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12 [J INFINITE SEQUENCES AND SERIES

12.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive
integers.
(b) The terms an approach & as n becomes large. In fact, we can make ap, as close to & as we like by taking n
sufficiently large.
(¢) The terms a, become large as n becomes large. In fact, we can make ay, as large as we like by taking n
sufficiently large.

. (&) From Definition 1. a convergent sequence is a sequence for which lim a,, exists. Examples: {1/n}. {1/2"}

n—0o0

(b) A divergent sequence is a sequence for which lim_an does nor exist. Examples: {n}. {sinn}
n—00

. a4, = 1 —{0.2)", so the sequence is {0.8, (.96, 0.992, 0.9984, 0.99968, . .. }.

ay = ntl s0 the sequence is 2 b 6 =q1 j 1 i 3
nT g — o totered ‘ SR AT TR A &

3(-1)" -3 3 -3 3 - : :
= M— so the sequence is 3, 3 J =< -3, j, —l,
n! 27 2

1
8 k)

=2.4-6-----(2n), so the sequence is
2.4,2:4.6,2-4-6-8,2-4-6-8-10,... } = {2,8,48,384,3840,. .. }.
. a1 = 3 an 1 = 26, — I Bach term is defined in terms of the preceding term.
ay =20y —1=2(3) — 1 =5.a3 =20 —1=2(5)-1=9 as =2az —1=2(9)—1=17.
ay = 2ay — | = 2(17) — 1 = 33. The sequence is {3,5,9,17,33,... }.

{dn

car =4, gy = . Each term is defined in terms of the preceding term.

a 4 4 ar _ 4/3 _i/ﬁ

—— e = — (3 = ——— = = — 4. Since a; = a;. we can see that the terms of the
m-1 4-1 37 a-1 1.1 173 .

by ==

sequence will alternately equal 4 and 4/3, so the sequence 13 {4, %,4, 54, }

1

. The numerators are all | and the denominators are powers of 2, 50 4, = e

. . . 1
. 'The numerators are al! 1 and the denominators are multiples of 2, 50 a. = o
1)

. {2,7,12,17,...}. Each term is larger than the preceding one by O. so

ap =a1 +dn—-1)=2+3(n~-1)=5n-3.
L {—4.2, -3 24} The numerator of the nth term is » and its denominator is (n + 1)%. Including the

alternating signs, we get an, = (—1)" —i—g
(n+1)

{1, —2.2,—,... }. Eachterm is ~2 times the preceding one, s0 a, = (-2 3
A5 L5 L5 L 1. The average of 5 and 1 is 3, so we can think of the sequence as alternately adding 2 and —2to
3. Thus, n,, =3+ (_1):z+1 9

. Oy = 1i{n — 1), @, — 20 as 1 — 00. 50 the sequence diverges.
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n+1 l=1/n 1+0 1
= = L850, — —— = — a% | oo. Converges
Bn—1 3 1/ %™ 73— 3" g

. 2 : E-' 2 2 T 2 54
34507 _ (3+ 5n )/n I‘J+3/n .soa,zéquasnﬁoo. Converges
n+n? (n -+ n?)/n? 1+1/n 1+0

o

1
$0 a, — —— = l as n — oc. Converges

1
TN R VN 0+1

2" Lf2\" . n ,
= gl E(E) » 50 nlLﬂgo &y = %7112130(%) = % -0 = (Oby (8) withr = % Converges

mn B N
1+ 1/yn+l

= 00, 80 g — 0G as 1 — oo and the sequence diverges.

-1 l!.'lJJ 1 n—1 1
DT n D o< e = —2
n+1/n

= . The numerator approaches oo and the denominator approaches ) +1 = 1 as

. < l — Dasn — oo, s0 g, — 0 by the Squeeze
n? 41 n+1/n n

Theorem and Theorem 6. Converges
(—1)"n? n? 1
—— . Now |a,| = — - =
nd + 2n? +1 ] nd+2n24+1 14 % + ﬂ—lq

{a, } alternate in sign, so the sequence a1, as, as, ... converges to —1 and the sequence asg, aq, ag, . .. converges

— 1asn — 20, but the terms of the sequence

i, =

to +1. This shows that the given sequence diverges since its terms don’t approach a single real number.

. a, = cos(n/2). This sequence diverges since the terms don't approach any particular real number as n. -+ oc. The

terms take on values between —1 and |.

. a, = cos(2/n). Asn — oo, 2/n — 0,50 cos(2/n) — cos(0 = 1. Converges

L2 — oo as i — o, so since lim arctanz =

(20—~ 1) {Zn — 1)! 1 0a Conver
gy = — = = > {Jasn -~ 20, verges
2o+ 13 2e+D20){2n—-1)0 20+ 1)(2n) £

F.wehave lim arctan 2n = 5. Converges

L0 n—00

(Jr: +()-n C——n 1_'_({-—‘211 ]+0
—_— — —

6'27' —1 o en — g en —

— 0 as n — oo. Converges

inn Inn 1 1

“In2n In2+1Inn 2. - 0+1

Inn

— 1 as n — oc. Converges

2 2
2. -n %ﬂ

n . R . 2 . .
Lap =nte = —. Since lim — = limm — = lim — = 0, it follows from Theorem 3 that lim a, = {.
e ” - 5

Lo ¢ Lo g o oF n—oC

Converges

L tn = ncosnm = n{—1)". Since |an| = n — 00 as n — oo, the given sequence diverges.

cos ' n

cos® n 1. 9 . . 1 2
.0 < << — [since (} < cos®n < 1], so since lim - = 0. converges to ) by the Squeeze

Ly =In{n+1) —lnnln(

Ve = 1isin(l/n) =

- 2?1 - 27: n—o00 21

211
Theorem.

n+1
7

1
) = ln(l + E) — In (1) = 0asn — oc. Converges

sin(l/n). Since limn sin(1/z) = lim SL”'[

T Jim = i where ¢t = 1/z] = 1, it follows from

Theorem 3 that {a, } converges to 1.
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SECTION 12.1 SEQUENCES O 913
n2

1——1—) —n(0—-1) > —nasn — oo,

0 @, — ~-00 as i — o0o. Diverges

2\'/" 1 2 1 2
sy =14 — = Ing,=—In{1+=] Asn—o00,— = 0andln{ 1+ — — 0, s0lna, — 0.
n n n n n

Thus, a, — € = 1asn — oco. Converges

sin2n 1 1 -1 1 .
. Ay = ———. < —" andlim ——==0,50——<a, < —— = lima,=0b
¢ 1+\/E|a“|*1+\/ﬁ noo L+ /1 1+vn - "= 1+yn nvos Y

the Squeeze Theorem. Converges
. {0,1,0,0,1,0,0,0,1,...} diverges since the sequence takes on only two values, O and 1, and never stays

arbitrarily close to either one (or any other value) for n sufficiently large.

1

1 i e . o
1,3,2,413,5,4,6,...}. agn_lzaandagn:mfora]lposntlvemtegersn. lim an, = 0since

OO

. .1 . . 1 .

lim @an-1 = lim — ={0and lim a2, = lim = 0. For n sufficiently large, an can be made as close to
n—oo n—o0o 11 n—oo n—ooo 1+ 2

0 as we like. Converges

[forn>1] = % — oo dasn — 00, 80 {a, } diverges.

2
3 [forn > 2] = % — (0 as n — 00, so by the Squeeze

Theorem and Theorem 6, {{—3)" /n} converges to 0.
42,

2
-

.
N .
—2.5 0 20

From the graph, we see that the sequence From the graph, it appears that the sequence converges to 2.

n+1]. .. . . . n n
{(l)n - } is divergent, since it oscillates {(~2)™} converges to 0 by (6), and hence {2 + (—2)"}
between 1 and —1 (approximately). converges t0 2 +0 = 2.

From the graph, it appears that the sequence

P P PP TP TTTITT

converges to about 0.78.

2

lim —2— = Jim —=—— =1, 50
nﬂ%2n+1_n—’oo2+1/n7 ’

lim arctan n ctanl T
— ar = -,
n—oo 2n+1 4
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From the graph, it appears that the sequence

converges (slowly} to ().

si 1
Jsin 7| < — — 0asn — oc, so by the

v T Vi

sinn
Squeeze Theorem and Theorem 6, { e }

Vvn

0<

converges to 0.

From the graph, it appears that the sequence converges to (.

0ca=l . " —
TR T m-1) (n-2)

n2
S Dm-2m=3) |

forn > 4]

1
= /n —{dasn — oo

(1-1/n)(1—2/n}1—3/n)

So by the Squeeze Theorem, {n®/n!} converges to 0.

From the graph, it appears that the sequence converges (0 3.
K = Vh§n S VB'n. + §n S '\1/ n 4 A= {’/‘E,"/Sn

= ¥2.5 9 5asn—o0 | lim 24" = 2% = 1]

T 0

Hence, an — 5 by the Squeeze Theorem.

Alternate Solution: Lety = (3" 4+ 5°)*/. Then

) . o In(3®+5) 4y . 3"In3+45°In5
lm Iny = lim —————% = lim —
r—o00 r—oo T o0 3z + 5T

é x
— tm (5) 1113—%1115
SN

=1InbH

so lim y =e”% =5, and so { /37 + 57} converges to 5.

T 00

From the graph, it appears that the sequence approaches 0.

0<am:1'

S g (1) (1) (1) = 5 = Oasn— oo

1
n

1-3. 1
So by the Squeeze Theorem, { } converges

to 0.
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OL . ° A . _/ 10

1-3- —1)

From the graphs, it seems that the sequence diverges. an = . We first prove by induction

rn—1
that an, > (%) for all n. This is clearly true for n = 1, so let P(n) be the statement that the above is true for

n. We must show itis thentrue forn + 1. @ny1 = Gn - (induction hypothesis).

2

24l 3" 41
n+l1 — n+

But2n-:—112% [since2(2n +1) > 3(n+1) & 4n+2>3n+3 & n> 1] andso we get that
T

Ant1 > (%)"_1 -2 = (2)" which is P(n + 1). Thus, we have proved our first assertion, so since {(%)nfl}

diverges (by (8)), so does the given sequence {an}.
. (2) a, = 1000(1.06)" = a1 = 1060, a2z = 1123.60, a3z = 1191.02, as = 1262.48, and a; = 1338.23.
(b)) lim a, = 1000 lim (1.06)™, so the sequence diverges by (8) withr = 1.06 > 1.

n—00 n—oG

When a; = 11, the first 40 terms are 11, 34, 17, 52, 26, 13, 40,

%an if a, i1s an even number
an+1 =

3a, +1 if an, isanodd number

20,10,5,16,8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2, 1,4, 2,1, 4. When a; = 25, the first
40 terms are 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10,5, 16,8,4,2,1, 4,2, 1,4,2,1, 4,
2.1,4,2,1, 4,2, 1, 4. The famous Collatz conjecture is that this sequence always reaches 1, regardless of the

starting point a;.

. If |r| > 1, then {#™} diverges by (8), so {nr"} diverges also, since [nr™| = n [r"| > [r™|. If |r| < 1 then

. . X H . i . r° .
lim zr® = lim — = lim —————— = lim =1{,s0 lim nr" =0, and hence {nr™} converges
r—00 z—oo T T o0 ('— ].1'17') r—E z—oo — N7 n—oo

whenever |r| < 1.
. (a) Let lim a, = L. By Definition 1, this means that for every ¢ > 0 there is an integer N such that |a, — L| < e
TE— 00

whenever n > N. Thus, |a.+1 — L| < & whenevern +1 > N < n > N — 1. It follows that
lim ap41 = L andso lim a, = lim an41.
=00

TL— 00 n—oo

() If L= Km a,then lim any1 = Lalso,so Lmustsatisfy L=1/(1+L) = L*+L-1=0 =

n-—0o00

L= # (since L has to be non-negative if it exists).
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916 U CHAPTER12 INFINITE SEQUENCES AND SERIES

53. Since {an.} is a decreasing sequence, an > an4 forall n > 1. Because all of its terms lie between 5 and 8, {an} is
a bounded sequence. By the Monotonic Sequence Theorem, {a, } is convergent; that is, {@» } has a limit L. L must

be less than 8 since {an } is decreasing, so b < L < 8.
. an = 1/5™ defines a decreasing geometric sequence since @41 = éaﬂ < a, foreach n > 1. The sequence is
bounded since 0 < a,, < £ foralln > 1.

1 1 1
= <
2in+1)+3  2n45  2n43

Gp is decreasing since an41 = — an foreachn > 1. The

- 2n+ 3

sequence is bounded since 0 < a,, < £ foralln > 1. Note that a; = ¢.

P . 2z -3

iy = (iz—ﬁ defines an increasing sequence since for f{z) = Sj—+4

(3x +4)}(2) — (2= — 3)(3) _ 17
(3a + 4)? (32 + 4)
2n—3  2n 2

n>1,and a, < < == = form > 1,
- ' 3n 3n 3 -

> (. The sequence is bounded since a, > a1 = — 3 for

f'x) =

. a» = cos(nm/2) is not monotonic. The first few terms are 0, —1,0, 1,0, —1, 4, 1, .. .. Ina fact, the sequence
consists of the terms 0. —1, 0, 1 repeated over and over again in that order. The sequence is bounded since lan| <1

forall n > 1.

. an, = ne” " defines a positive decreasing sequence since the function f(z) = ze™" is decreasing for & > 1.

[f/(z) =¢™™ —2e”™® = e "(1 — 2) < 0forz > 1.] The sequence is bounded above by a1 = < and below by 0.

X

defines a decreasing sequence since for - —,
efines a decreasing sequenc f(z) o]

@
fly = —
n? 41

2 4+ 1)(1) — z(2z —z?
fi) = (7 + 1)(1) — =(22) = 1-2 < Oforx > 1. The sequence is bounded since (} < an
(22 4 1) (2 +1)°

n>1,

1 .. . . . L 1. . D
. an = n + — defines an increasing sequence since the function g(x) = = + — is increasing for x > 1.
n x

[¢/(z) = 1 — 1/2* > O for x > 1.] The sequence is unbounded since a, — oo as n — oo. (It is, however,

hounded below by a; = 2.)

car =22 a0 =23 aa =278 soan, = 22T/ 1m0 N g, = lim 20002 ol — o

—00 — OG0

Alternate solution: Let L = lim a,. (We could show the limit exists by showing that {a, } is bounded and

increasing.) Then L must satisfy L = v2- L = L*=2L = L(L—2)=0. L # 0 since the sequence

increases, so L = 2.
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62. (a) Let P, be the statement that ant1 > ax and an < 3. Py is obviously true. We will assume that P, is true and
then show that as a consequence P41 must also be true. an+2 > any1 & VZF it > V2+an &
24 dng1 > 2+ an & apgr 2 an, which is the induction hypothesis. an41 <3 & V24 a, €3 &
24an <9 < a, <7, whichis certainly true because we are assuming that a, < 3. So P, is true for all n,
and so a1 < a,, < 3 (showing that the sequence is bounded), and hence by the Monotonic Sequence Theorem,

lim a, exists.

TLi— 00

(D) If L = lim an,then lim @1 = Lalso,soL=+v2+L = L*=2+L = [2-L-2=0 &

Tn— 2K T OO0

(L+1)(L—-2)=0 <« L =2(since L can’t be negative).

63. We show by induction that {a, } is increasing and bounded above by 3.
Let P, be the proposition that an1 > @n and 0 < an < 3. Clearly P is true. Assume that £y, is true.
1 1 1 1

Then a4 > dn = < — = - > ——.

ni1 In In41 Gn

. 1 , 1 . . .
Now apye =3 — >3- — =any1 <  Pay1. This proves that {an } is increasing and bounded above
An+41 Gn

by 3.s01 = a1 < an < 3, thatis, {a,} is bounded, and hence convergent by the Monotonic Sequence Theorem.

If L = lim an, then lim any1 = L also, so L must satisfy L =3 — 1/L = L?—3L+1=0 =

LG TL— 30

L=3£5 Bul > 150l =350

64. We use induction. Let P, be the statement that 0 < @nq1 < ayn < 2. Clearly P is true, since az = 1/(3 - 2) = L.

Now assume that P, is true. Then gnyl < n = —@nsl = —Qn = 3 — ps1 23 —dn =

1 1 . . . . .
Upt2 = - < = ansy. Als0 anyz > 0 (since 3 — a1 s positive) and an41 < 2 by the induction
3 - (Y] 3 - {in

hypothesis, so B, 1 is true.

To find the limit, we use the fact that lim @n = lim anyy = L=-—- = [P -3L+1=0 =

n-—+0C n—o0 3~ L

L= ‘—in@ But L < 2, so we must have L = 3_2‘/3.

65. () Let an be the number of rabbit pairs in the nth month. Clearly @1 = 1 = az. In the nth month, each pair that is
2 or more months old (that is, a2 pairs) will produce a new pair to add to the a1 pairs already present.
Thus, @n = @n -1 + an—2., so that {a,,} = {fn}, the Fibonacci sequence.
_ fn+1

fn fnfl ‘|' fn—2 fn—2 1 1 .
(b) an = = ap_y = = =1+ =14 =1+ It
fn ! fn—l fnfl fn—l fn-fl /fn72 Un—2

. . . . 1
L = lim an,, then. = lim an.; and L = lim an—2, so L must satisfy L =1+ 7 =

o0 TL— O n—00

I’-L-1=0 = L= L%’E (since L must be positive).

66. {2) If f is continuous, then f{L) = f( lim an) = lim f{a,)= lim ap41 = L by Exercise 52(a).
n—0o00 n—0 n—00

(b} By repeatedly pressing the cosine key on the calculator (that is, taking cosine of the previous answer) until the
displayed value stabilizes, we see that L ~ 0.73909.
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67. (a) 50{ From the graph, it appears that the
5

T .
sequence{ = } converges to 0, that is,
n!

5

. n
lim — =0
TL— 00 n!

y=0.1

y = 0.001

75\ : — 125 9.5 i * -
0 0

From the first graph, it seems that the smallest possible value of N corresponding to e = 0.1 18 Y, since
n”/n! < 0.1 whenever n > 10, but 9° /9! > (0.1. From the second graph, it seems that for ¢ = 0.001, the

smallest possible value for NV is 11.

68. Let = > 0 and let N be any positive integer larger than In(e)/ In|r|. If n > N thenn > In(e}/In|r] =
nlnjr| <lne [sincelr| <1 = Injr|<0] = Inilr|")<lne = [rf"<e = |r" -0 <e andso
by Definition 1, lim »" = 0.
At lim fa,| = Othen lim - [as| = 0. and since — |an| < an < |an|, we have that lim a, = 0 by the Squeeze

Theorem.

bn +t (L“ +1

) {'d.) — :bn +bnéla+bn-2a2+bn~3a3+__.+ban~1 +an

< bn +f)n71b+bn72b2 +bn73b3 + +bbn71 + bn — (TL'I' l)bn

(b) Since b —a > 0. we have ™ — o™ < (n+ D"(b—a) = "M —(n+ 1 -a) <o =
W[+ Da — nb] < a™h

n nt+1
{c) With this substitution. (n 4+ 1)a — nb =1, and so " = (1 + l) < ot = (1 + _lf_ l) .
n n

(d) With this substitution, we get [ 1 + i l <1 = T+ i <2 = 1+ 1
2n 2 2n

(@) am < azn since {an} is increasing, 50 an < azn < 4.

() Since {a,, } is increasing and bounded above by 4, a1 < @, < 4. and so {a,,} is bounded and monotonic, and
hence has a limit by Theorem 11.
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71. (a) First we show that & > a1 > by > b.

2
al—blz%—b—\/a_bzé(a—h/EBer)=%(\/_—\@) >0 (sincea>b = a1 >b. Also

afal:a—%(a%—b):%(a-—b)>0andb_b1:b—x/a_:\/l_a(\/g—-\/a) <0,s0a>a;>h>b

In the same way we can show that a1 > a2 > bz > b1 and so the given assertion is true for n = 1. Suppose it is

true for n = k, that is, ag > ag+1 > brv1 > bx. Then

akyz — bz = 3(ars1 +bes1) — Vorrrbepr = %(akﬂ — 2y art1beq1 + bk+1)
2
= %(\/ak+1 — bk+1) >0

ksl — Oke2 = Gxe1 — 3(@k41 +brp1) = F{aki1 — bep1) >0

and by y1 — bryo = brs1 — \/ak+1bk+1 = \/bk+l (\/bk+1 - \/ak+1) <0 =

Qrq1 > Qka2 > bria > betr, so the assertion is true for n = k + 1. Thus, it is true for all n by mathematical

induction.

(b) From part (a) we have a > an > Gn41 > bng1 > by > b, which shows that both sequences, {a,} and {b.},

are monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

n+ bn
(<) Let hrn an = cand lim b, = 3. Then l1m el = hm 4 ; = = Q;B

Zo—a+ 03 = a=0.

72, (a) Lete > 0. Since lim aon = L, there exists Ny such that |as, — L] < & forn > Ny. Since lim aani1 = L,
there exists No such that |z, 1 — L| < eforn > Nz. Let N = max {2N1,2N2 + 1} andletn > N. Ifnis
even, then 11 — 2m where m > Ny, 80 |an — L| = |a2m — L| < e. Ifnisodd, then n = 2m + 1, where

m > Nz, 30 |an — L| = |azmy1 ~ L| < &. Therefore lim a, = L.
L=+ 00

m=la=1+7=2=15a=1+g;==140a =1+ 75 = 17 = 1416,

— 1 — 41 _99 _ 239
a5 =1+ gobm = 2 ~ 1.413793, 06 = 1 + 505 = 5 = 1.414286, a7 = 1 + jg0755 = a9 ~ 1414201,

ag = 1+ m = 377 =~ 1.414216. Notice that a; < a3 < a5 < ay and az > a4 > as > as. Itappears

that the odd terms are increasing and the even terms are decreasing. Let's prove that a2n—2 > a2, and
G2n-1 < G2n+1 by mathematical induction. Suppose that azx—2 > azx. Then 1+ aok—2 > 1 +agx =

1 1 1 1
< = 1+ <1+
1+ aze_2 } 4 ask 1+ a2 1+ azx

1 S 1 + 1 1
14+ ase—1 14 azes1 7 1+ azk41

= dop—1 < A2k41 =

1+ag_1 <1+amyr =
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G2k > Gzkyz. We have thus shown, by induction, that the odd terms are increasing and the even terms are
decreasing. Also all terms lie between 1 and 2, so both {an } and {b, } are bounded monotonic sequences and

are therefore convergent by Theorem 11. Let lim a2, = L. Then lim agpi2 = L also. We have

n—oo n—oc

- 1 14 1 _4+3a, 443
14141/ +an) @ B+2m)/A+an) 342, 77 34 2az,

44 3L
3+ 2L

nta = . Taking

limits of both sides, we get [, = 3L+2L°=4+43L = L[2=2 = L =42 (since

L > 0). Thus, lim aa, = +/2. Similarly we find that lim @gn+; = V2. So, by part {a), lim a, = V2.

bp b lim p,
73. (a) Suppose {p.} converges to p. Then pn41 = - +T;;n = nli_‘ngc Prsl = ﬁ:

n—oc

b
:afp = p2+ap:bp = p(p+a—b):0 = p=0lorp=0b-a.

b

bpn __a
&+ Pn 1+E£
a

b b b\ b by?
©Bypart (b), prn < | = Jpo.p2 < | = |1 < | =] po.p3a < | = |jpz < | =] po,etc. In general,
a a a a o

Pn

— > 1
a

b .
(b} Prt1 = < —py, since 1 +
a

n—oo =X

{ k3 n
Pn < (é) po, o lim p, < lim (g) -po = 0since b < a. [Byresult 8, lim +" =0if -1 <r < L,

h
Herer = — € (0,1).]
23

(d) Let a < b. We first show, by induction, that if pp < b — a,thenp,, < b —aand pny1 > pn.

bpo po(b—a —po) .
Forn — 0, we have p; — = - =—— <~ > 0sincepy < b —a. Son, > .
D1 — Po @+ o Po @+ po Do m Po

Now we suppose the assertion is true for n = k, that is, pr < b — ¢ and pr+1 > pe. Then

b b— bpr, — — b b—a—
b —pess = b—a— —Pk _alb—a)tbpr —apr —bpe _ alb—a pk)>0becausepk<b—a.
@+ P a -+ py

_ Petib—a—pry1)
a+ Pri1

S0 pe+r < b—a. And pryo — e > O since pry: < b — a.

Therefore, pry2 > pry1- Thus, the assertion is true for n = & -+ 1. It is therefore true for all n by mathematical
induction. A similar proof by induction shows that if po > & — a, then p,, > b — a and {p.. } is decreasing.
In either case the sequence {p,, } is bounded and monotonic, so it is convergent by the Monotonic Sequence

Theorem. It then follows from part (a) that lim p, = b —a.
TE—F XD

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

LABORATORY PROJECT (GGISTIC SEQUENCES O 821

LABORATORY PROJECT Logistic Sequences

1. To write such a program in Maple it is best to calculate all the points first and then graph them. One possible
sequence of commands [taking pn = % and k = 1.5 for the difference equation] is
tr="t ;p(0):=1/2;k:=1.5;
for j from 1 to 20 do p(j):=k*p{j-1)*(1-p(j-1})) od;
plot([seg(t,plt)] t=0..20}],t=0..20,p=0..0.5,style=point};
In Mathematica, we can use the following program:
plol=1/2
k=1.5
plj J:=k*pli-11*{1-p[3i-11)
p=Table[p[t], {t,20}]

ListPlot [P]

With pg = 5 and k = 1.5:

Pn

Pn

0.5

0.375
0.3515625
0.3419494629
0.3375300416
0.3354052689
(.3343628617

n
7
8
9

10
11
12
13

(1.3338465076
(0.3335895255
0.3334613309
0.3333973076
0.3333653143
0.3333493223
0.3333413274

0.3333373303
(.3333353318
0.3333343326
0.3333338329
0.3333335831
0.3333334582
0.3333333958

With py = % and k = 2.5:

Dn

Pn

n

Pn

0.5

0.625
0.5859375
(0.6065368651
0.5966247409
0.6016591486
0.5991635437

n
7
8
9

10

11

12
13

0.6004164790
0.5997913269
0.6001042277
(.5999478590
0.6000260637
0.5999869664
0.6000065164

14
15
16
17
18
19
20

0.5999967417
0.6000016251
0.5999991854
0.6000004073
0.5999997964
0.6000001018
0.5999995491

Both of these sequences seem to converge (the first to about % the second to about 0.60).
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With py = % and & = 1.5:

Dn

Dn

pn

0.875
(.1640625
(.2057189941
0.2450980344
0.2775374819
0.3007656421
0.3154585059

1)
7
8
9

10
11
12
13

1.3239166554
0.3284919837
0.3308775005
0.3320963702
{1.3327125567
0.3330223670
0.3331777051

0.3332554829
0.3332943990
0.3333138639
0.3333235980
0.3333284655
0.3333308904
0.3333321164

Withpn = £ and k = 2.5:

Pn

Pn

Pr

0.875
0.2734375
0.4966735840
(1.6249723374
(1.5859547872
0.6065294364
(.5966286980

0.6016572368
0.5991645155
0.6004159972
0.5997915688
0.6001041070
0.5999479194
0.6000260335

0.5999869815
0.6000065088
0.5999967455
0.6000016272
0.5999991864
0.6000004068
0.5999997966

- W!th o =

¥
8

and k = 3.2:

The limit of the sequence seems to depend on k, but not on po.

Pn

Pn

p'ﬂ,

0.875

0.35

0.728
0.6336512
0.7428395416
0.6112926626
0.7603646184

0.5830728495
0.7779164854
(0.5528397669
0.7910654689
0.5288988570
0.7973275394
0.5171082698

(0.7990633827
0.5137954979
0.7993909896
0.5131681132
.7994451225
0.5130643795
.7994538304

It seems that eventually the terms fluctuate between two values (about 0.5 and 0.8 in this case).
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. Withpa = I and k = 3.42:

Pn

Pn

Pn

(.875
0.3740625
(.8007579316
0.5456427596
(0.8478752457
0.4411212220
0.8431438501

n
7
b
9

10
11
12
13

0.4523028596
(0.8472194412
0.4426802161
0.8437633929
0.4508474156
0.8467373602
0.4438243545

0.8442074951
0.4498025048
(0.8463823232
0.4446659586
0.8445284520
(0.4490464985
0.8461207931

With pg = % and k = 3.45:

Pn

Pn

mn

DPr

0.875
0.37734375
0.8105962830
(0.5296783241
0.8594612299
0.4167173034
(.8385707740

10
11
12
13

0.4670259170
0.85874838490
(0.4184824586
(0.8:395743720
0.4646778983
0.8581956045
0.4198508858

14
15
16
17
18
19
20

0.8403376122
0.4628875685
0.8577482026
0.4209559716
0.8409445432
0.4614610237
0.8573758782

From the graphs above, it seems that for & between 3.4 and 3.5, the terms eventually fluctuate between four values.
In the graph below, the pattern followed by the terms is 0.395, 0.832, 0.487, 0.869, (.395, . ... Note that even for
k = 3.42 (as in the first graph), there are four distinct “branches; even after 1000 terms, the first and third terms in
the pattern differ by about 2 x 1072, while the first and fifth terms differ by only 2 x 107'°.

With po =  and k = 3.48:
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q,

Do = 0.501, k = 3.7

Po = (}75, ]% = 39 Po = 0.749, .lC =3.9

.
W

po = 0.5,k = 3.999

From the graphs, it seems that if py is changed by (0.001, the whole graph changes completely. (Note, however, that
this might be partially due to accumulated round-off error in the CAS. These graphs were generated by Maple with
100-digit accuracy, and different degrees of accuracy give different graphs.) There seem to be some some fleeting
patterns in these graphs, but on the whole they are certainly very chaotic. As k increases, the graph spreads out
vertically, with more extreme values close to Q or 1.
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12.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not

convergent.

2. 5 ™ | an = b means that by adding sufficiently many terms of the series we can get as close as we like to the

number 5. In other words, it means that imn—cc Sn = 5, Where sy, is the nth partial sum, thatis, >°7 | a;.

-3
=

Sn
—2.40000
—1.92000
—2.01600
-1.99680
—2.00064
—1.99987
—2.00003
—1.99999 _;
—2.00000
—2.00000 From the graph and the table, it seems that the series converges to —2. In fact, it

DO o0~ Oy R W N

[y
]

is a geometric series witha = —2.4 and r = —%, $0 its sum is

o 1 —2.4 —2.4
E 2 = = = —2. Note that the dot corresponding to
n=1 (-5)m 1- (_3) 1.2

n = 1 is part of both {a,. } and {s. }.
TI-86 Note: To graph {a.} and {s,}, set your calculator to Param mode and DrawDot mode. (DrawDot is under
GRAPH, MORE, FORMT (F3).) Now under E (t) = make the assignments: xt.1=t, yt1=12/{-%)"t,
x£2=t, ytZ=sum seqlytl,t,l,t,1). (sumand seq areunder LIST, OPS (F5), MORE.) Under WIND
use 1,10,1,9,10,1,-3,1,1 toobtaina graph similar to the one above. Then use TRACE (F4) to see the

values.
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Sn
0.50000
190000
3.60000
5.42353
7.30814
4.22706 . {an}

11.16706 D

13.12091

5 843" = 2% -1 .
15.08432 The series Z 7;2_ diverges, since its terms do not approach 0.
17.05462 sretl

.

aa * I

Sn

1.55741
—0.62763
~0.77018

0.38764
—2.99287
—3.28388
—2.41243 - Cad>
~9.21214 e

—9.66
966446 The series Z tan n diverges, since its terms do not approach (b
—9.01610 n=1

L
1.00000
1.60000
1.96000
2.17600
2.30560
2.38336

a)!
2.43002 ) ‘-} .

2.45801

2.47481 From the graph and the table, it seems that the series converges to 2.5.

2. 48488 In fact, it is a geometric series witha = 1 and r = (0.6, so its sum is

o0

>0 = -

n=1
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Sn
().64645
0.80755
0.87500
(.91056
0.93196
0.94601
0.95581
0.96296
0.96838
(.97259

From the graph. it seems that the series converges to 1. To find the sum, we write

1 1
915 + oL5  3ls +

Sothe sumis lim s, =1-0=1.

n— o

Sn
0.50000
(.66667
0.75000
(1.80000
0.83333
(0.85714
0.87500
9 | 0.88889
10 | 0.90000

11 | 0.90909
100 | 0.99000

From the graph and the table, it seems that the series converges to 1. To find the sum, we write

i n

[partial fractions]

i=2 (4 1=2 . .
2 3 3 4 n—1 n/ n’

and so the sumis lim s, =1—-0=1,

n—oo
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2 2 .
9, (a) lim a, = lim —-l = =, s0 the sequence {an } is convergent by (12.1.1).
— X2 T 30 dn + l 3

(b) Since lim a, = % # 0, the series 3 an 1s divergent by the Test for Divergence (7).
n—00 n=1

n T
. (a) Both 3" a; and Y a; represent the sum of the first n terms of the sequence {a, }, that is, the nth partial sum.
i=1 =1

i n
(b)Y 3 a; = a; +a; + -+ + a; = naj, which, in general, is not the same as ) a; = a1 + a2 + - + @n.

i=1 - 1=1

Ti terms

L3 +24 4+ & 4. isageometric series with first term a = 3 and common ratio r = 2. Since |r| = § < 1, the

eries ¢ : . _ _3 3 .
series converges 10 = = =57z = 173 = 9.

— 1+ -+ is a geometric series with r = —2. Since |r| = 2 > 1, the series diverges.
=23 — 24 U5 . 52 geometric series witha = —2and r = 52 = —32 Since|r| = 2 > 1, the series
diverges by (4).

. 1+0.440.16 + 0.064 + - - - is a geometric series with ratio 0.4. The series converges to 725 = 7=57% = 3

r

since || = 2 < 1.
oz
PRI . . . 2 . 2 .
. Z 5(2) is 4 geometric series with @ = 5and r = £. Since |r| = 5 < 1, the series converges to

5 _ 5 _
= 1-23 = i3 = 1

< (6!

is a geometric series with @ = 1 and r = —£. The series diverges since |r{ = £ > 1.
Bn—1 5 o

(3" 1 3\ _ o 3 o 3 .
—_ == ~1 . The latter series is geometric with o = 1andr = —3. Since |r| = 3 < 1,it

n=1
converges (o Tifi/‘l) = ‘—71. Thus, the given series converges to (i) (éf.) = %r

. 1 . .
. Since |r| == —= < 1, the series converges. Its sum is

V2
VZ+1) =2+ 2

1
is a geometric series with ratio r = —
)n \/§
_ V2 V241 5
V2-1 VZ+1

" . . s . c .
3) is & geometric series with first term 3(e/3) = e and ratio r = 3 Since |r| < 1, the

e 3e

series converges. s sumis ————= = ——.
£ 1—e/3 3—c¢

X2

: diverges since lim a, = lim i : =1+ 0. [Use (7)., the Test for Divergence.]

n=1 T + O n— 00 n-—o0 T B
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oo o
22, E - =3 E = diverges since each of its partial sums is 3 times the corresponding partial sum of the harmonic
n=1 n n=1 n
1 >3 1
series -, which diverges. [If — were to converge, then = would also have to converge b
> . ges. [If ) - g > - ge by

n=1 =1 n=1

Theorem 8(i).] In general, constant multiples of divergent series are divergent.

23. Using partial fractions, the partial sums are

)+(ni2_5)

This sum is a telescoping series and s, = 1 + - —

oc
2
Th E = li
uss o n2 -1 n1—>ngo (

=]

(n+1)? . .
24, E St sb Tt
2 T 2) diverges by (7), the Test for Divergence, since

2

. .o ont+2n+1 1
lim an, = 1 —— = i 14—
'n,~ooa nLH;o nz + 21’1 ni*ngo( + n2 + 2TL

)=1#0

00 I 2

k . . .
25. kZ_2 1 diverges by the Test for Divergence since k]i_}ﬂ;lo ag = klin;o kl—kji =1#0.

n T

2 1 1 . .

26. Converges. sp, = E TIa 3 = (Z—F_I g 3) {(using partial fractions). The latter sum is
i=1 i=1

2

(telescoping series). Thus, —— = lim
ping ) ;79-0—4114—3 ni*oo n+2

> 3n 4o "IN 1/2 1/3 1
21. Converges. = = = = — o2
g 1;1 67 ' [(2) +(3) ] 1z 1A T

Lo =}

28. Z [(0.8)""! - (0.3)"] = (0.8 "' — Z(O.S}" [difference of two convergent geometric series]

=1
- 1 B .3 _
T 1-08 1-03

29. Z Y2 =2+ v2+ ¥2+ ¥/2+ .. diverges by the Test for Divergence since
n=1

lim a, = lim ¥2= lim 2"/" =20 =1#£0.

FL— 00 TL— TE— O

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

930  CHAPTER12 INFINITE SEGUENCES AND SERIES

1 . .
30. lim a, = lim In ( Z-nrl 5) = lim ln(m) =In 712 #£ 0, so the series diverges by the Test for

L 00 rl-— 00 T OO
Divergence.

. lim an = lim arctann = § # 0. so the series diverges by the Test for Divergence.

G FL— X0

s =)
. Z cos 1)* is a geometric series with ratio r = cos 1 = 0.540302. It converges because |r| < 1. Its sum is
k=1
cos 1

=2 1.175343.
1-cosl

. The first series is a telescoping sum:

i B PSS SEUTRNE SN
n n+l n+1 n+2 n+2 n+3

n=1

+i 1 +§ 11
TI+2 ‘ n+2 n+3

n=1 n=

5/4

- N 5 15
The second series is geometric with first term 1 and ratio 1 Z % =1 174 =

o \ - =2

3 ] 3 5 ' 11
_— R —_— —_— S 1) f t . rent s 1 s B
E (n,(n, 5 + 4n) HE:I nln £ 3) + 3:1 in [sum of two convergent series] 6

m=1

[e ) o0

54 2) i 2 _,v 1y . L&l
) "Z:l (r_n + ) diverges because ,,Zﬂ 5 = 2; - diverges. (If it converged. then 3 2; - would also

converge by Theorem 8(i), but we know from Example 7 that the harmonic series ! diverges.) If the given
p o g g

n=1

20 o0 oG
. . 3 2 3 . 3.
series converges, then the difference E (5—ﬂ + =1 - E — must converge (since 5 = is a convergent

n 5 L

n=1 n=1 n=1

oC o0
. . 2 . 2 . . . :
geometric series) and equal Z — ., but we have just seen that Z — diverges, so the given series must also diverge.
n=1 n n=1 n
2 2 2 1 a 2/10 2

.02 = 0 + TE + .+ i$ a geometric series with a = 0 and r = I It converges to T, =10 1770 =3

73 T3 73/10°  73/100 73

T2 T 10t T T 117108 99/100 99

— 417 417 417/10° 417 3414 1138
AT T-1/10° 1990 " 999 333

_ 54 54 54/10° 62 54 6192 34d
6251 — 624 ok O gy Y _ o2
’ At E T T T T T 10r 10 T o0 990 55
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. 123 0000456 123 N 456 123,333 _ 41,111
1000 + 1-0.001 1000 ' 999,000 999,000 333,000

621 6021 . 6021/10° . 6021 56016 _ 6224
0t T 1os T TN T 0 T 0 T o098 T o999 111t

a _ x/3 _  x/3
1-r 1-z/3 1-z/3

|| < 3;thatis, —3 < = < 3. In that case, the sum of the series 1$ 332

>3]
n=1

(z - 4)™ is a geometric series with 7 = & — 4, so the series converges < |r| <1 & |z —4[<1
r—4  x-4
1-(x—4) 5-x

< 3 < x < 5. Inthat case, the sum of the series is

LT A = 7 (4x)” is a geometric series with r = 4a, so the series converges & [r| <1 &

4]z] <1 4> |z| < 1. Inthat case, the sum of the series is T
— 4z

0y -
H" . . N z+3 .
is a geomelric series with r = —5 %0 the series converges < |r| <1 <«

r+3

1 &
2<

|r+3] <2 <« —5 <z < —1. For these values of z, the sum of the series is

1 B 2 2
1—{x+3)/2 2—(z+3) z+1

€T -
,soitconverges &  |r| < 1. But

< = for all .. Thus, the series converges for all real values of x and the sum of the series is

_ 2
)/2  2-—cosz’

1 . . . .
. Because — — 0 and In is continuous, we have lim ln(l -+ l) = In1 = 0. We now show that the series
Tl o0 n

o0

- 1) | w— n+1) :
nzuwlln(l—f—;) —nz::lln( - )—Z[In(n+1)—lnn] diverges.

n=1
8 =(In2Z—In)+ (3 -In2) 4+ + (In(rn+1)—Inn)=In(n+1) —Inl = In(n + 1). Asn — oo,

sn = In(n 4+ 1) — o0, so the series diverges.

. After defining f, We use convert (£, parfrac) ; in Maple, Apart in Mathematica, or Expand Raticnal

. . - . 1 1/4 1/4
and §imp1ify in Derive to find that the general term is (n T (A —3) = - 4n/+ 1 4?1{ 3

. Sothe
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nth partial sum is
7

T 1/4 1/4 \ 1 | )
””_g;(4k+1+4k3)_4;;(mn3 4k + 1

L] 11 L 1 1y, )
4 5]t s )T le T )T dn—3 dn+l 4 dn+ 1

The series converges to lim s, = ll This can be confirmed by directly computing the sum using

F{2am Ko =l
sum{f,1..infinity); (in Maple), Sum(f, {n,1,Infinity}] (in Mathematica), or Calculus Sum

(from 1 to oc) and Simplify (in Derive).

2
. n n+1 1 1 1 1 .
48. See Exercise 47 for specific CAS commands. i—t———z =—=+-- 5 — . So the nth partial
{(n?+ n) i’ n (n+1) n+1

+17 | B 1)
ko (k+1) k1

1 o N 1 )
3 (n+1Y7 n+l

—1+1-

(n+1)2 n+1

The series converges to lim s, = 2.

700
49, Forn = 1,a; = 0since 81 = (1. Forn > 1,
n-1 (n-1)-1 (m-—1ln—(n+1)(n-2) 2

Tn+l (n—1}+1 (n+ 1)n nin+1)

Iy = 9pn — Sn—1

> 1-1/n
Also. .= lim s, = li =
0 2 an = e = M T

n=1
50. 0y =5, =3 — < = 2 Forn # 1
L a1 81 . 5 3- .

e , _ Hn . o—n—py] . no o on—1 2  2(n—1)
Qn = 8n — n-1 = (3—n27") — [3 ~(n-1)2 =t T 3=

N SR (0 S . T H . 1

Also, Z:l oy == nlil.I:}o 8y — nlgl;o (3 - E) = 3 because mlrlflgo 5 = m]__]_{;; i
51. (u) The first step in the chain occurs when the local government spends [ dollars. The people who receive it spend
a fraction ¢ of those D dollars, that is, D¢ dollars. Those who receive the De dollars spend a fraction ¢ of it, that

is, De¢? dotlars. Continuing in this way, we see that the total spending after n transactions is
D{1—¢"
S.=D+De+ D+ Dl = _T(lé) by (3).

(b) lim 5, = lim bu-&) _ D lim (1 -¢") = TP__ (since0<ec< ]l = lim ™ =0
—c

O T - o 1 - n—o0 T — O
D .
= — (sincec+s=1) = kD (sincek =1/9
&
ITe= 0.8, then s = 1 — ¢ = 0.2 and the multiplicris &k = 1/s = 5.
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52. (a) Initially, the ball falls a distance H, then rebounds a distance r H, falls r {7, rebounds 2 H, falls 7211, etc. The
total distance it travels is

H+2H+2°H+2r°H + -

:H(1+2T+2’r2+2r3+---)

=H[1+2r(1+r+72 4} "H[H—Qr(

1 )} ,_H(Hrr) meters
1—7 1—7r

{b) From Example 3 in Section 2.1, we know that a ball falls %th meters in ¢ seconds, where g is the gravitational

acceleration. Thus, a ball falls h meters in t = /2k/g seconds. The total travel time in seconds is

\/WJFQ /_Q—H—r+2\/—r2+2\/2?Hr%+ \/_2;}7[1+2\f+2\/" + 20 4 ]
e ) ()

(c) It will help to make a chart of the time for each descent and each rebound of the ball, together with the velocity

just before and just after each bounce. Recall that the time in seconds needed to fall h meters is \/2h /g. The
ball hits the ground with velocity —g +/2h/g = —/2hg (taking the upward direction to be positive) and
rebounds with velocity kg /2h/g = k +/2hg, taking time k 1/2h/g to reach the top of its bounce, where its

velocity is 0. At that point, its height is k2h. All these results follow from the formulas for vertical motion with
o . dy dy L2
gravitational acceleration —g: = 9 = = priaki e gt = y=yo+wel—ggt°

number of time of speed before

bounce
V2Hyg
V2kiHyg

speed after time of peak

descent height

descent bounce

k2Hg k\/2H/g KT

22Hg | k/2k*H/g k*H
k2k*Hg | k\/2k'H/g KO H

ascent

L 2H/g

2 V2k2H /g

3 2k H g

The total travel ime in seconds is

2k Em,/zf +k2,/ +k2,f
4

T BN

g
Another method: We could use part (b). At the top of the bounce, the height is k*h = rh, s0 /7 = k and the
result follows from part (b).

(1+2k+2k +2k% +

h+2k(1+k+k2 ELR R

g 11—k

8.3 ., (14e)™™
l(l—%—(:)fl

is a geometric series witha = (1 +¢) > and r = (1 +¢)™ ", so the series converges when

<1 & |l+e>1 & l4+e>lorl+e<—1 & c>0ore< -2 Wecalculute

2

the sum of the series and set it equal to 2:

(1+¢)” _
—(14e) !

2
1
& _o_gf At
l1+e 1+
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1=2(14¢)2—2(14+¢) & 27°4+2-1=0 & c= 'Qim = i"/g_ ! However, the negative root is

inadmissible because —2 < 3‘% < 0.8 ¢c= 3@

. The areabetweeny = 2" ' andy =" for0 < z < 1is

We can see from the diagram that as n — oc, the sum of the areas

betweern the successive curves approaches the area of the unit

- 1
square, that is, 1. So Z — =1
n=1

ni{n+1)

. Let d,, be the diameter of ,,. We draw lines from the centers of
the C; to the center of I (or ), and using the Pythagorean

Thecrem, we can write 12 + (1 — éd1)2 = (1 + %dl)g &

1=(1+ %dl)z -(1- %dl)Z = 2dy (difference of squares)

= dy = £. Similarly,

1= (1+23de)® — (1 —di = Ld2)? = 2da + 2d1 — &} — dida
=2-di){di+d2) &

1 (1—dp)? 2 -
(12:2_(]:] *d1:2_—(;1,1:(1+%d3) “(l—dl—dQ—%dg)z E=4 d3:
(L-i,d)’
2"2?:](1’
1

1 . .
T =34 respectively, so we suspect that in general, dn, =

[t —(di +d)]*
2 (d + ) ,and

in general, dp 41 = . If we actualily calculate da and ds from the formulas above, we find that they

m. To prove this, we use

induction; Assume that forall k < n, dy = k(Tl-i—_*ld)" = «]1; - }C—j—_—l Then

(telescoping sum). Substituting this into our formula for d,, 41, we get

2 1
n—)—l} (n+1)? 1
n n+2 " (n+1){n+2)
n+1 n+1

Now, we observe that the partial sums } " | d; of the diameters of the circles approach 1 as n — oo; that s,

, and the induction is complete.

o [ o]
Z Qn = ; lem = 1, which is what we wanted to prove.

n=1
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. |CD)] = bsiné, = |CD|sinf = bsin® 8. |EF| = {DE|sint = bsin® 8, .. .. Therefore,

sinf

since this is a geometric series with
1—siné

|CD| + |DE| + |EF| + |FGl +--- = szm e#b(

r = sinf and |sin #| < 1 (because 0 < 6 < 3).

. Theseries] —1+1— 14+ 1—1+--- diverges (geometric series with 7 = —1) so we cannot say that

0=1-14+1-14+1-1+"--.

L If Z a., 1s convergent, then hm an, = 0 by Theorem 6,50 lim — # 0, and 50 Z —— is divergent by the Test

n=1 n—20 n n=1

tor Divergence.

o0
n=1

can = lim 3.7 ca; = lim ¢}7 ;@ =c lim 37 ai = ¢35)L, an, which exists by hypothesis.
n—o0 n—oo

Th— O

. If Y cay, were convergent, then 3"(1/c)(can) = 3 ax would be also, by Theorem 8. But this is not the case, so

5" can, must diverge.

. Suppose on the contrary that 3 (a,, + b,,) converges. Then 3 (a, 4 bn) and 3 an are convergent series. So by
Theorem 8, 3~ [(2n + b, ) — ax) would also be convergent. But 3~ [(@n + bn) — an] = 3 bn, a contradiction,

since Y by is given to be divergent.

. No. For example, take ™ an = Y nand ¥ bn = 3_(—n), which both diverge, yet 3 (an + bn) = >_ 00, which

converges with sum 0.

. The partial sums {sn } form an increasing sequence, since s, — 8n—1 = @, > 0 for all n. Also, the sequence {5 }
is bounded since s, < 1000 for all n. So by Theorem 12.1.11, the sequence of partial sums converges, that is, the

series » . ar, is convergent.

1 _ 1 _ f‘nfnJrl - fnfn-—l — fn+1 — fn—l _ (f’nfl + fﬂ) _ fn—]
fnflf'n fnfn+1 f%fr»—lfn+1 fnfn—lfn+1 f‘ufn—lfn+]
1

T Faoifas

b ‘ f
{ );fannm (fn  fn fﬂfn+1) [from part (a)]

n2

.“m[(l ) 1)+(1 ) 1)+(1 ) 1)+
n—oc f1f2 fzfs f2f3 f3f4 f3f4 f4f5

(=7 7))
fn-lfn fnfn+1

. (a) RHS =

= LHS

1 1 1 1
:lim( — )z — (0 = — =1 because f, — ocoasn — co.

fle fnfn+1 f1f2 1-1

Tt 20
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N QT o (N fn ) as ab
(L) ; fnilf“+1 B Zz:(fﬂlfn fnfn-}—l (de OVC)
i( L_L)
=2 f" 1 fﬂ+1
1 1 1 1 1 1
K'“E)+(‘E}:)+(ﬁ—fs
G
far fan

>=1+1U—U*ZbecausefnHocasn—m)o.

b. (a) At the first step, only the interval (3, 3) (Iength 1)is removed. Al the second step. we remove the intervals

(1,2} and (I, 2), which have a total length of 2 - (3 ) . At the third step, we remove 27 intervals, each of

length (1) In general, at the nth step we remove 2"~ " intervals, each of length (3)", for a length of

2 1L (4" = (2™ Thus, the total length of all removed intervals is Z Lyt 1—1% =1

3 313
n=1
(geometric series with o = -; and r = %). Notice that at the nth step, the leftmost interval that is removed is
1 2

({2)7.(%)™). so we never remove 0, and 0 is in the Cantor set. Also, the rightmost interval removed is

(1= (2)",1=(3)").s01is never removed. Some other numbers in the Cantor set are 125,58
. - 2 . P :
{(b) The area removed at the first step is %; at the second step, 8 - (%) ; at the third step, (8)° - (é) " In general, the
. — -1 . .
area removed at the nth step is (8)"* (%)TL =3 (ﬁ)” , 50 the total area of all removed squares is

olg
il§?1717 1/9 -
9\ 9 1 —8/9 7

FO |

1 2 4 i 1 1000

2 3 1 4 Lo0G 1

1.5 2.5 2.5 2.5 H00.5 a00L.5
1.75 2.75 1.75 3.25 T50.25 250.75
1.625 2.625 2125 2.875 625.375 375.625
1.6875 2.6875 1.9375 3.0625 687.813 313,188
1.65625 | 2.65625 | 2.03125 | 2.96875 656.594 344.406
1.67188 | 2.671858 | 1.98438 | 3.01563 672.203 328.797
1.66406 | 2.66406 | 2.00781 | 2.99219 6564.398 336.602
1.66797 | 2.66797 | 1.99609 | 3.00391 6568.301 332.699
ann | 1.66602 [ 2.66602 | 2.00185 | 2.99805 666.350 334.650
arz | 1.66699 | 2.66699 | 1.99902 | 3.00098 667.325 333.675

The limits seem to be %% 2, 3, 667, and 334. Note that the limits appear to be “weighted” more toward aa. In

..o+ 2a
general, we guess that the limit is 1——-%
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() Gng1 — @n = 3{an +an1) —an = w2(@n = @n-1} = —3l3{an-1 +an-2) - an-1]

tyn—1
= b — el == (1) (e o)
Note that we have used the formula ay, = %(ak_1 + ap—2) a total of n — 1 times in this calculation, once for

each k between 3 and n + 1. Now we can write
tn = a1 + {az —a1) + (a3 — a2) + -+ + (@n-1 — An-2) + (@0 — €n 1)
n— n— k—1
= +Zk=1l(ak+1 —ag) = a1 +Zk::11(_%) (a2 —a1)
l)kAI

lim an =a1 + (a2 — al)ZE’;l(*i

N0

= a1 + (a2 — a1)[ﬁ§j]

a1 + 2a2
3

2

=a; + 5{ay —a1) =

O

n 1 1 5 5 3 23
L. @k ) Ty T2 2”2 123 ™76 T23.4 w

-1
% + 5 i v % The denominators are {n + 1)1, so a guess would be s, = ——""(n(z+)1)!

P — E+1) -1
(by Forn =1,8 = % = % so the formula holds for n = 1. Assume s = %

(kD=1 k41 (k1)1 k+ 1
B U N e VN CES V)
(k+2)—(k+2)+k+1 (k+2)-1

(k+2)! T T (k+2)!

Thus, the formula is true for n = k + 1. So by induction, the guess is correct.

4 =

. Then

| 1 o n
¢) lim 8, = lim ———— = lim |1 - ——= | =1landso — =1
O s = A T [ (n+1)J PR
Let 7y = radius of the large circle, ro = radius of next circle,
and so on. From the figure we have ZBAC = 60° and
cos60° = r1/ |AB|, so |AB| = 2r; and [DB| = 2.
Therefore, 2r) =r1 + 72+ 2r2 =r1 + 32 =

r; = 3ra. In general, we have rp, 1 = %rn, s0 the total area

is
A=mnrt +3nrs +3nrs +---

1 1 1
=7rrf+31rr§(1+3—2+3—4+373+
=7rrf+37r’rg-l+l/g :wrf+%m~§

« (]
Since the sides of the triangle have length 1, [BC| = 1 und tan 30° = % Thus, ry = t.angd[) = 2—\1/3
2 2
ra = 517 s0 A= ‘ﬂ'(ﬁ) + %(slﬁ) = Z + & = L1 The area of the triangle is 3@, so the circles

occupy about 83.19% of the area of the triangle.
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12.3 The Integral Test and Estimates of Sums

1
1.3

1 R R '
3 = F < , m X, and so on, ”OZRI.R <
n=2 *

integral converges by (8.8.2) with p = 1.3 > 1, so the series converges.

1 2
1. The picture shows that as = 573 < fl de,

>0

1

. From the first figure. we see that ) ¥ = fix)

S Fla)de < 7, ai. From the second

figure, we see that
Z?:Q ;< ‘]']U f(z) dx. Thus, we have
S e < [U fle)de < 30 a,

| s 1 Gy

of ; X 1 2 3 4

. The function f{z) = L/z" is continuous, positive, and decreasing on [1, oc), so the Integral Test applies.

Rl £ 37" 11 1. - , ,
/] — dr = lim /]' z *dr = lim [%} = lim (_F +3) = —. Since this improper integral is

& t—oo t— o0 1 t—oo 3
o
. 1,
convergent, the series E —; is also convergent by the Integral Test.
n

n=1
. The function f(x) =1/ {x == ™4 is continuous, positive, and decreasing on [1,20). so the Integral Test applies.

¢
oo 1y ) t . ‘ . — .
[loc Y de = lim g V4 dr = lim [%1‘3/4] = lim (%t&/‘l — %) = 00,50 3,77 1/ ¥n diverges.
: t—oo t—o LY 1 ter oo \ > =

. The function f(ix) = 1/(3x + 1) is continuous, positive, and decreasing on [1, oo}, so the Integral Test applies.

oo ] b ’
/ dx litn / dov litn [% In(3z + 1}]? = blim (3In(36+1) — 3 Ind] =0
S0 1 e px

3r+1 - b—oc Ji B+ 1 b—na

so the improper integral diverges, and so does the series >~ | 1/(3n + 1).
. The function f({x) = e~ 7 is continuous, positive, and decreasing on {1, 00), so the Integral Test applies,
! —x . Lo . —a b . - - — 5 —
[Ze "dr= lim f/e "dr= lim [—e 7] = lim (—e™"+e7') =¢7 50 T2, e converges. Note:
' b—o b— o 1 bh— o0 o
This is a geometric series, with first term a = e~ " and ratio r = e, Since |r| < 1, the series converges to
()_1/(1 — (?"1) =1/(e--1}.
. f{z) = ze™ is continuous and positive on [1,00). f(z) = —ze “+e ™ = (1 —x) < Oforz > 1,50 fis

decreasing on [1, oc). Thus, the Integral Test applies.

j»loc re Tdr= lim [,lb xe T dr = lim [fa:e—m - g—m]i’ (by parts)

b " b—oo

= blim {—beib —e et 4 eil] =2/e
since lim be ™" = lim (b/e”) = lim (1/¢") = 0and Jim e”" =0.Thus, 3> , ne™" converges.

h— h— oo h—oa
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- 4 2 I . - .
8. The function f(z) = x i - = 1+ ) is continuous, positive, and decreasing on [1, 0o}, so the
x x

Integral Test applies.

f
/ flz)de = ]nn / (1+—1—) dr = lim [z +1In(z + 1))} = Im (¢t +In(t +1) = 1 - In2) = 00,50
1 :,3+1 t— o0 t—o00

t-— 00

z+2 A nt2 n+?2 ) o
]1 11 dx is divergent and the series nzzl — is divergent. NOTE: nlgxgo merri 1. so the given series
diverges by the Test for Divergence.

e I3

= o
9. The series E 58 is a p-series with p = 0.85 < 1, so it diverges by (1). Therefore, the series E o must

n=1 =21

1
also diverge, for if it converged, then Z — would have to converge (by Theorem &(i) in Section 11.2).

n=1

e o) [eo] o0
0. Z n "% and Z n~'% are p-series with p > 1, so they converge by (1). Thus, Z 3n converges by Theorem

n=1 n=1 n=1

(i) in Section 11.2. Tt follows from Theorem &(ii) that the given series Z ('n.‘l“1 + 3-n.71'2) also converges.
mn=1

1 L 1 1 1 . . . .
M1+ 3 + 5 + o + 55 4+ = Z 5 This is a p-series with p = 3 > 1, so it converges by {1).

n=]

12. 1+ + + + +-o= — This is a p-series withp = 2 > L soit
22 33 44 55 Zinyn 21 A p p=3

converges by (1).

4 =55 el 2 L 73 by Theorem 12.2.8, since Z 5 and z 5 both converge by (1}

L n=1" n=1 T n=1

> 1), Thus, ¥ w converges.

(withp=3>1landp = 3
n

a
2

n=1

i4. The function f(z) = - i 5 is continuous, positive, and decreasing on [3, 00), s0 we can apply the Integral Test.

o 5 t = B -
/ 2 —dz = lim [ 2 dr = lim [5ln(r —2))5 = l]m [o In{t — 2) — (] = o0, s0 the series Z 2
43 3 2

r—2 t—oe f, T~ Panrpied

n—2

n=3

diverges.

18. The function f(r) = — 3 is continuous, positive, and decreasing on [1, ac), so we can apply the Integral Test.

'J;y 1 [ . 1(t {1
= — lim |tan — ] — tan —
1 2t 2 2

Therefore, the series 5 4 COMVETZes.
= 1
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16. The function f(z) = % = % + ﬁi [by partial fractions] is continuous, positive, and decreasing on

[1, 00) since it is the sum of two such functions. Thus, we can apply the Integral Test,

o0 3$+2 . t 2 1 l t
AL N 1 _ 1
/] 2z + 1) dx tllm 1 [ + Py 1] dz tgr&[anw+]n(m + 1)

:tlim 2lnt+1n{t +1) —In2] =

dn+2

Thus, the series Z ﬂﬁi

diverges.

is continuous and positive on [1, o0), and since

fx) = ﬁ < O forz > 1, fis also decreasing. Using the Integral Test,
T+

. t
2 dr = lim —L _dr = lim ln_a:_—f_—_l_)_ = — 11m [ln{t* + 1) — In 2] = o0, so the series
;o zi41 t—oo J; w? + 1 2 , 2toes

diverges.

1 B 1

. The function f{z) = AR (5o2P 41

Is continuous, positive, and decreasing on [2, co), so the

oo t ¢
Integral Test applies. /; flz)dz = tll{lalo A flz)dz = 11:101o i m dx thﬁnrﬂ}}o[tam Yo —2))5 =
s T =
. “1 L e
tlin;o[tan (t—2)—tan” 0] = 5 0 = 5 $0 the series TZ_Z

1 .
———— converges. Of course this means
n? —4n +5

that Z (.onver es 100,
n?—4n L+ 5 4n &

n=1

L fr) = ze™® is continuous and positive on [1, 00), and since f'(x) = e ™ (1—22%) < 0for
x > 1, f is decreasing as well. Thus, we can use the Integral Test.

2 t
Jwe™ dr = Jim [—%e’“’z] [ =0- (—3e7!} = 1/(2e). Since the integral converges, the series converges.

1—2lnzx

. flx) = — % is continuous and positive forz > 2, and f'(x) = 5
z

< Oforz > 2.s0 f is decreasing.

t— o0

“Inzx ¢ H = lnn >\ lnn
/2 a7 dr = lim - - arts] = 1. Thus, Z 3= Z oy converges by the Integral Test.

n=1 n=2

. ) L L 1
is continuous and positive on {2, co), and also decreasing since f'(x) = Atz < Oforz > 2,

clnz x?(Inz)?

s0 we can use the Intepral Test. / i dr = tlim [In(lnz)]} = tlim (In{Int) — In(ln 2)] = oo, so the series
2 00 — 00

diverges.
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22, The function f(z) = is positive, continuous, and decreasing on [1, 00). [Note that

x
i+ 1
4 4 4
; T+ 1—4x 1-3x ' .
x) = = <0 1, o).] Thus, we can apply the Integral Test.
f'(x) T 17 EFE on [1,00).] Thus pply g

t

oo t 1
/ L _dz=lim f —2(2-3;)— dzr = lim {% t.anﬁl(:cz)} = é lim [tan ™" (£*) — tan ' 1]
1 1

zt 41 t—oo0 1+ {22)2 t—00 1 00

_1(1_1 _r
T 2\2 TR

o
. n
so the series E ———— CONVETZES.
nd + 1

n=1

. The function f(z) = %H is continuous, positive, and decreasing on [1, o), so the Integral Test applies. We use

partial fractions to evaluate the integral:

o0 4
/ ! dr = lim [1 -z } dr — lim []nz — % In(1 +3:2)]
1 1

3+ t—oo r 1+zx2 t—oo

4

1

li [ln i } L lim (ln t In L )
= lim S — - e | —
t—oo V1+a2], toeo V142 NG

= lim ]n—l-——+lln2 —lln2
=00 VI+1/2 2 2

o0
s0 the series E

n=1

converges.
n¥ 4+ n

=)=

— = i positive and continuous on [3, o0}, and is decreasing since x, In z, and In(ln z) are all
zlnzln(ln z)

o0 d’ .
increasing; so we can apply the Integral Test. / s = lim [In{In(Inz))]} = cc. The integral
3

zinzin(ln z)

> 1
diverges,so >

nlnnln(lnn) d. bl
wnlnnln(lnn) iverges

. We have already shown (in Exercise 21) that when p = 1 the series

)P diverges, so assume that p # 1.
ame n(lnn

p+inzx

- . . . / _
is continuous and positive on [2, 00), and f'{x) = 2

flz) = < 0ifz > e P sothat fis
z(lnz)P

eventually decreasing and we can use the Integral Test.

t
———pL (forp # 1) =tg&[

(In$)' "] (n2)'"?
1—-p 1-p

This limit exists whenever 1 —p < 0 & p > 1, so the series converges for p > 1.

) : > dz . (Inlnz) #*!
. As in Exercise 24, we can apply the Integral Test. _ = lim | ——
s clnz t—oo —-p+1

t
fi 1;if
(Inlna)? L( orp # L

. inlnt)~?*!
p = 1 see Exercise 24) and l'lim %

] exists whenever —p+ 1 <0 & p > 1, so the series converges
— X mp

forp > 1.
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27. Clearly the series cannot converge if p > — 1, because then lim n(1 + n?)? £ 0. Also, if p = —1 the series

diverges (see Exercise 17). So assume p < ~ 1, p# — 1. Then f(z) = (1 + 2%)P is continuous,
positive, and eventually decreasing on [1, oc), and we can use the Integral Test.
> t 2y p41
142277 1+ 127 2 ‘ o
[1 (_—&—/r_)_ = i . ( +)1 — i—l' This limit exists and is finite
p p

1 "de =1
]} x(1 4+ 2% dx im | o1

o

e p+1 <0 < p<-—1,sothe series converges whenever p < —1.

. . Inn L Inz . .
L Ifp < 0. lim —— = oo and the series diverges, so assume p > 0. f(z) = o is positive and continuous and

TH—o0 T

f{x) <0 forz > e'/? so f is eventually decreasing and we can use the Integral Test. Integration by parts gives

Ine 2T~ p)Inz —1] f B 1 - .
/. g = thl&{ T l(forp;él) T p[(l—p)lntfl}Jrl],

which exists whenever 1 —p << 0 < p > 1. Since we have already done the case p = 1 in Exercise 25 (set

Inn
p = —1 in that exercise}, Z — converges < p> L
n=1 1tF

. Since this is a p-series with p = 2, {(x) is defined when = > 1. Unless specified otherwise, the domain of a
function f is the set of numbers ¢ such that the expression for f(z) makes sense and defines a real number. So, in
the case of a series, it’s the set of numbers z such that the series is convergent.

. () f(a) = 1/a* is positive and continuous and f'{z) = —4/z” is negative for z > 0, and so the Integral

x| 1
Test lies. ¥ — &= 810 = e —— 22 1.0R2037.
est applies RZ:‘I - 5 ; ot

1 1 i . 1 1 ) —
Ry < ./m A dxr = ,lil},]c ey = Jlim vy 3 (10)3) = 5000 5o the error is at most (1.0003.

] 1 1 i
by &0 + —dr<s<s —dr = < g <
(h) 510 ./11 ) <8< s +.[m ) T S0+ T ()7 = $ < s10+ 5710}
1.082037 + 0.000250 = 1.082287 < s < 1.082037 + 0.000333 = 1.082370, so we get s =& 1.08233 with
error < (0.00005.

> ] 1 1
(c) R, < [ —dr==—=.8 R, < 000001 = —<-— = n'>10° =
.z In’ In? 107

n> VY (10)0/3 = 32.2, that is, forn > 32.

1. .. . 2. .
A flx) = Rl positive and continuous and f'(x) = ——; is negative for 2 > ), and so the Integral
€ &
. > 1 1 1 1 1
Test lies. — =810 = — : : s 4 — = 1.549768,
est applies TEI ~5 M s = 3 + : 102

> -17° 1 1
R < [ — dzr = lim {—} 1 - ) = —, so the error is at most (0.1,
J1 r 10

n X t— o0

s o)

o
(b).919+/ ‘—ngSbS610+/
Jin T Juw &

1.549768 4+ 0.090909 = 1.640677 < s < 1.548768 + 0.1 = 1.649768, so we get s =z 1.64522 (the average of
1.640677 and 1.649768) with error < (1.005 (the maximum of 1.649768 — 1.64522 and 1.64522 — 1.640677,
rounded up).

1
*—2“0’.1‘ = Slg+%< Sbw—f—m =

S
(c)h’.ué/ ——drf—SoRn<()(]011tl<-—1— < no> 1000
Ju n 1000
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SECTION 123 THE INTEGRAL TEST AND ESTIMATES OF SUMS & 943
32. f(x) = 1/2” is positive and continuous and f'(z) = —5/2® is negative for z > 0, and so the Integral Test applies.

f o0 t
Using (3), fin < j z 2 dr = tlim [ﬁ] = ﬁ. If we take n = 5, then 55 == 1.036662 and Rs < 0.0004.
N gl P .

So 5 =2 85 =~ 1.037.

kil

. f(z) = 27%/% is positive and continuous and f'(z) = —32575/% is negative for 2 > 0, so the Integral Test applies.
From the end of Example 6, we see that the error is al most half the length of the interval. From (3), the interval is

(sn + [ fleyde, s + I =) dm), soits lengthis [ f(z)do — [, f(z)dz = f:“ f(z) dz. Thus, we

need n such that

1M g 1[—2}”"H 1
0.01>—/ x dr = = | — -
2/, 2| Vx|, NS n-+1

& no> 13.08 (use a graphing calculator to solve 1// — 1/+v/x +1 < 0.01). Again from the end of Example 6,
we approximate s by the midpoint of this interval. In general, the midpoint is

1 [(sn + 2, (=) dz) + (sn+ [ f(:r:)da:)] = 8n + —é—(l:‘j_l flz)de + f(m)dm). So using n = 14,

we have s & 514 + %(fff 23 e+ [ a3 dm) ~ 20872+ —= + L 22,6127 = 2.61. Any larger

15

value of 7 will also work. For instance, 8 ~ szp + ﬁ + ﬁ m~ 2.6124.

Inz+2 . o
net 7 Is negative for z > 1, so the Integral Test

1 . .. .
. flx) = ) ts positive and continuous and f'(z) = ~ 2 (na)7

- > d N L N
applies. Using (2), we need 0.01 > 2 = lim —1 = ——. This is true for n > €'%°, s0 we would
z(lnz)?  t—oo|lnz|  Inn

k13

have to take this many terms, which would be problematic because e!"” == 2.7 x 10**.

20 oS
- | B . . . :
. E p 1O — E TG0l is a convergent p-series with p == 1.001 > 1. Using (2), we get

n=1 n=1

0.001

t—o20

) -0.001 7t ¢
R, < / e = lim [E ] = —1000 lim [L :Amoo(—n ! ): 1000 e want

—0.001

. 1001} -9 0.001 1000
Ry < 0000000005 ¢ —ooer <5 x 1070 & nTT > emmry

n> (2 x 1011)'%% = 21000 5 311000 1 g7 % 103 x 10990 = 1.07 x 10",

£0.001 n0-001 )

_ 2lnz{] —Inx)

Inz\, . . . ‘
. (a) fz) = (%) is continuous and positive for z > 1, and since f'(x) 3 < Oforz > e we
: T

. = finz\’
can apply the Integral Test. Using a CAS, we get / (%) dx = 2, so the series also converges.
J1

oo 2 2
(ln_z) dr — (Inn) +21nn+2'

{(b) Since the Integral Test applies, the error in 3 = g, 18 A, < /
x

n n

(Inz)? +2Inz + 2 a
x

{c) By graphing the functions 1 = nd y2 = 0.05, we see that i1 < yz forn > 1373.

(d) Using the CAS to sum the first 1373 terms, we get s137a =~ 1.94.
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94 T CHAPTERI2 INFINITE SEQUENCES AND SERIES
37. (a) From the figure, az + as + - -+ an < []° f(x) dx, so with

11 1 1 1 "1
e e S TP B — dz = lnn. Thus,
flx) J.-2+3+4+ +n_./] L ar - nn

1
,r,-.”:1+£+‘+1+~-+—§1+inn.
: . 4 T

0 |
(b) By part (), sy < 1-41010° = 14.82 < 15and 150 < 1+ In 10”7 & 21.72 < 22

38. (a) The sum of the areas of the n rectangles in the graph to the right is ¥

1 1 1 "t de .
1+ -+ -4+ —. Now — is less than this sum because
2 3 n 1 T

the rectangles extend above the curve y = 1/, so

2

il 11 1 :
/ —dr=lnin+1)<1l+ =+ =+ + —. and since
i x 3 n

1 1 1
lnn<inn+1),0<1l+ -4+ +--+ = —lnn =t
2 3 n

(b) The area under f(x) = 1/xbetweenxr =nandx =n + 1is

n+1
/ e =In{n + 1} — Inn, and this is clearly greater than the
i€

-For

area of the inscribed rectangle in the figure to the right

[which 18

1
1]-50tntn+1 =[n{n+1)—Inn] — L > 0,
.

n+ + 1
and 80 £, > 5,41, 50 {tn } is a decreasing sequence.
(¢) We have shown that {¢,,} is decreasing and that ¢, > O forall n. Thus, 0 < &, < ¢, = 1,80 {,. } is a bounded

monotonic sequence, and hence converges by Theorem 12.1.11.

I nb . . .
39077 = (0T = () =it = . This is a p-series, which converges for all b such that - Inb > 1

n- Inb

& Inb< -1 & b<e ' & b<l/e [withd > 0]

12.4 The Comparison Tests

1. (a) We cannot say anything about 3 a,.. If an > by, forall n and 3 b, is convergent, then Y a,, could be
convergent or divergent. (See the note after Example 2.)

(b) If @y < by for all re. then 3 a,, 1s convergent. | This is part (i) of the Comparison Test.]

2. (a) If a,, > b, for all n. then Z ti,, 1s divergent. [This is part (ii) of the Comparison Test.]

{b) We cannot say anything about 3~ a,.. If @, < by, forall nand 5 by is divergent, then 3~ a., could be

convergent or divergent.
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SECTION 124 THECOMPARISONTESTS L 945

x 1 .
L 1 5 forall n 2 1, s0 Z converges by comparison with el which converges

'n2+n+1 Znt4n+l
because it ts a p—series withp=22>1.

. 2 < 3 foralin > 1.s0 Z —2— converges by comparison with 5 — = which converges
nt 14 13+ 4 g /1 ~

because it is a constant multiple of a convergent p-serics (p = 3 > 1).
[« (a2 [=¢

i) 5] ) L=
, — f Iln>1, converges by comparison with — =D — , which converges
2+ 3” oratn " a1 243" ges by P :4;1 J 7,21 &

1 . . . .
because }: 30 18 a convergent geometric series with r = —é— (|r|] < 1)

n=1

1
>ff0ralln>2 50 Z

1
n—n il

o1

diverges by comparison with the divergent (partial) harmonic series

no 1 i 1
— = — fnr allm > 1, s0 E i diverges by comparison with the harmonic series Z -
n2 X! n? n—=1 ?’1

2?7 2!:
T )"

TL=1

3" " 3 443" . ) . . .
. i > 3 = (%) forall n > 1, so E + s diverges by comparison with the divergent geometric series

1 "L costn . ) e 1
< — ., 50 the series Z R converges by comparison with the p-series Z o)
n=1 n=1

cos? n 1
"m2 4] T n?l

(p=22>1).

21 2 211 1
" < 2 <= 3nE Z Lonverg,eﬂ: by comparison with Z . which converges

"3nt 41 3nt 4+l 3nd

n=1"
because it is a constant multiple of a convergent p-series (p = 2 > 1). The terms of the given series are positive for

n > 1, which is good enough.

X nf 1 1 an n'+n 14 1/n? @il .
Cfan, = n% — and b,, = - . then HIEI;O o = nh—I'I;o i 7111:1010 ﬁ/_i =1, 50 g - — diverges by

[e =]
the Limit Comparison Test with the divergent (partial) harmonic series 3 =
n=2 ?1
n® nf+l _n® 1

Or: Since an = > ——— = = = by, we could use the Comparison Test.
n? -1 n nd  n

fea)

1+sinn 1y . . . .
ST 1 D” and ZU T Z ( ) , so the given series converges by comparison with a constant
T

multiple of a convergent geometric series.

fee)
n—1 -1
is positive forn > 1 and = L —= = Z Lonvergcs by comparison with the convergent

nAn 4" n4“

2= 1 n
geomelric series E (—) .
4

n=1
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946 CHAPTER 12  INFINITE SEQUENCES AND SERIES
vn

= 1
di s by comparison with the divergent (partial) p-series —
i iverges by comp gent {p 'p 322 n

3
<~ , an
/T

3 . . .
d Z —— converges because it is a constant multiple of the convergent p-series
“— ny/n

5 > 1), so the given series converges by the Comparison Test.

o0

1 . , _ 1
converges by comparison with the convergent p-series Z

1 > 1
< = ——r.5 —_—
vn3  n3/? *0 HZ=1 vnd+1 o

(p=2>1).

. Use the Limit Comparison Test with a, = and b, = i:

1
vn? +1

. Un . n . 1 . . . 1 ..
lim —= = lim ——— = lim ——===== == 1 > (. Since the harmonic series E — diverges, so does
T

T2 O bﬂ n—0o \/n2 +1 n—oc 1 + (1/?’L2) —_
' 1

o0

o . . 1 1
. Use the Limit Comparison Test with a,, = ——— and b, = —:
2n+3 mn
20
. . . T,
> 0. Since the harmonic series E — diverges, so does
7

n=1

. a n
lim = = |

1
. _ _1
noee 2+ 3 meseo 24 (3/n) 2

k3

o ik 9 L n . o
) c—=(2]. 21 s a convergent geometric series ([r] = 2 < 1), so
2 (‘3) s 3) gent g (r=3<n S 2o

the Comparison Test.

- . . 1+2" 2" L Gn /2" +1
. Use the Limit C son Test with @,, = ~————and b, = —: lim — = ey (et
e Limit Comparison Test with a T 3 Jm ™ nlgr;o (/3751

1_+_2T)

also converges,
1+ 3"

oo 20
3_ ba converges (geometric series with [r| = 2 < 1), 3.
n=1

n—=1

1

1+n

& 1
is a divergent p-series (p = £ < 1),
penpseS =2 S0 L T e

_n+2
(n+1)3

2 2 o0
. oan . n(n+42) . 1+ . . . :
nlglgo b nhP;lo m = lim —l)'* = 12> 0. Since oo 1 a convergent (partial) p-series

n

1 n . NG
db, = —: lim — = 1
an \/T_J, n]—l};o bn nl—l-go 1 + ﬁ

also diverges.

. Use the Limit Comparison Test with a,, =

. Use the Limit Comparison Test with a,, =

n=3

e 2
(p=12 > 1), the series E -(ﬂ’%ﬁ also converges.
n
n=3
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. . . 5+ 2n 1
. Use the Limit Comparison Test with an, = RETEE and b, = E:

3 4 4 e 1.
sn_+2n n”_ _ lim 7 = 2> 0 Sincezﬁlsa

. an n3(5+2n)
L. = lim % (1 n2)2  neo (1+n2)2

n
1/(’,‘12)‘2 n—oo (% +1 oyt

. . = 5+2n
convergent p-series (p = 3 > 1), the series Z m also converges.

n=1
3 2
n® —5n , 1-5/n
1 ; —~=1>10s0
T 1+1/n2+1/n?

,then lim n i —— 2
n—ooond 4+ n+1

2
— 1
n on and b, = —
n =00 bn

3 HO‘,HZB——R—H

o0 2 _
» dwerges by the Limit Comparison Test with the divergent harmonic series E o {Note that
n=1

ﬂ.gl 'n'3 +n +
a, > 0forn > 6.)

2
At ndb, = l,then

L I an = a
v1+n?+nb m
9 3 2 1 > 1 2 .
ntnt4at n”+1/n+1 > 0,50 5. Aﬂ—jl—dlvergesbythe
Z1vV14+n?+nb

lim dn _ lim = lim
neoo by noso /102 fpp nooo \J1/nb+ 1/nt + 1 n=1
> 1

Limit Comparison Test with the divergent harmonic series -
n=1

If « nth and b n n 1 then
. Iy — ——r—em—— n = = = .
T T Vi WPl
. Qn n’? 45043 n
711‘—120 : :nE-Ic}o (n?’ + n2)]/3 ' Tl—‘?/?’
i 1+5/n 1+0
“ . AV s =1 >0
n—oo (1 4 1/n%) (1+0)

—7/3 . 1+5/n

= l1im
50 [(n? +n9)/n7]1/3

1

X0 4

nto converges by the Limit Comparison Test with the convergent p-series Z —7
n=1T 2

1

(1+3) =150

S0 —_—_—
Tgl In7 4+ n2 1\2
= (1 =+ —) e Mand b, = e~ " lim l;_n = lim

T TL=t OO

. Use the Limit Comparison Test with a,,
n—30 D

1 : —n
= = < 1), the series E 1+ =) e ™ also
z ) ( + n) e )

1
Since E ¢ = E — is a convergent geometric series (1T|
n=1

n=1 nl

COnverges.
1

20 +Tn
. Use the Limit Comparison Test with ¢,, = ———————— and b, = —.
s€ (he Limi parison 1th a 3n (n2 T Bn— 1) 3
L 2n° +7
im == = lim L L 2 > 0, and since Z b, is a convergent geometric series (|r] = & < 1),
nooo b, noon?4bn—1
f 20 + Tn converges also
A3 (n? 4+ 5n — 1) £es A80.
x 1
Y S is a convergent

. Clearly n! = n{n —1)(n —2)---(: >2-2. . 8
v n=1

1 .
geometric series ([r| = 5 < 1),50 3° — converges by the Comparison Test.
n—1 T
0o 2
p=2>1) 3 =

n! 1-2-¢ .
-—-1- 1forn > 2, sosince > — converges (p =
= - n2 nn
n=1 n=1

% T
converges also by the Comparison Test,
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1) and b, = l Then 3 a,, and 3 b, are series with positive
n n

31. Use the Limit Comparison Test with a,, = sin(

‘ sin(1/n . sind . . . .
terms and lim ;i = lim % = éll*[[l) 7= =1 > 0. Since Y ° | by is the divergent harmonic series,
Te= oS iy n— oo T _

S sin{1/n) also diverges. (Note that we could also use I’Hospital’s Rule to evaluate the limit:
sin(l/z) u ,,  cos{l/x)- (~1/w2)

lim ————* = lim = lim cos— L. =cos(=1)
X

x—oo 1 e —]/;I:2 o0

1 n |
and b, = =. lim dn _ lim = lim — =1
n

. Use the Limit Comparison Test with a,, =
p T n#oob TL— oo '.V?l'H" 00 H,“”

}-H./w

. v}

= W dlvcrges.

> 1 . .
(since lim «*/* =1 by I’'Hospital’s Rule), so 3 - diverges (harmonic series) =
T 20 n=1

10 1 1 1 1 1 1 . )
. —_— = — 4 — + — -4 ——— 2~ (.067975. Now 2 < —, s0 using the reasoning and
Lo a2t Tee T T Toaoo T 09T “n2 O nd & g

=1 = dx z 7" 1 =
tation of E le 5, th is Rio < Tig = — < — = 1li - = e = 0.0003.
notation of Example eerroris fijo < 1ig ; Pl ./1(1 e S [ 3 ] o 3000

101 4+ cosn 1+cos2 1+4cos3 1+ cos 10 1+ cosn
. ——— =1+cosl + oot —————— ~ 1.55972. Now ———— <
RS cosl+ —a 213 T 100,000 W=

=%
as in Example 5. It1g < T < / ;:2-“(1:.1, =2 hm [7%1-‘ 4} io = 0.00005.
10

i ! ! E 0.76352. No ! ! o the crror i
. — = = 35 w ——— < —, so the error is
aon L+2% 1025 142 2‘”

1/211

“1-12 {geometric series) = (.00098.

3 10 n n 1
7= (0.283597. N = —
27 108 o 649.539 ow (nt1)3" < g =g sO the error is
B 1/311
S 1-1/3

= (0.0000085.

. idn 9 >
. Since — < for each n, and since 3. —— is a convergent geometric series (|r| =

om = 10 2 Ton <1

l[l

0.didads ... = Z W will always converge by the Comparison Test.
n=1

. Clearly, if p < () then the series diverges, since lim ooy fod<p<lthenn’Inn<nlnn =
n—oo 1Y 1NN

1 s act 1
¢ diverges (Exercise 12.3.21), s ——— diverges. If E imi
n?lnn ~ nlnn an ngg ninn verges (Exercise ), 50 Z: n?lnn div erges. lfp > 1. usc the Limit

. . > a 1
Comparison Test with a,, = 3" by converges, and lim — = lim — =1, so
n=2

dan
T?,P]l'l n nP n—0C Oy n—oa lU T

o
also converges. (Or use the Comparison Test, since n¥ Inn > n? forn > e.) In summary, the series

a=a nPlnn
converges if and only if p > 1,
. Since Y uy converges, lim an = U, so there exists N such that ja, — 0] < 1foralln >N = 0<a, <1

foralln >N = 0<a? <a,. Since > an converges, so does ¥ a2 by the Comparison Test.
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40. (a) Since lim (@n/bn) = 0, there is a number N > 0 such that |a, /b, — 0] < 1foralln > N, and s0 an < bn
T+ O

since a,, and b, are positive. Thus, since 3 b, converges, so does Y an by the Comparison Test.

y | . Inzx . 1/x = Inn
b (i Ifa, = l_n; and b, = 1 , then limn % = lim an_ lim LT H lim —{— =050 Y. g
T

—OC Oy n—oo T TS T <R id £ n=1
converges by part (a).

() IFay = 22 and b,

Tnen

= lim nz n lim = lim ——= =10

wmoe fT z—ne 1/(2\/_ w00 \/'

Now 3~ by, is a convergent geometric series with ratio r = 1/e (|r| < 1}, 80 } | an converges by part (a).

41, (1) Since lim dn _ 00, there is an integer N such that an > 1 whenevern > N, (Tuke M = 1 in

oS Iy bn
Definition 12.1.5.) Then an > b, whenever n > N and since 3 by, Is divergent, 3" an is also divergent by the
Comparison Test.

b W lfa, = L and by, = 1 for n > 2, then
Inn n

n €I . 1
lim & = Jim —— = lim ELERUES g lim x = oo, so by part (a), }: is divergent.

" — O b n--oe I r—oo Inx T o0 1/-’1: a0 =2 l

1 2w}
(i fa, = m and b, = —, then Z by, is the divergent harmonic series and
i) T
n=1
lim 2% = lim Inn = lim lnz = 00, 50 Y an diverges by part (a).

Lo OO 1L n—oc =00 n=1

1 1 Ln
L Leta, = ~ and by, = —. Then lim =% = lim 1_ 0, but 3 by, diverges while > an converges.
T

n—00 Iy, n—oc T

i, 1 . .
lim na, = lim —=, so we apply the Limit Comparison Test with b, = —. Since lim na, > 0 we know that

n—oo i —+ 0 / Tt n—o0

1
either both series converge or both series diverge, and we also know that Z — dlverges {(p-series with p = 1).
n=0"T

Therefore, Y @, must be divergent.

: . ] . 1 .
. First we observe that, by ’'Hospital’s Rule, hn}] i Sl m T T 1. Also. if Y a» converges, then
x— T

1
lim a, = 0 by Theorem 12.2.6. Therefore, lim n = lim

Te— OG0 n—00 =0

3 a, is convergent and a, > 0. Thus, > In{1 + a,,} is convergent by the Limit Comparison Test.

n(l+z) 1 > (). We are given that
£r

. Yes. Since 3~ an is a convergent series with positive terms, lim a, = 0 by Theorem 12.2.6, and
Tl (G

S b, = > sin(a.,) is a series with positive terms (for large enough n). We have
sin(an)

. bn .
lim — = lim
n— Iy n—oo thn

=1 > 0 by Theorem 3.5.2. Thus, Y b, is also convergent by the Limit Comparison

Test.
. Yes. Since Y a., converges, its terms approach 0 as . — oc, so for some integer V. a, < 1foralln > N. But
then 577 | anby, = Zn _1 anbn + ¥ 00 v anbn < Z 1 Qnbn + 3 oo o bn. The first term is 4 finite sum, and

the second term converges since Y oo | by, converges. So Y anby, converges by the Comparison Test.

n=1
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125 Alternating Series

. (a) An alternating series is a series whose terms are alternately positive and negative.

—1)*"'b,, converges if 0 < byi1 < by forallnand lim b, = 0. (This is the

n= 1 n—0o0

(b) An alternating series >~
Alternating Series Test.}

t¢) The error involved in using the partial sum s,, as an approximation to the total sum s i3 the remainder
R,, — s — s, and the size of the error is smaller than bn ¢ 1; that is, | R} < bpy1. (This is the Alternating Series

Estimation Theorem.)

_o — g (_l)nn i 5 Here ap, = (Ml)nn_i_i. Since HIEI;O ar # 0 (in fact the limit

does nat exist), the series diverges by the Test for Divergence.

Lyt - i 5 Now by, = __4_:6 > 0, {bn} is decreasing, and

litn &, = 0, so the series converges by the Alternating Series Test.
T30

2 1 1 1
. ngﬂ (—n" o bn = on is positive and {b, } is decreasmg, hm 0 = 0, so the series converges by the
Alternating Series Test.
i (_1)”*1
—— > (), {br} is decreasing, and lm b, = 0, so the series Z =

v n—oo i1 Un

Scries Test.

converges by the Alternaling

)nfl

1
v b = - > 0, {bn} is decreasing, and lim b, = 0, so the series Z ;

T— Jim PR converges by the Alternating

Series Test.

L o —1 o
) Z Gy = Z ~ 4 = Z( 1)"b,,. Now nlgl;o by, = nhnm 5 171 = — #£ 0. Since nlglgo an £ 0

=1 n=1 n=1
{in fact the limit does not exist), the series diverges by the Test for Divergence.
i _2n > 0, {bn} is decreasing [sin
b, = — . - decranc ince
YT An2 41 ) £

n  2nt42 8n’ +8n —2
4n24+1 An248n+5 (4n2+ 1)(4n? + 8n +5)

9 o o
HIEI;o b, = ,}Bl)lu 1 /IT/LnE = {}, so the series ”;1(——1)” 4?1;1 n

I)n - b'n.-i—l = > 0forn 2 1], and

converges by the Altemating Series Test.

2z
4x2 +1

Alternatively, to show that {, } is decreasing, we could verity that di (

) < (Oforz > 1.

1)n+1

> 0, {bn} is decreasing, and lim b, = 0, so the series Z

Wl Jim e converges by the Alternating

by =

Series Test.
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b Now lim b, = lim ———— = — ?é (. Since “II;C an 7 0

';a":;(_l 1+2\/_ Z n—oo n—»oo2+1/f 2

{in fact the limit does not exist), the series diverges by the Test for Divergence.

2
T

n +4
2\ (@ +4)20) - 2°(32%) _ 2(2® +8-35%) _ a(8 ")
(w““) ) (2" + )2 (a® +4)? (7 4

R > 0forn > 1. {b,} is decreasing for n > 2 since

< O forx > 2. Also,

lim b, = lim _tn (0. Thus, the series Z(—l)n“

154 / 3 converges by the Alternating Series Test,
TL-—r OO Ti— 00 n

n3 44

n=1

Lim

by = —— > 0forn > 1. {b..} is decreasing since
n

= = - < O forx > 0. Also, lim b, — 0 since
.1'2 .'L'd — OO

(el/:r:), .’I}-G]/x(—l/.’L’Z)”Cl/m'l —81/$(1+$)

r

1/n
lim '™ = 1. Thus, the series Z £ m —— converges by the Alternating Series Test.

T OO
n=1

7 n . T . 1 L .
(-1)"—. lim — = lm — £ lim —— = oo, so the series diverges by the Test for Divergence.
Inn nooelnn  z-solnzr 2o 1/z

1
(—1)"~ (h‘”) 04 S (1 (1‘;”). by, = 1‘:_" > 0forn > 2, and if f(z) = ——,
1 T 3

=2 T

l1-Ilnz

then f'{x} = e

< Oforz > e, so {bn} is eventually decreasing. Also,

i 1 1/a . . )
lim &, = lim an lim DT A lim %:'f = 0, s0 the series converges by the Alternating Series Test.

s OO n—oc 7T x—oc I T—00

®© cosnT {— 1)"
. Z 374 Z n3/4 -~ by, = n3/4

n=1 =1

is decreasing and positive and lim = {}, so the series converges by
n—

oo 374
the Alternating Series Test.

oo l)n

. sin(%) — 0ifnisevenand (—1)% if n = 2k + 1, so the series is z nt Il >0, {b.}is

n

1
{2n+ 1)

decreasing, and lim

1 .
W = 0, so the series converges by the Altemmating Series Test.

n . T , T - . . m . . T . .
(—1)"sin —. b, =sin— > Oforn > 2 and sin — > sin ,and lim sin — = sin0 = (0, so the series
n—1 n n n n+1 N0 i)

converges by the Alternating Series Test.

Y (-n" cos(i). lim cos(t) =cos{0} = 1,s0 lim (-1)" cos(%) does not exist and the series diverges by
n—1 T

n—00 TL—+OC
the Test for Divergence.

" n

T nen n . n . L
— = > n = Hm — =oc = lim —-—— does not exist. So the series diverges by
ﬂ! 1-2- n—o n‘ n—oo 1

the Test for Dlvergence.
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?:' )n diverges by the Test for Divergence since lim

] n—=00

Un
1 1
~(1.35355 | 0.64645
0.19245 | 0.83890 {ante
—0.125 0.71390
0.08944 | 0.80334 By the Ahternating Series Estimation Theorem, the error in the
—0.06804 | 0.73530 s
0.05399 | 0.78929 approximation ioj %}T 7= 0.75051 is
~0.04419 | 0.74510 "
0.03704 | 0.78214
-0.03162 | 0.75051

-1

|s — s10] < by = 1/(11)*% 2 0.0275 (to four decimal places.

rounded up).

An
1 1
—0.125 0.875
0.03704 | 0.91204
—0.01563 | 0.89641 0 . .
0.008 0.90441 \. . ' J

—0.00463 | 0.89978 R
By the Alternating Series Estimation Theorem, the error in the
0.00292 | 0.90270

oo -1 n—1
—0.00195 | 0.90074 approximation %
n

n=1
9 0.00137 1 0.90212 3
5 — s10] < by = 1/11% & 0.0007513.

10 1 —0.001 0.90112

2 0.90112 15

ja e}

23. The series X:{—l)’“1 nil satisfies (i) of the Alternating Series Test because fn——%ﬁ < ;}5 and

n=1

s 1 o 1 1 1
(i1} -nlgléo rolha (), so the series is convergent. Now bip = 0= 0.01and by, = 1i2 = 51 = 0.008 < 0.01, so

by the Alternating Series Estimation Theorem, n = 10. (That is, since the 11th term is less than the desired error,
we need to add the first 10 terms to get the sum to the desired accuracy.)
ke =)

- npr 1 S . . 1 1
24. The series E (~n"t! —7 satisfies (i) of the Alternating Series Test because (—+—1)4 < — and
n n n
n=—1

1
(i) lim — = 0, so the series is convergent. Now bs = 1/5* = 0.0016 > 0.001 and

o0 Tl

bs = 1/6" 2 0.00077 < 0.001, so by the Alternating Series Estimation Theorem, n = 5.
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I ) L n2® . o Tost
25. The series Z:l i Zl(ml) n! satisfies (i) of the Alternating Series Tes
n= n=

ant! 2.9m 2 2

SHIT R = = = Ty — ' bn S bn. and (”)
because b1 (n+1)! n+lm! n+l nl n+tl

limn ?7 _2 % = 0. so the series is convergent. Now by = 27 /7! 2 0.025 > (.01 and
0 L n 2

hs = 2% /8! 2 0.006 < 0.01, so by the Alternating Series Estimation Theorem. r == 7. (That i, since the 8th term

is less than the desired error, we need to add the first 7 terms to get the sum to the desired accuracy.)

. The series ) (_—%%__n = Z(—l)”% satisfies (i) of the Alternating Series Test because

n=1 n=1

n+1 n+ 3n 4an n iy 1 n ] L
b1 = peen < YERL = T == by, and (H) ,}}Eu == 0, so the series is convergent. Now

bs = 5/4° = 0.0049 > 0.002 and bg = 6/4° 2 0.0015 < 0.002, so by the Alternating Series Estimation

Theorem, n = 5.

1 ]
R 2 0,000 059 5,
75 16807 D 50

(—1)“*‘ 5 (-t

1 1
Reg =y ———— =1— &+ o — o+ 5 — e & 0.972080. Adding br 0 s6 does

>

n=1 n=1 n®

not change the fourth decimal place of sg. so the sum of the series, correct to four decimal places, is 0.9721.

= (1L.000 023, so

-1V'n .
¢ == *% + 523 - % + 40496 — {2—?,68 ~ —0.098 785, Adding b5 to 55 does not

change the fourth decimal place of ss, so the sum of the series, correct to four decimal places, is —0.0988.

72

=07 0.000004 9, so

b 1,2
l)n 1 2 n, ) i
$6 =L _ 4 . 0 _ _16 285 _ 36 _ .
10n # Z 1011 =70~ Teo T To00 — To.006 T j00.000 ~ Toooons — 0-V67 614,

Adding b7 to g6 does not change the fourth decimal place of s4, so the sum of the series, correct to four decimal

places, is 0.0676.

1 1
30. b = — = =2 ()., .8
6 = Gl 524,580 0.000 001 9. so

5 , + 1% — 153+ o7 — e ~ —0.283471. Adding bg to s5 does not
7’71 ¥ -

change the fourth decimal place of s5. so the sum of the series, correct to four decimal places, is —0.2835.
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. 1)”*‘ 1 1 1 1

— 4 ---. The 50th partial suri of this series is an

1 1
SRR S TR TR D

3. 5

n—1

deresti 3 ~ AT + L ! + 1 L + .-, and the terms in parentheses are
underestimate, since ."LZ::I ‘ = 850 o 52 03751 ) E

all positive. The result can be seen geometrically in Figure 1.

1
{l/ni”} is decreasing) and lim — = (), so the series converges by the Alternating

1
AN [
i n = 0| (” n ]_)p ~n n—oc NP

n—1
Series Test. If p < (. lim %— does not exist, so the series diverges by the Test for Divergence. Thus,

n—oc .

converges < p > 0.

. Clearly b, = ! is decreasing and eventually positive and lim b, = 0 forany p. So the series converges (by
i

+p n—oo
the Alternating Serics Test) for any p for which every by, is defined, that is, n+p # O forn = 1, or pis not a
negalive integer.

(Inz)?™' (p— Inz)

T2

LLet f{x) = (In.r)” . Then [ (x) = < 0ifz > e so f is eventually decreasing for every p.
x

(Inmn)?

Clearly lim =0ilp < 0,and if p > 0 we can apply 'Hospital’s Rule [p + 1] times to get a limit of ( as

well. So the series converges for all p (by the Alternating Series Test).

oS bay == ST/ (20)* clearly converges (by comparison with the p-series for p = 2). So

suppose that >~ (—'1)""1 b, converges. Then by Theorem 12.2.8(ii), so does

S0 b ] =200 5 S ) =28

5 T But this diverges by comparison with the
n —

harmonic series, a contradiction. Therefore, 3 (—1)" ' b, must diverge. The Alternating Series Test does not
apply since {by,, } is not decreasing.

36. (1) We will prove this by induction. Let be the proposition that 82, = ha, — hn. P(1) is the statcment

= {1+ 1) — 1. Sosuppose that P{n) is true. We will show that

P(n)
%

s = hy — ky, which is true since 1 —

P(n 4+ 1) must be true as a consequence.

1 1 1 1 1
f"u '_f»‘r:- bl Jl‘n P - n - ] = ]‘n_}*n -
fdz T e (” +2n+1+2n4—2) (h * +1) Uiz =ha) = 50 ~ 32

1 1
= San + m - m = 52n+42

which is (n + 1), and proves that sz, = han — hy for all n.
(b) We know that e, — In{2n) — yand b, — Inn — yasn — occ. So
dan = hayn — Hp = [hon — In(2n)] = (A — lnn) + [In(2n) — lnn), and
m sp, — v =75+ ,,].].I,T},o[ln(gn) —Inn] = n]iI-I})c (n2+mnn—Inn) =In2

T
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12.6 Absolute Convergence and the Ratio and Root Tests

1. {a) Since lim fnflli—g > 1, part (b) of the Ratio Test tells us that the series ) an is divergent.
n—oo | Oy

{b) Since lim Gutl) 208 < 1. part (a) of the Ratio Test tells us that the series > a, is absolutely convergent

n— OO [ 5%

(and therefore convergent).

) . - . . . . .
{¢) Since lim ~mHLY — 4, the Ratio Test fails and the series 3" ay might converge or it might diverge.

G an

2 n’ . . n+1)° 2¢ . 1N 1
. The series Zﬁ:l ;—n has positive terms and nlg}go a(,;:] = ﬂlingo {% )= Tllll};jlo 1+ ~] 5=5< 1,

s0 the series is absolutely convergent by the Ratio Test.

= (=10)* iy T N o () L (N B N (VN ‘
.Z———n! .UsmgtthanTest,ﬂan;o . An]-}—l}go e .(Vm)n Anan;O 1 ={} < 1. 50 the

n={)
series is absolutely convergent.

o
2 . . " . 2 .
. Z(—l)” 1—1 diverges by the Test for Divergence. lim -~ = oo, so lim {-1)" ! —; does not exist.
‘ o n—oo T n—00 T
e
> (7])?'1.+1 oa
. Z ~—— = converges by the Alternating Series Test, but Z
v Tt
n=1

n=1

1 . .
- is a divergent p-series (p = 7 < 1), so the
n

given series is conditionally convergent.
[t

1. . (=1,
. Z o is a convergent p-series (p = 4 > 1), s0 Z > is absolutely convergent.
n=] n=1

n
lim |an| = lim = lm =1,s0 lim « 0. Thus, the given series is divergent by the Test
n—oo | 'n| n-moe 9 41 n—oo 5/’]’2, + 1 ’ n—oo n __,é g g Y

for Divergence.
X

{0 . . . . . .
.Y 3 i diverges by the Limit Comparison Test with the harmonic series:
n=1 M

2 2 o0
lim AR Y lim —— = 1. But St
n=1

converges by the Alternating Series Test:
"o 1/,” n oo 02 1 1 g M g $

n? +
1. T ! 1 _ -.2
. has positive terms, is decreasing since | —.—— | = ———— < Oforz > 1, and
n? + x4 1 {x? + 1)

n o0
lim ——— = {. Thus, 1)t
im —— us, ».{-1) 1

n—oo 1 +1

is conditionally convergent.

n=1

1/(2n+2) (2n)!

B | 22— gim lim ———— = lim (2n)!
D oo |ty | n—oe 1/(2n)! T nleo (21 + 2)! T p—oc (2n+ 2)(2n + DN{2n)!

. 1
e (2n +2)(2n+ 1)

is absolutely convergent by the Ratio Test. Of course,

o
= 0 < 1, so the series Z
n=1

1
(2n)!

absolute convergence is the same as convergence for this series, since all of its terms are positive,
20

1)/e"! 1 _ , .
lim = lim (n+ Di/e™™ = — lim (n—+ 1) = oo, so the serics Z e "n!diverges by the Ratio

n—oe | @, n—oo nl/en £ r—oo

(In4|

n=1

Test.
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I/n

(e w]
11. Since 0 § < —3 = ( ) Z —- is a convergent p-series (p = 3 > 1 converges, and so
n? n —

_1ynul/n
(=) is absolutely convergent.

sindn

2 converges by comparison with the convergent geometric series
T

. Thus, Z % s absolutely convergent.

n=1

. ntl n—1 : —3)
ner] [(n-i—l)S 4 ] i (3,7L+1):§<1 sotheserlesz pres ) is

[ 2 L— OO 4n T 3”’ n—o0 n
" n=1

absolutely convergent by the Ratio Test.

1\* 2
= 1i 14+ ~) - ——| =0, so the series
nl—l}c];o ( * n) n -+ 1

. Ayt .
lim | = lim [

n—oG | {n AR ]

(n+ 12+
(n+ 1)! n22n

2an

(=D e —— is absolutely convergent by the Ratio Test.
n/

n=1

= lin

n—o0

lim

T2 — OO

[ 17+t .hb+n4%+q
{

10 n+1
n+ 2) 42n+3 10n (

42 12

) = g < 1, so the series

1(1)

_J;—IW is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute
1
=1

convergence is the same as convergence.

3 —cosn 1 1 =
3 - y = . .
2> 0forn >3, 50 ~175 9 > 275 _ 2 > 73 forn > 3. Since E

7 diverges (p =
n=1

does Z _ oo by the Comparison Test.

?"n‘.

- 1 1
. Z l converges by the Alternating Series Test since lim —— = 0 and {1— } is decreasing. Now
nn nn

n—oo 1NN

1 1 1 1
Inn < n, so — > —, and since — Is the divergent (partial) harmonic series, — diverges by the
Inn T Zz 7 gent (p ) Z Inn & v
n= n=

= (-1)"
Comparison Test. Thus, Z
nn

n=2

is conditionally convergent.

. - , n+ DY (n+ 1) ) ' . 1 .
. lim Bntl) _ lim (nt VY ) lim — = ———— = = < 1, so the series
n—oc | Qg n—so0 n!/nn (n+ €

>0
n! .

E — converges absolutely by the Ratio Test.
7]’71

n=1

. [cos (nr/3)] <L 1

1
' — and Z —j converges (use the Ratio Test or the result of Exercise 12.4.29), so the series
. Th:

o
os(nm/3 .
7“)%(??1”/ ) converges absolutety by the Comparison Test.
!
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(="

20. hm Yl]an| = lim % = {0 < 1, so the series Z — converges absolutely by the Root Test.

n—o0 fNn (ln ?’L)

1/n o< n
n" n . n" .
i 0 = = lim ——— — ¢ ; ——— is divergent by the Root Test.
. nlg]clo Y]an| = l1m (31+3n nlgi;o 73 o, 80 the series Z:l 3iTon g y
ne

n+1 al+3n 1 1 g
Or: lim |2 = Jim [(n—i—l) 3 ]: lim i(’n:; ) (n-i—l)]

n—=00 | Qn n—oo 34+3n nn"

:2i lim (1+%) lim (n+1)z517673ln36(n+1):

TL— OO n—oo

s0 the series is divergent by the Ratio Test.

. Since { ! } is decreasing and lim
nlnn ne—

(==}
—1 n . K
= 0, the series Z (-1) converges by the Alternating Series
co nln fen Inn

Test. Since nZ:Q o diverges by the Integral Test (Exercise 12.3.21), the series ; (nln)n

is conditionally

convergent,

1 21",
. nlgxalo Vae] = IILH;O 211 2111 = ?}LI{LE%—?N—Q =3< 1, so the series 2(2’“21 1) is absolutely

convergent by the Root Test.

- 1 ]. 2 l)n
) 1|.1£I<310 Vlan| = lim - = 71_/2 =7 < 1, so the series Z W

. ) is absolutely convergent by the
n—-'ch arctanmn an’r

Root Test.

. 3. 1:-3-5.7 1-3-5.--..(2n — 1
.UsetheRatioTestwiththcseriesI—LSTE+1 ; 5 _ 37!0 o (=t (2n_1()!n )

wea1:3:5. 0 (2n—1)
(2n —1)!

~(2n — D[2(n+ 1) — 1] (2n — 1)!
[2(n+1) — 1! (-1 135 (2n— 1)

lim (~1)(2n+ 1)(2n — 1)!
noveo | 2+ 1)(2n) (20 - 1!

b
TL— OO0

lim L =0<1,
n

so the given series is absclutely convergent and therefore convergent.

26. Use the Ratio Test with the series 2 +

2.6 2
5 5-8§ 5

0 2-6-10- 14 = 2.6-10- 14
+ Z

.6 -
811 5.8 1114 8-11-14 (3n +2)

i 12225 i 2-6-10 (475-—2)[4(n+1) 58 s (3n 4 2)
B 5.8 11+ (3n+2)[3(n + 1) + 610 .- (4n — 2)
4n + 2

= 1‘ —>11
n—'oo3n+5 3

—0oo {n n—o0

so the given series is divergent.
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(2n) _ i (2-1)-(2-2)-(2-3)

' 2™, which diverges by the
n=1 n

Test for Divergence since lim 2" = co.

Tl X

27+ (n 4+ 1)
Gnyl] Jim 5.8-11 {3n+5) — Lim QT(Z—E%) = % < 1, so the series converges absolutely
T 0G|

(3n+2)

by the Ratio Test

. By the recursive definition, lim il = lim in 1;1 = 2 > 1, so the series diverges by the Rartio Test.
L0 (47 TL— OO0 ' +

2+ cos: .
Zotll = lim ‘—_'_——ﬂ = 0 < 1, so the series converges absolutely by the

. By the recursive definition, lim Tn
n

n—20 (In,
Rario Test.

L/{n+1)* , n® 1

. (a) lim - = lim ———— = lim -——— = 1. Inconclusive.
o 1/7?‘} ) ("H + 1)3 n—oc (l + 1/n>‘5

- amn 1 1 1 1 .
(n+1) 2" = lim nt lim ( ) = —. Conclusive (convergent).

(b) lin 3

L0 2”’+1 n n— 00 T = 0C

2 o,

_oayn
(c) “li_lgo \(/% . (g/)f] = %nanolc 1/ = 3. Conclusive (divergent).

vn 1 14 n? 1 1/n%+1
(d) lim nt tn = lim 1+ —- [n”+

nooo |14 (n+ 1) Vi | e no1/n%+(1+1/n)°

} = 1. Inconclusive.

. We use the Ratio Test:

SO Gt (n+1)°
~»oc [k (n+ 1] (nY?] roec|lk(rn+ 1) [k(rn+1)—1]--[kn + 1]

2
Now if k = 1, then this is equal to lim (nt1)

~———— | = ox, so the series diverges; if k = 2, the limit is
e (TL + 1)

4+ 1) 1
lim 2 (;12-;(2) T ‘ — < 1, so the series converges, and if & > 2, then the highest power of n in the
n—ok n n

4

denominator is larger than 2, and so the limit is {), indicating convergence. So the series converges for k& > 2.

ri+1 | 1
. {a) 7,1220 . | = nlEIOlo )t % = lim i 11 = |z| anr;o i |z] - 0 = 0 < 1, s0 by the Ratio

b1

[»"e)
. " .
Test the series E — converges for all ¢
n!
n=0
T

(b) Since the series of part (a) always converges, we must have lim —| = 0 by Theorem 12.2.6.

n—oc 1
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+ +o

Qyy4-3 Qp+4
Un41 An+1

3 () Ry, = tpa1 + Gugz T Qs T Auga + -0 = 8oyl (

An+2 Unp+3 Un+2 A +4 Qn43 dn+2
+ +

In+1 Un+2 Ap4d An+3 42 A4l

= dn+1 (1 +

= un+1(1 + a1 + raterntl T PafaTn+2Tnsl + - } (%)
n41

p 3 SN . T - —
< apyr (1 4+ rapr 472y 403 4 0) [since {r,} is decreasing| = r——

(by Note that since {ry, } is increasing and r,, — L as n — 20, we have r;, < L for all n. So, starting with

equation (),

Ry = a1 (L+ gt + Pagarngs +Farafniarni + ) Sanp (L4 LA L+ L7 40 ) = 25

o1 1 1 1 11 66l .
. (a) 55 = — = 44— 4+ =+ — = —— = (.68854. Now the ratios
Bwss=3 T 5 T T 160 oo 0 i

o Amgr n2™ - 7
= an (A 1)27t0 0 2(n+41)

n+1 n (n+1)" —n{n+2) 1 : .
el = - - - > 0. So by Exercise 34(h),
Tt T T 2n+2) 2(n+1) 2(n + 1)(n + 2) 2(n+ 1)(n -+ 2) 0 by Exercise 34(b)

1/{6-2° I
the error in using s5 is Bs < 1= (lllin - = {E 1/2) = 192 == 0.00521.

n—00

form an increasing sequence, since

An41 2
1-— -;; T {4 1)2nL

(b) The error in using s,, as an approximation to the sumis &, = We want

1
I, < 0.00005 < (—W < 000005 < (n4 1)2" > 20,000. To find such an n we can use trial
n n

11
and error or a graph. We calculate (11 + 1)2'' = 24,576,505, = 3 % = 0.693109 is within 0.00005 of
n=1 Tt

the actual sum.

10 2 3
no L 23 19 {988, The ratios

% 50— 5 = z
ST 2 on TR T ITR 1024

Qrt ntl 2_11 _ntl_ l 1= l form a decreasing sequence, and
ap,  22tl o T 2np 2 n SIng sed ’

T =

1141 12 6 . o . .
i = + 2o 1, so by Exercise 34(a), the error in using s10 to approximate the sum of the series

2(11) 22 1

11
. 111 D048 121
— 1% Ru) < = 2048

1 1- 5 10240

11

~ 0.0118.

37. Summing the inequalities — ja;| < a; < |ag| foréi=1,2,... ,noweget —> ¢ Ja;| <30 a <307, |ad

S lm Tl € im T < Jim S ] = - S el € 0 e € 0 | =

TL— 2O

|ZZC:1 ”n‘ < :3:.1 \a,., .
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38. (a) Following the hint. we get that [a,.| < " for n > N, and so since the geometric series 37 | r™ converges
(0 < r < 1), the series $°°° . jan | converges as well by the Comparison Test, and hence so does 377, |ax,

i — ‘ R
S0 Y. |, is absolutely convergent,

{by If lim y/|a.| = L > 1, then there is an integer N such that { lan| > 1foralln > N, so |as| > 1 for

Ti— "2l

n > N. Thus, lim an # 0,50 3> 77 | an diverges by the Test for Divergence.
L Eange vl

39. (a) Since Y a,, is absolutely convergent, and since |a}| < |an| and |ay | < |an| (because o) and a;, each equal
cither a,, or 0), we conclude by the Comparison Test that both 3~ a;f and . a;, must be absolutely convergent.

{Or use Theorem 12.2.8.}

(b} We will show by contradiction that both 3~ @} and ¥ @;, must diverge. For suppose that

3" ay converged. Then so would Z(a; — %an_) by Theorem 12.2.8. But
So{a an) =3 [3 (an +iaa]) - %an} = % S |an|, which diverges because 3~ a,, is only conditionally

convergent. Henee, Y a;; can’t converge. Similarly, neither can 3~ a,, .

40. Let Y by, be the rearranged series constructed in the hint. [This series can be constructed by virtue of the result of
Exercise 39(b).| This series will have partial sums s,, that oscillate in value back and forth across .

Since lim «, = 0 (by Theorem 12.2.6}, and since the size of the oscillations s, — r| is always less than [a, |

.

because of the way 3 b, was constructed, we have that 3 b, = lim s, = .

TL— DO

12.7 Strategy for Testing Series

o0

= 1 # 0, so the series Z

n=l

s _ 2
1l o, = lin ”’A 1 = lim l___l_ﬁt_

1
= iveroes he Test fi
i T T A T i/ diverges by the Test for

n? +1
Divergence.
o 2 N
-1 1 . . nT—mn . 1=1/n .ox n—1
= ———uand b, = —. then lim — = lim — = lim 1=1/n =1, so the series Y ———
n n n—o0 by n—oon? +1n n—ool41l/n el

diverges by the Limit Comparison Test with the harmonic series.

1 1 > 2 1
. — < — foralln > 1, so - converges by the Comparison Test with — ., d p-series that
n>+n o n? - nZ:Il n? +n ges by P ﬂZ::I n2 4t

converges because p = 2 > L
n—1

4 Leth, = — CThenby =0, and by = by = % but by, > byy1 forn > 3 since
ne -+ n

= , = — = < (for z > 3. Thus,
(w2 + x)° (w2 + 2)° (w2 4 x)2 -

(.r] )'_ (.I'Q—}—;r.) —(r=12r+1) 242041 2 (z-1)°

42
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~1 . .
{bn | n > 3} is decreasing and hm b, =0, s0 Z (-1)"" : T, converges by the Alternating Series Test.
=3 g

. o gon—=1
Hence, the full series 3 (—1)" " . also converges.
n=1 T

ne

( r;)n+2 23n

= i 3 < 1, so the series
PRI YRS | e ‘

is absolutely convergent by the Ratio Test.

3t 3 3 > 3n "
. Li iy = li = lim —— == < 1,3 ~onverges by the Root Test.
Jim Y on| = lim == = m 5 Tmig gt n;l ( 1+ 8n> vonverges by the Toot 18

. Let f(x Then [ is positive, continuous, and decreasing on [2, 00), so we can apply the Integral Test.

rf—

u—Inzx,

Since [—}——dw
J oavine du =dz/x

] = [u_1/2du=2ul/2+0:2\/1n:r+0,weﬁnd

o0 » t
/ dx = lim f dz = lim [2\/1;1 ] = flim (2 Vvint -2 Vln?) = 00. Since the integral
Ja ~ o L— 00

—
rvine rvilne toee

oc
diverges, the given series E T diverges.
nn

K

3k k!

k T 2)] ; T 1 2y Using the Ratio Test, we get

=1

limn = lim

(Lt 2k+l (k+ l)(k-‘-?)
koo | ak kvoo | {k + 2){k +3) 2k

1
= lim [ 2- ki = 2 > 1, so the series diverges.
k—oo & + .3

Or: Use the Test for Divergence.

1 .
— < 1, so the series converges,

z(2 - 3z%)

= < Oforx > 1,50 fis
e

L Let f(x) =« =" Then f is continuous and positive on [1, oc), and f'(x) =

. Lo ] . o
decreasing on [1, 00) as well, and we can apply the Integral Test. [ x%¢™ du = lim |-je” 2, 50 the

t—>

integral converges, and hence, the series converges.
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) {_1)71+1

L — L > Oforn > 2, {b.} is decreasing, and lim b, = 0, so the given series >

converges by
ninn - n—o00 a=y nlnn

the Alternating Series Test.

. Letbn = ——~—. Then by > 0, lim b, = 0, and
',"1',‘2 -+ 25 17— 00
n n+1 _ n?+n—95
n2+25 n24+2m4+26  (n? +25)(n? +2n+ 26)°
sequence {h, } decreases from n = 5 on. Hence, the given series Z(—l)

n=1

which is positive for n > 5, so the

bn - bn+l -

" converges by the Alternating

n
n? 4+ 25
Series Test.

1 .
=3 lim nt = () < 1, so the series

An41 .
= limn 3
n—voo T

iy, n—no {n+ 1)} " gnp?

3" (nt1)°  nl _ {3(n+1)?
= lim | ——=
n—oo (n—l- 1)112

7 converges by the Ratio Test.
.

n1

. The series y_ 7 | sinn diverges by the Test for Divergence since lim sin n does not exist.

n— oo

Gntl|_ i (n+ 1)! -2-5-8-----(3n+2)
T noeo|2-5- (3re + 2)[3{n + 1) + 2] n!
-+ 1
= li - <1
Tlgl;@ 3n+ 5 3 <

!
50 the series Z 5T - Bn+2) converges by the Ratio Test.

HE Y

2

n°+1

. Using the Limit Comparison Test with a, =
sing the Limit Comparison Test with an MR

1
and b, = —, we have
T

2 3 2
n . 1 T . g . 1 1/ . o0 . .
litn % = lim (n Tl n) = lim ntn_ litn _i--/-ﬂ~ =12 0. Since 37, by is the divergent

n—oc by n— 00 ’FLB +1 1

n— oo nS + i n—oo | + 1/?’13

harmonic series, Y °7 . a, is also divergent.

(o]
. lim 2™ =2 = 1,50 lim (—1)" 2™ does not exist and the series Z(—l)"?l/" diverges by the
T 0K n—oo o

Test for Divergence.

1 1
. by = ——— forn > 2. {b,} is a decreasing sequence of positive numbers and lim b, = 0, so }: =0"

v —1 n—oo e yn—1

converges by the Alternating Series Test.

It 2-1 i
\;f Then f'(z) = 2% cOwhenlnz > 2orz > €2, 50 —— is decreasing for r. > 2,

. Let f(x) = 57372 0

0
By I’'Hospital’s Rule, 71121910 —l nle v, (2\/5) m - = = (), so the series Z(—l)nlnT: converges by

the Alternating Series Test,

n=1
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E+6 1 = kD _ _
Jim P =% < 1, so the series kzzl o converges by the Ratio

n
4 . hm ¥/|ap| = lim 4 =0 < 1, 5o the given series is absolutely convergent by the
1\ N n—00 n—oo Tt

2

T
1n3+2n2+"

n 7
. < — <—:—f0rn>1so
4+ 2n24+5 034 2n?24+5 3 Z

converges by the Comparison Test
with the convergent p-series $°°°  1/n® (p =2 > 1).

. 1 1
. Using the Limit Comparison Test with ¢, = tan(a) and b, = e we have

1/: 2 {—1/22 ) ,
lim = = lim tan(1/n) = lim tan(1/x) LT (U/z) (=1/z7) = lim sec’(l/z) =1*=1>0.
n—ao by oo 1/m r—oo  1/x =00 —1/z? r—o0c

Since 3°°° | by, is the divergent harmonic series, D7, ax is also divergent.

|cos(n/2})| 1 i B < cos(n/2)
i < T <3 5 and since nzl — converges (p = 2 > 1), Z T dn

converges absolutely by

the Comparison Test.

2 2
) , dpyl . n4+ 1)1 e . n+1)n! e n+1
. Use the Ratio Test. lim | =] = lim ( Z -—— | = lim (__“Qﬁ_)_“___ = lim —— =0<1,s0
n—oo | On nooo | g(rtl} 7! n—ooo  gnH2ntlpl n—oo g2n+l

71!
E —= CONVErges.
e

=i+l im

N—0  (ln Tn— o0

(n2+2n+2. . (1-{-2/n+2/n2 1)__

511+1 5

1 .
converges by the Ratio Test.

: L ne : 2 1
= lim [—M - ;] {using integration by parts) £1. So 3 % converges by the Integral Test,
n=1

t—od

x 1

kink < kluk _ Ink the given series Z P ——
+1)° k2 ek i1 (k4 1)°

and since converges by the Comparison Test.

, 1
. Since {E} is a decreasing sequence, e'/™ < e'/! = eforalln > 1, and Z i converges (p = 2 > 1), so

oo Llin
3 en2 converges by the Comparison Test. (Or use the Integral Test.)

tan”' n /2 & w/2 & 1 - .
372 n3//2' > nc"//z = g 3 ey which is a convergent p-series (p = g > 1), s0
n=11¢ n=1

L0 <

= tan”'n .
converges by the Comparison Test.

3/2
n=1 T /
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\/E

30. Let f(x) = TiE Then f{x) is continuous and positive on [1, 20), and since f'(z)
xr

x > b5, f(x) is eventually decreasing, so we can use the Alternating Series Test.

1 i S i3 .
- = n!gr;m 0, so the series JZ;(—l) i CONVerges,

ek )k

. lim ae = hm = [divide by 4] hm

k
Jin % T = oo since lim (Z) =0and lim

(3/

Thus, Z % + diverges by the Test for Divergence.

. 2n (2r 1)”
. nlrlﬂn‘l Ylan| = hm — = lim — = 0, so the series Z converges by the Root Test.

(el I 1) n—oo 11
n=1

thy — sin(1/n) and b, = L Then lim <% = lim YV § sin(l/n) converges by
]

ﬁ ﬂ,ﬁ T —+ 00 bn n— OO

. . . . 1
limit comparison with the convergent p-series E —7z (p=23/2>1}.
n

n=1

. 1 1 1
L0 < neos?n < n,s0 > = . Thus _ dlver es by comparison with
2 — 32y 4 y p
n+ncosin T n+n 2n £ n+mncos

G

E o which is a constant multiple of the (divergent) harmonic series.
T
nl

n/n
7t ‘ 1 1 1
li Vel = 1i = li = — — = — < 1, 50 the series
LU \/m HLH},G(R_I_ 1) Jim CER fim (14 1/m) - < 1, so the series

— o

,,Z=1 (n j— 1 ) converges by the Root Test.

1 Inn SRLYLES a e
. Note that (lnn)™ = (em7) """ = (™) =" and Inlnn — oo asn — o0, soInlnn > 2 for

1 1 . > 1
< —;. Since }_ Lz converges

sufficiently large n. For these rn we have (Inn)™ "™ > n®, so —
(Inn)™" n nea T

{p=22> 1} sodoes 3

——— by the Comparison Test.
n=2 (Inn)™"

o
T
Um el = lim (2‘/" - 1) =1-1=10 < 1, so the series Z ( Yo — 1) converges by the Root Test.
=X

n—oG
n=1

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 128 POWERSERIES = 965

. 1 3 Un ] Ql/n _ 1
38. Use the Limit Comparison Test with a, = Y2 — land b, = 1/n. Then lim — = hr& n

n—oG Oy -

21/.271 o 21/""1112(—1/.’1"2)

= lim = lim (2% In2) = 1-In2=1n2> 0. Sosince Y ", bx

T30 l/:)‘,‘ T— 00 —1/;’1’,‘2 T—00

diverges (harmonic series), so does Y or; | v — 1).

n=1
Alternate Solution:

1 . . 1
MY | = [rationalize the numerator] > —.

20 L)in 4 g2/ { 9(n-8)/n 1 ... { 21/m 41 2n

and since }: QL = % Z % diverges (harmonic serics), so does Y. ( V2 - 1) by the Comparison Test.
n=1 <7 n=1 n=1

12.8 Power Series

1. A power series is a series of the form E:;O ™ = co + c1x + oozt + esa® + -0 -, where z is a variable and the
e 's are constants called the coefficients of the series.
More generally, a series of the form 350 cn(z — a)™ = co + c1(x — @) + el — a)? + -+ is called a power
series in {x — a) or a power series centered at @ or a power series about a, where a is a constant.
. (a) Given the power series y ., cn(x — a)", the radius of convergence is:
(i) 0 if the series converges only when z = ¢
(i) oc if the series converges for all x, or
(iii) a positive number R such that the series converges if £ — a| < R and diverges it |z — a| > It.

In most cases. B can be found by using the Ratio Test.

{b) The interval of convergence of a power series is the interval that consists of all values of & for which the series
converges, Corresponding to the cases in part (a}, the interval of convergence is: (i) the single point {a}, (i) afl
real numbers; that is, the real number line {—2c, oc), or (iii} an interval with endpoints @ — R and a + R which
can contain neither. either, or both of the endpoints. In this case, we must test the series for convergence at each
endpoint to determine the interval of convergence.

2" a - o Un ||

. If e, = —, then lim im = lim ——— — |z|.

T
R A 1 _— —
\/ﬁ =] v+ 1 xr n—0 \1"7!,"7_1/\/5 n—oc /] 4 ]./TL

:L.Tl

o

(s =]
By the Ratio Test, the series z converges when |z| < 1, so the radius of convergence It = 1. Now we'll
n=1

= o)
check the endpoints. that is, z = 1. When x = 1, the series E —\/~: diverges because it is a p-series with
n
n=1

(_l)'n
vn

converges by the Alternating Series Test. Thus, the interval of

D0
p == % < 1. Whenx = —1, the seriesz
n=1

convergence is I = [—1,1).
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hy+ ]

(71)“.[:” . 1
A x kLt - =1
o+ 1 + then nlglolc- O ﬂhIeIr}o n+ Z T nlrcio 1+ ]_/

o

e, = = |x|. By the Ratio Test,

e BT . ) o
the series > %—f converges when || < 1,s0 B = L. When z = —1, the series diverges because it is the
n—un

harmonic series: when @ = 1. it is the alternating harmonic series, which converges by the Alternating Series Test.

Thus, F = {—1,1".

(71)11771,?,n
——— then lin |——| = lim . = lim
i ’ n—oo | (i n— oo (‘.’L + ])? (71)11711.1; s

1) )711_71

Lt =

41 (_l)nanq n.’% . ( 1 TL
(n+1)3

converges when || < |,
n— o0 41

_ 3
= lim ( k ) |:r} = |*. |z = |#|. By the Ratio Test, the series Z
n=1
su the radius of convergence I? = 1. Now we’ll check the endpoints, that is, ¥ = +1. When x = 1, the series

s -
Z converges by the Alternating Series Test. When £ = —1, the series

—1 re— | —1 Tl o ] ‘ i ]
(——)—,;(WL = — E — converges because it is a constant multiple of a convergent p-series (p =3 > 1).
T T
‘F171 71:1

Thus, the interval of convergence is [ = [~1, 1],

1 — +1 ‘J,VH[

. 1 .
L, = ™, sowe need lim = = lim 1+ xr @l < 1 for convergence
T g
n—oc | g n—oc \/_‘;r| n— o0

(by the Ratio Test), so 12 = 1. When 2 = £1, lim |aa| = lim \/n = oc, so the series diverges by the Test for
Nn—0oc e

Divergence. Thus, I = {—1,1).

. "t a . amt! 7l . x . 1 )
Mfay, = . then lim | =X | = lim |~ —— . —| = = |x| lim =|x|-0=0<1flor
n! S s n—oc | (n+ 130 am +1 n—oo 1+ 1

adf real . So. by the Ratio Test, R = oo, and I = [—oc, oc).
. Here the Root Test is easier. If @,, = n™z™ then lim 1/]a.| = Lm njz|=ocifz # 0.s0 R = and
n-—oc n—ooc

I = {0}

) iﬁ‘,,, . , 1 4n+l o nt 1 1
litn | ! ‘ = lim (nt1) i = lim (l + )43“1 =4|z]. Nowd|z| <1 & |2 < ,s0by
n—oc Tl

LR ] ndm i.73| "

n—oe | iy

the Ratio Test. # = §. When z = ‘—1& we get the divergent series > . (—1)"n, and when & = we get the

41

divergent series 3™ | n. Thus, = ( S 4).

.t a, — '— .then lim Antl i L S —_— i L m lim LI m
R T s L — G T (rt + 1)3 3 rnooon+1 3

||

By the Ratio Test, the series converges when 5 <1 & jr| < 3 s0 R =3 Whenx = —3, the serics is the

alternating harmonic series, which converges by the Alternating Series Test. When @ = 3, it is the harmonic series,

which diverges. Thus, I = [—3,3).

=2y " . | ol gmt! Yn
(—L s g = lim 2! Vn

Y T e (439 o \l/m 21,] | |n =

Rutio Test, the series converges when 2|z <1 & z| < L,so R = 5. Whenz =

L, =

hm 2|x| = 2|x|, s0 by the

2 . we get the divergent
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= (=" . -
=1 < 1). Whenz = 3, we get the series Z (=1) , which converges by the Alternating

n=1 {1/5

Series Test. Thus, J = {~1, 1].

" o

cso lim (22— i s . im = == By the Ratio Test,

5”7],5 o) 19 n—oo 5'n+1(n + 1)5 5

(=n"

n2

L]

the series converges when |z| /5 <1 & |z| < 5,s0 R = 5. When x = —5, we get the series Z
n=1

1
= (p=5>1}

oo
which converges by the Alternating Series Test. When x = 5, we get the convergent p-series Z -
n=1

Thus, I = [-5,5].

I'n

LIfa, = (=17 o then
n+1

And| g x _4”lnn :]ﬂ i Inn |z

im _ =l |z
an n—ooo | 4n+1 ln(n + 1) z" 4 n—oo ln(n + 1) 4

-1 (by I'Hospital’s Rule) = T

By the Ratio Test, the series converges when % <1l ¢ |z|<4,s0R=4 Whenz = —4,

.SinceInn < nforn > 2, 1 S 1 andz 1 is the
Inn  n L=

divergent harmonic series (without the n = 1 term), Z In is divergent by the Comparison Test. When z = 4,
i lnn
[

1
= Z (-1)" e which converges by the Alternating Series Test. Thus, I = (—4,4].
nr

22'& Qg1 ‘$|2n+2 (271,)! |$‘2
- On = -1 n_s 1 - = 1- - = 1 _ = {}. Th 3y
= ) e O e | T A ek B o ek @rr )@a D) o ety

Ratio Test, the series converges for afl real « and we have R = 0o and I = (~o00, 00).

n ) 1 _ln,+1
.Ifanzﬁ(x—l)",thennlin;o%i = lim_ V”\J/rﬁ!;”i = lim 1+%|$—1|:]1‘—1|.By

the Ratio Test, the series converges when [z — 1| <1 [soR=1] & -lI<z-1<1 & 0<z<?2
When @ = 0, the series becomes 37 (—1)"+/n, which diverges by the Test for Divergence. When z = 2, the

o0

series becomes 3>, /7, which also diverges by the Test for Divergence. Thus, I = (0, 2).

3 _ Eyntl
Afa, = nB(a: —5)", lim Gnt1] lim (n+1)°(z 5) _
o e ) S TP S

Ratio Test, the series converges when [z — 5] <1 & -1<z-5<1 & 4<zx<6. Whens =4,
the series becomes 3.2 (—1)"n®, which diverges by the Test for Divergence. When = 6, the series becomes

0 n?, which also diverges by the Test for Divergence. Thus, R = 1 and I = (4, 6},
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(@ +2)"
n2r
[ |+ 27t n2" , nojz+2] | lz+2
(

17. If a,, = {-1)}" , then

. = lim
Tt 4 1)2"+1 |ﬂ?+2|n nooon + 1 2

. By the Ratio Test, the

4+ 2
scrieSC()nvergeswhen!—T;—|<l e lr+2/<2(00R=2 & -2<z+2<2 & -4z

, e L (=2 =2 o . o
When 2 = —4, the series becomes (—1)"—=— = % —— = % —, which is the divergent harmonic series.
' o) n2" aZim2n iin

= o B
When x = 0, the series is >,
=] n

, the alternating harmonic series, which converges by the Alternating Series

Test. Thus, I = {—4,0].

CIf a, = Lti(a" + 3)", then

Tn
_oyn+lr n+1 :
I LIS T | ) M G o)) vn :limM=2lz+3\<l &

ni;oc n T vn+1 . (_2)71(_1’-_'_3)11 n—eo /] 4 1/??;

> 1 . .
le+3 <4 lsoR=1] « -1 <ua<—3 Whenz = -1, the series becomes 21 —= which diverges
ne

(—1)"
N

oC
because it is a p-series with p — % < 1. Whenzx = ~—§ the series becomes , which converges by the
n=1

Alternating Series Test. Thus, [ = (%, —2].

L If o, = (_T.i
TL”

. .l -2 . .
,then lim {/lan| = lim lz-2 = (), so the series converges for all  (by the Root Test).
n—oa T,

T 0

R=ocand [ = (—00,0¢).

P n+1 QT . _ -
(3z — 2) n3 (|3:r: 2l 1 ):isa, 2\:|$7~,_3;[.mby

im |2 = lim
—_— | = 111 . =
n—oc {in LK (n + 1) 3n+1 (3(1,' — 2)71 T+ 20 3 1 -+ 1/71 8
the Ratio Test, the series converges when |;n — §| <1l <= —% < T < % =1 Whenz = —%, the series is

< 13
Y. (=1) . the convergent alternating harmonic series. When z = % the series becomes the divergent harmonic
n=1 n

series. Thus, I = [—3, 3).

= ;—l (x —a)". where b > 0.
)'n

(227 ]

. (nt1)|z—a*"" . 1\ |z—al _|z—a
e prt? - b b
- al
b

—b<z—a<h & a-b<z<a+h Whenlr—a| =5 lLm |e,| = Lim n = oo, so the series diverges.
L= OO T — S

Thus, I = {a —b,a + b).

By the Ratio Test, the series converges when <l & |Jr—a|<b [soR=b &

,__4n+1 3 1 3 1
z 4| mT L~ lim (1+1) vt o — 4] = | — d].
n

‘njz -4t nee nd +3n?+3n+2
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By the Ratio Test. the series converges when [z ~ 4| < 1[soR=1] & -l<z—-4<1 & 3<2<3
ot = n . . .
-4/ =1 an| = ——  which converges by comparison with the convergent p-series
When | — 4| ,§I | ;ngﬂ ges by comp

S & (p=2>1). Thus, I = [3,5].

n=l

W2r — 1 n-+1
, If ap = nl{2z — 1)*, then lim Ontll e Jim (n+ D2z ~ 1) = lim{n+1)|2xr—1] = oo
n-roa | Gy n—oo nr(Q,L‘ - ]_)“ n—00

asn — oo forallz # L. Since the series diverges forall z # 3, R =0and [ = {3}
n‘z"”  nz" s
T oonn! T 22(n - 1)V
n+1 ne 1) 1
~ lim (n+ 1) x| 2%(n 1)._lim n+1|z|

noco | an nooo  2ntlp) n|z| n—eo 72

= 0. Thus, by the Ratio Test, the series

converges for all real z and we have R = oo and I = (—00, o).

. —| = lim ——~—-"=5 = |4z + 1|, so by the Ratio Test, the
(n+1)* |4z +1] n-ros (1 4+ 1/n)° | | ¢

series converges when |z + 1] <1 & —l<dz4+1<1 & -2<4dz<0 & -5 <r <050

= (-1)"

e RIS i n? o |de 1
. lim |——| = lim

n—oc | fln n—oo

R=1 Whenz = —1, the series becomes )
=1

, which converges by the Alternating Series Test. When

> 1
x = (), the series becomes ) —, a convergent p-series (p == 2 > 1). I = [-—%,O].
n

n=1

n . L
M, then we peed lim |Z%2 = |2z + 3| hm nlnn =
nilnn n—ooo | dn oo (n+1)In{n+1)

L Ifa, =

OC 20
convergence, so —2 < r < —land R = % Whene = -2, Y a, = 3.

, which diverges (Integral Test),
n=2 n=2 f 111 n

>, = (=" . . . ,

and whenz = ~1, 3 a, = 3 L . which converges (Alternating Series Test), so T = (=2, —1].
n=2 n=2 TLIN

" ]

(0 il [y , then lun YVlanl = lun Zl —g<1forallz.so R =coand [ = {—o0, 00) by the
17

fan, =
@ o Inn
Root Test.

. 2:4- T . At
L Ifa, = 13 .then we need lim |-
-3 n—oo | dpn n—o0

-~ (2n)
(2n ~1)
the corresponding one in the denominator, so }  a,, diverges in both cases by the Test for Divergence, and
I={-11.

. 2n+2 ,
= lim |:r|( nt ) = |z| < 1 for convergence, so

2n+1

R=1 lfr=

> 1 for all n since each integer in the numerator is larger than

. {a) We are given that the power series >~ coz™ is convergent for x = 4, So by Theorem 3, it must converge for

at least —4 < x < 4. In particular, it converges when &z = —2;thatis, > 7 cn(—2)" is convergent.

{b) It does not follow that 3>

convergence at the endpoint of an interval. An example is ¢, = (—1)"/ (nd™).]

en{—4)"is necessarily convergent. [See the comments after Theorem 3 about
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30. We are given that the power series 300 cnz” is convergent for x = —4 and divergent when = = 6. So by
Theorem 3 it converges for at least —4 < z < 4 and diverges for at least > 6 and & < —6. Therefore:

(a) Tt converges when z = 1: that is, ) ¢, is convergent.

(b) It diverges when = = 8; that is, >_ ¢, 8" is divergent.

(¢) Tt converges when « = —3; that is, § ¢, (—3)™ is convergent.

(d) It diverges when z = —9; thatis, 3 co{~9)" = >_(=1)"ca9" is divergent.
3. Ifa, = E:;?; ", then

liin Gntl = lim M (n+1)

n—nc | n—oo (n))* [k(n + 1)) =l = nﬁoo (kn+ k)kn+k — 1)« (kn+2)(kn+1)

[(n+1) (n+1) (TL—%I}hxi
(kn+1)(kn+2) (kn+Ek)

= dim | g [2FL L him |z| = k|£‘<1 N
- kn+1 n—»oo kn+ 2 n— oo k'.r —|—k

x| < k¥ for convergence, and the radius of convergence is R = k.

||

= lim

T — (0

32. The partial sums of the series >~ , =" definitely do S sess g,
p .

not converge to f{x) = 1/(1 — x) forz > 1, since f is
undefined at z = | and negative on {1, 20), while all
the partial sums are positive on this interval, The partial
sums also fail to converge to f forx < —1, since

0 < f(z) < 1 on this interval, while the partial sums

are either farger than 1 or less than 0. The partial sums

seemn to converge to f on (—1,1). This graphical

evidence is consistent with what we know about
geometric series: convergence for x| < 1, divergence
for || 2 1 (see Example 12.2.5).

—1)* Tt

n!(n + 1)1 22n+1° then

B alfa, =

lim —————— ={for
700 (H, + 1)(’” + 2)

= lim .
n=o | U n—oc | (14 1)t(n + 2)122n+3 gp2n+l

all . So Ji(xx) converges for all 2 and its domain is (—o0, 0o0).

lim

Qn 1 . .“1'72ﬂ+3 n!(n + l)l 22ﬂ+1 N (ib)z

{b), (¢) The initial terms of J1 () up to n = 5 are

T o z8 x’
gy = 7,0 = —— ., (2 = —, 43

2 16 384" T T 18432

.,L'g :.Cll
=Y andas = ——tTh
@ = T e T76.947.200° M

partial sums seem to approximate J; (z) well near

the origin, but as |x| increases, we need to take a

large number of terms to get a good appreximation,
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B @ Alxy =1+ Z ., where a, =

n=—1

= ( for all . so the domain is R.

a1
= |z*

R b A BT 2)@n 1 3)

g

\ P Y,
hY

s &8 -2
sg = 1 has been omitted from the graph. The partial sums seem to approximate A{x} well near the origin, but as
|| increases, we need to take a large number of terms to get a good approximation.

To plot A, we must first define A(z) for the CAS. Note that for n 2> 1, the denominator of a-, is

. : L (3n)! o e B3R - 2) 5
(3n—1) 3n= 1 - 5 S Gk—2) 80 (n — (3n)! ™ and

3k —2)
thus A{x —1+an—l(——-

B 3" Both Maple and Mathematica are able to plot A if we define it
n)
n=1

this way. and Derive is able to produce a similar graph using a suitable partial sum of A(xr).

Derive, Maple and Mathematica all have two initially known Airy functions, called AI_SERIES (z,m] and
BT SERIES (z,m} from BESSEL.MTH in Derive and AiryAi and AiryBi in Maple and Mathematica (just
21 and Bi in older versions of Maple). However, it is very difficult to solve for A in terms of the CAS’s Airy

V3airyAi(z) + AiryBi(z)
V3airyai(0) + AiryBi(0)

functions, although in fact A(x) =

35. son-1 =142z 422 +20° +ot +22° + - 42 4 2P
=11+ 22) + 2°(1 4+ 22) + z*(1 + 2x) + -+ + 27" (L + 2x)
:(1+2m)(1+r +at +---+;1:2”"2)

&2 1+ 2z

=1 +2T) [by (12.2.3)] withr = 2% — 2clsn—w)c[bv(]224)]

1 —

1+2
when |z < 1, Also s2,, = san—1 +2°" — 1 * 323 since «*™ — () for || < 1. Therefore,
-

142z 1+ 2x . . .
] + Z since $2, and $4,, -1 both approach ; + ": as n — 20, Thus, the interval of convergence is (—1,1)
— —

1+ 2z
1 — a2’

and f(x) =
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2, : 4 5 G T A=l
3. 5401 — o+ +cen” + ey + ot ez e oz’ + - Fean

2 3
: : co+ e +ear” et
4 8 An—4 ne ‘
= (r:u+m.r+c2;vz+c:3m‘}) (l+;r + 2% 4+ )H T as 00

[by (12.2.4) with v = z*}for [2*] <1 4 [#] < 1. Als0 $4n. San 1. San+2 have the same limits (for example,

San = 40 1 4 coxPand 2* — 0 for |z| < 1), Soif at least one of co, €1, ¢2, and 3 is nonzero, then the interval
2 .3

co -+ 1+ cax” 4 ez
1 — x4 '

of convergence is (—1,1) and f(x) =

. We use the Root Test on the series 3 ep2™. We need lim  {/|enz”| = |z Llim Yleal = clr| < 1for
n—cc 00
convergence, or || < 1/e,s0 R = 1/e.

. Suppose ¢, # 0. Applying the Ratio Test to the series Y_ ¢, (& — a)”, we find that

I Coir{x—a)"tt lim

= aum |\—— | = - N

0o Cﬂ(_‘,[,' — (L)” n—0o0 E{_f,l/(fﬁ+]| lim |C-,,,/Cn+1‘
n—oC

|z — al _ |z — al

L= lim (it

Q||
=G (£33 ‘

—,& <1l < |z—al< lim fn_|. Thus,
lim |en/cnet] n—o0 | Cy41
L= D0

fim ey /eng 1| # 0) so the series converges when
TE— C

¢ .. [ - . .
R=lim |[——| If lim " | = 0and |z — a| # 0, then () shows that L = oo and so the series diverges,
= | O o1 oo | Gy 4]

Cn,

and hence. B = (). Thus, in all cases, R = lim
00 | gl

CFor 2 < < 3, Y 0™ diverges and Y d ™ converges. By Exercise 12.2.61, 3" (en + oy, ) 2™ diverges. Since

both series converge for (x| < 2, the radius of convergence of 3 (¢, + dp) 2" is 2.
- — T . .
. Since 7 ex” converges whenever |¢] < J2, )Y en =Y e (:rz) converges whenever |T2| <K =

| < v/ £, so the second series has radius of convergence v/ K.

12.9 Representations of Functions as Power Series

" oG
LI f(a) = 5 e, has radius of convergence 10, then f/'(iw) = ¥ ne, 2™ 71 also has radius of convergence 10

= =1

by Theorem 2.

A o > . . s b"’ - . ~
A f () = 3 bax" converges on (—2,2), then [ f(x)dzr = C+ 3 —’1:1:” 1 has the same radius of
HE ' n=0 T+

convergence (by Theorem 2}, but may not have the same interval of convergence—it may happen that the integrated

series converges at an endpoint (or both endpoints).

. Our goal is to write the function in the form 1 . and then use Equation (1) to represent the function as a sum of a

1 1 i Ead .
ower series. fn) = = = -z = D"z withi—nj <1 < |z|<LsofR=1
P L+z  1—{-x) 'nZ::O( ) ng(}( ) |=el ]

and 7 = (-1, 1),
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 flz) = 3 :3( 1 )A3(l+fc4+1’8+x : ™ with

_ A e
1—x 1 - =

|.’L‘4‘ <1 & |z|<l,soll=1landI=(-1,1). [Note thatSZ(m4)“ converges < Z(m4

n=0 n={)

converges, so the appropriate condition (from equation (1)) is {:1:4‘ < 1]

. Replacing x with =% in (1) gives f(z) = — =2 (a:S)n 2% . The series converges when I.CCS‘ <1

I— n=0 n=0
e k<1l & |o|<¥1 & |#|<LThus, R=1land=(-1,1).
1

flz) = T =1 = 1 ml)”SQ"IQ". The series converges when |19:1;2| < 1;
- .

o0

e n ) .
nl_iﬁﬁ = ¥ (%) or equivalently, — Z Fart T The series converges when
— I/} 1=0 s

n=0

=| < T:thatis, when |x| < 5,50 I = (—5,5).

T 1
'f(x):4zr+1:$. — (—4x
= (-

that is, when |@| < 3,50 T

= Y {—4z)" = 3 (~1)"22"2"*! The series converges when |—dz| < 1;

) re=0 =0
11
i)

n={

3 [ < et 3 S 6]

oo $2”+1 o0 2y 2 1)
= Z(_l)nﬁn-l-_l' The geometric series Z l:—- (5) ] converges when
n=0 ' m=2() '
=]

& Lol & |zf<9 o |z/<3soR=3andl=(-33).

2 Bt In42

23] ) I S A —
e e R — = : . The series converges when
ud 1 .1"‘3/() a’ a3 gnt3 B

=0
/e’ < 1 lms‘ <|a®| & m < ja|,so B =a|and I = (- |a|,]al).

3 3 A B ) . .
[z} = pCa— (m+2){$_1)—m+2+ = 3=A(x— 1)+ B{z+2). Takingz = —2, we

get A = —1. Taking z = 1, we get B = 1. Thus,

3 1 1 1 1

24+ r—2 :c—l_m+2:_1—:z:__
_ n+1
[-1-3 z - (bt —1] "

0 2n+1

We represented the given function as the sum of two geometric series; the first converges forx € (—1, 1) and the
second converges for z € {—2,2), Thus, the sum converges for x € {—1,1} = I,
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Te— 1 7r—1 A B 1 2 ' 1 _ 1
2 ) e e T T B e D) 31 zel Fmoi x4l - (@ -3

=230 ()" = e (Ba)” = 0, (1) 37"

The serics 3 (—z)™ converges for z € (—1,1) and the series 3 (32)" converges forx € (-1, %). so their sum

converges for x € ( %,%) =1

1 ! -1 d - ke . mn
13 () flx) = m = E(l +m) = LZ:O(—I} } [from Exercise 3]

= Z( e ! |from Theorem 2(i)] = Z( )" (n+ L)z with R = 1.
n=1 n=0
in the last step. note that we decreased the initial value of the summation variable n by 1, and then increased

each occurrence of 7 in the term by 1 [also note that (—1)""2 = {~1)"].

1 d 1 1d [ " nl o o
5 {——~(1 n :17)2} =94z LZD(-I) in+ Dz ] [from part (2}]

™

4 Z(—l)"(n +2){(n + 1)a" with R = 1.

=™ [from part {(h)]

= Z (n+2)(n+)x "+2 Ty write the power series with z™ rather than z™ 1,

=0
we will deerease each occurrence of n in the term by 2 and increase the initial value of the summation variable
. 1~ o n
by 2. This gives us 3 Z_:z(m-l) (n){n— )a".
1 1

o0
14. (: = = 1"z t ithR=1
(a) e T-(-a) 720( 1)"x"™ [geometric series wi l. so

=it - [ = [[S s B i

1+(B n=0 n—=0
oo (_l)n—ll,n

n—1

[C =0since f{0)=In1 =0, with R =1

(_1)’.’?.;];'”.

by flz)=zlni{l+a)==
n—1

with . = 1.

3 | n—1_n
(—)H—JJ] [by part (a)]

() flz) =In{z*

-+ 56

Putting & = 0, we get ¢’ = In5. The series converges for [z/5] <1 < [z} < 5,50 R =
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=, 2 = OTL 1 T
16. We know thal = = S {2x)". Differentiating, we get ———— Z 2%na™ ! = Y 2" (n 4+ L)z". s0
1 — 2.’1’1 n=0 ( — 2.1: n=1 =[]

2 :

2 o 30 . 2]
= = I"_ Z En-{-l(nJr 1)$n — }: 2"(11-!— 1)$n+2 or Z 2:;‘—2(” _ .l)xn‘
{1 —2r) 2.5 n=y n=2

)n = 2n1+l:z:" for “%' <1 & |z <2 Now
n=>_

x 1 _ 2 n o,y XRatl o,
(Zo mrnHa:n) = ngl STECA 5 ETo . So

= n=

X 41 3

X n—2 ., ] oy
= "ZZ:U Sz o nZ::a oot ¥ for |x| < 2. Thus. R = 2 and

=(-2,2).

- a2ntl
. From Example 7, g(x) = arctanz = 3 (—1)" : Thus,

g n+ 1

(a3 !

r) = arcta = T = -
f(z) = arctan{x/3) o 1 :L;O( ) 212y, +

so R =3

_f(m)zln(:wm):]B‘ffx—%[f%%g:%/—l_fjﬂ/;ﬂ‘; Z( 3) dr

n=0

" n—1
n(+11)}fs—n = lnd 4 3 > % ™ (O = f(0) = 3]
Vo=l
)t

—_—m%-;mfr” The series converges when |—z/3| < 1 < |z < 3,50 R=23.
Tl

r . 4 5
The terms of the series are g = In3,a; = 37 az : -

BET MR T A

As m increases, s, {) approximates f better on the interval of convergence, which is (=3, 3).
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1 1 ! 1 ! _r xR
2. f(m)ﬁm:g(m)zz_s(l—(&%) 25 20( 25) 25,2

The series converges when ‘—:cz/%‘ <1 & 2°<25 & |z < 5,50 R =5 The terms of the series are

1 x? z?
= — = 7——:(1.- e
= 95 ™M T e ™ T 15,625

-~

-0.02

As n increases, s, (z) approximates f better on the interval of convergence, which is (-5, 5).

2. f(m):ln(i—'_i) :111{1+a?}—ln(1—m}=/1tfw+./1djjw
:] 1_d($_m) N 1d_TT _/[n§0(1)%”+7§01“] dz

[(l—$+I2—$3+3347---)+(1+I+$2+$3+$4+---)}(iﬂ?

2£2n+1

=f(2+2;t2+2$4+---)da:: z2£2“dmvc+ z

=0 2n+1

oo a.2n+1
But f(0) =In1 = 0,50 C = 0 and we have f(z) = é;:t+l with R = 1. If z = &1, then
n=0

(o %]

1
flz)=+2 % L . which both diverge by the Limit Comparison Test with b, = —.
n

n=0 2n -+ 1

\/ /" 52

f

=3

As n increases, sy (r) approximates f better on the interval of convergence, whichis (—1,1).
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2. [(z) = tan" (20) = 2] de _ _ 2/ Sy () de =2 [ 3 (1) de
4 n=0

1 + 41:2 n=>0
(_1)n4ﬂ$2n+1 3 oo (_1)n22n+1$2n+1

2

Py} 2n +1 N n—>0 2n+1

[F(0) =tan"* 0 =10,s0C = 0}

The series converges when |4:r2| <1 < |zgl<i,soR=3 lfx= 45, then f(z) =

o0

=3 (—1)nt! 7 l+ 7 respectively. Both series converge by the Alternating Series Test.
n

S5 = g

As n increases, s,(z) approximates f better on the interval of convergence, whichis [—3, 31

0 .
t8n+2

o X0
t - 1 _ - Bn+41 i _ e 1
23'1—t8_ 1—t3_ Ez 75 t T _C+n5208n+2' Thesenesforlits

converges when [t*| <1 <« |t| < 1,s0 R = 1 for that series and also the series for t/(1 —~ t%). By Theorem

2, the series for / 3 ¢ m di also has R = 1.

oo " o
24. By Example 6, In{1 ~ t) = — Z = for [t < 1,50 ln(l Z

n=1

In{1 —
/ n( r_t) di = C — . By Theorem 2, R = 1.
A n

(—1)71+1 Ll = - S By Theorem 2, K =1
(Zn+1)(2n - 1) n?—1 ' '
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. L oo (m )2”+1 w4n+3 .
26. By Example 7, / tan  (z°)de = / nZ::D(—l)”W dr=C+ :;(}( 1y (2n T ) with B = 1.

11

7. =
2 14+ax5 1 —(—x%)

. Thus,

0.2 , 6 11
I= L = s =0.2- LQE)—— + ©2) .. . The series is alternating, so
o 1+ 6 11

if we use the first two terms, the error is at most (0.2)'/11 = 1.9 x 107, So I ~ 0.2 — (0.2)%/6 == 0.199989 10

six decimal places.

. From Example 6 we know In(1 —z) = —

In(1 + ') = ln[l - fJ:

$4n+ 1

n+1
- —— . Th
(-1) n(dn +1) o

0.4 5 0.4 5 9 13 17
N : b 0.4 0.4 0.4 0.4
f:/ ln(l+q:4)d;c: £ .. :( ) 7( ) +() _( )
Jo 5 18 . 5 18 39 68

The series is alternating, so if we use the first three terms, the error is at most (0.4)17/68 =25 % 107% So

122 {0.4)%/5 — (0.4)%18 + (0.9)"%/39 = 0.002034 to six decimal places.

. We substitute z* for « in Example 7, and find that

()"

/5(72 tan~' (2"} dz = [ 2° i (-1 2 g
. n=0

2n+1

8n+6 ) 8n+7

n+1 de=C= ,go(_l) 2n+1)(8rn+T7)

1 1
=57 ~ 5 g5 T The series is alternating,

173 .
S0 / x? tan 1(;54) dae = [
0

50 if we use only one term, the error is at most 1/{45 - 3'°) & 1.5 x 107°. So

)]

J7 e tan™! (2%) da &2 1/(7 - 87) = 0.000065 to six decimal places.

"

5 ) 0.5 o0 _qymbnt11/2 o0 _ayn
dr :/ (_1)nw6ndw: Z ( 1) T — Z ( 1) i
L+af  Jy a2 a0l 6r+1 | n=p (6n + 1)26m+1
1 1

Ty T Ti3am oo T

The series is alternating, so if we use only three terms, the error is at most 19 518 ~ 1.0 x 1077, So, to six

05 dx 1 1

: . - 1
decimal [JIIJCE'S‘ /0 11 26 ~ 5 — W + W =2 (.498893.
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o® N
31. Using the result of Example 6, In(1 —x} = - Z % with = ~0.1, we have
n=1
Int.1=1In{l —(-=01)] =0.1~- T + U.%Ol - 0'0301 + U'O(;)OOI — - - The series is alternating, so if

. 0.00001
we use only the first four terms, the error is at most 5 = ().000002. So

. .001 L0001
lnl.lr::(].l-vom +000 —0020 ~ (0.09531.

2 3

n, 211.
32. flz)= Z bl 1 [the first term disappears|, so0

n={}

p2n—2 n 2(11 1}

Z n—l

o (_1)71+i 27

{2n)!

[substituting n + 1 for nt]

n=—

= [+ J=) =

al )t 2nm2” ! " (=) 2n{2n — 1)2*" 2
33. (@) Sy Z (ni)? e i ( 22” and Jy' (2 Z 22 ()2

2]()+.I,‘]0( +TJ(J

2 ™ 2n(2n — D)z" “’i (—1)" 2ng®"
Z 22n ()2 + /__,1 221 (n})2

n=

7S] o0 (_1)n—1 2r

. (-1)" 2n(2n — 2™ ox (—1)" 2na™" x
- Z—:l 22 (nt)? - n; ECIEI ; 220-2 [(n — 1)1]?

(1) 2n(2n - Dx™ n i (—1)" 2nz*" + i (1) {=1)"12*n ™
22n(pl}? 22n{n!)2 22n(nl)?

=1 n=1

= 2n(2n — 1) +2n — 2202 5. O 1 an? — 4 2n — An?
- Z 22n(pl)2 o= Z(f ) 22r(nl)2

1 oo n 271 1 592 1:4 .'1'56
{b) /U Jo(;c)d;r:zf Z 2,1 n')2 dz—-/o (1w1+a2304+~-)dm

n=0

E—— +

B z? z° _ x’ 4. 1 n 1 M_IL*Jr
N -4 564 7-2304 - 12 320 16,128

Since Tlma =7 0.000062, it follows from The Alternating Series Estimation Theorem that, correct to three

decimal places, [ Jo(x) dw ~ 1 — & + 555 ~ 0.920.
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Z 1)11 2,”_}_1) 2n and

wow ) =) gy ) = L i
n—0 ==

" D™ (2n + 1) (2n) 2™ !
HOEDS L )n!((:z n 1))!22211 :

() + {2® — 1) (=)

(-1 (204 D)™ O (0" (2n+ DT
n! (n+ 1)1 22041 i n! (n+ 1)122n+1

o (#1)71 $2n+3 (71)71 :E2n-+—1

+2;nun+um%w1*2;nun+nm%ﬂ

= (- (2n+ D!
nl(n+ 1)1 22+l

(—1)™ (2n + 1){2n)z*" !
al (n+ 1)t22n+!

+

=

p2ntl X (— gt Replace n with n — 1
in the third term

Z (n— 1 nl22n-t 7; nl(n + 1}122n+1

n=1

n [(271 +1)@2n) + 2n+ 1) — (m){n + 1)2° - 1] L2 g
nl (n + 1)1 22n+1 T =

an—1 oo _ n+1 . Zn+1
—1)" (2n)x _ Z { 1)- 2An+1)x [Replace n with o + 1]
22r () 22742 [(n + 1)!]

=0

2n+ 1
Z 22”+1 ] [cancel 2 and 7+ 1; take —1 outside sum] = —Ji(x)

n=I(}

& nx'T = gt >z
= ! = = = — :
A P i Py e AP T
(b) By Theorem 10.4.2, the only solution to the differential equation df (x)/dx = f(x)is f(x) = Ke”, but
fimy=1lsoK =1and f(x) =e".
Or: We could solve the equation d f(z) /dx = f(z) as a separable differential equation.

ap n!

|sin nie]
. 2

1 X sinT d {sinnz COS 1L
< — C()nver es by the Comparison Test. — = csowhen o = 2k7
T — p2’ z_: ges by P dx n n

(k an integer). > friz E m-r) =3 g which diverges (harmonic series). f, (x) = —sinnz, s0
n=1 =1 n=1

o oo

3T fi(x) = — ) sinnz, which converges only if simnx = 0, or & = k7 (k an integer).

n=1

T

. £ . . £ .
. If a, = - . then by the Ratio Test, lim Ly R T s —
1) n—oa | (p TL— OO {7’1 —+ 1) T

2
= |xz| lim (#) = |z| < 1 for

L > 1 . .
convergence, o R =1, Whenx = 1, 37 |—| = »>_ — whichis a convergent p-series (p = 2 > 1), so the

n=1 n? =11

interval of convergence for f is {—1, 1]. By Theorem 2, the radii of convergence of f’ and f” are both 1, so we need
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ly check th dpoints. f{z} = i - ’( ) - ‘_
‘hec nts. fAT = fw 2 : +
only check the endpo 2 = nt nen M

Tt

. and this series diverges for

a = 1 (harmonic series) and converges for i = —1 (Alternating Series Test), so the interval of convergence

n—1 i .
is[-1,1). f'(x) = :;1 n‘r+ diverges at both 1 and —1 (Test for Divergence) since hmOO — =1#0,s0its

interval of convergence is (—1, 1).

s : ] d 1 1
38. @) > nr' x — [ } = - . = ———0. |z| < L

= iz 7 Tdr |1-x (1f3;)2( — )2

(by (i) i ne® = i nr" V 2} [from part (a)] =

n=1 n=1

X
(1 — )2

H R T no_ L"—MI/Q__—
(i) Put & = 3 in (). 112::1 u = (2) AT127 ~
,d 1

c) (i) 2 n(n — Dz = z° f nin—Nz" % =z* — Lzl nz” ] = (1— )2

n=2

_Tsfor\r|<1.

- . Y
(i) Put z = 3 in (i): ?;2 on g T T (1 —1/23
n

2 o
{iii) From (b)(i)) and (c}(ii), we have 3. == = 3 + 3 g =4+2=6.
n= n=1

o 2n—+1 1
39. By Example 7, tan™! = = Z(—l)" z for [2| < 1. In particular, for &z = —=, we have

n=I0 2n+1 \/ﬁ’
oo 2n-+1 fave)
1 /v3™ 1\" 1
— = tr L = I " - —_—
an (\/g) > (" Z:: 3) B+l

n-=0
="

f Z (2n+ 13n

12
40. @ / r+1 /u {r—-1/2)2+3/4

r—1/2=(V3/2)u, u= (Q/ﬁ) (i —1/2)
d = (\/3/2) du

B /u (V3/2) du _ 2v/3 [tanﬁl ‘u]ﬂ_ _ 2 [0, (,I)} =T

C1vE B/ {u? 4+ 1) 3 1/V3 /3 6 3

1 1 1 1 1
B+l @rl@@—z+1) | -a+l (+1)(1+ )“(mH)W

e [a e}

7, e 3n T, 3n+1 n, 3n
(e 1) Y=t = Y (1) +Z( e for |z <1 = /“_—mz—hl

=0 n=4_0

(b)

S 3In+2 ; ?n-}—l

, g ® _
SO e S k<1 = /

Fr=

1 1 1 (—0y 2 1
“Z( {4 gn 571+2}+2-8”(3n+1) _42 8 (3n—|—l+3n+2>

n=() n=0

—r+1

By part (4}, this equals —-=

« \/:_ 3 2 . 1
3\/5 & \3n+1 3n+2)

n=0
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12.10 Taylor and Maclaurin Series

oo (n) Birx
1. Using Theorem 5 with > ba(z —5)", by = L#, 50 bg = ! 8!(0}'

n=0

2. (a} Using Formula 6, a power series expansion of f at 1 must have the form f(1) + F(D)(x—1)+---. Comparing
to the given series, 1.6 — 0.8{z — 1) + - - -, we must have f'(1) = —0.8. But from the graph. F(1) is positive.
Hence, the given series is nor the Taylor series of f centered at 1.

(b) A power series expansion of f at 2 must have the form f(2) + f'(2){(z — 2) + 5 f"(2)(z —2)" + -

Comparing to the given series, 2.8 + 0.5(x — 2) + L.5(z — 2)® — 0.1{(x — 2)* + - - -, we must have

Lf”(2) = L5 that is, f”(2) is positive. But from the graph, f is concave downward near z = 2,50 f(2) must

be negative. Hence, the given series is not the Taylor series of f centered at 2.

We use Equation 7 with f(x) = cosz.

F ) | FM(0) " () (4)
cosz = F(0)+ f/(Mx + f 2(!0}932 + f 3!(0) P L0 4!(0) a4

@) .. 1 _
P B TC S T

L=l (7%

So R = oo (Ratio Test).

F™(0) = 0if nisevenand F2" TV (0) = (—1)"2** 1, 50

f(n)(fﬂ)
o0 fln) oa  pl2n1)
sin 2z sin2z = Y. S70) P L(_U_)mbﬂrl
n=0 nr n=0 (2n + 1)'
2cos2x
—2%5in 2z _ f (_1)n22n+1$2n+1
n=0 (2n + 1)

—23 cos 2x
22

lim [ = lim 2‘ dl

n—o0 In n—oo (2’,’1 + 3)(27’& + 2)

so B = o¢ (Ratio Test).

24 si ‘
sin 2z =0 < 1ftorallz,
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() FM(0)
1+xz)° 1
-3(1+2)? -3
12(1+ )" 12
—60(1 +x)7°
360(1 +xz)~ "

. ”U 1t (4)0
4-3 0-4-33 6-5-4-34
-1—3$+Tm 3 T+ m x
.3. 6-5.4-3.2
=1A3$+4232'212 5- ; ? 2 a0 )2‘4| A
_ f: (=" (n+2)1z™ {2 -1 n+2)(n+1)x"
=0 2(n!) noo 2

(n+3)(n+2)z"*! .

= o0 2

2
(n+2)(n+ "

|| < 1 for convergence,

3
= |z| lim nts_
n—oo i+ 1

lim Gntt) _ lim
n—na n
s0 K = 1 (Ratio Test).
H 1y
0 .

F ) Fo
fw( I A ON
In(1 + x) T + 51 x +
—_1 :
(1+x) =x—2irt4 200 - Bt B0

7 -—2 .
—(1+z) 2 g £4+f'§if —i
4 5 e

21 + ) =ETo T
—6{1 +z)~* -1 .

-5 lim |4 = i [ B = lim = x| < 1 for
24{1 +x)™ n—oo | Gn noooln+ 1 x” a-ss0 1 +1/n

convergence, so R = 1.

71}“—1

I,Tl.

n!

571 ‘.’E‘n
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f(n)(m)
e

(ﬂ'.' + 1)€I TE— OO

(x + 2)e” all x, so R = oo.

(z+ 3)e”

0 if nis even oo pIntl

F(0) = { sosinhz = 3

f(n)(ﬂf) 1 ifnisodd n=0 (2?1 + ])I .

sinh «

:C'2n+1
Use the Ratio Test to find R. If a,, — ————, then

, I
coshzx (2n + 1)!

sinh z

. £ (2n 4 1)
coshx lim =

Uy 1 im .
n—oo | n n—oo | (21 + 3)] p2ntl

sinh x \
2 .
=z°.1 —————— — = < |
* 'ri.l{I:}U (2n + 3)(2” + 2)

forall z, s0 B = oo,

1 ifniseven o pln

() (0) = socoshz = .
£ { 0 if nis odd ng() (2n)!

1)

cosh &

27
Use the Ratio Test to find R. If a,, = % then
sinh x ( n)!
cosh x e (2m)

sinh x G+t 2)! T

1

2 .

= -l —_—— (<1
nvoo (20 +2)(2n + 1)

for all z, so B = cc.

(= &)

f($)~7+5(:r—2)+§-!($—2)2+ 23%(:,:72)”

=7T+5(z2)+ (x—2)°

Since a,, = 0 for large n, R = 2.
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= 143+~ + 12+ @+ 1)’

flz)=-1+3z+1) - S+ + S+ 1)°

Since a,, = (0 for large n, R = oc.

oc 6‘3 63

2. E(m -3 lfan = E{az - 3)7, then

n=0 1t 4

Bl 41 .

: ((L +31))| : — li 3| =0< 1forallz,so B = oc.
) !

13. Clearly, ™ (z) = e, s0 fi™(3) = ¢ and "

-3.92z7¢

(1) =2
n-2n ’

_qyn—1l¢. ! oo
L;n—l). forrn > 1,s0lne=In2+ >
" n=1

any1| |z —2 n |- 2

li = li
im im 5

= < 1 for convergence, so |z — 2| <2 = R=2
n—0C Uy 2 n—oo 1L+ 1 :

F™ @) | fM()
~1

n+1 (‘/E _ ﬂ’)zn

(2-m)f (e-ml _m® i::o(“l) (2n)!

EERY i o

. = lim
(2n+2)! |z —x*] nmoe (2n42)(2n+1)

= lim
N—00

o |2m2 20 — ol
[|~L 7| {2n)! : |z — 7| =0< 1forallz,s0 R = occ.
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, f(”’(;r) E=0 ! 4 )
sin - (x —27;'/2) n (x —47;/2) [z —671!'/2)
(x —m/2)*"
{2n)!

cos X
—sinm (—1)™
—COST

sl

n+2 . 2
ntl 5 [|f — /2t (2n)! — i |z - =/2| =0 < 1 forall z,

lim |2+ = G+l e e (2 +2)(2n + 1)

n—oo {dn n—oc

s0 B = oo,

17.

1)

. 2 . _g)\3
g3 (@-9* 35 (z-9)
22.35 2! 23.37 3!

L1035 (2n—1)
S, intl ol

(—9)".

= lim

TG

L-3:5 - (2n-1)2(n+1) — 1] | — g™+t . gn ., gntl
Qn+l .3[2(ﬂ+])+1] R (TL+ 1)[ 1-3-5..-.. (2."! - 1) ‘.’L‘ - gln

1
=—|z-9 <1

2 r—0
lim {(_zflﬂw_] 5

2-3(n+1)

n—0C

for convergence, so |2 — 9] < 9and R = 9.

vy -1 (=1 (x -1
p = L= 2e = 1) 46 o =2 120 e

:1—2(([1—1)+:‘;(III—1)2*4(:Ef]_)3+.5(3;—1)4_...

e [ 7
27?2 1
I = 5 (=1 (n+ 1z — 1"

G 6 n=U
—24

’ - 1Imtl
LAl = lim (42— 1] = i = |z = 1|| = |z — 1] < 1 for convergence, so B = 1.
Iy, nooe {4+ 1) |e— ll n +
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,If f{&) = cosx, then f(’””(m) = Lsinzor +cosz Ineach case, | fUTH ()| < 1, so by Formula 9 witha = 0

121", Thus, | R (x)| — 0asn — oc by Equation 10. So lim 2, {z} = 0 and,

) LG

and M = \_

by Theorem 8§, the series in Exeruse 3 represents cos x for all .

. Tf f(@) = sinz, then f*+(z) = £sina or + cos . In each case. ‘f(”‘“)(;r:) < 1, s0 by Formula 9 witha = 0
1 ntl
and M = L, |R.(z)] £ m \T ~3 . Thus, |R,(x)| — 0asn — oo by Equation 10. So

lim R.{x) = 0and, by Theorem 8, the series in Exercise 16 represents sin z for all .

n— o0
. If f(z) = sinh z, then for all nn, f""V(x} = coshz or sinh x. Since [sinh x| < |coshz| = cosha for atl 2, we

have ‘f‘”“)(ar)} < coshz for all n. If d is any positive number and |z| < d, then ‘f“’“ (x )‘ < coshz < coshd,

coshd
7+ 1
asn - oo for x| < d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series

s0 by Formula 9 with @ = 0 and M = cosh d, we have |R,.(x)| < o || Tt follows that | Ry, ()] — 0

represents sinh x for all x.

. If f(a) = coshz, then for all n, {1 {x} = cosh z or sinh x. Since [sinh z| < |coshz| = coshz for all z. we
have | Ff" D {a)| < coshz for all n. If d is any positive number and || < d. then ‘f(”“}( )| < cosha < coshd,

cosh d
+ 1)
as n. — oo for |z| < d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series

s0 by Formula 9 with a = 0 and M = cosh d, we have |, ()| < n [T It follows that |12, (z)] — 0

represents cosh x for all .

o~ 2 3 )Q'n

cosz = 5 (1) ; sos{ 7 AN/ Sk SN W( !
coosw =2 U 2 OSATE nZO {an)!

oo et

=Y = = fla)—eT =
n=0 M-

J’H. 2n, 2n
=00

ctan Tz = 3 (—1)n 2
an 'z T;{J( )2n+1

2n41 . I‘,ZnJr‘Z
- -1 JRH=1
) 2n+1

4y 2n+1
L sine = —_ ") = n — -
w.zu( 2n ! " 2n+ 1) = CBr+ 1) * R=o0

n!

L cos = nZ:U(— ) ( B
fle) =wcos2x = ioj —:"—1~r~%.'1:

n=0

n=({}

n=1
o0 o\ - _
( l)n #12271 1:1"211

:Z {2n)! — =00

n—1
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e ]

30, cos’ z ——(1+0052fr) 1+Z 2n)' } [ +1+Z

=

) 2271 2n

n22n 1..2n
_1+Z ) 2% R=wo

n=1
Another method: Use cos® z = 1 — sin? « and Exercise 29.

inr 1 2 (=1 2n-1 o0 N"z 2n
31.5111.1":_2(1):3 :z( Ve
£I X n=0 (271 -+ 1)' n—=>0 (2n —+ 1)1

R = 2.

— aln >0 _ 1y p2ntl
2 = sln‘.‘:rq[ Z:( N ]A%[I"w

and this series also gives the required value at z = 0 {namely 1);

*n; (2n + 1)!

>

x3 nzo (2n+ 1) oz o (2n+3)

1 =) 17" 21’1+'3 137" 2?1.
SLE LI e

o3 = (Zn+ 3) o (2n + 3)!
R = oo,

33.

(Al)nm21a+lj| _ L[ o0 (_1)n+ll_2n+3

and this series also gives the required value at z = 0 (namely 1/6);

(_1)”*11.3.5.....(271_
2'".

" o0 — ﬂ_l . . Fer o -
TFr—14+ie 50135 2n=3) n g, —

2 =2 2“?'!,’

So fU(0) =

forn > 2, and

3)(2n — "t

. Apn41 .
then lim |—=*| = lim

T 00 in n—oo

Notice that, as n increases, T, {x} becomes a better approximation to f(z) for -1 <z < 1.
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2n

) Z(f'l)“érf—t)!, S0

n=0
af 11\ 2n 2 13 4 121 ¢
e +Losx_zo(—l) (;ﬁ“’m)m u2—2$ +24m Tk A
The series for €® and cos x converge for all z, so the same is true of the series for f(z); that is, £ = oc. From the

graphs of f and the first few Taylor polynomials, we see that Ty, () provides a closer fit to fl) near O as e

increases.

6K

B cosz = > (-1)" i ) =¢ . A S S i

( ]) Tdn

R =00
n=0 . = . n=0 (27’1)

Notice that, as n increases, Ty, ()

becomes a better approximation to f{x).

36 o (61112)x

— e:cln 2

(zIn2)"

nl

° (In2)™ 2"

, R=om.
n!

Notice that, as 7 increases, T, (z) becomes

a better approximation o f(x).
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‘ 1 1
=102+ (0 2)* — !(0.2)3 50 2)* — = (0.2)5 + 6(0'2)6 — ... But

02" _ 081873,

correct to five decimal places.

. _1 n_2n+1
L 3° = 610 radians and sinz = 3 1) e

— 50
2 (2n 1)

P N} 3 5
antom el &) oA 7 o« _
60 ) 3! 51 60 1,206,000 ° 93.312,000,000

ki

t——— < 107" so by the Alternating Series Estimation Theorem,
 $3.312.,000,000 Y &

3
FURE S L ‘
S 55 & 65 T3ee000 > 005234,

J;‘Zn

-1)" (2n)! = cos{z®) =

r=={

o Gﬂ+1 {L'Gn+2
dr - with B = .
Z( 1" n)! = /‘LLOb — ! (6n+2)(2n)!’Wl =

n=1{

sin o l O (_1)n$2n+1 _ § ( 1)11 2n .
Cr xS Cn+ ) = 2n+ )

0 l) .T B (_l)n I2'n+l
HEO 2n + 1)! dac =0 = 2n+ (20 + 1)

41. Using the series from Exercise 33 and substituting z* for x, we get

(1) '1-3.5-----
2"n!(3n + 1)
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T6n.+2

1
; iy T = e Y dr
43. By Exercise 39, f.: cos{z®)de = C + Z G L2 %0/0 zcos{x”)

n—0

oo . fm,+2 o n _1 1 . 1 B 1 . but
= |20 (G +2)(20)! |, z:: 6n+2) Grr2)en) 2 &-21 -4 208 7

=L

1
1 = L =2 {1.000 069, so] a:(:os(:ns) dr ~ = — i L == (0.440 (correct to three decimal places)
206!~ 14,400 o 16 1 336

by the Alternating Series Estimation Theorem.

. From the table of Maclaurin series in Section 12.10, we see that

X 2n+1 o0 ZEQTH-]
tan~' 2 = Z forac in {—1,1} and sinx = nZU (_1)"‘(—2m for all real numbers z, so

6n+‘} i 6n43

tan ' {x”} + sin(z Z 1t Z (-1)"
n=0 n=0

E
(2n + 1)t

I = [0‘2 tan ™" (%) + sin(x?)] dox = /‘”-2 i (?1)"$Gn+3( 1 + L )dx

Ja 0o = 2n+1  (2n+ 1Y

o $6n+4 1 1 0.2
— -_1 T
Z( ) 6n+4(2n+—1+(2n+1)!) .

n={)
 (0,2)6nF4 1 1 0.2)? 0.2)'¢ 1
; + - (02 (1+1) - 02" + +o
bn+4 \2n+1  {(2n+1)! 4 10 \3" 3

forz®in[-1,1] <« =xin[-1,1]. Thus,

7 o = 5.12 x 1072, so by the Alternating Series Estimation Theorem,

1) _ (02

I == = (1.000 80 (correct to five decimal places). [Actually, the value 15 0.000 800 0, correct to seven

decimal places.]

45, We first find a series representation for f{z) = (1 + x)~*/%, and then substitute.

f(“)(m)
(1 +JC)—1/2
(1+T) 3/2
+m)“5/2
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Ve r— ir‘ + ifr7 — Lxlo 4 v ~ (0.1) — 1(0 1)*, by the Alternating Series
Jo Vit |0 8T a0 32 o ) § k

Estimation Theorem, since 2 (0.1)7 = 0.0000000054 < 10~%, which is the maximum desired error. Therefore,

== (.099 987 50.

/'U" da
Jo V1+2x8

1/2

0.5 . 05 oo (1) p2nt2 o 1) g2t oc -1V )
: / 220 dp = ) (=17 de = Y [(__l_)"{—] = (=1 and since the
ol ™

A Jo no n! = (2n+3) |, o (20 + 3)22n8

. X 1 1 (-wl)" 1 1
" S 001, g _ = — — — 22 {).0354.
term with o = 2 18 1792 < (1001, we use ni ’ n!(2n 3)22?1 3 21 160 0.035

@ — (1:_%;1:‘5+%$5—%:E7+---
T by <)
lim p
x—0 _',[,'3
. 1 1.2 a
11111(.375.13 + =z

r—0""

since power series are continuous functions.

1.2, 1.4 1.6
i | —cosx . 1—(1—§;£{! + 57— HE Jr)
. lim ———— = lim d 4l ! }
=014z —er w0 | 4o (l-z+ $z? 4 ga° + f2t + 52t + gat + -

lim
o— 1 1.0
22— 751;2 - =

3!

since power series are continuous functions.

. .G;in;r—.‘r.'—f—%:.r:3 . (.Ew%;c‘iJr%;cE’f%m?-ﬁ---')—9:—}—%.‘1:3
. liim ———— = lim = = ;
@) s x—0 J,'ﬁ

1.5 .
. T Y 1 2?2
limn = =lm|— -+~
z- 0 b e—0\ 5 T! 9!

since power series are continuous functions.

1.3, 2.5 :

. tanz - . (z+ 32 +EI°+---)—:L' . 3T

, lim ——— = lim : 2 = lim =
=0 .’It‘5 n—0 $3 r—{0

since power series are continuous functions,

2 4 6 .
s in Fx: . 20, e T E o E T
- As in Example 8(a), we have e ™ =1 T + 5T~ al + -+« and we know that cosx = 1 51 + T

from Equation 16. Therefore, e~ cosz = (l -zt 4 %;r.4 — )(1 — émg + ﬁm‘l - - ). Writing only the

5.4

2 . B
terms with degree < 4, we gete © cosz = 1= Ju° + 2{{;{:4 —ef it it =1 - 27+ Bat -
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2 . 5 4
+tu® T

L 1) 1 A ,
(2 . From the long division above, sccx = 1 + EI,LQ + %14

I o la2 L4
COS T L= ga® + 53¢

1+ iz° +

3, 1 .5
£ _"T + e

£

360

. From the long division above, o L+ 30 + gt +

r.-v,r +ﬁaﬁ sSIN &

54. From Example 6 in Section 12.9, we have In(1 — ) = -z — 2% — 12° — - ] < 1. Therefore,

e In(l —x) =

55. 3 (—

n=0

o _1)'fi 2n

56.
Z, 62 (2n)!

n=_{ n=0

o e g Vil M
AT 2+ 1Y S (2n+ 1)
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w3 R B

e L 7 B R 1

= e by (11).

9 27 81 3! 32 33 3 o g
AL A 2 L2 2 2 _1=¢€*-1,by(ll
59. 3 + TR TR o=t t Sttt . %m e y (11).

(In2)? _ (In2)” 2)*

60. 1 —In2+ ot 30

_ -1
R “—-'-———e = (e =27 Z%by(ll)

61. Assume that | £ ()] < M,so f"(z) < Mfora <z <a+d Now [ f"(t}ydt < ["Mdt =
f'@)—f"a) S M(z—a) = f'(&) < f{a)+M(x— o). Thus, [T f"(t)dt < [7[f"(a) + M{t - a)]dt
= fiz)- o) < fMa)z— o)+ EM(z—a)’ = [(z) < fla)+ @)z —a)+ Mz —a)' =
JIrwadt < [7[f{a)+ (@)t —a) + gM(t - a)’]dt =
flz) = fa) < fa)(@ — a) + §1"(a)(z —a)® + §M(z — a). So
f@) = fla) = f'(a)(x — a) — §f"(a){z — a)® < §M(z - @)*. But

~ Ty(x) = flw) — fla) = f'(a)(z — a) — 3 f"(@)(x — a)®, 50 Ra(z) < g M (x — a)*,
A similar argument using £ (z) > — M shows that Re(z) > —3M(z — a)*. So [Ra(w2)] < 1M |z — af.

Although we have assumed that = > a, a similar calculation shows that this inequality is also true if z < a.

e #10)

62. (0) f(z) = { $0
0 it z=0

, o flx) = fo . . i/z o
rO) = Jim S5 T = I

= (} (using I"'Hospital’s Rule and
simplifying in the penultimate step). Similarly, we can use the definition of the derivative and 1'Hospital’s Rule
to show that f”(0) = 0, £f3{0) =0, ..., f™(0) = 0, so that the Maclaurin series for f consists entirely of
zero terms. But since f (x) # 0 except for z = 0, we see that f cannot equal its Maclaurin series except

atx = (.

From the graph, it seems that the function is extremely flat at the

origin. In fact, it could be said to be “infinitely flat” at z = (), since

all of its derivatives are 0 there,
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LABORATORY PROJECT An Elusive Limit

n{z) sin{tan z) — tan(sinx)
d(z) ~ arcsin(arctanz) — arctan{arcsinz)

1 flz) =

flx)

1 1.1838
0.1 0.9821
0.01 2.0000
0.001 3.3333
0.0001 | 3.3333

The table of function values were obtained using Maple with 10 digits of precision. The results of this project will

vary depending on the CAS and precision level. It appears that as = — 0", f(z) — 2. Since f is an even function,

10

we have f{z) — Fasz — 0.

. The graph is inconclusive about the limit of f as z — 0.
4

-

-2
. The limit has the indeterminate form 2. Applying 1"Hospital’s Rule, we obtain the form g six times. Finally, on the

) -
seventh application we obtain hm LI EI; = A;ZS =

7 _ 20,9
: 35T = g
. lim f{z) = lim M) L5 lim 10 756 -
w--+0 x—0 d( ) z—0 ——3;7 + == 7'3() —|— B
+

Note that n'7 (z) = ) (z) = — & = —23% = —168, which agrees with the result in Problem 3.

. The limit command gives the result that lin% flz)=1.
xr—

. The strange results (with only 10 digits of precision) must be due to the fact that the terms being subtracted in the
numerator and denominator are very close in value when |z is small. Thus, the differences are imprecise (have few

correct digits).
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12.11 The Binomial Series

1. The general binomial series in (2) is

e Z k a:n:1+ka:+k(k_1);r:2+
n 2!

n=0

{l—&—r)l/z*Z(z)w” =1+(3)z+

n=0

z? 1i-3.z% 1.3.5-24
2.2l 2.3t 24

£
—1 — —
+‘2

T o= (=1)"11-3-5
:1 —_
+2+nz:;_ _

(A ) (A58 [~(n 4 3)
n!

(~1)".2.3.4.5.6 n+1)(n+2)(n+3)  (=H)"(n+1)(n+2)(n+3)

2.3-n! 6

i (~1)*(n+ 1)én +2){(n+3) 2 for

x| < 1,50 R = 1.

_3 n
) (g) . The binomial coefficient is

(=B)(=D)(5) o [+ 2)

!

_ =)+ 1)(n+2)
2
D" n+1)n+2)a” (—D)"n+ 1){n+2)z™

RE
2”:. onid for’§r<1 =

H-D(-4)
3!
)12 1407 30— 5)]
xI
3" - nl
‘ *x 1:4-7-----(3n—05)
=1-2z-2
3% nX"_-:2 3" - n!
and |[—z/ <1 & |z/<l,soR=1.

(—2) 4.

ITL
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(—l)n (_1)”_1- 3T (4'” T 5) 8n o
4 .nl

oo 2.T..... (dn — 5) 2"
a2y 2T (n =5)2" n

s 1!

and |*8:IT| <1l = |z< %,so = %_

) . , 1611
R R T TE AR TR T

The radius of convergence is 32.

7. We must wrile the binomial in the form {1+ expression), so we’ll factor out a 4.

T af) fi)’”_fi
VA et Al +x2/4) 2y/1+ x%/4 4 2aZo\ n

2)(-3) (M

2!

3o (20— 1) 4,
2 4l *

1-3-5-----(2n—1) 4,0y 2°
STan i1 z and T <1l <«

|| < 2,80 R=2.

N . .
x” ax 2 2

8 Nopr v2(1l+x/2)

T

r (1_1_‘_
VA

(27?—‘ J') 14 e
plo2n+1/2 T - and ‘§| <1l & LI‘ < 2,50 R=2
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: 8y(_1L
9. (1+22)% =1+ 2(2*’)* G)(=1)

3 o0
:1+§$+3Z (—l)

n=2

1 3, 3% (-1 5 -7 and |2z] <1 |.T‘<18L)R:l
= +'2—.E+ ng(* ! i . ; 2,‘ : 2

3 3 3 .
The three Taylor polynomials are Ty {z) = 1 + 7% Ta(x) =1+ 2% §“L2 and
—J) |4

: 3 5 .
Ty(x) =1+ 5%~ -8—.132 + 1_’()1&

10 Y1+ 4 = (1 +4a)'?

_2 1

wer2:5:8 0 (3n—

(=1)

1 1
(4z)" and [4z| <1 & |z < E,SOR: T

4 4
The three Taylor potynomials are 73 (z) = 1 + 3% Ta(z) =1+ -z — —=z°, and

3 9
4 16 , 320 .
Ti(z) =1 + 3%~ H)af:z 18]—33;

M@ 1/V1 -2 =1+ (_22)]—1/2
%ﬁl(—xz)ﬂ i

oc .3.5.....(27171) o
=1 N
+nZ::1 2. ql +

- 1 © 1.3.5....-(2n—1)
5 L o —_— dx = o 21
by sin" 2 ] V1 z? T =Ctes nz::l (2n + 1)2% - n! ¥
(Zn—=1) 5.4
1)27 - n! v

since0 =sin™ 10 =,
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135 (2n—1)z*"

v —1/ = [ —1/2
12. (a) (1-5—;1:2) L2 _ Z( n/) 2n _1+Zl on !

n={}

b) sint ! = __d$— +T+§ '"} 135(27171)321)4-1
o e m n=1 2n.nl (2n+1)
— AR

)" 13- (2n-na™t o

b0 = 0,50 sinh~ e —a - 5
sinh =0,s0sih™ 'z == Qﬂ n! (2n+1)

n=1

. but ¢ = 0 since

1
B YTre=1+n'""= (;>$
n=0
i) 2

Lo @Ed) ., B0
—1+3m+ ot
o vf _ TL+12.5-8 (‘}n_4) n
=1 | +Z(l) TR T

3 =2
b N+rzx=1+ %J — %.{ + ETT — o 101 = ¥+ 0.01, so let z = 0.01. The sum of the first two

1 : . " .
terms is then 1 + %({).(]1) 72 1.0033. The third term is 5(0.01)"‘ == .000 01, which does not affect the fourth

decimal place of the sum, so we have v/1.01 =2 1.0033.

W@ 1/ VTHr = (1 +a)7 =
1 (=0 G%Nj%(*)ﬁ+“.

=gty

1 2 S {dn-3) ,
=1- = - :
4$ * ngz (=1)" 4” ! *

<m1/vl+r_1—iL+§%2—1§ﬁ3+;g;4—-~J/WL1=1/W1+uLMnam:0JrMewmd

1 5 15
the first f sisthen 1 — —(0. — (0.1 0.1)° == 0.976. The fifth is
he first four terms is then 1 4(01}+32() ? - 128( ¥ 22 0.976. The fifth term is
- [
195 (0.1)* 22 0.000009 5, which does not affect the third decimal place of the sum, so we have

2048
1/ V1.1 2 0.976. (Note that the third decimal place of the sum of the first three terms is affected by the fourth

term, s0 we need to use more than three terms for the sum.)

15, (a) [1+(— &;f__.ﬁ, ———%ﬁﬁﬁ%—m3+~-

$0 —1—2 =ur
(1—a) n=0

(b) With z = 1 in part (a), we have i n(3)"

n=1
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16. () [1+ (—

-3 _ 1+ (_m)]”S + 221+ (—55”773

o 1){ 2 1 2 o
Z (n+ n+ ) e+l g Zﬂ {n+ )Q(T? + ) 2
£

n=0

g (n+1) o ij (n+1) it

(ﬂ“l)

—r+§ n(n+ ) n+§

n=2 n=2

[= &) , =)
=g+ 3 o 3 ntat, —l<ao<l

n=2 n=1

{b) Setting « = 3 in the last series above gives the required series, so L

(%);*%) (‘132)2+ (% — 2/ 4,
(- '1-3.5-----
PACIRR 2Y.

i

n=2

(i0)¢q
(b The coefficient of z'¥ (corresponding to n = 5) in the above Maclaurin series is f : ( ) S0

(10 -1*.1.3.5. AR
S0 (=1 3-5.-7 . f(m)(o)m!(l_g__g_’_Z)_gg,zzr)_

25 . 5! 25 . 51

{b) The coefficient of z* (corresponding to n = 3) in the preceding series is

S0y 0 (-1)°1-3-5 VR L B
ol L 80 a = 5331 = 0 = 3.2 = 113,400,
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. nc k
U T | i
(n) nm * nzz:l (”) i

Replace n with n -+ 1
in the first series

‘ (n+ l)k(k - 1)k — 2)(;1- +(Fi)|_ n+ 1)k —n) o

)k‘(kf (k — 2)---(F.ﬁ—71+1)} o

n!

<5l

& (e Dk Dk = (k-ntl)
o3 " [(k—n)+n]

n=0

= kik—-Dk—2)- - (k—n+1) , e
=k Z0 ( ! 7)?‘ : )I :k};}

gy kgl
Thus, ¢'{z) = T+ 2
b) hix) = (1 +z) “glx) =

Pe) = —k(l+x) " gla) + (1+x) *¢'(x) [Product Rulel

ok kglz

= —k(1+2) " gle) + (1 + ) e [from part (a)]

— —k(14+2) " g{a) + R(1+ ) F igz) =0

(¢) From part (b} we see that {x) must be constant forz € (—1, 1), s0 h{z) = h(0) = 1 forz € {—1,1).

Thus, h{z) =1 = (1 +2) " g(z) < glz)=0+2) forze(-1,1).

20. By Exercise 12.11.1, vI+ 2 = 1 + % +3 (=

n=2

n=2
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1 e2sin®0df = da /
0

.V.....{271_3) 62 TL‘
n! (2) 5TL]

w2 L 3.5 (o — 1
where §,, = / sin®" 9 do = {2n 1)

Jo . - .....27})

!
n=2

. . =135 (2n—3) 9, . an
l—%ezsinzﬂle i Oz?l.n( i )(%2 51112'9) dg

oo

% by Exercise 44 of 8.1.

o0

2

n!

1-3-5----.(2713)(62)”1-3-5 (27;.—1)]

20 . 12.32.5% ... (2n - 3)2(2n - 1)
n!-2n . nl

e

o8 (256 — 64e” — 12¢* — 5e” —

f" )

Cosx

—8inz

— s

sin

Cos T

—sinx

— COST

=T | Ty =15

0.6916 | 0.7074 (.7071
—0.2337 | 0.0200 —(.0009
—3.9348 0.1239 —1.2114

(¢) As n increases, T, () is a good approximation to f(x) on a larger and larger interval.
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T ()

1

1—-(z-1)=2—ua
l-(r—D+(z-1"=2"~32+3

P—(r— D417 (1) =—2"+42° -6z +4

B |

™~

x f T

09|11 E1] 1.11 § 1.111
1.2 | 0.7692 0.7 | 0.79 | 0.763

(¢) As v increases, 15, () is a good approximation to f{) on a larger and larger interval.

f“”(w)

f(ru) 1)

Inz
1/z
—1/z*
2/x*

—6/2?

(
0
1
-1

2
—6

—  n!

(2= )" =04 (x 1)~ 3 — 17+ -

Fi)

)

r

: {(n)
Ty = 3 L),

n==A) TI.!
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()

sin

cosx

—sine

— COS T

£ ()
arcsin
1/v1—x?
/(1 22)31°
(227 + 1)/ (1 — £2)*/2

f('”)(o) T 113

ol T =a;+?

[ ()
(Inz)/z
(1 -1Inz)/z?
(=34 2nx)/z3
(11 — 6lna)/a*
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3

F™ i) £0(0)

— 2w 0

e
(1= 2x)e 1
4(r — 1)~ -4
4(3 — 2x)e

a3l
'lh(m)zz_:ofnl()m J—l— lpt =2

fx)
(3+22)""
z(3+ ;?:2)
3(3+z%)

~1/2

—3/2

0

) = (z-1)'=2+a-N+La-1=2+3-D+E@-1)7°
=) -
. In Maple, we can find the Taylor polynomials by the following method: first define f: =sec (x} ; and then set
T2:=cconvert (taylor (f,x=0,3),polynom) ;, T4:=convert (taylor(f,x=0,5),polynom);,
etc. {The third argument in the taylor function is one more than the degree of the desired polynomial). We must

convert to the type polynom because the output of the f 8 T T, 1,

taylor function comtains an error term which we do not
want. In Mathemalica, we use

Tn:=Normal [Series[f, {x,0,n}]], withn=2, 4,
etc. Note that in Mathematica, the “degree” argument is the

same as the degree of the desired polynomial. In Derive,

author secx, then enter Calculus, Taylor, 8, 0; and

then simplify the expression. The eighth Taylor polynomial is

TB(')_IJV.;’: + 1 4T +76210 +820762I

. See Exercise |1 for the CAS commands used {o generate the

Taylor polynomials. The ninth Taylor polynomiat for tan z is

R 17 62 9
Ty(x) = T+3 f +15T +315$ + el -
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13.

@ flx)=vr=Tiz) =2+ 1z -4) - 24 {xr—4) - Lz -4)*

z—4/ <02 =

< % @ — 4%, where | f"(z)] < M. Nowd <z <42 =

(b)Y |[Ra(x)
lz — 4)* < 0.008. Since f"(z) is decreasing on [4, 4.2], we can take M = | f"'{4)|

|Ra()| < 2222(0.008) = %228 = (.000015625.

0.00002

{¢) From the graph of | R2(x)| = |2 — T2(x)/, it seems

that the error is less than 1.52 x 107" on [4,4.2].

) =xr % =Ta(x)
(z—1)+ 2z - 1)
=1-=2(x 1) +3(z—1)*

AT
(b) |Rz(z)} < T 11*. where [f"(x)| < M. Now
09<zr<ll = lzr—-1<01 = 0.90 Lt

lr — 11> < 0.001. Since f"'(z) is decreasing on From the graph of |Rz(z)| = |27% — Ta(x)|.

it seems that the error is less than (.0046

0.9, 1.1], we can take M = [f"(0.9)] = ([f—g“)g, 50
on [(01.9,1.1].

Ro(r)] < 202° (9 g01) = ;2004

G 0.59049
= (1.00677404
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1)

5
-7

6 ,—10/4

@ f(2) = P mTala) =1+ He - 1) = Fle - 1>+ 5« 1)°

f]—I—%(:ﬂ—])fé(m‘l)z—&—g—ﬁ(m—l)g

(b) [Ra(x)] < 312 ~ 1]*, where ‘ f<4)(a:)1 <M Now(8 <z <12 = |[x—1<02 =

|z — 1]* < 0.0016. Since ‘f(‘“{m) is decreasing on [0.8, 1.2], we can take A = !f(4)((}.8)‘ = 2(0.8)" 1078,

26 “1o/3
so [Ry(x)] < o8

0016) ~= 0.000096 97.
Y {0.0016) 7

{c) From the graph of | R3(x)| = ‘wwa - T‘}(I)' it seems 0.00006

that the error is less than 0.000053 3 on [0.8,1.2].

(a) f(x) = cosx = Ly(x)
. /

d(m_g

M 5

(b [Raiz)] < o |~ Z|”, where ‘f'(ﬁ)(x)‘ SMNwO<z<®¥ = (z—Z) ©)”and letting

2= gives M = 10 |[Ry(w)] < 5(%)" = 0.0105.
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(¢) 0.012 From the graph of |Ra(x)| = |cos z — Tu{x)|, it seems that the error

is less than 0.01 on [0, 2—:]

tanx
sect
2,
2scc” mtana
: : 4
dsec® ztan® x + 2sect &

8scc? ztan® 2 + 16sect ztanz

(a) flz) =tanx = T3(z) =z + %:1:3 (c)

b) |Ra{x)] <= |r| where |f(4)(r)‘ < M. Now
0<r<f = 2*< (%)4, and letting z = I

{sincc £ is increasing on {0, %)] gives

|3 ()] <

8(%)2(ﬁ)%+16(%)4(%) (E)4 From the graph of

4! 6 [Rs(x)| = {tanz — T3(3)|, it seems that

- qu (%) ~ 0.057859 the error is fess than 0.006 on [0, 7 /6].

1 @)

In(1 4 2z)

2/
—4/(1 + 22)*
16/(1 + 22)°
—96/(1 + 2x)*

(1
(

1+ 2¢)

(@) f(x) =In(l + 22) ~ Ta(x) = n3 + 2z~ 1) - 22 (z — 1) + 220z —1)?

at
M
b) [Ra(a)| < 7 o = 1%, where ‘ff'i)(gz)‘ <M Nw05<z<15 = 05<z 1<05 =

e -1 <05 = |- 1" <L, and letting x = 0.5 gives M = 6, s0

_1(9

6 1 1
|Rs{)| < 1)7 = = 0.015625.
. 3

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

SECTION 1292  APPLICATIONS OF TAYLOR POLYNOMIALS - 7009

(©) 0.005 From the graph of |Rs(z)| = [In(1 + 2z) - T} {x)]. it seerns that the

error is less than 0.005 on [0.5, 1.5].

F (@)

2
e

s {2x)
& (2~ 4x7)
et (12 + 8z%)

e (12 + 4827 + 162%)

{0y fla} = e n Ti(e) =14+ %TZ =1+ ()

A

(b) | Ra(@)] < -7 [a]*. where }f“)(w)} < M.
Now0 <2 <01 = z*<(0.1)" and
letting = = (1.1 gives

" (12 4 0.48 + 0.0016) (0.1 ~ 0
24 ‘ From the graph of

[Ttz (x)] <

(L.O0GO06. L e
|Ralz)| = 'e"‘ ~ {1+ )‘ it appears that

the error is less than (.000051 on {0, 0.1].

F ey ) )

rlnx

Ine+1
1/e

—1/z*
2/z®

() fxy =chmr=Tiz)={z-1)+3(z - 1) — &l — 1)?

(b) [Rs(x)| < &hjr 1 *, where ’ f(“”(n:]} < M. Now

|z - 1] € = |z~ 1" < L. Since ‘ f('”(:r:)l is decreasing on [(1.5, 1.5]. we can

1
2

V(0.5 = 2/(0.5)* = 16,50 |Ra(x)| < 38(1/16) = 57 = 0.0416.
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0.008

(¢) From the graph of |Rs(z)| = |z Inz — Ta(z)|. it seems that the error

is less than 0.0076 on [0.5, 1.5].

F™ (@)

TSN

sine + xcosx
2cosx — xsing
—3sinz — xcosx

—4cosx +xsinz

hsinx 4+ rcosx

—4 4

(@) f(x) = rsineg = Ta(z) = Z(z — 0)* + T (z 0! =a2® -tz

(by [Ra(r)| < & 2|®, where \ f(m(m)\ <M. Now—1<z<1 = |z]<1,anda graphof f**(x) shows that

5 = 0.0416.

‘f(s)(;tr)l < 5for —1 < z < 1. Thus, we can take M = 5 and get |Ra(2)| < & -1

0.009

(¢) From the graph of |R4(x)| = |zsinaz — Ta{x}|, it

scems that the error is less than 0.0082 on [—1,1].

f )

sinh 2z

2 cosh 2z
4 sinh 2z
8 cosh 2x
16sinh 2z
32 cosh 2z
64 sinh 2

(a) f(x) = sinh 2z &~ T5(x) = 2o + %f + %’I’B =2r+ %9:3 + 1;45:05
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(b) [Rs{x)] < & |2/°, where ‘ f(a)(;c}\ < M. For z in |1, 1}, we have |z < 1. Since ‘() is an increasing

odd function on [—1, 1], we see that ‘ fle (.L‘)‘ < FO1) = 64sinh 2 = 32(e® — e*) A 232.119. 50 we can

take A = 232.12 and get |Rs(z)| < #2232 - 1° = 0.3224.

(¢) From the graph of | B5(z)| = |sinh 2z — T5(:r)|, it seems that the

error is less than 0.027 on [—1, 1].

23. From Exercise 5, sinw = % +
with lfm(‘r)‘ = |sinz| < M = 1.Now 2 = 35° = (30° +5°) = (% + §%) radians, so the error is

()"

|Rs{3)| < -2 < 0.000003. Therefore, to five decimal places,

Sind5° s L4 M3 (2 ﬁ%(%)zf%(%

. From Exercise 16, cosz = : s — 2 1) 2 : {x — ’—;)1 + Ra(x). Now since

@ =09" = (60° +9°) = (£ + Z&) radians, the error is [R4{z)| < (ZE < 8 % 1077 Therefore, to five

3w IR oyt .
=B (&) —1(H) B (H) &) = 035887

decimal places, cos 69° = -

i
2

a
. All derivatives of €7 are e”, so |R,, ()] < _c ||

ST . where 0 < x < 0.1. Letting x = 0.1,
T !

0.1

{n+41)!
R3(0.1) < 0.0000046. Thus, by adding the four terms of the Maclaurin series for ¢” corresponding ton = 0, 1, 2,

R,(0.1) < (0.1)™*! < 0.00001, and by trial and error we find that n = 3 satisfies this inequality since

and 3, we can estimate %' o within 0.00001. (In fact, this sum is 1.10516 and ¢”' = 1.10517.)

. Example 6 in Section 12.9 gives the Maclaurin series for In(1 — 2) as — 3~ = for z} < 1. Thus,
n=1 Tt

Inld=1In[l— (—0.4)] = — i (—0.43"

n=1l T

(0.4)"

. Since this is an alternating series, the error is
n

— iz.:](_l)nﬁ-l

less than the first neglected term by the Alternating Series Estimation Theorem, and we find that

lag| = (0.4)° /6 = (.0007 < 0.001. So we need the first five (non-zero) terms of the Maclaurin series for the

desired accuracy. (In fact, this sum is approximately (.33698 and In 1.4 =~ 0.33647.)
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2], sinw =« — %:r; + ;l!:x‘r’ — -+, By the Aliernating

Series Estimation Theorem, the error in the y=sinx + 0. Ul

approximation sinx = z — 4" is less than
Lt <00l e |2° 20(0.01) &
(o N

|z} < (1.2)'/% 22 1.037. The curves y = = — %9:3 and

y = sinz — 0.01 intersect at z = 1.043, so the graph 1ol '
0.

confirms our estimate. Since both the sine function and
the given approximation are odd functions, we need to check the estimate only for z > 0. Thus, the desired range of

values for z 1s —1.037 < = < 1.037.

28. cos:rwlu—r +4,cr _wT +-+-. Bythe

\ _y = cosx + 0.005

Alternating Series Estimation Theorem, the error is less

than |— 2| < 0.005 & 2% < 720(0.005) <«

2] < (3.6)"7% = 1.238. The curves

y=1- %J’.z -+ 515154 and y = cosx + 0.005 intersect .
v =cosx — 0.005
1.22 -

0.32

at ¢ = 1.244, so the graph confirms our estimate. Since

both the costne function and the given approximation
are even functions, we need to check the estimate only for & > 0. Thus, the desired range of values for x is
—1.238 < < 1.238,
1 5(t) be the position function of the car, and for convenience set s{0) = 0. The velocity of the car is
s'(t) and the acceleration is a(t} = s"(t}. so the second degree Taylor polynomial is

(0)
N 2

= s(0) + (0}t + —=¢? = 20t + t%. We estimate the distance travelled during the next second to be

s(1) ~ T5(1) = 20 + 1 = 21 m. The function T2 (t) would not be accurate over a full minute, since the car could

not possibly maintain an acceleration of 2 m/s” for that long (if it did. its tinal speed would be

140 m/s == 313 mi/h})
3.

p™M () pl(20)
page” 2 P20

Qo ea(t~20) apyy

a(t--20) 2
& poge " flag

The linear approximation is T1 {t) = p(20) + p'{20)(¢ — 20} = pyg [1 + aft — 20}]. The quadratic
approximation is

£(20)

Ta(t) = p(20) + p'(20)(t = 20) + E=L (8 = 20)" = g [1 4t — 20) + o’ (1 — 20)°]
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T

Ty

1000

0

225 x 10" From the graph, it seems that T (£) is within 1% of

p(t), that is, 0.99p(t) < T (t) < 1.01p(t), for

—14°C <t <58 °C.

/

30

1.25 % 17"

¢ _ 4 4 :_‘?'—1(1+£
(D+d)? D* D214+d/D)y* D? D

We use the Binomial Series to expand (1 +d/D) "

e ({8
i (5) () () -

when 17 is much larger than d; that is, when P is far away from the dipole.

32. (a) % + %2 = Ii{(n;fl — ﬂ—;—”) {Equation 1) where

£, *\/Rer +R} —2R(s,+ R)jcos¢ and ¥ _\/R2+ s;i - R} 4+ 2R(s; — Rycoso (2)

Using cos ¢ =2 1 gives

by = /B2 4 (50 + R)? — 2R(3,+ R) = /I = 2 + 25, + [C — 2Rs, — 200 = /53 = 5,

and similarly, £; = s;. Thus, Equation | becomes

eS8y 154 T Mo Mg — 1N
= — = + — =
So &y R

85 8o
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(b) Using cos¢p == 1 — %(f in {2} gives us

fo= /B2 + (s0+ R) = 2R(s, + R)(1 - §67)

=\ R? 52+ 2050 + F? — 2Rse + Rso@® — 2R? + B20% = \[ 2 + Rsot? + B¢

Anticipating that we will use the binomial series expansion (1 + a:)k ms 1 4 kx, we can write the last expression

Si

‘ 2 LR R . .
for £, us 8o \/l + (pz (E + R)) and similarly, £; = si\/l — (f)z (— - — ) Thus, from Equation 1,
So 52 2

Tt 1 {nys;  nis, _1 1
- = = - — = mif, 1 =
+ 7 I ( 7. 7 ) n1 + 12k,

R R\
o[- 2)

-1/2 2 —1/2
o R R
) Rl

Approximating the expressions for £, and £, " by the first two terms in their binomial series, we get

”'{1%@2(_ )] sl 2 (R f:)]

5 ni R R
T Bl —5{1—%¢2(f+7)] &

S0 Sh

Sq 25,

1 T4 ®2 (

"R 2R 2

Yo Sa

n +n1gb2(£+ﬁ) o

ne _nz M nig? £+_ . , +'fl2¢2(R Rz) _?‘L;)_Q52 (R_{f)

=y , S :
R R 25, \ & : s 2R \ s; 5% 251 \ & s

e i (R f(R R (1
R ] ; ; : 5; sf R

Tty — 1 + TL1¢2R2 i o ’nz(ﬁQRg l
R 25, 8 . ‘ 28, R

—ni 2 52
—_ It
= + o

From Figure &, we see that sin ¢ = h/R. So if we approximate sin ¢ with ¢, we get h = R¢ and h* = ¢* R’

and hence, Equation 4, as desired.
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33. (a) If the water is deep. then 2wd/ L is large, and we know that tanhx — lasz — oc. So we can approximate

tanh(2rd/L) = 1 and so v* = gL/(2x} <« vr \/gL/(27).

(b) From the table. the first term in the Maclaurin

serics of tanh o is x, so 1f the water is shallow,

7 (z)

tanhz

2md 2md

we can approximate tanh — = ,and s0
PP L L sech? z

qL 2rd = v /gd —2sech” ztanh T
Ton L ‘
B 2sech? z (3tanh®x — 1)

(¢) Since tanhr is an odd function, its Maclaurin series is alternating, so the error in the approximation

ord _ 2nd LF70)] (2nd\® 1 2md’
7 T is less than the first neglected term, which is ~—/—— 3l 7 =77 .

rd

It L hen = —
Blﬂdlung(L)

3 3
1 .
1 (271“ . —) i , 50 the error in the approximation v* = gd is less

3 10 375°

qL 7 . i
than 2= ~ 0.01329L.
Mo 37 &

34, () 1 / =4 \/ ‘L / — k% sin® J” V2 g
: 1 kz sin

T [ 1, 0y 1.8, L2 5. ICIRY:
=4/= I — —(—k"sin" x) + 22 (—k" sin 7) - (=& sin z) +-- | de
g Jo 2 2! 3
/2 3.5 . X
4\/5/0 {lir(l)k sin :L—Q—(:lz )A sin L%(; i ;)khﬁinb:ﬂ-!—“-]dﬂ?
T (YL T e (LY (13
Sy )G G E )

. 1-3-5\(1-3-5 = B
2.4-6/\2-4-6 2/}

{split up the integral and use the result from Exercise 8.1.44]

I 12, 1.3 1. 32 52 4
=2m S L Sk ! Sk
i g{ﬂz? +22-42;‘:4“22 42 . N }

{b) The first of the two inequalities is true because all of the terms in the series are positive. For the second,

L L 1? 12 32, 123r5t o 1232577
F_ZW\/;[HA]‘ ter e T E et Ty et T

SOV U7 P PPN SVRNE PURNS Syt
gmvy[1+4k +4k +4k+4k+

The terms in brackets (after the first) form a geometric series with a = ikg and r = k% = sin®(16,) < |

,’f[ k/d] (L 4—3k?
T+ =

S0l < 2 R Y Ll
MR R pye) B (VT
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(¢) We substitute L = 1, g = 9.8, and k = sin(10°/2) = 0.08716, and the inequality from part (b) becomes
2.01090 < T < 2.01093, so T =2 2.0109. The estimate T ~ 27 \/L/g =~ 2.0071 differs by about 0.2%.
If 9, = 42°, then & = 0.35837 and the inequality becomes 2.07153 < T < 2.08103, so T =2 2.0763. The
one-term estimate is the same, and the discrepancy between the two estimates increases to about 3.4%.
35. (a) L is the length of the arc subtended by the angle #,s0 L = R =
f = L/R Nowsecf = (R+C)/R = HRsecfl=R+C =

C'= Rscc — R = Rsce(L/R) — R.

{b) From Exercise |1, sccx =~ Ty{z) = 1 + %xz + 55—41'4. By part (a),

2 4 2 2 4

VAR 2? 1, L 5 * 5L

A WL (SN _p_pilr L 2p 2 _po .
¢ I 1*2(13) +24(R) R=RtyR mty R=5r*um

(¢) Taking L = 100 km and R = 6370 km, the formula in part (a} says that
' = Rsec{L/R) — R = 6370 sec(100/6370} — 6370 ~ (1.785 009965 44 km
The formula in part (b) says that

Y 1002 5 - 100"
L . & 0,785 009 957 36 km.
Cx Rt oim T Zoeso T adeater SO 6 km

The difference between these two results is only 0.000 (00 008 08 km, or 0.000 008 08 m!

’ 1" (n}
36. T.(z} = fla) + %("(—L-l(m —a)+ fz_{:ﬁ)(m —a)? 4+ fT'(a)(x —a)® Let0 < m < n. Then

(m,)(u) f(:'n*{»l)(a)

T () = m! — (z —a)' + (m+ 1) (m)--(2) m ‘ (x—a)' +---

i (a)

n!

o=

+nn—1)---(n—-m+1) (xz —a)

m! fim) (a)

= ™ (a).

For z = a, all terms in this sum except the first one are 0, so T4™ (a) =

. Using f{z) = Ta{z) + Rn{z) withn = Land z = r, we have f(r) = T1(r) + R1(r), where T} is the first-degree
Taylor polynomial of f at a. Because @ = xn. f(r) = f(zn) + f/(2n){r — 2) + Ri(r}. Butr is a root of f, so
f(ry = 0and we have 0 = f(x,) + f'(z,)(r — z.) + Ri(r). Taking the first two terms to the left side gives us

flen) _ Ralr)

frlan)  f'{an)
Ri(r)

f(xpxn — 1) — f(zn} = Ri(r). Dividing by f'(xn), we get an — 7 — X
fr(zn)

By the formula for

‘n
1

Newton’s method, the left side of the preceding equation is Zp1 — 7,80 {&ne; — 7| = . Taylor’s

Inequality gives us [Ri{r}| < ¥ — &n|>. Combining this inequality with the facts | f” ()| < M and

£ (r)i |
2!

ifi(x)] > K gives us |piy — 7] < ﬁ |2, — r|*.
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APPLIED PROJECT Radiation from the Stars

, . 8rheA " aX”’ . . L
1. If we write f(A) = he)OWT) 1 g O 1.,then as A — 07, it is of the form 20 /o0, and as A — o0 itis of

the form (/0. so in either case we can use I"Hospital’s Rule. First of all,

b 00 " a(-527°%)
1m = I ——F " =
A—o0 A—oo _ bT ﬂb/(.\T)

(AT)?

woal o ATt o el
lim f(A) 252 lim — e = 5= lim = 20 BT
Jim, FO) =55 I Sraey 0 Ao+ @b/

This is still indeterminate, but note that each time we use 1'Hospital’s Rule, we gain a fuctor of A in the numerator,
as well as a constant factor, and the denominator is unchanged. So if we use " Hospital’s Rule three more times, the
exponent of A in the numerator will become (0. That is, for some { }. all constant,

-3 —2 —1

H A H . .
=k lim —— =k lln —— =k
pb/ (A1) St eb/ (AT} Ao+ b/ (AT A0t €

lim f(A) 2k, tim
A--0F A—07F

2 :
2. We expand the denominator of Planck’s Law using the Taylor series ¢™ = 1 + o + 1}' + % + - withz = ,_\k_("T
and use the lact that if A is large, then all subsequent terms in the Taylor cxpansion are very small compared to the

first one, so we can approximate using the Taylor polynomial T7:

FON) = 8mwhel™? o 8mhed ™3
ehe/(ART) _ | . he _|_l he \ 2 +_1_
AT - 2P\ XKT 3!
8rheA™®  8akT
he Y
— 1 -1
(1 + )\kT)

which is the Rayleigh-Jeans Law.

~Z

3. To convert to gm, we substitute A/10° for A in both laws. The first figure shows that the two laws are similar for
large M. The second figure shows that the two laws are very different for short wavelengths (Planck’s Law gives a
maximum at A = 0.51 2m; the Rayleigh-Jeans Law gives no minimum or maximum.).

500 2% 10°
' e

. Rayleigh-Jeuns
Rayleigh-Jeans ayleigh-Jeans

Planck
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4. From the graph in Problem 3, f()) has a maximum under Planck’s Law at A = {).51 pm.

5. 1.25 % 10 1.25 % 107

Betelgeuse
. 2 2
] 0 i
Sun
As T gets larger, the total area under the curve increases, as we would expect: the hotter the star, the more energy it

emits. Also. as T increases, the A-value of the maximum decreases, so the higher the temperature, the shorter the
peak wavelength (and consequently the average wavelength) of light emitted. This is why Sirius is a blue star and
Betelgeuse is a red star: most of Sirius’s light is of a fairly short wavelength; that is, a higher frequency, toward the
blue end of the spectrum, whereas most of Betelgeuse’s light is of a lower frequency, toward the red end of the

spectrum.

12 Review

CONCEPT CHECK

1. (a) See Definition 12.1.1,
(b) See Definition 12,2.2.
{¢) The terms of the sequence {a,, } approach 3 as . becomes large.

(d) By adding sufficiently muny terms of the series, we can make the partial sums as close to 3 as we like,

. (a) See Definition 12.1.10.

(b} A sequence is monotonic if it is either increasing or decreasing.

(¢) By Theorem [2.1.11, every bounded, monotonic sequence is convergent.
. (a) See (4) in Section 12.2.

. 1. "
{(b) The p-series E — is convergent itp > 1
n
n—=1

LIEY " an =3, then lim g, =0and lim s, = 3.

n—son n— 00
. (a) See the Test for Divergence on page 754.
(b) See the Integral Test on page 760.
(c) See the Comparison Test on page 767.
(d) See the Limit Comparison Test on page 768.
(e} See the Alternating Series Test on page 772.
(f'y See the Ratio Test on page 778.

{g) See the Root Test on page 78(.
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. (a) A series S a,, is called absolutely convergent if the series of absolute values 3" |an] is convergent.
(by I a series 3 a,, is absolutely convergent, then it is convergent.
(¢) A series 3 ay, is called conditionally convergent if it is convergent but not absolutely convergent.

. (a) Use (3) in Section 12.3.
(b) See Example 5 in Section 12.4.

{c) By adding terms until you reach the desired accuracy given by the Alternating Series Estimation Theorem on
page 774,

() Y3 g enle - a)”
(b) Given the power series 3., ¢n(z — @)™, the radius of convergence is:
(1) O if the series converges on!y when ¢ = a
{ii} oc if the series converges for all &, or
(iii) a positive number R such that the series converges if [z — a| < Rand diverges if |z - a| > It.

(¢) The interval of convergence of a power series is the interval that consists of all values of x for which the series
converges. Corresponding to the cases in part (b), the interval of convergence is: (i) the single point {a}. {ii} all
real numbers. that is, the real number line (—o0, oc), or (iii}) an interval with endpoints @ — R and a + R which
can contain neither, either, or both of the endpoints. In this case, we must test the series for convergence at each

endpoint to determine the interval of convergence.

. {a), (b} See Theorem 12.9.2.

n (z) a .
@ o) = 3 LW gy

1
i=p

f“*’( 1)

f(” (U)

(b) Z (o —a)"

© >

=l

" a = (in part (b)]
(d) See Theorem 12.10.8.

(e} See Taylor’s Inequality (12.10.9).
. (2) — (e) See the table on page 803.

. See the Binomial Series (12.11.2) for the expansion. The radius of convergence tor the binomial series is 1.

TRUE-FALSE QUIZ

. False. See Note 2 after Theorem 12.2.6.

o0
. 1 . - . . .
. False. The series E —sm E — is a p-series with p = sin 1 = 0.84 < 1. 5o the series diverges.
n'
n=1 1=1

. True. If lim an = L, then given any £ > (), we can find a positive integer N such that |a,, — L| < € whenever

"=

n>N.Ifn> N then2n + 1 > N and |aans: — L] < & Thus, lim asnq1 = L.

. True by Theorem 12.8.3
Or: Use the Cnmparlson Test 1o show that ¥ e, (—2)" converges absolutely.

. False. For example. take ¢, = (—1)" / (n6").
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6. True by Theorern 12.8.3,

3 3
. ) ) Ont1 ) 1 ; ) n 1/n . 1
. False, since lim = lim |—— - lim |[———*—| = llm ——————=
noo | On n—eo|(n + ])3 nero | (1 4 1}3 1/n? n—oo (1 + 1/‘:1)3

. . ln 41 . 1 T'L’ . 1
} since | = lim |——— - —| = lim =0<1,
True, since e Qn n—eo|(n 4+ 131 1 n—oo 1+ 1

. False. See the note after Example 2 in Section 12.4.

. 1 _ . ;
. True, since — = e tand &* = >
[§

. True. See (%) in Section 12.1.
. True, because if 3_ la,| is convergent, then so is 3 a, by Theorem 12.6.3.

3 fm (0) 1 L
. True. By Theorem 12.10.5 the coefficient of 27 is 5 —3 = 0y =2

Or: Use Theorem 12.9.2 to differentiate f three times.

. False. Leta, = nand by, = —n. Then {a,} and {b,} are divergent, but an + by, = 0,50 {a, + bn } is

convergent.
. False. Forexample, let a, = b, = (—1)". Then {a,} and {b,} are divergent, but @b, = 1, 50 {anb.} is
convergent.

. True by the Monotonic Sequence Theorem, since {an} is decreasing and 0 < a, < a, foralln = {an}is
bounded.

. True by Theorem 12.6.3. [3 (—1)" a,, is absolutely convergent and hence convergent. ]

. True,  lim ol <1 = Y anconverges (Ratio Test) = lim a, =0 [Theorem [2.2.6].

n—o Iy TG

EXERCISES

converges since lim = lim +—— = —.
& nooc 14 203 n—oc 1./7.!‘3 + 2 2

{2+n:’} 24 ) 2/n3+171

1+ 2n3

gt n
L = =9 (2)"s0 lim a, =9 lim (5} =9-0=0by(12.1.8).

10 0o nosme 10

3
. . n
. lim @, = lim —— = 1

. n .
- . - = 00, 80 the sequence diverges.
[ n—oo 1 + 2 n—o0 ]./TL2 + 1 q &

. an = cos{nm/2). 50 a, = 0if nis odd and a,, = £1 it n is even. As n increases, a,, keeps cycling through the
values 0. |, 0, — L, so the sequence {a., } is divergent.
nsinmn 1

1
. an] = NER < T < e 50 |an| — 0 as n — oo. Thus, lim a, = . The sequence {an} is convergent.
. 7 g M—0o

Inig Inx
. (O = DI et flx) = 22 for# > 0. Then lim flaz)= 1
x :

Vi Vo e

Thus, by Theorem 3 in Section 12.1, {a,, } converges and lim a, = 0.
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Az

3" 3
is convergent. Lety = [ 1 + ) Then
[A i

: ( 3)
370\ g2 ‘
In(1+3/z) n . 14+3/z @) 12 12

Jlljl;u lny = hm dzln(1+3/x) = lin Jim. T ) Jim 1/ (47 = m T e

3 4n
so Hm y = lim (1 + l—) = ¢*?,
n

Fiande w) n— DG

Or; Use Exercise 7.7.54.

oy " 101010 10- 10 10\
. {—( 10) } converges, since —— 10 = 0 10 < 1 ( ) —+Qasn — oo,
n!

n! 1.2-3-----10 11-12---n 11

NS
so lim
Tm— 3G 'H,!

=} (Squeeze Theorem). Or: Use (12.10.10).

. We use induction, hypothesizing that a, ) < a, < 2. Note first that 1 < ay = l{ (1+4)= -; < 2, 5o the
hypothesis holds for . = 2. Now assume that ax 1 < ax < 2. Then

Gk = 3 Fapo +4) < (a,x +4) < (2 +4) = 2. So ar < arg1 < 2, and the induction is complete. To find the

limit of the sequence, we note that L = lim an = lim any1 = L= % (L+4) = L=2

n—00 N o

. 4x? 1277
lim — lin

P e v o oo e
24x .24

I
- lim — lim — =10
r—oc 7 r—oc ¢F

Then we conclude from Theorem 12.1.3 that lim nle™™ = 0.

0
From the graph, it seems that 12%¢~'2 > 0.1, but n*e " < 0.1

whenever i > 12, So the smallest value of N corresponding to

= ()1 in the definition of the limit is N = 12,

n ' 1 o i)
. — < — = —=, 80 ——— converges by the Comparison Test with the convergent p-series
ni4+1 "3 on? .,;1 nd 4+ 1 ges oy Pt Femp

(e & 1
> oy (p=2>1).

n—1

2 3
)+ ] 1 » . 1 1
L Leta,, = Mi'!‘ : and b,, = —,s0 Lim Qn _ lim LRI T lim 1+ /n

Bl et is the
nd + 1 n a—oc by, nocepd 1 weoe 14+ 1/n? "

=12>10.Since }.7"

n=1

divergent harmonic series, Y | un also diverges by the Limit Comparison Test.

" - [(n+1)" 5" , IR
Gutll o lim {M : ] = lim (1 + ;) g =z <Lso E umvers,es by the Ratio Test.

5n+ 1 “3

5 ey A

n— 2 Te— 3G

= . Then b,, is positive for n > 1, the sequence {b,,} is decreasing, and Hm b, = 0, so the series
11 T 0K

converges by the Alternating Series Test.
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1

! — - Int

. 1 w=1In &Z, . - :

/ fla)de = 111‘[1 [ dr 1 = lim / u 1,f’2du = thln {2\/11}12;
‘ 2 | el

zvinx du:—d:r; t—oa fip0

18, Let f(x) = Then f is continuous, positive, and decreasing on [2, oc), so the Integral Test applies,

] .
= tlim {2v/Int — 2v1n 2} = oo, so the series Z diverges.

nvinn

i 1 n i . .
so i = 0. Th 1 diverges by the Test for
. nllﬂo 1 3 0 nl}{l;} ln(sn n ]) In 1 3 F us, the series lel n( o ) iverges by est fo

Divergence.

| = . 1 io;‘fz’)n < — (11 5 < 0 12)1?‘ — (;) ) Z |an | converges by comparison with the convergent

=1

jeul AR
geometric series Z (é) ('r % 1). Tt follows that Z a, converges (by Theorem 3 in Section 12.6).
n=1

n=1

. 0 2
. . ' B n?n ) 2 - 7
lim {/]an| = lm lim

— = n——linl;77<IQ()Z——
T oo i T 0 (1 —+- 2?’12)” ey ] + 22 Y 1/?12 + 2 2 . (] + 27?,-2)"

n=1

converges by the Root Test.
(2n-1)2n +1) 5l n+1

m 5utl (p + 1) ‘3.5 {(2n-1) nl_.oo B{n+ 1)

the series converges by the Ratio Test.

-5 258" N
= - — . Now
n2yn i 9
257+l n?- 9" . 2502 25

T getl 257 nlﬂ‘;c W =73 > 1, so the series diverges by the Ratio

N . ‘ _ & Jr

] > (0, {b,} is decreasing, and nlggo b, = 0, so the series Z (71)”"1 —

n=1

by = converges by the

Alternating Series Test.

ViFl—vn—1 2
n n(Vntl+vn-1)

1 " 2
numerator) and b, = —=. lim Gr _ lim \/_

TL3/2 n— o0 bn TL— 0 q-"n+ +,/n7

(p=13> 1.5 an converges also.

. Use the Limit Comparison Test with a,, = (rationalizing the

= 1,so0since 3 - bn converges

oo

. Consider the series of absolute values: > 77, n ~1/3 i a p-series with p = i} < 1 and is therefore divergent. Butif

T K

. . 1
we apply the Alternating Series Test, we sce that b, = \/_ > 0, {bn} is decreasing. and lim b, = 0, so the series

o0 o0
Z (—1)" " 'n " converges. Thus. Z (—1)"‘]7[’”3 is conditionally convergent.

n=1 n=1

O™ s

=1

L )" In ¥ =% n 7 is a convergent p-series (p = 3 > 1.) Therefore, >

ubsolutely convergent.
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3
. = o= s o 5 2 g lasn — 20,80
92n-+3 (—1)" (n+1)3" n+l1 4 1+(1/n) 4 4

Mgt | ‘(—1)”“‘1(n+2)3”+1 gntl n+2 3 14+(2/n) 3

Un

oo _yn 1 3”
by the Ratio Test, Z (1—);2%)—
n=1
&

X2 lim ———% = lim ~- = co. Therefore, lim - £ 0, so the given series is divergent
X R Es al ]_/ n—oc n—00 h]n

by the Test for Divergence.

n2n+ Zn._rl 2y i oc ndntl
.2 _rez &) 2=2(£),5022

gno 5 - Fn 5

is absolutely convergent.

o0 n 8
=2 21 (3) is a geometric series with a = R and

n=1 5

Since |r| = = < 1, the seri es10 —— _ 85
..|me|r|—l + the series converges o T— = 515
1

= 1 .
- = —_ rtial fractions).
3) ; L‘sn 3 -n+3)} (partial fractions)

S T Lot L -+ — ! — 1 - ! (telescoping sum), o0
S YR TEIEE VY B 3nt1) 3nt2) dntg CocopmEsimL

1 1
— = i Snp = 5 71
,le n(n + 3) e 3

> Jtan™' (n+ 1) —tan 'n lim s, — lim [(tan™*2 —tan™' 1) + (tan '3 —tan '2) + - ..
n=1

e OO n—00
+ (tan™ " (n+ 1) — tan™" u)]
lim [tan” (n+1)—tan™! 1} =I-I=

T—2x0

IS et (Y (V) e

n=0

3 o0 LE”
=e " sincee” = E —~ forall z.
n!

n={

LTI 4y B2 326 o 326/10° 417 326 416,909

EETIET 1—1/10° _ 100 ' 99.000 ~ 99,900

| I 1z = (—2)"

1 .
|+ - forallx
2

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

1024 |- CHAPTER12 |NFINITE SEQUENCES AND SERIES

. Z (Inx)" is a geometric serics which converges whenever lnz[ <1 = -1<lhzr<l =

=1

1 1 1 n 11 n 1 1 n
5+243 1024 3125 7776 0 16807 32,768

s

(- )”“

< 0.000031, 3 ~ 0.9721.

1
Since bs = — =
Meebs = 05 T 32768 =

36. (a) s, = Y l =1+ i + .4 L{ 2z 1.017305. The series Z — converges by the Integral Test, so we

n=1 TLG 26 hb n=1 n

. _ . " dr x5 57° .
estimate the remainder Ry with (12.3.2): Rs < Pl - == 0.000064. So the error is at
" 5

s
75

most 0.000064.
> d

o g 1 1 L
(b) In general, R, < O o . Ifwetaken = 9, then 5o &~ 1.01734 and Ry < —— =~ 3.4 x 107°. So
il B 5. 9o

o4
o 1 9 1
to five decimal places, — — =2 1.01734.
P Zl n- Z:l n’
n= Ti=

Another Method: Use (12.3.3) instead of (12.3.2).

2 # 1 1
31 § Y ———— 2 018976224, To estimate the error, note that _——_— < — so the remainder term is
not 2+"” 12457 255" A

=%

Ry =S

; =6.4% 1077 {geometric series with @ = Landr = —é).
Ti==4 2 + )w o !

n+1 oy Y1 i} n 1 m
38. (a) lin AR i (n+1) . (2n)! = lim (nt 1) (n+1) = lim ! !
noce | g - + D an n—oo {2+ 2)(2n + 1)n* nowe n 2(2n+ 1)

" 1
= li - —— —e-0=0<1
nl—I'I:LJ (1+ ﬂ) 2(27L+1) ¢ <

so the series converges by the Ratio Test.

(b) The series in part {(a) is convergent, so lim a, = 0 by Theorem 12.2.6.

T XD

39. Use the Limit Comparison Test.  lim ~ Jim 2 L lim (l + -]—) =1>0
n

n— o 1) TL— O

n—oo Un

!

(nnl)an

. ~ . . n+1 - .
Since 3 |an| is convergent, so is y_ \ ( )an . by the Limit Comparison Test.
T

o |ans ) ! n2s" _ 1 x z .
4. lin |2 = lim 3 - = lim 4-——5u = u, s0 by the Ratio Test,
n—oo | Uy - | (p 4 )7 5ntt 2t n—so (14 1/n)" b 5

Tt ‘,|

x
converges when

8

<1 < |z| <3 R=>5 Whenx = —35, the series becomes the

( "

.”1251':

CONvergent p-series — withp = 2 > 1. When x = 5, the scries becomes
£ n? P

n=1

. which converges by the

Alternating Series Test. Thus. [ = [—5,
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|z + 2|

47 . n
Untl hm[ i
n—oc | T

41. lim = lim
O fy T e 0

[ iz 427! nd"
(

: = ]:i'+2|<1 & |r4+2f <4,
n+ 1) 42+ |2+ 2 4

D0
) x4+ 2)"
soR =4 lr+2 <4 & —-d4<z4+2<4 & —6<$<2.If;[,-:—6.thentheserlesz(_ n4n)
n=1

becomes io: (;:1 = i %—, the alternating harmonic series, which converges by the Alternating Series
n=1

n=1

= ] . ..
Test. When x = 2, the series becomes the harmonic series - which diverges. Thus, I = [—6,2}.

n=1

n+1 _ gyn+l 1 2 .
. lim |22 2 lim 27 @2 2 =| = lim — |z — 2| = 0 < 1, so the series
R—o0 | (n T O (n + 3} 27 (x—2) n—oo N+ 3

w420

converges forall z. B = oc and I = (—o0, a0).

n+1 . -+l / ) 3 ) i 3
lim |22 o Qim AR Cnl) . ot 7| = 2]z — 3| lim v/ nES lr—3/<1 &
L— D p T OO0 v+ 4 o (,’L‘ — 3) T 00 7+ 4

|.1:73<%,50R:%.\:1:—3|<% = ,%<$_3<% < g<x<%. For:n:%,theseries

" (/f 7—3)11 becomes i L f: : which diverges (p = 2
T i ia eC .‘ = 4_"__“ - -
=1 n+ 3 n=(0) m n=>3 ﬂ1/2 2

= (=)
nz—-:\') vn+3

< 1), but for x = &, we get

, which is a convergent alternating series, so I = [2, I},

A oy -1
. lim = lim
- O an n—o0

. = lim |z} = 4 |x].

‘(2?1 L)l (nl)? . (2n+2)(2n+1)
n+11?  @n)lzn| a—ee (n+1)(n+1)

1
To converge, we musthave 4 |z <1 & |z| < 7,50 R = 3.

f7@) | 17(z)

1

sin 5
cos® —‘é—g

—sinx -

1
2
—CcoS T —ig

i 1
sinx 5

G (7 5

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.
026 O CHAPTER12 INFINITE SEQUENCES AND SERIES

I6.

F (@)

COS ™

— sl
—COS T
sinx

COosx

s @)
=Y (-)*z"for|z] <1 =
n=0

2T7+]

with interval of convergence [—1, 1], so
Zn +1
4n+2

2y 2n+1
-1 : " (I ) L, . . - ’
I — = — , which converges when &* € [—1,1] <
tan” ' (x ot 1 ,.; (-1" g { ]

x € [—1,1]. Therefore, R = 1.

d.l‘" oo InJrl

Z Tde=0C— %

I_I J n=0 nlJ”"‘l

= 2 forjz) <l = In(l-z)= m/

n=0y

oo .+l e} ,,'u
Il - 0)=C-0 = C=0 = In{l-g}==3Y =Y — withR=1.
n= 0n+1 ne1

v e +1
fo _‘I:”‘ ) E . o0 71«:],:” [s.5) 271:87&
— = ¢ = 3 —— = ) T R=
n=0 n,! — i n=0 n. 4y — TL.

S o2 n 4y 2n+l n _Hn44

S Cprett = (=1)" (=) s (1) et o
.sinz = e 5 . — = At for all . so the radius of
i Py e T X @n 1 1) z 2n + 1)1

CONVCrgence is oc.

s

B o' =Y — = 10 =¢

n—0 ”!
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~5)(=6)=T), o 3

for |-3z| < 1 bz < 4,50 R = 3.

1 1 n

and/—da:4(”+ln\r|+ Z
=1

n - n'

n=u
_ 1.4 1o 112
=14 S R+ g

oy Sy 1iz o, ! ] - g . . .
so fy (1) Tde = [p 4 55 =’ 4 gatt = = L g - e
This 1s an alternating series, so by the Alternating Series Test, the error in the approximation

[Ul (1+ 2} Y dr a1 <~ == 22 1086 is less than 5. sufficient for the desired accuracy.

Thus, correet to two decimal places, t];)l (1+x*) Y e 2 1.00.

57, (a)

W ey 5/8(’ )
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M :
(b LS (©) |Rs (z)| < -4—[|:;;A 1]*, where ‘f“‘) (:.c){ < M with

A5 Now 0.9 <z <11 =

01<r—1<01 = (z—1)"< 0.1
d letti (.9 gives M 15 SO
34 = . Ves M — 5, ¢
and letting x give 16(0.97772
15

< — " (0.17 = 0.000005648.
= 16(0.9)7/24!( )

|R3(z)

From the graph of |Ra{x)| = |v/x — Ta{x)|. it appears

that the error is less than 5 x 10~ ° on [0.9, 1.1].

£ ()

seca
secrtanzr

2 3
sccatan” x4+ sec” o

secxtan’ z + Ssec® rtanz

secr &= Tu(xr) =

() |Ra{z)} < i—{\;zﬁ_where tf(a)(.r)‘ < M with

F® (x) = secztan® r + Hsec” rtanz. Now

3 TYy3 H p=
= 2* < (§)7, and letting & = &

(2)7 2 0111648,

a
6

From the graph of |Ra2{z)} = |secz — Tu{w)|, it appears that the

error is less than 0.02 on [0, Z].
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5 7 3 5

o s T
a"ﬁ+‘ s051na:7$-f—3r+5' T and

ST — T 1 z” il
Y s
. Thus, h_rp} 3 e ( 6 + 120 5040

mgR* my L (h)n L .
. (a) F' = = = =1 — (Binomial Series)
@ (R+h?  (1+h/R) ' QEU ( n ) R
(b) We expand F = mg [1 = 2(R/R) + 3(h/R)* —---].

This is an alternating series, so by the Alternating Series

Estimation Theorem, the error in the approximation /' = mg is less

than 2myh /R, so for accuracy within 1% we want

5, 2
2mmgh/R <001 < 2h (IR + h)

—— < (0.01. This
mgR?/ (R+ h)* R3

inequality would be difficult to solve for h, so we substitute
R = 6,400 km and plot both sides of the inequality. It appears that

the approximation is accurate to within 1% for A < 31 km.

) =50 e = f(ex) = Yoo gen(—2)" = o o= enx

(a) If £ is an odd tunction, then f(—x) = —f(z) = Yoo (—1)"cax™ =3 o7, —cnz”. The coefficients of

any power serics are uniquely determined (by Theorem 12.10.5), so (=1)" ¢, = —¢,,. If nis even, then

(1) =1.s0c, = —co. = 20,=0 = ¢n =0 Thus, all even coefficients are 0, that is,

o= =g = - =1

(b) I £ is even. then f(_r) = f(T) = Z:(;U (71)'q e, = Z;)::o Cax” = (_1)n Cn = Cpp.
If nisodd, then (~1)" = —1.50 —cr =€ = 20, =0 = ¢, = (. Thus, all odd coefficients are 0,
thatis, ¢1 =3 = ¢5 =+ = (.

a4y M
= flr}= (:12 = Z%_c: ;L‘z) QO 2

L ]
P n—O " sz 2”™. By Theorem 12.10.6 with & = 0,

o)
(2n)l " w!

>, 0} . .
we also have f(z) = 3 ! k'( ):r;“. Comparing coefficients for & = 2n. we have
k=0 '

{2n)!
nl

2 (0) =
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[0 PROBLEMS PLUS

1. It would be far too much work to compute 15 derivatives of f. The key idea is to remember that f )(0) occurs in

the coefficient of &™ in the Maclaurin series of f. We start with the Maclaurin series for sin:
3 5 9 15

sinz =7 - oy + = — - Then sin(z?) = #® — = 4 — — ---. and so the coefficient of x1% s
- . H

(15) 4
AU % Therefore, FC7(0) = - = 6.7-8-9-10-11+12 13- 14 15 = 10,897.286.400.
. Ol

15!
. We use the problem-solving strategy of taking cases:
Case {i): if || < 1, then0 < z* < 1,50 lim 22" = 0 (see Example 9 in Section 12.1)

2" -1 0—-1
d f{e) = lim —— = —— = -1
and f{x) nl_m L,2n+1 0+ 1
2n
- w —
Case (ii):  If |z| = 1, thatis, # = £1, then2” = 1,50 f(z) = lim ———
ase (i) |z at is, = en & so f(r) Jm o =

Case (iii):  1f |z| > 1,then 22 > 1,50 lim z*" = oo and

n—0c

2 2n
22 1 1—{(1/=*") 1-0
: s 1 _— l frr =
Flo) = N e = W T ) T 140

itr < —1
itr=-—1

if—1<x<l

iter=1

1 ife>1

The graph shows that f is continuous everywhere except at x = =1.

2
. (a) From Formula 14a in Appendix D, with x = y = 6, we get tan 20 = Lné) o cot 260 = ﬂg—
I —tan?8’ 2tanf

| —tan®#
2cot 20 = o o ¢ — tanfl. Replacing # by 1z, we get 2cot = cot Sz — tan L2, or

tan iz =cot 3z — 2cotx

(b} From part (a) with o in place of x, tan % = cot 2_1 — 2cot —— onT" so the nth partial sum of
> 1 T,
— tan —

Y —tan on 1S

m=1 2m

. — tan(gr/z) L tan(;c/él) N tan(gm/S) - tan(;l/gn)

_ [%/2) — ot ] + {cot(;cm) _ cot(;:/z)] . [cot(g/s)  cota/)

cot{z/2")
2‘!’1

(telescoping sum)

cot(z/2")  cot(z/2"71)
+ I: o - 271—1

} = —cotx+

cot{w/2") _ cos{z/2")  cos(x/2")  x/2" 1 1

Now = - = 1= asn - since /9"
2n 2 sin(x/2m) x sin(x/27) Tz x as 1 — 0o since £/2" — 0

© Brooks/Cole UK under business license to TT inc.




Intended for the sole personal use of the stipulated registered user only.

g2 © CHAPTER12 PROBLEMSPLUS

for  # 0. Therefore, if x # 0 and = # Kk where k is any integer, then

> 1 1 1
E —tan—— = hm &, = lm (—(ot:L‘Jr— cot — ):(:()t:1:+£

n=1 2n 2n n—oo oo an

If 2 = 0, then all terms in the series are 0, so the sum is 0.

& AP =2 AP =24 22 JARP =24 20 + (202 AP 2 = 2+ 22+ (287 4 (2%)°

-2

|A[Jn|2:2+22+(22)2+ (Zn 2) [fOl'ﬂ,>3| :2+(4+42;43++4
/] ,71—271 . (. 4”71_4
1(_1# [finite geometric sum withe = 4,7 =4] = b s

3
‘Pnp'rLJr—l| _ 2”_1 \/éF

|AP,| —\/2 A1 _\/2 e A¢
3773 3773 3

Thus, £ P, AP, 41 — -’g asn — oq.

2+

Sotan £ P, AP, —

B. (a) At each stage, each side is replaced by four shorter sides, each of
length 15 of the side length at the preceding stage. Writing so and /o
for the number of sides and the length of the side of the initial
triangle, we generate the table at right. In general, we have

sn=3-4"and £, = (3)". so the length of the perimeter at the nth

stage of construction is pn, = spfn = 3 -4 (~) =3. ( )

gl 3

n 4 n—1
b) p. = =4 (—) . Since f—; > 1, pn, — 0CAST — 00

(¢} The arca of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the
preceding stage. Let a be the area of the original triangle. Then the area a,, of each of the small triangles added
1 a . - ) .
at stage n 18 Gy = @ - o g Since a small triangle is added to each side at every
stage, it follows that the total area A., added to the figure at the nth stage is
a 47171

= a - ———. Then the total area enclosed by the snowflake curve is
Ggn 32n-1

-1
A =8n_ -y =3-4""".

1 4 4
A=a+ A +Av+As+ -=a+a-s+a 5, +a: -+, After the fiest term, this is a

3 32
a/3

7] .
—3 — . But the arca of the original
g

geometric series with common ratio 5,50 A = a +
equilateral triangle with side L isa = % -1-sing = ? So the area enclosed by the snowflake curve is

LL

_ e e 1 .
6. Lettheseries S=1+4 4+ 2 +1+1+ 5+ % +55+--. Thenevery termin S is of the form SRR 0,

and furthermore each term occurs only once. So we can write
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7. (a) Let @ — arctanx and b = arctany. Then, {from Formula 14b in Appendix D,

. b) = tana —tand _ tan(arctanc) —tan{arctany) = r—y
ana T 1+ tanatand |+ tan(arctanz)tan(arctany) 1+ a2y

z—y

Now arctan. — arctany = a — b = arctan(tan{a — b)} = arctan R z
Y

since —3 <a—b< 3.

{b) From part (a} we have
120 1 28,561

ety 120 " ) , 119 230 oo 28441 _m
arctan 175 — arctan oo = arctan Tm L arctan BEET arctanl = 1
1

119 239 28441

- T+
(¢) Replacing iy by —y in the formula of part (a), we get arctan & + arctany = arctan T LJU So

¢ o ‘ 5 . 5 5 5
darctan £ = Z(arctan L. arctan L) = 2arctan ———"— = Zarctan -5 = arctan - + arctan -5
5 5 il 1 — . 12 12 12
5, 5
b [F 12 ety 120
= arctan —w—l —F 5 — arctan o
12

L . e o L ks L upets 20 _ opefs 1 _ 7
Thus, from part (b), we have 4 arctan § — arctan g3z = arctan 55 — arclan 5o5 = 7.
3

3 5 7 ) 1
€T € T : T
(d) From Example 7 in Section 12.9 we have arclanx = — % + LT - % + 9 T 4+ -, 80
5 ¢

t 1 Lo, 1L 1
arctan — = — — - + -
A T e T 3T T 555 7.57 0 9.59  11.5M

This is an alternating scries and the size of the terms decreases to 0, 50 by the Alternating Series Estimation

Theorem. the sum lies between s and sg, that is, 0.197395560 < arctan é) < (1.19739h5H62.

Lo 1 1 1 1 . .
(¢) From the series in part {d) we gel arcltan 239 =239~ 3.9303 + Fomgs The third term is less than

2.6 % 10" '3 50 by the Alternating Series Estimation Theorem, we have, 10 nine decimal places,

arctan —— == s2 &= 0.004184076. Thus, 0.004184075 < arctan 5% < 0.004184077.

239

{f) From part (¢) we have w = 16 arctan% — 4 arctan ﬁ so from parts {d) and {e) we have

16(0.197395560) — 4(0.004184077) < 7 < 16(0.107395562) — 4(0.004184075) =
3.141592652 < 7 < 3.141592692. So. to 7 decimal places, 7 = 3.1415927.

8. (0) Leta = arccotx and b = arccot y where 0 < @ — b < 7. Then
1 1 1
1 _ l+tanatanb + cota coth cotacoth
tan(a — b}~ tana — tanb cot acot b

cot(a —b) =

_cotacotb+1 .

~ coth—cota

l+cotacoth 14 cot{arccotx)cot(arccoty) 1+ xy
coth—cota  cot{arccoty) — cot(arccotz) — y—ax

cot{a —b) =

Now arccot z — arccot y —a — b = arccot{cot(a — b))

1+xy .
= arceot Y since 0 < a — b < .
y—x
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(b) Applying the identity in part (a) with 2 = nand y = n + 1, we have

1+n(n+1)
(n+1)—

arccot(n® +n + 1) = arccot{1 + n{n + 1)) = arccat = arccotn — arccot(n + 1}

Thus, we have a telescoping series with nth partial sum
$n = [arccot O — arccot 1] + [arccot 1 ~ arccot 2] + -+ + [arccot n — arccot(n + 1))

= arccot () — arccot(n + 1)

Thus, 3.7 arccot(n® +n + 1) = lim s, = lim |arccot 0 — arccot(n + 1)] = § - 0= 7.

n—od n—ox

x 1 . .
9. We start with the geometric series > z" = — x| < 1, and differentiate:
n=0 I

o > d 1 1
i O s = for o] <1 =
dﬂ'.' (1?.;0-13 ) dI (1 — _L‘) (1 o :E)2 or |I‘

TT—); for || < 1. Differentiate again:
I

A2 9] — ) (— o .
(=) —w2(l =) ( l): T+1 S - vt +x

dr (1 —x)® (1—z)* (1—a)° n=1 (1—a)*

d a?+a (-2 @e+1)—{2®+2)3(1 -2’ (1) 2® dw+1

T dr (1 — ;1':)3 N (]. - CE) B (l - a:)d

7.L At
(1—a)*

the geometric series we started with. If z = 41, the series is . n” (+1)", which diverges by the Test For

.|z} < 1. The radius of convergence is 1 because that is the radius of convergence for

Divergence, so the interval of convergence is (—1,1).

10. Let's firsttry thecase k= 1t ap +a1 =0 = ay=-ay =

lim (agy/n + a1v/n + )“‘ hm (QU\/E*GDW) =ay hnl (\/_ v+ 1) \\?:Jr\/—k\/nil
n—G "

— g lim

—1
n—oo ﬁ + v+ 1 N

In general we have ap + a1 + - +ar =0 = apx=—ap~a1— - —dxg_1 =

lim ((J.U\/Hﬂ—al\/n—l—]—&—cu\/n+2+---+uk\/n.+k)
litm (am/ﬂ+anfn+]—+—---—|—ak,1\/n+k*lfa-oanrkfal\/nJr —‘--—u,kfl\/n—kk)

= ap i (f \/n_) + a1 hm (mﬁm)+”'+ak—1n}i{2¢ (\/TL+k:—1—\/-rt+A:)

0

Each of these limits is 0 by the same type of simplification as in the case £ = 1. S0 we have

lim (am/ﬁ+r11\/n +14avn+2+--- +<Lk\/n+k') =ag(0)+a (B)+-- +ar (0} =

n—mno
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HJHO;%):ﬂn(ﬁzl)Angt+ﬂglil=hﬂn+lﬂnwiﬂan

n 2

le(n+ 1) +In(n — 1) —2lnn
{n

=In{n —1)—lnn—Inn+In{n+1)
n—

R [mn~In(n+1)]=In
n

k &
_1 ) _
Let sp = E ln(l—%):i (lnnn —lnnil) for k > 2. Then
n . ‘

=2 n=2

1 2 2 3 k-1
Sp = (lni—lng) Jr(lnglnz) +---+(111T

= ' 1 k 1
Z 111(1 —-n%) = .lHj;CSk:kILIIOIO (ln;z— ~1nk_+1) :lné —Inl=nl-m2—-In1=—-1In2.

n=32

. Place the y-axis as shown and let the length of cach book be L. We want to
- . L
show that the center of mass of the system of n books lies above the table, YT

that is, ¥ < £.. The z-coordinates of the centers of mass of the books are

L -+ L L + L + L and so on
R S 2 - and 5o on.
2n—1) 2770 2(n—1) 2(n-2) 2

Ty = =L,

Each book has the same mass 1. so if there are n books, then

may + s + -+ Tin xr t+xe+ -+ In

Hin n

(L L I L L
_H'E*@mn+5)+@m—n+2m—m

*(2(L )*2(nL~2)+”'+“ii %)]

S 0 S S R e VL
Tn [ 2n-1) 0 2(n—2) 12 T n 2

20— 1
= <l
2n

This shows that, no matter how many books are added according to the given scheme. the center of mass lies above

the table. It remains to observe that the series % + i + % + % + o= % 37 (1/n) is divergent (harmonic series),

so we can make the top book extend as far as we like beyond the edge of the table if we add enough books.

UGN S po g Tz ah w7
wslt gt gttt TR T g T Tttt Ty Tty T

Use the Ratio Test to show that the series for w, v, and w have positive radii of convergence (2o in each case), so

Theorem 12.9.2 applies, and hence, we may ditferentiate each of these series:

_Ei ; Oz° 7&",2 z" L‘R
Tyt T T Tt et
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. T A A dw AU B
Snmlarly,a ﬁl+§+a+§!—+---#u.anda—£+z + T + o1 + - =1

Sou =w, v =u and w' = v. Now differentiate the left hand side of the desired equation:

d : : k 2 27 2 4 Y ! ’
T (mLi vt 4w’ = 3111}71)) =3y + 307y + 3wt — 3w vw + wv'w + wow’)
x

= 3uw + 3v°u+ 3w’y - 3(1:'102 +ufw + qu) =0 =

w? +0° +w® — 3uvw = C. To find the value of the constant C', we put 2 = 0 in the last equation and get

BFr0*+08-31-0-00=C = C=1Lsou*+v°+w—=3uw =1

14. First notice that both series are absolutely convergent (p-sertes with p > 1.) Let the given expression be called .

Then

Therefore. v =14+ 27%z & z-2"Pr=1 o z(1-2'"")=1 & z= 1o

15. If L is the length of a side of the equilateral triangle, then the area is A = %L . J@L = lﬁ—ng and so L* =

4
ﬁA'

Let » be the radius of one of the circles. When there are n rows of circles, the figure shows that

L=v3r+r+(n-2)2r)+r+3r = r(2n — 24 2v3), 507 = #
2n+v3-1)

nin+1)

The number of circlesis 1 +2+ -+ n = 7 , and so the total area of the circles is

. 2
A, = n(n‘+ l)ﬁrz _ n(n+ 1)7T L - n{n + 1)7r 4A/\/§ i
2 2 A(n+ V3 -1) 2 A(n+ 3 1)
n(n+1) TA

(n-+ V3 — I)Q 2V3
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_ nin+1)
(n +V3 - 1)2 2v3
1+1/n T T

+ (\/_3# 1)/n]2 243 - 23

asn — o0

Th A AT

: I

V3r r v \3r
|

‘[ !

(n—1)(n—-2)ap-1 — (n —3)an_2
n(n —1)
l-U-Ch"-(fl)(lo 42-1.-&27()'{1171 __3-2'(1,3—1-(12_1

sequence: iz = 71 =—,a3 = 3.2 = a,a.,, = 15 =0

, we calculate the next few terms of the

16. Givenag = a; = land a,, =

$0 we try to prove this by induction. The first step is done, so assume ax = -7 and

It seems that u, = =

1

ap 1 = m Then

kk—1) k-2
k(k—Dax —(k=ax 1 k' (k= 1) (k—1) - (k—2) 1

e (k+ 1)k B (k+1)k Tk DR K- DT (k1)

and the induction is complete, Therefore, 3.7 jan = >~ 1/n! =e.

. As in Section 12.9 we have to integrate the function z* by integrating series. Writing 2™ = (¢ *)* = ¢“'** and

= (zlnz)" = 2" (Inx)"
using the Maclaurin series for e™, we have 2% = (el"“"')'*’ = =l — E A — § S St A

n! 7!

n=>0
As with power series, we can integrate this series term-by-term:

>0

! an: I "
.Gidmfz ':Zmom(lna\:) dx

n=(

1 n—1 n+l
ﬂ)— drand v = d :
x n+1

1

1 1 :En+l 1
/ " (Inz)" dr = lim / 2" (Inzx) dr = lim (lum)”] — lim /
0 t +1

t—0+ t—0t | T ‘ t—0+ f,

1
—g— / " (Inz)"" " dzx
0

n+ 1

We integrate by parts with » = (In )", dv = 2" de, so du =

- 1J"’(ln;c)"_l dx

(where I"Hospital’s Rule was used to help evaluate the first limit).

1 1
k - -
Further integration by parts gives / ™ (Inz)" de = — 1 / 2™ {(Inz)* "' dx and, combining
Jo n

1 1
7 7 (_1)nn'f n (71)1’1

these steps, sef  (lnx) de = ——— ' dr = —~t———

pRweE [ e =TT (r o+ 1o

o0 o

I B G VT I S G AR o G )
[( Z n! / Minz)" dz = ;}E (n+ ntt 1;) (n4 1)t ; n®

it 0
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8. (2) Since P, is defined as the midpoint of Pr—a s, Tn = %(a"n 4+ an_g) forn > 5. Su we prove by
induction that %:1:,,, 4 @nyy + Tngo + Eags = 2. Thecasen =1 is immediate, since % 0+ 1 4P +0=2.

Assume that the result holds forn = & — 1, thatis, 2@p_1 + Tk + Zess + Trgz = 2. Then forn = k.

1 ahave
%:m— + Xt + T2 T Thys = %ka + eyl + etz + 5 (Thpa—a + Trts—z) (by above)

1o + Zx + Zrg1 + 2kp2 = 2 (by the induction hypothesis)

Similarly, forn > 5, y, — %(yn,(; + Yn—2). so the same argument as above holds for y, with 2 replaced by

by tys ys = o1+ 1404 0= 380 Jyn + Yot1 + Ynr2 +ynis = 3 foralln.

lim (%.z:,z + g1 F Engz +.En+3) = é lim @, + lUm zp.1 + iim x40+ lm x4 = 2. Since all
fa o3

L —+ O n—oa n—roG n—0oC Ti—

the limits on the left hand side are the same, we get 5 T limagn=2 = limr, = % In the same way,

T O T O

Tlm gy, =2 = limy.=2,50P=(3,%)

2 TE— O n-—nG

L Let flx) =32 cax™ and g(z) =YX gdnz™. Theng'{x) = 3 ndax™ 7, 50 ndy, oceurs as

the coefficient of 2~ 1. But also

g'{z)= el ) ()= (0. dne™ )(Z:Zl mcm:c’"*l)

= (dy +drx + doa® 4+ dmz" 4 -)(cl + %ear + 3egat 4+ -+ nege™

so the coetticient of 2™ 1 is c1dn 1 + 2cady, -2 + 3cadn_3 + - -+ nendo = 3., icid, ;. Therefore,
ndn =3 tCidn—i.

, Suppose the base of the first right triangle has length @. Then by repeated use of the Pythagorean theorem, we find
that the base of the second right triangle has length +/1 + a2, the base of the third right triangle has length /2 + a2,
and in general, the nth right triangle has base of length v/ — 1+ a® and hypotenuse of length v/'n + «2. Thus,

g, =tan~ (1/\/77 — 1+a and ZO" = thu K

=l

We wish to

(=) = 2 ()

show that this series diverges.

o0
First notice that the series Z

1
=1V n =+ (L2

diverges by the Limit Comparison Test with the divergent

p-series Z % < 1) since
n=1 f

lim M lim = lim ‘
n—x  L/yn n—o /n +a? n—oce Y n " n*oc v+ a?

—— also

s 1 1
diverges. Now tan ' (——") diverges by the Limit Comparison Test with
* ?.Zn v+ a? By P nz()\/Tl+(t2
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tan™ ' (1/vn + a?) i tan~*{1/vz +a?) i tan ' (/)

lim = lim =

neee  1/Vnta? s 1/Va+a? yooe Ly

-1 2
2 r=1/y 2 lim Va+2)

z—07"

[y~ VT )
=1>0
Thus, Z O, is a divergent serics.

n=1

. Call the series S. We group the terms according to the number of digits in their denominators:

Now in the group g.. since we have 9 choices for each of the n digits in the denominator, there are 9™ terms.

) ) . . . -1
Furthermore, each term in gy is less than —-¢ [except for the first term in g1 ]. So gn < 9™ ]U,J;l =9(5)" .

Now 372 9(£)" ™" is a geometric series with a = 9 and r = §; < 1. Therefore, by the Comparison Test,

o sometrie e
§ =X g0 < T 0(H)" ! = e =90

o
T 2 3

E enx’t = cp 4+ o1x + ez +esx” + -, Then
n=0

22, (ay Let f{x) =

1w a2
(1 —:L‘—IZ)(C(J -+ (3131+62.’]?2 +(,‘3.’I,‘3 +)

2 3 4 5
=¢p+ 1o+ oz F ot +oqr” Fosat e
, A K
—ept — e xt — cart — eaxt — g —

p 3 b
— ot — - cqrt —eqz® — -

9 .
w=co+(e1 —eo)r+{e2—c1 —eca)x” +{es ~ o —cr)x’ + -
Comparing coefficients of powers of - gives us ¢o = 0 and

c1—cg =1 = cp=cp+1=1
co—03 —cp=0 = c=c+c=1+0=1

cn—a—c1 =0 = =240 =14+1=2

In gencral, we have ¢, = ¢p-1 + ¢n_2 for n > 3. Each ¢, is equal to the nth Fibonacci number; that is,

e =l

oo 2
n rn § : n
E Cpd = E Cn = f nL

n=0 n=1 n=1

(b) Completing the square on z° +  — 1 gives us

9 1 1
H -] -1 —-=-=
(1 +:r+/1) 1
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& —x — ) ) .
S ! = . The factors in the denominator are linear,

T r—# 2tx-1 (I+Mf’)(r+l—’§3@)

so the partial fraction decomposition is

—&

D) )

fr)n+j4 o ( 2 T)n
1+\/5“ 571:() 1_\/5

) (%) |-
(2" (1+5)" — ("1 - V5)"
(1-v5)"(1+5)"

'(-2)"((1 +VB) - (1- \/5)“)

] z" [the . = 0 term is 0]

L0
X

(L= vB) (1 m”]

2’?1

[.(74)73 — (72)11 B 2:1]

(14 V5)" - (1= V)"

Qn

O
From part (a), this series must equal Z fazx™. 80 fr, = . which is an explicit

n=1

formula for the nth Fibonacci number.
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