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Defining and Manipulating Matrices

MATLAB works with arrays; that is, with matrices. We illustrate some of the basic matrix operations
with several examples.

Let A and B denote the ( )3 2¥  matrices
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To enter these matrices into MATLAB, we read in the elements “row-by-row,” with rows separated by
semicolons.

» A = [1,2;-2,5;-3,4]

A =

 1     2
-2     5
-3     4

Individual entries can be separated by spaces instead of commas.

» B = [0 –1;6 –4;-7 8]

B =

 0     -1
 6     -4
-7      8

The result of a command line statement is displayed unless it is followed by a semicolon.

A colon notation can be used to create an n - dimensional vector.

» x = 1:0.25:2

x =

         1.0000    1.2500    1.5000    1.7500    2.0000
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Matrix Addition

When two matrices have the same size, the matrix sum is defined.

» A+B

ans =

  1      1
  4      1
-10     12

Since we did not assign a name to the sum A + B, MATLAB gave the default name of “ans” to the
sum. The next time we make a similar unnamed assignment on the command line, ans will be
overwritten with the new assignment.

Scalar Multiplication

» M = 3*A

M =

  3      6
 -6     15
 -9     12

Matrix Multiplication

Let C denote the ( )2 3¥  matrix
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Enter C into the MATLAB workspace,

» C = [3 2 1;0 –4 2];

Note that MATLAB did not echo the assignment of C because we ended the statement with a
semicolon.
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We can form the ( )3 3¥  matrix product AC and the ( )2 2¥  matrix product CA:

» A*C

ans =

 3     -6    5
-6    -24    8
-9    -22    5

» C*A

ans =

-4     20
 2    -12

Determinants, Inverses, and Transposes

Let Q denote the ( )3 3¥  matrix
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Calculating the determinant of Q in MATLAB, we find

» det(Q)

ans =

5

Since Q has nonzero determinant, Q is invertible. Let us designate Q-1 by Q1 and calculate Q1 with
MATLAB,

» Q1 = inv(Q)

Q1 =

0.4000     0.2000     0.8000
0.0000    -1.0000    -1.0000
0.2000     0.6000     0.4000



4 • MATLAB Technical Supplement

For a matrix with real entries, such as Q, the command ¢Q  will evaluate the transpose,

» Q’

ans =

1    -1     1
2     0    -1
3     2    -2

If the matrix has complex components, however, the use of the prime actually evaluates the complex
conjugate transpose of the matrix. For instance, let C denote the matrix
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» C = [1,1+2*i,3*i;0,1-2*i,2;-4*i,1,2];

C =

1.0000            1.0000+2.0000i    0.0000+3.0000i
0.0000            1.0000-2.0000i    2.0000
0.0000-4.0000i    1.0000            2.0000

» C’

ans =

1.0000            0.0000            0.0000+4.0000i
1.0000-2.0000i    1.0000+2.0000i    1.0000
0.0000-3.0000i    2.0000            2.0000

As you can see from MATLAB’s answer, the operation ¢C  calculates the conjugate transpose of C. If
we want the usual transpose, we can follow the ¢C  command with the conjugation command:

» conj(C’)

ans =

1.0000            0.0000            0.0000-4.0000i
1.0000+2.0000i    1.0000-2.0000i    1.0000
0.0000+3.0000i    2.0000            2.0000
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Element-by-Element Operations

A period preceding the multiplication, division, or exponentiation symbols instructs MATLAB to
perform these operations on an element-by-element basis. We illustrate this idea with some examples.

As before, consider the ( )3 2¥  matrices A and B where
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The matrix product AB is not defined since A and B are not compatibly dimensioned. In fact, if we try
to form the product AB in MATLAB, we get an error message:

» M = A*B

??? Error using ==> *
Inner matrix dimensions must agree.

We can, however, form the element-by-element product, A.*B; this operation creates a ( )3 2¥  array
in which each element of A is multiplied by the corresponding element of B:

» M = A.*B

M =

 0     -2
    -12    -20

21     32

Similarly, the MATLAB command A./B command creates a ( )3 2¥  array whose elements are the
elements of A divided by the corresponding elements of B.  For our matrices A and B, the MATLAB
warning and the resulting Inf in the ( , )1 1  position occurred because we divided by zero.

» A./B
Warning: Divide by zero.

ans =

        Inf    -2.0000
    -0.3333    -1.2500

0.4286     0.5000
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The command B.^2 creates a ( )3 2¥  array whose elements are the squares of the elements of B:

» BSQ = B.^2

BSQ =

       0     1
      36    16

 49    64

MATLAB has one matrix operation that does not have a mathematical counterpart—the operation
A a±  where a is a scalar and A is an ( )m n¥  matrix. MATLAB “understands” the commands A a+
(or A a- ) to mean “add (or subtract) the scalar a from each element of the matrix A.” For example,

» A = [1 2 5 7];

» B = A + 5

B = 6   7   10   12

Built-in Functions

When a matrix is used as an input to a built-in function, such as exp( ) sin( )x x or , MATLAB
“understands” that the operation is to be performed element-wise. For example, if we define the
( )1 4¥  array x = -[ . ]1 2 0 5 1 , then ex  is a ( )1 4¥  array as well:

» x = [-1 2 0.5 1];

» y = exp(x)

y = 0.3679    7.3891    1.6487    2.7183

The output is the ( )1 4¥  array y e e e e= -[ ].1 2 0 5 1 . In general, if f x( )  denotes one of MATLAB’S
built-in functions and if  x is an ( )m n¥  matrix, then f x( )  is also an ( )m n¥  matrix whose  ijth entry
is f xij( ).
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Defining and Graphing Functions

When we want to graph a function on some interval of interest, we start by defining an array of input
values for the function and then creating the corresponding array of output values. The plot command
will graph the points associated with these two arrays.

For instance, suppose we want to graph the function

y t
e t

t

t
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=
+

2

2

4
1

on the interval 0 £ £t p .

» t = 0:pi/100:pi;

» y = exp(t/2).*sin(4*t)./(1+t.^2);

» plot(t,y)

The resulting graph is shown below.
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Superimposing and Labeling Graphs

Suppose we want to graph two functions, f t t( ) sin= 2 2  and its derivative ¢ =f t t t( ) cos ,4 2  on the
interval 0 4£ £t . We can proceed as follows:

» t = 0:0.01:4;

» f = 2*sin(t.^2);

» fp = 4*t.*cos(t.^2);
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The plot command allows for several graphs to be superimposed. Also, as illustrated, we can specify
different line types for different graphs. The “help plot” command will give you a list of the
available line types.

» plot(t,f,t,fp,’:’)

As illustrated below, labels can be added to the graph.

» xlabel(’t’)

» ylabel(’f(t) and its derivative’)

» title(’graphs of f(t), solid curve, and its derivative,
dashed curve’)

The resulting graph is shown below.
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Graphing With the Symbolic Toolbox

We can also use the capabilities of the MATLAB Symbolic Toolbox to graph functions. The sequence
of commands listed below displays the graph of the function f(t) for 0 £ £t p , where
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.

» syms t

» f = exp(t/2)*sin(4*t)/(1+t^2);

» ezplot(f,[0,pi])

The first command above identifies t as a symbolic variable. The second command defines the
function  f, and the ezplot command graphs the function. The result is shown below.
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Matrix Eigenpair Computations

Since MATLAB is a matrix-oriented program, it is an especially efficient tool for eigenvalue
calculations. For example, suppose we want to compute the eigenvalues of the matrix A
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Using MATLAB, we find the eigenvalues of A:

» A = [1 2 –1;2 0 –3;-1 –3 –2];

» eig(A)

ans =

        -0.6782
        -4.1913
         3.8695
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We can find eigenvectors as well as the eigenvalues with the command

» [V,D] = eig(A)

V =

        -0.7870    -0.0807    -0.6116
         0.4488     0.6053    -0.6574
        -0.4232     0.7919     0.4402

     D =

        -0.6782          0          0
              0    -4.1913          0
              0          0     3.8695

The command [V,D] = eig(A) generates eigenvectors as well as eigenvalues. The eigenvectors
appear as the columns of the matrix V. The corresponding eigenvalues are the diagonal entries of D. In
particular, the ith column of V is an eigenvector associated with the ( , )i i  entry of D. As a result, the
matrix equality

AV VD=

is valid.

If the columns of V are linearly independent (that is, if A has a full set of eigenvectors), then V is
invertible and A is diagonalizable; therefore,

V AV D- =1 or A VDV= -1.

For the ( )3 3¥  example above, we illustrate how the eigenpair calculation can be verified for the
second column of V:
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» V2 = V(:,2)

V2 =

         -0.0807
          0.6053
          0.7919

     » lambda2 = D(2,2)

     lambda2 =

        -4.1913

» A*V2

ans =

    0.3381
   -2.5370
   -3.3191

» lambda2*V2

ans =

    0.3381
   -2.5370
   -3.3191

As is seen from the calculation above, Av v2 2 2= l , where v2  denotes the second column of V and l2

denotes the ( , )2 2  entry of D.

Recall that eigenvectors are not unique. Any constant nonzero multiple of an eigenvector is also an
eigenvector. MATLAB chooses to normalize the eigenvectors so that they are unit vectors; that is, the
sum of the squares of the components of an eigenvector is equal to one.

Not all matrices have a full set of eigenvectors. For instance, consider the matrix J

 J =
È
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˘

˚
˙

2 1

0 2
.

This matrix has a real repeated eigenvalue l l1 2 2= =  but only one linearly independent eigenvector.
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If we use MATLAB to compute the eigenpairs, we obtain

» J = [2 1;0 2];

» [V,D] = eig(J)

V =

   1.0000    -1.0000
   0.0000     0.0000

D =

   2.0000    0.0000
   0.0000    2.0000

Note that the columns of V consist of the two vectors

1
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.

In this case, MATLAB presents two scalar multiples of the same eigenvector. This example illustrates
the need to scrutinize the output of software packages.

A real matrix that has complex eigenvalues also has complex eigenvectors. Consider

B =
-
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2 1
.

Using MATLAB,

» B = [1 2;-2 1];

» [V,D] = eig(B)

V =

   0.0000 - 0.7071i    0.0000 + 0.7071i
   0.7071              0.7071

D =

   1.0000 + 2.0000i    0.0000
   0.0000              1.0000 – 2.0000i

Note that the eigenvalues of the ( )2 2¥  real matrix B form a complex conjugate pair and the
corresponding eigenvectors are likewise complex conjugates of each other.
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The Solution of Initial Value Problems

MATLAB provides four different approaches for solving initial value problems.

(a) A symbolic solution can be generated using the dsolve command within the Symbolic Toolbox.
(b) Solutions can be generated for problems involving linear homogeneous

constant coefficient problems by using the exponential matrix function, expm.
(c) MATLAB provides a programming environment that allows us to create

and execute numerical methods such as Euler’s method.
(d) MATLAB has built-in numerical routines such as ODE45 that can be called

to solve initial value problems.

Below, we give examples of each of these approaches. In most instances, a practitioner will want to
use a tested and refined program such as ODE45. There are cases, however, where using an existing
program is not an option and we need to write our own program.

Symbolic Solutions Using dsolve

The dsolve command in the Symbolic Toolbox can be used to obtain symbolic solutions of differential
equations and initial value problems. For instance, in order to determine the general solution of

¢ + =y y tsin , we can proceed as follows:

» dsolve(’Dy + y = sin(t)’)

ans = -1/2*cos(t)+1/2*sin(t)+exp(-t)*C1

The symbol D denotes derivative. Note that it was not necessary to declare t to be a symbolic variable.
As a second example, consider the initial value problem

¢¢ + ¢ + = + = ¢ =y y y t y y4 4 2 0 1 0 0, ( ) , ( ) .

We can solve this initial value problem using the dsolve command:

» y = dsolve(’D2y+4*Dy+4*y = 2+t’,’y(0)=1,Dy(0)=0’)

y = 1/4+1/4*t+3/4*exp(-2*t)+5/4*exp(-2*t)*t

Note that the symbol Dk denotes the kth derivative. Also note that the initial conditions are included in
the dsolve function call.
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Computer software packages such as dsolve have no sense of aesthetics. The answers they provide,
while correct, are sometimes useless or confusing. For example, consider the relatively simple
differential equation

¢¢ + ¢ + =y y y t2 4 sin .

The general solution is

y c e t c e t t tt t= + + -- -
1 23 3 3 2 13cos sin ( sin cos ) / .

A call to dsolve, however, produces the following rather complicated form of the solution:

-3/26*sin(3^(1/2)*t)*cos((3^(1/2)+1)*t)+1/78*sin(3^(1/2)*t)*cos((3^(1/2)+1)*t)*3^(1/2)
+5/78*sin(3^(1/2)*t)*sin((3^(1/2)+1)*t)*3^(1/2)-
1/13*sin(3^(1/2)*t)*sin((3^(1/2)+1)*t)+3/26*sin(3^(1/2)*t)*cos((3^(1/2)-
1)*t)+1/78*sin(3^(1/2)*t)*cos((3^(1/2)-1)*t)*3^(1/2)-5/78*sin(3^(1/2)*t)*sin((3^(1/2)-1)*t)*3^(1/2)-
1/13*sin(3^(1/2)*t)*sin((3^(1/2)-1)*t)-5/78*cos(3^(1/2)*t)*cos((3^(1/2)-1)*t)*3^(1/2)-
1/13*cos(3^(1/2)*t)*cos((3^(1/2)-1)*t)-3/26*cos(3^(1/2)*t)*sin((3^(1/2)-1)*t)-
1/78*cos(3^(1/2)*t)*sin((3^(1/2)-1)*t)*3^(1/2)+5/78*cos(3^(1/2)*t)*cos((3^(1/2)+1)*t)*3^(1/2)-
1/13*cos(3^(1/2)*t)*cos((3^(1/2)+1)*t)+3/26*cos(3^(1/2)*t)*sin((3^(1/2)+1)*t)-
1/78*cos(3^(1/2)*t)*sin((3^(1/2)+1)*t)*3^(1/2)+C1*exp(-t)*sin(3^(1/2)*t)+C2*exp(-
t)*cos(3^(1/2)*t)

Homogeneous Linear Constant Coefficient Systems and the Exponential Matrix

Let A be a constant ( )n n¥  matrix. In this subsection, we examine how MATLAB can be used to
solve ¢ =y yA  by computing the exponential matrix. For instance, consider the initial value problem

d
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Our objective is to plot the two solution components on the interval 0 4£ £t .

Recall that the exponential matrix etA  is the fundamental matrix that reduces to the identity matrix at
t = 0. It serves to “propagate” the solution. In particular, we have

y t t

y t t
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The MATLAB command expm(A) forms the exponential matrix eA .

The following sequence of MATLAB commands generates graphs of the solution components. The
sequence of commands begins by defining a grid on the interval 0 4£ £t , using a grid spacing of
D t = 0 01. . We then apply the propagation property (1), using it to evaluate the solution components
y t y t1 2( ) ( ) and   at the grid points.
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» delt = 0.01;

» t = 0:delt:4;

» N = length(t);

» A = [-1 3;-3 –1];

» C = expm(delt*A)

C =

    0.9896    0.0297
   -0.0297    0.9896

» y = zeros(2,N);

» y(:,1) = [1 2]’;

» for j = 2:N

     y(:,j) = C*y(:,j-1);

  end

» plot(t,y(1,:),t,y(2,:),’:’)

» title(’Solution components, y1 (solid curve),
          y2 (dashed curve)’)

» xlabel(’t’)

» ylabel(’solution components’)

The resulting graph is shown below.
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Comments:

1. The second statement in the sequence of MATLAB commands defines an equally spaced grid,
t, consisting of 401 points. The third statement defines N, the length of the vectors made from
the solution components, y t y ti i1 2( ) ( ) and  , 1 £ £i N .

2. The sixth statement, ”y = zeros(2,N)”, initializes an array consisting of two rows and N
columns. The first row will hold the vector y t i Ni1 1 2( ), , , ,= K  and the second row will hold
the vector y t i Ni2 1 2( ), , , ,= K .

3. The seventh statement, y(:,1) = [1 2]’, stores the initial condition vector in the first
column of the solution array; the colon stands for “all rows.” [Similarly, a statement such as
B(3,:) = [1 2] would mean that the row vector [1 2] is stored in the third row of B; in
this case, the colon would stand for “all columns.”]

4. The “for loop” following statement seven uses (1) to propagate the solution from one grid
point to the next. As the index  j takes on the values 2, 3, 4, . . . , N, the columns of the solution
array are generated.

Note that this computational approach also can be applied to the solution of initial value problems
involving nth order linear homogeneous constant coefficient scalar equations. For such problems, we
would rewrite the equation as an equivalent first order system.

Programming in MATLAB; Scripts and Functions

When we have a complicated computational task to perform, we may want to program the
calculations. While the steps of a program could be entered on the command line one by one, it is
normally more efficient to store the commands in a file and then execute the program by invoking the
file. The previous example, solving an initial value problem using the exponential matrix, is a case in
point. It would have been more efficient to type the sequence of fourteen steps into a single file rather
than entering them one by one on the command line.

MATLAB program files are called m-files. They are typically created in the MATLAB editor and
saved as files with an extension denoted .m. There are two types of m-files: script m-files and function
m-files.

To illustrate the concept of a script m-file, suppose we type the fourteen steps of the exponential
matrix example in the MATLAB editor and save the resulting file as example.m. If we now type the
word “example” in the command line, the file example.m will execute and the plot shown above will
appear. Thus, a script m-file is nothing more than a sequence of MATLAB statements entered and
saved in a file. Among the many advantages of stored programs (such as scripts) are that they can be
invoked over and over with a single statement, they can be modified easily to handle different
circumstances, they can be executed a few lines at a time to debug the program, etc.

The second type of m-file is a function m-file. As the name suggests, a function m-file has many of the
same properties as a mathematical function; a function m-file has a set of inputs and a set of rules that
transforms the input variables into a set of output variables. The output variables are then returned to
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the user who invoked the function. In MATLAB, the first line of a function m-file must begin with the
keyword “function.” The following simple example illustrates the syntax.

function c = triple(u,v,w)
x = cross(v,w);
c = dot(u,x);

The simple function above calculates the triple product of three vectors, c u v w= ∑ ¥( ) , using the
built-in MATLAB dot product and cross product functions. Once we save the function file as triple.m,
we can call it from the command line and use it to form the triple product of three vectors. For
example,

» a = [1 2 4]; b = [2 1 3]; c = [7 0 –3];

» trip = triple(a,b,c)

» trip = 23

In a function m-file, all the variables are local. In a script m-file, however, the variables are global. For
that reason, we need to be careful in using scripts.

Solving Initial Value Problems Using Numerical Methods

Euler’s method as well as the numerical methods described in Chapter 9 can be coded and run in
MATLAB. As an example, we list an implementation of Euler’s method in the form of a function m-
file. We then use the program to solve three different initial value problems.

Our implementation is designed to use Euler’s method to numerically solve initial value problems of
the form

¢ = = £ £y f t y y a y a t b( , ) , ( ) ,0 .        (2)

The program is flexible enough so that it can be used for first-order systems as well as for scalar
problems. The program assumes that n steps of Euler’s method will be executed, using a constant step
size h b a n= -( ) / . The program calls another function m-file, named f.m, that evaluates f t y( , ) . In
order to use the Euler’s method program below, the function f.m needs to be available.
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function results = euler(a,b,y0,n)
%
%   Set the starting values for Euler’s method
%
t = a;
h = (b-a)/n;
y = y0;
results = [t,y];
%
%   Execute n steps of Euler’s method
%
for i = 1:n
   y = y + h*f(t,y);
   t = t + h;
   results = [results;[t,y]];
end

Comments on the program:

1. The fifth statement, results = [t,y], initializes an array that will hold the results. For a
scalar problem, the first row of this results array is [ , ]a y0 . As additional points [ , ]t yi i  are
generated, they will be appended to the array.

2. The for loop generates the iterates of Euler’s method. The statement
results = [results;[t,y]], appends the latest iterate to the array. For a scalar
problem, the results array will ultimately be an (( ) )n + ¥1 2  matrix.

3. As can be seen from the first line of the program, the input variables for the function euler.m
are the interval [ , ]a b , the initial value y0 , and the number of steps to be executed, n. The
output is the array named results.

We illustrate euler.m by using it to estimate the solution of

¢ = - + = £ £y ty y t3 1 0 1 0 2, ( ) , .

For this example, the following function m-file, f.m, must be prescribed:

function yp = f(t,y)
yp = -t*y^3+1;

For this illustration, we use n = 200 leading to a step size of h = 0 01. . After calling euler.m, we graph
the numerical solution.
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» a = 0;

» b = 2;

» y0 = 1;

» n = 200;

» results = euler(a,b,y0,n);

» t = results(:,1);

» y = results(:,2);

» plot(t,y)

» xlabel(‘t‘)

» ylabel(‘y‘)

The resulting graph is shown below.
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In the next example, we use the function euler.m to solve the nonlinear second order initial value
problem

¢¢ + = = ¢ = £ £-y y e t y y ttsin sin , ( ) , ( ) ,0 0 0 2 0 4.

The first step in solving this problem is to convert it into a first order system,

¢ =

¢ = - +
= =

-

y y

y y e t

y y

t

1 2

2 1

1 20 0 0 2

sin sin

( ) , ( ) .

       (3)

For the system ¢ =y f y( , )t , Euler’s method reduces to the vector iteration

y y f yi i i ih t+ = +1 ( , ) .
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As can be seen from the listing of the function euler.m, this particular program can be used for first
order systems as well as for scalar equations. The only thing we need to do is code the function f.m so
that ¢ =y f y( , )t  is a row vector. Below, we list the function f.m for system (3).

function yp = f(t,y)
yp = zeros(1,2);
yp(1) = y(2);
yp(2) = -sin(y(1)) + exp(-t)*sin(t);

Even though this new problem is a first order system, we can call the function euler.m just as we did in
our first example. Of course, a, b, y0 , and n are different. In particular, y0  is a row vector.

» a = 0;

» b = 4;

» y0 = [0,1];

» n = 400;

» results = euler(a,b,y0,n);

» t = results(:,1);

» y = results(:,2);

For this example, the output array “results” is a ( )401 3¥  matrix. The first column holds the 401 grid
points t t t0 1 400, , ,K , the second column holds the numerical solution values y y y0 1 400, , ,K , and the third
column has the numerical derivative values ¢ ¢ ¢y y y0 1 400, , ,K .

The graph of the numerical solution of system (3) is shown in the figure:
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The function euler.m is easily modified so as to implement other one-step methods such as Heun’s
method or the modified Euler’s method. For example, the following listing is an implementation of
Heun’s method:
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function results = heun(a,b,y0,n)
%
%   Set the starting values for Heun’s method
%
t = a;
h = (b-a)/n;
y = y0;
results = [t,y];
%
%   Execute n steps of Heun’s method
%
for i = 1:n
   y = y + (h/2)*(f(t,y) + f(t+h;y+h*f(t,y)));
   t = t + h;
   results = [results;[t,y]];
end

As can be seen from this listing, euler.m and heun.m are identical except for the first line in the for
loop; this line reflects the difference between the Euler’s method iteration and the Heun’s method
iteration.

As an example, we use heun.m to solve the system

¢ = - - +
¢ = - + +

= = £ £

-x y x e

y x y

x y t

t( )

( )

( ) , ( ) , .

1

1 1

0 1 0 2 0 3

       (4)

The function f.m is listed below, followed by the MATLAB statements invoking heun.m for the initial
value problem (4).

function yp = f(t,y)
yp = zeros(1,2);
yp(1) = -(1 - y(2))*y(1) + exp(-t);
yp(2) = -(1 + y(1))*y(2) + 1;
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The MATLAB commands calling heun.m are:

» a = 0;

» b = 3;

» y0 = [1,2];

» n = 300;

» results = heun(a,b,y0,n);

» t = results(:,1);

» x = results(:,2);

» y = results(:,3);

A graph of the solutions of system (4) is shown below.
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Solving Initial Value Problems Using MATLAB’s Built-in Numerical Methods

MATLAB has several built in numerical routines for initial value problems. An example is the
program ODE45. The program ODE45 is a variable-step Runge-Kutta method, one that is fairly easy
to use and quite reliable. We illustrate ODE45 by using it to solve numerically the initial value
problem (4) that was featured in the previous example. This time, however, we solve the problem over
the interval [ , ]0 10 .

The call to ODE45 is

» [t,y] = ode45(’f’,tspan,y0).   (5)
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In (5), we are trying to solve the system ¢ = = £ £y f y y y( , ), ( ) ,t t a t b0 0 . In (5), f is the name of a
function m-file that evaluates f y( , )t , tspan is a row vector, and y0 denotes the vector y0 of initial
conditions. The output consists of times t t tN0 1, , ,K , and the numerical solution vectors
y y y( ), ( ), , ( )t t tN0 1 K . If tspan is the vector [ , ]a b , then the output values t t tN0 1, , ,K  are the points
used by the variable-step method. If tspan has points between a b  and  and if ODE45 is able to
solve the initial value problem successfully, then the output times are those specified by the input
vector tspan. Unlike our implementation of Euler’s method and Heun’s method, the function m-file
f must return a column vector.

In order to illustrate the use of ODE45 we apply it to solve the initial value problem (4). In this case,
the function m-file has the form

function yp = f(t,y)
yp = zeros(2,1);
yp(1) = -(1 - y(2))*y(1) + exp(-t);
yp(2) = -(1 + y(1))*y(2) + 1;

As you can see, the only difference between f.m in these two examples is that the initial specification
defines the output vector yp to be a row vector in the previous example, but a column vector in this
example.

Unlike our implementation of Euler’s method and Heun’s method, we are not restricted to naming the
function file f.m; the call to ODE45 passes the name of the function file as a string. For instance,
instead of naming the function f.m as we did above, we could have called it fex4.m:

function yp = fex4(t,y)
yp = zeros(2,1);
yp(1) = -(1 - y(2))*y(1) + exp(-t);
yp(2) = -(1 + y(1))*y(2) + 1;

After saving this m-file as fex4.m, we move to the MATLAB command line and define the input
variables tspan and y0. We then call ODE45 and graph the results.

» tspan = 0:0.1:10;

» y0 = [1;2];

» [t,y] = ode45(’fex4’,tspan,y0);

» x = y(:,1);

» y = y(:,2);

» plot(t,x,t,y,’:’)

The resulting graph is shown below. We generated a numerical solution of system (4) earlier, using
Heun’s method. This time, we graph the numerical solution over the longer interval 0 10£ £t .
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If we wish to do so, we can create a table of values for x(t) and y(t):

» tabval = [t,x,y]

tabval =

         0.0000    1.0000    2.0000
         0.1000    1.1883    1.7119
         0.2000    1.3475    1.4537
         0.3000    1.4731    1.2307
         0.4000    1.5644    1.0444

  .
  .
  .

         9.8000    0.1371    0.8636
         9.9000    0.1352    0.8654
        10.0000    0.1334    0.8671    

The routine ODE45 has many options that ease the job of the user; consult the help file for ODE45. In
addition to ODE45, MATLAB has a number of other numerical routines for estimating the solution of
an initial value problem. Some of these routines have options for special situations such as dense
output, stiff equations, differential-algebraic systems, etc. These routines include ODE113, ODE15S,
ODE23S, ODE23T, and ODE23TB.

Flowfields for First Order Scalar Equations

We list below a MATLAB program, flowfield.m, that can be used to construct a flowfield for the first
order scalar equation, ¢ =y f t y( , ). We illustrate the use of this program by constructing a flowfield for
the equation ¢ = -y y y( )2  on the rectangle 0 8 3 4£ £ - £ £t y, .
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The following two m-files need to be entered into MATLAB. The m-file f.m defines the right side of
the particular differential equation being studied. The m-file flowfield.m calls f.m and displays the
graph of the flowfield.

function yp = f(t,y)
yp = y*(2-y);

function flowfield(a,b,c,d,tinc,yinc,scafac)
tval = a:tinc:b;
yval = c:yinc:d;
nt = length(tval);
ny = length(yval);
t = zeros(ny,nt);
y = zeros(ny,nt);
u = zeros(ny,nt);
v = zeros(ny,nt);

for i = 1:ny
   for j = 1:nt
      dy = f(tval(j),yval(i));
      t(i,j) = tval(j);
      y(i,j) = yval(i);
      u(i,j) = 1/sqrt(1+dy*dy);
      v(i,j) = dy/sqrt(1+dy*dy);
   end

end
%
%   The quiver command plots the flow field.
%

quiver(t,y,u,v,scafac,'.')
xlabel('t')
ylabel('y')

Once these two files are entered into MATLAB, the single command

» flowfield(0,8,-3,4,0.25,0.25,0.3)

produces the following output:
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The call to flowfield has the form

» flowfield(a,b,c,d,tinc,yinc,scafac)

The program draws the flowfield over the rectangle a t b c y d£ £ £ £, . The flowfield filaments are
placed tinc units apart in the t direction and yinc units apart in the y direction. The parameter scafac
determines the length of the filaments. The MATLAB quiver command plots the filaments; the last
parameter in the quiver function, '.', suppresses the placement of an arrowhead on the filaments.
Eliminating this input causes the filaments to become small arrows.

Direction Fields for Two-Dimensional Autonomous Systems

Below, we list a MATLAB program, dirfield.m, that constructs the direction field for a two-
dimensional autonomous system of the form

¢ =
¢ =
x f x y

y g x y

( , )

( , ) .

We illustrate the program by constructing the direction field for the system

¢ = - -
¢ = - -
x x y x

y x y y

( ) /

( ) /

2 4

3 2 12
       (6)

on the square 0 3 0 3£ £ £ £x y, .

The following two m-files need to be entered into MATLAB. The m-file fdir.m defines the right side
of the particular system being studied. The m-file dirfield.m calls fdir.m and displays the graph of the
direction field.
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function [xp,yp] = fdir(x,y)
xp = (2-x-y)*x/4;
yp = (3-x-2*y)*y/12;

function dirfield(a,b,c,d,xinc,yinc,scafac)
xval=a:xinc:b;
yval=c:yinc:d;
nx=length(xval);
ny=length(yval);
x=zeros(ny,nx);
y=zeros(ny,nx);
xp=zeros(ny,nx);
yp=zeros(ny,nx);

for i=1:ny
   for j=1:nx
%
%  dx = f(x,y) and dy = g(x,y). A function m-file, named
%   fdir.m, must be available to calculate dx and dy.
%
      [dx,dy]=fdir(xval(j),yval(i));
      x(i,j)=xval(j);
      y(i,j)=yval(i);
      mag=sqrt(dx*dx+dy*dy);
      xp(i,j)=dx;
      yp(i,j)=dy;

      if mag > 0
         xp(i,j)=xp(i,j)/mag;
         yp(i,j)=yp(i,j)/mag;
      end

   end
end

%
%  The quiver command plots the direction field
%

quiver(x,y,xp,yp,scafac)
xlabel('x')
ylabel('y')

Once these two files are entered into MATLAB, the single command

» dirfield(0,3,0,3,0.1,0.1,0.3)

produces the following direction field for system (6):
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The call to dirfield has the form

» dirfield(a,b,c,d,xinc,yinc,scafac)

The program draws the direction field over the rectangle a x b c y d£ £ £ £, . The filaments are placed
xinc units apart in the x direction and yinc units apart in the y direction. The parameter scafac
determines the length of the filaments. The MATLAB quiver command plots the filaments.

Laplace Transforms

We present several examples showing how the Symbolic Toolbox can be used to compute Laplace
transforms and their inverses. In the following examples, the variables s and t, as well as the parameter
w, are first declared to be symbolic variables.

» syms s t w;

» laplace(sin(w*t))

ans = w/(s^2+w^2)

» F = laplace(exp(-2*t))

F = 1/(s+2)

When a function of t is transformed, the default variable for the transform is s. Similarly, when the
inverse transform operation, ilaplace, is applied to a function of s, the default variable for the
inverse transform is t.

» ilaplace(2/(s^2+4))

ans = 1/2*4^(1/2)*sin(4^(1/2)*t)

» simplify(ans)

ans = sin(2*t)
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Two-Point Boundary Value Problems

Just as we saw with initial value problems, two-point boundary value problems can be solved using
the Symbolic Toolbox, the exponential matrix, or numerical methods.

Solutions using the Symbolic Toolbox: We begin by illustrating a symbolic solution of the two-point
boundary value problem

¢¢ - = = ¢ =y y y y0 0 1 1 0, ( ) , ( ) .

Using the dsolve command, we obtain

» dsolve('D2y-y=0','y(0)=1,Dy(1)=0')

ans = -sinh(1)/cosh(1)*sinh(t)+cosh(t).

Solutions using the exponential matrix: The exponential matrix command can be used to solve two-
point boundary value problems that involve linear constant coefficient first order systems. For
example, consider

 y y y y y y( ) , ( ) , ( ) , ( ) , ( )4 0 0 1 0 2 1 2- = = ¢ = = ¢ = -p p .

We first recast this problem as a first order system by defining the change of dependent variables
y z y z y z y z= ¢ = ¢¢ = ¢¢¢ =1 2 3 4, , , . With this, the fourth order scalar problem becomes

¢ = + =z z z zA P P, ( ) ( )1 20 p aa, where

A P P=

È
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È
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0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

1

2

1

2

1 2, , ,== == aa == .

The general solution of the differential equation is

z c= etA        (7)

where c is a ( )4 1¥  vector of arbitrary coefficients. The vector c is determined by imposing the
boundary condition

( )P P e A
1 2+ =p c aa .

Once we have determined c, we also know z( )0  since, see (7), z c( )0 = . We now use the propagator
property of the exponential matrix, z z( ) ( )t t e ttA+ =D D , to determine the solution at grid points
spanning the interval 0 £ £t p . The following MATLAB script carries out these steps and graphs the
solution, y t z t( ) ( )= 1 .
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%
%  The integer N defines the grid spacing and needs to be
%   defined before invoking this script, bvpexample.m
%
dt = pi/N;
t = 0:dt:pi;
z = zeros(4,N+1);
A = [0 1 0 0;0 0 1 0;0 0 0 1;1 0 0 0];
P1 = [1 0 0 0;0 1 0 0;0 0 0 0;0 0 0 0];
P2 = [0 0 0 0;0 0 0 0;1 0 0 0;0 1 0 0];
alpha = [1 2 1 -2]';
expdt = expm(dt*A);
c = inv(P1+P2*expm(pi*A))*alpha;
z(:,1) = c;

for i = 1:N
   z(:,i+1) = expdt*z(:,i);

end

plot(t,z(1,:))
xlabel('t')
ylabel('y')

To invoke the script bvpexample.m, we define N

» N = 100;

» bvpexample

The resulting graph is shown below.
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Solutions of linear two-point boundary value problems using numerical methods:

For two-point boundary value problems involving linear differential equations and separated boundary
conditions, the principle of superposition applies; the general solution of a nonhomogeneous
differential equation can be represented as the sum of the general solution of the homogeneous
equation and a particular solution. Numerical methods can be used to construct these constituents.
Then, imposing the boundary conditions, we obtain the solution of the two-point boundary value
problem.

As an illustration, consider the boundary value problem

¢¢ - = + ¢ = - ¢ =-y t y e y y y yt2 0 0 2 2 2 2 0, ( ) ( ) , ( ) ( ) .        (8)

We can rewrite this problem as

¢ = + + =z z g z zA t P P( ), ( ) ( )1 20 2 aa
where

A
t

t
e

P Pt=
È
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02 1 2, ( ) , ,g ,, aa .

The general solution of the nonhomogeneous system has the form

z c z( ) ( ) ( )t t tP= +Y

where Y( )t  is any fundamental matrix, c is a ( )2 1¥  vector of arbitrary constants, and zP t( )  is any
particular solution of the nonhomogeneous system.

In particular, let F( )t  denote the fundamental matrix that reduces to the identity at t = 0,

F( )
( ) ( )

( ) ( )
t

t t

t t
=

È

Î
Í

˘
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˙

f f
f f

11 12

21 22

.

Likewise, let zP t( )  denote the particular solution of the nonhomogeneous equation that satisfies the
initial condition z 0P ( )0 = .

We construct F( )t  and zP t( )  numerically, using ODE45 to solve the following initial value problems
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¢ = + =z z g z 0A t( ), ( )0 .      (9c)
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Finally, imposing the boundary condition on the general solution z c z( ) ( ) ( )t t tP= +F , determines the
vector c as the solution of

[ ( )] ( )P P P P1 2 22 2+ = -F c zaa .      (9d)

Having c we can evaluate the solution

z c z( ) ( ) ( )t t tP= +F      (9e)

at the points tk  returned by ODE45. As evaluation points for ODE45, we chose 201 points equally
spaced in 0 2£ £t ; that is, the evaluation points had a spacing of Dt = 0 01. .

We implemented these ideas in a script, bvpexample2.m. In general, there are many different ways to
code a particular solution procedure. In this case, since the procedure is somewhat complicated, we
have opted for clarity rather than trying for the most efficient program. In particular, our script
translates as literally as possible the five steps listed in equations (9a) - (9e). The system designated
'sys1' in the script represents the system in equations (9a) and (9b). The system designated
'sys2' represents equation (9c). The matrix denoted PHI2 in the tenth statement is the matrix
F( )2  in equation (9d). The matrix denoted PHI in the seventeenth statement is the matrix F( )t  in
equation (9e).

%  This script, bvpexample2, solves the two-point
%   boundary value problem (8), using equations
%  (9a)(9c).
%
tspan = 0:.01:2;
y0 = [1,0]';
[t,phi1] = ode45('sys1',tspan,y0);
y0 = [0,1]';
[t,phi2] = ode45('sys1',tspan,y0);
y0 = [0,0]';
[t,z] = ode45('sys2',tspan,y0);
p1 = [1 1;0 0];
p2 = [0 0;1 -2];
PHI2 = [phi1(201,:)',phi2(201,:)'];
M = p1+p2*PHI2;
alpha = [2,0]';
c = inv(M)*(alpha-p2*z(201,:)');
soln = zeros(2,201);

for k = 1:201
   A = [0 1;t(k)^2 0];
   PHI = [phi1(k,:)',phi2(k,:)'];
   soln(:,k) = PHI*c+z(k,:)';

end
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plot(t,soln(1,:),t,soln(2,:),':')
title('solution is solid, derivative is dotted')
xlabel('t')
ylabel('solution and derivative')

The graph of the resulting solution is displayed below.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-4

-2

0

2

4

6

8

The two-point boundary value problem (8) can also be solved using the shooting method described in
Exercises 29-30 in Section 13.1. As is described in Exercises 29-30, we begin by constructing
numerical solutions for the following two initial value problems:

¢¢- = = ¢ = -y t y y yc c c c
2 0 0 1 0 1, ( ) , ( ) (10a)

¢¢ - = = ¢ =-y t y e y yp p
t

p p
2 0 1 0 1, ( ) , ( ) .    (10b)

In the notation of Exercise 29, c c0 11 2 1 2= - =/ /and . In particular, the initial conditions have been
chosen so that the solution of the homogeneous differential equation (10a) satisfies the homogeneous
boundary condition

y yc c( ) ( )0 0 0+ ¢ =

while the solution of the nonhomogeneous differential equation (10b) satisfies the given boundary
condition of (8),

y yp p( ) ( )0 0 2+ ¢ = .

The function y t sy t y tc p( ) ( ) ( )= +  is a solution of the nonhomogeneous differential equation in (8) that

likewise satisfies the given boundary condition at t = 0 for all choices of the shooting parameter s.
Therefore, we solve problems (10a)-(10b) and then impose the boundary condition at t = 2 in order to
determine s:

s
y y

y y
p p

c c

= -
- ¢
- ¢

( ) ( )

( ) ( )

2 2 2

2 2 2
.
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Note that the Fredholm alternative theorem guarantees that the denominator of the above quotient is
nonzero. The MATLAB code needed to implement the shooting method is similar to the earlier
program bvpexample2.m, except that it is substantially shorter. The graphical results are identical and
we do not include them. The system designated 'sysh' in the script represents the homogeneous
system in equation (10a). The system designated 'sysnh' represents the nonhomogeneous system
in equation (10b).

%
%  This script, shooting.m, solves the two-point
%   boundary value problem (8) using the shooting
%  method.
%
tspan = 0:.01:2;
y0 = [1,-1]';
[t,yc] = ode45('sysh',tspan,y0);
y0 = [1,1]';
[t,yp] = ode45('sysnh',tspan,y0);
s = -(yp(201,1)-2*yp(201,2))/(yc(201,1)-2*yc(201,2));
soln = zeros(2,201);

for k = 1:201
   soln(:,k) = s*yc(k,:)'+yp(k,:)';

end

plot(t,soln(1,:),t,soln(2,:),':')
title('solution is solid, derivative is dotted')
xlabel('t')
ylabel('solution and derivative')


