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11 [0 PARAMETRIC EQUATIONS AND POLAR COORDINATES

11.1 Curves Defined by Parametric Equations

Lz=1++t. y=t*—4, 0<t<5

0 1 2 3

1 2 142 143

241 2.73
0 -3 -4 -3

2. xr=2cost, y=t—cost, 0<t<2r

/2 T 3n/2
2 0 -2 0
-1 )2 Tm+1 3m/2

1.57 4.14 4.71

3. x = bsint, y:tz, —a<t<w

w20 w2
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826 .. CHAPTER11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

5 ox=3t—5 y=2t+4+1

(a)y; ¢ -2 -1 4
r | —11 -8 7
Y -3 -1 1 9

byz=3t—5 = 3t=z+5 = t=z(z+5 =

y:2-%(;1:+5)+1,50y:§$+%.

2<t<3

brre=1+¢t = t=x—-1 = y=5-2x-1),
soy=—2x+4+7 —-1<z<4

—9. y=5-2 -3<t<4

-3 -2 -1 0 1 K 4
7 2 -1 -2 -1 2 7 14
11 9 7 5 3 1 -1 -3

y=5—-2t = 2A=5-y = t=:i56-y) =

15—y -2

B.r=143t y=2—14°

s
(a)] ¢ -3 -1 1 =2, 1) r=—/|/

r | —8 : 4

= a

y | =7 1

b r=143t = t=1(x-1)

y=2—[§(e—1)]" 50y =-

1/, 2
-1 +2
Y 0. D=0

(Lo r=1

3 4
1.414 1.732 2
-1 -2 -3

byr=vt = t=2 = y=1—t=1~2"
Sincet > 0,2 >0,
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SECTION 111 CURVES DEFINED BY PARAMETHRIC EQUATIONS U 827

0. (=t y=1°

-2 -1
4 1
-8 -1

teR yeR 2 >0

M. () z=sinf,y=cos0,0< < 12. (a) = =4cosf,y =DHsin®, —m/2 <0 < /2
2? +y* =sin® 0 + cos® § = 1. Since : )2 + (%)2 = cos® 0 + sin” 8 = 1, which is an
0 <8 <m wehavesing > 0,s0x > (. ellipse with z-intercepts (£4,0) and y-intercepts
(0, +5). We obtain the portion of the ellipse with

z > Osince dcost > Ofor —m/2 <6 < 7/f2.

13. (a) z =sin2 8,y = cos?é. 14.(a) x=scc B y=tanf, — 5 <8 < 3.

r+y=sin"f+cos"f=1.0<z<L 22 —yf =sec’f —tan® 0 =1,

Note that the curve is at (0, 1) whenever orz = /42 + L.

f = mm and is at (1, () whenever § = In
for every integer n.

¥
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828 | CHAPTER11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

15 (@) =ey=c " 16. )z =Int.y=vt.1> L
y=1/c" =1/r,2 >0 r=Int = (=¢° =

y;:\/f:(i‘”/Q,mz(].
(b) Y

(b} -"

17. (a) x = cosh &, y = sinh ¢, 18. () x =1+cosfl = cosf =z - 1.
x? - y? =cosh?t —sinh®t =1,z > 1 y=2cosf—1=2x—-1) -1 =203,
b) ¥ D<e<2.
{b) ¥

/ 12, 1) 8= 2nw
J/ '

0,3y ¢=2n 1 hm

19. 2% 4% = cos® 7t +sin® 7wt = 1.1 < £ < 2, so the particle moves counterclockwise along the circle ° + y° = 1
from (—1,0) to (1, 0), along the lower half of the circle.

2. (x— 2+ (y— 3)* = cos?t +sin t = 1, so the motion takes place on a unit circle centered at (2, 3}, As ¢ goes

from () 1o 27, the particle makes one complete counterclockwise rotation around the circle, starting and ending at
{3,3).

. (%.’I.‘)z -+ (%y)3 = sin® ¢ + cos? t = 1, so the particle moves once clockwise along the ellipse 1 + Ly* = 1,
starting and ending at (0, 3).

. = cos® £ = /%, so the particle moves along the parabola 2 = y*. As t goes from 0 to 47, the particle moves from
{1, 1) down to (1, —1) (at t = w), back up to (1, 1) again (at ¢ = 2w), and then repeats this entire cycle hetween
t=2mrandt = 4m.

. We must have | < » < 4and 2 < y < 3. So the graph of the curve must be contained in the rectangle [1, 4]
by [2,3].

. (@) From the first graph, we have 1 < x < 2. From the second graph, we have —1 < 3 < 1. The only choice that

satisties either of those conditions is IT1.
(b) From the first graph, the values of = cycle through the values from —2 to 2 tour times. From the second graph,
the values of y cycle through the values from —2 to 2 six times. Choice I satisfies these conditions.

(c) From the first graph, the values of x cycle through the values from —2 to 2 three times. From the second graph,
we have 0 < ¢ < 2. Choice IV satisfies these conditions.

{d) From the first graph, the values of & cycle through the values from —2 to 2 two times. From the second graph,
the values of y do the same thing. Choice II satisfies these conditions.
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SECTION 1.1 CURVES DEFINED BY PARAMETRIC EQUATIONS & 829

—1 and y increases to (1. As ¢ increases from Oto 1, ¢ increases to 0

25 Whent = —1, (x,y) = (0, —1). As t increases to (), z decreases to : /
0,1y =1

and y increases to 1. As ¢ increases beyond 1, both x and y increase.

Fort < —1, z is positive and decreasing and y is negative and
. . . . . )

increasing. We could achieve greater accuracy by estimating z- and 1= 0 \
y-values for selected values of ¢ from the given graphs and plotting

the corresponding points.

. Fort < —1, z is positive and decreasing, while y is negative and increasing (these points are in Quadrant V).
When { = —1. (z,y) = (0,0) and, as t increases from —1 to 0, x becomes negative and y increases from 0 to 1.
Att =0, (z,y) = {0, 1) and, as { increases from 0 to 1, y decreases ¥4
from 1 to 0 and « is positive. Att = 1, {z,y) = (0,0) again, so the =0

loop is completed. For £ > 1, z and y both become large negative. This

enables us to draw a rough sketch. We could achieve greater accuracy

by estimating z- and y-values for selected values of £ from the given

graphs and plotting the corresponding points.
. When £ = () we see that £ = 0 and y = 0, so the curve starts at the
origin, As f increases from () to % the graphs show that g increases

from 0 to 1 while x increases from 0 to 1, decreases to 0 and to —1,

then increases back to (), so we arrive at the point {0, 1}. Similarly, as

increases from % to 1, y decreases from 1 to 0 while @ repeats ity
pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating - and y-values for
selected values of ¢ from the given graphs and plotting the corresponding points.

. (a) Note that as { — —oo, we have z — —oo and y — 20, whereas when ¢ — oc, both « and y — co. This
description fits only IV. [But also note that z(#) increases, then decreases, then increases again.]

{b) Note that as £ — +oo, y — —oo. This is only the case with VL

(¢) If £ = 0, then (z,3) = (sin0,sin0) = (0,0). Also, |z| = [sin3¢| < 1forall £, and {y} = [sin4¢| < 1 forall t.
The only graph which includes the point (0, 0) and which has {z| < 1and [y| < 1.is V.

(d) Note that as t — —oo, both z and y — —a0, and as ¢ — oo, both x and y — oc. This description fits only IIL
{Also note that, since siu 2¢ and sin 3t lie between —1 and 1, the curve never strays very far from the line
Yy =)

{e) Note that both x(¢) and y(t) are periodic with period 27 and satisfy || < 1 and |y| < 1. Now the only
y-intercepts occur when = = sin(t +sint) =0 < ¢ = 0 or 7. So there should be two y-intercepts:
y(0) = cos 1 = 0.54 and y(w) = cos{m — 1) =~ —0.54. Similarly, there should be two z-intercepts:
2(2} =sin(Z +1) ~ 0.54 and z(%) = sin(&F - 1) ~ —0.54. The only curve with these z- and
y-intercepts is 1.

(f) Note that =(t) is periodic with period 27, so the only y-intercepts occur when z = cost =0 &
t=For L; Also, the graph is symmetric about the z-axis, since
y(—t) = sin{—t + sin 5{—t)) = sin{—¢ — sin 5t) = — sin(t + sin 5t) = —y{¢), and
2{—t) = cos(—t) = cost = x(t). The only graph which has only two y-intercepts, and is symmetric about the
¢-axis, 1s 11
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29. Asin Example 5, welely =(andz =1 — 3t 4 ¢° and use a t-interval of [—2m, 27].

3

~

—

-3

i

.

30. Weuse g =4, y1 = t5and g = ¢ (t — 1)°, ya = t with — 27 < ¢ < 27. There are 3 points of intersection; (0, 0}

is fairly obvious. The peint in quadrant [l is approximately (—0.8, —0.4) and the point in quadrant I is

approximately (1.1, 1.8).

-3
M@e=u1+ (m2—z1)b vy =y1 + (y2 — 41, 0 <t < 1. Clearly the curve passes through Py (1, v1) when
t = 0 and through Pa(xe, yo) when t = 1. For 00 < ¢ < 1, x is strictly between x; and xz and y is strictly

hetween 3, and yo. For every value of ¢, x and y satisty the relation y — 1 = 270 (x — z1), which is the
T2 — I

equation of the line through £ (21,11 ) and Po (2, v2).

. . . P T -z,
Finally, any point (i, y} on that line satisfies A A L. if we call that common value £, then the
Y2 — 1 r2 — &1

given parametric equations yield the point (i, y); and any {x, y) on the line between Pz, y1) and Pa(z2, y2)
yields a value of £ in [0, 1]. So the given parametric equations exactly specity the line segment from P (1, 1)
o Pa(zs, y2).

hae=—-2+B3-(-2)t=-2+btandy =74+ (-1-7)t =7—8tfor¢ <t < 1.

32, For the side of the triangle from A to B, use (z1, 1) = (1, 1) and {z2, y2) = {4, 2). Hence, the equations are
r=r1F+{ae-n)t=1+@d-Dt=14+3y=m+(y2—y)t=14+({2~-1)t =11t Graphing
r=14+3tandy =1+ ¢ with 0 < ¢ < 1 gives us the side of the triangle from A to B. Similarly, for the side BC
weuser =4 — 3tand y = 2+ 3¢, and for the side AC weusez = land y = 1 4 4t
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SECTION 111 CURVES DEFINED BY PARAMETRIC EQUATIONS 1) 831

33. The circle 2 + y° = 4 can be represented parametrically by © = 2 cost, y = 2sint: 0 < t < 2x. The circle
2+ (y — 1)? = 4 can be represented by @ = 2cost, y = 1+ 2sint; 0 £t < 27. This representation gives us the
circle with a counterclockwise erientation starting at (2, 1).
(a) To get a clockwise orientation, we could change the equations to z = 2cost, y = L —2sint, 0 <t < 2m.
(b) To get three times around in the counterclockwise direction, we use the original equations z = 2cost,
y = 1+ 2sin t with the domain expanded to 0 < ¢ < 6.
(c) To start at (0, 3) using the original equations, we must have z; = 0; that is, 2cost = 0. Hence, { = 3. So we
usew = 2cost,y =1+ 2siné; § <t < 3.
Alternatively. if we want ¢ to start at 0, we could change the equations of the curve. For example, we could use
r=—2sint,y =1+ 2cosl. 0 <t <.

4

oA

-2

. (@) Let 2 /a* = sin® t and y* /b® = cos” ¢ to obtain (b) The equations are + = 3sint and

x = asint and y = bcost with 0 < ¢ < 27 as possible y = beost forb € {1,2,4,8}.
parametric equations for the ellipse

22 fa® + 7 /b =1

(c) As bincreases, the ellipse stretches vertically.

. The possible parametrizations of the curve y = x? include
(hao=t,y=t>tcR
(2) o =—t.y=—t"teR
B z=t+lLy=0t+1)"teR

. The case £ < # < wis illustrated. C has coordinates (r, r) as in Example 6,
and Q has coordinates (v, r + r cos(m — ) = (rf, 7(1 — cos 8)) [since
cos(m — ) = cosTcosa + sin wsin e = — cos al, so P has coordinates
(v# — rsin{m — 0),7(1 — cos@)) = (r(# — sinB),r(1 — cos ) [since

sin(m — a) = sinn cos @ — cos T sin e = sinea ). Again we have the

parametric equations z = r{# — sin#), y = r(1 — cos8).
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38. The first two diagrams depict the case m < 8 < 37" d < r. As in Example 6, C has coordinates (rf), r}.

Now € (in the second diagram) has coordinates (r@,r + dcos(@ — 7)) = (rf,r — dcos ), so a typical point P of
the trochoid has coordinates (rf + dsin(@ — 7)), 7 — dcos@). That is, P has coordinates (z, y), where

@ =r0 —dsinf andy = r — dcosf. When d = r, these equations agree with those of the cycloid.

¥

39. It is apparent that x = |0Q)| and y = |QP| = |ST|. From the
diagram, x = |0Q)| = acos@ and y = |ST'| = bsind. Thus, the

parametric equations are z = a cos f and y = bsin 4. To eliminate §

we rearrange: sinfl = y/b = sin®# = (y/b)% and
cosf=z/a = cos®f = {z/a)’. Adding the two equations:

sin® @ + cos? 8 = 1 = 2% /a® + 4 /b%. Thus, we have an ellipse.

. A has coordinates (2 cos#, asin 8). Since OA is perpendicular to AB, AOAR is a right triangle and B has
coordinates (ascc 8, 0). It follows that P has coordinates (a sec 8, bsin #). Thus, the parametric equations are

x=asccd, y = bsinf.

. C = (2acot ¥, 2a), so the z-coordinate of P is ¢ = 2acot §. Let B = (0, 2a). Then ZOAR is a right angle and
LOBA = 9,50 |OA] = 2asin0 and A = ({2asin 8} cos 8, (2asin §) sin §). Thus, the y-coordinate of P is

y = 2asin” 0,
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¥

42. Let # be the angle of inclination of segment OF. Then
3a4
lOB| = ——2—9 Let C = (2a,0). Then by use of right triangle 2a

a4

(O AC we see that jOA| = 2acosf. Now

0s 6

1
|OP| =|AB| = |OB| — |OA| = 2a (— - COGH)

o L2 2 9
= 2auj—b——9 = 2asm = 2asinf tanf
cos cosf

So P has coordinates © = 2asinf# tanf - cosf = 2a sin® § and

y = 2asinftand -sind = 2a sin 0 tan 8.

43. (a) 4 There are 2 points of intersection:

(—3,0) and approximately (—2.1,1.4).

—~
N

A collision point occurs when 1 = x2 and y1 = y2 for the same £. So solve the equations:

3sint = —3 +cost (1)
2cost =1 +sint (2)

From (2). sin £ = 2 cost — 1. Substituting into (1), we get 3(2cost — 1) = —3 4 cost =

Heost=0 (%) = cost=0 = t= % or “"7" We check that ¢ = %’—T satisfies (1) and (2) but £ = Z does
not. So the only collision point occurs when ¢ = 37” and this gives the point (—3, 0}. [We could check our work
by graphing z; and z; together as functions of ¢ and, on another plot, 31 and 32 as functions of ¢. If we do so,

we see that the only value of ¢ for which borh pairs of graphs intersect is £ = 7

(¢) The circle is centered at (3, 1) instead of {—3, 1). There are still 2 intersection points: (3,0) and (2.1, 1.4), but

there are no collision points, since (x) in part (b) becomes Scost =6 = cost = ‘—,j > 1.

44, (a) If v = 30° and vy = 500 m/s, then the equations become x = (500 cos 30°)t = 250 V3t and
y = (500sin 30°)t — %(Q.S)t2 = 250t — 4.9¢*. y = O when ¢ = 0 (when the gun is fired) and again when

t = 4 51s. Then = (250\/_) (@) 7z 22,002 m, so the bullet hits the ground about 22 km from
the gun.

The formula for y is quadratic in ¢. To find the maximum y-value, we will complete the square:

y= A9(F - ) = 492 B+ (1B)]+ BF = -00( - B) + <

with equality when ¢ = 222 5, so the maximum height attained is =7~ 125 ~ 3189 m.
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(b) 14,000 As o (1° < a < 907) increases up to 45°, the projectile

attains a greater height and a greater range. As o increases
past 45°, the projectile attains a greater height, but its range

decreases.

{¢) = = (g cos a)t
T g T 2 g
= (ppsinal — igt? = y=(vosina —= ' = (tana)zx — | ———— Jz.
y = (vosina)t = 39 y= (v )vgcosa 2(vncosa) { ) (21}3(‘.052&)

which is the equation of a parabola (quadratic in ).

.= t%,y = t* — ct. We use a graphing device to produce the graphs for various values of ¢ with —m <t < 7.
Note that all the members of the family are symmetric about the x-axis. For ¢ < 0, the graph does not cross itself,
but for ¢ = () it has a cusp at {0, 0} and for ¢ > 0 the graph crosses itself at & = ¢, so the loop grows larger as ¢

increases.

3 I

R
0 % 15 0 LS
-3 -1

. @ = 2ct — 4t%y = —ct® + 3t*. We use a graphing device to produce the graphs for various values of ¢ with

—7 < ¢ < mr. Note that all the members of the family are symmetric about the y-axis. When ¢ < 0, the graph
resembles that of a polynomial of even degree, but when ¢ = 0 there is a comner at the origin, and when ¢ > 0, the
graph crosses itself at the origin, and has two cusps below the w-axis. The size of the “swallowtail” increases as ¢

increases.
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47. Note that all the Lissajous figures are symmetric about the z-axis. The parameters a and b simply stretch the graph
in the z- and y-directions respectively. For @ = b = n = 1 the graph is simply a circle with radius 1. For n = 2 the
graph crosses itself at the origin and there are loops above and below the z-axis. In general, the fipures have n — 1

points of intersection, all of which are on the y-axis, and a total of n closed loops.

L @b =(1.2)
—(a, by=(2, 1)
2.1

1 (@ b)=(2.3)
L (@ b) = (3,2)

3.1

48. We use —7 < ¢ < 7 in the viewing rectangle [~4, 2] x [—3,3]. We first observe that for ¢ = 0, we obtain a circle

with center (— % , D) and radius ﬁ As the value of ¢ increases, there 1s a larger outer loop and a smaller inner loop

until ¢ = 1, when we obtain a curve with a dent (called a cardioid). As ¢ increases, we get a curve with a dimple
{called a limagon) until ¢ = 2. For ¢ > 2, we have convex limagons. For negative values of ¢, we obtain the same

graphs as for positive ¢, but with different values of £ corresponding to the points on the curve.
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LABORATORY PROJECT Running Circles Around Circles

1. The center @ of the smailer circle has coordinates
({a — bicos#, (a — b)sinf). Arc PS on circle C' has length af since it is

equal in length to arc AS (the smalier circle rolls without slipping against the

larger.) Thus, Z PQS = %9 and / PQT = %9 — #, so P has coordinates

—b
x = (a— b)cos & + beos{ £/ PQT) = {(a — b)cos 8§ + bcos(a . 6)

and

y = (a—b)sind — bsin(LPQT) = {a ~ b)sint — bsin((I ; b9>

. With b = 1 and « a positive integer greater than 2, we obtain a hypocycloid of a
cusps. Shown in the figure is the graph for@ = 4. Let « = 4 and & = 1. Using

the sum identities to expand cos 38 and sin 38, we obtain

r=3cosf 4+ cos38 = 3cosf + (!1c0536 - 3(:059) =4dcos B

y=3sinf —sin3f = 3sinfl — (351119 —4311139) = 4sin° f

. The following graphs are obtained with b= 1 anda = £, 3, 1, and & with =27 < 8 < 27, We conclude that as

the denominator d increases, the graph gets smaller, but maintains the basic shape shown.

300

Lettingd = 2 and n = 3, 5, and 7 with —27 < 8 < 27 gives us the following:

2 s
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LABORATORY PROJECT RUNNING CIRCLES AROUND CIRCLES 71 837

So if d is held constant and n varies, we get a graph with . cusps (assuming n/d is in lowest form).
When n = d + L. we obtain a hypocycloid of n cusps. As n increases, we must expand the range of & in order to get

. . - ; e — 3 & 11
a closed curve. The following graphs have e = 3, 3, and 3.

4. If b = 1, the equations for the hypocycloid are
z = (a— 1)cusd +cos{{a —1}0) y=(a—1)sind —sin{(a — 1) 8)

which is a hypocycloid of @ cusps (from Problem 2). In general. if @ > 1, we get a figure with cusps on the “outside
ring” and if @ < 1, the cusps are on the “inside ring”". In any case, as the values of # get larger, we get a figure that
looks more and more like a washer. If we were to graph the hypocycloid for all values of #, every point on the

washer would eventually be arbitrarily close to a point on the curve.

107 < 6 < 107 0 <6< 446

5. The center () of the smaller circle has coordinates ((a + b) cos 8, (a + b) sind). Arc

F 5 has length af (as in Problem 1), sothat ZPQS5 = Ebg LPQR=7— %Q, and

ZPQT_?T—EQ—QM‘.T—(GJFE)

; ) @ since ZRQT = 0.

¥
Thus, the coordinates of P are C

x={a+b)cosf + bCOS(Tl’ - U—MO) =(a+b)cosh — bcos(a+b9)

b b
and

a+b

y = (a+b)sind — bSiI’l(TT -
h

9) = (a+b)sin8~bsin(a:b
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6. Let b = 1 and the equations become

z=(a+1)cosd —cos{{a+1)8) y = {a+1)siné — sin({a + 1)8)

It &« = 1, we have a cardioid. If @ is a positive

integer greater than 1, we get the graph of an

“g-leafed clover”, with cusps that are @ units
from the origin. (Some of the pairs of figures are

not to scale.)

a=23 -2r<6<2x a—10, =27 <6< 2r

If u = n/d withnn = 1, we obtain a figure that
does not increase in size and requires
—dm < # < dm to be a ¢closed curve traced

exactly once.

Next, we keep d constant and et n vary. As n
increases, so does the size of the figure. There is

an ri-pointed star in the middle.

a=2 57 <@ <5

Now if n = d 4+ 1 we obtain figures similar to the
previous ones, but the size of the figure does not

increase.

If @ is irrational, we get washers that increase in

$1Ze as ¢ INCreases.

a=+20<8<200 a=c—2,0<60 <446

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 112 CALCULUS WITH PARAMETRIC CURVES T

11.2 Calculus with Parametric Curves

dy dx 2 dy dy/dt -5 5
PR dy _ o ax dy .
.r=t—tPy=2-5 = i 5, pr =1 - 3t°, and dr ~ djdl T30 o =

dy dx dy  dy/dt 1+€
_ i — t A t _— ¢ t _ _ )
.=t y=14{+e = dt—l—i—e,wdt—te +e’and_dw—da:/dt7tc* pw

. dy dz dy dy/dt 341
o — §d _ 43 4 oY s 2 oL 4t3 d o '
=l y=trnt L di 3+ 1L dt 40 G dx/dt At3

When t = -1, (z,y) = (2,-2) and dy/dx = -4 = —1, s0 an equation of the tangent to the curve at the puint
corresponding to t = —lisy — (-2) = (—1)}(z — 2),0ry = —=z.

. d d dy/dt i2—1
.I=2t2+1.y:%td—t;t=3. LA 1—$—4t,and—y*AyL—

- - . Whent =3,
dt dr _ drjdt 4t o

() = (19,6) and dy/dx = £ = 2, 50 an equation of the tangent line is y — 6 = 2z —19),ory = 5z — .
dy

:e‘ﬁ,y:tflntz;tzl. i

dy
dx

dy _ dy/dt  1-2/t % o —

= = . Whent = 1,
dz  dr/dt eﬁ/(zﬁ) 2t \/EP\/' en {z,y) = (e,

2 .
= —~—, s0 an equation of the
(&

tangent lineis y — 1 = ~3(z — e)ory = -2z + 3.

. . dy  dy/df cos§ — 2sin 26
. = COS 5 =s 0s26: 0 =0, -~ = - = . When 8 = (),
¢ = cosf +sin26, y = sind + cos 2¢; 0 dr = dujdb  —sind - 2oos20 en

(w.y) = (1,1) and dy/dx = 5, so an equation of the tangent to the curve is y — 1 = sle—1)ory= o+ 3.

2

d dx dy dy/dt 2t —1)
t P Y t Y Y

vz —ety={(t_ 1% W a1 o a9 _ - .

(@ax=c,y={t—-1)%5{11) 2(t ) T »and dr  drjdi et

dt

1 .
At (1,1), ¢t = G and (I,_y = —2, s0 an equation of the tangentisy — 1 = —2(x — 1), ory = -2z + 3.
(L

= t:lnm,soy:(tfl)gz(ln;r—l)zandd—y nr 1). When x = 1,
iz

i.
%}_E = 2(—1)(1) = —2, so an equation of the tangent is y = —2x + 3, as in part (a).
axr

d dy/df  secftanf  tané .
. (a) ¢ = tand, y =sccd; (1,v2). d—z-:di;:;deﬂ (sec;f;l = sii:léi = sin §.

When {(z,y) = (1, \/_) = Z {or £ + 27n for some integer n), so dy/dx = sin § = V2/2. Thus, an

equation of the tangent to the curve is y — v2 = (vV2/2){z — 1), ory = (V2/2) x + (V2/2).
(b) tan® 8+ 1 =sec’d = 24+ 1 =950 -a:'i—m(as‘2 +1) = %(yz) = 2z = 2@;%.

2
When ( = (1, \/_) = “\é—_ 50 an equation of the tangent is y — v/2 = (\/5/2) (z —1),

as in part (a).
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9. r = 2sin2t, y = 2sint; (\/§ 1).

dy _ dy/dt  2cost = cost
de  do/dt T 2.9c0s2 2cos2t

to ¢ = %, so the slope of the tangent at that point is

cos%_%_@
2

QC()S% T2

. The point (\/5, 1} corresponds

T . An equation of the tangent is theretore
2

(y—1)=L(z-V3),ory= Lz~ L.

, & =sint,y = sin(t + sint); (0,0).

dy  dy/dt  cos{t +sint)(1+ cost) |
= = — o 1 e t . t
dr  dr/dt cost (sect + 1) cos(t + sin t)

Note that there are two tangents at the point (0, (), since both ¢ = 0 and

t = 7 correspond to the origin. The tangent corresponding to £ = 0 has

slope (sec 0+ 1) cos(( 4+ sin0) = 2cos 0 = 2, and its equation is

y = 2x. The tangent corresponding to t = m has slope

(secm + 1) cos(m + sinw) = 0, s0 it is the x-axis.

. dy  dyfdt 2t + 3t 3
e =4+t o y=22+8 = === =14+t =
TEATl, y=rA dr — dejdl 2 ty

(.
= = . The curve is —= > (), that is.
de/dt 9 o P e curve is CU when T2 > {), that is

Py d (dy\ _ d{dy/dz)jdt  (d/d)(1+3t) 32 3 iy
dz2  dr B N B

dx
when £ > (.
dy dy/dt 2t

=t o2,y =t -1 = =2 = =
Y dz  dzjdt ~ 32— 12

d (dy (3t — 12) - 2 - 2t(6¢)
dy  dt\de) (32 — 12)2 6224 —6(t°+4) =20t +4) Thus. th _
de?  dxjdt 3t2 — 12 (32 —12)F 0 33(t2 —4)®  9(s2 - 4) s, e curve s

CUwhent’ —4 <0 = |{<2 = -2<t<2

..:r::tfr_z".y:t+e"r =

, d {dy d, _
d_y Cody/dt 1—e! B N - _ d?y _ dt(dﬂf) _ E(“e’ ) _ e

dr  dr/dt  1—et : - de? ~  dz/dt  dejdi T 1-—et
The curve is CUwhen e* < 1 {sincee™ > 0] = t<0.

dy dy/dt  1-1/t t-1 2
WVrxz—it+Int, y—¢t—Int = =< — = = =1~
’ Tty N dr dajfdt  1+1/t £4+1 t+1

d(dy afy__2
d2y_dt dej dt t+1 _2/“‘*‘1)2w 2

q dejdt (¥ 1/t RETER T AR TENIE s0 the curve is CU for all ¢ in its domain, that

is,t > 01t < —1 notin domain].
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15. & = 2siné, y = 3cost, 0 <t < 27

dy  dy/dt _ 73sint 3 d*y N

4
dt

ay
dx

SECTION 11.2  CALCULUS WITH PARAMETRIC CURVES LI 841

)

3

sec? §

—tant, s0
2

dz?

sect < =

dz  dx/dt

The curve is CU whensec® £t < 0 =

2cost

dy  dy/dt

dz/dt

—sint

.3
= ——scc i
4

3
- 2cost

cost<0 = Z<t<i,

sint 1

1
= —seci. so

%i

. r=cos2t, y=cosi, 0 <E < dm/dtw
dy

¢12 dt ( dx )

dz2 dz/dt
F<t<m

1secttant

—4sinfcost

16

cost <0 =

L= 10 -2 y =1 - 12t
dy/dt = 3t* — 12 = 3(t + 2)(t — 2), s0
dy/dt =0 <= t=+42 &
(z,y) =

« t=10)

(6, T16). dz/di =

(‘T‘l? y) =

horizontal tangents at (6, £16) and a vertical

—2t,sodz/dt =0
= (10, 0}. The curve has

tangent at (10,0j.

=288 32— 12, y =267 + 37+ 1.
dy/dt = 6t° +6f = 6t(t + 1),s0dy/dt =0 <
(0,1) or

da/dt =687 + 6t — 12 = 6(t + 2)(t — 1), s0

t=0or-1 & (z,¥}= (13,2).

de/dt =0 & t=-2o0rl
(2, ) = (20, ~3) or
at (20, =3) and (-7, 6).

=4

. &= 2cosf, y=sin20.
dy/df = 2cos26,sody/d0 =0 &
20 = 5 4+ nw (naninteger) < 0=+ 7n
< (xy) = (:i:\/i:l:l). Also,
dr/df = —2sind,sode/dd =0 & O=nn
= (x,y) = (£2,0). The curve has horizontal
tangents at (++v/2, £1) (four points), and vertical

tangents at {+2,0).

—2s8in 2t -

= —i sec®t. The curve is CU whensec®t < 0 =

0=

2. 2sintcost :4cost 4

sect <) =

6 16) r=-2

e
-]

6,-16) =2

40

e

LN
f:

(13,2)
r-—l

25
/)\j\ 20, -3)
1**2

(—7.6). The curve has horizontal tangents at (0, 1) and (13,2}, and vertical tangents

04A+2m Jzn (\,2 1) 0=5+2n7

1.5

l/& 0y #=2nr
5 25
2n+1 T

e +2R‘ﬁ‘ ( \’2

(\2 -1y 6="Z 4 20
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20. « = cos30, y = 2sinf. dy/df = 2cost,sody/dd =0 & 8= Z +nm(naninteger) <
(,y) = (0,£2). Also, dz/df = —3sin30,s0dz/df =0 < 30 =nmr & #=3In &
(z,y) = (£1,0} or (&1, =£+/3). The curve has horizontal tangents at (0, +:2)., and vertical tangents at (£1,0),
{(£1, ~+/3) and (£1,/3).

0,2y 6= 5”; 2nw

2.5/
Iy o T [~ ‘. o
—1,/3) 377+2mrm - {Ly3) 0 .3_+2,m
[-L,0) =7+ 2nw i, #=2nw
-1.5 1.5
C13) 6= 4 207~ Hz V3 =T o
2

37
] + 2nw

y =t + Int is about (—0.25, 0.36). To find the exact coordinates, we find

the value of ¢ for which the graph has a vertical tangent, that is, 03
0=du/dt =4t* -2t & 2{(2%° -1} =0 &

20(v2t +1)(v2t ~1) =0 & t=0o0r+ J5. The negative and

’_’__‘]D.IS

21. From the graph, it appears that the leftmost point on the curve o = ¢4 — t2, L2

25
} roots are inadmissible since y(£) is only defined for ¢ > 0, so the leftmost point must be

(o(20) () = ()"~ ()" o) = (s 4

22. The curve is symmetric about the ling

y = — since replacing ¢ with —¢ has the

effect of replacing {x, y) with (—y, —x),
s0 if we can find the highest point
(h,yp). then the leftmost point is

(x1.9) = (—yn, —xzn). After carefully

zooming in. we estimate that the highest
pointon the curve z = te' y =te ' is
about {2.7,0.37).

To find the exact coordinates of the highest point, we find the value of # for which the curve has a horizontal tangent,
thatis, dy/dt =0 & t(-e ‘J+e ' =0 & (1-t¢ " =0 & t=1. Thiscorresponds to the point
(x(1),4(1)) = (e,1/e}. To find the leftmost point, we find the value of ¢ for which 0 = dr/dl = te' + '
(L+t)e' =0 <« t=—1. This corresponds to the point (x(—1),y(—1)) = (—1/e, —e). Ast -~ —0,

&{t) = tet — 0 by ’'Hospital’s Rule and y(¢) = te™" — —o0, s0 the y-axis is an asymptole. Ast — oc,

2{t) — oo and y(t) — 07, so the z-axis is the other asymptote. The asymptotes can also be determined from the

graph, if we use a larger {-interval.
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23. We graph the curve z = (2t — 2%, 0.5 1.5

y = #* — ¢ in the viewing rectangle
[-2, 1.1] by [-0.5,0.5]. This rectangle

corresponds approximately to

t € [-1,0.8]. We estimate that the curve

has horizontal tangents at about —0.3

(—1,-0.4) and (—0.17,0.39) and vertical tangents at about (0, 0) and (—0.19,0.37). We calculate

dy _ dyfdt _ 3t* -1
de  dz/dt AP — 612 — 4¢

. The hoerizontal tangents occur when dy/dt = I -1=0 & t= i%, 80

both horizontal tangents are shown in our graph. The vertical tangents occur when da/dt = (22 — 3t — 2} =0
e 22+ 1)t —2)=0 < t=0 -2 or2 Itseems that we have missed one vertical tangent, and indeed if

we plot the curve on the t-interval [-1.2, 2.2} we see that there is another vertical tangent at (—8,6).

. We graph the curve x = t* + 467 — 8¢%, 1.4 >3

y = 2t* — t in the viewing rectangle
[—-3.7,0.2] by [-0.2,1.4]. Itappears

that there is a horizontal tangent at about

{—0.4, —0.1), and vertical tangents at 37
about (—3,1) and (0, 0).

i dy  dy/dt 4 —1 . o _
We calculate i dejdt = W ioe — 16 so there is a horizontal tangent where dy/dt =4f — 1 =0 <«

= 11 This point (the lowest point) is shown in the first graph. There are vertical tangents where

de/dt = 4" + 1262 — 16t =0 & 47 +3t—4)=0 & 4t(t+4)(z —1) = 0. We have missed one

vertical tangent corresponding to ¢ = —4, and if we plot the graph for ¢t € {5, 3]. we see that the curve has another

vertical tangent line at approximately (~128, 36).
dz

. = cost, y = sintcost. &F = —sind,

gd? = —sin” t 4+ cos® t = cos 2t. (z,1) = (0,0) & cost=0 <

t is an odd multiple of §. Whent = 2. i—f = —T1and %-‘;f = —1,s0

ey, 3w  dir fid) Jad o
=1 Whent = 27, 9% = land ¥ = ~1. So % = —1. Thus,

y = x and y = — are both tangent to the curve at (0, 0).

Lr=1-2cos’t = —cos2t, y = (tant)(1 — 2cos® t} = —(tant) cos 2t. To find a point where the curve crosses
itself, we look for two values of ¢ that give the same point (z,y}. Call these values t; and ¢2. Then
cos®t; = cos® s (from the equation for ) and either tant; = tantas or cos’t — cos®tp = % (from the equation
for 47). We can sansfy cos” t; = cos” tz and tan ¢, = tan s by choosing ¢ arbitrarily and taking {2 = 1 + 7, 50

evidently the whole curve is retraced every time ¢ traverses an interval of length 7. Thus, we can restrict our

attention to the interval (=%, Z). 1f#; = —t1. then cos” t2 = cos” t1, bul tan > = — tan{,. This suggests that
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we try to satisty the condition cos®t; = cos®tg = l. Taking ¢t; = % and

= —7 gives (x,y} = (0,0) for both values of ¢. 4z — 2'sin 2t,and

%ﬁl — 2sin 2ttant — cos 2 sec® . Whent = T = 2 and ﬁ =2 50

d
dt
dy _ . _x de _ _« — ay - _ .
X =1 Whent=-3. 5= .Z:md—kl 2,50 4% = —1. Thus, the

equations of the two tangents at (0,0) are y = zandy = —x. g
y=x

. _dzx dy dy  dsinf
L@ x=718 —dsinf,y=r—dcosl; — d9 —dcost, @ =dsinf. So —= Ir = deosd’
(b) If 0 < o < 7 then |dcos®| <d < r.sor —dcosd > r —d > 0. This shows that dx/dfl never vanishes, so
the trochoid can have no vertical tangent if € < r.

. =acos®f.y = asin® 4.

dr 24 dy 3 dy  sinf
(a) i —3acos” @sin g, 96 3asin” f cos B, s0 Tr = " oosf tan#f.
(b) The tangent is horizontal & dy/dcr=0 & tanf =0 < O=nr & (z,y) ={xaqa,0). The

tangent is vertical 4> cos@ =0 < fisanoddmultipleof § < (z,y) = (0,%a).

4 4

(¢)dy/dr = +1 < tanf@=11 & Gisanoddmuliipleof§ & {(x,y)= (rl:ﬁa,ztﬁa) (All sign

choices are valid.)

. The line with parametric equations z = —7t,y = 12t —Sisy = 12(—% ) 5, which has slope —<#. The curve

di dy/dt 12¢
x = t3 + 4t, y = 6t has slope ﬁ = dzidt = W Thisequals ~ 32 o 37 +4=-Tt &

Bt+4)(t+1)=0 & t=-lort=-% & (z,y):(—5,6)or(—$,%).

12
7

Lr =3t 4+ Ly=2t3 41, Z—f = Bt, % 6t2‘50¢% = %2 =1t (even wheret = 0).
So at the point corresponding to parameter value ¢, an equation of the tangent line is
y— (262 1) = t[z — (3t + 1)]. If this line is to pass through (4,3), we must have
32T+ ) =t[d-(3+1)] & 2°-2=3"-3 & £-3+2=0 & (-1’ (t+2)=0
&t =1or--2. Hence, the desired equations are y — 3 = = — 4, or y = z — 1, tangent to the curve at {4, 3), and
y - (—15) = —2(x ~ 13), or y = —2z + 11, tangent to the curve at (13, —15).

. By symmetry of the ellipse about the x- and y-axes,
A=4 [ ydr= 4fff2bsin¢9( asind)df = 4abf"/2 sin® fdf = 4abf"/2 (1 — cos26)d¢
= 2ab]f — Lsin20]7"* = 2ab(Z) = 7ab

L t+1/t=25 & t:%UrQ,andfor% <t<2,wehavet+1/t<2.5.1:27% whent:%anda::%
whent = 2.

A= P25 - y)de = [0, (8-t~ /A +1/2)dl |z =t —1/t.de = (1+1/t%) dt]

2 5 -1, 542 .3 —t* 5t 1]
:fu.z(—i+§—2t +E2 -t dt = —+—*21n\f\— +5

1/2

=(-24+5-2Im2-3+3) - (-5 +7+22-5+2) =L —dln2
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:/z(et ~1)(—sint) dt = fo {e'sint — sint) dt L [é.@f(smt —cost) + cos t] /2

. By symmetry, A =4 [ ydz = 4f LI 3 6(—3a cos® 8sin ) df = 12a° ‘['0”/2 sin® @ cos® # dfl. Now

[ sin* @ cos” #dft = [ sin® 6(1 sin® 20) d6 = 3 s [ - cos 20) sin® 20 d6
=% [[4(1 — cos48) —sin 29cos29} df = 150 — oy 8in 46 — ﬁsin3 20+ C

S0 f[;rﬂ sin® #cos? 0do = [-1—9 - ﬁ sin 48 — % sin® QB]K/Q = 35. Thus, A= 12(1,2(%) = %71'(},2.

A= [T ydr = *T(r — deos®)(r — dcos@)dd = [T (r 2 _ 2drcos b + d° cos’ 6) do

Jo
= {1‘29 — 2dr sin 8 + %dz(f) + 5 sin 29)]0 = 2nr? &+ wd?
. (a) By symmetry, the area of R is twice the area inside % above the z-axis. The top half of the loop is described by

x=t%y =t -3, —+/3 < t < 0, so, using the Substitution Rule with y = t* — 3t and dz = 2t dt, we find
that

area=2 [Fyde =2 V30 — 36)20de = 2 V0 (241 — 6%) dt = 2[5 - 2]V
=2[2(-3)° - 2(731/2}3} =2[3(-9v3) -2(-3V3)| = 23
(b) Here we use the formula for disks and use the Substitution Rule as in part (a):
volume = fos Yy de = ﬂfn_\/g(t?’ — 3t)*2tdt = 2m fo_‘/g(i'.6 — 6t + 9%t dt

—on[it 088

:2“_[%(731/2}8 (—3 1/2) L9 ( 31/2)4

:QW[S—SI - 27+ %} = 24711'
(¢) By symmetry, the y-coordinate of the centroid is 0. To find the z-coordinate, we note that it is the same as the
z-coordinate of the centroid of the top half of B, the area of which is £ - 22/3 = 12./3. So, using
Formula 9.3.8 with A = %‘3\/5 we get

V3

- Bt A —V3 ;2 5]
T= %\f} Jo wyde = T}'L\/E fo (8 — 3t)2 dt = ﬁ H—t? — 2¢ }n
5 al/2NT ; al/2\8) _ 5 2 |l
= aA [ - >]m{—%ﬂ/§+ﬁ]w
So the coordinates of the centroid of R are (z,y) = (2,0).
R I S T ﬁtz"!2 1 <t<2 do/dt =1—2tand dy/dt = 2172 s0
(dr/dt) + (dy/dt)? = (1 —2)* + (2tY%)% = 1 — 4t + 46> + 4t = 1 + 4¢*. Thus,
= [P defdt)? + (dy/dty? dt = [} VT T+ A2 dt.
ce=1+¢, y=12 —3<t <3 do/dt=e" and dy/dt = 2t, 5o (dz/dt)* + (dy/dt)* = €** + 4t>. Thus,
L= ["/(da/dt)? + (dy/jdt) dt = [°,/e¥ + 42 dt.
2 =f+cost, y=t—sint, 0 <t <27 dxjdi =1—sinfanddy/dt =1 — cost, so
(dm/dt)? + (dy/d)* = (1 —sint)® + (1 —cost)® = (1 — 2sint + sin®t) + (1 — 2cost + cos® t)
=3 - 2sint — 2cost
Thus, L = [*/{de/dt) + (dy/dt) dt = [J7 /3= 2sint — Zeostdt.
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dx 1 dy 1
n = = 1 <+<5 — =-and -% = _—, §
N r=Inf,y=+t+1 D. pn td 5 W S0

de dy 1 1 244t +4
( ) (dt) 2 T 4(t I

; N da, dr / t2+4t+4df r+2 ] t+2
- A2 (t+ 1 t+1) 1 zt\/_H
Moz =1+32 y=4+25 0<t <1 da/dt =6t and dy/dt = 6¢2, 50 (d/dt)? + (dy/dt)* = 361* + 36¢%,

Thus, L= [, v/361% + 36 dt = [ 6t VI +£2dt =6 ] \/u (§du) [u=1+1% du = 2tdt]
— 32 */2] —2(2%% — 1) = 2(2v/2 — 1)
1

2. r=a(cosh + 0sinh),y = a(sinfd —fcosh),0 <8 <.
(dx/d6)* + (dy/dB)* = a® [(— sinb + 8 cosd +sin8)” + (cos ¢ + Osin @ — cos )]
= a*0*(cos® 0 +5in’ §) = (aB)?
Thus, I = [“’T ad df = u,[ 9‘!] = évrga.

t de _ (14+¢t)-1-%-1
L= —, Yy = < < = —
43. x T3 y=In(l+¢,0<¢t <2 it (1+t}2

d—d 24_ @ 2* 1 1 _ 1 2
<‘“> | (d*) —(1+t)4+(1+f,)2_{1+t)4 L=

du, [u=t+1, du=di

f@ +1n(3+@)+\/§—1n(1+\/§)

8. r ="'+t y=5-2t, 0 <t <3 dr/dt=c —e tanddy/dt = -2, s0
(da:/dt)® + (dy/dt)? = e® —2+e ™ 4 =e® £+ 24 7% = (' + ¢74)° Thus,

L:.[;f(e'+e't {e - e } = e (1= =e-e?,

45, ¢ = ¢’ cost,y = e'sint, 0 < ¢ < 7.

2 2
(%) + ((;—3;) = [ef(cost —Sint)f + [ef(sint —I—(:ost)}2

= (et)Q((:os2 t—2cost sint + sin” t)

+ (et)z (sin®t + 2sint cost + cos” ¢)
= e (2cos” t + 25in” t) = 2™
Thus, L = [ V22 dt = [ 2t dt =2 [e']] = V2(e" — 1),
8. © = cost +In(tan4t), y=sint, w/4 <t < 3n/4

+%secﬁ(t/Q) C o dint+ 1 B LL 1
tan(t/2) 7 2sin(t/2) cos(t/2) msntt o
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2
, . 1
andd_y—cost 50 dl + d_y = gin’ t—2+ +c0&, f=1—2+csc?t = cot®¢t. Thus,
el dt dt in?

1
L= fSTM ‘Cott‘ a!tw?fw/2 cot t dt M2[ln1smfﬂ7r/2 = 2(1111 ln—)

V2
=2(0+1nv2) =2(} In2) = In2.

1.2

(= —0.174,y2/2) t=2 /(\ {=0.174,4/2/2) 1=="

8. x = ot —t,y=4de'?, 8 <t <3

. 2
(de/di)? + (dy/dt)? = (&' — 1)° + (26”2) = e — 2" + 1+ 4e'

_ 2t+2et+1:(et+1)2

L= f2 Jlet+ 1)2dt = [* (" + 1) dt = [e“rt]:

= +3)— (e -8 =€’ -e " 1L

L x =3t — %,y = 3t%. dr/dt = 3 — 3t° and dy/dt = 6t, s0
dz\* | (dy\’ 242 2 242 0.9 1=+y3
T + ) = (3 — 3t%)° + (6t)° = (3 + 3¢°)° and the length of
[£22 (1L

the loop is given by

L= [ 3+3%)de=2 7 (34 38) dt = 231 + &y

:2(3\/§+3\/§) = 123,

Lo =ft—e y=t+e, —6<t<H,
(i—f)z + (%)2 =(1- 65)2 (1 +et)2 = (1—2" + M)+ (142" + %) =2+ 2% 5
] V2 F 2 dt. Set f(t) = V2 + 22t Then by Simpson’s Rule with n = 6 and At = iﬁ_—hl =2,
we get L 2[f(—6) +4f(—4) +2f(~2) + 4f(0) + 2f(2) + 4f(4) + f(6)] = 612.3053.
.z =2acotl = dz/dt=—2acsc®fandy = 20sin®d = dy/dt=dasin® cost = 2asin26.
So L = f:ff V402 csct 0 4 4a? sin® 20d0 = 2a n/z Vesct 8 + sin? 20 df. Using Simpson’s
Rule withns = 4, Af = T 2"” s ., and f{0) = \/_sc”‘9+sm 26, we get
La2a- 85 = (20) 45 [f( VHAf(3E) 4 2f(38) +4f(18) + f(5)] = 2.2605a.
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5. x = sin®t.y =cos? £, 0 < t < 3w
(de/dt)? + (dy/dt)* = (2sintcos £ 4+ (~2costsint)® = 8sin® tcos® t = 2sin®2t =
. w/2
Distance — [*™ /2 [sin 2¢| dt = 6 V2 [7/* sin 2t dt Tby symmetry] = —3 /2 [cos 21| )
=-3V2(-1-1)=6V2
The full curve is traversed as ¢ goes from 0 to 7, because the curve 1s the segment of x + y = 1 that lies in the first
quadrant (since , 3 > 0). and this segment is completely traversed as ¢ goes from 0 to 3.
Thus, L = Uﬂfz sin 2t dt = /2, as above.

2 2
52 & — cos®t.y = cost, 0 <L < 4. (%) + (%) = (=2costsint}® + (—sint)® = sin? ({dcos® t + 1)

Distance = [ [sint| vAcos? t + 1dt =4 [ sinty/Acos? t + 1dt
= —4.]';1 Vau? + 1du |u=cost, du = —sintdt] = 4.[711 Vidu? + 1du = 8_[01 vidu? 4 1du

"2 ech - 3 sec’ 8df [2u = tanf, 2 du = sec? 0dF]

= 4.]'(;@_1 Psect 06 2 [2secHtanf + 2In [secd + tan o 2 4B+ 2 In(v5 +2)

Thus, L = '['07T |sin | VAcosZ{ 4+ Ldt = /5 + %ln(\/g +2).

53. x —asinf,y = beosf, 0 < § < 2,

2 2
(dx) +(d_y) :(acos())2+(—bsirl())2=a260529+bzsin29:aQ(l—sinzﬂ)+bzsin29

dé do

2
. 2 2 . 2 2 coL2 2 2 s 2
:a2—( 2—b2)51n29:a — ¢ sin"f=a (]—Esm 9) =a (lfr% sin ())
- a

Sol. =4 f(;”z \/(1,2 (l — 2 5in? 1 df [by symmetry| = da Sm/z 1 — e2sin? 6 do.

5. r =acos® 6, y = asin® 4.
(dz/d6)? + (dy/d8)* = (—3acos® 6 sinf)” + (3asin® 4 cosd)”
= 9a’ cos* 0 sin” 0 + 9a” sin” @ cos® 0
= 9a’®sin? 0 cos® § (Cos2 6 + sin” 0) = Oa”sin” § cos® 6.
The graph has four-fold symmetry and the curve in the first quadrant
corresponds to () < & < /2. Thus.

L=4 .[:/2 3asind cos B db jsince @ > 0 and sin # and cos # are positive for 0 < § < 7 /2]

= 12(1[% sin® 9];’/2 = 12{1(% - ()) = 6u.

B5. (a) Notice that 0 < ¢ < 27 does not give the complete curve

because x(0) # x(2m). In fact, we must take ¢ € [0, 4] in

order to obtain the complete curve, since the first term in each

of the parametric equations has period 27 and the second has

period % = %—T and the least common integer multiple of

these two numbers is 47,
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(b) We use the CAS to find the derivatives da/dt and dy/dt, and then use Formula 1 to find the arc length. Recent
versions of Maple express the integral j;" dzjd)? + {dy/dt)? di as 8RE(2 V2 1), where E(x) is the

1 G

i - 242 . . i . N

elliptic integral / ——ZL d¢ and 1 is the imaginary number +/— 1. Some earlier versions of Maple (as
Jo V1 -1t2

well as Mathematica) cannot do the integral exactly, so we use the command
evalf (Int {sqre (Aiff (x,t) 2+diff {y,t)"2),t=0..4*Pi)}; toestimate the length, and find
that the arc length is approximately 264.03. Derive’s Para_arc_length function in the utility file

Tnt apps simplifies the integral to 11 f;'™ \[ 4cost cos(Ht) — 4sint sin(45*) + 5at.

B6. (a) It appears that as t — oo, {x,y) — (3, 5).and

ast — —oo, (2,y) — (_é’ ”%)

(b) By the Fundamental Theorem of Calculus,
di/dt = cos(Z#*) and dy/dt = sin{5t%), s0

/

by Formula 6, the length of the curve from the ‘ @
@)

origin to the point with parameter value £ is

-1

/Er/du (dy/du)” du = fot \/’cosﬁ( 2} +sin’ (Zu?) du
:futldu:t for —tif¢ < 0]

We have used w as the dummy variable so as not to confuse it with the upper limit of integration.

. i 1 1\ . .
8. 0=t y=1 1<t<2 (“’:) +(ﬂ) = (1-26)7 + (222 =1 — 4+ 47 + 4t =1+ 487,

dt dt
08 = [*2myds = [ 2r - AT H AR dt = [} 57T+ i de,
58. = — sin“t,y = sin3t. 0 < ¢ < I do/dt = 2sintcost = sin2t and dy/dt = 3cos 3¢, s0
(die/dt)? + (dy/dt)* = sin? 2t + 9cos? Btand § = [ 2myds = fn’”’a 9 sin 3¢y/sin® 2¢ + 9cos? 3 dt.

dt dt

- . / dx 2 dy : ! 2 . 2
5= / Qg — ) + | =] dt= Qi Ot A2 dE = 2w | T /1R(92 + 4) di
Jo dt dt 0 Jo
-1

_ a2 2 . 13
] uw =9t +4,t {TJ. /q 2w 3/2 172
1 du = ST Yy du
) {du‘-léétdt,sotdt_—mdu 9.18 J, (u w)dn

2 2
59, ¢ =1y =t 0<t < L. (@‘5) + (@) = (3% + (20)* = 01"+ 1%,

; 13
- ?713!2] A = % : 123[3“5/2 - 20-113/2]‘_}’3
T [('3 13*V13 - 2013 W) (3-32-20- 8)}
= 2 (247 VI3 4+ 64)

‘ ‘ dz \* 2 . ;
60. & = 30 —fF y =32, 0<t < L. (di;) + (%) = (3-33)" + (617 =91 + 20" +11) = [301 + )%

S= [Par. 36 301+ t7)dt = 18m [ (£ + 1) de = 18387 +
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6. 2 = acos’ 0.y = asin®6,0 < 6 < 3

2 2
(Z—g) + (%) = (—30,(:052 Gsin9)2 + (3asi1126'cos£9)2 = 942 sin® # cos® 6.

5= [T 2x . asin® 6 - 3asin 6 cos 0 df = Gra’ /% sin® 8 cos 6 df) = Ema® [sin® 6] =
82, (dm) + (@)2 = (—2sinf + 2sin 20)° + (2cos 6 — 2 cos 20)°
df df
= 4[(sin® @ — 2sin f'sin 26 + sin® 20) + (cos” & — 2cos P cos 26 + cos® 26) |
=4[1 + 1 — 2{cos20 cos § + sin26sin 8)] = 8[1 — cos(26 — F)] = 8(1 — cosF)
We plot the graph with parameter interval [0, 27|, and see that we should f 3

only integrate between 0 and 7. (If the interval [0, 27 were taken, the

surface of revolution would be generated twice.) Also note that

y = 2sinf — sin28 = 2sin#{1 ~ cos ). So

S == [ 2m - 2sinf(1 — cos 0}2 21 — cosfdf

=8 \/wa (1 — cos #)*?sin 0 do
a

2
=8 \/Evr/ Vud du [where u = 1 — cosf, du = sin @ df]
Jo

:8\/5#{(%)115/2]3 _ 16f 2a/2 — 128

. 1 dx y)
63..r:t+t3,y:t—t—2,1§t§2.d—i:1+3t2andi =1+ —,s0

£’
dzr\* dy 2 9\ 2 2\?
- - = (1+: 5
(dt) +(dt) (1+3t%) +(1+t3) and
2 1 2\
§ = /%yd.g:/ 271'(1&—;5) (1+3t2)2+(1+~{§) dt = 59.101.
- 1 -

64 5= :/":2 2ir - 2asin® 6/ csc? 6 + sin® 20 dt = 4ma f“/f sin® 0/ esct 0 + sin® 20 dO.
Using Simpson’s Rule with n = 4, A§ = 2272 — & _and f(8) = sin® #y/csc? 8 + sin? 26, we get

§~ (ama) 355 [ £(5) + 40 (55) +20 (%) +4f (32) + £(3)] ~ 11.08030.

2
65 z=3ty=20<t<5 = (%) +(‘;":) (61} + =36t3(1 +t%) =

S = [ 2ma \/{de/dt)? + (dy/dt)? dt = [ 2m(3t%)6t VI 1 (2 dt = 187 [ 42T + 42 2edt

= 187 fl% {u—1)y/udu [wherew =1+, du = 2tdt}] = 18w f126 (ua/z — ul/g) du
. 2 5/2 2 372]%% 9 e SR

——1871'11316 —zu ]1 —1871[(5'676\/5"—%-26\/26)—(%—%)]

— g (949ﬁ+ 1)

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 112 CALCULUS WITH PARAMETRIC CURVES ) 851

2 2 2
66. 7 — ¢! —t,y=4e?0<t <1 ((i—":) +((§—‘:) :(el—l)”+(2€‘/2) =22t 1= (et + 1)7
(1L ¢

S= [lom(et —t) /(e — 1) + (202 dr = [} 2m(e! - 8)(e" +1)
= 271'[%6% +et —(t—-1)e’ - %tz]:} = 7r(c2 + 2e - 6)

67. If £ is continuous and f'(t) # 0 fora < t < b, then either f'(¢) > O forall t in [a, ] or f'(#) < O forall £in [a,b].
Thus, f is monetonic {in fact. strictly increasing or strictly decreasing) on [a,b]. It follows that f has an inverse.
Set F = go f~'. thatis. define F by F(z) = g(f'(z)). Thenz = f(f} = fHz) =t s0
y = g(t) = g(f () = F(a).

. By Formula 9.2.5 with y = F(z), § = [ 2nF(«x}y/1 + [F'()]? dz. Butby Formula 11.2.2,

. ; dy \? dy/dt ? (dm/dt}z—l-(d /d.'if)2 . - .
r 2 Yy Y Yy
+- g =14+1- =1+ = . u the Substitut Rul th
1 [l[‘ (:r‘)] 1 ( ) ( / t) ( / t)z sing the subsitution Kule wi

2 = z(t), where @ = z{a) and b = z(f), we have (since dx = %%C dt)

5= ]j 27rF(.r(t))\/(dx/dzg;;rdg?/dt)2 %E dt = '/j 277y\/((—f£)2 + (%)2 dt

which is Formula 11.2.7.

o { dy Ao d i fdy 1 d { dy dy  dy/dt
69. () ¢ = tan~! { ¥ L B e A
(a) ¢ = tan (da:) T ow T a (dy) 1+(dy/dm)2[d.(d:c B e T dja " :

Ay _d(y\_gE-#y _ do_ 1 b — 39\ di— iy
di\dr )~ dt\x) a2 dt 14 (g/e)\ & ) ity
. . . t dr\” dy 2
Using the Chain Rule, and the fact that 5 — -] +1—=] dt =
o dt dt

ds dz\* dy : 2 .2v1/2
= = \/(E) + (E) = (#* + ¢°)"'", we have that

do _ dojdt (:I‘y—;ry) 1 -y

ds ds/dt — \ %+ 2 (32 +y2)1/2 - (_1-"/2_}_?;,2)3/2'

_dg| | wg—ay | lai—

ds| | (@2 +92)* | @+

&y
dr?’

(byr =xzandy = flz) = i:l,iéz()andyz%,gj:

1+ (d®y/dz®) - 0 (dy/dz)| |d*y/dz®|

So k= 273/2 - 213727
[1+ {dy/dz)”] 1+ (dy/dz)”]

|d?y/dz?] 2
1+ (dy/dz)®]*® (14 42?2

and at (1,1),
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g-_'f — 3(1+ 4:.92}*5/2(83?) =0 & r=0 = y=0. Thisis a maximum since & >0Ofora <0
i

and &' < 0 for z > 0. So the parabola y = z2 has maximum curvature at the origin.

MNar=0—sinfd = d¢=1—-cosf# = F=sinfandy=1—-cosf = P=sinl = §=cosd.
‘cos(?—coszﬁ—singﬂ’ B lcos()— (c0529+sin2 6’)| _ Jeos@ — 1

[(1 — co% (9)"2 + gin? 9] 3/2 (1 — 2¢osf + cos? @ + sin? 6)3/2 B (2 — 2cos {))‘”2‘
of the arch is characterized by a horizontal tangent, and from Example 2(b) in Section 11.2, the tangent is horizontal
when 6 = (2n — 1), so take n = 1 and substitute ¢ = w into the expression for &:

The top

Therefore, k =

feosm ~1|  |=1-—-1 1

2-2(-pP? 4

B (2 —2cosm)®?

. (a) Every straight line has parametrizations of the form = = a -+ vf, y = b + wt, where a, b are arbitrary and v,
w # (. For example, a straight line passing through distinct points (e, b} and (¢, d) can be described as the
parametrized curve x = a + (¢ — a)t, y = b+ (d — b)t. Starting with z = o + vi, y = b + wi, we compute

. 0 — w0
;'v:v,yl:w,cz::3,r=(],and.*;.:|?———i—‘72| =
{02 + u?)
{b) Parametric equations for a circle of radius r are z = r cos # and y = rsin 8. We can take the center to be the
origin. So & = —rsintl = &= —rcosfandy =rcosd = = —rsind. Therefore,
2 i3 2, 2 2
7 sin“ @ + r“ cos“ 0 1 ) 1
K= | - 'a‘/z = % = —. And so for any 8 (and thus any point), Kk = —.
{r?sin? § + r2 cos? 9)' L r r

. The coordinates of T are (rcos @, rsin@). Since TP was unwound from
arc TA, TP has length r8, Also /PTQ =/PTR-/QTR = %w -8,
so P has coordinates = rcos§ + rf cos(5m — 8) = r(cos§ + §sind).

y=rsinf — résin(im — ) = r(sinf — G cos ).

. If the cow walks with the rope taut, it traces out the portion of the
involute in Exercise 73 corresponding to the range 0 < 8 <,
arriving at the point (—r, wr) when 8 = 7. With the rope now
fully extended, the cow walks in a semicircle of radius 7r,

arriving at (—r, —mr}. Finally, the cow traces out another portion

of the involute, namely the reflection about the x-axis of the initial
involute path. {This corresponds to the range -7 < ¢ < 0.)
Referring to the figure, we see that the total grazing area is

2( Ay + Az). Az is one-quarter of the area of a circle of radius 7r,

so Ay = a(ar)? = 1nr2. We will compute A; + Ay and then

subtract Ay = é?TT‘z to obtain 4;.
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To find A; + A, first note that the rightmost point of the involute is {57, 7). [To see this, note that

dx/df = 0 when 8 = O or §. § = 0 corresponds to the cusp at (r, 0) and § = 3 corresponds to (Zr.r).] The

leftmost point of the involute is (—r, 77). Thus, Ay + Az = 9’;/5 ydr — _f;zf[f ydx = f;':ﬁ ydx. Now

ydz = r(sinf — @ cos)rfcosfdf = r*(fsinf cosf — 62 cos” 8)dd. Integrate:
(1/r*) [yde =8 cos?f — 2(6% — 1) sinfcos 0 — %93 + 46 + C. This enables us to compute

A+ Az =12 Bcos?B— L1(p* -1 sinfcosd — 16° + 1g v =r20—{-7—
2 6 2 T

3
=r(3+%)

Therefore, 4 = {4, + Az) — A2 = %ﬂ'grl‘z, so the grazing area is 2({A; + Az) = 2(%7r3’r'2

LABORATORY PROJECT Bezier Curves

1. The parametric equations for a cubic Bézier curve are
3, a. 2 g 42 3
r=ug{l—1)7 +3x1t(1 — )" + 3w2t™(1 — 1) + 231
3 2 2 3
y=yo(l —1)° + 3yt(l — )" + 3yt~ (1 — 1) + yat

where 0 < £ < 1. We are given the points Po(zo,¥0) = (4,1), Pr(z1, 1) = (28,48), Pa(xa, y2) = (50,42), and
Pz, y3} = (40, 5). The curve is then given by

w(t) =4(1— 1) +3-28(1 — £)* + 3. 50£%(1 — t) + 40

g(t) =1(1 — £)* + 3 48¢(1 — £)% + 3 - 423(1 — ) + 5¢°
where (0 < t < 1. The line segments are of the form z = o + (1 — Tu)t,
y=yo+ (g — o)t
Pl r = 4 + 24¢, y=1+447¢
PP T =284+22{, y=48-6t
PPy x=50—10t y=42— 37Tt

Y1 — Yo
Iy — &

. Tt sutfices to show that the slope of the tangent at Fp is the same as that of line segment P Py, namely . We

calculate the slope of the tangent to the Bézier curve:

dy/dt  —3yo(l — )7 + Byn [—26(1 — ) + (1 — 1)2] + By2 7 + (2)(1 — t)] + Byst”
dirfdt — =3x2{1 — &) + 3w [ 281 — £} + (1 — £)2] + B [t2 + (20)(1 — 1)] + 3zst?

. . . =3 3 o~ 1
At point Fyy. ¢ = (), so the slope of the tangent 1s —, Yo - YL 3B 7 g the tangent to the curve at %y passes
—3z0 + 3z, T — To

o . . =3y -+ 3 Uz — U L
through I%. Similarly. the slope of the tangeni at point s (where £ = 1) is ‘iy.z s - Ys _ Ys T 42 , which is also
—3x0 + 313 T3 - &y

the slope of ine 2 Ps.
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3. Tt seems that if P, were to the right of P2, a loop would appear. We try setting P1 = {110, 30), and the resulting

curve does indeed have a loop,

4. Based on the behavior of the Bézier curve in Problems 1-3, we suspect that the four control points should be in an
exaggerated C shape. We try Py(10,12), P1(4,15), P2(4,5), and P3(10,8), and these produce a decent C. If you
are using a CAS. it may be necessary to instruct it to make the z- and y-scales the same so as not to distort the figure

(this is called a “constrained projection” in Maple.)

. We use the same P, and P as in Problem 4, and use part of our C as the top of an S. To prevent the center line from
slanting up too much, we move P up to (4, 6) and P down and to the left, to (8, 7). In order to have a smooth joint

between the top and bottom halves of the S (and a symmetric S), we determine points Py, P, and I’; by rotating

points P2, Py, and Py about the center of the letter (point P3). The points are therefore Py(12,8), P5(12,-1), and
Ds(6,2).
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11.3 Polar Coordinates

1. (a) By adding 27 to T, we obtain the (b} (2, 7)
point (1, £%). The direction

R 37y
opposite X is <, s0 (=1, % Jisa

point that satisfies the r < 0

requirement.

(3,24 2%), (~3,2 + m)

x:?ﬁcos%“

r=3cosy = 3(0y=0and
) 1
22 (—“\5) = —2and

y=3sing =3(1) =3 giveus

the Cartesian coordinates (0, 3). y=2y2sin T =2 V2 (_\}_5) =2

give us (—2,2).
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(b)

T

3
\

r = 2cos 4% = —1and z=4cos3r = —4 and

. = 4sindx = 0 give
yZQSiH%:\/EgiVC y St & and-y:—?sin(f%) =1
us {—4,0).

us(—l,\/g). give us (\/11)

B (@me=landy=1 = r=124+12= V2 and 6 = tan™" (%) = 7 Since {1, 1) is in the first quadrant, the

polar coordinates are (i} (v/2, Z) and (ii) (—v2,25).

yz=2/3ady=-2 = r=(2v3) +(-22=vI2+1=V16=4and
g = tan ! (—2—\2/3) = tan™! (-v\%) = —Z. Since (2\/3, —2) is in the fourth quadrant and 0 < 8 < 27, the

polar coordinates are (i) {4, 1%} and (i) (—4, 2F}.

6. () (z,y) = (-1, —\/§) r=+1713=2tand =y/r=/3and (x,y) is in the third quadrant, so § = 4.

The polar coordinates are (i) (2, 1—;’) and (i) (—2, %)

(b) (&, ) = {=2,3).7 = VA + 9= +/13. tan0 = y/x = — 2 and (z, y) is in the second quadrant, so

# = tan~ ' (=2} 4 7. The polar coordinates are (i} {+/13, 8} and (ii) —+/13,8 + 7).
2

1. The curves v = 1 and + = 2 represent circles with center O

and radii 1 and 2. The region in the plane satisfying
r=1 TLK
1 < 7 < 2 consists of both circles and the shaded region

between them in the figure.

8,20, #n/3<8<27/3
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9. The region satisfying 0 < r < 4 and 10.2 <r <5 3r/4<8<5n/4
—7/2 < 6 < w/6 does not include the circle

T
r =4 northe line § = Z. N

1.

T _ V3, —1ain® =1
= andy =1lsing = ;.

Sf:f—slzé andystin%’iz#?.Thedistancebe[weenthcm 13
2 2 - 2 — 2
)+ (5= 52) =yiv3+3v2) - 11-3V2)
= /1B 6+ 18) + (1-6vZ+18) = 1VI0+ 66— 62

14. The points (r1,81) and (rz, #2) in Cartesian coordinates are (r; cos #1,71 sinf1) and {rocosfa, rasinfa),

respectively. The square of the distance between them is
(racosf2 — r1cosb1)? + (rosinfy — rysind))?
- (rf cos” By — 2r17a cos @1 cos B2 + 15 cos” 1) + (13 sin’ @y — 2r1rasin by sin s + risin’ 61)
2/ 2 2 2/ . 2 2 . . .
ri{(sin® 81 + cos®61) + 3 (sin” 02 + cos” 02) — 2rir2(cos b1 cosfly + sin 6y sinfy)

= rf — 2rirzeos(f) — 02) + rg',

s0 the distance between them is \/rf — 2ryrs cos{fly — 02) + ré.

r=2 = 2ty =2 < a2+ y® =4, acircle of radius 2 centered at the origin.

Lreosf =1 <= xr=1,avertical line.

.7 =3sinf = r?=23rsing <& z° +1;2 =3y < z? + (yf %)2 = (%)Q,acircle of radius % centered
at (0, £). The first two equations are actually equivalent since 7% = 3rsinf = r(r—3sinf) =0 = r=0
orr = 3siné. But r = 3sin  gives the point r = 0 (the pole) when ¢ = 0. Thus, the single equation r = 3sinf is
equivalent to the compound condition (r = 0 or r = 3sin 6).

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

858 . CHAPTER11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

r = 24inf = 2cos8 = ¢ =2rsinfd+2roosd o 2Pyt =29+2r &
2w+ )+ (P -2y +1) =2 & (z-— 1)? 4 (y — 1)? = 2. The first implication is reversible since

rd = 2rsin® -+ 2rcosf® = r=0orr =2sinf + 2cosf, but the curve r = 2sinf + 2 cos & passes through
the pole {r = () when # = ~ I, 507 = 2siné + 2 cos f includes the single pointof 7 = 0. The curve is a circle of

radius /2. centered at (1, 1).

1 . . . . .
cscfl & o= - 3 & rsinf =1 < y=1,ahorizontal line | unit above the z-axis,
sin

. sinf . : . : :
.= tanflsect = —— 7 = reosil =sint < (reos@)? =rsinf & =y, aparabola with vertex
cos
at the origin opening upward. The first implication is reversible since cos @ = 0 would imply sinf) = cos® 8 = 0,

contradicting the fact that cos® @ 4 sin® 0 = 1.
o reosf =3 = r=3/cosf & r=3secl.
e = r =3. |r = —3 gives the same curve. |

. L L cos f
L=yt reosl) — —p2sin®d e cosf=—rsin®fd & = -y = —cot fcscd.
sin

ety =9 < reosf+rsinf=9 < r=9/{cosd +sin0).
cart gyt =200 & v =2crcost & rf ~2rcosf=0 & r(r—2ccosf)=0 < r=0or
r = 2ccos 6. r = 0isincluded in + = 2ccos§ when § = 5 + n, so the curve is represented by the single

equation r = 2ccosd.

Lt -yt =1 e (reos®) —(rsind)? =1 & ricos’d —sin®d) =1 & rfeos20=1 =
r = scc 26

jus

. {a) The description leads immediately {o the polar equation 6 = %

. and the Cartesian cquation tan = y/r =
y=(tan Z)a = \%T is slightly more difficult to derive.

(h) The easier description here is the Cartesian equation @ = 3.
. (a) Because its center is not at the origin, it is more casily described by its Cartesian equation,
(z—2) +(y—3)°=5%
(b) This ¢ircle is more casily given in palar coordinates: v = 4. The Cartesian equation is also simple:

FinE y2 =16,

L) =~ /6 0.7 - 3r+2=0 & F-DFr-2)=0 &

Fr—lorr—=2
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3. r =sinf & rP=rsind & +y'=y
o P+ -1 = (%)2 The reasoning here
is the same as in Exercise 17. This is a circle of

adine L 1
radius & centered at (0, 3).

33. r = 2(1 — sin @). This curve is a cardioid.

(2,0

(4, 3mi2)

B.r=0.6>0

3. r=1Ind, 8>1

SEGTION 11,3 POLARCOORDINATES L 859
32 r = 3cosf & rP=-3rcosf &
2+ =-3r & ($+%)2+312:(%)2.
This curve is a circle of radius 2 centered

at (—2,0).

(30
={3.m

34. v =1 — 3cos6. This is a limacon.

=2,

37. r —sin28

r

3. r =2cos30
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39. r = 2cos 46 40. r = sin bHé

(T VIS /X VT T

VT S VYT

M. r?=4cos29 42. r2 = sin 20

VIVL

43. v = 2cos (26)

M0 =1 & r==+1/V0foréd>0

45. r =1 + 2cos 26

86. r = 1 +2cos(f/2)
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SECTION 1.3 POLAR COORDINATES <] 8at

47. For ¢ = 0, v, and 27, r has its minimum value of about 0.5. For ¢ = % and %" ¢ attains its maximum value of 2.
We see that the graph has a similar shape for0 <8 < mand 7w < 8 < 27.

2

89, v = rcosf = (4 + 2secB)cosf =4cosf + 2. Now,r — oo =

(44 2sec0) > o0 = 6 — (%) oré — (22)7 (since we need only

consider 0 < § < 2n), 50 lim ¢ = lim {dcosf +2) = 2. Also,r — —oc

L] 8—m/f2—

3

= (4+2sech) » —00 = 9——»(3)+0r9—»(_)",s0

2 2

lim z= lm (dcosé+ 2) =2 Therefore, im =2 = x=2%isa
r——00 92t re—toa

vertical asymptote.

, Yy =rsind = 2sinf — cschsind = 2sind — L.

r—=o0 = (2-cscf) o0 =

csc — —oc = 8 -» 7" (since we need

only consider 0 < 8 < 27} and so
lim y = lim 2sinff — 1= —1. Also

T — O Og—7+

r— —oo = (2-—cscl) > 00 =

cscf — o0 =

§ -7 andso lim z= lim 2sind— 1= —1. Therefore lim y = -1 =+ y = —1isahorizontal
T — O fr— r—too

asymptote.

. To show that - = 1 is an asymptote we must prove lm x =1,

Tsdoo
z=rcosf = (sinf tan#) cosd =sin’*#. Now,r —» 00 = sinf tand — oo

= #—{Z) .solimz= lim sin® = 1. Also,r — —c0 =

2 r—oo f—mj2-

sinf tanf — —o¢c = 06— (-'25)+ so lim z= lim sin®#=1.
o —0o f—m/2t

Therefore, lim =1 = z = 11isa vertical asymptote. Also notice that z = sin® @ > 0 for all ¢, and

r—too
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r =sin @ < 1forall 0. And z # 1. since the curve is not defined at odd multiples of . Therefore, the curve lies

entirely within the vertical strip0 < = < L.

52. The equation is (:172 + y2)3 = 4x"y*. but using polar coordinates we know that

22+ y? =r*andx = rcosd and y = rsinf. Substituting into the given
equation: r® = 4r? cos® #r?sin” 8 = r? =4cos? fsin*f =

r=+2cosfsing = £sim 2. r = +sin 24 is sketched at right.

53. (1) We see that the curve crosses itself at the origin, where + = 0 (in fact the inner loop corresponds to negative
r-values), so we solve the equation of the limagon forr = 0 < c¢sinff= -1 <& sind = —1/c. Now if
lc| < 1, then this equation has no solution and hence there is no inner loop. But if ¢ < —1, then on the interval
(0. 2) the equation has the two solutions § = sin™'(—1/c) and 0 = 7 — sin™*(~1/c). and if ¢ > 1, the
solutions are § =  + sin {1/} and § = 2m —sin~ ' {1/¢). In each case, r < 0 for 6 between the two
solutions, indicating a loop.

(b) For () < ¢ < 1, the dimple (it it exists) is characterized by the fact that y has a local maximum at ¢ = ‘—; Sowe

d*y an

determine for what c-values 202 is negative at # = =F, since by the Second Derivative Test this indicates a

. d; . .
maximum: y = rsin@ = sinf 4 ¢sin® 6 = d—g =cosf + 2csinfeosf = cosf 4+ csin20 =

do?

o> % A similar argument shows that for —1 <0 ¢ < 0, y only has a local minimum at # = 7 (indicating a

= —sinf + 2ccos20. Atf = 37 thisisequal to —(—1) + 2c(—1) = 1 — 2¢, which is negative only for
2 4

dimple) for ¢ < — 3.
B4. (a) r = sin(A/2). This equation must correspond to one of II. 11T or VI, since these are the only graphs which are
bounded. In fact it must be VI, since this is the only graph which is completed after a rotation of exactly 4.
(b} » = sin{#/4). This equation must correspond to I11, since this is the only graph which is completed after a

rotation of exactly 8.

o2

(¢} v = seo(36). This must correspond to IV, since the graph is unbounded at 8 = %, 3. 5, and so on.

(dy r = @sinf. This must correspond to V. Note that v = 0 whenever 4 is a multiple of 7. This graph is unbounded,
and euach time & moves through an interval of 27, the same basic shape is repeated (because of the periodic sin 8
tactor) but it gets larger each time (since # increases each time we go around.)

() » = 1 + 4 cos 58, This corresponds to 11, since it is bounded, has fivefold rotational symmetry, and takes only

one takes only one rotation through 27 to be complete.
(f) 7 = 1/+/0. This corresponds to [, since it is unbounded at # = 0, and r decreases as # increases; in fact r — ()
as - 0.
B5. r = 28inf} = x =rcosd = 2sinfcosh =sin28,y =rsinfd = 25in?f =

dy  dy/df 2 -2sinflcosf  sin2f

do dejdd | cos20-2 coszp
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56. r =2 —sinf = x=rcosf=(2—-sinf)cosh,y=rsind=(2-sinf)singd =
dy dy/dd (2 sinf)cosf + sinf(— cosb) 2cos0 — 2sinfcosd  2cosf —sin2f
dr  dz/d8 (2 —sin@){—sind) + cosf(— cos 9) —2sinf +sin*f —cos2d  —2sinf - cos 26

When = T, _ 21/2) - (V8/2) _ 1-VB2 2 2-48
T3 ~2(v3/2) — (-1/2)  —V3+1/2 2 1-2V3

5.r=1/0 = z=rcosf = (cos@)/f.y=rsind=(sinf}/§ =

dy _ dy/df sinf(—1/6%) + (1/8)cos§ 6  —sinfl +Hcosd

de ~ dx/df  cosB(=1/0%) — (1/8)sin® 6° —cosfl —Gsinf

dy -0+a(=1) -7 _
When ¥ = G = T w0) 1
58. r =Inf = zx=rcosf =Infcosf,y=rsint =Ind sinf =

dy _ dy/df _ sing(1/6) + Inf cost 0 sinf + fIlnfcosl
de ~ dr/d8  cos8(1/0) —Infsinf 6  cost - 8mbsind

e sine +elnecose sine + ecose
When 6 = ¢, & - = —.
dr  cose—elnesine cosc — esine

59. r = 1 +cosfl = z=rcosf =cosf+cos”f,y=rsind =sinf +sinf cosf =

dy _ dy/df _ cos+cos’§ —sin’ 6 cosf 4 cos26
dr  dx/d0  —sinf —2cosfsind  —sind — sin 20

60, » =sin30 = x=rcosfl —sin3dcoséd,y=rsinf =sin3fsinf =

dy _ dy/df  3cos36siné + sin 30 cos 0

dr ~ dr/df  3cos3fcosf — sin3fsind

Cwdy 30/ +1(V32) VB2
When 6 =6 0z = 3(0)(v3/2) - 1{1/2)  -1/2 v

61. » = 3cost = x=rcosf = Jcost cosh, y =rsinf = 3cosf sinfd =

dy/df = —3sin* 0 + Jcos’ = 3cos20 =0 = 29=§0r3,7" = 9_—0r—— So the tangent is

horizontal at (f’ Z) and (—%, %”) {same as ( , {)} dx/df = —Gsinfcosd = —3sin280 =0 =
(3,0)and {0, %).

20 =0orm <« ¢=0o0rZ. Sothetangentis vertical at

62.y:rsing=cosﬁsin9+sin29:%sin29+sin29 = dy/df =cos26 +sin20=0 = tan2f=—

" or %’T = horizontal tangents at (cos 2% 4 sin —;—r, %) and

). ;1,:-rcost?:c0529+(:036‘sin€ = dr/df = —sin28 +cos2f =0 =
) and

tan 20 = 5 ks B i g I qn = X
tan 20 = 1 =Zor3 = vertical tangents at (cos § +sin ,

((05— Jrsmjgi,%r).

Naote: These expressions can be simplified using trigonometric identities. For example,

cos ¢ +sin § = é\/4+2\/—2-.
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63. r = L Lcosd = z=rcosf=cosf(l +coslO}y=rsingd =sinb(l +cosf) =
dy/df):(l+(‘()59)(‘05(9—&;i1129=2coszt9+c056‘—1=(2C0%H-1)(C0HH+1):[) = cosfl =% or

-1 = 0= »’;T or 8T = horizontal tangent at {3, 5. (0, 7) [the pole], and (3.5
da/df) = —(1 + cos0)sind - cosfsinf = —sin6(1 + 2cos ) =0 = sind=0o0rcost) = —% =
= vertical tangent at (2,0), (3, %}, and (3. % ). Note that the tangent is horizontal, not

2
10
vertical when # = 7, since lm}T g;?‘do

.%:fe”sinﬁ—%—cﬁcos():ea(sinf?—{—cosﬁ}:O = sinf = —cosfl = tand=-1 =
d

§ = ~Lx 4 um (nanyinteger) = horizontal tangents at ((3"("_1-’/4): 7(n— %))

(—I;—;— ~ e cost — e’ sinf = e’ (cos# —sinf) =0 = sinf =cosf = tanf=1 =
¢

f) = %TF + nm (nany integer) = vertical tangents at (c"(”“fm, 71'(_71, + %))
Lro=cos20 = r = rcosf = cos20cost, y = rainf = cos20sin8 =
dy/df = --2sin 260 sin 6 + cos 20 cos f = —4 sin” 6 cos # + ((',053 8 — sin® 4 cos ())
= cos H(c'os2 0 — 5sin® 9) = cosf(l — 6 sin” #) =0 =

(‘099:()0rsinf):i+é T3 oy om— T+ o 2w — o (wherea:sin’l—%).
v

So the tangent is horizontal at (=1, %), (=1, 25}, (£.a). (2,7 —a). (5. 7+ &), and (3,27 - a).

dr/df = —2s5in 20 cosfl — cos 20 sinf) = —4 sinfcos” ¢ — (2cos” 6 — 1) sin @
=s5in0(1 —6eos® ) =0 =

sing =Qorcosf) =+—= = f=0n 87— 5 7+f5or2r—5 (whered = cos ™! =)
So the tangent is vertical at (1,0), {1,7), (=%, 3), (2,7 3). (-3, 7+ 8).and (-2, 27 — ).

. By differentiating implicitly, »* = sin20 = 2r (dr/df) = 2co0s20 =

dr/df = {1/r}cos 28, s0 O
1, 1 ‘ 0
%g = E cos 20 sin + rcosd = " (COS 20 sin @ + r” cos 9)
d r ‘

—{cos 20 sin @ 4 5in26 cos §) = — sin 30

r

This is O whensin3é¢ =0 = 6=

0, %or 1—; (restricting @ to the domain of the lemniscate), so there are
horizonta] tangents at (\/_ ) ( é 4.—"’) and (0,0). Similarly, de/df = (1/r)cos30 = O when 8 = % or

s0 there are vertical tangents at (i ‘3? %) and ({/% %’) jand (0, 0)].
cr e asinf £ bheos@ = 1P =arsinf+breosd = ot tyf=ay+br =

2 — b+ (%b)z + oy —ay + (%“)2 = (%b)2 + (%a)g = (;1: — %b)z + (y — :1;(1‘)2 = —;(u, + b }, and this
is a circle with center (3, 2a) and radius 1v/a® + 52,
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68. These curves are circles which intersect at the origin and at (—ka, %) At the origin, the first circle has a horizontal

tangent and the second a vertical one, so the tangents are perpendicular here. For the tirst circle (r = a sin #),
dy/df = acosfsin + asinfcos = asin20 = gatf = 7 and dz/df = acos’ @ —asin®# =acos20 = Oat

f = %, so the tangent here is vertical. Similarly, for the second circle {r = acos ), dy/df = acos26 = 0 and

dr/df = —asin20 = —aat8 = I, so the tangent is horizontal, and again the tangents are perpendicular.

Note for Exercises 69-74: Maple is able to plot polar curves using the polarplot command, or using the

coords=polar option in a reguiar plot command. In Mathematica, use PolarPlot. In Derive, change to Polaxr under
Options State. If your graphing device cannot plot polar equations, you must convert to parametric equations. Far example,
in Exercise 83, = = rcos® = [1 + 2sin (6/2)] cos 8,y = rsind = {1 + 2sin (6/2)] sin 6.

69. » — 1 + 2sin(8/2). The parameter interval
is [0,47].

—2.6

M. r =" ~ 2c0s(40). The parameter interval

is [0, 27].

13. = 2 — 5sin{#/6). The parameter interval is
[—6m, 6ix].

70. » = /1 — 0.8sin” §. The parameter interval

is [0, 27].

)
__/|

72 r = sin*(46) + cos(40). The parameter interval
is [0, 27].

-2
14, r = cos(8/2) + cos(6/3). The parameter interval
is [—6m, 6]
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1 +sin6
- 71+sin(9—'—g)
fr:l+sin(6—%)

t.4

—0.9

It appears that the graph of r = 1 + sin (9 - %) is the same shape as the graph of r = 1 4 sin 8, but rotated
counterclockwise about the origin by I Similarly, the graphof r = 1 + sin(@ - %) is rotated by 5. In general, the
graph of 7 = f(f# — «) is the same shupe as that of 7 = (), but rotated counterclockwise through «x about the
origin. That is, for any point (rg, fo) on the curve 7 = f(8), the point (rg, @ + ) is on the curve v = f{§ — ),
since rg = f(8y) = F{(fu + @) — a).

From the graph, the highest points seem to have y =~ 0.77. To find the

exact value, we solve dy/df = 0. y = rsinfl = sinfsin26 =

dy/df = 2sin8 cos 20 + cos ! sin 26

= 251n9(2c052 6 - 1) + cosf(2sin 6 cosf)

=2sin6(3 cos® @ — 1}

In the first quadrant, this is 0 when cos 8 = 13 < sinf = \/g <

y=2sin*fcosf =2 %. L =28 5077,

71. {(a) v = sin nf. From the graphs, it seems that when » is even, the number of loops in the curve (called a rose) is
2, and when n is odd, the number of loops is simply n.
This is because in the case of = odd, every point on the graph is traversed twice, due to the fact that

sin nd if nis even

r{f +7) = sin [n(f + 7}] = sinnf cosnw + cosnf sinnr = {

—sinnf  if nisodd

N

n=2 = n:4 T =
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(b) The graph of 7 = |sin nf| has 2n loops whether n is odd or even, since r(6 + 7) = r (6).

ot

78. r — 1| + csinnf. We vary n while keeping ¢ constant at 2. As n changes, the curves change in the same way as
those in Exercise 77: the number of loops increases. Note that if n is even, the smaller loops are outside the larger

ones; if n is odd, they are inside.

F XK

=2 n=23 =4 n=2>5
Now we vary ¢ while keeping n = 3. As ¢ increases toward 0, the entire graph gets smaller (the graphs below are
not to scale) and the smaller loops shrink in relation to the large ones. At ¢ = —1, the small loops disappear entirely,
and for —1 < ¢ < 1., the graph is a simple, closed curve (at e = 0 it is a circle). As ¢ continues to increase, the same
changes are seen, but in reverse order, since 1 + (—¢) sinné = 1 + ¢sinn{(@ + ), so the graph for ¢ = ¢p is the
same as that for ¢ = —ag. with a rotation through 7. As ¢ — oo, the smaller loops get relatively closer in size to the
large ones. Note that the distance between the outermost points of corresponding inner and outer loops is always 2.
Maple’s animate command (or Mathematica’s Animate) is very useful for seeing the changes that oceur as ¢

varies.

ey A, A A

NOTY

c=105
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I —acost . S . .
79 r = — 2 We start with @ = 0, since in this case the curve is simply the circle r = 1.
1+acost

As « increases, the graph moves to the left, and its right side becomes flattened. As a increases through ahout (0.4,
the right side seems to grow a dimple, which upon closer investigation {with narrower f-ranges) seems to appear at
a == .42 (the actual value is \/5 —1). As @ — 1, this dimple becomes more pronounced, and the curve begins to
stretch out horizontally, until at ¢ = 1 the denominator vanishes at § = 7, and the dimple becomes an actual cusp.
For ¢ > 1 we must choose our parameter interval carefully, sincer — coas 1 +acostl -0 <

8 — +cos”'(—1/a). As a increases from 1, the curve splits into two parts. The left part has a loop, which grows
larger as a increases. and the right part grows broader vertically, and its left tip develops a dimple when a =~ 2.42
(actually, v/2 + 1). As « increases, the dimple grows more and more pronounced. If @ < (), we get the same graph
as we do for the corresponding positive a-value, but with a rotation through 7 about the pole. as happened when ¢

was replaced with —c¢ in Exercise 78,

1

N
B

a=1 “ a=041,18 < 0.5

0.2 0.00025

0.405 { D }(lfiﬂ‘) (.05 { + + . ‘ 0.0025

(2 --0.05 —0.00025

a=042,0 <0.5 a=1090 <05 a=1,]8] <0.1

a=241,10 -7 <0.2

=05

a=242,16 — 7| <02
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80. Most graphing devices cannot plot implicit polar equations, s0 we must first find an explicit expression (or

expressions) for r in terms of 8, a, und ¢. We note that the given equation is a quadratic in 2, s0 we use the

quadratic formula and find that

2 2% cos 20 + /4ct cos2 20 — 4 (¢! — at)
N 2

r

=c?cos20 + v at - ctsin? 20

sor =4 \/ 2 cos 20 & Vat — ¢t sin? 28. So for each graph, we must plot four curves to be sure of plotting all the
points which satisty the given equation. Note that all four functions have period 7.

We start with the case a = ¢ = 1, and the resulting curve resembles the symbol for infinity. If we let a decrease, the
curve splits into two symmetric parts, and as a decreases further, the parts become smaller, further apart, and
rounder. If instead we let @ increase from 1, the two lobes of the curve join together, and as a increases further they
continue to merge, until at o =z 1.4, the graph no longer has dimples, and has an oval shape. As @ — 0. the oval
becomes larger and rounder, since the ¢* and ¢* terms lose their significance. Note that the shape of the graph seems

to depend only on the ratio ¢/a, while the size of the graph varies as ¢ and a jointly increase.

0.75

0.75

0.75
-5 -0.

(a,c) =1(0.99,1)

0.75

-3

(@, ¢} = (4.04, 4)
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dy dy/db tand
tan¢ — tand a—tanl‘) dx/db an
1+ tan¢ tand dy/df —
d /dﬁ

tany = tan(¢ — #) =

1+ j tan#

- (% si119+-rc059) - tanﬂ(éé cos@ — 7 st)
ddr dr
ané —cosf?—rsm(i' +tanf ——st—}—uosf)

d0 df

sin? @ . ‘
cos  reost8+rsin’l e
ﬂcosﬁ dT sin“ ﬂcmgg_'_ j—sm 2 d?‘/dé’

do a8 cosf df b

roeosf 4o -

82. () r = = drjdd=c" soby (b) The Cartesian equation of the tangent line at (1,1)) is

o il — e = . . o
Exercise 81, tan gy = r/e” =1 = y = x — 1, and that of the tangent line at ([), e '“)

4 = arctan | = T o = C?T,«"2 e

(¢} Let a be the tangent of the ungle between
the tangent and radial lines, that is,
= tan g, Then, by Exercise 81,
r dr 1
ST @ e

r = (e"’* (by Theorem 10.4.2).

11.4 Areas and Lengths in Polar Coordinates

=VR0<0< T A= T g de’—lfm(\/@) do = [ 3646 =

0
0/2 : am 1 gy2\*

=, << 2. A:JTr 5(6, )

zn/i(l—(os%’)dt‘)—é{ —

REFat]

L =1+sind, 3 SF)SW.
A :r]:’,Q%(IJHsmt‘)) df = 3 ['ﬂ (1 +2sin@ + sin®8) df = % [ +2sinf + 5 (1 — cos 26)| dff

'—"é{()—E('(}:—;()wL:2'-0—3511129‘5;?/2:%[ﬂ'+2+—70
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SECTION 11.4  AREAS AND LENGTHS IN POLAR COORDINATES U 81

1 r=4+3sinf, -5 <8< 3.

A= [T L4+ 3sin0)2d8 = § [715, (16 + 24 sin0 + 9 sin’ 6) df

fﬂw/2(16 + 9sin” #) dé¢  [by Theorem 5.5.6(b)]
2 [W/Z [16 +9- 1{1 - cos26)] df [by Theorem 5.5.6(a)]

le(%A%COSQG)dF):[%ngm 207" = (Lz —0) - (0 0) =47

—Jo 4
8 r=sind0. 0 <0< % ffr”d‘,‘l,bm 40dt9—[1/41(17(‘0989)019*[19 511189}
9. The area above the polar axis is bounded by r = 3 cos ¢ for

A = 0t f = 1/2 (not m). By symmetry,
A=2 ]ﬂ/z Lrtdf = Tr/2(5(,(»3(9) dg

=32 [ cos? 0. df = 9]"/2 ! 1+(0529)d9
20+ Lsin2017% = £[(Z +0) — (0+0)] = &

. . . . . . 2
, note that this is a circle with radius 3, so its area is 7 (£)

VA= (271240 = [27 L13(1 + cos8))’ df

%[ (1 +2cosf + cos® §) df

g o [1+ZLO::9+ (1 + cos 24)| df

%[%B+ 2sind + ;11 sin?t?]i1T = %TI’

. The curve r* = 4 cos 26 goes through the pole when
# = 7 /4, so we'll find the area for 0 < ¢ < 7/4 and
multiply it by 4.
A=4[T* 1240 =2 [T (4cos20) df
= SJTTM(‘OSQGdE) =4 [£~:1r126’]g/‘l =4{(1-0)=4

. The curve 72

— sin 26 goes through the pole when 6 = 7/2,
so we'll find the area for 0 < @ < 7/2 and multply it by 2.
=2 fw/z 1r?df = ﬁ/ sin 26 df = —-[COSQH]"/Z

e —;j(ﬂl — 1) = *5(*2) =1
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13. One-sixth of the area lies above the polar axis and is bounded
by the curve r = 2cos 36 for @ = 0to 6 = /6.

A=6 [“/D 1{2cos36)? dff = 12]0"/66,052 36 de

=12 f( (1 + cos68)df
:6[9+gsint39}g =6(Z)=m

f‘” 1(2+4cos20)% df = L [ (4 + 4 cos 20 + cos® 26) do

=1 “ (4+4(01329+ + 1 cos40) df

£[26 + 2sin 260 + —511146]

27100+ 25in60)2 do = L [2(1+ 45in 60 + 4sin” 660)d8
j“[l +45in 66 + 4 - (1 — cos 120)] df
#T(3 4 4sin 66 — 2cos 120) db

—

[30 — '.5 cos 66 — l. sin 129] gﬁ
[(6r =3 —-0) = (0-% - 0]} =3m.

1
2
1
2.
1
2
1
2

[T L(25in6 + 3s5in90)2do = 2 [7* 1(25in @ + 35in 96) do
= [F " (4sin? 0 + 12sin & sin 99 + 9sin” 96) df
= [72]2(1 - cos20) + 12 - 1 (cos(6 — 96) — cos(6 + 96)) + £(1 — cos 186)] df
[integration by parts could be used for [ sin 8 sin 96 d6)
= jn”" 2~ 2c0526 + 6cos 80 — 6 cos 100 + £ — £ cos 186) dff

= [139 —sin26 + 2sin86 — £sin 106 — § sin 189]#/2 =L
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SECTION11.4 AREAS AND LENGTHS IN POLAR COORDINATES L 873

fﬂﬂl (4sin 36)° d(J—SIWHbm 340 do

17. The shaded loop is traced out from ¢ =0 18. A = 3

00 =m/2. — 4 [T (1~ cos 60) db

4am

A= fnﬂ/2 %7-2 dé = % ‘ E:"'/? sin® 260 d9 — 4[9 ~1 Sinﬁf?lgm — 4

=3 .I;TM 2(1 — cos 1) df W
r=4sin36 A073

= %{9 — 7}1 sin 49];/2 =

O

.7r=0 = 3coshil =0 = 30=5 = =15
A= (™0 1(300550)2d0 = [/ 9cos? 5060 = 2 [7(1+ cos 108) d8 = 2[0 + & sin109] 7" = &=

x /10 2
0. 4 =2 [ L(2c0s46)2df = 2 [[/3(1 + cos 80) df = 2[0 + 1 sin80] 7" = T

21 - 3, This is a limagon, with inner loop traced
r=1-+ 2sin & (rect.) r=14+2sinf

out between # = %" and “T”

[found by solving + = ().

It

9 - Pid . T

=2 ]::/;; {1+ 2sinf)* d¢ —fs://62(1+4si119+4sin29) df

I‘Sﬂ'/z [1+4sinf+4- 21 —cos20)] do = 16 — 4cos0 + 20 — sin 29];:%

— (%)~ (mr2vE-f) =n- 2P

2

22. To determine when the strophoid r = 2 cos § — sec # passes

1
through the pole, wesolve r =0 = 2cosf — —— =0 =
cos @

Qeostf—1=0 = coszt9=1 = (:05519::’5i =
2 vz

f=2orf =22 for0 <@ <mwithd # I

A= 2]”41 (2cos8 — sec®)® df = 7T/4(4(305 0 — 4+ sec” §) df

JT3 4 3(1 4 cos26) — 4+ sec® 8] dO = [T/4(~=2+ 2c0s 20 + sec? 8) df

=[— 29+bln29+ta118]“/4 ( %+1+1)——U:2v%
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23 4sinf =2 <« sinf=1 <& 0=Zor3E (for( <6< 2m) We'll
subtract the unshaded area from the shaded area for 7/6 < 8 < m/2 and double

that value.

A=2["%L{15inf)* do — 2[”/“ (2)2d0 =2 [T/ L{(45in8)® — 2°] db

/6 2 6 2 /6 2

= T3 (165in” 0 ~ 4) df = I””[S(l"ms?ﬂ) 4] df
= (™24 - Rcos 268) df = (40 — 4sin 20]7

/6

:(2w—(1)—(%gf4-§):§n+2\/§

2. 1—sinfd =1 = sind=0 = =007 = r=1

A= ]:W 211 — sin 8)* — 1] do = 3 jzw {sin® @ — 2sin 6} df . iLy=(2m

=1 [#7(1 — cos 20 — 4sinb)df = [0 — —511129+4c059]

1 ;
:—-7]'—{—2 .
* r=1-sin@

25. To find the arca inside the leminiscate 7> = 8 cos 26 and outside the
circle = = 2., we first note that the two curves intersect when

r? = R8cos20 and v = 2; i.e., when cos 26 = % For —w < & < 1,

cos20 =1 & 2 =4w/3ortbr/3 & O6==Fx/6or

2

+57% /6. The figure shows that the desired area is 4 limes the area

between the curves from 0 o 7 /6. Thus,

A=4 J(ﬁ/() [1(8cos20) — 5(2 )2] df = 8.]'0"/6(2(:0328 — 1)do

/6
-8 [sin 920 — 9}

0

= 8(v3/2 - n/6) = 43 — 43

. To find the shaded area A, we’ll find the area A4 inside the curve
r = 2 + sin 6 and subtract  (3)? since r = 3sin 6 is a circle with

radius 2,

A= I L2 +sin0)2df = £ [27(4+ 4sinf + sin® §) 6

[2” [4+4sin8 + 1(1—cos28)] df

OZW (% +45i119—%cos?9) af

_%[)()— Aecas 8 — —511129}

SoA=A4A, - q’r = %’T
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SECTION 11.4 AREAS AND LENGTHS IN POLAR CQORDINATES L 875
27. 3cosf@=1+cosl < cosf=3 = 0=For—I.

AAthﬂjdl[ 3cosf)? — (1 + cosB)”) df r=1+cosé

:‘0"/3(8(:0529 —2cosf - 1) dff

= .fﬁ”g [4(1 + cos 28) — 2cosf — 1] df

= .I.oﬂm (3 4+ 4cos20 — 2cosf) df

= [360 + 2sin 20 — 2511’1()]”/1

=7r+\/.‘—\/§=7r

28. Note that » = 1 + cos & goes through the pole when 8 =,

but » = 3 cos # goes through the pole when 8 = = /2.

A== j'” 1(1+cost)* df —2 [:;32 1(3cos6)* df
= Jfrr,s 1+ 2cos8 + 3(1 + cos 20)] dt - 3 lﬂz(l + cos 26) df

= [0+ 25in0+ 3(0 + S sin26)]7 - [0+ §sin20] 777

28 A—2 7" Lsin?0do = [T/ (1 - cos26) b r=sing 0=7

30. » = sin 20 takes on both positive and negative values.
sinff = +5in20 = +2sinf cosd = sinf{1 £ 2cosf) = 0. From

the figure we can sce that the intersections occur where cos 8 — i%. or

- I 2r
f= 3 and -

A:‘Z{ Ow/q';sln B df + fﬂ/z L gin? 2(90!8]

= [0 L1~ cos20)df + [T/ F(1 — cos 48) dd

+3 [9 1 sin 4(91 K/Q — 4r—3y3

16
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sin 26 B
cos 20

200=4 = 4=5 =

31 5in 28 = cos 20 1 = tan28=1 =

A=82[7% Lsin®20d0 = 8 7° 1(1 — cos 46) df

=40 - %sinélf)}gfg =42 -5 =4mr-1

32, 2s5in26 = 17 = sill‘ZF):% = 20 =Z or =%

el

A=4 {"”‘/]Q 1. 924in28d6 + fﬂ/q 3 (12) dﬂ}

0 2 712 2

Py . T/12 ey /A
= 3*2‘70929]0/ + LZH]N:‘U
- —2(—2\@ - 1) +o(dn— L)

=23+

3342 {I_ *5 (3 4 2sin6) do + ‘]'#/2 192 d()} r=3+2sing

/2 2 /6 2

= [T 4+ 12500 + 4sin® 9) df - [40]777

/2 —w/6

= 190 — 12cos0 + 20 — sin20] 7% + 52 =

—/2

M. Leta = tan ' (b/a). Then r=asiné
, Y ) fi=tan"'(h/a}
A= [(;‘ % {a Sinﬂ)z de + ‘['ﬁ/" é (bcos 9)‘2 a8

[$3

ga® [0 — $sin 26+ §b* [#+ 5 sin 29}1/’2

r=hcos f

Loy (r12 — bz) + %:ﬂ'b2 -

| (a® + b7) (sinaxcos a)

1
4

= —i (0 —b*) tan™" (b/a) + %ng — %ab
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SECTION 11.4  ARFAS AND LENGTHS IN POLAR CODRDINATES O 877

35. The darker shaded region (from # = 0 to § = 27 /3) represents % of the desired area plus é of the aren of the inner
loop. From this area, we'll subtract £ of the area of the inner loop (the lighter shaded region from 8 = 27 /3

to 8 = ), and then double that difference to obtain the desired area.

27 /3 AL T 2

A=2 [ 1(L 4 cos8)?dd = 7 o (3 +cosd) 0| s

= (fﬂ“ (L + cosf + cos® ) df — f‘;/-? {1+ cosf + cos® §) df '

- '02"/3 [+ cosf+ (1 4 cos26)} df
~ fawys (1T cost+ 1{1 + cos20)| df
+Si1]28 21”‘37 Q+Sii]6+g+5in26 T
4 2 4

?

3

) 2r/3

=0 = 14+2cs30=0 = cos39:—% = 39=333,

A (for 0 < 36 < 2r) = 6= A% The darker shaded region
(from & = (1 to § = 277 /9) represents % of the desired area plus % of

the area of the inner loop. From this area, we’ll subtract % of the area

of the inner loop (the lighter shaded region from § = 27 /9 to r=1+2cos30

f = n/3), and then double that difference to obtain the desired area.

A =227 4 (1 200530)? d — [715, 1(1 + 205 30)” db]

0 Jonso 2

Now
=1 +2c0s36) =1 +4cos30 +4c0s?30 =1+ dcos30 +4- 5(1 4 cos 68)
=1+ 4cos30+ 2+ 2costif =3 +4cos30 + 2eos 6
and [ rdf = 30 + §sin 38 + 3 sin66 + C, s0

27 /Y9
0

[t fed =) o) - [rror0 - (FHif g

S o (G YCEE S PR

/3

A= [39 + % sin 38 + % sin 69] — [39 + %sin 30 + % sin 69]%‘/9

. The two circles intersect at the pole since (0, 0) satisfies the first

equation and (0, %) the second. The other intersection point

1 e . — :
( oL 4) occurs where sin # = cos 6.
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38. 2c0820 = +2 = cos20=211 = 6=0 3.7

points are (2, 0). ( ,%) (2,7), and (2, 3?#)

. The curves intersect at the pole since (0, %) satisfies
r = cosf and (0, 0) satisfies r = 1 — cos . Now

cosf@ =1-cos@ = 2cos8=1 =

. — 1 - I fis
costl =35 = 6= 3For=

the other intersection points are (

. The pole is a point of intersection.
sinf = sin 26 = 2sinf cos @ =

sinf{l —2cos#) =0 & sinfd=0or

=) = 0=0m3-F = (£.3)

and (L 2”) (by symmetry) are the other

intersection points.

or 7, s0 the

r=2cos2#

40. Clearly the pole lies on both curves. sin 36 = cos 3¢
= tan3f =1 = 30 =% +nw (nany integer)

tIn o= 0=%, 0

12 121

three remaining intersection points are (ﬁ, ]2),

(-5 %)

42. Clearly the pole is a point of intersection.

sin2f =cos2d = tan28—=-1 =

260 = 3 + 2nm (since sin 26 and cos 26 must be
positive in the equations) = =% +nr =

. So the curves also intersect at

(ﬁ%)wd(%@%)-

9_—0r
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y=12x

™

b-r=1+ sné

| L4

-0.3 -3

From the first graph. we see that the pole is one point of intersection. By zooming in or using the cursor, we find the
f-values of the intersection points to be o = (1.88786 =~ 0.89 and 7 — o ~ 2.25. (The first of these values may be
more easily estimated by plotting y = 1 + sinx and y = 2 in rectangular coordinates; see the second graph.)

By symmetry, the total area contained is twice the area contained in the first quadrant, that is,
A=2 [ 120)7 a9 +2 [T L1+ 5in8)* df = [ 462 d0 + 77 [1 4 2sin6 + (1 - cos 26)] db
= [46%]7 + [6 - 2c0s0 + (36— Lsin20)]7

= %03 +[(E+3) - (o —2cosex + 50‘ - 1sin2a)]

-r = 6sind

y =3+ sin 5«
Fr=3+ sin 5¢

From the first graph, it appears that the #-values of the points of intersection are o = 0.57504 == (.58 and
7 - a = 2.57. (These values may be more easily estimated by plotting y = 3 +sinbz and y = 6sinz in
rectangular coordinates; see the second graph.) By symmetry, the total area enclosed in both curves is

A=2[" L(6sing)” d9+2]ﬂ/2 1(3 +sin56)* df = [ 36sin® 9d9+j”/2 (9 + 65in 50 + sin? 56) do
= 36 4(1 - cos20)df + [T/ [9+ 6sin56 + L (1 — cos 106)] df

= [36(10 — 1 sin20)]7 + [96 — Scos50 + (16 — £ sin100)] 7" ~ 10.41

L=/ \/1"2 + (dr/doy*d6 = |T° /3sinB)2 T (3cosf)2df = f7'° \/9(sin® & + cos? 0) df
=3 [T a8 =300)]"° =3(%) = .

As u check., note that the circumference of a circle with radius 2 is 27 (2] = 3=, and since § = 0to 7 = § traces

out 3 of the circle (from # = 0to 6 = 7), $(3m) =7
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86. L = [*\/r2 4 (dr/d9)* db = [T \J(e29)? + (2c20)2 df = 7 V/eT 1+ de* df = [T V5e*? db
T I “ 2 -
= \/g’nz e dh = %5 [e‘w]o = ﬁ(ﬁ — 1)

2

a1. L= [*\/r? 1 (dr/d6)* do = 771/ (6%)" + (20)° d6 = f]" /6" + 46° dB
= [27 (92 +a)do = [IT 06" + 446

Now let « = 67 + 4, so that du = 20d6¢ [6#d6 =  du] and

2
2 4 (=2+1) 3/2
[T adn = [ 1\/_du——~:[3/2]4 = 3432 (x® + 1) - 477

= %{(’EQ + 1)3/2 - l]

2
8 L= [0 /vt (/e ds = [P+ 1a0 2 (80 T+ (04 VP 1))
=mvar? + 1+ ;In{27 + Var? + 1)

49. The curve r = 3sin 2 is completely traced with 50. The curve r = 4 sin 34 is completely traced with
0<@<om 0<d<m

2+ (4)* = (35in26) + (6cos20)® =~ r? + (4 = (45in36)° + (12c0s 36)% =

L= {77 /9sin® 20 + 36 cos? 26 46 = 29.0653 L= [7/16sin® 36 + 144 cos? 30 dfl = 26.7298

r=273sin28 r=4sin 36

0,0) = (0, 277) 0,0 = (0, )

51. The curve r = sin( ) is completety traced 52, The curve r = 1 + cos($) is completely traced

with 0 < 8 < 4. with 0 < ¢ < 6,

r? + (H)2 = sinz(%) + [%cos(g)}z = r (i':)z = [1 +COS(§)]2 + [*:};Sin(g)]z =

4m 6
L= / \/bll’l (8) + L cos2(4) df L—[ \/ 1+ cos %] + Lsin® (£) df

=2 0.6884 ~ 19.6676

r= sin(g)

(1.5, ) = (1.5,5%7)

0,0=0,2m
=1{0,4m)
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53. The curve r = cos” (4/4) is completely traced with 0 < 8 < 4r.
72+ (dr/d0)? = [cos*(0/4)]* + |4cos®(8/4) - (—sin(B/4)) - ﬂ
= cos® (8/4) + cos® (0/4) sin® (6/4)
= cos® {0/4) [cos® (8/4) + sin’ (0/4)]
= cos” (#/4)

Jim JeosB(0/4)d0 =[] |cos®(8/4)] d0
2

[27 cos®(0/4)df  [since cos®(#/4) > 0for0 <8 < 2m] = 8]” cos® udu [u =

8[(2 + cos® u)siuu]g/gz%[(z 1) —(3- O)]_%

54. The curve r = cos”(#/2) is completely traced with 0 < § < 27.
r2 4 (dr/dh)? = [cos®(8/2))% + [2cos(8/2) - (—sin(8/2)) - %]
= cos? (8/2) + cos® (0/2) sin® (6/2)
= cos? (0/2) [cos® (8/2) + sin® (8/2)]
= cos” (8/2)

-
—0.67

L= j( mdﬂ o 271 '(-og B/Q)I dg = 2f0 L()b 9/2) df [smce(gq(g/z > 0 for 0 < ] < ')’*]
= 4‘[0 cosu du [u = % ] = 4[5111’[1,];/2 —4(1-0) =4
55. (a) From (11.2.7),

$ = ["2my/(de /a0y + (dy/d6)* 8
= ]u omy\/7? + {dr/d@)* d§  [from the derivation of Equation 11.4.5]
= fi’ drrsinfy/r? + (dr/df)* df

(b} The curve r? = cos 26 goes through the pole when

T [], z Ny S,
cos20 =0 = 20= g = 8= % We'll rotate the curve ( 4) r_cos28
x \ {10
from@ =0t = 1 and double this value to obtain the total surface 4

d
area generated. ¢ = cos20 = 2ré = —2s8in20 =

dr\’ _ sin? 26 _ sinZ 20
de 2 cos26°

/4
5-=2 / 27 V' cos 26 sin 6 \/cos 20 + (sin® 20) /cos 20 d9
40

f47r/ \/c0326’bln9\/gjbm~—%‘—z—qd9~4w[ v cos 20 sin &
cos

v cos 29

471"/[;”/451119(19 = 4W[A(:059]:/4 = —47r(% - ) = 27r(2 — \/5)
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. . . . . b
6. (a) Rotation around & = ¥ is the same as rotation around the y-axis, that is, 5 = fu 27z ds where

ds = \/(du/dt) + (dy/dt)* dt for a parametric equation, and for the special case of a polar equation,
x =rcosf and ds = \/(dz/df)? + (dy/dB)? df = \/r> + (dr/df)? df [see the derivation of

Equation 11.4.5]. Therefore, for a polar equation rotated around 6 = %, 5§ = jab 2mr cos8y/r? + (dr/df)? db.

(b) As in the solution for Exercise 55(b), we can double the surface area generated by rotating the curve from ¢ = 0

tof = % to obtain the tota] surface area.

/4
S:Qf 27 Vcos QBCOSB\/COSZBJr (sin? 20)/cos 20 dff
o

cos 20

w/4 .4 i 2
:47r/ \/COSZQCOSG\/M“MCIB
)
/4 1
:4%/ v cos 268 cos @ df
Jo

cos 20

/4 /4
:471'/ 6059d9=47r{sin9] ! -—47r(§—0) - 2y2r
0 D

11.5 Conic Sections

lLz=2y = vy ; ; 5 24y+2P=0 = 2°=—-4dy. 4dp=—-4 0

vertex is (0,0), the focus is (3 : p = —1. The vertex is {0, 0), the focus is {0, —1),

L and the directrix is y = 1.
directrix is . = —3.

¥

\'=_'§:

34" =—y = a’=-1y.dp=-i,50 4.7 = 12z, 4p = 12, 50 p = 3. The vertex is (0,0},

P = _TIE . The vertex is (0, 0}, the focus is the focus is (3,0), and the directrix is x = —3.

(()1 gﬁ), and the directrix is y = ﬁ
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5 (x+2)° =8(y—3). 4p = 8, sop = 2. The bz —1=(y+5)° 4p=1,50p = 1. The vertex is

vertex is (—2, 3), the focus is (=2, 5), and the {1, —5), the focus is (2, —5), and the directrix is

directrix is ¢y = 1. =i

12 +2y+12¢ +25=0 = .y+12:—222=16 =
Vo y+l=-12z 24 = 942 — 12z =y 16 =
(y+12 = 12(x + 2).4p = ~12, 50 p = —3. 20z -6 +9) =y - 16+18 =
The vertex is (—2, —1), the focus is (—5, —1), and 20 -3 =y+2 = (-3 =3(y+2).
the directrix is z = 1. 4p= §,s0p = &. The vertex is (3, —2), the focus

is (3, —lsé). and the directrix is y = —

4

9. The equation has the form y* = 4px, where p < 0. Since the parabola passes through {--1, 1}, we have
12 = 4p(—1),s04p = —1 and an equation is y* = —zorz = —y*. dp= ~L,s0p = —% and the focus is
(—%,0) while the directrix is « = }.
10. The vertex is {2, —2), so the equation is of the form {x — 2)° = 4p(y + 2}, where p > 0. The point {0, 0) is on the
parabola, so 4 = 4p(2) and 4p = 2. Thus, an equation is (x — 2)* = 2(y +2). 4p = 2,50p = % and the focus is

(2, —2) while the directrix is y = —3.
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- > a=+v9=3.b=5
+)

e = Va2 — B2 = +/9— 5 = 2. The ellipse is b= 64 =8 c=a®— b2 =100 — 64 = 6.
centered at (0, 0)), with vertices at (£3,0}. The The ellipse is centered at (0, 0), with vertices at
foci are (+2,0). {0, £10). The foci are (0, L6).

y y

\;’5 \
— Vf 5
2 2

Bar+y?=16 > —+L =1 = 4, 42?4 25y° = 25 =

a=V16=4.b=v4=2, 25 3
A . a:\/§:§,b:ﬂ:1,
¢ = vaZ — b2 =+/16 — 4 = 2/3. The ellipse is
centered at (0, 0), with vertices at (0, +-4). The c=vVal -0 =/ -1= V = A/% The

foci are (0, +2+/3). ellipse is centered at {0, 0), with vertices at

(£3,0). The foci are (+2T,0}.

g
2

~—

15927 — 18 +43° =27 & 9" —2r+ 1) +4y°=27+9 &

4712 2
ﬂi"_4_)+%:1 = a=3b=2

e =+/5 = center (1,0), vertices (1, £3). foci (1, ﬂ:\/g)

9x - 1) +4y° =36 &

16. 2° — 6+ 2 +dy= -7 &
2?6942+t )= -T+9+2 &
(2 =32 +2y+1) =4 &
CE Ay
(3, —1). vertices (1, —1) and {5, —1), foci (3 £ v2,-1)

=1 = g=2,b=v2=c = center
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2
17. The center is (0,0), & = 3, and b = 2, 50 an equation is % + = =1 ¢c=+a? =1 = \/§ so the foci are

(0, £V5).

. (x
18. The ellipse is centered at (2, 1}, with e = 3 and b = 2. An equation is

¢ = Va2 — 82 = /5, so the foci are (2 + /5, 1).

2 el

19. 2 _ Y 1 & g=12b=5c=14d+25=13 =
144 25

center (0, 0, vertices {12, 0), foci (£13,0),

asymplotes y — :l:!%ar.

Note: It is helptul to draw a 2a-by-2b rectangle whose center is the
center of the hyperbola. The asymptotes are the extended diagonals

of the rectangle.

the vertices are (0), +4). the foci are (0, £2+/13 ), and the

asymptotes are the lines y = +2x = +2r.

2 2
Y -rt=4 e %—%:l = a=v1i=2=5,

c=vA+4=22 = cenler (0,0), vertices ((, +2),
foci ([), +2 \/E) asymptotes y =

p 2
2 922 4t =36 o = f%le = a=+4=12

b=+v0=3c=yI7T0=V13 = center (0,0),
vertices (12, 0), foci (£v/13,0), asymptotes y = +3x

=v13,00 /13, 0)

o 2,0 x
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23,2y — 4y — 3" + 122 =-8 &
20y =2+ 1) -3 —dz+4)=-8+2-12 & ,
(z-2° w-1° (2+ve.L+3)
2y -1 -3z -2 =-18 & =1 R A7 Ar+ien

= a=+6,b=3c=+15 = center (2 1), vertices
(2 +/6,1). foci (2 £ V15, 1), asymptotes y — 1 = + 3 (¢ — 2)

Ory—lzi*?(:nAQ)

e {2+ 15,10

x

. 162% + 642 — 9y® — 90y = 305 <= . .
16(z2 +4r +4) —9(3»° + 10y +25) =305+ 64 - 226 < /
(z+2)° (y+5)° 1 A ars-sea

9 16 FoA] ess
= a=23,b=4,c=5 = center (-2, —-b), vertices (-5, —5) e

X

16(z + 2)° — 9(y + 5)* = 144

and (1. —5), foci (=7, —b) and (3, —5), asymptotes

y+5==24(w+2)

.z =y+1 & a2 = 1{y+ 1). This is an equation of a parabola with 4p = 1,50 p = %. The vertex is ((}, —1)
and the focus is (0, —: )

Lot =y +1 & x? — y® =1 Thisis an equation of a hyperbola with vertices (£1,0). The foci are at
{(£V/T+1,0) = (£v2,0).

Lt =dy—27 e P+ -dy=0 & 42—+ =2 & FH2Ay-1 =2 &

-;E_Q_+(;l,f*1)2
2 1

{(£v/2-1,1) = (£1,1).

Lyt By =6r— 16 & y®-8y+16=~6z <> (y—4)® = 6z Thisis an equation of a purabola with

= 1. This is an equation of an ellipse with vertices at (++/2, 1). The foci are at

4p = 6,50 p = 3. The vertex is (0, 4) and the focus is (£, 4}.

, ‘ ‘ 1)?
Lt 2y=422+3 & Piy+l=4'+4 & (y+1)’—4=4 @ﬁ%—ﬁ:LThisis

an equation of a Ayperbola with vertices (0, —1 £ 2) = (0,1} and (0, —3). The foci are at
{(0,-1+V4+1) = (0,-1+V5).

(o +3)°

? = 1. This
1/4 + Yy 18

. 4;(:24—41'—{—;9'2 =0 & 4(:132 +:1:+ﬁ) +y2 =1 <& 4(1‘+%)2+y2 =1 <
is an equation of an ellipse with vertices (—1,0+ 1) = (—3, £1). The foci are at
(304 1-1) = (=1, v372).

31. The parabola with vertex {0,0) and focus {0, —2) opens downward and has p = —2, s0 its equation is
@ = dpy = —8y.

32. The parabola with vertex (1,0) and directrix 1 = —5 opens to the right and has p = 6, so its equation is
y? = dple — 1) = 24(x — 1)
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. The distance from the focus (—4, 0) to the directrix z = 2 is 2 — (—4) = 6, so the distance from the focus to the
vertex is %{6) = 3 and the vertex is (—1,0). Since the focus is to the left of the vertex, p = —3. An equation is

Yt =Aplz+ 1) = oyt =—12(z +1).

. The distance from the focus (3, 6) to the vertex (3,2) is 6 — 2 = 4. Since the focus is above the vertex, p = 4. An
equationis (z — 3)? = 4p(y —2) = (z—3)* =16(y—2).

. The parabola must have equation y* = 4pr, so (—4)2 =4p(1) = p=4 = ¢’ =16z

. Vertical axis = {z — h)* = 4p(y — k). Substituting (—2, 3} and (0, 3) gives (~2 - h)? = 4p(3 - k) and
(~h =4p(3—k) = (—2-hP=(-h)* = 4+4dh+h*=h" = h=-1 = L=4p(3—k).
Substituting (1,9) gives [1 — (—1)]* = 4p(9 —~ k) = 4 =4p(9 — k). Solving for p from these equations gives

11
CA3-k) 99—k

20 + 4z —y+3=0.

p = A3-k)=9-k = k=1 = p=1 = (e+1)’=4@y-1) =

. The ellipse with foci (2, 0) and vertices {-£5,0) has center (0,0} and a horizontal major axis, with @ = 5 and
2

2
r=2s50b=1+a?—ec? =21 Anequation is ;:—r + % =1
J

. The ellipse with foci (0, £:5) and vertices (0. +13) has center (0,0) and a vertical major axis, with ¢ = 5 and

T2 yz
= 13,50b = Va? —c2 =12 A jonis —— + —— =1
a 3,500 a® —¢ n equation 1s A -+ 169

. Since the vertices are (0, 0) and (0, 8), the ellipse has center (0, 4) with a vertical axis and a = 4. The foci at (0, 2)
and (0, 6) are 2 units from the center, so ¢ = 2 and b = /a? — 2 = /42 - 22 = V12, An equation is

(x EZU)Q L ;24}2 N % L ;64)2
. Since the foci are (0, —1) and (8, —1), the ellipse has center (4, —1) with a horizontal axis and ¢ = 4. The vertex
(9, —1) is 5 units from the center, so @ = 5and b = /a? — ¢ = v/52 — 42 = /0. An equation is

(-4 @+1° _ (z—4*  w+1)?®
a? + b2 =1 25 t B

cCenter (2,2).c=2.a=3 = b=vh = 2(z-2"+iy-2°=1

= 1.

i.

a2
. Center (0,0), ¢ = 2, major axis horizontal = E + g—z = land b* = a® — ¢* = a* ~ 4. Since the ellipse
passes through (2, 1), we have 2a = |PF1} + |PFo| = VI7T+1 = o = gﬁﬁ and b = l—igﬁj 50 the

22* 2°

+ =1
+V/17 1 +4/17

ellipse has equation 9

. Center (0,0). vertical axis,c=3,a=1 = b= VB=2V2 = y2 - %3:2 =1

. Center (0,0), horizontal axis,c =6, a =4 = b= 25 = %JF

. Center (2,3), vertical axis, c =5, a =3 = b=4 = 3(y-3)°

2

. Center ((),10), horizontal axis, a = 3, g =2 = b=6 5L

(0,0).
(0.0)

. Center {4,3), horizontal axis,c = 3,0 =2 = b=v56 = L(z-4)?
(2,3).

)
. Center (4,2), horizontal axis, asymptotes y — 2 = =(z —4) = c=2,b/fa=1 = a=b =

A=d=a+b0=2" = F=2 = o4 -Lfy-27=1

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

888 T CHAPTER11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

49,

() Ifk > 16.then k — 16 > 0, and — +

In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance @ — ¢
from it) while the farthest point is the other vertex {(at a distance of a -+ ¢). So for this lunar orbit,
(a—c)+(a+¢)=2a= (1728 + 110} + (1728 + 314), or @ = 1940; and

(a+c) —{a—c) = 2c = 314 — 110, or ¢ = 102. Thus, * = a* — ¢ = 3,753,196, and the equation is

$2 + yz _
3.763.600 = 3,753,196

. (4} Choose V to be the origin, with z-axis through V and . Then F is (p,0), A is (p, 5), so substituting A into

the equation y* = 4pr gives 25 = 4p® sop = 2 and y* = 10z.
z=11 = y—+I0 = |CD|=2yI10

. (a) Set up the coordinate system so that A is (—200,0) and B is {200, 0).

|PA| — |PB| = (1200)(980) = 1,176,000 ft = 22 mi = 22 = a =42 andc = 200s0

11

2 o2 g2 — 3330375 1212 1219‘ _
4 121 1,500,625 3,339,375

(121)(200)° 1217 133.575 ,
(b) Duenorthof B = =200 = 1500625 3.330.375 = Y 539 mi

.| PFy — |PFl =120 & \/(m+c}2+y2—\/(:ﬂ-c)2+y2::I:Qa =

2

\/(J:—E—c:)?‘-{—yZ:\/(ac—c)2+y2:t2a e (z4+o) '+ = -+ +4a’ £4ay/ (z - )

& der —4a® = o (x - +y2 e Frf - tat = (2 — 2+ P+ YY) &
4

(¢ —a?)r? —a’y? =a®(F —a®) & b'x’ o’y =a®h® (whereb® = —a?)

. The function whose graph is the upper branch of this hyperbola is concave upward. The

functionisy = f(2) = ay/ 1+ 32" = %\/ +r2s0y = %m(bg +$2)—]/2 and

y' = % [(1)2 + ;172) -1/ (62 +z ) 3/2} = a,b(b"2 + 332)73/2 > 0 for all z, and so f is concave upward.

. We can follow exactly the same sequence of steps as in the derivation of Formula 4. except we use the points

(1,1) and (—1, —1) in the distance formula {first equation of that derivation) so
Vie =12+ (y— 12+ /(z +1)2 + (y + 1) = 4 will lead (after moving the second term to the right,
squaring, and simplifying) to 2 \/ (z+1)2+ (y + 1) =z + y + 4, which, after squaring and simplifying again,

leads to 3z” — 2zy + 3y° = 8.

2 y2

p T —16 = 1 is an ellipse since i is the sum of two squares on the

left side.
2 2

(by If 0 < k& < 16, then & — 16 < 0, and % + A E T 1 is a hyperbula since it is the difference of two squares

on the left side.

(¢} If & < Q. then & — 16 < 0, and there is no curve since the left side is the sum of two negative terms, which

cannot equal 1.

(d) Incase (1), a> = k, b* = k — 16, and ¢ = a* — b* = 16, so the foci are at (+4,0). Incase (b), k — 16 < 0, so
a? =k, b* = 16 — k, and ¢® = o + b* = 16, and so again the foci are at (4, 0).

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SEGTION11.5 CONIC SECTIONS O

¥

. 2 L
B6. (a)y> =dpr = 2yy' =4dp = ¥y = ;p so the tangent line is

2 ;
y—yu:"f{w*wo) = yyo —y5 = 2p{z —x0) &
0

yyo — dpza = 2pz — 2pre = yyo = 2p(T + o).

(b) The z-intercept is —xo.

. Use the parametrization z = 2 cos £,y = sin £,0 <t < 27 to get

/2

= 4 [T Sz ]d0)® T (dy/diydt = 4 [7/% \/dsin®t+ cos? tdt = 4 [T \/3sin® ¢ + L dt

Using Simpson’s Rule with n = 10, At = 1‘/—%—0 = Z,and f{t) = 3sin?t + 1. we get

L (500 +47(5) + 20 (35) 4o +20(55) + 41 (35) + £(5)] ~ 0.69

. The length of the major axis is 2a, so @ = 1(1.18 x 10'%) = 5.9 x 10", The length of the minor axis is 2b, so
2 2

b= 1(1.14 x 10'%) = 5.7 x 10”. An equation of the ellipse is T— + L

= = 1, or converting into parametric

equations, z = acosf and y = bsind. So

— 4 [T\ /(dxdB)? + (dy/dO2 df = 4 [7'° /a2 sin? 8 + b? cos? 0 df

Using Simpson’s Rule withn = 10, Ad = & '12[)‘0 = go.and f(8) = Va? sin? @ + b2 cos? 6, we get

L%4-S1g
=47 Oy +4f(55) +2/(35) + - +2F(55) + 4/ (55) + F(5)]
2 3.64 x 10°" km

2 2 2,

: b'r

CE TL =1 = =0 = 3y =-—" ( # (). Thus, the slope of the tangent line at P is
a* b2 a a?

b . . . -
- 2“ . The slope of F1 P is YL undof FaP is o By the formula from Problems Plus, we have
-y r -+« Ty —C

th b
o +c | ay Ay mm o) @V e using b?z} + @*yi = a®b?
bz alyi(z o) — by Ry + elen and g2 — b2 = ¢2
a?yi{z1 + ¢

tan =

_ Vexs +a%) b?

ey {exy + a?) a a

m _ b2I1
fan 3 — L1 ¢ Ay —efyi - bai(m—e¢)  —a®® + b V(e -a?) B
i brin aly (o — o) — Bz Aoy —ofapn eyifer - a?) e

B aty(zy —¢)
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60. The slopes of the line segments £#1 P and > P are = y; p and = L o where P is (x1,y1). Differentiating
1 - 1

.. 2 ! ; . b
implicitly, — = ' = the slope of the tangent at P is

—— s0 by the formula from
a? a*y

Problems Plus,

bg;l,'] _ h
afyy, T +e b (e +¢) — oyt
bl a’y1(z1 +¢) + BPaign

alyi(zy +¢)

tan o =
14+

_ b {cxy + a2) using x%/az —yi/bt =1 b

ey ex +a?) and a? + b% = ¢? ci

bz, LY

alyy, x1—¢ ~b?z1(xy — ) + a*yi b er) —a®) b?
tan3 = 5 = — - = o= —
1+ bz a2y {z1 —c) +Wxyn epcwr —e?)  on

a*yi{z1 — )

Soa = 0.

11.6 Conic Sections in Polar Coordinates

1. The directrix ¢ = 6 is above the focus at the origin, so we use the form with * + ¢ sin ” in the denominator. (See

ed 36 42
l+esin9_1+£sin9_4+7'sin€

Theorem 6 and Figure 2.) r =

. The directrix :r = 4 is to the right of the focus at the origin, so we use the form with * + e cos 87 in the denominator.

ed _ 1-4 . 4
l+ecosf 1+1lcosf 1+4cosd

¢ = 1 for a parabola, so an equation is r =

. The directrix z = —5 is to the left of the focus at the origin, so we use the form with “ — e cos 8™ in the

ed % -5 15

I —ecosf i %(:059 T 4 3cosb

denominator. r

. The directrix y = —2 is below the focus at the origin, so we use the form with “ — ¢sin 8" in the denominator.

ed 2.2 4
T = = =
1 —esing 1—2sin8 1—2siné

. The vertex (4, 37 /2) is 4 units below the focus at the origin, so the directrix is 8 units below the focus (d = 8). and
we use the form with “—esin 87 in the denominator. e = 1 for a parabola, so an equation is

. ed U8 8
T 1 —esinf 1—1sing 1 —sinf’

. The vertex P(1,7/2) is 1 unit above the focus F at the origin, so |PF| = 1 and we use the form with “+esin @7 in

the denominator. The distance from the focus to the directrix [ is d, so
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|[PF

= T = 08I-08=1 = 08d=18 = d=225

ed 0.8(2.25) 9

An equation is r = =

D
1+ esinf 1+ (8sind "5 B5+dsing

. The directrix r = 4sec (equivalent to r cos @ = 4 or = = 4) is to the right of the focus at the origin, so we will use
the form with “*+¢ cos 87 in the denominator. The distance from the focus to the directrix is d = 4. so an equation is

ed 058 2 4
" 1fecos® 14 06cosf 2  2+cosh

. The directrix r = —6 csc# (equivalent to rsinf = —6 or y = —6) is below the focus at the origin. so we will use
the form with “—esin @” in the denominator. The distance from the focus to the directrix is = 6, 50 an equation is

B ed _3(6) B 18
" T 1 esinf 1 _3sind 1 -—3sing’

N 1 _ ed
T 14sin6  l+esind’

(a) Eccentricity =e =1

whered = e = 1.

(b) Since e = 1. the conic 1s a parabola.

(c) Since “+esin @ appears in the denominator, the directrix is above
the focus at the origin. d = |FI] = 1, s0 an equation of the directrix
isy=1

(d) The vertex is at (% 125) midway between the focus and the directrix.

_ 6 2 23

B3+2sinf 1+ Zsin 14 Zsinf

(a)c:%

(b} Ellipse

©y=13

(d) Vertices (£, 7) and (6, 3F ): center (L2, 21)

r= X—_—lil?]l—% = #gsimg,whereeuﬁanded-:ﬁ = d=12

(a) Bccentricity = e = %

{b) Since ¢ = 14 < 1. the conic is an ellipse.

(¢) Since “—e sin @ " appears in the denominator, the directrix is below
the focus at the origin. d = |FI| = 12. so an equation of the directrix

sy =-—12.

(d) The vertices are (4, 2} and (¥, 7). so the center is midway

between them, that is, (%, %)

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

892 [0 CHAPTER11 PARAMETRIC EQUATIONS AND POLAR COORDINATES
4 2 53

12 r= 2 3cosf l—%cos@z 1 —2cosd

(a)e=3

(b) Hyperbola

(Cyxr = .,%

(d) The vertices are (—4,0) and (£, m) = {—4,0), so the center is

(—12,0). The asymptotes are parallel to # = £ cos™" 5. [Their

slopes are & tan (cos ™! %) = :i:l,zé.]

¢ 1/6 3/2
T‘:w_—q—-—/—):iw,wheree:%anded:% = d=
6+2cosf 1/6 1+ 3cosf

; wantriei iy — o L
{a) Eccentricity = ¢ = 3

(b) Since ¢ = 4 < 1, the conic is an ellipse.
{¢) Since “+e¢cos @ appears in the denominator, the directrix is to the

right of the focus at the origin. d = |FI| = £, so an equation of the
9

directrix is & =

2
(d) The vertices are (£,0) and (£, 7), so the center is midway between

themn, that is, (1—(’6 , 77).

- 5
_ 2 _ 2
T 2-2sinf 1 —sinfd
()e=1

(b Parabola

. T

(©)y= -3

(d) The focus is (0, 0), so the vertex is {2, 27} and the parabola opens
up.

3 1/4 3/4 ,
P e e e = h 2 — 2 and ed = 2
r 4 ~B8casf 1/4 1 — 2c0s0 where ¢ and e 2

(a) Eccentricity=¢ = 2

(b) Since ¢ = 2 >> 1, the conic is a hyperbola.

{c) Since “—ecos @ appears in the denominator, the directrix is to the

left of the focus at the origin. d = |FI| = £, so an equation of the

directrix is & = —%.
(d) The vertices are (—2,0} and {§, 7). so the center is midway

between them. that is, (5, 7).
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4 2
16. »

TS hcosd 1+ 2 cos @ - 1+2% cos
(a) e = é f
(b) Eliipse [~4.01w
cyae=4

(d) The vertices are {5,1) and {4, 7) = (—4,0), so the center is
4
(—3,0).

114
4-3cos 1 —3cosh

,s0€e = 2 and

17. (a) The equation is r =

1

7 = d= % The conic is an ellipse, and the equation of its

) 1
directrix is ¢ = rcosf = — = r=— . We must be
: 3cosf

careful in our choice of parameter values in this equation

(—1 < & < 1 works well).

el =

(b) The equation is obtained by replacing & with § — % in the equation of
1
4 —3005(9 - %)

the original conic (see Example 4}, sor =

_ 5 572
T 24 92sin8 1 +sind

18. »

,soe=1landd = % The equation of the

5

T =
2sin@
about its focus (the origin) through . its equation is the same as that of

directrix isy = rsinf = 2 = . If the parabola is rotated

the original. with # replaced by ¢ — % (see Example 4), so

H
24 2sin(f — 7/6)

carelul 1o select parameter ranges which prevent the denominator from

¥

. In graphing each of these curves, we must be

vanishing while still showing enough of the curve.

. For e < 1 the curve is an etlipse. Itis nearly circular when e is close to 0.

As e increases, the graph is stretched out to the right, and grows larger

(that 15, its right-hand focus moves to the right while its left-hand focus

remains at the origin.) At e = 1, the curve becomes a parabola with focus

at the origin.
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20. (2) The value of d does not seem to affect the shape of the conic (a parabola)

at all, just its size, position, and orientation (for d < 0 it opens upward,

for d > () it opens downward).

(b) We consider only positive values of e. When () < e < 1, the conic is

an ellipse. As e — 07, the graph approaches perfect roundness and

zero size. As e increases, the eilipse becomes more elongated, until

at e = 1 it turns into a parabola. For e > 1, the conic is a hyperbola,

which moves downward and gets broader as e continues to increase.

+5

N

N

e=10.5

N\ =
7 -

e=1.1 e=1.5

2. |PF|=¢|Pl] = r=¢ld—rcos(mr—8)] =e(d+rcosd) =

ed

r{l —eccos@)=ed = r=——"-
1—ecosd

22 |PF|=¢|Pl] = r=¢ld-rsinf] = r{l+ecsinf)=ed =
_ ed
T l+esind

T
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3. |PF|=¢|Pl = r=eld—rsinl@-r)]=e(d+rsint) =
_ ed
" 1-esin®

r(l —esin@)=ed = r

¢ = d = cosf = -
1 +cos8 1—cosé T T et d

24. The parabolas intersect at the two points where

For the first parabola, o esind o
or the first parabola, — = ——— .. s
P a9 (1+ cosB)

dy _ {dr/d0)sin@ 4+ rcos® esin® 6 + ccos (1 + cos §) _ 1+cosé

de ~ (dr/df)cos# —rsinf  csinBcosf —csinf(1 +cosd)  —siné

) —-c iné . ) )
and similarly for the second, @ = L - cost _ . Since the product of these slopes is —1, the parabolas
dx sin 6 1+cosd

intersect at right angles.

. {a) If the directrix is z = —d, then v = [see Figure 2(b)], and, from (4), a*

€
1—ecost
. (1 —€e?)
4= a(l — ¢*). Therefore, r = 20— )
ed = a(l — e*). Therefore, r —
(b) e = 0.017 and the major axis = 2a = 2.99 x 10° = a = 1.495 x 10%

1.495 x 10° [1 - (0.017)?] ~ 1.49 x 10°
1 0.017cos 8 T 1-0017cosd’

. (2) The Sun is at point /' in Figure 1 so that perihelion is in the positive x-direction and aphelion is in the negative

a(l-€*)  a(l-e)(l+e) _
1+ecosQ 1+e =a(l —e}

a(l —é* (1 —e)(1 +e
At aphelion, 8 = n, s0r = ( ) :a( e te) =afll +¢€).
l1+ecosm 1—e

Therefore r =

x-direction. At perihelion, 8 = 0,507 =

{b) At perihelion, 7 = a{l — ¢) & (1.495 x 10%){1 — 0.017) a2 1.47 % 10® km.
At aphelion, r = a(l + ) & (1.495 x 10%)(1 + 0.017) = 1.52 x 10° km.

. Here 2a = length of major axis = 36.18 AU = g« = 18.09 AU and e = 0.97. By Exercise 25(a}, the equation

18.09[1 — (0.97)°] 1.07
1-097cosf  1-0.97cosé
comet to the sun is 18.09(1 + 0.97) = 35.64 AU or about 3.314 billion miles.

of the orbit is r =

By Exercise 26(a), the maximum distance from the

. Here 2a = length of major axis = 356.5 AU = « = 178.25 AU and ¢ = (.9951. By Exercise 25(u). the

178.25[1 — (0.9951)] 1.7426
1-09951cosf 1 -0.9951cosd’

distance from the comet to the sun is 178.25(1 — 0.9951) = 0.8734 AU or about 81 million miles.

equation of the orbitis r = By Exercise 26(a), the minimum

. The minimum distance is at perihelion, where
16x 10" =r =a(l - €) = a(l — 0.206) = a(0.794) = a=4.6 x 107/0.794. So the maximum distance,
which is at aphelion, is 7 = a(1 + ¢} = (4.6 x 107/0.794){1.206) = 7.0 x 107 km.
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30. At perihelion, r = a1l — ¢) = 4.43 x 10°, and at aphelion, 7 = a(l + e) = 7.37 x 10°. Adding, we get
9 = 11.80 x 10%. 50 a = 5.90 x 10° km, Therefore 1 + ¢ = a{l + e}/a = T3 ~ 1.249 and e & 0.249.

. From Exercise 29. we have ¢ = 0.206 and a(1 — ¢) = 4.6 x 107 km. Thus, a = 4.6 x 107/0.794. From

. . 1—é? .
Exercise 25, we cun write the equation of Mercury’s orbit as r = T ocesf’ So since
dr _ —a(l —ée*)esinf

a8 (1—ecos8)?

2 207 _ 2\2 201 _ o232 2 02 27y _ 242
1-2+(ﬂ> z(a (1-¢€) a*(1 e)esmé’ a*(1—€?) (1_26(059_{—()

(o 1 — ecosb)? (1—ecos)? (1 —ecosf)’

the length of the orbit is

2 - . 2 W
:/ Ve (dr/dg)* 4 = a(1 - ¢*) + 7= 200080 49~ 3.6 x 10° km
0 0 (1 - ecos)®

This seems reasonable. since Mercury’s orbit is nearly circular, and the circumterence of a circle of radius a 1s

9ma 25 3.6 x 10% km.

Review
CONCEPT CHECK

. (a) A parametric curve is a set of points of the form {z,y) = (f(¢), g(t)), where f and g are continuous functions
of a variable 2.

{b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot
points on the curve by finding f(#) and g{¢) for various values of £, either by hand or with a calculator or
computer, Sometimes, when f and g are given by formulas, we can eliminate t from the equations :x = f(¢) and
y = g(t) to get a Cartesian equation relating x and y. It may be easier to graph that equation than to work with
the original formulas for 2 and y in terms of £.

dy dy/dt
. (a) You can find — as a function of { by calculating —= dy _ dy/di

- e = dd (if dz/dt # 0).

{b) Calculate the area as }a’j ydr = [f g(t) f'{t)dt [or fs "{)dt if the leftmost point is { f(3), g(3)) rather
than (f(cx), g(a)}].

) L= [7\/(de/dt)?® + (dy/dt)? dt = |7 \/[f’(t)}z + gty dt

= ] 2m;\/{d£/dt (dy/dt)? j'j 2rglt )V/[ff{t)}2+ g (B)}" dt

. {a) See Figure 5 in Section 11.3.
(by x =rcosh, y =rsinf

(¢) To tind a polar representation (v, 8) with r > 0 and 0 < 8 < 2w, first calculate r = /w? + 2. Then @ is
specified by cos @ = w&/r and sinf = y/r.
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sind + rcosf

) _where r = £(6).
)

, i {rsin@) ('_
. {a) Calculate dy = -
d / (

(rcosé) cosf — rsinf

dr
df
(b) Calculate A = |* L2 do = [* L [7(0)]" db

2

© L = [*/(da/d6)? + (dy/d6)* B = [7\[s2 + (dr/dB)* D = J, JIEON + 1700 do

. {2) A parabola is a set of points in a plane whose distances from a fixed point F' {the focus) and a fixed line {

(the directrix) are equal.
(b) 2% = dpy: y° = dpa

. (a) An ellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.

. (a) A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci} is a
constant. This difference should be interpreted as the larger distance minus the smaller distance.
2

I i
i R

(cly = i;:ix
a
. (a) If a conic section has focus F' and corresponding directrix £, then the eccentricity ¢ is the fixed ratio | PF| / | Pl
for points P of the conic section.
(hy & < 1 for an eilipse; e > 1 for u hyperbola; e = 1 for a parabola.

ed ed ed ed

g=dr=—— 3= dir=—-i— y=dir=———. y=—d r
(ehw=dr 1+ ccosf ¥ "I Tecos Y ! l+esind v '

1l —esing

TRUE-FALSE QUIZ

Consider the curve defined by z = f{(t) = (t — 1)¥ and y = g(¢} = (¢ — 1)*. Then ¢/ () = 2(t ~ 1). 50
g’ (1) = 0, but its graph has a vertical tangent when t = 1. Note: The statement is true if f'(1) # 0 when
g(1)=0.

If z = f(t) and y = g(¢) are twice differentiable. then —35 = —
dr?  dr

dr

d(dy
&’y d (dy) ~dt\dx

e

dt

For example, if f{#} = cost and g(t) = sint for 0 < ¢ < 4, then the curve is a circle of radius 1, hence
its tength is 2w, but

4w

fu CVIFOE Gk~ [ Cemtp T (contPdt

0

4
:/ 1dt = dm,
J0

since as t increases from 0 to 4, the circle is traversed twice.
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4. False.

If (r,8) = (1, 7). then (z, y} = (—1,0), so tan™'(y/x) = tan~ ' 0 = 0 # #. The statement is true for

points in quadrants I and [V,

The curve + = 1 — sin 28 is unchanged if we rotate it through 180° about ( because

1 sin2( + 1) = 1 —sin(20 -+ 27) = 1 — sin 26. So it’s unchanged if we replace r by —r. (See the
discussion after Example 8 in Section 11.3.) In other words, it’s the same curve as

r= —(1 ~sin2f) =sin26 — 1.

The polar equation » = 2, the Cartesian equation z? + y* = 4, and the parametric equations ¥ = 2sin 3,

y =2cos3t (0 <t < 2m)all describe the circle of radius 2 centered at the origin.

The first pair of equations yields the portion of the parabola y = z? with z > 0, whereas the second pair of

equations traces out the whole parabola y = z2

P =213 o (y-1)7=3z+1=3(z+3)=4(2)(z+ %}. which is the equation of a

parabola with vertex (—%,1} and focus {—+

By rotating and translating the parabola, we can assume it has an equation of the form y = cz?, where

¢ > 0. The tangent at the point (a, ca?) is the line y — ca® = 2ca(x - a); i.e.. y = 2cazr — ea®. This
tangent meets the parabola at the points (;t:, cwz) where cx? = 2cax — ca®. This equation is equivalent to
- 2 (o 2 _ 2 2 2 2

¢ =2ar —a’ sincec> M. Buta*=2ax-a”° & v —2ax+a’=0 & (z—-a)"=0 &

r=a & (.17, (‘:1“2) = (a, caz). This shows that each tangent meets the parabola at exactly one point.
. . . . . _ ed
Consider a hyperbola with focus at the origin, ortented so that its polar equation is r = T eoost’ where
£ COo8
¢ > 1. The directrix is x = 4, but along the hyperbola we have

ed cos @ ecost
"7':'l o ‘9:—: —rrr—t .
§E e 1+ ecost d(l—%ecosﬁ') 7 d

=12 4tdty=2—4-4<t<1.t=2—y,s0
r=2-y) +42—y) 44—+ +8-dy=¢° -8+ 12 &
r+4=y%—8y+ 16 = (y — 4)* This is part of a parabola with vertex
(—4,4), opening to the right,

EXERCISES
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3. 0 =tané, y = cotf. y = 1/ tan@ = 1/z. The whole curve is traced out »"T
as 0 ranges over the open interval (—Z, ) [or any open interval of the

form (—2 + nw, § + nw), where n is an integer].

o= 2cosf y =1 +sin#, cos? 8 +sin =1 =

oy 2 . 2
(%) +(y — 1)2 =1 = % +{y — 1)2 = 1. This 1s an ellipse,

centered at (0, 1), with semimajor axis of length 2 and semiminor axis of

lengih 1.

. Three different sets of parametric equations for the curve y = /z are
(Yz=t y=+tt>0
(ihe=t".y=1

(i) = = tan®*t, y = tant, 0 <t < w/2

There are many other sets of equations that also give this curve,

6. For{ < —1,x > 0and y < ( with z decreasing and y increasing. When
t=—1,(z,y) = (0,0). When —1 < ¢ < 0, we have —1 < x < (and

0<y<1/2 Whent=0,(z,y)=(-1,0). WhenlO <t <1,
0. r=-1

X

~l<wz<Oand -1 <y <0 Whent =1 (zr,y)=(0,0) again.

NS00 r=1

When ¢ >> 1. both xx and y are positive and increasing.

r -1

7. r = 1 — cos#. This cardiod is
symmetric about the polar axis.

8. r = sin4#. This is an
eight-leafed rose.
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9. r = 1+ cos 26. The curve is r
symmetric about the pole and 1

both the herizontal and vertical 12,7 2.8

. r = 3+ cos 38, The curve is
symmetric about the horizontal

axis.

.l =sec2d =
rleos2=1 =
r? (cos® # —sinf) =1 =

rPeos?l — risinf0=1 =

z* — y? = 1, a hyperbola

L= 2c08(8/2) . The curve is
symmetric about the pole and

both the horizontal and vertical
AXes.

_ 1
14 cosf

1
21

LT e=1 = pambola;d=1 = directrixz =1

0); y-intercepts are {1, 2} and (1, 37).

and vertex ( X
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3.
4 . This is an ellipse with focus at the pole,

14. r

T 4+3sin6 1+ Ising

centricity 2. and ditectrix ¥ = 8 .o (24 3m
eccentricity 3, and directrix y = 3. The center is ( =, 3 }

2

Bor+y=2 & rcosB—+rsind=2 & r(cosf+sinfd)=2 & "= sl emd

6.2°+3y° =2 = r’=2 = r=+2 (r=—+/2gives the same curve.}

17. r = (sinf) /6. Ast® — Loc,
r—0 As@—0,r - 1. Inthe

first figure, there are an infinite

number of z-intercepts at

* = Th, n 4 nonzero integer.

These correspond to pole points

in the second figure.

2 1/2

8. = =
" 4 T3 cosh 1~%cos€

= =2 andd = £. The equation of

the directrix isx = —2 = 7= —2/(3cos6). To obtain the equation
3

of the rotated ellipse, we replace 8 in the original equation with 8 — %’T

2
4 - 3cos(f — 25}

and get r =

dy de 1 dy  dy/dt 2t .
19 z=Int,y=1+tt=1. — =2tand — = ~,50 > = = — =2t =1, {z,y) = (0.2
9. 7 =Int.y + i and 0 dojdt = 1)t 2t Whent = 1. {z,y) = (0.2)
and dy/dx = 2.

dy dy/dt  2-2

_ _  Whent =1, {x.y) = (—6,-3) and
dr " dzjdt 3@ 46 ent {w,y) = (=6, —3) an

20 2= 4+6t+1, y=2t—¢%, t= -1,
dy/dr = 4/9.

N.r=c"f = y=rsinf=c sinfandz =rcos@ =e "cosd =
dy _ dy/d8 2 sinf+rcosf e ’sinf+e cosd ' —e”  sinf —cost
dx/df) %cosﬂ—rsing —efcosf —~e-%sinf —ef cosf+sing’
0= _ 1 _
—14+0 -1

When # = =,

—1.
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. dy  dyfdf  Esinf+rcos®  —3sin30sinf + (3 + cos3) cosd When
Z.r=3+cos3h = dr dz/df 9 cosf — rsind —38in39c039f(3+(20539)sin9'

9“77/2 dy (=3)(-1)

N+@B+0-0_ 3

(
( -0 - 3+0)-1~ -3

: 2 4 (dy
.o = tcost, y = tsint. j—z = jzﬁ; = j:-z;ttn:-il;gf g}% = ddt—JE/%tl , where
d [ dy {—tsint+ cost)(—tsint + 2cost) ~ (fcost +sint){—tcost ~ 2sint)
E(ﬁ) - (—tsint + cost)’
B £+ 2 dy 242
" (—tsint + cost)® da? (—tsint +cost)®’

. dy s dy _ dy/dt 1~ 3t2 )
= 2yt — =1- 32 and == = 9. 0 =2 N UES B
cr= ety =ttt g =13t 7 TS0 T dajd 24 2
d’y  d(dy/de)/dt 317" =3 1

32 +1
dz? dr/dt 2t 4 T

4td

=L St o (1437 = —

. We graph the curve z = 2 —3t,y=t"+t+ Lfor-2.2<t<1.2 By

zooming in or using a cursor, we find that the lowest point is about

(1.4,0.75). To find the exact values, we find the ¢-value at which b

dyfdt=2t+1=0 & t=-3 & (z,9)=(%.3).

—4
0

. We estimate the coordinates of the point of intersection to be {2, 3). In fact this is exact, since both ¢ = —~2 and
t = 1 give the point (—2, 3). So the area enclosed by the loop is

£ yde= 1 (# + e+ 1) (382 = 3)dt = [1, (3t" +3t* — 3t — 3) dt

=[O 3-8, = (G- 3 -9 - % F12-6- (6] - §

dx . . .
.r=2acost —acos2t = d—i’:—2asmt+2asm2t=2asmt(2cost—1):0 <

sint =0orcost=3 = t=0,Z 7 or &,
¥ = 2asint - asin2t =

d
d—Z::2(LCOSt—2(LCOS2t:2a(1+COSt—-2COszt):2(1-*C08t)(1+200‘:t)—0 = t=0L, ol

Thus the graph has vertical tangents where

t= d £, and horizontal tangents where
t = 3 and =T 4” To determine what the slope is

where ¢t = 0, we use |"Hospital’s Rule to evaluate

Jim 74

= {), so there is a horizontal tangent
150 da/dt g

there.
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28. From Exercise 27, ¢ = 2acost —acos 2, y = 2asint —asin2t =
A=2 L? (2asint — asin 26)(—2asint + 2asin 2t) dt = 4a® [ (2sin® £ + sin® 2¢ — 3sintsin 2t) dt
=d4a® [ (1 — cos2) + % (1 — cos4t) — 6sin tcost] dt = 467 [t — L sin2t + Lt — Lsindt — 2sin® ¢] ]
=4a*(3) 7 = 6md”
29. The curve r° = 9 cos 59 has 10 “petals.” For instance, for -5 < 0 < {5, there are two petals, one with v > (tand
one with v < 0.

A=10["00 4r2dg =5 710 9cos50df =592 7/ cos 50 dB = 18[sin 517" = 18

. 7 = 1 — 3sin@. The inner loop is traced out as @ goes from cx = sin ™' ]3 to T — «, 50
A= [T Le2dg = [T (1 - 35in0)* df = [T/*[1 — 6sind + $(1 - cos26)] df

= [46+6cosd — 3511:26’]2/2 =g %sin‘l 1 _ 3.9

ry 3

aurves intersec 0sf — -1 —
. The curves intersect when dcosf =2 = cosff=35 = f=1=% = 4 cos B

for —m < 0 < m. The points of intersection are (2, Z) and (2, — I},

. The two curves clearly both contain the pole. For other points of intersection, cot § = 2 cos(f + 2n7) or

—2cos(# + 7 + 2n), both of which reduce to cot # = 2cos8 <&  cosfl = 2sinflcosd

cosB(1 - 2smf) =0 = cosf=0orsinf==%2 = #= =5 F = intersection points are

(0,5), (V3. 3), and (v3, 4%}

. The curves intersect where 2sin# = sinf + cosf =

sinf! = cos# = § = I, and also at the origin (at which @ = <7 on the

second curve).

A= j[”MIQSmB) d9+f3ﬂ/41(51n9+c059) dé

= [/ (1 — cos20)d0 + § [27/* (1 + sin 26) d

=sin &+ cos @

= [# - Lsin 20]”4 [46— 2 (:052(9]3”4 =3(r—1)

34.A:21“/§22[(2+c0329) — (2 +sin#)’] d@ , r=2+sin @

= f"fs [4 cos 20 + cos® 26 — 4sin @ — sin” 6] df
= [2sin20 4+ £6 + ; sin4f + 4cosf — 360+ 3 811120]"/6

— 53

r=2+cos26

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

94 U CHAPTER11 PARAMETRIC EQUATIONS AND POLAR COURDINATES

35, ¢ = 3%,y = 26%.

L= f2\/(dnfdt)? + (dy/de)? de = [7 [ (61)° + (602)° dt = [§ V36F T 3677 de
= [2VE6RVI+ dt = [L6[t]VI+2dt =6 [ VT2 dt

=6 [Pu'?(1du) [u=1+1 du=2tdt]

:6-%-%[113/2]1 2(5** - 1) :2(5\/5-- 1)

36. 2 =243t y=cosh3t = (dz/dt)>+ (dy/dt)? = 3%+ (3sinh3t)? = 9(1 + sinh”® 3t) = Ycosh® 3¢, so
L= [} V9cosh®3tdt = fol |3cosh 3t| df = [ 3cosh3tdt = [sinh3¢]; = sinh 3 — sinh 0 = sinh 3.

2 2
3. L = 2 \Jr2 + (dr/do)? d8 = [27/(1/6)% + (~1/6°)° a6 = / —\/T df

2w

3z 2 2 T 2
u lJ/a +1+1n(9+\/92_+_1) _VTHL +1+1n(2n’:\/47r +1)
m

6 T 2m 2+ 1

_ 2\/7r2+1#\/47r2+1+1 (27r+\/47r2 )
i T+ vVri+1

™

CL= [T /2 (dr/de)? do =
= Jy sin® (50) d0 = [5 (9—%sin(%9m3= 37

3

1
Lz =4Vt y= — 252,15;54 =

5= j‘;‘zwyv (dm/dt)2 + (dy/dt)? dt = [ 2w (367 + 4t7%) \/(2/\/5)2 + {2t dt

= om [F (A 1) S e de = 2w [ (0 8 bR dt = 2m [0 4 2t - L)) = AT,

4. 2 =2+ 3f, y=coshdt = (de/dt)? + (dy/dt)? = 3% + (35inh38)% = 9(1 + sinh® 3t) = G cosh? 3¢, so
S = [ 2y ds = [ 27 cosh 3¢tv/9 cosh® 3t dt = [} 2m cosh 3t |3 cosh 3¢ dt
— [ 27 cosh 3t - Bcosh 3t dt = 67 [) cosh? 3tdt = 67 [ 3(1 + cosh6t) dt

3xft+ & sinh6t]) = 3n (1 + & sinh6) = 37 + Z sinh 6

41. For all c except —1, the curve is asymptotic to the line z = 1. For

¢ < —1, the curve bulges to the right near y = 0. As ¢ increases, the
buige becomes smaller, until at ¢ = —1 the curve is the straight line .z = 1.

As ¢ continues to increase, the curve bulges to the left, untii at ¢ = 0 there

is a cusp at the origin. For ¢ > (), there is a loop to the left of the origin,
whose size and roundness increase as ¢ increases. Note that the z-intercept

of the curve is always —c.
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42. For a close to 0, the graph consists of four thin petals. As a increases. the petals get fatter, until a8 @ — oc, each

petal occupies almost its entire quarter-circle.

X K¢

a =001

a=>5

3. ? + % — 1is an ellipse with center (0, 0).

a=3b=2V2c=1 =
foci (£1,0), vertices (£3,0).

45. 6y o — 36y +55 =0 <
Gy —6y+9) =—(z+1) «
(y —3)* = =% (z + 1). a parabola with vertex
: ; O | ot
{(—1,3), opening to the left, p = —5; = focus
23

(—32.3)} and directrix @ = — 33.

A

Sel

a =10

2 2
44, T— - ;}_6 = 1 is a hyperbola with center (0,0).
vertices (£2,0),a =2.b =4,

= V16 + 1= 2+/5, foci (£2V5,0) and

asymptotes y = £ 2.

25w + 1) 4 4y —2)° =100 =

i(.r + 1) + '2—5(9' - 2) = 1is an ellipse centered
at (—1,2) with foci on the line © = —1, vertices
(—1,7yand (—1,-3)a=5.b=2 =

c=+21 = foci(~1,2L V21).

¥
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[ CHAPTER11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

. The parabola opens upward with vertex {0, 4) [midway between the focus (0, 6) and the directrix y = 2]and p = 2,
s0 its equation is (x — 0)° =4.2(y —4) < x? = 8(y - 4).
T
. Center is {0,0).and ¢ = 5,0 = 2 = b = /21, foci on y-axis => equation of the hyperbola is T

. The hyperbola has center (0, 0) and foci on the z-axis. ¢ = 3and b/a = 5 (from the asymptotes)

1
2
= O0=c?=a? 402 = (2 +p =5 = b= = o= "\67 = an equation of the hyperbola is

2y

_ g2 2 . ap
7 0 =1 < 5z% - 20y° = 36.

. Centeris (3,0),and a = 2o e=2 o b=+/42 22 =4/12 = anequation of the ellipse is

2
(x =37 o

S =1,
12 +16

L = —(y — 100) has its vertex at {(), 100), so one of the vertices of the ellipse is (0, 100}. Another form of the
equation of a parabola is 2° = 4p(y — 100) so dp(y — 100) = —(y —100) = 4p=-1 = p= -1

Therefore the shared focus is found at (0,22) 50 2c = %% —0 = ¢ = £ and the center of the ellipse is

(0,229). Soq = 100 — 22 = 2 and p* = o* - * = lea"?f—'gg—z = 25. So the equation of the ellipse is

. 300 0 9 ,
(-2 (- *8)° |, o, (By—300)°
i = 2 =1lor— 4+ —— =
2 + a2 [%)2 25 160,801
2 2 . : 2 2
i y 2@ 2y dy dy bz . dy b x
. =+ =21 =2 =4+ ===0 —~ = ———_ Therefore — =m & y=-——F—.
a? + b? a® + b2 dr da a’y dz Y azm
2yl a’m
Combining this condition with — + == = 1, we find that z = ——————_ In other words, the two points on
ombining this ¢ e b7 PET— P
alm b

+ )
VaZm? + 2 - VaEm? + b2

the ellipse where the tangent has slope m are ( ) . The tangent lines at

. . b? a‘m
these points have the equations y £ ————= = m| & ¥ ———= | o
a?m? 4 b? a?m? + b2
a’m? b?

y=mrT ey =mx F va?m? + b,

Vaim? + B aZm2 + b2

ed 4
Directrix s =4 = d=4 s0e=4 - - _
rectnx R0 € =7 14+eccosf 3+ cosb

3

. See the end of the proof of Theorem 11.6.1. ITe > 1, then 1 — ¢” < 0 and Equations 11.6.4 become

af = 62—(122 and 0% = 6:2_(12 80 —2 = ¢? — 1. The asymptotes y = ﬁ:Ew have slopes :EE =42 1,50
(e2 - 1) ed —1 a? a a

the angles they make with the polar axis are + tan™" [V/e2 — 1] = cos™ " (£1/e).

. In polar coordinates, an equation for the circle is » = 2asin@. Thus, the coordinates of () are

r=rcosf = 2asinfcosfund y = rsinf = 2asin® 6. The coordinates of R are x = 2acot € and y = 2a.

Since P is the midpoint of Q) R, we use the midpoint formula to get © = a(sinf cos & + cot ) and

y=a(l+ sin? 0).
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dit, y = = and =0 = ——. Vertical tangent lines

1 t cosu bs dr  cost dy  sint
EE ) Tw YT @t dt

oceur when % =0 <> cost =0, The parameter value corresponding to (z,y) = (0, 0) is{ = 1, so the

nearest vertical tangent occurs when ¢ = Z. Therefore, the arc length between these points is

/2 2 1'r/2
Y () e [ e [
V(@

2. (a) The curve z* + 3* = =% 4+ 4/* is symmetric about both axes and about the line y =  (since interchanging x and

y does not change the equation) so we need only consider 4 > & > ( to begin with. Implicit differentiation

x (1 22%)

sives da® + 4Py =22+ 2yy’ = Y = ———F
¢ ’ y(2y* - 1)

r_ _ _ 1 -
= y —Owhenm—oandwhenx—i-ﬁ.lt

c=0.theny' =y> = (¥ —1)=0 = y=0o0r*l The point (0,0) can't be a highest or lowest
point because it is isolated. [If —~1 < & < land —1 < y < 1, then < fandyt <yt =

2+t < &? + 7, except for (0,0).]Ifz = -%, thenz’ = 3,z

4 2 _ 2 _ 4416416 _ 1442 2 a2 —
dyt 442 —1=0 = = 5 =5 Buty® > 0,s0y° =
y = £/ 4 {1+ v/2). Near the point (U, 1), the denominator of ¢/ is positive and the numerator changes from
2 2

negative 1o positive as x increases through 0, so {0, 1) is a local minimum point. At (\f’ M)

y' changes from positive to negative, so that point gives a maximum. By symmetry, the highest points on the

curve are (:i:%, 1—":24@) and the lowest points are (:t% - 1—*24@)

{b) We use the information from part (a), together with symmetry with

respect to the axes and the lines y = . to sketch the curve.

{c) In polar coordinates, ! + y* = x* + 3* becomes
p Y

ricos? @+ r'sin® 9 = r? or r® = 1/ (cos’ 0 + sin® 6). By the

symmetry shown in part (b), the area enclosed by the curve is

/4 /4
AZB/ 17‘20!9—4/ —de.rciq 2.
a 2 o cos?fd+sinté
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908 L CHAPTER11 PROBLEMS PLUS

3. Interms of = and y, we have * = rcosfl = {1 + ¢sin @) cos# = cosf + csinfcos @ = cosd + %csin%’ and
y=rsinf = (1 +¢siné)sinf = sind + csin®f. Now —1 <sinff <1 =
—1<sinf+esin?f@ <14e<250—1<y<2 Furthermore, y = 2 whenc=1and 8 =, whiley = —1
forc=0and 8 = ‘*7" Therefore, we need a viewing rectangle with —1 < y < 2.

To find the z-values, look at the equation z = cos € + %r:sin 26 and use the fact that sin 28 > O for 3 < # < g
andsin20 < 0for -5 <8 < 0. [Becauser = 1+ csin 8 1s symmetric about the ¢-axis, we only need to consider
—Z <6< Z.]8ofor —F <8 <0, x has a maximum value when ¢ = 0 and then z = cos & has a maximum value
of 1 at# = 0. Thus, the maximum value of z must occur on [0, | withe = 1. Then = cos + % sin2 =

92 — _ginf +cos20 = —sinf+1-2sin*f => 9 — _(2sin0 - 1)(sin@+ 1) =0 whensinf = —lor}

(butsin@ # —1for0 <0 < §). Ifsint = %, then # = £ and

I = €08 % + % sin’—; = g\/ﬁ Thus, the maximum value of z is

3, and, by symmetry, the minimum value is —2 \f Therefore,

the smallest viewing rectangle that contains every member of the

family of po]ar curves =1 +ecsinf, where ) <e < 1.is

—3VE V] x 1,2

4. (a) Let us find the polar equation of the path of the bug that starts in the
upper right corner of the square. If the polar coordinates of this bug,
at a particular moment, are (r, ), then the polar coordinates of the
bug that it is crawling toward must be (r, &+ %) {The next bug
must be the same distance from the origin and the angle between the

lines joining the bugs to the pole must be %.) The Cartesian

coordinates of the first bug are (r cos 8, 7 sin ) and for the second
bug we have r = r cos (9 + 125) = —rsinf, ¥y = rsin (9 -+ 325) = r cos f. So the slope of the line joining the

rcosfl —rsinf sinf — cos @

bugs is . This must be equal to the slope of the tangent line at (r, 8), so by

—rsin® —rcosf  sinf +cosé

(dr/df}sinf + rcosf  sinf — cosd
(dr/df)cos® —rsinf ~ sind + cosf’

Solving for dr

Equation 11.3.3 we h
quation we have T

we get

dr dr dr dr . 2 . i
@sm 9+@51119(‘059+?"51n9c059+7"cos Bu@smﬂc‘osﬁ—d—gcm 0 —rsin“@+rsinfcosf =

dr
! (sm # + cos 6’) + T(COS f + sin 9) =0 = — = —r. Solving this differential equation as a

dfl a9

separable equation (as in Section 10.3), or using Theorem 10.4.2 with k = —1, we get r = C'e %, To determine
. : . . iy —m/4 _ L . 7/4
C we use the fact that, at its starting position, # = § and r = \/_a 50 \/_a =Ce = (= e

1

ﬁaeﬂr/lle [ orp = \/_2‘ (11'/4) 8

Therefore. a polar equation of the bug’s path is r =
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. . ‘ .00 2 dr  a a0 ey,
(b) The distance traveled by this bug is L = .IWM 2/ 7?2 + (dr/df9)"d8, where i —\/—:Ef, (—e77) and s0

T’l + (dT/d6)2 — a281r/2€—29 + %(1.2677/28729 _ a261/2ev29

1
P

o0
L =/ ae™ e ? dg = ae™* lim j't 46—8 df = ae™* lim [—e"ﬂ]t
w/4 e

t 00 w/a

. _ —t 4 —w/4
=ae™* lim [c T/ _ e }xae“/ e =g

t—o0

3t 361 .
5. (a) If (a, b) lies on the curve, then there is some parameter value ¢1 such that L= d L= If

: an =
v "y

. . 1.
t1 = 0, the point is (0, ), which lies on the line y = x. If t; # 0, then the point corresponding to ¢ = s
1

v 2 2
piven by & — 3(1/t) 38 by — 3(1/t1) = 33t1
1+ (/)Y i+l

3

5= 3 = = a. So (b, a) also lies on the curve.
L+ {1/t g +1

[ Another way to see this is to do part (e) first; the result is immediate.] The curve intersects the line y = = when

3t 3t?

1 +6 1+ t=1t2 = t=0orl,sothe points are (0,0) and (2, 3).

21

dy {1 +1°)(6t) =37 (37) 6t - 3¢

b) == = =
™ (1+3)° (1+13)*

=Owhen6t — 3t' =3t(2-t*) =0 = t=0ort= V2

so there are horizontal tangents at (0, 0} and (\3/5, V4 ). Using the symmetry from part (a}, we see that there are

vertical tangents at (0, ) and { ¥4, V/2).

(¢) Notice that as t — —1%, we have £ — —oo and y—00. Ast — —17 , wehavex — coand y — —oo. Also

B3P+ (1+8) (1) (e 1)’

o ep — 1) = 1- = =
y - (rz J=y+az+ 1 +3 1+13 2 41

— 0ast— —1. So

y = —x — 1 is a slant asymptote.

de  (1+6%)(3) - 3t(3*) 36t dy 6t — 3t
- = = and f have — = ——.
p 0+ TR and from part (b) we have &~ (15 0)
dy  dyjdt _t(2-1)
dr  dz/dt  1-2t3°

(d)

S0

Also

4 (dy
dy  di\dz)  2(1+¢%)"
dz® ~  dafdt T 3(1 - 23)°

>0 <

the curve is concave upward there and has a minimum point

at (0,0) and a maximum point at (+/2, ¥/4). Using this

together with the information from parts (a), (b), and (c), we

sketch the curve.
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3t \* 342 )3 _oare oS amt(L4tt) a7t
ﬁ?) (]+t3 T+ g+ 1+’

3t 3t? 2715 PO
3xy =3 = — sox -y = 3zy.
Sy (1+t3)(1+t3) (14 3% 4 v

ey a® + 3 = (

(f) We start with the equation from part () and substitute = = rcos#, y = rsinf. Then 24y =3y =

3cosfsind

L . Dividing numerator and
cos® @ + sin® @ &

reost 0+ r?sin® 8 = 3r? cos@sin@. Forr £ 0, this gives r =

()2

cost) J cos@  3secftand
sint @  1+tan®6’
cos3 ¢

denominator by cos® 8, we obtain r =

(g) The loop corresponds to & € (0, %) SO its area is

/22 T2 3 sec 2 w/2 ‘ 29“ 2
A:/ r_dG:Ef (3sec9ta3n6‘) d9=9/ sec” 6 tun 02d€
o 2 2 Jo 1+ tan® ¢ 2/ (1+tan®6)
9 [~ wldu | . . g 1 3, -17% 4
=3 ) G e =tang) = jim 23 () =4
(h) By symmetry, the area between the folium and the line y = —z — 1 is equal to the enclosed area in the third

quadrant, plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is % and since

. 1 . . .
y=—1—1 = rsinf=-rcosf—1 = r=——————theareain the fourth quadrant is
sin® + cos

s 1 2 3secftand\ > cas 1
- o) (2secdtany AS 2 Th ais L o0l
3 / o l( ST os 9) ( T a0 ) 0 3 erefore, the total areais £ + 2(3)
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