
AP-1

APPENDICES

Mathematical Induction

Many formulas, like

can be shown to hold for every positive integer n by applying an axiom called the
mathematical induction principle. A proof that uses this axiom is called a proof by mathe-
matical induction or a proof by induction.

The steps in proving a formula by induction are the following:

1. Check that the formula holds for 

2. Prove that if the formula holds for any positive integer then it also holds for the
next integer, 

The induction axiom says that once these steps are completed, the formula holds for all
positive integers n. By Step 1 it holds for By Step 2 it holds for and there-
fore by Step 2 also for and by Step 2 again for and so on. If the first domino
falls, and the kth domino always knocks over the when it falls, all the dominoes
fall.

From another point of view, suppose we have a sequence of statements 
one for each positive integer. Suppose we can show that assuming any one

of the statements to be true implies that the next statement in line is true. Suppose that we
can also show that is true. Then we may conclude that the statements are true from 
on.

EXAMPLE 1 Use mathematical induction to prove that for every positive integer n,

Solution We accomplish the proof by carrying out the two steps above.

1. The formula holds for because

1 =

1s1 + 1d
2

.

n = 1

1 + 2 +
Á

+ n =

nsn + 1d
2

.

S1S1

S2, Á , Sn, Á ,
S1, 

sk + 1dst
n = 4,n = 3,

n = 2,n = 1.

n = k + 1.
n = k,

n = 1.

1 + 2 +
Á

+ n =

nsn + 1d
2

,
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2. If the formula holds for does it also hold for The answer is yes, as
we now show. If

then

The last expression in this string of equalities is the expression for

The mathematical induction principle now guarantees the original formula for all
positive integers n.

In Example 4 of Section 5.2 we gave another proof for the formula giving the sum of
the first n integers. However, proof by mathematical induction is more general. It can be
used to find the sums of the squares and cubes of the first n integers (Exercises 9 and 10).
Here is another example.

EXAMPLE 2 Show by mathematical induction that for all positive integers n,

Solution We accomplish the proof by carrying out the two steps of mathematical
induction.

1. The formula holds for because

2. If

then

Thus, the original formula holds for whenever it holds for 
With these steps verified, the mathematical induction principle now guarantees the

formula for every positive integer n.

Other Starting Integers

Instead of starting at some induction arguments start at another integer. The steps
for such an argument are as follows.

n = 1

n = k .n = sk + 1d

 = 1 -
2

2k + 1 +
1

2k + 1 = 1 -
1

2k + 1 .

 
1
21 +

1
22 +

Á
+

1
2k +

1
2k + 1 = 1 -

1
2k +

1
2k + 1 = 1 -

1 # 2
2k # 2

+
1

2k + 1

1
21 +

1
22 +

Á
+

1
2k = 1 -

1
2k ,

1
21 = 1 -

1
21 .

n = 1

1
21 +

1
22 +

Á
+

1
2n = 1 -

1
2n.

n = sk + 1d.
nsn + 1d>2

 =

sk + 1dsk + 2d
2

=

sk + 1dssk + 1d + 1d
2

.

 1 + 2 +
Á

+ k + sk + 1d =

ksk + 1d
2

+ sk + 1d =

k2
+ k + 2k + 2

2

1 + 2 +
Á

+ k =

ksk + 1d
2

,

n = k + 1?n = k,
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A.1 Mathematical Induction AP-3

EXERCISES A.1

1. Assuming that the triangle inequality holds
for any two numbers a and b, show that

for any n numbers.

2. Show that if then

for every positive integer n.

3. Use the Product Rule, and the fact that

to show that for every positive

integer n.

4. Suppose that a function ƒ(x) has the property that 
for any two positive numbers and Show that

for the product of any n positive numbers x1, x2 Á , xn .

ƒsx1 x2
Á xnd = ƒsx1d + ƒsx2d +

Á
+ ƒsxnd

x2 .x1ƒsx1d + ƒsx2d
ƒsx1 x2d =

d
dx

 sxnd = nxn - 1d
dx

 sxd = 1

d
dx

 suyd = u 
dy
dx

+ y 
du
dx

,

1 + r + r2
+

Á
+ rn

=

1 - rn + 1

1 - r

r Z 1,

ƒ x1 + x2 +
Á

+ xn ƒ … ƒ x1 ƒ + ƒ x2 ƒ +
Á

+ ƒ xn ƒ

ƒ a + b ƒ … ƒ a ƒ + ƒ b ƒ 5. Show that

for all positive integers n.

6. Show that if n is large enough.

7. Show that if n is large enough.

8. Show that for 

9. Sums of squares Show that the sum of the squares of the first n
positive integers is

10. Sums of cubes Show that the sum of the cubes of the first n
positive integers is 

11. Rules for finite sums Show that the following finite sum rules
hold for every positive integer n.

a. a
n

k = 1
sak + bkd = a

n

k = 1
 ak + a

n

k = 1
 bk

snsn + 1d>2d2 .

n an +

1
2
b sn + 1d

3
.

n Ú -3.2n
Ú 1>8

2n
7 n2

n! 7 n3

2
31 +

2
32 +

Á
+

2
3n = 1 -

1
3n

1. Check that the formula holds for (the first appropriate integer).

2. Prove that if the formula holds for any integer then it also holds for

Once these steps are completed, the mathematical induction principle guarantees the for-
mula for all 

EXAMPLE 3 Show that if n is large enough.

Solution How large is large enough? We experiment:

n 1 2 3 4 5 6 7

n! 1 2 6 24 120 720 5040

3 9 27 81 243 729 2187

It looks as if for To be sure, we apply mathematical induction. We take
in Step 1 and complete Step 2.

Suppose for some Then

Thus, for 

The mathematical induction principle now guarantees  for all  n Ú 7.n! Ú 3n

k! 7 3k implies sk + 1d! 7 3k + 1.

k Ú 7,

sk + 1d! = sk + 1dsk!d 7 sk + 1d3k
7 7 # 3k

7 3k + 1.

k Ú 7.k! 7 3k
n1 = 7

n Ú 7.n! 7 3n

3n

n! 7 3n

n Ú n1.

n = sk + 1d.
n = k Ú n1,

n = n1
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b.

c. (Any number c)a
n

k = 1
 cak = c # a

n

k = 1
 ak

a
n

k = 1
sak - bkd = a

n

k = 1
 ak - a

n

k = 1
 bk d. (if has the constant value c)

12. Show that for every positive integer n and every real
number x.

ƒ xn
ƒ = ƒ x ƒ

n

aka
n

k = 1
 ak = n # c
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AP-4 Appendices

Proofs of Limit Theorems

This appendix proves Theorem 1, Parts 2–5, and Theorem 4 from Section 2.2.

A.2

THEOREM 1 Limit Laws
If L, M, c, and k are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Product Rule:

4. Constant Multiple Rule:

5. Quotient Rule:

6. Power Rule: If r and s are integers with no common factor
and then

provided that is a real number. (If s is even,
we assume that )L 7 0.

Lr>s
lim
x:c
Aƒ(x) B r>s = Lr>s

s Z 0,

lim
x:c

  
ƒsxd
gsxd

=
L
M

 ,    if M Z 0

lim
x:c

 Akƒsxd B = kL sany number kd

lim
x:c

 Aƒsxd # gsxd B = L # M

lim
x:c

 Aƒsxd - gsxd B = L - M

lim
x:c

 Aƒsxd + gsxd B = L + M

lim
x:c

 ƒsxd = L    and    lim
x:c

 gsxd = M, then

We proved the Sum Rule in Section 2.3 and the Power Rule is proved in more ad-
vanced texts. We obtain the Difference Rule by replacing and in
the Sum Rule. The Constant Multiple Rule is the special case of the Product
Rule. This leaves only the Product and Quotient Rules.

Proof of the Limit Product Rule We show that for any there exists a such
that for all x in the intersection D of the domains of ƒ and g,

Suppose then that is a positive number, and write ƒ(x) and g(x) as

ƒsxd = L + sƒsxd - Ld,    gsxd = M + sgsxd - Md .

P

0 6 ƒ x - c ƒ 6 d Q  ƒ ƒsxdgsxd - LM ƒ 6 P .

d 7 0P 7 0

gsxd = k
M by -Mgsxd by -gsxd
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Multiply these expressions together and subtract LM:

(1)

Since ƒ and g have limits L and M as there exist positive numbers and 
such that for all x in D

(2)

If we take to be the smallest numbers through the inequalities on the right-hand
side of the Implications (2) will hold simultaneously for Therefore, for
all x in implies

This completes the proof of the Limit Product Rule.

Proof of the Limit Quotient Rule We show that We can then
conclude that

by the Limit Product Rule.
Let be given. To show that we need to show that there

exists a such that for all x.

Since there exists a positive number such that for all x

(3)

For any numbers A and B it can be shown that 
from which it follows that With and 

this becomes

ƒ  ƒ gsxd ƒ - ƒ M ƒ ƒ … ƒ gsxd - M ƒ ,

B = M,A = gsxdƒ  ƒ A ƒ - ƒ B ƒ  ƒ … ƒ A - B ƒ .ƒ A - B ƒ ,
ƒ B ƒ - ƒ A ƒ …ƒ A ƒ - ƒ B ƒ … ƒ A - B ƒ and 

0 6 ƒ x - c ƒ 6 d1 Q  ƒ gsxd - M ƒ 6
M
2

.

d1ƒ M ƒ 7 0,

0 6 ƒ x - c ƒ 6 d Q  ` 1
gsxd

-
1
M
` 6 P.

d 7 0
lim
 x:c s1>gsxdd = 1>M,P 7 0

lim
x:c

 
ƒsxd
gsxd

= lim
x:c
aƒsxd # 1

gsxd
b = lim

x:c
 ƒsxd # lim

x:c 
 

1
g(x)

= L # 1
M

=
L
M

lim
 x:c s1>gsxdd = 1>M.

 6
P

3
+

P

3
+ AP

3AP

3
= P .

 … s1 + ƒ L ƒ d ƒ gsxd - M ƒ + s1 + ƒ M ƒ d ƒ ƒsxd - L ƒ + ƒ ƒsxd - L ƒ ƒ gsxd - M ƒ

 … ƒ L ƒ ƒ gsxd - M ƒ + ƒ M ƒ ƒ ƒsxd - L ƒ + ƒ ƒsxd - L ƒ ƒ gsxd - M ƒ

 ƒ ƒsxd # gsxd - LM ƒ

D, 0 6 ƒ x - c ƒ 6 d

0 6 ƒ x - c ƒ 6 d.
d4,d1d

0 6 ƒ x - c ƒ 6 d4 Q  ƒ gsxd - M ƒ 6 P>s3s1 + ƒ L ƒ dd

0 6 ƒ x - c ƒ 6 d3 Q  ƒ ƒsxd - L ƒ 6 P>s3s1 + ƒ M ƒ dd

 0 6 ƒ x - c ƒ 6 d2 Q  ƒ gsxd - M ƒ 6 2P>3
 0 6 ƒ x - c ƒ 6 d1 Q  ƒ ƒsxd - L ƒ 6 2P>3

d4d1, d2, d3,x : c,

 = Lsgsxd - Md + Msƒsxd - Ld + sƒsxd - Ldsgsxd - Md .

+ sƒsxd - Ldsgsxd - Md - LM

 = LM + Lsgsxd - Md + Msƒsxd - Ld

ƒsxd # gsxd - LM = sL + sƒsxd - LddsM + sgsxd - Mdd - LM

A.2 Proofs of Limit Theorems AP-5

Triangle inequality
applied to Equation (1)

Values from (2)
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which can be combined with the inequality on the right in Implication (3) to get, in turn,

(4)

Therefore, implies that

(5)

Since there exists a number such that for all x

(6)

If we take to be the smaller of and the conclusions in (5) and (6) both hold for all x
such that Combining these conclusions gives

This concludes the proof of the Limit Quotient Rule.

0 6 ƒ x - c ƒ 6 d Q  ` 1
gsxd

-
1
M
` 6 P.

0 6 ƒ x - c ƒ 6 d.
d2,d1d

0 6 ƒ x - c ƒ 6 d2 Q  ƒ M - gsxd ƒ 6
P

2
 ƒ M ƒ

2.

d2 7 0s1>2d ƒ M ƒ
2
P 7 0,

 6
1

ƒ M ƒ

 #  
2

ƒ M ƒ

 #  ƒ M - gsxd ƒ .

 ̀
1

gsxd
-

1
M
` = `M - gsxd

Mgsxd
` …

1
ƒ M ƒ

# 1
ƒ gsxd ƒ

#
ƒ M - gsxd ƒ

0 6 ƒ x - c ƒ 6 d1

 
1

ƒ gsxd ƒ

6
2

ƒ M ƒ

6

3
ƒ gsxd ƒ

 ƒ M ƒ 6 2 ƒ gsxd ƒ 6 3 ƒ M ƒ

 
ƒ M ƒ

2
6 ƒ gsxd ƒ 6

3 ƒ M ƒ

2

 -
ƒ M ƒ

2
6 ƒ gsxd ƒ - ƒ M ƒ 6

ƒ M ƒ

2

  ƒ  ƒ gsxd ƒ - ƒ M ƒ ƒ 6

ƒ M ƒ

2

AP-6 Appendices

Inequality (4)

THEOREM 4 The Sandwich Theorem
Suppose that for all x in some open interval I containing c,
except possibly at itself. Suppose also that 

Then lim
 x:c ƒsxd = L .L .

lim
 x:c gsxd = lim

 x:c hsxd =x = c
gsxd … ƒsxd … hsxd

Proof for Right-Hand Limits Suppose Then for any
there exists a such that for all x the interval is contained in I

and the inequality implies

These inequalities combine with the inequality to give

Therefore, for all x, the inequality  implies  ƒ ƒsxd - L ƒ 6 P .c 6 x 6 c + d

 - P 6 ƒsxd - L 6 P .

 L - P 6 ƒsxd 6 L + P, 

 L - P 6 gsxd … ƒsxd … hsxd 6 L + P, 

gsxd … ƒsxd … hsxd

L - P 6 gsxd 6 L + P    and    L - P 6 hsxd 6 L + P.

c 6 x 6 c + dd 7 0P 7 0
lim
 x:c+ gsxd = lim

 x:c+ hsxd = L .

4100AWL/Thomas_APPp001-034  8/27/04  6:49 AM  Page 6

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


Proof for Left-Hand Limits Suppose Then for any
there exists a such that for all x the interval is contained in I

and the inequality implies

We conclude as before that for all  implies  

Proof for Two-Sided Limits If then g(x) and h(x) both
approach L as and as so and Hence

exists and equals L.lim
 x:c ƒsxd

lim
 x:c- ƒsxd = L .lim

 x:c+ ƒsxd = Lx : c- ;x : c+

lim
 x:c gsxd = lim

 x:c hsxd = L ,

ƒ ƒsxd - L ƒ 6 P.x, c - d 6 x 6 c

L - P 6 gsxd 6 L + P    and    L - P 6 hsxd 6 L + P.

c - d 6 x 6 cd 7 0P 7 0
lim
 x:c- gsxd = lim

 x:c- hsxd = L .

AP-7

EXERCISES A.2

1. Suppose that functions and have limits 
and respectively, as Show that their sum has limit

Use mathematical induction (Appendix 1) to
generalize this result to the sum of any finite number of functions.

2. Use mathematical induction and the Limit Product Rule in
Theorem 1 to show that if functions have
limits as then

3. Use the fact that and the result of Exercise 2 to
show that for any integer 

4. Limits of polynomials Use the fact that for any
number k together with the results of Exercises 1 and 3 to show
that for any polynomial function

ƒsxd = an xn
+ an-1 xn - 1

+
Á

+ a1 x + a0 .

lim
 x:c ƒsxd = ƒscd

lim
 x:cskd = k

n 7 1.lim
 x:c xn

= cn
lim
 x:c x = c

lim
x:c

 ƒ1sxdƒ2sxd # Á # ƒnsxd = L1
# L2

# Á # Ln .

x : c ,L1, L2, Á , Ln

ƒ1sxd, ƒ2sxd, Á , ƒnsxd

L1 + L2 + L3 .
x : c .L3 ,

L1, L2 ,ƒ3sxdƒ1sxd, ƒ2sxd, 5. Limits of rational functions Use Theorem 1 and the result of
Exercise 4 to show that if ƒ(x) and g(x) are polynomial functions
and then

6. Composites of continuous functions Figure A.1 gives the
diagram for a proof that the composite of two continuous func-
tions is continuous. Reconstruct the proof from the diagram. The
statement to be proved is this: If ƒ is continuous at and g is
continuous at ƒ(c), then is continuous at c.

Assume that c is an interior point of the domain of ƒ and that
ƒ(c) is an interior point of the domain of g. This will make the
limits involved two-sided. (The arguments for the cases that in-
volve one-sided limits are similar.)

g � ƒ
x = c

lim
x:c

 
ƒsxd
gsxd

=

ƒscd
gscd

.

gscd Z 0,

c f(c) g( f(c))

�f �f �g �g � �

f g

g � f

FIGURE A.1 The diagram for a proof that the composite of two continuous functions
is continuous.

4100AWL/Thomas_APPp001-034  8/27/04  6:49 AM  Page 7

A.2 Proofs of Limit Theorems

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


A.3 Commonly Occurring Limits AP-7

Commonly Occurring Limits

This appendix verifies limits (4)–(6) in Theorem 5 of Section 11.1.

Limit 4: If We need to show that to each there corres-

ponds an integer N so large that for all n greater than N. Since whileP
1>n : 1,ƒ xn

ƒ 6 P

P 7 0lim
n: ˆ

xn
= 0ƒ x ƒ 6 1, 

A.3
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there exists an integer N for which In other words,

(1)

This is the integer we seek because, if then

(2)

Combining (1) and (2) produces for all concluding the proof.

Limit 5: For any number Let

Then

as we can see by the following application of l’Hôpital’s Rule, in which we differentiate
with respect to n:

Apply Theorem 4, Section 11.1, with to conclude that

Limit 6: For any number Since

all we need to show is that We can then apply the Sandwich Theorem for
Sequences (Section 11.1, Theorem 2) to conclude that 

The first step in showing that is to choose an integer so that
By Limit 4, just proved, we then have We then restrict our

attention to values of For these values of n, we can write

 …

ƒ x ƒ
n

M!M n - M =

ƒ x ƒ
nM M

M!M n =
M M

M!
 a ƒ x ƒ

M
bn

.

sn - Md factors
('''''')''''''*

 
ƒ x ƒ

n

n!
=

ƒ x ƒ
n

1 # 2 # Á # M # sM + 1dsM + 2d # Á # n

n 7 M .
s ƒ x ƒ >Mdn : 0.s ƒ x ƒ >Md 6 1.

M 7 ƒ x ƒ ,ƒ x ƒ
n>n! : 0

xn>n! : 0.
ƒ x ƒ

n>n! : 0.

-

ƒ x ƒ
n

n!
…

x n

n!
…

ƒ x ƒ
n

n!
,

 
xn

n!
= 0x, lim

n: ˆ

a1 +

x
n b

n

= an = e ln an : ex .

ƒsxd = ex

 = lim
n: q

 

a 1
1 + x>n b # a- x

n2 b
-1>n2 = lim

n: q

 
x

1 + x>n = x .

 lim
n: q

 n ln a1 +

x
n b = lim

n: q

 
lns1 + x>nd

1>n

ln an = ln a1 +

x
n b

n

= n ln a1 +

x
n b : x ,

an = a1 +

x
n b

n

.

A1 +
x
n Bn = exx, lim

n: ˆ

n 7 N ,ƒ xn
ƒ 6 P

ƒ xn
ƒ 6 ƒ xN

ƒ   for all n 7 N .

ƒ x ƒ 6 1,

ƒ xN
ƒ = ƒ x ƒ

N
6 P .

P
1>N

7 ƒ x ƒ .ƒ x ƒ 6 1,

AP-8 Appendices
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Thus,

Now, the constant does not change as n increases. Thus the Sandwich Theorem
tells us that because s ƒ x ƒ >Mdn : 0.ƒ x ƒ

n>n! : 0
MM>M!

0 …

ƒ x ƒ
n

n!
…

MM

M!
 a ƒ x ƒ

M
bn

.

AP-9

4100AWL/Thomas_APPp001-034  8/27/04  6:50 AM  Page 9

A.3 Commonly Occurring Limits

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


A.4 Theory of the Real Numbers AP-9

Theory of the Real Numbers

A rigorous development of calculus is based on properties of the real numbers. Many
results about functions, derivatives, and integrals would be false if stated for functions
defined only on the rational numbers. In this appendix we briefly examine some basic con-
cepts of the theory of the reals that hint at what might be learned in a deeper, more theoret-
ical study of calculus.

Three types of properties make the real numbers what they are. These are the
algebraic, order, and completeness properties. The algebraic properties involve addition
and multiplication, subtraction and division. They apply to rational or complex numbers as
well as to the reals.

The structure of numbers is built around a set with addition and multiplication opera-
tions. The following properties are required of addition and multiplication.

A1 for all a, b, c.

A2 for all a, b, c.

A3 There is a number called “0” such that for all a.

A4 For each number a, there is a b such that 

M1 for all a, b, c.

M2 for all a, b.

M3 There is a number called “1” such that for all a.

M4 For each nonzero a, there is a b such that 

D for all a, b, c.

A1 and M1 are associative laws, A2 and M2 are commutativity laws, A3 and M3 are
identity laws, and D is the distributive law. Sets that have these algebraic properties are
examples of fields, and are studied in depth in the area of theoretical mathematics called
abstract algebra.

The order properties allow us to compare the size of any two numbers. The order
properties are

O1 For any a and b, either or or both.

O2 If and then 

O3 If and then 

O4 If then 

O5 If and then 

O3 is the transitivity law, and O4 and O5 relate ordering to addition and multiplication.

ac … bc .0 … ca … b

a + c … b + c .a … b

a … c .b … ca … b

a = b .b … aa … b

b … aa … b

asb + cd = ab + bc

ab = 1.

a # 1 = a

ab = ba

a(bc) = (ab)c

a + b = 0.

a + 0 = a

a + b = b + a

a + sb + cd = sa + bd + c

A.4
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We can order the reals, the integers, and the rational numbers, but we cannot order the
complex numbers (see Appendix A.5). There is no reasonable way to decide whether a
number like is bigger or smaller than zero. A field in which the size of any two
elements can be compared as above is called an ordered field. Both the rational numbers
and the real numbers are ordered fields, and there are many others.

We can think of real numbers geometrically, lining them up as points on a line. The
completeness property says that the real numbers correspond to all points on the line,
with no “holes” or “gaps.” The rationals, in contrast, omit points such as and and
the integers even leave out fractions like 1 2. The reals, having the completeness property,
omit no points.

What exactly do we mean by this vague idea of missing holes? To answer this we must
give a more precise description of completeness. A number M is an upper bound for a set
of numbers if all numbers in the set are smaller than or equal to M. M is a least upper
bound if it is the smallest upper bound. For example, is an upper bound for the
negative numbers. So is showing that 2 is not a least upper bound. The least upper
bound for the set of negative numbers is We define a complete ordered field to be
one in which every nonempty set bounded above has a least upper bound.

If we work with just the rational numbers, the set of numbers less than is
bounded, but it does not have a rational least upper bound, since any rational upper bound
M can be replaced by a slightly smaller rational number that is still larger than So the
rationals are not complete. In the real numbers, a set that is bounded above always has a
least upper bound. The reals are a complete ordered field.

The completeness property is at the heart of many results in calculus. One example
occurs when searching for a maximum value for a function on a closed interval [a, b], as in
Section 4.1. The function has a maximum value on [0, 1] at the point x satis-
fying or If we limited our consideration to functions defined
only on rational numbers, we would have to conclude that the function has no maximum,
since is irrational (Figure A.2). The Extreme Value Theorem (Section 4.1), which
implies that continuous functions on closed intervals [a, b] have a maximum value, is not
true for functions defined only on the rationals.

The Intermediate Value Theorem implies that a continuous function ƒ on an interval
[a, b] with and must be zero somewhere in [a, b]. The function values
cannot jump from negative to positive without there being some point x in [a, b] where

The Intermediate Value Theorem also relies on the completeness of the real
numbers and is false for continuous functions defined only on the rationals. The function

has and but if we consider ƒ only on the rational
numbers, it never equals zero. The only value of x for which is an
irrational number.

We have captured the desired properties of the reals by saying that the real numbers are
a complete ordered field. But we’re not quite finished. Greek mathematicians in the school
of Pythagoras tried to impose another property on the numbers of the real line, the condi-
tion that all numbers are ratios of integers. They learned that their effort was doomed when
they discovered irrational numbers such as How do we know that our efforts to specify
the real numbers are not also flawed, for some unseen reason? The artist Escher drew opti-
cal illusions of spiral staircases that went up and up until they rejoined themselves at the
bottom. An engineer trying to build such a staircase would find that no structure realized
the plans the architect had drawn. Could it be that our design for the reals contains some
subtle contradiction, and that no construction of such a number system can be made?

We resolve this issue by giving a specific description of the real numbers and verify-
ing that the algebraic, order, and completeness properties are satisfied in this model. This

12.

x = 21>3,ƒsxd = 0
ƒs1d = 2,ƒs0d = -1ƒsxd = 3x2

- 1

ƒsxd = 0.

ƒsbd 7 0ƒsad 6 0

11>3
x = 11>3.1 - 3x2

= 0,
y = x - x3

22.

22

M = 0.
M = 1,

M = 2

> p ,22

i = 2-1
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FIGURE A.2 The maximum value of
on [0, 1] occurs at the

irrational number x = 21>3.
y = x - x3
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is called a construction of the reals, and just as stairs can be built with wood, stone, or
steel, there are several approaches to constructing the reals. One construction treats the
reals as all the infinite decimals,

In this approach a real number is an integer a followed by a sequence of decimal digits
each between 0 and 9. This sequence may stop, or repeat in a periodic

pattern, or keep going forever with no pattern. In this form, and
represent three familiar real numbers. The real meaning of the dots

following these digits requires development of the theory of sequences and series,
as in Chapter 11. Each real number is constructed as the limit of a sequence of rational
numbers given by its finite decimal approximations. An infinite decimal is then the same
as a series

This decimal construction of the real numbers is not entirely straightforward. It’s
easy enough to check that it gives numbers that satisfy the completeness and order prop-
erties, but verifying the algebraic properties is rather involved. Even adding or multiply-
ing two numbers requires an infinite number of operations. Making sense of division
requires a careful argument involving limits of rational approximations to infinite
decimals.

A different approach was taken by Richard Dedekind (1831–1916), a German mathe-
matician, who gave the first rigorous construction of the real numbers in 1872. Given any
real number x, we can divide the rational numbers into two sets: those less than or equal to
x and those greater. Dedekind cleverly reversed this reasoning and defined a real number
to be a division of the rational numbers into two such sets. This seems like a strange
approach, but such indirect methods of constructing new structures from old are common
in theoretical mathematics.

These and other approaches (see Appendix A.5) can be used to construct a system of
numbers having the desired algebraic, order, and completeness properties. A final issue that
arises is whether all the constructions give the same thing. Is it possible that different con-
structions result in different number systems satisfying all the required properties? If yes,
which of these is the real numbers? Fortunately, the answer turns out to be no. The reals are
the only number system satisfying the algebraic, order, and completeness properties.

Confusion about the nature of real numbers and about limits caused considerable con-
troversy in the early development of calculus. Calculus pioneers such as Newton, Leibniz,
and their successors, when looking at what happens to the difference quotient

as each of and approach zero, talked about the resulting derivative being a quotient
of two infinitely small quantities. These “infinitesimals,” written dx and dy, were thought
to be some new kind of number, smaller than any fixed number but not zero. Similarly, a
definite integral was thought of as a sum of an infinite number of infinitesimals

as x varied over a closed interval. While the approximating difference quotients 
were understood much as today, it was the quotient of infinitesimal quantities, rather than

¢y>¢x

ƒsxd # dx

¢x¢y

¢y

¢x
=

ƒsx + ¢xd - ƒsxd
¢x

a +

d1

10
+

d2

100
+

Á .

“ Á ”
3.1415926535898 Á

2.00, 0.3333333 Á

d1, d2, d3, Á ,

a.d1d2d3d4 Á
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a limit, that was thought to encapsulate the meaning of the derivative. This way of thinking
led to logical difficulties, as attempted definitions and manipulations of infinitesimals ran
into contradictions and inconsistencies. The more concrete and computable difference
quotients did not cause such trouble, but they were thought of merely as useful calculation
tools. Difference quotients were used to work out the numerical value of the derivative and
to derive general formulas for calculation, but were not considered to be at the heart of the
question of what the derivative actually was. Today we realize that the logical problems as-
sociated with infinitesimals can be avoided by defining the derivative to be the limit of its
approximating difference quotients. The ambiguities of the old approach are no longer
present, and in the standard theory of calculus, infinitesimals are neither needed nor used.

AP-12 Appendices
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AP-12 Appendices

Complex Numbers

Complex numbers are expressions of the form where a and b are real numbers and
i is a symbol for Unfortunately, the words “real” and “imaginary” have connotations
that somehow place in a less favorable position in our minds than As a matter of
fact, a good deal of imagination, in the sense of inventiveness, has been required to con-
struct the real number system, which forms the basis of the calculus (see Appendix A.4). In
this appendix we review the various stages of this invention. The further invention of a
complex number system is then presented.

The Development of the Real Numbers

The earliest stage of number development was the recognition of the counting numbers
which we now call the natural numbers or the positive integers. Certain

simple arithmetical operations can be performed with these numbers without getting out-
side the system. That is, the system of positive integers is closed under the operations of
addition and multiplication. By this we mean that if m and n are any positive integers,
then

(1)

are also positive integers. Given the two positive integers on the left side of either equation
in (1), we can find the corresponding positive integer on the right side. More than this, we
can sometimes specify the positive integers m and p and find a positive integer n such that

For instance, can be solved when the only numbers we know are
the positive integers. But the equation cannot be solved unless the number
system is enlarged.

The number zero and the negative integers were invented to solve equations like
In a civilization that recognizes all the integers

(2)

an educated person can always find the missing integer that solves the equation
when given the other two integers in the equation.

Suppose our educated people also know how to multiply any two of the integers in
the list (2). If, in Equations (1), they are given m and q, they discover that sometimes
they can find n and sometimes they cannot. Using their imagination, they may be

m + n = p

Á , -3, -2, -1, 0, 1, 2, 3, Á ,

7 + n = 3.

7 + n = 3
3 + n = 7m + n = p .

m + n = p and mn = q

1, 2, 3, Á ,

12.1-1
1-1.

a + ib ,

A.5
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inspired to invent still more numbers and introduce fractions, which are just ordered
pairs m n of integers m and n. The number zero has special properties that may bother
them for a while, but they ultimately discover that it is handy to have all ratios of inte-
gers m n, excluding only those having zero in the denominator. This system, called the
set of rational numbers, is now rich enough for them to perform the rational opera-
tions of arithmetic:

1. (a) addition 2. (a) multiplication
(b) subtraction (b) division

on any two numbers in the system, except that they cannot divide by zero because it is
meaningless.

The geometry of the unit square (Figure A.3) and the Pythagorean theorem showed
that they could construct a geometric line segment that, in terms of some basic unit of
length, has length equal to Thus they could solve the equation

by a geometric construction. But then they discovered that the line segment representing
is an incommensurable quantity. This means that cannot be expressed as the ratio

of two integer multiples of some unit of length. That is, our educated people could not find
a rational number solution of the equation 

There is no rational number whose square is 2. To see why, suppose that there were
such a rational number. Then we could find integers p and q with no common factor other
than 1, and such that

(3)

Since p and q are integers, p must be even; otherwise its product with itself would be odd.
In symbols, where is an integer. This leads to which says q must be
even, say where is an integer. This makes 2 a factor of both p and q, contrary
to our choice of p and q as integers with no common factor other than 1. Hence there is no
rational number whose square is 2.

Although our educated people could not find a rational solution of the equation
they could get a sequence of rational numbers

(4)

whose squares form a sequence

(5)

that converges to 2 as its limit. This time their imagination suggested that they needed
the concept of a limit of a sequence of rational numbers. If we accept the fact that an
increasing sequence that is bounded from above always approaches a limit (Theorem 6,
Section 11.1) and observe that the sequence in (4) has these properties, then we want it
to have a limit L. This would also mean, from (5), that and hence L is not one
of our rational numbers. If to the rational numbers we further add the limits of all
bounded increasing sequences of rational numbers, we arrive at the system of all “real”
numbers. The word real is placed in quotes because there is nothing that is either “more
real” or “less real” about this system than there is about any other mathematical
system.

L2
= 2,

1
1

, 49
25

, 1681
841

, 
57,121
28,561

, Á ,

1
1

, 7
5, 41

29
, 239

169
, Á ,

x2
= 2,

q1q = 2q1 ,
2p1

2
= q2p1p = 2p1 ,

p2
= 2q2 .

x2
= 2.

2222

x2
= 2

22.

>
>
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FIGURE A.3 With a straightedge and
compass, it is possible to construct a
segment of irrational length.
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The Complex Numbers

Imagination was called upon at many stages during the development of the real number
system. In fact, the art of invention was needed at least three times in constructing the
systems we have discussed so far:

1. The first invented system: the set of all integers as constructed from the counting
numbers.

2. The second invented system: the set of rational numbers m n as constructed from the
integers.

3. The third invented system: the set of all real numbers x as constructed from the
rational numbers.

These invented systems form a hierarchy in which each system contains the previous
system. Each system is also richer than its predecessor in that it permits additional opera-
tions to be performed without going outside the system:

1. In the system of all integers, we can solve all equations of the form

(6)

where a can be any integer.

2. In the system of all rational numbers, we can solve all equations of the form

(7)

provided a and b are rational numbers and 

3. In the system of all real numbers, we can solve all of Equations (6) and (7) and, in ad-
dition, all quadratic equations

(8)

You are probably familiar with the formula that gives the solutions of Equation (8),
namely,

(9)

and are familiar with the further fact that when the discriminant, is negative,
the solutions in Equation (9) do not belong to any of the systems discussed above. In fact,
the very simple quadratic equation

is impossible to solve if the only number systems that can be used are the three invented
systems mentioned so far.

Thus we come to the fourth invented system, the set of all complex numbers
We could dispense entirely with the symbol i and use the ordered pair notation

(a, b). Since, under algebraic operations, the numbers a and b are treated somewhat dif-
ferently, it is essential to keep the order straight. We therefore might say that the
complex number system consists of the set of all ordered pairs of real numbers (a, b),
together with the rules by which they are to be equated, added, multiplied, and so on,
listed below. We will use both the (a, b) notation and the notation in the discus-
sion that follows. We call a the real part and b the imaginary part of the complex
number (a, b).

a + ib

a + ib .

x2
+ 1 = 0

b2
- 4ac ,

x =

-b ; 2b2
- 4ac

2a
,

ax2
+ bx + c = 0 having a Z 0 and b2

- 4ac Ú 0.

a Z 0.

ax + b = 0,

x + a = 0,

>
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We make the following definitions.

Equality
Two complex numbers (a, b)

if and only if and (c, d) are equal if and only 
and if and 

Addition
The sum of the two complex
numbers (a, b) and (c, d) is the
complex number .

Multiplication

The product of two complex
numbers (a, b) and (c, d) is the
complex number 

The product of a real number c
and the complex number (a, b) is
the complex number (ac, bc).

The set of all complex numbers (a, b) in which the second number b is zero has all the
properties of the set of real numbers a. For example, addition and multiplication of (a, 0)
and (c, 0) give

which are numbers of the same type with imaginary part equal to zero. Also, if we multi-
ply a “real number” (a, 0) and the complex number (c, d), we get

In particular, the complex number (0, 0) plays the role of zero in the complex number
system, and the complex number (1, 0) plays the role of unity or one.

The number pair (0, 1), which has real part equal to zero and imaginary part equal to
one, has the property that its square,

has real part equal to minus one and imaginary part equal to zero. Therefore, in the system
of complex numbers (a, b) there is a number whose square can be added to

to produce that is,

The equation

therefore has a solution in this new number system.
You are probably more familiar with the notation than you are with the nota-

tion (a, b). And since the laws of algebra for the ordered pairs enable us to write

while (1, 0) behaves like unity and (0, 1) behaves like a square root of minus one, we need
not hesitate to write in place of (a, b). The i associated with b is like a tracer elementa + ib

sa, bd = sa, 0d + s0, bd = as1, 0d + bs0, 1d ,

a + ib
x = s0, 1d

x2
+ 1 = 0

s0, 1d2
+ s1, 0d = s0, 0d .

zero = s0, 0d ,unity = s1, 0d
x = s0, 1d

s0, 1ds0, 1d = s -1, 0d ,

sa, 0d # sc, dd = sac, add = asc, dd .

 sa, 0d # sc, 0d = sac, 0d, 

 sa, 0d + sc, 0d = sa + c, 0d, 

csa + ibd = ac + isbcd
sac - bd, ad + bcd .

= sac - bdd + isad + bcd
sa + ibdsc + idd

sa + c, b + dd
= sa + cd + isb + dd
sa + ibd + sc + idd

b = d .a = cb = d .a = c

a + ib = c + id

A.5 Complex Numbers AP-15
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that tags the imaginary part of We can pass at will from the realm of ordered pairs
(a, b) to the realm of expressions and conversely. But there is nothing less “real”
about the symbol than there is about the symbol once we have
learned the laws of algebra in the complex number system of ordered pairs (a, b).

To reduce any rational combination of complex numbers to a single complex number,
we apply the laws of elementary algebra, replacing wherever it appears by Of
course, we cannot divide by the complex number But if 
then we may carry out a division as follows:

The result is a complex number with

and since 
The number that is used as multiplier to clear the i from the denominator is

called the complex conjugate of It is customary to use (read “z bar”) to denote
the complex conjugate of z; thus

Multiplying the numerator and denominator of the fraction by the com-
plex conjugate of the denominator will always replace the denominator by a real number.

EXAMPLE 1 Arithmetic Operations with Complex Numbers

(a)

(b)

(c)

(d)

Argand Diagrams

There are two geometric representations of the complex number 

1. as the point P(x, y) in the xy-plane

2. as the vector from the origin to P.

In each representation, the x-axis is called the real axis and the y-axis is the imaginary
axis. Both representations are Argand diagrams for (Figure A.4).

In terms of the polar coordinates of x and y, we have

x = r cos u, y = r sin u ,

x + iy

OP§

z = x + iy :

 =

6 + 22i
40

=

3
20

+
11
20

 i

 =

12 + 4i + 18i + 6i2

36 + 12i - 12i - 4i2

 
2 + 3i
6 - 2i

=

2 + 3i
6 - 2i

 
6 + 2i
6 + 2i

 = 12 - 4i + 18i - 6i 2
= 12 + 14i + 6 = 18 + 14i

 s2 + 3ids6 - 2id = s2ds6d + s2ds -2id + s3ids6d + s3ids -2id
s2 + 3id - s6 - 2id = s2 - 6d + s3 - s -2ddi = -4 + 5i

s2 + 3id + s6 - 2id = s2 + 6d + s3 - 2di = 8 + i

sc + idd>sa + ibd

z = a + ib, z = a - ib .

za + ib .
a - ib

a + ib = sa, bd Z s0, 0d .a2
+ b2

Z 0,

x =

ac + bd
a2

+ b2 , y =

ad - bc
a2

+ b2 ,

x + iy

c + id
a + ib

=

sc + iddsa - ibd
sa + ibdsa - ibd

=

sac + bdd + isad - bcd
a2

+ b2 .

a + ib Z 0,s0, 0d = 0 + i0.
-1.i2

s1, 0d = 1,s0, 1d = i
a + ib ,

a + ib .
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x

y

O

r
y

x

P(x, y)

�

FIGURE A.4 This Argand diagram
represents both as a point
P(x, y) and as a vector OP§ .

z = x + iy
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and

(10)

We define the absolute value of a complex number to be the length r of a vector
from the origin to P(x, y). We denote the absolute value by vertical bars; thus,

If we always choose the polar coordinates r and so that r is nonnegative, then

The polar angle is called the argument of z and is written Of course, any
integer multiple of may be added to to produce another appropriate angle.

The following equation gives a useful formula connecting a complex number z, its
conjugate and its absolute value namely,

Euler’s Formula

The identity

called Euler’s formula, enables us to rewrite Equation (10) as

This formula, in turn, leads to the following rules for calculating products, quotients, powers,
and roots of complex numbers. It also leads to Argand diagrams for Since

is what we get from Equation (10) by taking we can say that is
represented by a unit vector that makes an angle with the positive x-axis, as shown in
Figure A.5.

u

eiur = 1,cos u + i sin u

eiu .

z = reiu .

eiu
= cos u + i sin u ,

z # z = ƒ z ƒ
2 .

ƒ z ƒ ,z ,

u2p
u = arg z .u

r = ƒ x + iy ƒ .

u

ƒ x + iy ƒ = 2x2
+ y2 .

OP§
x + iy

z = x + iy = rscos u + i sin ud .

A.5 Complex Numbers AP-17

x x

y y

�� � arg z
r � 1

O O

ei� � cos � � i sin � ei� � cos � � i sin �

(cos �, sin �)

(a) (b)

FIGURE A.5 Argand diagrams for (a) as a
vector and (b) as a point.

eiu
= cos u + i sin u

Products

To multiply two complex numbers, we multiply their absolute values and add their angles. Let

(11)z1 = r1 eiu1, z2 = r2 eiu2 ,
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so that

Then

and hence

(12)

Thus, the product of two complex numbers is represented by a vector whose length is the
product of the lengths of the two factors and whose argument is the sum of their arguments
(Figure A.6). In particular, from Equation (12) a vector may be rotated counterclockwise
through an angle by multiplying it by Multiplication by i rotates 90°, by rotates
180°, by rotates 270°, and so on.

EXAMPLE 2 Finding a Product of Complex Numbers

Let We plot these complex numbers in an Argand diagram
(Figure A.7) from which we read off the polar representations

Then

The notation exp (A) stands for 

Quotients

Suppose in Equation (11). Then

Hence

That is, we divide lengths and subtract angles for the quotient of complex numbers.

EXAMPLE 3 Let and as in Example 2. Then

 L 0.183 + 0.683i .

 
1 + i23 - i

=

22eip>4
2e-ip>6 =

22
2

 e5pi>12
L 0.707 acos 

5p
12

+ i sin 
5p
12
b

z2 = 23 - i ,z1 = 1 + i

` z1
z2
` =

r1
r2

=

ƒ z1 ƒ

ƒ z2 ƒ

 and arg az1
z2
b = u1 - u2 = arg z1 - arg z2.

z1
z2

=

r1 eiu1

r2 eiu2
=

r1
r2

 eisu1 -u2d .

r2 Z 0

eA .

 = 222 acos 
p
12

+ i sin 
p
12
b L 2.73 + 0.73i .

 z1 z2 = 222 exp aip
4

-

ip
6
b = 222 exp aip

12
b

z1 = 22e ip>4, z2 = 2e-ip>6 .

z1 = 1 + i, z2 = 23 - i .

- i
-1eiu .u

arg sz1 z2d = u1 + u2 = arg z1 + arg z2 .

ƒ z1 z2 ƒ = r1 r2 = ƒ z1 ƒ
#
ƒ z2 ƒ

z1 z2 = r1 eiu1 # r2 eiu2
= r1 r2 eisu1 +u2d

ƒ z1 ƒ = r1, arg z1 = u1; ƒ z2 ƒ = r2, arg z2 = u2 .
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x

y

O

�1

�2

�1

z1z2

r1r2

r2 r1

z1

z2

FIGURE A.6 When and are
multiplied, and
arg sz1 z2d = u1 + u2 .

ƒ z1 z2 ƒ = r1
# r2

z2z1

0

1

–1

x

y

�2

�3 � 1

1 � �3  

2�2

2
1

z1z2

z1 � 1 � i

z2 � �3 � i

�
4 �

12
�
6

–

FIGURE A.7 To multiply two complex
numbers, multiply their absolute values
and add their arguments.
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Powers

If n is a positive integer, we may apply the product formulas in Equation (12) to find

With we obtain

(13)

The length is raised to the nth power and the angle is multiplied by n.
If we take in Equation (13), we obtain De Moivre’s Theorem.r = 1

u = arg zr = ƒ z ƒ

 = rneinu .

 zn
= sreiudn

= rneisu+u+
Á

+ud

z = reiu ,

zn
= z # z # Á # z .
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n factors

n summands

De Moivre’s Theorem

(14)scos u + i sin udn
= cos nu + i sin nu .

If we expand the left side of De Moivre’s equation above by the Binomial Theorem
and reduce it to the form we obtain formulas for and as polynomials
of degree n in and 

EXAMPLE 4 If in Equation (14), we have

The left side of this equation expands to

The real part of this must equal and the imaginary part must equal Therefore,

Roots

If is a complex number different from zero and n is a positive integer, then there
are precisely n different complex numbers that are nth roots of z. To see
why, let be an nth root of so that

or

Then

is the real, positive nth root of r. For the argument, although we cannot say that and
must be equal, we can say that they may differ only by an integer multiple of That

is,

na = u + 2kp,    k = 0, ;1, ;2, Á .

2p .u

na

r = 2n r

rneina
= reiu .

wn
= z

z = reiu ,w = reia
w0, w1, Á , wn - 1 ,

z = reiu

 sin 3u = 3 cos2 u sin u - sin3 u .

 cos 3u = cos3 u - 3 cos u sin2 u, 

sin 3u .cos 3u

cos3 u + 3i cos2 u sin u - 3 cos u sin2 u - i sin3 u .

scos u + i sin ud3
= cos 3u + i sin 3u .

n = 3

sin u .cos u

sin nucos nua + ib ,
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Therefore,

Hence, all the nth roots of are given byz = reiu

a =

u
n + k 

2p
n .

AP-20 Appendices

(15)2n reiu
= 2n r exp i aun + k 

2p
n b ,    k = 0, ;1, ;2, Á .

There might appear to be infinitely many different answers corresponding to the
infinitely many possible values of k, but gives the same answer as in
Equation (15). Thus, we need only take n consecutive values for k to obtain all the
different nth roots of z. For convenience, we take

All the nth roots of lie on a circle centered at the origin and having radius equal to
the real, positive nth root of r. One of them has argument The others are uni-
formly spaced around the circle, each being separated from its neighbors by an angle equal
to Figure A.8 illustrates the placement of the three cube roots, of the
complex number 

EXAMPLE 5 Finding Fourth Roots

Find the four fourth roots of 

Solution As our first step, we plot the number in an Argand diagram (Figure A.9)
and determine its polar representation Here, and One of
the fourth roots of is We obtain others by successive additions of

to the argument of this first one. Hence,

and the four roots are

The Fundamental Theorem of Algebra

One might say that the invention of is all well and good and leads to a number sys-
tem that is richer than the real number system alone; but where will this process end? Are

2-1

 w3 = 2 ccos 
7p
4

+ i sin 
7p
4
d = 22s1 - id .

 w2 = 2 ccos 
5p
4

+ i sin 
5p
4
d = 22s -1 - id

 w1 = 2 ccos 
3p
4

+ i sin 
3p
4
d = 22s -1 + id

 w0 = 2 ccos 
p
4

+ i sin 
p
4
d = 22s1 + id

24 16 exp ip = 2 exp i ap
4

, 
3p
4

, 
5p
4

, 
7p
4
b ,

2p>4 = p>2 2eip>4 .16eip
u = p .z = -16, r = +16,reiu .

-16

-16.

z = reiu .
w0, w1, w2 ,2p>n .

a = u>n .
reiu

k = 0, 1, 2, Á , n - 1.

k = mk = n + m

x

y

O

r

w2

w1

w0

2�
3

2�
3

2�
3

r1/3

z � rei�

�

�
3

FIGURE A.8 The three cube roots of
z = reiu .

2

x

y

–16

w0

w3w2

w1

�
4

�
2

�
2

�
2

�
2

FIGURE A.9 The four fourth roots of
-16.
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we also going to invent still more systems so as to obtain and so on? But it
turns out this is not necessary. These numbers are already expressible in terms of the com-
plex number system In fact, the Fundamental Theorem of Algebra says that with
the introduction of the complex numbers we now have enough numbers to factor every
polynomial into a product of linear factors and so enough numbers to solve every possible
polynomial equation.

a + ib .

41-1, 61-1,

A.5 Complex Numbers AP-21

The Fundamental Theorem of Algebra
Every polynomial equation of the form

in which the coefficients are any complex numbers, whose degree n
is greater than or equal to one, and whose leading coefficient is not zero, has
exactly n roots in the complex number system, provided each multiple root of
multiplicity m is counted as m roots.

an

a0, a1, Á , an

an zn
+ an - 1 zn - 1

+
Á

+ a1 z + a0 = 0,

A proof of this theorem can be found in almost any text on the theory of functions of a
complex variable.

EXERCISES A.5

Operations with Complex Numbers
1. How computers multiply complex numbers Find 

a. b.

c.

(This is how complex numbers are multiplied by computers.)

2. Solve the following equations for the real numbers, x and y.

a.

b.

c.

Graphing and Geometry
3. How may the following complex numbers be obtained from

geometrically? Sketch.

a. b.

c. d. 1 z

4. Show that the distance between the two points and in an
Argand diagram is ƒ z1 - z2 ƒ .

z2z1

>-z

s -zdz

z = x + iy

s3 - 2idsx + iyd = 2sx - 2iyd + 2i - 1

a1 + i
1 - i

b2

+

1
x + iy

= 1 + i

s3 + 4id2
- 2sx - iyd = x + iy

s -1, -2d # s2, 1d
s2, -1d # s -2, 3ds2, 3d # s4, -2d

= sac - bd, ad + bcd .
sa, bd # sc, dd

In Exercises 5–10, graph the points that satisfy the given
conditions.

5. a. b. c.

6. 7.

8. 9.

10.

Express the complex numbers in Exercises 11–14 in the form 
with and Draw an Argand diagram for each
calculation.

11. 12.

13. 14.

Powers and Roots
Use De Moivre’s Theorem to express the trigonometric functions in
Exercises 15 and 16 in terms of and 

15. 16.

17. Find the three cube roots of 1.

sin 4ucos 4u

sin u .cos u

s2 + 3ids1 - 2id1 + i23

1 - i23

1 + i
1 - iA1 + 2-3 B2

-p 6 u … p .r Ú 0
reiu ,

ƒ z + 1 ƒ Ú ƒ z ƒ

ƒ z + i ƒ = ƒ z - 1 ƒƒ z + 1 ƒ = ƒ z - 1 ƒ

ƒ z + 1 ƒ = 1ƒ z - 1 ƒ = 2

ƒ z ƒ 7 2ƒ z ƒ 6 2ƒ z ƒ = 2

z = x + iy
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18. Find the two square roots of i.

19. Find the three cube roots of 

20. Find the six sixth roots of 64.

21. Find the four solutions of the equation 

22. Find the six solutions of the equation 

23. Find all solutions of the equation 

24. Solve the equation 

Theory and Examples
25. Complex numbers and vectors in the plane Show with an

Argand diagram that the law for adding complex numbers is the
same as the parallelogram law for adding vectors.

26. Complex arithmetic with conjugates Show that the conjugate
of the sum (product, or quotient) of two complex numbers, and

, is the same as the sum (product, or quotient) of their
conjugates.

27. Complex roots of polynomials with real coefficients come in
complex-conjugate pairs

z2

z1

x4
+ 1 = 0.

x4
+ 4x2

+ 16 = 0.

z6
+ 2z3

+ 2 = 0.

z4
- 2z2

+ 4 = 0.

-8i .
a. Extend the results of Exercise 26 to show that if

is a polynomial with real coefficients 

b. If z is a root of the equation where ƒ(z) is a
polynomial with real coefficients as in part (a), show that 
the conjugate is also a root of the equation. (Hint: Let

then both u and y are zero. Use the fact
that )

28. Absolute value of a conjugate Show that 

29. When If z and are equal, what can you say about the
location of the point z in the complex plane?

30. Real and imaginary parts Let Re(z) denote the real part of z
and Im(z) the imaginary part. Show that the following relations
hold for any complex numbers and 

a. b.

c.

d.

e. ƒ z1 + z2 ƒ … ƒ z1 ƒ + ƒ z2 ƒ

ƒ z1 + z2 ƒ
2

= ƒ z1 ƒ
2

+ ƒ z2 ƒ
2

+ 2Resz1z2d
ƒ Reszd ƒ … ƒ z ƒ

z - z = 2iImszdz + z = 2Reszd
z2 .z, z1 ,

zz = z
ƒ z ƒ = ƒ z ƒ .

ƒszd = ƒszd = u - iy .
ƒszd = u + iy = 0;

z

ƒszd = 0,

a0, Á , an .

ƒszd = an zn
+ an - 1 zn - 1

+
Á

+ a1 z + a0

ƒszd = ƒszd

AP-22 Appendices
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M

M'

u

v''

90˚

v

v'

O u � v

�

�

FIGURE A.10 As explained in the text, u * v = ƒ u ƒ v–.

The Distributive Law for Vector Cross Products

In this appendix, we prove the Distributive Law

which is Property 2 in Section 12.4.

Proof To derive the Distributive Law, we construct a new way. We draw u and v
from the common point O and construct a plane M perpendicular to u at O (Figure A.10).
We then project v orthogonally onto M, yielding a vector with length We rotate

about u in the positive sense to produce a vector Finally, we multiply by thev–v– .v¿ 90°
ƒ v ƒ sin u.v¿

u * v

u * sv + wd = u * v + u * w

A.6
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length of u. The resulting vector is equal to since has the same direction as
by its construction (Figure A.10) and

Now each of these three operations, namely,

1. projection onto M

2. rotation about u through 90°

3. multiplication by the scalar 

when applied to a triangle whose plane is not parallel to u, will produce another triangle. If
we start with the triangle whose sides are v, w, and (Figure A.11) and apply these
three steps, we successively obtain the following:

1. A triangle whose sides are and satisfying the vector equation

2. A triangle whose sides are and satisfying the vector equation

(the double prime on each vector has the same meaning as in Figure A.10)

v– + w– = sv + wd–

sv + wd–v–, w– ,

v¿ + w¿ = sv + wd¿

sv + wd¿v¿, w¿,

v + w

ƒ u ƒ

ƒ u ƒ ƒ v– ƒ = ƒ u ƒ ƒ v¿ ƒ = ƒ u ƒ ƒ v ƒ sin u = ƒ u * v ƒ.

u * v
v–u * vƒ u ƒ v–

A.7 The Mixed Derivative Theorem and the Increment Theorem AP-23

M

uw

v

v'w'

(v � w)'

v � w

FIGURE A.11 The vectors, and their projec-
tions onto a plane perpendicular to u.

v, w, v + w ,

3. A triangle whose sides are and satisfying the vector equa-
tion

Substituting and 
from our discussion above into this last equation gives

which is the law we wanted to establish.

u * v + u * w = u * sv + wd,

ƒ u ƒ sv + wd– = u * sv + wdƒ u ƒ v– = u * v, ƒ u ƒ w– = u * w,

ƒ u ƒ v– + ƒ u ƒ w– = ƒ u ƒ sv + wd–.

ƒ u ƒ sv + wd–ƒ u ƒ v–, ƒ u ƒ w– ,
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A.7 The Mixed Derivative Theorem and the Increment Theorem AP-23

The Mixed Derivative Theorem and the Increment Theorem

This appendix derives the Mixed Derivative Theorem (Theorem 2, Section 14.3) and the
Increment Theorem for Functions of Two Variables (Theorem 3, Section 14.3). Euler first
published the Mixed Derivative Theorem in 1734, in a series of papers he wrote on
hydrodynamics.

A.7
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THEOREM 2 The Mixed Derivative Theorem
If ƒ(x, y) and its partial derivatives and are defined throughout an
open region containing a point (a, b) and are all continuous at (a, b), then
ƒxysa, bd = ƒyxsa, bd .

ƒyxƒx, ƒy, ƒxy ,

Proof The equality of and can be established by four applications of
the Mean Value Theorem (Theorem 4, Section 4.2). By hypothesis, the point (a, b) lies in
the interior of a rectangle R in the xy-plane on which and are all defined.
We let h and k be the numbers such that the point also lies in R, and we
consider the difference

(1)

where

(2)

We apply the Mean Value Theorem to F, which is continuous because it is differentiable.
Then Equation (1) becomes

(3)

where lies between a and From Equation (2).

so Equation (3) becomes

(4)

Now we apply the Mean Value Theorem to the function and have

or

for some between b and By substituting this into Equation (4), we get

(5)

for some point in the rectangle whose vertices are the four points (a, b),
and (See Figure A.12.)

By substituting from Equation (2) into Equation (1), we may also write

(6)
where

(7)

The Mean Value Theorem applied to Equation (6) now gives

(8)¢ = kf¿sd2d

fs yd = ƒsa + h, yd - ƒsa, yd .

 = fsb + kd - fsbd, 

 = [ƒsa + h, b + kd - ƒsa, b + kd] - [ƒsa + h, bd - ƒsa, bd]

 ¢ = ƒsa + h, b + kd - ƒsa + h, bd - ƒsa, b + kd + ƒsa, bd

sa, b + kd .sa + h, bd, sa + h, b + kd ,
R¿sc1, d1d

¢ = hkƒxysc1, d1d

b + k .d1

ƒxsc1, b + kd - ƒxsc1, bd = kƒxysc1, d1d

gsb + kd - gsbd = kg¿sd1d ,

gs yd = fxsc1, yd

¢ = h[ƒxsc1, b + kd - ƒxsc1, bd] .

F¿sxd = ƒxsx, b + kd - ƒxsx, bd ,

a + h .c1

¢ = hF¿sc1d ,

Fsxd = ƒsx, b + kd - ƒsx, bd .

¢ = Fsa + hd - Fsad ,

sa + h, b + kd
ƒyxƒ, ƒx, ƒy, ƒxy ,

ƒyxsa, bdƒxysa, bd

x

y

R

0

h

k R'

(a, b)

FIGURE A.12 The key to proving
is that no matter how

small is, and take on equal
values somewhere inside (although not
necessarily at the same point).

R¿

ƒyxƒxyR¿

ƒxysa, bd = ƒyxsa, bd
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for some between b and By Equation (7),

(9)

Substituting from Equation (9) into Equation (8) gives

Finally, we apply the Mean Value Theorem to the expression in brackets and get

(10)

for some between a and 
Together, Equations (5) and (10) show that

(11)

where and both lie in the rectangle (Figure A.12). Equation (11) is
not quite the result we want, since it says only that has the same value at that

has at The numbers h and k in our discussion, however, may be made as
small as we wish. The hypothesis that and are both continuous at (a, b) means
that and where each of

as both Hence, if we let h and we have

The equality of and can be proved with hypotheses weaker than the
ones we assumed. For example, it is enough for and to exist in R and for to be
continuous at (a, b). Then will exist at (a, b) and equal at that point.ƒxyƒyx

ƒxyƒyƒ, ƒx ,
ƒyxsa, bdƒxysa, bd

ƒxysa, bd = ƒyxsa, bd .
k : 0,h, k : 0.P1, P2 : 0

ƒyxsc2, d2d = ƒyxsa, bd + P2 ,ƒxysc1, d1d = ƒxysa, bd + P1

ƒyxƒxy

sc2, d2d .ƒyx

sc1, d1dƒxy

R¿sc2, d2dsc1, d1d

ƒxysc1, d1d = ƒyxsc2, d2d ,

a + h .c2

¢ = khƒyxsc2, d2d

¢ = k[ƒysa + h, d2d - ƒysa, d2d] .

f¿s yd = ƒysa + h, yd - ƒysa, yd .

b + k .d2

A.7 The Mixed Derivative Theorem and the Increment Theorem AP-25

THEOREM 3 The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of are defined throughout an
open region R containing the point and that and are continuous at

Then the change in the value
of ƒ that results from moving from to another point 
in R satisfies an equation of the form

in which each of as both ¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y ,

sx0 + ¢x, y0 + ¢ydsx0, y0d
¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0, y0dsx0, y0d .

ƒyƒxsx0, y0d
z = ƒsx, yd

Proof We work within a rectangle T centered at and lying within R, and we
assume that and are already so small that the line segment joining A to

and the line segment joining B to lie in the interior
of T (Figure A.13).

We may think of as the sum of two increments, where

is the change in the value of ƒ from A to B and

is the change in the value of ƒ from B to C (Figure A.14).

¢z2 = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, y0d

¢z1 = ƒsx0 + ¢x, y0d - ƒsx0, y0d

¢z = ¢z1 + ¢z2¢z

Csx0 + ¢x, y0 + ¢ydBsx0 + ¢x, y0d
¢y¢x

Asx0, y0d

T

C(x0 � �x, y0 � �y)

B(x0 � �x, y0)

A(x0, y0)

FIGURE A.13 The rectangular region
T in the proof of the Increment Theorem.
The figure is drawn for and 
positive, but either increment might be
zero or negative.

¢y¢x

4100AWL/Thomas_APPp001-034  8/27/04  6:50 AM  Page 25

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


AP-26 Appendices

y

z

x

Q

P''

P'

Q'

S

B

0

y0

P0

y0 � �y

(x0 � �x, y0) C(x0 � �x, y0 � �y)

A(x0, y0)

z � f (x, y)

� z1

� z2

� z

FIGURE A.14 Part of the surface near The
points and have the same height above the xy-plane. The
change in z is The change

shown as is caused by changing x from to while
holding y equal to Then, with x held equal to 

is the change in z caused by changing from which is represented by
The total change in z is the sum of and ¢z2 .¢z1Q¿S?

y0 + ¢y ,y0

¢z2 = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, y0d

x0 + ¢x ,y0 .
x0 + ¢xx0P–Q = P¿Q¿ ,

¢z1 = ƒsx0 + ¢x, y0d - ƒsx0, y0d ,

¢z = P¿S .
z0 = ƒsx0, y0dP–P0, P¿,

P0sx0, y0, ƒsx0, y0dd .z = ƒsx, yd

On the closed interval of x-values joining to the function 
is a differentiable (and hence continuous) function of x, with derivative

By the Mean Value Theorem (Theorem 4, Section 4.2), there is an x-value c between 
and at which

or

or

(12)

Similarly, is a differentiable (and hence continuous) function
of y on the closed y-interval joining and with derivative

G¿s yd = ƒysx0 + ¢x, yd.

y0 + ¢y ,y0

Gs yd = ƒsx0 + ¢x, yd

¢z1 = ƒxsc, y0d¢x .

ƒsx0 + ¢x, y0d - ƒsx0, y0d = ƒxsc, y0d¢x

Fsx0 + ¢xd - Fsx0d = F¿scd¢x

x0 + ¢x
x0

F¿sxd = ƒxsx, y0d .

Fsxd = ƒsx, y0dx0 + ¢x,x0
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Hence, there is a y-value d between and at which

or

or

(13)

Now, as both and we know that and Therefore, since 
and are continuous at the quantities

(14)

both approach zero as both and 
Finally,

where both and as both  and  which is what we set out to prove.

Analogous results hold for functions of any finite number of independent variables.
Suppose that the first partial derivatives of are defined throughout an open
region containing the point and that and are continuous at 
Then

(15)

where as and 
The partial derivatives in Equation (15) are to be evaluated at the point

Equation (15) can be proved by treating as the sum of three increments,

(16)

(17)

(18)

and applying the Mean Value Theorem to each of these separately. Two coordinates remain
constant and only one varies in each of these partial increments In Equa-
tion (17), for example, only y varies, since x is held equal to and z is held equal to

Since is a continuous function of y with a derivative it is subject
to the Mean Value Theorem, and we have

for some between and y0 + ¢y .y0y1

¢w2 = ƒysx0 + ¢x, y1, z0d¢y

ƒy ,ƒsx0 + ¢x, y, z0dz0 .
x0 + ¢x

¢w1, ¢w2, ¢w3 .

 ¢w3 = ƒsx0 + ¢x, y0 + ¢y, z0 + ¢zd - ƒsx0 + ¢x, y0 + ¢y, z0d ,

 ¢w2 = ƒsx0 + ¢x, y0 + ¢y, z0d - ƒsx0 + ¢x, y0, z0d

 ¢w1 = ƒsx0 + ¢x, y0, z0d - ƒsx0, y0, z0d

¢w
sx0, y0, z0d .

ƒx, ƒy, ƒz

¢z : 0.¢x, ¢y ,P1, P2, P3 : 0

 = ƒx¢x + ƒy¢y + ƒz¢z + P1¢x + P2¢y + P3¢z, 

 ¢w = ƒsx0 + ¢x, y0 + ¢y, z0 + ¢zd - ƒsx0, y0, z0d

sx0, y0, z0d .ƒzƒx, ƒy ,sx0, y0, z0d
w = ƒsx, y, zd

¢y : 0,¢xP2 : 0P1

 = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y, 

 = [ƒxsx0, y0d + P1]¢x + [ƒysx0, y0d + P2]¢y

 = ƒxsc, y0d¢x + ƒysx0 + ¢x, dd¢y

 ¢z = ¢z1 + ¢z2

¢y : 0.¢x

 P2 = ƒysx0 + ¢x, dd - ƒysx0, y0d

 P1 = ƒxsc, y0d - ƒxsx0, y0d, 

sx0, y0d ,ƒy

ƒxd : y0 .c : x0¢y : 0,¢x

¢z2 = ƒysx0 + ¢x, dd¢y.

ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, yd = ƒysx0 + ¢x, dd¢y

Gs y0 + ¢yd - Gs y0d = G¿sdd¢y

y0 + ¢yy0

A.7 The Mixed Derivative Theorem and the Increment Theorem AP-27

From Equations
(12) and (13)

From Equa-
tion (14)
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Proof In the notation of Figure A.15, which shows a typical parallelogram determined by
vectors u and v and its orthogonal projection onto a plane with unit normal vector p,

Similarly,

for some scalar t. Hence,

(1)

0

The vectors and are both orthogonal to p. Hence, when we dot both sides
of Equation (1) with p, the only nonzero term on the right is That is,

In particular,

(2)

The absolute value on the right is the volume of the box determined by and p. The
height of this particular box is so the box’s volume is numerically the same as its
base area, the area of parallelogram Combining this observation with Equation (2)
gives

which says that the area of the orthogonal projection of the parallelogram determined by u
and v onto a plane with unit normal vector p is This is what we set out to prove.

EXAMPLE 1 Finding the Area of a Projection

Find the area of the orthogonal projection onto the xy-plane of the parallelogram deter-
mined by the points P(0, 0, 3), R(3, 2, 1), and S(1, 3, 2) (Figure A.16).Qs2, -1, 2d ,

ƒ su * vd # p ƒ .

Area of P¿Q¿R¿S¿ = ƒ su¿ * v¿d # p ƒ = ƒ su * vd # p ƒ ,

P¿Q¿R¿S¿ .
ƒ p ƒ = 1,

u¿, v¿ ,

ƒ su * vd # p ƒ = ƒ su¿ * v¿d # p ƒ .

su * vd # p = su¿ * v¿d # p.

su¿ * v¿ d # p .
u¿ * pp * v¿

(')'*

 = su¿ * v¿d + ssp * v¿d + tsu¿ * pd + stsp * pd.

 u * v = su¿ + spd * sv¿ + tpd

v = v¿ + tp

 = u¿ + sp .

 = u¿ + PP§¿ - QQ§¿

 u = PP§¿ + u¿ + Q¿Q§

AP-28 Appendices

The Area of a Parallelogram’s Projection on a Plane

This appendix proves the result needed in Section 16.5 that is the area of the
projection of the parallelogram with sides determined by u and v onto any plane whose
normal is p. (See Figure A.15.)

ƒ su * vd # p ƒ

A.8

p

P

Q'

R'

P'

Q
S

S'

u' v'

u v

R

FIGURE A.15 The parallelogram
determined by two vectors u and v in space
and the orthogonal projection of the
parallelogram onto a plane. The projection
lines, orthogonal to the plane, lie parallel
to the unit normal vector p.

THEOREM
The area of the orthogonal projection of the parallelogram determined by two
vectors u and v in space onto a plane with unit normal vector p is

Area = ƒ su * vd # p ƒ .

(For some scalar s because
) is parallel to p)(PP§¿ - QQ§¿

sQ¿Q§ = -QQ§¿d

P(0, 0, 3)

S(1, 3, 2)

R(3, 2, 1)

Q(2, –1, 2)

k

z

x

y

FIGURE A.16 Example 1 calculates the
area of the orthogonal projection of
parallelogram PQRS on the xy-plane.
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Solution With

we have

so the area is ƒ su * vd # p ƒ = ƒ 7 ƒ = 7.

su * vd # p = 3 2 -1 -1

1 3 -1

0 0 1

3 = ` 2 -1

1 3
` = 7,

u = PQ§ = 2i - j - k, v = PS§ = i + 3j - k, and p = k ,

A.9 Basic Algebra, Geometry, and Trigonometry Formulas AP-29
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A.9 Basic Algebra, Geometry, and Trigonometry Formulas AP-29

Basic Algebra, Geometry, and Trigonometry Formulas

Algebra

Arithmetic Operations

Laws of Signs

Zero Division by zero is not defined.

If 

For any number a:

Laws of Exponents

If 

The Binomial Theorem For any positive integer n,

 +

nsn - 1dsn - 2d
1 # 2 # 3

 an - 3b3
+

Á
+ nabn - 1

+ bn .

 sa + bdn
= an

+ nan - 1b +

nsn - 1d
1 # 2

 an - 2b2

am

an = am - n, a0
= 1, a-m

=
1

am .

a Z 0,

 am>n
= 2n am

= A2n a Bmaman
= am + n,    sabdm

= ambm,    samdn
= amn,

a # 0 = 0 # a = 0

0
a = 0, a0

= 1, 0a
= 0a Z 0:

-s -ad = a, -a
b

= -

a
b

=

a
-b

a
b

+

c
d

=

ad + bc
bd

, a>b
c>d =

a
b

# d
c

asb + cd = ab + ac, a
b

# c
d

=

ac
bd

A.9
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For instance,

Factoring the Difference of Like Integer Powers, 

For instance,

Completing the Square If 

The Quadratic Formula If and then

Geometry

Formulas for area, circumference, and volume: 

Triangle Similar Triangles Pythagorean Theorem

a

b
c

a2 � b2 � c2

b

c c' a'

b'

a

a'
a �

b'
b �

c'
c

b

h

A �    bh1
2

V = volumedS = lateral area or surface area,circumference,
B = area of base, C =sA = area,

x =

-b ; 2b2
- 4ac

2a
.

ax2
+ bx + c = 0,a Z 0

 = au 2
+ C su = x + sb>2add

Call this part C.
This is ax +

b
2a
b2

.

(')'*('''')''''*

 = a ax 2
+

b
a x +

b2

4a2 b + c -

b2

4a

 = a ax 2
+

b
a x +

b2

4a2 b + a a-

b2

4a2 b + c

 = a ax 2
+

b
a x +

b2

4a2 -

b2

4a2 b + c

 ax2
+ bx + c = a ax 2

+

b
a xb + c

a Z 0,

 a4
- b4

= sa - bdsa3
+ a2b + ab2

+ b3d .

 a3
- b3

= sa - bdsa2
+ ab + b2d, 

 a2
- b2

= sa - bdsa + bd, 

an
- bn

= sa - bdsan - 1
+ an - 2b + an - 3b2

+
Á

+ abn - 2
+ bn - 1d

n>1

 sa + bd3
= a3

+ 3a2b + 3ab2
+ b3, sa - bd3

= a2
- 3a2b + 3ab2

- b3 .

 sa + bd2
= a2

+ 2ab + b2, sa - bd2
= a2

- 2ab + b2
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Parallelogram Trapezoid Circle

Any Cylinder or Prism with Parallel Bases Right Circular Cylinder

Any Cone or Pyramid Right Circular Cone Sphere

Trigonometry Formulas

Definitions and Fundamental Identities

 Tangent: tan u =

y
x =

1
cot u

 Cosine: cos u =

x
r =

1
sec u

 Sine: sin u =

y
r =

1
csc u

V �    �r 3, S � 4�r 24
3

h

s

r

V �    �r2h1
3

S � �rs � Area of side

h
h

V �    Bh1
3

B

B

V � �r2h
S � 2�rh � Area of side

h

r

h
h

V � Bh
B

B

A � �r2,
C � 2�r

r

a

b

h

A �    (a � b)h1
2

h

b

A � bh

A.9 Basic Algebra, Geometry, and Trigonometry Formulas AP-31

r

O x

y
�

P(x, y)

y

x
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Identities

 cos A - cos B = -2 sin 
1
2

 sA + Bd sin 
1
2

 sA - Bd

 cos A + cos B = 2 cos 
1
2

 sA + Bd cos 
1
2

 sA - Bd

 sin A - sin B = 2 cos 
1
2

 sA + Bd sin 
1
2

 sA - Bd

 sin A + sin B = 2 sin 
1
2

 sA + Bd cos 
1
2

 sA - Bd

 sin A cos B =
1
2

 sin sA - Bd +
1
2

 sin sA + Bd

 cos A cos B =
1
2

 cos sA - Bd +
1
2

 cos sA + Bd

 sin A sin B =
1
2

 cos sA - Bd -
1
2

 cos sA + Bd

 sin aA +

p
2
b = cos A,  cos aA +

p
2
b = -sin A

 sin aA -

p
2
b = -cos A,  cos aA -

p
2
b = sin A

 tan sA - Bd =

tan A - tan B
1 + tan A tan B

 tan sA + Bd =

tan A + tan B
1 - tan A tan B

,

 cos sA - Bd = cos A cos B + sin A sin B

 cos sA + Bd = cos A cos B - sin A sin B

 sin sA - Bd = sin A cos B - cos A sin B

 sin sA + Bd = sin A cos B + cos A sin B

cos2 u =

1 + cos 2u
2

, sin2 u =

1 - cos 2u
2

sin 2u = 2 sin u cos u, cos 2u = cos2 u - sin2 u

sin2 u + cos2 u = 1, sec2 u = 1 + tan2 u, csc2 u = 1 + cot2 u

sin s -ud = -sin u, cos s -ud = cos u

AP-32 Appendices

4100AWL/Thomas_APPp001-034  8/27/04  6:50 AM  Page 32

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


Trigonometric Functions

Radian Measure

�2

45

45 90
1

1

1

1 1

1

�
2

�
4

�
3

�
2

�
6

�
4

2 2

30

9060

Degrees Radians

�2

�3�3

s

r

1
θ

Circle of radius r

Unit circle

A.9 Basic Algebra, Geometry, and Trigonometry Formulas AP-33

The angles of two common triangles, in degrees
and radians.

x

y

y � cos x

Domain: (–�, �)
Range:    [–1, 1]

0–� � 2�–�
2

�
2

3�
2

y � sin x

x

y

0–� � 2�–�
2

�
2

3�
2

y � sin x

Domain: (–�, �)
Range:    [–1, 1]

y

x

y � tan x

3�
2

– –� –�
2

0 �
2

� 3�
2

Domain: All real numbers except odd
               integer multiples of �/2 
Range:    (–�, �)

x

y
y � csc x

0

1

–� � 2�–�
2

�
2

3�
2

Domain: x � 0, ��, �2�, . . .
Range:    (–�, –1] h [1, �)

y

x

y � cot x

0

1

–� � 2�–�
2

�
2

3�
2

Domain: x � 0, ��, �2�, . . .
Range:    (–�, �)

x

y
y � sec x

3�
2

– –� –�
2

0

1

�
2

� 3�
2

Domain: x ��    , �       , . . . 

Range:    (–�, –1] h [1, �)

�
2

3�
2

180° = p radians.

s
r =

u
1

= u or u =

s
r,
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