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3.1 SOLUTIONS 

Notes: Some exercises in this section provide practice in computing determinants, while others allow the 
student to discover the properties of determinants which will be studied in the next section. Determinants are 
developed through the cofactor expansion, which is given in Theorem 1. Exercises 33–36 in this section 
provide the first step in the inductive proof of Theorem 3 in the next section.  

 1. Expanding along the first row:  

  
3 0 4

3 2 2 2 2 3
2 3 2 3 0 4 3( 13) 4(10) 1

5 1 0 1 0 5
0 5 1

= − + = − + =
− −

−
  

  Expanding along the second column:  

  1 2 2 2 3 2
3 0 4

2 2 3 4 3 4
2 3 2 ( 1) 0 ( 1) 3 ( 1) 5 3( 3) 5( 2) 1

0 1 0 1 2 2
0 5 1

+ + += − ⋅ + − ⋅ + − ⋅ = − − − =
− −

−
 

 2. Expanding along the first row:  

  
0 5 1

3 0 4 0 4 3
4 3 0 0 5 1 5(4) 1(22) 2

4 1 2 1 2 4
2 4 1

− −
− = − + = − + =   

  Expanding along the second column:  

  1 2 2 2 3 2
0 5 1

4 0 0 1 0 1
4 3 0 ( 1) 5 ( 1) ( 3) ( 1) 4 5(4) 3( 2) 4( 4) 2

2 1 2 1 4 0
2 4 1

+ + +− = − ⋅ + − ⋅ − + − ⋅ = − − − − − =   

 3. Expanding along the first row:  

  
2 4 3

1 2 3 2 3 1
3 1 2 2 ( 4) 3 2( 9) 4( 5) (3)(11) 5

4 1 1 1 1 4
1 4 1

−
= − − + = − + − + = −

− −
−
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  Expanding along the second column:  

  1 2 2 2 3 2
2 4 3

3 2 2 3 2 3
3 1 2 ( 1) ( 4) ( 1) 1 ( 1) 4 4( 5) 1( 5) 4( 5) 5

1 1 1 1 3 2
1 4 1

+ + +
−

= − ⋅ − + − ⋅ + − ⋅ = − + − − − = −
− −

−
  

 4. Expanding along the first row:  

  
1 3 5

1 1 2 1 2 1
2 1 1 1 3 5 1( 2) 3(1) 5(5) 20

4 2 3 2 3 4
3 4 2

= − + = − − + =   

  Expanding along the second column:  

  1 2 2 2 3 2
1 3 5

2 1 1 5 1 5
2 1 1 ( 1) 3 ( 1) 1 ( 1) 4 3(1) 1( 13) 4( 9) 20

3 2 3 2 2 1
3 4 2

+ + += − ⋅ + − ⋅ + − ⋅ = − + − − − =   

 5. Expanding along the first row:  

  
2 3 4

0 5 4 5 4 0
4 0 5 2 3 ( 4) 2( 5) 3( 1) 4(4) 23

1 6 5 6 5 1
5 1 6

−
= − + − = − − − − = −   

 6. Expanding along the first row:  

  
5 2 4

3 5 0 5 0 3
0 3 5 5 ( 2) 4 5(1) 2(10) 4( 6) 1

4 7 2 7 2 4
2 4 7

−
− −

− = − − + = + + − =
− −

−
  

 7. Expanding along the first row:  

  
4 3 0

5 2 6 2 6 5
6 5 2 4 3 0 4(1) 3(0) 4

7 3 9 3 9 7
9 7 3

= − + = − =  

 8. Expanding along the first row: 

  
8 1 6

0 3 4 3 4 0
4 0 3 8 1 6 8(6) 1(11) 6( 8) 11

2 5 3 5 3 2
3 2 5

= − + = − + − = −
− −

−
  

 9. First expand along the third row, then expand along the first row of the remaining matrix:  

  3 1 1 3

6 0 0 5
0 0 5

1 7 2 5 7 2
( 1) 2 7 2 5 2 ( 1) 5 10(1) 10

2 0 0 0 3 1
3 1 8

8 3 1 8

+ +−
= − ⋅ − = ⋅ − ⋅ = =   
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 10. First expand along the second row, then expand along either the third row or the second column of the 
remaining matrix. 

  2 3

1 2 5 2
1 2 2

0 0 3 0
( 1) 3 2 6 5

2 6 7 5
5 0 4

5 0 4 4

+

−
−

= − ⋅ −
− −

 

  3 1 3 32 2 1 2
( 3) ( 1) 5 ( 1) 4 ( 3)(5(2) 4( 2)) 6

6 5 2 6
+ + − −

= − − ⋅ + − ⋅ = − + − = − − − 
 

  or 

  2 3

1 2 5 2
1 2 2

0 0 3 0
( 1) 3 2 6 5

2 6 7 5
5 0 4

5 0 4 4

+

−
−

= − ⋅ −
− −

 

  1 2 2 22 5 1 2
( 3) ( 1) ( 2) ( 1) ( 6)

5 4 5 4
+ + 

= − − ⋅ − + − ⋅ − 
 

 ( )( 3) 2( 17) 6( 6) 6= − − − − = −  

 11. There are many ways to do this determinant efficiently. One strategy is to always expand along the first 
column of each matrix:  

  1 1 1 1

3 5 8 4
2 3 7

0 2 3 7 1 5
( 1) 3 0 1 5 3 ( 1) ( 2)

0 0 1 5 0 2
0 0 2

0 0 0 2

+ +

−
− −

− −
= − ⋅ = ⋅ − ⋅ −  = 3(–2)(2) = –12 

 12. There are many ways to do this determinant efficiently. One strategy is to always expand along the first 
row of each matrix:  

  1 1 1 1

4 0 0 0
1 0 0

7 1 0 0 3 0
( 1) 4 6 3 0 4 ( 1) ( 1)

2 6 3 0 4 3
8 4 3

5 8 4 3

+ +
−

−
= − ⋅ = ⋅ − ⋅ −

−
− −

− −

 = 4(–1)( –9) = 36  

 13. First expand along either the second row or the second column. Using the second row,  

  2 3

4 0 7 3 5
4 0 3 5

0 0 2 0 0
7 3 4 8

( 1) 27 3 6 4 8
5 0 2 3

5 0 5 2 3
0 0 1 2

0 0 9 1 2

+

− −
−
−

= − ⋅− −
−

−
−

−

 

  Now expand along the second column to find:  

  2 3 2 2

4 0 3 5
4 3 5

7 3 4 8
( 1) 2 2 ( 1) 3 5 2 3

5 0 2 3
0 1 2

0 0 1 2

+ +

−
 −

−  − ⋅ = − − ⋅ − −  − −
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  Now expand along either the first column or third row. The first column is used below. 

  2 2
4 3 5

2 ( 1) 3 5 2 3
0 1 2

+
 −
 − − ⋅ − 
 − 

1 1 2 12 3 3 5
6 ( 1) 4 ( 1) 5 ( 6)(4(1) 5(1)) 6

1 2 1 2
+ + − −

= − − ⋅ + − ⋅ = − − = − − 
  

 14. First expand along either the fourth row or the fifth column. Using the fifth column,  

  3 5

6 3 2 4 0
6 3 2 4

9 0 4 1 0
9 0 4 1

( 1) 18 5 6 7 1
3 0 0 0

3 0 0 0 0
4 2 3 2

4 2 3 2 0

+
−

−
= − ⋅−  

  Now expand along the third row to find:  

  3 5 3 1

6 3 2 4
3 2 4

9 0 4 1
( 1) 1 1 ( 1) 3 0 4 1

3 0 0 0
2 3 2

4 2 3 2

+ +
 

−  − ⋅ = − ⋅ − 
 
 

 

  Now expand along either the first column or second row. The first column is used below. 

  3 1
3 2 4

1 ( 1) 3 0 4 1
2 3 2

+
 
 − ⋅ − 
 
 

1 1 3 14 1 2 4
3 ( 1) 3 ( 1) 2 (3)(3( 11) 2(18)) 9

3 2 4 1
+ + −

= − ⋅ + − ⋅ = − + = − 
 

 15. 
3 0 4
2 3 2
0 5 1

=
−

 (3)(3)(–1) + (0)(2)(0) + (4)(2)(5) – (0)(3)(4) – (5)(2)(3) – (–1)(2)(0) =  

   –9 + 0 + 40 – 0 – 30 –0 = 1 

 16. 
0 5 1
4 3 0
2 4 1

− =  (0)(–3)(1) + (5)(0)(2) + (1)(4)(4) – (2)(–3)(1) – (4)(0)(0) – (1)(4)(5) =  

   0 + 0 + 16 – (–6) – 0 – 20 = 2 

 17. 
2 4 3
3 1 2
1 4 1

−
=

−
 (2)(1)(–1) + (–4)(2)(1) + (3)(3)(4) – (1)(1)(3) – (4)(2)(2) – (–1)(3)(–4) =  

   –2 + (–8) + 36 – 3 – 16 – 12 = –5 

 18. 
1 3 5
2 1 1
3 4 2

=  (1)(1)(2) + (3)(1)(3) + (5)(2)(4) – (3)(1)(5) – (4)(1)(1) – (2)(2)(3) =  

   2 + 9 + 40 – 15 – 4 – 12 = 20 
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 19. ,
a b

ad bc
c d

= −  ( )
c d

cb da ad bc
a b

= − = − −  

  The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed. 

 20. ,
a b

ad bc
c d

= −  ( ) ( ) ( )
a b

a kd kc b kad kbc k ad bc
kc kd

= − = − = −  

  The row operation scales row 2 by k, and the determinant is multiplied by k. 

 21. 
3 4

18 20 2,
5 6

= − = −  
3 4

3(6 4 ) (5 3 )4 2
5 3 6 4

k k
k k

= + − + = −
+ +

 

  The row operation replaces row 2 with k times row 1 plus row 2, and the determinant is unchanged. 

 22. ,
a b

ad bc
c d

= −  ( ) ( )
a kc b kd

a kc d c b kd ad kcd bc kcd ad bc
c d
+ +

= + − + = + − − = −  

  The row operation replaces row 1 with k times row 2 plus row 1, and the determinant is unchanged. 

 23. 
1 1 1
3 8 4 1(4) 1(2) 1( 7) 5,
2 3 2

− − = − + − = −
−

 3 8 4 (4) (2) ( 7) 5
2 3 2

k k k
k k k k− − = − + − = −

−
 

  The row operation scales row 1 by k, and the determinant is multiplied by k. 

 24. 3 2 2 (2) (6) (3) 2 6 3 ,
6 5 6

a b c
a b c a b c= − + = − +  

  
3 2 2

3(6 5 ) 2(6 6 ) 2(5 6 ) 2 6 3
6 5 6
a b c b c a c a b a b c= − − − + − = − + −  

  The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed. 

 25. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
1 0 0
0 1 0 (1)(1)(1) 1
0 1k

= =  

 26. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
1 0 0
0 1 0 (1)(1)(1) 1

0 1k
= =  

 27. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
0 0

0 1 0 ( )(1)(1)
0 0 1

k
k k= =  
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 28. Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:  

  
1 0 0
0 0 (1)( )(1)
0 0 1

k k k= =  

 29. A cofactor expansion along row 1 gives 

  
0 1 0

1 0
1 0 0 1 1

0 1
0 0 1

= − = −  

 30. A cofactor expansion along row 1 gives 

  
0 0 1

0 1
0 1 0 1 1

1 0
1 0 0

= = −  

 31. A 3 × 3 elementary row replacement matrix looks like one of the six matrices  

  
1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0

1 0 , 0 1 0 , 0 1 0 , 0 1 k , 0 1 0 , 0 1 0
0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1

k k
k

k k

           
           
           
                      

 

  In each of these cases, the matrix is triangular and its determinant is the product of its diagonal entries, 
which is 1. Thus the determinant of a 3 × 3 elementary row replacement matrix is 1. 

 32. A 3 × 3 elementary scaling matrix with k on the diagonal looks like one of the three matrices  

   
0 0 1 0 0 1 0 0

0 1 0 , 0 0 , 0 1 0
0 0 1 0 0 1 0 0

k
k

k

     
     
     
          

 

  In each of these cases, the matrix is triangular and its determinant is the product of its diagonal entries, 
which is k. Thus the determinant of a 3 × 3 elementary scaling matrix with k on the diagonal is k. 

 33. 
0 1

,
1 0

E
 

=  
 

,
a b

A
c d
 

=  
 

c d
EA

a b
 

=  
 

 

  det E = –1, det A = ad – bc,  
det EA = cb – da = –1(ad – bc) = (det E)(det A) 

 34. 
1 0

,
0

E
k

 
=  
 

,
a b

A
c d
 

=  
 

a b
EA

kc kd
 

=  
 

 

  det E = k, det A = ad – bc,  
det EA = a(kd) – (kc)b = k(ad – bc) = (det E)(det A) 

 35. 
1

,
0 1

k
E

 
=  
 

,
a b

A
c d
 

=  
 

a kc b kd
EA

c d
+ + 

=  
 

 

  det E = 1, det A = ad – bc,  
det EA = (a + kc)d – c(b + kd) = ad + kcd – bc – kcd = 1(ad – bc) = (det E)(det A) 
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 36. 
1 0

,
1

E
k
 

=  
 

,
a b

A
c d
 

=  
 

a b
EA

ka c kb d
 

=  + + 
 

  det E = 1, det A = ad – bc,  
det EA = a(kb + d) – (ka + c)b = kab + ad – kab – bc = 1(ad – bc) = (det E)(det A) 

 37. 
3 1

,
4 2

A
 

=  
 

 
15 5

5 ,
20 10

A
 

=  
 

 det A = 2, det 5A = 50 ≠ 5det A 

 38. ,
a b

A
c d
 

=  
 

 ,
ka kb

kA
kc kd
 

=  
 

 det A = ad – bc,  

2 2det ( )( ) ( )( ) ( ) detkA ka kd kb kc k ad bc k A= − = − =  

 39. a. True. See the paragraph preceding the definition of the determinant. 
 b. False. See the definition of cofactor, which precedes Theorem 1. 

 40. a. False. See Theorem 1. 
 b. False. See Theorem 2. 

 41. The area of the parallelogram determined by 
3

,
0
 

=  
 

u  
1

,
2
 

=  
 

v  u + v, and 0 is 6, since the base of the 

parallelogram has length 3 and the height of the parallelogram is 2. By the same reasoning, the area of 

the parallelogram determined by 
3

,
0
 

=  
 

u  ,
2
x 

=  
 

x  u + x, and 0 is also 6. 

X

V

U U

X2

X2

X1 X1

2

1 2

1

1 12 24
 

  Also note that [ ] 3 1
det det 6,

0 2
 

= = 
 

u v  and [ ] 3
det det 6.

0 2
x 

= = 
 

u x  The determinant of the 

matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0 is equal 
to the area of the parallelogram. 

 42. The area of the parallelogram determined by 
a
b
 

=  
 

u , 
0
c 

=  
 

v , u + v, and 0 is cb, since the base of the 

parallelogram has length c and the height of the parallelogram is b. 

X2

a

b

c
X1

U

V
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  Also note that [ ]det det
0

a c
cb

b
 

= = − 
 

u v , and [ ]det det .
0
c a

cb
b

 
= = 

 
v u  The determinant of the 

matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0 either 
is equal to the area of the parallelogram or is equal to the negative of the area of the parallelogram. 

 43. [M] Answers will vary. The conclusion should be that det (A + B) ≠ det A + det B. 

 44. [M] Answers will vary. The conclusion should be that det (AB) = (det A)(det B). 

 45. [M] Answers will vary. For 4 × 4 matrices, the conclusions should be that det det ,TA A=  det(–A) =  

det A, det(2A) = 16det A, and 4det (10 ) 10 detA A= . For 5 × 5 matrices, the conclusions should be that 
det det ,TA A=  det(–A) = –det A, det(2A) = 32det A, and 5det (10 ) 10 det .A A=  For 6 × 6 matrices, the 
conclusions should be that det detTA A= , det(–A) = det A, det(2A) = 64det A, and 6det (10 ) 10 det .A A=  

 46. [M] Answers will vary. The conclusion should be that 1det 1/ det .A A− =  

3.2 SOLUTIONS 

Notes: This section presents the main properties of the determinant, including the effects of row operations 
on the determinant of a matrix. These properties are first studied by examples in Exercises 1–20. The 
properties are treated in a more theoretical manner in later exercises. An efficient method for computing the 
determinant using row reduction and selective cofactor expansion is presented in this section and used in 
Exercises 11–14. Theorems 4 and 6 are used extensively in Chapter 5. The linearity property of the 
determinant studied in the text is optional, but is used in more advanced courses. 

 1. Rows 1 and 2 are interchanged, so the determinant changes sign (Theorem 3b.). 

 2. The constant 2 may be factored out of the Row 1 (Theorem 3c.). 

 3. The row replacement operation does not change the determinant (Theorem 3a.). 

 4. The row replacement operation does not change the determinant (Theorem 3a.). 

 5. 
1 5 6 1 5 6 1 5 6
1 4 4 0 1 2 0 1 2 3
2 7 9 0 3 3 0 0 3

− − −
− − = − = − =
− − −

 

 6. 
1 5 3 1 5 3 1 5 3 1 5 3
3 3 3 0 18 12 6 0 3 2 6 0 3 2 (6)( 3) 18
2 13 7 0 3 1 0 3 1 0 0 1

− − − −
− = − = − = − = − = −

− − −
 

 7. 

1 3 0 2 1 3 0 2 1 3 0 2 1 3 0 2
2 5 7 4 0 1 7 8 0 1 7 8 0 1 7 8

0
3 5 2 1 0 4 2 5 0 0 30 27 0 0 30 27
1 1 2 3 0 4 2 5 0 0 30 27 0 0 0 0

− −
= = = =

− −
− − − −
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 8. 

1 3 3 4 1 3 3 4 1 3 3 4
0 1 2 5 0 1 2 5 0 1 2 5

0
2 5 4 3 0 1 2 5 0 0 0 0
3 7 5 2 0 2 4 10 0 0 0 0

− − −
− − −

= = =
− − −

− − − −

 

 9. 

1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0
0 1 5 4 0 1 5 4 0 1 5 4 0 1 5 4

( 3) 3
1 2 8 5 0 1 5 5 0 0 0 1 0 0 3 5
3 1 2 3 0 2 7 3 0 0 3 5 0 0 0 1

− − − − − − − −

= = = − = − − =
− − −

− − − −

 

 10. 

1 3 1 0 2 1 3 1 0 2 1 3 1 0 2
0 2 4 1 6 0 2 4 1 6 0 2 4 1 6
2 6 2 3 9 0 0 0 3 5 0 0 0 3 5
3 7 3 8 7 0 2 0 8 1 0 0 4 7 7
3 5 5 2 7 0 4 8 2 13 0 0 0 0 1

− − − − − −
− − − − − − − − −

= = =− −
− − − − − −

−

 

   

1 3 1 0 2
0 2 4 1 6

( 24) 240 0 4 7 7
0 0 0 3 5
0 0 0 0 1

− −
− − −

− = − − =− −  

 11. First use a row replacement to create zeros in the second column, and then expand down the second 
column: 

  

2 5 3 1 2 5 3 1
3 1 3

3 0 1 3 3 0 1 3
5 6 4 9

6 0 4 9 6 0 4 9
0 2 1

4 10 4 1 0 0 2 1

− − − −
−

− −
= = − − −

− − − −
− −

 

  Now use a row replacement to create zeros in the first column, and then expand down the first column:  

  
3 1 3 3 1 3

2 3
5 6 4 9 5 0 2 3 ( 5)(3) ( 5)(3)( 8) 120

2 1
0 2 1 0 2 1

− −
−

− − − = − − = − = − − =  

 12. First use a row replacement to create zeros in the fourth column, and then expand down the fourth 
column: 

  

1 2 3 0 1 2 3 0
1 2 3

3 4 3 0 3 4 3 0
3 3 4 3

5 4 6 6 3 0 2 0
3 0 2

4 2 4 3 4 2 4 3

− −
−

= =
− −

− −
 

  Now use a row replacement to create zeros in the first column, and then expand down the first column: 
1 2 3 1 2 3

10 12
3 3 4 3 3 0 10 12 3( 1) 3( 1)( 38) 114

6 11
3 0 2 0 6 11

− −
= = − = − − =

− −
− − − −
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 13. First use a row replacement to create zeros in the fourth column, and then expand down the fourth 
column: 

  

2 5 4 1 2 5 4 1
0 3 2

4 7 6 2 0 3 2 0
1 6 2 4

6 2 4 0 6 2 4 0
6 7 7

6 7 7 0 6 7 7 0

− −
− −

= = − − −
− − − −

−
− −

 

  Now use a row replacement to create zeros in the first column, and then expand down the first column: 
0 3 2 0 3 2

3 2
1 6 2 4 1 6 2 4 ( 1)( 6) ( 1)( 6)(1) 6

5 3
6 7 7 0 5 3

− − − −
− −

− − − = − − − = − − = − − =
−

  

 14. First use a row replacement to create zeros in the third column, and then expand down the third column:  

  

3 2 1 4 3 2 1 4
1 3 3

1 3 0 3 1 3 0 3
1 9 0 0

3 4 2 8 9 0 0 0
3 4 4

3 4 0 4 3 4 0 4

− − − − − −
−

− −
= = −

− − −
−

− −

 

  Now expand along the second row:  

  
1 3 3

3 3
1 9 0 0 1( ( 9)) (1)(9)(0) 0

4 4
3 4 4

−
−

− = − − = =
−

−
  

 15. 5 5(7) 35
5 5 5

a b c a b c
d e f d e f
g h i g h i

= = =  

 16. 3 3 3 3 3(7) 21
a b c a b c
d e f d e f
g h i g h i

= = =  

 17. 7
a b c a b c
g h i d e f
d e f g h i

= − = −   

 18. ( 7) 7
g h i a b c a b c
a b c g h i d e f
d e f d e f g h i

 
 = − = − − = − − = 
 
 

  

 19. 2 2 2 2 2 2 2 2(7) 14
a b c a b c a b c

d a e b f c d e f d e f
g h i g h i g h i
+ + + = = = =  
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 20. 7
a d b e c f a b c

d e f d e f
g h i g h i

+ + +
= =  

 21. Since 
2 3 0
1 3 4 1 0
1 2 1

= − ≠ , the matrix is invertible. 

 22. Since 
5 0 1
1 3 2 0
0 5 3

−
− − = , the matrix is not invertible. 

 23. Since 

2 0 0 8
1 7 5 0

0
3 8 6 0
0 7 5 4

− −
= , the matrix is not invertible. 

 24. Since 
4 7 3
6 0 5 11 0
7 2 6

− −
− = ≠

−
, the columns of the matrix form a linearly independent set. 

 25. Since 
7 8 7
4 5 0 1 0
6 7 5

−
− = − ≠
− −

, the columns of the matrix form a linearly independent set. 

 26. Since 

3 2 2 0
5 6 1 0

0
6 0 3 0
4 7 0 3

−
− −

=
−

−

, the columns of the matrix form a linearly dependent set. 

 27. a. True. See Theorem 3. 
 b. True. See the paragraph following Example 2. 
 c. True. See the paragraph following Theorem 4. 
 d. False. See the warning following Example 5. 

 28. a. True. See Theorem 3. 
 b. False. See the paragraphs following Example 2. 
 c. False. See Example 3. 
 d. False. See Theorem 5. 

 29. By Theorem 6, 5 5 5det (det ) ( 2) 32B B= = − = − . 

 30. Suppose the two rows of a square matrix A are equal. By swapping these two rows, the matrix A is not 
changed so its determinant should not change. But since swapping rows changes the sign of the 
determinant, det A = – det A. This is only possible if det A = 0. The same may be proven true for columns 
by applying the above result to TA  and using Theorem 5. 
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 31. By Theorem 6, 1(det )(det ) det 1A A I− = = , so 1det 1/ det .A A− =  

 32. By factoring an r out of each of the n rows, det ( ) det .nrA r A=  

 33. By Theorem 6, det AB = (det A)(det B) = (det B)(det A) = det BA. 

 34. By Theorem 6 and Exercise 31,  

   1 1 1det ( ) (det )(det )(det ) (det )(det )(det )PAP P A P P P A− − −= =  

   1(det ) (det ) 1det
det

P A A
P

 
= = 

 
 

   det A=  

 35. By Theorem 6 and Theorem 5, 2det (det )(det ) (det ) .T TU U U U U= =  Since ,TU U I=  

det det 1TU U I= = , so 2(det ) 1.U =  Thus det U = ±1. 

 36. By Theorem 6 4 4det (det )A A= . Since 4det 0A = , then 4(det ) 0A = . Thus det A = 0, and A is not 
invertible by Theorem 4. 

 37. One may compute using Theorem 2 that det A = 3 and det B = 8, while 
6 0

17 4
AB

 
=  
 

. Thus  

det AB = 24 = 3 × 8 = (det A)(det B). 

 38. One may compute that det A = 0 and det B = –2, while 
6 0
2 0

AB
 

=  − 
. Thus det AB = 0 =  

0 × –2 = (det A)(det B). 

 39. a. By Theorem 6, det AB = (det A)(det B) = 4 × –3 = –12. 

 b. By Exercise 32, 3det 5 5 det 125 4 500A A= = × = . 

 c. By Theorem 5, det det 3TB B= = − . 

 d. By Exercise 31, 1det 1/ det 1/ 4A A− = = . 

 e. By Theorem 6, 3 3 3det (det ) 4 64A A= = = . 

 40. a. By Theorem 6, det AB = (det A)(det B) = –1 × 2 = –2. 

 b. By Theorem 6, 5 5 5det (det ) 2 32B B= = = . 

 c. By Exercise 32, 4det 2 2 det 16 1 16A A= = × − = − . 

 d. By Theorems 5 and 6, det (det )(det ) (det )(det ) 1 1 1T TA A A A A A= = = − × − = . 

 e. By Theorem 6 and Exercise 31,  
1 1det (det )(det )(det ) (1/ det )(det )(det ) det 1B AB B A B B A B A− −= = = = − . 

 41. det A = (a + e)d – c(b + f) = ad + ed – bc – cf = (ad – bc) + (ed – cf) = det B + det C. 

 42. 
1

det ( ) (1 )(1 ) 1 det det
1

a b
A B a d cb a d ad cb A a d B

c d
+

+ = = + + − = + + + − = + + +
+

, so  

det (A + B) = det A + det B if and only if a + d = 0. 
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 43. Compute det A by using a cofactor expansion down the third column:  
   1 1 13 2 2 23 3 3 33det ( )det ( )det ( )detA u v A u v A u v A= + − + + +  

   1 13 2 23 3 33 1 13 2 23 3 33det det det det det detu A u A u A v A v A v A= − + + − +  

   det detB C= +  

 44. By Theorem 5, det det ( ) .TAE AE=  Since ( )T T TAE E A= , det det( ).T TAE E A=  Now TE  is itself an 
elementary matrix, so by the proof of Theorem 3, det ( ) (det )(det ).T T T TE A E A=  Thus it is true that 
det (det )(det ),T TAE E A=  and by applying Theorem 5, det AE = (det E)(det A). 

 45. [M] Answers will vary, but will show that det TA A  always equals 0 while det TAA  should seldom be 
zero. To see why TA A  should not be invertible (and thus det 0TA A = ), let A be a matrix with more 
columns than rows. Then the columns of A must be linearly dependent, so the equation Ax = 0 must have 
a non-trivial solution x. Thus ( ) ( ) ,T T TA A A A A= = =x x 0 0  and the equation ( )TA A =x 0  has a  
non-trivial solution. Since TA A  is a square matrix, the Invertible Matrix Theorem now says that TA A  is 
not invertible. Notice that the same argument will not work in general for ,TAA  since TA  has more rows 
than columns, so its columns are not automatically linearly dependent. 

 46. [M] One may compute for this matrix that det A = 1 and cond A ≈ 23683. Note that this is the 2A  
condition number, which is used in Section 2.3. Since det A ≠ 0, it is invertible and  

   1

19 14 0 7
549 401 2 196
267 195 1 95
278 203 1 99

A−

− − 
 − − − =
 −
 − − −  

 

  The determinant is very sensitive to scaling, as 4det10 10 det 10,000A A= =  and det 0.1A =  
4(0.1) det 0.0001.A =  The condition number is not changed at all by scaling: cond(10A) =  

cond(0.1A) = condA ≈ 23683. 
  When 4A I= , det A=1 and cond A = 1. As before the determinant is sensitive to scaling: 

4det10 10 det 10,000A A= =  and 4det 0.1 (0.1) det 0.0001.A A= =  Yet the condition number is not 
changed by scaling: cond(10A) = cond(0.1A) = cond A = 1. 

3.3 SOLUTIONS 

Notes: This section features several independent topics from which to choose. The geometric interpretation 
of the determinant (Theorem 10) provides the key to changes of variables in multiple integrals. Students of 
economics and engineering are likely to need Cramer’s Rule in later courses. Exercises 1–10 concern 
Cramer’s Rule, exercises 11–18 deal with the adjugate, and exercises 19–32 cover the geometric 
interpretation of the determinant. In particular, Exercise 25 examines students’ understanding of linear 
independence and requires a careful explanation, which is discussed in the Study Guide. The Study Guide also 
contains a heuristic proof of Theorem 9 for 2 × 2 matrices. 
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 1. The system is equivalent to Ax = b, where 
5 7
2 4

A
 

=  
 

 and 
3
1
 

=  
 

b . We compute  

1 2 1 2
3 7 5 3

( ) , ( ) , det 6, det ( ) 5, det ( ) 1,
1 4 2 1

A A A A A
   

= = = = = −   
   

b b b b   

1 2
1 2

det ( ) det ( )5 1, .
det 6 det 6

A Ax x
A A

= = = = −b b  

 2. The system is equivalent to Ax = b, where 
4 1
5 2

A
 

=  
 

 and 
6
7
 

=  
 

b . We compute  

1 2 1 2
6 1 4 6

( ) , ( ) , det 3, det ( ) 5, det ( ) 2,
7 2 5 7

A A A A A
   

= = = = = −   
   

b b b b   

1 2
1 2

det ( ) det ( )5 2, .
det 3 det 3

A Ax x
A A

= = = = −b b  

 3. The system is equivalent to Ax = b, where 
3 2
5 6

A
− 

=  − 
 and 

7
5

 
=  − 

b . We compute  

1 2 1 2
7 2 3 7

( ) , ( ) , det 8, det ( ) 32, det ( ) 20,
5 6 5 5

A A A A A
−   

= = = = =   − − −   
b b b b   

1 2
1 2

det ( ) det ( )32 20 54, .
det 8 det 8 2

A Ax x
A A

= = = = = =b b  

 4. The system is equivalent to Ax = b, where 
5 3
3 1

A
− 

=  − 
 and 

9
5

 
=  − 

b . We compute  

1 2 1 2
9 3 5 9

( ) , ( ) , det 4, det ( ) 6, det ( ) 2,
5 1 3 5

A A A A A
−   

= = = − = = −   − − −   
b b b b   

1 2
1 2

det ( ) det ( )6 3 2 1, .
det 4 2 det 4 2

A Ax x
A A

−= = = − = = =
− −

b b  

 5. The system is equivalent to Ax = b, where 
2 1 0
3 0 1
0 1 2

A
 
 = − 
  

 and 
7
8
3

 
 = − 
 − 

b . We compute  

1 2 3

7 1 0 2 7 0 2 1 7
( ) 8 0 1 , ( ) 3 8 1 , ( ) 3 0 8 ,

3 1 2 0 3 2 0 1 3
A A A

     
     = − = − − = − −     
     − − −     

b b b   

  1 2 3det 4,det ( ) 6,det ( ) 16,det ( ) 14,A A A A= = = = −b b b   

  31 2
1 2 3

det ( )det ( ) det ( )6 3 16 14 7, 4, .
det 4 2 det 4 det 4 2

AA Ax x x
A A A

−= = = = = = = = = −bb b  
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 6. The system is equivalent to Ax = b, where 
2 1 1
1 0 2
3 1 3

A
 
 = − 
  

 and 
4
2
2

 
 =  
 − 

b . We compute  

1 2 3

4 1 1 2 4 1 2 1 4
( ) 2 0 2 , ( ) 1 2 2 , ( ) 1 0 2 ,

2 1 3 3 2 3 3 1 2
A A A

     
     = = − = −     
     − − −     

b b b  

  1 2 3det 4, det ( ) 16, det ( ) 52, det ( ) 4,A A A A= = − = = −b b b   

  31 2
1 2 3

det ( )det ( ) det ( )16 52 44, 13, 1.
det 4 det 4 det 4

AA Ax x x
A A A

− −= = = − = = = = = = −bb b  

 7. The system is equivalent to Ax = b, where 
6 4
9 2
s

A
s

 
=  
 

 and 
5
2

 
=  − 

b . We compute  

1 2 1 2
5 4 6 5

( ) , ( ) , det ( ) 10 8, det ( ) 12 45.
2 2 9 2

s
A A A s A s

s
   

= = = + = − −   − −   
b b b b   

Since 2 2det 12 36 12( 3) 0A s s= − = − ≠  for 3s ≠ ± , the system will have a unique solution when 
3s ≠ ± . For such a system, the solution will be  

1 2
1 22 2 2 2

det ( ) det ( )10 8 5 4 12 45 4 15, .
det det12( 3) 6( 3) 12( 3) 4( 3)

A As s s sx x
A As s s s

+ + − − − −= = = = = =
− − − −

b b  

 8. The system is equivalent to Ax = b, where 
3 5
9 5
s

A
s

− 
=  
 

 and 
3
2
 

=  
 

b . We compute  

1 2 1 2
3 5 3 3

( ) , ( ) , det ( ) 15 10, det ( ) 6 27.
2 5 9 2

s
A A A s A s

s
−   

= = = + = −   
   

b b b b   

Since 2 2det 15 45 15( 3) 0A s s= + = + ≠  for all values of s, the system will have a unique solution for all 
values of s. For such a system, the solution will be  

1 2
1 22 2 2 2

det ( ) det ( )15 10 3 2 6 27 2 9, .
det det15( 3) 3( 3) 15( 3) 5( 3)

A As s s sx x
A As s s s

+ + − −= = = = = =
+ + + +

b b  

 9. The system is equivalent to Ax = b, where 
2

3 6
s s

A
s

− 
=  
 

 and 
1
4

− 
=  
 

b . We compute  

1 2 1 2
1 2 1

( ) , ( ) , det ( ) 2 , det ( ) 4 3.
4 6 3 4

s s
A A A s A s

s
− − −   

= = = = +   
   

b b b b   

Since 2det 6 6 6 ( 1) 0A s s s s= + = + =  for s = 0, –1, the system will have a unique solution when s ≠ 0, –1. 
For such a system, the solution will be  

1 2
1 2

det ( ) det ( )2 1 4 3, .
det 6 ( 1) 3( 1) det 6 ( 1)

A As sx x
A s s s A s s

+= = = = =
+ + +

b b  

 10. The system is equivalent to Ax = b, where 
2 1
3 6
s

A
s s

 
=  
 

 and 
1
2
 

=  
 

b . We compute  

1 2 1 2
1 1 2 1

( ) , ( ) , det ( ) 6 2, det ( ) .
2 6 3 2

s
A A A s A s

s s
   

= = = − =   
   

b b b b   
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Since 2det 12 3 3 (4 1) 0A s s s s= − = − =  for s = 0,1/4, the system will have a unique solution when  
s ≠ 0,1/4. For such a system, the solution will be  

1 2
1 2

det ( ) det ( )6 2 1, .
det 3 (4 1) det 3 (4 1) 3(4 1)

A As sx x
A s s A s s s

−= = = = =
− − −

b b  

 11. Since det A = 3 and the cofactors of the given matrix are  

   11
0 0

0,
1 1

C = =  12
3 0

3,
1 1

C = − = −
−

 13
3 0

3,
1 1

C = =
−

 

   21
2 1

1,
1 1

C
− −

= − =  22
0 1

1,
1 1

C
−

= = −
−

 23
0 2

2,
1 1

C
−

= − =
−

 

   31
2 1

0,
0 0

C
− −

= =  32
0 1

3,
3 0

C
−

= − = −  33
0 2

6,
3 0

C
−

= =  

  
0 1 0

adj 3 1 3
3 2 6

A
 
 = − − − 
  

 and 1
0 1/ 3 0

1 adj 1 1/ 3 1 .
det

1 2 / 3 2
A A

A
−

 
 = = − − − 
  

 

 12. Since det A = 5 and the cofactors of the given matrix are  

   11
2 1

1,
1 0

C
−

= = −  12
2 1

0,
0 0

C = − =  13
2 2

2,
0 1

C
−

= =  

   21
1 3

3,
1 0

C = − =  22
1 3

0,
0 0

C = =  23
1 1

1,
0 1

C = − = −  

   31
1 3

7,
2 1

C = =
−

 32
1 3

5,
2 1

C = − =  33
1 1

4,
2 2

C = = −
−

 

  
1 3 7

adj 0 0 5
2 1 4

A
− 
 =  
 − − 

 and 1
1/ 5 3/ 5 7 / 5

1 adj 0 0 1 .
det

2 / 5 1/ 5 4 / 5
A A

A
−

− 
 = =  
 − − 

 

 13. Since det A = 6 and the cofactors of the given matrix are  

   11
0 1

1,
1 1

C = = −  12
1 1

1,
2 1

C = − =  13
1 0

1,
2 1

C = =  

   21
5 4

1,
1 1

C = − = −  22
3 4

5,
2 1

C = = −  23
3 5

7,
2 1

C = − =  

   31
5 4

5,
0 1

C = =  32
3 4

1,
1 1

C = − =  33
3 5

5,
1 0

C = = −  

  
1 1 5

adj 1 5 1
1 7 5

A
− − 
 = − 
 − 

 and 1
1/ 6 1/ 6 5/ 6

1 adj 1/ 6 5/ 6 1/ 6 .
det

1/ 6 7 / 6 5/ 6
A A

A
−

− − 
 = = − 
 − 
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 14. Since det A = –1 and the cofactors of the given matrix are  

   11
2 1

5,
3 4

C = =  12
0 1

2,
2 4

C = − =  13
0 2

4,
2 3

C = = −  

   21
6 7

3,
3 3

C = − = −  22
3 7

2,
2 4

C = = −  23
3 6

3,
2 3

C = − =  

   31
6 7

8,
2 1

C = = −  32
3 7

3,
0 1

C = − = −  33
3 6

6,
0 2

C = =  

  
5 3 8

adj 2 2 3
4 3 6

A
− − 

 = − − 
 − 

 and 1
5 3 8

1 adj 2 2 3 .
det

4 3 6
A A

A
−

− 
 = = − 
 − − 

 

 15. Since det A = 6 and the cofactors of the given matrix are  

   11
1 0

2,
3 2

C = =  12
1 0

2,
2 2

C
−

= − =
−

 13
1 1

1,
2 3

C
−

= = −
−

 

   21
0 0

0,
3 2

C = − =  22
3 0

6,
2 2

C = =
−

 23
3 0

9,
2 3

C = − = −
−

 

   31
0 0

0,
1 0

C = =  31
0 0

0,
1 0

C = =  33
3 0

3,
1 1

C = =
−

 

  
2 0 0

adj 2 6 0
1 9 3

A
 
 =  
 − − 

 and 1
1/ 3 0 0

1 adj 1/ 3 1 0 .
det

1/ 6 3/ 2 1/ 2
A A

A
−

 
 = =  
 − − 

 

 16. Since det A = –9 and the cofactors of the given matrix are  

   11
3 1

9,
0 3

C
−

= = −  12
0 1

0,
0 3

C = − =  13
0 3

0,
0 0

C
−

= =  

   21
2 4

6,
0 3

C = − = −  22
1 4

3,
0 3

C = =  23
1 2

0,
0 0

C = − =  

   31
2 4

14,
3 1

C = =
−

 32
1 4

1,
0 1

C = − = −  33
1 2

3,
0 3

C = = −
−

 

  
9 6 14

adj 0 3 1
0 0 3

A
− − 
 = − 
 − 

 and 1
1 2 / 3 14 / 9

1 adj 0 1/ 3 1/ 9 .
det

0 0 1/ 3
A A

A
−

− 
 = = − 
  

 

 17. Let 
a b

A
c d
 

=  
 

. Then the cofactors of A are 11 ,C d d= =  12 ,C c c= − = −   

21C b b= − = − , and 22C a a= = . Thus adj
d b

A
c a

− 
=  − 

. Since det A = ad – bc, Theorem 8 gives that 

1 1 1adj
det

d b
A A

c aA ad bc
− − 

= =  −−  
. This result is identical to that of Theorem 4 in Section 2.2. 
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 18. Each cofactor of A is an integer since it is a sum of products of entries in A. Hence all entries in adj A 
will be integers. Since det A = 1, the inverse formula in Theorem 8 shows that all the entries in 1A−  will 
be integers. 

 19. The parallelogram is determined by the columns of 
5 6
2 4

A
 

=  
 

, so the area of the parallelogram is  

|det A| = |8| = 8. 

 20. The parallelogram is determined by the columns of 
1 4
3 5

A
− 

=  − 
, so the area of the parallelogram is 

|det A| = |–7| = 7. 

 21. First translate one vertex to the origin. For example, subtract (–1, 0) from each vertex to get a new 
parallelogram with vertices (0, 0),(1, 5),(2, –4), and (3, 1). This parallelogram has the same area as the 

original, and is determined by the columns of 
1 2
5 4

A
 

=  − 
, so the area of the parallelogram is  

|det A| = |–14| = 14. 

 22. First translate one vertex to the origin. For example, subtract (0, –2) from each vertex to get a new 
parallelogram with vertices (0, 0),(6, 1),(–3, 3), and (3, 4). This parallelogram has the same area as  

the original, and is determined by the columns of 
6 3
1 3

A
− 

=  
 

, so the area of the parallelogram is  

|det A| = |21| = 21. 

 23. The parallelepiped is determined by the columns of 
1 1 7
0 2 1
2 4 0

A
 
 =  
 − 

, so the volume of the 

parallelepiped is |det A| = |22| = 22. 

 24. The parallelepiped is determined by the columns of 
1 2 1
4 5 2
0 2 1

A
− − 

 = − 
 − 

, so the volume of the 

parallelepiped is |det A| = |–15| = 15. 

 25. The Invertible Matrix Theorem says that a 3 × 3 matrix A is not invertible if and only if its columns are 
linearly dependent. This will happen if and only if one of the columns is a linear combination of the 
others; that is, if one of the vectors is in the plane spanned by the other two vectors. This is equivalent to 
the condition that the parallelepiped determined by the three vectors has zero volume, which is in turn 
equivalent to the condition that det A = 0. 

 26. By definition, p + S is the set of all vectors of the form p + v, where v is in S. Applying T to a typical 
vector in p + S, we have T(p + v) = T(p) + T(v). This vector is in the set denoted by T(p) + T(S). This 
proves that T maps the set p + S into the set T(p) + T(S). 

  Conversely, any vector in T(p) + T(S) has the form T(p) + T(v) for some v in S. This vector may be 
written as T(p + v). This shows that every vector in T(p) + T(S) is the image under T of some point  
p + v in p + S. 



3.3 • Solutions   177 

 27. Since the parallelogram S is determined by the columns of 
2 2
3 5

− − 
 
 

, the area of S is 

2 2
det | 4 | 4.

3 5
− − 

= − = 
 

 The matrix A has 
6 2

det 6
3 2

A
−

= =
−

. By Theorem 10, the area of T(S) is 

|det A|{area of S} = 6 ⋅ 4 = 24. 
  Alternatively, one may compute the vectors that determine the image, namely, the columns of  

   [ ]1 2
6 2 2 2 18 22
3 2 3 5 12 16

A
− − − − −     

= =     −     
b b  

  The determinant of this matrix is –24, so the area of the image is 24. 

 28. Since the parallelogram S is determined by the columns of 
4 0
7 1

 
 − 

, the area of S is 

4 0
det | 4 | 4

7 1
 

= = − 
. The matrix A has 

7 2
det 5

1 1
A = = . By Theorem 10, the area of T(S) is  

|det A|{area of S} =5 ⋅ 4 = 20. 
  Alternatively, one may compute the vectors that determine the image, namely, the columns of  

   [ ]1 2
7 2 4 0 14 2
1 1 7 1 3 1

A
     

= =     − −     
b b  

  The determinant of this matrix is 20, so the area of the image is 20. 

 29. The area of the triangle will be one half of the area of the parallelogram determined by 1v  and 2.v  By 
Theorem 9, the area of the triangle will be (1/2)|det A|, where [ ]1 2 .A = v v  

 30. Translate R to a new triangle of equal area by subtracting 3 3( , )x y  from each vertex. The new triangle has 
vertices (0, 0), 1 3 1 3( , )x x y y− − , and 2 3 2 3( , ).x x y y− −  By Exercise 29, the area of the triangle will be  

   1 3 2 3

1 3 2 3

1 det .
2

x x x x
y y y y

− − 
 − − 

 

  Now consider using row operations and a cofactor expansion to compute the determinant in the formula:  

   
1 1 1 3 1 3

1 3 1 3
2 2 2 3 2 3

2 3 2 3
3 3 3 3

1 0
det 1 det 0 det

1 1

x y x x y y
x x y y

x y x x y y
x x y y

x y x y

− −   
− −    = − − =      − −       

 

  By Theorem 5,  

   1 3 1 3 1 3 2 3

2 3 2 3 1 3 2 3
det det

x x y y x x x x
x x y y y y y y

− − − −   
=   − − − −   

 

  So the above observation allows us to state that the area of the triangle will be  

   
1 1

1 3 2 3
2 2

1 3 2 3
3 3

1
1 1det det 1
2 2

1

x y
x x x x

x y
y y y y

x y

 
− −   =   − −    
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 31. a. To show that T(S) is bounded by the ellipsoid with equation 
22 2
31 2

2 2 2 1xx x
a b c

+ + = , let 
1

2

3

u
u
u

 
 =  
  

u  and let 

1

2

3

x
x A
x

 
 = = 
  

x u . Then 1 1 /u x a= , 2 2 /u x b= , and 3 3 /u x c= , and u lies inside S (or 2 2 2
1 2 3 1u u u+ + ≤ ) if 

and only if x lies inside T(S) (or 
22 2
31 2

2 2 2 1xx x
a b c

+ + ≤ ). 

b. By the generalization of Theorem 10,  
   {volume of ellipsoid} {volume of ( )}T S=  

   4 4| det | {volume of }
3 3

abcA S abc π π= ⋅ = =  

 32. a. A linear transformation T that maps S onto S ′ will map 1e  to 1,v  2e  to 2 ,v  and 3e  to 3;v  that is, 

1 1( )T =e v , 2 2( )T =e v , and 3 3( ) .T =e v  The standard matrix for this transformation will be 
[ ] [ ]1 2 3 1 2 3( ) ( ) ( ) .A T T T= =e e e v v v  

b. The area of the base of S is (1/2)(1)(1) = 1/2, so the volume of S is (1/3)(1/2)(1) = 1/6. By part a.  
T(S) = S′ , so the generalization of Theorem 10 gives that the volume of S′  is |det A|{volume of S} = 
(1/6)|det A|. 

 33. [M] Answers will vary. In MATLAB, entries in B – inv(A) are approximately 1510−  or smaller. 

 34. [M] Answers will vary, as will the commands which produce the second entry of x. For example, the 
MATLAB command is x2 = det([A(:,1) b A(:,3:4)])/det(A) while the Mathematica 
command is x2 = Det[{Transpose[A][[1]],b,Transpose[A][[3]], 
Transpose[A][[4]]}]/Det[A]. 

 35. [M] MATLAB Student Version 4.0 uses 57,771 flops for inv A and 14,269,045 flops for the inverse 
formula. The inv(A) command requires only about 0.4% of the operations for the inverse formula. 

Chapter 3 SUPPLEMENTARY EXERCISES 

 1. a. True. The columns of A are linearly dependent. 
 b. True. See Exercise 30 in Section 3.2. 
 c. False. See Theorem 3(c); in this case 3det 5 5 detA A= . 

 d. False. Consider 
2 0
0 1

A
 

=  
 

, 
1 0
0 3

B
 

=  
 

, and 
3 0
0 4

A B
 

+ =  
 

. 

 e. False. By Theorem 6, 3 3det 2A = . 
 f. False. See Theorem 3(b). 
 g. True. See Theorem 3(c). 
 h. True. See Theorem 3(a). 
 i. False. See Theorem 5. 
 j. False. See Theorem 3(c); this statement is false for n × n invertible matrices with n an even integer. 
 k. True. See Theorems 6 and 5; 2det (det )TA A A= . 
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 l. False. The coefficient matrix must be invertible. 
m. False. The area of the triangle is 5. 
 n. True. See Theorem 6; 3 3det (det )A A= . 
 o. False. See Exercise 31 in Section 3.2. 
 p. True. See Theorem 6. 

 2. 
12 13 14 12 13 14
15 16 17 3 3 3 0
18 19 20 6 6 6

= =  

 3. 
1 1 1
1 0 ( )( ) 0 1 1 0
1 0 0 1 1

a b c a b c a b c
b a c b a a b b a c a
c a b c a a c

+ + +
+ = − − = − − − =
+ − − −

 

 4. 1 1 1 0
1 1 1

a b c a b c a b c
a x b x c x x x x xy
a y b y c y y y y

+ + + = = =
+ + +

 

 5. 

9 1 9 9 9
9 9 9 2

4 0 59 0 9 9 2
4 0 5 0

( 1) ( 1)( 2) 9 3 94 0 0 5 0
9 3 9 0

6 0 79 0 3 9 0
6 0 7 0

6 0 0 7 0

= − = − −  

  
4 5

( 1)( 2)(3) ( 1)( 2)(3)( 2) 12
6 7

= − − = − − − = −  

 6. 

4 8 8 8 5
4 8 8 5

4 8 50 1 0 0 0
6 8 8 7 4 5

(1) (1)(2) 6 8 7 (1)(2)( 3) (1)(2)( 3)( 2) 126 8 8 8 7
0 8 3 0 6 7

0 3 00 8 8 3 0
0 2 0 0

0 8 2 0 0

= = = − = − − =  

 7. Expand along the first row to obtain  

1 1 1 1
1 1

2 2 2 2
2 2

1
1 1

1 1 0.
1 1

1

x y
x y y x

x y x y
x y y x

x y
= − + =  This is an equation of the form ax + by + c = 0, 

and since the points 1 1( , )x y  and 2 2( , )x y  are distinct, at least one of a and b is not zero. Thus the 
equation  
is the equation of a line. The points 1 1( , )x y  and 2 2( , )x y  are on the line, because when the coordinates  
of one of the points are substituted for x and y, two rows of the matrix are equal and so the determinant  
is zero. 
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 8. Expand along the first row to obtain  

1 1 1 1
1 1 1 1

1
1 1

1 1 1( ) ( ) (1) 0.
1 0 0 1

0 1

x y
x y y x

x y x y mx y x m y
m m

m
= − + = − − + =  This equation may be 

rewritten as 1 1 0,mx y mx y− − + =  or 1 1( ).y y m x x− = −  

 9. 

2 2 2

2 2 2

2 2 2

1 1 1
det 1 0 0 ( )( )

0 ( )( )1 0

a a a a a a
T b b b a b a b a b a b a

c a c a c ac c c a c a

= = − − = − − +
− − +− −

 

   

2 21 1
( )( ) 0 1 ( )( ) 0 1 ( )( )( )

0 1 0 0

a a a a
b a c a b a b a c a b a b a c a c b

c a c b
= − − + = − − + = − − −

+ −
 

 10. Expanding along the first row will show that 2 3
0 1 2 3( ) det .f t V c c t c t c t= = + + +  By Exercise 9,  

   

2
1 1

2
3 2 2 2 1 3 1 3 2

2
3 3

1

1 ( )( )( ) 0

1

x x

c x x x x x x x x

x x

= = − − − ≠  

  since 1x , 2x , and 3x  are distinct. Thus f (t) is a cubic polynomial. The points 1( ,0)x , 2( ,0)x , and 3( ,0)x  
are on the graph of f, since when any of 1x , 2x  or 3x  are substituted for t, the matrix has two equal rows 
and thus its determinant (which is f (t)) is zero. Thus ( ) 0if x =  for i = 1, 2, 3. 

 11. To tell if a quadrilateral determined by four points is a parallelogram, first translate one of the vertices to 
the origin. If we label the vertices of this new quadrilateral as 0, 1v , 2v , and 3v , then they will be the 
vertices of a parallelogram if one of 1v , 2v , or 3v  is the sum of the other two. In this example, subtract 
(1, 4) from each vertex to get a new parallelogram with vertices 0 = (0, 0), 1 ( 2,1)= −v , 2 (2,5)=v , and 

3 (4,4)=v . Since 2 3 1= +v v v , the quadrilateral is a parallelogram as stated. The translated 
parallelogram has the same area as the original, and is determined by the columns of 

[ ]1 3
2 4
1 4

A
− 

= =  
 

v v , so the area of the parallelogram is |det A| = |–12| = 12. 

 12. A 2 × 2 matrix A is invertible if and only if the parallelogram determined by the columns of A has 
nonzero area. 

 13. By Theorem 8, 11(adj )
det

A A A A I
A

−⋅ = = . By the Invertible Matrix Theorem, adj A is invertible and 

1 1(adj )
det

A A
A

− = . 

 14. a. Consider the matrix k
k

A O
A

O I
 

=  
 

, where 1 ≤ k ≤ n and O is an appropriately sized zero matrix. We 

will show that det detkA A=  for all 1 ≤ k ≤ n by mathematical induction. 
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  First let k = 1. Expand along the last row to obtain  
( 1) ( 1)

1det det ( 1) 1 det det .
1

n nA O
A A A

O
+ + + 

= = − ⋅ ⋅ = 
 

 

  Now let 1 < k ≤ n and assume that 1det det .kA A− =  Expand along the last row of kA  to obtain  

( ) ( )
1 1det det ( 1) 1 det det det .n k n k

k k k
k

A O
A A A A

O I
+ + +

− −
 

= = − ⋅ ⋅ = = 
 

 Thus we have proven the result, 

and the determinant of the matrix in question is det A. 

b. Consider the matrix k
k

k

I O
A

C D
 

=  
 

, where 1 ≤ k ≤ n, kC  is an n × k matrix and O is an appropriately 

sized zero matrix. We will show that det detkA D=  for all 1 ≤ k ≤ n by mathematical induction.  

  First let k = 1. Expand along the first row to obtain  
1 1

1
1

1
det det ( 1) 1 det det .

O
A D D

C D
+ 

= = − ⋅ ⋅ = 
 

 

  Now let 1 < k ≤ n and assume that 1det det .kA D− =  Expand along the first row of kA  to obtain  

1 1
1 1det det ( 1) 1 det det det .k

k k k
k

I O
A A A D

C D
+

− −
 

= = − ⋅ ⋅ = = 
 

 Thus we have proven the result, and the 

determinant of the matrix in question is det D. 
c. By combining parts a. and b., we have shown that  

det det det (det )(det ).
A O A O I O

A D
C D O I C D

       
= =       

       
 

  From this result and Theorem 5, we have  

det det det (det )(det )
T T

T T
T T

A B A B A O
A D

O D O D B D

    
= = =    

      
(det )(det ).A D=  

 15. a. Compute the right side of the equation:  

   
I O A B A B
X I O Y XA XB Y
     

=     +     
 

  Set this equal to the left side of the equation: 

   so that
A B A B

XA C XB Y D
C D XA XB Y
   

= = + =   +   
 

  Since XA = C and A is invertible, 1.X CA−=  Since XB + Y = D, 1Y D XB D CA B−= − = − . Thus by 
Exercise 14(c),  

   1 1det det det
I O A BA B

C D CA I O D CA B− −

    
=      −     

 

   1(det )(det ( ))A D CA B−= −  

b. From part a.,  

   1 1det (det )(det ( )) det[ ( )]
A B

A D CA B A D CA B
C D

− − 
= − = − 

 
 

   1 1det[ ] det[ ]AD ACA B AD CAA B− −= − = −  
   det[ ]AD CB= −  
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 16. a. Doing the given operations does not change the determinant of A since the given operations are all 
row replacement operations. The resulting matrix is  

   

0 0
0 0
0 0 0

a b a b
a b a b

a b

b b b a

− − + … 
 − − + … 
 − …
 
 
 … 

# # # % #
 

b. Since column replacement operations are equivalent to row operations on TA  and det detTA A= , the 
given operations do not change the determinant of the matrix. The resulting matrix is 

   

0 0 0
0 0 0
0 0 0

2 3 ( 1)

a b
a b

a b

b b b a n b

− … 
 − … 
 − …
 
 
 … + − 

# # # % #
 

c. Since the preceding matrix is a triangular matrix with the same determinant as A,  

   1det ( ) ( ( 1) ).nA a b a n b−= − + −  

 17. First consider the case n = 2. In this case  

   2det ( ),det ,
0

a b b b b
B a a b C ab b

a b a
−

= = − = = −  

  so 2 2 2 2 1det det det ( ) ( )( ) ( ) ( (2 1) )A B C a a b ab b a b a b a b a b a b−= + = − + − = − = − + = − + − , and the 
formula holds for n = 2. 

  Now assume that the formula holds for all (k – 1) × (k – 1) matrices, and let A, B, and C be k × k 
matrices. By a cofactor expansion along the first column,  

  2 1det ( ) ( )( ) ( ( 2) ) ( ) ( ( 2) )k k

a b b
b a b

B a b a b a b a k b a b a k b

b b a

− −

…
…

= − = − − + − = − + −

…
# # % #

 

  since the matrix in the above formula is a (k – 1) × (k – 1) matrix. We can perform a series of row 
operations on C to “zero out” below the first pivot, and produce the following matrix whose determinant 
is det C: 

   
0 0

.

0 0

b b b
a b

a b

… 
 − … 
 
 … −  

# # % #
 

  Since this is a triangular matrix, we have found that 1det ( )kC b a b −= − . Thus  

  1 1 1det det det ( ) ( ( 2) ) ( ) ( ) ( ( 1) ),k k kA B C a b a k b b a b a b a k b− − −= + = − + − + − = − + −  

  which is what was to be shown. Thus the formula has been proven by mathematical induction. 

 18. [M] Since the first matrix has a = 3, b = 8, and n = 4, its determinant is 
4 1 3(3 8) (3 (4 1)8) ( 5) (3 24) ( 125)(27) 3375.−− + − = − + = − = −  Since the second matrix has a = 8, b = 3, 

and n = 5, its determinant is 5 1 4(8 3) (8 (5 1)3) (5) (8 12) (625)(20) 12,500.−− + − = + = =  



Chapter  3 • Supplementary  Exercises   183 

 19. [M] We find that  

   

1 1 1 1 1
1 1 1 1

1 1 1 1 2 2 2 2
1 2 2 2

1 2 2 1, 1, 1.1 2 3 3 3
1 2 3 3

1 2 3 1 2 3 4 4
1 2 3 4

1 2 3 4 5

= = =  

  Our conjecture then is that  

   

1 1 1 1
1 2 2 2

1.1 2 3 3

1 2 3 n

…
…

=…

…
# # # % #

 

  To show this, consider using row replacement operations to “zero out” below the first pivot. The 
resulting matrix is  

   

1 1 1 1
0 1 1 1

.0 1 2 2

0 1 2 1n

… 
 … 
 …
 
 
 … − 

# # # % #
 

  Now use row replacement operations to “zero out” below the second pivot, and so on. The final matrix 
which results from this process is  

   

1 1 1 1
0 1 1 1

,0 0 1 1

0 0 0 1

… 
 … 
 …
 
 
 … 

# # # % #
 

  which is an upper triangular matrix with determinant 1. 

 20. [M] We find that  

   

1 1 1 1 1
1 1 1 1

1 1 1 1 3 3 3 3
1 3 3 3

1 3 3 6, 18, 54.1 3 6 6 6
1 3 6 6

1 3 6 1 3 6 9 9
1 3 6 9

1 3 6 9 12

= = =  

  Our conjecture then is that  

   2

1 1 1 1
1 3 3 3

2 3 .1 3 6 6

1 3 6 3( 1)

n

n

−

…
…

= ⋅…

… −
# # # % #
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  To show this, consider using row replacement operations to “zero out” below the first pivot. The 
resulting matrix is  

   

1 1 1 1
0 2 2 2

.0 2 5 5

0 2 5 3( 1) 1n

… 
 … 
 …
 
 
 … − − 

# # # % #
 

  Now use row replacement operations to “zero out” below the second pivot. The matrix which results 
from this process is  

   

1 1 1 1 1 1 1
0 2 2 2 2 2 2
0 0 3 3 3 3 3

.0 0 3 6 6 6 6
0 0 3 6 9 9 9

0 0 3 6 9 12 3( 2)n

… 
 … 
 …
 … 
 …
 
 
 … − 

# # # # # # % #

 

  This matrix has the same determinant as the original matrix, and is recognizable as a block matrix of the 
form  

   ,
A B
O D
 
 
 

 

  where  

  

3 3 3 3 3 1 1 1 1 1
3 6 6 6 6 1 2 2 2 2

1 1
and 3 .3 6 9 9 9 1 2 3 3 3

0 2

3 6 9 12 3( 2) 1 2 3 4 2

A D

n n

… …   
   … …        = = =… …      
   
   … − −   

# # # # % # # # # # % #
…

 

  As in Exercise 14(c), the determinant of the matrix 
A B
O D
 
 
 

 is (det A)(det D) = 2 det D.  

Since D is an (n – 2) × (n – 2) matrix,  

   2 2 2

1 1 1 1 1
1 2 2 2 2

det 3 3 (1) 31 2 3 3 3

1 2 3 4 2

n n nD

n

− − −

…
…

= = =…

… −
# # # # % #

 

  by Exercise 19. Thus the determinant of the matrix 
A B
O D
 
 
 

 is 22det 2 3 .nD −= ⋅  


