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6.1 SOLUTIONS 

Notes: The first half of this section is computational and is easily learned. The second half concerns the 
concepts of orthogonality and orthogonal complements, which are essential for later work. Theorem 3 is an 
important general fact, but is needed only for Supplementary Exercise 13 at the end of the chapter and in 
Section 7.4. The optional material on angles is not used later. Exercises 27–31 concern facts used later. 

 1. Since 
1

2

�� �
� � �

� �
u  and 

4
,

6

� �
� � �

� �
v  2 2( 1) 2 5	 � � 
 �u u , v 	 u = 4(–1) + 6(2) = 8, and 

8
.

5

	
�

	
v u
u u

 

 2. Since 

3

1

5

� �
� �� �� �
� ��� �

w  and 

6

2 ,

3

� �
� �� �� �
� �� �

x  2 2 23 ( 1) ( 5) 35	 � 
 � 
 � �w w , x 	 w = 6(3) + (–2)(–1) + 3(–5) = 5, and 

5 1
.

35 7

	
� �

	
x w
w w

 

 3. Since 

3

1 ,

5

� �
� �� �� �
� ��� �

w  2 2 23 ( 1) ( 5) 35	 � 
 � 
 � �w w , and 

3/ 35
1

1/ 35 .

1/ 7

� �
� �� �� �	
� ��� �

w
w w

 

 4. Since 
1

,
2

�� �
� � �

� �
u  2 2( 1) 2 5	 � � 
 �u u  and 

1/ 51
.

2 /5

�� �
� � �	 � �

u
u u

 

 5. Since 
1

2

�� �
� � �

� �
u  and 

4
,

6

� �
� � �

� �
v  u 	 v = (–1)(4) + 2(6) = 8, 2 24 6 52,	 � 
 �v v  and 

4 8 /132
.

6 12 /1313

� � � �	� � � �
 � � � � �	� � � � � �

u v
v

v v
 

 6. Since 

6

2

3

� �
� �� �� �
� �� �

x  and 

3

1 ,

5

� �
� �� �� �
� ��� �

w  x 	 w = 6(3) + (–2)(–1) + 3(–5) = 5, 2 2 26 ( 2) 3 49,	 � 
 � 
 �x x  and 

6 30 / 49
5

2 10 / 49 .
49

3 15/ 49

� � � �
	� � � � � �� � � �
 � � � � �	� � � � � �� � � �

x w
x

x x
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 7. Since 

3

1 ,

5

� �
� �� �� �
� ��� �

w  2 2 2|| || 3 ( 1) ( 5) 35.� 	 � 
 � 
 � �w w w  

 8. Since 

6

2 ,

3

� �
� �� �� �
� �� �

x  2 2 2|| || 6 ( 2) 3 49 7.� 	 � 
 � 
 � �x x x  

 9. A unit vector in the direction of the given vector is  

   
2 2

30 30 3/ 51 1
40 40 4 / 550( 30) 40

� � �� � � � � �
� �� � � � � �

� � � � � �� 

 

 10. A unit vector in the direction of the given vector is  

   
2 2 2

6 / 616 6
1 1

4 4 4 / 61
61( 6) 4 ( 3) 3 3 3 61

� ��� �� � � � � �� � � �� � � �� � � � � �� 
 
 � � � � �� � �� � � � � �� �

 

 11. A unit vector in the direction of the given vector is  

   
2 2 2

7 / 697 / 4 7 / 4
1 1

1/ 2 1/ 2 2 / 69
69 /16(7 / 4) (1/ 2) 1 1 1 4 / 69

� �� � � � � �� � � �� � � �� � � � � �
 
 � � � �� � � � � �� �

 

 12. A unit vector in the direction of the given vector is  

   
2 2

8/ 3 8/ 3 4 / 51 1
2 2 3/ 5100 / 9(8 / 3) 2

� � � � � �
� �� � � � � �

� � � � � �

 

 13. Since 
10

3

� �
� � ��� �

x  and 
1

,
5

�� �
� � ��� �

y  2 2 2|| || [10 ( 1)] [ 3 ( 5)] 125� � � � 
 � � � �x y  and dist ( , ) 125 5 5.� �x y  

 14. Since 

0

5

2

� �
� �� �� �
� �� �

u  and 

4

1 ,

8

�� �
� �� �� �
� �� �

z  2 2 2 2|| || [0 ( 4)] [ 5 ( 1)] [2 8] 68� � � � 
 � � � 
 � �u z  and 

dist ( , ) 68 2 17.� �u z  

 15. Since a 	 b = 8(–2) + (–5)( –3) = –1 ��0, a and b are not orthogonal. 

 16. Since u 	 v�= 12(2) + (3)( –3) + (–5)(3) = 0, u and v are orthogonal. 

 17. Since u 	 v = 3(–4) + 2(1) + (–5)( –2) + 0(6) = 0, u and v are orthogonal. 

 18. Since y 	 z�= (–3)(1) + 7(–8) + 4(15) + 0(–7) = 1 ��0, y and z are not orthogonal. 

 19. a. True. See the definition of || v ||.  

 b. True. See Theorem 1(c).  

 c. True. See the discussion of Figure 5.  



6.1 • Solutions   337 

 d. False. Counterexample: 
1 1

.
0 0

� �
� �
� �

 

 e. True. See the box following Example 6.  

 20. a. True. See Example 1 and Theorem 1(a).  

 b. False. The absolute value sign is missing. See the box before Example 2.  

 c. True. See the defintion of orthogonal complement.  

 d. True. See the Pythagorean Theorem.  

 e. True. See Theorem 3. 

 21. Theorem 1(b):  

   ( ) ( ) ( )T T T T T
 	 � 
 � 
 � 
 � 	 
 	u v w u v w u v w u w v w u w v w  

  The second and third equalities used Theorems 3(b) and 2(c), respectively, from Section 2.1. 

  Theorem 1(c):  

   ( ) ( ) ( ) ( )T Tc c c c	 � � � 	u v u v u v u v  

  The second and third equalities used Theorems 3(c) and 2(d), respectively, from Section 2.1. 

 22. Since u 	 u is the sum of the squares of the entries in u, u 	 u���0. The sum of squares of numbers is zero 
if and only if all the numbers are themselves zero. 

 23. One computes that u 	 v = 2(–7) + (–5)( –4) + (–1)6 = 0, 2 2 2 2|| || 2 ( 5) ( 1) 30,� 	 � 
 � 
 � �u u u  
2 2 2 2|| || ( 7) ( 4) 6 101,� 	 � � 
 � 
 �v v v  and 2|| || ( ) ( )
 � 
 	 
 �u v u v u v  

2 2 2(2 ( 7)) ( 5 ( 4)) ( 1 6) 131.
 � 
 � 
 � 
 � 
 �  

 24. One computes that  

   2 2 2|| || ( ) ( ) 2 || || 2 || ||
 � 
 	 
 � 	 
 	 
 	 � 
 	 
u v u v u v u u u v v v u u v v  

  and  

   2 2 2|| || ( ) ( ) 2 || || 2 || ||� � � 	 � � 	 � 	 
 	 � � 	 
u v u v u v u u u v v v u u v v  

  so  

   2 2 2 2 2 2 2 2|| || || || || || 2 || || || || 2 || || 2 || || 2 || ||
 
 � � 
 	 
 
 � 	 
 � 
u v u v u u v v u u v v u v  

 25. When ,
a

b

� �
� � �

� �
v  the set H of all vectors 

x

y

� �
� �
� �

 that are orthogonal to � is the subspace of vectors whose 

entries satisfy ax + by = 0. If a ��0, then x = – (b/a)y with y a free variable, and H is a line through the 

origin. A natural choice for a basis for H in this case is .
b

a

� ��� �� �
� �� �
� �� �� �

 If a = 0 and b ��0, then by = 0. Since  

b ��0, y = 0 and x is a free variable. The subspace H is again a line through the origin. A natural choice 

for a basis for H in this case is 
1

,
0

� �� �� �
� �� �
� �� �� �

 but 
b

a

� ��� �� �
� �� �
� �� �� �

 is still a basis for H since a = 0 and b ��0. If a = 0 

and b = 0, then H = 2 since the equation 0x + 0y = 0 places no restrictions on x or y. 

 26. Theorem 2 in Chapter 4 may be used to show that W is a subspace of 3, because W is the null space of 

the 1 ��3 matrix .Tu  Geometrically, W is a plane through the origin. 
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 27. If y is orthogonal to u and v, then y 	 u = y 	 v = 0, and hence by a property of the inner product,  
y 	 (u + v) = y 	 u + y 	 v = 0 + 0 = 0. Thus y is orthogonal to u�+ v. 

 28. An arbitrary w in Span{u, v} has the form 1 2c c� 
w u v . If y is orthogonal to u and v, then  

u 	 y = v 	 y = 0. By Theorem 1(b) and 1(c),  

   1 2 1 2( ) ( ) ( ) 0 0 0c c c c	 � 
 	 � 	 
 	 � 
 �w y u v y u y v y  

 29. A typical vector in W has the form 1 1 .p pc c� 
�
w v v  If x is orthogonal to each ,jv  then by Theorems 

1(b) and 1(c),  

   1 1 1 1( ) ( ) ( ) 0p p p pc c c c	 � 
�
 	 � 	 
�
 	 �w x v v y v x v x  

  So x is orthogonal to each w in W. 

 30. a. If z is in ,W �  u is in W, and c is any scalar, then (cz) ��u�= c(z���u) – c 0 = 0. Since u is any element of 

W, c z is in .W �  

b. Let 1z  and 2z  be in .W �  Then for any u in W, 1 2 1 2( ) 0 0 0.� � � � � � � � �z z u z u z u  Thus 1 2�z z  is 

in .W �  

c. Since 0 is orthogonal to every vector, 0 is in .W �  Thus W �  is a subspace.  

 31. Suppose that x is in W and .W �  Since x is in ,W �  x is orthogonal to every vector in W, including x 
itself. So x � x = 0, which happens only when x = 0. 

 32. [M]  

 a. One computes that 1 2 3 4|| || || || || || || || 1� � � �a a a a  and that 0i j� �a a  for i ��j.  

 b. Answers will vary, but it should be that || Au�|| = || u�|| and || Av�|| = || v�||.  

 c. Answers will again vary, but the cosines should be equal.  

 d. A conjecture is that multiplying by A does not change the lengths of vectors or the angles between 
vectors.  

 33. [M] Answers to the calculations will vary, but will demonstrate that the mapping ( )T
�� �� � ��	 


x v
x x v

v v
�  

(for v���0) is a linear transformation. To confirm this, let x and y be in n, and let c be any scalar. Then  

   
( ) ( ) ( )

( )T
� � � � �� � � �� � �� � � �� �	 
 	 


x y v x v y v
x y v v

v v v v
( ) ( )T T

� �� � � �� � � �� � � �� �	 
 	 


x v y v
v v x y

v v v v
 

  and  

   
( ) ( )

( ) ( )
c c

T c c cT
� � �� � � � � �� � � �� � � � � �� � �	 
 	 
 	 


x v x v x v
x v v v x

v v v v v v
 

 34. [M] One finds that  

   

5 1

1 0 5 0 1/ 31 4

, 0 1 1 0 4 / 31 0

0 0 0 1 1/ 30 1

0 3

N R

�
 �
� � �� 
 �� � � �� �� � �� �� � � �� � �� �
� �� �
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  The row-column rule for computing RN produces the 3 ��2 zero matrix, which shows that the rows of R 
are orthogonal to the columns of N. This is expected by Theorem 3 since each row of R is in Row A and 
each column of N is in Nul A. 

6.2 SOLUTIONS 

Notes: The nonsquare matrices in Theorems 6 and 7 are needed for the QR factorizarion in Section 6.4. It is 
important to emphasize that the term orthogonal matrix applies only to certain square matrices. The 
subsection on orthogonal projections not only sets the stage for the general case in Section 6.3, it also 
provides what is needed for the orthogonal diagonalization exercises in Section 7.1, because none of the 
eigenspaces there have dimension greater than 2. For this reason, the Gram-Schmidt process (Section 6.4) is 
not really needed in Chapter 7. Exercises 13 and 14 prepare for Section 6.3. 

 1. Since 

1 3

4 4 2 0,

3 7

�
 � 
 �
� � � �� � � �� � � �
� � � �� �� � � �

 the set is not orthogonal. 

 2. Since 

1 0 1 5 0 5

2 1 2 2 1 2 0,

1 2 1 1 2 1

� �
 � 
 � 
 � 
 � 
 � 
 �
� � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

 the set is orthogonal. 

 3. Since 

6 3

3 1 30 0,

9 1

�
 � 
 �
� � � �� � � � �� � � �
� � � ��� � � �

 the set is not orthogonal. 

 4. Since 

2 0 2 4 0 4

5 0 5 2 0 2 0,

3 0 3 6 0 6


 � 
 � 
 � 
 � 
 � 
 �
� � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� �� � � � � � � � � � � �

 the set is orthogonal. 

 5. Since 

3 1 3 3 1 3

2 3 2 8 3 8
0,

1 3 1 7 3 7

3 4 3 0 4 0

� �
 � 
 � 
 � 
 � 
 � 
 �
� � � � � � � � � � � �� �� � � � � � � � � � � �� � � � � �
� � � � � � � � � � � �� �
� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �

 the set is orthogonal. 

 6. Since 

4 3

1 3
32 0,

3 5

8 1

�
 � 
 �
� � � �
� � � �� � � �
� � � ��
� � � �

�� � � �� � � �

 the set is not orthogonal. 

 7. Since 1 2 12 12 0,� � � �u u  1 2{ , }u u  is an orthogonal set. Since the vectors are non-zero, 1u  and 2u  are 

linearly independent by Theorem 4. Two such vectors in 2 automatically form a basis for 2. So 

1 2{ , }u u  is an orthogonal basis for 2. By Theorem 5,  

   1 2
1 1 2

1 1 2 2

1
3

2

� �
� � � �

� �
x u x u

x u u u
u u u u
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 8. Since 1 2 6 6 0,� � � � �u u  1 2{ , }u u  is an orthogonal set. Since the vectors are non-zero, 1u  and 2u  are 
linearly independent by Theorem 4. Two such vectors in 2 automatically form a basis for 2. So 

1 2{ , }u u  is an orthogonal basis for 2. By Theorem 5,  

   1 2
1 1 2

1 1 2 2

3 3

2 4

� �
� � � � �

� �
x u x u

x u u u
u u u u

 

 9. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  ,1 2 3{ , }u u u  is an orthogonal set. Since the vectors are non-zero, 1,u  

2 ,u  and 3u  are linearly independent by Theorem 4. Three such vectors in 3 automatically form a basis 

for 3. So 1 2 3{ , , }u u u  is an orthogonal basis for 3. By Theorem 5,  

   31 2
1 3 1 2 3

1 1 2 2 3 3

5 3
2

2 2

�� �
� � � � � �

� � �
x ux u x u

x u u u u u
u u u u u u

 

 10. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  ,1 2 3{ , }u u u  is an orthogonal set. Since the vectors are non-zero, 1,u  

2 ,u  and 3u  are linearly independent by Theorem 4. Three such vectors in 3 automatically form a basis 

for 3. So 1 2 3{ , , }u u u  is an orthogonal basis for 3. By Theorem 5,  

   31 2
1 3 1 2 3

1 1 2 2 3 3

4 1 1

3 3 3

�� �
� � � � � �

� � �
x ux u x u

x u u u u u
u u u u u u

 

 11. Let 
1

7


 �
� � �
� �

y  and 
4

.
2

�
 �
� � �
� �

u  The orthogonal projection of y onto the line through u and the origin is the 

orthogonal projection of y onto u, and this vector is  

   
21

ˆ
12


 ��
� � � � ��� � �

y u
y u u

u u
 

 12. Let 
1

1


 �
� � ��� �

y  and 
1

.
3

�
 �
� � �
� �

u  The orthogonal projection of y onto the line through u and the origin is the 

orthogonal projection of y onto u, and this vector is  

   
2 / 52

ˆ
6 /55


 ��
� � � � � ��� � �

y u
y u u

u u
 

 13. The orthogonal projection of y onto u is  

   
4 / 513

ˆ
7 / 565

�
 ��
� � � � � �� � �

y u
y u u

u u
 

  The component of y orthogonal to u is  

   ˆ
����
 �

� � � ����� �
y y  

  Thus ˆ ˆ
���� ����
 � 
 �

� � � � � � �� � � ���� ���� � � �
y y y y . 

 14. The orthogonal projection of y onto u is  

   
14 / 52

ˆ
2 /55


 ��
� � � � �� � �

y u
y u u

u u
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  The component of y orthogonal to u is  

   ˆ
����
 �

� � � ������ �
y y  

  Thus ˆ ˆ .
���� ����
 � 
 �

� � � � � � �� � � ���� ����� � � �
y y y y  

 15. The distance from y to the line through u and the origin is ||y – ŷ ||. One computes that  

   
3 8 3/ 53

ˆ
1 6 4 / 510


 � 
 � 
 ��
� � � � � �� � � � � ��� � � � � � �

y u
y y y u

u u
 

  so ˆ|| � ��� ���������� ��y y  is the desired distance. 

 16. The distance from y to the line through u and the origin is ||y – ŷ ||. One computes that  

   
3 1 6

ˆ 3
9 2 3

� �
 � 
 � 
 ��
� � � � � �� � � � � �� � � � � � �

y u
y y y u

u u
 

  so ˆ|| � ���  � � � �  �y y  is the desired distance. 

 17. Let 

1/ 3

1/ 3 ,

1/ 3


 �
� �� � �
� �� �

u  

1/ 2

0 .

1/ 2

�
 �
� �� � �
� �� �

v  Since u � v = 0, {u, v} is an orthogonal set. However, 2|| || 1/ 3� � �u u u  and 

2|| || 1/ 2,� � �v v v  so {u, v} is not an orthonormal set. The vectors u and v may be normalized to form 
the orthonormal set  

   

3 / 3 2 / 2

, 3 / 3 , 0
|| || || ||

3 / 3 2 / 2

! "
 � 
 ��# #� � � �! " # #� � �$ % $ %� �
& ' � �# #� �

� � � �# #� �& '

u v
u v

 

 18. Let 

0

1 ,

0


 �
� �� � �
� �� �

u  

0

1 .

0


 �
� �� �� �
� �� �

v  Since u � v = –1 ��0, {u, v} is not an orthogonal set.  

 19. Let 
.6

,
.8

�
 �
� � �
� �

u  
.8

.
.6


 �
� � �
� �

v  Since u � v = 0, {u, v} is an orthogonal set. Also, 2|| || 1� � �u u u  and 

2|| || 1,� � �v v v  so {u, v} is an orthonormal set.  

 20. Let 

2 / 3

1/ 3 ,

2 / 3

�
 �
� �� � �
� �� �

u  

1/ 3

2 /3 .

0


 �
� �� � �
� �� �

v  Since u � v = 0, {u, v} is an orthogonal set. However, 2|| || 1� � �u u u  and 

2|| || 5 / 9,� � �v v v  so {u, v} is not an orthonormal set. The vectors u and v may be normalized to form 
the orthonormal set  

   

1/ 52 /3

, 1/ 3 , 2 / 5
|| || || ||

2 / 3 0

! "
 ��
 �# #� �! " # #� �� � �$ % $ %� �& ' � �# #� �� � � �# #� �& '

u v
u v

 



342 CHAPTER 6 • Orthogonality and Least Squares 

 21. Let 

1/ 10

3/ 20 ,

3/ 20


 �
� �

� � �
� �
� �� �

u  

3/ 10

1/ 20 ,

1/ 20


 �
� �

� �� �
� �
�� �� �

v  and 

0

1/ 2 .

1/ 2


 �
� �

� �� �
� �
� �

w  Since u � v = u � w = v � w = 0, {u, v, w} is an 

orthogonal set. Also, 2|| || 1,� � �u u u  2|| || 1,� � �v v v  and 2|| || 1,� � �w w w  so {u, v, w} is an 
orthonormal set.  

 22. Let 

1/ 18

4 / 18 ,

1/ 18


 �
� �

� � �
� �
� �� �

u  

1/ 2

0 ,

1/ 2


 �
� �

� � �
� ��� �

v  and 

2 /3

1/ 3 .

2 /3

�
 �
� �� � �
� ��� �

w  Since u � v = u � w = v � w = 0, {u, v, w} is an 

orthogonal set. Also, 2|| || 1,� � �u u u  2|| || 1,� � �v v v  and 2|| || 1,� � �w w w  so {u, v, w} is an 
orthonormal set.  

 23.  a. True. For example, the vectors u and y in Example 3 are linearly independent but not orthogonal.  

 b. True. The formulas for the weights are given in Theorem 5.  

 c. False. See the paragraph following Example 5.  

 d. False. The matrix must also be square. See the paragraph before Example 7.  

 e. False. See Example 4. The distance is ||y – ŷ ||.  

 24.  a. True. But every orthogonal set of nonzero vectors is linearly independent. See Theorem 4.  

 b. False. To be orthonormal, the vectors is S must be unit vectors as well as being orthogonal to each 
other.  

 c. True. See Theorem 7(a).  

 d. True. See the paragraph before Example 3.  

 e. True. See the paragraph before Example 7.  

 25. To prove part (b), note that  

   ( ) ( ) ( ) ( )T T T TU U U U U U� � � � � �x y x y x y x y x y  

  because TU U I� . If y = x in part (b), (Ux) � (Ux) = x � x, which implies part (a). Part (c) of the Theorem 
follows immediately fom part (b). 

 26. A set of n nonzero orthogonal vectors must be linearly independent by Theorem 4, so if such a set spans 
W it is a basis for W. Thus W is an n-dimensional subspace of n, and W � n. 

 27. If U has orthonormal columns, then TU U I�  by Theorem 6. If U is also a square matrix, then the 

equation TU U I�  implies that U is invertible by the Invertible Matrix Theorem. 

 28. If U is an n ��n orthogonal matrix, then 1 TI UU UU�� � . Since U is the transpose of ,TU  Theorem 6 

applied to TU  says that TU  has orthogonal columns. In particular, the columns of TU  are linearly 
independent and hence form a basis for n by the Invertible Matrix Theorem. That is, the rows of U form 
a basis (an orthonormal basis) for n. 

 29. Since U and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is invertible and 
1 1 1( ) ( ) ,T T TUV V U V U UV� � �� � �  where the final equality holds by Theorem 3 in Section 2.1. Thus UV 

is an orthogonal matrix. 
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 30. If U is an orthogonal matrix, its columns are orthonormal. Interchanging the columns does not change 
their orthonormality, so the new matrix – say, V – still has orthonormal columns. By Theorem 6, 

.TV V I�  Since V is square, 1TV V ��  by the Invertible Matrix Theorem. 

 31. Suppose that ˆ .
�

�
�

y u
y u

u u
 Replacing u by cu with c ��0 gives  

   
2

2 2

( ) ( ) ( )
ˆ( ) ( )

( ) ( ) ( ) ( )

c c c
c c

c c c c

� � � �
� � � �

� �� �
y u y u y u y u

u u u u y
u u u uu u u u

 

  So ŷ  does not depend on the choice of a nonzero u in the line L used in the formula. 

 32. If 1 2 0� �v v , then by Theorem 1(c) in Section 6.1,  

   1 1 2 2 1 1 2 2 1 2 1 2 1 2( ) ( ) [ ( )] ( ) 0 0c c c c c c c c� � � � � � �v v v v v v  

 33. Let L = Span{u}, where u is nonzero, and let ( )T
�

�
�

x u
x u

u u
. For any vectors x and y in n and any 

scalars c and d, the properties of the inner product (Theorem 1) show that  

   
( )

( )
c d

T c d
� �

� �
�

x y u
x y u

u u
 

   
c d� � �

�
�

x u y u
u

u u
 

   
c d� �

� �
� �

x u y u
u u

u u u u
 

   ( ) ( )cT dT� �x y  

  Thus T is a linear transformation. Another approach is to view T as the composition of the following 
three linear mappings: x���a = x � v, a ��b = a / v � v, and b ��bv. 

 34. Let L = Span{u}, where u is nonzero, and let ( ) refl 2projL LT � � �x y y y . By Exercise 33, the mapping 

projLy y�  is linear. Thus for any vectors y and z in n and any scalars c and d,  

   ( ) 2 proj ( ) ( )LT c d c d c d� � � � �y z y z y z  

   2( proj proj )L Lc d c d� � � �y z y z  

   2 proj 2 projL Lc c d d� � � �y y z z  

   (2 proj ) (2 proj )L Lc d� � � �y y z z  

   ( ) ( )cT dT� �y z  

  Thus T is a linear transformation.  

 35. [M] One can compute that 4100 .TA A I�  Since the off-diagonal entries in TA A  are zero, the columns of 

A are orthogonal. 
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 36. [M]  

a. One computes that 4 ,TU U I�  while  

   

82 0 20 8 6 20 24 0

0 42 24 0 20 6 20 32

20 24 58 20 0 32 0 6

8 0 20 82 24 20 6 01

6 20 0 24 18 0 8 20100

20 6 32 20 0 58 0 24

24 20 0 6 8 0 18 20

0 32 6 0 20 24 20 42

TUU

�� �
	 
� �	 

	 
�
	 


�� � 	 
� 
 � 	 
� �� �
	 


�	 

	 
� �
	 


� �	 
� �

 

  The matrices TU U  and TUU  are of different sizes and look nothing like each other.  

b. Answers will vary. The vector TUU�p y  is in Col U because ( )TU U�p y . Since the columns of U 
are simply scaled versions of the columns of A, Col U = Col A. Thus each p is in Col A.  

c. One computes that TU �z 0 .  

d. From (c), z is orthogonal to each column of A. By Exercise 29 in Section 6.1, z must be orthogonal to 

every vector in Col A; that is, z is in (Col ) .A �  

6.3 SOLUTIONS 

Notes: Example 1 seems to help students understand Theorem 8. Theorem 8 is needed for the Gram-Schmidt 
process (but only for a subspace that itself has an orthogonal basis). Theorems 8 and 9 are needed for the 
discussions of least squares in Sections 6.5 and 6.6. Theorem 10 is used with the QR factorization to provide a 
good numerical method for solving least squares problems, in Section 6.5. Exercises 19 and 20 lead naturally 
into consideration of the Gram-Schmidt process. 

 1. The vector in 4Span{ }u  is  

   4
4 4 4

4 4

10

672
2

236

2

� �
� ��� � �� � �
� ���
� �
� �� 	

x u
u u u

u u
 

  Since 4
1 1 2 2 3 3 4

4 4

,c c c
�

� 
 
 

�

x u
x u u u u

u u
 the vector  

   4
4

4 4

10 10 0

8 6 2

2 2 4

0 2 2

� � � � � �
� � � � � �� � �� � � � � � �� � � �
� � � � � ���
� � � � � ��� � � � � �� 	 � 	 � 	

x u
x u

u u
 

  is in 1 2 3Span{ , , }.u u u  
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 2. The vector in 1Span{ }u  is  

   1
1 1 1

1 1

2

414
2

27

2

� �
� �� � �� � �
� ��
� �
� �� 	

v u
u u u

u u
 

  Since 1
1 2 2 3 3 4 4

1 1

,c c c
�

� 
 
 

�

v u
x u u u u

u u
 the vector  

   1
1

1 1

4 2 2

5 4 1

3 2 5

3 2 1

� � � � � �
� � � � � �� � � � � � �� � � �
� � � � � �� ��
� � � � � �
� � � � � �� 	 � 	 � 	

v u
v u

u u
 

  is in 2 3 4Span{ , , }.u u u  

 3. Since 1 2 1 1 0 0,� � � 
 
 �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

1 1 1
3 5 3 5

ˆ 1 1 4
2 2 2 2

0 0 0

� �� � � � � �
� � � � � � � �� 
 � 
 � 
 �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 4. Since 1 2 12 12 0 0,� � � 
 
 �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

3 4 6
30 15 6 3

ˆ 4 3 3
25 25 5 5

0 0 0

�� � � � � �
� � � � � � � �� 
 � � � � �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 5. Since 1 2 3 1 4 0,� � 
 � �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

3 1 1
7 15 1 5

ˆ 1 1 2
14 6 2 2

2 2 6

�� � � � � �
� � � � � � � �� 
 � � � � � � �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 6. Since 1 2 0 1 1 0,� � � 
 �u u  1 2{ , }u u  is an orthogonal set. The orthogonal projection of y onto 

1 2Span{ , }u u  is  

   1 2
1 2 1 2

1 1 2 2

4 0 6
27 5 3 5

ˆ 1 1 4
18 2 2 2

1 1 1

�� � � � � �
� � � � � � � �� 
 � � 
 � � � 
 �� � � � � �� �

� � � � � �� 	 � 	 � 	

y u y u
y u u u u

u u u u
 

 7. Since 1 2 5 3 8 0,� � 
 � �u u  1 2{ , }u u  is an orthogonal set. By the Orthogonal Decomposition Theorem,  

   1 2
1 2 1 2

1 1 2 2

10 / 3 7 / 3
2

ˆ ˆ0 2 / 3 , 7 / 3
3

8/ 3 7 / 3

�� � � �
� � � � � �� 
 � 
 � � � �� � � �� �

� � � �� 	 � 	

y u y u
y u u u u z y y

u u u u
 

  and y = ŷ + z, where ŷ  is in W and z is in .W �  
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 8. Since 1 2 1 3 2 0,� � � 
 � �u u  1 2{ , }u u  is an orthogonal set. By the Orthogonal Decomposition Theorem,  

   1 2
1 2 1 2

1 1 2 2

3/ 2 5 / 2
1

ˆ ˆ2 7 / 2 , 1/ 2
2

1 2

�� � � �
� � � � � �� 
 � 
 � � � �� � � �� �

� � � �� 	 � 	

y u y u
y u u u u z y y

u u u u
 

  and y = ŷ + z, where ŷ  is in W and z is in .W �  

 9. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  1 2 3{ , , }u u u  is an orthogonal set. By the Orthogonal Decomposition 

Theorem,  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

2 2

4 12 2
ˆ ˆ2 ,

0 33 3

0 1

� � � �
	 
 	 
��� � 	 
 	 
� � � � � � � � � �
	 
 	 
� � �
	 
 	 


�	 
 	 
� � � �

y uy u y u
y u u u u u u z y y

u u u u u u
 

  and y�= ŷ + z, where ŷ  is in W and z is in .W �  

 10. Since 1 2 1 3 2 3 0,� � � � � �u u u u u u  1 2 3{ , , }u u u  is an orthogonal set. By the Orthogonal Decomposition 
Theorem,  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

5 2

2 21 14 5
ˆ ˆ,

3 23 3 3

6 0

�� � � �
	 
 	 
�� � 	 
 	 
� � � � � � � � � �
	 
 	 
� � �
	 
 	 

	 
 	 
� � � �

y uy u y u
y u u u u u u z y y

u u u u u u
 

  and y�= ŷ + z, where ŷ  is in W and z is in .W �  

 11. Note that 1v  and 2v  are orthogonal. The Best Approximation Theorem says that ŷ , which is the 

orthogonal projection of y onto 1 2Span{ , },W � v v  is the closest point to y in W. This vector is  

   1 2
1 2 1 2

1 1 2 2

3

11 3
ˆ

12 2

1

� �
	 
�� � 	 
� � � � �
	 
� �
	 

�	 
� �

y v y v
y v v v v

v v v v
 

 12. Note that 1v  and 2v  are orthogonal. The Best Approximation Theorem says that ŷ , which is the 

orthogonal projection of � onto 1 2Span{ , },W � v v  is the closest point to y in W. This vector is  

   1 2
1 2 1 2

1 1 2 2

1

5
ˆ 3 1

3

9

�� �
	 
�� � 	 
� � � � �
	 
�� �
	 

	 
� �

y v y v
y v v v v

v v v v
 

 13. Note that 1v  and 2v  are orthogonal. By the Best Approximation Theorem, the closest point in 

1 2Span{ , }v v  to z is  

   1 2
1 2 1 2

1 1 2 2

1

32 7
ˆ

23 3

3

�� �
	 
�� � 	 
� � � � �
	 
�� �
	 

	 
� �

z v z v
z v v v v

v v v v
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 14. Note that 1v  and 2v  are orthogonal. By the Best Approximation Theorem, the closest point in 

1 2Span{ , }v v  to z is  

   1 2
1 2 1 2

1 1 2 2

1

01
ˆ 0

1/ 22

3/ 2

� �
	 
� � 	 
� � � � �
	 
�� �
	 

�	 
� �

z v z v
z v v v v

v v v v
 

 15. The distance from the point y in 3 to a subspace W is defined as the distance from y to the closest point 
in W. Since the closest point in W to y is ˆ proj ,W�y y  the desired distance is || y�– ŷ ||. One computes that 

3 2

ˆ ˆ9 0 ,

1 6

   
   = − , − =   
   −   

y y y  and ˆ|| 40 10.− || = = 2y y  

 16. The distance from the point y in 4 to a subspace W is defined as the distance from y to the closest point 
in W. Since the closest point in W to y is ˆ proj ,W�y y  the desired distance is || y – ŷ ||. One computes that 

ˆ ˆ ,

�� �� � � �
	 
 	 
�� �	 
 	 
� � � �
	 
 	 
�� �
	 
 	 

� �	 
 	 
� � � �

y y y  and || y – ŷ || = 8. 

 17. a. 

8 / 9 2 / 9 2 / 9
1 0

, 2 / 9 5/ 9 4 / 9
0 1

2 /9 4 /9 5/ 9

T TU U UU

�� �
� � 	 
� � �	 
 	 
� � 	 
� �

 

 b. Since 2 ,TU U I�  the columns of U form an orthonormal basis for W, and by Theorem 10 

8 / 9 2 / 9 2 / 9 4 2

proj 2 / 9 5/ 9 4 / 9 8 4 .

2 /9 4 / 9 5/ 9 1 5

T
W UU

�� � � � � �
	 
 	 
 	 
� � � �	 
 	 
 	 

	 
 	 
 	 
� � � � � �

y y  

 18. a. � � 1/10 3/10
1 1,

3/10 9 /10
T TU U UU

�� �
� � � 	 
�� �

  

 b. Since 1,TU U �  1{ }u  forms an orthonormal basis for W, and by Theorem 10 

1/10 3/10 7 2
proj .

3/10 9 /10 9 6
T

W UU
� �� � � � � �

� � �	 
 	 
 	 
�� � � � � �
y y  

 19. By the Orthogonal Decomposition Theorem, 3u  is the sum of a vector in 1 2Span{ , }W � u u  and a vector 

v orthogonal to W. This exercise asks for the vector v:  

   3 3 3 1 2

0 0 0
1 1

proj 0 2 / 5 2 / 5
3 15

1 4 / 5 1/ 5
W

� � � � � �
� � 	 
 	 
 	 
� � � � � � � � � �
 � 	 
 	 
 	 
� � 	 
 	 
 	 
� � � � � �

v u u u u u  

  Any multiple of the vector v will also be in .W �  
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 20. By the Orthogonal Decomposition Theorem, 4u  is the sum of a vector in 1 2Span{ , }W � u u  and a vector 

v orthogonal to W. This exercise asks for the vector v:  

   4 4 4 1 2

0 0 0
1 1

proj 1 1/ 5 4 / 5
6 30

0 2 / 5 2 / 5
W

� � � � � �
� � 	 
 	 
 	 
� � � � � � � �
 � 	 
 	 
 	 
� � 	 
 	 
 	 
�� � � � � �

v u u u u u  

  Any multiple of the vector v will also be in .W �  

 21. a. True. See the calculations for 2z  in Example 1 or the box after Example 6 in Section 6.1.  

 b. True. See the Orthogonal Decomposition Theorem.  

 c. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the 
statement of Theorem 9.  

 d. True. See the box before the Best Approximation Theorem.  

 e. True. Theorem 10 applies to the column space W of U because the columns of U are linearly 
independent and hence form a basis for W.  

 22. a. True. See the proof of the Orthogonal Decomposition Theorem.  

 b. True. See the subsection “A Geometric Interpretation of the Orthogonal Projection.”  

 c. True. The orthgonal decomposition in Theorem 8 is unique.  

 d. False. The Best Approximation Theorem says that the best approximation to y is proj .W y  

 e. False. This statement is only true if x is in the column space of U. If n > p, then the column space of 
U will not be all of n, so the statement cannot be true for all x in n.  

 23. By the Orthogonal Decomposition Theorem, each x in n can be written uniquely as x = p + u, with p in 

Row A and u in (Row ) .A �  By Theorem 3 in Section 6.1, (Row ) Nul ,A A� �  so u is in Nul A. 

  Next, suppose Ax = b is consistent. Let x be a solution and write x = p + u as above. Then  
Ap = A(x – u) = Ax – Au = b�– 0 = b, so the equation Ax = b has at least one solution p in Row A. 

  Finally, suppose that p and 1p  are both in Row A and both satisfy Ax = b. Then 1�p p  is in 

Nul (Row ) ,A A ��  since 1 1( )A A A� � � � � �p p p p b b 0 . The equations 1 ( )� � � 1p p p p  and  

p = p�+ 0 both then decompose p as the sum of a vector in Row A and a vector in (Row )A � . By the 

uniqueness of the orthogonal decomposition (Theorem 8), 1,�p p  and p is unique. 

 24. a. By hypothesis, the vectors 1w , �, pw  are pairwise orthogonal, and the vectors 1v , �, qv  are 

pairwise orthogonal. Since iw  is in W for any i and jv  is in W �  for any j, 0i j� �w v  for any i and j. 

Thus 1 1{ , , , , , }p q� �w w v v  forms an orthogonal set.  

 b. For any y in n, write y = ŷ + z as in the Orthogonal Decomposition Theorem, with ŷ  in  

W and z in W � . Then there exist scalars 1, , pc c�  and 1, , qd d�  such that ˆ� � �y y z  

1 1 1 1p p q qc c d d��� � ���w w v v . Thus the set 1 1{ , , , , , }p q� �w w v v  spans n.  

 c. The set 1 1{ , , , , , }p q� �w w v v  is linearly independent by (a) and spans n by (b), and is thus a basis 

for n. Hence dim dim dimW W p q�� � � � n. 
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 25. [M] Since 4
TU U I� , U has orthonormal columns by Theorem 6 in Section 6.2. The closest point to y in 

Col U is the orthogonal projection ŷ  of y onto Col U. From Theorem 10,  

   ˆ UU �

��
� �
� ���� �
� ���

� ���
� �� � � ���
� �
��
� �
� ���� �

��� �� 	

y y  

 26. [M] The distance from b to Col U is || b – b̂ ||, where ˆ .UU ��b b  One computes that  

   ˆ ˆ ˆUU �

�
 ��� � � �
� � � ���
 ���� � � �
� � � ���� ���
� � � �� � ��
� � � �� � � � � � �� � ���� � � ���
 ��� �
� � � �
���� ����� � � �

� � � ��� ����� � � �
���
 ����� � � �� 	 � 	

b b b b b b  

  which is 2.1166 to four decimal places. 

6.4 SOLUTIONS 

Notes: The QR factorization encapsulates the essential outcome of the Gram-Schmidt process, just as the LU 
factorization describes the result of a row reduction process. For practical use of linear algebra, the 
factorizations are more important than the algorithms that produce them. In fact, the Gram-Schmidt process is 
not the appropriate way to compute the QR factorization. For that reason, one should consider deemphasizing 
the hand calculation of the Gram-Schmidt process, even though it provides easy exam questions.  

The Gram-Schmidt process is used in Sections 6.7 and 6.8, in connection with various sets of orthogonal 
polynomials. The process is mentioned in Sections 7.1 and 7.4, but the one-dimensional projection 
constructed in Section 6.2 will suffice. The QR factorization is used in an optional subsection of Section 6.5, 
and it is needed in Supplementary Exercise 7 of Chapter 7 to produce the Cholesky factorization of a positive 
definite matrix. 

 1. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

1

3 5 .

3

�� �
� � �� � � � � � ��

� ��� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

3 1

0 , 5 .

1 3

� ��� � � �
� �� � � �
� �� � � �
� �� � � �� �� 	 � 	� �
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 2. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

5
1

4 .
2

8

� �
� � �� � � � � � ��

� ��� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

0 5

4 , 4 .

2 8

� �� � � �
� �� � � �
� �� � � �
� �� � � ��� 	 � 	� �

 

 3. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

3
1

3/ 2 .
2

3/ 2

� �
� � �� � � � � � ��

� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

2 3

5 , 3/ 2 .

1 3/ 2

� �� � � �
� �� � � ��� �� � � �
� �� � � �� 	 � 	� �

 

 4. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

3

( 2) 6 .

3

� �
� � �� � � � � � � ��

� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

3 3

4 , 6 .

5 3

� �� � � �
� �� � � ��� �� � � �
� �� � � �� 	 � 	� �

 

 5. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

5

1
2 .

4

1

� �
� �� � �� � � � �
� ���
� ��� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

1 5

4 1
, .

0 4

1 1

� �� � � �
� �� � � ��� �� � � �� �� � � ��� �� � � �� ��� � � �� 	 � 	� �

 

 6. Set 1 1�v x  and compute that 2 1
2 2 1 2 1

1 1

4

6
( 3) .

3

0

� �
� �� � �� � � � � �
� ���
� �
� �� 	

x v
v x v x v

v v
 Thus an orthogonal basis for W is 

3 4

1 6
, .

2 3

1 0

� �� � � �
� �� � � ��� �� � � �� �� � � ��� �� � � �� ��� � � �� 	 � 	� �
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 7. Since 1|| || 30�v  and 2|| || 27 / 2 3 6 / 2,� �v  an orthonormal basis for W is  

1 2

1 2

2 / 30 2 / 6

, 5 / 30 , 1/ 6 .
|| || || ||

1/ 30 1/ 6

� �� � � �
� �� � � �� � � �� �� � � �� � � �

� � � �� � � �
� � � �� �� 	 � 	� �

v v
v v

 

 8. Since 1|| || 50�v  and 2|| || 54 3 6,� �v  an orthonormal basis for W is  

1 2

1 2

3/ 50 1/ 6

, 4 / 50 , 2 / 6 .
|| || || ||

5 / 50 1/ 6

� �� � � �
� �� � � �� � � �� �� � � �� � � �

� � � �� � � �
� � � �� �� 	 � 	� �

v v
v v

 

 9. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

1

3
( 2)

3

1

� �
� �� � �� � � � � �
� ��
� ��� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

3

13 1

12 2

3

�� �
� �� � � � � �� � � � � � � ��  � �� � ! "
� �
� �� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

3 1 3

1 3 1
, , .

1 3 1

3 1 3

� ��� � � � � �
� �� � � � � �
� �� � � � � �� �� � � � � ��� �� � � � � �� ��� � � � � �� 	 � 	 � 	� �

 

 10. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

3

1
( 3)

1

1

� �
� �� � �� � � � � �
� ��
� ��� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

1

11 5

32 2

1

�� �
� ��� � � �� � � � � � �
� �� �
� ��� �� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

1 3 1

3 1 1
, , .

1 1 3

1 1 1

� �� �� � � � � �
� �� � � � � ��� �� � � � � �� �� � � � � �� �� � � � � �� �� �� � � � � �� 	 � 	 � 	� �
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 11. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

3

0

( 1) 3

3

3

� �
� �
� �� � �� � � � � �

� � ��� �
� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

2

0
1

4 2
3

2

2

� �
� �
� �� � � � � �� � � � � � � ��  � � ! " � �
� �
� ��� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

1 3 2

1 0 0

, , .1 3 2

1 3 2

1 3 2

� �� � � � � �
� �� � � � � ��� �� � � � � �� �� � � � � ��� �

� � � � � �� ��� � � � � �� �
� � � � � ��� �� 	 � 	 � 	� �

 

 12. Call the columns of the matrix 1x , 2x , and 3x  and perform the Gram-Schmidt process on these vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

1

1

4 2

1

1

�� �
� �
� �� � �� � � � �

� � �
� �
� �� 	

x v
v x v x v

v v
 

   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

3

3
7 3

0
2 2

3

3

� �
� �
� �� � � �� � � � � � �

� � � ��� �
� ��� 	

x v x v
v x v v x v v

v v v v
 

  Thus an orthogonal basis for W is 

1 1 3

1 1 3

, , .0 2 0

1 1 3

1 1 3

� ��� � � � � �
� �� � � � � ��� �� � � � � �� �� � � � � �� �

� � � � � �� ��� � � � � �� �
� � � � � ��� �� 	 � 	 � 	� �
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 13. Since A and Q are given,  

   

5 9

5/ 6 1/ 6 3/ 6 1/ 6 1 7 6 12

1/ 6 5/ 6 1/ 6 3/ 6 3 5 0 6

1 5

TR Q A

� �
� ��� � � �� �� � �� � � �� �� � �� 	 � 	
� �
� �� 	

 

 14. Since A and Q are given,  

   

2 3

2 / 7 5/ 7 2 / 7 4 / 7 5 7 7 7

5/ 7 2 / 7 4 / 7 2 / 7 2 2 0 7

4 6

TR Q A

�� �
� ��� � � �� �� � �� � � �� �� �� 	 � 	
� �
� �� 	

 

 15. The columns of Q will be normalized versions of the vectors 1v , 2v , and 3v  found in Exercise 11. Thus  

   

1/ 5 1/ 2 1/ 2

1/ 5 0 0 5 5 4 5

, 0 6 21/ 5 1/ 2 1/ 2
0 0 41/ 5 1/ 2 1/ 2

1/ 5 1/ 2 1/ 2

TQ R Q A

� �
� �

� ��� � �
� �� �� � � �� � �� �
� �� �� � 	� �

� ��� 	

 

 16. The columns of Q will be normalized versions of the vectors 1v , 2v , and 3v  found in Exercise 12. Thus  

   

1/ 2 1/ 2 2 1/ 2

2 8 71/ 2 1/ 2 2 1/ 2

, 0 2 2 3 20 1/ 2 0
0 0 61/ 2 1/ 2 2 1/ 2

1/ 2 1/ 2 2 1/ 2

TQ R Q A

� ��
� �

� ��� �
� �� �� � � � �� �
� �� �� � 	� �

� �� 	

 

 17. a. False. Scaling was used in Example 2, but the scale factor was nonzero.  

 b. True. See (1) in the statement of Theorem 11.  

 c. True. See the solution of Example 4.  

 18. a. False. The three orthogonal vectors must be nonzero to be a basis for a three-dimensional subspace. 
(This was the case in Step 3 of the solution of Example 2.)  

 b. True. If x is not in a subspace w, then x cannot equal projW x , because projW x  is in W. This idea was 

used for 1k�v  in the proof of Theorem 11.  

 c. True. See Theorem 12.  

 19. Suppose that x satisfies Rx = 0; then Q Rx = Q0 = 0, and Ax = 0. Since the columns of A are linearly 
independent, x must be 0. This fact, in turn, shows that the columns of R are linearly indepedent. Since R 
is square, it is invertible by the Invertible Matrix Theorem. 
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 20. If y is in Col A, then y = Ax for some x. Then y = QRx = Q(Rx), which shows that y is a linear 
combination of the columns of Q using the entries in Rx as weights. Conversly, suppose that y = Qx for 

some x. Since R is invertible, the equation A = QR implies that 1Q AR�� . So 1 1( ),AR A R� �� �y x x  
which shows that y is in Col A. 

 21. Denote the columns of Q by 1{ , , }n�q q . Note that n ��m, because A is m ��n and has linearly 
independent columns. The columns of Q can be extended to an orthonormal basis for m as follows.  
Let 1f  be the first vector in the standard basis for m that is not in 1Span{ , , },n nW � �q q  let 

1 1 1proj
nW� �u f f , and let 1 1 1/ || || .n� �q u u  Then 1 1{ , , , }n n��q q q  is an orthonormal basis for 

1 1 1Span{ , , , }.n n nW
� �
� �q q q  Next let 2f  be the first vector in the standard basis for m that is  

not in 1nW
�

, let 
12 2 2proj ,

nW
�

� �u f f  and let 2 2 2/ || || .n� �q u u  Then 1 1 2{ , , , , }n n n� �
�q q q q  is an 

orthogonal basis for 2 1 1 2Span{ , , , , }.n n n nW
� � �

� �q q q q  This process will continue until m – n vectors 

have been added to the original n vectors, and 1 1{ , , , , , }n n m�
� �q q q q  is an orthonormal basis for m.  

Let � �0 1n mQ
�

� �q q  and � �1 0Q Q Q� . Then, using partitioned matrix multiplication, 

1 .
R

Q QR A
O

� �
� �	 


� �
 

 22. We may assume that 1{ , , }p�u u  is an orthonormal basis for W, by normalizing the vectors in the 

original basis given for W, if necessary. Let U be the matrix whose columns are 1, , .p�u u  Then, by 

Theorem 10 in Section 6.3, ( ) proj ( )T
WT UU� �x x x  for x in n. Thus T is a matrix transformation and 

hence is a linear transformation, as was shown in Section 1.8. 

 23. Given A = QR, partition � �1 2A A A� , where 1A  has p columns. Partition Q as � �1 2Q Q Q�  where 1Q  

has p columns, and partition R as 11 12

22

,
R R

R
O R

� �
� 	 

� �

 where 11R  is a p ��p matrix. Then  

   � � � � � �11 12
1 2 1 2 1 11 1 12 2 22

22

R R
A A A QR Q Q Q R Q R Q R

O R

� �
� � � � �	 


� �
 

  Thus 1 1 11.A Q R�  The matrix 1Q  has orthonormal columns because its columns come from Q. The matrix 

11R  is square and upper triangular due to its position within the upper triangular matrix R. The diagonal 

entries of 11R  are positive because they are diagonal entries of R. Thus 1 11Q R  is a QR factorization of 1A . 

 24. [M] Call the columns of the matrix 1x , 2x , 3x , and 4x  and perform the Gram-Schmidt process on these 

vectors:  

   1 1�v x  

   2 1
2 2 1 2 1

1 1

3

3

( 1) 3

0

3

� �
	 

	 
� 	 
� � � � � � �

� 	 

	 

	 
� �

x v
v x v x v

v v
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   3 1 3 2
3 3 1 2 3 1 2

1 1 2 2

6

0
1 4

6
2 3

6

0

� �
	 

	 
� � � � � � 	 
� � � � � � � � �
 � 
 �� � � � � � 	 

	 

	 
� �

x v x v
v x v v x v v

v v v v
 

   4 34 1 4 2
4 4 1 2 3 4 1 2 3

1 1 2 2 3 3

1 1
( 1)

2 2

�� � � �� � � � � � � � � �
 �� � � � �

x vx v x v
v x v v v x v v v

v v v v v v

0

5

0

0

5

� �
	 

	 

	 
�
	 

	 

	 
�� �

 

  Thus an orthogonal basis for W is 

10 3 6 0

2 3 0 5

, , , .6 3 6 0

16 0 6 0

2 3 0 5

� ��� � � � � � � �
� �	 
 	 
 	 
 	 

� �	 
 	 
 	 
 	 
� �	 
 	 
 	 
 	 
� � !
	 
 	 
 	 
 	 
� �
	 
 	 
 	 
 	 
� �
	 
 	 
 	 
 	 
�� �� � � � � � � �" #

 

 25. [M] The columns of Q will be normalized versions of the vectors 1v , 2v , and 3v  found in Exercise 24. 

Thus  

   

1/ 2 1/ 2 1/ 3 0
20 20 10 10

1/10 1/ 2 0 1/ 2
0 6 8 6

,3/10 1/ 2 1/ 3 0
0 0 6 3 3 3

4 /5 0 1/ 3 0
0 0 0 5 2

1/10 1/ 2 0 1/ 2

TQ R Q A

� ��
	 
 � �� �
	 
 	 
� �	 
 	 
� � �� �	 
 	 
�	 
 	 

	 
 	 
� �	 
�� �

 

 26. [M] In MATLAB, when A has n columns, suitable commands are  

  Q = A(:,1)/norm(A(:,1)) 

   %  The first column of Q 

   for j=2: n 

    v=A(:,j) – Q*(Q’*A(:,j)) 

    Q(:,j)=v/norm(v) 

    % Add a new column to Q 

   end 

6.5 SOLUTIONS 

Notes: This is a core section – the basic geometric principles in this section provide the foundation for all the 
applications in Sections 6.6–6.8. Yet this section need not take a full day. Each example provides a stopping 
place. Theorem 13 and Example 1 are all that is needed for Section 6.6. Theorem 15, however, gives an 
illustration of why the QR factorization is important. Example 4 is related to Exercise 17 in Section 6.6. 
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 1. To find the normal equations and to find x̂ , compute  

   

1 2
1 2 1 6 11

2 3
2 3 3 11 22

1 3

TA A

�� �
� � �� � � �	 
� � �	 
 	 
	 
� �� � � �	 
�� �

 

   

4
1 2 1 4

1
2 3 3 11

2

TA

� �
� � �� � � �	 
� �	 
 	 
	 
�� � � �	 
� �

b  

a. The normal equations are ( )T TA A A�x b : 1

2

6 11 4
.

11 22 11

x

x

� �� �� � � �
�	 
	 
 	 
�� � � �� �

 

b. Compute  

   
1

1 6 11 4 22 11 41
x̂ ( )

11 22 11 11 6 1111
T TA A A

�

�

� � �� 	 � 	 � 	 � 	
� � �
 � 
 � 
 � 
 ��� 
 � 
 � 
 � 


b  

   
33 31

22 211

� 	 � 	
� �
 � 
 �

� 
 � 

 

 2. To find the normal equations and to find ˆ ,x  compute  

   

2 1
2 2 2 12 8

2 0
1 0 3 8 10

2 3

TA A

� 	
�� 	 � 	
 �� � �
 � 
 �
 �� 
 � 

 �� 


 

   

5
2 2 2 24

8
1 0 3 2

1

TA

�� 	
� �� 	 � 	
 �� �
 � 
 �
 � �� 
 � 

 �� 


b  

a. The normal equations are ( )T TA A A�x b : 1

2

12 8 24
.

8 10 2

x

x

�� 	� 	 � 	
�
 �
 � 
 ��� 
 � 
� 


 

b. Compute  

   
1

1 12 8 24 10 8 241
x̂ ( )

8 10 2 8 12 256
T TA A A

�

�

� � �� 	 � 	 � 	 � 	
� � �
 � 
 � 
 � 
 �� � �� 
 � 
 � 
 � 


b  

   
224 41

168 356

�� 	 � 	
� �
 � 
 �

� 
 � 

 

 3. To find the normal equations and to find x̂ , compute  

   

1 2

1 1 0 2 1 2 6 6

2 2 3 5 0 3 6 42

2 5

TA A

�� 	

 �� �� 	 � 	
 �� �
 � 
 �
 ��� 
 � 


 �

 �� 


 

   

3

1 1 0 2 1 6

2 2 3 5 4 6

2

TA

� 	

 ��� 	 � 	
 �� �
 � 
 �
 �� � �� 
 � 


 �

 �� 


b  
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a. The normal equations are ( )T TA A A�x b : 1

2

6 6 6

6 42 6

x

x

� 	� 	 � 	
�
 �
 � 
 ��� 
 � 
� 


 

b. Compute  

   
6 6 6 42 6 61

ˆ
6 42 6 6 6 6216

T T
−1

−1 −       
= (Α Α) Α = =       − − −       

x b  

   
288 4 / 31

72 1/ 3216

� 	 � 	
� �
 � 
 �� �� 
 � 


 

 4. To find the normal equations and to find x̂ , compute  

   

1 3
1 1 1 3 3

1 1
3 1 1 3 11

1 1

TA A

� 	
� 	 � 	
 �� � �
 � 
 �
 ��� 
 � 

 �� 


 

   

5
1 1 1 6

1
3 1 1 14

0

TA

� 	
� 	 � 	
 �� �
 � 
 �
 ��� 
 � 

 �� 


b  

a. The normal equations are ( )T TA A A�x b : 1

2

3 3 6

3 11 14

x

x

� 	� 	 � 	
�
 �
 � 
 �

� 
 � 
� 

 

b. Compute  

   
6

ˆ
11 14 14

T T
−1

−1 3 3 11 −3 6       1= (Α Α) Α = =       3 −3 324       
x b  

   
24 11

24 124

� 	 � 	
� �
 � 
 �

� 
 � 

 

 5. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the 

system T TA A A�x b :  

   

4 2 2 14 1 0 1 5

2 2 0 4 0 1 1 3

2 0 2 10 0 0 0 0

T TA A A

� 	 � 	

 � 
 �� 	 � � � �� 
 
 � 
 �

 � 
 �� 
 � 


b  

  so all vectors of the form 

5 1

ˆ 3 1

0 1

x3

−   
   = − +   
      

x  are the least-squares solutions of Ax = b. 

 6. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the 

system T TA A A�x b :  

   

6 3 3 27 1 0 1 5

3 3 0 12 0 1 1 1

3 0 3 15 0 0 0 0

T TA A A

� 	 � 	

 � 
 �� 	 � � � �� 
 
 � 
 �

 � 
 �� 
 � 


b  

  so all vectors of the form 

5 1

ˆ 1 1

0 1

x3

−   
   = − +   
      

x  are the least-squares solutions of Ax = b. 
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 7. From Exercise 3, 

1 2

1 2
,

0 3

2 5

A

�� 	

 ��
 ��

 �

 �

 �� 


 

3

1
,

4

2

� 	

 �

 ��

 ��

 �

 �� 


b  and ˆ .
���� 	

� 
 ������ 

x  Since  

   ˆ
0

2

A

� �� � � � ��� 	 � 	 � 	 � 	 � 	

 � 
 � 
 � 
 � 
 ��� � ��� � �� � ��� 	
 � 
 � 
 � 
 � 
 �� � � � � �
 �
 � 
 � 
 � 
 � 
 �� ���� �� �� �� �� 


 � 
 � 
 � 
 � 
 �

� � � � ��
 � 
 � 
 � 
 � 
 �� 
 � 
 � 
 � 
 � 


x b  

  the least squares error is ˆ|| .A � ��� �� � � �x b  

 8. From Exercise 4, 

1 3

1 1 ,

1 1

A

� 	

 �� �
 �

 �� 


 

5

1 ,

0

� 	

 �� 
 �

 �� 


b  and ˆ .
�� 	

� 
 ��� 

x  Since  

   

1 3 5 4 5 1
1

ˆ 1 1 1 0 1 1
1

1 1 0 2 0 2

A

�� 	 � 	 � 	 � 	 � 	
� 	
 � 
 � 
 � 
 � 
 �� � � � � � � �
 �
 � 
 � 
 � 
 � 
 �� 

 � 
 � 
 � 
 � 
 �� 
 � 
 � 
 � 
 � 


x b  

  the least squares error is ˆ|| .A � ��� �x b  

 9. (a) Because the columns 1a  and 2a  of A are orthogonal, the method of Example 4 may be used to find 

b̂ , the orthogonal projection of b onto Col A:  

   1 2
1 2 1 2

1 1 2 2

1 5 1
2 1 2 1ˆ 3 1 1
7 7 7 7

2 4 0

� 	 � 	 � 	
� � 
 � 
 � 
 �� � � � � � �
 � 
 � 
 �� �


 � 
 � 
 ��� 
 � 
 � 


b a b a
b a a a a

a a a a
 

(b) The vector x̂  contains the weights which must be placed on 1a  and 2a  to produce b̂ . These weights 

are easily read from the above equation, so ˆ .
���� 	

� 
 ����� 

x  

 10. (a) Because the columns 1a  and 2a  of A are orthogonal, the method of Example 4 may be used to find 

b̂ , the orthogonal projection of b onto Col A:  

   1 2
1 2 1 2

1 1 2 2

1 2 4
1 1ˆ 3 3 1 4 1
2 2

1 2 4

� 	 � 	 � 	
� � 
 � 
 � 
 �� � � � � � � � �
 � 
 � 
 �� �


 � 
 � 
 �� 
 � 
 � 


b a b a
b a a a a

a a a a
 

(b) The vector x̂  contains the weights which must be placed on 1a  and 2a  to produce b̂ . These weights 

are easily read from the above equation, so ˆ .
�� 	

� 
 ��� �� 

x  
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 11. (a) Because the columns 1a , 2a  and 3a  of A are orthogonal, the method of Example 4 may be used to 

find b̂ , the orthogonal projection of b onto Col A:  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

2 1ˆ 0
3 3

�� �
� � � � � �

� � �
b ab a b a

b a a a a a a
a a a a a a

 

   

4 0 1 3

1 5 1 12 1
0

6 1 0 43 3

1 1 5 1

� 	 � 	 � 	 � 	

 � 
 � 
 � 
 ��
 � 
 � 
 � 
 �� � � �

 � 
 � 
 � 
 �

 � 
 � 
 � 
 �

� � �
 � 
 � 
 � 
 �� 
 � 
 � 
 � 


 

(b) The vector x̂  contains the weights which must be placed on 1a , 2a , and 3a  to produce b̂ . These 

weights are easily read from the above equation, so ˆ .

� � �� 	

 �� �
 �

 ��� �� 


x  

 12. (a) Because the columns 1a , 2a  and 3a  of A are orthogonal, the method of Example 4 may be used to 

find b̂ , the orthogonal projection of b onto Col A:  

   31 2
1 2 3 1 2 3

1 1 2 2 3 3

1 14 5ˆ
3 3 3

�� � � �� � � � � � �� �� � � � �

b ab a b a
b a a a a a a

a a a a a a
 

   

1 1 0 5

1 0 1 21 14 5

0 1 1 33 3 3

1 1 1 6

� 	 � 	 � 	 � 	

 � 
 � 
 � 
 ��
 � 
 � 
 � 
 �� � � �

 � 
 � 
 � 
 �

 � 
 � 
 � 
 �
� �
 � 
 � 
 � 
 �� 
 � 
 � 
 � 


 

(b) The vector x̂  contains the weights which must be placed on 1a , 2a , and 3a  to produce b̂ . These 

weights are easily read from the above equation, so ˆ .

���� 	

 �� ����
 �

 ������ 


x  

 13. One computes that  

   

11 0

11 , 2 , || || 40

11 6

A A A

� 	 � 	

 � 
 �� � � � � �
 � 
 �

 � 
 ��� 
 � 


u b u b u  

   

7 4

12 , 3 , || || 29

7 2

A A A

� 	 � 	

 � 
 �� � � � � �
 � 
 �

 � 
 ��� 
 � 


v b v b v  

  Since Av is closer to b than Au is, Au is not the closest point in Col A to b. Thus u cannot be a least-
squares solution of Ax = b. 
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 14. One computes that  

   

3 2

8 , 4 , || || 24

2 2

A A A

� 	 � 	

 � 
 �� � � � � �
 � 
 �

 � 
 �� 
 � 


u b u b u  

   

7 2

2 , 2 , || || 24

8 4

A A A

�� 	 � 	

 � 
 �� � � � �
 � 
 �

 � 
 ��� 
 � 


v b v b v  

  Since Au and Au are equally close to b, and the orthogonal projection is the unique closest point in Col A 
to b, neither Au nor Av can be the closest point in Col A to b. Thus neither u nor v can be a least-squares 
solution of Ax�= b. 

 15. The least squares solution satisfies ˆ .TR Q�x b  Since 
3 5

0 1
R

� 	
� 
 �

� 

 and 

7

1
TQ

� 	
� 
 ��� 


b , the augmented matrix 

for the system may be row reduced to find  

   
3 5 7 1 0 4

0 1 1 0 1 1
TR Q

� 	 � 	� 	 � �
 � 
 �� 
 � �� 
 � 

b  

  and so ˆ
�� 	

� 
 ���� 

x  is the least squares solution of Ax�= b. 

 16. The least squares solution satisfies ˆ .TR Q�x b  Since 
2 3

0 5
R

� 	
� 
 �

� 

 and 

17 / 2

9 / 2
TQ

� 	
� 
 �

� 

b , the augmented 

matrix for the system may be row reduced to find  

   
2 3 17 / 2 1 0 2.9

0 5 9 / 2 0 1 .9
TR Q

� 	 � 	� 	 � �
 � 
 �� 
 � 
 � 

b  

  and so ˆ
� !� 	

� 
 � !� 

x  is the least squares solution of Ax�= b. 

 17. a. True. See the beginning of the section. The distance from Ax to b is || Ax�– b�||.  

 b. True. See the comments about equation (1).  

 c. False. The inequality points in the wrong direction. See the definition of a least-squares solution.  

 d. True. See Theorem 13.  

 e. True. See Theorem 14.  

 18. a. True. See the paragraph following the definition of a least-squares solution.  

 b. False. If x̂  is the least-squares solution, then A x̂  is the point in the column space of A closest to b. 
See Figure 1 and the paragraph preceding it.  

 c. True. See the discussion following equation (1).  

 d. False. The formula applies only when the columns of A are linearly independent. See Theorem 14.  

 e. False. See the comments after Example 4.  

 f. False. See the Numerical Note.  
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 19. a. If Ax = 0, then .T TA A A� �x 0 0  This shows that Nul A is contained in Nul .TA A  

 b. If ,TA A �x 0  then 0.T T TA A � �x x x 0  So ( ) ( ) 0,TA A �x x  which means that 2|| || 0,A �x  and hence 

Ax = 0. This shows that Nul TA A  is contained in Nul A.  

 20. Suppose that Ax = 0. Then .T TA A A� �x 0 0  Since TA A  is invertible, x must be 0. Hence the columns of 
A are linearly independent. 

 21. a. If A has linearly independent columns, then the equation Ax = 0 has only the trivial solution. By 

Exercise 17, the equation TA A �x 0  also has only the trivial solution. Since TA A  is a square matrix, 
it must be invertible by the Invertible Matrix Theorem.  

 b. Since the n linearly independent columns of A belong to m, m could not be less than n.  

 c. The n linearly independent columns of A form a basis for Col A, so the rank of A is n.  

 22. Note that TA A  has n columns because A does. Then by the Rank Theorem and Exercise 19,  

   rank dim Nul dim Nul rankT TA A n A A n A A� � � � �  

 23. By Theorem 14, ˆ ˆ .T TA A A A A��� � " #b x b  The matrix 1( )T TA A A A�  is sometimes called the hat-matrix in 
statistics. 

 24. Since in this case ,TA A I�  the normal equations give ˆ .TA�x b  

 25. The normal equations are 
2 2 6

,
2 2 6

x

y

� � � � � �
�� � � � � �

� � � � � �
 whose solution is the set of all (x, y) such that x + y = 3. 

The solutions correspond to the points on the line midway between the lines x + y = 2 and x + y = 4. 

 26. [M] Using .7 as an approximation for 2 / 2,  0 2 .353535a a� �  and 1 .5.a �  Using .707 as an 

approximation for 2 / 2 , 0 2 .35355339a a� � , 1 .5.a �  

6.6 SOLUTIONS 

Notes: This section is a valuable reference for any person who works with data that requires statistical 
analysis. Many graduate fields require such work. Science students in particular will benefit from Example 1. 
The general linear model and the subsequent examples are aimed at students who may take a multivariate 
statistics course. That may include more students than one might expect. 

 1. The design matrix X and the observation vector y are  

   

1 0 1

1 1 1
, ,

1 2 2

1 3 2

X

� � � �
� � � �
� � � �� �
� � � �
� � � �
� � � �� � � �

y  

  and one can compute  

   14 6 6 .9ˆ, , ( )
6 14 11 .4

T T T TX X X X X X�

� � � � � �
� � � �� � � � � �
� � � � � �

y y�  

  The least-squares line 0 1y x� �� �  is thus y = .9 + .4x. 
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 2. The design matrix X and the observation vector y are  

   

1 1 0

1 2 1
, ,

1 4 2

1 5 3

X

� � � �
	 
 	 

	 
 	 
� �
	 
 	 

	 
 	 

	 
 	 
� � � �

y  

  and one can compute  

   14 12 6 .6ˆ, , ( )
12 46 25 .7

T T T TX X X X X X�

�� � � � � �
� � � �� � � � � �

� � � � � �
y y�  

  The least-squares line 0 1y x� �� �  is thus y = –.6 + .7x. 

 3. The design matrix X and the observation vector � are  

   

1 1 0

1 0 1
, ,

1 1 2

1 2 4

X

�� � � �
	 
 	 

	 
 	 
� �
	 
 	 

	 
 	 

	 
 	 
� � � �

y  

  and one can compute  

   14 2 7 1.1ˆ, , ( )
2 6 10 1.3

T T T TX X X X X X�

� � � � � �
� � � �� � � � � �

� � � � � �
y y�  

  The least-squares line 0 1y x� �� �  is thus y = 1.1 + 1.3x. 

 4. The design matrix X and the observation vector y are  

   

1 2 3

1 3 2
, ,

1 5 1

1 6 0

X

� � � �
	 
 	 

	 
 	 
� �
	 
 	 

	 
 	 

	 
 	 
� � � �

y  

  and one can compute  

   14 16 6 4.3ˆ, , ( )
16 74 17 .7

T T T TX X X X X X�

� � � � � �
� � � �	 
 	 
 	 
�� � � � � �

y y�  

  The least-squares line 0 1y x� �� �  is thus y = 4.3 – .7x. 

 5. If two data points have different x-coordinates, then the two columns of the design matrix X cannot be 
multiples of each other and hence are linearly independent. By Theorem 14 in Section 6.5, the normal 
equations have a unique solution. 

 6. If the columns of X were linearly dependent, then the same dependence relation would hold for the 
vectors in 3 formed from the top three entries in each column. That is, the columns of the matrix 

2
1 1

2
2 2

2
3 3

1

1

1

x x

x x

x x

� �
	 

	 

	 

	 
� �

 would also be linearly dependent, and so this matrix (called a Vandermonde matrix) 

would be noninvertible. Note that the determinant of this matrix is 2 1 3 1 3 2( )( )( ) 0x x x x x x� � � �  since 

1x , 2x , and 3x  are distinct. Thus this matrix is invertible, which means that the columns of X are in fact 
linearly independent. By Theorem 14 in Section 6.5, the normal equations have a unique solution. 
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 7. a. The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   

1

2
1

3
2

4

5

1 1 1.8

2 4 2.7

, , , and3 9 3.4

4 16 3.8

5 25 3.9

X
�

�

� 	� 	 � 	

 �
 � 
 �

 �
 � 
 � � 	 
 �
 � 
 �� � � �
 � 
 �
 � 
 � � 


 �
 � 
 �

 �
 � 
 �� 
 � 
 � 


y

�

�

�

�

�

� �  

b. [M] One computes that (to two decimal places) 
1.76ˆ ,

.20

� �
� � ��� �

�  so the desired least-squares equation is 

21.76 .20y x x� � .  

 8. a. The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   

2 3
1 1 1 1 1 1

2

2 3
3

, , , and

n nn n n

x x x y

X

yx x x

�

�

�

� � � � � � � �
� � � � � � � �� � � �� � � � � � � �
� � � � � � � �� 	 � 	 � 	� 	

y� � � � �

�

�

� �  

 b. [M] For the given data,  

   

4 16 64 1.58

6 36 216 2.08

8 64 512 2.5

10 100 1000 2.8
and

12 144 1728 3.1

14 196 2744 3.4

16 256 4096 3.8

18 324 5832 4.32

X

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� �� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� 	 � 	

y  

  so 1

.5132
ˆ ( ) .03348 ,

.001016

T TX X X�

� �
� �� � �� �
� �� 	

y�  and the least-squares curve is 2 3.5132 .03348 .001016 .y x x x� � 
  

 9. The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   
1

2

3

cos1 sin 1 7.9

cos 2 sin 2 , 5.4 , , and

cos 3 sin 3 .9

A
X

B

� 	 � 	 � 	
� 	
 � 
 � 
 �� � � �
 �
 � 
 � 
 �� 

 � 
 � 
 ��� 
 � 
 � 


y

�

�

�

� �  

 10. a. The model that produces the correct least-squares fit is y�= X� + ,�  where  

   

.02(10) .07(10)

1
.02(11) .07(11)

2

.02(12) .07(12)
3

.02(14) .07(14)
4

.02(15) .07(15) 5

21.34

20.68

, , , and ,20.05

18.87

18.30

A

B

e e

e e
M

X e e
M

e e

e e

� �

� �

� �

� �

� �

� 	 � 	� 	
 � 
 �
 �
 � 
 �
 � � 	
 � 
 �
 �� � � �
 �
 � 
 �
 � � 

 � 
 �
 �
 � 
 �
 �� 
 � 

 �� 


y

�

�

�

�

�

� �  
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 b. [M] One computes that (to two decimal places) 
19.94ˆ ,
10.10

� �
� � �

� �
�  so the desired least-squares equation is 

.02 .0719.94 10.10 .t ty e e� �� �  

 11. [M] The model that produces the correct least-squares fit is y�= X��+ ,�  where  

   

1

2

3

4

5

1 3 cos .88 3

1 2.3 cos1.1 2.3

, , , and1 1.65 cos1.42 1.65

1 1.25 cos1.77 1.25

1 1.01cos 2.14 1.01

X
e

�

� 	� 	 � 	

 �
 � 
 �

 �
 � 
 � � 	 
 �
 � 
 �� � � �
 � 
 �
 � 
 � � 


 �
 � 
 �

 �
 � 
 �� 
 � 
 � 


y � �

�

�

�

�

�

 

  One computes that (to two decimal places) 
1.45ˆ
.811

� �
� � �

� �
� . Since e = .811 < 1 the orbit is an ellipse. The 

equation r = � / (1 – e cos �) produces r = 1.33 when ��= 4.6. 

 12. [M] The model that produces the correct least-squares fit is y = X��+ ,�  where  

   

1

2
0

3
1

4

5

1 3.78 91

1 4.11 98

, , , and1 4.41 103

1 4.73 110

1 4.88 112

X
�

�

� 	� 	 � 	

 �
 � 
 �

 �
 � 
 � � 	 
 �
 � 
 �� � � �
 � 
 �
 � 
 � � 


 �
 � 
 �

 �
 � 
 �� 
 � 
 � 


y

�

�

�

�

�

� �  

  One computes that (to two decimal places) 
18.56ˆ
19.24

� �
� � �

� �
� , so the desired least-squares equation is  

p = 18.56 + 19.24 ln w. When w = 100, p (�107 millimeters of mercury. 

 13. [M] 

a. The model that produces the correct least-squares fit is y = X� + ,�  where  

   

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

2 3

1 0 0 0
01 1 1 1

8.8
1 2 2 2

29.9
1 3 3 3

62.0
1 4 4 4 104.7
1 5 5 5 159.1

1 6 6 6 , 222.0

294.51 7 7 7

380.41 8 8 8
471.11 9 9 9
571.7

1 10 10 10
686.8

1 11 11 11
809.2

1 12 12 12

X

� 	

 � �

 � 


 � 


 � 


 � 


 � 


 �

 �

 �

 �� �
 �

 �

 �

 �

 �

 �

 �

 �

 �

 � �

 �
 �� 


y

1

2

3

4

0 5

1 6

2 7

3 8

9

10

11

12

, , and

�

�

�

�

	
� 	�

 ��

 ��

 ��

 ��

 �
 �

 �
 � � 	

 �
 � 
 �

 �
 � 
 �� � 
 �
 � 
 �

 �
 � 
 �

 �
 �� 

 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 � 
 �� 

 �


�

�

�

�

�

�

�

�

�

�

�

�

� �  
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  One computes that (to four decimal places) 

.8558

4.7025ˆ ,
5.5554

.0274

�� �
� �
� ��
� �
� ��� �� 	

�  so the desired least-squares polynomial is 

2 3( ) .8558 4.7025 5.5554 .0274 .y t t t t� � 
 
 �  

b. The velocity v(t) is the derivative of the position function y(t), so 2( ) 4.7025 11.1108 .0822 ,v t t t� 
 �  

and v(4.5) = 53.0 ft/sec.  

 14. Write the design matrix as # $.1 x  Since the residual vector � = y – X �̂  is orthogonal to Col X,  

   ˆ ˆ0 ( ) ( )T TX X� � � � � � �1 1 y 1 y 1� � �  

   0
1 0 1 0 1

1

ˆ
ˆ ˆ ˆ ˆ( )

ˆny y n x y n x ny n n x
�

� � � �
�

� 	
� 	� ��� � � � � � � �
 �� 



 �� 

$ $ $  

  This equation may be solved for y  to find 0 1
ˆ ˆ .y x� �� �  

 15. From equation (1) on page 420,  

   
1

2
1

1
1 1

( )
1

T

n
n

x
n x

X X
x x x x

x

� 	 � 	�� 	 
 �� � 
 �
 � 
 ��� 
 
 �� 

 �� 


$
$ $

� �  

   
1

1

1 1T

n
n

y
y

X
xyx x

y

� 	
� 	�� 	 
 �� � 
 �
 � 
 ��� 
 � 

 �� 


$
$

y �  

  The equations (7) in the text follow immediately from the normal equations .T TX X X� y�  

 16. The determinant of the coefficient matrix of the equations in (7) is 2 2( ) .n x x�$ $  Using the 2 ��2 

formula for the inverse of the coefficient matrix,  

   
2

0
2 2

1

ˆ 1
ˆ ( )

yx x

xyx nn x x

�

�

� 	 � 	 � 	�
�
 � 
 � 
 �

�� 
 �
 � � 
� 
� 


$$ $
$$$ $

 

  Hence  

   
2

0 12 2 2 2

( )( ) ( )( ) ( )( )ˆ ˆ,
( ) ( )

x y x xy n xy x y

n x x n x x
� �

� �
� �

� �
$ $ $ $ $ $ $

$ $ $ $
 

  Note: A simple algebraic calculation shows that 1 0
ˆ ˆ( ) ,y x n� �	 �
 
  which provides a simple formula 

for 0�̂  once 1̂�  is known. 

 17. a. The mean of the data in Example 1 is 5.5,x �  so the data in mean-deviation form are (–3.5, 1),  

(–.5, 2), (1.5, 3), (2.5, 3), and the associated design matrix is 

1 3.5

1 .5
.

1 1.5

1 2.5

X

�� �
� ��� ��
� �
� �
� �� �

 The columns of X are 

orthogonal because the entries in the second column sum to 0.  
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 b. The normal equations are ,T TX X X� y�  or 0

1

4 0 9
.

0 21 7.5

�

�

� �� � � �
�� �� � � �

� � � �� �
 One computes that 

9 / 4ˆ ,
5 /14

� �
� � �

� �
�  

so the desired least-squares line is *(9 / 4) (5/14) (9 / 4) (5/14)( 5.5).y x x� 
 � 
 �  

 18. Since  

   
1

2
1

1
1 1

( )
1

T

n
n

x
n x

X X
x x x x

x

� � � ��� � � �� � � �� � � ��� � � �� �� �� �

�
� �

� �  

  TX X  is a diagonal matrix when 0.x ��  

 19. The residual vector �  = y�– ˆX �  is orthogonal to Col X, while ŷ =X �̂  is in Col X. Since �  and ŷ  are 
thus orthogonal, apply the Pythagorean Theorem to these vectors to obtain  

   2 2 2 2 2 2ˆ ˆˆ ˆSS(T) || || || || || || || || || || || || SS(R) SS(E)X X� �� � � � � � � � � �y y y y� �  

 20. Since �̂  satisfies the normal equations, ˆ ,T TX X X� y�  and  

   2ˆ ˆ ˆ ˆ ˆ ˆ|| || ( ) ( )T T T T TX X X X X X� � � y� � � � � �  

  Since 2ˆ|| || SS(R)X ��  and 2|| || SS(T)T � �y y y , Exercise 19 shows that  

   ˆSS(E) SS(T) SS(R) T T TX� � � �y y y�  

6.7 SOLUTIONS 

Notes: The three types of inner products described here (in Examples 1, 2, and 7) are matched by examples in 
Section 6.8. It is possible to spend just one day on selected portions of both sections. Example 1 matches the 
weighted least squares in Section 6.8. Examples 2–6 are applied to trend analysis in Seciton 6.8. This material 
is aimed at students who have not had much calculus or who intend to take more than one course in statistics.  

For students who have seen some calculus, Example 7 is needed to develop the Fourier series in  
Section 6.8. Example 8 is used to motivate the inner product on C[a, b]. The Cauchy-Schwarz and triangle 
inequalities are not used here, but they should be part of the training of every mathematics student. 

 1. The inner product is 1 1 2 2, 4 5x y x y x y% & � � . Let x�= (1, 1), y�= (5, –1).  

 a. Since 2|| || , 9,x x� % & �x  || x�|| = 3. Since 2|| || , 105,y y� % & �y  || || 105.�x  Finally, 
2 2| , | 15 225.x y% & � �  

 b. A vector z is orthogonal to y if and only if %x, y&�= 0, that is, 1 220 5 0,z z� �  or 1 24 .z z�  Thus all 

multiples of 
1

4

� 	

 �
� 


 are orthogonal to y.  

 2. The inner product is 1 1 2 2, 4 5 .x y x y x y% & � �  Let x�= (3, –2), y�= (–2, 1). Compute that 2|| || , 56,x x� % & �x  
2|| || , 21,y y� % & �y  2 2|| || || || 56 21 1176� � �x y , %x, y&�= –34, and 2| , | 1156x y% & � . Thus 

2 2 2| , | || || || || ,x y% & � x y  as the Cauchy-Schwarz inequality predicts. 

 3. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 24 ,5 4 3(1) 4(5) 5(1) 28t t% � � & � � � � . 
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 4. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 2 23 , 3 2t t t% � � & �  
( 4)(5) 0(3) 2(5) 10.� � � � �  

 5. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 
2 2 2, 4 ,4 3 4 5 50p q t t〈 〉 = 〈 + + 〉 = + + =  and || || , 50 5 2p p p� % & � � . Likewise 

2 2 2 2 2, 5 4 ,5 4 1 5 1 27q q t t% & � % � � & � � � �  and || || , 27 3 3q q q� % & � � . 

 6. The inner product is %�p, q&�= p(–1)q(–1) + p(0)q(0) + p(1)q(1), so 2 2, 3 ,3p p t t t t% & � % � � & �  
2 2 2( 4) 0 2 20� � � �  and || || , 20 2 5.p p p� % & � �  Likewise 2 2, 3 2 ,3 2q q t t% & � % � � & �  

2 2 25 3 5 59� � �  and || || , 59.q q q� % & �  

 7. The orthogonal projection q̂  of q onto the subspace spanned by p is  

   
, 28 56 14

ˆ (4 )
, 50 25 25

q p
q p t t

p p

% &
� � � � �

% &
 

 8. The orthogonal projection q̂  of q onto the subspace spanned by p is  

   2 2, 10 3 1
ˆ (3 )

, 20 2 2

q p
q p t t t t

p p

% &
� � � � � � �

% &
 

 9. The inner product is %p, q&�= p(–3)q(–3) + p(–1)q(–1) + p(1)q(1) + p(3)q(3).  

a. The orthogonal projection p̂
�
 of 2p  onto the subspace spanned by 0p  and 1p  is  

   2 0 2 1
2 0 1

0 0 1 1

, , 20 0
ˆ (1) 5

, , 4 20

p p p p
p p p t

p p p p

% & % &
� � � � �

% & % &
 

b. The vector 3 ˆq p p t�
�

� � � � �  will be orthogonal to both 0p  and 1p  and 0 1{ , , }p p q  will be an 

orthogonal basis for 0 1 2Span{ , , }.p p p  The vector of values for q at (–3, –1, 1, 3) is (4, –4, –4, 4), so 

scaling by 1/4 yields the new vector 2(1/ 4)( 5).q t� �  

 10. The best approximation to 3p t�  by vectors in 0 1Span{ , , }W p p q�  will be  

   
2

0 1
0 1

0 0 1 1

, , , 0 164 0 5 41
ˆ proj (1) ( )

, , , 4 20 4 4 5W

p p p p p q t
p p p p q t t

p p p p q q

� �% & % & % & �
� � � � � � � �� �% & % & % & � �

 

 11. The orthogonal projection of 3p t�  onto 0 1 2Span{ , , }W p p p�  will be  

   20 1 2
0 1 2

0 0 1 1 2 2

, , , 0 34 0 17
ˆ proj (1) ( ) ( 2)

, , , 5 10 14 5W

p p p p p p
p p p p p t t t

p p p p p p

% & % & % &
� � � � � � � � �

% & % & % &
 

 12. Let 0 1 2Span{ , , }.W p p p�  The vector 3
3 proj (17 / 5)Wp p p t t� � � �  will make 0 1 2 3{ , , , }p p p p  

an orthogonal basis for the subspace 3 of 4. The vector of values for 3p  at (–2, –1, 0, 1, 2) is  

(–6/5, 12/5, 0, –12/5, 6/5), so scaling by 5/6 yields the new vector 3
3 (5 / 6)( (17 / 5) )p t t� � �  

3(5 / 6) (17 / 6) .t t�  
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 13. Suppose that A is invertible and that %u, v&�= (Au) � (Av) for u and v in n. Check each axiom in the 
definition on page 428, using the properties of the dot product.  

i. %u, v&�= (Au) � (Av) = (Av) � (Au) = %v, u&  
ii. %u + v, w&�= (A(u + v)) � (Aw) = (Au + Av) � (Aw) = (Au) � (Aw) + (Av) � (Aw) = %u, w&�+ %v, w&  
iii. %c u, v&�= (A( cu)) � (Av) = (c(Au)) � (Av) = c((Au) � (Av)) = c%u, v&  

iv. 2, ( ) ( ) || || 0,c A A A% & � � � 'u u u u u  and this quantity is zero if and only if the vector Au is 0. But  
Au = 0 if and only u = 0 because A is invertible.  

 14. Suppose that T is a one-to-one linear transformation from a vector space V into n and that %u, v&�=  
T(u) � T(v) for u and v in n. Check each axiom in the definition on page 428, using the properties of the 
dot product and T. The linearity of T is used often in the following.  

i. %u, v&�= T(u) � T(v) = T(v) � T(u) = %v, u&  
ii. %u�+ v, w&�= T(u + v) � T(w) = (T(u) + T(v)) � T(w) = T(u) � T(w) + T(v) � T(w) = %u, �&�+ %v, w&  
iii. %cu, v&�= T(cu) � T(v) = (cT(u)) � T(v) = c(T(u) � T(v)) = c%u, v&  

iv. 2, ( ) ( ) || ( ) || 0,T T T% & � � � 'u u u u u  and this quantity is zero if and only if u = 0 since T is a one-to-
one transformation.  

 15. Using Axioms 1 and 3, %u, c v&�= %c v, u&�= c%v, u&�= c%u, v&. 

 16. Using Axioms 1, 2 and 3,  

   2|| || , , ,� � % � � & � % � & � % � &u v u v u v u u v v u v  

   , , , , , 2 , ,� % & � % & � % & � % & � % & � % & � % &u u u v v u v v u u u v v v  

   2 2|| || 2 , || ||� � % & �u u v v  

  Since {u, v} is orthonormal, 2 2|| || || || 1� �u v  and %u, v&�= 0. So 2|| || 2.� �u v  

 17. Following the method in Exercise 16,  

   2|| || , , ,� � % � � & � % � & � % � &u v u v u v u u v v u v  

   , , , , , 2 , ,� % & � % & � % & � % & � % & � % & � % &u u u v v u v v u u u v v v  

   2 2|| || 2 , || ||� � % & �u u v v  

  Subtracting these results, one finds that 2 2|| || || || 4 , ,� � � � % &u v u v u v  and dividing by 4 gives the 
desired identity. 

 18. In Exercises 16 and 17, it has been shown that 2 2 2|| || || || 2 , || ||� � � % & �u v u u v v  and 2|| ||� �u v  
2 2|| || 2 , || || .� % & �u u v v  Adding these two results gives 2 2 2 2|| || || || 2 || || 2 || || .� � � � �u v u v u v  

 19. let 
a

b

� 	
� 
 �


 �� 

u  and .

b

a

� 	
� 
 �


 �� 

v  Then 2|| || ,a b� �u  2|| || ,a b� �v  and , 2 .ab% & �u v  Since a and b are 

nonnegative, || || ,a b� �u  || || .a b� �v  Plugging these values into the Cauchy-Schwarz inequality 
gives  

   2 | , | || || || ||ab a b a b a b� % & � � � � � �u v u v  

  Dividing both sides of this equation by 2 gives the desired inequality. 
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 20. The Cauchy-Schwarz inequality may be altered by dividing both sides of the inequality by 2 and then 
squaring both sides of the inequality. The result is  

   
2 2 2, || || || ||

2 4

% &� � �� �
� �

u v u v
 

  Now let 
a

b

� 	
� 
 �

� 

u  and 

1

1

� 	
� 
 �

� 

v . Then 2 2 2|| || ,a b� �u  2|| || 2�v , and %u, v&�= a + b. Plugging these values 

into the inequality above yields the desired inequality. 

 21. The inner product is 
1

0
, ( ) ( ) .f g f t g t dt% & � (  Let 2( ) 1 3 ,f t t� �  3( ) .g t t t� �  Then  

   
1 12 3 5 3

0 0
, (1 3 )( ) 3 4 0f g t t t dt t t t dt% & � � � � � � �( (  

 22. The inner product is 
1

0
, ( ) ( ) .f g f t g t dt% & � (  Let f (t) = 5t – 3, 3 2( ) .g t t t� �  Then  

   
1 13 2 4 3 2

0 0
, (5 3)( ) 5 8 3 0f g t t t dt t t t dt% & � � � � � � �( (  

 23. The inner product is 
1

0
, ( ) ( ) ,f g f t g t dt% & � (  so 

1 12 2 4 2

0 0
, (1 3 ) 9 6 1 4 / 5,f f t dt t t dt% & � � � � � �( (  and 

|| || , 2 / 5.f f f� % & �  

 24. The inner product is 
1

0
, ( ) ( ) ,f g f t g t dt% & � (  so 

1 13 2 2 6 5 4

0 0
, ( ) 2 1/105,g g t t dt t t t dt% & � � � � � �( (  and 

|| || , 1/ 105.g g g� % & �  

 25. The inner product is 
1

1
, ( ) ( ) .f g f t g t dt

�

� � � �  Then 1 and t are orthogonal because 
1

1
1, 0.t t dt

�

� � � ��  So 1 

and t can be in an orthogonal basis for 2Span{1, , }.t t  By the Gram-Schmidt process, the third basis 
element in the orthogonal basis can be  

   
2 2

2 ,1 ,
1

1,1 ,

t t t
t t

t t

� � � �
� �
� � � �

 

  Since 
12 2

1
,1 2 / 3,t t dt

�

� � � ��  
1

1
1,1 1 2,dt

�

� � � ��  and 
12 3

1
, 0,t t t dt

�

� � � ��  the third basis element can be 

written as 2 (1/ 3).t �  This element can be scaled by 3, which gives the orthogonal basis as 2{1, , 3 1}.t t �  

 26. The inner product is 
2

2
, ( ) ( ) .f g f t g t dt

�

� � � �  Then 1 and t are orthogonal because 
2

2
1, 0.t t dt

�

� � � ��  So 1 

and t can be in an orthogonal basis for 2Span{1, , }.t t  By the Gram-Schmidt process, the third basis 
element in the orthogonal basis can be  

   
2 2

2 ,1 ,
1

1,1 ,

t t t
t t

t t

� � � �
� �
� � � �

 

  Since 
22 2

2
,1 16 / 3,t t dt

�

� � � ��  
2

2
1,1 1 4,dt

�

� � � ��  and 
22 3

2
, 0,t t t dt

�

� � � ��  the third basis element can be 

written as 2 (4 / 3).t �  This element can be scaled by 3, which gives the orthogonal basis as 2{1, , 3 4}.t t �  
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 27. [M] The new orthogonal polynomials are multiples of 317 5t t� �  and 2 472 155 35 .t t� �  These 
polynomials may be scaled so that their values at –2, –1, 0, 1, and 2 are small integers. 

 28. [M] The orthogonal basis is 0 ( ) 1,f t �  1( ) cos ,f t t�  2
2 ( ) cos (1/ 2) (1/ 2)cos 2 ,f t t t� � �  and 

3
3 ( ) cos (3/ 4)cos (1/ 4)cos 3 .f t t t t� � �  

6.8 SOLUTIONS 

Notes: The connections between this section and Section 6.7 are described in the notes for that section. For 
my junior-senior class, I spend three days on the following topics: Theorems 13 and 15 in Section 6.5, plus 
Examples 1, 3, and 5; Example 1 in Section 6.6; Examples 2 and 3 in Section 6.7, with the motivation for the 
definite integral; and Fourier series in Section 6.8. 

 1. The weighting matrix W, design matrix X, parameter vector �, and observation vector y are:  

   0

1

1 0 0 0 0 1 2 0

0 2 0 0 0 1 1 0

, , ,0 0 2 0 0 1 0 2

0 0 0 2 0 1 1 4

0 0 0 0 1 1 2 4

W X
�

�

�� 	 � 	 � 	

 � 
 � 
 ��
 � 
 � 
 �� 	

 � 
 � 
 �� � � �
 �

 � 
 � 
 �� 


 � 
 � 
 �

 � 
 � 
 �� 
 � 
 � 


y�  

  The design matrix X and the observation vector y are scaled by W:  

   

1 2 0

2 2 0

,2 0 4

2 2 8

1 2 4

WX W

�� 	 � 	

 � 
 ��
 � 
 �

 � 
 �� �

 � 
 �

 � 
 �

 � 
 �� 
 � 


y  

  Further compute  

   
14 0 28

( ) , ( )
0 16 24

T TWX WX WX W
� 	 � 	

� �
 � 
 �
� 
 � 


y  

  and find that  

   1 1/14 0 28 2ˆ (( ) ) ( )
0 1/16 24 3/ 2

T TWX WX WX W�

� 	 � 	 � 	
� � �
 � 
 � 
 �

� 
 � 
 � 

y�  

  Thus the weighted least-squares line is y = 2 + (3/2)x. 

 2. Let X be the original design matrix, and let y be the original observation vector. Let W be the weighting 
matrix for the first method. Then 2W is the weighting matrix for the second method. The weighted least-
squares by the first method is equivalent to the ordinary least-squares for an equation whose normal 
equation is  

   ˆ( ) ( )T TWX WX WX W� y�  (1) 

  while the second method is equivalent to the ordinary least-squares for an equation whose normal 
equation is  

   ˆ(2 ) (2 ) (2 ) (2 )T TWX W X WX W� y�  (2) 

  Since equation (2) can be written as ˆ4( ) 4( ) ,T TWX WX WX W� � y  it has the same solutions as  
equation (1). 
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 3. From Example 2 and the statement of the problem, 0 ( ) 1,p t �  1( ) ,p t t�  2
2 ( ) 2,p t t� �  

3
3 ( ) (5 / 6) (17 / 6) ,p t t t� �  and g = (3, 5, 5, 4, 3). The cubic trend function for g is the orthogonal 

projection p̂  of g onto the subspace spanned by 0 ,p 1,p 2 ,p and 3 :p  

   0 31 2
0 1 2 3

0 0 1 1 2 2 3 3

, ,, ,
ˆ

, , , ,

g p g pg p g p
p p p p p

p p p p p p p p

% & % &% & % &
� � � �

% & % & % & % &
 

   " #2 320 1 7 2 5 17
(1) 2

5 10 14 10 6 6
t t t t

� � � �� � � � � �� �
� �

 

   " #2 3 2 31 1 1 5 17 2 1 1
4 2 5

10 2 5 6 6 3 2 6
t t t t t t t

� �� � � � � � � � � �� �
� �

 

  This polynomial happens to fit the data exactly. 

 4. The inner product is %�p, q&�= p(–5)q(–5) + p(–3)q(–3) + p(–1)q(–1) + p(1)q(1) + p(3)q(3) + p(5)q(5).  

a. Begin with the basis 2{1, , }t t  for 2. Since 1 and t are orthogonal, let 0 ( ) 1p t �  and 1( ) .p t t�  Then 
the Gram-Schmidt process gives  

   
2 2

2 2 2
2

,1 , 70 35
( ) 1

1,1 , 6 3

t t t
p t t t t t

t t

% & % &
� � � � � � �

% & % &
 

  The vector of values for 2p  is (40/3, –8/3, –32/3, –32/3, –8/3, 40/3), so scaling by 3/8 yields the new 

function 2 2
2 (3/8)( (35/ 3)) (3/8) (35/8).p t t� � � �  

b. The data vector is g = (1, 1, 4, 4, 6, 8). The quadratic trend function for g is the orthogonal projection 
p̂  of g onto the subspace spanned by 0p , 1p  and 2p :  

   20 1 2
0 1 2

0 0 1 1 2 2

, , , 24 50 6 3 35
ˆ (1)

, , , 6 70 84 8 8

g p g p g p
p p p p t t

p p p p p p

% & % & % & � �� � � � � � �� �% & % & % & � �
 

   2 25 1 3 35 59 5 3
4

7 14 8 8 16 7 112
t t t t

� �� � � � � � �� �
� �

 

 5. The inner product is 
2

0
, ( ) ( ) .f g f t g t dt

�

� � � �  Let m �	n. Then  

   
2 2

0 0

1
sin , sin sin sin cos(( ) ) cos(( ) ) 0

2
mt nt mt nt dt m n t m n t dt

� �

� � � � � � � �� �  

  Thus sin mt and sin nt are orthogonal. 

 6. The inner product is 
2

0
, ( ) ( ) .f g f t g t dt

�

� � � �  Let m and n be positive integers. Then  

   
2 2

0 0

1
sin ,cos sin cos sin(( ) ) sin(( ) ) 0

2
mt nt mt nt dt m n t m n t dt

� �

� � � � � � � �� �  

  Thus sinmt and cosnt are orthogonal. 



372 CHAPTER 6 • Orthogonality and Least Squares 

 7. The inner product is 
2

0
, ( ) ( ) .f g f t g t dt

�

� � � �  Let k be a positive integer. Then  

   
2 22 2

0 0

1
|| cos || cos ,cos cos 1 cos 2

2
kt kt kt kt dt kt dt

� �

�� � � � � � �� �  

  and  

   
2 22 2

0 0

1
|| sin || sin ,sin sin 1 cos 2

2
kt kt kt kt dt kt dt

� �

�� � � � � � �� �  

 8. Let f(t) = t – 1. The Fourier coefficients for f are:  

   
2 20

0 0

1 1 1
( ) 1 1

2 2 2

a
f t dt t dt

� �

�

� �

� � � � � �� �  

  and for k > 0,  

   
2 2

0 0

1 1
( )cos ( 1)cos 0ka f t kt dt t kt dt

� �

� �

� � � �� �  

   
2 2

0 0

1 1 2
( )sin ( 1)sinkb f t kt dt t kt dt

k

� �

� �

� � � � �� �  

  The third-order Fourier approximation to f is thus  

   0
1 2 3

2
sin sin 2 sin 3 1 2 sin sin 2 sin 3

2 3

a
b t b t b t t t t�� � � � � � � � �  

 9. Let f(t) = 2���– t. The Fourier coefficients for f are:  

   
2 20

0 0

1 1 1
( ) 2

2 2 2

a
f t dt t dt

� �

� �

� �

� � � �� �  

  and for k > 0,  

   
2 2

0 0

1 1
( ) cos (2 ) cos 0ka f t kt dt t kt dt

� �

�

� �

� � � �� �  

   
2 2

0 0

1 1 2
( ) sin (2 ) sinkb f t kt dt t kt dt

k

� �

�

� �

� � � �� �  

  The third-order Fourier approximation to f is thus  

   0
1 2 3

2
sin sin 2 sin 3 2 sin sin 2 sin 3

2 3

a
b t b t b t t t t�� � � � � � �  

 10. Let 
1 for 0

( ) .
1 for 2

t
f t

t

�

� �

� ��
� �� � ��

 The Fourier coefficients for f are:  

   
2 20

0 0

1 1 1 1
( ) 0

2 2 2 2

a
f t dt dt dt

� � �

�
� � �

� � � �� � �  

  and for k > 0,  

   
2 2

0 0

1 1 1
( ) cos cos cos 0ka f t kt dt kt dt kt dt

� � �

�
� � �

� � � �� � �  

   
2 2

0 0

4 /( ) for odd1 1 1
( ) sin sin sin

0 for evenk

k k
b f t kt dt kt dt kt dt

k

� � �

�

�

� � �

�
� � � � �

�
    

  The third-order Fourier approximation to f is thus  

   1 3
4 4

sin sin 3 sin sin 3
3

b t b t t t
� �


 � 
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 11. The trigonometric identity 2cos 2 1 2 sint t� �  shows that  

   2 1 1
sin cos 2

2 2
t t� �  

  The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or 

less, so this expression is the third-order Fourier approximation to 3cos t . 

 12. The trigonometric identity 3cos 3 4 cos 3 cost t t� �  shows that  

   3 3 1
cos cos cos 3

4 4
t t t� 
  

  The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or 

less, so this expression is the third-order Fourier approximation to 3cos .t  

 13. Let f and g be in C [0, 2!] and let m be a nonnegative integer. Then the linearity of the inner product 
shows that  

  "( f + g), cos mt#�= "�f, cos mt#�+ "g, cos mt#, "( f + g), sin mt#�= "�f, sin mt#�+ "�g, sin mt# 
  Dividing these identities respectively by "cos mt, cos mt# and "sin mt, sin mt# shows that the Fourier 

coefficients ma  and mb  for f + g are the sums of the corresponding Fourier coefficients of f and of g. 

 14. Note that g and h are both in the subspace H spanned by the trigonometric polynomials of order 2 or less. 
Since h is the second-order Fourier approximation to f, it is closer to f than any other function in the 
subspace H. 

 15. [M] The weighting matrix W is the 13 ��13 diagonal matrix with diagonal entries 1, 1, 1, .9, .9, .8, .7, .6, 
.5, .4, .3, .2, .1. The design matrix X, parameter vector �, and observation vector y are:  

   

2 3

2 3

2 3

2 3 0

2 3 1

22 3

32 3

2 3

2 3

2 3

2 3

1 0 0 0
0.01 1 1 1
8.8

1 2 2 2
29.9

1 3 3 3
62.0

1 4 4 4 104.7
1 5 5 5 159.1

1 6 6 6 , , 222.0

294.51 7 7 7

380.41 8 8 8

1 9 9 9

1 10 10 10

1 11 11 11

1 12 12 12

X

�

�

�

�

� 	

 �

 �

 �

 �

 �

 �

 �

 � � 	

 � 
 �

 � 
 �� � �
 � 
 �

 � 
 �


 �
 � � 


 �

 �

 �

 �

 �

 �

 �

 �
 �� 


y�

471.1

571.7

686.8

809.2

� 	

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �� 
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  The design matrix X and the observation vector y are scaled by W:  

   

1.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0

1.0 2.0 4.0 8.0

.9 2.7 8.1 24.3

.9 3.6 14.4 57.6

.8 4.0 20.0 100.0

.7 4.2 25.2 151.2

.6 4.2 29.4 205.8

.5 4.0 32.0 256.0

.4 3.6 32.4 291.6

.3 3.0 30.0 300.0

.2 2.2 24.2 266.2

.1 1.2 14.4 172.8

WX

� �
� �
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�� �

0.00

8.80

29.90

55.80

94.23

127.28

, 155.40

176.70

190.20

188.44

171.51

137.36

80.92

W

� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � ��
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �� �

y  

  Further compute  

   

6.66 22.23 120.77 797.19 747.844

22.23 120.77 797.19 5956.13 4815.438
( ) , ( )

120.77 797.19 5956.13 48490.23 35420.468

797.19 5956.13 48490.23 420477.17 285262.440

T TWX WX WX W

� � � �
� � � �
� � � �� �
� � � �
� � � �
� � � �� � � �

y  

  and find that  

   1

0.2685

3.6095ˆ (( ) ) ( )
5.8576

0.0477

T TWX WX WX W�

�� �
� �
� �� �
� �
� �
�� �� �

y�  

  Thus the weighted least-squares cubic is 2 3( ) .2685 3.6095 5.8576 .0477 .y g t t t t� � � 	 	 �  The velocity 
at t = 4.5 seconds is g’(4.5) = 53.4 ft./sec. This is about 0.7% faster than the estimate obtained in Exercise 
13 of Section 6.6. 

 16. [M] Let 
1 for 0

( ) .
1 for 2

t
f t

t

�

� �

� ��
� �� � ��

 The Fourier coefficients for f have already been found to be 0ka �  

for all k �	0 and 
4 /( ) for odd

.
0 for evenk

k k
b

k

��
� �
�

 Thus  

   4 5
4 4 4 4 4

( ) sin sin 3 and ( ) sin sin 3 sin 5
3 3 5

f t t t f t t t t
� � � � �

� 
 � 
 
  

  A graph of 4f  over the interval [0, 2�] is  

1
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  A graph of 5f  over the interval [0, 2�] is  

1

0.5

–0.5

–1

1 2 3 4 5 6

 

  A graph of 5f  over the interval [–2�, 2�] is 

1

0.5

–0.5

–1

–6 –4 –2 2 4 6

 

Chapter 6 SUPPLEMENTARY EXERCISES 

 1. a. False. The length of the zero vector is zero.  

 b. True. By the displayed equation before Example 2 in Section 6.1, with c = –1, || –x�|| = || (–1)x�|| = 
| –1 ||| x || = || x�||.  

 c. True. This is the definition of distance.  

 d. False. This equation would be true if r|| v�|| were replaced by | r ||| v�||.  

 e. False. Orthogonal nonzero vectors are linearly independent.  

 f. True. If x � u = 0 and x � v = 0, then x � (u – v) = x � u – x � v = 0.  

 g. True. This is the “only if” part of the Pythagorean Theorem in Section 6.1.  

 h. True. This is the “only if” part of the Pythagorean Theorem in Section 6.1 where v is replaced  

by –v, because 2|| ||�v  is the same as 2|| ||v .  

 i. False. The orthogonal projection of y onto u is a scalar multiple of u, not y (except when y itself is 
already a multiple of u).  

 j. True. The orthogonal projection of any vector y onto W is always a vector in W.  

 k. True. This is a special case of the statement in the box following Example 6 in Section 6.1 (and 
proved in Exercise 30 of Section 6.1).  

 l. False. The zero vector is in both W and .W �  

 m. True. See Exercise 32 in Section 6.2. If 0,i j� �v v  then ( ) ( ) ( ) 0 0.i i j j i j i j i jc c c c c c� � � � �v v v v   

 n. False. This statement is true only for a square matrix. See Theorem 10 in Section 6.3.  

 o. False. An orthogonal matrix is square and has orthonormal columns. 
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 p. True. See Exercises 27 and 28 in Section 6.2. If U has orthonormal columns, then .TU U I�  If U is 

also square, then the Invertible Matrix Theorem shows that U is invertible and 1 .TU U� �  In this 

case, ,TU U I�  which shows that the columns of TU  are orthonormal; that is, the rows of U are 
orthonormal.  

 q. True. By the Orthogonal Decomposition Theorem, the vectors projW v  and projW�v v  are 
orthogonal, so the stated equality follows from the Pythagorean Theorem.  

 r. False. A least-squares solution is a vector x̂  (not A x̂ ) such that A x̂  is the closest point to b  
in Col A.  

 s. False. The equation ˆ � �� �� �� �� �x b  describes the solution of the normal equations, not the matrix 

form of the normal equations. Furthermore, this equation makes sense only when TA A  is 
invertible.  

 2. If 1 2{ , }v v  is an orthonormal set and 1 1 2 2 ,c c� �x v v  then the vectors 1 1c v  and 2 2c v  are orthogonal 
(Exercise 32 in Section 6.2). By the Pythagorean Theorem and properties of the norm  

   2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2 1 2|| || || || || || || || ( || ||) ( || ||) | | | |c c c c c c c c� � � � � � � �x v v v v v v  

  So the stated equality holds for p = 2. Now suppose the equality holds for p = k, with k ��2. Let 

1 1{ , , }k�	v v  be an orthonormal set, and consider 1 1 1 1 1 1,k k k k k k kc c c c
� � � �

� �	� � � �x v v v u v  where 

1 1 .k k kc c� �	�u v v  Observe that ku  and 1 1k kc
� �

v  are orthogonal because 1 0j k�� �v v  for j = 1,�,k. 

By the Pythagorean Theorem and the assumption that the stated equality holds for k, and because 
2 2 2 2

1 1 1 1 1|| || | | || || | | ,k k k k kc c c
� � � � �

� �v v  

   2 2 2 2 2 2
1 1 1 1 1 1|| || || || || || || || | | | |k k k k k k kc c c c
� � � � �

� � � � � ���x u v u v  

  Thus the truth of the equality for p = k implies its truth for p = k + 1. By the principle of induction, the 
equality is true for all integers p ��2. 

 3. Given x and an orthonormal set 1{ , , }p�v v  in n, let x̂  be the orthogonal projection of x onto the 

subspace spanned by 1, , p�v v . By Theorem 10 in Section 6.3, 1 1ˆ ( ) ( ) .p p� � ��� �x x v v x v v  By 

Exercise 2, 2 2 2
1ˆ|| || | | | | .p� � ��� �x x v x v  Bessel’s inequality follows from the fact that 2 2ˆ|| || || || ,�x x  

which is noted before the proof of the Cauchy-Schwarz inequality in Section 6.7. 

 4. By parts (a) and (c) of Theorem 7 in Section 6.2, 1{ , , }kU U�v v  is an orthonormal set in n. Since there 

are n vectors in this linearly independent set, the set is a basis for n. 

 5. Suppose that (U x)�(U y) = x�y for all x, y in n, and let 1, , n	e e  be the standard basis for n. For  

j = 1, 	, n, jUe  is the jth column of U. Since 2|| || ( ) ( ) 1,j j j j jU U U� 
 � 
 �e e e e e  the columns of U are 

unit vectors; since ( ) ( ) 0j k j kU U
 � 
 �e e e e  for j ��k, the columns are pairwise orthogonal. 

 6. If Ux = �x for some x���0, then by Theorem 7(a) in Section 6.2 and by a property of the norm,  
|| x�|| = || Ux || = || �x || = | ��||| x�||, which shows that | ��| = 1, because x���0. 

 7. Let u be a unit vector, and let 2 .TQ I� � uu  Since ( ) ,T T TT T T� �uu u u uu  

   ( 2 ) 2( ) 2T T T T T TQ I I I Q� � � � � � �uu uu uu  

  Then  

   2 2( 2 ) 2 2 4( )( )T T T T T TQQ Q I I� � � � � � �uu uu uu uu uu  
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  Since u is a unit vector, 1,T � 
 �u u u u  so ( )( ) ( )( ) ,T T T T T� �uu uu u u u u uu  and  

   2 2 4T T T TQQ I I� � � � �uu uu uu  

  Thus Q is an orthogonal matrix. 

 8. a. Suppose that x 
 y = 0. By the Pythagorean Theorem, 2 2 2|| || || || || || .� � �x y x y  Since T preserves 

lengths and is linear,  

   2 2 2 2|| ( ) || || ( ) || || ( ) || || ( ) ( ) ||T T T T T� � � � �x y x y x y  

  This equation shows that T(x) and T(y) are orthogonal, because of the Pythagorean Theorem. Thus T 
preserves orthogonality.  

 b. The standard matrix of T is 
 �1( ) ( )nT T	e e , where 1, , n	e e  are the columns of the identity 

matrix. Then 1{ ( ), , ( )}nT T	e e  is an orthonormal set because T preserves both orthogonality and 
lengths (and because the columns of the identity matrix form an orthonormal set). Finally, a square 
matrix with orthonormal columns is an orthogonal matrix, as was observed in Section 6.2.  

 9. Let W = Span{u, v}. Given z in n, let ˆ proj .W�z z  Then ẑ  is in Col A, where 
 �.A � u v  Thus there is 

a vector, say, x̂  in 2, with A x̂ = ẑ . So, x̂  is a least-squares solution of Ax = z. The normal equations 
may be solved to find x̂ , and then ẑ  may be found by computing A ˆ.x  

 10. Use Theorem 14 in Section 6.5. If c ��0, the least-squares solution of Ax = c b is given by 
1( ) ( ),T TA A A c� b  which equals 1( ) ,T Tc A A A� b  by linearity of matrix multiplication. This solution is c 

times the least-squares solution of Ax�= b. 

 11. Let ,

x

y

z

� 	

 �� 
 �

 �� 


x  ,

a

b

c

� 	

 �� 
 �

 �� 


b  

1

2 ,

5

� 	

 �� �
 �

 �� 


v  and 

1 2 5

1 2 5 .

1 2 5

T

T

T

A

� 	 �� 	
 � 
 �� � �
 � 
 �
 � 
 ��� 

 �� 


v

v

v

 Then the given set of equations is  

Ax = b, and the set of all least-squares solutions coincides with the set of solutions of the normal 

equations T TA A A�x b . The column-row expansions of TA A  and TA b  give  

   3 , ( )T T T T T TA A A a b c a b c� � � � � � � � � �vv vv vv vv b v v v v  

  Thus 3( ) 3 ( ) 3( )T T T TA A � � �x vv x v v x v x v  since Tv x  is a scalar, and the normal equations have 

become 3( ) ( ) ,T a b c� � �v x v v  so 3( ) ,T a b c� � �v x  or ( ) / 3.T a b c� � �v x  Computing Tv x  gives the 
equation x – 2y + 5z = (a + b + c)/3 which must be satisfied by all least-squares solutions to Ax = b. 

 12. The equation (1) in the exercise has been written as V��= b, where V is a single nonzero column vector v, 

and b = Av. The least-squares solution �̂  of V��= b is the exact solution of the normal equations 

.T TV V V� � b  In the original notation, this equation is .T T A� �v v v v  Since Tv v  is nonzero, the least 

squares solution �̂  is /( ).T TAv v v v  This expression is the Rayleigh quotient discussed in the Exercises 
for Section 5.8. 

 13. a. The row-column calculation of Au shows that each row of A is orthogonal to every u in Nul A. So 

each row of A is in (Nul ) .A �  Since (Nul )A �  is a subspace, it must contain all linear combinations 

of the rows of A; hence (Nul )A �  contains Row A.  

 b. If rank A = r, then dim Nul A = n – r by the Rank Theorem. By Exercsie 24(c) in Section 6.3, 

dimNul dim(Nul ) ,A A n�� �  so dim(Nul )A �  must be r. But Row A is an r-dimensional subspace 

of (Nul )A �  by the Rank Theorem and part (a). Therefore, Row (Nul ) .A A ��  
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 c. Replace A by TA  in part (b) and conclude that Row (Nul ) .T TA A ��  Since Row Col ,TA A�  

Col (Nul ) .TA A ��  

 14. The equation Ax = b has a solution if and only if b is in Col A. By Exercise 13(c), Ax = b has a solution 

if and only if b is orthogonal to Nul .TA  This happens if and only if b is orthogonal to all solutions of 

.TA �x 0  

 15. If TA URU�  with U orthogonal, then A is similar to R (because U is invertible and 1TU U �� ), so A has 
the same eigenvalues as R by Theorem 4 in Section 5.2. Since the eigenvalues of R are its n real diagonal 
entries, A has n real eigenvalues. 

 16. a. If 
 �1 2 ,nU � 	u u u  then 
 �1 1 2 .nAU A A� � 	u u u  Since 1u  is a unit vector and 

2 , , n	u u  are orthogonal to 1,u  the first column of TU AU  is 1 1 1 1 1 1( ) .T TU U� � � � �u u e  

 b. From (a),  

   

1

1

* * * *

0

0

TU AU
A

�� �
� �
� ��
� �
� �
� �� �

�
 

  View TU AU  as a 2 ��2 block upper triangular matrix, with 1A  as the (2, 2)-block. Then from 
Supplementary Exercise 12 in Chapter 5,  

  1 1 1 1 1 1 1det( ) det(( ) ) det( ) ( ) det( )T
n n nU AU I I A I A I

� �

�� � � �� � � � � � � � � � �  

  This shows that the eigenvalues of ,TU AU  namely, 1, , ,n� � �  consist of 1�  and the eigenvalues of 

1A . So the eigenvalues of 1A  are 2 , , .n� � �  

 17. [M] Compute that || �x�||/|| x�|| = .4618 and 4cond( ) (|| || / || ||) 3363 (1.548 10 ) .5206A �� � � � �b b� . In 

this case, || �x ||/|| x || is almost the same as cond(A) ��|| ���||/|| b�||. 

 18. [M] Compute that || �x�||/|| x�|| = .00212 and cond(A) ��(|| �b�||/|| b�||) = 3363 ��(.00212) ��7.130. In this 
case, || �x ||/|| x || is almost the same as || �b�||/|| b�||, even though the large condition number suggests that 
|| �x�||/|| x�|| could be much larger. 

 19. [M] Compute that 8|| || / || || 7.178 10�� �x x�  and 4cond( ) (|| || / || ||) 23683 (2.832 10 )A �� � � � �b b�  
6.707.  Observe that the realtive change in x is much smaller than the relative change in b. In fact the 
theoretical bound on the realtive change in x is 6.707 (to four significant figures). This exercise shows 
that even when a condition number is large, the relative error in the solution need not be as large as you 
suspect. 

 20. [M] Compute that || �x ||/|| x�|| = .2597 and 5cond( ) (|| || / || ||) 23683 (1.097 10 ) .2598A �� � � � �b b� . This 

calculation shows that the relative change in x, for this particular b and �b, should not exceed .2598. In 
this case, the theoretical maximum change is almost acheived. 


