so the curve is symmetric

2z
about the y-axis. D. lilil In(1 + z*) = oc, no asymptotes. E. f'(z) = 2 0 <

x> 0, so f is increasing on (0, 00) and decreasing on (—o0,0) . H.
F. f(0) =0 is alocal and absolute minimum.
G - K] 1=
2| < Lso fisCUon (-1,1),CDon (—oco, —1) and (1, 00). IP
(1,In2) and (-1,1n2}.

>0 &

Ly = flz) =In(x? ~ 32+ 2) = In[(z — 1){z - 2}
A. D={zink: 2 -3z +2> 0} = (—o0,1) U{2,00).
B. y-intercept: £{0) = In2; z-intercepts: f(z) =0 & 2 —3z+2=¢" & -3x+i=0 &

3++5
xr =

5 = pa0.38,2.62 C. Nosymmetry D. lim f(z) = lim f(x}= -oc,soz = 1and
r—1-

x—2
2% -3 _ 2x—3/2)
22 —3z4+2 (z—-1){x-2)

for # > 2. Thus, f is decreasing on (—oc, 1) and increasing on {2, co).  F. No extreme values

xz = 2are VAs. NoHA. E. f'(z) = so fi{z) < Oforx < land f'{x) >0

(¢ —32+2)-2— (22— 3)? o g=2
(z?2 — 3z +2)? ' P
20° — 6z +4 - 42° + 127 - 9
(2% — 3z +2)?
22" 4+ 6z -5
C (a? - 3x +2)°
The numerator is negative for all = and the denominator is positive,
so f"(z) < 0 for all & in the domain of f. Thus, f is CD on
{-oc,1)and (2,00). NoIP

G. f'(x) =

2+ sinx +xcosx
= and

. We use the CAS to calculate f'(z)

2z + zsinx

20 sinz +4sine —cos®x + 22 + 5 -
Tip) = 'F th aphs, it
f (1‘) wz((:osg T —dginr — 5) rom the graphs, 1

seems that f* > 0 (and so f is increasing) on approximately the intervals
(0,2.7), (4.5,8.2) and (10.9, 14.3). It seems that f changes sign
(indicating inflection points) at = 3.8, 5.7, 10.0 and 12.0.

-2
Looking back at the graph of f{z) = In(2x + x sin 2}, this implies that the inflection points have approximate

coordinates (3.8, 1.7), {5.7,2.1), (10.0,2.7), and {12.0,2.9).

. We see that if ¢ < 0, f{z) = In(z® + ¢} is only defined for 2° > —¢ = |z| > v/—¢, and

lim f(r)= lim f(r) = —oc,sincelny — —oc as y — 0. Thus, for ¢ < 0, there are vertical
:ca\/f_n::+ r— ==’

asymptotes at z = 4=/, and as ¢ decreases (that is, || increases), the asymptotes get further apart. For e = (),
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—oc, so there is a vertical asymptote at z = 0. If ¢ > 0, there is no asymptote. To find the maxima,

lirr%} flx)
1
2+
Derivative Test there is a local and absolute minimum at = = 0. Differentiating again, we get
1  2e -2
2+ ¢ C{x2 4 0)

minima, and inflection points, we differentiate: f(z) = In{a® +¢) = f'{z) = {2z), s0 by the First

Now

i) =

(2) + 2a [— («* + c}_2 (21)]

if ¢ < 0, this is always negative, so f is concave down on both of the

intervals on which it is defined. If ¢ > 0, then f" changes sign when

2

c=1x" & = 3/c. Sofore > 0there are inflection points at

++/c, and as ¢ increases, the inflection points get further apart.

4 4 4
/ 5@:3/ 1da~:3[1n|$@ = 3(nd-In2) =302 — 32
Ja T Je T 2 2

2

' Y -a 1 4 2 —2
du = 1 (du™ +u )du = —u +1Inlu|| = E—Hnu

1

2

1

=(-4+In2) - (-2+Inl) =2 +In2

by 2
dt 1 1 1 1
. = |—-= — 3t = —— - —= = ={l —1 =
f] g [ 3111|8 3|]1 31112 ( 3 1115) 3(n5 n 2} In

Or: Letuw = 8 — 3t. Then du = —3dt, so

2 2 _1 2
dt —1 du | 1 1 1 1.5
- 3 | =—zm2— (-2 = Z(In5 - In2)=>In>.
/1 Y L ” [ 3 n]u,@5 311 ( 31n5) 3(11) n2) 3ln2

¢ 12 ’ 1 2 s 81
-L (\/T+ﬁ) dm:L (:t:—!—?—i—;)da:—[%w +21:+1nwh=?+18+1119——(8+8+1n4)

- 8 9
—2+1n4

[12® +z+Inz}| = (3" +e+1) — (3 +1+0)

1 f d.'L' ln & 1 In6
. Letu =1Inzx Thendu:—dm,so/ =/ —du = [ln}u@ =Ilnlné ~Inl =Inlné
z . xlnz U 1

. Letu = 6x — z° Then du = (6 — 32°%) dr = 3(2 — «*) dx, 50

27:{;2 %du 1 1 3 i
,/G:L‘—J:“d'r__/ 1 ngn‘u|+cﬂglnlﬁﬂ:—J,|+cl

L Let 1 = 2 + sinz. Then du = cosxdr, so

' 08 "1
j SCLL A P ] " du=Inlu|+C=mn2+sinz|+C =2 +sinz) + C {since 2+ sinx > 0].
u

24+ sinx
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: 1
.Letu:lnw.Thendu:i{ = 2 dr = = ) + .
T T 3 K

» )
.Letu:e"”—i—l.The-ndu:e:"dm,SO/ £ dwz/—u=1n|u|+0:in(e +1)+C.
et +1 U

otgr o [1007F_ 10 10 100-10 90
N " |In10f, Inl0 In10 ~  Inl0  Ini0

S -9 . @ g 1 u :_1.31 __zﬁ C
.Lelumm.Thcndu-2.cd:c,so]:c2 d 2/2 du 21n2+6’ T3 +C.

1
. _— = cot
(a) — T2 (ln |sinx| + C) = g COS% = cotz

. d X
{(b) Let u = sinx. Then du = cosz dr, so/cotmdm:/;:?;zdm:ff =lnju|+C=lnlsinz| + C.

. Let uw = x — 2. Then the area is

o2 3 du -3
.4=#/ dx:—Q] —i[-—?lniuw =—-2In3+2In6 =2In2 = 1.386.
4 -2 s U -6

. The cross-sectional area is :rr(l/\/:r +1 ) 7 /{x + 1). Therefore, the volume is

1
/0 x i 1 dz = w{ln(z + )]y = 7(ln2 — In1) = rln2.

3
2mx :
. Using cylindrical shells, we get V' = j ﬁ dr = 71'[111(1 + .L'2):|; =win10.
0

1000 1000 1000
W= [Py :/ Cav = Cf idv o [1n|V|]
3]

300

= C(In 1000 —600) = Cln 140 = C'ln 2

Initially, PV = C, where P = 150 kPa and V' = 600 cem?, 50 C = (150)(600) = 90,000. Thus,

W = 90.0001In 2 ~ 45,974 kPa - cm® = 45,974(10° Pa)(107° m®) = 45,974 Pa-m” = 45,974 N-m

(Pa = N/m?] = 45974

=250 = floy=-1/z+C = flz)=-lnx+Czx+D. 0=f(1)=C+ Dand
—In2+20+D=-ln24+20-C=-In2+¢C = (=I2andD=—-1n2 So

z)=~Inzr+{(In2)z-In2

fley=2z+mmz = fl(z)=2+1/c.Ifg=f""then f(1)=2 = g{2)=1,s0

g2 =1/ (g2)=1/(1)=3

fle)y=€e"+lne = f@)=e¢" +1/z. h=Ff"and f(l)=e = h{e)=150

We)=1/f(1)=1/(e+1).

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

514 L CHAPTER7T INVERSE FUNCTIONS

85. The curve and the line will determine a region when they intersect at
two or more points. So we solve the equation z/(z* + 1) = ma =
g=0ormr’+m—-1=0 = z=0o0r

o :l:\/—4(m)(m -1

2m

= :t\/l — 1. Note that if m = 1, this
T

has only the solution z = (), and no region is determined. But if

i/m-1>0 <« 1/m>1 < 0<m<]1,then there are two
solutions. | Another way of seeing this is to observe that the slope of the tangent to y = x/(x* 4 1) at the origin is
y' = 1 and therefore we must have 0 < m < 1.] Note that we cannot just integrate between the positive and

negative roots, since the curve and the line cross at the origin. Since mx and x/(x* + 1) are both odd functions,

the total area is twice the area between the curves on the interval [0, V31fm—1 } . So the total area enclosed is

/\,v‘l/:'nl

40

2

JJ‘ 27 4/1/ -1
L:Q +1 mm] dr =2[3 In(z® +1) ~ %mmzjn

- [hl(% - 1+1) —m(;}; _ 1)] ~(In 1 —0)

1
—111(—)+n1—1—m--1117rL]
m

B6. (w) Let flx) =Inz = f'(z)=1/r = f'(z) = —1/x* The linear approximation to knz near 1 is
e~ f)+f(DNz-1)=hl+(x-1) =21

{b)

From the graph, it appears that the linear approximation is

accurate to within 0.1 for & between about 0.62 and 1.51.

87. 1f f{x) = In(1 + z), then f'(x) = 1iﬂ"’ so f{0) = 1.

Thus, lim In{i - 2) = lim f(z) = lim fz) — f(0)

x— ) T R I w0 a — 0

= F0) =1

88. Letm = n/w. Thenn = zm, and as n — 00, m — o0,

T — X0 FrL—r OO0

Theretore, lim (1 + f) = lim (1 + l) = [ litn (1 + —) } = e” by Equation 9.
n m

T

TH— 00
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7.2* The Natural Logarithmic Function

3

; lnm—‘z‘g = Inz*y — Inz? = Inz® +lny—Inz? =3nr+Iny—-2nz
z

. In /a(®? 4 ¢2) = In{a{b® + AENV? = %hl(a{b2 +¢%) = i[lna+ In{b? + ¢*))
=1ma+ (b + )
. In(ur)' = 101In(uw) = 10(lnw + Inv) = 10lnu + 10Inv

2
. lnix— =3z —In{z +1)* =In3 + Iz —5In(z+1) =In3+ 2Inx - 5ln(z +1)
{x+1}°

. 2Ind —In2=I4* —In2= h116_1112:1n§ =1Ing
3+ 1m8=m3+ 8" =In3+in2=1mn(3 2)=1Inb

Az ~5ln(®+1) = Inzt/? —In(z? +1)° = lnaa\fc—m
 Inz+alny —blnz=inz+Iny* —Inz’ =In{z-y*) — Inz® = In (xy*/z")

. Reflect the graph of 4 = In z about the z-axis to 10. Reflect the portion of the graph of y = Inz to
obtain the graph of y = —Inr. the right of the y-axis about the y-axis. The
y=Inz y=—Inz graph of ¥ = In |iz| is that reflection in addition
to the original portion.

y=Inzr y=Injz|

l |

y=In(z+3)

-

y=In{x - 2)
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56 = CHAPTER7 INVERSE FUNCTIONS
13 flz)=valnz = f(z)=

W f(z) =In(e* +10) = f()= -r,21+10 % (* +10) =

ey L d ] _~si1187_
15. f(6) = In{cos®) = [f(O) = osF 16 (cos®) = ey tan t

2z
2 + 10

16. f(x) = cos{lnx) = f{x)=—sin(lnz)- % = Lmim

17. flo) = VIne = (mx)> = fl(z)= %{ln.r)””s% (lnx} =

18 fo)=lnr=a'*=Lne = f(2)= %
19. g(m):hlz;:::ln(aﬁx)fln(aJra?) =
1 (1) - 1 :—(a+a:)—(a—a:): —24q

a—x a4z (a — z}(a +x) a? — g2

ki) = ln{r+Va?-1) =

1 <1+ x )_ 1 R e
Inu
S =
[ +m2u)]f —nu-5 -2 o [1+In(2u) — Iny]
B [1 + In{2u)]? [1+ In(2w))?
1+ (In2+Inwu) —Inu 14+mn2
w1+ In{2u)]? (1 + In(2u)]?
1+ 1Int
Y 1 —Int

-t/ - (1 +t)(-1/1) /D1 -nt)+1+nt)] 2

(1 ~Int)2 (1 —Int)? (1 —Int)?

f'(w)

(2t +1)°
(3t — 1)¢
1 1 6 12 —6(t + 3)

=3, L g4t 3 - , bined, ——— L4
FM=3- g 2t gy 3= g1 s oreomhined e - )

. F(t) =1In =In(2t +1)® —In(3t — 1)* =3In{2t +1) —4In(3t -1} =

. 1 1 4
.y = In{z*sin®2) = Inz' + In(sinx)* =4 Inz + 2 Insinz = y =4. - +2- T osT = + 2 cotx

1 10z -1 10z +1

- (1 10z) =
- Y 2 - — Hx? ( z) 2—x— bx? or Sx2 4 —2

.y:lnl?——;;:—S;rQ[

Ju+2 ; 1 3 3 —6
. G(u) =In ut?_ Hin(Bu+2) —InBu—-2)] = G'(u) = ( ) d

Ju-—2 2\ 3u+2 3u-—2 :9u2—4

%[ln(ﬂf+1)—lll($-1)] = y;=§( 1 1 ): —6

5 \z+1 z-1

5(x? - 1)

. 1 ; 2{Inta sec” x
.y = (Intanx)* = y =2(lntanz)- csec’ @ = {In tan z) sec”
tanr tanz
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a

-
a = sec”[In{azx + b)] pr—

.y = tan[In{az + 5] = ¢ = sec*[In(azx +b)]- ar+ b

;2 sec? 2z
7 tan2r

Sy=Inlny =y = Inx do nr _!Il.’Il T - rlne
d

1
—(zlnzx) z-—+Inr-1 1+hz

y' = _de |Reciprocal Rule] = ——& =-

(xlnz)? {(rlnz)? (zlnx)?

_ Inw , 2*(1/z) — (Inz)(2z) z(1-2lnx) - 1-2Inz

.y=In|tan2z| =

T2 - ($2)2 24 73
n oz (=2/z) = (1 —~2Inz)(3z%) z°(-2-3+6lnx) 6lnz—5

($3)2 mﬁ xri

Fle) = 1—In{z—-1) =
-1 {(z - 1)1 —Iln(z — 1)] +
f’(m):[1—1n(:r:—1)1-1—a:.$_1_ L xxm—l—(:c-mn(xq)ﬂ
1 —1In{z—1)]? [1-In(z-1)? (r — 1)1 - In{z — 1)]?
2z —1—(x—1)In(z - 1)
T (z=-1[1 = In(z - 1)]?

Dom(f) ={z|z~1>0 and 1-In{(z—1)#0}={x|x>1 and In{z-1)# 1}
={z|z>1 and z-1#e'}={z|z>1 and z#1+e}=(1,1+4e)U(l+e )

flz) = : g

I T e (1+Inx)? z(l +1nx)?’

Dom(f)={z|z>0 and Inz#—-1}={z|s>0 and =3# 1/e} =(0,1/e)U{l/e, c0).

. flz) =+/1—Inzxisdefined & x>0 [sothatlng isdefined] and1 —Inx >0

& z>0andlnz <1 <« 0 <z < e, sothe domain of fis (0, e]. Now

1 d 1 1 -1
‘@)=t cmaye Loy :m'(_-):—.
f(z) 2( nz) da:( ne) 2v1-Inzx T 2r+/1-Inzx

fliz) = = [Reciprocal Rule] = — !

1
N i :1 1 ! = — .
f(r) nlnlnz = fi(z) Inlnz Inx =

Dom(f) ={x|lnlnz>0}={z|lnz>1}={r|z>e}=(e,00)
T _Inz—2(l/z) Ilnx-1 _1-1_

=5 > @ =T =y * F@ = =0

T Inzx

oo w3t
L fty=tn(4+38) = [f(H)=t T 3+1n(4+3t)u—4+3t+]n(4+3t),
so fi(~1)==2+Inl=-3+0=-3.

. f(x) =sinz+Inz = [{x)=cosz + 1/x. Thisis reasonable,

because the graph shows that f increases when f' is positive, and

F/(x) = 0 when f has a horizontal tangent.
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8. f(r) =In(z*+z+1) = f(z)= (2x +1).

1
22+r+1
Notice from the graph that f is increasing when f'{z) is positive.

.y =sin(2inz) = 3 =cos2lnzx)- g At(1,0), 4" = cos0- % = 2, s0 an eguation of the tangent line is
T
y—0=2-(x—1),ory =27 -2
1

3 -7
y - 0=12(z—2) or y=12z — 24.

Ly=Inz"-7) = ¢y = - 3z* — = 12, so an equation of a tangent line at (2,0) is

1

_ 2 ,_ 2w+ 2yy

e T Sy vy =2ty

Ly =In{z?+4°) = ¥ = +y) =
= 2+t -y =22 = (PFP+yi -2y =22 = y’:—"——_%

T vy 1 H 12+y2—2y
lnry=lnz+lny =ysine = /z+y/y=ycosz+y'sine = ¢ (1/y—sinz)=ycosz—lj/z =

,_yeosz— 1/ (g) zycosae — 1

vy= l/y —sinz x/ 1—ysinzx

fe)=In(zr—1) = flo)=1/z-D=-1)" = iz = —(z-1)"* =
) =2z-1"" = ) =-2-3z-1)""* = . =
{r) et 1yr—1l o a4 L. . _ -n _ nfl(n;l)!
.y =2 Inz, so D%y = D% = D* (82" Inz + z7). But the eighth derivative of 27 is 0, so we now have

D° (8327 hlsc) =D (8 72 + 8;1:6) = D7 (8 728 lna:)

=D%(8.7.62°Inz) = --- = D (812°Inz) = 8!/z.

From the graph, it appears that the curves y = (z —4)? andy = Inx

intersect just to the left of x = 3 and to the right of x = 5, at about

50 Newton’s Method says that

2
u{/ r =053 Let f(x) =Inx - (z —4)°. Then f'(z) = 1/z ~ 2(z — 4).

_Inwn -~ (@0 — 4)?
1z, — 2{z,, — 4)

2 Tns1l = Tn — f{za)/ [ (20) = Tn . Taking

xo = 3, we get ;&2 20957738, xo &= 2.958516 = w3, so the first root is
2.958516, to six decimal places. Taking zo = 5, we get 1 = 5.290755, w2 & 5.290718 & z3, so the second

(and final) root is 5.290718, to six decimal places.
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We use Newton’s Method with f(z) = In(4 ~ 2°) — z and

4 _lmg (—2z)-1=-1- I%.The formula is

fiz) =

Tn+1 = Tn — f{zn)/f'(z,). From the graphs it seems that the roots

occur at approximately x = ~1.9 and x = 1.1. However, if we use

2y = —1.9 as an initial approximation to the first root, we get

Ty 7 —2.009611, and f(z) = In(z — 2)° — x is undefined at this point,
making it impossible to calculate x3. We must use a more accurate first estimate, such as x; = ~1.95. With this
approximation, we get o1 = —1.95, 2g /= —1.1967495, xa = —1.964760, x4 = s = —1.964636. Calculating
the second root gives xy = 1.1, z2 = 1.058649, xs = 1.058007, x4 ~= x5 ~ 1.058006. So, correct to six decimal

places, the two roots of the equation In(4 — 2%) = z are z = —1.964636 and z = 1.058006.

.y = f(z) = In{sin z)

A D={zinR|sinz >0} = |J {(2nr, (2n+ 1)7)

n=——0oc

= U (—Ar, =3r) U (—27, -m) U (0,7) U (27, 3m)U---
B. No y-intercept; z-intercepts: f(z) =0 < In(sinz) =0 & sinz=e" =1 & z=2nr+ % for

each integer n.  C. fis periodic with period 2. D, lim  f(z) = —o0 and lim flz) = —oo, 50
z—(2nmyt a2 [(2n+1)n] =

the lines . = n are VAs for all integers n.  E. f'(z) = €22 = cotz,s0 f'{x)} > Owhen 2nm < 2 < 2nn + 2
for each integer 72, and f'(z) < 0 when 2nm + £ < & < (2n + 1)m. Thus, f is increasing on (2nm, 2nm + J) and

decreasing on (2n7 + X, (2n + 1)x) for each integer n.  F. Local maximum vaiues f (2r7 + 2) = 0, no local

minimum. G. f'(z) = —csc® z < 0.s0 f is CD on (2n7, (2n + 1)) for each integer n. No TP

.y=In{tan’z) A. D={z|z#nn/2} B. z-intercepts nm + £, noy-intercept. C. f(—z) = f(x), so the

curve is symmetric about the y-axis. Also f(z + 7) = f{z). so f is periodic with period , and we consider parts

D-Gonly for -2 <x < Z. D. limln{tan®z) = —occand lim In{tan®z) = oo,
%0 ze(7/2)~

. . 2tan z sec’ & sec? x
lim  In(tan’z) =oco,soz =0,z = £Z are VA. E. f'(z) = = = >0 <
T (= f2)T tan® x tanx
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tanz >0 ¢ 0<z< I sofisincreasingon (0,3} and

decreasing on (—Z,0). F. No maximum or minimum

G fl) = —2 = o e

sinxcosx sin 2

<0

sin? 2
& cos2r >0 —%<;c<§,sofisCDon(—§,0)and

921

(0,7} and CUon (=%, T) and (5,%). IPare (£5,0).

.y = f(z) =In(1+2z%) A. D=R B. Bothintercepts are 0. C. f(—x) = f{x), so the curve is symmetric

. 2z
about the y-axis. D. lim In(1 + z°) = o0, no asymptotes. E. f{x) T 20 &

r— oo e 1+ 2
x> 0, s0 f is increasing on (0, 00) and decreasing on {—o0,0) . H.
F. f(0) = 0 is a local and absolute minimum.

201 +22) — 2x(22) _ 2(1 —2°)
(1 + a2)? T (12?2

|z} < 1,50 fis CUon (—1,1), CDon (-0, ~1) and (1, 0). IP

>0 <

G, f'(z) =

{1,In2)and (—1,In2).

cy = fle) = ln(z? — 3z +2) =In[{z — 1){z - 2)]

A D= {zinR2® —3z+2> 0} = (—00,1) U{(2,00).

o

B. y-intercept: f(0) = In2; z-intercepts: f(x} =0 -3x+42=¢" & £ -3z+1=0 <

3+ vH
T = 2\/3 = 1038262 C. Nosymmetry D. lim f(z)= lim+ {z) = —oo,s0z = 1 and
z—1" r—2

20 —3 Az —3/2)

: = 2 are VAs. . Ef = =
x = 2are VAs. No HA. E. f'(z) pE R P Rl P

,s0 f'(x) < Oforz < land f'(z) >0

for £ > 2. Thus, f is decreasing on (—oo, 1) and increasing on (2, oc). K No extreme values

. 22 3r+2)-2— (20— 3)°
. f (:ﬂ):( 2_}'r (2 )
(z? — 3z + 2)
22 —bz+4-42" +120-9
a (x2 - 3o + 2)?
—2z% +6r—5

(x? ~ 3w+ 2)?

H.

The numerator is negative for all x and the denominator is positive,

so f(x) < 0for all z in the domain of f. Thus, f is CD on

(—oc, 1) and (2,00) . No I[P
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2+sinx+xcosz

2z + xzsinx

2z%sin +4sinz — cosz + a2 45 .
fl(z) = (oot z — dsinz —5) . From the graphs, it

seems that f/ > 0 (and so f is increasing)} on approximately the intervals

(0,2.7), (4.5,8.2) and (10.9,14.3). It seems that f” changes sign
(indicating inflection points) at ¢ = 3.8, 5.7, 10.0 and 12.0.
Looking back at the graph of f{z) = In(2z + « sinx), this implies that the inflection points have approximate

coordinates (3.8, 1.7), (5.7,2.1), (10.0,2.7), and (12.0,2.9).

. We see that if ¢ < 0, f(z) = In(z? + ¢) is only defined for * > —¢ = |z > \/—c, and

lim f(z)= lim f(z)= —oo,sincelny — —ocoas y — 0. Thus, for ¢ < 0, there are vertical

2oy —eT T ==

asymptotes at x = /¢, and as ¢ decreases (that is, |c| increases), the asymptotes get further apart. For ¢ = 0,

lim f(x) = —o0, so there is a vertical asymplote at z = 0. If ¢ >> 0, there is no asymptote. To find the maxima,

-0

minima, and inflection points, we differentiate: f(z) = In(z* +¢) = f'(x}= (2x), so by the First

22+ ¢

Derivative Test there is a local and absolute minimum at z = 0. Differentiating again, we get

1
r2+¢

2(c — x*)

= N
@ <o) ow

(@) = —— (@) + 22|~ (+2 +¢) 7 (2)

if ¢ < 0, this is always negative, so f is concave down on both of the

intervals on which it is defined. If ¢ > 0, then £ changes sign when

c=1x> & x=4./c Sofore > 0 there are inflection points at

++/¢, and as c increases, the inflection points get further apart.

Ly =2z + 1) (' -3)° = ]nyzln((2m+1)5(w4—3)6) =

1 1
Iny =52z + 1) +6In(z" -3) = ;y':5-2$+1'2+6'w41_3'4$3 =

. 10 24z \ a4 o8f 10 24x°
y_y(2m+1+$4—3)_(2$+1) - mrites)

[The answer could be simplified to ' = 2(2x + 1)* (x* — 3)" (292" + 122% — 15), but this is unnecessary. |

3 4 502
1
y=w = Inly| =4In |z + 1| + 2Insinz| - LIn|z].
T

S0 % =4—— — = =
y 41 sinz 3z y /3

dcots — —
L3 Tecotr T o

Yy 3’ cosz 1} ;e + 1) sin’x ( 1227 1 )
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.2 4
8 Tt
6. y= 0 LN T hy= In(sin® z tan" z) — In{=® + 1)2 =

(x? 4 1)
Iny = In(sinz)* + In{tanz)* — In(z* + 1)2 = Iny=2In|sinz|+4Injtanz| - 2 In(z* +1) =

1 1 1
l_1;':2- —— -cosx +4 - -2 22 =
Yy sinx tanz 2+ 1

,  sin®ztan'z 4sec? z L
Yy = ——————(2cotz + - =
(2 + 1) tanx 2 +1

1
_gm_i.“;.gm

4 Tz+1

T2 —

L
o y
1,_4m2+1 1 . __14:1:2+1 —2m _ Jrr 41
Y=V 1 o\zEr1 T2 o1) T2 Ve ’1;:54 21

- A 4 4
59./ —da:::‘}f —d$:3[ln|rc|] =3(nd —In2)=3h= =32
Jo oz g X 2 2

= lny= ;11 111(:1:2 + 1) - }1 111(322 — 1) =

2 2 P 4 2 ~9 2
60. /1 4 :?u du = f] (4u—3 + u_l)du = [—zu'—z +In l'u,|] = [F + lnu}

1 1

= (—%—!—1112) —(=2+1In1) =%+ln2

3 2
81, /1 . [_%ms _:m] = im2- (%1115) S(n5-1n2) = <o

1

Or: Letu = 8 — 3t. Then du = —3di, so
2 I "2 _.l i 1 2 1 1
]1 8(_]1‘3r — L ‘L( " = [—glﬂﬂ.]s - —§1n2— (—31115) (1115*11‘12)

1
j:%+18+1119—(8+8+1n4)
T=(3 et 1)~ (3+140)

1 G dx rlo 6 1 Iné
64. Let v = Inx. Then du = — dx, so [ = / " du = {ln hr” =Inln6~Inl=1Inln6
x Je 1 1

 rlnx

65. Letu = 6ir — x°. Then du = (6 — 322) do = 3(2 ~ %) dx. s0

g _ 2 L !
[i—;"—,dm:f Suu =%lnlul+C=5111\65“‘“73“0'

6x —
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66. Let v = 2 + sinx. Then du = cosxdx, so

/“—EE)—S—,J—?—(J!:Efldu:111|u|+C=1n|2+sin:r:|+C‘=1n(2+sina:)+C [since 2 + sinz > 0.
2+sinx u

(Inx)?

67. Let v = Inz. Then du = de = j
T T

da = /uzduz %'ua-l-C: %{lnm)g—i—C.

4
dw,so/Mdﬂ:=2

68. Letu = 1+ /z. Then du = 7z

1
NG
d . 1
69. (8) — (Inlsinx| + C) = ——cosz = cotx
dir sinz

Cosr

{b) Let w = sinx. Then du = cosz dz, SO/cot:L'dm:/ dr = [d—j =Inlu/+C =Inlsinz| + C.

sinz
70. Let © = x — 2. Then the area is
-1 -3 -3
A:——/ 22d:.:=—2f @z [—21n}u|} = 2In3+2In6=2In2 = 1.386.
_ _ -6

4 T 6 U

71. The cross-sectional area is 7(1/v/z + 1 )2 = 7/(x + 1). Therefare, the volume is

1
/u . I 1 dr = w[in{z + 1)]é =n(ln2—1n1) =wln2.

3
2
12. Using cylindrical shells, we get V' = / :nszl dz = m[ln(1+ mg)]i =7wIn10.
0

-Va 109t ¢ 1000 4 1000
7. W:.V-pdV:f 2V =C —dvzc[lnw@
! so0 YV g0V 800
= C{In1000 — In600) = Cln g = CIn §
Initially, PV = C. where P = 150 kPa and V = 600 em?, so C = (150)(600) = 90,000. Thus,
W =90,000ln 2 ~ 45974 kPa - cm® = 45.974(10° Pa)(107° m®) = 45,974 Pa-m® = 45974 N-m

[Pa=N/m?] =45974J

M ff'z)=2>2>0 = flz)=-1/z+C = f(z)=-Inz+Cx+D. 0=f(1)=C+ Dand
0= f(2)=—-n2+20+D=—-12+20-C=-m24+C = C=In2andD=-In2 So
flz)=—-Inz+(In2)x —1In2.

B flr)=2r+Inx = f(z)=2+1zIfg=f""thenf(l}=2 = g(2)=1s0

g2 =1/f(9(2)=1/f(1) = 3.
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76. (@) Let f(z) =lnz = f'(z)=1/z = f"(z) = —1/z° The linear approximation to In z near 1 is
Inz = f1)+ f{){z—1)=nl+iz-1)=z-1

{c)

|

From the graph, it appears that the linear approximation is

accurate to within 0.1 for z between about (.62 and 1.51.

We interpret ln 1.5 as the area under the curve y = 1/z fromz =1

to z = 1.5. The area of the rectangle BCDE is 3 - 3 = 3. The area

of the trapezoid ABCD is 3 - 1{1+ 3) = 4. Thus, by comparing

areas, we observe that 3 < In1.5 < 5.

(b) With f{t) = 1/t,n = 10, and At = 0.05, we have

In1.5= f?(1/¢) dt = (0.05)[f(1.025) + f(1.075) + - -- + f(1.475)]
= (005} 12 + 1955 + - + Tz & 0.4054

I,
18. (a)TJ:‘t‘,y

1/2-1

1 . : . . . 1
=~ The slope of AD is 5T = "5 Let ¢ be the t-coordinate of the pointony = " with

1 1

2="3 = *=2 = c¢=+2sincec > 0. Therefore the tangent line is given by
(%

A-VE) = =it V2

1
sl ——. Then —
slope > el

Since the graph of y = 1/t is concave upward, the graph lies above

the tangent line, that is, above the line segment BC'. Now

|AB| = ~1 ++/2and {CD| = -1 + +/2. So the area of the

trapezoid ABC D is

(=3 +v2) + (-1 +V2)1] = -2 + V2= 0.6642. So

In2 > area of trapezoid ABCD > (.66.
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1 1 1 1 Tl
TheareaofRiis,—andso—+—+---+—</ = dt =Inn.
i+1 23 n p

1 1 1 "1
TheareaofStis—,andsol+—+---+—————>/ —dt =lnn.
1 2 n—1 1t

80. If f(x) = In(z"). then f'(z) = (1/2"){ra" ') = r/z. Butif g(x) = rInz, then g'(z) = r/x. So f and g must

differ by a constant: In{z") =rlnz +C.Putz=1: n{(1")=rIn1+C = C=0,soln(z")=rInzx.

. The curve and the line will determine a region when they intersect at

two or more points. So we solve the equation z/(z* + 1) = mz =

z=0ormzi+m—1=0 = z=0or

+./—4 -1
€ = \/ (m){m ) = :%:\/i — 1. Note that if m = 1, this
m

2m
has only the solution © = 0. and no region is determined. But if
I/m—-1>0 & 1/m>1 <« 0 < <1,then there are two
solutions. [Another way of seeing this is to observe that the slope of the tangent to y = z/(z* + 1) at the origin is
v’ = 1 and therefore we must have 0 < m < 1.] Note that we cannot just integrate between the positive and

negative roots, since the curve and the line cross at the origin. Since ma and z/(z? + 1) are both odd functions,

the total area is twice the area between the curves on the interval [O, V1/jm—1 J . So the total area enclosed is

[

0

: [ L ma| dr =2} 1) jma?] Y

2 +1 0

= [ln(;}lzlerl) m(%lﬂ —(In1-0)

ln(l)+m—1:m—lnm—1
m

82. lim [In(2 + ) —In(1 +z)] = lim 1n(?iw = lim In (2/$+1> =ln% =Ilnl=0

1/z+1

o0 L OO
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1

83. If f(z) = In(1 + z), then f'(z) = T

so f'(0) = 1.

In(1 -+ x)

Thus, lim = lim —~=
x—{

84 (ay 2

]
1 X 10 i}

From the graphs, we see that f(x) = z”* > g(z) = Inz for approximately 0 < = < 3.06, and then
g(x) > flr)for 3.06 < = < 3.43 x 10'° (approximately). At that point, the graph of f finally surpasses the
graph of ¢ for good.

1
{¢) From the graph at left, it seems that % < 0.1 whenever
20,

x > 1.3 x 10*® (approximately). So we can take

N = 1.3 x 10%®, or any larger number,

7.3* The Natural Exponential Function

1. (a) e is the number such that Ine = 1. (c)

(b) e ~ 2.71828

3«»

2--

7

-2 -1 0 t 2 X

The function value at x = 0is 1 and the slope atx = 013 1,
2 @e" =6 (b) In /e = In(e'/?) = %
3. (1) Ine¥? = /2 () 3172 = (2)° = 2% = 8
4 (2) Ine"™?* = ginx (b) e"TIRT — %™ — 27

5.{(2) 2lnzr=1 = Inz= = r=e'i=\/e

e =5 = —r=Inb = zx=-Ind

1
2
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L@t 7=0 = ®P=7 = 2243=In7 = 2=mh7-3 = z=3;(n7-3
b)In(5-22)=-3 = Bb-2z—e® = 2a=5-e° = z=3(5-e)

Cn(lnz)=1 < Mn®=¢l o nr=e =¢ &

e =10 & In (eew) —Inl0 & e*hlhme=¢"=Inl0 < Ine* =In{ln10) < z=In(Inl0)

2z =m2+InBzr—4) = hzrl=0n)20z-4)] = ha*=6z-8) = P =6x -8 =
2-6x+8=0 = (z-2)(x—-4)=0 = =z =2orz =4, both are valid solutions.

. In(2x4+1)=2-Inz = Inr+n(2z+1)=ine’ = In[z(2z + 1)) =lne? = 22 tzr=é6 =

.= ~1+ 1+ 8¢
B 4

2wtz —er=0 = {since z > 0.

L6 =0 o Ine®™ =In[C(e"™)] & ar=WC+br+e” & ar=WC+br <
InC

ar—bz=InC & (a—bz=hC & z=—

LTeT — e =12 o (e5)2P=Te"+12=0 & (e —3)(e* —4)=0,s0wehaveeithere” =3 &
x=In3,0ore" =4 & r=Ind

et 100 = In (€2+53:) =1ni100 = 245x=mi00 = 5x=In100-2 =
= 1(In100 — 2) ~ 0.5210

n(l+yz)=2 = 1+yz=€> = Jrz=e"-1 = z=(e—1)"~40.8200

In(e* —2)=3 = £ -2=¢" = =42 = z=In{c"+2)x3.0049

1 1 1
etEmt 7 o eV o7 o ——=ln7T = —=r-4 = =4+ — 2245139
x—4 In7 ln7

(@ e <10 = he®<lnl0 = z<lhl0 = z€(—o0lnlld)

In = 1 1

Bylnz>-~-1 = " >e ' = x>e ' = z€(l/eo0)

9

L@2<lnz <9 = et = < = we(éfe)

e >4 = lne >hd = 2-3z>mhd4 = -3r>hd-2 =
r<—3(lnd—2) = xze (-0 3(2-In41)
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20.

. We start with the graph of y = ™ (Figure 2), reflect

Intended for the sole personal use of the stipulated registered user only.
I CHAPTER? INVERSE FUNCTIONS

We start with the graph of y = ™ (Figure 2}, 21. We start with the graph of y = e (Figure 2),
vertically stretch by a factor of 2, and then shift reflect it about the x-axis, and then shift 3 units
1 unit upward. There is a horizontal asymptote upward. Note the horizontal asymptote of y = 3.

ofy=1.

xz

y=2¢e

it about the y-axis, and then about the x-axis (or just
rotate 180° to handle both reflections) to obtain the

graph of y = —e™ ", Now shift this graph 1 unit

0

upward, vertically stretch by a factor of 5, and then

- —g 9y — r e
shift 2 units upward. 4 y=2+5(1-c7%)

. (a) To find the equation of the graph that resuits from shifting the graph of y = e 2 units downward, we subtract 2

from the criginal function to get y = ™ — 2.

(b} To find the equation of the graph that results from shifting the graph of y = ¢ 2 units to the right, we replace =
with 2 — 2 in the original function to get y = ele=2),

{¢) To find the equation of the graph that results from reflecting the graph of y = e about the z-axis, we multiply

T

the original function by —1to get y = —e™.

(d) To find the equation of the graph that results from reflecting the graph of 4 = e® about the y-axis, we replace x

with —z in the original functionto gety = ™",

(e} To find the equation of the graph that results from reflecting the graph of y = e® about the z-axis and then about
the y-uxis, we first multiply the original function by -1 (to get ¥y = —e®) and then replace x with —z in this

equation to get y = —e” ",

. (1) This reflection consists of first reflecting the graph about the z-axis (giving the graph with equation y = —¢%)

s lim e 7 = lim (e

and then shifting this graph 2 - 4 = 8 units upward. So the equation is y = —e” + 8,

{b) This reflection consists of first reflecting the graph about the y-axis (giving the graph with equation y = ¢ ™)
and then shifting this graph 2 - 2 = 4 units to the right. So the equation is y = ¢~ (%

1-a? 1

. e_r'u) =¢ lim

r—0o0 =0 =00 g

)
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. Ifwelett = tang, thenas z — (w/2)", ¢ — —co. Thus, 1(im v eene = , lim e =0
w—s{m/2 — o0

3 e — g7 1—e® 1-0
. Divide numerator and denominator by e**: lim ————— = lim =1
y s—00 €3% 4 =3 zoo 1de 8% 140

3x —3z 8x
. — -1 0-1
3z, lim € _—€ _ jim E—- == =-1

. Divide numerator and denominator by e =":
¥ xo—oo e3® L =32 go_eeebr 41 041

LLett =3/(2—x). Asxz — 2%, ¢ - —oo. So lim 32 = lim e = 0by(6).

r—2+ t——o0

L Letf=3/(2—x). Asz —27,t—o0. S0 lim € % = lim &' = coby(6).

x—2— t—eo

. By the Product Rule, f(z) = 2% = f'(z) =2 di (e"y+e” % (2°) = 2%€® + €%(2x) = ze" (x + 2).

| e (ta)e* —e"(l) _ ¢ bae"—c" __ac”
: t Rule, y = = = = :
By the Quotient Rule, y 1 = ¥ (1+2)° (z+1)2 (z+1)?

: 3 d
- By Ohy= e“q = y=e ’ dx (Gms) = 3ax’e®®

cy = e*(cosu +cu) =y =e*{—sinu+c)+ (cosu + cu)e” = e¥(cosu — sinu + cu +¢)

flw) = = fu) =€ d_fi(i) Zel/u(;_zl) _ (;_;) S

Ly =e“lne = y’:er(—l->+(lnm)(et)=e$(lnm+%)

x
j By (9)’ (f) — tsin 2t =
F/(t) = et ™2 (1sin 2t)' = ' "2 (¢- 2c0s 2t +sin2¢ - 1) = &' %" ¥ (2t cos 2¢ + 5in 2t)

, d o _ k
Ly = ektan\/f = oy = ektan\/E . E{k‘tanﬁ) — ektdnﬁ(kscc2\/§_ %m 1/2) 520(\3/1/; ,ktdn\/_
1 3 3831

—_— (2 =
21 +2€3$( ) V14 2e3

= Y = —sin{e"™) - ™ 1= —we™ sin{e™)

d
=142 = y’:%(1+263“") 1/2d (14 2e*) =
.y =cos (e

‘.‘TIE)

i
—(e*) =% «€° or e t¥

Ly=V1tre ™ =  =1(1 +$e"2$)_1/2 [(—2e7%) + 7% = e M2z i)
2 . 2V1 4 xe~2

ae” + b
ce® +d

, (ce® +d)(ae™) — (ae” +b)(ce™) _ (ace™ + ad — ace” — be)e”  (ad — be)e”
v (ce* + d)?2 - (ce” + d)? = eeT + d)2

. By the Quotient Rule, y =

Caet (et e ) () )
et — e (f‘z o e_33)2
~2+e ) — (¥ 424 7))

(e — ff:”)?‘

LY =
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Ly = e¥ cosmz =y =¥ (-msinwr) + (cosmx)(2e*) = €27 (2cos mx — wsin L),
At (0,1), 3 = 1(2 — 0) = 2, so an equation of the tangent line is y — 1 = 2(x — 0), ory = 2 + 1.

X PRI T _ . )
.Yy = LN y = e 26 1_¢ (:132 1). At(1,e), 3’ = 0, and an equation of the tangent line is
T z x

y—e=0(z—1),ory=e

a4
T dx

(""zgy):ad_(wﬂ/) = eV by ) =14y = PN tlayet =11y =
"

1- 2myezzy

2y —

22Ty oy =1 = 2aye® ¥ = y'(mgcm% —1)=1-2ayet ¥ =y =

L y=Ae "+ Bre™™ = ¢y = -Ae*+Be *-Bre " =(B-A)e " - Bzre™™ =
v = (A—-DB)e ™ — Be ™ + Bre " = (A—2B)e”™" + Bze™", 50
¥ +2y +y=(A—2B)e ®+Bre ® +2[{B - A)e™" — Bee *| + Ae * + Bze ™ ® = 0.

Ly=¢" = y =re™ = " =r%" soify = e satisfies the differential equation y” + 6y’ + 8y =0,
then r2e™® 4 6re™ 4+ 8" = 0; that is, e™ (v + fir + 8) = 0. Since €™ > 0 for all z, we must have
rPtbr+8=00r(r+2)(r+4)=0s0r=—20r—4.

Ly = e)\;c = y.' — /\BAI = yu — /\28)\2. Thus, Y +yl : yn = e)\:c + Ae)\x — /\QCM: &

MM =A-1)=0 & A=158 dince e 20,

 Sflx) = e = _f"(’r‘) =2 = f”(ﬂ:) — 9.9e2% _ 92,27
fm(.’l’,‘) — 22 . 2€2x _ 23621 R, f(")(;v) — 2“(’.2x

floy=z( e ™) +e ™ =1—-2)™ =
—e ) +e M (-)={z—-2)F = [fa)=E-2(-eT)+eT=B-1) " =
e te ) =(z—4)eF = - = @)= (—1)"(x-—n)e "
re” " = (z — 1000)e™".

. (a) f{x) = ¢® + x iscontinuous on Rand f{—1) =¢™! — 1 < 0 < 1 = f(0), so by the Intermediate Value
Theorem, ¢* + z = O hasarootin (-1,0).

el’n + T
e?n 41
r2 R —0.566311, 23 = ~0.567143 =~ x4, so the root is —0.567143 to six decimal places.

) fizy=c"+z = flz)=€e+1,80Tni1=aTn— . Using z1 = —0.5, we get

From the graph, it appears that the curves intersect at about x = 1.2 or 1.3.

We use Newton's Method with f(z) =2° + 2 -3 — e 5o

fllz)=32+1+ 27e~*", and the formula is
Trnt1 = Tn — flz)/f (x,). We take 1 = 1.2, and the formula gives
ra &2 1.252462, x3 = 1.251045, and x4 ~ x5 =~ 1.251044. So the root

of the equation, correct to six decimal places, is @ = 1.251044.
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85. (a) m(f) = 24 - e~ (D2 0427 = p(40) = 242772 = 792 mg,

(b} m’ (8) = 24% 1:8‘-([1) 2)1/25] — 94 . (In2)t/25 (71:2152)1 50

m/(40) = 24e (1M DU/ (112 ~ 0,22 mg/yr
(©m{t) =5 = 24e IVB _5 = e=(In2)t/25 2 = —(n2)t/25 = Ing; =

b
In 57

t=-25
In2

=z 56.6 yr

From the graph, we estimate that the most rapid increase in the

percentage of households in the United States with at least one VCR
occurs at about £ = 8. To maximize the first derivative, we need to

determine the values for which the second derivative is 0. We’ll use

Vi(t) and substitute ¢ = 85, b = 53, and ¢ = —0.5 later,

. a
T 1 4 best’

a(bce“t)

m [by the Reciprocal Rule] and
oo

Vi(e) = —
(1+ be“)2 et — e 2(1 + be™) - bee®

(1 + berty?]?

_—abe - ce (14 bet)[(1 + be) — 2be”]  —abc’e (1 — bett)
= (L + bect) = T (1 be)e

V'(t) = —abc-

SoV"(t) =0 < 1=be" & ¢*=1/b Nowgraphy =e """ andy = . These graphs intersect at
¢ 72 7.94 years, which corresponds to roughly midyear 1988. [Alternatively, we could use the rootfinder on a
0.5¢

calculator to solve e™"°" = 5—13 Or, if you have already studied logarithms, you can solve € = 1/b as follows:

et =In(1/b) < t={1/c)In{1/b) = —2In g5 = 7.94 years.

=1, sincek >0 = -—-kt— -0 = efkt =0

. . 1
- @ tll'nolop(t) B th—polo 14+ae=* 14a-0

-kt

- —key ! @ _ Skt) 2 ety o K0T
(b) p(t) = (1+ae ) = E*—(1+a€ ) (—kae )— (1+ae—“)2

(c) From the graph of p(t) = (1 + 10e7%%) ™", it seems that

p(t) = 0.8 (indicating that 80% of the population has heard the

rumor) when t = 7.4 hours.
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The displacement function is squeezed between the other two

functions. This is because —1 <sin4t <1 =

- —8e 1% < Be */?sindt < 8et/2.

—10

(b) The maximum value of the displacement is about 6.6 cm, occurring at ¢ == 0.36 5. It occurs just before the

. . . o —t/2 — I
graph of the displacement function touches the graph of 8e /2 (whent = z = (.39).

{c) The velocity of the object is the derivative of its displacement

function, that is,

% (8341/2 sin fit) = 8[@,_”'2 cos4t(4) + sin 4t(—%) e_t/z}.

If the displacement is zero, then we must have sin4f = 0 (since

the exponentiai term in the displacement function is always
- S . . The graph indicates that the
positive). The first time that sin 4¢ = 0 after £ = 0 occurs at ] grap . )
displacement is less than 2 cm from
n B L - o
t = 7. Substituting this into our expression for the velocity. and equilibrium whenever ¢ is larger than

noting that the second term vanishes, we about 2.8,

getv( ) = 8 " Fcos(4-2) 4= —32e /% & —21.6cm/s.

5. f(x)=x—-¢* = flx)=1-e"=0 & € =1 & x=0 Now f'(z)>0foraliz < 0and
#/(x) < 0forall z > 0, so the absolute maximum value is f{0) =0 —1 = —1,
re® —e*

= g'(m):T:O s ez-1)=0 = z=1Nowgi(z)>0 «

e — e ; re® "
T>0 < -1>0 ¢« $>landg(")<0 = T({) e r—-1<0 &

x < L. Thus there is an absolute minimum value of g{1) = eatz = 1.

Bl y = 2™ = 3 =2 .3+ .1=3Be+1)e* = ' =32 +1)e* - 3+e* .3 = (92+6)c™. The
curve isconcave upward atz < y”" >0atx & Yz+6>0 & > —ié. Thus, the curve is concave

upward on {—%,0c).

62. flz) =z = fl(x)=a (e )+e " 2x=02e—zMe " s0f(2)>0 & 22-2°>0 &

T(2-12)>0 & 0<ax<2s0fisincreasing on (0,2).
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63. y = f(z) = e V=D A D={z|2# -1} = (—o0,—1)U(~1,00) B. Noz-intercept;

y-intercept = f(0) = ™} C. Nosymmetry D. lim e /& =1since —1/(x +1) — O.s0y = 1is

oo

aHA. lim e Y@E+D = psince —1/(x + 1) — —o0, lim e /Y = sosince —1/(z + 1) — 00, 50

r——1t r——1"
r=-lisaVA. E. f'(z)=e /= /(2 +1)* = f{z)> 0forallzexcept],so

f is increasing on (—~00, —1) and {—1,¢). F. No extreme values H. ;

g1/ {x+1) N e~ V@t (_9) B _e—l/(w+1)(2$ +1)
(1) (x+1)* (z+1)*

G. f'(r) =

= fz)>0 & 20+1<0 & z<-%s0fisCUon

~1)and (~1,~%),and CD on (—3, 00). f has an IP

Ly =flz)=e*® —¢®* A, D=R B. y-intercept: f{0) =0;

2x T

z-intercepts: f(x) =0 = e =¢" = =1 = =0

C. Nosymmetry D. lim e** —¢* = 0,50y = 0 isa HA. No VA,

E fl()=2% —€" =" (26" ~ 1),50 f'(z) >0 & € >

z>Ind=—-In2and f(z) <0 & e <} & z<Injsofis

1
2

decreasing on {—00,In %) and increasing on (In },00). F. Local

minimum value f(In }) = '/ — en(i/2) — (%)2

1
3=

G 7(x) = 46¥ — " = (46 ~ 1),50 f(2) >0

e“>1 o z>hiandf'(z)<0 & z<Ing.

Thus, fis CD on {—o0,In %) and CU on (In §,00). f has an IP at (lnf

Ly=fle)=¢¥ + e A, D=R B. y-intercept= f(0) = 2;
no z-intercept €. No symmetry D. No asymptotes

E. f'(z) =36 -2 50 f'(z) >0 & 3 >27

: 2 H 2 .
[multiply by e**] & € >2 « br>hi «

o> 2n~ —0.08L Similarly, f'(z) <0 & z<ilni miII?i?IE:Ln{

L aci e L 2 : ; 11,2
£ is decreasing on (o0, £ In 2} and increasing on ($ In 2, 00). §

F. Local minimum value f(% In é) = (%)3/5 + (%)"2/5 22 1.96: no local maximum.

G. f'(z) =9 4 4e > so f’(x) > 0forall z,and f is CU on (—o0,oc). No IP
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1.

66. The function f{x) = e**“ is periodic

[0\

with period 2, so we consider it only on OV

27
the interval [0, 2]. We see that it has f

local maxima of about f(0) = 2.72 and

1
8

f
+ 2o 9
f(2m) = 2.72, and a local minimum of

about f(3.14} == 0.37. To find the exact

values, we calcutate [’ () = —sin ze®**. Thisis 0 when —sinz =0 < =0, 7 or 2w (since we are only

considering z € [0, 27]). Also f'(z) >0 & sinzx <0 & 0<zr<7Sof(0)=f(2r)=¢

(both maxima) and f{x) = €**® ™ = 1/e (minimum). To find the inflection points, we calculate and graph

=) = afi_ (—sinze®™ *) = —cosx e — sina(e®®*)(—sina) = e“*“(sin® 2 — cos x). From the graph
2

of f"(x), we see that f has inflection points at z ~ 0.90 and at = ~ 5.38. These z-coordinates correspond to

inflection points (0.90, 1.86) and (5.38, 1.86).

L fle)y = e™' =% Qasz — —oo, and

flz) — o0 as @ — oo. From the graph,
it appears that f has a local minimum of
about f{0.58) = 0.68, and a local
maximum of about f{—0.58) = 1.47.

To find the exact values, we calculate
Flz)= (327 - l)ema’”, whichisOwhen 3z -1 =0 & z= i—]—\f. The negative root corresponds to the

local maximum f(_ﬁ) = UV - (F1VE) - 2VE/

, and the positive root corresponds to the local

minimum f(ﬁ) = e(W/VBP = 0/V3) . =239 Ty estimate the inflection points, we calculate and graph

f(e) = o

T de

[(‘%.Bz - l)e"'ﬂ_z} = (35:2 — 1)613_I (3:1:2 - 1) + ems_‘”(()’:c) = e;"s'z(Q.:c'1 — 62 + 62 + 1).

From the graph, it appears that f”(xz) changes sign (and thus f has inflection points) at = =~ —0.15 and
x 7z —1.09. From the graph of f, we see that these z-values correspond to inflection points at about (—0.15,1.15)

and {—1.09,0.82).

68. (a) As |z| = oot = —m2/(202) — —oo, and ' — 0. The HA is y = 0. Since ¢ takes on its maximum value at
z = 0, so does ', Showing this result using derivatives, we have f(x) = PRERACL RN
reon _ —w/(20?) L2 ' _ _ . ’ - -, - -
fllx)y=¢e (—z/a®). f'(z) =0 & =z =0.Because f' changes from positive to negative at x = 0,

f{0) = 11s alocal maximum. For inflection points, we find
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{6_12/(202) -1+ :Ceﬁ”zl(g”z)(—mfaz)] = ;—zle“wz/(g"z)(l — 1:2/02).
Flle)=0 & 2?=0® & z=10. f'(2)<0 & <o’ & —c<a<a SofisCDon
(—o, ) and CU on (~o0, —o) and (5, co). IP at (ia,e*/?).
(b) Since we have IP at £ = £o, the inflection points move away from the y-axis as ¢ increases.

(c) From the graph, we see that as ¢ increases, the graph tends to

spread out and there is more area between the curve and the

r-axis.

e ) =31,

 Letu = 2, sodu = —2xdr. Whenz = 0, u = 0; whenx = 1, u = —1. Thus,

foae de = [ e (A du) = =4[], = (e — ) = 31~ Vo)

.Letu=1+¢" Thendu = e dz.so [ e*V1+ et de = [ Judu = %u3/2+C‘: 16! +e™¥? 4

. Let # = tan . Then du = sec® z dx, s0 f sec’ e T dr = fetdu=e*+C = e 4 O

.'[e-_:ld:c:/(1+e_1)da:=xfe—w+c

er

'Pl/m

.Letu:l.Thendu:——idm,so -
T z? 2

de =~ fe'du= —*+C=—e/* 4+ C.
1

. Let u = /. Then du =
u = /. Then du NG

d € =2 [t du= 2+ C = 2 4 C
E’SO./'%EH Jetdu=2e"+C =2V +C.

. Let u = ¢*. Then du = e* dir, so [ e sin(e®)dr = [sinudu= ~cosu+C = ~cos(e”) + C.

. Area = fol (es“r —e%)dr = [%e3ac - ex](l] : = %63 —e+ % ~4644

. f'(x) = 3" +5sine = f{r)=3c"-5cosx+C = 2=f(0)=3-5+C = (=450

f’(z):3e3—5cosm+4 = flz)=3" ~bsinz+4x+D = 1=f0=3+D = D=-2
so f{x) =3e" — Ssinx + 4x — 2.

LV =

Jo w(em)2 dr — ﬂ'fol e dr = %W[eh]] = %(62 - 1)

0

LV = fol mze ™ dr. Letu = 2. Thus du = 2z dz, soV = fol e Mdu= w[ve_“}é =n({l—1/e).
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Bl.y=In(z+3) = &¥=z4+3 =

o oY 1 ;o
r=e 3. Interchanging x and y, we get y=Inx+3)

y=¢" — 3,50 f7 ' (x) = e* = 3.

o ltet

= y—yet =146 =
1—e*

-y

T y_]-
ESly+l=y—-1 = " ==—
W+ =y JT1

x=In (y_—] . Interchange x and y:
y+1

r 1 . .
y=1In (g“ n 1) is the inverse function.

. We use Theorem 7.1.7. Note that f{0) = 3 4+ 0+ ¢ = 4,50 f~'(4) = 0. Also f'(z) = 1 + ¢*. Therefore,
1 1 1 1

U= 5w e T vl 2

sin e

. We recognize this limit as the definition of the derivative of the function f(x) = *"* at x = m, since it is of the

form lim M Therefore, the limit is equal to f'{7) = {cos 7)*™ ™ = ~1.¢% = 1.
Tr—Tm xr — 1

. Using the second law of logarithms and Equation 5, we have In(e%/e¥) = Ine® — Ine¥ =z —y = lu(e” ~¥).

Since In is a one-to-one function, it follows that e®/e¥ = e ¥,
. Using the third law of logarithms and Equation 5, we have lne™ = rz = rlne® = In{e®)". Sincelnisa
one-1o-one function, it follows that e™* = (e*)".

. () Let f(z) = e — 1 — 2. Now f(0) = ¢ — 1 =0, and forz > 0, we have f'(z) = ¢ — 1 > 0. Now, since
f(0) = Oand f isincreasing on [0, 00), flz) 2 0forz >0 = " —1—-z>20 = e >14uz

2 ; . .. . .2 .
(b)) For0 <z < 1.2° <z, 50e® < e [sincee® is increasing). Hence [from (2)] 1 + 2 < & < .

So 3 :f01(1+m2)d3:Sfolewzd:cgflemdz:e—l<e = %Sfulexzdwge.

(@ Let fley=¢€" -1 --x - %wz. Thus, f'{x)} = ¢ — 1 — x, which is positive for z > 0 by Exercise §7(a).
Thus f(x) is increasing on (0, o), so on that interval, 0 = f(0) < f(z) =€ - 1—z — 32° =
eT>1+x+ -é—m?

(b) Using the same argument as in Exercise 87(b}, from part (a) we have 1 + x? + %:):‘4 < e <et

for0 <z <1] = Y14zt 4 i) de < 16I2dﬂ;§ letds = 2< le“"zd.’r,ge—l.
0 2 Jo 0 30 = Jo
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2 k
x z
89. (a) By Exercise 87(a), the result holds for n = 1. Suppose thate® > 1 + = + o 4+ ) forxz > 0.

k
z? " zF T

et —lop—T ..o L Thenf(r)=e"—l—z— -~ >0
Let fla) =" —1—o =5 G e S (@) K
by assumption. Hence f(x) is increasing on (0, 0¢). So 0 < x implies that
k41 k LR

T x
[, T > P A —
+1)!,andhencee >1+x+ +k!+(k+1)!

2 n

for x > 0. Therefore, forx > 0, > 1+ + a;_] +-- 4+ fT for every positive integer ., by mathematical
- ! .

induction.
(b) Taking n = 4 and z = 1 in (a), we have e = ' > 14+ § + ¢ + 55 = 2.7083 > 2.7.

k gF+! e” 1 1 z T

E 1
. I A £ o> e+ > :
@ zltzt-tptomy = F2ataa b Tt e 2 e

But J,ILH;Q ﬁ = X0, 50 IIBI;O ':é“ic‘ = 0C.
90. (a) The graph of g finally surpasses that of f at z ~ 35.8.

1 % 1016

37

(b} 3x 10" (c) From the graph in part (b), it seems that ¢*/z'° > 10'°

whenever T > 65, approximately. So we can take N > 65.

1.4* General Logarithmic and Exponential Functions

rina

LL.wae" =e

{b) The domain of f{x) = a® is R.

{c) The range of f(x) = a” (a # 1) is (0, 00).

(d) (i} See Figure 1. (ii) See Figure 3. (i1i) See Figure 2.
2. (a) log, = is the number y such that a¥ = .

{b) The domain of f(x) = log_ « is (0, co}.

{c) The range of f(x) = log, xisR.

(d) See Figure 9.

3. 5\/-7' — (dnﬁ)ﬂ — Eﬁln& 4 10:1:2 — (.‘31111(_1)352 — e;r;2 In 10
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5. ((',OS.’E)I _ (elncosa:)a: = &% ln(cusr). 6. £°°5% = (elnm)cnsm — e(cosz‘)(lnx)

. (a) log; 1000 = 3 because 10° = 1000.
{b) log, 1% = —4 since 27 = 1—16. [Or: log, ﬁ =log,2 * = —4]
. (a) log,, 0.1 = —1 since 107! =0.1.

(b) logy 320 — logg 5 = logg 222 = log, 64 = 2 since 8% = 64.

. (a) logy, 3 + log,, 48 = log, (3 - 48) = log,, 144 = 2 since 12% = 144.

{b) log, 52 = /2 by the cancellation property log,, a® = z.
[0r: logy 5Y2 = v/2logs 5 = V2 1= v2]

1 1 1
. (a) log, — = —1 since a~l=>. [0r log, - =log, ol =1}
a a a€

(b) 10ioE0 4+ o810 T) — qglesiot 1198107 = 4.7 = 28
[Or: 1nUegr 4+ log1p ) — qqlogn(d7) . qplegn 28 — 981

. All of these graphs approach 0 as z — —oc, all of them pass

through the point (0, 1), and all of them are increasing and
approach oo as x — oc. The larger the base, the faster the

function increases for > 0, and the faster it approaches 0 as

T — —0oQ.

. The functions with bases greater than 1 (3% and 10%) are

increasing, while those with bases less than 1
[(3)" and ()] are decreasing. The graph of (3)” is the

reflection of that of 37 about the y-axis, and the graph of

(35)7 is the reflection of that of 10% about the y-axis. The
graph of 107 increases more quickly than that of 3% for

x > 0, and approaches 0 faster as x — —o0.

In13.54
lne 1 22 0.402430 (b) logg 13.54 = n13.5 =2 1.454240

(@) log,. e = -8 o
@loge =195 = 12 In6

Inm
0y 1 = —— = }.651496
() log, m ™
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|
14. To graph the functions, we use log, x = ﬁ,

log. x = Inz 3
og,r = na’ etc. —y=logyx

y=logyx
These graphs all approach —oc as z — 07, and they all pass through gl C—) = 1"8(,;

6
—y = loggx

the point (1, 0). Also, they are all increasing, and all approach oo as

& — oc. The smaller the base, the larger the rate of increase of the

function (for > 1) and the closer the approach to the y-axis

(asz — O )

Inz
. To graph these functions, we use lo r = ——— and
grap €15 inl.b y=logsx

%. These graphs all approach —oc as z — 0*, and

they all pass through the point (1,0). Also, they are all increasing,

logg, & =

and all approach oo as # — oo, The functions with larger bases

increase extremely slowly, and the ones with smaller bases do so

somewhat more quickly. The functions with large bases approach the

y-axis more closely as x — 01,

. We see that the graph of In x is the reflection of the graph of ¢™ about

the line y = x, and that the graph of log,; x is the reflection of the
graph of 10® about the same line. The graph of 107 increases more

quickly than that of €®. Also note that log,, z — oc as r — oo more

slowly than In x.

a

. Use y = Ca” with the points (1,6) and (3,24). 6 = Ca'!  [C=8] and24=Ce® = 24= (

4=0a> = a=2 [sincea>0] andC:g:B.Thefunctionisf(:c):3-‘2“'.

. Given the y-intercept {0, 2). we have y = Ca® = 2a®. Using the point (2, 2) gives us £ = 22° =
= a=73 [sincea>0]. Thefunctionis f(z) = 2(3)% or fz) =2(3)7°.

| (a) 2 ft = 24 in, £(24) = 24% in = 576 in — 48 ft. g(24) = 2** in = 2°* /(12 - 5280) mi = 265 mi

(b) 3 ft = 36 in, so we need z such that log, x =36 < = 236 — §8,710,476,736. In miles, this is
11t 1mi

18.719.476,736 in —— + ———
68.719,476,736 in Tom 3280

~= 1,084.587.7 mt.
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20. We see from the graphs that for x less than about 1.8, g(z) = 5% > f{z) = z°, and then near the point (1.8,17.1)
the curves intersect. Then f(x) > g(x) from z = 1.8 until 2 = 5. At (5, 3125) there is another point of
intersection, and for x > 5 we see that g(z) > f(x). In fact, g increases much more rapidly than f beyond that

point.
325

1.5
0

Clim 27 = lim 2% [wherew= 3] =0

[ U—— o0
CLett =2” —Bx +6. Asz — 3%t = (z ~ 2)(z — 3) — 0T 1im+ log,, (;;32 — 5z 4 6) = lim+ log gt = —¢
x—3 +—0
by (4} in Section 7.3 .

Ch{(E) =17 —3" = R(t)=3t"-3"In3

Lg(z) =297 = ¢(z)=2"4"In4 + 4% - 42° = 234" (zlnd + 4)

. Using Formula 4 and the Chain Rule, y = 57/* = ¢ =57 Y*(In6)[-1- (~z ?}] = 57/*(In5) /2
Cy =100 =y = 10910 10) (sec? 6)

Cflwy =2+ 27 =
: a o uwye @
Fluy =102 +2 )JR
=10In2(2* +27*)%(2% - 27%)

(2" +27%)=1002"+27%)? [2*In2+27“In2- (—1}]

gl 22 d 2 »2 2
. = 2'5 — — . & = 3 x 7]
Yy = ¥y =20 {In2) I (3 ) 2% (In2)3" (In 3)(2x)

1 2x

) =logy@* 1) = T @)= g (20) = Hin3

1 1 1
210 (z— DIn 100 &z - 1)in10

- fla) = logm(

)zloglom—logw(zAl) = fllz)=

r—1

a

cy=2" = Iny=rlnz = y/y=lhc+zl/z) = 3y =2"(lnz+1)

!

. 1 1 1/1
y=2* = lny=-lhz = y—:—21n$+"-() = Y=z
xr Yy T T\

1z 1 —Inx

2

' ' .
in . 1 sina i sinx
L y=x""" = Iny=sinzlnz = Y —cosrlnz + 228 = y'::;:““’”(cosarlnw—{— )
Y x
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Ly = (sinz)® = Iny=zln(sinz) = y'/y=In(sinz)+z(cosz)/(sinz) =
y' = (sinz)*[In{sinz) + = cot z|
!

1
y=(nz)* = Ihy=zlnlhr = %zlnlnw-{-m- " = y'v(lnx)'“"(lnln:c+In—m)

2 ; A 2lnx
= Iny=lhzlnzr=(Inz}* = y = -

s

| / e.B . 1
.y=a2° = Iny=e"lnr = =e"lnz+— = y =z |(lnc+ -
y x i

I

1 1 ;
)**%® = Iny =coszin(lnz) = %:cosx-—-—+(lnln$)(—smm) =

.y =(Inz s T

cos T

y = (ln:c)“’”( - sinmlnlnz)

zlnzx

Ly = 10" = 3 = 10%In10, so at (1, 10), the slope of the tangent line is 10! In 10 = 10n 10, and its equation
isy—10=10In10{z — 1), ory = (10In 10)z + 10(1 — In 10).

. f(I) N eln:r:cos;n -

Fl(z) = (]"“””[lna:(—sinw) + cosx(%)]

COosS T

= p"sF { —sinzIn a‘]

This is reasonable, because the graph shows that f increases when

F' (z) is positive.

/210% 10 1* 100 100 100-10 _ 90
" T |In10],  In10 ;10 Inl0  InlO

. Letv = —2u. Then dv = —2du and

1 -2 1 174172 1 1 (1
472 gy = g )dv=—|—| =- 47 s = -

/D du /D ( 2) v 2[1anU Znd | )=~ \ 16

1 [ 15\ _ 15

4In2\ 16/ 64In2

! : l Inl
L Rl (lnz)/(n10) 0) =L dx. Now putu = Inx, sodu = 1 dx, and the expression
kX x ln 10 z

I Lo 2
becomes1 m/udu nio (2 +C1) = 21r110(lnw) +C.

Or: The substitution u = log,, x gives du = and we get f log%:n dz = 1In10(log,, x)* + C-

z1ln 10

]( +5J)d'_6£ +]n55l+c

. Let u = sin 8. Then du = cos 8 d¢ and / 3500 058 dl = /S"du =i C= ﬁs’“"” +C.

27 1 1 .
. U = & . :21: . 8 = = = a— pd .
Let w = 2° + L. Then du In 2 dz, so / 5 11 dx / . — |lu| + C ln2ln(.Z +1)+C
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0 1
amA=] @ - 5$)d$+/ (5° — 2%)da
0

I Il R AR b
T ln2 In5| , [In5 2],
R U S N0 Vo VA A S 0 T 2 S A N
" \In2 In5 In2 Ins Ins In2 In5 In2

_ 161
T 5In5  21n2

48. Using disks, the volume is V = fol T [10““‘]2 dr=m fol 1072® dz. To evaluate the integral, we let u = —2x
du=—2de.,r=0 = u=0andz=1 = u=-2 s0wehave

-2 [ 1 -2 7 2 997
=T 10tdu=-I 0t =~ 1077 - 1) = e
v 2]0 0" du 2Ln10 0] 10 ¢ ) = 00w

. We see that the graphs of y = 2% and y = 1+ 377 intersect at
T = 0.6. Welet f{xr) =2° —1— 377 and calculate

o

fi{x) = 2% In2 + 37" In 3, and using the formula
Tnst = Zn — f(Tn) /f {2n) (Newton’s Method), we get 1 = 0.6,

T = xy ~= 0.600967. So, correct to six decimal places, the root
occurs at x = 0.600967.

-1

1 1 ;
LY =y" = ylnr=zhy = y-——i—(lnm)-y’:m-;-y +lny = ylnwwgy'zlnyfy
T Y T

,_Iny-y/z
Cine - x/y
10%

— T l :11 I. —_ T :1.'1“; x
T 11 < {10+ 1)y 0F o 10°.y+y=10" < y 0" 10"y <

-y

y=107(1—y) <« 107 = Tg—y = log,, 107 = 10%10(—“‘1 E y) &z =log,y —log, (1 —y).

Interchange x and y: y = log,, x ~ log;q(1 — ) is the inverse function.

—lnw _ —(Inz)?

lim =z = lim ¢

. 2
= 0since — (lnz)* — —ocasc — 0",
@ O @ z—0T

B3. If ] is the intensity of the 1989 San Francisco earthquake, then log,,(I/5) =71 =
log,,(161/85) = log,;, 16 + log,,(f/5) = log,; 16 + 7.1 = 8.3.

. Let I, and [2 be the intensities of the music and the mower. Then 1010g10(%> = 120 and 10 logm(%) = 106,
0 0

I 1 I
s0 logm(}i) = logm(%) = logm(i) — logm(I—z) =12-106=14 = % = 10" a2 25,

. We find [ with the loudness formula from Exercise 55, substituting I, = 107'% and L = 50:

I 1
50 = 10log,, o1z < 5H=log To-12 & 10° = ﬁ & 1 =107 watt/m’. Now we

differentiate L with respecttoI: L = 10]0ngi = % = 10m (%—) = 11(1)0 (%)
9 0 0 n

N dB
"~ Inl10 watt/m?’

1 - 8
Substituting 7 = 107", we get L' (50) = 0 ( ! ) 10 ~ 4.34 x 107

In 10 \ 10-7
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56. (2) I(z) = Ipa® = I'(z) = I{lna)a® = (Ipa®) Ina = I(z) Ina
(b) We substitute Io = 8, = 0.38 and = = 20 into the first expression for I' () above:
1'(20) = 8(In 0.38)(0.38)*° ~ ~3.05 x 107",
(¢) The average value of the function J{z) between « = O and z = 20 is
[P f(z)ds 1 [ 4_2[(038)$}20__2(038*3—u N

= 38)% dp = ~ 0.4l
200 20/, SO E=TI05 51n0.38

. (a) Using a calculator or CAS, we obtain the model Q= abt with @ = 100.0124369 and & = 0.000045145933.
We can change this model to one with base e and exponent In b [b* = e''"® from precatculus mathematics or
from Section 7.3]: @ = ae*™* = 100.012437¢ 10005581,

(b) Use Q'() = ab’ Inb or the calculator command nDeriv (Yi, X, .04} with Y1=ab” to get
@'(0.04) = —670.63 pA. The result of Example 2 in Section 2.1 was —670 pA.

. (a) P = ab! witha = 4.502714 x 1072° and b = 1.029953851, 32000 ¢# in thousands)

where P is measured in thousands of people. The fit appears to be

very good.

5308 — 3929 . . 7240 — 5308
(b) For 1800: m, = m = 137.9, ms = 1810 — 1800

So P'(1800) ~ (m1 + ma)/2 = 165.55 thousand people/year.
93,102 — 17.063 _ 31,443 — 23,102
For 1850: m; = W =612.9, m2 = 1860 — 1850

So P’(1850) = (my + m2)/2 = 719 thousand people/year.

= 193.2.

= 825.1.

{c} Use the calculator command nDeriv (Y, X, year) with Y,=ab” to get
P'(1800) =~ 156.85 and P’(1850) = 686.07. These estimates are somewhat less than the ones in part (b).

(d)y P(1870) = 41,946.56. The difference of 3.4 million people is most likely due to the Civil War (1861-1865).

. Using Definition 1 and the second law of exponents for *, we have

rlna T

Iea:lna—ylna.ze :Cl

(z~y)lna wo
pylna a¥’

a* YV =e
. Using Definition 1, the first law of logarithms, and the first law of exponents for ¢*, we have

(ab)m — ear]n(ab) — e3@(111«1-',—111[)) —_— Inat+xlnk _ eu:lna. & Iné _ a“he.

€
. Letlog, xr=randlog, y = s. Thena” = zand a® = y.
(a)zy =a"a* =a"t° = log, {zy) =r+s=log,z + log, y

T T

) 5 =% gt = log, - =r—s=log, o —log, y
Y

(LS
Wz¥=0@)W=a" = log, (z¥)=ry=ylog,z

. Letm = n/x. Then n = zm, and as n — oo, m — 20.

T mx 1 T r
Therefore, lim (1 + E) = lim (1 + l) = [ lim (1 + ——) } = ¢" by Equation 9.
n m m

Lo TH — OO YL —+ X3
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1.5 Inverse Trigonometric Functions

o =1 VY L om o s _ 3 Toagin [_E T
1. {(a) sin (2)_35mcesm3— 2t and §isin [—F, 5.

(b) cos™'(—1) = n since cosm™ = ~1 and m is in [0, 7.

. (a) arctan(—1) =

la W it e B — € Tl T
(b) csc™!2 = X since csc £ = 2and ¥ is in (0,

. (@) tan™' V3 = L since tan ¥ = v/3and T isin (%, Z).

b) arcsin(—\%@) = —% since sin(—%) = —-\% and —% is in [—g—, %]

(@) sec™! V2 = T sincesec T =+/2and 5 isin [0,3) U [, 3F).

12
arcsinl = Z sincesin® — 1and Zisin [—Z. Z
{(b) arcsin 1 = Z since sin 5 —ldl'ldzlbll'l[ 2,2].

. (1) arccos(cos 2x) = arccos(1) =0

(b) tan(tan™'5) = 5

s

. (a) tan ! (tan %) = tan" (1) 7
(b) cos (arcsin %) = cos(g) = ?

. Letd = Silfl(g).

Then tan(sin"l(gj) = tan# =

3
<.

. Let & = arccos

Then (:sc(arccos(g)) =csch =

3

. Let O = tan ™! \/§ Then

sin(2tan™' v2) = sin(2¢) = 2sinfcosd

(B2
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10. Let 2 = tan~* 2and y — tan~' 3. Then

cos (tan“1 2 + tan™! 3) = cos{x +y) = coszcosy —sinxsiny

. 1

M Lety =sin" 'z Then —L <y <% = cosy>0, so cos(sin™' x) = cosy = \/1 —sin’y = V1 —x2?

12. Lety = sin~ ' z. Then siny = x, so from the 13. Let y = tan™' . Then tany = &z, so from the

triangle we see that triangle we see that

*
tan(sin 'z} = tany = —=—==. !

sin(tan™" ) = siny = ———.
V1422

\“ 712

14. Let 8 = arctan 2x. Then tan # = 2z,
so from the diagram we see that

Vvidxr? +1

csc{arctan 2z) = cscf =
2x

T
7 y=tanx
A

y=sinx

i \
- w = m
y=sin"lx -3 y=tanx -7

The graph of sin ' z is the reflection of the graph The graph of tan™" x is the reflection of the

of sin x about the line y = x. graph of tan z about the line y = .

d
17. Lety = cos '@ Thencosy =zand 0 < y < m = —sinyay =1 =
T
dy 1 1 1 . .
- = - = - = — —. [Note thatsiny > Ofor(0 <y < m.|
dr siny V1—costy V1 —z? Y
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18. (a) Leta = sin 'z and b= cos ' z. Then cose = /1 —sin”a = V1 — 2% since cosa > O for — 3
Similarly, sinb = +/1 — z2. So
sin(sin™' z + cos ! z) =sin(a+b) =sinacosb + cosasinb =z -z + 1 -2? /1 -z?

=2’ 4+ (1-2%)=1

But —% <sin"'z +cos™!z < 3 andsosin 'z 4cos Tz = I

{b) We differentiate sin >z + cos 'z = 7 with respect to x, and get

d 1
! +im‘;”1:c=0 = —cos"lr=—

Vvi—z2 dz dz N

5 dy dy 1 1
—1 2
, ¥ = ¢ = —cs ] = o -
Lety =cot™ x. Thencoty =z = csc”y = p P 1T eot?y

. Lety = sec” ' x. Thensecy = zand y € (0, 3] U [, 3F). Differentiate with respect to z:
e t dy | = dy 1 1 1
secy tany [ == | = =2 = = - )
i Y\ de dz  secytany secysecfy—1 ava?-—1

tany =sec®y —1 = tany= /seciy — lsincetany > Owhen0 <y < Zorm <y < &,

Note that

d
.Lety =csc 'z Thenescy =z = —CSCycotyd—y:I .
x
1

1 1
~ cscycoty cscyr/esc2y — 1 N T
Ly = VianTlg = {tan 1 2)V? =

d
y = L(tan" )2 3—(tan_1 x)
T

Note that cot y > 0 on the domain of csc™ ! .

1 1 1

© 2vian—tz l+a? 2vtan~tz (1 + x2)

o , 1 4 R S SURE v S S
.y =tan" 'z = y_—l—i-(ﬁ)? dm(ﬁ)_1+m(2w )

T 2yr(l4 )
L h{z) = V1 —z%arcsine =
1
Ax) =+/1-2%. N +arcsin3:[%(1 7332)71/2(72;!)] =1-
Ly =sin M2+ 1) =
) 1 d 1 2 1
Y= e S (224 1) = 2= =
( ) \/1—(4;1:2—}—4:1:—1—1) V—4z? — 4z vV—z? —

T arcsin x

V1 —gz2

B 1—(2z+1)2 de
. f(z) = zIn{arctanz) =

i 1 i £
=T - . In{arct z)-1l=—
flz) == arctanz 14 x? + Infarctanz) (1-+ x?}arctanz

+ In(arctan x)

CH(x) ={1+z*)arctanz = H'(z) = (1+z% + (arctanz)(2z) = 1 + 2z arctanz

i
14 z2

-1
sec t
€

tv/ie —1
d . 2e2®

Y= oo S i &) T e

sec” ! sec™ 1 d —
LAt =e C= B(t)=e t p (sec™'t) =

dx

.Y = zeos !
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1 sin @
— 1 " == - i T Ty L2
31. y = arctan(cosf) = y 1 + (cosf)? (-~ sind) 1+ cos?f

R.y=tan ' (z—Ve2+1) =

- ) e ()
v = 2 241/ 1422 -2zvrZ+l+a2+1 2+ 1
_ Vat+1—z

S 2[VET 11+ 22) - w(2? + 1))

1
2(1+ =?)

. h(t) = cot™'(t) +eotTH(1/t) =

1 # 1 1 1
h.,(t) — — 1 _ 1 — . il —_— e — . —_— e 7—_5 + 2— :{]‘
1+12 14 (1/1)2 dtt 1+¢2 241 12 T462 " 241

Note that this makes sense because A{t) = % fort > Oand h(t) = —% fort < (.

—tan {2 [T—% _ont (% Linr—a)— L
.y = tan (a)+ln erG]‘J—ta,n (a)+2111(£ a)— zIn(z +a) =

& 1/2 /2 a N ~ 2az’®
yﬁ;c'3+a,2 r—a x+a x24d> gt --ad

b—l—acos:r)

. 9 — Arccos
4 ( a+bcosx

y 1 (@ +beosx){—asinz) — (b+ acosz){—bsinx)

\/1_ (b-l-acos:rr)z {a +beosz)?
a+beosx
- 1 (a®* — b*) sinz
 Va?+bh2cos?z - b2 —alcosiz |a+beos
1 (a® — %) sinz Vvaz — b sinz
Va2 — b1 —cos?z |a+bceosxl - la + beos z| |sinz|
But0 <z < m, solsinz| =sinz. Alsoa >b>0 = beosr> —b> —a,soa+bcosz > 0.

a-+bcosx

Thus ¢ =

1 e €
/1= (e*)2 €= NN
Domaim(f) ={z | -1<e* <1} ={z|0<e® <1} = (—o0,0].
Domain(f') = {z|1- e >0 ={z|e*™ <1} ={z |2z <0} = (—o0,0).

. f(z) = arcsin{e®) = f'(z) =

cglz) =cosT'3-2x) = g¢'(z)=

1 2
Sy G
Domain(g) = {z| ~1<3 -2z <1} ={a| 4<-2r <2} ={x(2>2z>1}=[12]
Domain{g") :{11’,“1—(3—233)2>0}:{$‘(3*2$)2<1}:{$H3—2.’EI<]}
=zl 1<3-2z<1}={z| d<-2e<-2}={z|2>2>1}=(1,2)
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38. tan ' (xy) = 1+ 2%y =

1

' I :2my——£~—

1+ z2y? 1+ x2y?
¥ 5 2
1+a2y?  2zy(l+2%y") —y _ y(—1 -2z - 22°y°)
P T
1+ a2y

2y —

3 o)< s (2) VT = )= () s e

g (2)= gin™ ; =%

V1= (z/2)?

the tangent lineis y — 7 = —v3 (2 — 1),0ry = =3z 4+ 7 + V3.

x 1 1 : . .
Ly = l%arccos% = y = Bl—w_} (5) soat (1,7m), 9y = ———— = —+/3. An equation of

“Farctanx =

E*-’ﬂ

fiix) = — — ¢ T arctan z. The answer is reasonable
2
1+=x

since f’ is positive where f is increasing and f' is negative

where f is decreasing.

. flz) = rarcsin(1 - 2*) =

—2x
J1- (-2

= arcsin (1 — &%) —

fliz) ==z +arcsin (1 — z°} - 1

2¢*

v2x? — ot

This is reasonable because the graphs show that f is increasing when f' is positive, and that f has an inflection
point when f’ changes from increasing to decreasing .

lim sin~!'z =sin"!(—1) = -1
e

1+ 2° 1+22  1/2° +1
CLett = ——— A o, t = =
STt T T o T 112

1+ 222

2 3

. 1 1'2 - 1 T
lim arccos T = lim arccost — arccos s = Z.

L—00 =+ 23’,‘2 t—1/2

L Leti =e". Asx — 00, t — oo, lim arctan(e”) = tlim arctant = 3 by (8).

Tr—0od

cLett =lna. Asz — 0T, t — —oo. lim tan !(lnz) = lim tan™'t= —

z—0t t— —oo
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SECTION 75 (NVERSE TRIGONOMETRIC FUNCTIONS 5 548
From the figure, tana = 5 and tan 3 = L Since
x 3—=z

2
a+ﬁ+9=180°wm9=wtaﬂ"l(, ) ‘ta‘ll(%m)

df 1 (5 1

5_——+——— 'E)_1+( 2 )"’ [(3—255)2}

3—=z
_ 5 (3w:12)2 . 2 .
24+25 2 (3-xz)7+4 (3-2)°

N)wﬁ“() = 5 = 2
N T 22+ 25 22— 6z + 13

322 30z 4+15=0 = z*-10z+5=0 = x=>5=2+/5 Wereject the root with the -+ sign,

= 222 +50=5z? —30z+65 =

since it is larger than 3. d8/dx > Oforxz < 5 —2 V5 and did/dx < Oforz > 5—2 V5, 0 8 is maximized
when |AP! =z =5 — 2/5 ~ (.53,

48. Let z; be the distance from the observer to the wall. Then, from the given figure,

#=tan! (h+d) — tarl_l(é),x >0 =
x T

df 1 {_h;dJ R LI

1 [ d}__ h+d o
N $2+(h+d)2 22 + 2

2

dr 1+ [(h+d)/a]®

dlz? + (b +d)*] — (h + d)(2® + &°) h*d + hd® ~ ha?

(12 + (h+ d)7) (2% + &2) (22 + (h+ )7 (a2 + d2)

ha? =p2d+hd® & *=hd+d® < z=./dh+d). Sincedd/dr > 0forallz < \/d{h +d) and
dg/dz < 0forall x > \/d(h + d), the absolute maximum occurs when = = /d(h + d).

o Cafxy d8 1/10

5 — 2ft/ssind=T5 = f=sin (10)’dw VT (@/10%
40 df dx 1/10 ad /s

dt  drdt ~ \/1- (z/102 (2 rud/s

gg} o 2/10
dt],_s /1-(6/10)2
de T

i 4 rev/min = & - 60 rad/h. From the diagram, we see that tan 6 = 3

rad/s = § rad/s

df  df dx 1/3 dx

= O=tan (Z) Thus.8r-60= 2 & /0 O
an (5 ). Thus. 760 = = 0 T @B

dx . T2
S0 2 —871-.60-3[1+(§) ] km/h,and at z = 1,

dx

i 8- 60 3[L+ 3] km/h = 16007 km/h.
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Bl. y — f(x) =sin "(z/(z+1)) A D={z|-1<z/(x+1) <1} Forz > —1 we have

—r-1<z<z+l & 2x>-1 & z>—-2s0D=[-300). B. Interceptsaret C. No

1 .
symmetry D. rhﬁngc sin~! (T—T— 1) = xl-l-.no]o sin ! (m) =sin”'1 = Z.soy = 7 isaHA

) 1 (;c-i—l}va:: 1 0 I
£ f=) 1—[:6/(2:+1)]2 (z+1)? ($+1)m> '

so f is increasing on (~4,00) . F. No local maximum or minimum,

f(=3) =sin' (=1) = —Z is an absolute minimum

V2414 @+ 1)/ V2t
(x +1)2(2z + 1)
3z +2

= _($+ 122z 11072 < Qon D, sofisCDon (—%,oo),

G. f{z) =

1

.y—f(;c)mtan_l(i—:rl) A.D={zlz+#-1}

B. -intercept= 1, y-intercept = f(0) = tan~'(—1) = —% €. No symmetry

. _ -1 . ,f1-=1 _ .
D. lim tan 1(%:1) :xgrinootan 1(%) =tan '1 =% soy= T isaHA. Also

. - -1 . _ -1
lim tan {2 = Zand lim tan~'{ 5o = I
2——1t .’]’f+]. 2 z——1- fE+l 2

1 (x+1})—(z—1)
14 [(z - 1)/(z+1)]? (z+1)2
2 1

R TCI P L e i

E. f(z) =

so f is increasing on {—oc, —1) and (—1,00). F. No extreme values

G. f"{x)=2z/(2* + 1)‘2 >0 & z<0s0fisCUon(—o0,—1)and (—1,0), and CD on (0, 20).

iPat (0,-%)
.y=flz)=z—tan"'z A. D=R B. Interceptsare 0 C. f{—z) = —f(x), so the curve is symmetric

about the origin. D. lim (z ~tan™'z) = coand lim (x —tan 'z) = —oc, no HA,

00 &t O
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But f(z) — {z — %) = —tan"'z + % — 0asz — 00, and

flx) - (a:%—%) = Wtan*lx—:’;: —Qasx — —00, 50y =T T 3 are

1 7’ .
slant as Ty=1—- 5 = 0, so
slant asymptotes. E. f'(z} =1 e il > fis

increasing on R.  E. No extrema

y 1+ 22)(2x) — (2 2 ‘
G f ($)=( i ()1(+$:12)2I($)=(1+z2)2>0 e x>0,s0

fisCU on (0, 50), CD on (—oc, 0). TP at {0, 0).

.y=tan '(Inz) A. D={0,00) B. No y-intercept, x-intercept when tan”'(Inz) =0 <

m tan"!(lnz) = I, H 7

Ii z
L0

& x=1. C. Nosymmetry D.

soy = % isaHA. Also lim tan”'(lnz) = - %.

z—0

B f'(2) = ———

> 0, so f is increasing on (0, 00) .

x [1+ (In ;E)z]

F. No maximum or minimum

- [1+ (Inx)® + z(2Inz/z)] (4 nz)?
22 [1+ (Inz)?)? 221+ (lnx)?)?

G. f'(z) = <0,

so fisCDon (0,00}.

. f(z) = arctan{cos(3 arcsin x}). We use a CAS to compute f* and £, and to graph f, f', and f:

10

-4

From the graph of f’, it appears that the only maximum occurs at z = () and there are minima at r = £0.87. From

the graph of £, it appears that there are inflection points at x = £0.52.

. First note that the function f(x) = 2 — ¢sin~ ' x is only defined on the interval [—L, 1], since sin™" is only defined

on that interval. We ditferentiate to get f'(z) = 1 — ¢/A/1 — 22 Now if ¢ < 0, then f'(x) > 1, so there is no
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extremum and f is increasing on its domain. If ¢ > 1, then f'(z) < 0, so there is no local extremum and f is
decreasing on its domain, and if ¢ = 1, then there is still no extremum, since f'(z) does not change signatz = 0.
So we can only have local extrema if 0 < ¢ < 1. In this case, f is increasing where f'(z} >0 < V1-z?>c¢
& x| < V1 -2, and decreasing where v/1 — 2 < || < 1. f has a maximum at & = Vv1—ecZanda
minimum at z = ,m_

a2
Cflz) =20 +501 -2 V2 =22 4540 1-22 = Fla)=2"+5sin"'z+C

fay=4-3142%"" = fley=4z-3tan 'z+C = f(3})=7r-3+C=0 = C=3-mr

s0 f(z) = 4z — 3tan~ 'z + 3 — 7.

v ] 1
4 L » B ]
/0 f’2+1(it=4/0 1+t2dt:4[tan t}O:él(tan 1 - tan 0):4(170)
. Let uw = 4. Then du = 4dx, so

\/5/4 dr 1 V3 1 V3
1 -1 3 1 —1 —1
/U —_—-—--—1 iz = zl_ /U ml " duy = i [tan u]o = (tan \/§ — tan 0)

cLetw =2t Thenv1 — 412 = /1 —u? and du = 2dt, so

T dt _ 1 du 1, R B
'/m—/m—abm u+C—-2—Sm (20 + C.

. Let w = sin™! z. Then du =

uQ}ﬂ‘/ﬁ
Q

1 J 1/2 sin~ Lz p /6
— i, S0 —dir = wdu =
m /o m /(; 2

. Let w = —cosx. Then du = sinz dx, so

/2 sinx o 1 —~1 10 1 _1
.[0 mdw=/_ll+u2(iu:[tan u]_, =tan  0—tan (1) =0-(-

z+9 T 1 1 9 T
.l[w2+9d$=/mdﬂ?+9]md$=§1n(ﬂf +9) + 3tan §+C

(Let w = 2% + 9 in the first integral; use Equation 14 in the second.)
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tan "' _
. Letu = tan™! 2. Then du = dz/(1 + z%), s0 / T +x2$ dz = [udu=3u"+C = Ltan 'z)? + C.

td 1.
L u-i—C:gs'm Wy +

42
— it =
/vl—tﬁ Vv1—u? 3

. Letw — t*. Then du = 3t* dt and

,Letuw =1z Thendu = {dx =
e el vl e S v
x? 2u\/(x/2)? duvu? — 1 u v u?

:%sec u+CZESGC 1(%3.’5)4-0

:/Iquz =2tan"lu+ O =2tan ' vz + C.
U

. Let u = /. Then du = and

f\/"(1+.n

2:1:
dx =lgin"lu4C= %sinél(e%)+0

. Letu = e?®. Then du = 257 de = ]

. Letw = x/a. Then du = dr/a, so

. —1 Lo—1
=sin u+C=sn —+C.
a

1
vri+4

2

wltan (/2 =3(5-0) = %

2 )
] dz = 'JT/ —21— dx. By Formula 14, this is equal to
o T2 4+4

2
. We use the disk method: 4 = / 7{

The integral represents the area below the curve y = sin™’ z on the interval

- x € [0, 1]. The bounding curves are y = sin~
y=sin"'x,

orx=siny A r = 1. We see that y ranges betweensin” ' 0 = Oandsin™' 1 = . So we

r & x=siny,y=~0and

have to integrate the function x = 1 —siny betweeny =0 and y = %

fUlsin_lscda:: 0“/2(1—siny)dy:( +cos§) — (0 +cos0) =

. Let o = arctan  and b = arctan y. Then by the addition formula for the tangent (see Reference Page 2 in the

tana +tanb  tan(arctanz) + tan(arctany)
1 - (tana)(tand) 1 — tan(arctanz) tan(arctany)

Ty
l—ay

textbook), tan{a + &) = = tan(e+b) =

x .
= arctanx + arctany = a -+ b = arctan(l + yy) since —% < arctanx + arctany < 3.

m
. (a) arctan § + arctan { = arctan ——) = arctanl = n

1,1
(b 2 dl‘Ltd.l’l S+ arctan & 3= (arctan  + arctan %) + arctan 2 = arctan(ll*—l?;) + arctan 3
33

m
= dr(tdll + arctan == arctan(—.) = arctanl = Z
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76. (2) f(z) = sin(sin"' z) (b) g(z) = sin™'(sinz)

© ¢'(x) d . ~1(sinz) 1 COs & COS T
C xXr) = —85In SINkr) = —/—— =

! dx V1—sin®z Veos?z  |coszl
(d) h(xr} = cos™'(sinzx), soh'(z) = — cosr___ _ 8T

V1 -sin?z lcosz|

¥

cCosxr —

*T

n
2

0

77. Let f(x) = 2sin™ = — cos™ (1 — 2z%). Then

2 ix 2 4
V122 \/1A(1f2m2)2_\/1*5’52 221 —z%2

(=)

Thus f'(z) = O forall z € [0,1). Thus f(z) = C. To find C let z = 0. Thus 2sin~*{0) —

JANIIVAN
RV

N

0 [since x > 0]

cos M(1) =

Therefore we see that f{x) = 2sin™' o ~cos™ (1 - 22%) =0 = 2sin"'z = cos™'(1 — 2z?%).

-1

78. Let f{z) = sin™ { =
et f{z) = sin (ﬂ:+l

1 (t+1)—(z-1) 2 1 1

) —2tan” ' y/z + Z. Note that the domain of f is [0, co). Thus

1

- (xﬁl)z @+H1F Tiz 2ve Ve@tl) VE(+)

T+ 1

Then f(z) = C. Tofind C,weletz =0 = sin™'(—1)—2tan™*(0)+Z=C =

-1

. Y — PR I 4 _ —1
Thus. f{(z) =0 = sin (m>_2tan NCEES

d d
r = secy=z = secytany—yzl = l=-—l—r~—.N0w
dr dr secytany

79. y = scc !

tany =sec’y — 1 =z% — 1,s0tany = +/22 — 1. Fory € {0,%),53 > 1,sosecy =z = |z]and tany > 0

@_ 1 B 1
de oy 1 [AlveE-T1

dy 1 1 1

1
~ secytany z(—ve2 -1) e ] va? -1
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APPLIED PROJECT WHERE TO SIT AT THEMOVIES = 55%

80. (a) Since larctan(1/x)| < ¥.we have 0 < |zarctan(l/z)| < F |z[ — Oas z — 0. So, by the Squecze Theorem,

fim f(z) =0 = f(0).so f is continuous at 0.

(b) Here f(z) = 5(0) = z arctan(1/z) — 0 = arctan(i). So (see Exercise 44 in

Section 3.2 for a discussion of left- and right-hand derivatives)

fL{0) = lim M = lim arctan(l) = lim arctany = fg,while
z

2—0— x—10 z 0~ y——00

F{0) = lim fz) = FO) lim arctan(l) = lim arctan y = T So £/(0) does not exist.
x

z—0t -0 r—0t y—roo 2

APPLIED PROJECT Where to Sit at the Movies

[VP| =9+ xcosa, |[PT| =35 — (4 + zsina) = 31 — rsina, and

\PB| = (4 + zsina) — 10 = zsina — 6. So using the Pythagorean Theorem, we have

WT| = \/\VP|2 +|PTP = \ﬂQ +zcosa)? + (31 —xsina)’® = a, and

|V B| = \/!VP|2 +|PB* = \/(9 +zcosa)? + (zsina — 6)% = b. Using the Law of Cosines on AV BT, we

a® +b? —625
2ab

a? + b - 625

get 252 = g 4+ b% — 2abcos@ < cosf =
2ab

) , as required.

& f= arccos(

2. From the graph of 8, it appears that the value of x which maximizes 8 i1s x =~ 8.25 ft. Assuming that the first row is

at & = 0, the row closest to this value of z is the fourth row, at = = 9 ft, and from the graph, the viewing angle in
this row seems to be about 0.85 radians, or about 49°,

1
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3. With a CAS, we type in the definition of 8, substitute in the proper values of ¢ and b in terms of x and

a=20° = % radians, and then use the differentiation command to find the derivative. We use a numerical root

finder and find that the root of the equation d8/dx = 01s z = 8.253062, as approximated in Problem 2.

. From the graph in Problem 2, it seems that the average value of the function on the interval [0, 60] is about 0.6. We

1 60

5 Jo 0(z)dx =~ 0.625 = 36°. (The calculation is much faster if we reduce the

can use a CAS to approximate
number of digits of accuracy required.) The minimum value is 8(60) = 0.38 and, from Problem 2, the maximum

value is about (.85,

1.6 Hyperbolic Functions

1. (a) sinh 0 = 3 (" —e”) =0 (b cosh0 = (e’ +e°) = 3(1+1)=1

1
2

e’ —e ") /2 1ol g2 _
Eeﬂ + e[’;//z =0 () tanh 1~ == — € —1 + g.76150

. (&) tanh 0 = el fe ! e? 41

In2 —In2 2 In2y—1 1
e e ~ .
@ sinh(n2) = = = (; )72 22 2

(b) sinh2 = 4 (e? — e7?) = 3.62686

In3 e In3

. (a) cosh 3 = L (&% + e73) =~ 10.06766 (b) cosh(In3) = & :

L1

—_ — ~1q _ _
osh0 -1 1 (b} cosh™" 1 = ) because cosh{ = 1.

. (&) sech0 =

. (a) sinh 1 = (e’ —¢ ') & 1.17520

(b} Using Equation 3, we have sinh ' 1 = In(1 + v1Z + 1) = In{1 + v2) ~ 0.88137.

. sinh(—z) = 3

[e_x — e_("I)} — %(6711 _ e.‘ﬂ)
. cosh—z) = %[e"” + e—(—w)]
. coshx + sinhz = :

. coshx —sinhz =

. sinh zcoshy + coshzsinhy = [ (" — e 7)]{

S e et et (o

— 26_“"'_3') =

{erﬂ" _ E—(I‘HJ)] = sinh{x + y)

1
2
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. coshz coshy + sinhzsinhy = [S(e + e )] [3(e¥ +e7¥)] + [3(em — e ) [5{e? —e7Y)]

— %[(Bw+y 4 eV 4 e—I‘Hj + e*w*y) + (€w+y et - e_“H"y + e“z_y”

‘_14(2e:x:+‘y + 28‘—1—&1) — %{eﬂﬂ’y + e—(w+y)] = cosh(z + ¥)

. Divide both sides of the identity cosh?® z — sinh® z = 1 by sinh? z:

cosh’z  sinh’®x 1 2 2
s T Tz T a2 < coth®r — 1 =csch” .
ginh®r  sinh“z  sinh*x

sihzcoshy = coshzsinhy
sinh(z +y) _ sinhzcoshy 4 coshesinhy  coshzcoshy coshzcoshy
cosh(z +y)  coshzcoshy+sinhxsinhy  coshzcoshy sinh x sinh y
cosh zcoshy = coshxcosh y

. tanh(z + y) =

tanhx + tanhy
~ 1+ tanhrtanhy

. Putting y = x in the result from Exercise 11, we have

sinh 2z = sinh(z + x} = sinh z coshz + coshz sinhz = 2sinhz cosh z.

. Putting y = x in the result from Exercise 12, we have

cosh 2 = cosh{r + x) = coshz cosh x + sinh rsinhe = cosh? & + sinh? z.

sinh(lnx) (e —e 7Y /2 oz (el"m)_l _z-a!
cosh(lnz) ~ (e +e-1m7)/2 g4 (glmey! T4zl
r—1/z (£ = )/z  2*—1
Tz+ijz (#2+ D)/ a2+l

. tanh(Inzx) =

14 tanhx 1+ (sinhx)/coshe  coshz+sinhz
"1—tanhz 1 - (sinh z) /coshz = coshz —sinhz

e 4+e T+et—e T 2% o
eT +e % —e*+e" 2e-%

T

. . cosh © + sinh e
Or: Using the results of Exercises 9 and 10, Coshz T Sz it = =™
coshx —sinhz e~

. By Exercise 9, (cosh x + sinhz)" = (¢®)" = ™" = coshnz + sinhnz.

.sinh;c:% = csch;c:l/sinh:c:%. COS}12$:Sinh2£E+1:%+l:

25

5 = coshz = 2 (since

3
cosh = > 0). scchx = 1/ coshx = %, tanh z = sinha/coshz = 3/4 = 3 und cothz = 1/tanhz = §.
5 54 = 5 3

L tanhx = % > 0,50 > 0. cothz = 1/tanh z = %,sechzw =1-tanh’z =1 — {
secha = % (since sechx > 0), coshxz = 1/sechz = g sinhz = tanhzcoshx = % .

cscha = 1/sinhz = 3.
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22,

|
tanh x

_ _ 1 — _
y=cschx=—=— = =_1 y=cothx=
sinh x y=sechx coshx

g 2r

e’ —e” ? .
23. (a) lim tanhr = lim ———— — = lim =
r—oo z—oo T e T > z—oc | + 8721

* 1—e”

& — J2x

. T — e . et -1 0-1

{b) lim tanhz = lim ‘(:*w-w(:-—-— S lirn A
T——00 z——oo £F 4 e T g I——oo 2T + 1

pray —xI

. . .. e e
(¢) lim sinha = lim ————— =

r—os T —oc 2

(d) 1'1131 sinhx = liIP i

{e) lim sechx = lim ————
r—0c x—oc g¥ g7

I et e 1 140
(f) lim cothz = lim —T% . lim ~& = T2 | |Or Use part (@]

x—vox: z—oo €% — 7T ¢ e—oo ]l —e=2® 10

. . coshz . . -
{(g) lim cothr = lim — = 20, since sinh x — 0 through positive values and cosh x — 1.
20+ 20+ sinhx

. . coshr . . : '
thy lin cothe = lim — = —o0, since sinh « — () through negative values and coshx — 1.
&0 z—0 sinhx

(i) lim csche = lim -—————0r =10
r——oco r— - gT — g T

d x —x xr -z :
.(a)acoshaﬁ: [%(0 +e )]:%(e —€ ):Smhl"

da
dx
da
dx

= = =scch? z
coshx

cosh? x cosh® z

(b d tant sinhx coshrcoshr —sinhzsinhz  cosh?z — sinh®z 1
— T = =
dr cosh? z

(c) %cschx: —i [ 1 ] __Coshz = L -COShI = —cschrcothz

dz !sinhx sinh® r sinhz sinhz

= - - = — . = —sechrtanhz
cosh? z coshr coshz

(d) —d— sechar =

i 1 __ sinhr 1 sinh =
dr dx

cosh z

d d [coshx sinhzsinhz — coshzcoshz  sinh®*z — cosh?
(e) (f_ cothe = — =
M

dx | sinhz sinh? ¢ sinh?® z

= —csch?x

25. lety = sinh "' o, Then sinhy = x and, by Example 1(a), cosh? y —sinh?y =1 = [withcoshy > 0]
coshy =v/1 +sinh®y = /1 + 22, So by Exercise 9, ¢¥ = sinhy -+ coshy =z + V1 + 22 =
y=In{z+vV1+a2}.
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26. Lety = cosh™! 2. Then coshy =z and y > 0, sosinhy = \/cosh2 y—1 = +vx? — 1. So, by Exercise 9,
e¥ = coshy +sinhy=z+vz: -1 = y= ln(m + vz? — 1).
Another method: Write x = coshy = (¥ + ¢7¥) and solve a quadratic, as in Example 3.

sinhy  (e¥ —e7¥)}/2 ¥ % -1

coshy  (ev +ev)/2 ev e +1
e Lr—e? 1 = liz=e®—ze? = 14z=e¥(l-z) =

14z 1+x 1+
2y Dy — = =11 .
e T = 2y ln(l—a:) Y 2n(l_m)

(b) Let y = tanh ™" . Then & = tanh y, so from Exercise 18 we have

B 4 1 1
L 2y=hl(1+w) = y:%ln(1+z)'
. =

" 1l—tanhy 1-=x
2. () (Dy=csch™lz & cschy—xz (z#£0)

27. (a) Lety = tanh™'z. Then ¢ = tanhy =

(ii) We sketch the graph of csch ™! by reflecting the graph of csch (see
Exercise 22) about the line y = x.

2
(iii) Let y = csch ™' z. Then z = cschy = prp— = ze¥—pe ¥ =2

eyzli\/$2+l
x

= z(e¥)? —2e¥ —2=0

1-vVz2+1

- .

Bute? > 0,s0forz > 0,e¥ =

1 2
ThUS, Cl:‘;Ch_l r = ln(— + ._El) .
x

14++v22+1
I

and forxz < 0, e¥ =

|z
(h (Hy=sech 'z & sechy==xzandy > 0.
(iiy We sketch the graph of sech ™! by reflecting the graph of sech (see

Exercise 22) about the line y = x.

_ 2 _
(i) Lety = sech ™t x, 80z =sechy = ———— = ze¥ +xe ¥ =
ey e~y

o VT
—

= z{e¥)Y —2¥4+x=0 <

. . . I —+/1—a?
Buty >0 = e¥ > 1. This rules out the minus sign because STV T sl e 1 Vvi—a? >
e

S l-as>V1-22 & 1-224z22>1-2° & 2>z & x> 1,but z = sechy < 1. Thus,
y 1++1—2z2 -1 (1+\/1—m2)
e ez ————— = gech™z=In[ ——m }J.

x T
(¢) (hy=coth 'z ¢ cothy=2

(i) We sketch the graph of coth™! by reflecting the graph of coth (see
Exercise 22) about the line y = .

_ [
(ili) Let y = coth ™ &, Then x = cothy =

e —re V=V +e ¥ = (z-Dev=(x+le? =

~ z+1 1
62y=l+] = 2yzln£+ = COth—lI:%hlf—CL
z—1 x—1 x—1
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. d
29. (a) Lety = cosh ' 2. Thencoshy = zandy > 0 = sinhy Y_1 =

E =
dy 1 ! = ! (since sinhy > 0 fory > 0). Or: Use Formula 4,

dr N Sinhy - \/coshzy -1 \/332 -1

=d = = — = .
Yz dr ~ sech?y 1 —tanh?®y 1—ux?

d d 1 1 1
(b} Lety = tanh~* x. Then tanhy = = sech? Y _q &Yy _

Or: Use Formula 5.

y ___ 1

dr ~ cschycothy

By Exercise 13, cothy = £+/csch? y + 1 = +£/22 + 1. If 2 > 0, then coth y > 0, so cothy = Va2 + 1.
If £ < 0. then cothy < 0, so cothy = —+/x? + 1. In either case we have

dy 1 _ 1

dr ~ cschycothy  |z|vZ2+1

o
(c) Lety = csch ™' z. Theneschy = = —cschycothy d_z =1

d
(d) Lety = sech” ' z. Thensechy = x = —scchytanhy ﬁ =1 =
dy 1 _ 1 _ 1 (
dr ~  sechytanhy — sechy /1 — sechZy ry/1—x2

d
(e) Lety = coth 'z Thencothy =z = —csch®y d_y
s

gy:-— 12 = ! 7= = ! — by Exercise 13.
da csch®*y 1 —coth®y 1-—z?

Note that ¥ > 0 and so tanhy > 0.)

=1 =

. flx) =tanh4z = f'(«} = 4sech? 4z

flry=zcoshr = f'(z) =z (coshz) + (coshz)(z) = rsinhxz + coshz
. g(x) =sinh®*z = g¢'(x) = 2sinhzcoshz

. h(z) =sinh{z?) = R'(x) = cosh(z”) - 22 = 2z cosh(z?)

. F{z) = sinhwtanhz = F'(z)=sinhzsech®z + tanhzcoshz

_ 1 —coshzx
14 coshzx
{14 coshzx)(—sinhz) — (1 — coshz) (sinh z)
B {1 4 coshx)®
—sinha — sinhx cosh x — sinh = + sinh  cosh « —2sinhzx

B (1 + coshz)? "~ {1 +coshz)?

. G(x)

7 {x)

. f(t) =e'secht = f'(t) = e'(—sechttanht) + (secht) e’ = e’ secht (1 — tanht)

tcsch? /1 © ¢2

Ch(t) =cothvT+12 = R(t) = —csch® VIF - 2(1+6) Y32t =
(t) 1 (t) = — csch® v/ 3 ( )T (2t) NpEE

. f(t) =In(sinht) = f{t) = = 1 cosht = cotht
sinh#

. H(t) =tanh{e’) = H'(t) = sech®(e'} - e' = e’ sech?(e")
. y =sinh(coshx) = ¥ = cosh(coshz) sinhz

— ECOSh de = yi — ecosh 3o sinh3r.3= 3ecosh 3z sinh 3z
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Ly =asinhi(22) = ¥ =27

1
.y = tanh ™' /T

aﬂ. Vv 1+ {2x)

=T

.y =xtanh 'z +InyT —z2 = ztanh '

y' =tanh™'x + T 4 E L
1—22 2

.y = zsinh™ {z/3) — V9 +2? =

1—z2

SECTION7.6 HYPERBOUCFUNCTIONS [T 561

I

1+ 4x2

-2 4 sinh™ (2%) - 20 = 2= + sinh ™' (2z)

~1/2 _ 1

2\/_(1—1'

;r—i-%ln(lf:c?) =

)(—2:1:) = tanh™*

y' = sinh™! ('E) +z 1/3

2z = sinh™ ('E) + L

V14 (2/3)?
.y=sech™'V1-22 = y =-—

PN

T LT
= sinh -
Vataz VIt+a? (5)

1 -2z x

VI—22/1—(1—12?)2V1—a?

Ly=coth '"WVaZ+1 = ¢ =

R
2r

20a=12134

- (+1)2v2o1

1
_.’IS\/$2+1

For y = acosh(z/a) with a > 0, we have the y-intercept equal t a.

As a increases, the graph flattens.

. (a) y = 20cosh{x/20) — 1§ = y = 20sinh(z/20) - 55
z = 7, we have 3 (7) = sinh &5 ~ 0.3572.

= sinh(xz/20). Since the right pole is positioned at

(b} If cx is the angle between the tangent line and the z-axis, then tan o = slope of the line = sinh = 35 S0

o = tan~ (smh %) ~z 0.343 rad == 19.66°. Thus, the angle between the line and the pole is
A =90° —a = 70.34°.

. . . . . ) T T
. We differentiate the function twice, then substitute into the differential equation: y — p_ cosh B;{—

&y = r sinh(ﬂ) g9 hpga?

dr g )T = = cosh(pgm) PG _ B9 oen 292

T/)T T = T°

pgr
= osh ==
T T

s—T pg 1+ sinh? pg ,og hpg , by the identity proved in Example 1(a).
:r TY

. (a) y = Asinhmz + Becoshmz = 1y = mAcoshmz +mBsinhmzr =

We evaluate the two sides separately: LHS =

RHS — pg

L

y’ = m?Asinhmz + m®B coshma = m*(Asinhmz + B coshmz) = m?y

(b) From part (a), a solution of " = 9y is y(x) = Asinh 3z + B cosh3z. So
—4 = y(0) = Asinh 0+ Bcosh0 = B,so B = —4. Now y'(x) = 3Acosh3z — 12sinh 3z =
6=y (0)=34 = A=2s0y=2sinh3z—4cosh3ar.
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. sinhx . e —
852. lim — = lim

z—ooa € z— o0

53, The tangent to y = coshx has slope 1 when ¢ =sinhz =1 = z=sinh '1= }n(l + \/5) by Equation 3.
Sincesinhz = L and y = coshz = /1 + sinh® z, we have coshz = +/2. The pointis (In(1 + v2),v2).

. coshr = (:Qsh[ln(secg + tan 9)} — % [eln(Sec f+tan ) +eo In{sec #+tan 9)]

sec ! — tand
{sec A + tanf)(secd — tan )

1 1 1
== [sech +t — | = = |sec [
5 [qc‘( + tan@ + sec9+tané?] 3 [secf)—!—tan

0 — tand
i 2n ]w%(scc0+ta110+sec8—ta119)—secG

1
== |secc #+tanf+ — ———
2 [c’(( +tant sec2f —tan? g

. Let 2 = cosh x. Then du = sinh ¢ dx, so f sinh z cosh? r dx = [ uldu = %ue' +C = % cosh®z + C.

. Letu = 1+4z. Then du = 4da, so { sinh(1 +4z) dx = 3 [sinhudu = § coshu+C = L cosh(1 +4x) +C.

. Letu = /z. Then du = e and sinb vz dz = { sinhu-2du = 2coshu+ € = 2cosh /x = C.

2z NG
. Let 4 = coshx. Then du = sinh zdz, and

/tanhmd:n = ] sinh z dr = / dr_u = Inju| + C = In(coshx) + C.
J u

cosh x

' ‘osh : " cosl .
. /ﬂ—dxzj COSAE dr = /(081155‘ 1 d:czfcothﬂ':cschmd:n: —eschz + C

cosh?z — 1 sinh? ¢ sinhz sinhz
. Let w = 2 + tanhz. Then du = sech? z dz, so
sech? z 1
_/2+tanh1’ T /u w=Inlul+C =1In2+tanhz| + C =In(2 4 tanhz) +
{(since 2 + tanh x > 1).
. Lett = 3u. Then dt = 3 du and

3 or

6 2 2
1 1 du 2
—dt = ———3du = ———:[‘ ‘}'_1 ] = ‘h712— }71
=R e R M= B R R R ST
{ln(u+\/u2—l)]

ey {15 -u(5228)

2
= {cosh_1 u}

3
473 4/3

62. Let u = 4¢. Then du = 4 df and
Yot tolgy PR \

= = = n‘ h_ ] - — 2

/u V16t2 + 1 y Vil 4{s1n u 4{111(144— u +1)]0

:i[ln(él"-k\/ﬁ)flnl]:iln(4+\/ﬁ)

63. Letu = ¢*. Then du = e dx and / © _dr= / du_ _ tanh "wu 4+ C = tanh ™' (") + C

1 — el 1—u2
1 1+ ¢* .
[or 5111(1_8I)+C].
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64. We want jO] sinh cz dr = 1. To calculate the integral, we put u = cx, 08

s0 du = cdz, the upper limit becomes ¢, and the equation becomes

c

1/ sinhudu=1 & l[(:oshcwl}:l & coshe—1=uc
0 c

We plot the function f{¢) = coshc — ¢ — 1, and see that its positive root

lies at approximately ¢ = 1.62. So the equation fol sinhczx dz = 1 holds

fore =~ 1.62.

. {a) From the graphs, we estimate

that the two curves y = cosh 2z
y=1+sinhx =1 +sinhx
and y = 1 + sinh x intersect at ) )

= g e = cosh 2
x =(andatx — a ~ 0.481. y=coshox v = cosh 2x

—0.1 * * 0.6 0.4 * * : * 05
0.8 1.4

(b) We have found the two roots of the equation cosh 2z = 1 -+ sinhztobe x = 0 and x = a ~ 0.481. Note from
the first graph that 1 + sinh & > cosh 2z on the interval (0, a), so the area between the two curves is

A= [(1+sinhx — cosh2z)dz = [z + coshx — § sinh 2z]

= [a + cosha — 1 sinh2a] — [0 4 cosh 0 — 1 sinh 0} & 0.0402

. The area of the triangle with vertices O, P, and (cosht,0) is 3 sinh t cosh, and the area under the curve

22—y =1, fromz = 1to & = cosht, is [*™"" /22 = 1 dx. Therefore, the area of the shaded region is

A(t) = % sinhtcosht — cosht /22 1 da. So, by FTCl,

2 1

A'() = 1 (cosh®t + sinh®#) — Veosh®t — 1sinht = L (cosh® £ + sinh®t) — Vsinh® ¢ sinh ¢

= 1(cosh® ¢ + sinh® ) ~sinh® t = 4 (cosh®t —sinh®t) = (1) = }

Thus A(t) = 3t + C, since A'(t) = 1. To calculate C, we let t = 0. Thus,

A(0) = IsinhOcosh0 — [F"° V22— Tdz = 1(0)+C = C =0. Thus A(t) = it.

. Ifae® + be ™ = acosh{z + 3) [or asinh(z + 3)]. then
ae” +be T = 4" L F) = 2(e"e” £ e"e?) = (2¢”)e" L (2e77)e™™. Comparing coefticients
of ¥ and e~ ", we have @ = %eﬁ (DNand b = :I:%e_ﬁ (2). We need to find « and 3. Dividing equation (1) by
equation (2) gives us (—; =+e® = (x) 28=In(x¢) = 3=1In(£%). Solvingequations (1) and (2)

forc‘3givesuse‘3:%andeﬁzi%,so%:i% = o =d4ab = o= 2+/*ab.

(%) If % > (), we use the + sign and obtain a cosh function, whereas if % < 0, we use the — sign and obtain a

sinh function.

In summary, if a and b have the same sign, we have ae® + be™* = 2v/abcosh(x + 15 In ¢), whereas, if @ and b

have the opposite sign, then ae” + be™* = 2y/—absinh(z + % In{—%)).
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%% - GHAPTER7 INVERGE FUNCTIONS
1.1 Indeterminate Forms and L'Hospital's Rule

The use of F'Hospital’s Rule is indicated hy an H above the equal sign- 2

; 0
1. (2) im f(:r; is an indeterminate form of type 0
r— q aT

1T ( )
by i o) p(z)
h(x)

= 0 because the numerator approaches 0 while the dencminator becomes large.

{c) lim @) = () because the numerator approaches a finite number while the denominator becomes large.
z—a plr

plx)

(&) If lim p{x) = oo and f(x} — 0 through positive values, then lim ———= = oc. [For example, take a = 0,
q—rry

z—a f(z)
p(a)

plz) = 1/z% and f(z) = %] If f{z) — 0 through negative values, then lim

r—+fl f( )
take @ = 0, p(x) = 1/2%, and f(z) = —z ] If f(zx) — 0 through both positive and negative values, then the

= —oc. [For example,

limit might not exist. [For example, take @ = 0, p(z) = 1/2°, and f(z) = z.]

(e) lim ple) 1s an indeterminate form of type X
% gla) %

. (a) lim [f(z)p(z)] is an indeterminate form of type 0 - .
el #

(b) When x is near a, p(z) is large and h{x) is near 1, so h(z)p(z) is large. Thus, im [h(z)p(x)] = oo.

T

{¢) When x is near a, p(z) and g() are both large, so p(z)g(z) is large. Thus, lim [p(z)g(z)] = cc

. (a) When z is near a, f(z) is near 0 and p(x) is large, so f(z) — p{x) is large negative. Thus,
lim [f{z} — plz)] = —oc.

(by lim [p(z) — ¢{x}] is an indeterminate form of type oo — co.

(¢} When z is near a, p(x} and g() are both large, so p(z) + ¢(z) is large. Thus, lim [p(x) 4 g(x)] = .

. (a) lim [f(2)])" is an indeterminate form of type 0°.

(b If y = [f(:n)]p(”), then Iny = p{x)In f(z). When z is near a, p(x) — oo and In f(z) — —o0, so

In gy — —o0. Therefore, lim [f(:r)}p(x) = lim y = lim €"™¥ = 0, provided f is defined.

=0
(¢) lim [h(x)[**’ is an indeterminate form of type 1°°.

(d) lim [p(z)] =) is an indeterminate form of type oo®.

—+

(e)Ify = [p(;r)}""(w) then Iny = g(z) lnp(x). When z is near a, g(z) — o0 and Inp{x) — oc, soIny — oo.

Therefore, lim [p(x))™) = hm y = lim ¥ = o0,

T

) lnn win(z) = hm [p()]"/%*) is an indeterminate form of type oo,

5, This limit has the form 9 We can simply factor the numerator to evaluate this Hmit.

Ir 2 — J—
lim % L lim w = lim (& - 1) = -2
c——1 r+1 T——1 r+1 et o= |
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— tim — 232 1=
332+33:+27:ci[92(;r+1}(:n+2)7rnag2:r;+1_

9 8
e .z —=1wn, 9z 9 ..
. This limit has the form %. lim = lim — = - lim zt
s—1x%—1 «—-15x! Ha—l

H g ar® ! a
= lim —— = -
z—1 hph~1 b

e 0 . cOST H . —ginx ]
. This limit has the form 5. lm —— = im = lim tanz = —oo.
z—(n/nt 1 —8inz  so(x/z)t —COST  x—{x/2)*+

. xttanz u ., l+sec’z 1417
. lim ————— = lim = =
=0  sing =0  COSZT 1

2

t i
b —1 )
. This limit has the form £. lin% P_ts_ a tlin(}) 373 = oe since et = land 3t2 = 0T ast — 0.
a3t o 3t
R | 3¢
. Jim & B 25 =3

t—0 t t—0 1

.. . tanpx . sec’ pz
. This limit has the form 3. lim tanpr B om 2 2p =
z—0tangr =0 gseceqr

1—sinf 0O

= = 0. I’ Hospital’s Rule does not apply.
. Hn:l/ I — 1 ospi e does not apply

o . . Imzw, 1l/z
. This limit has the form 2. lim — = lim —/— =0
oo T—o0 I T—od 1
€ T
. e’ H ., [ .
. lim - = lim — = lim € =0
T—oo I Tr— o0 T— 00

. li1n+ [(Inz)/z] = —oc since In z — —oc as  — 07 and dividing by small values of z just increases the
z—0

magnitude of the quotient (Inz)/x. L'Hospital’s Rule does not apply.
1 1

hz 2y Lo _g

. Inlnz w |,
. lim = lim
r—voo x T—00 zooo rINnT

t _ qt t 3 n:
. This limit has the form 2. lim 5 3 2 Jim M =ln5—-In3=mht
0" 0 ¢ =0 3

. lnz owm 1/z 1 1
. lim — = lim = =—=
s-1lsinx  z—lweosmxz  w(—1) T

. This limit has the form 5. lim =
T

. 6171*x4$2/2[-| .
. lim 3 = lim
r—0 T a0

e . A
. This limit has the form 2. lim — = lim — =
00" plioo 3

. sinz H ,. COS & 1
. lim — = lim = -
*—0sinhx z—o0coshzx 1

=1

o1
o .osinTlrom .
. This limit has the form 3. lim = lim

x—0 r x—0

sinx—2x cosx—1py, —sinru .,
- = ——— = lim = lim
3:02 r—

. lim
0 bx a1

lim

x—0 T T—
o 1 ~cosx u ,.

. This limit has the form %. =1
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M~21 hwizlim-l?ZﬂO):O

r—o0 I T =00

1
tsinzg 0+0 0
1

, = (. L'Hospital’s Rule does not apply.
ILH%P.’B-FCOS.’I‘ 0+1 P PPy

2 2
I COS MI — COSTLE H lim —msinmae + nsin ne H lim —Mm~ CosmT +n° COSNE
L, lim ————— =
x -0 @2 :EHO 2T :n—»D 2

e ) . 13+2e% 4y
. This limit has the form =. lim — = lim ————— lim =
=" rooo Infl + 2e® ) T 2e*

lim ——— 2 Jim !
g tan—!(4z) =-+0 1

1+ (4z)2

2
., 1l—z+lnzy .. l—l—l/:.EH ~1/z
lim —————— = lim lizn 5

z—1 14+ cosnwx z-+1 —TSin I z—1 —T% COs T

, x2 2 _ x? +2 .ozt 42 1+ 2/2°
. lim —— = lim {/ ——— — ¢/ lim ——— =/ lim ——
zooo /202 41 zooc ¥ 222 41 z—oo 222 + 1 T—oo 2+ 1/_32

. This limit has the form 3.

. This limit has the form ©. lim & — & +te -1 1
0 P (’-U _ 1)

L™ _ = (. L’Hospital’s Rule does not appl
seccx 1 P ’ PpLY.

. This limit has the form 0 - {—o0}. We need to write this product as a quotient, but keep in mind that we will have to

differentiate both the numerator and the denominator. If we differentiate T ™ get a complicated expression that
nr

results in a more difficult limit. Instead we write the quotient as — 72
o

Inz n 1/x —2g3/2
pry = . = I' — =
Jipy Velne = i o T T Taem = i (2D =0

2 v

. . Tt . . 2 .
im z%” = lim — = lim lim — = lim 2e® =0
T — 00 c——00 7% T —o0 —@ r-+—00 g~ F T—— 00

H

. This limit has the form oo - 0. We'll change it to the form 2.

. s . sinbr w .. 6Gcosbzxr  6(1)
PI}}J cot 2z sin 6z = ll_r% tan 2z ilﬂ}l 2sec22z  2(1)2 4

L . lnz owu . 1/x . sinx
lim sinxlnz lim = lim ——~— =~ lim -tanzx
z—07T z-—0+ C8CT r—0t —cscxcotx 2—0+ T

( lim sm;c) ( lim tanm) =—=1-0=0
z—0+t T z-—0t

. This limit has the form oo - 0. lim 2%e~

pr g ]

lim (1~ tanz)secx = (1 — 1)+/2 = 0. L'Hospital’s Rule does not apply.

xr—mwj/4

43. This limit has the form 0 - (—o0).

Inz  wuw . l/z _ 1 B
Jim Ina tan(re/2) = lim ooy = W e /D) Caj(E
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. lim ztan(l/z) = lim tan(l/z) 2 lim sec® (1/2)(-1/2%) = lim sec®(1/z) =17 =1

L O B o0 /:L‘ 00 —1/5[;2 Tt

) 1 ] 1 1 . sinzx—2x
, lim [ — —csca lim| — — — = lim —————
=0\ T r—0\ x sinzx z—0 ET8INnE

cosx — 1 Eiim —sinx =g=0

m — — .
0 ZCOST + sinx =—0 2cosx — xsinx

cos T . l—cosx ny, sinz
= lim ————— = lim

. 1
. lim{cscx -~ cotx) = lim - .
e— z—0 s8IDZY x—0 COS T

=0\ sinx sinz

. We will multiply and divide by the conjugate of the expression to change the form of the expression.

V2 — V2 2 +z) - o’
lim (V2 +z—1) = lim( i A +I+m>*1im(—,)—
z oo z—ioo 1 Vet 4+ oo (xlit 4t
. x . 1 1 |

= lim —— = lim = =5

s—oo 22tz +z oo+ e+l VI+1l 2
As an alternate solution, write /22 + & — x as v/z2 + x — vz, factor out v z?, rewrite as
(/1+ 1/x — 1)/(1/x), and apply I'Hospital’s Rule.

lim L 1 = lim 2= 1-lnz n lim L-1/z -
"sol\Ilnz z—1) =1 (z—1nz o1 (z—-1){l/z)+he x

fm -2l Bt 1 1
ilz—1l4+zlne as=i14+1l+nzx 240 2

. The limit has the form oc — oo and we will change the form to a product by factoring out z.

&L— 00 bt a] r—oo X &€ — OO0

I 1/x
lim (x —Ilnz) = lim ;c(l - —n;{) = oo since litn Iz x lim % =0.

. AsT — 00, L/x — (), and €'/ 5 1. So the limit has the form co — co and we will change the form to a product
by factoring out .

1/x 1 6l/u: -1 332
lim (me”“’ — 3:) = lim :.c(el/m — 1) = lim A~ lim —(u = lime/*=e"=1
00 T—0o0 IO Ftede ] —1/1‘2 o

2
Ly =zt = Iny=2x"Inz so

. . . . 1 . 1
lim Iny = lim z%lnz = lim —— = lim lim [—=z2)] =0 =
z—0r =0T z—0t a z—0+ “‘2/-’E3 z—0T 2

2
lim 2 = lim "¢ =¢" = 1.
x—0t -0t

.y = (tan2z)® = Ilny = x-Intan2z, 50

. . . Intan2z
lim Iny = lim z-Intan2z = lim it
ax—0t —0t z—0+ 1/-74'

. 1/ tan 2z){2 sec® 2z) . —2z%cos2z , 2x . —x
1 ( = lim —————— =1 | =1-0=0 =
! —1/z? o0 in 2z Co82 2T 20+ SIN2E  p0t COS 2T

lim (tan2z)® = lim e™¥ =¢° = 1.
z—01 r—0+

i 22— 22)

In{1—-2z) u
T Tz 1

Ly=(1-22)}"" = hy= 1 In{1 — 2x), so lim Iny = lim
T x—0 z—+{

lim(1 — 22)'® = lim e"¥ = ™2,
T— (¢ r—0
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54.y=(1+%)bx = lny:bazln(l+%),so

o L (_i)
lim e — i bln(l+a/z) u i l+a/x x?/ Iim ab b
1'-1-IEO ny_r]—)n(}o 1/.’,17 _:B—?OO —1/1’2 A$4’001+04/$ -

bz
. [#3 .
lim (1 + —) ~ lim e™¥ = ¢,
I— 00 T T—00

3 51\° 3 5
y={1+-+ = hhy=zhn{l+-+—=5] =
Tz T T

3 5 3 10 . 5
In 1+—‘+—2 ) 1
xIr xr }-[1. €T T T X

lim lny = 1i = lim
oo ¥ T I 1/z . —1/x?

. 3 5
so lim l—I———&——2
r T

=+

, In2
! _ “(1[12)/(1 + 1) = 1 _ Inz =
Y= ny T~z ne

lim lny = lim 42202} 1o W02)A/2) o g,
T—00 z—oe 1+4+Inx T-+00 1/$ T—00

so lim a2/ +Ine) — g, gloy = gln2 o g

I— o0 €T 00

. .1 .1
y=2Y" = Iny=(/z)lnz = limlny= lim - 2 hm-ﬁ:(} =
€T o0 =00 I @E— OO 1
lim z'/* = lim "% =¢% =1

L0 L 00

1
Ly =(e"+2)" = hy= Eln(eer:n),so

lim Iny = lim M =
I —00 T —oo T
lim (e® +:c)1/m =

fdnads o}

(=N 2
HEAR

lim Iny = lim «ln

T —00 T— 00

:limw

x . lnz—In(zx+1) u
m_', T—00 —1/32

= lim | -z + z” =
R r+1

T
. £r . _
$0 lim ( ) = lim e"¥ =¢

r+1
o -1
Or: lim ( .1: ) = lim ($+1> ] = [lim
In(cosdz) u —3tan 3z

]
= (cos 32)5/" ~ D in(cos: i 51 Heli _
60. v = (cos 3x) = lny - In{cos3z) = mhn%) lny 5:%11% . 5 }LI'I}J I 0,

[ de &3 T-— 00

so lim (cos 32)%/* = &% = 1.

I—
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1/z?

1
61. y = {cosz) = lny:;lncosx =

2
. ) Incosx u . —tanx H . —sec
lim Iny = lim >— = lim = lim
0t z— {7+ X r—0+ 2x z—0+ 2

lim (cosa:)l/"‘:2 = lim ™% =e Y2 =1//e
z—0t z—0t

. 2x41
2z — 3 2 —3
. ot = 1 1
62. y (25~:+5) = lny=(2z+1) n(2$+5)

. . In(2z-3)-In{2z+5) n ,  2/(2c—3)-2/(2z+5) . —8(2z + 1)*
== = = 1 —_—
Jim Iy = Hm e A B+ 1) A 2z - 3) 2w 45

, —8(2+1/z)? . 2x3)"'“’“ s
=1 =-8 = 1 =
w00 (2 — 3/2)(2 + 5/x) e \2r+5 ¢

from the graph, it appears that lim z [In(x +5) — Inx] = 5.

To prove this, we first note that

. =4
ln(m+5)—lnm:lnl+d ln(l—t—%) —Inl =0aszx — oco. Thus,
M

1 1

ln(az—}—S)—lnxg lim 245 =

lim z In(z +5) —Inz] = lim

T—o0 T—00 1/:)3 r—oa --1/.’)1‘2

[m(a:+5) —z

= 1.
lim 2z 15) {

From the graph, it appears that lim/ {tan )" 27 = 0.368.
r—r/4

The limit has the form 1%, Now y = {tanz)**"** =
Iny = tan 2z In(tanz), so

. . In(tanz) y .. sec’x/tanx 2/1
.1".—117];1/4 ny w—l»rvfl/aj, cot 2z aHnaP/a —2csc2 22 -2(1)

= lim (tanz)*®"%® = lim €"¥ = ¢! = 1/e & 0.3679.

x—m/d r—oT/4

From the graph, it appears that

2
= = lim fx) = 0.25, We calculate
=0 g'(z)
e -1 u .. e 1

EaNal L ; = =
g{z) 0T T 4r oo03z2+4 4

!
From the graph, it appears that lim Hz) = lim f—’(—:ﬂ =4.
x—0 q(aj) r—0 g (g:)

We calculate

. flz) . 2xsinz wu i 2(zcosx + sini)
T z-0secx—1 «—0 secwtanw

=4

g lim =
z—0 sec x{sec? z) + tan x{secx tanx)

2(-zsinz + cosx + cos x) 4
1
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67. y = f(zx) =z A, D =R B, Interceptsare 0 C, No symmetry H.

a

; 1
D, lim ze ™ = lim ix £ lim — =0,s0y =0isaHA.

T— 00 r—o0 £ r—oo £7

lim 26" = - E. fllz)=e ¥ —ze ™ =" (1-2)>0 &

€r— — 00

x < 1, 50 f is increasing on {—oo, 1) and decreasing on (1, 0o} .

F. Absolute and local maximum value f(1) = 1/e,

G [Mz)=e"(2-2)>0 & z>250fisCUon{(2 00)andCDon(—00,2). IPat (2,2/¢*)
.y = flx)=z(lnx)* A. D=(0,00) B. x-intercept = 1, no y-intercept C. No symmetry

. Inz)? 2(1 1 21
D. lim z{ln :L')2 = 00, lim J;(lnm)2 = lim nz)” u lim M = lm Zhr g
-0 z 0t S B a0t —1/x

lim 2/—1 = lim 2xr = 0,noasymptote E. f'(z) = (Inz)* +2lnz = (Inx)(lnz+2) = Owhenlnz = 0
r—0t 1/1'2 r—0t

2, f{z)>0Owhen0 < z < e %and whenz > 1,50

< wz—=landwhenlnz =-2 & z=¢
[ is increasing on (0, e~ ?) and (1, 00) and decreasing on (e™%,1) .
F. Local maximum value f(ez) =de”?, H

local minimum value f{1) =0

G. f'(z) =2(lnz)(l/z) + 2/z = (2/z)(lnz + 1) =0

whenlnz = -1 = z=e¢ ' ffz)>0 <
z > 1/e,s0 fisCUon (1/e, ), CDon (0, 1/e).

IPat(l/e, 1/e)

2
-

Ly = f{x) =ze A. D =R B. Interceptsare 0 C. f(—z) = —f(x), so the curve is symmetric

.. . .- . rom o, 1 .
about the origin. D.  lim ze™ = lim — = lim 5 = 0,30y = 0isa HA.
r—too r—too g€ r-rt oo 2$€T

E flx)=e¢ ™ —22% " = e_$2(1 -2%) >0 & f<i & (z< % so f is increasing on

(—%, ﬁ) and decreasing on (—oo, —%) and (%,oo) . F, Local maximum value f(%) = 1/1/2e, local

minimum value f(—%) =-1A2e G. f'(z) = —Qme_mz(l —22%) — dpe™™ =2z " (22 - 3) > 0
= ;z:>\/gor—\/g<m<0,sofisCUon(\/g,oo) H. Y
and (—\/g,()) and CD on (foo,f\/g) and (0, %)

IP are (0, 0) and (i\/g /3 e).
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&

M.y=flz)—ez A D={z|z#0} B. Nointercept C.Nosymmewry D. lim = £ lim ET = 00,

r—oo I £— o0

o Z =

. e . . € . .
lim — =0,s0y=0isaHA. lim — =o0, lim — = —oc,s0x = 0isa VA.
rT——oo r—0+ T z—0— T

50 e (z-1D>0 & z>1, H.
T

E. f'(z) = ’ L/

so f is increasing on (1, oc), and decreasing on (—oc, 0) and (0, 1) .

F. f(1) = eis a local minimum value.

_ z?(ze”) — 2z{ze” — ") € (z® — 2z + 2)

G. f'(z) = >0

x4 z3
& x> 0sincex? —2x+2 > 0forall z. So f is CU on {0, 00) and CD

on{—00,0). NoIP

.y=fl@)=z—-In(1+2z) A. D={z|z>—1}=(-1,00) B. Interceptsare C. Nosymmetry

o]

D. lim [z—In{l+z)=o00s0z=-1lisaVA lim [z—In(l1+z) = lim = [1 - .

r——11 T — 00

since lim M H lim 1/(1 +m)

=0. H.

1 x

1- = >0 &« x>0sincex+12>0
14z 1+=z

So f is increasing on (0, 0o} and decreasing on {—1,0).

F. f(0) = 0 is an absolute minimum.

G. f"(x)=1/(1 +2)* > 0,50 fis CU on (—1, o0}.

Ly=f(z)=€e" -3¢ " —4z A, D=R B. y-intercept = —2; x-intercept &2 2.22 C. No symmetry

& - 00 T— 00 T xr

T—oc0 T T 00

D. lim {¢®* —3e™* — 4z} = lim m(i- -3¢ 4) = 0o, since lim €8 im &~

Similarly, lim (e” — 3e™% — 4z) = ~o00. No HA; no VA

&L= XD
E. f’(a:)=e‘”+3ef’"—4:e'm(62$—4em+3)=ei$(e‘”—3)(em—1)>0 & >3 <1l &
x> 1In3orz < 0. So fis increasing on {—oc, 0) and (In 3, &) and H. ¥

decreasing on (0,In3). F Local maximum value f(0) = -2,

local minimum value f(In3) =2 —41in3 \/
2
G. fl(z)=e"~3e " =e“(e®—-3)>0 & e¥>3 &

z > 21n3,50 fisCUon (51n3,00) and CD on (—o0,21n3).

iPat (31n3,-2in3).
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73. (a) 16 (by y = f(z) = =%, We note that

Inz

7z

= lim z = 0. Thus

z—0

. N in f(x) _ 4] _
wl_l}:f)u f(=) wl_lf(rﬁe e’ =1.

Inf(z)=Inz ™™ = —zlnx=—-—-,s0

1/z

. H oo
lim In f(z) = lim e

z—0+ w0+

{c) From the graph, it appears that there is a local and absolute maximum of about

F(0.37) = 1.44. To find the exact value, we differentiate: f(z) = 2% = e *** =

fi(x)=e "7 [mm(i) + lnm(ul)] = -z "(1+Inz) ThisisOonlywhenl +Inz =0 <

z =e'. Also f'(z) changes from positive to negative at e ~!. So the maximum value is

fije) = (1/e) e = etle,

(d) We differentiate again to get

/(2) =~z *(1/2) + (1 + Inz)* (™)

=z " [(1+nz)® - 1/z]

From the graph of f"(z), it seems that f”(z) changes from negative

to positive at x = 1, so we estimate that f has an [Patz = 1.

4. (a) f(x) = (sinx)*” is continuous where sin x > 0, that is,

on intervals of the form (2nm, (2n + 1)7), so we have

graphed f on (0, 7).

(byy = (sinz)*™* = Iny = sinz Insinz, so

. . . . . Insinz n cotx .
lim Iny = lim sinxinsinz = lim —— = lim —————— = lim (-sinz) =0
z—0+ w0t r—0+ CSCX z—0t —cscxr cotx  r—o+

= lim y=e=1,
0T

{c) It appears that we have a local maximum at (1.57,1) and local minima at (0.38,0.69) and
(2.76,0.69). y = (sinz)*** = Iny = sinx lnsinz =

y . cos T .
3;; = (sinzx) (;n—:g) + (Insing)cosz = cosz(l +1Insinz) = ¢ = (sinz)*"“(cosx)(1 + Insinz).

Yy =0 = cosz=0orlnsing=—-1 = x5 = %orsinzze’l.On (0,7),sinz =e™! =
o —1¢ —1 o L1 f -1 . . . .
xy =sin"'(e” ') andzs = m —sin~ ‘(e ). Approximating these points gives us

(r1, f(21)) ~ (0.3767,0.6922), (2, f{x2)) ~ (15708, 1), and (zs, f(z3)) & (2.7649,0.6922). The

approximations confirm our estimates.
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From the graph, we see that f(z) = O at & ~ 0.94 and

x == 2.20. Since f" changes sign at these values, they are

x-coordinates of inflection points.

J T

75. (a) f(x) = /" (b) Recall that a® = €®'*®. lim, 2 = lim, eV/eine Agq 0t
€T — r—

2 M s —00, soxM/* = (L/=® _, () This indicates that there is
z

ahole at (0,0). As z — oo, we have the indeterminate form o

1/z
1

1
Ul . lim z** = lim /"% put lim L T

= {}, 50

00 E— OO Tz—o0 I T2 0

- lim z'/® = €° = 1. This indicates that y == 1 is a HA.

-1 T
(c) Estimated maximum: (2.72, 1.45). No estimated minimum. We use logarithmic differentiation to find any

1 11 1
critical numbers. y = '/ = Ilny=—Inz = ¥ .22y (Inxz) (——5) =
T y T =z x

y’—a:l/m(l_lnm)zo = Inz=1 = z=ePFor0<z<ey >0andforx>e,y <050
T

f(e) = €'/¢ is alocal maximum value. This point is approximately (2.7183, 1.4447), which agrees with our
estimate.

) o From the graph, we see that f’(z} = 0 atz =~ 0.58 and & ~ 4.37.

Since f changes sign at these values, they are z-coordinates of

’/ } & inflection points.

-4

0

The first figure shows representative examples of f(z) = z™e ™" with n odd. n is even in the second figure. All
z"(n —x)
re®
(the latter for n > 1). At z = 0, we have a local minimum for n even. At x = n, we have a local maximum for
z" (wz — 2z + n? — n)
e
z = n % /norx = 0 (the latter for n > 2). As n increases, the [P move farther away from the origin—they are

curves pass through the origin and approach y = 0 as z — oo. f'(z) = =0 & z=norx=20

"

all 7. As n increases, (n, f(n}) gets farther away from the origin. f"(z) = =0 &

symmetric about the line x = n.
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1
7. lfc< O, then lim f{z)= lim -8%; 2 lim —— =0,and lim f{x) = oo
T —00 T— —00

cesr T— 00

1
Ife > 0, then lim f(z) = —oco,and lim f{z) L Jim =10

T— —00 T—oo Cce T
If e = 0, then f(z) = z, so 11111 f{z) = too respectively.
So we see that ¢ = 0 is a transitional value. We now exclude the case ¢ = 0, since we know how the function
behaves in that case. To find the maxima and minima of f, we differentiate: f(x) = ze™* =
fllzy=2(~ce™*) + e =(1~cz)e . ThisisOwhenl —~cz =0 & z=1/c Ife <0 then this
represents a minimum value of f{1/e) = 1/(ce), since f'(x) changes from negative to positive at z = 1/c;

and if ¢ > 0, it represents a maximum value. As |¢f increases, the

maximum or minimum point gets closer to the origin. To find the inflection
points, we differentiate again: f'(r) = e **(1 —ex) =

Fiz) = e (—c) + (1 — cx)(—ce™) = (cx — 2)ce™"". This

changes sign whencr —2 =0 < x = 2/c. Soas |c| increases, the

points of inflection get closer to the origin.

. We see that both numerator and denominator approach 0, so we can use 1"Hospital’s Rule:

i V2a3z — 24 — a Yaax . 2(2d%z ~ m4)#1/2(2a3 — 42°) - a(é](a,a;l:)_z/3 a®
im = ;
r—a a— Vaz3 —%(a$3)*3/4(3a$2)
(2a%a ~ a4)_1/2(2a3 —4a’) — %a:‘(aza)fzfs
—L(aa®)"**(3aa2)

(aq)—l/z(was a3(a3)_2/3

_3,3(,4y"3/4
sad(at)

n—0oC

.y nt oy Tt .
. First we will find lim (1 + %) , which is of the form 1°°, y = (1 n 1) = Ilny=— nt]n(l + 1), 50
) T Tt

. . ] . In(l+id/n) uw . (—i/ng)
lim Iny = lim ntln{1+ 2] =¢ lim —— 4™ 14 =t lim ——— =
pm ny = Jlim n “( n) T n A U i) 1)~ A T am O

-y nt
= lim y = e'*. Thus, as n — oo,A:Ao(lJri) — Age™.
)

Tt 00

(@) lim v = lim 24 (1 — e"“/’”) =9 4 (1 - e_“/m)
£ ox L—oo O t—oo
= @(1 —0) [because —et/m — —ooust — o0] = @,
C C

which is the speed the object approaches as time goes on, the so-called limiting velocity.
g 1 - e-ct/m

_ —ct/m + 2
(b)y lim v lim 2 (1 — e-Ct/m) =2 =& B8 4 € (C fm )
m— oG m—oc O C m—oo I/m C m-soco —1/m2

= %(ct) lim e™/™ = gt(1) [because —ct/m — Oasm — 0] = gt.

The speed of a very heavy failing object is approximately proportional to the elapsed time ¢, provided it can fall
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for time  in an environment where the given model continues to hold. [If ¢ is too large, the object may hit the
ground in less than time ¢, or it may have to start falling too high above the earth, where there is almost no air.].

. Both numerator and denominator approach 0 as  — 0, so we use I'Hospital’s Rule {and FTCI1):

T . 2 : 2 2

t7/2)dt g 3 2
o 8@ o Josin@ty2dt y o sin(re/2) po,  mecos(rdY) T
xr—0 ;173 r—0 :C‘i z—0 3.’,{:2 x—0 6'1’: 6
. Both numerator and denominator approach 0 as @ — 0, so we use I"Hospital’s Rule. (Note that we are
differentiating with respect to a, since that is the quantity which is changing.) We also use the Fundamental
Theorem of Calculus, Part 1:

Cj-a, e—(x—u)z/(zlkt) du W

C —(& — a)?/(4kt) C’—:c'z/(clkt)
lirr%]T(a:,t) = lim —2 2 im = ==

a—0 aVarkt a—0 ATkt - Akt

. Since f(2) = 0, the given limit has the form .

lim f(2+3m);—f(2+5$) giﬂf’(2+3w)~3-1£f’(2+5$)-5 P(2)34 [(2)-5 = 87'(2) — 8T = 56

sin 2z sin2z + ax® + bz w lim 2cos 2z + 3ax® + b

. b . 9
'L_»}eli%( o +a+m—2)__alc% =3 Wmlio 272 LAsx — 0,3z — 0, and

(2 cos 2z + 3ax® + b) — b+ 2, s0 the last limit exists only if b+ 2 = 0, that is, b = —2. Thus,

_ 2cos2r+3ax?—2w . —4sin2z +6ax uw . —8cos2z+6a 6Ba—8 . . .
lim = lim = lim = , which is equal to 0 if and
x—0 32 w-— G 6x a—0 6 6

onlyif a = 4. Hence, L = Oifandonlyif b= —2and a = 3.

. Since Jl1lim0[f(:lc + h) = f(z — h)} = f(z) - f(z) = 0 (f is differentiable and hence continuous) and A’nrh 2h =0,

we use I’Hospital’s Rule:

g @t )~ fa =k et ) -z k)Y [ ) + @) 2f'(=) _ ()
h—0 2h h—0 2 2 2
flz+h)— flzx—h)
2h
between (z — h, f(z — h}) and (& + k, f(z + h)}. As

h — 0, this line gets closer to the tangent line and its slope

is the slope of the secant line

approaches f'(z).

. Since &I_ﬂn}, [flz+h) —2f(x)+ f(z = h)] = f(x) — 2f(z) + f(z) = 0 (f is differentiable and hence

continuous) and }IIH}J h? = (), we can apply "Hospital’s Rule:

et 2@ femh) n k) = )
Ao h2 - 2k

= (=)

At the last step, we have applied the result of Exercise 85 to f'(z).
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T

87.

r—oo ™

Inx . 1/xz ] 1 .
88 lim — = lm —/- = lim — = 0sincep > 0.
z—oc TP L— 00 p,f[:p—l X 00 p:l,‘p

. Inz #n 1/x . it .
89. lim 2°Inz= lim — = lim % = lim =0since a > 0.
-0 c—0t T2 r—0tT —r T~ z—0t —C

90. Using I'Hospital’s Rule and FTCI1, we have

T sin(t?) dt LT sin(#?) dt sinl o2
lim —ﬁw——f *) = lim 4= JO ®) = lim sin(z”) =

1 sin(x?) 1
T ’ z—0 3z? =0 322 3

fm—25"=3

M. Let the radius of the circle be r. We see that A(#) is the area of the whole figure (a sector of the circle with

radius 1), minus the area of AOQPR. But the area of the sector of the circle is lr26‘ {see Reference Page 1),

and the area of the triangle is 37 |PQ| = 37(rsin ) = r”sin6. So we have

17?0 — Lr*sind = 1r?(6 — sin8). Now by elementary trigonometry,
B#) = ; LIQR||PQ| = %( —|oQ) |PQ| = (T —rcos0)(rsind) = % 2(1 = cos ) sinb.
So the limit we want is

A(a)_1 1726 —sing) u 1 —cosé

9_,U+ 5;«2(1 —cos#)sinf 9lgl+ {1 - cos)cos @+ sinf (sin )

1 —cosé 8 sin @
lim = lm

90+ cosf —cos? f +sin® 8 g0+ —sinf — 2cosd {—sinf) + 2sin O (cos )

sin ) 1 1 1
= lim lim = = -
a_.o+—q1n9+4sm€ cosf 80+t —1+4dcos@ —1+4cos0d 3

92. The area A(t) = [ sin(z*) dz, and the area B(t) = itsin(¢?). Since hm Aty =0= 11m B(t), we can use
S -0t

I"Hospital’s Rule:

. A1) sin(t?)
lim —= = hm 5 1
t—o+ B(t) oot 2 sin{t?) + 2¢[2t cos(t2)]

[by FTC1 and the Product Rule}

. 2t cos(*) . 2 cos{t*)
= lim : = lim -
i—ot+ tcos(t?) — 2t3sin(t?) + 2t cos(#?) 1o+ 3cos(?) — 2t2 sin(#2)

93. (a) We show that lin}] faE::) = O forevery integer » > 0. Lety = % Then

- —1/x? -1

fla) eV .oy H . my"ton H
5 = lim —— = lim = = lim =...=

x—0 T x—0 (:1,‘ ) y—oc €Y y—oo ey y—oo e¥

]
lim lim ~o_ 0 =

TENFACI JESHEGRY [C) RS e f(f)zo.Thus,f’(O):hmM im £&) _ g,

r—0 " €T x—0 —0 T —0 r—0
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(b) Using the Chain Rule and the Quotient Rule we see that f (n) () exists for z # 0. In fact, we prove by induction
that for each n > 0, there is a polynomial p,, and a non-negative integer kn, with f ") () = pu(z) f(z) /2" for

z £ 0. This is true for n = 0; suppose it is true for the nth derivative. Then f{xy= f(z)(2/2°), s0

T

Fo gy = {mk’" [p'n(m)f(m) + pn(r)f'(:c)] - knmk’rlpn(w)f(m)]m
= [ @) + pal@)(2/2") - Faa® " pa(2)| Hz)e
= 2543 (2) + 2pn () = huz* 12 pua)| Flw)e” P

which has the desired form.
Now we show by induction that F9(0) = 0 for all n. By part (a), f'(0) = 0. Suppose that F™0)y = 0.
Then

0y = gy L@ = FOO) e F) e pa@)f @)/ p—

x—0Q €r — 0 z—0 T x—0 xr x—0Q

gy o flx) _
*“:ll_I_‘I‘l}pﬂ(m) ::!:]EH) (L’kn+1 7pn(0) ' 0 - 0

94. (a) For f to be continuous, we need linbf(m) = f(0) = 1. Wenote that for z # 0, In f{z) = In|z|* = zIn[z|.

So lim In f(z) = li“}len z| = lim In|a| L e = (). Therefore,

h b 1/z a0 —1/a2

lim f(x) = lirrh e" f(2) = 0 — 1 So f is continuous at 0.
xr—

x-=U

{b) From the graphs, it appears that f is differentiable at 0.

2 1.1

N

0.9

'
{c) To find f', we use logarithmic differentiation: ln f(z} = zln|z} = BACINS :r:(l> +lnjz| =
X

f=@)

f'{z) = f(£)(1 + In|x]} = |z|*(1 + In|z|), z # 0. Now f'(z) —» —oc asz — 0 [since |z[* — 1 and
(1 4+ In|z|) — —oc], so the curve has a vertical tangent at (0, 1) and is therefore not differentiable there. The

fact cannot be seen in the graphs in part (b) because In |z| — —oo very slowly asz — 0.
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7 Review
CONCEPT CHECK

. (a) See Definition 1 in Section 7.1. It must pass the Horizontal Line Test.

{b) See Definition 2 in Section 7.1. The graph of £~ " is obtained by reflecting the graph of f about the line y = z.

. {a) The function f{x) = ¢” has domain R and range (0, o0).
{b) The function f{x) = ln x has domain (0}, co} and range R.
{c) The graphs are reflections of one another about the line y = x. See Figure 7.3.3 or Figure 7.3*.1.

{d)log, z = nz
Ina

. (a) See Definition 7.5.1. Domain = [-1, 1], Range = [~ ], §]
{b) See Definition 7.5.4. Domain = [—1, 1], Range = [0, 7]
(c) See Definition 7.5.7. Domain = R, Range = (—121, %) See Figure 10 m Section 7.5.

T —z x —z £

) el —e e +e sinhz e —e”
.sinhg = ——— coshz = ————, tanhz = =
2 2 coshx et 4 e %

@y =€ = oy =e" My=a" = 3y =d"lna
@y=hz = y=1/z @y=log,z = y' =1/(zlna)
()y=sin'z = y =1A1-—22 Hy=cos™ 'z = ¢y =-1A1-22
(@y=tan 'z = 3 =1/(1+2% (h) y =sinhz = 3 =coshz
(i)y =coshx = 1y =sinhs () y =tanhz = 3 =sech®x
Kyy=sinh 'z = ¢ =1/V1+22 My=cosh 'z = ¢ =1/Va?-1
(myy=tanh 'z = ¢ =1/(1-2%)

Eh

. . —1
. {a) e is the number such that lim = 1,

—0

by e = 11111[1)(1 + m)lfGlc

(¢) The differentiation formula fory = a® |y’ = a”Ina] is simplest when o = e because Ine = 1.

{d) The differentiation formula fory = log, |y = 1/(z1na)] is simplest when @ = e because Ine = 1.
. (a) See I"Hospital’s Rule and the three notes that follow it in Section 7.7.

ite fgas 24— or 9
{b) Write fg as /g or iF

(c} Convert the difference into a quotient using a common denominator, rationalizing, factoring. or some other
method,

{d) Convert the power to a preduct by taking the natural logarithm of both sides of y = f¢ or by writing f9
asef!nS
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TRUE-FALSE GUIZ

If f is one-to-one, with domain K, then f “Y(f(6)) = 6 by the first cancellation equation [see (4} in
Section 7.1].

1 1 \ .
. False. By Theorem 7 in Section 7.1, (f ~')'(6) = e not 6] unless f'(6) = 6.

. False. For example, cos 3 = cos (—5), s0 cosz is not 1-1.

. False. Itis true that tan 3= = —1, but since the range of tan~ ' is (—%, Z), we must have tan ™'

4
. True, since In z is an increasing function on (0, 00).

. True, by Equation 7.4*.1.

. True. We can divide by €® since £ # 0 for every .

. False. Forexample, In(1+ 1) =In2,butlnl+1In1=0.Infactlng + Inb = In(abd).

. False. Letz = e. Then (Inx)® = (Ine)® = 1 =1, but6lnz =6lne=6-1=6+1 = (Inz)".

. False. i 107 = 10%In 10
dx

. False. 1n 10 is a constant, so its derivative is (.

. True. y=¢* = hy=3r = z=4+lny = theinverse functionisy = §Inz.
. False. The “—1" is not an exponent; it is an indication of an inverse function.

. False. For example, tan~! 20 is defined; sin~* 20 and cos™! 20 are not.

. True. See Figure 2 in Section 7.6,

. True.  In3 = —In10 = — {;° (1/x) d, by Equation 7.4.4 or by Definition 7.2°.1.

. True. j (1/x)dz=Inz]}* =In16 - In2=mn*¥ =In8 =1n2* =32

tanz
. False. L’Hospital’s Rule does not appl e lim —— = - =0.
se ospital’s pply sinc b 1m 1 cosz

EXERCISES

. No. fis not 1-1 because the graph of f fails the Horizontal Line Test,

. (a) g is one-to-one because it passes the Horizontal {d) We reflect the graph of g through the line
Line Test. y =  to obtain the graph of g~ .

{(b) Wheny = 2, 2 2~ 0.2. So g " *(2) ~ 0.2.

{c) The range of g is [—1, 3.5], which is the same

as the domain of g,
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3. (@) f71(3) = 7since £(7) = 3. ®) YO = S s

1 . 1
y:23;_:_1.Interchanging:candyglvcsusa:=%ﬂl:;i- = 2ry+r=y+1 = 2ry-y=1-x =

F ).

1—z

2—1)=1l-2z = y= _
y(2e—1) ¢ L

y=5"-1

y

1. Reflect the graph of ¥ = ln x about the z-axis to obtain the graphof y = — In=.

y=Inz y=—Inzx

/

y = 2arctanz

10. We have seen that if a > 1, then o™ > x® for sufficiently large z. (See Exercise 7.2.20.) In general, we could show
that arlim (@®/z*) = oo by using 'Hospital's Rule repeatedly. Also, log, z increases much more slowly than either
z® or @*. [Compare the graph of log,, = with those of z* and a®, or use 1’Hospital’s Rule to show that

lim [(log, z)/z%] = 0.] So for large z, log, = < z* < a®.
. (a) 2In3 = (EmS)? —32_9

(b) log,, 25 + log, 4 = log4(25 - 4) = log,, 100 = log,, 10 = 2
(aylne™ =7

(b) tan{arcsin 3} = tan § =
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_ _ 1 _ 173
Lnx = & log,r=3 = z=¢

=1 = z=lj=khi-In3=-In3

et =17 = et =Inl7 = e =nl7 = e*=h(nl7?) = z=Inlnl7
In(l+e®)=3 = l+e " =¢* = eF=e*—-1 = he®=In(e*-1) = -z=In("-1)
= z=—Ine*-1)

n(z+ D 4n(z—-1)=1 = hfz+)z-1)]=1 = In(z? —1) =lne = *-1l=e¢ =
>=e+1 = z=+/et Isinceln{z — 1) is defined only when x > 1.

Clogs (") =d = zlogge=d = $210g5c'
dlnb

Or:logs(c*)=d = 57=¢® = Ihi*=mhc® = dhbS=zhhe = z= o
ne

“ly=1 = tantan 'z =tanl = x=tanl (= 1.5574)

. tan
,sinz =03 = z=sn'0.3=afor M% <z < 3. The reference angle for ac is ™ — e, so all solutions are

z=a+2nrandz =7 —a+ 2nxr [or (2n + )T — o]

Cft)y=t*Int = f’(t)=t2-%+(lnt)(2t):t+2tlnt or t{1+2nt)

PPN (25 FE L
1+ et (14 et)? (1+et)?

CR(B) = €™ = R(0) = e . 5ec? 20 - 2 = 2sec” 20 "%

L glt) =

1 (In10)10v"

2yu 24/

h(u) = 10V* = R'(u) = 10¥* . 1n10-

.y = Inlsec bz + tan5z| =
; 1 _ 5sec 5z {tan bx + sec 5x)

== I tanSz -5 25, .
S€C5m+tan5$(sec5z an 5z - 5 4 sec” 5 - §)

.y:e_t(tz—Zt—l-Q) =
Y=e 2+ (P-2+2)(—e ) =e (2 —-2-t7+20—2) =7 (" + 4t - 4)

= Hsechr

sec bz + tan 5z

.y =e“(csinz —cosz) = y =ce(csinz ~cosz) + e (ccosz +sinz) = (¢ + 1)e“ sinz
Ly=sin~ie®) = ¥ =1//1—(e5)2 " =e"/VI—e>

.y =In(sec® z) = 2In|secz| = y' = (2/secz)(secztanz)= 2tanx

,y =In(z%e”) =2mnjz|+z = ¥ =2/z+1

Ly=aze T oy =e VT p e Vo (1/2?) = e YE(1 4 1/2)

Ly =z =y =ra" e 4 saTe®

Ly=2""% = ' =2""(In2)(-2t) = (~2In2)t27"

CO5 &

Ly = e +cos(e”) = y = —sinze®” —esin(e”)
1
. H(v) =vtan'v = H'(v)=wv" T o — +tan” 'y 1= 1_: 5 + tan” Ly
1 2z
(In10)(1 + 22) (ln 10){1 + 22)

.y =zsinh(z?) = y =wzcosh(z®)- 2z +sinh(z?) 1= 222 cosh () + sinh(z?)

. P(z) =logo(1+2%) = F(z)=
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1 .
38 y=(cosz)® = Iny=In{cosz)” =zlncosz = y T — (—sinz) +Incosz-1 =
~iM
y' = (cosz)“(lncosr — xtanx)

. . 1 . .
.y =Insinz - Isin®z = gy =-—.cosz— 3 2sinz-cosr =cotz —sinzcosz
sin

1 1 1

1 + (arcsin /7 )* Vi—z 2z

Ly = n > + BEEPEE R +{lnz)"' = —Ilnz + (lnz)"' =
x Inzx

1 1 1 1
= _1.— —] 2L - _Z_ -
Y x +(=Dlinz) T z z(lnz)?

.y = arctan(arcsin /x) = ¢ =

Laef =y 1 = eV 4aely =y =y =e¥/(1 - xe¥)
83. y — In{cosh3z) = ¢’ = (1/cosh3z)(sinh3z)(3) = 3tanh3z
(® + 1)*
2x 4+ 1)3(3r — 1)°
(IQ + 1)4
(2z +1)3(3z — 1)
=4In(z? + 1) - In(2x + 1)* + In(3z — 1)°] = 4ln(z® + 1) - 3ln(2z + 1) — 5ln(8z — 1) =

1 1
2+ 1 '2I+1‘2_5-3$*1.3 =

e (x* +1)* 8z 6 15
Y o+ 106 1P \a2 41 2o+l Bz—1)

(2% + 562 + 9) («* +1)°
(2z + 148z - 1)8

.y =cosh '(sinhz) = 4 = {(coshx)/v/sinh®z—1

1 1

NE

.y:( =

=In(z® + 1)* = In[(2z + 1)*(3z — 1)7]

Iny =In

7
Yoy 9 — 3
y

[The answer could be simplifiedto gy’ = — , but this is unnecessary. |

=tanh ' /z + vz

.y=axtanh 'z = 3 =tanh™! x4z
201 —x)

. f(.'L') — cE‘.ir13(111(:1'.'2+1)) =

fllx) = i (=" 4+1)) 3sin®(In{z? 4 1)) - cos(In{z? 4 1)) - 2z

_t
w? + 1
Gx ) . ) .

= ;z_f_“] sin®(In{z? + 1)) - cos(In(z% + 1)) - e=in” UInfz?+1))

4 2+ 1 2

d (1 _ 1, {z+1)° d (1, _ 1 1
g (Etan '+ ~1In = — | ztan 1$+§1n|$+1—zln(m2+l))

__1 2x _1 1 T + 1
42241 2\22+1 2241  z+1

1 1— &2 2241

2((:U2+1)(1+3:) + (a:2+1)(1+$))
1 1
2@+ (l+x) (I+2)=z2+1)
)

8. flx)=e"D = fz) =g (2
80. f(z) = gle™) = fl{z)=g'(e")e”

5. f(z) = Inlg(x)| > f(e)=
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. f(z) = g(nz) = f'(;ﬂ):g’(lncn:)-l=-‘qM

T xr
 fl@)=2" = f@)=2"In2 = f'(z)=27{(ln2)?* = .. = [f(z)=2"(n2)"
f@)=m@z) =2 +hzs = [f@) =" @) =—2% @) =2" D) =237 ..,
fOz) = (1) H(n - Yla7"

. We first show it is true forn = 1: f'(z) = e* + ze® = (z + 1)e®. We now assume it is true for n = &:

f%® () = (z + k)e®. With this assumption, we must show it is true forn =k + 1:
d d
P @) = = [fW@)] = Zlet Rl = e + (@ ke’ = o+ (k+1)]e

Therefore, f{™)(z) = (x + n)e® by mathematical induction.

. Using implicit differentiation, y = = + arctany = y =1+ 5 y

1+y

2 2
’ Yy ! 1+y 1
y(1+y2) Yy 72 "

Ly =242 = Yy =2+a)(-e ) +e T l=eT[-2+2)+ 1] = T(—x 1) Ar(0,2),
y' = 1(—1) = —1, so an equation of the tangent lineis y —2 = ~1(z — 0),ory = —xz + 2.

Ly = f(zg) =alnz = f(z)=Inz+1,so the slope of the tangent at (e, e) is f’'(e) = 2 and an equation is
y—e=2{zx—e)ory =2z —e.

In(z +4)

cy=ln+ F =y =225

=0 & In{z+4)=0 & zr+4=1 & x= -3 s0the
tangent is horizontal at (-3, 0).

L flz) = ze®® = f(z) = z[e" " (cosz)] + € T(1) = " (z cosx + 1). As a check on our work, we
notice from the graphs that f'(x) > 0 when f is increasing. Also, we see in the larger viewing rectangle a certain

similarity in the graphs of f and f’: the sizes of the oscillations of f and f’ are linked.

6. (a) The line z — 4y = 1 has slope 3. The tangent to y = €” has slope § wheny’ = ¢ = ; =

1
3

r=Int = —1In4, soanequationisy — 7 = 3(z+Ind) ory = 3z + 1(Ind + 1).

. . od . -
{b} The slope of the tangent at the point (a,e”) is d—em] = ¢, An equation of the tangent line is thus
¥

T=4a

¥~ e* = e*(z — a). We substitute x = 0, y = 0 into this equation, since we want the line to pass through the
origin: 0 —~e* =¢*(0~a) & —e®*—=e%(—a) & a =1 Soanequationof the tangent is

y—e=e(z—1),0ory =ex.
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i—o0

62 (a) lim C{t) = lim [K(e™® — e )] = K lim (e ™ — e™*) = K(0 - 0) = 0 because —at — —oo and
—bt — —ocast — oo,
by C(t) = K(e™“t —e ) =  C'(t) = K(e *(—a) — e (b)) = K(—ae™ + be ")
In{h/a)

@C =0 = beP=qg " = b_ plmathlt lng =(h-a)t = t= e

. _ . . f
. lim e % = 0since -3z — —ocasxr —ooand lm e’ =0.
z-4o0 P

lim In{100 — 1'2) = —oosinceasz — 107, (100 — :r:z) — 0,
r— 10~

LLett=2/(x—3). Asz — 37t > —oco. lim ¥ = lim ' =0

3r—3 t——oo

Cfy =a® — o =u(z* — 1), thenas x — oo, y — oo, lim arctan(z® — z) = lim arctany = I by (7.5.8).

r—o0 y—00

.Lett =sinhx. Asz - 07, ¢ — 07, lim In(sinhz) = lim Int = —o0

r—0t t—0+

, —1<sinz<1 = —-e " <e sinz<e *. Now lim (:l:e_"“) = 0, 50 by the Squeeze Theorem,

it de

lim e ®sinx = 0.
Hidusde o)

o (H29/2° 12741041 _

-;x:—«oo (1_2m)/2.r _a:—’oc 1/2.1_1 o 0—1 o

-1

xr
Llett =z/4,s50x =4f Asz — o0, t — o0, lim (l—i-é) = Lim
T

r—oc t—oco

tan@e H . wsec rx 712

.l = =
0 In{1+ x) 20 1/(1 +x) 1/1

sinx 0

= lim =-=0
z—0 22+ 1 1

4e*™ — 4y | 16e*™
L'__ H lim c litn 8e* =8.1=8
2 z—0 2 z—0

4z
16e .
= lim 8** = 0o
L OO0

2
. _ . ox"wm . 3w, Gxrgyg ., 6
dim 2%e ™ = lim = = lim &= = lim — = lim — =0
r—oc x—o0 e® r—o0 % r—oo g%

- . Inz # 1/
lim z°lnz = lim ~ = lim ——— = lim (=%z%) =0
z—0F ot 1/w? a0t —2/28 s (-32%)

i T 1 . glne—z+1\uw . z-(1/z)+lnzx-1
im —— )= lim {~——-—— ] = lim
eslt \z—1 Inzx e+t \ (z—1lnz e+ (x—1)-(1/z) + Inz

Inx H 1/x 1 1

_]' ——— ] = =
e 1 Tz tne s+ a2+ 1ja 141 2
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18 y = (tanz)*?®* = Iny=cosxrintanz,so

. . Intanz w . (1/tanz)sec’ z . secx
lim Iny= Ilm ——= lim ~~—————= Ilm 3
z—(w/2) z—(n/2)~ SecT o (x/2)-  secrtanx z—(n/2)- tan®z

. 0

= lim c'ozm == =050

e—(r/2- sin“z 1
lim {(tanz)®® = lim "% =¢"=1
x—(m/2) e—={r/2)~

.y = f(z) =tan '(1/x) A. D= {z|xz#0} B. Nointercept C. f(~z}= —f(z), sothe curve is

symmetric about the origin. D. _lim tan '(1/z) = tan ' 0 = 0,50y = 0isaHA. lim tan™"(1/z) =%
oo

z—0t

. 1
and lim tan~'(1/x) = —% since P +oc as z — 0%, H. Y

z—0~
1

! 2 —1

s0 f is decreasing on {—o0,0) and {0,00}. F. No maximum nor

= f'{z) <0,

minimum

G. ["(z) = 2 5 >0 & z>0,s50fisCUon(0,00)and CD

(2 +1)
on (—oc, 0).
Ly = flx) =sinT(1/2) A D={r|-1<1/z <1} = (—o0,—1]U{l,00). B. Nointercept

C. f(—«) = — f(z), symmetric about the origin  D. _lim sin”!(1/z) =sin"! (0) = 0,50y = Ois aHA.
s Juufe o]

E. f'(z)= S (—1) = % < 0,50 f is decreasing on {—o0, —1) and (1, oc) .

.’E2

V1= (a2

F. No local extreme value, but f(1) = £ is the absolute maximum value H.

— &

and f{—1) = —% is the absolute minimum value.

473 — 21 _ £E(2$2 - 1)
et — 22)%2 (21— 22)¥?
f'(z) < tforz < ~1,s0 fisCUon (1,00) and CD on {—oc, —1).
No IP

G. f{x) = > 0forz > 1and

.y =fl@)=xlnz A. D= (0,00) B. No y-intercept; z-intercept 1. C. Nosymmetry D. No asymptote
[Note that the graph approaches the point (0,0} as x — 0%.] H 7
E. f'(z) = z(1/z) + (lnz)(1) = 1 + Inx, s0 f'(x) — —occasz — 0F
and f'(z) mocasz — oo, f(z) =0 & lnz=-1 &

z=e"!=1/e. f'(x) > 0forx > 1/e,so f is decreasing on (0,1/e)

and increasing on (1/e,00). F. Local minimum: f(1/e) = —1/e.

No local maximum. G. f"{x} = 1/xz,s0 f"’(z} > 0forxz > 0. The

graph is CU on (0, oo) and there is no IP.
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B2 y = f{x) = e A D=R B. y-intercept 1; no z-intercept  C, Nosymmetry D, lim ¢

z—too

PR

soy=0isaHA. E. y=f(z)= e o fllz)y=2(1- :1:)62““_“’2 >0 < z<1,s0fisincreasing

on (—oc, 1) and decreasing on (1,00). F. f(1) = e is a local and absolute maximum value.

G. f”(m):2(2:t:2—4;c+1)e2“’_$2:0 o m:lilé—i_

F@) >0 & z<1—Lorz>1+%2 50 fisCUon
(o0, 1— ) and (142, 00), and CDon (1 32,1+ ).

1P at (1:}: 3?,\/5)

Ly = fz) =e*+e”* A. D =R B. y-intercept 2; no z-intercept C. No symmetry

D. lim {e* +e*3"’) =oo,noasymptote E. y=f(z)=e"+e 3 =

z—too
[{a)=€" -3 = (e -3} >0 & e >3 o H.
4r>In3d & z> iInS /= (.27, so f is increasing on (% In 3, oo)
and decreasing on (—oo,  In3).

F. Absolute minimum value (4 In3) = 3/% + 3734 ~ 1.75.

G. f”{ﬂ:) — ew + 96—3:(: -3 0! 50 f iS CU on (_my OO) NO IP

.y = f(z) =In(z® —1) A. D=(-o00,—1)U(l,00) B. No y-intercept; z-intercepts /2 C. Symmetric

about the y-axts D. lim ln(a:2 — 1) = oo, im ln(zt:2 — 1) = —oo, lim ln(:::2 - 1) = —o0,50z =1

x—too z—1+ r——1

andz = —lare VA. E. y= f(z) =In{z’ -1) = f'(z)= z 1> Oforz > 1land f'{z) < 0

z? ~
for z < —1, s0 f is increasing on (1, oc) and decreasing on {—oc, —1). H.

Note that the domain of fis [z| > 1. F. No extreme value

2
G. f(x) = —QE% < 0,80 fisCDon (—o0, —1) and (1, o0).
m —

No [P

From the graph, we estimate the points of inflection to be about
(£0.82,0.22). f(z) =e™*" = fl(z) =2z % V" =

flz)y =2 [a:"s (2$—3)e—1/m2 Lo/ (—32:74)]

= 2$_68_1/I2 (2 - 3:1;2).

ThisisOwhen2 — 32> =0 < z=+ %, so the inflection points

are (:I:\/’g,e‘gﬂ).
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86. We exclude the case ¢ = 0, since in that case f(x) = 0 for all z. To find the maxima and minima, we differentiate:

flz) = cre” = fllz) = c{:ce'“z(u%z:) + 6_632(1)] = ce*'“ra(—Qc:J:2 + 1). This is 0 where

ez +1=0 <& z==41/v2c Soifec > 0, there are two maxima or minima, whose z-coordinates approach
() as e increases. The negative root gives a minimum and the positive root gives a maximum, by the First Derivative

2

Test. By substituting back into the equation, we see that f(+1/v/2¢) = e(£1/v2c)e™° V) 1 o

So as ¢ increases, the extreme points become more pronounced. Note that if ¢ > 0, then lil}:'l flz)=0.1fe <0,

T— 100

then there are no extreme values, and HI}} flz) = Foo.
I— o]
To find the points of inflection, we differentiate again: f'{x) = ce™ " (—2ex® +1) =
f'(z) = c[e_cxz(—tlca:) + (—2cz® +1) (-2cwefcwgﬂ — —2ctpe (3 — 2¢x?). Thisis Oat ¢ = 0 and

where 3 —2c2’ =0 & z==£,/3/(2c) = IPat (j: 3/(2c), £4/3c/2 6_3/2). If ¢ > 0 there are three

inflection points, and as ¢ increases, the z-coordinates of the nonzero inflection points approach 0. If ¢ < 0, there is

only one inflection point, the origin.

c=—1
r k]

. s(t) = Ae “*cos{wt +68) =

v(t) = &' (1) = A{e™ [~wsin(wt + §)] + cos(wt + 5)(—ce ")}
= —Ae”™ [wsin{wt + §) + ccos(wt + )] =

aft) = v'(t) = —A{e ™Y w? cos{wt + 8) — cwsin(wt + 8)] + [wsin(wt + &) + ccos(wt + &))(—ce™)}
—Ae™[w? cos(wt | 8) — cwsin(wt + 8) — cw sin(wt + 8) — ¢ cos(wt + §)]
= —Ae “(w? — ¢*) cos(wt + 8) — 2cwsin{wt + 6)]
= Ae "[(¢* — w?) cos(wt + &) + 2cwsin(wt + 8)]

. (@) Let f(z) =Inz+ 2 —3. Then f'(z) =1/x+1>0 (forz > O and f(2) = —0.307 and f(e) =~ 0.718. f
is differentiable on (2, €), continuous on [2, ¢] and f(2) < 0, f(e) > 0. Therefore, by the Intermediate Value
Theorem there exists a number ¢ in (2, €) such that f(c) == 0. Thus, there is one root. But f'(z) > 0 for
x € (2,e), so fis increasing on (2, e), which means that there is exactly one root.

(b) We use Newton’s Method with f(z) = lnz +x — 3, f'(z) = 1/z+ 1,and 2z, = 2.
Inzi +x1—3 In2+4+2-3

L+l T 1241

the root of the equation, correct to four decimal places, is 2.2079.

~2 2.20457. Similarly, z3 = 2.20794, x4 = 2.20794. Thus,

o = I
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64 A -1
89, Let P(f) = T —i7eas — |5 Beet = A(1+4 Be®)™ , where A = 64, B = 31, and ¢ = —0.7944.

Pl(t} - _A(]. + BSCt)mz (BCECt) = 7ABCBCt(1 + Bect)—2

P"(t) = — ABce™ [72(1 + Be) ™’ (Bced)} + (1+ Be™) ? (~AB%e™)

ABc?e (1 — Be®)
(1+ Btﬁ:"‘)3

= AABCQeCt(l -+ Bca)—3 [—QBECt + (l + BeCt)] =

The population is increasing most rapidly when its graph changes from CU to CD,; that is,
1

when P"(#) = Ointhiscase. P'(#) =0 = Be' =1 = 7= 7 =

_ In{1/B)  In(1/31)

- c T -0.7944

ct = ln% = t =3 4.32 days. Note that

11 A A A A A -
P(Ehlﬁ) =17 BeWAWUB) ~ T Bon(/B) ~ 14 B(1/B) ~ 141~ 2 onehalfthelimitol £
as { — oo.

. Let { = 4u. Then dt = 4 dv and

4 1 1
1 1 1 du
~C dt=] — . Adu= -
/U 16 + £2 /U 61 1602 4,[0

stan™'1—tan™' 0) = 3 (3

.Letnu = —2y%. Then du = —4ydy and
1 o -2
/ ye—z‘y dy zf eu(_4
S0 0

5 odr 5
[2 1+2r:E‘,[ln\l+2rﬂ2:%(11111—1115):

4 2 4 . 4
/ 'er—gx’da?:/ (:c_z-&-l—l)d:ci[—l-l-lnm——m}
9 T 9 T T 9

=(—3+m4-4)- (-1 +m2-2) =2

]11

1
2 5

. Let 4+ = sinx. Then du = cos xdz, so

/2 " 1
cos T 1 1

—— dr=f ——du=[tan 'y =tan 'l —tan"t0 =2 —0=1=Z
fo T ens fOI—O-uZ u = [tan™" u], = tan an z K

Letw = /Z. Then du — —1% = /eﬁdr—2fe“du—2“+6‘2ﬁ+0
. . Qﬁ \/_;E = = a€& = ZE .

d G ,
. Let w = Inz, Then du = ?:C = /g@dm:/Cosuduzsinu-i-(?:sin(lnw)—E—C.
. Letw = z* + 2z. Then du = (2z + 2)dz = 2(x + 1) dz and

r+1 Ly 1 1 )
dl = < :_1 = — .
/ pERT / ” ; nlu|+C 2ln|:1: +2z|+C
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L letu =e °. Thendu = —¢~ * dr and

fﬁqﬁdmA.[Td_uZ = —tan lu+C = —tan '(e7") + C.

+

. Let uw = In{cosx). Then du = —Czlsn:c dx = —tanxdr =

[tanzln(cosz)ydr = — [udu = -+ C = —2[In(cos NP+ C.

=Llsin 'u+C=1sin (z®)+C

. Letw = %, Thendu = 2zdr = /\/_# /m 3

2u 2tau ]

. Letw = tan 8. Then du = sec® 6 d8 and/?taneseczﬂdB:/QMdu= — 4+ = +C.

In2 ~ In2
) 1
. /smh audu = — coshau + C
. a

sec @ tan f

,letu=1+secd, sodu =secftanfdf = /
1+ sect

f du=1Inlul+C =1In|t +sech| +C.

14 e = 14+ e22 > ez = = fol\/l—&-ezmdmzfﬂlcmdw:ew]é:e—l

= z 1z S
Leosz <1 = efcosr<e = joe Loswdmgjﬂe dr=e"];=e—1

i

LFor0<a<1,0<sin” v < Z, 50 folmsin_la:d;n < fol x(3) dr = %wz}o

iy d [V¥e ev® d ev® 1
f(QZ)I/l —dﬁ = f() d.L/ ?dszt/—;a .L'Z\/Em:

2z 2z aln o 2z
@ = [ eta = fe = 2 era— d e4m+_] ot s
1

oz dz dx

e N —(lna)® .
— _e—(lnm)l (—) + e#(zx)l (2) _ _6 + 2674x2
X xr

! 1 4 1 1
4—'/1 ;d.’l}—g[ln‘ﬂ’)']l—g[inll—lnl]—%ln'fl

<

—eS)de + [ (" —e ")dz=[-e" - e‘”](lz + e + eﬂ"];
— (=€’ —e At le+e ) -1+ D] =etete te -4

1
2
= / II—IT’* dz by cylindrical shells. Letw = 2 = du = 2z dr. Then
o :

1 2
VZj[; I‘%d“_—ﬂ-[tan lu]é':?r(tan‘ll_tanflo):ﬂ_(g) :I
fle) =zt 2 e 1+2z+e"and f(0) =1 = g(1) = 0,50

1
11 — _
/0= 7emy T
. f(z) =Inz +tan™!

flay =2+

1
1+a?
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7 The area of such a rectangle is just the product of its sides, that is,

g A(z) = = e 7. We want to find the maximum of this function, so we

differentiate: A’'(z) = z(—€e™") + e (1) = ¢7*(1 — z). This is 0 only

at ¢ = 1, and changes from positive to negative there, so by the First

Derivative Test this gives a local maximum. So the largest area is

A(D) = 1/e.

We find the equation of a tangent to the curve y = €™~ so that we

can find the z- and y-intercepts of this tangent, and then we can find

the area of the triangle. The slope of the tangent at the point (a, e_“)

o d _ - .
is given by ¢ ¥ = —e™ %, and so the equation of the tangent
z

r=a

sy—e *=—-"*zr—-a) & y=e Ya—xz+1).
The y-intercept of this line is y = e™%(@ — 0+ 1) = e~ “(a + 1}. To find the z-intercept we set
y=0 = e *a—-x+1)=0 = x=a+ 1. Sotheareaof the triangle is
e *(a+ D)]{a+ 1) = 1e *(a + 1)*. We differentiate this with respect to a:
Alla) = 3[e7*2a+ 1)+ {a+ 1)’ *(-1)] = 3¢7°(1 —a®). Thisis 0 at a = +1, and the root a = 1 gives
a maximum, by the First Derivative Test. So the maximum area of the triangle is

Ay =de (14 1P =2e7 = 2/e.

n—oo 7t

1
. Using Formula 5.23 witha = Oand b = 1, we havef edr = lim — Z "™, This series is a geometric
0

g itha = r = 1/n - i/n _ l/n /nfl_ 1/n e_-__l.m
series witha =r = ¢ ,SDZE - oi/m -1 ¢ el/n — 1 =

n—oo N elin — 1

1
ifn n 1
]e d.):—-hrn—g e/™ = lim (e — 1)e"/ A CAsn — o0, 1/n =07, s0et/™ 5 0 =1,
U n—o

t
Lett = 1/n. Thene'/™ — 1 = e* — 1 — 01, so I'Hospital’s Rule gives hm 5 = hr% —1t = 1 and we have
— t0 g

folemdw:[hm(f’—l)?][hm : ]'_"e_l'

t—0+ o+ et —1

gHl_ gEtl u . bt 'hb—a""'Ina

xlirrgl F{z) = lim =1Inb—Ina = F(-1),s0 F is continuous

z——1 z+1 el

at —1.
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. . 1
8. Let 6, = arccot z, so cot ¢ = x = z/1. So sin{arccot &) = sinth = m

1 1
Let #; = arctan | ———1,s0tanfy = —==—x.
2 [\/IZJF]J : V2 +1

_ r? +1 [z°+1
Hence, cos(arctan(sin(arccotx))} = cosfz = N =\ @

2
) \/I +2 .
f;

Jr

119. Differentiating both sides of the given equation, using the Fundamental Theorem for each side, gives

2z
flx) = e + 2ze®® + e " f(z). So flx)(1—e ™) = ¥ 4 2xe®. Hence f(x) = ii—{i:_—zf)

1 1 )
120. (a) Let f(z) =z ~Inx — 1,80 f'(z) = 1—5 = En—m—.SinceJc >0, f'(z) <0for0 <z <1and f'{x} >0

for # > 1. So there is an absolute minimum at z = 1 with f {1} = 0.
Sofore >0,z # 1,z —Inz— 1= f(z) > f(1) =0,and henceInz <z — 1.
1 1 T

T — -1 . .
(b) Here let f(z) =Ilnxz — 'C—;i =lhz-1+ ;ls So f'(x) = Pl ?As in (a), we see that there is an
-1

absolute minimum value at z = 1 and that f(1) = 0. Soforz > 0,z # 1, Inx — — = flz)> f(1)y=0

—1
and hence z < Inx.
T

(c) Letb > a > 0,s0b/a > 1. Letting = b/a in the inequalities in (a) and (b) gives
- _ — b o
b-a = bla=1 < In b < b_ 1= u. Noting that In — = Inb — Ina, the result follows after dividing
b b/a a a a

through by b — a.

(d) Let f(z) = lnx. From the given diagram, we see that
1
(slope of tangent at x = b) < (slope of secant line) < (slope of tangent at z = a). Since f'{x) = —, we
T

. 1 Inb—Ine 1 . . .
therefore have A < “b_a < =. To make this geometric argument more rigorous, we could use the Mean
—a a

Value Theorem: For any a and b with 0 < a < b, there exists some ¢ € (a,b) for which
Inb—Ilna 1 l_lnb——lna 1
C

f'(¢) = = = ————. But - is a decreasing function on (0, 00), so — < <In-.
c b—a T b—a a

1 1 b
(e) Since 1 < 1 < — fora < x < b, Property 8 says that —(b — a) </ lda: < l(bfa) =
b "z a b o T a

1 < Inb—Ina
b b—
are justified in making all of the inequalities strict.)

1 1
%(b —a) <lnb-lna< - (b—a) < - {Note from the proof of Property 8 that we
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1. Lety = f(x) = e~ The area of the rectangle under the curve from —z to z is A(z) = 2ze ™ where z > 0.
We maximize A(x): A'(z) = 2 %" _ dzte™ =27 (1-22%)=0 = z= -} This gives a maximum
since A'(z) > 0for0 €z < % and A'(z) < Oforz > % We next determine the points of inflection of f(z).

Notice that f'(z) = ~2pe™®" = —A(z). So f’{z) = —A'(x) and hence, f”(z) < 0 for —ﬁ <z< % and

I 1, . 1 A — 41 3 3
fl(x) > 0forz <~z andx > 5. So f(z) changes concavity at z = £, and the two vertices of the
rectangle of largest area are at the inflection points.

. We use proof by contradiction. Suppose that log, 3 is a rational number. Then log, 5 = m/n where m and n are
positive integers = gm/n — K 2™ = 5" But this is impossible since 2 is even and 5™ is odd. So
log, 5 is irrational.

e

. d . :
. Consider the statement that 7 (e*® sinbz) = r"e™ sin(bz + nd). Forn = 1,
:[:?1

d e .
i (¢* sinbx) = ae”” sinbz + be™™ cos bz, and
"

re®® sin(bx + ) = re** [sin bz cos § + cosbz sin f] = re*” (g sinbx + b €08 b:r)
r

= e sin bz + be®” cos br

. b b @
since tan@® = — = sinfd = ~ and cos = —.
) T r

So the statement is true for n = 1. Assume it is true for n = k. Then

dk+1

ar _. d LT ax .- ax
p (" sinbx) = — [rke sin(bz + k)| = r*ae® sin(bz + k) + r*e*“beos(bx + kb)

dz

= r*e® [asin(bz + k&) + bcos{bx + k0)]

sin[bz + (k + 1)0] = sin[(bx + k) + 6] = sin(bx 4 k&) cos & + sin & cos(bx + kb))
a b
= sin{bz + kf) + - cos(br + k@)

Hence, a sin(bz + kO) + beos(bx + kB) = rsinbx + (k + 1)8]. So

dk+l

Y (e** sinbz) = r*e*" [asin(bz + k@) + beos(bz + kb)) = r*e®[rsin(br + (k + 1)8)]

= phtlge® [sin(bxz + (k + 1)8)]

Therefore, the statement is true for all n by mathematical induction.
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4. Lety = tan~ ! 2. Then tany = z, so from the triangle we see that

sin(tan™! z) =siny = . Using this fact we have that

x
V14 z?
sinh sinh
sin{tan™" (sinhz)) = sinh 2 =227 _ tanhz. Hence,

1+ sinh? z cosh z

sin~!(tanhz) = sin™" (sin({tan *(sinh z)}) = tan™*(sinh z}.

xr
. We first show that ﬁ < tan"lz forz > 0. Let f(z) = tan™ 'z — T2 Then

1 1{1+2%) —a(2z) (1+2%) - (1-2%) 222 _
BT (1+22)° = (1+22) = 1+ 22) > 0forz > 0. So f(z)is

f'(=)

x T 1
— . So < t
1+ x2 1+ z2 an e

for 0 < x. We next show that tan™! z < x forz > 0. Let h{z) = = — tan™ ' z. Then
1 z?

I 1 _ _ P Lo . ’
hz)=1 T2 T2 > 0. Hence, h{x) is increasing on ((}, 00). So for 0 < ,

increasing on (0,00}, Hence, 0 <z = 0= f(0) < f(z) =tan"'z

0 = h(0) < h{z) = z — tan"* . Hence, tan™' = < z for z > 0, and we conclude that rmz <tan 't <z
x

forz > 0.

. The shaded region has area fol f(z)dz = 3. The integral fol [y dy

gives the area of the unshaded region, which we know to be 1 — %

So fy f 7 y)dy = 4.

. By the Fundamental Theorem of Calculus, f(z) = fv1+#3dt = f'(z)=+v1+a3>0forz> -1
So [ is increasing on (—1, co) and hence is one-to-one. Note that f(1) = 0,50 f~1(1) =0 =

(Yo =1r1=2%

- .
arctan S .Letk =a+ +a2—1. Then

2
8 y= —
Y vati—1 Va2 -1 a++va2—1+cosx

b1 2 1 cos z{k + cos x} + sin® x
Y VaZ =1 Va? -1 1+sin®z/(k+ cosz)? (k + cosx)?

1 _ 2 kcosz + cos®z +sin’ z _ 1 2 kcosz +1
Vaz—1 Va® =1 (k+cosz)?2 +sin’z a2 -1 Va?—1 k2+2kcosz+1

_k2+2kcos;r+1—2kcos:s——2_ o |
va? —1(k%+ 2kcosx + 1) vaz —1(k?2+ 2kcosz + 1)

Butk® =2a* +2ava? ~1-1=2a{a+vaZ—1) — 1 =2ak — 1,50 k? + 1 = 2ak, and
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2(ak — 1) N ak —1
va? — 1{2ak +2kcosz) Va?— lk(a+ cosz)

a?+avai—1—1=k+a?-1,s0y =1/(a+cosz).

But

20ak —1). Soy =

lim ('L + a) , then L has the indeterminate form 1°°, so

r—oo\ & —a

oL = lim 1n(“’+“) = lim mln(i"f_“) _ i e fa)—In(z—a)

r—00 T —a T—00 Tr—a r—oo ]./.’.E

1 1
H T+a z-—a _ [(:c—a)($+a).—:c2]

. .
Bl T e ra@—a) 1

) 2az® . 2a
lim ——— = lim ———— = 2a.
g0 £? — a2  z—oo 1 —a¥x

1

Hence, Inl. = 2a,s50 L = e2%. From the original equation, we want L = el = 2a=1 = a= 5

. Case (i) (first graph): Forz +y > 0,thatis,y > —z, |z +y| =z +y <e” = y<e' -z

Note that ¥ = e — x is always above the line y = —z and that y = —x is a slant asymptote.

Case (ii) (second graph): Forx +y < 0, thatis,y < —z, |z +y|=—-2r - y<e® = y2=-r—¢€"

Note that —z — e” is always below the line y = —x and y = —x is & slant asymptote.

Puiting the two pieces together gives the third graph.

. Both sides of the inequality are positive, so cosh(sinh z) < sinh(coshz) <& cosh®(sinhz) < sinh?{cosh x}

& sinh®(sinhz) + 1 < sinh®*(coshz) <« 1 < {sinh(coshz) — sinh(sinh x}}(sinh(cosh z) + sinh(sinb.z)]

. et e ® . e —e ® . et +e " ) e —e’ "
& 1< [bmh( 5 ) — smh(T)} [smh( 7 ) +slnh(T)}

¢ 1 < [2cosh(e®/2) sinh(e%/2)](2 sinh(e®/2) cosh{e/2)] [use the addition formulas and cancel|

& 1 < [2sinh(e®/2) cosh(e™/2)][2 sinh(e®/2) cosh(e™/2)] < 1 < sinh e*sinhe™™,
by the half-angle formula. Now both e” and e~ * are positive, and sinh y > y fory > 0, since sinh 0 = 0 and

r _—T

(sinhy — )’ = coshy —1 > 0forz > 0,501 = e"e * < sinhe” sinhe™*. So, following this chain of

reasoning backward, we arrive at the desired result.
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=4y
. . . . .o E e .
12. First, we recognize some symmetry in the inequality: >e? o - — > e - e. This suggests that we
TY ¥
y

T
need to show that > e for x > 0. If we can do this, then the inequality — > e is true, and the given inequality
T Y

= flz)= i ;e =2 (3;2_ 1 =0 = x = 1. By the First Derivative Test, we
x

follows. f(r) = %
i

have a minimum of f(1) = e, so0 e®/x > e forall z.

13. v y=4Yx Let f(x) = ¢** and g{z) = k /= (k > 0). From the graphs of f and g,
y; we see that f will intersect g exactly once when f and g share a tangent
¥=3x
line. Thus, we must have f = gand f' = ¢" atx = a. f(a) = gla) =

=2 .
Fmev e?® = ky/a (1) and f'(a) = ¢'(a} = 2e** =

_k_
2+
(Va) =1 =
4\/‘ 4\[ 4k
=1 From(1), 20/ =k \/1/4 = k=2e"? =2/~ 3.207.

So we must have k /o =

Weseethatatr =0, f(z) = o =1+ 2 = 1,s0if y = a” is to lie above
y = 1 + x, the two curves must just touch at (D, 1), that is, we must have

[0 =1
[To see this analytically, note thate® > 14+2 = o*-1>z =

I T

-1 —
> 1fore > 0,50 F/(0) = lim “ ~ % > 1. Similarly, for z < 0,
xT z—0t T

a

& T

~1 _
Fol>z = am Sl,sof’((]):limawlgl.Since

z—0~

1 < f(0) < 1, we must have f'(0) = 1.] But f'(z) = a®lna =

f(0)=Ina,sowehavelna=1 & a=e.

Another method: The inequality certainly holds for z < —1, soconsiderz > — 1,2 #0. Thena®* > 1+ 2 =
>(1+z)Yforeg >0 = o> lim (1+a:)1/“‘ = ¢, by Equation 7.4.8. Also,¢" > 1+2z =

z—0+

a<(1+z)forx <0 = a< lim (14 z)"* =e. Sosincee < a < e, we must have a = e.

x—0-
. Suppose that the curve y = a” intersects the line y = z. Then a®® = z; for some z¢ > 0, and hence a = xé/mc’.

1/:,:, > 0, because if @ is larger than the maximum

We find the maximum value of g{z) =
value of this function, then the curve y = & does not intersect the line y = x.
! f1/x)inx 1 11 i/z 1 fol
glz)=¢ - hz+--—) =z — {1 — Inz). This is 0 only where x = e, and for 0 < = < e,
e xr r T

f'(x) > 0, while forz > e, f'(z) < 0, so g has an absolute maximum of g(e) = e'/*. So if y = a” intersects
y = @, we must have 0 < a < e'/¢, Conversely, suppose that ) < @ < e*/¢. Then a® < e, so the graphofy = a”
lies below or touches the graph of y = z at z = e. Also a® = 1 > 0, so the graph of y = a® lies above that of

y = x at z = (). Therefore, by the Intermediate Value Theorem, the graphs of y = a® and y = = must intersect

somewhere betweenx = Qand z = e.
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