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10 (0 DIFFERENTIAL EQUATIONS

10.1 Modeling with Differential Equations

lLy=zr—=2 ! = gy =1+ z 2 Toshow that y is a solution of the differential equation, we will substitute the
expressions for y and 3/’ in the left-hand side of the equation and show that the lett-hand side is equal to the
right-hand side.

LHS:my'+y:m(1+x—2)+(:n——:r‘1) —z+x 4z —-x ' =2 =RHS

.y =sinz cosz —cosx = y =sinz(—sinz)+ cosz (cosr) — (—sinz) = cos? & — sin’ z + sin .

LHS =y + (tanz)y = cos’ « — sin® z + sinz + (tanz)(sin cosz — cos)
=cos®z —sin’z + sinz + sin® £ — sinz = cos” & = RHS,
s0 y is a solution of the differential equation. Also, (0} =sin0 cos0 —cos0 = 0-1— 1 = —1, so the initial
condition is satisfied.
(@) y =sinkt = y =kcoskt = ¢’ =—k’sinkt. y"+9y=0 =
—K2sinkt + 9sinkt = Oforallt & (9—k*)sinkt=0forallt < 99—k =0 <« k=13

(by y = Asinkt + Beoskt = 1y = Akcoskt — Bksinkt = y” = — Ak?sin kt — Bk* cos kt.
Thus, v + 9y =0 = —Ak*sinkt -~ Bk’ coskt +9(Asinkt + Beoskt) =0 =
(9 — k*)Asinkt + (9 — k®) B eos kt = 0. The last equation is true for all values of A and B if k = +3.

7 ri

y=et = oy =re’t =y =02t Yty by =0 = rlel+re -6t =0 =
t (T‘

(rP+r—6)¢"=0 = (r+3)(r-2)=0 = r=-3or2

L @y=¢ = y=¢ = y = LHS=y" +2 ty=c" + 2" +e' =4e' £0,50y =€’ isnota

solution of the ditterential equation.
By y=e" = y=—c"

y = ¢~ " ig a solution.

= y' ' =e LLHS =9 " +2y +y=c¢"" 2" +e " =0=RHS,s0

@y=te™' = y=tl-e)+eN)=e(1-t) = y' =e*t({-2)
LHS =y  + 2y +y=e""(t-2) +27"(1 —t) +te”
=e '[(t—2)+2(1~1t)+t =e"0) = 0=RHS,
so y = te ' is a solution.
My=te? = y=te™(2-1) = y' =" (¥ -4t+2).
LHS =" + 2y +y=e (P —4t 4+ 2) + 2e (2~ t) + %
= [(#F -4t +2) + 22— 1) + 7] =e7(2) #0,

2 —t

soy = 1" " is not a solution.
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760 - CHAPTER10 DIFFERENTIAL EQUATIONS

B (1) y = G2 = y = Ccm2/2(2:1:/2) = 2Ce" T/ = Y.

= (e’=5 = ( =25,sothesolution iy

y = 2e"1/2572 = 2607 =172,

7. (a} Since the derivative ' = —y* is always negative (or 01f y = 0}, the function y must be decreusing (or equal

to 0) on any interval on which it is defined.

1 1 1 1 \? .
bjy=—— = y = LHS =y = ———— = — = 4% = RHS
by o+ ' (L+C)2 ¥ (.L+C)2 (I+C) y

(¢) y = O is a solution of ' = —y? that is not a member of the family in part (b).
Y Y ymp

1 1
() If y(z) = J_% then 4(0) = 6-41—_0 =c Since y(0) = 0.5, = = % = CUC=2s0y= T+ 2

. (a) If = is close to 0, then g is close to 0, and hence, ¥ is close to 0. Thus, the graph of y must have a tangent line

that is nearly horizontal. If z is large, then 2y is large, and the graph of y must have a tangent line that is nearly
vertical. (In both cases, we assume reasonable values for y.)

(byy = (c— ;r2)71/2 y = alc— Iz)—zlzl
RHS = 2y = x{(c— me)fi/zr - (C, xg)—s/z =y = LHS

{c) When 1 is close t0 0, ¢ is also close to 0.

As x gets larger, so does |y'|.

=1

() =(c =N =1/ Jeand y(0) =2 = =

1
2

dP P dP P
L (a) — = 1.2 1~ . — 1 assumi
(a) 7 ( 42[]0> Now 7 >0 = > 0 [assuming that P > (0] =

4200

PP <4200 = the population is increasing for < 7 < 4200.
dp

by — P4
()dt<0 = > 4200

[P
% =0 = P=42000rF =10
i
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10.a)y=k = y':O,so%:y4—6y3+5y2 & 0=k -6k +5k* & K (k*-6k+5) =0 &

E(k—1)(k—5)=0 « k=010r5

dy

TR Viy-Dy—5>0 & ye(-o0,0)U(0,1)U(50)

(b) v is increasing &
. . dy
(c) y ts decreasing < p <0 & ye(l1,b)

11. (a) This function is increasing and also decreasing. But dy/dt = e (y — 1)2 > 0 for all ¢, implying that the graph
of the solution of the differential equation cannot be decreasing on any interval,

(b) When y = 1, dy/dt = 0, but the graph does not have a horizontal tangent line.
12. The graph for this exercise is shown in the figure at the right.
A. ¢ =1+ zy > 1 for points in the first quadrant, but we can

see that 4’ < 0 for some points in the first quadrant. So

equation A is incorrect.

B. ¥’ = —2xy = 0 when z = 0, but we can see that y’ > 0

for z = 0. So equation B is incorrect.

C. y' = 1 — 2zy seems reasonable since:
(1) When z = 0, 3 could be 1.
(2) When = < 0, ' could be greater than 1.

r

1- .
Y 1 y' takes on small negative values, then as & — oo,

{3) Solving ¢y’ = 1 — 2xy for y givesus y =
y — 07, as shown in the figure. Thus, the correct equation is C.

13. (a) P increases most rapidly at the beginning, since there are usually {c) P()

many simple, easily-learned sub-skills associated with learning a
skill. As ¢ increases, we would expect dP/dt to remain positive, but
decrease. This is because as time progresses, the only points left to

learn are the more difficult ones.

[P
(b % = k(M — P) is always positive, so the level of performance P is

increasing. As P gets close to M, dP/dt gets close to 0; that is, the

performance levels off, as explained in part (a).

t4. (a) The coffee cools most quickly as soon as it is removed from the heat
source. The rate of cooling decreases toward 0 since the coffee

approaches room temperature.

1 . Lo .
(b) % = k(y — R), where k is a proportionality constant, y is the
¢

temperature of the coffee, and R is the room temperature. The initial

condition is y(0) = 95 °C. The answer and the mode! support each
other because as y approaches R, dy/dt approaches (, so the model

seems appropriate.
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16 5 CHAPTER1D DIFFERENTIAL EQUATIONS
10.2 Direction Fields and Euler's Method

1. (a) ; (b) It appears that the constant functions y = 0,
y = —2, and y = 2 are equilibrium solutions.

Note that these three values of y satisfy the given

differential equation y’ = y(l - %T;z)

R N
NNNNNNNN N

(b) From the figure, it appears that y = 7 is an
equilibrium solution. From the equation
Y = zsiny. we see that y = n (1 an integer)

describes all the equilibrium solutions.

(RN

B Ry, AL NENEE
PP

I NP

i
w

3. 4 = y — 1. The slopes at each point are independent of , so the slopes are the same along each line parallel to the
z-axis. Thus, 1V is the direction field for this equation. Note that fory = 1, y" = 0.

. ' =y — « = O onthe line ¥y = z, when = = 0 the slope is y, and when y = 0 the slope is —x. Direction field 11
satisfies these conditions. [Looking at the slope at the point {0, 2), IT looks more like it has a slope of 2 than does
direction field I.]

.y =y* —2*=0 =y = +z. There are horizontal tangents on these lines only in graph II, so this equation
corresponds to direction field ITI.

.y = y* —2® = 0 onthe line y = «, when z = 0 the slope is y°, and when y = () the slope is —x”. The graph is
similar to the graph for Exercise 4, but the segments must get steeper very rapidly as they move away from the
origin, because x and y are raised to the third power. This is the case in direction field 1.

@ y0) =1 (b) »(0) = 0 (©) y(0) = -1

R b
AN
ZANA A
VALY RRYT

|
I e pd k= = =
R
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2.

Flrfll /-

Note that for y = —1, %" = (0. The three solution curves

sketched go through (0,0). {0, —1), and (0, —2).

[

N

R
L R e e
N T
LV RN,

\

~ ]
- S}
- S
-

Note that 4’ = 0 fory = +a. If [z| < |y, then ' < O; that

is, the slopes are negative for all points in quadrants Tand I

above both of the lines y = = and y = —2, and all points in
quadrants 1T and 1V below both of the lines y = —z and

y = x. A stmilar statement holds for positive slopes.
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Note that ' = 0 for any point on the line = 2x. The slopes are

i ; . . . . .
¥y =y—2 positive to the left of the line and negative to the right of the line.

The solution curve in the graph passes through (1,0).

VAN
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|

Note that 4 = 0 for any point on the hyperbola zy = 1

(or y = 1/x). The slopes are negative at points “inside” the
branches and positive at points everywhere else. The solution

curve in the graph passes through (0, 0).

Note that 3’ = y{x + 1) = () for any point on y = (} or on

x = —1. The slopes are positive when the factors y and = + 1

have the same sign and negative when they have opposite signs.

The solution curve in the graph passes through {0, 1}.

.

—--\\\6)-
i E
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Note that ' = z(1 — y) = 0 for any pointonz = Dorony = 1.

The slopes are positive when the factors x and 1 — y have the

same sign and negative when they have opposite signs. The

solution curve in the graph passes through (1, 0).

o e e
N -
N e

/

e
S

s

15. In Maple, we can use either directionfield (in Maple’s share

library) or plots [fieldplot] to plot the direction field. To plot
the solution, we can either use the initial-value option in

directionfield, or actually solve the equation. In Mathematica,

Fil177777280
P
NN IV
PN S
NN e e S e e
IARRRR RN

W o o o e e e ]

we use PlotVectorField for the direction field, and the

3

[V SR\ (NENENENENENENEN

Plot [Evaluate [...]] construction to plot the solution, which -3

isy = e (17°°22)/2 1 Derive, use Direction Field (in utility file ODE_APPR) to plot the direction field.

Then use DSOLVEL { -y*SIN{2*x),1,%,y,0,1) (in utility file ODE1) to solve the equation. Simplify each

result.

16. See Exercise 15 for specific CAS directions. The exact solution is

2

24— e
1+ tan{1/2
y = —x — 2arctan +2an( /2)

7 1+ tan(1/2)

e S

| AV AV .

L= lim y(t) existsfor —2 < e < 2; L = £2 fore = £2 and

t—oo

L = 0for —2 < ¢ < 2. For other values of ¢, L does not exist.
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7710 0 CHAPTER10 DiFFERENTIAL EQUATIONS

18. Note that when f(%) = 0 on the graph in the text, we have /' = f(y) = 0

so we get horizontal segments at y = +1, £2. We get segments with

~————
P
.~
~———
[
———
e
~———
~———
~———

negative slopes only for 1 < ly| < 2. All other segments have positive

slope. For the limiting behavior of solutions;

-

ANNERAY
Ny
¥

o [fy(0) > 2, then tlim y = o0 and r lim y = 2.

———
_———
_———
[
_————
_———
_————

11 < y(0) < 2, then fIim y = 1 and , lim y=2

If —1 < y(0) < 1, then tlim y=1and , lim y=-—1
If —2 < y(0) < —1, then l‘lim y=—2and t lim y=—-1
A ete) e oc

e 1fy < -2 then flim y = —2and . lim y = —oc.

9. )y = Flz,y) —yandy(0) =1 = zp=0,3=1
(Yh=04dandys = yo+ hF(wo,0) = pn=14+04-1=14d oy =xp+h=0+04=104,
soy = y(04) = 1.4
(iDh =02 = u =02and xy = 0.4, sowe need to find ya.
Y1 = Yo + hF(xe,p0) =14+ 020 =1402-1= 12

yr=11 +hF(zL,y)=124025 =12+02-1.2=1.44

(i h =01 = z4=04.sowencedtofindys. 1 =wvo+hF(zo, ) =1+01yp =1+01-1=1.1,
=iy +hE (s ) =11+01y, =11+01-1.1 =1.21,
Ys = Yo + hF (22, y0) = 121 + 0.1y = 1.21 +0.1-1.21 = 1.331,
Yo = ys + hF(xa,ys) = 1331+ 0.1ys = 1.331 + 0.1 - 1.331 = 1.4641.

We see that the estimates are underestimates since

they are all below the graph of y = ¢”.

OI.3

(¢) (i) For b = 0.4: (exact value) — (approximate value) = ™4 — 1.4 =~ 0.0918
(ii) For b = 0.2:  {exact value) — (approximate value) = 4 — 1.44 ~ 0.0518

{iii) For h = 0.1;  {exact value) — (approximate value) = ¢%* — 1.4641 ~ 0.0277

Each time the step size is halved, the error estimate also appears to be halved (approximately).

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
SECTIGN 10.2  DIRECTION FIELDS AND EULER'SMETHGD T TN

As & increases, the slopes decrease and all of the
estimates are above the true vajues. Thus, all of

the estimates are overestimates.

WUV LR R
RERRR R LR R \RRR AR A
LRERRRLLRLLLARA RLRAY
ARRRRRRR R AR R AR Y
RARERR R R AR R Y

CUAREERTEERRETIERTNS
ORI AR AR
T TR ST

N h=05z0=1y =0,and Fr.y) =y — 2.

Notethat t), = zo+h =1+0.5 = 15,22 =2, and z3 = 2.5,

Y1 = yo + hF(zo, yo) = 0+ 0.5F(1,0) = 0.5[0 — 2(1)] = —1.

Yo =y + hF (e, ) = =1+ 0.5F(15, -1} = —1 4+ 0.5[—1 — 2(1.5)] = —3.
ya = 2 + hF(x2,42) = -3+ 0.5F(2,-3) = =3+ 0.5[-3 — 2(2}] = —6.5.
)=

ys = ys + hF(x3,y3) = —6.5 + 0.5F(2.5, —6.5) = —6.5 + 0.5[-6.5 — 2(2.5)] = —12.25.

Ch=0.2.2y = Byo =0 and Fz,y)=1—zy.
Notethatzy =z +h=04+02=02, 25 = 04, 23 = 0.6, and x4 = (.5
Y1 = yo + hF (2o, yo) = 0+ 0.2F(0,0) = 0.2{1 - (0)(0)] = 0.2.
g2 =y - AE(E, ) = 0.2+ 0.2F(0.2,0.2) = 0.2+ 0.2[1 — (0.2)(0.2)] = 0.392.
3 = y2 + hF (22
4 = ya + R (as, yn

= 0.56064 + 0.2[1 — (0.6)(0.56064)] = 0.6933632.
s = ya + RF (g, ya) = 0.6933632 + 0.2[1 — (0.8}(0.6933632)] = 0.782425088,
Thus, (1) ~= 0.7824.

)=
L y2) = 0.392 + 0.2£(0.4,0.392) = 0.392 + 0.2[1 — (0.4)(0.392)} = 0.56064,
)=
)

L h =01, 20=0,y =1 and Flz,y) =y + 2p.

Noethats; =20+ h=0+01 =01, 22 = 0.2, 23 =0.3,and x4 = 0.4.

Y1 =yo +RE{ro, ) =1+ 0.1F(0,1) =1+ 0.1{1 + (0)(1)] = 1.1

Yo =11 + hF{z1, ) = 1.1 +0.1F(0.1,1.1) = 1.1 + 0.1[1.1 + (0.1)(1.1)] = 1.221.

s = yo + hF (@2, y2) = 1.221 + 0.1F(0.2, 1.221) = 1.221 + 0.1[1.221 + (0.2)(1.221)] = 1.36752.

( ) = 1.36752 4- 0.1F(0.3,1.36752) = 1.36752 + 0.1[1.36752 + (0.3)(1.36752}]
= 1.5452976.
s = ya - hE (T4, ya) = 1.5452976 + 0.1F(0.4, 1.5452976)
= 1.5452976 + 0.1[1.5452976 + (0.4)(1.5452976)] = 1.761639264.

Thus, y(0.5) == 1.7616.

e = Y3 + hEF(x3,ys

28, () h = 0.2, 20 = Lyyo = 0,and Fx,y) =x — zy.
We need to find 2, because 1 = 1.2 and 2z = 1.4
g1 = yo + hF (2o, y0) = 0+ 0.2F(1,0) = 0.2]1 — (1){0})] = 0.2.
g2 =+ hF(r,n) = 0.2+ 0.2F(1.2,0.2) = 0.2+ 0.2{1.2 — (1.2)(0.2)] = 0.392 = y{1.4).
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(b} Now h = (.1, so we need to find y4.
g1 =04 0.1[1 — {1){0}] = 0.1,
y2 = 0.1+ 0.171.1 — (1.1)(0.1})] = 0.199,
ya = 0.199 + 0.1]1.2 — (1.2)(0.199)] = 0.29512, and
ya = 0.29512 + 0.1[1.3 — {1.3)(0.29512)] = 0.3867544 =~ y(1.4).

5. () dy/dr + 32y = 62 = y =62 — 3a”y. Store this expression in Y1 and use the following simple

program to evaluate y(1) for cach part, usingH = A = 1 and N = 1 for part (i), H = 0.1 and N = 10 for
part (ii), und so forth.

h—HOJI-X3-Y:
For, LN:Y+HxY) - Y. X+H-X;
End(loop):

Display Y. [To see all iterations, include this statement in the loop.j
(YH=1,N=1 = y{1)=3 (i H=01,N=10 = y(1)=~2.3928
(i) H=0.01,N =100 = (1)~ 2.3701 (iv) H=0.001,N=1000 = y(l)= 2.3681

!

v AIB 9,2 7m3
by=2+¢ = Yy = -3z
LHS = i + 32%y = 322%™ | 3¢ (2 n e‘“g) = 322%™ 460> + 3% " — 62° = RHS

y0)=2+e"=2+1=3
{c) The exact value of y(1) is 2 + eV o4 et
(i) For h = 1: (exact value) — (approximate value) = 2 + ¢~ — 3 = ~0.6321
(i) For A = 0.1: (exact value) - (approximate value) = 2 + ¢~! — 2.3928 ~ —0.0249
(i) For b = 0.01: (exact value) — (approximate value) = 2 +- e~ ' — 2.3701 = —0.0022

(iv) For b = 0.001: (exact value) — (approximate value) = 2 + e~ ' — 2.3681 = —0.0002

In (ii)-(iv), it seems that when the step size is divided by 10, the error estimate is also divided by 10
{approximately),

2B. (2) We use the program from the solution to (b}
Exercise 25 with Y, = z* — 3*, H = (.01, and
N = 224 = 200. With (zo,y0) = (0, 1), we get

»(2) = 1.9000.

i

Naotice from the graph that y(2) ~ 1.9, which

serves as a check on our calculation in part {a).
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21. ()RdQ

+ = Q FE(t) becomes (b) From the graph, it appears that the limiting value
of the charge () is about 3.

(@ IQ =0,thend@ =12 = Q) =Jisan
equilibrium solution.

Q
6

5 + 5@ = 600r Q' +4Q =

|
(e) ' +4Q = 12 =12 - 4Q. Now Q(0) == 0,s0 tp = 0 and Qy = D.
Q1 Qo + hF(to, Qo) =04+0.1(12 - 4-0) = 1.2
= Q1+ hF(t1,Q1) =1.24+0.1{12 - 4.1.2) = 1.92
Q3 = Qo+ hF(ts,Q2) = 1.92 + 0.1(12 — 4 - 1.92) = 2.352
Qi =Qs + hF(ts,Q3) = 2.352 + 0.1(12 — 4- 2.352) = 2.6112
Qs = Qa4+ hF(t,Qq) = 2.6112 + 0.1(12 — 4 - 2.6112) = 2.76672
Thus, @s = Q(0.5) = 2.77 C.

28. (a) From Exercise 10.1.14, we have dy/dt = k(y — R). We are given that 2 = 20°C and dy/dt = —1°C/min
when y = 70°C. Thus, —1 = &(70 - 20} = k= _316 and the ditferential equation becomes
dy/dt = —%(y - 20).

(b)
The limiting value of the temperature is 20°C;
that is, the temperature of the room.

"0 160 200 1

{¢) From part (a), dy/dt = *'}—(y With to = 0, yo = 95, and h = 2 min, we get

20).
Y1 = o + hE{to, o) = 95 + 2[— 25 (95 — 20)] = 92

= 89.12 4 2[—5(89.12 — 20)] = 86.3552

L
50

)=

yo = y1 +hF{t, ) = 924 2[— (92 — 20)] = 89.12
)
) =

Y1 =ys -+ hF

(

Yz = yz + AF (L2, 0
(ts,33) = 86.3552 + 2[— 75 (86.3552 — 20)] = 83.700092
(

Ys = ya + hF(te, ys) = 83700902 + 2[— & (83.700092 — 20)] = 81.15295232
Thus, y(10} = 81.15°C.
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10.3 Separable Equations

d, d; dx " d
R l:j[y#ﬂl = /_y:/_ac = Inlyl=hz|+C =
dr Y T i x
ly| = Bl = n=leC = €| = y = Kz, where K = £e% is a constant. (In our derivation, K was

nonzero, but we can restore the excluded case y = 0 by allowing K to be zero.)

d'y _ 621:

Cdr 433
y==x{/se+C
dy Ty dy T de

. dy
3 2 1 ! = - = - -—_ =
(@ + 1y =aoy = — o Sl S [y #01 = f [

= dytdy=e¥dr = [4’dy= [e*dz = y'=

rdr
2+ 1

Inlyl =12In(@*+ 1)+ C [u=2"+1du=220dr] =In(z®+1)"? flne" = =ln(e’Ve?+1) =
ly| = V1 = y = K 22 +'1. where K = +e is a constant. (In our derivation, & was nonzero, but

we can restore the excluded case y = 0 by allowing K to be zero.)

. 1; : d . " d '
i y" = yZ sing = &y - yQ sinr = —?: =sinxdz [y ?é 0] = / % - / sinzdr =
dx y Sy

1 , 1 1 . .
—=—-cosz+C = —=cosz—C = y— ——— where K = C. y=0isalsoasolution.
Y Y cosr + A

siny
cosy

_ P d
. (T+tang)y =2° +1 = (1+ta,ny)d—u—-3:2+l = (l+

) dy = (z* + ) da =
—siny 2
1~ o5y dy= [ (2" +1)de = y—Incosy| = 32*+ 2z + C. Note: The left side is equivalent to

y + In|sccyl.

du 1+ 7 . ; . .
'E:l—k\/ﬂ = (A+Vu)du=(1+r)dr = [(1+u"Hdu=[1++YDdr =

wt ug/Q*'r—I—z 3/2+C

di te'
.d—‘;*—g- = y+/1+yidy=tetdt = Jy\/l—i—y dy—ftedf =

14 4?2

31372 - . -
(1 +4%) ? —te' — ' + C [where the first integral is evaluated by substitution and the second by parts] =

1432 =Bte' = + O = y=2 /Bl —¢ +O) 23 1

"

91 .
dy=xdr = /%dy—/mda: = (Iny)? =2

Ty 2lny
2

:2]ny
Iny=t2W2-C = y=etVe/2tC
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mn d
.%:2—1-2u+t+tu = @=(1+u)(2+t) = / fu=/(2+t}dt [wu# -1 =

dit dt 1

Inl+ul =i +2t+C = |1+ut=ef2/2+2t+c:Ket2/2+2‘,whereK=eC =
ldtu=+Ket /2T o p=_14 Ket72+2 where K > 0. u = —1 is also a solution, 50

2 . .
w= —1-+ Aet 72+ 2t where A is an arbitrary constant.

%:—eie’ = [eFde=-feldt = —eF=-¢+C = €7

1
=1
et - C = F n(e

dy 2 / dy / -1

— = Ly(1l) =0. = fdr = tan"y=z+C. y=0whenz =150
2 =¥+ Ly ey y y

1+C=tan '0=0 = C=—1 Thus,tan™'y=ux—landy = tan( — 1).

dy _ ycosx 1+

) = , dy = coszdz =
dr 1+ 372 v

y(0) = 1. (1+y*)dy = ycoszdr =

f(é%—y)dy:fcos;rdx = Infy/+ 3y’ =sinz+C y(0) =1 = Inl+3=sn0+C =

C = i, soln|y|+ Jy* =sinz + . We cannot solve explicitly for y.

Lzcosz = {2y+ ey = zcoszdr=(2y+e¥)dy = [(2y+e”¥)dy= [xcoszdz =

y> + L1e™ = rsinz + cosz + C  [where the second integral is evaluated using integration by parts]. Now

y(0)=0 = 0+1=0+1+C = C=—2 Thus,asolutionisy®+ e = zsinz +cosz — §.

We cannot solve explicitly for y.

.ii_";:\/ﬁ = dP/NP=+vidt = [P'Y?dp=[t/?d = 2PVP=2874C.

P)=2 = 2V2=240C = C=2V2-%4s02P?=2*7122-% =

. 2
VP=187 101 & P=(§t3/2+\/§4%) .

d_u 2t + sec’ t
Codt 2u '

w(0) = —5. [2udu = j'(2t + sec? t) dt = u®=1t+tant+ C, where

HE]

[w(0)]? =0 +tan0+C = C = (—5)? = 25. Therefore, u* = t* 4 tant + 25, sou = £V/* + tant + 25.

Since u(0} = ~5, we must have u — —v/t? + tant + 25.

3 and v 123 Y 2
and e V=3t 2.80(, =

y=m2-1In(3- t2) for it| < /3.
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dy ety , _dy

1. ytanzg=a+y D<o <7/2 = = —— =cotzdzr [a4+y#0] =
dr tanzx a+y

d pr
/ ¥ /C,()S‘Ld;r: = Inja+yl =nsinz]+C =
a+y sinx

lo 4y} = llsin=lC = ghnlsinz] 0O — oClging] = a+y = Ksinz, where K = +e. (In our derivation,

K was nonzero, but we can restore the excluded case y = —a by allowing K to be zero) y(n/3) =a =
V3

T da 4da 4a
a—&—a:Ksin(,—) = 20=K— = HK=-— Thus,a+4+y=—=sinzandsoy = —sinz — a.
3 2 RV RV

V3

. d ; ‘ i Ao
Ly ty=y? = el oy —y o ady= (P -ydz = uz(l_jy:%

T dy [ dx 1 ~ fdzx o
/}}Ty_—_l)ﬂ,/ p ly#0,11 = /(y-—l_y)dy_/_m_ = Inly—1]-Inly|=Injz|+C

—1
Y

1 , - ,
r In (¢ | rl) = ZJ_‘ =e izl = y—1 = Kz, where K = +¢% =
Y ¥

1 . 1
l-—=FkKz = —-=1-Ka = y= . [The excluded cases, y = (and y = 1, are ruled out hy

y Y ; 1 - Kz
the initial condition y(1} = —1.} Now y{1) = = = I-K=-1 = K=2,

1

50y = ;
Y 1 - 2x

dy

d - o ' :
e Aty y(0) = 7. 'T? =dxtdr ify #0] = /%g = /4:1:3 dr = hjyl=z'+C =

3 v E]
ﬁln[y| — ¢F + _— ‘y| — o e(? = y= A(‘.m4; y(U) =7 = A= 7 = Yy = 78:1:4

dy _y* _ Cdy da 1 1
.E—F,y(l)—l.l/?: a7 e 22+C y(1) = 1=-iic =

, 1 1 1 24227
y o 2x% 0 2 2. 2n?

—2 JI- ]——-m—QLdr = / dy
-y
sin’]y:wz—%-(/’for——%§m2+C§§.

2

®y0}=0 = sin'0=0>+C = C=0s0sin'y=2z

and y = sin(«?) for —/7/2 < x < /x/2.

—Jmj2 fmi2
N 0 T

() For \/1 — »* to be a real number, we must have —1 < y < 1; thatis, —1 < %(0) < 1. Thus, the initial-value
problem 3 = 2z /1 ~ y2, y(0) = 2 does nor have a solution.
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2 e Vy feose =0 & [eVdy=—[coszdr & —cV=-sinz+C1 & y=-— In{sin z + O).
The solution is periodic, with period 2z, Note that for C > 1, the domain of the solution is B, but for =1 < ¢ < 1
it is only defined on the intervals where sin @ + C > 0, and it is meaningless lor ' < —1, since then

sinr + €' < 0, and the logarithm is undefined.

3

U\ Ricamah

-2
0

C=-05

I -2

N

1
Cc=1.

C=3 C=6

For —1 < (7 < 1, the solution curve consists of concave-up pieces separated by intervals on which the solution is
not defined (where sin z + €' < 0). For C = 1, the solution curve consists of concave-up pieces scparated by
vertical asymptotes at the points where sinx + C =0 < sinz = —1. For ' > 1, the curve is continuous, and

as €7 increases, the graph moves downward, and the amplitude of the oscillations decreases.

1 sinr .
. ;—: = :2; y(0) = Z.So [sinydy = [sinzdr <«

—cosy = —cosx+ C & cosy = cosx — C. From the initial
condition, weneed cos £ =cos0 - C = 0=1-C = =1L
so the solutton is cos iy = cosx — 1. Note thut we cannot take cos * of

both sides, since that would unnecessarily restrict the solution to the cuse

where —1 < cosz — 1 < 0 < cosx, as cos™ ' is defined only on

[—1, 1]. Instead we plot the graph using Maple’s
plots [implicitplot] or Mathematica’s
Plot [Evaluate[---]].

@7 zvzi+1

o e & [ye¥dy = [z va?+ 1dz. We use parts on the LHS with u = y, dv = ¥ dy, and on

the RHS we use the substitution z = 2% + 1, so dz = 2z dz. The equation becomes ye? — [e?dy = + [ /zdz

& ey 1) ==+ 1)?”2 + (', s0 we see that the curves are symmetric about the y-axis. Every point (:z, /)

in the plane lies on one of the curves, namely the one for which C = (y — 1}e¥ — %(:r2 + 1)3/2. For example,
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along the y-axis, C = (y — 1)e¥ — % so the origin lies on the curve with C' = —%. We use Maple’s

plots [implicitplot] command or Plot [Evaluate [---1] in Mathematica to plot the solution curves for

C

various values of .

T/

C=

2.5

0
C=-1/3

It seems that the transitional values of € are -—% and — % For C' < —3, the graph consists of left and right

branches. ALC = —% the two branches become connected at the origin, and as C increases, the graph splits into
top and bottom branches. At C = — % the bottom half disappears. As C increases further, the graph moves upward,

but doesn’t change shape much.

25, (a) ’
y =1/y
2
-2
1
-1
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by =1y = dy/de=1/y =
ydy=de = [ydy=[de =
yfl=2+c = y¥=2z+¢

ory = £/2{z +¢c).

(byy =2%/y = wydy=z’dz,

&

p 3
3y = %3: + 1, 0r

—

Yy = :t(%mg +c)1/2.

\
T

)

[ e S .

¥ =0~

e=1
c=—1

/-
u

~\

i1

27. The curves y = kz° form a family of parabolas with axis the y-axis.

Differentiating gives y' = 2k, but k = y/z°, so ¥’ = 2y/x. Thus, the
slope of the tangent line at any point (z, y) on one of the parabolas is
y’ = 2y/x, so the orthogonal trajectories must satisfy ' = —z /(2y)
& ydy=-—rdzr & y = —;L‘2/2 +C = P42t =0.

This is a family of ellipses.

. The curves 22 — 4 = k form a family of hyperbolas. Differentiating gives

2x — 2y {dy/dz) = 0 ory’ = x/y, the slope of the tangent line at {x, )
on one of the hyperbolas. Thus, the orthogonal trajectories must satisfy

y = —y/r & dyfy=—dz/r = lnlyl=-lnlk|+C <

Injzj+Injy|=C; & Inlwyl=0C &
y

lzy| = e < ay = (. This is a family of hyperbolas.
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1. 1 1
29. Differentiating y = (z + k) ' givesy’ = ———,butk = v T, SO

{z+ k)

1 . . . .
— —y>. Thus, the orthogonal trajectories must satisfy

(1/y)?

2 y3
& ydy=dr & §=$+Cor

. Differentiating y = ke ™ gives ' = —ke ™", butk = ye®, 50y’ = —y.
Thus, the orthogonal trajectories must satisfy v = —1/{—y) = 1/y &

ydy=de < 3y =z+C & y=4[2(C+z)]"% Thisisa

family of parabolas with axis the xz-axis.

dQ
dt

In|12 — 4Q} = —4t —4C & [12-4Q| = 7% o 12-4Q = Ke ™ |[K = 17| ©
40=12-Ke™ o Q=3-Ac"[A=K/4. Q(0)=0 & 0=3-4 o A=3 &
Q) =3 -3¢ Y. Ast — oc, @t} — 3 — 0 = 3 (the limiting value).

. From Exercise 10.2.27, =12 -4Q < f 1201Q4Q = / dt & —iln12-4Q| =t+C &

. From Exercise 10.2.28, (fii =y —20) & / ST

y—20=Ke % o gty =Ke /0420 y(0) =95 & 95=K+200 = K=75 &
y(t) = 75e~"* 4 20.

/ —m)dt & lnly—20=—-5t+C <

ar dP .
— = k(M — = — ; M| = _kt 3 M| = o MO
= k(M —P) « B /( k)dt < In[P— M| E+C & |[P-M|=c¢

& P M=Ac" [A=4c] & P =M+ Ae " If we assume that performance is at level 0 when
t=0,thenP(0) =0 & 0=M+A & A=-M < P{l)=M- Mc*
flim_ Pt)=M-M-0=M.

1 _ljb—a) 1/(b—a)
(a—z)p-2)  a—-z bz

d
. (a) Zg =k(a—x)(b—x),a b Using partial fractions, , 0

dr

1
———— = [ kdf = ——{— ol I
a—z)(b-=z) fdf b——a( Injla —z|+Inb-z) =kt+C =

-| = (b —a) (kt + C). The concentrations [A] = a — x and [B] = b — x cannot be negative, so

_b-—

;r. We now have ln(b —
a—1x
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e b O
ln(h) = (b — a)C. Hence, 111(—L 'T) ={b—a)kt +1n(—) o 270 D ek
a a - & a

a— X i
b {C(b-—a)kt _ 1?[ ab [e(b——a)kt _ 1}

T belb—adkifq ] T T helb—alkt g

moles/L.

= =kt + €. Since z(0) = 0. we get

{b) If b = ¢, then (é—‘; = k(a - ,c)2 SO / @% = fk:d,t and i
a a’kt moles
T akt+1 akt+1 L
@ 20a%k
Suppose & = [Cl = a/2 when ¢ = 20. Then «(20) = a/2 = 5= Wak o1
a®t/(20a)  at/20 at  moles

1
C==_Thus,a —z

= —ﬂl—w_ andx —a
a kt+1/a -

= 40’k = 2002k + 0

2 - = — $o= = =
= WaTk=a = k=g SOEE T 00 144/20  t+20 L

e ‘- d:
35. (a} [f a = b, then dr k{a — z)(b— x)'/? becomes % = kia —

= %7 = (o 2) dz =kdt =
dt

[la—ux) B2hp = [kdt = 2a-— 2) V2% = kt + C |by substitution] = M Va—e =
2\’ 4 - o
e Ce T = z{t)=a-— m The initial concentration of HBris 0, so z(0) =0 =

—é—ﬁ = 643 =a = (= 3 = C=2/ya (Cis positive since

4
Ot 2/va)

0=a-

kt+C =2a—:2)""2>0). Thus, 2(t) =«

dr 12 dr / da /
—_—_ = R i — ! = —_——ee————— | A ——————————t—— k h‘ . F h‘
" kia —x){b—x) = PR kdt = J oo et (). From the

hint,bu=vh—z = u*=b-z = 2udu=—duz S()/ - / _ﬂ -
[@ — (b—u?)u

. ; ) d A
-2 / —d“—Q =92 / @Muz— LAY (P SR " ) {*) becomes
J a=b+tu Jo(Va=b) +u? b a—b

I3

— —2 N
tan~! =kt+C Nowz() =0 = (C= tan~}
l . () va—b va—h

0

) + i 0} can be written as dgg + %.5 = 0. Thus,

- .zT 2 g
dr then a5 = d— The difterential equation T 2d
dr  dr?

6. 15 =—,
dr
15 =25 2 i -2
22 = ——dr = —d§5 = | —=dr = In|5] = -2n|r|+ C. Assuming
dr a s J 8 r

e oy e -2, _ - .
S = dT/dr > 0andr > 0, wehave § = ¢ 7277 1¢ = ™7 76" = p 72k |k = 7| S=—k =

1
P2
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dl’ 1 1 "1 k
= — R J-‘:———'-' = -_ y = — - A
o -rzk = dT r2kdr = ‘/dT / = kdr = T{(r) r+
T(1)=15 = 15= k+ADandT(2) =25 = 25=-3k+AQ).
Now solve for kand A: —=2(2) + (1) = —35=—A,s0 A=23%andk = 20,and T'{r} = —20/r + 35.
kC’—T / w—dt = (1/k) In|kC —r| = ~t + M,
= InkC—r| = —ki+M; = [kC —r|=e "2 o kO p=Mzge™™ =
kC = Mse ™ +7r = Ct) = Mee ™ + r/k. Cl)=Cy = Co=Ms+r/k =
My=Co—r/k = C@)={(Co—-r/k)e™™ +1/k.
(b) If Cy < r/k, then Cy — r/k < 0 and the formula for C(t) shows that C (2} increases and tlim C{t)y =r/k.

3. (a) (—-r——kC = —(kC —7) = f

As ¢ increases, the formula for C'(2) shows how the role of Cp steadily diminishes as that of »/k increases.

38. (a) Use 1 billion dollars as the z-unit and 1 day as the ¢-unit, Initially, there is $10 billion of old currency in
circulation, so all of the $50 million returned to the banks is old. At time ¢, the amount of new currency is
a(t) billion dollars, so 10 — x(t) billion dollars of currency is old. The fraction of circulating money that
is old is [10 — 2(¢)] /10, and the amount of old currency being returned to the hanks each day is
10 - (8

10
dr 10—

dt 10

0.05 billion dollars. This amount of new currency per day is introduced into circulation, so

-0.05 = 0.005{10 — x) billion dollars per day.

—di
b = 0.005 = ~0.005 d¢ In(10 — 2} = —0.005 :
()1Ow 0.005dt = R 5 = In(10 —z) 0.005t +¢ =
10—z =Ce "™ where C=¢° = z{t) = 10 — Ce "% From 2(0) = 0, we get ¢ = 10, so

z(t) = 10(1 — 2995,

(¢) The new bills make up 90% of the circulating currency when x(¢) = 0.9 - 10 = 9 billion dollars.
9=10(1 —e 0%} = 09=1-e700% = 00 _p1 = Q005 =-Inl0 =
£ = 2000 10 = 460.517 days = 1.26 years.

39. (a) Let y(t) be the amount of salt (in kg) after ¢ minutes. Then y(0) = 15. The amount of liquid in the tank is
1000 L at all times, so the concentration at time ¢ {in minutes) is y(£)/1000 kg/L and

dy y(t) kg L y(t) kg [dy 1 t
S ST Qe 1L Sy A -4
dt [10()0 L min 100 min / y — Top ) = Iy = —qpg +Coand

_ - t . Y 3 y _
Y0 =15 = Inls=C,s0lny=1In15— ——. It follows that 1 (—): L= et
y{0) 5 1 solny = In1j 100 ollows that In T 109 and =~ =« , SO

y =15¢"" 0 kg,
(b) After 20 minutes, y = 15 ~20/1%0 — 1592 ~ 2.3 kg.

0. (a) If y{t) is the amount of sait (in kg) after ¢ minutes, then y(0) = 0 and the total amount of liquid in the tank
remains constant at 1000 L.

dy L kg L y(t) kg L
0.0 —
d ( g L)(S min)+(004 L)(lomm> (1000 L)(l’min)

130 -3y kg

+ Y 015y 200 min

—_ — 1 -1 1
/ 1‘30 32 ] 500 and —% In|130 — 3y| = zh:t + Oy since y(0) = 0, we have +In130 = C.
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s0 —11n[130 — 3y| = 55t — $M 130 = Inl130 -3y = — 53t +1n130 = 1n(l3(]c_3t/200), and

130 — 3y| = 130e~*/2°_ Since y is continuous, y(0) = 0, and the right-hand side is never zero, we deduce

that 130 — 3y is always positive. Thus, 130 — 3y = 130¢*/?® and y = 130 (1 - ef‘“”””) kg.

(b} After one hour, y — %Q (1 — e’3'60/2'}9) = 1300 - 8—0'9) 2 25.7Kg.
)

3

Note: Ast — oo, y(t) — 30 = 433 kg.

. Assume that the raindrop begins at rest, so that (0} = 0. dm/di = km and (mv) =gm =

mv +om’ =gm = mv +olkm)=gm = v +tvk=g = dv/dt=g-kv =

/ d’Uk :/di = —(l/k)lrllg—kv|:t+c = hlig*sz—kt—‘kc = g_kU:Aefkt-
g-—rv

v(0)=0 = A=gSokv=g—ge ™ = v=_(9/k)(1~ e, Since k > 0, ast — oo, e * — 0
and therefore, flim vit) = g/k.

dv k

42. (a) m@ =—kv = —=-——dt = Injyl= Aﬁt + (. Since v(0) = wy. Injwg| = C. Therefore,
ol v m m

v k v

m| L= % = S =e*™ = p(t) = tvoe **/™. The sign is + when ¢ = 0, and we assume
v m U

v is continuous, so that the sign is + for all t. Thus, v(t) = voe ™ dg/dt = voe ™ =

s(t) = f?%e““/'m + C'. From s(0) = so, we get sg = _W:_JO + " s0C" = 80+ E;E and

mau . - N . .
0 (1 — e”“/'m). The distance traveled from time 0 to time £ is s(t) — sq, so the total distance

s(t) = so +
mug

k
Note: In finding the limit, we use the fact that & > 0 to conclude that lim e~kt/m — g

t—o0

traveled is lim [s(t) — s0] =

: ! k -1 o 1 g
(b)m@ = kv = 9{—1— =—=dt = —:*E+'C = —:E~C. Sim:ev([})=1;0,(]:—i
dt 2 m v m v om to

1 3 1 . 1 ; 1s y
and — = — + -—. Therefore, v(t) Mo 48 _ Mo

Vo - kt/m+ 1/w - kuot + 1’ dt ~ kuot +m

kvodt  m

E m i 1[1“(27)012 -+ m| -+ Cl. Since .5(0) = 8p, we get 5g = %L Inm + C" =

s() =

mw ) i
' = sy — % It = s(f) = a0+ Q(lnﬂwot +m|—lnm) =8+ ™ n kuot + m . We can rewrite

k k 1

vo

M k’b‘u
=-————ands(t) =5 — In|l + —¢|.
14 {(kvo/m)t and s(t) = so + ko + g

m

the formulas for v(t) and s(t) as v(t)

Remarks: This model of horizontal motion through a resistive medium was designed to handle the case in which

vy > 0. Then the term —kv? representing the resisting force causes the object to decelerate. The absolute value

in the expression for s(#) is unnecessary (since k, vo, and m are all positive), and lim s(t) = oc. In other
t—oc

words, the object travels infinitely far. However, lim v(t) = 0. When vg < 0, the term —kv? increases the
t

— O

magnitude of the object’s negative velocity. According to the formula for s(¢), the position of the object
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approaches —oo as { approaches m/k{—wvp ). lir}rluc )s(t) = —00. Again the object travels infinitely far,
t——m (4]

but this time the feat is accomplished in a finite amount of time. Notice also that liI;l(k , v{t) = —oo when
t——m/fkvy

1y < [}, showing that the speed of the object increases without Himit.
43. (a) The rate of growth of the area is jointly proportional to \/ A{t} and AT — A(#); that is, the rate is proportional to
the product of those two quantities. So for some constant k., dA/di = k+/A (M — A). We are interested in the

maximum of the function dA/dt (when the tissue grows the fastest), so we differentiate, using the Chain Rule

and then substituting for dA/dt from the differential equation:

d [dA dA 2dA adA
. _1y &1 A - i L2@A1 _ 1p 4-1/283 0 . g
(H((ﬁ) k{\f/{( 1= + (M~ A4) - 547 dtJ ATV 224+ (M - A))

= lpAml? {k\/ﬁ(fu - A)] [M = 34] = 2k2(M - A)(M — 34)

This is 0 when M — A = 0 [this situation never actually occurs, since the graph of A(f) is asymptotic to the line

y = A, as in the logistic modet] and when M - 34 =0 <  A(t) = M/3. This represents a maximum by

. _— ) { /dA . . .
the First Derivative Test, since -;—f (Cji_t) goes from positive to negative when A(t) = M /3.

CeVME

(b) From the CAS, we get A(t) = M (m

2
) . To get C' in terms of the initial area Ag and the maximum

C -

arca M, we substitute § = 0 and A = Ag = A(0): Ag = \I(C

2
1) & (CH WA = (C - )T
= CVAGH VAL = CVM = VM & VM + VA = OVM - CVAy, <

— VM + A, ,
VM + VA, =C (\/A_f \/Ao) & 0= N \/?0 {Notice that if Ag = 0,then C' = 1)

. . ) efs {13 - 2
44. (2) According to the hint we use the Chain Rule; me = m-— - — = ﬂ = - mglt

dt de  dt dir (&~ R)2

' C—gR%dax ‘ gR* vg  gh?
vde = [ s = = C. Whenz =0, v = ug, 50 — = ,
/ T G Rp? T R mr=lu=tesoy =g te =

\ . g2 . .
C=3uvi-yR = 2v? = Lyf = Tj+ - gR. Now at the top of its flight, the rocket’s velocity will be ),

and its height will be = = h. Solving for vy: —%vg =

vE R? R{R+h) gRh
— = g e = thy = .
2 R+ h R+h R+ R R+ h

2gRh 29R
by v. = i = i L) L LR Py s
. = T T Bhj+1 V2R

(€) ve = /2 32 ft/s2 - 3960 mi - 5280 ft/mi = 36,581 fi/s = 6.93 mi/s
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APPLIED PROJECT  HOW FASTDOES ATANK DRAIN? - [0 788
APPLIED PROJECT How Fast Does a Tank Drain?

1.V =rr*h = % = TI'TZ%% [implicit ditferentiation] =

dh 1 dV 1 — 1 513
dt nrz dt T2 (—a 2gh) v [_ (_15) 232 f} \/_

(b)%:—%\/ﬁ = R Yidh=—Ldt = 2Wh=-%t+C

MOY=6 = 26=0+C = C=2v6 = h(t)= (-4t +v8)"
(c)Wewamtoﬁndtwhenh:0,5()weseth:0=( 144t+\/_) = t= 1446 = 5 min 53 s.

2, ()@fk\/ﬁ = hY2dh=kdt [h#£0] = 2vVh=kt+C

dt , ins) | A(t) Gnem)
= h{t) = 1(kt + ). Since h(0) = 10 cm, the relation 7
2 /hit) = kt + € gives us 2 /10 = C. Also, h(68) = 3 cm, -5
V10 — /3 Thus 30 6.4
————— Thus,
34 5
5.4
h{t) = (2 V10 — ‘/_ ‘[ ) 22 10 — 0.133¢ + 0.00044£%, - 4.5
) 3.6

so2ﬁz(}8k+2\/1—0andk:—

Here is a table of values of h(t) correct to one decimal place.

(b) The answers to this part are to be obtained experimentally. See the article by Tom Farmer and Fred Guass,

Physical Demonstrations in the Calculus Classroom, College Mathematics Journal 1992, pp. 146-148.

. dav dv dV dh dh
— wr2h(t) = 1007h(t A av _av an ppr @
V) = ar’hit) = 1007h(t) = o 1007 and TP TP 100w o

5 1 _ 5 ¢ .
13 foot = T foot. Thus,

Diameter = 2.5 inches = radius = 1,25 inches = 1

257 dh \/E
£~ _ay2gh 100 P (2P VBB = - 28 el AL
av2gh = 100m - = -w{5) V23 Y 2 T T

[h Y2 dh = [—cidt = 2Vh— gt +C = VA= shai+k = hit)= (gt +k).

1152

The water pressure after £ seconds is 62.5h(¢) Ib/ft?, so the condition that the pressure be at least 2160 Ib/ft*
for 10 minutes (600 seconds) is the condition 62.5 - h(600) > 2160; that is, (k — %)2 > 480

- 2> V3456 = k> & + v/34.56. Now h(0) = k%, so the height of the tank should be at least
(2 4+ /3156 ) = 37.69 ft.

4. (a) If the radius of the circular cross-section at height h is », then the Pythagorean Theorem gives
2 = 22 — (2 — h)? since the radius of the tank is 2 m. So A(h) = 7r® =7 [4 — (2 h)?] = 7 (4h — h?).

29h = w(4h—R%) - dh _ —7(0.01)*°v/2 .10 =

Thus, Jfl(l‘;,)w(-i—}E = - pri

dt

(4h — K )Z? = —~0.0001v20h.
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786 L. CHAPTER10 [IFFFRENTIAL FQUATIONS
(b) From part (a) we have (41:,1/2 - h3/2)dh = (—0.0001v20 )dt =

Bp¥/2 _ 2p52 = (L00001v20)E+ C.R(0)=2 = 327 -22P7=C =

C = (¥ - 8)/2 = 35/2 To find out how long it will take to drain all the water we evaluate ¢ when h = 0:

3 5

0= {-0.0001v20)t +C =

¢ 56v2/15  11,200v10

{ = = = = 11,806 s = 3 h 17 min.
0.0001+/20  0.0001+/20 3

APPLIED PROJECT Which is Faster, Going Up or Coming Down?

o

v du 1
Lwme' =—pv—mg = m==—(pw+mg) = /.WEM—— = / ——dt =
dt J o+ mg ™

1 1 . 1
; In{pu + mg) = f;it +C [pr4mg > 0] AtE = 0,v = v, s0 C = = In(pve +myg). Thus,
] Iy

1 1 1
. In{pv + myg) = _;ﬁt + - Inipvo + myg) = In{pr +mg) = Py In{pvo + mg) =
T

pv+ing = e P pug +mg) = pu = (pro+mgle PV —mg =

"(_l(t) _— (”O . @)e—pi/ﬂ’l _ @.
B p

) = [eyat= | K " J)/ _ _ﬁ] gt — (vo ; @)e—w/m(m) -, e
. p P P P

»

Att =0,y =0,s0C = (vo + m)m Thus,
r/,p

mg\m —ptfm gt —ntim g
y(t) = (’Un-i-g)— - (’Uu+ %)?—le pt/m _ ML (vo+@)ﬂ(1e pt/ ) _ mgt
P P v P P P

p D

o)y =0 = 9:(+@)/ Loetim P p_t_ln(mﬂ) =
p p mg ™m ™mg

o my + pro . . . N 1.
{] = F ll’l(w) With m = J., Vi = 2[), p= 10° dﬂdg = 98, we have ) = lﬂln(%) =2 1.80 s,

¥y 20 The figure shows the graph of y = 1180(1 — e™'*) — 98¢. The zeros are

att = Qand {s == 3.84. Thus, {; — 0~ 1.86 and ¢ — #; =~ 1.98. So the
time it takes to come down is about (.12 s longer than the time it takes to

go up; hence, going up is faster.
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SECTION 104 [XPONENTIAL GROWTH AND DECAY T 787

Lo + ﬂq) z’_ (1 _ e'--Zptl/m) . _:'ig . 2“
r/,r D

_ (P +mg\m | - ((J'pt“,m) -2l my o™ pro + my
P P P P mg

Substituting © = epti/m o P% + 1= Pro + g (from Problem 3), we get
My g

; ,2 2 1
ng 2lnr = mzy (r - = 21113:). Nowp>0,m>0{ >0 =
P x

1 1 2 gt -2z o — 1) _
0 . ) 9 ey o ") — _ A
= 1. f(x)—.n—;—2111J, = f(£)71+r2 == = > O for

(z) is increasing for z > 1. Since f(1) = 0, it follows that f{2) > 0 for every > 1. Therefore,
2
y{2t:) = rr;zgf(m) is positive, which means that the ball has not yet reached the ground at time 2¢;. This tells us

that the time spent going up is always less than the time spent coming down, so ascent is faster.

.4 Exponential Growth and Decay

. . . 1dP dP
. The relative growth rate is Par = (.7944, so T 0.7944 and, by Theorem 2,

P(t) = P(0)e" T = 20744 Thas, P(6) = 20 7944(5) = 934.99 or about 235 members.

. (a) By Theorem 2, P(t) = P{0)e"* = 60¢*". [n 20 minutes (3 hour), there are 120 cells, so
P(1) =605 =120 = =2 = k=2 = k=3m2=nh(2’)=hs

by P(1) = 60" = G0 . &'

(¢} P(8) = 608" = 60-2* = 1,006,632,960

(dy dP/dt = kP = P'(8) = kP(8) = (In8) P(8) ~ 2.093 billion cells /h

(e) P(t) = 20,000 = 608 =20,000 = & =1000/3 = ¢lu8=1in(1000/3) =
L= —711‘(11(:?5/3) =~ 2.79 h

. (a) By Theorem 2. (1) = y(0)e*' = 500", Now y(3) = 500e*@) = 8000 = (=420 =

3k=m16 = k= (In16)/3. Soy{t) = 500103 = 500 . 16"/3

(b) (1) = 500 - 16*/% = 20,159

(¢) dy/dt = ky = y'(4)=ky(4)= %111 1(5(500- 164/3) [from part (a)] =2 18,631 cells/h

(d) y(t) = 500 - 162 = 30,000 = 167 =60 = $tInl6=In60 = ¢=3(n60)/(Inl6)~44h

) y(l) = ;U(O)ej” = y(2)= y(())e%’ = 600, y(8) = fy((])es” = 75,000. Dividing these equations, we get
e et = TR000/600 = € =125 = 6k=In125= In5*=3ms = k= %lnS = %lu 5.

Thus, %(0) = 600/c** = 600/ ® = 820 — 120,
(b) y(t) = y(0)e*t = 1206 ¥/ % or y = 120 - 5/
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(¢} y(5) = 120 - 572 =120 - 25 V5 = 3000 v/5 = 6708 bacteria.
() g(t) =120 5% = /(1) =120-572-In5-1 =60-In5- 5%
y'(5) = 60 -In5-5*? =60 -Inb5 - 25+/5 2 5308 bacteria/hour.

(©) y(t) = 200000 & 120eM"542 = 200,000 ¢ P2 = N o (In5)t/2 = In 2
t=(2In3%2)/In5~ 9.2h.
5. (a) Let the population (in millions) in the year ¢ be P(t). Since the initial time is the year 1750, we substitute
{ — 1750 for ¢ in Theorem 2, so the exponential model gives P{t) = P{1750)e #1759} Then
P(ISOO) = 980 = 700ek(1800-1T80) . 980 _ (RO o I I = 50k =

ko= L In 259 & 0.0043104. So with this model, we have P(1900) = 790¢*(*0 7175 = 1508 million, and

P(1950) = 790519501730 ~ 1871 million. Both of these estimates are much too low.

(b) In this case, the exponential model gives P(t) = P(1850) ghlt18s0y -
P(1900) = 1650 = 1260eF190071890) o | 1880 — 4(50) = k= g51In 5525 ~ 0.005393. So with
this model, we estimate P(1950) = 1260F1959~'850) =2 2161 million. This is still too low, but closer than the
estimate of P{1950) in part (a).

{c¢) The exponential model gives P{t) = P(1900)e*¢7199) = P(1950) = 2560 = 1650e" 19301909

In 2890 — k(50) = k= ZIn 28 ~ 0.008785. With this model, we estimate

P(2000) = 165082000~ 1900) =5 3979 million. This is much too low. The discrepancy is explained by the fact
that the world birth rate (average yearly number of births per person) is about the same as always, whereas the
mortality rate (especially the infant mortality rate) is much lower, owing mostly to advances in medical science
und to the wars in the first part of the twentieth century. The exponential model assumes, among other things,
that the birth and mortality rates will remain constant.

6. (a) Let I°(£) be the population {(in millions) in the year ¢. Since the initial time is the year 1900, we substitute
£ — 1900 for ¢ in Theorem 2, and find that the exponential model gives P(t) = P(1900)e* %0 =
P(1910) = 92 = 76eF0210719000 o = L1y 22 = 0.0191. With this model, we estimate
P(2000) = 76¢*200071900) o 514 million. This estimate is much too high. The discrepancy is explained by
the fact that, between the years 1900 and 1910, an enormous number of immigrants (compared to the total
population) came to the United States. Since that time, immigration (as a proportion of total population) has
been much lower. Also, the birth rate in the United States has declined since the turn of the century. So our
calculation of the constant k& was based partly on factors which no longer exist.

(b) Substituting ¢ — 1980 for ¢ in Theorem 2, we find that the exponential model gives P(t) = P{1980)c* (=195
= P(1990) = 250 = 22719901980} g = L1 250 = (0.00965. With this model, we estimate
P(2000) = 227820091980 ~ 975 3 million. This is quite accurate. The further cstimates are
P(2010) = 227 = 303 million and P({2020) = 227¢*"* 22 334 million.

(c) 500 The model in part (2) is quite inaccurate after 1910 (off

by 5 milkion in 1920 and 12 million in 1930). The mode] in

part (b) is more accurate (which is not surprising, stnce it is

based on more recent information).
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) d - 5 —0.0005
7. () If y = [N>Os] then by Theorem 2, d—i‘é — 00005y = ylt) = y(0)e 000t = Cem 000,

(b) y(t) = Ce 0% — 0.9C = e "% =09 = -0.0005t =In09 =
£ = —20001n0.9 = 211 s
. (a) The mass remaining after ¢ days is (d) y
y(t) = y(0)eF* = 800e**, Since the half-life is 5.0 days. 8007
£y _ & bk __ 5k _ 1 1
y(5) = 800e™ =400 = =5 =
5k=Ini = k= —(In2)/5, 50
y(t) = 800e~MDYE =500 - 2715,
(b) »(30) = 800 - 279%% = 12.5 mg

() 800~ "5 =1 & (In2) L =1Ing; = —n800

> tzB%ﬂ%élSdays

. (a) If y(t) is the mass (in mg) remaining after ¢ years, then y(t) = y(0)e** = 100e*t. (30} = 10030%

= M=l = k=-(In2)/30 = y(1) = 100e~ (#1730 = 190 . 27430

(b) y{100) = 100 27109730 ~ 9 92 mg
(©) 100 M2 =1 = (In2)t/30=In35 = &=-30513" ~199.3 years

. {a) If y(¢) is the mass after  days and y(0) = A. then y(t) = Ackt y(3) = Ae** = 0.584 =
¢ =058 = 3k=In0.58 = k=2In0.58 Then Aglln0.583t/3 34 &
(lﬁrl 0?;58)t = In % so the half-life is t = — 3ln2 == 3.82 days.

In0.58
(In0.58)¢ -~ 3In10

L o t=-
3 " 1o n0.58

. Let 4(t) be the level of radioactivity. Thus, y{t) = y(0)e ™ and k is determined by using the half-life:
y(5730) = Ly(0) = y(0)e BN = dy(0) = =5 =

2
B lné _ In2 _If 4% of the '*C remains, then we know that y(¢) = 0.74y(0)
5730 5730

. 5730(In 0.
= (.74 = e MDA o 150,74 = _im2 573000 0.74) . 9489 ~ 2500 years.
5730 In2

o Lo d .
. From the information given, we know that d—z =2y = y=C¢c* by Theorem 2. To calculate C' we use the

point (0,5): 5 = Ce*® = (= 5. Thus, the equation of the curve is y = 5e%* .

In0.58)¢/3 _ 1

Ine' n =

(b) AellnU58/3 . 104 & 2 12.68 days

5730k =ini = k=

dT
. (a) Using Newton’s Law of Cooling, % = k(T —T,), we have ke k(T —75).

Now let y = T — 75, so y{0} = T(0) — 75 = 185 — 75 = 110, so y is a solution of the initial-value

problem dy/dt = ky with ¥(0) = 110 and by Theorem 2 we have y(t) = y(0)e"t = 1106

y(30) = 110> =150 =75 = =5 =3 = k=Hhz
15

so (1) = 110564 19(23) and y(45) = 1105 (35 x 62°F Thus, T(45) ~ 62 + 75 = 137°F

15 15

b) T(t) = 100 = ylt) = 25. y() = 110emt () =25 = ewliE) = 28 =

110

301n 22

1 15 25 _ 110 .., :

sptings = In 10 = t= ——ln - 116 min.
22
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oL dr
14. (a) Let I'(¢) = temperature after ¢ minutes. Newton’s Law of Cooling implies that i k(T - 5). Let

y(t) = T(t) — 5. Then % = ky,sou(t) = y(0eX =15 = T(t) =35+ 15" =
{]

) b+ 1‘)( =12 = (ik = . Tt 5+ 15e In(7/15)¢ and
( } - ,Zin 7/13) ~ 8.3°C,
InL

() 5 4 1567197 — ( when (771900 — ' T = 3.6 min.
n—=
15

I d ,
. ((_it_ = k(T - 20). Letting y = T — 20, we get TT;' = ky, so y(t) = y(0)"".
A [£15
y(0) = T(0) — 20 =5 - 20 = —15, s0 4(25) = y(0)e®®* = —15¢°°% and
y(25) = T(25) — 20 = 10 — 20 = —10, s0 —15e™* = —10 = ¢ . Thus, 25k = In{2) and

ko= —l— 111(%), soy(1) = y{0e®t = —15e /20 /30 More simply, e2%% = ¢ = (%)1/25

({kt — (%)3/25 - ’U() - _15. (é)tfzj.

(by 15 = 1'(¢) = 20 4 y(t) = 20 — 15 ( )’/Z“ = 15
(t/25 )ln(%) :lu(ﬁ) = fo‘Jln(%)
(I'T _ . dy ke
g =M= 20) Lety = T 20. Then =% = ky. so y(t) = y(0)e™.  y(0) = T(0) — 20 = 95 ~ 20 = 75,
ot

{T . .
so y(t) = 75e*. When T(t) = 70, (d— = —1°C/min. Equivalently, i—? = — 1 when y{¢) = 50. Thus,

1,
= % = ky(1) = B0k and 50 = y(t) = 75", The first relation implies k = ~ 1/50, so the second relation
says 50 = 75¢ 7% Thus, e ™7™ = 2 = /50 =In(2) = t=—50In(Z) = 20.27 min,
. (a) Let P(h) be the pressure at altitude h. Then dP/dh = kP = P(h) = P(0)e"" = 101.365".

P(1000) = 1013 = 8711 = 1000k = In(35:14) =

k= o n (324 = p(r) = 1013 eman (85 so P(3000) = 10133 (54) 2 64.5 kpa.

(b) P{GIST) = 10t3 e St (35 3) 2z 29.9 kPa

oy it
18. (a) Using 4 — Au(l + {;) with Ag = 500, 7 = 0.14, and t = 2,

we have:

(i) Annually: n = 1; y 50 : = $649.80
(i} Quarterly: n — 4; : = $658.40
(iii) Monthly: r = 12 - 0.1V 8660.49

]
= $661.53 0

)365-24-‘2 66156 An.14{2) = 8661.56,
A0,10(2) = $6107[), and
Ap.a(2) = 8563.75.

(iv) Daily: n = 365; 52

TP . 0.14
{v) Hourly: n = 365 - 24, TR

(vi) Continuously: = 500e%1Y? - $661.56
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19. (1) Using A = Ag (1 + %) " with Ag = 3000, » = 0.05, and t = 5, we have:
G) Annually: n = 1; A =3000(1 + %)”‘ ~ $3828.84
(i) Semiannually: n = 2; A = 3000 = §3840.25
(iii) Monthly: n = 12; A = 051120 . §3850.08

(iv) Weekly: n = 52; 22 )7T = $3851.61

(v} Daily: n = 365, : 0513558 _ $3852.01

{v1) Continuously: A = 3000095 — §3852.08
(b) dA/dt = 0.05A and A{0) = 3000.

20. (a) Age Y =24, < VU — 9 o 006t =1n2 & t= % In2 =z 11.55, so the investment will
double in about 11.55 years.

{b) The annual interest rate in A = Ap{l + T‘) is 7. From part (a), we have A = Agc 088 Thege umounts must be
equal so (L4+7)f =% = 147 =¢"% = r=¢"% 1200618 = 6.18%, which is the
equivalent annual interest rate.
dP mdy

dP
21, (a) —— =kP—m = k(P — ?) Lety=P— G 0 i W and the differential equation becones
d

dy _ Wt _mo_ ( LAY _m (
i = ky. The sclution is y = yoe™ = F ’ Py A ) S = P(t)

(b} Since k& > 0, there will be an exponential expansion &  Fy — % >0 & m<hkP.

{c) The population will be constant if Py — % =0 <« m=kEF,. ltwilldeclineif I’ — I <0 &

m > k.

(d) Py = 8.000,000, k = o — 3 = 0.016, m = 210,000 = m > kP (= 128,000), so by part (¢}, the
population was declining.

2 W gyt o oy tdy - kdt = 2 =kt + C. Since y(0) = gy, we have € = L0

. Thus
dt : —c i — U

y o ' e e : 1 Y o
. — o Ya

—ckt. Soyt = — = - — and (i} = ————7=.
yo ¢ —ckt 1 —cygkt (1 — cyekt)te

1 1
(b) #(t) — ccas 1 — eygkt — 0, thatis, as t — -~——_ Define T —. Then lim y(t) = cc.
cysk” ~ oygk b1

(¢) According to the data given, we have ¢ = 0.01, y(0) = 2, and y{3) = 16, where the time # is given in months.

1
Thus, yp — 2 and 16 = y(3) = —yo_ﬁ_/__ Since T = ——, we will solve for cyik.
(1—cysk-3)" cyok

2 ‘
6= @ LT Beyik = ()%™ =800 = gk = 1(1 - 879"). Thus, doomsday
By

1 :
occurs whent =T = 3 o1 = 145.77 months or 12.15 years.
cyuk 1 - 800
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APPLIED PROJECT Calculus and Baseball

L @F=ma=m %) 0 by the Substitution Rule we have

ty g3t dv i
/ F () dt = / (dt) dt = m/ dv = [mv]! = mvi — mug = p(t1) - p(to)
ty ty

un
(b) (i) We have v, = 110 mi/h = %ﬁif%l ft/s = 161.3 ft/s, vp = —90 mi/h = —132 ft/s, and the mass of the
3/16

. w
baseball is n = — = =457 = ¢75. So the change in momentum is
g 5

plt1) — plty) = mv, — mag = 161.3 — (—132)] = 2.86 slug-ft/s.
(i) From part (a) and part (b)(l) we have [, F(t)dt = p(0.001) — p(0) ~ 2.86, so the average force over

the interval [0,0.001] is [0 Bt dt = 2.86) = 2860 Ib.

40

sta |
0.001

0. U()l oo01 GUI (

i dv dU ds dv -
2 (W= / F(s)ds, where F(s) =m — = = mv —— and so, by the Substitution Rule,
Jso at = s dt ds

&l 51 dv ufs1) . - ) PR 2
W = F(s)ds = mu —ds = mudv = [gme’] | = imvi - Imug
ds 2 vg 2 2
5 t

8y D) i(20)
(b) From part (b)(i), 90 mi/h = 132 ft/s. Assume vo = v(so) = 0 and vy = v(s() = 132 ft/s (note that s is the

point of release of the baseball). m = 50 the work done is

112’

W= dmui — Jmad = - 25 (132)% ~ 85 fi-lb

3. (a) Here we have a ditferential equation of the form dv/dt = kv, so by Theorem 10.4.2, the solution is

v{t) = v(0)e*". In this case k = - 55 and »(0) = 100 {t/s, so u{t) = 100e~"/'°, We are interested in the

time ¢ that the ball takes to travel 280 ft, so we find the distance function
1
s(t) = fy vle)dr = [y 100e~ dz = 100 ~10e =] = —1000(e /10 1)
o
- 1000(1 - e—f/“’)

Now we set s(t) = 280 and solve for ¢ 280 = 1000( *t/“)) = 1-eg W0 =

-mt=In(l-Z%) = = 3.285 seconds.

(b} Let 2 be the distance of the shortstop from home plate. We calculate the time for the ball o reach home plate as
a function of x, then ditferentiate with respect to z to find the value of = which corresponds (o the minimum
time. The total time that it takes the ball to reach home is the sum of the times of the two throws, plus the relay

time (% s). The distance from the fielder to the shortstop is 280 — z, so to find the time ¢; taken by the first

throw, we solve the equation s1(3,) = 280 —x < 11— 0/10 = 280 < 4 = =101 T+

1000 ! " T1600
We find the time ¢z tuken by the second throw if the shortstop throws with velocity 1w, since we see that this

/10

velocity varies in the rest of the problem. We use v = we™"*" and isolate t in the equation

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 105 THELOGISTICEQUATION T 793

T ho —

, 1 T ..
s{t2) = 1(_]-11;(1 — e_“/m) = o e B0 Tow & fg=—10n ~Tom so the total time is

1 20+ 1the — - .
Iy () = 3~ i0 [ln ! 10;})& +In ﬁ]w x} To find the minimum, we ditferentiate:

i“i =—10 ! — ! , which changes from negative to positive when 720 + @ = 10w — &+
i 720+ 10w —=x

& = 5w — 360. By the First Derivative Test, ¢,, has a minimum at this distance from the shortstop to home

plate. So if the shortstop throws at w = 105 ft/s from a point & = 5{105) — 360 = 165 ft from horme plate, the

. L 2 ; LOB0 - 165 . - e 1o TR i .
minimum time is {105(165) = £ — 10(In 7204168 4 |y ISR ) = 3.431 seconds. This is fonger than the

time taken in part {«), s0 in this case the manager should encourage a direct throw.

If w = 115 ft/s, then z = 215 ft from home, and the minimum time is

. 2 1150~ 215~ 2 949 seconds. This is less the e taken in part (;
t1s(215) = L — 10(In 291222 4 jn HER=218) = 3.242 seconds. This is less than the time taken in part {a),

50 in this case, the manager should encourage a relayed throw.

{c) In general, the minimum time is

1 360 + Hw 360 4+ Hw
o (B — 360) = ~ — 101 +1
(5w — 360) = 5 — 10} In ===+ ==

: =13.285
1 (w4 72)* !
— 3 10n 00w 105L . \J s
3.25

We want to find out when this is about 3.285 seconds, the same time as the direct throw. From the graph, we
estimate that this is the case for w = 112.8 ft/s. So if the shortstop can throw the ball with this velocity, then a

relayed throw takes the same time as a direct throw.

10.5 The Logistic Equation

1. (a) dP/dt = 0.05P = 0.0005P% = 0.03P(1 — 0.01) = 0.05P(1 — 12/100). Comparing to Equation 1.
dP/dt = kP{1 — P/K). we see that the carrying capacity is K = 100 and the value of & is 0.05.
(b) The slopes close to 0 oceur where 2 is near 0 or 100. The largest slopes appear to be on the line F == 50. The

solutions are increasing for 0 < % < 100 and decreasing for Fy > 100.
All of the solutions approach £ = 100 as ¢ increases. As
in part (b), the solutions differ since for 0 < F < 100
they are increasing, and for £ > 100 they are decreasing.
Also, some have an IP and some don’t. It appears that the
solutions which have Py = 20 and Py = 40 have

inflection points at 17 = 50.

{d) The equilibrium solutions are P == 0 {trivial solution} and £ = 100. The increasing solutions move away from
P = 0 and ali nonzero solutions approach P = 100 as £ -~ oo.
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2 (a) K =6000and £ = 0.0015 = dP/dt = 0.0015P(1 — P/6000).

(b} All of the solution curves approach 600 as { — ox.

B R N T T T N N NN

506 1000 1500 2000 ¢

The curves with Py = 1000 and Iy = 2000 appear to be

concave upward at first and then concave downward. The

T T T R e e N I L N NN

curve with Py = 4000 appears to be concave downward
everywhere, The curve with 7, = 8000 appears to be
concave upward everywhere. The inflection points are

where the population grows the fastest.

0 500 L0OD 1500 2000 ¢

(d) See the solution to Exercise 10.2.25 for a possible program to calculate £(50). [In this case, we use X = 0,
H=1,N=750,Y: = 0.0015y(1 — y/6000), and Y = 1000.] We find that P(50) = 1064.
(e} Using Equation 4 with K = 6000, k = 0.0015, and P, = 1000, we (f) 8000

have P(t) = 1+ f;szt T i+ jf—(—]g.(}[)lﬁt‘ where
K—P, 6000 1000

TR 1000

B 6000

= T se-oomEm

A

= 5. Thus,

P (50)

~ 1064.1, which is extremcely close to 0 2000
the estimate obtained in part (d). The curves are very similar.

K . K-
=13 Acw With A= Tg)@ With K = 8 x 107, k = 0.71, and

8 x 107 8 x 107
O — T e - 1) 2 7
y(0) = 2 x 107, we get the model y() = T 3e-07ie y(1) = T30 323 x 107 kg.

3 W ky(l - ﬁ) = y(t)

dt K

8 x 107 .
(byy(t) =4 x 107 = w:wm? = 2= 143707 o
In
—07lt=In1 = = —011751 = 1.55 years

4 (a) (yeast cells) (b) An estimate of the initial relative growth rate is
1 4P 1 39-18 7 cos
Pt 18 2-0 12 %

{¢) An exponential model is P(t) = 18¢7/'%. A

680

logistic model is P(t) = 1T Ac 77z where
E 7

10 15 ! 4 — 880—18 _ 331

(hours} - 18 9

From the graph, we estimate the carrying capacity

K for the yeast population to be 680.
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700 P (yeast cells)

Time in Observed Exponential Logistic

Hours Values Model Model

0 18 18
2 58

+ " J 19
4 80 186 . .
6
8

506 {hours)
1914 The exponential model is a poor fit

10 6147 for anything beyond the first two

observed values.

12 19,739 _
The logistic model varies more for

14 j 63,389
16 203,558

the middle values than it does for
the values at either end, but provides

15 ) 653,679 a good general fit, as shown in the

figure,

680
1+ i’si}lc—u'r/m)

(e) P(7) = 7z 420 yeast cells

5. (1) We will assume that the difference in the birth and death rates is 20 million/year, Let t = 0 correspond to the

r i 1
year 1990 and use a unit of 1 billion for all calculations. k =~ % Cil_t = ﬁ( 02) = 565" %0

E AkP(1~f—) 1 P(l i),Piz‘nbilliﬂns

dt K/~ 265 ~ 100

K-P, 100-53 947 , K 100 ‘
(b) A= P(_] = %3 = E ~ 17.8679. P( ) = 1—|—A(’,_kt = I %6_(1/265““80

P(10) = 5.49 billion.

(¢) P(110) = 7.81, and P(510) ~ 27.72. The predictions are 7.81 billion in the year 2100 and 27.72 billion
in 2504
50
14 47 —(1/265)¢

predictions become 5.48 billion in the year 2000, 7.61 billion in 2100, and 22.41 billion in the year 2500

(d) If K = 50, then P(t) = . So P(10) = 5.48, P(110) 2 7.61, and P(510) ~ 22,41, The

6. (a) If we assume that the carrying capacity for the world population is 100 billion, it would seem reasonable that the
carrying capacity for the U.S. is 3-5 billion by using current populations and simple proportions. We will use
K = 4 billion or 4000 million. With ¢ = 0 corresponding to 1980, we have

4000 4000

2000 - 2503 okt “kt
2l e 1+ 15¢

Pt) =

_ 4000 —10k

10k =Ind2 = p = _L1n14% % 0.01019992.

165 10 165
(c) 2100 — 1990 — 110 and P(110) =~ 680 million.
2200 — 1990 = 210 and P(210) = 1449 million, or abeut 1.4 billion.

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

796 1! CHAPTER10 DIFFERENTIAL FQUATIONS

4000 —kt
d) P{1) =30 ——— =300 = 1415
(dy P(1) =300 = T3 150 + 15e
'w
= t=10 1 “9 7z 19.19 ~ 19. So we predict that the U.S. population will exceed 300 million in the year
165

1990 4 19 = 2009,

1. (&) Our assumption is that ?;_? = ky{l — y), where y is the fraction of the population that has heard the rumor,

o I
——),wesubstitu{ey— ,P= Ky, an d— Kﬂ

. Co arP
(b) Using the logistic equation (1), T k-P(l I 7 pre

oblain K %’ =k(Ky){l—y) < dT? = ky(l — y), our equation in part (a). Now the solution to (1) is
(LL 428

i K-F _ L . B K
1T Ao=Ft" where A = o We use the same substitution to obtain Ky = K~ Ky

Yo K

oy + (1= yo)ekt
Alternatively, we could use the same steps as outlined in “The Analytic Solution,” following Example 2.

Pty =

1 3—Fr.t

=

(c) Let ¢ be the number of hours since 8 A.M. Then yo = y(0) = 3% = 0.08 and 4(1) = 1, 50

1000 — 2°
(.08 . h s o, —1k 4k _ 0. 2
5= V) = Go T ooaa=ie Thus, 008 +0.92¢ 7 = 0.16, ¢ s =Zande = (2
0.0 2 - . D
Y= 8 — = 1 Solving this equation for £, we get
0.08 +0.92(2/23)7" 2 4+ 23(2/23)"

LN N7 9 2y 9 t/4 ‘
gy =) =2 = (2] = = T
y y(%) (23) 23y (23) 23

(2)14/41__1—;; . ¢ @“l—if”ﬁﬂmﬂ[uu

—=_ It follows that ~ — 1 =
i 4

23 In 3% In £

L In9

When 3 = 0.9, _M;;y = é sof = 4(1 ~ 1 i 5 ) 7z 7.ti h or 7 h 36 min. Thus, 90% of the population will
i ngs

have heard the rumor by 3:36 p.M.

8. (w) P(0) = By =400, P(1) = 1200 and K = 10,000. From the solution to the logistic differential equation
P(] K 400 (10,000) 10,000
WP = = . . P(1) = 1.
e se 400 (9600)cF 14 240k L= 1200 =
10,000 . 10.000

1+ 24e—to08/10) 1 L og. (11736}

k. 288 = Iy 28 ?
e == = k=In4 Sof

A
(h)s.ot)u:—mM-[l—t = 2(H)'=1 = il =L
1+ 24(11/36)

aP r
— = tY I
9, (a) ikl (1 K) =

d*p 1dP P\ dpP dp
i ’“[P( I dt)+(17)ﬂ*’“:5{(

el E))(- )= E) )

(b) 7 grows fastest when P’ has a maximum, that is, when P” = 0. From part (a), P =0 « P =0, P = K,
or ?=K/2. Since0 < P< K, weseethat P" =0 & P=K/2

= = 2.68 years.
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First we keep k constant (at 0.1, say) and change P in the function

10F

P = P0+(10 P()) 0.1

. {(Notice that £ is the P-intercept.) If

Py = 0, the function is 0 everywhere. For 0 < Py <5, the curve has

an inflection point, which moves to the right as Py decreases. If

5 < Fp < 10, the graph is concave down everywhere. (We arc
considering only £ > 0.) If Py = 10, the function is the constant function 17 = 10, and if Fo > 10, the function
decreases. For all Py # 0, t1im P =10.

Now we instead keep Py constant (at Fp = 1) and change k& in the

function P = 1—4_22—}—& It seems that as k increases, the graph

approaches the line P = 10 more and more quickly. (Note that the

only difference in the shape of the curves is in the horizontal scaling;

if we choose suitable z-scales, the graphs all look the same.)

11. (a) The term —15 represents a harvesting of fish at a by F
1200
constant rate—in this case, 15 fish/week. This is the

frrreern

rate at which fish are caught. 800

ATV freerne-
B2 VN drrser s

-
-
=
-
e
=
~
-~
~

=
=
I
¥
0

(c¢) From the graph in part (b), it appears that P(t) = 250 and P{t) = 750 are the equilibrium solutions. We
confirm this analytically by solving the equation dP/dt = 0 as follows: 0.08P(1 — P/1000) — 15 =0 =
0.08 — 0.00008P? — 15 =0 = —0.00008{P* — 1000F + 187,500) = 0 =>
(P -250){P~-750) =0 = P =2500r750.

(d P For 0 < Py < 250, P(t) decreases to 0. For Py = 250, P(t)

1200
P, = 1000 —— . .
remains constant. For 250 < I3 < 750, P(1) increases and
ROL
P, 600 — > _ approaches 750, For Py = 750, P(t) remains constani. For
£= 460 401
Py= 300~ Py > 750, P(t) decreases and approaches 750
£,=200

4P P 100,000 dP
= —0.08P — ) -1
© b ( 1000) > 8 dt

dP ; P .
—12.500 =— = P2 — 1000P + 187.5 =T
= 000P +187.500 & e 750y ~ 12500 0 T

"/ —1/500 /500 1 1 1
P= —dt & -
/ (PQF)() - P—To(]) d 2500 Q/(PQSO P

= (0.08P — 0.00008P° — 15) - ( 100. 00”)

8
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k =008 K = 1000, and m = 200 =

dp P 200
- =0, 1— 1— 222
T OSP( 1000) ( P )

For 0 < Py < 200, the population dies out. For Py == 200, the

freoons
frars

population is steady. For 200 < Fy < 1000, the population

AREREERERRNRRY!
Loy g

increases and approaches 1000, For 1% > 1000, the population

decreases and approaches 1000.
The equilibrium solutions are P(t) = 200 and P(#) = 1000.

10 K-r P—m k
— ) =kF = —(K — P)y(P—-m) &
P) kP( K )( P ) K( N )

A n B
(K-P)P-m) K-P P-m

. L 1 1 1 1 -
=y = ifP=K A= —1
IF P == m. B K—m’lt K. A K—m'so I(—m./(K PJr ﬁm) P = / i =

k 1 P—m k
N _p P —m|) = —t + M 1 = i+ M
(~WlK =Pl +IiP—m) = 2t +M = o) = gt M =

By partial fractions. Lo A(P—m)+ B(K - P)=1

K —

P - k P —m D —1 Y
In % 77; = (K — m)Ft +M < % ﬁT; = Dl mmREOt 1y = et

_H-m U —m) (/K

ine for P. et
=K P Solving for P, we ge

_P(t) ) ‘.TTZ'(K - P()) =+ K(JD() — m) SR ) HCTR oL
- K- P+ (IU _ m) (K—m){k/K)t

(d) If By < m. then Py — m < 0. Let N () be the numerator of the expression for P(f) in part (¢). Then

N =FP(K-m)>0and Ph—m <0 « tlim K(Py —m) e /0 oy =
i‘lim N(t) = —20. Since N is continuous, there is a number # such that N ({) = (tand thus P(t) = 0. So the

species will become extinet,

ap 4 2
14. (a) o —(‘hl( )P = / K/P = /cdt. Letu:ln(%) =InK-InP = duw-—ﬁil—[)—

i 3 .
- [72 —ct+D = Inful=—ct—D = [ul=e P S (K/P) =P o
) w
In(K/P) = £~ ") Letting t = 0, we get In{K/Fy) = +e P 50
IM(K/P) = e "0 = ke~ e D = W(K/Py) e = K/P = MEM0T o
Pt) = Ke™ In(i/Pade 1, #0

(b} lim P(t) = lim fe= WP ™ prom lKITN 0 = peel = K
t— o

t-+00
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(c) £ 1000 The graphs look very similar. For the Gompertz function,

P(40) = T32. nearly the same as the logistic function. The
Gompertz function reaches P = 900 at ¢ = 61.7 and its value at

P = (000" in 10700 t = 80 is about 959, so it doesn’t incredse quite as fast as the

. . 80 logistic curve.
1
dP K
& elnf — P -
(d) T rln(P)P cPIlnK —-nP) =
&P 1 dP dP dr K
——=c —— InK — — | =c—|—-1+In|[ =
a2 C[P( B dt)+(n ) dt} ‘Tt [ - H(P)J
=¢leln(K/P) P]In{K/P) — 1] = ZPIn(K/P) [In{k£/P) — 1]
Since0 < P< K. P' =0 & In(K/P)=1 & K/P=c¢ © P=Kfe. P">0for
0 < P < K/eand P" < Ofor K/e < P < K,s0 P'is a maximum (and P grows fastest) when P = K /e.
Note: It P > K, then In(K/P) < 0,50 P"(t) > 0.

15. (@) dP/dt = kPcos(rt —¢) = (dP)/P =kcos(rt —@)dt = [(dP)/P =k [cos(rt —¢)dt =
In P = (k/r}sin(rt — ¢) + C. (Since this is a growth model, P > () and we can write In P instead of In| P).)
Since P{0) = Py, we obtain In Py = (k/r)sin{—¢) + C = — (k/r)sing + C =
C =in Py + (k/r)sing. Thus, In P = (k/r}sin{rt — ¢) + In Py + (k/7) sin ¢, which we can rewrite as
In(P/Py) = (k/r)[sin(rt — ¢) + sin ¢| or, after exponentiation, P(t) = Pyelk/m)lsin(rt—d)tsin s,
(b} As k increases, the amplitude As v increases, the amplitude A change in ¢ produces slight

increases, but the minimum and the period decrease. adjustments in the phase shift

value stays the same. and amplitude.

Comparing values of & with Comparing values of r with Comparing values of ¢ with
Po=1r=2and ¢ = m/2 Py=1k=1and ¢ = 7/2 Po—Lk=1andr=2

P(t) oscillates between Pye#/71+sin @) 4n4 pold/ri(=1+sine) (the extreme values are attained when 7f — ¢

is an odd multiple of %), so t!im P(t) does not exist,

16. () dP/dt = kP cos®(rt — ¢) = (dP)/P =keos®(rt —¢)dt = [(dP)/P =k [cos’(rt —¢)dt =

1+4+¢ g
InP =k / + COS(22(” %)) dt = gt + ; sin(2(rt — ¢)) + C. From P(0) = F,, we get
" T-

k
InFy = —sin(—2¢) +C =C ~ j- sin2¢, s0C = In % + L sin 2¢ and
4y 4r 4
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InP = it + L3 sin(2(rt — ¢)) + In Py + — sin2¢. Simplifying, we get
2 4r 4r

k
11'1£ = Et+—

B = gt + gy B2t = )+ sin20] = f(B).or () = Poc!t.

(b} An increase in k stretches the An increase in 7 compresses the As in Exercise 15, a change in ¢
graph of P vertically while graph of P horizontally—similar only makes slight adjustments in
maintaining P(0) = F. to changing the period in the growth of P, as shown in the

Exercise [35. figure.

P9 P9

N = w2

i
Comparing values of £ with Comparing values of r with Comparing values of ¢ with
P,=1.r=2.and ¢ =72 Py=1k=05and ¢ = 7/2 Py— 1, k=05 andr=2

FI1) = k/2 + [k/(4r)][2r cos(2(rt — &))] = (k/2)[1 + cos(2(rt — ¢))] = 0. Since P(t) = Poed ™ we
have P'(£) = By f'(1)e/ ™ > 0, with equality only when cos(2(rt — ¢)) = —1: that is, when rt — ¢ is an odd

multiple of 2. Thercfore, P(¢) is an increasing function on (0, o). P can also be written as

2
P(t) = Pyekt/2ek/anlin(2irt=o))tsin2¢] The second exponential oscillates between /A Hn29) gng
ek/Am) (=152} yhile the first one, ¢*t/2, grows without bound. So Jim P(t) = occ.

o

K —. By comparison, if ¢ = (In A)/k and u = Lk(t — c), then

17. By Equation {4), P(t) = T 1 Ae—wt ?

u o efu et +e—u P e Y 2t e M 9

1~|—tanhu:1+—(3 = — =
ev 4 g4 et f et e¥ 4 e—Y el et eT 1 + G—Zu

and C—’Zu — ﬁ,k(t,(-) _ ekce—kt — eln Aeszt — ‘4€—kt! 0
K K 2 K K

1z 1 _ — _ — _
LK1+ tanh(Gk(t e}l = —2~[1 + tanhu] = S TIe CTte® 1t AcE Pt).

10.6 Linear Equations

1. ¢+ ¢"y = xy? is not linear since it cannot be put into the standard linear form (1), ¢* + P(x)y = Q{z).

2ytsinz=zxYy = 2 -y=snz = ¢+ (—) y = ST This equation is in the standard linear

3 x3
form (1). so it is linear.

. Inx . .
3oy +lne—2'y=0 = xy — Py=—Inz = y+(-x)y= ~£, which is in the standard lincar
£

form { 1), so this equation is linear.

4. 3/ + cosy = tanz is not linear since it cannot be put into the standard linear form (1), y' + Plz)y = Q(z).
[cos y is not of the form P(x)y.]
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. Comparing the given equation, i’ + 2y = 2e”, with the general form, y' + P{x)y = Q(x), we see that P(x) = 2

:I.P((ﬁ)d:}: — (_‘_f 2 el —_

and the integrating factor is I{z) = ¢ " Multiplying the differential equation by I'(x) gives

A0y 4 20y = 20 = (fzhy)’zflf:h = ch:.] 2e*dr = ¢ 'yz%e'”%—c =
y= 2" 4 Ce 2

Y =140y = ¥ —5Sy=x I(z)=e/ V@M = ol 75T _ o5 Muyltiplying the differential

Sr_/ 5z

. . _ _ _ - ' -
equation by I{x) gives ¢ "%y’ — e 5:”y =ze ™ = (ey) =z =
e Py = e Mde = ~txe™ - £+ O [byparts] = y=-lzr— L+

. 2
Loy — 2y =2 |divideby x] = gy + (——) Y= (%)
x

Hz)y=¢ [Ple)de o o l(=2fe)de _ o=2lnz] _ loiz] ™% _ ln(1/2%) _ 1/2%. Multiplying the differential

1 2 1 1\ 1 1
cawion 4y )i o - Fv =1 > (gv) =1 = gu=mblee =

y =2 {In|z|+C) =2 Injz| + Cz?.

2}

2 cos? z

oty b 2oy = cos®n = y + -y = 5 ) 2
T T

I(.’L’) . { P(m) e — c‘]"“./a:(fm — (_,‘2 Injx| _. tr]n(:r 2

Multiplying by I () gives us our Onglnal equation back. You may have noticed this immediately, since P() is

the derivative of the cocfficient of ', We rewrite it as (z%y) = cos® 2. Thus,
. . . . 1 1 (*
;frzy = [ cos® wdr = ] %(1 +eos2y)de = %:r: + % sin2z4+C = y= o + 12 sin 2z Jr — or
l

1 ] S0+ <
Y= — 4 ——=sineco —
LT z2’

. Sinee () is the derivative of the coefficient of y' [P{x) = 1 and the coefficient is x|, we can write the
differential equation ay” + y == / in the easily integrable form (zy) = V& = ay= 242+ 0 =
Yy = é\ﬂ + /.

Y —y = 1/x |z # 0 so T(e) = e/ TV = o T Multiplying the differential equation by I(xz) gives
Y ey =e e = (e ) = e o= y—e" [f (e %/z)dx + C].

() = el T Mu]tlp]ym;:> the differential equation y* + 2xy = 22 by I(x) gives

2 2 2 22 N\
ey 4 2wy = alet = ((il y) = 2%, Thus

2

y = U w2e do + C‘] =e [- ~ [ 3€" *dr + C} o+ Ce™® —ee f %exg dx.

() = el tmede — pinloossl o (since — 2 £ < x < %) Multiplying the differential equation by I(z) gives

y cosr —ytanzcosr = rcosrsinlr = (y cos) = xcoszsinz. So

TS L {/ ;L‘(:()s;r;si112mda‘+6‘} =

COs X Cos it

1 ~2x cost x 2 sin> — 2 cos® ; 3 sin?ax
_ .J"f()% ¥ + = sill,’]’,‘ _ SN T + C _ £ T_,Ob £Z + C + Qt}LII.’L‘ j [SI0 4§ B
COS I 3 3 3 3 CoS T 2]

{/ 27 cos® xsingdr + C}

[

. i 1 . .
Fu=1+61>0 [dividebyl+¢t] = ;:+l+iu:1(*),whlchhusthetorm

= Q{1). The integrating factor is [(t) = ¢f POVt — o JI/OH01dE _ Jn(l4e) 4y

(Lt t)

du
dt
)u

' 4 Pt
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Multiplying () by I(t) gives us our original equation back. We rewrite it as [{(1 +t)u] = 1+ t. Thus,

t+ 22+ O 242t +2C
: s 2 - 2 _
(1+t)u:j(1+t)dt:t+%t +C = u T 2+ 1)

Ir 1 &t
.tlxltgi+'r:te“ - L

di o Tt T e
dr 1 e +C

- P et o= ,t =
T tIr=¢ = [(Inty] =¢" = (nthr=c+C = r =

I(t) = ¢! W/t — ot — Iy ¢ Multiplying by In t gives

Int

&

Y=ty = Y+ (-ly=—=z Ia}= el (=1de — o=% Muyltiplying by ¢ ™" gives e “y" — ¢ Ty = we”
= () =ze ™ = e Ty=[ue T dr=—ze" - e~ 4+ C |integration by parts with u = x,

dv =¢%dr] = y=-z—14+C* y0)=2 = -1+C=2 = C=3s0y=—r—1+3c"

., -
. tiﬁ +2y = 1, ¢ > 0,y(1) = 0. Divide by £ to gel

7} 2 : S

d_? +oy = t, which is linear.

dy

dt

2 1. s _ g . 1 _ 1 _.i_l

Py=3+C = y=z+g T 0=yl)=5+C = C=-g0y= 512
5 5 i ) Ob

[(t) = ef P74t _ g2lat — 42 Multiplying by t* gives 2 sy =t = (t"zy)’ =1t =

d : ‘ 2 . . .
. TZ‘} —2tp = 3t%" v (0) =5.I{t) = el (224t — o=t Multiply the differential equation by (¢} to get
(1L

. . B + . . B .
pri 21‘.(:7*2’:; =37 = ((ftzv) =32 = C‘iQU = f3£2 dt=+C = uv= tdetz + Cetz.

F=v(0)=0-1+C -1=C,s0v — % 4 5el’.

.r . 1 ' x) dr nz nal/ . s
20y +y=06r, >0 = :t;’—!—%y:& I(a:)zc-“/w}d = /2 Ine ) '112:\/}.Mult|plymg

1
2V
24

yp(d) =20 = 8-}—%:20 = C=2soy=22+—F4.

N

by /T gives \/xy + y=3vr = (Vry) =3V = Voy= [3Vrdr =207+ C =

y—2‘r+£
-2t e

2 . 1 . — » . . 1
.xy =y+axising = y — —y=zsinz I(m):—z-“ zyds _ g=lue _ a2
T &

- 1.1 1 . 1y 1 ,
Multiplying by — gives — 3" — — y=snzr = (— y) =sing = —y=-—-cosr+C =
z x € x R

y=—xcosz+Czx. ylm)=0 = —7-(-1)+Cr=0 = (C=-lso0y=—zcose I
u _r ol . ~ [Tl -+ 1
-7 = o = 1{r 0. s S IRVICIERS ) . , (Infa|=Inla+1]) _
x Voo an Y {z>0),s0l(z) =1t e P

Multiplying the differential equation by I() gives chl y — Y _ g+l _z¥ )
x z{x+1) =z T

r+i Y w4l T ' 1 z
= . Th = — 14— )de = T ! .
( . y) . en y :r+1[_/( +I)dx+C} $+1(T+111J.‘+() But

0=y (1) =1[1+C}soC = —1and the solution to the initial-value problem 1s y = Y (2 -1+ Inx).
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2t ' + ly =cose (x#0)so [(x) = el /28 = =l — 4 (for
x

x > ), Multiplying the differential equation by T(z) gives

zy +y=xcosx = (ay) = xcosz. Thus,

y:i [/mcos:cdu:—l—(f] = i, [zsinz + cosz + C]

. cosx C
=sinT+ + —

The solutions are asymptotic to the y-axis (except for ' = —1). Infact, for C > —1, y —» oo as x — 0T, whereas

for C < —1,y — —ocasx — 01, As x gets larger. the solutions approximate i = sin z more closely, The

graphs for larger C lie above those for smaller . The distance between the graphs lessens as x increases.

L H{@) = el e AT — osinE Multiplying the differential equation by

I{z) gives ™7y +cosx - ™" Ty = cosx - 8T =

(cbm.(y) = COsST - ehl[l ES =

y=e "7 |feosx e dr+ C] = 14 Ce . The graphs for

= —3,0. 1. and 3 are shown. As the values of C' get further from
zero the graph is stretched away from the line y = 1, which is the value

for C = 0. The graphs are all periodic in x, with a period of 27

R . d/iL _ d_!j du yn dlt, un/(l._,n) du
L Setting =3t ", = = (1 —n)y "—= or —= = wt au h T, :
£ Y de (1-n)y T T 1 onds T Then the Bernoulli differential
n/{l=n) 4
R - . u U DA 1(l—n) nfil—-n du‘
equation becomes T @ + P(2)ut = = Qa)u™ ) or = + (1 ~n)P(z)u = Qz)(1 — n).

’ . ¢ 1 ~ . s
. Here 3/ + % =y’ son=2 Plx)= - and Q(x) = —1. Setting uw = ¢~ 1, u satisfies ' — lu = 1. Then
A o x

1

/eyde L 1 .
I(@) = el V™9 — —(for x> 0)and u = 1,(/ —da:—&-(,') =z(ln|z} + C). Thus, y = ———.
T f = z(C + Inlz))

2 y” 2 1 . 4y 2
?

L —y = =—.He =3 Plx) == r) = — setti = 2w satisi Pkl
¥+ SV= 3 re n =3, P{x) o Q(x) p and setting w — ¥~ °,  satisfies u ~ ok

Fhen /() = e/ 4O ~ 2 and u = * (f et C) - (i + O) —Crts 2
T S

5

‘ —1/2
Thus, y = + (C‘J;q + i) .
%

- Here n = 3, PP(2) = 1. Q(z) = 7 and setting u = y ™%, w satisfies v’ — 2u = —2z. Then
el e — =22 g 4 — 2 [ —2ze *de + C] = *(pe ™ 4 le ™ 4 C)=z+1+ 0™

Soy t=ux-+ % +0e* = y= j:[.r + % + Ce%rl/Z.
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21. (a) 2%% + 101 = 40 or % + 57 = 20. Then the integrating factor is e/ % =

¢, Multiplying the differential
i ;
equation by the integrating factor gives e“% +5Ie® =20e™ = (eI} =20 =
Ity =e ™ [[20e™ dt + C] = 4+ Ce™> . But0 = I(0) =4 + C, 50 I(t) = 4~ 4e™"",
(b) 1(0.1) =4 —4e7"F » 1.57 A

20t

23. (a) % + 201 = 40sin 60t, so the integrating factor is ¢**°. Multiplying the differential equation by the integrating

factor gives 2 % + 201 = 40e® sin60t =  (e*™I)" = 40e™ sin 60t =

I(t) = e 2 U 40e*** sin 60t dt + C (b) 1(0.1) =

sin6 — 3cosh + Be ™2

5

= &2 [40e*% (1k5) (205in 60t ~ 60 cos 60t)] + Ce™ 2% ~—042A

1000
_ sin 60f — 3 cos 60t 4 Cem 20t (c) k3
5

Butl=I{(0)=-2+C,s0

sin B0t — 3cos 60t + Be™ 20
3 .

-0.7

2. 52

i 20Q = 60 with Q(0) = 0 C. Then the integrating factor is e/ ?% = ¢**, and multiplying the differential

equation by the integrating factor gives e** % 4@ = 126" = (*Q) =124 =
Q) =e "[[ 12" dt + C] =3+ Ce *". Bu 0= Q(0) = 3+ C s0 Q(t) = 3(1 ~ ¢ **) is the charge at time
tand I = dQ/dt = 12e™% is the current at time £.

dq

, 2 QQ + 100Q = 10sin 60f or r

7 + 50Q) = 5sin 60t. Then the integrating factor is ef S04t — 50t ang

multiplying the differential equation by the integrating factor gives e°°* % + 50" Q = 5" sin 60t =

(eSOiQ)! = 5" sin60t =
Q(t) =€ [ f 5e° sin 60t dt + C] = e~ ** [5e"” (15 ) (50 5in 60t — 60 cos 60¢)] + Ce™>"

= 74 (5sin 60t — 6.cos 60t) + Ce °**

5 sin 60t — 6 cos 60f . 300t
122 61

_dQ _ 150cos 60t 4 180 sin 60t — 150¢ —50¢
Codt 61 '

But0 =Q(0)= 75 + Cso C = % and (¢} = is the charge at time ¢, while

the current is I{t)

. % + kP = kM, soI(t) = e! ¥ = ¢** Multiplying the differential

equation by 7{t) gives ** % + kPef = kMeF =

(e P) = kMekt =

P(t) = e ™™ ([ kMe™dt + C) = M + Ce™*, k > 0. Furthermore, it is
reasonable to assume that 0 < P(0) < M, s0o —M < C <0.
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32. Since P{0) = 0, we have P{¢) = M(1 — e **). If Py(¢) is Jim's learning curve, then P1(1) = 25 and
Pi(2) = 45. Hence, 25 = My(1 — ¢ *) and 45 = M1(1 — e ), 501~ 25/M1 = e or

2
25 M . My~ 25
1= B i =M Butds = a1 — s045 = My |1— { 2272 | o
g ]"(] Ml) ln(Ml—%) utd5 = M(l e so d5 = M ( M, 0

_ BOM; — 625

N . Thus, M, = 125 is the maximum number of units per hour Jim is capable of processing.
G

M
Similarly, if P2(t) is Mark’s learning curve, then P»(1) = 35 and P2(2} = 50. So k = ln(ﬁ) and
Ty — -

2
50 = M, [1 - (M%'i_‘)) ] or My = 61.25. Hence the maximum number of units per hour for Mark is
2

approximately 61. Another approach would be to use the midpoints of the intervals so that P (0.5) = 25 and
P {1.5) = 45. Doing so gives us M) = 52.6 and Mz = 51.8.

L . oo .
y(0) = 0 kg. Salt is added at a rate of (0.4 ktg) (5 ) =2 —ké Since solution is drained from the tank at a
min min

rate of 3 L/min, but salt solution is added at a rate of 5 L/min, the tank, which starts out with 100 L of water,

S . . . . ¢ kg
contains (100 4+ 2¢) L of liquid after ¢t min. Thus, the salt concentration at time ¢ is F)%% Lé Salt therefore

t k L 3 k;
leaves the tank at a rate of (WTJ)%E f) (3 ﬁ) T(—)—Of——% mlgn Combining the rates at which salt enters

3y

dl the tank, =2—- —.
and leaves the tank, we get — ﬁ 100 + 2

dy 3
R iting this i — ————— =2 § Z
ewnting this equation as ar + (100 n 21&) Y , we see that

S 3dt
it is linear. I{t) = CXP([ m) = exp( In(100 + 2t)) = (100 + Qt)q/‘)' Multiplying the differential

equation by I({) gives (100 4 2¢)*/ 5(%{ +3(100 + 2t}/2y = 2(100 4+ 26)¥% =

(100 + 2t) */-*g] 2100 + 26)3% = {100 + 2032y = 2(100 + 20)*2 + C =

_1
1000 ¢ =

y = 2(100 + 2t) + C(100 + 2t) 2. Now 0 = y(0) = 2(100) + C - 100~ %2 = 40 + 1

= 40,000, so y = {%(100 + 2t) - 40,000(100 + Qt}"a/ﬂ kg. From this solution {no pun intended}, we

£ In particular,

calculate the salt concentration at time ¢ to be C(t) = 3

yt) [ —40000 g} k

10042t | (100 + 2¢)5/2

—40.000 2 kg .
C(20) = —aez Ty = 0.2275 f’ and y(20) = 2(140) — 40,000(140) ™%  31.85 kg.
: b}
. Let y(#) denote the amount of chlorine in the tank at time ¢ (in seconds). y(0) = (0.05 g/L) {400 L) = 20 g. The

amourtt of liquid in the tank at time ¢ is (400 — 6¢) L since 4 L of water enters the tank each second and 10 L of

% % Chlorine doesn't

y(t) _e|[pk] . L0v(t) g _ Sylt)
400 — 6t L s 4006t s

liquid leaves the tank each second. Thus, the concentration of chlorine at time ¢ is

g .
=500 % s Therefore,

enter the tank, but it leaves at a rate of [
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/dy f SA L y=2m00-3)+C =

200 — 3t 200 — 3¢

20
5 (200 - 3t) + C) = e (200 — 3t)*/%. Now 20 = y(0) = € - 200%° = € = _ oo 50

(200 — 3t)°*/3

200573 = 20(1 — 0.015t)°/ g for 0 < ¢ < 662 s, at which time the tank is empty.

y(t} =20
. {a) @ + iv = gand I(t) = el(e/m™Ht et/ and multiplying the differential equation by I{t) gives
(efmye QU veels/mit
— +
dt m
v(t) = e e/t [f gete/ ™t di 4 K} = mg/c+ Ke /™" But the object is dropped from rest, so v((}) = 0

1]
= gels/mt o [e(cfm)tv} = ge!*/™*  Hence,

and K = —mg/c. Thus, the velocity at time ¢ is v(t) = {mg/c) [1 - e_(“/”")"].
(b) tlim v{t) = myg/c
(cy s(t) = [u(t)dt = (mg/c) [t + {m/c)e” ‘"/m)t] + ¢ where ¢; = 5(0) — m?g/c?. s(0) is the initial position,

so 3(0) = 0 and s(t) = (mg/c) [t + (m/c)e”{"/m)t] —mPg/ct.

dv mg . ct g -
- ~rt/"m o e ctfm = (1 _ (:t/m) 1=
v = (mg/e)(1 — Y= I . (0 e mz) + 2 e

g_tcdr-t_/m. + g _ _g_'_c—ct/?n — 2(1 - efct/m _ ite—(:t/'m) =
Tt [ [ C "

get/m e@ m

: y ; °t
¢ dv 1~ (1+£E)e“/m41_ 1+ ct/m =1- 1+Q,whereQ: £ > (). Since e > 1 + @ forall
m

¢ > 0, it follows that dv/dm = 0 fort > (. In other words, for all £ > (, v increases as m increases.

10.7 Predator-Prey Systems

1. (a) de/dt = —0.05z + 0.000Lzy. If y = 0, we have dz/dt = —0.05x, which indicates that in the absence of y,
declines at a rate proportional to itself. So x represents the predator population and y represents the prey
population. The growth of the prey population, 0.1y (from dy/dt = 0.1y — 0.005zy), is restricted only by
encounters with predators (the term —0.005zy). The predator population increases only through the term
0.0001xy; that is, by encounters with the prey and not through additional food sources.

(b) dy/dt = —0.015y + 0.00008zy. If x = 0, we have dy/dt = —0.015y, which indicates that in the absence of
x, y would decline at a rate proportional to itself. So y represents the predator population and z
represents the prey population. The growth of the prey population, 0.2z (from
dz/dt = 0.2z — 0.00022* — 0.006zy = 0.2z(1 — 0.001x) — 0.006xy), is restricted by a carrying capacity of
1000 [from the term 1 — 0.001z = 1 — £/1000] and by encounters with predators (the term —0.006xxy). The
predator population increases only through the term (0.00008:y; that is, by encounters with the prey and not

through additional food sources.
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2. (a) da/dt = 0.12x — 0.0006x” + 0.00001zy. dy/dt = 0.08y + 0.00004zy.
The zy terms represent encounters between the two species x and y. An increase in y makes di /dt (the growth
rate of z) larger due to the positive term 0.00001zy. An increase in = makes dy /dt (the growth rate of ) larger

due to the positive term 0.00004zy. Hence, the system describes a cooperation model.

(b) de/dt = 0.16x — 0.00022% — 0.0006zy = 0.152(1 — 2/750) — 0.00062y.
dy/dt = 0.2y — 0.00008y% — 0.0002zy = 0.2y(1 — y/2500) — 0.0002zy.
The system shows that @ and y have carrying capacities of 750 and 2500. An increase in x reduces the growth
rate of y due to the negative term —0.0002xy. An increase in y reduces the growth rate of z due to the negative

term —0.0006xy. Hence, the system describes a competition model.

3. (a) Att = 0, there are about 300 rabbits and 100 foxes. Att = ¢, the number of foxes reaches a minimum ol about
20} while the number of rabbits is about 1000, At { = #2, the number of rabbits reaches 4 maximum of about
2400, while the number of foxes rebounds to 100, At t = £5, the number of rabbits decreases to about 1000 and
the number of foxes reaches a maximum of about 315. As t increases, the number of foxes decreases greatly to

100, and the number of rabbits decreases to 300 (the initial populations), and the cycle sturts again.

F {=1, (b)

1o+

400 800 1200 1600 2000 R i nh

4. (a) Att = 0, there are about 600 rabbits and 160 foxes, At ¢ = #1, the number of rabbits reaches a minimum of
about 80 und the number of foxes is also 80. At ¢ = {2, the number of foxes reaches a minimum of about 25
while the number of rabbits rebounds to 1000. At £ = t3, the number of foxes has increased to 40 and the rabbit
population has reached a maximum of about 1750. The curve ends at £ = {4, where the number of foxes has
increased to 63 and the number of rabbits has decreased to about 950.

d (b)

R
20001

15004
1000

500

0
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Species 2 3 Species 2

0 700+
600+
1501 500+
4001
WoT
2001

1001+

501
1=0,5

o S0 100 150 200 230 Species | 200 400 600 K00 1000 1200  Species |

dW  —0.02W + 0.00002 W

(0.08 — 0.001W)RdW = (—0.02 + 0.00002R}W dR <

- / — /0. 02

0.08 - 0.001W .. 002+ 0.00002R ., / 0 0!8 _0.001) dW = / 0L N 0‘00002) IR

W R / ‘ R

= 0.08 In]W| — 0.001W = —0.02 In|R} + 0.00002R + K <

0.08 MW +0.02 In R = 0.001W + 0.00002R + K < In(W"RY%} = 0.00002R + 0.001W + K+
R0<02 VV(] .08

J0.08 p0.02 _0.00002R40.001W +K 0.027170.08 _ ~ _0.00002R 0.001W _
W e =e & RTUWET =Ce « S0.00002R o0.G0LW ¢

d — 1 br s k
In general, if “2 = YA OTY enC - i; CA
dir kr — ary ebr pay

0=24-0.01AL 0= A(2 — 0.01L)
=
0= —0.5L + 0.000LAL 0= L{~0.5+ 0.00014)

Soeither A = L = Qor L = ;%; = 200 and A = 55 = 5000. The trivial solution A = L = 0 just says
that if there aren’t any aphids or ladybugs, then the populations will not change. The non-trivial solution,

L = 200 and A = 5000, indicates the population sizes needed so that there are no changes in either the number
of aphids or the number of ladybugs.
dl, dL/dt  —0.5L +0.0001AL
dA  dA/dt 24 - 0.01AL

{b)

{c) The solution curves (phase trajectories) are all closed curves

that have the equilibrium point (5000, 200} inside them.

]

S000 10,000 15,000 A

At Fp(1000,200), dA/dt = 0 and dL/dt = —80 < 0, so the
number of ladybugs is decreasing and hence, we are
proceeding in a counterclockwise direction. At Fy. there aren’t
enough aphids to support the ladybug population, so the
number of ladybugs decreases and the number of aphids begins

P, to increase. The ladybug population reaches a minimum at

Py (5000, 100) while the aphid population increases in a

5000 10500 15000 4 ]
dramatic way, reaching its maximum at (14,250, 200).

Meanwhile, the ladybug population is increasing from Py to Ps{5000, 355), and as we pass through P, the
increasing number of ladybugs starts to deplete the aphid population. At %3 the ladybugs reach a maximum

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

810~ CHAPTER1D DIFFERENTIAL EQUATIONS

popuiation, and start 1o decrease due to the reduced aphid population. Both populations then decrease until £,
where the cycle starts over again,

{(e) Both graphs have the same period and the graph A
of L peaks about a quarter of a cycle after the 15,0001

graph of A, 10000+

s004

9. (a) Letting W = 0 gives us dR/dt = 0.08R(1 — 0.0002R). dR/dt =0 < R =0o0r5000. Since dR/dt > 0
for ) < 1 < 5000, we would expect the rabbit population to increase to 5000 for these values of K. Since
dR/dt < Ofor R > 5000, we would expect the rabbit population to decrease to 5000 for these values of R.
Hence. in the ahsence of wolves, we would expect the rabbit population to stabilize at 5000.

(b Rand W arc constant = R =0und W' =0 =
0= 0.08R{1 — 0.0002) — 0.001RW 0 = R{0.08{1 — 0.0002R) — 0.001W]
{O = —0.02W + (L00002 RW } {0 = W(—0.02 - (.0000217)

The second equation is true it W = 0 or R = 552 = 1000. If W = 0 in the first equation. then either R = 0

or R =zt = 5000 [as in part (a)]. If R = 1000, then 0 = 1000[0.08(1 — 0.0002 - 1000) - 0.001W]| <
0=80(1-02)—W = W =64
Cuse (i): W = 0, R = 0: both populations are zero
Cuase (fi): W = 0. fI = 5000 see part (a)
Case (Hi): B = 1000, W = 64: the predator/prey interaction balances and the populations are stable.

(¢) The populations of wolves and rabbits fluctuate
around 64 and 1000, respectively, and eventually

stabilize at those values.

10. (@) I L = 0, dAjdt = 2A4(1 — 0.00014), so dA/dt =0 « A=00r A= g5 = 10.000. Since
dAjdt > 0for 0 < A < 10,000, we expect the aphid population to increase to 10,000 for these values of A.

Since dA/dt < 0 for A > 10,000, we expect the aphid population o decrease 1w 10,000 for these values of A.

Hence, in the absence of ladybugs we expect the aphid population to stabilize at 10,000,

(by Aand L areconstant = A ' =0andl' =0 =

{0 = 2A(L - 0.00014) — 0.01 AL} {0 = A[2(1 - 0.0001A4) - 0.01L]
=

(0= —0.5L+ 0.0001AL 0= L(-0.5+0.0001.4)
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The second equation is true if L = 0 or A = %2= = 5000. If L = 0 in the first equation, then either A = Q or

A= —L_ =10,000. If A = 5000, then 0 = 5000[2(1 — 0.0001 - 5000) — 0.01L] <

0.0001
0 = 10,000(1 — 0.5) — 50L. & 50L = 5000 < L = 100. The equilibrium solutions are:
HL=0,A=0 (D)L =0,4=10000 (i) A= 35000, L =100

dl.  dL/dt —0.5L +0.0001AL
dA T dA/dt  2A(1 —0.00014) — 0.01AL

{c)

4 - L 1 1 4

2000 4000 6000 8000 10,00012,000 A 2000 4000 6000 8000 10,00012,000

All of the phase trajectories spiral tightly around Att =, the ladybug population decreases

the equilibrium solution (5000, 100). rapidly and the aphid population decreases
slightly before beginning (o increase. As the
aphid population continues to increase, the
ladybug population reaches a minimum at about

(5000, 75). The ladybug population starts to

increase and quickly stabilizes at 100, while the

aphid population stabilizes at H5000.

0

The graph of A peaks just after the graph of L has

a minimum.

10 Review
CONCEPT CHECK

1. {(a) A differential equation is an equation that contains an unknown function and one or more of its derivatives,
(b) The order of a differential equation is the order of the highest derivative that occurs in the equation.
{c) An initial condition is a condition of the form y(fs) = wo.

2.y =2% + ¢ > 0forallzand y. ¥ = 0 only at the origin, so there is a horizontal tangent at (3, 0), but nowhere
else. The graph of the solution is increasing on every interval.

3. See the paragraph preceding Example 1 in Section 10.2.
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4, See the paragruph after Figure 14 in Section 10.2,

. A separable equation is a first-order differential equation in which the expression for dy/dx can be factored as a
function of 2 times a function of y, that is, dy/dx = g(x) f(y). We can solve the equation by integrating bath sides
of the equation dy/ f(y) = g{x)dx and solving for y.

. A first-order linear differential equation is a differential equation that can be put in the form % + P(z)y = Q).
where P and () are continuous functions on a given interval. To solve such an equation, multiply it by the
integrating factor 1(z) = ¢! "% o put it in the form [I(z) y]" = (x) Q(z) and then integrate both sides to get
Itx)y = [1{x)Q(x)dz, that is, el P@Yday o [ /P20 1) dy. Solving for y gives us
y = o | Pla)dx I e .['P(m)de(m) dz.

dt

{b) The equation in part (a) is an appropriate model for population growth, assuming that there is enough room and

q 1 dy .
. (@) 2y _ ky; the relative growth rate, — d—:‘; 1s constant.
Y

nutrition to support the growth.

(¢) If y(0) = yo. then the solution is y(t) = yoc*".

. (a) dP/dt = kP(1 — P/K), where K is the carrying capacity,

{b) The equation in part (a) is an appropriate model for population growth, assuming that the population grows at a
rale proportional to the size of the population in the beginning, but eventually levels off and approaches its
carrying capacity because of limited resources.

. {a) dF/dt = kF — aFS and dS/dt = —vS + bFS.
(b) In the absence of sharks, an ample food supply would support exponential growth of the fish population, that is,

dF/dt = kF, where k is a positive constant. In the absence of fish, we assume that the shark population would
decline at a rate proportional to itself, that is, dS/dt = —rS, where r is a positive constant.

TRUE-FALSE QUIZ

Since y* > 0,%' = —1 — y* < 0 and the solutions are decreasing functions.
_Inx ;, l—=Inzx

Yy=— = Y = .
y T Y 2

l1—-Inz Inx
+r-—

. l oy
LHS = 2%y’ + 2y = z* - 3 :(l—lna:}—{—lnﬁ:1:RHS,soy:iliisasolu[i0n
z z

of 2%y’ + xy = 1.
T + y cannot be written in the form g(z) f(y).
y =3y ~2z+6zy—1l=6zy—20+3y—1=2:8y—- 1)+ 13y — 1) = (22 + 1){(3y — 1), s0y’

can be written in the form g(x} f{y), and hence, is separable.

ey =y = ¥y =c¢ ®y = y +(—e ")y =1, whichis of the form ¢’ + P(zx) y = Q(z), so the
equation is linear.
y' + xy = €¥ cannot be put in the form 3y + P(x) y = Q{x), so it is not linear.

Y

;) with the logistic differential equation (10.5.1), we see that the carrying
5

d,
By comparing d_: = Qy(l -

capacity is 5; that is, tlim y =35

— 00
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EXERCISES

(b) lim y(t) appears to be finite for 0 < ¢ < 4. In
i—oo
fact lim y(t) = 4 forc = 4, rlim y{t} = 2 for
t—o0 E— 00
0<ec<4 and tlim y(t) =0forc=10. The

equilibrium solutions are y(t) = 0, y(t) = 2, and

y(t) =4.

et

SRS TARN
ceees v

We sketch the direction field and four solution

curves, as shown. Note that the slope ¢’ = z/y is
not defined on the line y = 0.

by =z/y o ydy=zde oy’ =1"+C.
For C' = 0, this is the pair of lines y = +x. For
¢ # 0, itis the hyperbola 2° — y* = —C.

(by h — 01,0 = 0,90 = Land F'(z,y) = x? — 2
SO Yn = Y1 + 0.1{xi_, —y2_,). Thus,
g1 =1+0.1(0° —1%) = 0.9,

| forrmms

y2 = 0.9+ 0.1(0.1° — 0.9°) = 0.82,
ys = 0.82 + 0.1(0.2* - 0.82%) = 0.75676. This

P

L

x is close to our graphical estimate of 4{0.3) == 0.8.

Pl
7

Kkt |

(¢) The centers of the horizontal line segments of the

direction field are located on the lines ¥ = x and

[ 3%
L

7
i
1]
t
!
i
i
t
i
i
t
i
i
I
i
i
i
i
!

i
[P S |

i
!
’ y = —x. When a solution curve crosses one of

B ek RN )
.

Bt A B R R N B i
SR L O RN B

===y f ]

e

|
-,,/|\\“‘qaqxﬁss‘\\|/,,,
Y R L LT SRR
B I Y, ST NN

e 1Y

these lines, it has a local maximum or minimum.
We estimate that when 2 = 0.3, y = 0.8, s0
y(0.3) & 0.8.

4 (a) h =020 =0, yo = 1and F(x,y) = 2zy°. We need yo.
yr=1+0.2(2-0-1%) = Ly =1+ 0.2(2-0.2-1%) = 1.08 = y(0.4).

(M h=0lnow,soy =1+01{2:0-1%) =1y =1+01(2-0.1-1%) = 1.02,
ys = 1.02+0.1(2- 0.2 1.02%) = 1.06162, ys = 1.06162 + 0.1(2- 0.3 - L.06162%) ~ 1.1292 = y{0.4).
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di d ] . ,
() The equation is separable, so we write —‘Z =2zdr = / EJ% = fQ:r dr & —; =z 4 C. but
Y J o '

y(0)=LsoC =—landy(z) = 1 _1$2 < y(04) = ﬁé == 1.1905. From this we see that the

approximation was greatly improved by increasing the number of steps, but the approximations were still
far off.

we”SE _yeose =y + (cosx)y = ze” ®™F (x). This is a linear equation and the integrating factor is
sinx

= eloosTdr — sine Myjtiplying (x) by €™ T gives ¢y’ + ¢
= esinmy:%m2+() = y:(%I2+C)(1 :,mr..

sin r(

cosxiy =z = (eFy) =z

.i;_l—f+r—1‘r_l(lff)+r(lﬁf) (+2)(1 -1 = = —(1_pa -

l+x
/;f = [(1—0dt = W[liz]=t-32+C = |l4+z/=e 20 =
T

2 . 2
l+r=4e"77. % o g= 14+ Ke¥7/*

. where K is any nonzero constant.

(3P 2y =xcosr = By’ =+ 2y)dy = (zeosz)dr = [(3yF +2)dy = [(weosz)dz =

y* + y? = cosa + xsinz + C. For the last step, use integration by parts or Formula 83 in the Table of Integrals.

1/r

oty —y = 2xte = ¥ - =y = 2ze~1/* (). This is a linear equation and the integrating factor is
X

(—1/0?) da = . : T T T 1 x
I(z) = /1D dr — oL/ Myttiplying (%) by e’/ gives ¢!/ Y-t oy=20 = (Vg =20 =
&€
My =0t b O = oy ="V +O).

Inx 1
Layy =Ine = ydy = 22 = /ydy S L (Make the substitution # = In x; then
T ) J o=

du=dr/z) S0 [ydy= [udy = %yz u +C = 21,' —é(hl!) +C yl)=2 =
%22 1(In D?4+C=C < =2 Therefore, 4% = {ln @)* + 2. ory = /(Inr)2 4 4. The negative
square root is inadmissible, since y{1} > (.

; 1 : 14 x 2 1
1tz =2zyy = Y = ks = yd’q:idm = ¥y _ UM—{— + 1. Butz > (), so
QTy 2z 2 2 2
y=lnr+r4+e¢ < =tve+ o+ Inxz But —2 = y(1) so choose the negative square root and
—2=—Ve+lsoe=3 T‘hus, the solution is y(z) = —+/3 +x + In=z

de . Then multiplying by I{x) gives €"y' + ¢’y = /r =

(e*y) =va = yla)=e ([ Tde+ c:) =" (%:33” + c). But 3 = y{0)) = ¢, so the solution to the

. Since the equation is linear, let J(xz) = e {9

initial-value problem is y(z) = ¢~ (%:1:3/2 + 3).

L 2yy = ret = f2ydy= [z dr =

y? = pe” — J e da (by parts) = (z — 1)e” + C. We substitute the

initial condition: 12 = (0 — 1)’ +C = C = 2. So the solution

sy = \/{z —1)e* + 2. The negative square root is inadmissible

due to the initial condition.
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13. The curves kx? + y° = 1 form a family of ellipses for & > 0, a family of hyperbolas for k < 0, and two parallel
2
- Y

——. Ditferentiating gives 2kr +2yy =0 <
i

. _ 1
lines y = +1 for k = 0. Solving ka® 49 = 1 fork gives k =

kx 2, T y —1 Lo T |
—— = —(1-y*) — = “—— Thus, for k # O the orthogonal trajectories must satisfy ' = ——

y © 0 yx? Ty ¥y -1
y* —1 y —a’ 2 2
Y dy = —zde = 5 In|y| = 5 + K = ¢ —2niy|+z° =C. Fork =0, the

orthogonal trajectories are given by « = € for C an arbitrary constant.
; 2k 1+ _ 2y

k
— gives y = —————5 = —2u; =— .
Lo 00 T Ty Trae? T 1

. Ditferentiating both sides of ¥ — Thus, for

o - 1+2* 1
k < O the orthogonal trajectories must satisfy 3 = 5y = 2ydy = (I + J:) dr =

2

Y’ = % + Injz| + C. For k = 0. the orthogonal trajectories are given by x = C; for C'2 an arbitrary constant.
(@) y(t) = y(0)e* = 1000e* = y(2) =1000e** = 9000 = =9 = 2%k=h9 =
k=1In9=m3 = y(t)=1000c"" = 1000 - 3"
(b) y(3) = 1000 - 3* = 27,000
(©) ¢’ (£) = 1000 - 3" - In 3, so ¥ (3) = 27.000In 3 = 29.663 bacteria per hour
(10003t =2.1000 = 3" =2 = tin3=mhn2 = t=(In2)/In3=063h

. (a) 1f y(#) is the mass remaining after ¢ years, then y(t) = y{0)e!* = 18", y(25) = 18 = 1.18 =
ek — = 2k=-In2 = k=-5m2 = ylt)=18 e IME/25 — g 9-l/25

3
by 18.274* =2 = 27¥® =1 = _Lin2=-In9 = =257 ~ 79 yeurs
() C'(t) = —kC(t) = C(t) = C(0)e™™ by Theorem 10.4.2. But C{0) = Co, 50 C(t) = Coe™
(b) C(30) = 1, since the concentration is reduced by half. Thus, 10y =Coe™ ™ =Inj=-30k =
k=—21ul==21n2 Since 10% of the original concentration remains if 90% is eliminated. we want the
value of ¢ such that C'(t) = & Co. Therefore, =Co = Coe "™ */%0 = 0.1 = —(ln2)/30 =

t=—7#% 0.1~ 100h.

. (a) Let £ = () correspond to 1990 so that [7(t) = 5.28¢** is a starting point for the model. When ¢t = 10, P = 6.07.

S06.07 = 5.28¢'% = 10k=In2Y = k= LIn2 ~0.01394. For the year 2020, ¢ = 30, and

P(30) = 5.28¢%% =2 8.02 billion.

lIl 10

() P=10 = 528" =10 = LL=e = k=hlL = t= 1()l 228 o 45.8 years; that is,

5.28
in 1990 + 45 = 2035.
K 100 100 — 5.28 1, 6.07
(c) P(t) AN T 1T AcF where A = % 17.94. Using k 10 in 508
100

model is P(t) = 1717 94 o0idoir and P(30} = 7.81 billion, slightly lower than our estimate of

8.02 billion in part (a).

from parl (a), a

M P=10 = 1+A4e7™ = = A ¥ =9 = e ™=9/4 = —k=h(9/4) =

19 C . . .
t= % In 1 23 49.47 years (that is, in 2039), which is later than the prediction of 2035 in part (b).

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

816 1 CHAPTER10 DIFFERENTIAL EQUATIONS

dL dL dL ] : .
4) — X Lo — = k(Lo — L — = kdt = -I|lew-—L=kH+C =
19. (4) - Lee =L = e k(L ) = [ 7 | |

|loo — L] =kt —C = |Lw—Ll=e¢™% = Le—L=Ac™ = L=Lo- A H,
AL=0L = L{0)=Lo A = A=Lyg—L{0) = L{)= Lo — [Loo — L(0)]e ™.
(b) Lo — 53 cm, L(0) = 10cem.and k = 0.2 = L(t) = 53 — (53 — 10)e™ %" =53 — 43¢ "™,

. Denote the amount of salt in the tank (in kg) by y. »(0) = 0 since initially there is only water in the tank. The rate

at which y increases is equal to the rate at which salt flows into the tank minus the rate at which it flows out, That

. dy kg L v kg L y kg /' dy f 1 7
aeis ¥ 018 g p— - L L1 L2 o = [ —at =
raeis o, = 017 =10 = o0 T min 10 min /oy 10

S0y =+ C = 10y =AU y0)=0 = 1W0=A = y=10(1 ")

Att = 6 minutes, y = 10(1 - e—ﬁf‘“) = 4512 kg

. Let £ be the population and I be the number of infected people. The rate of spread d1/dt is jointly proportional to

1o P

I[) n (]) __ [(’))(Eik’”t ( rom the

Tandto P — I, s0 for some constant k, df /dt = kI{P - 1) = I

discussion of logistic growth in Section 10.3).
Now, measuring ¢ in days, we substitute { = 7, P = 5000, Iy = 160 and I{7) = 1200 to find &:

160 - 5000
1200 = &k~ 0.00006448. So, putting T = 5000 x 80% = 4000, we solve
160 + (5000 — 160)c 50007 % 0. puting I'= 5000 K07% e e

o B 16¢ - 5000 . 032248 __ «
for £ 4000 = 160 = (5000 — 160} 0 90006138 50611 < 160 -+ 4840¢ =200 <=

—0.3224t = In 2% & (= 14.9. So it takes about 15 days for 80% of the population to be infected.

1 di i u'_b d

ad
S — = Ykms '~ kln S
it dl S dt = dt(lniz) (klnS) = IhR=knhS+C =

d

n s . k s ”
R=efMEC = O ()" = R AS* where A = ¢ is a positive constant.

cdh I h "k+h (R ' k R

h+klnh= _Vt + (. This equation gives a relationship between /e and ¢, but it is not possible to isolate /i and

express it in terms of ¢,

L fdt = (4w — 0.0022y, dy/dt = —0.2y + 0.000008zy
{a) The i terms represent encounters between the birds and the insects. Since the y-population increases from
these terms and the z-population decreases, we expect y to represent the birds and i the insects.
(b) x and y are constant = ' =0andy =0 =
0 =04z - 0.002zy 0 =0.4x(1 — 0.005y)
=3 y = 0and & = 0 (zero populations)
= 0.2y + 0.000008zy 0= -02y(1 ~ 0.00004z)

yy — L g e 1
ory = oo = 200and & =

so that there are no changes in either the number of birds or the number of insects.

= 25.000. The non-trivial solution represents the population sizes needed
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~ —0.2y + 0.000008xy
T 0.4z — 0.002zy

At (z,y) = (40,000,100), de/dt = BOOD > 0, so as
t increases we are proceeding in a counterclockwise
direction. The populations increase to approximately

(59,646, 200), at which point the insect population

starts to decrease. The birds attain a maximum
population of about 380 when the insect population

gl
YA~/ 0T
AN~/ L 1T

A\N~=— LS

|/ =~~~ N NN\
f/7-~NVAAn

NN~r s LY
A\NN==" S

is 25,000, The populations decrease to about

f o e -

(7370, 200), at which point the insect population starts

20,000 46,000 60,000 * to increase. The birds attain a minimum population of
about 8% when the insect population is 25,000, and
then the cycle repeats.

x4 (insects) (birds) 4 Both graphs have the same period and the bird

600001

inseets population peaks about a quarter-cycle after the

' 2 ", birds
q00001 AN A insect population.

20,0001

25. (a) dz/dt = 0.4x(1 — 0.0000052} — 0.002zy, dy/dt = —0.2y + 0.0000082zy. If y = 0, then
dx/dt — 0.4x2(1 — 0.000005zx), so dr/dt =0 <« x = 0orz = 200,000. which shows that the insect
population increases logistically with a carrying capacity of 200,000. Since d/dt > 0 for O < x < 200,000
and dx/dt < 0 for x > 200,000, we expect the insect population to stabilize at 200.000.

(b) z and y are constant = z' =0andy =0 =
0 = 0.4z(1 — 0.000005z) - 0.002zy 0 = 0.4z[{1 — 0.000005x) — 0.005y]
{() = —{).2y + 0.000008zy } - {0 = y{—0.2 4 0.000008:x:)
The second equation is true if y =0 orz = m = 25,000. If 4 = 0 in the first equation, then either & = 0
Woloﬁﬁ = 200,000. If == = 25,000, then 0 = 0.4{25,000)[(1 — 0.000005 - 25,000) — 0.005y] =
0 = 10,000[(1 — 0.125) — 0.005y] = 0=8750 50y = y =175
Case (i): y =0, x = O Zero populations

ore =

Case {ii): y = 0, z = 200,000: In the absence of birds, the insect population is always 200,000,
Case (iii): x = 25,000, y = 175: The predator/prey interaction balances and the populations are stable.

(¢) The populations of the birds and insects fluctvate  (d) x 4 (insects) (birds) 4 ¥

around 175 and 25,000, respectively, and 45,000

eventually stabilize at those values. 33,000 74

250004 | LY
insects
15,000 +

50001
0
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26. First note that, in this question, “weighs” is used in the informal sense, so what we really require is Barbara’s mass
m in kg as a function of ¢. Barbara’s net intake of calories per day at time £ (measured in days) is
c(t) = 1600 — 850 — 15m(t) = 750 — 15m(¢), where m(t) is her mass at time ¢. We are given that m(0) = 60 kg
dm  eft) dm  750—15m 150 —-3m  —3(m — 50)

JaLLL S0 — — = = with m{0} = 60. From
dt 10,000 dt 10,000 2000 2000

/ p T S / 2000 e get In|m — 50| = — 55t + C. Since m(0) = 60, €' = In 10. Now

fm —50] 3t
"To T 20000
right-hand side is never zero. Thus, m — 50 is positive for all ¢, and m{t) = 50 + 10e 2000 ko Agt — oc,

t 50 . — 50 = 10e /29 The quantity 7. — 50 is continuous, initially positive, and the

m(t) — 50 kg. Thus, Barbura’s mass gradually settles down to 50 kg.

2 2
d d .
27. (a 4y kyfl+ dy . Settingz:@,weget—z:kr 1422 = 2 — kdz. Using
1 dx dx

G iz
Formula 25 gives ln(z + \/H—zz) =kzxtec = z+vV1+22=Cc (whereC =¢°) =
VI+22 = Cef™ —z = 1422 = 0% _20Ce" 2+ 22 = 202 =% -1 =
_C ke L dy  C 4o 1 o C e 1

—~kx i —kx ’
) CNow -2 = = - e = oy = — 4+ —e + . From th
2 20( d.’,L 2 ¢ ECC le QC}CP o ¢

) 1 .
diagram in the text, we see that y(0) = aand y(£b) = h. a=y(l)= > + —— +C' =

2k 2Ck
- 2—(;: - %;E Y= 2('; (" —1) + 2(1/% (e — 1) + a. From h = y(Zb), we find

((%H' — ]) + Qék‘ (ffkb — I) 4+aand h = QC_,;;; (ffkb — 1) + ﬁ (ekb - 1) + a. Subtracting the

z

('=a

b=k

kb kb kb —kb
. . . s € — 1 -— € 1 1 .
second equation from the first, we get 0 = Celze 7 £ e - (C - F) sinh kb.

% 2 - Ck 2 k
Nowk > 0and b > 0. sosinhkb > 0and C = +1. f C = 1, then
1 ¢y e 1

1 1c° 1
<k,r 1 Y % ] - _ —{cosl _ . 3 —
y=7g (e )+ gp e t+a=1—% g o=t plooshke —1). 160 = -1,

—1eF e *" !
Gy tpTe=a- E(Coshkw —1).

-

theny:_ﬁ(ekmfl) 72—1!6(6_’”_1)+a:

1
Since k > (), coshkz > 1, and y > o, weconclude that C = landy = a + E(cosh kx — 1), where
1 . . . .
h=ylb)y=a+ E(cosh kb — 1). Since cosh{kb) = cosh{—kb), there is no further information to extract from

the condition that y(b) = y(—b}. However, we could replace a with the expression b — %(cosh kb— 1),

.. 1 . . L
obtaining y = h + i (cosh ki — cosh kb). Tt would be better still to keep a in the expression for 4, and use the

expression lor h to solve for & in terms of @, b, and A. That would enabie us to express y in terms of x and the
given parameters ¢, b, and h. Sadly, it is not possible to solve for k in closed form. That would have to be done
by numerical methods when specific parameter values are given.

{b) The length of the cable is
L= _I'Eb V1A (dyfde)? de = f_bb v 1+ sinh? kx dx = ffb cosh kz dz = 2 7 cosh ka dxr

= 2|(1/k)sink ka| — (2/k)sinh kb

b
0
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1 PROBLEMS PLUS

1. We use the Fundamental Theorem of Calculus to differentiate the given equation:
@) =100+ [ {Ir@F + FOP}d = 2@ @)=+ E@F =
[F)? + [fle))’ = 2f () f'(zy =0 = [f(z)- F@)f=0 & f(z)= f'(z). Wecansolve this as a
separable equation, or else use Theorem 10.4.2 with k = 1, which says that the solutions are f(z) = Ce”. Now

[£(0)]* = 100, s0 f{0) = C = %10, and hence f(z) = £10e" are the only functions satisfying the given

equation.

I
. {fg) = f'd’. where f(z) = e = (ew2g) = 2zezﬂg'. Since the student’s mistake did not affect the answer,

2 ¢ ' ! 2z 1
(e" q) =g+ 2ze™ g = 2xe® g’ So (22 — 1)g’ = 2z, or % = =1+ =

2z -1 2z -1
Injg(z)l =z+ 32z - 1) + C = glz)= Ae"v2r -1
- £@) =l LEEBLTC) gy OV A nce pa 1) = £()5 (0

= £ty fim L2 g i ZOLZL0 g1y 10) = f10)

Therefore, f'(x) = f(x) for all z and from Theorem 10.4.2 we get f(x) = Ae® Now f{0) =1 = A=1 =

flzy=¢€".

dz2. -1 1 flx) After differentiati
. (/f dT)( iz )) 1:>. @ - T foa = @) Uf(.’r)dm]z [after differentiating] =

| flz)de = £f(x) lafter taking square roots] =>  f(x) = :i:f'(:c) [after differentiating again] =

y = Ae* or y = Ae * by Theorem 10.4.2. Therefore, f(z) = Ae® or f{x) = Ae 7, for all nonzero constants A,

are the functions satisfying the original equation.

. Let y(¢) denote the tlemperature of the peach pie ¢ minutes after 5:00 p.M. and R the temperature of the room.
Newton's Law of Cooling gives us dy/dt = k(y — R). Solving for y we get ” CiyR =kdt =
Injy—Rl =kt+C = |y—R| =" = y- R=+4c"- e = y=Me*" + R where Misa

nonzero constant. We are given temperatures at three times.

y(0) =100 = 100=M+R = R=100—-M
y(10)= 80 = 80=Me"+R (D
y(20) = 65 = 65=M 4R (2

Substituting 100 — M for Rin (1) and (2) gives us

=M — M (3) and —-35=M M @
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T : —20 _ M (! - 1) - _ o 10k
Dividing (3) by (4) gives us —— — m = o= —4=T"" -7 =

4e?% — 7¢'%% 4 3 — 0. This is a quadratic equation in e'*%. (4@101“ — '3) (emk - 1) =0 = %= % orl

= 1k=In3orlnl = k= In$ sincekisanonzero constant of proportionality. Substituting § for ¢'**

in (3) gives us —20 = M - i- -M = -20= -u;i—lw = M==80.Now R=100—-Mso R=20°C.

. Let b be the number of hours before noon that it began to snow, t the time meusured in hours atter noon. and
x = «(t) = distance traveled by the plow at time t. Then dx/df = speed of plow. Since the snow falls steadily. the
height at time ¢ is A{t) = k(t + b), where & is a constant. We are given that the rate of removal is constant, say f2

dx d
(in m3/h). If the width of the path is w, then R = height x width x speed = h{t) X w X T E(t+bw %

Al

dr et

AUl
() =Cln(t +b) + K.

Put=00=Clnb+ R = K=-Chnbsoz{t)=Cln(t+b)—Clnb=CIn(141/b).
Put? = 1: 6000 = Cln(l + 1/b) |z = 6 km].

Put £ = 2: 9000 = C'In(1 +2/b) [z = (64 3) km].

o In(l+1/8) (1 +2/b) o1 2 1\°
hh N = . — - —_ — — 1 —
Solve lor b 000 9000 = 3n{1l+ b 2In( 1+ b = 14+ A +

Thus where (7 = kﬁ is a constant. This is a separable equation. / de =C /
W

3 3 4 4 111 , i
| 3.1 4 1,1 1 _y Babol=0 = b= =tV
= MytetET T T Tyt TR = 2

Butbh > 0.s0b = ;%—‘ﬁ =5 0.618 h = 37 min. The snow began to fall ‘f L hours before noon; that is, at

about 11:;23 A M,

. {a) While running from (L, 0) to (z, y), the dog travels a distance

oL x
8= / V' 1+ {dy/dz)? doe = — / vV 1+ (dy/de)? da, so % = —/1 + (dy/dz)?. The dog and rabbit
Ja L d:

run at the same speed, so the rabbit’s position when the dog has traveled a distance s is (0, s). Since the dog runs

! —
straight for the rabbit, 57y (sec the figure).
dr 0O—=zx

Slope of tangent line
sy
0-x

(Lo =

Thus, s =y — o —

1-2
dx +

dx? dx

. z
dy _@_(d dy

d2 ds
= Equating the two expressions for ——-
Tt :

. Y dy\’ .
ZIVES Us o —— 1 , as claimed.
N dx? di
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dz -

. ey i p . Lo dr 5 dr .
(b} Letting z = T we obtain the differential equation x e V14 z4 or ——m = Integrating:

dz P
r= | —m—— = T = = r = {), 3 L=Inl1+C.
ln'r./\/l—i——:ﬁ 1n(z+ 1+z)+C'.WhenT L,z =dy/de =10,501In nl+
Therefore, C = InL,solnx = ln(\/l + 22 4 Z) +Inl = III[L(\/ 14+ 224 Z)] =

; . a2 9
:L(v1+22+z) = l-i-z")':%-z = 1+z2:(%) 7_324.

L
T2 T (x/LV¥? -1 o* - L? z L1 dy
TN o (BY = — ez Ll e s 0 Since s = 2,
(L) ZZ(L) 1=0 = =700 ofx 2L 2p lfore>0lSmeez=2

2 L L L L
— —_— = - T 1 o = - —_- = - /‘:*1 Lf—Th.
T lnx + 1. Sincey = Owhenz = L,0 13 InL+C = 5 1 us,
P L T
- = - = ln(—) .
4L 2 1
(c) As .t — 07,y — 20, so the dog never catches the rabbit.

8. (a) If the dog runs twice as fast as the rabbit, then the rabbit’s position when the dog has traveled a distance s is

(0, 5/2). Since the dog runs straight toward the rabbit, the tangent line to the dog’s path has slope
dy _ ds fzdy (Qacdy 2@) _ 9 1Y

dy

s/2—y
= .Th = — —_—
o e us, s = 2y 23."

da
ﬂ d
From Problem 7( d), ] , S0 2$ —_— _y
ghen 1 T

Cda?

. dy dx
Letting z = —=, we obtain the differential equation 2:c — =1+ 0r —0m/m == = —
g dz’ 1 v1+ 22

d:r: T
2dz
Integrating, we get lna = =2 ln(\/ 1+22+ z) + €. [See Problem 7(b).]
Vitz®

Whenz =L,z = dy/d:r: =0,s0lnl =2Inl+ ¢ = C. Thus,

111;1::2111(\/1—1—2:2—0-::)+lr1L:ln L(\/1+z2+z)2) = JIZL(\/1+22+Z)2 =

\/1+:2:,f%vz = 1+22:%—21f%2+22 = 2“%22?—1 =

d?} 1 £ 1 1: 1/2 YD 1 3/2 1/
it A 4 ' 232 _ LzY? + C). When
dx 2 \/L 2/z/L 2L ' 3VL '

1 L . .
r=Ly=0,s00= %—ﬁLB/Q—\/ELU2+C1 =3 —L+C =0 — iL Therefore, 7 = %Land

372

Y = -
Y 31

{At that point, the dog has traveled a distance of %L, twice as far as the rabbit has run.)

Lat’? 4 %L Asz — 0,y — %L‘ so the dog catches the rabbit when the rabbit is at (0. %L)

2 2
X

(b) As in the solutions to part (a) and Problem 7, we get z = -d—y 9LZ 92

We want to minimize the distance D from the dog at (z, y) to the rabbit at (0, 2s). Now s =
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z? I2 z L2 ]
207 2g2) 202 2

T oz o
2 LN\
_ - {1V2 ar 2 2 o =
D=\(z—0)2+(y—2s) \/r+(2L2 zj)

x? L2 : z° L*
D) -5t

T Vet T

L
D=0 & —--—==0 7 = o C= t= T
202 247 x X 3

2
Since D" (x) = %:L; + L— > 0 forall z > 0, we know that

2 =y—rz = y2s:mz—x(

x>0 L >0

L (L 3 ”4) L’ 2L
D (%) = TE + 2L - 317 ~ 3 is the minimum value of D, that is, the closest the dog

zets 1o the rabbit. The positions at this distance are

Dog: (x,y) = (% (% - %)L) h (%W—‘?MEIJ
83L QL) ( B3 — h)

Rabbit: ([}, 28) = ( 5 3 9

9. (a) We are given that V = $mr*h, dV/dt = 60,0007 ft*/h and r = 1.5h = 2h. So V = %W(%fl)z h=2%xh?
Wy g dh g dh Cdh_AQ@v/de) _ 240000m _ 80000

ar T g A g Therefore, G = =g Orh? anz ™

[ 3l dh = [80.000d¢ = A3 = 80,000t + C. Whent = 0, h = 60. Thus, C = 60 = 216.000, so
B3 = 80000t 4 216.000. Let A = 100. Then 100% = 1,000,000 = 80,000 + 216,000 =

820,000t = 784,000 = ¢ = 9.8, so the time required is 9.8 hours.

() The floor area of the silo is F = 7 - 200% = 40,0007 t2, and the area of the base of the pile is
A=mr? =x(30)% = 2512, S0 the area of the floor which is not covered when / = 60 is
F — A=40.0007 — 81007 = 31.900m ~ 100,217 ft®. Now 4 = 25h% = dA/dt = % . 20 {dh/dL),

and from (%) in part (a) we know that when b = 60, dh/df = 806%‘)"3 = 22 fi/h. Therefore.
dA/dt = 21 (2)(60){Z2) = 20007 ~ 6283 ft* /h.

(cy Ath = 90 fr. dV/dt = 60,000m — 20,0007 = 40.000x ft3/h. From (%) in part (a),
dh  4(dV/dt)  4(40,000m)  160.000
dt— 9xh? 9k OR?
When t = (), h = 90; therefore, €' = 3 - 729,000 = 2,187.000. So 3~% = 160,000t + 2,187,000. At the top,

h=100 = 3(100)* = 160,000¢ + 2,187,000 = ¢ = 232099 o 59 The pile reaches the top after

160,000
about 5.1 h.

foR?dh = [160000dt = 30° = 160,000t + C.

10. Let P{a,b) be any first-quadrant point on the curve y = f(z). The tangent line at P has equation
y— b= f'la)(x ~ a). or equivalently, y = mz + b — ma, where m = f'{a). If Q{0, ¢) is the y-intercept, then
armm — b

¢ = b—oam. If R(E,0)is the z-intercept, then & = = q — —. Since the tangent line is bisected at P, we
m m

know that |PQ| =

Ve =012 +b—(b—am)]? = /[a - (a - b/m)]2 + (b—0)?
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Squaring and simplifying gives us a® + a’m? = ¥¥/m* + ¥ = a’m’ +a’m’ = V4 brmt =
mt 4 (2 —b)mt - =0 = (aPmP-P)(mP 1) =0 = wm'= b* /a®. Since m is the slope of
the line from a positive y-intercept to a positive z-intercept, m must be negative. Since ¢ and b are positive, we have

. . Cod d ir

m = —b/u. so we will solve the equivatent differential equation “_ Y = &y_ 2

dx T Y x

[@ =- / de = lny=-lnz+C [e,y>0 = y—e =t e T S I R
Y X

y = A/x. Since the point (3,2} is on the curve, 3 = A/2 = A =0andthe curveisy = 6/x withz > 0.
. Let P(a, b) be any point on the curve. If m is the slope of the tangent line at P, then m = ¥ (a), und

. 1 . L a
an equation of the normal line at Pisy — b = ——(z — a), or equivalently, y = ——z + b+ —.
m m m

a
The y-intercept is always 6. so b + -T% =6 = TL;— =6—-b = m= 61

o . d ,
We will solve the equivalent differential equation ﬁ =35 o = (6-yldy=adzr =
Y -y

/(6 —yldy = /mdz = by— 1y’ = %J’,z +C = 12y —y® =2+ K. Since (3,2) is on the curve,

12(2) — 2 = 3* + K = K = 11. Sothe curve is given by 12y — =11 =
22yt — 12y +36=—11+36 = z°+ (y— 6)° = 25, acircle with center (0, 6} and radius 5.

. Suppose C is a curve with the required property and let P = (xg, ¥y} be a point on C. The equation of the normal

. . 1 . d . . .
lineto C'at Pisy —yo = —— (& — o), where v 1s the value of ﬁ at x = xq. This equation makes sense only if

0
yo # 0. If yo = 0, then the normal line at P is 2 = x, which does not intersect the y-axis at all unless o = 0.

So let’s assume that v, # 0. Then the normal line to C' at P intersects the z-axis at {zy + oo, 0), and it
intersects the y-axis at (0, yo + zo/yh). The condition on ' implies that

[distance from P (¢, o) to (0,30 + xo/yo) | = [distance from {0,350 + Zo/y0) o (26 + yoy0, 0)]

\/(0 —20) + (Yo + xo/yy — W) = \/(I?U + Yoyg — 0y + [0 — (yo + 330/3)'6”2

Squaring both sides, we get 23 + i/ (y5)” = (xo + youd)’ + (vo + zo/yh)” or
L2
Subtracting i + Jj” 5
Yo

2 2
: T 2 oo T
a4+ 0 = 2wy + gBle) + R 2+ o

(¥o) Yoo (4)

multiplying by ). we get

from both sides and

2

0= yiyo + o (40)” + 2zoyo [1 + (yé)?'} = yo{yny6 (o)’ + 270 {l + {0) ]}
’ 12 ’y 2 i iy 2
= yu{yoyo [1 + (%) J + 2wy [1 + (o) ]} = yu (yoys + 2x0) [1 + {vo) ]

Since 1+ (4)° > 1 > 0, we conclude that yo (yoyh + 20} = 0. Now P is an arbitrary point on C for which

y6 # (. Thus, we have shown that y(yy’ + 22} = 0 for points (z, y) along (" where 3 # (0. One solution of this
equation is y = 0, but that curve (the z-axis) doesn’t satisfy the condition required of . since its normal lines at
points for x # () don’t intersect the y-axis. Thus, we can focus our attention on points of € where y # 0, and
conclude that yy' 4+ 2z = 0 at points of C where y # 0 and i’ # 0. Integrating both sides of yy' + 2z = 0, we get
1y? + 1 = ¢ Clearly ¢ > 0 (since y # ), so we can write ¢ = a°, where @ = /¢ > 0. Thus, 33* + 2% = «” and
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2?/a® + 42/ (v2a)* = 1. This shows that C is (part of) the ellipse
centered at (0, 0) with semimajor axis v/2 ¢ in the y-direction and
semiminor axis a in the x-direction, The points of C' where y = O or

y' = 0 are the vertices (0, +v/2 a) and (-ta,0). At these points, the

condition on C is satisfied in 4 degenerate way. [When P = (L, 0}, the
normal line at P is the z-axis, so all the points of the normal line can be

viewed as points of intersection with the xz-axis. The intersection with the

y-axis at (0, 0) is midway between (a,0) and (—a, 0); one of these points
is P, and the other can be regarded as an intersection of the normal line
with the z-axis. Similarly, when P = (0, ++/2 a), the normal line is the
y-axis, and the point {0, £1/2a/2), which can be regarded as an intersection of the normal line with the y-axis, is

midway between P and (0, 0), the intersection with the z-axis.]
2 2
Conversely, if C is part of the ellipse :r_2 + % = 1 for some a > 0, then the normal line at a point (zo, yo ) of
a a
’ {other than the four vertices) has equation ¥ — ¥ = Ey—(L (x — xo). Its intersections with the coordinate axes are
Zo
2 2
@)] =i+ Yo and

(U, @) and (—z0,0). {dismnce from (g, yo) to (D, 5 1

2

Yo
2
vertices. As we have explained, if we are willing to interpret the condition broadly, then it can be viewed s holding

2 2
) to (—xo, ())} =zi+ ydﬂ’ s0 the required condition is met at points other than the four

{dis[ancc from ((),

even at the tour vertices.

Another method: Let P(xg, yo) be a point on the curve. Since the midpoint of the line segment determined by the

normal line from (o, o) to its intersection with the z-axis has w-coordinate (), the z-coordinate of the point of
w80  w

intersection with the z-axis must be —zy. Hence, the normal line has slope =
o — (—.’Zto) 255'()

. So the tangent

<

. 2z L - . . 21
line has slope 7%' This gives the differential equation iy’ = - = ydy=-2zdzx =
0 Yy

] ydy = _]'(72;1:)(1;13 = -;;yZ =-2+C = 2+ %yg =C (C > 0.
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