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5.1 SOLUTIONS 

Notes: Exercises 1–6 reinforce the definitions of eigenvalues and eigenvectors. The subsection on 
eigenvectors and difference equations, along with Exercises 33 and 34, refers to the chapter introductory 
example and anticipates discussions of dynamical systems in Sections 5.2 and 5.6. 

 1. The number 2 is an eigenvalue of A if and only if the equation 2A =x x  has a nontrivial solution. This 
equation is equivalent to ( 2 ) .− =xA I 0  Compute 

   
3 2 2 0 1 2

2
3 8 0 2 3 6

A I
     

− = − =     
     

 

  The columns of A are obviously linearly dependent, so ( 2 )A I− =x 0  has a nontrivial solution, and so  
2 is an eigenvalue of A. 

 2. The number 2−  is an eigenvalue of A if and only if the equation 2A = −x x  has a nontrivial solution. This 
equation is equivalent to ( 2 ) .+ =xA I 0  Compute 

   
7 3 2 0 9 3

2
3 1 0 2 3 1

A I
     

+ = + =     −     
 

  The columns of A are obviously linearly dependent, so ( 2 )A I+ =x 0  has a nontrivial solution, and so 
2−  is an eigenvalue of A. 

 3. Is Ax  a multiple of x? Compute 
3 1 1 1 1

.
3 8 4 29 4

−       
= ≠       −       

λ  So 
1
4
 
 
 

 is not an eigenvector of A. 

 4. Is Ax  a multiple of x? Compute 
2 1 1 2 21 2
1 4 1 3 2

 
 
 
 
  

  − +  − + =  
+   

 The second entries of x and Ax  shows 

that if Ax  is a multiple of x, then that multiple must be 3 2.+  Check 3 2+  times the first entry of x: 

   
2

(3 2)( 1 2) 3 2 2 2 1 2 2 
 
 

+ − + = − + + = − +  

  This matches the first entry of ,xA  so 1 2
1

 − +
 
 

 is an eigenvector of A, and the corresponding 

eigenvalue is 3 2.+  
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 5. Is Ax  a multiple of x? Compute 
3 7 9 4 0
4 5 1 3 0 .
2 4 4 1 0

     
     − − − =     
          

 So 
4
3
1

 
 − 
  

 is an eigenvector of A for the 

eigenvalue 0. 

 6. Is Ax  a multiple of x? Compute 
3 6 7 1 2 1
3 3 7 2 4 ( 2) 2
5 6 5 1 2 1

−       
       − = = − −       
       −       

 So 
1
2
1

 
 − 
  

 is an eigenvector of  

A for the eigenvalue 2.−  

 7. To determine if 4 is an eigenvalue of A, decide if the matrix 4A I−  is invertible. 

   
3 0 1 4 0 0 1 0 1

4 2 3 1 0 4 0 2 1 1
3 4 5 0 0 4 3 4 1

A I
− − −     

     − = − = −     
     − −     

 

  Invertibility can be checked in several ways, but since an eigenvector is needed in the event that one 
exists, the best strategy is to row reduce the augmented matrix for ( 4 )A I− =x 0 : 

   
1 0 1 0 1 0 1 0 1 0 1 0
2 1 1 0 0 1 1 0 0 1 1 0
3 4 1 0 0 4 4 0 0 0 0 0

− − − −     
     − − − − −     
     −     

∼ ∼     

  The equation ( 4 )A I− =x 0  has a nontrivial solution, so 4 is an eigenvalue. Any nonzero solution of 
( 4 )A I− =x 0  is a corresponding eigenvector. The entries in a solution satisfy 1 3 0x x+ =  and 

2 3 0,− − =x x  with 3x  free. The general solution is not requested, so to save time, simply take any 
nonzero value for 3x  to produce an eigenvector. If 3 1,=x  then ( 1 1 1).= − , − ,x  

Note: The answer in the text is (1 1 1),, , −  written in this form to make the students wonder whether the more 
common answer given above is also correct. This may initiate a class discussion of what answers are 
“correct.” 

 8. To determine if 3 is an eigenvalue of A, decide if the matrix 3A I−  is invertible. 

   
1 2 2 3 0 0 2 2 2

3 3 2 1 0 3 0 3 5 1
0 1 1 0 0 3 0 1 2

A I
−     

     − = − − = −     
     −     

 

  Row reducing the augmented matrix [(A 3 )   ]I− 0  yields: 

   
2 2 2 0 1 1 1 0 1 0 3 0
3 5 1 0 0 1 2 0 0 1 2 0
0 1 2 0 0 2 4 0 0 0 0 0

− − − −     
     − − −     
     − −     

∼ ∼     

  The equation ( 3 )A I− =x 0  has a nontrivial solution, so 3 is an eigenvalue. Any nonzero solution  
of ( 3 )A I− =x 0  is a corresponding eigenvector. The entries in a solution satisfy 1 33 0x x− =  and 

2 32 0,− =x x  with 3x  free. The general solution is not requested, so to save time, simply take any 
nonzero value for 3x  to produce an eigenvector. If 3 1,=x  then (3 2 1).= , ,x  
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 9. For 
5 0 1 0 4 0

1 1
2 1 0 1 2 0

A Iλ      
= : − = − =     

     
 

  The augmented matrix for ( )A I− =x 0  is 
4 0 0

.
2 0 0
 
 
 

 Thus 1 0x =  and 2x  is free. The general solution 

of ( )A I− =x 0  is 2 2 ,ex  where 2
0

,
1
 

=  
 

e  and so 2e  is a basis for the eigenspace corresponding to the 

eigenvalue 1. 

  For 
5 0 5 0 0 0

5 5
2 1 0 5 2 4
     

= : − = − =     −     
A Iλ  

  The equation ( 5 )A I− =x 0  leads to 1 22 4 0,− =x x  so that 1 22x x=  and 2x  is free. The general solution 

is 1 2
2

2 2

2 2
.

1

   
   
   
      

 
= =  

 

x x
x

x x
 So 

2
1
 
 
 

 is a basis for the eigenspace. 

 10. For 
10 9 4 0 6 9

4 4 .
4 2 0 4 4 6

− −     
= : − = − =     − −     

A Iλ  

  The augmented matrix for ( 4 )A I− =x 0  is 
6 9 0 1 9 6 0

.
4 6 0 0 0 0

− − /   
   −   

∼   Thus 1 2(3 2)x x= /  and  

2x  is free. The general solution is 1 2
2

2 2

(3 2) 3 2
.

1

   
   
   
      

/ / 
= =  

 

x x
x

x x
 A basis for the eigenspace corresponding 

to 4 is 
3 2

.
1
/ 

 
 

 Another choice is 
3

.
2
 
 
 

 

 11. 
4 2 10 0 6 2

10
3 9 0 10 3 1

A I
− − −     

− = − =     − − −     
 

  The augmented matrix for ( 10 )A I− =x 0  is 
6 2 0 1 1 3 0

 .
3 1 0 0 0 0

− − /   
   − −   

∼  Thus 1 2( 1 3)x x= − /  and  

2x  is free. The general solution is 1 2
2

2 2

(1 3) 1 3
.

1

 
 
 
  

− / − /   
= =   

  

x x
x

x x
 A basis for the eigenspace 

corresponding to 10 is 
1 3

.
1

− / 
 
 

 Another choice is 
1

.
3

− 
 
 

 

 12. For 
7 4 1 0 6 4

1
3 1 0 1 3 2

A Iλ      
= : − = − =     − − − −     

 

  The augmented matrix for ( )A I− =x 0  is 
6 4 0 1 2 3 0

.
3 2 0 0 0 0

/   
   − −   

∼  Thus 1 2( 2 3)x x= − /  and  

2x  is free. A basis for the eigenspace corresponding to 1 is 
2 3

.
1

− / 
 
 

 Another choice is 
2

.
3

− 
 
 

 

  For 
7 4 5 0 2 4

5 5 .
3 1 0 5 3 6

     
= : − = − =     − − − −     

A Iλ  
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  The augmented matrix for ( 5 )A I− =x 0  is 
2 4 0 1 2 0

 .
3 6 0 0 0 0

   
   − −   

∼  Thus 1 22x x=  and 2x  is free. 

The general solution is 1 2
2

2 2

2 2
.

1

   
   
   
      

− − 
= =  

 

x x
x

x x
 A basis for the eigenspace is 

2
.

1
− 
 
 

 

 13. For λ = 1: 

   
4 0 1 1 0 0 3 0 1

1 2 1 0 0 1 0 2 0 0
2 0 1 0 0 1 2 0 0

A I
     
     − = − − = −     
     − −     

 

  The equations for ( )A I− =x 0  are easy to solve: 1 3

1

3 0
2        0

x x
x

+ = 
 − = 

 

  Row operations hardly seem necessary. Obviously 1x  is zero, and hence 3x  is also zero. There are  
three-variables, so 2x  is free. The general solution of ( )A I− =x 0  is 2 2 ,ex  where 2 (0 1 0),= , ,e  and  
so 2e  provides a basis for the eigenspace. 

  For λ = 2: 

   
4 0 1 2 0 0 2 0 1

2 2 1 0 0 2 0 2 1 0
2 0 1 0 0 2 2 0 1

     
     − = − − = − −     
     − −     

A I  

   
2 0 1 0 2 0 1 0 0 1 2 0

[( 2 )  ] 2 1 0 0 0 1 1 0 0 1 0
2 0 1 0 0 0 0 0 0 0 0 0

A I
1 /     

     − = − − − 1 −     
     − −     

∼ ∼0  

  So 1 3 2 3(1 2) ,x x x x= − / , =  with 3x  free. The general solution of ( 2 )A I− =x 0  is 3

1 2
1 .
1

− / 
 
 
  

x  A nice basis 

vector for the eigenspace is 
1
2 .
2

− 
 
 
  

 

  For λ = 3: 

   
4 0 1 3 0 0 1 0 1

3 2 1 0 0 3 0 2 2 0
2 0 1 0 0 3 2 0 2

     
     − = − − = − −     
     − − −     

A I  

   
1 0 1 0 1 0 1 0 0 1 0

[( 3 )  ] 2 2 0 0 0 2 2 0 0 1 0
2 0 2 0 0 0 0 0 0 0 0 0

1     
     − = − − − 1 −     
     − −     

0 ∼ ∼A I  

  So 1 3 2 3,= − , =x x x x  with 3x  free. A basis vector for the eigenspace is 
1
1 .
1

− 
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 14. For 
1 0 1 2 0 0 3 0 1

2 ( 2 ) 2 1 3 0 0 2 0 1 1 0 .
4 13 1 0 0 2 4 13 3

− −     
     = − : − − = + = − + = −     
     − −     

A I A Iλ  

  The augmented matrix for [ ( 2) ] ,− − =x 0A I  or ( 2 ) ,+ =x 0A I  is 

   
3 0 1 0 1 0 1 3 0 1 0 1 3 0

[( 2 ) ] 1 1 0 0   0 1 1 3 0   0 1 1 3 0
4 13 3 0 0 13 13 3 0 0 0 0 0

A I
− − / − /     

     + = − − / − /     
     − − /     

∼ ∼0  

  Thus 1 3 2 3(1 3) (1 3) ,= / , = /x x x x  with 3x  free. The general solution of ( 2 )A I+ =x 0  is 3

1 3
1 3 .
1

/ 
 / 
  

x  

  A basis for the eigenspace corresponding to 2−  is 
1 3
1 3 ;
1

/ 
 / 
  

 another is 
1
1 .
3

 
 
 
  

 

 15. For 
1 2 3 0 1 2 3 0

3 [( 3 )  ] 1 2 3 0   0 0 0 0 .
2 4 6 0 0 0 0 0

A Iλ
   
   = : − = − − −   
      

∼0  Thus 1 2 32 3 0,+ + =x x x with 2x  and 

3x  free. The general solution of ( 3 ) ,− =x 0A I  is 

   
2 3

2 32

3

2 3 2 3 2 3
1 0 Basis for the eigenspace 1 0
0 1 0 1

x x
x x x
x

 
 
 
 
 
 
  

 − − − − − −       
        = = + . : ,        
                

x  

Note: For simplicity, the text answer omits the set brackets. I permit my students to list a basis without the set 
brackets. Some instructors may prefer to include brackets. 

 16. For 

3 0 2 0 4 0 0 0 1 0 2 0
1 3 1 0 0 4 0 0 1 1 1 0

4 4 .
0 1 1 0 0 0 4 0 0 1 3 0
0 0 0 4 0 0 0 4 0 0 0 0

A Iλ

−     
     −     = : − = − =
     −
     
          

 

  

1 0 2 0 0 1 0 2 0 0
1 1 1 0 0 0 1 3 0 0

[( 4 ) ]   .
0 1 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A I

− −   
   − −   − =
   −
   
      

∼0  So 1 3 2 32 3 ,= , =x x x x  with 3x  and 4x   

  free variables. The general solution of ( 4 )A I− =x 0  is 

   

1 3

2 3
3 4

3 3

4 4

2 2 0 2 0
3 3 0 3 0

Basis for the eigenspace
1 0 1 0
0 1 0 1

x x
x x

x x
x x
x x

   
   
   
   
   
   
   
   
         

        
        
        = = = + . : ,                                

x  

Note: I urge my students always to include the extra column of zeros when solving a homogeneous system. 
Exercise 16 provides a situation in which failing to add the column is likely to create problems for a student, 
because the matrix 4A I−  itself has a column of zeros. 
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 17. The eigenvalues of 
0 0 0
0 2 5
0 0 1

 
 
 
 − 

 are 0, 2, and 1,−  on the main diagonal, by Theorem 1. 

 18. The eigenvalues of 
4 0 0
0 0 0
1 0 3

 
 
 
 − 

 are 4, 0, and 3,−  on the main diagonal, by Theorem 1. 

 19. The matrix 
1 2 3
1 2 3
1 2 3

 
 
 
  

 is not invertible because its columns are linearly dependent. So the number 0 is 

an eigenvalue of the matrix. See the discussion following Example 5. 

 20. The matrix 
5 5 5
5 5 5
5 5 5

A
 
 =  
  

 is not invertible because its columns are linearly dependent. So the number 0 

is an eigenvalue of A. Eigenvectors for the eigenvalue 0 are solutions of A =x 0  and therefore have 
entries that produce a linear dependence relation among the columns of A. Any nonzero vector (in 3R ) 
whose entries sum to 0 will work. Find any two such vectors that are not multiples; for instance, 
(1 1 2), , −  and (1 1 0)., − ,  

 21. a. False. The equation A = λx x  must have a nontrivial solution. 
 b. True. See the paragraph after Example 5. 
 c. True. See the discussion of equation (3). 
 d. True. See Example 2 and the paragraph preceding it. Also, see the Numerical Note. 
 e. False. See the warning after Example 3. 

 22. a. False. The vector x in A = λx x  must be nonzero. 
 b. False. See Example 4 for a two-dimensional eigenspace, which contains two linearly independent 

eigenvectors corresponding to the same eigenvalue. The statement given is not at all the same as 
Theorem 2. In fact, it is the converse of Theorem 2 (for the case 2r = ). 

 c. True. See the paragraph after Example 1. 
 d. False. Theorem 1 concerns a triangular matrix. See Examples 3 and 4 for counterexamples. 
 e. True. See the paragraph following Example 3. The eigenspace of A corresponding to λ  is the null 

space of the matrix .− λA I  

 23. If a 2 2×  matrix A were to have three distinct eigenvalues, then by Theorem 2 there would correspond 
three linearly independent eigenvectors (one for each eigenvalue). This is impossible because the vectors 
all belong to a two-dimensional vector space, in which any set of three vectors is linearly dependent. See 
Theorem 8 in Section 1.7. In general, if an n n×  matrix has p distinct eigenvalues, then by Theorem 2 
there would be a linearly independent set of p eigenvectors (one for each eigenvalue). Since these vectors 
belong to an n-dimensional vector space, p cannot exceed n. 

 24. A simple example of a 2 2×  matrix with only one distinct eigenvalue is a triangular matrix with the 
same number on the diagonal. By experimentation, one finds that if such a matrix is actually a diagonal 
matrix then the eigenspace is two dimensional, and otherwise the eigenspace is only one dimensional. 

  Examples: 
4 1
0 4
 
 
 

 and 
4 5

.
0 4
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 25. If λ  is an eigenvalue of A, then there is a nonzero vector x  such that λ .=x xA  Since A is invertible, 
1 1(λ ),− −=x xA A A  and so 1λ( ).−=x xA  Since ≠x 0  (and since A is invertible), λ  cannot be zero. Then 
1 1λ ,A− −=x x  which shows that 1λ−  is an eigenvalue of 1.−A  

Note: The Study Guide points out here that the relation between the eigenvalues of A and 1A−  is important in 
the so-called inverse power method for estimating an eigenvalue of a matrix. See Section 5.8. 

 26. Suppose that 2A  is the zero matrix. If λA =x x  for some ,≠x 0  then 2 2( ) (λ ) λ λ .A A A A A= = = =x x x x x  
Since x is nonzero, λ  must be nonzero. Thus each eigenvalue of A is zero. 

 27. Use the Hint in the text to write, for any λ ( λ ) (λ ) λ .T T T TA I A I A I, − = − = −  Since ( λ )TA I−  is invertible 
if and only if λA I−  is invertible (by Theorem 6(c) in Section 2.2), it follows that λTA I−  is not 
invertible if and only if λA I−  is not invertible. That is, λ  is an eigenvalue of TA  if and only if λ  is an 
eigenvalue of A. 

Note: If you discuss Exercise 27, you might ask students on a test to show that A and TA  have the same 
characteristic polynomial (discussed in Section 5.2). Since det det ,= TA A  for any square matrix A, 

  det( λ ) det( λ ) det( (λ ) ) det( λ )T T TA I A I A I A I− = − = − = − .  

 28. If A is lower triangular, then TA  is upper triangular and has the same diagonal entries as A. Hence, by the 
part of Theorem 1 already proved in the text, these diagonal entries are eigenvalues of .TA  By Exercise 
27, they are also eigenvalues of A. 

 29. Let v be the vector in nR  whose entries are all ones. Then .A s=v v  

 30. Suppose the column sums of an n n×  matrix A all equal the same number s. By Exercise 29 applied to 
TA  in place of A, the number s is an eigenvalue of .TA  By Exercise 27, s is an eigenvalue of A. 

 31. Suppose T reflects points across (or through) a line that passes through the origin. That line consists of all 
multiples of some nonzero vector v. The points on this line do not move under the action of A. So 

( ) .=v vT  If A is the standard matrix of T, then .=v vA  Thus v is an eigenvector of A corresponding to 
the eigenvalue 1. The eigenspace is Span { }.v  Another eigenspace is generated by any nonzero vector u 
that is perpendicular to the given line. (Perpendicularity in 2R  should be a familiar concept even though 
orthogonality in nR  has not been discussed yet.) Each vector x on the line through u is transformed into 
the vector .−x  The eigenvalue is 1.−  

 33. (The solution is given in the text.) 

a. Replace k by 1k +  in the definition of ,xk  and obtain 1 1
1 1 2 .k k

k c cλ µ+ +
+ = +x u v  

b. 1 2

1 2

1 2

1

( )

by linearity

since  and  are eigenvectors

+

= +

= +

= +
=

x u v

u v

u v u v
x

k k
k

k k

k k

k

A A c c

c A c A

c c

λ µ
λ µ
λ λ µ µ
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 34. You could try to write 0x  as linear combination of eigenvectors, 1 ., ,v v p…  If 1λ , ,λ p…  are 
corresponding eigenvalues, and if 0 1 1 ,p pc c= + +"x v v  then you could define 

   1 1 1
k k

k p p pc cλ λ= + +x v v"  

  In this case, for 0 1 2 ,= , , ,k …  

   

1 1 1

1 1 1

1 1
1 1 1

1

( )

 Linearity

 The  are eigenvectors

 

k k
k p p p

k k
p p p

k k
p p p i

k

A A c c

c A c A

c c

λ λ

λ λ

λ λ+ +

+

= + +

= + +

= + + .

=

x v v

v v

v v v
x

"

"

"
 

 35. Using the figure in the exercise, plot ( )T u  as 2 ,u  because u is an eigenvector for the eigenvalue 2 of the 
standard matrix A. Likewise, plot ( )T v  as 3 ,v  because v is an eigenvector for the eigenvalue 3. Since T 
is linear, the image of w is ( ) ( ) ( ) ( ).= + = +w u v u vT T T T  

 36. As in Exercise 35, ( )T = −u u  and ( ) 3T =v v  because u and v are eigenvectors for the eigenvalues  
1−  and 3, respectively, of the standard matrix A. Since T is linear, the image of w is 
( ) ( ) ( ) ( ).T T T T= + = +w u v u v  

Note: The matrix programs supported by this text all have an eigenvalue command. In some cases, such as 
MATLAB, the command can be structured so it provides eigenvectors as well as a list of the eigenvalues. At 
this point in the course, students should not use the extra power that produces eigenvectors. Students need to 
be reminded frequently that eigenvectors of A are null vectors of a translate of A. That is why the instructions 
for Exercises 35–38 tell students to use the method of Example 4. 

It is my experience that nearly all students need manual practice finding eigenvectors by the method of 
Example 4, at least in this section if not also in Sections 5.2 and 5.3. However, [M] exercises do create a 
burden if eigenvectors must be found manually. For this reason, the data files for the text include a special 
command, nulbasis for each matrix program (MATLAB, Maple, etc.). The output of nulbasis (A) is 
a matrix whose columns provide a basis for the null space of A, and these columns are identical to the ones a 
student would find by row reducing the augmented matrix [  ].0A  With nulbasis, student answers will be the 
same (up to multiples) as those in the text. I encourage my students to use technology to speed up all 
numerical homework here, not just the [ ]M  exercises, 

 37. [M] Let A be the given matrix. Use the MATLAB commands eig and nulbasis (or equivalent 
commands). The command ev =eig(A) computes the three eigenvalues of A and stores them in a 
vector ev. In this exercise, (3 13 13).= , ,ev  The eigenspace for the eigenvalue 3 is the null space of 

3 .A I−  Use nulbasis to produce a basis for each null space. If the format is set for rational display, 
the result is 

   
5 9
2 9 .
1

/ 
 − / 
  

nulbasis(A-ev(1)*eye(3))=  

  For simplicity, scale the entries by 9. A basis for the eigenspace for 
5

3 2
9

λ
 
 = : − 
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  For the next eigenvalue, 13, compute nulbasis
2 1
1 0 .
0 1

− − 
 
 
  

(A-ev(2)*eye(3))=  

  Basis for eigenspace for 
2 1

13 1 0
0 1

λ
 − −   
    = : ,    
        

 

  There is no need to use ev(3) because it is the same as ev(2). 

 38. [M] (13 12 12 13).= , − , − ,ev =eig(A)  For 13λ = : 

   

1 2 1 3 1 1
0 4 3 0 4

Basis for eigenspace
1 0 2 0
0 1 0 3

 − / / −     
      − / −      . : ,                        

nulbasis (A-ev(1)*eye(4))=  

  For 12λ = − :  nulbasis

2 7 0
1 1

.
1 0
0 1

/ 
 − 
 
 
  

(A-ev(2)*eye(4))=  Basis: 

2 0
7 1
7 0
0 1

    
    −    ,                

 

 39. [M] For 5,=λ  basis: 

2 1 2
1 1 0

.1 0 0
0 1 0
0 0 1

 −     
      −            , , 
      
      
            

 For 2,λ = −  basis: 

2 3
7 7
5 5
5 0
0 5

 −   
    
        ,− − 
    
    
        

 

 40. [M] (21 68984106239549 16 68984106239549 3 2 2).. ,− . , , ,ev =eig(A)=  The first two eigenvalues are 
the roots of 2λ 5λ 362 0.− − =  

 Basis for 

0 33333333333333
2 39082008853296

λ ev(1) ,0 33333333333333
0 58333333333333

1 000000000000000

− . 
 . 
 = : .
 . 
 . 

 for 

0 33333333333333
0 80748675519962

λ ev(2) . 0 33333333333333
0 58333333333333
1 00000000000000

− . 
 − . 
 = : .
 . 
 . 

 

  For the eigenvalues 3 and 2, the eigenbases are 

0
2

,0
1
0

 
 − 
 
 
 
  

 and 

2 5
1 5

,0 0
1 0
0 1

 − −.   
    .        , 
    
    
        

 respectively. 

Note: Since so many eigenvalues in text problems are small integers, it is easy for students to form a habit of 
entering a value for λ  in nulbasis λ(A- I) based on a visual examination of the eigenvalues produced by  
eig(A)when only a few decimal places for λ  are displayed. Exercise 40 may help your students discover 
the dangers of this approach. 
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5.2 SOLUTIONS 

Notes: Exercises 9–14 can be omitted, unless you want your students to have some facility with determinants 
of 3 3×  matrices. In later sections, the text will provide eigenvalues when they are needed for matrices larger 
than 2 2.×  If you discussed partitioned matrices in Section 2.4, you might wish to bring in Supplementary 
Exercises 12–14 in Chapter 5. (Also, see Exercise 14 of Section 2.4.) 

Exercises 25 and 27 support the subsection on dynamical systems. The calculations in these exercises and 
Example 5 prepare for the discussion in Section 5.6 about eigenvector decompositions. 

 1. 
2 7 2 7 0 2 7

.
7 2 7 2 0 7 2

−       
= , − = − =       −       

A A I
λ λ

λ
λ λ

 The characteristic polynomial is 

   2 2 2 2det( ) (2 ) 7 4 4 49 4 45A I− λ = − λ − = − λ + λ − = λ − λ −  

  In factored form, the characteristic equation is ( 9)( 5) 0,λ − λ + =  so the eigenvalues of A are 9 and 5.−  

 2. 
5 3 5 3

.
3 5 3 5

−   
= , − =   −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (5 )(5 ) 3 3 10 16A Iλ λ λ λ λ− = − − − ⋅ = − +  

  Since 2 10 16 ( 8)( 2),− + = − −λ λ λ λ  the eigenvalues of A are 8 and 2. 

 3. 
3 2 3 2

.
1 1 1 1

− − −   
= , − =   − − −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (3 )( 1 ) ( 2)(1) 2 1A I− λ = − λ − − λ − − = λ − λ −  

  Use the quadratic formula to solve the characteristic equation and find the eigenvalues: 

   
2 4 2 4 4 1 2

2 2
b b ac

a
λ − ± − ± += = = ±  

 4. 
5 3 5 3

   .
4 3 4 3

− − −   
= , − =   − − −   

A A I
λ

λ
λ

 The characteristic polynomial of A is 

   2det( ) (5 )(3 ) ( 3)( 4) 8 3A Iλ λ λ λ λ− = − − − − − = − +  

  Use the quadratic formula to solve the characteristic equation and find the eigenvalues: 

   
8 64 4(3) 8 2 13 4 13

2 2
λ ± − ±= = = ±  

 5. 
2 1 2 1

.
1 4 1 4

− λ   
= , − λ =   − − − λ   

A A I  The characteristic polynomial of A is 

   2 2det( ) (2 )(4 ) (1)( 1) 6 9 ( 3)A I− λ = − λ − λ − − = λ − λ + = λ −  

  Thus, A has only one eigenvalue 3, with multiplicity 2. 

 6. 
3 4 3 4

.
4 8 4 8

− − −   
= , − =   −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (3 )(8 ) ( 4)(4) 11 40A Iλ λ λ λ λ− = − − − − = − +  
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  Use the quadratic formula to solve det ( ) 0 :− =A Iλ  

   
11 121 4(40) 11 39

2 2
λ − ± − − ± −= =  

  These values are complex numbers, not real numbers, so A has no real eigenvalues. There is no nonzero 
vector x in 2R  such that ,A λ=x x  because a real vector Ax  cannot equal a complex multiple of .x  

 7. 
5 3 5 3

.
4 4 4 4

−   
= , − =   − − −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (5 )(4 ) (3)( 4) 9 32A Iλ λ λ λ λ− = − − − − = − +  

  Use the quadratic formula to solve det ( ) 0A Iλ− = : 

   
9 81 4(32) 9 47

2 2
λ ± − ± −= =  

  These values are complex numbers, not real numbers, so A has no real eigenvalues. There is no nonzero 
vector x in 2R  such that ,=x xA λ  because a real vector Ax  cannot equal a complex multiple of x. 

 8. 
7 2 7 2

.
2 3 2 3

− − −   
= , − =   −   

A A I
λ

λ
λ

 The characteristic polynomial is 

   2det( ) (7 )(3 ) ( 2)(2) 10 25A Iλ λ λ λ λ− = − − − − = − +  

  Since 2 210 25 ( 5) ,− + = −λ λ λ  the only eigenvalue is 5, with multiplicity 2. 

 9. 
1 0 1

det( ) det 2 3 1 .
0 6 0

− − 
 − = − − 
 − 

A I
λ

λ λ
λ

 From the special formula for 3 3×  determinants, the 

characteristic polynomial is 

   
2

3 2

3 2

det( ) (1 )(3 )( ) 0 ( 1)(2)(6) 0 (6)( 1)(1 ) 0

( 4 3)( ) 12 6(1 )

4 3 12 6 6

4 9 6

A Iλ λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ

− = − − − + + − − − − − −

= − + − − + −

= − + − − + −

= − + − −

 

  (This polynomial has one irrational zero and two imaginary zeros.) Another way to evaluate the 
determinant is to interchange rows 1 and 2 (which reverses the sign of the determinant) and then make 
one row replacement: 

   
1 0 1 2 3 1

det 2 3 1 det 1 0 1
0 6 0 0 6 0

− − − −   
   − − = − − −   
   − −   

λ λ
λ λ

λ λ
 

   
2 3 1

det 0 0 ( 5 5)(3 ) 1 ( 5 5)( 1)
0 6 0

− − 
 = − + . − . − − + . − . − 
 − 

λ
λ λ λ

λ
 

  Next, expand by cofactors down the first column. The quantity above equals 

   
2 3 2

( 5 5)(3 ) 5 5
2det 2[( 5 5)(3 )( ) ( 5 5 )(6)]

6

(1 )(3 )( ) (1 )(6) ( 4 3)( ) 6 6 4 9 6

λ λ λ
λ λ λ λ

λ

λ λ λ λ λ λ λ λ λ λ λ

. − . − −. − . 
− = − . − . − − − −. − . − 
= − − − − + = − + − − − = − + − −
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 10. 
0 3 1

det( ) det 3 0 2 .
1 2 0

− 
 − = − 
 − 

A I
λ

λ λ
λ

 From the special formula for 3 3×  determinants, the 

characteristic polynomial is 

   
3 3

det( ) ( )( )( ) 3 2 1 1 3 2 1 ( ) 1 2 2 ( ) ( ) 3 3

6 6 4 9 14 12

− = − − − + ⋅ ⋅ + ⋅ ⋅ − ⋅ − ⋅ − ⋅ ⋅ − − − ⋅ ⋅

= − + + + + + = − + +

A Iλ λ λ λ λ λ λ
λ λ λ λ λ λ

 

 11. The special arrangements of zeros in A makes a cofactor expansion along the first row highly effective. 

   

2 3 2

4 0 0
3 2

det( ) det 5 3 2 (4 )det
0 2

2 0 2

(4 )(3 )(2 ) (4 )( 5 6) 9 26 24

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ λ λ

− 
−  − = − = −    −  − − 

= − − λ − = − − + = − + − +

 

  If only the eigenvalues were required, there would be no need here to write the characteristic polynomial 
in expanded form. 

 12. Make a cofactor expansion along the third row: 

   

3 2

1 0 1
1 0

det( ) det 3 4 1 (2 ) det
3 4

0 0 2

(2 )( 1 )(4 ) 5 2 8

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ

− − 
− −  − = − − = − ⋅    − −  − 

= − − − − = − + − −

 

 13. Make a cofactor expansion down the third column: 

   2

3 2

6 2 0
6 2

det( ) det 2 9 0 (3 ) det
2 9

5 8 3

(3 )[(6 )(9 ) ( 2)( 2)] (3 )( 15 50)

18 95 150 or (3 )( 5)( 10)

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ
λ λ λ λ λ λ

− − 
− −  − = − − = − ⋅    − −  − 

= − − − − − − = − − +

= − + − + − − −

 

 14. Make a cofactor expansion along the second row: 

   2

3 2

5 2 3
5 3

det( ) det 0 1 0 (1 ) det
6 2

6 7 2

(1 ) [(5 )( 2 ) 3 6] (1 )( 3 28)

4 25 28  or  (1 )( 7)( 4)

A I
λ

λ
λ λ λ

λ
λ

λ λ λ λ λ λ
λ λ λ λ λ λ

− − 
−  − = − = − ⋅    − −  − − 

= − ⋅ − − − − ⋅ = − − −

= − + + − − − +

 

 15. Use the fact that the determinant of a triangular matrix is the product of the diagonal entries: 

   2

4 7 0 2
0 3 4 6

det( ) det (4 )(3 ) (1 )
0 0 3 8
0 0 0 1

A I

λ
λ

λ λ λ λ
λ

λ

− − 
 − − − = = − − −
 − −
 −  

 

  The eigenvalues are 4, 3, 3, and 1. 
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 16. The determinant of a triangular matrix is the product of its diagonal entries: 

   2

5 0 0 0
8 4 0 0

det( ) det (5 )( 4 )(1 )
0 7 1 0
1 5 2 1

A I

λ
λ

λ λ λ λ
λ

λ

− 
 − − − = = − − − −
 −
 − −  

 

  The eigenvalues are 5, 1, 1, and 4.−  

 17. The determinant of a triangular matrix is the product of its diagonal entries: 

   2 2

3 0 0 0 0
5 1 0 0 0

(3 ) (1 ) ( )3 8 0 0 0
0 7 2 1 0
4 1 9 2 3

λ
λ

λ λ λλ
λ

λ

− 
 − − 
  = − − −−
 − − 
 − − − 

 

  The eigenvalues are 3, 3, 1, 1, and 0. 

 18. Row reduce the augmented matrix for the equation ( 5 )A I− =x 0 : 

   

0 2 6 1 0 0 2 6 1 0 0 1 3 0 0
0 2 0 0 0 0 6 1 0 0 0 6 0 0

    
0 0 0 4 0 0 0 0 4 0 0 0 0 1 0
0 0 0 4 0 0 0 0 4 0 0 0 0 0 0

h h h
− − − − −     

     − − −     
     
     −          

∼ ∼  

  For a two-dimensional eigenspace, the system above needs two free variables. This happens if and only  
if 6.=h  

 19. Since the equation 1 2det( ) ( )( ) ( )− λ = λ − λ λ − λ λ − λ" nA I  holds for all λ , set 0λ =  and conclude that 

1 2det .= λ λ λ" nA  

 20. det( ) det( )T T TA I A I− λ = − λ  

   det( ) Transpose property= − λ TA I  
   det( ) Theorem 3(c)= −A Iλ  

 21. a. False. See Example 1. 
 b. False. See Theorem 3. 
 c. True. See Theorem 3. 
 d. False. See the solution of Example 4. 

 22. a. False. See the paragraph before Theorem 3. 
 b. False. See Theorem 3. 
 c. True. See the paragraph before Example 4. 
 d. False. See the warning after Theorem 4. 

 23. If ,=A QR  with Q invertible, and if 1 ,=A RQ  then write 1 1
1 ,− −= =A Q QRQ Q AQ  which shows that  

1A  is similar to A. 
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 24. First, observe that if P is invertible, then Theorem 3(b) shows that 

   1 11 det det( ) (det )(det )I PP P P− −= = =  

  Use Theorem 3(b) again when 1,−=A PBP  

   1 1 1det det( ) (det )(det )(det ) (det )(det )(det ) detA PBP P B P B P P B− − −= = = =  

 25. Example 5 of Section 4.9 showed that 1 1,=v vA  which means that 1v  is an eigenvector of A 
corresponding to the eigenvalue 1. 
a. Since A  is a 2 2×  matrix, the eigenvalues are easy to find, and factoring the characteristic 

polynomial is easy when one of the two factors is known. 

   26 3
det ( 6 )( 7 ) ( 3)( 4) 1 3 3 ( 1)( 3)

4 7
λ

λ λ λ λ λ λ
λ

. − . 
= . − . − − . . = − . + . = − − . . . − 

 

  The eigenvalues are 1 and .3. For the eigenvalue .3, solve ( 3 )A I− . =x 0 : 

   
6 3 3 0 3 3 0 1 1 0

  
4 7 3 0 4 4 0 0 0 0

. − . . . .     
=     . . − . . .     

∼  

  Here 1 2 0,− =x x  with 2x  free. The general solution is not needed. Set 2 1x =  to find an eigenvector 

2
1

.
1
− 

=  
 

v  A suitable basis for 2R  is 1 2{ }.,v v  

b. Write 0 1 2c= +x v v : 
1 2 3 7 1

.
1 2 4 7 1
/ / −     

= +     / /     
c  By inspection, c is 1 14.− /  (The value of c depends on 

how 2v  is scaled.) 

c. For 1 2 ,= , ,k …  define 0.=x xk
k A  Then 1 1 2 1 2 1 2( ) ( 3) ,A c A cA c= + = + = + .x v v v v v v  because 1v  

and 2v  are eigenvectors. Again 

   2 1 1 2 1 2 1 2( ( 3) ) ( 3) ( 3)( 3)A A c A c A c= = + . = + . = + . . .x x v v v v v v  

  Continuing, the general pattern is 1 2( 3) .k
k c= + .x v v  As k increases, the second term tends to 0 and 

so kx  tends to 1.v  

 26. If 0,≠a  then 1 ,
0 −

  
= =   −   

∼
a ba b

A U
c d d ca b

 and 1det ( )( ) .−= − = −A a d ca b ad bc  If 0,=a  then 

0
0

b c d
A U

c d b
   

= =   
   

∼  (with one interchange), so 1det ( 1) ( ) 0 .= − = − = −A cb bc ad bc  

 27. a. 1 1,A =v v  2 25 ,A = .v v  3 32 .A = .v v  

 b. The set 1 2 3{ }, ,v v v  is linearly independent because the eigenvectors correspond to different 
eigenvalues (Theorem 2). Since there are three vectors in the set, the set is a basis for 3. So there 
exist unique constants such that 0 1 1 2 2 3 3,c c c= + +x v v v  and 0 1 1 2 2 3 3.T T T Tc c c= + +w x w v w v w v  
Since 0x  and 1v  are probability vectors and since the entries in 2v  and 3v  sum to 0, the above 
equation shows that 1 1.c =  

c. By (b), 0 1 1 2 2 3 3.= + +x v v vc c c  Using (a), 

  0 1 1 2 2 3 3 1 2 2 3 3 1( 5) ( 2) as= = + + = + . + . → → ∞x x v v v v v v vk k k k k k
k A c A c A c A c c k  
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 28. [M] 
  Answers will vary, but should show that the eigenvectors of A are not the same as the eigenvectors  

of ,TA  unless, of course, .=TA A  

 29. [M] Answers will vary. The product of the eigenvalues of A should equal det A. 

 30. [M] The characteristic polynomials and the eigenvalues for the various values of a are given in the 
following table: 

a Characteristic Polynomial Eigenvalues 
31.8 2 34 2 6 4t t t−. − . + −  3 1279 1 1279. , , − .  

31.9 2 38 3 8 4t t t. − . + −  2.7042, 1, .2958 

32.0 2 32 5 4t t t− + −  2, 1, 1 

32.1 2 33 2 6 2 4t t t. − . + −  1 5 9747 1i. ± . ,  

32.2 2 34 4 7 4 4t t t. − . + −  1 5 1 4663 1i. ± . ,  

   The graphs of the characteristic polynomials are: 

 

Notes: An appendix in Section 5.3 of the Study Guide gives an example of factoring a cubic polynomial with 
integer coefficients, in case you want your students to find integer eigenvalues of simple 3 3×  or perhaps 
4 4×  matrices. 

The MATLAB box for Section 5.3 introduces the command poly (A), which lists the coefficients of 
the characteristic polynomial of the matrix A, and it gives MATLAB code that will produce a graph of the 
characteristic polynomial. (This is needed for Exercise 30.) The Maple and Mathematica appendices have 
corresponding information. The appendices for the TI and HP calculators contain only the commands that list 
the coefficients of the characteristic polynomial. 
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5.3 SOLUTIONS 

 1. 15 7 2 0
,

2 3 0 1
−   

= , = , =   
   

P D A PDP  and 4 4 1.−=A PD P  We compute 1 43 7 16 0
, ,

2 5 0 1
− −   

= =   −   
P D  

and 4 5 7 16 0 3 7 226 525
2 3 0 1 2 5 90 209

A
− −       

= =       − −       
 

 2. 12 3 1 0
,

3 5 0 1 2
−−   

= , = , =   − /   
P D A PDP  and 4 4 1.−=A PD P  We compute 

1 45 3 1 0
,

3 2 0 1 16
−    

= , =   /   
P D  and 4 2 3 1 0 5 3 151 901

3 5 0 1 16 3 2 225 13416
A

−       
= =       − / − −       

 

 3. 1 1 0 0 1 0 0
.

3 1 3 10 3 3

   
   −
   
   
      

   
= = =   − −   

k k
k k

k k k k

a a
A PD P

b a b b
 

 4. 1 3 4 2 0 1 4 4 3 2 12 2 12
.

1 1 1 30 1 1 2 4 2 3

 
 −
 
 
  

 − − ⋅ ⋅ −   
= = =     − − ⋅ −      

k k k
k k

k k k
A PD P  

 5. By the Diagonalization Theorem, eigenvectors form the columns of the left factor, and they correspond 
respectively to the eigenvalues on the diagonal of the middle factor. 

   
1 1 2

λ 5 1 λ 1 0 1
1 1 0

     
     = : ; = : , −     
     −     

 

 6. As in Exercise 5, inspection of the factorization gives: 

   
1 2 0

λ 4 2 λ 5 0 1
0 1 0

− −     
     = : ; = : ,     
          

 

 7. Since A is triangular, its eigenvalues are obviously 1.±  

  For λ = 1: 
0 0

1 .
6 2
 

− =  − 
A I  The equation ( 1 )A I− =x 0  amounts to 1 26 2 0,x x− =  so 1 2(1 3)x x= /  with 

2x  free. The general solution is 2
1 3

,
1

/ 
 
 

x  and a nice basis vector for the eigenspace is 1
1

.
3
 

=  
 

v  

  For λ = −1: 
2 0

1 .
6 0
 

+ =  
 

A I  The equation ( 1 )A I+ =x 0  amounts to 12 0,=x  so 1 0x =  with 2x  free. 

The general solution is 2
0

,
1
 
 
 

x  and a basis vector for the eigenspace is 2
0

.
1
 

=  
 

v  

  From 1v  and 2v  construct 1 2
1 0

.
3 1

 
  

 
= =  

 
v vP  Then set 

1 0
,

0 1
 

=  − 
D  where the eigenvalues in D 

correspond to 1v  and 2v  respectively. 
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 8. Since A is triangular, its only eigenvalue is obviously 5. 

  For λ = 5: 
0 1

5 .
0 0
 

− =  
 

A I  The equation ( 5 )A I− =x 0  amounts to 2 0,=x  so 2 0x =  with 1x  free. The 

general solution is 1
1

.
0
 
 
 

x  Since we cannot generate an eigenvector basis for 2, A is not diagonalizable. 

 9. To find the eigenvalues of A, compute its characteristic polynomial: 

  2 23 λ 1
det( λ ) det (3 λ)(5 λ) ( 1)(1) λ 8λ 16 (λ 4)

1 5 λ
A I

− − 
− = = − − − − = − + = − − 

 

  Thus the only eigenvalue of A is 4. 

  For λ = 4: 
1 1

4 .
1 1

− − 
− =  

 
A I  The equation ( 4 )A I− =x 0  amounts to 1 2 0,+ =x x  so 1 2x x= −  with 2x  

free. The general solution is 2
1

.
1

− 
 
 

x  Since we cannot generate an eigenvector basis for 2, A is not 

diagonalizable. 

 10. To find the eigenvalues of A, compute its characteristic polynomial: 

  22 λ 3
det( λ ) det (2 λ)(1 λ) (3)(4) λ 3λ 10 (λ 5)(λ 2)

4 1 λ
A I

− 
− = = − − − = − − = − + − 

 

  Thus the eigenvalues of A are 5 and 2− . 

  For λ = 5: 
3 3

5 .
4 4

− 
− =  − 

A I  The equation ( 5 )A I− =x 0  amounts to 1 2 0,− =x x  so 1 2x x=  with 2x  

free. The general solution is 2
1

,
1
 
 
 

x  and a basis vector for the eigenspace is 1
1

.
1
 

=  
 

v  

  For λ = −2: 
4 3

2 .
4 3
 

+ =  
 

A I  The equation ( 1 )A I+ =x 0  amounts to 1 24 3 0,+ =x x  so 1 2( 3 4)x x= − /  

with 2x  free. The general solution is 2
3 4

,
1

x
− / 
 
 

 and a nice basis vector for the eigenspace is 2
3

.
4

− 
=  
 

v  

  From 1v  and 2v  construct 1 2
1 3

.
1 4

 
  

− 
= =  

 
v vP  Then set 

5 0
,

0 2
 

=  − 
D  where the eigenvalues in 

D correspond to 1v  and 2v  respectively. 

 11. The eigenvalues of A are given to be 1, 2, and 3. 

  For λ = 3: 
4 4 2

3 3 1 0 ,
3 1 0

− − 
 − = − 
 − 

A I  and row reducing [ ]3A I− 0  yields 
1 0 1 4 0
0 1 3 4 0 .
0 0 0 0

− / 
 − / 
  

 The 

general solution is 3

1 4
3 4 ,

1

/ 
 / 
  

x  and a nice basis vector for the eigenspace is 1

1
3 .
4

 
 =  
  

v  
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  For λ = 2: 
3 4 2

2 3 2 0 ,
3 1 1

− − 
 − = − 
 − 

A I  and row reducing [ ]2A I− 0  yields 
1 0 2 3 0
0 1 1 0 .
0 0 0 0

− / 
 − 
  

 The 

general solution is 3

2 3
1 ,
1

/ 
 
 
  

x  and a nice basis vector for the eigenspace is 2

2
3 .
3

 
 =  
  

v  

  For λ = 1: 
2 4 2
3 3 0 ,
3 1 2

− − 
 − = − 
 − 

A I  and row reducing [ ]1A I− 0  yields 
1 0 1 0
0 1 1 0 .
0 0 0 0

− 
 − 
  

 The general 

solution is 3

1
1 ,
1

 
 
 
  

x  and a basis vector for the eigenspace is 3

1
1 .
1

 
 =  
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

1 2 1
3 3 1 .
4 3 1

 
  

 
 = =  
  

v v vP  Then set D =
3 0 0
0 2 0 ,
0 0 1

 
 
 
  

 where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 12. The eigenvalues of A are given to be 2 and 8. 

  For λ = 8: 
4 2 2

8 2 4 2 ,
2 2 4

− 
 − = − 
 − 

A I  and row reducing [ ]8A I− 0  yields 
1 0 1 0
0 1 1 0 .
0 0 0 0

− 
 − 
  

 The 

general solution is 3

1
1 ,
1

 
 
 
  

x  and a basis vector for the eigenspace is 1

1
1 .
1

 
 =  
  

v  

  For λ = 2: 
2 2 2

2 2 2 2 ,
2 2 2

 
 − =  
  

A I  and row reducing [ ]2A I− 0  yields 
1 1 1 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

1 1
1 0 ,
0 1

− −   
   +   
      

x x  and a basis for the eigenspace is 2 3

1 1
{ } 1 0 .

0 1

 − −   
    , = ,    
        

v v  

  From 1 2,v v  and 3v  construct 1 2 3

1 1 1
1 1 0 .
1 0 1

 
  

− − 
 = =  
  

v v vP  Then set 
8 0 0
0 2 0 ,
0 0 2

 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 
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 13. The eigenvalues of A are given to be 5 and 1. 

  For λ = 5: 
3 2 1

5 1 2 1 ,
1 2 3

A I
− − 
 − = − − 
 − − − 

 and row reducing [ ]5A I− 0  yields 
1 0 1 0
0 1 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 3

1
1 ,
1

− 
 − 
  

x  and a basis for the eigenspace is 1

1
1 .
1

− 
 = − 
  

v  

  For λ = 1: 
1 2 1

1 1 2 1 ,
1 2 1

− 
 − = − 
 − − 

A I  and row reducing [ ]A I− 0  yields 
1 2 1 0
0 0 0 0 .
0 0 0 0

− 
 
 
  

 The general 

solution is 2 3

2 1
1 0 ,
0 1

−   
   +   
      

x x  and a basis for the eigenspace is 2 3

2 1
{ } 1 0 .

0 1

 −   
    , = ,    
        

v v  

  From 1 2,v v  and 3v  construct 1 2 3

1 2 1
1 1 0 .
1 0 1

 
  

− − 
 = = − 
  

v v vP  Then set 
5 0 0
0 1 0 ,
0 0 1

 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 14. The eigenvalues of A are given to be 5 and 4. 

  For λ = 5: 
1 0 2

5 2 0 4 ,
0 0 0

− − 
 − =  
  

A I  and row reducing [ ]5A I− 0  yields 
1 0 2 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

0 2
1 0 ,
0 1

−   
   +   
      

x x  and a basis for the eigenspace is 1 2

2 0
{ } 0 1 .

1 0

 −   
    , = ,    
        

v v  

  For λ = 4: 
0 0 2

4 2 1 4 ,
0 0 1

− 
 − =  
  

A I  and row reducing [ ]4A I− 0  yields 
1 1 2 0 0
0 0 1 0 .
0 0 0 0

/ 
 
 
  

 The general 

solution is 3

1 2
1 ,
0

− / 
 
 
  

x  and a nice basis vector for the eigenspace is 3

1
2 .
0

− 
 =  
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

2 0 1
0 1 2 .
1 0 0

 
  

− − 
 = =  
  

v v vP  Then set 
5 0 0
0 5 0 ,
0 0 4

 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 
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 15. The eigenvalues of A are given to be 3 and 1. 

  For λ = 3: 
4 4 16

3 2 2 8 ,
2 2 8

 
 − =  
 − − − 

A I  and row reducing [ ]3A I− 0  yields 
1 1 4 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

1 4
1 0 ,
0 1

− −   
   +   
      

x x  and a basis for the eigenspace is 1 2

1 4
{ } 1 0

0 1

 − −   
    , = ,    
        

v v  

  For λ = 1: 
6 4 16
2 4 8 ,
2 2 6

 
 − =  
 − − − 

A I  and row reducing [ ]A I− 0  yields 
1 0 2 0
0 1 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 3

2
1 ,
1

− 
 − 
  

x  and a basis for the eigenspace is 3

2
1 .
1

− 
 = − 
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

1 4 2
1 0 1 .
0 1 1

 
  

− − − 
 = = − 
  

v v vP  Then set 
3 0 0
0 3 0 ,
0 0 1

 
 =  
  

D  where 

the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 16. The eigenvalues of A are given to be 2 and 1. 

  For λ = 2: 
2 4 6

2 1 2 3 ,
1 2 3

− − − 
 − = − − − 
  

A I  and row reducing [ ]2A I− 0  yields 
1 2 3 0
0 0 0 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2 3

2 3
1 0 ,
0 1

− −   
   +   
      

x x  and a basis for the eigenspace is 1 2

2 3
{ } 1 0 .

0 1

 − −   
    , = ,    
        

v v  

  For λ = 1: 
1 4 6
1 1 3 ,
1 2 4

A I
− − − 
 − = − − − 
  

 and row reducing [ ]A I− 0  yields 
1 0 2 0
0 1 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 3

2
1 ,
1

− 
 − 
  

x  and a basis for the eigenspace is 3

2
1 .
1

− 
 = − 
  

v  

  From 1 2,v v  and 3v  construct 1 2 3

2 3 2
1 0 1 .
0 1 1

 
  

− − − 
 = = − 
  

v v vP  Then set 
2 0 0
0 2 0 ,
0 0 1

 
 =  
  

D  where 

the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 



5.3 • Solutions   277 

 17. Since A is triangular, its eigenvalues are obviously 4 and 5. 

  For λ = 4: 
0 0 0

4 1 0 0 ,
0 0 1

 
 − =  
  

A I  and row reducing [ ]4A I− 0  yields 
1 0 0 0
0 0 1 0 .
0 0 0 0

 
 
 
  

 The general 

solution is 2

0
1 ,
0

 
 
 
  

x  and a basis for the eigenspace is 1

0
1 .
0

 
 =  
  

v  

  Since λ 5=  must have only a one-dimensional eigenspace, we can find at most 2 linearly independent 
eigenvectors for A, so A is not diagonalizable. 

 18. An eigenvalue of A is given to be 5; an eigenvector 1

2
1
2

− 
 =  
  

v  is also given. To find the eigenvalue 

corresponding to 1,v  compute 1 1

7 16 4 2 6
6 13 2 1 3 3 .

12 16 1 2 6

− − −     
     = − = − = −     
          

v vA  Thus the eigenvalue in 

question is 3.−  

  For λ = 5:   
12 16 4

5 6 8 2 ,
12 16 4

− − 
 − = − 
 − 

A I  and row reducing [ ]5A I− 0  yields 
1 4 3 1 3 0
0 0 0 0 .
0 0 0 0

/ − / 
 
 
  

 

The general solution is 2 3

4 3 1 3
1 0 ,
0 1

− / /   
   +   
      

x x  and a nice basis for the eigenspace is 

{ }2 3

4 1
3 0 .
0 3

 −   
    , = ,    
        

v v  

  From 1 2,v v  and 3v  construct 1 2 3

2 4 1
1 3 0 .
2 0 3

 
 

− − 
 = =  
  

v v vP  Then set 
3 0 0
0 5 0 ,
0 0 5

− 
 =  
  

D  where the 

eigenvalues in D correspond to 1 2,v v  and 3v  respectively. Note that this answer differs from the text. 
There, 2 3 1P  

 = v v v  and the entries in D are rearranged to match the new order of the eigenvectors. 
According to the Diagonalization Theorem, both answers are correct. 

 19. Since A is triangular, its eigenvalues are obviously 2, 3, and 5. 

  For λ = 2:   

3 3 0 9
0 1 1 2

2 ,
0 0 0 0
0 0 0 0

− 
 − − =
 
 
  

A I  and row reducing [ ]2   A I− 0  yields 

1 0 1 1 0
0 1 1 2 0

.
0 0 0 0 0
0 0 0 0 0

 
 − 
 
 
  

 The 

general solution is 3 4

1 1
1 2

,
1 0
0 1

− −   
   −   +
   
   
      

x x  and a nice basis for the eigenspace is 1 2

1 1
1 2

{ } .
1 0
0 1

 − −   
    −    , = ,                

v v  
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  For λ = 3:   

2 3 0 9
0 0 1 2

3 ,
0 0 1 0
0 0 0 1

− 
 − − =
 −
 −  

A I  and row reducing [ ]3   A I− 0  yields 

1 3 2 0 0 0
0 0 1 0 0

.
0 0 0 1 0
0 0 0 0 0

− / 
 
 
 
 
  

 

The general solution is 2

3 2
1

,
0
0

/ 
 
 
 
 
  

x  and a nice basis for the eigenspace is 3

3
2

.
0
0

 
 
 =
 
 
  

v  

  For λ = 5:   

0 3 0 9
0 2 1 2

5 ,
0 0 3 0
0 0 0 3

− 
 − − − =
 −
 −  

A I  and row reducing [ ]5   A I− 0  yields 

0 1 0 0 0
0 0 1 0 0

.
0 0 0 1 0
0 0 0 0 0

 
 
 
 
 
  

 The 

general solution is 1

1
0

,
0
0

 
 
 
 
 
  

x  and a basis for the eigenspace is 4

1
0

.
0
0

 
 
 =
 
 
  

v  

  From 1 2 3, ,v v v  and 4v  construct 1 2 3 4

1 1 3 1
1 2 2 0

.
1 0 0 0
0 1 0 0

 
 

− − 
 − = =
 
 
  

v v v vP  Then set 

2 0 0 0
0 2 0 0

,
0 0 3 0
0 0 0 5

 
 
 =
 
 
  

D  

where the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. Note that this answer differs from 
the text. There, [ ]4 3 1 2   P = v v v v  and the entries in D are rearranged to match the new order of the 
eigenvectors. According to the Diagonalization Theorem, both answers are correct. 

 20. Since A is triangular, its eigenvalues are obviously 4 and 2. 

  For λ = 4: 

0 0 0 0
0 0 0 0

4 ,
0 0 2 0
1 0 0 2

 
 
 − =
 −
 −  

A I  and row reducing [ ]4   A I− 0  yields 

1 0 0 2 0
0 0 1 0 0

.
0 0 0 0 0
0 0 0 0 0

− 
 
 
 
 
  

 The 

general solution is 2 4

0 2
1 0

,
0 0
0 1

   
   
   +
   
   
      

x x  and a basis for the eigenspace is { }1 2

0 2
1 0

.
0 0
0 1

    
    
    , = ,                

v v  

  For λ = 2: 

2 0 0 0
0 2 0 0

2 ,
0 0 0 0
1 0 0 0

 
 
 − =
 
 
  

A I  and row reducing [ ]2   A I− 0  yields 

1 0 0 0 0
0 1 0 0 0

.
0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
  

 The 

general solution is 3 4

0 0
0 0

,
1 0
0 1

   
   
   +
   
   
      

x x  and a basis for the eigenspace is 3 4

0 0
0 0

{ } .
1 0
0 1

    
    
    , = ,                

v v  
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  From 1 2 3, ,v v v  and 4v  construct 1 2 3 4

0 2 0 0
1 0 0 0

  .
0 0 1 0
0 1 0 1

 
 

 
 
 = =
 
 
  

v v v vP  Then set 

4 0 0 0
0 4 0 0

,
0 0 2 0
0 0 0 2

 
 
 =
 
 
  

D  

where the eigenvalues in D correspond to 1 2,v v  and 3v  respectively. 

 21. a. False. The symbol D does not automatically denote a diagonal matrix. 
 b. True. See the remark after the statement of the Diagonalization Theorem. 
 c. False. The 3 3×  matrix in Example 4 has 3 eigenvalues, counting multiplicities, but it is not 

diagonalizable. 
 d. False. Invertibility depends on 0 not being an eigenvalue. (See the Invertible Matrix Theorem.)  

A diagonalizable matrix may or may not have 0 as an eigenvalue. See Examples 3 and 5 for both 
possibilities. 

 22. a. False. The n eigenvectors must be linearly independent. See the Diagonalization Theorem. 
b. False. The matrix in Example 3 is diagonalizable, but it has only 2 distinct eigenvalues. (The 

statement given is the converse of Theorem 6.) 
 c. True. This follows from AP PD=  and formulas (1) and (2) in the proof of the Diagonalization 

Theorem. 
 d. False. See Example 4. The matrix there is invertible because 0 is not an eigenvalue, but the matrix is 

not diagonalizable. 

 23. A is diagonalizable because you know that five linearly independent eigenvectors exist: three in the 
three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7 guarantees that the 
set of all five eigenvectors is linearly independent. 

 24. No, by Theorem 7(b). Here is an explanation that does not appeal to Theorem 7: Let 1v  and 2v  be 
eigenvectors that span the two one-dimensional eigenspaces. If v is any other eigenvector, then it belongs 
to one of the eigenspaces and hence is a multiple of either 1v  or 2.v  So there cannot exist three linearly 
independent eigenvectors. By the Diagonalization Theorem, A cannot be diagonalizable. 

 25. Let 1{ }v  be a basis for the one-dimensional eigenspace, let 2v  and 3v  form a basis for the two-
dimensional eigenspace, and let 4v  be any eigenvector in the remaining eigenspace. By Theorem 7, 

1 2 3 4{    }, , ,v v v v  is linearly independent. Since A is 4 4,×  the Diagonalization Theorem shows that  
A is diagonalizable. 

 26. Yes, if the third eigenspace is only one-dimensional. In this case, the sum of the dimensions of the 
eigenspaces will be six, whereas the matrix is 7 7.×  See Theorem 7(b). An argument similar to that for 
Exercise 24 can also be given. 

 27. If A is diagonalizable, then 1A PDP−=  for some invertible P and diagonal D. Since A is invertible, 0 is 
not an eigenvalue of A. So the diagonal entries in D (which are eigenvalues of A) are not zero, and D is 
invertible. By the theorem on the inverse of a product, 

   1 1 1 1 1 1 1 1 1( ) ( )A PDP P D P PD P− − − − − − − − −= = =  

  Since 1D−  is obviously diagonal, 1A−  is diagonalizable. 
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 28. If A has n linearly independent eigenvectors, then by the Diagonalization Theorem, 1A PDP−=  for some 
invertible P and diagonal D. Using properties of transposes, 

   
1 1

1 1

( ) ( )
( )

− −

− −

= =
= =

T T T T T

T T

A PDP P D P
P DP QDQ

 

  where 1( ) .−= TQ P  Thus TA  is diagonalizable. By the Diagonalization Theorem, the columns of Q are n 
linearly independent eigenvectors of .TA  

 29. The diagonal entries in 1D  are reversed from those in D. So interchange the (eigenvector) columns of  
P to make them correspond properly to the eigenvalues in 1.D  In this case,  

   1 1
1 1 3 0

and
2 1 0 5

P D
   

= =   − −   
 

  Although the first column of P must be an eigenvector corresponding to the eigenvalue 3, there is 

nothing to prevent us from selecting some multiple of 
1

,
2

 
 − 

 say 
3

,
6

− 
 
 

 and letting 2
3 1

.
6 1

− 
=  − 

P  We 

now have three different factorizations or “diagonalizations” of A:  

   1 1 1
1 1 1 2 1 2A PDP P D P P D P− − −= = =  

30. A nonzero multiple of an eigenvector is another eigenvector. To produce 2 ,P  simply multiply one or 
both columns of P by a nonzero scalar unequal to 1. 

31. For a 2 2×  matrix A to be invertible, its eigenvalues must be nonzero. A first attempt at a construction 

might be something such as 
2 3

,
0 4
 
 
 

 whose eigenvalues are 2 and 4. Unfortunately, a 2 2×  matrix with 

two distinct eigenvalues is diagonalizable (Theorem 6). So, adjust the construction to 
2 3

,
0 2
 
 
 

 which 

works. In fact, any matrix of the form 
0
a b

a
 
 
 

 has the desired properties when a and b are nonzero. The 

eigenspace for the eigenvalue a is one-dimensional, as a simple calculation shows, and there is no other 
eigenvalue to produce a second eigenvector.  

32. Any 2 2×  matrix with two distinct eigenvalues is diagonalizable, by Theorem 6. If one of those 

eigenvalues is zero, then the matrix will not be invertible. Any matrix of the form 
0 0
a b 
 
 

 has the 

desired properties when a and b are nonzero. The number a must be nonzero to make the matrix 

diagonalizable; b must be nonzero to make the matrix not diagonal. Other solutions are 
0 0
a b
 
 
 

  

and 
0

.
0
 
 
 

a
b
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 33. 

6 4 0 9
3 0 1 6

,
1 2 1 0
4 4 0 7

− 
 − =
 − −
 −  

A   

  ev =eig(A)=(5,1,-2,-2) 

  nulbasis(A-ev(1)*eye(4))

1 0000
0 5000
0 5000
1 0000

. 
 . =
 − .
 .  

 

  A basis for the eigenspace of 

2
1

5 is .
1
2

 
 
 λ =
 −
 
  

 

  nulbasis(A-ev(2)*eye(4))

1 0000
0 5000
3 5000
1 0000

. 
 − . =
 − .
 .  

 

  A basis for the eigenspace of 

2
1

1is .
7
2

 
 − λ =
 −
 
  

 

  nulbasis(A-ev(3)*eye(4))

1 0000 1 5000
1 0000 0 7500
1 0000 0

0 1 0000

. .   
   . − .   = ,
   .
   .      

 

  A basis for the eigenspace of 

1 6
1 3

2 is .
1 0
0 4

   
   −   λ = − ,
   
   
      

 

  Thus we construct 

2 2 1 6
1 1 1 3
1 7 1 0
2 2 0 4

P

 
 − − =
 − −
 
  

 and 

5 0 0 0
0 1 0 0

.
0 0 2 0
0 0 0 2

 
 
 =
 −
 −  

D  

 34. 

0 13 8 4
4 9 8 4

,
8 6 12 8
0 5 0 4

 
 
 =
 
 −  

A  

  ev = eig(A)=(-4,24,1,-4) 
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  nulbasis(A-ev(1)*eye(4))

2 1
0 0
1 0
0 1

− −   
   
   = ,
   
   
      

 

  A basis for the eigenspace of 

2 1
0 0

4 is .
1 0
0 1

− −   
   
   λ = − ,
   
   
      

 

  nulbasis(A-ev(2)*eye(4))

5 6000
5 6000
7 2000
1 0000

. 
 . =
 .
 .  

 

  A basis for the eigenspace of 

28
28

24 is .
36

5

 
 
 λ =
 
 
  

 

  nulbasis(A-ev(3)*eye(4))

1 0000
1 0000
2 0000
1 0000

. 
 . =
 − .
 .  

 

  A basis for the eigenspace of 

1
1

1 is .
2
1

 
 
 λ =
 −
 
  

 

  Thus we construct 

2 1 28 1
0 0 28 1
1 0 36 2
0 1 5 1

P

− − 
 
 =
 −
 
  

 and 

4 0 0 0
0 4 0 0

.
0 0 24 0
0 0 0 1

− 
 − =
 
 
  

D  

 35. 

11 6 4 10 4
3 5 2 4 1

,8 12 3 12 4
1 6 2 3 1
8 18 8 14 1

− − − 
 − − 
 = − −
 − − 
 − − − 

A  

  ev = eig(A)=(5,1,3,5,1) 

  nulbasis(A-ev(1)*eye(5))

2 0000 1 0000
0 3333 0 3333
1 0000 1 0000
1 0000 0

0 1 0000

. .   
   − . − .   
   = ,− . − .
   .   
   .   
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  A basis for the eigenspace of 

6 3
1 1

5 is .3 3
3 0
0 3

   
   − −   
   λ = ,− −
   
   
      

 

  nulbasis(A-ev(2)*eye(5))

0 8000 0 6000
0 6000 0 2000
0 4000 0 8000
1 0000 0

0 1 0000

. .   
   − . − .   
   = ,− . − .
   .   
   .   

 

  A basis for the eigenspace of 

4 3
3 1

1 is .2 4
5 0
0 5

   
   − −   
   λ = ,− −
   
   
      

 

  nulbasis(A-ev(3)*eye(5))

0 5000
0 2500
1 0000
0 2500
1 0000

. 
 − . 
 = − .
 − . 
 . 

 

  A basis for the eigenspace of 

2
1

3 is .4
1
4

 
 − 
 λ = −
 − 
  

 

  Thus we construct 

6 3 4 3 2
1 1 3 1 1
3 3 2 4 4
3 0 5 0 1
0 3 0 5 4

P

 
 − − − − − 
 = − − − − −
 − 
  

 and 

5 0 0 0 0
0 5 0 0 0

.0 0 1 0 0
0 0 0 1 0
0 0 0 0 3

 
 
 
 =
 
 
  

D  

 36. 

4 4 2 3 2
0 1 2 2 2

,6 12 11 2 4
9 20 10 10 6

15 28 14 5 3

− 
 − − 
 = −
 − 
 − 

A  

  ev = eig(A)=(3,5,7,5,3) 



284 CHAPTER 5 • Eigenvalues and Eigenvectors 

  nulbasis(A-ev(1)*eye(5))

2 0000 1 0000
1 5000 0 5000
0 5000 0 5000
1 0000 0

0 1 0000

. − .   
   − . .   
   = ,. .
   .   
   .   

 

  A basis for the eigenspace of 

4 2
3 1

3 is .1 1
2 0
0 2

−   
   −   
   λ = ,
   
   
      

 

  nulbasis(A-ev(2)*eye(5))

0 1 0000
0 5000 1 0000
1 0000 0

0 1 0000
0 1 0000

− .   
   − . .   
   = ,.
   − .   
   .   

 

  A basis for the eigenspace of 

0 1
1 1

5 is .2 0
0 1
0 1

−   
   −   
   λ = ,
   −   
      

 

  nulbasis(A-ev(3)*eye(5))

0 3333
0 0000
0 0000
1 0000
1 0000

. 
 . 
 = .
 . 
 . 

 

  A basis for the eigenspace of 

1
0

7 is .0
3
3

 
 
 
 λ =
 
 
  

 

  Thus we construct 

4 2 0 1 1
3 1 1 1 0
1 1 2 0 0
2 0 0 1 3
0 2 0 1 3

P

− − 
 − − 
 =
 − 
  

 and 

.

3 0 0 0 0
0 3 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 7

 
 
 
 =
 
 
  

D  

Notes: For your use, here is another matrix with five distinct real eigenvalues. To four decimal places, they 
are 11.0654, 9.8785, 3.8238, 3 7332,− .  and 6 0345.− .  
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6 8 5 3 0
7 3 5 3 0
3 7 5 3 5
0 4 1 7 5
5 3 2 0 8

− − 
 − − 
 − − −
 − − 
 − − − 

 

The MATLAB box in the Study Guide encourages students to use eig (A) and nulbasis to practice 
the diagonalization procedure in this section. It also remarks that in later work, a student may automate the 
process, using the command [ ] =P D  eig (A). You may wish to permit students to use the full power of 
eig in some problems in Sections 5.5 and 5.7. 

5.4 SOLUTIONS 

 1. Since 1 1 2 1
3

( ) 3 5 [ ( )] .
5

 
= − , =  − 

b d d b DT T  Likewise 2 1 2( ) 6T = − +b d d  implies that 2
1

[ ( )]
6DT

− 
=  
 

b  and 

3 2( ) 4T =b d  implies that 3
0

[ ( )] .
4
 

=  
 

b DT  Thus the matrix for T relative to B  and 

1 2 3
3 1 0

 is [ ( )] [ ( )] [ ( )] .
5 6 4

 
 

− 
=  − 

b b bD D DD T T T  

 2. Since 1 1 2 1
2

( ) 2 3 [ ( )] .
3

 
= − , =  − 

d b b d BT T  Likewise 2 1 2( ) 4 5T = − +d b b  implies that 2
4

[ ( )] .
5

− 
=  
 

d BT  

Thus the matrix for T relative to D  and 1 2
2 4

is [ ( )] [ ( )] .
3 5

 
 

− 
=  − 

d dB BB T T  

 3. a. 1 1 2 3 2 1 2 3 3 1 2 3( ) 0 1 ( ) 1 0 1 ( ) 1 1 0= − + , = − − − , = − +e b b b e b b b e b b bT T T  

 b. 1 2 3

0 1 1
[ ( )] 1 [ ( )] 0 [ ( )] 1

1 1 0
B B BT T T

−     
     = − , = , = −     
     −     

e e e  

 c. The matrix for T relative to E  and 1 2 3

0 1 1
is [ [ ( )] [ ( )] [ ( )] ] 1 0 1 .

1 1 0

− 
 = − − 
 − 

e e eB B BB T T T  

 4. Let 1 2{ }= ,e eE  be the standard basis for . Since 1 1 2 2
2 4

[ ( )] ( ) [ ( )] ( ) ,
0 1

−   
= = , = =   −   

b b b bT T T TE E   

and 3 3
5

[ ( )] ( ) ,
3
 

= =  
 

b bT TE  the matrix for T relative to B  and 1 2 3is [[ ( )] [ ( )] [ ( )] ] =b b bT T TE E EE  

2 4 5
.

0 1 3
− 

 − 
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 5. a. 2 2 3( ) ( 5)(2 ) 10 3 4T t t t t t t= + − + = − + +p  

 b. Let p  and q  be polynomials in 2, and let c  be any scalar. Then 

   
( ( ) ( )) ( 5)[ ( ) ( )] ( 5) ( ) ( 5) ( )

( ( )) ( ( ))
T t t t t t t t t t

T t T t
+ = + + = + + +

= +
p q p q p q

p q
  

   
( ( )) ( 5)[ ( )] ( 5) ( )

[ ( )]
T c t t c t c t t

c T t
⋅ = + ⋅ = ⋅ +

= ⋅
p p p

p
 

  and T is a linear transformation. 

c. Let 2{1 }B t t= , ,  and 2 3{1 } .= , , ,C t t t  Since 1 1

5
1

( ) (1) ( 5)(1) 5  [ ( )] .
0
0

 
 
 = = + = + , =
 
 
  

b b CT T t t T  Likewise 

since 2
2 2

0
5

( ) ( ) ( 5)( ) 5  [ ( )] ,
1
0

 
 
 = = + = + , =
 
 
  

b b CT T t t t t t T  and since 

2 2 3 2
3 3

0
0

( ) ( ) ( 5)( ) 5  [ ( )] .
5
1

 
 
 = = + = + , =
 
 
  

b b CT T t t t t t T  Thus the matrix for T  relative to B  and 

1 2 3

5 0 0
1 5 0

 is [ [ ( )] [ ( )] [ ( )] ] .
0 1 5
0 0 1

 
 
 =
 
 
  

b b bC C CC T T T  

 6. a. 2 2 2 2 3 4( ) (2 ) (2 ) 2 3T t t t t t t t t t= − + + − + = − + − +p  

b. Let p  and q  be polynomials in 2, and let c  be any scalar. Then 

   

2

2 2

2

2

( ( ) ( )) [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]
( ( )) ( ( ))

( ( )) [ ( )] [ ( )]

[ ( ) ( )]
[ ( )]

T t t t t t t t

t t t t t t
T t T t

T c t c t t c t

c t t t
c T t

+ = + + +

= + + +
= +

⋅ = ⋅ + ⋅

= ⋅ +
= ⋅

p q p q p q

p p q q
p q

p p p

p p
p

 

   and T is a linear transformation. 
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c. Let 2{1 }B t t= , ,  and 2 3 4{1 } .= , , , ,C t t t t  Since 2 2
1 1

1
0

( ) (1) 1 (1) 1 [ ( )] .1
0
0

 
 
 
 = = + = + , =
 
 
  

b b CT T t t T  

Likewise since 2 3
2 2

0
1

( ) ( ) ( )( ) [ ( )] ,0
1
0

 
 
 
 = = + = + , =
 
 
  

b b CT T t t t t t t T  and  

since 2 2 2 2 4 2
3 3

0
0

( ) ( ) ( )( ) [ ( )] .1
0
1

 
 
 
 = = + = + , =
 
 
  

b b CT T t t t t t t T  Thus the matrix for T relative to  

B  and 1 2 3

1 0 0
0 1 0

 is [ [ ( )] [ ( )] [ ( )] ] .1 0 1
0 1 0
0 0 1

 
 
 
 =
 
 
  

b b bC C CC T T T  

 7. Since 1 1

3
( ) (1) 3 5 [ ( )] 5 .

0

 
 = = + , =  
  

b b BT T t T  Likewise since 2
2 2

0
( ) ( ) 2 4 [ ( )] 2 ,

4

 
 = = − + , = − 
  

b b BT T t t t T  

and since 2 2
3 3

0
( ) ( ) [ ( )] 0 .

1

 
 = = , =  
  

b b BT T t t T  Thus the matrix representation of T relative to the basis  

B  is 1 2 3

3 0 0
[ ( )] [ ( )] [ ( )] 5 2 0 .

0 4 1

 
 

 
 = − 
  

b b bB B BT T T  Perhaps a faster way is to realize that the 

information given provides the general form of ( )T p  as shown in the figure below: 

  

2 2
0 1 2 0 0 1 1 2

coordinate coordinate
mapping mapping

0 0multiplication

1 0 1
by[ ]

2 1 2

3 (5 2 ) (4 )

3
5 2
4

   
   
   
   
   
   
      

+ + → + − + +

→ −
+BT

T
a a t a t a a a t a a t

a a
a a a
a a a
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  The matrix that implements the multiplication along the bottom of the figure is easily filled in by 
inspection: 

   
0 0

1 0 1

2 1 2

3 3 0 0
5 2  implies that [ ] 5 2 0
4 0 4 1

B

a a
a a a T
a a a

   
   
   
   
   
   
      

? ? ?   
   ? ? ? = − = −   
   ? ? ? +   

 

 8. Since 1 2

3
[3 4 ] 4 ,

0

 
 − = − 
  

b b B  1 2 1 2

0 6 1 3 24
[ (3 4 )] [ ] [3 4 ] 0 5 1 4 20

1 2 7 0 11
B B BT T

−     
     − = − = − − = −     
     −     

b b b b  

  and 1 2 1 2 3(3 4 ) 24 20 11 .− = − +b b b b bT  

 9. a. 
5 3( 1) 2

( ) 5 3(0) 5
5 3(1) 8

T
+ −   

   = + =   
   +   

p  

 b. Let p and q be polynomials in 2, and let c be any scalar. Then 

   
( )( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( )(0) (0) (0) (0) (0) ( ) ( )
( )(1) (1) (1) (1) (1)

+ − − + − − −       
       + = + = + = + = +       
       + +       

p q p q p q
p q p q p q p q p q

p q p q p q
T T T  

   
( ( 1)) ( 1)( )( 1)

( ) ( (0)) (0) ( ) ( )(0)
( (1)) (1)( )(1)

cc
T c c c c Tc

cc

⋅ − −⋅ −     
    ⋅ = = ⋅ = ⋅ = ⋅⋅     
     ⋅⋅     

p pp
p p p pp

p pp
 

  and T is a linear transformation. 

c. Let 2{1 }= , ,B t t  and 1 2 3{ }= , ,e e eE  be the standard basis for 3. Since 

1 1 2 2

1 1
[ ( )] ( ) (1) 1  [ ( )] ( ) ( ) 0 ,

1 1

−   
   = = = , = = =   
      

b b b bT T T T T T tE E  and 2
3 3

1
[ ( )] ( ) ( ) 0 ,

1

 
 = = =  
  

b bT T T tE  

the matrix for T relative to B  and E  is 1 2 3

1 1 1
[ ( )] [ ( )] [ ( )] 1 0 0 .

1 1 1

 
 

− 
 =  
  

b b bT T TE E E  

 10. a. Let p and q be polynomials in 3, and let c be any scalar. Then 

   

( )( 3) ( 3) ( 3)
( )( 1) ( 1) ( 1)

( )
( )(1)  (1) (1)
( )(3) (3) (3)

T

+ − − + −  
  + − − + −  + = =
  + +
  + +      

p q p q
p q p q

p q
p q p q
p q p q

( 3) ( 3)
( 1) ( 1)

( ) ( )
(1) (1)
(3) (3)

T T

− −   
   − −   = + = +
   
   
      

p q
p q

p q
p q
p q

 

    

( )( 3) ( ( 3)) ( 3)
( )( 1) ( ( 1)) ( 1)

( ) ( )
( )(1) ( (1)) (1)
( )(3) ( (3)) (3)

c c
c c

T c c c T
c c
c c

⋅ − ⋅ − −     
     ⋅ − ⋅ − −     ⋅ = = = ⋅ = ⋅
     ⋅ ⋅
     ⋅ ⋅          

p p p
p p p

p p
p p p
p p p

 

   and T is a linear transformation. 
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b. Let 2 3{1 }= , , ,B t t t  and 1 2 3 4{ }= , , ,e e e eE  be the standard basis for 3. Since 

2
1 1 2 2 3 3

1 3 9
1 1 1

[ ( )] ( ) (1)  [ ( )] ( ) ( )  [ ( )] ( ) ( ) ,
1 1 1
1 3 9

−     
     −     = = = , = = = , = = =
     
     
          

b b b b b bT T T T T T t T T T tE E E  and 

3
4 4

27
1

[ ( )] ( ) ( ) ,
1

27

− 
 − = = =
 
 
  

b bT T T tE  the matrix for T relative to B  and E  is 

1 2 3 4

1 3 9 27
1 1 1 1

[ ( )] [ ( )] [ ( )] [ ( )] .
1 1 1 1
1 3 9 27

 
 

− − 
 − − =
 
 
  

b b b bT T T TE E E E  

 11. Following Example 4, if 1 2
2 1

,
1 2

 
  

 
= =  − 

b bP  then the B-matrix is 

   1 2 1 3 4 2 1 1 51
1 2 1 1 1 2 0 15

P AP− −       
= =       − − −       

 

 12. Following Example 4, if 1 2
3 1

,
2 1

 
  

− 
= =  

 
b bP  then the B-matrix is 

   1 1 1 1 4 3 1 1 21
2 3 2 3 2 1 2 15

P AP− − −       
= =       − − −       

 

 13. Start by diagonalizing A. The characteristic polynomial is 2λ 4λ 3 (λ 1)(λ 3),− + = − −  so the eigenvalues 
of A are 1 and 3. 

  For λ = 1: 
1 1

.
3 3

− 
− =  − 

A I  The equation ( )A I− =x 0  amounts to 1 2 0,x x− + =  so 1 2x x=  with 2x  

free. A basis vector for the eigenspace is thus 1
1

.
1
 

=  
 

v  

  For λ = 3: 
3 1

3 .
3 1

− 
− =  − 

A I  The equation ( 3 )A I− =x 0  amounts to 1 23 0,x x− + =  so 1 2(1 3)x x= /  with 

2x  free. A nice basis vector for the eigenspace is thus 2
1

.
3
 

=  
 

v  

  From 1v  and 2v  we may construct 1 2
1 1
1 3

P  
  

 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x6  is a diagonal matrix. 
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 14. Start by diagonalizing A. The characteristic polynomial is 2λ 6λ 16 (λ 8)(λ 2),− − = − +  so the 
eigenvalues of A are 8 and 2.−  

  For λ = 8: 
3 3

8 .
7 7

A I
− − 

− =  − − 
 The equation ( 8 )A I− =x 0  amounts to 1 2 0,x x+ =  so 1 2x x= −  with 2x  

free. A basis vector for the eigenspace is thus 1
1

.
 1

− 
=  
 

v  

  For λ = 2:
7 3

2 .
7 3

A I
− 

+ =  − 
 The equation ( 2 )A I− =x 0  amounts to 1 27 3 0,x x− =  so 1 2(3 7)x x= /  

with 2x  free. A nice basis vector for the eigenspace is thus 2
3

.
7
 

=  
 

v  

  From 1v  and 2v  we may construct 1 2
1 3
1 7

P  
  

− 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x6  is a diagonal matrix. 

 15. Start by diagonalizing A. The characteristic polynomial is 2λ 7λ 10 (λ 5)(λ 2),− + = − −  so the 
eigenvalues of A are 5 and 2. 

  For λ = 5: 
1 2

5 .
1 2

− − 
− =  − − 

A I  The equation ( 5 )A I− =x 0  amounts to 1 22 0,x x+ =  so 1 22x x= −  with 

2x  free. A basis vector for the eigenspace is thus 1
2

.
1

− 
=  
 

v  

  For λ = 2: 
2 2

2 .
1 1

A I
− 

− =  − 
 The equation ( 2 )A I− =x 0  amounts to 1 2 0,− =x x  so 1 2x x=  with 2x  

free. A basis vector for the eigenspace is thus 2
1

.
1
 

=  
 

v  

  From 1v  and 2v  we may construct 1 2
2 1
1 1

P  
  

− 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x6  is a diagonal matrix. 

 16. Start by diagonalizing A. The characteristic polynomial is 2λ 5λ λ(λ 5),− = −  so the eigenvalues of A are 
5 and 0. 

  For λ = 5: 
3 6

5 .
1 2

− − 
− =  − − 

A I  The equation ( 5 )A I− =x 0  amounts to 1 22 0,x x+ =  so 1 22x x= −  with 

2x  free. A basis vector for the eigenspace is thus 1
2

.
1

− 
=  
 

v  

  For λ = 0: 
2 6

0 .
1 3

− 
− =  − 

A I  The equation ( 0 )A I− =x 0  amounts to 1 23 0,x x− =  so 1 23x x=  with  

2x  free. A basis vector for the eigenspace is thus 2
3

.
1
 

=  
 

v  
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  From 1v  and 2v  we may construct 1 2
2 3
1 1

P  
  

− 
= =  

 
v v  which diagonalizes A. By Theorem 8, the 

basis 1 2{ }B = ,v v  has the property that the B-matrix of the transformation Ax x6  is a diagonal matrix. 

 17. a. We compute that 

   1 1
1 1 1 2

2
1 3 1 2

A
     

= = =     −     
b b  

  so 1b  is an eigenvector of A corresponding to the eigenvalue 2. The characteristic polynomial of A is 

2 2λ 4λ 4 (λ 2) ,− + = −  so 2 is the only eigenvalue for A. Now 
1 1

2 ,
1 1

− 
− =  − 

A I  which implies that 

the eigenspace corresponding to the eigenvalue 2 is one-dimensional. Thus the matrix A is not 
diagonalizable. 

 b. Following Example 4, if 1 2 , 
  = b bP  then the B-matrix for T is 

   1 4 5 1 1 1 1 1 5 2 1
1 1 1 3 1 3 1 4 0 2

P AP− − −         
= = =         − − −         

 

 18. If there is a basis B  such that [ ]BT  is diagonal, then A is similar to a diagonal matrix, by the second 
paragraph following Example 3. In this case, A would have three linearly independent eigenvectors. 
However, this is not necessarily the case, because A has only two distinct eigenvalues. 

 19. If A is similar to B, then there exists an invertible matrix P such that 1 .− =P AP B  Thus B is invertible 
because it is the product of invertible matrices. By a theorem about inverses of products, 

1 1 1 1 1 1 1( ) ,− − − − − − −= =B P A P P A P  which shows that 1A−  is similar to 1.−B  

 20. If 1,−=A PBP  then 2 1 1 1 1 1 2 1( )( ) ( ) .− − − − − −= = = ⋅ ⋅ =A PBP PBP PB P P BP PB I BP PB P  So 2A  is  

similar to 2.B  

 21. By hypothesis, there exist invertible P and Q such that 1P BP A− =  and 1 .− =Q CQ A  Then 
1 1 .− −=P BP Q CQ  Left-multiply by Q and right-multiply by 1Q−  to obtain 1 1 1 1.− − − −=QP BPQ QQ CQQ   

So 1 1 1 1 1( ) ( ),− − − − −= =C QP BPQ PQ B PQ  which shows that B is similar to C. 

 22. If A is diagonalizable, then 1A PDP−=  for some P. Also, if B is similar to A, then 1B QAQ−=   
for some Q. Then 1 1 1 1 1( ) ( ) ( ) ( ) ( )B Q PDP Q QP D P Q QP D QP− − − − −= = =  

  So B is diagonalizable. 

 23. If λ 0,= , ≠x x xA  then 1 1λ .P A P− −=x x  If 1 ,−=B P AP  then 

   1 1 1 1 1( ) ( ) λB P P AP P P A P− − − − −= = =x x x x  (*) 

  by the first calculation. Note that 1 0,− ≠xP  because 0≠x  and 1P−  is invertible. Hence (*) shows that 
1P− x  is an eigenvector of B corresponding to λ . (Of course, λ  is an eigenvalue of both A and B because 

the matrices are similar, by Theorem 4 in Section 5.2.) 

 24. If 1,−=A PBP  then 1 1rank rank ( ) rank ,− −= =A P BP BP  by Supplementary Exercise 13 in Chapter 4. 
Also, 1rank rank ,− =BP B  by Supplementary Exercise 14 in Chapter 4, since 1P−  is invertible. Thus 
rank rank .=A B  
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 25. If 1,−=A PBP  then 

   
1 1

1

tr( ) tr(( ) ) tr( ( )) By the trace property

tr( ) tr( ) tr( )

A PB P P PB

P PB IB B

− −

−

= =

= = =
 

  If B is diagonal, then the diagonal entries of B must be the eigenvalues of A, by the Diagonalization 
Theorem (Theorem 5 in Section 5.3). So tr tr {sum of the eigenvalues of }.= =A B A  

 26. If 1A PDP−=  for some P, then the general trace property from Exercise 25 shows that 
1tr tr [( ) ]A PD P−= = 1tr [ ] tr .− =P PD D  (Or, one can use the result of Exercise 25 that since A is similar  

to D, tr tr .=A D ) Since the eigenvalues of A are on the main diagonal of D, tr D is the sum of the 
eigenvalues of A. 

 27. For each ( ) ., =b bj jj I  Since the standard coordinate vector of any vector in n is just the vector itself, 

[ ( )] .=b bj jI ε  Thus the matrix for I relative to B  and the standard basis E  is simply 1 2 . 
  b b bn…  

This matrix is precisely the change-of-coordinates matrix BP  defined in Section 4.4. 

 28. For each ( ) ,, =b bj jj I  and [ ( )] [ ] .=b bj C j CI  By formula (4), the matrix for I relative to the bases B  
and C is 

  1 2[ ] [ ] [ ]C n CCM … 
  = b b b  

  In Theorem 15 of Section 4.7, this matrix was denoted by 
C B

P
←

 and was called the change-of-coordinates 

matrix from B  to .C  

 29. If 1{ },= , ,b bnB …  then the B-coordinate vector of jb  is ,e j  the standard basis vector for n. For 
instance, 

   1 1 21 0 0= ⋅ + ⋅ + + ⋅b b b bn
…  

  Thus j j j[ ( )] [ ] ,= =b b eB BI  and 

   1 1[ ] [ ( )] [ ( )] [ ]B B n B nI I I I 
 = = =b b e e" "  

 30. [M] If P is the matrix whose columns come from ,B  then the B-matrix of the transformation Ax x6  is 
1 .−=D P AP  From the data in the text, 

   1 2 3

14 4 14 1 1 1
33 9 31 2 1 2
11 4 11 1 1 0

A P  
  

− − − − −   
   = − − , = = − − − ,   
   −   

b b b  

   
2 1 1 14 4 14 1 1 1 8 3 6
2 1 0 33 9 31 2 1 2 0 1 3
1 0 1 11 4 11 1 1 0 0 0 3

D
− − − − − − −       

       = − − − − − − =       
       − − − −       
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 31. [M] If P is the matrix whose columns come from ,B  then the B-matrix of the transformation Ax x6   
is 1 .−=D P AP  From the data in the text, 

  

1 2 3

7 48 16 3 2 3
1 14 6 1 1 1
3 45 19 3 3 0

1 3 1 3 7 48 16 3 2 3 7 2 6
1 3 0 1 14 6 1 1 1 0 4 6
0 1 1 3 3 45 19 3 3 0 0 0 1

 
  

− − − − −   
   = , = = − ,   
   − − − − −   

− − − / − − − − − − − −       
       = − = − −       
       − − / − − − − − −       

b b bA P

D

 

 32. [M] 

15 66 44 33
0 13 21 15

,
1 15 21 12
2 18 22 8

− − − 
 − =
 − −
 − −  

A  

  ev = eig(A) = (2, 4, 4, 5) 

  nulbasis(A-ev(1)*eye(4))

0 0000
1 5000
1 5000
1 0000

. 
 − . =
 .
 .  

 

  A basis for the eigenspace of λ 2=  is 1

0
3

.
3
2

 
 − =
 
 
  

b  

  nulbasis(A-ev(2)*eye(4))

10 0000 13 0000
2 3333 1 6667
1 0000 0

0 1 0000

− . .   
   − . .   = ,
   .
   .      

 

  A basis for the eigenspace of λ 4=  is 2 3

30 39
7 5

{ } .
3 0
0 3

 −   
    −    , = ,                

b b  

  nulbasis(A-ev(4)*eye(4))

2 7500
0 7500
1 0000
1 0000

. 
 − . =
 .
 .  

 

  A basis for the eigenspace of λ 5=  is 4

11
3

.
4
4

 
 − =
 
 
  

b  

  The basis 1 2 3 4{ }B = , , ,b b b b  is a basis for 4 with the property that [ ]BT  is diagonal. 
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Note: The Study Guide comments on Exercise 25 and tells students that the trace of any square matrix A 
equals the sum of the eigenvalues of A, counted according to multiplicities. This provides a quick check on 
the accuracy of an eigenvalue calculation. You could also refer students to the property of the determinant 
described in Exercise 19 of Section 5.2. 

5.5 SOLUTIONS 

 1. 
1 2 1 2
1 3 1 3

A A I
λ

λ
λ

− − −   
= , − =   −   

 

   2det( λ ) (1 λ)(3 λ) ( 2) λ 4λ 5A I− = − − − − = − +  

  Use the quadratic formula to find the eigenvalues: 4 16 20 2 .2
± −= = ± iλ  Example 2 gives a shortcut 

for finding one eigenvector, and Example 5 shows how to write the other eigenvector with no effort. 

  For λ = 2 + i:   
1 2

(2 ) .
1 1

− − − 
− + =  − 

i
A i I

i
 The equation ( λ )A I− =x 0  gives 

   1 2

1 2

( 1 ) 2 0
(1 ) 0

i x x
x i x

− − − =
+ − =

 

  As in Example 2, the two equations are equivalent—each determines the same relation between 1x  and 

2.x  So use the second equation to obtain 1 2(1 ) ,= − −x i x  with 2x  free. The general solution is 

2
1

,
1

− + 
 
 

i
x  and the vector 1

1
1

i− + 
=  
 

v  provides a basis for the eigenspace. 

  For ∼λ = 2 – i:   Let 12
1

.
1

− − 
= =  

 
v v

i
 The remark prior to Example 5 shows that 2v  is automatically an 

eigenvector for 2 .+ i  In fact, calculations similar to those above would show that 2{ }v  is a basis for the 
eigenspace. (In general, for a real matrix A, it can be shown that the set of complex conjugates of the 
vectors in a basis of the eigenspace for λ  is a basis of the eigenspace for λ .) 

 2. 
5 5

.
1 1

− 
=  
 

A  The characteristic polynomial is 2λ 6λ 10,− +  so the eigenvalues of A are 

6 36 40λ 3 .2 i± −= = ±  

  For λ = 3 + i:   
2 5

(3 ) .
1 2

i
A i I

i
− − 

− + =  − − 
 The equation ( (3 ) )A i I− + =x 0  amounts to 

1 2( 2 ) 0,x i x+ − − =  so 1 2(2 )x i x= +  with 2x  free. A basis vector for the eigenspace is thus 1
2

.
1
+ 

=  
 

v
i

 

  For λ = 3 – i:   A basis vector for the eigenspace is 12
2

.
1
− 

= =  
 

v v
i
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 3. 
1 5

.
2 3

 
=  − 

A  The characteristic polynomial is 2λ 4λ 13,− +  so the eigenvalues of A are 

4 36λ 2 3 .2
± −= = ± i  

  For λ = 2 + 3i:   
1 3 5

(2 3 ) .
2 1 3

− − 
− + =  − − 

i
A i I

i
 The equation ( (2 3 ) )A i I− + =x 0  amounts to 

1 22 (1 3 ) 0,− + − =x i x  so 1 2
1 3

2
−= ix x  with 2x  free. A nice basis vector for the eigenspace is thus 

1
1 3

.
2
− 

=  
 

v
i

 

  For λ = 2 – 3i:   A basis vector for the eigenspace is 12
1 3

.
2
+ 

= =  
 

v v
i

 

 4. 
5 2

.
1 3

− 
=  
 

A  The characteristic polynomial is 2λ 8λ 17,− +  so the eigenvalues of A are 

8 4λ 4 .2
± −= = ± i  

  For λ = 4 + i:   
1 2

(4 ) .
1 1
− − 

− + =  − − 

i
A i I

i
 The equation ( (4 ) )A i I− + =x 0  amounts to 

1 2( 1 ) 0,+ − − =x i x  so 1 2(1 )x i x= +  with 2x  free. A basis vector for the eigenspace is thus 1
1

.
1
+ 

=  
 

v
i

 

  For λ = 4 – i:   A basis vector for the eigenspace is 12
1

.
1
− 

= =  
 

v v
i

 

 5. 
0 1

.
8 4

 
=  − 

A  The characteristic polynomial is 2λ 4λ 8,− +  so the eigenvalues of A are 

4 16λ 2 2 .2
± −= = ± i  

  For λ = 2 + 2i:   
2 2 1

(2 2 ) .
8 2 2

− − 
− + =  − − 

i
A i I

i
 The equation ( (2 2 ) )A i I− + =x 0  amounts to 

1 2( 2 2 ) 0,− − + =i x x  so 2 1(2 2 )x i x= +  with 1x  free. A basis vector for the eigenspace is thus 

1
1

.
2 2
 

=  + 
v

i
 

  For λ = 2 – 2i:   A basis vector for the eigenspace is 12
1

.
2 2
 

= =  − 
v v

i
 

 6. 
4 3

.
3 4

 
=  − 

A  The characteristic polynomial is 2λ 8λ 25,− +  so the eigenvalues of A are 

8 36λ 4 3 .2
± −= = ± i  
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  For λ = 4 + 3i: 
3 3

(4 3 ) .
3 3

− 
− + =  − − 

i
A i I

i
 The equation ( (4 3 ) )− + =x 0A i I amounts to 1 2 0,+ =x ix  so 

1 2x ix= −  with 2x  free. A basis vector for the eigenspace is thus 1 .
1
− 

=  
 

v
i

 

  For λ = 4 – 3i:   A basis vector for the eigenspace is 12 .
1
 

= =  
 

v v
i

 

 7. 
3 1

.
1 3

 
 
 
 
  

−
=A  From Example 6, the eigenvalues are 3 .± i  The scale factor for the transformation 

Ax x6  is 2 2λ ( 3) 1 2.r =| |= + =  For the angle of rotation, plot the point ( ) ( 3 1)a b, = ,  in the  
xy-plane and use trigonometry: 

   ϕ = arctan ( )b a/ =  arctan (1 3) 6/ = π/  radians. 

 

Note: Your students will want to know whether you permit them on an exam to omit calculations for a matrix 

of the form 
a b
b a

− 
 
 

 and simply write the eigenvalues .±a bi  A similar question may arise about the 

corresponding eigenvectors, 
1
i

 
 − 

 and 
1

,
 
 
 i

 which are announced in the Practice Problem. Students may have 

trouble keeping track of the correspondence between eigenvalues and eigenvectors. 

 8. 
3 3

.
3 3

 
 
 
 
  

=
−

A  From Example 6, the eigenvalues are 3 3 .± i  The scale factor for the transformation 

Ax x6  is 2 2λ ( 3) 3 2 3.= | | = + =r  From trigonometry, the angle of rotation ϕ  is arctan ( )b a/ =  

arctan ( 3 3) 3− / = −π/  radians. 

 9. 
3 2 1 2

.
1 2 3 2

 − / /
=  

− / − /  
A  From Example 6, the eigenvalues are 3 2 (1 2) .− / ± / i  The scale factor for the 

transformation Ax x6  is 2 2λ ( 3 2) (1 2) 1.= | | = − / + / =r  From trigonometry, the angle of rotation ϕ  

is arctan ( )b a/ =  arctan (( 1 2) ( 3 2)) 5 6− / / − / = − π/  radians. 
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 10. 
5 5

.
5 5

− − 
=  − 

A  From Example 6, the eigenvalues are 5 5 .− ± i  The scale factor for the transformation 

Ax x6  is 2 2λ ( 5) 5 5 2.= | | = − + =r  From trigonometry, the angle of rotation ϕ  is 
arctan( ) arctan(5 ( 5)) 3 4b a/ = / − = π/  radians. 

 11. 
1 1

.
1 1

. . 
=  −. . 

A  From Example 6, the eigenvalues are 1 1 .. ± . i  The scale factor for the transformation 

Ax x6  is 2 2λ ( 1) ( 1) 2 10.= | | = . + . = /r  From trigonometry, the angle of rotation ϕ  is arctan ( )b a/ =  
arctan ( 1 1) 4−. /. = −π/  radians. 

 12. 
0 3

.
3 0

. 
=  −. 

A  From Example 6, the eigenvalues are 0 3 .± . i  The scale factor for the transformation 

Ax x6  is 2 2λ 0 ( 3) 3.r =| |= + . = .  From trigonometry, the angle of rotation ϕ  is arctan ( )b a/ =  arctan 
( ) 2−∞ = −π/  radians. 

 13. From Exercise 1, λ 2 ,= ± i  and the eigenvector 
1
1

i− − 
=  
 

v  corresponds to λ 2 .= − i  Since Re 
1
1

− 
=  
 

v  

and Im 
1

,
  0
− 

=  
 

v  take 
1 1

.
1 0

− − 
=  
 

P  Then compute 

   1 0 1 1 2 1 1 0 1 3 1 2 1
1 1 1 3 1 0 1 1 2 1 1 2

C P AP− − − − − − −           
= = = =           − − − − −           

 

  Actually, Theorem 9 gives the formula for C. Note that the eigenvector v corresponds to a bi−  instead 

of .+a bi  If, for instance, you use the eigenvector for 2 ,+ i  your C will be 
2 1

.
1 2

 
 − 

 

Notes: The Study Guide points out that the matrix C is described in Theorem 9 and the first column of C is 
the real part of the eigenvector corresponding to ,−a bi  not ,+a bi  as one might expect. Since students may 
forget this, they are encouraged to compute C from the formula 1 ,−=C P AP  as in the solution above. 

The Study Guide also comments that because there are two possibilities for C in the factorization of a 
2 2×  matrix as in Exercise 13, the measure of rotation of the angle associated with the transformation 

Ax x6  is determined only up to a change of sign. The “orientation” of the angle is determined by the change 
of variable .=x uP  See Figure 4 in the text. 

 14. 
5 5

.
1 1

− 
=  
 

A  From Exercise 2, the eigenvalues of A are λ 3 ,= ± i  and the eigenvector  

2
1

i− 
=  
 

v  corresponds to λ 3 .= − i  By Theorem 9, 
2 1

[Re   Im ]
1 0

P
− 

= =  
 

v v  and 

  1 0 1 5 5 2 1 3 1
1 2 1 1 1 0 1 3

C P AP− − − −       
= = =       −       
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 15. 
1 5

.
2 3

 
=  − 

A  From Exercise 3, the eigenvalues of A are λ 2 3 ,= ± i  and the eigenvector  

1 3
2

i+ 
=  
 

v  corresponds to λ 2 3 .i= −  By Theorem 9, [Re   Im ]P = =v v
1 3
2 0
 
 
 

 and 

  1 0 3 1 5 1 3 2 31
2 1 2 3 2 0 3 26

C P AP− − −       
= = =       − −       

 

 16. 
5 2

.
1 3

− 
=  
 

A  From Exercise 4, the eigenvalues of A are λ 4 ,= ± i  and the eigenvector  

1
1

i− 
=  
 

v  corresponds to λ 4 .= − i  By Theorem 9, [ ] 1 1
Re Im 

1 0
P

− 
= =  

 
v v  and 

  1 0 1 5 2 1 1 4 1
1 1 1 3 1 0 1 4

C P AP− − − −       
= = =       −       

 

 17. 
1 8

.
4 2 2

−. 
=  − . 

A  The characteristic polynomial is 2λ 1 2λ 1,+ . +  so the eigenvalues of A are λ 6 8 .= −. ± . i  

To find an eigenvector corresponding to 6 8 ,−. − . i  we compute 

   
1 6 8 8

( 6 8 )
4 1 6 8

i
A i I

i
. + . −. 

− −. − . =  − . + . 
 

  The equation ( ( 6 8 ) )A i I− −. − . =x 0  amounts to 1 24 ( 1 6 8 ) 0,+ − . + . =x i x  so 1 2((2 ) 5)x i x= − /   

with 2x  free. A nice eigenvector corresponding to 6 8i−. − .  is thus 
2

.
5
− 

=  
 

v
i

 By Theorem 9, 

[ ] 2 1
Re Im 

5 0
P

− 
= =  

 
v v  and 1 0 1 1 8 2 1 6 81

5 1 4 2 2 5 0 8 65
C P AP− −. − −. −.       

= = =       − − . . −.       
 

 18. 
1 1

.
4 6

− 
=  . . 

A  The characteristic polynomial is 2λ 1 6λ 1,− . +  so the eigenvalues of A are λ 8 6 .= . ± . i  To 

find an eigenvector corresponding to 8 6 ,. − . i  we compute 

   
2 6 1

( 8 6 )
4 2 6

i
A i I

i
. + . − 

− . − . =  . −. + . 
 

  The equation ( ( 8 6 ) )A i I− . − . =x 0  amounts to 1 24 ( 2 6 ) 0,. + −. + . =x i x  so 1 2((1 3 ) 2)x i x= − /  with 2x  free. 

A nice eigenvector corresponding to 8 6i. − .  is thus 
1 3

.
2
− 

=  
 

v
i

 By Theorem 9, 

[ ] 1 3
Re Im 

2 0
P

− 
= =  

 
v v  and 1 0 3 1 1 1 3 8 61

2 1 4 6 2 0 6 86
C P AP− − − . −.       

= = =       − . . . .       
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 19. 
1 52 7

.
56 4

. −. 
=  . . 

A  The characteristic polynomial is 2λ 1 92λ 1,− . +  so the eigenvalues of A are 

λ 96 28 .= . ± . i  To find an eigenvector corresponding to 96 28 ,. − . i  we compute 

   
56 28 7

( 96 28 )
56 56 28

i
A i I

i
. + . −. 

− . − . =  . −. + . 
 

  The equation ( ( 96 28 ) )A i I− . − . =x 0  amounts to 1 256 ( 56 28 ) 0,. + −. + . =x i x  so 1 2((2 ) 2)x i x= − /  with 

2x  free. A nice eigenvector corresponding to 96 28i. − .  is thus 
2

.
2
− 

=  
 

v
i

 By Theorem 9, 

[ ] 2 1
Re Im 

2 0
P

− 
= =  

 
v v  and 1 0 1 1 52 7 2 1 96 281

2 2 56 4 2 0 28 962
C P AP− . −. − . −.       

= = =       − . . . .       
 

 20. 
1 64 2 4

.
1 92 2 2

− . − . 
=  . . 

A  The characteristic polynomial is 2λ 56λ 1,− . +  so the eigenvalues of A are 

λ 28 96 .= . ± . i  To find an eigenvector corresponding to 28 96 ,. − . i  we compute 

   
1 92 96 2 4

( 28 96 )
1 92 1 92 96

i
A i I

i
− . + . − . 

− . − . =  . . + . 
 

  The equation ( ( 28 96 ) )A i I− . − . =x 0  amounts to 1 21 92 (1 92 96 ) 0,. + . + . =x i x  so 1 2(( 2 ) 2)x i x= − − /  with 

2x  free. A nice eigenvector corresponding to 28 96i. − .  is thus 
2

.
2

− − 
=  
 

v
i

 By Theorem 9, 

[ ] 2 1
Re Im 

2 0
P

− − 
= =  

 
v v  and 1 0 1 1 64 2 4 2 1 28 961

2 2 1 92 2 2 2 0 96 282
C P AP− − . − . − − . −.       

= = =       − − . . . .       
 

 21. The first equation in (2) is 1 2( 3 6 ) 6 0.−. + . − . =i x x  We solve this for 2x  to find that 

2 1 1(( 3 6 ) 6) (( 1 2 ) 2) .= −. + . /. = − + /x i x i x  Letting 1 2,=x  we find that 
2

1 2i
 

=  − + 
y  is an eigenvector for 

the matrix A. Since 1
2 2 41 2 1 2

1 2 55 5
ii i

i
− −   − + − += = =   − +   

y v  the vector y is a complex multiple of the 

vector 1v  used in Example 2. 

 22. Since ( ) ( ) (λ ) λ( )= = = ,x x x x xA Aµ µ µ µ µ  is an eigenvector of A. 

 23.  (a) properties of conjugates and the fact that T T=x x  
(b) =x xA A  and A is real 
(c) T Ax x  is a scalar and hence may be viewed as a 1 1×  matrix 
(d) properties of transposes 
(e) TA A=  and the definition of q 

 24. ( )T T TA = λ = λ ⋅x x x x x x  because x is an eigenvector. It is easy to see that Tx x  is real (and positive) 
because zz  is nonnegative for every complex number z. Since T Ax x  is real, by Exercise 23, so is λ.  
Next, write ,= +x u vi  where u and v are real vectors. Then 

  ( ) and λ λ λA A i A iA i= + = + = +x u v u v x u v  
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  The real part of Ax is Au because the entries in A, u, and v are all real. The real part of λx  is λu  because 
λ  and the entries in u and v are real. Since Ax and λx  are equal, their real parts are equal, too. (Apply 
the corresponding statement about complex numbers to each entry of Ax.) Thus λ ,=u uA  which shows 
that the real part of x is an eigenvector of A. 

 25. Write Re (Im ),= +x x xi  so that (Re ) (Im ).= +x x xA A iA  Since A is real, so are (Re )A x  and (Im ).xA  
Thus (Re )A x  is the real part of Ax and (Im )A x  is the imaginary part of Ax. 

 26. a. If λ ,= −a bi  then 

  
Re Im 

λ ( )(Re  Im )
(  Re  Im ) (  Im  Re )

Av Av

A a bi i
a b i a b

= = − +
= + + −

v v v v
v v v v����	���
 ����	���


 

  By Exercise 25, 

  
(Re ) Re  Re  Im 
(Im ) Im  Re  Im 

A A a b
A A b a

= = +
= = − +

v v v v
v v v v

 

b. Let [ ]Re Im .= v vP  By (a), 

  (Re ) (Im )
a b

A P A P
b a

−   
= , =   

   
v v  

  So 

  
[ ](Re ) (Im )=

 − −     
= = =      

      

v vAP A A

a b a b
P P P PC

b a b a
 

 27. 

7 1 1 2 0 1 7
2 0 4 0 8 6 7 4

[ ]
0 5 1 0 1 0

1 0 2 8 6 0 5 3

. . . . 
 − . − . − . − . =
 −. − . − .
 . . . .  

M A  

  ev = eig(A)=(.2+.5i,.2-.5i,.3+.1i,.3-.1i) 

  For λ 2 5 ,= . − . i  an eigenvector is 
  nulbasis(A-ev(2)*eye(4)) =  
   0.5000 - 0.5000i 

  -2.0000 + 0.0000i 

   0.0000 - 0.0000i 

   1.0000 

  so that 1

5 5
2

0
1

i. − . 
 − =
 
 
  

v  

  For 3 1 ,λ = . − . i  an eigenvector is 
  nulbasis(A-ev(4)*eye(4))= 
  -0.5000 - 0.0000i 

   0.0000 + 0.5000i 



5.5 • Solutions   301 

  -0.7500 - 0.2500i 
   1.0000 

  so that v 2

5
5

75 25
1

i
i

−. 
 . =
 −. − .
 
  

 

  Hence by Theorem 9, 1 1 2 2

5 5 5 0
2 0 0 5

Re Im Re Im 
0 0 75 25
1 0 1 0

P  
  

. −. −. 
 − . = =
 −. −.
 
  

v v v v  and 

2 5 0 0
5 2 0 0

.
0 0 3 1
0 0 1 3

. −. 
 . . =
 . −.
 . .  

C  Other choices are possible, but C must equal 1 .−P AP  

 28. 

1 4 2 0 2 0 2 0
1 3 8 1 6

[ ]
3 1 9 1 6 1 4

2 0 3 3 2 3 2 6

A

− . − . − . − . 
 − . −. −. −. =
 . − . − . − .
 . . . .  

M  

  ev = eig(A)=(-.4+i,-.4-i,-.2+.5i,-.2-.5i) 

  For λ 4 ,= −. − i  an eigenvector is 
 nulbasis(A-ev(2)*eye(4)) =  
 -1.0000 - 1.0000i 

 -1.0000 + 1.0000i 

  1.0000 - 1.0000i 

  1.0000 

  so that 1

1
1

1
1

i
i

i

− − 
 − + =
 −
 
  

v  

  For λ 2 5 ,= −. − . i  an eigenvector is 
   nulbasis(A-ev(4)*eye(4)) =  
    0.0000 - 0.0000i 

   -0.5000 - 0.5000i 

   -0.5000 + 0.5000i 

    1.0000 

  so that 2

0
1
1

2

i
i

 
 − − =
 − +
 
  

v  
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  Hence by Theorem 9, 1 1 2 2

1 1 0 0
1 1 1 1

Re Im Re Im 
1 1 1 1
1 0 2 0

P  
  

− − 
 − − − = =
 − −
 
  

v v v v  and 

4 1 0 0
1 4 0 0

.
0 0 2 5
0 0 5 2

−. − 
 −. =
 −. −.
 . −.  

C  Other choices are possible, but C must equal 1 .−P AP  

5.6 SOLUTIONS 

 1. The exercise does not specify the matrix A, but only lists the eigenvalues 3 and 1/3, and the 

corresponding eigenvectors 1
1
1
 

=  
 

v  and 2
1

.
1

− 
=  
 

v  Also, 0
9

.
1
 

=  
 

x  

a. To find the action of A on 0 ,x  express 0x  in terms of 1v  and 2.v  That is, find 1c  and 2c  such that 

0 1 1 2 2.= +x v vc c  This is certainly possible because the eigenvectors 1v  and 2v  are linearly 
independent (by inspection and also because they correspond to distinct eigenvalues) and hence form 
a basis for 2.R  (Two linearly independent vectors in 2R  automatically span 2.R ) The row reduction 

1 2 0
1 1 9 1 0 5
1 1 1 0 1 4

 
  

−   
=    −   

v v x ∼  shows that 0 1 25 4 .= −x v v  Since 1v  and 2v  are 

eigenvectors (for the eigenvalues 3 and 1/3): 

   1 0 1 2 1 2
15 4 3 49 3

5 4 5 3 4 (1 3)
15 4 3 41 3

A A A
− / /     

= = − = ⋅ − ⋅ / = − =     / /     
x x v v v v  

b. Each time A acts on a linear combination of 1v  and 2 ,v  the 1v  term is multiplied by the eigenvalue  
3 and the 2v  term is multiplied by the eigenvalue 1/3: 

   2 2
2 1 1 2 1 2[5 3 4(1 3) ] 5(3) 4(1 3)A A= = ⋅ − / = − /x x v v v v  

  In general, 1 25(3) 4(1 3) ,= − /x v vk k
k  for 0.≥k  

 2. The vectors 1 2 3

1 2 3
0 1 3
3 5 7

−     
     = , = , = −     
     − −     

v v v  are eigenvectors of a 3 3×  matrix A, corresponding to 

eigenvalues 3, 4/5, and 3/5, respectively. Also, 0

2
5 .
3

− 
 = − 
  

x  To describe the solution of the equation 

1 ( 1 2 ),+ = = , ,x xk kA k …  first write 0x  in terms of the eigenvectors. 

   1 0 1 2 32 3 0

1 2 3 2 1 0 0 2
0 1 3 5 0 1 0 1 2 2
3 5 7 3 0 0 0 2

 
  

− −   
   = − − ⇒ = + +   
   − −   

∼v v v x x v v v  
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  Then, 1 1 2 3 1 2 3 1 2 3(2 2 ) 2 2 2 3 (4 5) 2 (3 5) .A A A A= + + = + + = ⋅ + / + ⋅ /x v v v v v v v v v  In general, 

1 2 32 3 (4 5) 2 (3 5) .k k k
k = ⋅ + / + ⋅ /x v v v  For all k sufficiently large, 

   1

1
2 3 2 3 0

3

k k
k

 
 ≈ ⋅ = ⋅  
 − 

x v  

 3. 25 4
det( ) ( 5 )(1 1 ) 08 1 6 63.

2 1 1
. . 

= , − = . − . − + . = − . + . −. . 
A A Iλ λ λ λ λ  This characteristic polynomial 

factors as ( 9)( 7),− . − .λ λ  so the eigenvalues are .9 and .7. If 1v  and 2v  denote corresponding 
eigenvectors, and if 0 1 1 2 2 ,= +x v vc c  then 

   1 1 1 2 2 1 1 2 2 1 1 2 2( ) ( 9) ( 7)A c c c A c A c c= + = + = . + .x v v v v v v   
  and for 1,≥k  

   1 1 2 2( 9) ( 7)k k
k c c= . + .x v v  

  For any choices of 1c  and 2 ,c  both the owl and wood rat populations decline over time. 

 4. 25 4
det( ) ( 5 )(1 1 ) ( 4)( 125) 1 6 6.

125 1 1
. . 

= , − = . − . − − . . = − . + . −. . 
A A Iλ λ λ λ λ  This characteristic 

polynomial factors as ( 1)( 6),− − .λ λ  so the eigenvalues are 1 and .6. For the eigenvalue 1, solve 
5 4 0 5 4 0

( ) 0 .
125 1 0 0 0 0
−. . −   

− = :    −. .   
x ∼A I  A basis for the eigenspace is 1

4
.

5
 

=  
 

v  Let 2v  be an 

eigenvector for the eigenvalue .6. (The entries in 2v  are not important for the long-term behavior of the 
system.) If 0 1 1 2 2 ,= +x v vc c  then 1 1 1 2 2 1 1 2 2( 6) ,= + = + .x v v v vc A c A c c  and for k sufficiently large, 

   1 2 2 1
4 4

( 6)
5 5

k
k c c c

   
= + . ≈   

   
x v  

  Provided that 1 0,≠c  the owl and wood rat populations each stabilize in size, and eventually the 
populations are in the ratio of 4 owls for each 5 thousand rats. If some aspect of the model were to 
change slightly, the characteristic equation would change slightly and the perturbed matrix A might not 
have 1 as an eigenvalue. If the eigenvalue becomes slightly large than 1, the two populations will grow; 
if the eigenvalue becomes slightly less than 1, both populations will decline. 

 5. 24 3
det( ) 1 6 5775.

325 1 2
. . 

= , − = − . + . −. . 
A A Iλ λ λ  The quadratic formula provides the roots of the 

characteristic equation: 

   
21 6 1 6 4( 5775) 1 6 25 1 05 and 55
2 2

λ . ± . − . . ± .= = = . .  

  Because one eigenvalue is larger than one, both populations grow in size. Their relative sizes are 
determined eventually by the entries in the eigenvector corresponding to 1.05. Solve ( 1 05 ) :− . =x 0A I  

   1
65 3 0 13 6 0 6

An eigenvector is 
325 15 0 0 0 0 13

−. . −     
. = .     −. .     

v∼  

  Eventually, there will be about 6 spotted owls for every 13 (thousand) flying squirrels. 
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 6. When 
4 3

5 ,
5 1 2

. . 
= . , =  −. . 

p A  and 2det( ) 1 6 63 ( 9)( 7).− = − . + . = − . − .A Iλ λ λ λ λ  

  The eigenvalues of A are .9 and .7, both less than 1 in magnitude. The origin is an attractor for the 
dynamical system and each trajectory tends toward 0. So both populations of owls and squirrels 
eventually perish. 

  The calculations in Exercise 4 (as well as those in Exercises 35 and 27 in Section 5.1) show that if the 
largest eigenvalue of A is 1, then in most cases the population vector kx  will tend toward a multiple  
of the eigenvector corresponding to the eigenvalue 1. [If 1v  and 2v  are eigenvectors, with 1v  
corresponding to 1,=λ  and if 0 1 1 2 2 ,= +x v vc c  then kx  tends toward 1 1,vc  provided 1c  is not zero.] So 
the problem here is to determine the value of the predation parameter p such that the largest eigenvalue 
of A is 1. Compute the characteristic polynomial: 

   24 3
det ( 4 )(1 2 ) 3 1 6 ( 48 3 )

1 2
p p

p
λ

λ λ λ λ
λ

. − . 
= . − . − + . = − . + . + . − . − 

 

  By the quadratic formula, 

   
21 6 1 6 4( 48 3 )

2
pλ . ± . − . + .

=  

  The larger eigenvalue is 1 when 

   21 6 1 6 4( 48 3 ) 2 and 2 56 1 92 1 2 4p p. + . − . + . = . − . − . = .  

  In this case, 64 1 2 16,. − . = .p  and 4.p = .  

 7. a. The matrix A in Exercise 1 has eigenvalues 3 and 1/3. Since 3 1| | >  and 1 3 1,| / | <  the origin is a 
saddle point. 

 b. The direction of greatest attraction is determined by 2
1

,
1

− 
=  
 

v  the eigenvector corresponding to the 

eigenvalue with absolute value less than 1. The direction of greatest repulsion is determined by 

1
1

,
1
 

=  
 

v  the eigenvector corresponding to the eigenvalue greater than 1. 

 c. The drawing below shows: (1) lines through the eigenvectors and the origin, (2) arrows toward the 
origin (showing attraction) on the line through 2v  and arrows away from the origin (showing 
repulsion) on the line through 1,v  (3) several typical trajectories (with arrows) that show the general 
flow of points. No specific points other than 1v  and 2v  were computed. This type of drawing is 
about all that one can make without using a computer to plot points. 
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Note: If you wish your class to sketch trajectories for anything except saddle points, you will need to go 
beyond the discussion in the text. The following remarks from the Study Guide are relevant. 

Sketching trajectories for a dynamical system in which the origin is an attractor or a repellor is more 
difficult than the sketch in Exercise 7. There has been no discussion of the direction in which the trajectories 
“bend” as they move toward or away from the origin. For instance, if you rotate Figure 1 of Section 5.6 
through a quarter-turn and relabel the axes so that 1x  is on the horizontal axis, then the new figure 
corresponds to the matrix A with the diagonal entries .8 and .64 interchanged. In general, if A is a diagonal 
matrix, with positive diagonal entries a and d, unequal to 1, then the trajectories lie on the axes or on curves 
whose equations have the form 2 1( ) ,= sx r x  where (ln ) (ln )s d a= /  and r depends on the initial point 0.x  
(See Encounters with Chaos, by Denny Gulick, New York: McGraw-Hill, 1992, pp. 147–150.) 

 8. The matrix from Exercise 2 has eigenvalues 3, 4/5, and 3/5. Since one eigenvalue is greater than 1 and 
the others are less than one in magnitude, the origin is a saddle point. The direction of greatest repulsion 
is the line through the origin and the eigenvector (1 0 3), ,−  for the eigenvalue 3. The direction of greatest 
attraction is the line through the origin and the eigenvector ( 3 3 7)− ,− ,  for the smallest eigenvalue 3/5. 

 9. 21 7 3
det( ) λ 2 5λ 1 0

1 2 8
A A I

. −. 
= , − λ = − . + = − . . 

 

   
22 5 2 5 4(1) 2 5 2 25 2 5 1 5λ 2 and 5

2 2 2
. ± . − . ± . . ± .= = = = .  

  The origin is a saddle point because one eigenvalue is greater than 1 and the other eigenvalue is less than 
1 in magnitude. The direction of greatest repulsion is through the origin and the eigenvector 1v  found 

below. Solve 
3 3 0 1 1 0

( 2 ) ,
1 2 1 2 0 0 0 0

A I
−. −.   

− = :    − . − .   
∼x 0  so x1 = –x2, and x2 is free. Take 1

1
.

1
− 

=  
 

v  

The direction of greatest attraction is through the origin and the eigenvector 2v  found below. Solve 
1 2 3 0 1 25 0

( 5 ) ,
1 2 3 0 0 0 0
. −. −.   

− . = :    − . .   
x 0 ∼A I  so 1 225 ,= −.x x  and 2x  is free. Take 2

1
.

4
 

=  
 

v  

 10. 23 4
det( λ ) λ 1 4λ 45 0

3 1 1
A A I

. . 
= , − = − . + . = −. . 

 

   
21 4 1 4 4( 45) 1 4 16 1 4 4λ 5 and 9

2 2 2
. ± . − . . ± . . ± .= = = = . .  

  The origin is an attractor because both eigenvalues are less than 1 in magnitude. The direction of greatest 
attraction is through the origin and the eigenvector 1v  found below. Solve 

2 4 0 1 2 0
( 5 ) ,

3 6 0 0 0 0
−. . −   

− . = :    −. .   
x 0 ∼A I  so 1 22 ,=x x  and 2x  is free. Take 1

2
.

1
 

=  
 

v  

 11. 24 5
det( λ ) λ 1 7λ 72 0

4 1 3
A A I

. . 
= , − = − . + . = −. . 

 

   
21 7 1 7 4( 72) 1 7 01 1 7 1λ 8 and 9

2 2 2
. ± . − . . ± . . ± .= = = = . .  

  The origin is an attractor because both eigenvalues are less than 1 in magnitude. The direction of greatest 
attraction is through the origin and the eigenvector 1v  found below. Solve 

4 5 0 1 1 25 0
( 8 ) ,

4 5 0 0 0 0
−. . − .   

− . = :    −. .   
x 0 ∼A I  so 1 21 25 ,= .x x  and 2x  is free. Take 1

5
.

4
 

=  
 

v  
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 12. 25 6
det( λ ) λ 1 9λ 88 0

3 1 4
A A I

. . 
= , − = − . + . = −. . 

 

   
21 9 1 9 4( 88) 1 9 09 1 9 3λ 8 and 1 1

2 2 2
. ± . − . . ± . . ± .= = = = . .  

  The origin is a saddle point because one eigenvalue is greater than 1 and the other eigenvalue is less than 
1 in magnitude. The direction of greatest repulsion is through the origin and the eigenvector 1v  found 

below. Solve 
6 6 0 1 1 0

( 1 1 ) ,
3 3 0 0 0 0

−. . −   
− . = :    −. .   

x 0 ∼A I  so 1 2 ,=x x  and 2x  is free. Take 1
1

.
1
 

=  
 

v  

The direction of greatest attraction is through the origin and the eigenvector 2v  found below. Solve 
3 6 0 1 2 0

( 8 ) ,
3 6 0 0 0 0

−. . −   
− . = :    −. .   

x 0 ∼A I  so 1 22 ,=x x  and 2x  is free. Take 2
2

.
1
 

=  
 

v  

 13. 28 3
det( λ ) λ 2 3λ 1 32 0

4 1 5
A A I

. . 
= , − = − . + . = −. . 

 

   
22 3 2 3 4(1 32) 2 3 01 2 3 1λ 1 1 and 1 2
2 2 2

. ± . − . . ± . . ± .= = = = . .  

  The origin is a repellor because both eigenvalues are greater than 1 in magnitude. The direction of 
greatest repulsion is through the origin and the eigenvector 1v  found below. Solve 

4 3 0 1 75 0
( 1 2 ) ,

4 3 0 0 0 0
−. . −.   

− . = :    −. .   
x 0 ∼A I  so 1 275 ,= .x x  and 2x  is free. Take 1

3
.

4
 

=  
 

v  

 14. 21 7 6
det( λ ) λ 2 4λ 1 43 0

4 7
A A I

. . 
= , − = − . + . = −. . 

 

   
22 4 2 4 4(1 43) 2 4 04 2 4 2λ 1 1 and 1 3
2 2 2

. ± . − . . ± . . ± .= = = = . .  

  The origin is a repellor because both eigenvalues are greater than 1 in magnitude. The direction of 
greatest repulsion is through the origin and the eigenvector 1v  found below. Solve 

4 6 0 1 1 5 0
( 1 3 ) ,

4 6 0 0 0 0
. . .   

− . = :    −. −.   
x 0 ∼A I  so 1 21 5 ,= − .x x  and 2x  is free. Take 1

3
.

2
− 

=  
 

v  

 15. 
4 0 2
3 8 3 .
3 2 5

. . 
 = . . . 
 . . . 

A  Given eigenvector 1

1
6
3

. 
 = . 
 . 

v  and eigenvalues .5 and .2. To find the eigenvalue for 1,v  

compute 

   1 1 1

4 0 2 1 1
3 8 3 6 6 1 Thus is an eigenvector for 1
3 2 5 3 3

A λ
. . . .     
     = . . . . = . = ⋅ = .     
     . . . . .     

v v v  

  
1 3

2 3 2

3

1 0 2 0 1 0 2 0 2 2
For 5 3 3 3 0 0 1 3 0 3 .  Set 3

3 2 0 0 0 0 0 0 is free 1

−. . − =     
     = . : . . . , = − = − .     
     . .     

v∼
x x
x x
x

λ  
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1 3

2 3

3

2 0 2 0 1 0 1 0 1
For 2 3 6 3 0 0 1 0 0 , 0 . Set 0

3 2 3 0 0 0 0 0  is free 1

. . = − −     
     = . : . . . = =     
     . . .     

v∼
x x
x
x

λ  

  Given 0 (0 3 7),= , . , .x  find weights such that 0 1 1 2 3 3.= + +x v v vc c c  

   1 2 3 0

1 2 1 0 1 0 0 1
6 3 0 3 0 1 0 1 .
3 1 1 7 0 0 0 3

 
  

. −   
   = . − . .   
   . . .   

v v v x ∼  

   
0 1 2 3

1 1 2 3 1 2 3

1 2 3 1

1 3
1 3 1( 5) 3( 2)  and

1( 5) 3( 2) As  increases   approaches k k
k k

A A A
k

= + . + .
= + . + . = + . . + . . ,
= +. . +. . . , .

x v v v
x v v v v v v
x v v v x v

 

 16. [M] 

   

90 01 09 1 0000
01 90 01 0 8900 To four decimal places
09 09 90 8100

0 9192 91 99
0 1919  Exact  19 99
1 0000 1

. . . .   
   = . . . ⋅ = . . ,   
   . . . .   

. /   
   . . : /   
   .   

1

2

ev =eig(A)

v =nulbasis(A-eye(3))=

v =nulbasis(A-ev(2)

A

1
1
0

1
0
1

− 
 
 
  
− 
 
 
  

3

*eye(3))=

v =nulbasis(A-ev(3)*eye(3))=

 

  The general solution of the dynamical system is 1 1 2 2 3 3( 89) ( 81) .= + . + .x v v vk k
k c c c  

Note: When working with stochastic matrices and starting with a probability vector (having nonnegative 
entries whose sum is 1), it helps to scale 1v  to make its entries sum to 1. If 1 (91 209 19 209 99 209),= / , / , /v  or 
( 435 091 474). , . , .  to three decimal places, then the weight 1c  above turns out to be 1. See the text’s discussion 
of Exercise 27 in Section 5.2. 

 17. a. 
0 1 6
3 8

A
. 

=  . . 
 

 b. 21 6
det 8 48 0.

3 8
− . 

= − . − . = . . − 

λ
λ λ

λ
 The eigenvalues of A are given by 

   
28 ( 8) 4( 48) 8 2 56 8 1 6 1 2 and 4
2 2 2

λ . ± −. − −. . ± . . ± .= = = = . − .  

  The numbers of juveniles and adults are increasing because the largest eigenvalue is greater than 1. 
The eventual growth rate of each age class is 1.2, which is 20% per year. 
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  To find the eventual relative population sizes, solve ( 1 2 ) :− . =x 0A I  

   1 2
1

          2

(4 3)1 2 1 6 0 1 4 3 0 4
  Set 

is free3 4 0 0 0 0 3
x x
x

= /− . . − /     
. . = .     . −.     

v∼  

  Eventually, there will be about 4 juveniles for every 3 adults. 
c. [M] Suppose that the initial populations are given by 0 (15 10).= ,x  The Study Guide describes how to 

generate the trajectory for as many years as desired and then to plot the values for each population. 
Let ( j a ).= ,xk k k  Then we need to plot the sequences {j } {a } {j a },, , +k k k k  and {j a }./k k  Adjacent 
points in a sequence can be connected with a line segment. When a sequence is plotted, the resulting 
graph can be captured on the screen and printed (if done on a computer) or copied by hand onto paper 
(if working with a graphics calculator). 

 18. a. 
0 0 42
6 0 0
0 75 95

A
. 

 = . 
 . . 

 

 b. 
0 0774 0 4063
0 0774 0 4063
1 1048

i
i

. + . 
 . − . 
 . 

ev =eig(A)=  

  The long-term growth rate is 1.105, about 10.5 % per year. 

  
0 3801
0 2064
1 0000

. 
 = . 
 . 

v =nulbasis(A-ev(3)*eye(3))  

  For each 100 adults, there will be approximately 38 calves and 21 yearlings. 

Note: The MATLAB box in the Study Guide and the various technology appendices all give directions for 
generating the sequence of points in a trajectory of a dynamical system. Details for producing a graphical 
representation of a trajectory are also given, with several options available in MATLAB, Maple, and 
Mathematica. 

5.7 SOLUTIONS 

 1. From the “eigendata” (eigenvalues and corresponding eigenvectors) given, the eigenfunctions for the 
differential equation A′ =x x  are 4

1
tev  and 2

2 .v te  The general solution of A′ =x x  has the form 

   4 2
1 2

3 1
1 1

t tc e c e
− −   

+   
   

 

  The initial condition 
6

(0)
1

− 
=  
 

x  determines 1c  and 2 :c  

   

4(0) 2(0)
1 2

3 1 6
1 1 1

3 1 6 1 0 5 2
1 1 1 0 1 3 2

− − −     
+ =     

     
− − − /   
   − /   

∼

c e c e
 

  Thus 1 25 2 3 2,= / , = − /c c  and 4 23 15 3( ) .
1 12 2

− −   
= −   

   
x t tt e e  
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 2. From the eigendata given, the eigenfunctions for the differential equation A′ =x x  are 3
1

te−v  and 1
2 .−v te  

The general solution of A′ =x x  has the form 

   3 1
1 2

1 1
1 1

t tc e c e− −−   
+   

   
 

  The initial condition 
2

(0)
3
 

=  
 

x  determines 1c  and 2c : 

   

3(0) 1(0)
1 2

1 1 2
1 1 3

1 1 2 1 0 1 2
1 1 3 0 1 5 2

c e c e− −−     
+ =     

     
− /   
   /   

∼
 

  Thus 1 21 2 5 2,= / , = /c c  and 31 11 5( ) .
1 12 2

− −−   
= +   

   
x t tt e e  

 3. 22 3
det( λ ) λ 1 (λ 1)(λ 1) 0.

1 2
 

= , − = − = − + = − − 
A A I  Eigenvalues: 1 and 1.−  

  For λ = 1: 
1 3 0 1 3 0

,
1 3 0 0 0 0

   
   − −   

∼  so 1 23x x= −  with 2x  free. Take 2 1x =  and 1
3

.
1

− 
=  
 

v  

  For λ = –1: 
3 3 0 1 1 0

,
1 1 0 0 0 0

   
   − −   

∼  so 1 2x x= −  with 2x  free. Take 2 1x =  and 2
1

.
1

− 
=  
 

v  

  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0) :+ =v v xc c  

   1 2
3 1 3 1 0 5 2

(0)
1 1 2 0 1 9 2

− − − /   
=       /   

v v x ∼  

  Thus 1 25 2 9 2,= − / , = /c c  and 
3 15 9( ) .2 21 1

−− −   
= − +   

   
x t tt e e  

  Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical 
system described by .′ =x xA  The direction of greatest attraction is the line through 2v  and the origin. 
The direction of greatest repulsion is the line through 1v  and the origin. 

 4. 22 5
det( λ ) λ 2λ 3 (λ 1)(λ 3) 0.

1 4
A A I

− − 
= , − = − − = + − = 
 

 Eigenvalues: 1−  and 3. 

  For λ = 3:  
5 5 0 1 1 0

,
1 1 0 0 0 0

− −   
   
   

∼  so 1 2x x= −  with 2x  free. Take 2 1x =  and 1
1

.
1

− 
=  
 

v  

  For λ = –1:  
1 5 0 1 5 0

,
1 5 0 0 0 0

− −   
   
   

∼  so 1 25x x= −  with 2x  free. Take 2 1x =  and 2
5

.
1

− 
=  
 

v  
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  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0)c c+ =v v x : 

   1 2
1 5 3 1 0 13 4

(0)
1 1 2 0 1 5 4

− − /   
=       − /   

v v x ∼  

  Thus 1 213 4 5 4,= / , = − /c c  and 31 513 5( ) .
1 14 4

−− −   
= −   

   
x t tt e e  

  Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical 
system described by .′ =x xA  The direction of greatest attraction is the line through 2v  and the origin. 
The direction of greatest repulsion is the line through 1v  and the origin. 

 5. 
7 1

,
3 3

− 
=  
 

A  det 2( λ ) λ 10λ 24 (λ 4)(λ 6) 0.− = − + = − − =A I  Eigenvalues: 4 and 6. 

  For λ = 4: 
3 1 0 1 1 3 0

,
3 1 0 0 0 0

− − /   
   −   

∼  so 1 2(1 3)x x= /  with 2x  free. Take 2 3x =  and 1
1

.
3
 

=  
 

v  

  For λ = 6: 
1 1 0 1 1 0

,
3 3 0 0 0 0

− −   
   −   

∼  so 1 2x x=  with 2x  free. Take 2 1x =  and 2
1

.
1
 

=  
 

v  

  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0) :+ =v v xc c  

   1 2
1 1 3 1 0 1 2

(0)
3 1 2 0 1 7 2

− /   
=       /   

v v x ∼  

  Thus 1 21 2 7 2,= − / , = /c c  and 4 61 11 7( ) .
3 12 2
   

= − +   
   

x t tt e e  

  Since both eigenvalues are positive, the origin is a repellor of the dynamical system described by 
.′ =x xA  The direction of greatest repulsion is the line through 2v  and the origin. 

 6. 
1 2

,
3 4

− 
=  − 

A  det 2( λ ) λ 3λ 2 (λ 1)(λ 2) 0.− = + + = + + =A I  Eigenvalues: 1−  and 2.−  

  For λ = –2: 
3 2 0 1 2 3 0

,
3 2 0 0 0 0

− − /   
   −   

∼  so 1 2(2 3)x x= /  with 2x  free. Take 2 3x =  and 1
2

.
3
 

=  
 

v  

  For λ = –1: 
2 2 0 1 1 0

,
3 3 0 0 0 0

− −   
   −   

∼  so 1 2x x=  with 2x  free. Take 2 1x =  and 2
1

.
1
 

=  
 

v  

  For the initial condition 
3

(0) ,
2
 

=  
 

x  find 1c  and 2c  such that 1 1 2 2 (0)c c+ =v v x : 

   1 2
2 1 3 1 0 1

[ (0)]
3 1 2 0 1 5

−   
=    
   

v v x ∼  

  Thus 1 21 5,= − , =c c  and 22 1
( ) 5 .

3 1
− −   

= − +   
   

x t tt e e  

  Since both eigenvalues are negative, the origin is an attractor of the dynamical system described by 
.′ =x xA  The direction of greatest attraction is the line through 1v  and the origin. 
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 7. From Exercise 5, 
7 1

,
3 3

− 
=  
 

A  with eigenvectors 1
1
3
 

=  
 

v  and 2
1
1
 

=  
 

v  corresponding to eigenvalues  

4 and 6 respectively. To decouple the equation ,′ =x xA  set 1 2
1 1

[ ]
3 1
 

= =  
 

v vP  and let 
4 0

,
0 6
 

=  
 

D  

so that 1A PDP−=  and 1 .−=D P AP  Substituting ( ) ( )t P t=x y  into A′ =x x  we have 

   1( ) ( ) ( )−= = =y y y yd P A P PDP P PD
dt

 

  Since P has constant entries, ( ) ( ( )),=y yd d
dt dtP P  so that left-multiplying the equality ( ( )) =y yd

dtP PD  by 
1P−  yields ,′ =y yD  or 

   1 1

2 2

( ) ( )4 0
( ) ( )0 6

′    
=    ′     

y t y t
y t y t

 

 8. From Exercise 6, 
1 2

,
3 4

− 
=  − 

A  with eigenvectors 1
2
3
 

=  
 

v  and 2
1
1
 

=  
 

v  corresponding to eigenvalues 

2−  and 1−  respectively. To decouple the equation ,′ =x xA  set 1 2
2 1
3 1

P  
  

 
= =  

 
v v  and let 

2 0
,

0 1
− 

=  − 
D  so that 1A PDP−=  and 1 .−=D P AP  Substituting ( ) ( )t P t=x y  into A′ =x x  we have 

   1( ) ( ) ( )d P A P PDP P PD
dt

−= = =y y y y  

  Since P has constant entries, ( )( ) ( ) ,=y yd d
dt dtP P  so that left-multiplying the equality ( )( )d

dtP PD=y y  

by 1P−  yields ,′ =y yD  or 

   1 1

2 2

( ) ( )2 0
( ) ( )0 1

′ −    
=    ′ −    

y t y t
y t y t

 

 9. 
3 2

.
1 1

− 
=  − − 

A  An eigenvalue of A is 2 i− +  with corresponding eigenvector 
1

.
1
− 

=  
 

v
i

 The complex 

eigenfunctions teλv  and λv te  form a basis for the set of all complex solutions to .′ =x xA  The general 
complex solution is 

   ( 2 ) ( 2 )
1 2

1 1
1 1

i t i ti i
c e c e− + − −− +   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite ( 2 )i te − +v  as: 

   

( 2 ) 2 2

2
2

2 2

1 1
(cos sin )

1 1

cos cos sin sin
cos sin

cos sin sin cos
cos sin

− + − −

−

− −

− −   
= = +   
   
 − + −=  + 

+ −   
= +   
   

v i t t it t

t

t t

i i
e e e e t i t

t i t i t i t e
t i t

t t t t
e i e

t t
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  The general real solution has the form 

   2 2
1 2

cos sin sin cos
cos sin

t tt t t t
c e c e

t t
− −+ −   

+   
   

 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend toward the origin because the real parts of the eigenvalues are negative. 

 10. 
3 1

.
2 1

 
=  − 

A  An eigenvalue of A is 2 i+  with corresponding eigenvector 
1

.
2

+ 
=  − 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (2 ) (2 )
1 2

1 1
2 2

i t i ti i
c e c e+ −+ −   

+   − −   
 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (2 )i te +v  as: 

   

(2 ) 2 2

2
2

2 2

1 1
(cos sin )

2 2

cos cos sin sin
2cos 2 sin

cos sin sin cos
2cos 2sin

i t t it t

t

t t

i i
e e e e t i t

t i t i t i t e
t i t

t t t t
e i e

t t

+ + +   
= = +   − −   
 + + +=  − − 

− +   
= +   − −   

v

 

  The general real solution has the form 

   2 2
1 2

cos sin sin cos
2cos 2sin

t tt t t t
c e c e

t t
− +   

+   − −   
 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend away from the origin because the real parts of the eigenvalues are positive. 

 11. 
3 9

.
2 3

− − 
=  
 

A  An eigenvalue of A is 3i with corresponding eigenvector 
3 3

.
2

− + 
=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (3 ) ( 3 )
1 2

3 3 3 3
2 2

i t i ti i
c e c e −− + − −   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (3 )i tev  as: 

   

(3 ) 3 3
(cos3 sin 3 )

2

3cos3 3sin3 3sin 3 3cos3
2cos3 2sin 3

i t i
e t i t

t t t t
i

t t

− + 
= + 
 
− − − +   

= +   
   

v
 

  The general real solution has the form 

   1 2
3cos3 3sin 3 3sin 3 3cos3

2cos3 2sin 3
t t t t

c c
t t

− − − +   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are ellipses about the origin because the real 
parts of the eigenvalues are zero. 
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 12. 
7 10

.
4 5

− 
=  − 

A  An eigenvalue of A is 1 2i− +  with corresponding eigenvector 
3

.
2
− 

=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   ( 1 2 ) ( 1 2 )
1 2

3 3
2 1

i t i ti i
c e c e− + − −− +   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite ( 1 2 )i te − +v  as: 

   

( 1 2 ) 3
(cos2 sin 2 )

2

3cos2 sin 2 3sin 2 cos 2
2cos2 2sin 2

i t t

t t

i
e e t i t

t t t t
e i e

t t

− + −

− −

− 
= + 
 

+ −   
= +   
   

v
 

  The general real solution has the form 

   1 2
3cos2 sin 2 3sin 2 cos2

2cos2 2sin 2
t tt t t t

c e c e
t t

− −+ −   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend toward the origin because the real parts of the eigenvalues are negative. 

 13. 
4 3

.
6 2

− 
=  − 

A  An eigenvalue of A is 1 3i+  with corresponding eigenvector 
1

.
2
+ 

=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (1 3 ) (1 3 )
1 2

1 1
2 1

i t i ti i
c e c e+ −+ −   

+   
   

 

  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (1 3 )i te +v  as: 

   

(1 3 ) 1
(cos3 sin 3 )

2

cos3 sin3 sin3 cos3
2cos3 2sin 3

i t t

t t

i
e e t i t

t t t t
e i e

t t

+ + 
= + 
 

− +   
= +   
   

v
 

  The general real solution has the form 

   1 2
cos3 sin3 sin 3 cos3

2cos3 2sin3
t tt t t t

c e c e
t t

− +   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are spirals because the eigenvalues are complex. 
The spirals tend away from the origin because the real parts of the eigenvalues are positive. 

 14. 
2 1

.
8 2

− 
=  − 

A  An eigenvalue of A is 2i with corresponding eigenvector 
1

.
4
− 

=  
 

v
i

 The complex 

eigenfunctions λtev  and λtev  form a basis for the set of all complex solutions to .A′ =x x  The general 
complex solution is 

   (2 ) ( 2 )
1 2

1 1
4 4

i t i ti i
c e c e −− +   

+   
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  where 1c  and 2c  are arbitrary complex numbers. To build the general real solution, rewrite (2 )i tev  as: 

   

(2 ) 1
(cos2 sin 2 )

4

cos2 sin 2 sin 2 cos2
4cos2 4sin 2

i t i
e t i t

t t t t
i

t t

− 
= + 
 

+ −   
= +   
   

v
 

  The general real solution has the form 

   1 2
cos2 sin 2 sin 2 cos2

4cos2 4sin 2
t t t t

c c
t t

+ −   
+   

   
 

  where 1c  and 2c  now are real numbers. The trajectories are ellipses about the origin because the real 
parts of the eigenvalues are zero. 

 15. [M] 
8 12 6
2 1 2 .
7 12 5

− − − 
 =  
  

A  The eigenvalues of A are: 

  ev =eig(A)=  

   1.0000 

  -1.0000 

  -2.0000 

  nulbasis(A-ev(1)*eye(3)) =  
  -1.0000 

   0.2500 

   1.0000 

  so that 1

4
1
4

− 
 =  
  

v  

  nulbasis(A-ev(2)*eye(3)) =  
  -1.2000 

   0.2000 

   1.0000 

  so that 2

6
1
5

− 
 =  
  

v  

  nulbasis (A-ev(3)*eye(3)) =  
  -1.0000 

   0.0000 

   1.0000 

  so that 3

1
0
1

− 
 =  
  

v  
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  Hence the general solution is 2
1 2 3

4 6 1
( ) 1 1 0 .

4 5 1

t t tt c e c e c e− −
− − −     
     = + +     
          

x  The origin is a saddle point.  

A solution with 1 0c =  is attracted to the origin while a solution with 2 3 0c c= =  is repelled. 

 16. [M] 
6 11 16
2 5 4 .
4 5 10

− − 
 = − 
 − − 

A  The eigenvalues of A are: 

  ev =eig(A)=  

  4.0000 

  3.0000 

  2.0000 

  nulbasis(A-ev(1)*eye(3)) =  
   2.3333 

  -0.6667 

   1.0000 

  so that 1

7
2
3

 
 = − 
  

v  

  nulbasis(A-ev(2)*eye(3)) =  
   3.0000 

  -1.0000 

   1.0000 

  so that 2

3
1
1

 
 = − 
  

v  

  nulbasis(A-ev(3)*eye(3)) =  
  2.0000 

  0.0000 

  1.0000 

  so that 3

2
0
1

 
 =  
  

v  

  Hence the general solution is 4 3 2
1 2 3

7 3 2
( ) 2 1 0 .

3 1 1

t t tt c e c e c e
     
     = − + − +     
          

x  The origin is a repellor, because 

all eigenvalues are positive. All trajectories tend away from the origin. 



316 CHAPTER 5 • Eigenvalues and Eigenvectors 

 17. [M] 
30 64 23
11 23 9 .
6 15 4

 
 = − − − 
  

A  The eigenvalues of A are: 

  ev =eig(A)=  

  5.0000 + 2.0000i 

  5.0000 - 2.0000i  

  1.0000 

  nulbasis(A-ev(1)*eye(3)) =  
  7.6667 - 11.3333i 

  -3.0000 + 4.6667i 

  1.0000 

  so that 1

23 34
9 14

3

i
i

− 
 = − + 
  

v  

  nulbasis (A-ev(2)*eye(3)) =  
  7.6667 + 11.3333i 

  -3.0000 - 4.6667i 

  1.0000 

  so that 2

23 34
9 14

3

i
i

+ 
 = − − 
  

v  

  nulbasis (A-ev(3)*eye(3)) =  
  -3.0000 

   1.0000 

   1.0000 

  so that 3

3
1
1

− 
 =  
  

v  

  Hence the general complex solution is 

   (5 2 ) (5 2 )
1 2 3

23 34 23 34 3
( ) 9 14 9 14 1

3 3 1

i t i t t
i i

t c i e c i e c e+ −
− + −     

     = − + + − − +     
          

x  

  Rewriting the first eigenfunction yields 

   5 5 5
23 34 23cos2 34sin 2 23sin 2 34cos2

9 14 (cos 2 sin 2 ) 9cos2 14sin 2 9sin 2 14cos2
3 3cos 2 3sin 2

t t t
i t t t t
i e t i t t t e i t t e

t t

− + −     
     − + + = − − + − +     
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  Hence the general real solution is 

   5 5
1 2 3

23cos2 34sin 2 23sin 2 34cos2 3
( ) 9cos 2 14sin 2 9sin 2 14cos2 1

3cos2 3sin 2 1

t t t
t t t t

t c t t e c t t e c e
t t

+ − −     
     = − − + − + +     
          

x  

  where 1 2 ,,c c  and 3c  are real. The origin is a repellor, because the real parts of all eigenvalues are 
positive. All trajectories spiral away from the origin. 

 18. [M] 
53 30 2
90 52 3 .
20 10 2

A
− − 

 = − − 
 − 

 The eigenvalues of A are: 

  ev =eig(A)=  
  -7.0000 

   5.0000 + 1.0000i  

   5.0000 - 1.0000i 

  nulbasis(A-ev(1)*eye(3)) =  
  0.5000 

  1.0000 

  0.0000 

  so that 1

1
2
0

 
 =  
  

v  

  nulbasis(A-ev(2)*eye(3)) =  
  0.6000 + 0.2000i 

  0.9000 + 0.3000i 

  1.0000 

  so that 2

6 2
9 3

10

i
i

+ 
 = + 
  

v  

  nulbasis(A-ev(3)*eye(3)) =  
  0.6000 - 0.20000 

  0.9000 - 0.3000i 

  1.0000 

  so that 3

6 2
9 3

10

i
i

− 
 = − 
  

v  

  Hence the general complex solution is 

   7 (5 ) (5 )
1 2 3

1 6 2 6 2
( ) 2 9 3 9 3

0 10 10

t i t i t
i i

t c e c i e c i e− + −
+ −     

     = + + + −     
          

x  
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  Rewriting the second eigenfunction yields 

   5 5 5
6 2 6cos 2sin 6sin 2cos
9 3 (cos sin ) 9cos 3sin 9sin 3cos

10 10cos 10sin

+ − +     
     + + = − + +     
          

t t t
i t t t t
i e t i t t t e i t t e

t t
 

  Hence the general real solution is 

   7 5 5
1 2 3

1 6cos 2sin 6sin 2cos
( ) 2 9cos 3sin 9sin 3cos

0 10cos 10sin

t t t
t t t t

t c e c t t e c t t e
t t

−
− +     

     = + − + +     
          

x  

  where 1 2 ,,c c  and 3c  are real. When 2 3 0c c= =  the trajectories tend toward the origin, and in other cases 
the trajectories spiral away from the origin. 

 19. [M] Substitute 1 2 11 5 1 3 4,= / , = / , =R R C  and 2 3C =  into the formula for A given in Example 1, and use  
a matrix program to find the eigenvalues and eigenvectors: 

   1 1 2 1
2 3 4 1 3

λ 5 λ 2 5
1 1 2 2

A
− / −     

= , = −. : = , = − . : =     −     
v v  

  The general solution is thus 5 2 5
1 2

1 3
( ) .

2 2
−. − .−   

= +   
   

x t tt c e c e  The condition 
4

(0)
4
 

=  
 

x  implies  

that 1

2

1 3 4
.

2 2 4

 
 
 
  

−   
=   

   

c
c

 By a matrix program, 1 5 2c = /  and 2 1 2,= − /c  so that 

   1 5 2 5

2

( ) 1 35 1( )
( ) 2 22 2

t tv t
t e e

v t
−. − .−     

= = −     
    

x  

 20. [M] Substitute 1 2 11 15 1 3 4,= / , = / , =R R C  and 2 2C =  into the formula for A given in Example 1, and use 
a matrix program to find the eigenvalues and eigenvectors: 

   1 1 2 2
2 1 3 1 2

λ 1 λ 2 5
3 2 3 2 3 3

A
− / −     

= , = − : = , = − . : =     / − /     
v v  

  The general solution is thus 2 5
1 2

1 2
( ) .

3 3
− − .−   

= +   
   

x t tt c e c e  The condition 
3

(0)
3
 

=  
 

x  implies  

that 1

2

1 2 3
.

3 3 3

 
 
 
  

−   
=   

   

c
c

 By a matrix program, 1 5 3c = /  and 2 2 3,= − /c  so that 

   1 2 5

2

( ) 1 25 2( )
( ) 3 33 3

t tv t
t e e

v t
− − .−     

= = −     
    

x  

 21. [M] 
1 8

.
5 5

− − 
=  − 

A  Using a matrix program we find that an eigenvalue of A is 3 6i− +  with 

corresponding eigenvector 
2 6

.
5
+ 

=  
 

v
i

 The conjugates of these form the second 

  eigenvalue-eigenvector pair. The general complex solution is 

   ( 3 6 ) ( 3 6 )
1 2

2 6 2 6
( )

5 5
i t i ti i

t c e c e− + − −+ −   
= +   

   
x  
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  where 1c  and 2c  are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real and 
imaginary parts, we have 

   

( 3 6 ) 3

3 3

2 6
(cos6 sin 6 )

5

2cos6 6sin 6 2sin 6 6cos6
5cos6 5sin 6

− + −

− −

+ 
= + 
 

− +   
= +   
   

v i t t

t t

i
e e t i t

t t t t
e i e

t t

 

  The general real solution has the form 

   3 3
1 2

2cos6 6sin 6 2sin 6 6cos6
( )

5cos6 5sin 6
t tt t t t

t c e c e
t t

− −− +   
= +   

   
x  

  where 1c  and 2c  now are real numbers. To satisfy the initial condition 
0

(0) ,
15
 

=  
 

x  we solve 

1 2
2 6 0
5 0 15

c c
     

+ =     
     

 to get 1 23 1.= , = −c c  We now have 

   3 3 3
 

( ) 2cos6 6sin 6 2sin 6 6cos6 20sin 6
( ) 3   

( ) 5cos6 5sin 6 15cos6 5sin 6
− − −− + −       

= = − =       −      
xL t t t

C

i t t t t t t
t e e e

v t t t t t
 

 22. [M] 
0 2

.
4 8

 
=  −. −. 

A  Using a matrix program we find that an eigenvalue of A is 4 8i−. + .  with 

corresponding eigenvector 
1 2

.
1

− − 
=  
 

v
i

 The conjugates of these form the second eigenvalue-

eigenvector pair. The general complex solution is 

   ( 4 8 ) ( 4 8 )
1 2

1 2 1 2
( )

1 1
i t i ti i

t c e c e−. +. −. −.− − − +   
= +   

   
x  

  where 1c  and 2c  are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real and 
imaginary parts, we have 

   

( 4 8 ) 4

4 4

1 2
(cos 8 sin 8 )

1

cos 8 2sin 8 sin 8 2cos 8
cos 8 sin 8

i t t

t t

i
e e t i t

t t t t
e i e

t t

−. +. −.

−. −.

− − 
= . + . 
 
− . + . − . − .   

= +   . .   

v
 

  The general real solution has the form 

   4 4
1 2

cos 8 2sin 8 sin 8 2cos 8
( )

cos 8 sin 8
t tt t t t

t c e c e
t t

−. −.− . + . − . − .   
= +   . .   

x  

  where 1c  and 2c  now are real numbers. To satisfy the initial condition 
0

(0) ,
12
 

=  
 

x  we solve 

1 2
1 2  0
1 0 12

c c
− −     

+ =     
     

 to get 1 212 6.= , = −c c  We now have 

   4 4 4( ) cos 8 2sin 8 sin 8 2cos 8        30sin 8
( ) 12 6

( ) cos 8 sin 8 12cos 8 6sin 8
L t t t

C

i t t t t t t
t e e e

v t t t t t
−. −. −.− . + . − . − . .      

= = − =      . . . − .      
x  
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5.8 SOLUTIONS 

 1. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
1

,
3326

 
=  . 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
4 9978

.
1 6652

. 
=  . 

xA  This vector is approximately 1 1.λ v  From the first entry in this vector, an estimate  

of 1λ  is 4.9978. 

 2. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
2520

,
1

−. 
=  
 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
1 2536

.
5 0064

− . 
=  . 

xA  This vector is approximately 1 1.λ v  From the second entry in this vector, an estimate 

of 1λ  is 5.0064. 

 3. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
5188

,
1

. 
=  
 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
4594

.
9075

. 
=  . 

xA  This vector is approximately 1 1.λ v  From the second entry in this vector, an estimate of 

1λ  is .9075. 

 4. The vectors in the given sequence approach an eigenvector 1.v  The last vector in the sequence, 

4
1

,
7502

 
=  . 

x  is probably the best estimate for 1.v  To compute an estimate for 1,λ  examine 

4
4012

.
3009

−. 
=  −. 

xA  This vector is approximately 1 1.λ v  From the first entry in this vector, an estimate of 1λ  

is 4012.−.  

 5. Since 5 24991
31241

A
 

=  − 
x  is an estimate for an eigenvector, the vector 

24991 79991
31241 131241

−.   
= − =   −   

v  is 

a vector with a 1 in its second entry that is close to an eigenvector of A. To estimate the dominant 

eigenvalue 1λ  of A, compute 
4 0015

.
5 0020

. 
=  − . 

vA  From the second entry in this vector, an estimate of 1λ   

is 5 0020.− .  

 6. Since 5 2045
4093

A
− 

=  
 

x  is an estimate for an eigenvector, the vector 
2045 49961
4093 14093

− −.   
= =   

   
v  is  

a vector with a 1 in its second entry that is close to an eigenvector of A. To estimate the dominant 

eigenvalue 1λ  of A, compute 
2 0008

.
4 0024

− . 
=  . 

vA  From the second entry in this vector, an estimate of 1λ   

is 4.0024. 
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 7. [M] 0
6 7 1

.
8 5 0
   

= , =   
   

xA  The data in the table below was calculated using Mathematica, which carried 

more digits than shown here. 

k 0 1 2 3 4 5 

kx  
1
0
 
 
 

 75
1

. 
 
 

 
1

9565
 
 . 

 
9932

1
. 
 
 

 
1

9990
 
 . 

 
.9998

1
 
 
 

 

kAx  
6
8
 
 
 

 11 5
11 0

. 
 . 

 
12 6957
12 7826

. 
 . 

 
12 9592
12 9456

. 
 . 

 
12 9927
12 9948

. 
 . 

 
12 9990
12 9987

. 
 . 

 

kµ  8 11.5 12.7826 12.9592 12.9948 12.9990 

  The actual eigenvalue is 13. 

 8. [M] 0
2 1 1

.
4 5 0
   

= , =   
   

xA  The data in the table below was calculated using Mathematica, which carried 

more digits than shown here. 

k 0 1 2 3 4 5 

kx  
1
0
 
 
 

 
5
1
. 
 
 

 
2857

1
. 
 
 

 
2558

1
. 
 
 

 
2510

1
. 
 
 

 
.2502

1
 
 
 

 

kAx  
2
4
 
 
 

 
2
7
 
 
 

 
1 5714
6 1429
. 

 . 
 

1 5116
6 0233
. 

 . 
 

1 5019
6 0039
. 

 . 
 

1 5003
6 0006
. 

 . 
 

kµ  4 7 6.1429 6.0233 6.0039 6.0006 

  The actual eigenvalue is 6. 

 9. [M] 0

8 0 12 1
1 2 1 0 .
0 3 0 0

   
   = − , =   
      

xA  The data in the table below was calculated using Mathematica, which 

carried more digits than shown here. 

k 0 1 2 3 4 5 6 

kx  
1
0
0

 
 
 
  

 
1

125
0

 
 . 
  

 
1

0938
0469

 
 . 
 . 

 
1

1004
0328

 
 . 
 . 

 
1

0991
0359

 
 . 
 . 

 
1

0994
0353

 
 . 
 . 

 
1

0993
0354

 
 . 
 . 

 

kAx  
8
1
0

 
 
 
  

 
8

75
375

 
 . 
 . 

 
8 5625

8594
2812

. 
 . 
 . 

 
8 3942

8321
3011

. 
 . 
 . 

 
8 4304

8376
2974

. 
 . 
 . 

 
8 4233

8366
2981

. 
 . 
 . 

 
8 4246

8368
2979

. 
 . 
 . 

 

kµ  8 8 8.5625 8.3942 8.4304 8.4233 8.4246 

  Thus 5 8 4233µ = .  and 6 8 4246.= .µ  The actual eigenvalue is (7 97) 2,+ /  or 8.42443 to five decimal 
places. 
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 10. [M] 0

1 2 2 1
1 1 9 0 .
0 1 9 0

−   
   = , =   
      

xA  The data in the table below was calculated using Mathematica, which 

carried more digits than shown here. 

k 0 1 2 3 4 5 6 

kx  
1
0
0

 
 
 
  

 
1
1
0

 
 
 
  

 
1

6667
3333

 
 . 
 . 

 
3571

1
7857

. 
 
 
 . 

 
0932

1
9576

. 
 
 
 . 

 
0183

1
9904

. 
 
 
 . 

 
0038

1
9982

. 
 
 
 . 

 

kAx  
1
1
0

 
 
 
  

 
3
2
1

 
 
 
  

 
1 6667
4 6667
3 6667

. 
 . 
 . 

 
7857

8 4286
8 0714

. 
 . 
 . 

 
1780

9 7119
9 6186

. 
 . 
 . 

 
0375

9 9319
9 9136

. 
 . 
 . 

 
0075

9 9872
9 9834

. 
 . 
 . 

 

kµ  1 3 4.6667 8.4286 9.7119 9.9319 9.9872 

  Thus 5 9 9319= .µ  and 6 9 9872.= .µ  The actual eigenvalue is 10. 

 11. [M] 0
5 2 1

.
2 2 0
   

= , =   
   

xA  The data in the table below was calculated using Mathematica, which carried 

more digits than shown here. 

k 0 1 2 3 4 

kx  
1
0
 
 
 

 
1
4

 
 . 

 
1

4828
 
 . 

 
1

4971
 
 . 

 
1

4995
 
 . 

 

kAx  
5
2
 
 
 

 
5 8
2 8
. 

 . 
 

5 9655
2 9655
. 

 . 
 

5 9942
2 9942
. 

 . 
 

5 9990
2 9990
. 

 . 
 

kµ  5 5.8 5.9655 5.9942 5.9990 

( )kR x  5 5.9655 5.9990 5.99997 5.9999993 

  The actual eigenvalue is 6. The bottom two columns of the table show that ( )kR x  estimates the 
eigenvalue more accurately than .kµ  

 12. [M] 0
3 2 1

.
2 2 0

−   
= , =   
   

xA  The data in the table below was calculated using Mathematica,  

which carried more digits than shown here. 

k 0 1 2 3 4 

kx  
1
0
 
 
 

 
1

6667
− 

 . 
 

1
4615

 
 −. 

 
1

5098
− 

 . 
 

1
4976

 
 −. 

 

kAx  
3
2

− 
 
 

 
4 3333
2 0000

. 
 − . 

 
3 9231
2 0000

− . 
 . 

 
4 0196
2 0000

. 
 − . 

 
3 9951
2 0000

− . 
 . 

 

kµ  3−  4 3333− .  3 9231− .  4 0196− .  3 9951− .  

( )kR x  3−  3 9231− .  3 9951− .  3 9997− .  3 99998− .  
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  The actual eigenvalue is 4.−  The bottom two columns of the table show that ( )kR x  estimates the 
eigenvalue more accurately than .kµ  

 13. If the eigenvalues close to 4 and 4−  have different absolute values, then one of these is a strictly 
dominant eigenvalue, so the power method will work. But the power method depends on powers of the 
quotients 2 1λ /λ  and 3 1λ /λ  going to zero. If 2 1| λ /λ |  is close to 1, its powers will go to zero slowly, and 
the power method will converge slowly. 

 14. If the eigenvalues close to 4 and 4−  have the same absolute value, then neither of these is a strictly 
dominant eigenvalue, so the power method will not work. However, the inverse power method may still 
be used. If the initial estimate is chosen near the eigenvalue close to 4, then the inverse power method 
should produce a sequence that estimates the eigenvalue close to 4. 

 15. Suppose ,= λx xA  with 0.≠x  For any ( ) ., − = λ −x x xA Iα α α  If α  is not an eigenvalue of A, then 
A Iα−  is invertible and αλ −  is not 0; hence 

  1 1 1( ) ( )  and ( ) ( )A I A Iα α α α− − −= − λ − λ − = −x x x x  

  This last equation shows that x is an eigenvector of 1( )A Iα −−  corresponding to the eigenvalue 
1( ) .−λ −α  

 16. Suppose that µ  is an eigenvalue of 1( )A Iα −−  with corresponding eigenvector x. Since 
1( ) ,−− =x xA Iα µ  

   ( )( ) ( ) ( )( ) ( )A I A I Aα µ µ α µ µ αµ= − = − = −x x x x x x  

  Solving this equation for Ax, we find that 

   1 1( )
   

= + = +   
   

x x x xA αµ α
µ µ

 

  Thus (1 )α µλ = + /  is an eigenvalue of A with corresponding eigenvector x. 

 17. [M] 0

10 8 4 1
8 13 4 0 3 3.
4 5 4 0

− −   
   = − , = , = .   
   −   

xA α  The data in the table below was calculated using 

Mathematica, which carried more digits than shown here. 

k 0 1 2 

kx  
1
0
0

 
 
 
  

 
1

7873
0908

 
 . 
 . 

 
1

7870
0957

 
 . 
 . 

 

ky  
26 0552
20 5128
2 3669

. 
 . 
 . 

 
47 1975
37 1436
4 5187

. 
 . 
 . 

 
47 1233
37 0866

4 5083

. 
 . 
 . 

kµ  26.0552 47.1975 47.1233 

kν  3.3384 3.32119 3.3212209 

  Thus an estimate for the eigenvalue to four decimal places is 3.3212. The actual eigenvalue is 
(25 337) 2,− /  or 3.3212201 to seven decimal places. 



324 CHAPTER 5 • Eigenvalues and Eigenvectors 

 18. [M] 0

8 0 12 1
1 2 1 0 1 4.
0 3 0 0

   
   = − , = , = − .   
      

xA α  The data in the table below was calculated using 

Mathematica, which carried more digits than shown here. 

k 0 1 2 3 4 

kx  
1
0
0

 
 
 
  

 
1

3646
7813

 
 . 
 −. 

 
1

3734
7854

 
 . 
 −. 

 
1

3729
7854

 
 . 
 −. 

 
1

3729
7854

 
 . 
 −. 

 

ky  
40

14 5833
31 25

 
 . 
 − . 

 
38 125

14 2361
29 9479

− . 
 − . 
 . 

 
41 1134
15 3300
32 2888

− . 
 − . 
 . 

 
40 9243
15 2608
32 1407

− . 
 − . 
 . 

 
40 9358
15 2650
32 1497

− . 
 − . 
 . 

 

kµ  40 38 125− .  41 1134− .  40 9243− .  40 9358− .  

kν  1 375− .  1 42623− .  1 42432− .  1 42444− .  1 42443− .  

  Thus an estimate for the eigenvalue to four decimal places is 1 4244.− .  The actual eigenvalue is 
(7 97) 2,− /  or 1 424429− .  to six decimal places. 

 19. [M] 0

10 7 8 7 1
7 5 6 5 0

.
8 6 10 9 0
7 5 9 10 0

   
   
   = , =
   
   
      

xA  

(a) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 3 

kx  

1
0
0
0

 
 
 
 
 
  

 

1
7
8
7

 
 . 
 .
 .  

 

988679
709434

1
932075

. 
 . 
 
 .  

 

961467
691491

1
942201

. 
 . 
 
 .  

 

kAx  

10
7
8
7

 
 
 
 
 
  

 

26 2
18 8
26 5
24 7

. 
 . 
 .
 .  

 

29 3774
21 1283
30 5547
28 7887

. 
 . 
 .
 .  

 

29 0505
20 8987
30 3205
28 6097

. 
 . 
 .
 .  

 

kµ  10 26.5 30.5547 30.3205 
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k 4 5 6 7 

kx  

958115
689261

1
943578

. 
 . 
 
 .  

 

957691
688978

1
943755

. 
 . 
 
 .  

 

957637
688942

1
943778

. 
 . 
 
 .  

 

957630
688938

1
943781

. 
 . 
 
 .  

 

kAx  

29 0110
20 8710
30 2927
28 5889

. 
 . 
 .
 .  

 

29 0060
20 8675
30 2892
28 5863

. 
 . 
 .
 .  

 

29 0054
20 8671
30 2887
28 5859

. 
 . 
 .
 .  

 

29 0053
20 8670
30 2887
28 5859

. 
 . 
 .
 .  

 

kµ  30.2927 30.2892 30.2887 30.2887 

  Thus an estimate for the eigenvalue to four decimal places is 30.2887. The actual eigenvalue is 

30.2886853 to seven decimal places. An estimate for the corresponding eigenvector is 

957630
688938

.
1

943781

. 
 . 
 
 .  

 

(b) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 3 4 

kx  

1
0
0
0

 
 
 
 
 
  

 

609756
1

243902
146341

−. 
 
 
 −.
 .  

 

604007
1

251051
148899

−. 
 
 
 −.
 .  

603973
1

251134
148953

−. 
 
 
 −.
 .  

 

603972
1

251135
148953

−. 
 
 
 −.
 .  

 

ky  

25
41
10

6

 
 − 
 
 −  

 

59 5610
98 6098
24 7561
14 6829

− . 
 . 
 − .
 .  

 

59 5041
98 5211
24 7420
14 6750

− . 
 . 
 − .
 .  

 

59 5044
98 5217
24 7423
14 6751

− . 
 . 
 − .
 .  

 

59 5044
98 5217
24 7423
14 6751

− . 
 . 
 − .
 .  

 

kµ  41−  98.6098 98.5211 98.5217 98.5217 

kν  0243902−.  .0101410 .0101501 .0101500 .0101500 

  Thus an estimate for the eigenvalue to five decimal places is .01015. The actual eigenvalue is 

.01015005 to eight decimal places. An estimate for the corresponding eigenvector is 

603972
1

.
251135

148953

−. 
 
 
 −.
 .  
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 20. [M] 0

1 2 3 2 1
2 12 13 11 0

.
2 3 0 2 0
4 5 7 2 0

   
   
   = , =
   −
   
      

xA  

(a) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 3 4 

kx  

1
0
0
0

 
 
 
 
 
  

 

25
5
5

1

. 
 . 
 −.
 
  

 

159091
1

272727
181818

. 
 
 
 .
 .  

187023
1

170483
442748

. 
 
 
 .
 .  

 

184166
1

180439
402197

. 
 
 
 .
 .  

 

kAx  

1
2
2
4

 
 
 
 −
 
  

 

1 75
11
3
2

. 
 
 
 
 
  

 

3 34091
17 8636
3 04545
7 90909

. 
 . 
 .
 .  

3 58397
19 4606
3 51145
7 82697

. 
 . 
 .
 .  

 

3 52988
19 1382
3 43606
7 80413

. 
 . 
 .
 .  

 

kµ  4 11 17.8636 19.4606 19.1382 

 
k 5 6 7 8 9 

kx  

184441
1

179539
407778

. 
 
 
 .
 .  

 

184414
1

179622
407021

. 
 
 
 .
 .  

 

184417
1

179615
407121

. 
 
 
 .
 .  

 

184416
1

179615
407108

. 
 
 
 .
 .  

 

184416
1

179615
407110

. 
 
 
 .
 .  

 

kAx  

3 53861
19 1884
3 44667
7 81010

. 
 . 
 .
 .  

 

3 53732
19 1811
3 44521
7 80905

. 
 . 
 .
 .  

 

3 53750
19 1822
3 44541
7 80921

. 
 . 
 .
 .  

 

3 53748
19 1820
3 44538
7 80919

. 
 . 
 .
 .  

 

3 53748
19 1811
3 44539
7 80919

. 
 . 
 .
 .  

 

kµ  19.1884 19.1811 19.1822 19.1820 19.1820 

  Thus an estimate for the eigenvalue to four decimal places is 19.1820. The actual eigenvalue is 

19.1820368 to seven decimal places. An estimate for the corresponding eigenvector is 

184416
1

.
179615
407110

. 
 
 
 .
 .  
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(b) The data in the table below was calculated using Mathematica, which carried more digits than 
shown here. 

k 0 1 2 

kx  

1
0
0
0

 
 
 
 
 
  

 

1
226087
921739

660870

 
 . 
 −.
 .  

 

1
222577
917970

660496

 
 . 
 −.
 .  

 

ky  

115
26

106
76

 
 
 
 −
 
  

 

81 7304
18 1913
75 0261
53 9826

. 
 . 
 − .
 .  

 

81 9314
18 2387
75 2125
54 1143

. 
 . 
 − .
 .  

 

kµ  115 81.7304 81.9314 

kν  .00869565 .0122353 .0122053 

  Thus an estimate for the eigenvalue to four decimal places is .0122. The actual eigenvalue is 

.01220556 to eight decimal places. An estimate for the corresponding eigenvector is 

1
222577

.
917970

660496

 
 . 
 −.
 .  

 

 21. a. 
8 0 5

.
0 2 5
. .   

= , =   . .   
xA  Here is the sequence kA x  for 1 5 := ,k …  

   
4 32 256 2048 16384
1 02 004 0008 00016

. . . . .         
, , , ,         . . . . .         

 

  Notice that 5A x  is approximately 48( ).. xA  

  Conclusion: If the eigenvalues of A are all less than 1 in magnitude, and if 0,≠x  then kA x  is 
approximately an eigenvector for large k. 

b. 
1 0 5

.
0 8 5

.   
= , =   . .   

xA  Here is the sequence kA x  for 1 5 := ,k …  

   
5 5 5 5 5
4 32 256 2048 16384
. . . . .         

, , , ,         . . . . .         
 

  Notice that kA x  seems to be converging to 
5

.
0
. 
 
 

 

  Conclusion: If the strictly dominant eigenvalue of A is 1, and if x has a component in the direction of 
the corresponding eigenvector, then { }kA x  will converge to a multiple of that eigenvector. 

c. 
8 0 5

.
0 2 5

.   
= , =   .   

xA  Here is the sequence kA x  for 1 5 := ,k …  

   
4 32 256 2048 16384
1 2 4 8 16
         

, , , ,         
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  Notice that the distance of kA x  from either eigenvector of A is increasing rapidly as k increases. 
  Conclusion: If the eigenvalues of A are all greater than 1 in magnitude, and if x is not an eigenvector, 

then the distance from kA x  to the nearest eigenvector will increase as .→ ∞k  

Chapter 5 SUPPLEMENTARY EXERCISES 

 1.  a. True. If A is invertible and if 1A = ⋅x x  for some nonzero x, then left-multiply by 1A−  to obtain 
1 ,−=x xA  which may be rewritten as 1 1 .− = ⋅x xA  Since x is nonzero, this shows 1 is an eigenvalue  

of 1.−A  
 b. False. If A is row equivalent to the identity matrix, then A is invertible. The matrix in Example 4 of 

Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31 in 
Section 5.3. 

 c. True. If A contains a row or column of zeros, then A is not row equivalent to the identity matrix and 
thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an eigenvalue 
of A. 

 d. False. Consider a diagonal matrix D whose eigenvalues are 1 and 3, that is, its diagonal entries are 1 
and 3. Then 2D  is a diagonal matrix whose eigenvalues (diagonal entries) are 1 and 9. In general, 
the eigenvalues of 2A  are the squares of the eigenvalues of A. 

 e. True. Suppose a nonzero vector x satisfies ,=x xA λ  then 

  2 2( ) ( )A A A A Aλ λ λ= = = =x x x x x  

  This shows that x is also an eigenvector for 2A  

 f. True. Suppose a nonzero vector x satisfies ,=x xA λ  then left-multiply by 1A−  to obtain 
1 1( ) .− −= =x x xA Aλ λ  Since A is invertible, the eigenvalue λ  is not zero. So 1 1 ,− −λ =x xA  which 

shows that x is also an eigenvector of 1.−A  
 g. False. Zero is an eigenvalue of each singular square matrix. 
 h. True. By definition, an eigenvector must be nonzero. 
 i. False. Let v be an eigenvector for A. Then v and 2v are distinct eigenvectors for the same eigenvalue 

(because the eigenspace is a subspace), but v and 2v are linearly dependent. 
 j. True. This follows from Theorem 4 in Section 5.2 
 k. False. Let A be the 3 3×  matrix in Example 3 of Section 5.3. Then A is similar to a diagonal matrix 

D. The eigenvectors of D are the columns of 3,I  but the eigenvectors of A are entirely different. 

 l. False. Let 
2 0

.
0 3
 

=  
 

A  Then 1
1
0
 

=  
 

e  and 2
0
1
 

=  
 

e  are eigenvectors of A, but 1 2+e e  is not. 

(Actually, it can be shown that if two eigenvectors of A correspond to distinct eigenvalues, then their 
sum cannot be an eigenvector.) 

 m. False. All the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix 
(Theorem 1 in Section 5.1). A diagonal entry may be zero. 

 n. True. Matrices A and TA  have the same characteristic polynomial, because 
det( ) det( ) det( ),− λ = − λ = − λT TA I A I A I  by the determinant transpose property. 

 o. False. Counterexample: Let A be the 5 5×  identity matrix. 
 p. True. For example, let A be the matrix that rotates vectors through 2π/  radians about the origin. 

Then Ax is not a multiple of x when x is nonzero. 
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 q. False. If A is a diagonal matrix with 0 on the diagonal, then the columns of A are not linearly 
independent. 

 r. True. If 1A λ=x x  and 2 ,=x xA λ  then 1 2λ λ=x x  and 1 2( ) .− =x 0λ λ  If ,≠x 0  then 1λ  must equal 2.λ  

 s. False. Let A be a singular matrix that is diagonalizable. (For instance, let A be a diagonal matrix with 
0 on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation Ax x6  is represented by 
a diagonal matrix relative to a coordinate system determined by eigenvectors of A. 

 t. True. By definition of matrix multiplication, 
  1 12 2[ ] [ ]n nA AI A A A A= = =e e e e e e" "  

  If =e ej j jA d  for 1 ,= , ,j … n  then A is a diagonal matrix with diagonal entries 1 ., , nd … d  

 u. True. If 1,−=B PDP  where D is a diagonal matrix, and if 1,−=A QBQ  then 
1 1 1( ) ( ) ( ) ,− − −= =A Q PDP Q QP D PQ  which shows that A is diagonalizable. 

 v. True. Since B is invertible, AB is similar to 1( ) ,−B AB B  which equals BA. 

 w. False. Having n linearly independent eigenvectors makes an n n×  matrix diagonalizable (by the 
Diagonalization Theorem 5 in Section 5.3), but not necessarily invertible. One of the eigenvalues  
of the matrix could be zero. 

 x. True. If A is diagonalizable, then by the Diagonalization Theorem, A has n linearly independent 
eigenvectors 1, ,v vn…  in .Rn  By the Basis Theorem, 1{ }, ,v vn…  spans .Rn  This means that each 
vector in nR  can be written as a linear combination of 1 ., ,v vn…  

 2. Suppose B ≠x 0  and = λx xAB  for some λ . Then ( ) .= λx xA B  Left-multiply each side by B and obtain 
( ) ( ) ( ).= λ = λx x xBA B B B  This equation says that Bx is an eigenvector of BA, because .≠x 0B  

 3. a. Suppose ,= λx xA  with .≠x 0  Then (5 ) 5 5 (5 ) .− = − = − λ = − λx x x x x xI A A  The eigenvalue  
is 5 .− λ  

b. 2 2 2(5 3 ) 5 3 ( ) 5 3( ) (5 3 ) .− + = − + = − λ + λ = − λ + λx x x x x x x xI A A A A A  The eigenvalue is 
25 3 .− λ + λ  

 4. Assume that A λ=x x  for some nonzero vector x. The desired statement is true for 1,=m  by the 
assumption about λ . Suppose that for some 1,≥k  the statement holds when .=m k  That is, suppose  
that .=x xk kA λ  Then 1 ( ) ( )k k kA A A A λ+ = =x x x  by the induction hypothesis. Continuing, 

1 1 ,+ += =x x xk k kA Aλ λ  because x is an eigenvector of A corresponding to A. Since x is nonzero, this 
equation shows that 1kλ +  is an eigenvalue of 1,+kA  with corresponding eigenvector x. Thus the desired 
statement is true when 1.= +m k  By the principle of induction, the statement is true for each positive 
integer m. 

 5. Suppose ,= λx xA  with .≠x 0  Then 

  

2
0 1 2

2
0 1 2

2
0 1 2

( ) ( )

( )

= + + + +

= + + + +

= + λ + λ + + λ = λ

x x

x x x x

x x x x x

n
n

n
n

n
n

p A c I c A c A … c A

c c A c A … c A

c c c … c p

 

  So ( )λp  is an eigenvalue of ( ).p A  
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 6. a. If 1,−=A PDP  then 1,−=k kA PD P  and 

   
2 1 1 2 1

2 1

5 3 5 3
(5 3 )

− − −

−

= − + = − +
= − +

B I A A PIP PDP PD P
P I D D P

 

   Since D is diagonal, so is 25 3 .− +I D D  Thus B is similar to a diagonal matrix. 

b.
 

1 2 1 1
0 1 2

2 1
0 1 2

1

( )
( )
( )

− − −

−

−

= + + + +
= + + + +
=

"
"

n
n

n
n

p A c I c PDP c PD P c PD P
P c I c D c D c D P
Pp D P

 

  This shows that ( )p A  is diagonalizable, because ( )p D  is a linear combination of diagonal matrices 
and hence is diagonal. In fact, because D is diagonal, it is easy to see that 

  
(2) 0

( )
0 (7)

p
p D

p
 

=  
 

 

 7. If 1,−=A PDP  then 1( ) ( ) ,−=p A Pp D P  as shown in Exercise 6. If the ( ),j j  entry in D is λ , then the 

( ),j j  entry in kD  is ,λk  and so the ( ),j j  entry in ( )p D  is ( ).λp  If p is the characteristic polynomial 
of A, then ( ) 0λ =p  for each diagonal entry of D, because these entries in D are the eigenvalues of A. 
Thus ( )p D  is the zero matrix. Thus 1( ) 0 0.−= ⋅ ⋅ =p A P P  

 8. a. If λ  is an eigenvalue of an n n×  diagonalizable matrix A, then 1A PDP−=  for an invertible matrix P 
and an n n×  diagonal matrix D whose diagonal entries are the eigenvalues of A. If the multiplicity of 
λ  is n, then λ  must appear in every diagonal entry of D. That is, .=D Iλ  In this case, 

1 1 1( ) .− − −= = = =A P I P PIP PP Iλ λ λ λ  

b. Since the matrix 
3 1
0 3

A
 

=  
 

 is triangular, its eigenvalues are on the diagonal. Thus 3 is an 

eigenvalue with multiplicity 2. If the 2 2×  matrix A were diagonalizable, then A would be 3I, by  
part (a). This is not the case, so A is not diagonalizable. 

 9. If I A−  were not invertible, then the equation ( ) .− =x 0I A  would have a nontrivial solution x. Then 
A− =x x 0  and 1 ,= ⋅x xA  which shows that A would have 1 as an eigenvalue. This cannot happen if all 

the eigenvalues are less than 1 in magnitude. So I A−  must be invertible. 

 10. To show that kA  tends to the zero matrix, it suffices to show that each column of kA  can be made as 
close to the zero vector as desired by taking k sufficiently large. The jth column of A is ,e jA  where je  is 
the jth column of the identity matrix. Since A is diagonalizable, there is a basis for n consisting of 
eigenvectors 1 ,, ,v vn…  corresponding to eigenvalues 1 .λ , ,λn…  So there exist scalars 1 ,, , nc … c  such that 

  1 1 (an eigenvector decomposition of )= + +e v v ej n n j
…c c  

  Then, for 1 2 ,= , ,k …  

  1 1 1( ) ( ) ( )= λ + + λ ∗e v v"k k k
j n n nA c c  

  If the eigenvalues are all less than 1 in absolute value, then their kth powers all tend to zero. So ( )∗  
shows that k

jA e tends to the zero vector, as desired. 
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 11. a. Take x in H. Then c=x u  for some scalar c. So ( ) ( ) ( ) ( ) ,= = = λ = λx u u u uA A c c A c c  which shows 
that Ax  is in H. 

b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar multiples 
of x. If K is invariant under A, then Ax  is in K and hence Ax  is a multiple of x. Thus x is an 
eigenvector of A. 

 12. Let U and V be echelon forms of A and B, obtained with r and s row interchanges, respectively, and no 
scaling. Then det ( 1) det rA U= −  and det ( 1) det sB V= −  

  Using first the row operations that reduce A to U, we can reduce G to a matrix of the form .
0

 
′ =  

 

U Y
G

B
 

Then, using the row operations that reduce B to V, we can further reduce G′  to .
0

 
′′ =  

 

U Y
G

V
 There 

will be r s+  row interchanges, and so det det ( 1) det 
0 0

+   
= = −   

   
r sA X U Y

G
B V

 Since 
0

 
 
 

U Y
V

 is 

upper triangular, its determinant equals the product of the diagonal entries,  
and since U and V are upper triangular, this product also equals (det U ) (det V ). Thus 

  det ( 1) (det )(det ) (det )(det )+= − =r sG U V A B  

  For any scalar λ , the matrix − λG I  has the same partitioned form as G, with − λA I  and − λB I  as its 
diagonal blocks. (Here I  represents various identity matrices of appropriate sizes.) Hence the result 
about det G shows that det( ) det( ) det( )− λ = − λ ⋅ − λG I A I B I  

 13. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix [ ]3  together with the eigenvalues 

of 
5 2

.
4 3

− 
 − 

 The only eigenvalue of [ ]3  is 3, while the eigenvalues of 
5 2
4 3

− 
 − 

 are 1 and 7. Thus the 

eigenvalues of A are 1, 3, and 7. 

 14. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix 
1 5
2 4
 
 
 

 together with the 

eigenvalues of 
7 4

.
3 1

− − 
 
 

 The eigenvalues of 
1 5
2 4
 
 
 

 are 1−  and 6, while the eigenvalues of 

7 4
3 1

− − 
 
 

 are 5−  and 1.−  Thus the eigenvalues of A are 1 5,− , −  and 6, and the eigenvalue 1−  has 

multiplicity 2. 

 15. Replace A by − λA  in the determinant formula from Exercise 16 in Chapter 3 Supplementary Exercises. 

  1det( ) ( ) [ ( 1) ]−− λ = − − λ − λ + −nA I a b a n b  

  This determinant is zero only if 0− − λ =a b  or ( 1) 0.− λ + − =a n b  Thus λ  is an eigenvalue of A if and 
only if λ = −a b  or ( 1).λ = + −a n  From the formula for det( )− λA I  above, the algebraic multiplicity is 

1n −  for a b−  and 1 for ( 1) .+ −a n b  

 16. The 3 3×  matrix has eigenvalues 1 2−  and 1 (2)(2),+  that is, 1−  and 5. The eigenvalues of the 5 5×  
matrix are 7 3−  and 7 (4)(3),+  that is 4 and 19. 
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 17. Note that 2
11 22 12 21 11 22 11 22 12 21det( ) ( )( ) ( ) ( )− λ = − λ − λ − = λ − + λ + −A I a a a a a a a a a a  

2 (tr ) det ,= λ − λ +A A  and use the quadratic formula to solve the characteristic equation: 

   
2tr (tr ) 4det 

2
± −

=
A A Aλ  

  The eigenvalues are both real if and only if the discriminant is nonnegative, that is, 2(tr ) 4det 0.− ≥A A  

This inequality simplifies to 2(tr ) 4detA A≥  and 
2

det .
2

  ≥ 
 

trA A  

 18. The eigenvalues of A are 1 and .6. Use this to factor A and .kA  

  

1 3 1 0 2 31
2 2 0 6 2 14

1 3 1 0 2 31
2 2 2 140 6

2 31 31
2 24 2 ( 6) ( 6)

2 6( 6) 3 3( 6)1
4 4 4( 6) 6 2( 6)

2 31  as 
4 64

 
 
 
 
  

 
 
 
  

 
 
 
 
  

− −     
= ⋅     . − −     

− −   
= ⋅   − −.   

− − 
=   − ⋅ . − . 

− + . − + .=
− . − .

− − 
→ → 

 

k
k

k

k k

k k

k k

A

A

k ∞

 

 19. 20 1
det( ) 6 5 ( )

6 5
 

= ; − λ = − λ + λ = λ − 
p pC C I p  

 20. 
0 1 0
0 0 1 ;

24 26 9

 
 =  
 − 

pC  

  2 3det( ) 24 26 9 ( )− λ = − λ + λ − λ = λpC I p  

 21. If p is a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic 
polynomial of pC  is 2( ) ( 1) ( ),λ = − λp p  so the result is true for 2.=n  Suppose the result is true for 

n k=  for some 2,≥k  and consider a polynomial p of degree 1.+k  Then expanding det( )− λpC I   
by cofactors down the first column, the determinant of − λpC I  equals 

   1
0

1 2

1 0

( )det ( 1)
0 1

+

−λ 
 
 −λ + −
 
 − − − − λ  

"
# #

"

k

k

a

a a a

 



Chapter  5 • Supplementary  Exercises   333 

  The k k×  matrix shown is ,− λqC I  where 1
1 2( ) .−= + + + +" k k

kq t a a t a t t  By the induction assumption, 

the determinant of − λqC I  is ( 1) ( ).− λk q  Thus 

  

1
0

1 1
0 1

1

det( ) ( 1) ( )( 1) ( )

( 1) [ ( )]

( 1) ( )

+

+ −

+

− λ = − + −λ − λ

= − + λ + + λ + λ

= − λ

"

k k
p

k k k
k

k

C I a q

a a a

p

 

  So the formula holds for 1n k= +  when it holds for .=n k  By the principle of induction, the formula for 
det( )− λpC I  is true for all 2.≥n  

 22. a. 

0 1 2

0 1 0
0 0 1pC
a a a

 
 
 
 
 
 
  

=
− − −

 

b. Since λ  is a zero of p, 2 3
0 1 2 0+ λ + λ + λ =a a a  and 2 3

0 1 2 .− − λ − λ = λa a a  Thus 

   2 2

22
0 1 2

1

pC
a a a

    
    
    
    
    
     3
         

λ λ

λ = λ = λ
− − λ − λλ λ

 

  That is, 2 2(1 ) (1 ),,λ,λ = ,λ,λpC λ  which shows that 2(1 ),λ,λ  is an eigenvector of pC  corresponding 
to the eigenvalue λ . 

 23. From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of ,pC  corresponding to 

the eigenvalues 1 2 3λ ,λ ,λ  (the roots of the polynomial p). Since these eigenvalues are distinct, the 
eigenvectors from a linearly independent set, by Theorem 2 in Section 5.1. Thus V has linearly 
independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally, since the 
columns of V are eigenvectors of ,pC  the Diagonalization Theorem (Theorem 5 in Section 5.3) shows 

that 1
pV C V−  is diagonal. 

 24. [M] The MATLAB command roots (p) requires as input a row vector p whose entries are the 
coefficients of a polynomial, with the highest order coefficient listed first. MATLAB constructs a 
companion matrix pC  whose characteristic polynomial is p, so the roots of p are the eigenvalues of .pC  
The numerical values of the eigenvalues (roots) are found by the same QR algorithm used by the 
command eig(A). 

 25. [M] The MATLAB command [P D]=eig(A) produces a matrix P, whose condition number is 
81 6 10 ,. ×  and a diagonal matrix D, whose entries are almost 2, 2, 1. However, the exact eigenvalues  

of A are 2, 2, 1, and A is not diagonalizable. 

 26. [M] This matrix may cause the same sort of trouble as the matrix in Exercise 25. A matrix program that 
computes eigenvalues by an interative process may indicate that A has four distinct eigenvalues, all close 
to zero. However, the only eigenvalue is 0, with multiplicity 4, because 4 0.=A  




