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9 [J FURTHER APPLICATIONS OF INTEGRATION

9.1 Arc Length

Ly=2-3z = L=[,/1F(dyjdo)yde= f',/T+ (=3P dz=+10[1-(-2)]=3VI0.

The arc length can be calculated using the distance formula, since the curve is a line segment, so
= [distance from (—2,8) to (1, =1)] = /[l = (=2)Z + [(—1) — 8]2 = V90 = 3V/10

dy x
2. Using the arc length formula withy = v4 — 22 = — =— , we get
ne & v Vo ok

/ 1+ d f dm—f 2dz 211mft-L
v e s Vi e fy VE-22

=2 hm [sin (2/2) =2 hm [sin™'(t/2) — sin~ 'o]=2(2-0) =

The curve is a quarter of a circle with radius 2, so the length of the arc is %(271’ - 2} = 7, as above.
16 From the figure, the length of the curve is slightly larger than the
hypotenuse of the triangle formed by the points (1, 0), (3,0}, and

(3, F(3)) =~ (3,15), where y = f(x) = 2(z* — 1)3/2. This length
. : is about v/152 + 22 = 15, so we might estimate the length to

0.5 - s a/2 12

-1 be 15.5. y = 2 (2 - 1) = y=(*-1)""(2z) =

1+ () =1+4d2% (2% - 1) =4a* —42® +1 = (22" - 1)2, 50, using the fact that 2z — 1 > 0for1 <z < 3,

L=f13 (222 —1)2dsc=f13[23:2—1Ld$:f13(2w2f1)da:= 3 _x]f
-((-1) =% =153

From the figure, the length of the curve is slightly larger than the

hypotenuse of the triangle formed by the points (0.5, f(0.5) = 1},
(1, £{0.5) = 1) and (1,3), where y = f(z) = 2°/6 + 1/(2x).

This length is about 1/ ()% + ()% & 0.6, s0 we might estimate

the length to be 0.65.

- -~-m1 ——064583

l_l
6 2
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712 O CHAPTERY FURTHER APPLICATIONS OF INTEGRATION

5. y=1+62*? = dy/dm =972 = 1+ (dy/dz)* =1+ 8lx. So
L= [ Vi+8lzde= [Pu?(Fdu) [whereu=1+8lzanddu = 81dz]

=8—]‘1-§{u3/2}1 :%(82\/8_2*1)

P =4z +4)P >0 = y=2+4)? = dy/dz = 3(z +4)'? =
14 (dy/dz)> =1+ 9(z +4) = 9z +37. So

2 = 9z + 37, 55 1
:/(;\/9.7:4-37(13: [” v ] _L u1/2(§du)

du=0dzx 7
55
=1.2 [u3/2]37: 2 (55 /55 — 37/37)

5
xT 1 dy 5 4 3 4

. = — = e _ 2 o

Y -+ 10w dr 6$ 10;17
+(dy/de)® =1+ 8o — 14 Lot = Bof 1+ 2ot o (2004 o) So
i 1.5 1 —312
L:_/ (£4+10$_4 dm_/ 51‘1“*‘105E )dCC:[g:L‘-ﬁac ]1
1

31 T 1261
g + 80 T 240

dy\* . 1 1
1+ (H) = r s+ —
+(da:) SR T

4
2In2 In2
|- (6+5) - (2+%) -

=Ly -3) =3 ¢ = drfdy = Ly - Ly

1 1 1

=dv+i+iv = (3
- v g -
Lo 2 (304 b = [ ) = ]2

:%(24_3):1(@) — 32

2\ 3 3

14 (de/dy) =1+ 3y -3+ 1y

.y =In(cosz) = dy/de=tanz = 1+ (dy/dzr)? =1 +tan’z = sec?z. So
L=[T"?Vseckzds = {*seczdz = [Inisecz + tan z| ]”/3 = 111(2 +v3) —In(1+0) =In(2+V3).

dy
dx

d t
.y = In(secz) = Sy CTY tanz = 1+(

=1+ tan? z = sec? T, 50
dze secx

/4
L = "/4 VeecZ zdr = ”/4 |sec x| dx = jo secrdr = [In(secm + tan:r)]

=In(v2+1) —In(1+0) =In(v2+1)
2 / 2 V3 2
\/1+(dy) \/14—(1) = 1+ .SoL = / idm.Now
dx @ x 1 x
lete =1+ &2, s0v? =1+ z? and vdv = xdz. Thus

2 2
1/2 1/2
L:fﬂvzilvdvzfﬂ (1+U£1 Avil)d'uz [’U+%ln|1)—1|f%,ln|v+1|]f@

2
_[U—%ln:fi} = ——ln3 \/i-i- (\/—+1):2—\/§+ln(\/i+1)—%ln3

v Vi-1

Or: Use Formula 23 in the table of integrals.
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13. y=coshz = ¢ =sinhz = 1+ (y')* = 1 + sinh? z = cosh® z.
SolL = fol coshz dx = [sinhz]; =sinh1 = (e - 1/e).

2
Y =drr=5 = FeEgy o= 1+(j—3) =1+1y% So

LZIOQ'\/mdy:folvl+u2'2du [u:%y’dy:2duj
2 [U\Il—]—uz_i_lnlu_}_ f1+u2uz‘):\/§+ln(1+\/§)

y=¢® = Y= = 1+ =1+

1
L:/ \/1+e2@”da:=/ l+u2du [ = €, 50 2 = Inu, dz = du/u]
0 J1 u

& ./ 2 1+e2
:/ %t—i—udu:/ 21.: vdv v:\/1+u2,30'02:1+uz.vdv=udu]
1 J/2

-1

/f( L B

p—1 'u+1

\/1+e'~’—1
Viter+l

:\/1-]-_62_—\/5—{—11'1(\/14-6271) Al—ln(\/ﬁ—l)

1+P2+*111

Or: Use Formuta 23 for [ (v/1+ u2/u) du, or substitute u = tan{.

1 ) ' , —2e®
.y_m(exl)il“(e +1) = In(e” — 1) V=T Temo1

2 _ 14 46 (e 4 1)2 N _ e +e”*  coshzx
- (e22 —1)%  (e2= — 1) - e —e ¥  sinhz’

b ooah - b : b -b
SoL:[ C?bh'ﬂd;c: [lnsinh:c] —lnsinhbhlsinha—ln(s,mhb) —ln(?——e).

sinh z @ sinha et —g 2

Ly=cosz = dy/dz=-sinz = 1+{dy/dz)’=1+sin’z. SoL = [7"+/1+sinzda.

Ly =2 = dy/de=(2")ln2 = L=[)/1+(In2)*2%dz

— 3 _ 3.2 2 _ 22 4 2
Lz =y+y’ = defdy=14+37 = 1+{dr/dy)’ =1+ (1+37)° =9%" +64° +2
SoL = fI/0y" 642 +~2dy.

2 2
__.+yz;2‘ :]_,y::tb\,'lsz/a2=:tg\fa’2_w2 [assumea>0],

b —bx dy 2 b2m2
= — 2 p2 = —_— = = =
Y a @ T dx aval — r2 (d(L‘) a?

a?(a? — %)’
1/2

z
" v z? 1z 4 o - ):1: +a*

= (422 | =z =T :

solL 2/ [+az(a2$2)} o a/o a? — z? de

=0
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Ny=zc” = dy/dv=e"—ze¥=e%(1l-2) = 1+ (dy/dz =14e (1 -
= /1+ (dy/dz)? = /T+ e 2(1 — )2 Then L = [, f(x)dz. Sincen = 10, Az =
Lzslo:{g—[f( 4+ AF(L) +27(1) +4F(2) +2F(2) + 4£(2) + 2£(3)

+4f(%) +2f(4) +4f(§) + f(5)] ~ 5.115840
The value of the integral produced by a calculator is 5.113568 (to six decimal places}.

2 1 \? 11
\/_ = 1+ {dz/dy) =1+(1+v) —2+7+4_y

Let g(y) = /1 + (dz/dy)%. Then L = [} g{y) dy. Sincen = 10, Ay = 22 = &
L= S0 = 2%g(1) + 49(1.1) + 29(1.2) + 49(1.3) + 2g(1.4) + 4g(1.5)

+ 2g(1.6) + 49(1.7) + 2g{1.8) + 4g(1.9) + g(2)] ~ 1.732215,
which is the same value of the integral produced by a calculator to six decimal places.

r=y+ Y = d:c/dyﬁlﬁ-

.y =secx = dy/dz=secztanz = L= f’r/g )dx, where f(x) = V1 + sec® ztan” .

3-0 =
i =10, Axr = = —,
Since n 0, Ax 10 30

Lsz:@[f(o)+4f(1)+2f(%)+4f( )+2f( )+ f( )
+zf( )+4f( )+2f( )+4f( )+f( )}%1.569619.

The value of the integral produced by a calculator is 1.569259 (to six decimal places).

Now

.y=zlnr = dy/dm:l-}-lna: Let f(z) = /1 + (dy/dz)? = /1+ (1 +Inzx)2

Then f. = 11 x) dzx. Since n = 10, Az = 31;01 = é Now

L= st —L[f()+4f(1.2)+2f(1.4)+4f(1.6)+2f(1.8)+4f(2)

+ 2f(2.2) +4f(2.4) + 2f(2.6) + 4f(2.8) + f(3)] = 3.869618.
The value of the integral produced by a calculator is 3.869617 (to six decimal places).

25, (a) 3
Ve

Let f{x) = y = = /4 — . The polygon with one side is just

the line segment joining the points (0, £(0)) = (0,0} and
(4, f{4)) = (4,0), and its length is 4. The polygon with two

sides joins the points (0,0), (2, f(2)) = (2,2 \J/E) and (4, ().
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Its length is

\/(2 0)2 (2\f—) \/;1—2)2+(0—2«‘V§)2 41 2573 v 6.43

Similarly, the inscribed polygon with four sides joins the points (0,0), {1, ¥3), (2.2V/2), (3,3}, and (4,0), s0

its tength is

\/1+(€/§)2+\/1+(2\"/5—€/§)2+\/1+(3—2%)2+\/H_9z7.50

.
{c) Using the arc length formula w1th [ (4 —z)"¥3(-1) ] +¥4-z= ———)27 the length of the

/ 12 -4z |*
curveis [ = / 1+ d;v—/ \f 3(4 f/a] dr

(d) According to a CAS, the length of the curve is L = 7.7988. The actual value is larger than any of the
approximations in part (b). This is always true, since any approximating straight line between two points on the

curve is shorter than the length of the curve between the two points.

26. (a)Let f{x) =y =z +sinzwith0 < z < 27, 27

e

o 2o

0
(b} The polygon with one side is just the line segment joining the points (0, £{0)) = (0,0) and
(2m, f(27)) = (2, 27), and its length is /(27 — 0)2 | (27 — 0)2 = 227 =~ 8.9.
The polygon with two sides joins the points (0, 0), (7, f(w}) = (7, 7), and (27, 27). Its length is

Vim0 +(m—02+/@r—m)2 + (2 — 2 =V2r+V27=2V2r =89
Note from the diagram that the two approximations are the same because the sides of the 2-sided polygon are in
fact on the same line, since f(w) = 7 = 1 f(2n).

2

s

0 . - X
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(¢) Using the arc length formula with dy/dz = 1 + cos z, the length of the curve is

L= fgzw V1+ (1 +cosz)?de = 02” V2 +2cosz + cos? zdx

(d) The CAS approximates the integral as 9.5076. The actual length is larger than the approximations in part (b).

2
2. r=mIn(1-7%) = — = =1+ — ‘
U= = g 7 -9 @-v

=1In3— 1 [fromaCAS] = 0.599

B.y=27 = dy/da:=§:c1/3 = 1+(dy/dm)2zl+g—6m2/3 =

u= %:cl/a, du = 2223 dx,

_ ! 6,..2/3 4. _ 43 Z 81,2 9
L_fu 1+ Pz da:—fo V14 utgu®du dmx%wwi‘du:%-%uzdu:%uzdu
8 [Lu(l+20%) VI+ W — Ln(u+ vI+a? )y
4 25 __ B1
- tn(t+ 7)) 4

2L 1n3 2 1.4277586

1
512
372
= (1 79:2/3) = ¥

) === AN

— T '—5.’5
1 X
= m‘2/3(1 - :132/3) = 2-2/% 1 Thus

1
L= 4[01 /1 + (:L'_2/3 _ 1) dr = 41‘01 =13 dr = 4 lim [332/3] = 6.
t

t—0t

30. (a) ¥

Ol x

2
byy=2% = 1+ (%)2 =14+ (%x——I/S) =1+ 20723 SoL= [} /1+2a-2/3ds
2 2
[an improper integrall. 7 = % = 1+ (%) =1+ (%yu?) =1+ 3y SoL = f; \/1+ Jydy.

1
The second integral equals § - %[( i+ %y)a/ 2] .= £ (lg-%ﬁ - 1) = 13188 The first integral can be

evaluated as follows:

! LI/ YE 9 _ 0.2/3
] Ji+2e2de=tim [ Y22 g f Vutd g, u =927,
0 10t f, 3pl/3 10+ Joi2/3 18 du = 62-1/3 dr

9 9 -
:/ Vutd oL (20, ap2] o Logve gy BYVI3 -8
o 18 0 27

18 |3 27
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{c) L = length of the arc of this curve from {—1,1) to (8,4)

4
= [+ Sy 1+ Sydy = B0 +-;%,[(1+%y)”ﬂ0 [rom part (b)]

3113 + (10\/— )=13ﬁ§+22ﬁ5-—16

N y=2:Y2 = o =327 = 1+ (y)" =1+ 9z The arc length function with starting point Fo(1, 2} is
= JrVTF S = [E+00"7] = Fl(+92)*? - 10 Vo)

1

Tot" ) *

dy\* _ 41
(b)1+(a) =zt 5+

sz) = [2+1/(4%)] dt
= [36* — 1/(a)]]
=4a* = 1/(a) - (3 - 1)

=1’ —1/(4z) - &5 forz>1

33. The prey hits the ground wheny =0 <& 180 — 5’: =0 & z*=45.180 = =z =+/8100 =90, since

x must be positive. y' = _2“55’7 = 1+ (y ) =1+ Ega: , so the distance traveled by the prey is

L=f" 1+ metde = [{VT+w?($du)  [u= Fo du= §do]
2 45[1 um+1ln(u+vl+u2)]
=457 VTT+ 1 (4 +VI7)] =45V + £ In(4 ++17) ~ 209.1m

MU y=150- L(z-50)° = ¢ =-5(z-50) = 1+ (3)? = 1+ 525 {x — 50)?, so the distance traveled
by the kite is

L =f080 \/1+%g(a:—50)2da:mff$2\/l+u2 (20du) [u= 3
Log [lu\/1+u2+%ln(u+\/1+u2)}3/2

5/2

=03/ +m(3+R) + 3% (-5 +/3)]

1513 + 25\/_+101n(—gt+@) A 122.8 fi

35. The sine wave has amplitude 1 and period 14, since it goes through two periods in a distance of 28 in,, so its

equation is y = 1sin(35z) = sin{Zz). The width w of the flat metal sheet needed to make the panel is the arc
length of the sine curve from z = 0 to ¢ = 28. We set up the integral to evaluate tw using the arc length formula

with 8 = I cos(Zz): L = f:a \/1 + [ £ cos( Ydr = 2f \/1 + [T cos( ] dz. This integral would
be very difficult to evaluate exactly, so we use a CAS, and find that L = 29.36 mchcs.
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%. () y =c+acosh(Z) = y =sinh(2) = 1+ ()" =1+sinh?(£) = cosh?(£}. So
L= f° \Jeosh?(%)dz = 2_[;’ cosh(2) dz = 2 [asinh(f)]z = 2asinh(2)

(b) Atz =0,y = ¢+ a, so ¢ + a = 20. The poles are 50 ft apart, so 100

b=25and L =51 = 51 = 2asinh(b/a} [from part (a)}]. ¥ = 2xsinh{25/x)

From the figure, we see that y¥ = 51 intersects y = 2z sinh(25/x) at

x == 72.3843 for x > 0. So a ~ T2.3843 and the wire should be
attached at a distance of
y = c+ acosh(25/a) = 20 — a + a cosh(25/a) =~ 24.36 ft above

the ground.

3 y=TVE—1ldt = L=a%—1 [byFICI] = 1+

4

L= fIValde = [a¥dn = 2[o"?] = 2(32-1)= 2 =124

1 5

38. By symmetry, the length of the curve in each quadrant is the same,

so we’ll find the length in the first quadrant and multiply by 4.
n2k +y2k -1 = y2k —1-a®* = y= (1 _ xzk)lf(%)

(in the first quadrant), so we use the arc length formula with

_ a:zk) 1/(2k}—1 (_kaqu)

— _:L_Zk-l (I _ mzk)l/(2k)_l

The total length is therefore

1 1
Lo = 4/ \/1 + [—zzk—l (1-— m%)‘/@’“)“l]?dx = 4/ \/1 + 22(2k=1) (1 — g2k /E=2 gy
Q 0

Now from the graph, we see that as k increases, the “corners™ of these fat circles get closer to the points (+1, 1)
and (+£1, F1), and the “edges™ of the fat circles approach the lines joining these four points. It seems plausible that
as k — oo, the total length of the fat circle with n = 2& will approach the length of the perimeter of the square with
sides of length 2. This is supported by taking the limit as & — oo of the equation of the fat circle in the first

2k ) 1/{2Zk)

c 1 1-—
quadrant Jim {

=lfor0<z <L Soweguessthatklim Lop=4-2=28.

DISCOVERY PROJECT Arc Length Contest

For advice on how to run the contest and a list of student entries, see the article “Arc Length Contest” by Larry

Riddle in The College Mathematics Journal, Volume 29, No. 4, September 1998, pages 314-320.
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9.2 Area of a Surface of Revolution

Ly=Inz = ds=+/1+(dyjdsldz= T+ (1/2)2dz = §= [ 2n(inz)\/1+(1/2)?dz [by (7]

Ly=sinfz = ds = /11 (dy/dz)?dz = /1+ (2sinzcosz)?dz =

S = [T 2 sin® z\/1+ (2sinz cosz)2dz  [by (7)]

Ly =sccx = ds—=/1+ (dy/de)idz = \/1+ (secwtanz)?dz =

5= jw/dzﬂa:\/ + (secztanz)?dzr [by (8)]

Ly=¢e" = ds=/1+(dy/dz)*de=vV1+e¥dx = S:j;)'n227rcc\/1+ehda: [by (8)] or

fPon(lny) /14 (1/y)*dy by (6)]
y=r3 N y’:BﬁCz.SO
S=[22my/1+ () de =2n [22®VTT 0atdr  [u=1+92% du = 362" del
_ 2x 145 di = & 2 3/2 145 = X 145\.’ 145 1
— 36 1 vudu = _g{ }1 _ﬁ( - )

. The curve 9z = y* + 18 is symmetric about the x-axis, so we only use its top half, given by

y=3vr -2 dyldz = sol4 (dy/dz)® =1+ _9 Thus,

4(x - 2)’

6
da":ﬁw/ 1/3:—2+%da:=67r/ (z+ 1) de
2 2

)3/2] = 4 (12 — ) =dm- 2 =49x

3
2+ =2

5 =

Ly=vz = 1+ (dy/de)®=1+[1/(2/z)]° =1+1/(4z). So

9 dy 2 9 1 g
S:/ 2ryy 14+ | 57 dx:/Qw\/E 1+——d::::21rf T+ jdr
4 dr 4 4z 4

:2w[§(m+§)3/2]j:%[g(4m+ )3/2] 2(37V37 - 1717 )

8 y=cos2r = ds=+/1+(dy/de)?dz = (—2sin2z)*dz =

S = 1]"/627r(:052$\/1+4sin223:d:c—Zﬂf\/—\/1+u2( ) |u = 2sin 2z, du = 4 cos 2z dz]
LrlluyTtu+ lln(qum)] g[§-2+§ln(\/§+2)} =18 4L 2 (24+v3)
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9.y =coshz = 1+ (dy/dr)® =1+sinh®z = cosh®z. So
S = 2r [ cosh cosha dz = 2m J; $(1+ cosh 2x) do = 7 [z + %sinh?x];

:ﬁ(1+%si11}12) or [1+ (e —e 2)}

263\ __ 263
12/ ™

~ 1+ 5 defdy =301 2) @) =y VT2

L+ (dejdy)? =1+ 42 (y* +2) = (2 +1)7. So
S—QW[ y(y® +1)dy = 27r[4y4+3—13y2}2 2m(442-1-1)=24=
1222 =142 = 1+(dz/dy)* =1+ (4y)* =1+ 164°. So
S=2m [y T+ 162dy = & [7 (165° + 1)V 32ydy:%[§(16y2+1)3/2ﬁ
=2—f;(65\/6_5—17\/ﬁ)
By=¥ = =9 = 1+ (de/dy)* =1+ %" So
Pz /T (dafdy)? dy = 2r [P " T+ 9y dy = 22 [2/1+ 9y 36y dy
:%[%(I—I—Qy )“”] - #(145V185 - 10v10)
By=1-2" = 1+ (dy/dz)’=1+4" =

1
S:QW_fl)lm\/1+4$2da::%f;8$\/4$2+1da:: %[-32(43:2—%1)3{2] = %(5\/5A 1)
0

5.x= /a2 = de/dy=3(® ) V) = /el -2 =

2 2 2 a2

1+ (de/dy)? =1+ —2 _a oy Yy ___ =
( /y) a _.y2 a2_y2+a2_y2 a?_yZ

a2
211'/ ady = 2ma [y] 3/2 = 27ra(§ — 0) = ma?. Note that this is
0
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SECTION9.2 AREA OF A SURFACE OF REVOLUTION U 721

i the surface area of a sphere of radius a, and the length of the interval y = O toy = a/2is % the length of the

interval y = —atoy = a.

.z = acosh(y/a) = 1+ (defdy)® =1+ sinh?(y/a) = cosh®(y/a). So

S=2n /:acosh(%) cosh(%) dy = 41raf0[1 coshz(%) dy = 27m/0 [1 +cosh<2a ):l dy

ma’ (e’ +4 - e %)
2

=2wa{y+gsinh(ﬁ)] :ZTra[a—i-gsinh‘.Z] = 2ma’[1 + §sinh 2] or
2 a /], 2

Ly=lhe = dy/de=1/z = 1+ (dy/dz)’=1+1/z" = S= f1321rln:c V91+1/z?dx.
Let f(z) = Inz /1 + 1/z2, Since n = 10, Az = 25* = ¢. Then
S Sio=2m - HE[F(1) +4£(1.2) + 2f(1.4) + --- + 2f(2.6) + 4£{2.8) + f(3)] ~ 9.023754.

The value of the integral produced by a calculator is 9.024262 (to six decimal places).

Ly=z+/T = dy/da::1+:‘1,-:r:’1/2 = 14 (dy/de)? =24+272 4 iz =

Szfzgﬂ($+\/5)1}2 w\/_*"--i-—da: Let f(z) = {z + /) 2+%+4—1$.

Since n = 10, Az = 51 = . Then
S~ Sip = 2m - MU TA(1) + 4F(11) + 2/(1.2) + - - + 2/(18) + 47(1.9) + F(2)} ~ 29.506566.

The value of the mtegral produced by a calculator is 29.506568 (to six decimal places).

.y=secxr = dyfde=secztanz = 1+ (dy/dz)®=1+sec’stan’z =

S = fo"/3 2msecz V1 + sec? x tan? zdz. Let f{z) = secz V1 + sec? ztan? z.

7/3-0 w
10 =35 . Then

S Suo = 2n 1r/330 [f(0)+4f(3—%) +2f(§_g) . +2f(§—7[;> +4f(%%) +f(g)} ~ 13.527296.

The value of the integral produced by a calculator is 13.516987 (to six decimal places).

Sincen = 10, Az =

dy _ Lo o e
dx

=(1 xy1/2 — Ty—1/2  x __
y={1+¢") = 2‘(1+e) e _———2(1+e1)1/2

2z z 2 T 2
1+(dy) . _444e” 4+ ("4 2)

41+e®) 4l+e=)  4(1+e?)

dx

S=/127r\/1+312;i ﬂ/l(em+2)d:n:7r[er+2w];=1r[(e+2)—~(1+0)]:7r(e+1).

Let f(z) = 1{e” +2). Sincen = 10, Az = 15 = ;. Then

S & Sip = 2m - 20 [£(0) + 4£(0.1) + 2£(0.2) + - -+ + 2f(0.8) + 4£(0.9) + f(1)] = 11.681330.
The value of the integral produced by a calculator is 11.681327 (to six decimal places).
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Ny=1/c = ds=+/1+(dy/de)2dz=4/1+(-1/z?)?de=/1+1/z%dz =

§= /zﬂ 1 +—-—d:c—2 "m4 Lz _2f “”+ (Ldv)  [u=2® du=2zdz]

4/ 3 / 5 4
=7r/ lu—:u dug“fr[—mvli-—u-i-ln(u+ 1+u2)}
1

1

[T ) o )] e S (355

dy x f dy\> / z?
= 2 e = ——— = _
2 y=vVi+l = m — = ds 1+(d$) dx 1+m2+1d$

5= fzm/a:z It d:c-?qr/ \/2:c2+1d3:—2\/_7r/ 1/:1:24» %
N
=2vEr[8 9+ 1+ im(3+ o+ §) — i) =2var[8 /2 +dm(3+ /2 ) + 12|
=2v2r[$42 + 1 n(3v2+ VD) | = 3VIBr + ZIn(3 V2 + VI9)
By=z"and0<y<l = ¢y =3%and0<z<L
S=fy2me\/1+@22) de =21 [P VI+ulidu  [u=32% du=6xdz]
*%fs\/l—l-uzdug [or use CAS] %[%uv1+u2+%ln(u+\/l+u2)]z
=2[$VT0+ 43+ vI0)] = 2[3V10+n(3+ V10|

dy 2 1 2
M y=1 1 < ax <. = -4 = -
y=In(zx+1),0<c <1 ds 1/1+(d$) dx 1/1+($+1) dz, so
! 1 2 1
S:f 9z |14+ ——— d :/ e — 1)1+ = d —zt+ldu=d
; ™ @11 z 1 m(u—1) 5 du [ =z +1, du = dz]

2 / z 2/ 2 2 2./ 2
:27r/ u%d’u—%r/ l—Iu—du=27r/ \/1+u2du—27r/ 1+u du
1 1 1 1

u

2 / 7\ 72
wan [or use CAS] 2#[%115 1+u2+%ln(u+ 1+u2)} —2W[\/1+u2~ln(m)]
1 U

1

-5 e+ V8) - A 3(18)] - (155) - B (s )

= 2|12+ V5) +1n(158)
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oy 2 o0 oo -4 1 .
25.S=27r/ y“lJr(@) da:z?ﬂ'] l1.‘1—|-i4dx=27rf T:_ dzx. Rather than trying to
1 dx 1 T T 1 x

evaluate this integral, note that v/z* + 1 > Vi = 22 for z > 0. Thus, if the area is finite,
oo /o4 oo 2 Eel |
S:Zar/ w3+1d:c>27r/ %dxzzw/ = dz
1 T 1 X 1 ¥

But we know that this integral diverges, so the area S is infinite.

S = [ omy 1+ (dy/de)? de =2x [T e™"/1 4+ (—e7%)2de [y= e,y =—e"%]
Evaluate I = [ ¢™*\/1 + (—e~*)2 dx by using the substitution u = —e™7, du = ™" dx.

I=[vituwrduZ luyT+uZ+in(u+VItu?)+C
= H—eWIte® +iin(-e+VI+e )+ C
Returning to the surface area integral, we have
S =2m lim fie 1+ (—e )2 dz

=2r lim [§(—e ) VITe = +3ln(-" + VIte =),

t— oo

=2 Jim {(3(~e™)VIT e T+ dln(—e™ + VIT e ®)| = [H)VIFT+4In(- 14 vITT)])

=2 {[L0) VT + 3 (0 + vI)] - [-3vZ + A In(-1+v2)]}
= 2n{[0] + 3 [V - In(v2~1)]} = 7[vZ ~In(v2 - 1)]

. Since a > 0, the curve 3ay® = x(a — z)” only has points with

9:20.(3(13;220 = :c(a—a:)220 = z>0.)The

curve is symmetric about the x-axis (since the equation is

unchanged when y is replaced by —y). y = 0whenx = Qora,

so the curve’s loop extends from z = Cto z = a.

%(Sayz): %[w(a—m)ﬂ = 6ay§—y =z 2e-z)(-1)+(e—2) =

dz 6ay

dy _ (a —z)[-2z+a— 7] N (gy‘)? _ (a — 2)*(a - 32)° (a—z)*(a — 3z)? 3a

dx 36a2y? - 36a? " z(a — z)?

the last fraction] _ {a — 3x)°
is 1/y* T 12z
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2 2 2 _ 2 2 2 322
14 dy _1+a — Baz + O :12aa:+a oz + 92" _ a + 6ax + 9z =(a+‘3m) for z £ 0.
dx 12ax 12ax 120z 12az 12ax

* ¢ Jr{a—1x) a+3z f“(a—cc)(a+3x)
5= 2ryds =2 . dr = 2 — g
@) /zzo Tyas TT‘ 0 Vaa v12azx 0 6o

43
Ll _ 2 _ T3 3_ 3. T
g (a* +2aa:—39: Hde = 3a[a z 4+ ax .r]o—3a(a +a” —a’) 3L

Note that we have rotated the top half of the loop about the x-axis. This generates the full surface.

{b) We must rotate the full loop about the y-axis, so we get double the area obtained by rotating the top half of

the loop:

¢ a+3m 47

\/12a33 2\/3_a

S=2-27r/ xds =4n z'/%(a + 3z} dz
=0

2 6 ss2]”  20V3 (2 552 6 52
ax' —f—3:r3/2 dz [—am3/2 + =g J = — (—a + —a
\/3(1,[ (@ ) \/30, 3 57 ], 3va \3 5

6) , om 3(28) , 561 /3a?
a = —_— T = —

5 3 15 45

_2mV3 (2
B 3°5

3

28. In general, if the parabola y = az?, —¢ < & < ¢, is rotated about the y-axis, the surface area it generates is

0

[ 2ae
U 1 u = 2ar
2 1 2az)?dr =2 —/1 2 —d ¥
71']0 zv/ 1+ (2az)?de =27 2a\/ + u 5 du Lu:Zaday

Zac
. 2y1/2 _ = 2, 3/2
AZQ,—Q . (1+U) 2’&(1’&—@{%(14"&) :l

2ac

0
= 5[0+ 4’ -]
Here 2c = 10ftand ac® = 2 ft, soc = banda = 22—5 Thus, the surface area is
S pElwa- g 1] - - 7] - e (4 )

& (41 Va1 - 125) ~ 90.01 12

y{dy/dr) = =z N dy bz

b Z 7 @ o

- btz B bt 2 +a4y2 _ b4$2+a462(1 —;1:2/0,2) B ath? 4 bir? — o2p2?
aty? aty? - ath? (1 — x2/a?) - ath? — a2h2 2

_ a* 4 v¥a? - a’a?

at— a2z a(a? _ 22)
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The ellipsoid’s surface area is twice the area generated by rotating the first quadrant portion of the ellipse about the

r-axis. Thus,

5=2 [ onyf1+ (Y N -4 b\/ Rl Uil PR
D= j(; TY +(E.T_ T = 17 m

41rb dnbh fovei-b? du
- —P)atde = —
b}

at —u? ———
a2 — b2

30 47h
S e R |

4h
a?vaZ — b2 |

30. The upper half of the torus is generated by rotating the curve (z — R)? + ¢* = r%, y > 0, about the y-axis.

dy

(x~R)’ ¢+ (z-R)’
Vo=
X

2
—(z— R) = 1+(dy) =1+ = = 5. Thus,

dr y? 32 r? —(z— R)

B4r d B4r
Sz?/ 27 1+( ) de = 4m
dx

R—r /T 1:_

JR—p

T u+ R
= 4nr _r\/__;ﬁ fu=z— R}

= 4nr udu + 4w Rr

77‘\/_77 —-r VT ___u2

=dgr -0+ 8nRr [since the first integrand is odd and the second is even]

]T du
0 Vi — 2

= 8&r Rr [sinfl(u/r)]; =8rRr(Z) = 4w Rr

31. The analogue of f(z}) in the derivation of (4) is now ¢ — f{z7). so

S = Jim 3" 2nle— fGDy 1+ P Ae = [ 2nle - @)1+ )]

32_y=g:1/2 = y’:%m“”z = 1+(y’)2=1+1/4m,sobyExercise3l,

S = [2r(4—x) J/1+1/(4z)dz. Using a CAS, we get

S = 27 In(V1T +4) + (3117 + 1) = 80.6095.
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33. For the upper semicircle, f(z) = vr? — 22, f'{z) = —z/vr? — x*. The surface area generated is

r 2 r r
Sl:_/ 271'(?"— 1"27332) 1+ 2::: EQdJ::Alﬂ/ (T—\/rzmmz)——da?
LA 0

r2 — 2

-7

r ,,,2
= 47r£ (**‘*;\/2_—?2- - 1") dx

. T i T’
For the lower semicircle, f{z) = —v72 — 22 and f'(z) = N s0 Sz = 4%/ (ﬁ
re —x 0 T

T 2
. T 2 . .1 fZX
s ais S =S + 8 — | dz =8 [ (v)]
Thus, the total areais S = 51 + 82 811’/0 ( o wz) dz miresin .

. Take the sphere 2 + y* + 2 = %dr" and let the intersecting

v
planesbey:candy:chh,,where—%dﬁcS %d—h. y=c+h//

The sphere intersects the zy-plane in the circle \
\___

. . d
x® +y* = 1d®. From this equation, we get x Ey=0, y=c

dy

d . ¢
50 & H' The desired surface area is
dy x

S=2n fxds=2n [Tz /T4 (dojdy)2dy = 2r [T "o T+ y¥atdy = 2r [T /a2 + 2 dy
=2 [P Lddy = md [T dy = ndh

Yi—1 + Ui

. In the derivation of (4), we computed a typical contribution to the surface area to be 27 5 |Pi—: Py, the

area of a frustum of a cone. When f(z) is not necessarily positive, the approximations y; = fiz;) =~ f(x]) and

yi1 = f(wi1) ~ £(}) must be replaced by g, = |f(z:)| ~ |f(z}) and w1 = |f{zi 1)~ |f(z])]. Thus,

o yi-.12+ Yi |Pio1 Py| = 2w | f (22 /1 + [f’(;r;)}zﬁw. Continuing with the rest of the derivation as before, we
obtain § = f: 2riflx)iy/1+ [f’(m)]z dz.

36. Since g(z) = f(x) + ¢, we have g'(z) = f'(x). Thus,

S = [ 2mg(z) /1 + [¢/(2))* dz = [ 2n[f(2) + ¢ /1 + [/ (@) dor
= [Porf(x) /14 [f (@) dx + 2mc 71/ 1+ [f'(2)]" dz = S¢ + 2meL,
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DISCOVERY PROJECT Rotating on a Slant

tangent to C
at (xj! f{xl)}

In the figure, the segment a lying above the interval [z; — Az, z;] along the tangent to C' has length

Azseca = Az V1 + tan?a = /1 + [f/(z:)]* Az. The segment from (z;, f(z:)) drawn perpendicular to the

line y = mx + b has length

g(wz) — [f(wz) —mz; —b]COSﬁZ f(wl) —mzi —b — f(ﬂ'h) —mz; — b _ f(mz) —muz; — b

soc B 1= tan? 5 Jirme

Au

Also, cos{f3 — a) = A seca

cos 8 cosa + sin 3 sina
COS

Ay = Az seca cos(f — a) = Az = Ax(cos § + sin 3 tan a)

_ 1 m x| = 1+mf’(:c;;)
—Am{ﬁ+m2+\/1+mzf(z)]_ V1+m? =

n—o0 £

Area(R} = li g(z:) Au = lim i fla) —mzi —b 14 mf'(:) Az
i i=1

V1+m? v1+m?

q

o | (@) —me = b1+ mf'(z)] dx
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2. From Problem | withm = 1, f(x) =z +sinz,mr+ b= — 2,p = 0,and ¢ = 27,

Area——j—g o [z +sing ~ (z —2)][1 + 1(1 + cos )] dx = 3 02 (sinz + 2){2 + cosz) dx

. " 2w
1 OZ“(ZSin:t: +sinzcosz + 4+ 2cosz) dr = 3[-2cosx + %smzm—i—4$+2smm]o

=1[(-240+81+0) — (~24+0+0+0)] = 3(8r) = 4r

m:c,—b] 1+mf’(w,;)A

3.V = lim Z lg(:)]” Au = lim Z \/T N

i=1

- (l—im/ [f(z) —mz — B [1+mf'{z)] dz

2x
4.V = W/ (z+sinz — 2 +2)*(1+ 1 +cosz) dz
+ 0

2n
m . 2
=— (sinx + 2)“(cosz + 2) dx
2\/§f0
(sm m+4smm+4)(cos:v—l—2) dz
(sm z cosx + dsinz cosz + dcosz + 2sin® z + Bsinz + 8) dx
"2[%sin:‘m+25in2m+45in:1:+:17—:f;sin2:1:—8cosstr+8x]§"r [since 2sin®x = 1 ~ cos 2z]

SZ=[(2r — 8+ 167) — (=8)] = 22 n?

5. § = /27@ 14 [F(2))? d:c—\/l?'%n_z./q[f(m)—mm—b] 1+ [f'(2)] de

6. From Problem 5 with f{x) = /z,p=0,g=4,m = %,andb =0,

Tk

In(v/17 +4
_ . ({17 + )+37‘/ﬁ%%1 [from CAS]

5 32 24

~s 8.554
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9.3 Applications to Physics and Engineering

1. The weight density of water is § = 62.5 1b/ft’.
(a) P = 6d ~ (62.5 1b/ft>) (3 ft) = 187.5 Ib/ft®
(b) F = PA ~ (187.5 Ib/f*) (5 ft)(2 ft) = 1875 Ib. (A i the area of the bottom of the tank.)

(c) As in Example 1, the area of the 4th strip is 2 (Az) and the pressure is 6d = dx;. Thus,

F=[26z-2de = (625)(2) [j zdw = 125}z ?]% =125(3) =562.51b

2. (a) P = pgd = 1030(9.8)(2.5) = 25,235 ~ 2.52 x 10* Pa = 25.2 kPa
(b) F = PA ~ (2,52 x 10* N/m?} (50 m?) = 1.26 x 10° N

© F = [** pgz - 5dz = (1030)(9.8)(5) [, wdz = 2.52 x 10*[+%] 2% 158 x 10°N

In Exercises 3—9, n is the number of subintervals of fength Az and 2} is a sample point in the 4th subinterval [z 1, x4).

3. Set up a vertical x-axis as shown, with = = 0 at the water’s surface and =

increasing in the downward direction. Then the area of the 4th rectangular

strip is 6 Az and the pressure on the strip is 8z (where 6 =2 62.5 1b/ft%).

Thus, the hydrostatic force on the strip is 8z7 - 6 Az and the total

hydrostatic force = Y §z] - 6 Axz. The total force
i=1

F = lim Eéﬂ: 6Az = [y 6x-6dz =66 [ xdx

Tl—’OO

— 66 12%]7 = 65(18 — 2) = 966 ~ 6000 Ib

. Set up a vertical x-axis as shown. Then the area of the ith rectangular strip

is 3(4 — z7) Az. [By similar triangles, L B é 50
4—xr 3

w; = (4~ x}).| The pressure on the strip is &z7, so the hydrostatic force

on the strip is 6z - (4 — x7) Az and the total force on the

T
plate = Y 8z - 2(4 — z7) Az. The total force
i=1

F = lim 25% 1a-ai Asr:—fl 6z - 5( .T,)da:=§5fl4(4:c—ﬂ;2)da:

ﬂ—rDO

— 450222 1%t = 46[(32- ) - (2 4)] = 26(9) = 126 = T50 b
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5. Since an equation for the shape is 2% + 37 = 10% (z > 0), we have

y = v/100 — 2. Thus, the area of the sth strip is 2 /100 — (x})? Az

and the pressure on the strip is pgiz; , so the hydrostatic force on the

strip is pgx; - 24/100 — {z7)? Az and the total force on the

plate 2= 3 pgx; - 2,/100 — (z})? Az. The total force
i=1

10
F = lim Z pgz; - 24/100 — (x})? Az = / 2pgr /100 — 22 dx:
0

'ﬂ—’OO
> 10
= —pg [1° (100 — 2*)/* (—22) dx = _pg[g(mo - 3:2)3/2]0 = —2pg(0 — 1000)
— 2000 o 20001000 - 9.8 = 6.5 x 10° N [p ~ 1000 kg/m® and g & 9.8 m/s? ]

. By similar triangles, w;/4 = x] /5, sow; = %xf and the area of the
ith strip is %a::-‘ Az. The pressure on the strip is pgz;, so the hydrostatic T

force on the strip is pgzy - %3::-‘ Az and the total force on the

plate = 3 pgz; - %mf Ax. The total force l
i=1

F = lim qum -$§A$=j§pgm-§xdx=§pg[

’J’l—‘DO

= 4201000 - 9.8 & 3.3 x 10° N,

Aftwide  aftwide soa = La* and the
8fthigh — «f fthigh’ 27

width of the ith rectangular strip is 12 + 2a¢ = 12 + 7. The area of the

. Using similar triangles,

strip is {12 + x}) Ax. The pressure on the strip is 6z,

= lim 2:6:1;1(124—:131 Ax-—fo bz - (12 + z) dx

B 2\ do — 2, 2% _ 512

=4 [P(122 + 2?) mgé{ﬁm +w~3]0—f5(384+ 2)
Dt 4

= (62.5) 1822 ~ 347 x 10° Ib

. In the figure, deleting a b x h rectangle leaves a triangle with base @ — b 0 a
(a—b) ft wide d ft wide #1 /

d height h. By similar triang] = ! 7
and height y similar triangles, —— high (v =7 fibigh’ a - Z(a—b)
so the width of the triangle is i

b

X

d:h—hm: (a—b):(l%)(amb)za—b—%(a——b)

-

and the width of the trapezoidisb+d =a ~ fhi (2 — ). The area of the 4th rectangular strip is
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[a - f}‘_ (a— b)] Ax and the pressure on it is pgz;.
!

n * h
] T
F = lim T; a—‘a—b]Am:f pgx |a— = (a —b)| dz
i 3 gt o (a0 do = [Tpurfo F0-0)

h h 2 3
B pg(b—a) 2, h b—ah
—_pga/G mdm+——h /0 T d:c—,ogu—2 + pg Y

2 b‘*a 2a+2b 500 2
— - gh W) N
= pgh (2 5 pgh” = = {a + 2b)

9, From the figure, the area of the ith rectangular strip is 2 /72 - (z7)*Ax

and the pressure on it is pg(x] + 7).

F= lim Zpg i +r)2

=+ O

= [T pg(z+7)-2Vr? —2%dx
:ngir Vr2 — 22 2z dx + 2pgr frrmda;

The first integral is 0 because the integrand is an odd function. The second

integral can be interpreted as the area of a semicircular disk with radius r,

or we could make the trigonometric substitution z = 7 sin §. Continuing:

F = pg-0+2pgr- Lur? = pgrr® = 1000gmr® N (ST units assumed).

. The area of the ith rectangular strip is 2 \/ 2y} Ay and the pressure
onitis &d;, = 6(8 — yi).

8 8
F=[26(8—y)2yTydy =42-2- V2 [J(8 —y)y'* dy gasoline

level
= 94v2 3 (852 ~ 42 dy — 842 |8

~84V2[8- 2 16v2~ 1 128 V3]

—84v2-256v2(1 — 1) = 13008 & =5734.41b

_y . 8 i 2z} .
. By similar triangles =2 5 wy = i The area of the 4th

T4v3 V3

1

V3
4+/3 43 43
2z 2pg 2
F:f 4vV3—1) = dr =8 / zdr — —= - dr
f PQ’( )\/— PQ'D \/§ o

w3 2pg 43 209

=4 =192pg — £ 64-33
pal="l, T 3v3 (="l 33

— 192pg — 128pg = 64pg ~ 64(840)(9.8) = 5.27 x 10°N

rectangular strip is Az and the pressure on it is pg(4 V3 - )
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12 F = [ pg(10 — )24 — 27 da
= 20pg [ VI—atdz — pg [y VI 2?2z dx

= 20pgim(2*) — pg [Pt du [u=4-1% du=—2zdz]

, 4
= 20mpg — 2pg {um} , = 20mpg — Bpg = pg(20m — 1)
= (1000)(9.8) (207 — 3&) ~ 5.63 x 10° N
13. (a) The top of the cube has depthd = 1m —20cm = 80 cm = 0.8 m.
F = pgdA = (1000)(9.8)(0.8)(0.2)" = 313.6 ~ 314 N

{b) The area of a strip is (.2 Az and the pressure on it is pgz; .
F = [, p92(0.2) dz = 0.2pg[32%], , = (0.2p9)(0.18) = 0.036pg = 0.036(1000)(9.8)

= 3528~ 383N

14. The height of the dam is b = /707 - 257 cos30° = 15+/19 (42 ).

From the solution for Exercise 8, the width of the trapezoid is

50x

100 — Z(100 — 50) = 100 — -

5 . From the small triangle in the

second figure, cos 30° = % = 2=Axsec30® =2 Am/\/g
z

h h h
F:/ .5::;(100 @)i dr = 2006 v dx 1008 2de
[¢]

BET s L T TR Y

_ 2006 R* 1006 R® _ 2006R%  200(62.5) 12,825
V3 2 h33 343 33 4

3

~7.71 x 10%1b

15. (a) The area of a strip is 20 Az and the pressure ot it is éux;.

3

3
F :f 620dz = 206 2a? | =206- 2 = 908
o 27 |, 2

= 90(62.5) = 5625 1b ~= 5.63 x 107 Ib

(b) F = f) 6220 do = 206[12?] = 206 - & = 8106 = 810(62.5) = 50,625 Ib ~ 5.06 x 10* Ib.
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{c) For the first 3 ft, the length of the side is constant at 40 ft. For 3 < z < 9, we can use similar triangles to find the

a 9—=x 9—-=z
P— == :40’ -
length a 20 5 = a 5

F= 2 $0d0de + [0 62(40)25% dz = 406[32?]) + 26 [} (92 — ) dz
= 1808 + L6[2x% — 12°], = 1806 + L6[( 22 - 243) — (& —9)]
= 1806 + 6006 = 7806 = 780(62.5) = 48,750 Ib = 4.88 x 10* Ib

{d) For any right triangle with hypotenuse on the bottom, 04

Azx
hypotenuse

cscd =

VA2 £ 62 /409
6 3
= (Y4

F = [ 6220 Y18 g = L (20v/400 )6[12%]; Axesco = (557 ax

Azx.

hypotenuse = Ax csc§ = Az
Ax

=1-10V/4095(81 - 9)

~ 303,356 Ib =~ 3.03 x 10° b

16. Partition the interval [a, b] by points x; as usual and choose ] € [z;1, ;] for each 4. The ith horizontal strip of
the imraersed plate is approximated by a rectangle of height Az; and width w(z}), so its area is A; ~ w(x]) Az
For small Ax;, the pressure P on the ith strip is almost constant and P; = pgx; by Equation 1. The hydrostatic
force F} acting on the ith strip is F; = P, A; = pga; w(x; ) Azs. Adding these forces and taking the limit as
n — oc, we obtain the hydrostatic force on the immersed plate:

ki’ T
F=lm 3 F = lim 3 pgxiw(z}) Az = [ pgrw(z)dz
n-+00 i 7

n—oo (7]

. F = 7 pge - w(z) dz, where w(z) is the width of the plate at depth &. Since n = 6, Az = 252 = 7, and
F 85 :pg'-1-/33[2-11)(2)+4-2.5-w(2.5) +2-3-w(d)+4-3.5-w(3.5)
+ 2.4 - w(4) +4-4.5-w(4d.5)+ 5 w(5)]
= 1pg(2-0+10.08+6-1.7+14-24+8-2.9+18-33+5-3.6)
= 1{1000)(9.8)(152.4) ~ 2.5 x 10° N

b b b
. (a) From Equation 8, T = %/ zw(r)de = AE:f zw(z)dr = pgA':E:pg/ zw(r)de =

a

(pgT)A = f: pgxw(zr)dz = F by Exercise 16.
(b) The centroid of a circle is its center. In this case, the center is at a depth of r meters, so T = r. Thus,

F = (pg&)A = (pgr){mr®) = pgrr®.

2
., The moment M of the system about the origin is M = Z My = MmMiT1 + maxe =402+ 305 = 230.
i=1
2
The mass m of the system is m = 5 m; = m; + mg = 40 4 30 = 70. The center of mass of the system is

=1

230 _ 23
M/{m = =D =
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20.

. Since the region in the figure is symmetric about the y-axis, we know

. The region in the figure is “left-heavy” and “bottom-heavy,” so we know
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M = miz1 + maza + mazs = 25(—2) + 20(3) + 10(7) = 80;

T=M/(mi+ma+ma)=5 =18

3

3
cm=Ym =645+ 10 =21 My =Y miy =6(5) +5(~2) + 10(-1) = 10;

i=1 i=1

3 My 1 _ M, 10

. o : oy e My 1 = Mz _ 1D o the center of fth
My—lgmﬁl 6(1) +5(3)+10(-2)=1. % — =3 and J = —= = 77, so the center of mass of the
systent is (2—11, 11).

M, = 3 megs = 6(—2) + 5(4) - 1(-T) + 4(=1) — —3, M, = 3" mazs = 6(1) + 5(3) + 1(=3) + 4(6) = 42,
i=1 1=1

= 42 21
andmzZmizlﬁ,sofzw%— = 22 and

42 _ M
= m 16 8 a

3 . P
= —Ig;the center of mass is (£,7) = (3, — ).

that = (). The region is “bottom-heavy,” so we know that § < 2,
and we might guess that ¥ = 1.5.

2

A= [ (1-atde=2[7(4 2% dr = 2[4z — }2°]]

~2(s-9) = %

2
T = % 2(4 — 2*)dz = 0'since f(x) = z(4 — 2®) is an odd
-2

function {or since the region is symmetric about the y-axis).

_ 1 f%1 2.2 3 1 /2 s 4 3., 84 15
=— —(4 - == .-.2] (16 — 8z dr = — |16z — = =
v A.[22(4 ) dx 53 0( x +x ) de 33 | 162 3.’1:+53:

=5B2-F+3F)=301-3+3)
Thus, the centroid is (Z,7) = (0, 2).

5

T < landy < 1.5, and we might guess thatx = 0.7andy = 1.2.
3r+2 =6 & 29=6-3 & y=3-3z

A= [2(3-3e)de=[3- 3]0 =6-3=3

2l =36-4)=

2
S =1(18-18+6) =1.

Thus, the centroid is (Z,y) = ( ,1)-
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25, The region in the figure is “right-heavy” and “bottom-heavy,” so we know ’
T > 0.5and§ < 1, and we might guess that Z = 0.6 and j = 0.9.
f edr =[e"]y =e— 1,

1 [ze” — ez}é Iby parts]

5[ = e () = =

Thus, the centroid is (Z,¥) = (e L "—;‘;—1) = (0.58,0.93).

-1
. The region in the figure is “left-heavy” and “bottom-heavy,” so we know
T < 1.5and g < 0.5, and we might guess that T = 1.4 and j = 0.4.

A=[?lde=me?=m2.T=14 [fo-Ldz = flol} = 5 = &5,

=% 3(2) de= gy o de = 5[5

= Fz(~3 1) =

Thus, the centroid is (T, oy 13 ) ~ (1.44,0.36).

. A= f31($+2—12)dm: [%$2+2$_ %wﬂg—

1
Cpeamf-(o2e =1
L2 sz+2-at)de=3 )" («"+20—2%)do

2

[ $3+9:2— %:174]_]

3+ - (-5 +1- 1) =

%fflé[(w+2)2—(:c2)2]da:=%-%ffl(mz+4x+4—m4)da: é[ 2% + 227 +4$—nc5]
sl(f+8+8-2 s(18 43— F

Thus, the centroid is (T, 3} =
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2 4= [" (cosz — sinz) dz = [sinz + cosa]y/* = v2 -1,

(%.7) = (0.27,0.60)

- -1 pm/4 :
= —sinz)dz .
F=A z(cos ) y=sinx

Q
= A 'z(sinz + cos ) + cos z — sin z)7’*  [integration by parts]

%71’\/5—1
VZ2-1

y=cosx

=47 5vE-1) -

g=A"" w/ L{cos® z —sin m)dzﬂiAf;/‘lcos%cdm— 14 [sin 2zg ! =

Tv2 -4 1
a(v2-1)"4(v2 -

Thus, the centroid is (Z,%) = ( D ) = (0.27,0.60).

WA= flodet [[4ds=[32] + nalf = 3 +1n2,

€

T = [ mdm-ﬁ-flldm]: ([ }—i—[z)

__ 2 4 8
T 1+2In2 3 3(1+2In2)

112 21 1 1.3 ].2
[/0 5L d$+fl de} 24 $]0+|:—;:|1

A(L 1N_5 _ 5
24\3 "2/ 7 124 6+ 12In2’

B 5
1+2m2)’ 6(1+2In2)

is stated after Example 3: the moment of the union of two nonoverlapping regions is the sum of the moments of the

Thus, the centroid is (Z,F) = (3 ( ) =~ (1.12,0.35). The principle used in this problem

individual regions.

31. From the figure we see that §j = 0. Now
5
— {59,/ = 2rn  a33/2 Y
=h? 5”"’39"2[‘3(5 27, (%3} =(2.0)
_o(0+3.577) = 2B

=L V-2 - (—v6-a)|de =% [J22VF—zdr

:%ff}gZ@—uz)u(—Qu)du lu=+v5—-z,z=5—u"u?=5—z dr = —2udul
=4 (5 - ) du = 4 (300~ 3] = B (BVE-5VE) =532

Thus, the centroid is (Z,7) = (2,0).
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32. By symmetry, M, = 0and T =0; A= ir-1*+4,s0m = pA=5(3 +4) = 5w +8)
M, =p. 2f01 (V1 — 22 )2 —(—2)%)dz = 5f01 (-z* ~3)dz = —5[%353 +3:c][1) = -5

U= M. = c=e = ——20_. Thus, the centroid is (Z,7) = (0, _ﬂ)
Y= imie 5(m 4 8) 3 3(r + 8) 3(r + 8)

33. By symmetry, M, =OandT =0. A= bh = 3:2-2=2.
M, =p [ 1(2-20)2de=2pf; 32— 22)"de
=(2-1-1.2) (1 -2 dz

=4 [P u¥(~du) [u=1-xdu=—dz|

— 4B = (- 3) =

ey e e — 2
35 - 4 = 2. Thus, the centroid is (Z,%) = (0, 3).

34. By symmetry about the line y = «, we expect that T =F. A= wr’,s0m = pA =24 = 1rrs,

My=p[ 1(V/r? —:cz)zdm =2-1 for(rz —zf)dz = [r2:r: - l;1:3]3 = 2,7,

3

2
2 RE
My =p [, zvr?-atde= f;(rz—a:z)l/z?mdm:for wdu fu=r?~2% = [%usﬂ]o =Zr8
_ 1 2 . 2,
7= My = aer) = = (s

4 8

—_ = = =~ 1.661418.
In2 3 3

2
T 3 i L7 v =
Zfo (22° —x")dzx ﬁﬁz {x, ¥) = (0.781, 1.330)

2 A 2.5
] {use parts) ' '
0

(In2)*

1 _4+—1—]
[In2  (In2)? (In2)?

[ 8 3 1
- - ~ —(1.297453) ~ 0.781
|[In2 4] A( )

(In2)®
21 ) A 1 1] 9%= 25 2
= :r,_, —_—— e = — —_
_fﬂ 2(27 - 2de =5 2[21n2 5]0

1/ 15 16) 1
1 ~ 2 ) & =(2.210106) 2 1.330
A(4ln2 5) 4 %)
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Since the position of a centroid is independent of density when the density is constant, we will assume for convenience that p = 1 in

Exercises 36 and 37.

3

36. The curvesy = ¢ + Inxz and y = x° — x intersect at
(a,¢) = (0.447141, —0.357742) and

(b, d) = (1.507397,1.917782).

A= ["(z+ne-2*+a)de=[ (2z+Imz—2")dx

® (2 + zlnz —z — 12*]] ~0.709781 . 5.7)= (0.986, 0.539)
= Af (2:1:+lna:*zr:3)da::ifb(25c2+:clnw—-m4)dw

2 1228 4 1% (2Ine — 1) — 12®]” & 1(0.699489) & 0.985501

i %[(IHM)? —(x® x)"’} dz = & [7[2zlnz + (Inz)® - 2° + 22%] de

101 and
2 L (22 — L2 + 2 (Ing)® - 2z lnx + 22 — 227 + 22°]" ~ 5 (0.765002) ~ 0.538064

Thus, the centroid is (Z,%) ~ (0.986,0.539).

. Choose z- and y-axes so that the base (one side of the triangle) lies along
the r-axis with the other vertex along the positive y-axis as shown. From
- . . g .
geometry, we know the medians intersect at a point £ of the way from ay+ bx = ab

each vertex (along the median) to the opposite side, The median from B
A

goes to the midpoint (2 (a + c), 0} of side AC, so the point of @t D

intersection of the medians is (% -La+e), 1) = (a+e) 1b).
This can also be veritied by finding the equations of two medians, and solving them simultaneousty to find their

point of intersection. Now let us compute the location of the centroid of the triangle. The area is A = 1{c — a)b.

T = %[funz 2la—z)dz+ [x-2(c— :r:)d;r:} = %E f: (az — %) dz + "E’ INGCEES d,;r:]

des® = o'l = -3+ do] + &l - 3¢
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a+c b

Thus, the centroid is (Z,¥) = (T’ 3) as claimed.

Remarks: Actually the computation of 7 is all that is needed. By considering each side of the triangle in turn to be
the base, we see that the centroid is % of the way from each side to the opposite vertex and must therefore be the

intersection of the medians.

The computation of g in this problem (and many others) can be simplified
by using horizontal rather than vertical approximating rectangles. If the
length of a thin rectangle at coordinate y is £(y), then its area is £(y) Ay,
its mass is pf(y) Ay, and its moment about the z-axis is

AM, = pyf(y) Ay. Thus,

M, = / pyb(y) dy and 7 = W = % [vl(y) dy

.- (b — y) by similar triangles, so

In this problem, £(y) = C_F"

2 f° 2 21,2 1
b_fo (by—v')dy = 53 [3bv" —3¥

Notice that only one integral is needed when this method is used.

. Divide the lamina into three rectangles with masses 2, 2 and 6, with centroids (—32,1), {0, 1) and (2, 2),

respectively. The total mass of the lamina is 10. So, using Formulas 5, 6, and 7, we have

[2(—2) +2(0) + 6(2)] = (9), and

= =(12).
Thus, the centroid is (7,7} = (-% g)

. Divide the lamina into two triangles and one rectangle with respective masses of 2, 2 and 4, so that the total mass
is 8. Using the result of Exercise 37, the triangles have centroids (—1, 2) and (1, 2). The
centroid of the rectangle (its center) is (0, f%) So, using Formulas 5 and 7, we have

3
7= Ai"r ==Y miyi = 2[2(3) +2(2) +4(-3)] = 3(3) = 55, and T = 0, since the lamina is symmetric
i=1

about the line z = 0. Thus, the centroid is (Z,7) = (0, & ).

. A sphere can be generated by rotating a semicircle about its diameter. By Example 4, the center of mass travels a
distance 27y = 2n{4Z) = ¥ s0 by the Theorem of Pappus, the volume of the sphere is

mr?  Br
V=aAd= — — =
2 3
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41. A cone of height h and radius r can be generated by rotating a right
triangle about one of its legs as shown. By Exercise 37, T = %r, so by the
Theorem of Pappus, the volume of the cone is

V = Ad = (L - base - height) - (2n7) = 7k - 2n(}r) = j7r°h.

. From the symmetry in the figure, § = 4. So the distance traveled by the

centroid when rotating the triangle about the z-axis is d = 27 - 4 = &m.
The area of the triangle is A = 1bh = 1(2)(3) = 3. By the Theorem of

Pappus, the volume of the resulting solid is Ad = 3(8m) = 247.

. Suppose the region lies between two curves y = f{x) and y = g(x) where f(x) > g(x), as illustrated in Figure 13.
Choose points z; witha = zg < x1 < --- < £z = band choose x; to be the midpoint of the ith subinterval; that
Is, 0] =T = %(xi_l + ;). Then the centroid of the ith approximating rectangle R; is its
center C; = (T, 2[f(F:) + g(Ti)])- lts area is [f(T:) — g(Ti)] Aw, s0 its mass is
plf(E:) ~ g(%:)] Ax. Thus, My(R:) = p[f(Ti) — 9(T:)] Az - Ti = pT: [f(E:} ~ g(T:)] Az and
Mo(R:) = p[f(T:) — g(z:)] Az - 3[f(@:) + 9(Z)| =0 %[f(Ei)z - g(ii)z] Az. Summing over 7 and taking

the limit as n — oo, we get M, = anI;o 3. 0T [f(Z) —9(T)) Az = ,oj: z|{f{z) — g(z)] d and
M, = nlLH;O Y.p %[f(fg)z - g(f,;)Q] Az = pfab 3 [f(a:)2 — g{sc}z} dz. Thus,

M,

m

’ b
“a =g [ @ -s@lde wo 5= =Tk =3 [41G - ole)

E:

. (a) Let 0 < £ < 1. If e < wn, then ™ > £™; that is, raising x to a larger y

power produces a smaller number. b

(b} Using Formulas 9 and the fact that the area of R is

! 1 1 m—n
A= "t — 2 ) dr = - =
/0(3" @) dz n+1 m+1 (n+1)(m+1),weget

T=

(71'+1)(m+1) /1 m[m"—mm]dmz (n+1)(m+1) l(mn+1 —.”L'm+1)d£1’2
0

m-—n .om-n 0

C(n+2)(m+2)

m—n n+2 m+2

:{n—l-l)(m+1){ 1 1 ] (n+ )(m+1)
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(n + 1)( 1)] )2] dm:%ﬁl(mzn_wzm)dm

1 1 (n+){m+1)
] T (2n+D{2m+1)

_n+ D{m+1)
2{(m —n} 2n+ 1 2m+1

(c) If we take n = 3 and m = 4, then

sg)_ (45 45 2 20
Y 5.6°7-9 363

which lies outside 7t since (%)3 = £ < 23 This is the simplest of many

possibilities.

9.4 Applications to Economics and Biology

1. By the Net Change Theorem, C/(2000) — C(0) = [7"° C'(x}dz =

3] 2000

C(2000) = 20,000 + [2°°°(5 - 0.008z + 0.000009z%) dz = 20,000 + [52 ~ 0.004z> + 0.000003z
— 20,000 + 10,000 — 0.004(4,000,000) + 0.000003(8,000,000,000) = 30,000 — 16,000 + 24,000
= $38,000

2. By the Net Change Theorem, R(5000) — R(1000) = 155100(;] R'(z)dz =

5000

R(5000) = 12,400 + f17'(12 — 0.0004z) dz = 12,400 + [12z — 0.0002z%| "

IUUD
= 12,400 + (60,000 — 5,000) — (12,000 — 200) = $55,600

3. If the production level is raised from 1200 units to 1600 units, then the increase in cost is

C(1600) — C(1200) = [ O" () dz = [y (74 + L1z — 0.0022 + 0.00004z%) dz

1600

— 0002 3
= [74z + 0.55z° +0.000012"] ) o

=64,331,733.33 — 20,464,800 = $43,866,933.33

4. Consumer surplus = 30 [p(x) — p(30)] dzx
30 consumer

=3 [5A%$_(5_%)]dm surplus

= [3z — 42?3 = 90 - 45 = 845
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450
. = — =10 = §=45 = x=23T.
5 p(r)=10 = por x+

8T ( 450 & consumer
Consumer surplus = [p —10]dz = f —10 |dzx *
0 o \r+8

7
= [4501In (z + 8) — 10z];
= (4501n45 — 370) — 4501n 8

=450In (%) — 370 ~ $407.25

6. ps(r) =3+ 0.01z°>. P=ps(i0)=3+1=4

Producer surplus = [~ [P — ps ()] d=z producer

I
O [4-3-0012]dz = [z — 9%1:3];0 Surpius

~ 10— 3.33 = $6.67

1. P=ps(z) = 400=200+022%% = 200=027¥? = 1000=2%? = z=1000"*= 100.

Producer surplus = fo [P — pg(x)|dz = 0100 [400 _ (200 4 0.2$3/2)] dr = 100 (200 123/2) da
100
= (2002 - Zo™/ 2] | = 20,000 - 8,000 = $12.000

_ _ - 2 consumer
8. p=50- a: andp = 20+ m:r intersect at p — 40 and z = 200. surplus

Consumer surplus = 0200 (50 — %w —40) dz

= $1000 *.P)

producer
surplus

= [10:; - —a: ]200

Producer surplus = 200(40 - 20— %) do

o] 50 150 250 ¥
212" = $2000

[203: 20 =T

800,000 —=/5000

P(#) = = 20000

=16 = x=umr ~=3727.04

consumer Sl.l.l'plllS

Consumer surplus = [ [p(z) — 16] dx =~ $37,753

{~3m 16)

0

10. The demand function is linear with slope %2 = — 2 and p(400) = 7.5, s0 an equation is
p—75= (m 400) orp = —:,—da: + 482 A selling price of $6 implies that 6 = ——.’I‘ + 88

1, . 185 _ 84 _ 101 -
Lop= A8 B 0L oy = 505

Consumer surplus = [°% (— Lz + 18 - 6) dr = [— 452" + Laj 59~ $1821.61
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8
0. £(8) — f(4) = £ F'(®)de = [ VEdt = [26/2] = 2(16V2 - 8) ~ $0.75 million

0.8t7%
10e ] = [2200¢]2 + 2 [e”%]7

9
12. n(9) — n(5) = / (2200 + 10e™%) dt = [2200t+
5 5

= 2200(9 — 5) + 12.5(e”2 — e*) ~ 24,860

7PR* _ 7(4000)(0.008)
gpl 8(0.027)(2)

P = ~ 1.19 x 107* cm®/s

4 4
7Py Ry PR - PyRi=PR' =

. i stant, th =
If the flux remains constant, then 8l 8l )

4
) = P= P0(§)4 = 3.1605F, > 3P,: that is, the blood pressure is more

P Ro
— 3 = 2
R=31{Ry = o) (%Ro
than tripled.
[R2otydt = 7 1412~ tydt = f7 (3t — 3¢2) dt = [36* — %] ° = (216 — 144) = T2 mg - /L.
A _ 8mg
fom c(t)dt 72mg-s/L

1 60 .
Thus, the cardiac output is F = =3 L/s= n L/min.

. As in Example 2, we will estimate the cardiac output using Simpson’s Rule with At = 2.
S0 c(ty dt = 2[1(0) + 4(2.4) + 2(5.1) + 4(7.8) + 2(7.6)
+ 4(5.4) + 2(3.9) + 4(2.3) + 2(1.6) + 4(0.7) + 1(0)]
= 2(110.8) =~ 73.87 mg - s/L

A 8 )
RE creem— . ——— 2 (], . b .
Therefore, F 5 ET = Tagn 0.1083 L./s or 6.498 L/min

9.5 Probability

1. (a) f;[;] [?[?[;) f(z) dz is the probability that a randomly chosen tire will have a lifetime between 30,000 and
40,000 miles.

(b) f;;mm f(z) dzx is the probability that a randomly chosen tire will have a lifetime of at least 25,000 miles.

2. (a) The probability that you drive to school in less than 15 minutes is fDl ® f(t)dt.

(b) The probability that it takes you more than half an hour to get to school is [ F(t) dt

3. (a) In general, we must satisfy the two conditions that are mentioned before Example t—namely, (1) f{x} > 0 for
all z,and (2) [%_ f(z)dz = 1. For 0 < z < 4, we have f(z) = 2216 — 2% > 0,50 f(x) > 0 forall z.

. 4
Also, [  f(x)de = 0 SrV16 — a2 de = - l—g’s_f;(lﬁfxz)l/z(—%)dsr— ﬁ[ (16 — )3/2]0

=-&[(16-2? )3/2}0 L(0-64)=1.

Therefore, f is a probability density function.
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() P(X <2) = [*_fla)de = [} EoVI6—22de = ~ 3 [7(16 — 2°)/*(~22) dw

p : 3/2
& [Bas - o) = & 06 -] = -2V - 16)

0

= L(64—12/12) = & (64~ 24v3) = 1 — $V/3~0.350481

4. (2) For 0 < z < 1, we have f(z) = kz®(1 — z), which is nonnegative if and only if & > 0. Also,
J% flz)de = [Lka*(1 - @) de = k [y (2® — 2®)do = k[32® - 42*]) = k/12. Now k/12=1 &
k = 12. Therefore, f is a probability density function if and only if k = 12,
(by Let k = 12.
P(X 2 4) = [, fl@)de = [, 122 (1 - @) de = [, (122" — 122°) dx = [42° - 32 14
=(@-3)-(z- %

{c) The mean

5. (a) In general, we must satisfy the two conditions that are mentioned before Example | —namely, (1) f{x) > 0 for
all z.and (2) [ f(z)dw = 1. Since f(x) = 0 or f{x) = 0.1, condition (1) is satisfied. For condition (2}, we

see that [ f{z)dz = f!°0.1dx = [Lz],” = 1. Thus, f(z) is a probability density function for the

spinner’s values.

{b) Since all the numbers between 0 and 10 are equally likely to be selected, we expect the mean to be halfway
between the endpoints of the interval; that is, z = 5.

p= 7 rf(z)de = z(0.1)dx = [mxz}w = 199 = 5, as expected.

6. (a) As in the preceding exercise, (1) f(z) > 0 and
(2) J7_ fla)de = 1“ f(z) dz = £(10){0.2) [area of a triangle] = 1. So f(z) is a probability density

function.
() () P(X <3) = [ flz)de = 1(3)(0.1) = & =0.15
(il) We first compute P(X > 8) and then subtract that value and our answer in (i) from 1 (the total probability).
P(X >8) = f° flz)dz = L(2)(0.1) = Z = 0.10. So P(3 < X < 8) =1 - 0.15 - 0.10 = 0.75.
(c) We find equations of the lines from (0, 0} to {6, 0.2) and from (8, 0.2) to (10, ¢), and find that
=T if0<zr<b
wr+3 if6<z<10

otherwise

p= [T efl@)de = [y a(55e (—%H%)dﬂf:[g—hr3]§+[—%$3+%m2]f§“

_ 216 |, (1000 | 100) _ (_ 216
_90+( 60+4) a0

1. We need to find m so that °° f(t}dt = lim ée—t/S dt=35 = lim [%(f5)e_”5] =3 =

m

(10— =1 = e = =Ini = m=-5In}=5In2~ 3.47 min.
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0 ift<0

. (a) p= 1000 = f():{ 1_,~#/1000 if £t>0

1000
200 i
() P(0 < X <200) = [7° e /"0 dt = [—e_t/mm]ﬂ = —e”!/% +1%0.181

T
(i) P(X > 800) = [ ihge™/ 1% dt = lim [-e /10| =04 ¢7/% ~0.449

80O

(b) We need to find m so that [~ f(t)dt = 3 = .»,,-IHEQ = e 100G = 1 =

lim [ue—z/moo}

T —00

m = —10001n } = 10001n2 ~ 693.1 h.

=1 = 0+e™ =1 = —m/I000=Inj; =

m

. We use an exponential density function with g = 2.5 min.

(@) P(X > 4) = [ f(t)dt = lim [} e /*®dt = lim [—e—*/z-f’r = 0+ e 4/25 2 0.202

M Ja 25 L 1
2

(b) P(0< X <2)= [7 f(t)dt = [we"t/?-ﬁ]o = —e /25 L] x 0551

(c) We need to find a value a so that P(X > a) = 0.02, or, equivalently, P(0 < X < a) =098 «

€@

Jo f&)dt =098 < [fef*/'*’-f’] =098 & - ¥ L1=098 & V=002 &
Q

~a/25=1n0.02 & a=-25Inz =2.5In50~ 9.78 min ~ 10 min. The ad should say that if you
aren’t served within 10 minutes, you get a free hamburger.

[CI| — 69)° .
. (a) With u = 69and ¢ = 2.8, we have P{(65 < X < 73) = Ls YVor exp(—%«f#) dx =~ 0.847 (using

a calculator or computer to estimate the integral).
(b) P(X > 6 feet) = P(X > 72inches) = 1 — P(0 < X < 72) ~ 1 — 0.858 = 0.142, so 14.2% of the adult

male population is more than 6 feet tall.

= ] (z -9.4)°
LPX > 10) = ———exp| ———
(X >10) /10 4927 p( 2-4.22

2
integral from 10 to 100. Thus, P(X > 10} ~ / (z=9.4)

ex —_
o 42v27 p( 2. 4.2
or computer to estimate the integral), so about 44 percent of the households throw out at least 10 Ib of paper a week.

) dx. To avoid the improper integral we approximate it by the

100
) dx =~ (0.443 (using a calculator

Note: We can’t evaluate 1 — P(0 < X < 10) for this problem since a significant amount of area lies to the left of
X =0

(a) P(0 < X < 480) = / 0 ——1——— ex (—Mgﬁ) dz =2 0.0478 (using a calculator or computer to
' =4 s 12v2r P\T 212 e & P

estimate the integral}, so there is about a 4.78% chance that a particular box contains less than 480 g of cereal.

(b) We need to find g so that P{0 < X < 500) == 0.05. Using our calculator or computer to find P(0 < X < 500}
for various values of g, we find that if © = 519.73, P = 0.05007; and if 4 = 519.74, P = 0.04993. So a good
target weight is at least 519.74 g.

2o 1 _ 2
L P{p—20 < X <pu+20)= exp wu dz. Substituting ¢ = z
g

Poanddt = L de
a

w—2o OV2T 202

a
gives us

2 2
1 _,52/2 1 f ~t2/2
e odt) = — e dt ~ 0.9545
[2 o 2‘.'T ( ) V27l' 2
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0 if 2 <0 _ ‘
14 Let f(x) = - where ¢ = 1/u. By using parts, tables, or a CAS, we find that

ce” < x>0
(1): [ ze® dx = (eb’”/b2)(b;r -1)
(2): fa:gebm dic = (eb"“’/ba) (b2$2 — 2bz + 2)
Now

o = [% (z— p)?f(a)de = [°_(z - p)fl@)de + [[7(z — )’ f(2) dz

=0+ lim ¢ fJ(z — e “dr=c- lim [/{z°e™ = 2zxpe™" + pe %) dx
t—oo

t—co

Next we use (2) and (1) with & = —c to get

ezt
o’ =¢ lim (c2m2+2c:c+2) —2u (—ex —1)+u

t—oo

e—CZl‘ e*CE 2 e
o2

Using I'Hospital’s Rule several times, along with the fact that = 1/¢, we get

oo (2.2 1,1 1Y]_ (1
o =c e e 2 —ef| T\¢8

18. (a) First p(r) = C;isrze_z’"/““ > 0 forr > (. Next,
0

o0 o0 4 4 t .
/ plridr = / —Srze_zr/a” dr = — lim re /0 dp
0

—o0 ap ag t—20 /g

By using parts, tables, or a CAS {or as in Exercise 14] , we find that
Jx2e™® dz = (e"/b*) (B 2* — 2bx + 2). (%)
: , 4 [ ad -
Next, we use (x) (with b = —2/ao) and I'Hospital’s Rule to get — [—%(—2)} = 1. This satisfies the second
ag | —
condition for a function to be a probability density function.

o e 4 72 4 o 2 2
(b) Using I'Hospital’s Rule, a_% rllanolo e a_g TIBEO W = a_(z, 1”ll.n;lo W =

To find the maximum of p, we differentiate:
4 r /e 2 —2r 4 —2r
- |:T28_2 / 0(——) +e7? /“0(27-)] = e /a0 (95 (—L + 1)
a ao ao ap

p'ir)=0 « r=00rl= L o r= ao [ap =2 5.59 x 107" m]. p’(r) changes from positive to
Qo

negative at r = ap, s0 p(r) has its maximum value at r = qao.

{c) It is fairly difficult to find a viewing rectangle, but knowing the

maximum value from part (b) helps.

4 5 pore 4
plaop) = a—aaﬁe 2a0/o0 - e 2 ~ 9,684,098,979
0

With a maximum of nearly 10 billion and a total area under the curve

of 1, we know that the “hump” in the graph must be extremely
narrow.
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3
0o Gp

(d) P(r):/r%

o Qo
(Wi[h b= -—2/(10),

dap
sfem?/o0 gy o P(dap) = f —d}—sze*?‘ﬁ/““ ds. Using () from part (a)

4 8723/‘10 4 2 4 4o0 4 3 -8
= e — — 2 == — 64+ 16 + 2) — {2
=4[5 (4 o= () e

(82e % —2) =1 —4le™® ~ 0.986

1
2

ey p= [ _rp(rydr= is tlim f; rie~%/% dr Integrating by parts three times or using a CAS, we find that
p t—eo

ba
. . 2
[ zieb™ dz = €b—4 (b*x* — 3b*2% + 6bz — 6). Sowith b = ——, weuse 1’Hospital’s Rule, and get
0

Review
CONCEPT CHECK

. (a) The length of a curve is defined to be the limit of the lengths of the inscribed polygons, as described near
Figure 3 in Section 9.1.

(b) See Equation 9.1.2.
(c) See Equation 9.1.4.

@ S = [Ponf(z)/1+ [f(2)] de
b Ifr=gly),ce<y<dthenS= fcd 2rya/1+ [o'()]” dy.
© 8 = f: orzy/1+ [f1(x))*de or §= fcd 2mg(y)y/1+ o' W)]* dy

. Let ¢(x) be the cross-sectional length of the wall (measured parallel to the surface of the fluid) at depth z. Then the

hydrostatic force against the wall is given by F' = f; dxc(x) dx, where o and b are the tower and upper limits for z

at points of the wall and 8 is the weight density of the fluid.

. (a) The center of mass is the point at which the plate balances horizontally.
(b) See Equations 9.3.8.

. If a plane region 2R that lies entirely on one side of a line £ in its plane is rotated about £, then the volume of the
resulting solid is the product of the area of % and the distance traveled by the centroid of %R.

. See Figure 3 in Section 9.4, and the discussion which precedes it.

. (a) See the definition in the first paragraph of the subsection Cardiac Output in Section 9.4.
(b) See the discussion in the second paragraph of the subsection Cardiac Output in Section 9.4.

. A probability density function f is a function on the domain of a continuous random variable X such that
[: f(x) dr measures the probability that X lies between a and b. Such a function f has nonnegative values and
satisties the relation |  f(x) dx = 1, where I is the domain of the corresponding random variable X. If D =R,
or if we define f(2) = O for real numbers « ¢ D, then [*°_ f(z) dz = 1. (Of course, to work with f in this way,

we must assume that the integrals of f exist.)
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9. (a) [, 100 ¢ () da represents the probability that the weight of a randomly chosen female college student is less than
100 pounds.

0 p= [ xf(z)de = f;° xf(zx)dx

(¢) The median of f is the number m such that [ f(x)dz = i

, See the discussion near Equation 3 in Section 9.5.

EXERCISES

(@ +4)"? = dy/de = (@* + 49 (20) =

2
:) = 1t [t 0] =1 R ) = bt e = (3 1)

S (x4 1) de = 2 (e + V) da = [3® + o] = 2.

. dy 1
.y =2In(sinjz) = 5:2-, . z} -

wf2

X
1 u=3T
/ \ese? (3 da:—/ esc(gx ]da:_/ cqc(im)dzzj cscu (2 du) [
w/3 /6 du = 3

—Q[In\cscu—cotuu —2[!n|csc——cot | —In|esc & —cot Z|]
=2[Ini1-0{-l[2 - V3| | = —2n(2 - V) ~ 2.63

1 1 1, dy 1 4
L@y = —+E—1—6$ +2$ = Eﬁam_

1+ (dy/dr)? =1+ (3% — 273 =14 2% -1 4 27°
Thus, L = [7 (32° + 2 %) de = [La2* — 12727 = (1 - 1) — (
) S = [Forz(iz® + 2% do =2n [7 (Lo* + 272) do = 2n [ L 2"

=2r{(B-3) - (- =27(5 -3 - +1) =2n(35) =

L@y=2 = 1+’ =1+427 =
— JlomayT 4R de = [P 3 idu [u=1+42] = I [uS/Z]?
My=2z> = 1+ =1+422 So
S:Z?Tfolfmdm:%rfcf%u?médu =2z =% 02u2\/1-|-—u2du
zﬁ[éu(1+2u2)\/1+—u2—%lnlu+ I+ u? Hz [uw = tan @ or use Formula 22]

= 1[1@VE - 1in(2+v5) ~ 0] = Z[18V5 - (2 + V)]
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5y= e ™ dy/dx = —2re™® = 1+ (dy/dz)* =1+ 47762,

Let f(z) = V1 +4x2e-2=". Then

3
=z 3.292287

] e o= B 0/6 01 L a5(0.5) + 24(1) + AF(LS) + 2/(2) + 4F(25) + F(3)]

6. 5= f03 2ryds = jO“J' ore~ " \/1 1 4r2e~2=" dz. Let g(x) = 2re™= /1 + 4z?e 27", Then

§= f ? g(e) de = S = (3—_3%[9(0) T 49(0.5) + 29(1) + 4(L5) + 2(2) + 49(2.5) + g(3)]
1]

~ 6.648327

1.y=/1$\/\/£-1dt = dyfdz=4Vi-1 = 1+(dy/de)’ =1+ (Va-1)}=Vz

Thus, L= f{°/VEde = [[°s*/*de = 4 s 5/4]1 —4(32-1) =12

16 16 16 4 8 R 4088
8.5':/ 27r:cds=27rf $-$1/4dm=27r/ 9:5/4d:c:27r-—[$9/4] 21(512—1):
1 1 9 1 9 9

1

9. As in Example 1 of Section 9.3, —g—-— = = 20 =2-—czand

w=2(15+a)=3+2a=3+2—x =5~z Thus,

F= fo pgz(b — z)dr = pg|3® — 3z ]g =pg(10 - &) = 225 [pg = 6] ~ 2 .62.5 =~ 458 Ib.

0. F = [o(4—y)2(2 /5) dy =46 (491/1’ - 93/2) dy g

= 45872 - 27| = as(% - %)

3

— 2566(} - 1) = 26

72 2133.31b  [§ ~ 62.5 Ib/ft°]

)~ (e+2)]de=f,(2 2~a*)dr=[22— 1
—(-4-245)=3 =

— (z+2) ] e=1 1 (at— 92 — 4z +12)dx

- H(-3-2e10) - (<% 20 -5 2] =

o 5
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. . — - T . /4
12. From the symmetry of the region, T = Z. A = f:/4/4 sinzdr = [—cos m]i/i

7=1 Jf/’;/‘* fsinzdr= % fj;;“ 7 (1 —cos2x)dx

374
/4

Thus, the centroid is (Z,7) = (% . ﬁ (3 + 1)) == (1.57,0.45).

. An equation of the line passing through (0, 0) and (3,2) is y = %x A=z -3-2 = 3. Therefore, using

Equations 9.3.8, T = %fo 53(%3: . 52_ E %

Thus, the centroid is (Z,7) = (2,

. Suppose first that the large rectangle were complete, so that its mass would be 6 - 3 = 18, Its centroid would

be (1, ). The mass removed from this object to create the one being studied is 3. The centroid of the cut-out piece

is (2,2). Therefore, for the actual lamina, whose mass is 15,7 = 28 (1) - £(£} =

5

T5- and ¥ = 3, since the

CE

lamina is symmetric about the line y = £. Thus, the centroid is (%, 7) = (Z, 2).

. The centroid of this circle, (1,0), travels a distance 2m(1) when the lamina is rotated about the y-axis. The area of

the circle is w(1)%. So by the Theorem of Pappus, V = A(27Z) = w(1)*27(1) = 272,

. The semicircular region has an area of %TI'T'Q, and sweeps out a sphere of radius + when rotated about the z-axis.

T = () because of symmetry about the line x = 0. And by the Theorem of Pappus, V = A(27y) =
7r = 1nr(2rg) = = str. Thus, the centroid is (%,%) = (0, 2= +).

Lz =100 = P =2000—0.1(100) — 0.01(100) = 1890

100

Consumer surplus = [,

[p(z) — Pldz = [°°(2000 -- 0.1z - 0.012% — 1890) dz

= [110z — 0.052% — 225°) ** = 11,000 - 500 - 120% = $7166.67
S e(t) dt = S1 = B=D(1(0) + 4(1.9) + 2(3.3) + 4(5.1) + 2(7.6) + 4(7.1) + 2(5.8)

FA(47) + 2(3.3) + 4(2.1) + 2(1.1) + 4(0.5) + 1(0)]
£(127.8) = 85.2mg - s/L

Therefore, £~ A/85.2 = 6/85.2 = 0.0704 L/s or 4.225 L /min.
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19 Zsin(f5z) f0<z<10
- Fl=) = if <0orz > 10

(a) f(z) > 0 for all real numbers z and

00 T s 1r T 10
[ f@)dz = [,° & sin(F5z) de = g5 - 2 [~ cos({z) ],

= 1(—cosw +cos0) = F1+1)=1

Therefore, f is a probability density function.
) P(X <4) = [ fle)dz = [ & sin{Zx) dr = }[- cos(
~ 2(—0.309017 + 1) = 0.3455

Cyp= ffcoo xf(x)dz = _f[)m Z—TE]wsin(llOa:) dx

= [T l—fu(sinu)(%) du [u= %z, du= {;dx]

=2 [T usinudu L 2 [sinu —ucosuly = [0 —=(-1)] =35

j
This answer is expected because the graph of f is symmetric about —01

the line x = 5.

280

—(z— 268)2) .
20. P(250 < X < 280) = ex dz = 0.673. Thus, the percentage of pregnancies that
(250 < X < 280) /250 TV p( 515z p ge of preg

last between 250 and 280 days is about 67.3%.

0 if £ <0
21. (a) The probability density function is f(¢) =

e if£2>0

3
PO<X <3)=flLe®dt= {—e*t/ﬂ = —e™%% + 1% 0.3127
0

() P(X > 10) = fi2 ke /% dt = lm [-e*%]" = lim (—e™/" +¢79/%) = 0.+ ¢7%/* ~ 0.2865
T-—+00 10

oo

(c) We need to find m such that P(X > m}=3 = [ ée*t/S dt=% = Hlm [we""/sr =1

T—o0

=

™

lim (—e‘“"‘/s—o-e_m/a) =1 = e/ = 3 =% -m/8=In; =
L= 00

m = —8In 3 = 8In2 = 5.55 minutes.
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122+ <y & 22 +(y-— 2)? < 4, 50 § is part of a circle, as shown
in the diagram. The area of 5 is

1
o Vi = dy = [52 Ay + 2008 (3] las
= —%\/§+2cos”1(%) ~2cos 11

= F25) 20 =4 - %

Another method (without calculus): Note that 8 = ZCAB = 7, so the area is

(area of sector OAB) — (area of AABC) = 3 (2 2)% - %(l)ﬁ = 2r _ —‘@

2.y =4z —2* = The loop of the curve is symmetric about y = 0, and therefore ¥ = 0. Ateach point x
where 0 < z < 1, the lamina has a vertical length of \/933—:56‘_4 — (—\/W) =2 m Therefore,
ﬁ_folm-Q\fde folz\/Mdm
T f012mdz B ful 23 —ride

. We evaluate the integrals separately:

Jrava® —atde = z**/T—zde

7 2 Deosoy/T s G |0V cos0dh < dr/ (1)
ia]

2sinfcosfdl = dr
‘-'1'/2 w/2 1 . 3
2sin®feos®Bdf = [ 2[2 (1 — c0s20)]” 1{1 + cos 26)df
”/ L(1 - 2cos28 + 2 cos’ 20 — cos” 20) df
/2111 — 2cos20 + 2cos 20(1 — sin® 20) — §(1 + cos46)%] d¢
= %[9 — 2sin” 20] L L 0"/2 (1 +2cos 40 + cos” 46) df
=5 - [9+2bln49]”2—6%1fﬁ/z(lJrcosSH)dQ

=8 - o [9+ hm89]”2 =

fol \/353fa:4d3::flsc3/2\/1—:cd$= 0"/225in49c059\/1—sin29d9 [sind = /z]
= 0”/225111 Beos® 8df = Tr/22-i(l—cosi.’lf))Q-%(1-%(‘.052(9)0?9

"/ (1 — cos 26 — cos” 20 + cos® 26) do

nﬂ/ {1 — cos20 — 3(1 4 cos48) + cos 26{1 — sin® 20} df

1sin4f — Lsin 2B]W/2 -z

5m/128

Therefore, T =
erefore, T = /16
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3. (a) The two spherical zones, whose surface areas we will call 51

and S9, are generated by rotation about the y-axis of circular

arcs, as indicated in the figure. The arcs are the upper and

lower portions of the circle z2 + y* = r? that are obtained
when the circle is cut with the line y = d. The portion of the
upper arc in the first quadrant is sufficient to generate the

upper spherical zone. That portion of the arc can be described

by the relation r = +/r?2 — y2 ford < y < r. Thus, dz/dy = —y/+/r? — y* and

\/1+ dI dy—1/ \/— \/%

From Formula 9.2.8 we have

d::c rdy
S = /2#m1f1+ dy—f 2w —y 21rrdy:27rr(r—d
v -yt

Similarly, we can compute Sy = ffr 2z /1 + (dz/dy)? dy = ffr 2rrdy = 2rr(r + d). Note that

81 + 83 = 4mr? the surface area of the entire sphere.
(b) r = 3960 mi and d = r (sin 75°) ~ 3825 mi,
so the surface area of the Arctic Ocean is about

2mr(r — d) & 27(3960)(135) ~ 3.36 x 10° mi®.

{c) The area on the sphere lies between planes y = y; and y = y2, where y2 — y1 = h. Thus, we compute the

surface area on the sphere tobe § = / 2rzqfl+ d,;n dy = / 2ardy = 2rr(y — 1) = 27rh.

This equals the lateral area of a cylinder of radius 7 and x=r

height h, since such a cylinder is obtained by rotating the line

x = r about the y-axis, so the surface area of the cylinder

between the planes y = y; and y = y2 is

A= /271'3:1';'1+ da: dy /2wr\/1+02dy

= 2‘.'r'r'_1,4'|""2 =2nr(y2 —y1) = 2nrh

-
/
—

i
-/
\

.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

CHAPTER9 PROBLEMSPLUS U 755
(d) h = 2v sin 23.45° & 3152 mi, so the surface area of the

Torrid Zone is 27rh = 27(3960)(3152) ~ 7.84 x 107 mi®. —\

23.45°

x

g

4. (a) Since the right triangles OAT and OT B are similar, we have

2
r+H =T = g= r . The surface area visible from B is
r a r+ H

S=[T2mr 1+ (dz/dy)® dy. From z° + y? =12, we get

d. . o d, s dz
&ty =g,) e

dzx Y dz\? z2*+y e
— == 1 — ] = = — . Thus,
o - and 1 + (dy) = o us

T 2
S:/a 27rm-£dy=21rr(7"—a)=27rr(r—T:H) =27r1"2(1—,r

(b) Assume R > r. If a light is placed at point L, at a distance z from
the center of the sphere of radius r, then from part (a) we find that e
the total illuminated area A on the two spheres is [withr + H =z

F—x—
andr+H =d —z]. fp—rem— d ————

200 200
$_21r'r(;: r)+27rR(d z — R) r<z<d—R] Alx)

d—x 2w

PR
(5" -

r3 R?
Now A’(.’E) = 2’1‘1’(;5 - m) —

have a local maximum at © = z”.

However, " may not be an allowable value of z—we must show that z* is between r and d — R.

. d
hHhz">r < WET < d>2r+RR/T
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d R\ 2 R\ /2
£ < d & _<4-R d<d-R+d(=) —m(Z &
D <d-R & T (RjrE = R & < + (r) (T)

R 3/2 R 3/2 R
T) <d(= d> ———=+R=R R, but
R—o—R(T) _d(T) & d> et +ry/r/R bu

R+ry/r/R < R+ v andsince d > r + R [given], we conclude that ™ < d — R.
Thus, from (1) and (2), =* is not an aliowable value of z if d < v + R/ R/r.
So A may have a maximum atx = v, 2", ord — K.

_ 2rR*d-r—R)
- d—r

2nr?(d —r — R)

Alr) TR

and A(d - R) =

2 2
Ar)>A(d-R) d‘i_>dr_R & RMd-Ry>r*d-r) & RH-R*>rld-r &
Rd-rd>R -7 & dR-7R+7)>(R-)RE+Rr++Y) &
d>(R*+ Rr+v3)/(R+7) & d>[R+v)? —Rr]/(R+7r) & d>R+r— Rr/{R+r). Now

R+r—Rr/(R+r) < R+ and we know that d > R + +, so we conclude that A{r) > A(d — R).

In conclusion, A has an absolute maximum at z = x* provided d > » + R/ R/r; otherwise, A has its

maximum at & = r.

5. (a) Choose a vertical x-axis pointing downward with its origin at the surface. In order to calculate the pressure at
depth z, consider n subintervals of the interval [0, z] by points x; and choose a point xf € [z:_1,x;] for each 4.
The thin layer of water lying between depth x;_; and depth x; has a density of approximately p(x7), so the
weight of a piece of that layer with unit cross-sectional area is p{z] )g Ax. The total weight of a column of

water extending from the surface to depth z (with unit cross-sectional area} would be approximately

n
3 plz])g Ax. The estimate becomes exact if we take the limit as n — oc; weight (or force) per unit area at

i=1

depth zis W = lim ¥ p(z7)g Az. In other words, P(z) = foz p(x)g dx. More generally, if we make no
oo 2

assumptions about the location of the origin, then P(z) = Po + | p(z)g dx, where Py is the pressure at z = 0.
Differentiating, we get dP/dz = p(z)g.
F={fT P(L+z) 2Vr?—22dz
= [, (Po + [I4 pget/ Mg dz) 24/r? — 2 dr
=P [T 2Vr? —22dx + pygH I, (e(L+"’)/H - 1) 2Vt gt de
={(Po— pogH) |7 212 —2¥dx + pogH [T e FTEVH 91T T gy
= (P~ pogH)(mr?) + pygHe"'? I e*H o/t T2 dy
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6. The problem can be reduced to finding the line which minimizes the I y=J1-x

shaded area in the diagram. The equation of the circle in the first quadrant

is y = v/1 — 22, so if the equation of the line is y = h, then the circle and

the line intersect where b = 1 — 22 = =z = +/1 ~ h?. So the shaded

area is

A:/ﬂ e (\/T——;c5-h)dm+/\;m(h—\/ﬂ5)dm

;[—hm]gf— + [ha] ﬂ*/ \/T—?dwf Mdm

1-h?

V1-h2
fhvl—h2+h—h\/1—h2+] \/lfsngda:—i-/
0 1

(Hm] mm/ T

Note that at (), we reversed the limits of integration and changed the sign in the last integral. We are interested in

the minimum of

Alh) =h(1 —2vT=h%) + [V R T 2P dr o+ Y 1=h? T — 22 dz, so we find dA/dh using FTCI and

the Chain Rule:

%%__h(—2%) +(1—2 1-112)+2 \/1 (\/1_7{5)2] dih(\/l—:—h—?)

. 1 2 _h2 32 h
f—m[zh VIR =21 07)] 4 2h =

- _1\/1__?[@— 2(1 - %),

ThisisOwhen v1—h2 —2(1 —h*) =0 & u-20"=0 (whereu=+v1-h%) & u=0orl &

2
V1 — he

h=1lor 3@ By the First Derivative Test, h = 3@ represents a minimum for A(R), since A'(R) = 1 —

goes from negative to positive at h = %

Another method: Use FTC2 to evaluate all of the integrals before differentiating.

Note: Another strategy is to use the angle 8 as the variable (see diagram above) and show that

A=0+cos@ — Z — 2 sin 26, which is minimized when 6 = Z.
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7. To find the height of the pyramid, we use similar triangles. The first figure shows a cross-section of the pyramid
passing through the top and through two opposite corners of the square base. Now |BD| = b, since it is a radins of

the sphere, which has diameter 2b since it is tangent to the opposite sides of the square base. Also, |AD| = bsince

AADB is isosceles. So the height is |AB| = VB2 1 b2 = /2b.

We first observe that the shared volume is equal to half the volume of the sphere, minus the sum of the four equal
volumes (caps of the sphere) cut off by the triangular faces of the pyramid. See Exercise 6.2.49 for a derivation of
the formula for the volume of a cap of a sphere. To use the formula, we need to find the perpendicular distance h of
each triangular face from the surface of the sphere. We first find the distance d from the center of the sphere to one
of the triangular faces. The third figure shows a cross-section of the pyramid through the top and through the

midpoints of opposite sides of the square base. From similar triangles we find that

G ry 1.2
d _|AB| V2h . di\/Zb “\/Eb

b |AC] 2+ (V3b) V3R 3

Soh=b-d=0b- J?b = t;@b So, using the formula V' = 7h?(r — h/3) from Exercise 6.2.49 with r = b,

we find that the volume of each of the caps is

3 27

. = 3 2 . - v a . . .
w(i%@b) (b - ”"ﬂ“,}{gb) =1 _J"/E -8 +9‘/€7rb“" = (2 — ZV/6)mb?. So, using our first observation, the

shared volume is V = %(%nha) — 4(% — %x/é)w{ﬁ = (%\@ — 2)7rb3.

8. Orient the positive z-axis as in the figure.
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Suppose that the plate has height & and is symmetric about the z-axis. At depth x below the water (2 < x < 2 + h),

let the width of the plate be 2 f (). Now each of the n horizontal strips has height k /7 and the ith strip (1 < ¢ < n)

goes from x = 2 + (2 )h toxr =2+ ( )h The hydrostatic force on the ith strip is
T

F{i) = _I;j[((:/__";);:}n]h 62.52(2f (z)]dz. If we now let z[2f(z)] = k (a constant) so that f(x) = k/(2), then

2F(i/n)h _ 24(i/n)h
J2+ {(i—1)/n]h 62.5k de = 62.5k [T]2+ (1—=1)/n]h

—62.5k[(2+ 20) — (24 =2h)] = 62.5k( %)

So the hydrostatic force on the ith strip is independent of 4, that is, the force on each strip is the same. So the plate
can be shaped as shown in the figure. (In fact, the required condition is satisfied whenever the plate has width C/x

at depth z, for some constant C'. Many shapes are possible.)

. We can assume that the cut is made along a vertical linex = b > 0,
that the disk’s boundary is the circle z2 + y? = 1, and that the center

of mass of the smaller piece (to the right of = = b) is (é U). We

wish to find b to two decimal places. We have

Ibl x- 21 — 22 de
[bl 2v1 —x?de

. Evaluating the numerator gives us

. ga g 3/2)!
ey Ay de = —3{(1-0%)Y) = 2
b
Formula 30 in the table of integrals, we find that the denominator is
[#V1—a%+ sin_l:r.J; = {0+ %) — (bV1 = b2 +sin™'b). Thus, we have

1 %(1762)3/2 o
- =T = . Lor, equivalently, 2(1 — 5232 =2 _1p /12 — snflb Solving this
2 g‘bvlszfsin_lb q ¥ 3 ) 42 g

equation numerically with a calcutator or CAS, we obtain b 22 (0.138173, or b = (.14 m to two decimal places.

LA =30 = 1bh =30 = bh=060

10 b 110
T=6 = i/ ef@)der =6 = / ( .):+l(]—h)du:+/ r(10)dx = 6{70) =

/12 . Jb

h . h :
[(;-2+1m—hr)da~+m 12?]," =420 = {3 x* + B —g- +5(100 - b*) =420 =
0 ¢ 3b
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1hb® 4 56 — Lhb? + 500 —5b* =420 = 80 =ghb® = 480=(hb)b = 480=60b = b=8.

. 15
42 and an equation of the line is y =

[ Y m%[f (2. 2) dz+/8m(1o)2d$]

(8 (2280 + o+ %) do+ 100010 - 8)] = o5 ([EBa® + Ba? + 2a]; + 200

256

_ 55

(150 + 150 + 50 + 200) = 35¢ — 3¢

14(]

Another solution;

Assume that the right triangle cut from the square has legs @ cm and

b em long as shown. The triangle has area 30 cm?, so $ab = 30 and

ab = 60. We place the square in the first quadrant of the zy-plane as

shown, and we let T', R, and S denote the triangle, the remaining

portion of the square, and the full square, respectively. By symmetry,

the centroid of S is (5,5). By Exercise 9.3.37, the centroid of T’
. (b a

s{ 2,10 2.

15 (3 3)

We are given that the centroid of R is {6, ¢), where ¢ is to be determined, We take the density of the square to
be 1, so that areas can be used as masses. Then 7" has mass = 30, S has mass ms = 100, and R has mass
mp = ms — mr = 70. As in Exercises 38 and 39 of Section 9.3, we view S as consisting of a mass m at the

centroid (T, Y7 ) of T and a mass R at the centroid (Tr,§ ) of R. ThenZs = mriy t MRTR and
mT + MR

_ MYy £ MRYR, thatis, 5 = 30(b/3) + 70(6) and 5 — 30010 — a/3) + T0c

mr +mg 100 100
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Solving the first equation for b, we get b = 8 cm. Since

ab = 60 ¢m?, it follows that @ = % = 7.5 cm. Now the second

equation says that 70c = 200 + 10a, so 7e = 20+ a = l; and

[

22 — 3.9285714 cm. The solution is depicted in the figure.

. Ith =L, then

p_ area undery = Lsinf _ Jo Lsin6dé _ [—cosfly _
area of rectangle L H
Ifh = L/2, then

_areaundery = jLsing [T 5Lsin6df [~ cosd]]

area of rectangle wlL 2n

12. (a) The otal set of possibilities can be identified with the rectangular
region R = {(#,y) |0 <y < L,0<6 <} Evenwhenh > L,
the needle intersects at least one line if and only if ¥ < Asinf. Let

B ={{8,y)|0<y<hsinf,0<0 <7} Whenh < L, R is

contained in R, but that is no longer true when h > L. Thus, the

probability that the needle intersects a line becomes

area(MR N Ry)  area(T| Ny )
area(R) wL

When /i > L, the curve y = hsind intersects the line y = L
twice —at (sin”'(L/h), L) and at {w —sin™'(L/h), L}. Set
8, = sin~' (L/h) and 02 = = — 01. Then

area(R Ny ) = f)* hsin@dd + [;7 Ld + [ hsinfdo

=2 [T heinfdf + L{62 — 61) = 2h [ cosB]y' + L(m — 261)

=2h{1 —cosB1) + L{m — 261)

7 _ 12
=2h lf——u + L |m—2sin? £
h h

=2h — 24/ h? —L2+7TL—2Lsin'1(f£)
t

We are told that £ = 4 and h = 7, so area(R N 1) = 14 — 2/33 + 47 — 8sin™! (2) ~ 10.21128 and
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P = - area(h N %) ~ 0.812588. (By comparison, P = 2 ~ (1.636620 when h = L. as shown in the

w

solution to Problem 11.)

(b) The needle intersects at least two lines wheny + L < fisin @,

that is, when y < hsinf — L. Set
Ro = {{#,9) | 0 <y < hsinb — L,0 <8 < w}. Then the
probability that the needle intersects at least two lines is

area(MNRp)  area(®R N Ra)
arca{®) nl

P2: .WhenL:tlundh:?,{*Rg

is contained in R (see the figure). Thus,

Py = 2 area(%h2) = 4 c,Tn-—b;[E4/7)4ﬂ (Tsinf —4)df = = - 2“2{51(4/ (7sind — 4) dd

5= [—Tcos — 49&?_1 @wm =35 |02 —I—T‘ﬁ#ilsm (4/7)]

B V33 4+ 4sin~H(4/7) — 2x

2T

/2 0.301497

(¢) The needle intersects at least three lines when y + 2L < hsin#: that is, when y < hsiné — 2L, Set
Ry = {(8,y) | 0 <y < hsing - 2L,0 < § < «}. Then the probability that the needle intersects at least three

area(h N Ra)  area(Ih N Ry)

linesis Py = =
e I8 area(R) wL

. (At this point, the generalization to £%,, n any positive integer,

should be clear.} Under the given assumption,

Py = o area(a) = 2 770, O (hsind — 2L)do

/2
nL jsm L2L/hy (hsinf — 2L)d0

2 ; e
E[Ah, cosf — 2L0]sin_l(21’/h)

=2 [-—ﬂ'L + h? — 412 4+ 2L sin™" (2L /h)

Note that the probability that a needle touches exactly one line is 1 — P, the probability (hat it touches exactly two

lines is P» — Ps, and so on.
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