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7.1 SOLUTIONS 

Notes: Students can profit by reviewing Section 5.3 (focusing on the Diagonalization Theorem) before 
working on this section. Theorems 1 and 2 and the calculations in Examples 2 and 3 are important for the 
sections that follow. Note that symmetric matrix means real symmetric matrix, because all matrices in the text 
have real entries, as mentioned at the beginning of this chapter. The exercises in this section have been 
constructed so that mastery of the Gram-Schmidt process is not needed. 

Theorem 2 is easily proved for the 2 × 2 case:  

   If ,
a b

A
c d
 

=  
 

 then ( )2 21 ( ) 4 .
2

a d a d bλ = + ± − +   

If b = 0 there is nothing to prove. Otherwise, there are two distinct eigenvalues, so A must be diagonalizable. 

In each case, an eigenvector for λ is .
d

b
− λ 

 − 
 

 1. Since 
3 5

,
5 7

TA A
 

= = − 
 the matrix is symmetric. 

 2. Since 
3 5

,
5 3

TA A
− 

= ≠ − 
 the matrix is not symmetric. 

 3. Since 
2 2

,
4 4

TA A
 

= ≠ 
 

 the matrix is not symmetric. 

 4. Since 
0 8 3
8 0 2 ,
3 2 0

TA A
 
 = − = 
 − 

 the matrix is symmetric. 

 5. Since 
6 2 0
0 6 2 ,
0 0 6

TA A
− 
 = − ≠ 
 − 

 the matrix is not symmetric. 

 6. Since A is not a square matrix TA A≠  and the matrix is not symmetric. 
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 7. Let 
.6 .8

,
.8 .6

P
 

=  − 
 and compute that  

   2
.6 .8 .6 .8 1 0
.8 .6 .8 .6 0 1

TP P I
     

= = =     − −     
 

  Since P is a square matrix, P is orthogonal and 1 .6 .8
.

.8 .6
TP P−  

= =  − 
 

 8. Let 
1/ 2 1/ 2

,
1/ 2 1/ 2

P
 −

=  
  

 and compute that  

   2
1/ 2 1/ 2 1/ 2 1/ 2 1 0

0 11/ 2 1/ 2 1/ 2 1/ 2
TP P I

   −  
= = =     

−        
 

  Since P is a square matrix, P is orthogonal and 1 1/ 2 1/ 2
.

1/ 2 1/ 2
TP P−  

= =  
−  

 

 9. Let 
5 2

,
2 5

P
− 

=  
 

 and compute that  

   2
5 2 5 2 29 0
2 5 2 5 0 29

TP P I
− −     

= = ≠     
     

 

  Thus P is not orthogonal. 

 10. Let 
1 2 2
2 1 2 ,
2 2 1

P
− 
 = − 
 − 

 and compute that  

   3

1 2 2 1 2 2 9 0 0
2 1 2 2 1 2 0 9 0
2 2 1 2 2 1 0 0 9

TP P I
− −     
     = − − = ≠     
     − −     

 

  Thus P is not orthogonal. 

 11. Let 

2 /3 2 / 3 1/ 3

0 1/ 5 2 / 5 ,

5 / 3 4 / 45 2 / 45

P
 
 

= − 
 − − 

 and compute that  

   3

2 / 3 0 5 / 3 2 / 3 2 /3 1/3 1 0 0
2 / 3 1/ 5 4 / 45 0 1/ 5 2 / 5 0 1 0

0 0 11/ 3 2 / 5 2 / 45 5 / 3 4 / 45 2 / 45

TP P I

          = − − = =          − − − −      
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  Since P is a square matrix, P is orthogonal and 1

2 / 3 0 5 / 3

2 / 3 1/ 5 4 / 45 .

1/ 3 2 / 5 2 / 45

TP P−

 
 

= = − 
 

− −  

 

 12. Let 

.5 .5 .5 .5

.5 .5 .5 .5
,

.5 .5 .5 .5

.5 .5 .5 .5

P

− − 
 − − =
 
 − −  

 and compute that  

   4

.5 .5 .5 .5 .5 .5 .5 .5 1 0 0 0

.5 .5 .5 .5 .5 .5 .5 .5 0 1 0 0

.5 .5 .5 .5 .5 .5 .5 .5 0 0 1 0

.5 .5 .5 .5 .5 .5 .5 .5 0 0 0 1

TP P I

− − − −     
     − −     = = =
     − −
     − − − −          

 

  Since P is a square matrix, P is orthogonal and 1

.5 .5 .5 .5

.5 .5 .5 .5
.

.5 .5 .5 .5

.5 .5 .5 .5

TP P−

− − 
 
 = =
 − −
 − −  

 

 13. Let 
3 1

.
1 3

A
 

=  
 

 Then the characteristic polynomial of A is 2 2(3 ) 1 6 8 ( 4)( 2),− λ − = λ − λ + = λ − λ −  so 

the eigenvalues of A are 4 and 2. For λ = 4, one computes that a basis for the eigenspace is 
1

,
1
 
 
 

 which 

can be normalized to get 1
1/ 2

.
1/ 2

 
=  
  

u  For λ = 2, one computes that a basis for the eigenspace is 
1

,
1

− 
 
 

 

which can be normalized to get 2
1/ 2

.
1/ 2

 −
=  
  

u  Let  

   [ ]1 2
1/ 2 1/ 2 4 0

and
0 21/ 2 1/ 2

P D
 −  

= = =   
   

u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 14. Let 
1 5

.
5 1

A
 

=  
 

 Then the characteristic polynomial of A is 2 2(1 ) 25 2 24 ( 6)( 4),− λ − = λ − λ − = λ − λ +  

so the eigenvalues of A are 6 and –4. For λ = 6, one computes that a basis for the eigenspace is 
1

,
1
 
 
 

 

which can be normalized to get 1
1/ 2

.
1/ 2

 
=  
  

u  For λ = –4, one computes that a basis for the eigenspace is 

1
,

1
− 
 
 

 which can be normalized to get 2
1/ 2

.
1/ 2

 −
=  
  

u   
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  Let  

   [ ]1 2
1/ 2 1/ 2 6 0

and
0 41/ 2 1/ 2

P D
 −  

= = =   −   
u u  

  Then P orthogonally diagonalizes A, and 1.A PDP−=  

 15. Let 
16 4

.
4 1

A
− 

=  − 
 Then the characteristic polynomial of A is 2(16 )(1 ) 16 17 ( 17)− λ − λ − = λ − λ = λ − λ , 

so the eigenvalues of A are 17 and 0. For λ = 17, one computes that a basis for the eigenspace is 
4

,
1

− 
 
 

 

which can be normalized to get 1
4 / 17

.
1/ 17

 −
=  
  

u  For λ = 0, one computes that a basis for the eigenspace 

is 
1
4
 
 
 

, which can be normalized to get 2
1/ 17

.
4 / 17

 
=  
  

u  Let  

   [ ]1 2
4 / 17 1/ 17 17 0

and
0 01/ 17 4 / 17

P D
 −  

= = =   
   

u u  

  Then P orthogonally diagonalizes A, and 1.A PDP−=  

 16. Let 
7 24

.
24 7

A
− 

=  
 

 Then the characteristic polynomial of A is 2( 7 )(7 ) 576 625− − λ − λ − = λ − =  

( 25)( 25)λ − λ + , so the eigenvalues of A are 25 and –25. For λ = 25, one computes that a basis for the 

eigenspace is 
3

,
4
 
 
 

 which can be normalized to get 1
3/ 5

.
4 /5
 

=  
 

u  For λ = –25, one computes that a basis 

for the eigenspace is 
4

,
3

− 
 
 

 which can be normalized to get 2
4 /5

.
3/ 5

− 
=  
 

u  Let  

   [ ]1 2
3/ 5 4 / 5 25 0

and
4 /5 3/5 0 25

P D
−   

= = =   −   
u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 17. Let 
1 1 3
1 3 1 .
3 1 1

A
 
 =  
  

 The eigenvalues of A are 5, 2, and –2. For λ = 5, one computes that a basis for the 

eigenspace is 
1
1 ,
1

 
 
 
  

 which can be normalized to get 1

1/ 3

1/ 3 .

1/ 3

 
 

=  
 
  

u  For λ = 2, one computes that a basis for 
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the eigenspace is 
1
2 ,
1

 
 − 
  

 which can be normalized to get 2

1/ 6

2 / 6 .

1/ 6

 
 

= − 
 
  

u  For λ = –2, one computes that a 

basis for the eigenspace is 
1
0 ,
1

− 
 
 
  

 which can be normalized to get 3

1/ 2
0 .

1/ 2

 −
 

=  
 
 

u  Let  

   [ ]1 2 3

1/ 3 1/ 6 1/ 2 5 0 0
1/ 3 2 / 6 0 and 0 2 0

0 0 21/ 3 1/ 6 1 2

P D

 −     = = − =      −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 18. Let 
2 36 0

36 23 0 .
0 0 3

A
− − 

 = − − 
  

 The eigenvalues of A are 25, 3, and –50. For λ = 25, one computes that a basis 

for the eigenspace is 
4
3 ,
0

− 
 
 
  

 which can be normalized to get 1

4 /5
3/ 5 .

0

− 
 =  
  

u  For λ = 3, one computes that a 

basis for the eigenspace is 
0
0 ,
1

 
 
 
  

 which is of length 1, so 2

0
0 .
1

 
 =  
  

u  For λ = –50, one computes that a 

basis for the eigenspace is 
3
4 ,
0

 
 
 
  

 which can be normalized to get 3

3/ 5
4 / 5 .

0

 
 =  
  

u  Let  

   [ ]1 2 3

4 /5 0 3/ 5 25 0 0
3/ 5 0 4 / 5 and 0 3 0

0 1 0 0 0 50
P D

−   
   = = =   
   −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 19. Let 
3 2 4
2 6 2 .
4 2 3

A
− 

 = − 
  

 The eigenvalues of A are 7 and –2. For λ = 7, one computes that a basis for the 

eigenspace is 
1 1
2 , 0 .
0 1

 −   
    
    
        

 This basis may be converted via orthogonal projection to an orthogonal 
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basis for the eigenspace: 
1 4
2 , 2 .
0 5

 −   
    
    
        

 These vectors can be normalized to get 1

1/ 5

2 / 5 ,
0

 −
 

=  
 
  

u  

2

4 / 45

2 / 45 .

5/ 45

 
 

=  
 
  

u  For λ = –2, one computes that a basis for the eigenspace is 
2
1 ,
2

− 
 − 
  

 which can be 

normalized to get 3

2 /3
1/ 3 .
2 /3

− 
 = − 
  

u  Let  

   [ ]1 2 3

1/ 5 4 / 45 2 / 3 7 0 0
2 / 5 2 / 45 1/ 3 and 0 7 0

0 0 20 5/ 45 2 / 3

P D

 − −     = = − =      −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 20. Let 
7 4 4
4 5 0 .
4 0 9

A
− 

 = − 
  

 The eigenvalues of A are 13, 7, and 1. For λ = 13, one computes that a basis for 

the eigenspace is 
2
1 ,
2

 
 − 
  

 which can be normalized to get 1

2 /3
1/ 3 .
2 /3

 
 = − 
  

u  For λ = 7, one computes that a 

basis for the eigenspace is 
1
2 ,
2

− 
 
 
  

 which can be normalized to get 2

1/ 3
2 / 3 .
2 / 3

− 
 =  
  

u  For λ = 1, one computes 

that a basis for the eigenspace is 
2
2 ,
1

 
 
 
 − 

 which can be normalized to get 3

2 /3
2 /3 .
1/ 3

 
 =  
 − 

u  Let  

   [ ]1 2 3

2 /3 1/3 2 / 3 13 0 0
1/ 3 2 / 3 2 / 3 and 0 7 0
2 /3 2 /3 1/ 3 0 0 1

P D
−   

   = = − =   
   −   

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 
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 21. Let 

4 1 3 1
1 4 1 3

.
3 1 4 1
1 3 1 4

A

 
 
 =
 
 
  

 The eigenvalues of A are 9, 5, and 1. For λ = 9, one computes that a basis for 

the eigenspace is 

1
1

,
1
1

 
 
 
 
 
  

 which can be normalized to get 1

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 =
 
 
  

u  For λ = 5, one computes that a basis 

for the eigenspace is 

1
1

,
1
1

− 
 
 
 −
 
  

 which can be normalized to get 2

1/ 2
1/ 2

.
1/ 2
1/ 2

− 
 
 =
 −
 
  

u  For λ = 1, one computes that a 

basis for the eigenspace is 

1 0
0 1

, .
1 0
0 1

 −   
    −                    

 This basis is an orthogonal basis for the eigenspace, and these 

vectors can be normalized to get 3

1/ 2
0

,
1/ 2

0

 −
 
 =  
 
  

u  4

0

1/ 2
.

0

1/ 2

 
 
− =  
 
  

u  Let  

   [ ]1 2 3 4

1/ 2 1/ 2 1/ 2 0 9 0 0 0
1/ 2 1/ 2 0 1/ 2 0 5 0 0

and
0 0 1 01/ 2 1/ 2 1/ 2 0
0 0 0 11/ 2 1/ 2 0 1/ 2

P D

 − −     −   = = =   −        

u u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 22. Let 

2 0 0 0
0 1 0 1

.
0 0 2 0
0 1 0 1

A

 
 
 =
 
 
  

 The eigenvalues of A are 2 and 0. For λ = 2, one computes that a basis for the 

eigenspace is 

1 0 0
0 1 0

, , .
0 0 1
0 1 0

      
      
                              

 This basis is an orthogonal basis for the eigenspace, and these vectors 
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can be normalized to get 1

1
0

,
0
0

 
 
 =
 
 
  

u  2

0

1/ 2
,

0

1/ 2

 
 
 =  
 
  

u  and 3

0
0

.
1
0

 
 
 =
 
 
  

u  For λ = 0, one computes that a basis for 

the eigenspace is 

0
1

,
0
1

 
 − 
 
 
  

 which can be normalized to get 4

0

1/ 2
.

0

1/ 2

 
 
− =  
 
  

u  Let  

   [ ]1 2 3 4

1 0 0 0 2 0 0 0
0 1/ 2 0 1/ 2 0 2 0 0

and
0 0 1 0 0 0 2 0

0 0 0 00 1/ 2 0 1/ 2

P D

   
   −   = = =   
   

     

u u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 23. Let 
3 1 1
1 3 1
1 1 3

A
 
 =  
  

. Since each row of A sums to 5,  

   
1 3 1 1 1 5 1
1 1 3 1 1 5 5 1
1 1 1 3 1 5 1

A
         
         = = =         
                  

 

  and 5 is an eigenvalue of A. The eigenvector 
1
1
1

 
 
 
  

 may be normalized to get 1

1/ 3

1/ 3

1/ 3

 
 

=  
 
  

u . One may also 

compute that  

   
1 3 1 1 1 2 1
1 1 3 1 1 2 2 1
0 1 1 3 0 0 0

A
− − − −         
         = = =         
                  

 

  so 
1

1
0

− 
 
 
  

 is an eigenvector of A with associated eigenvalue λ = 2. For λ = 2, one computes that a basis for 

the eigenspace is 
1 1

1 , 1 .
0 2

 − −   
    −    
        

 This basis is an orthogonal basis for the eigenspace, and these vectors 

can be normalized to get 2

1/ 2

1/ 2
0

 −
 

=  
 
  

u  and 3

1/ 6

1/ 6 .

2 / 6

 −
 

= − 
 
  

u   
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  Let  

   [ ]1 2 3

1/ 3 1/ 2 1/ 6 5 0 0
1/ 3 1/ 2 1/ 6 and 0 2 0

0 0 21/ 3 0 2 / 6

P D

 − −     = = − =         

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 

 24. Let 
5 4 2
4 5 2 .
2 2 2

A
− − 

 = − 
 − 

 One may compute that  

   
2 20 2
2 20 10 2
1 10 1

A
− − −     
     = =     
          

 

  so 1

2
2
1

− 
 =  
  

v  is an eigenvector of A with associated eigenvalue 1 10λ = . Likewise one may compute that  

   
1 1 1
1 1 1 1
0 0 0

A
     
     = =     
          

 

  so 
1
1
0

 
 
 
  

 is an eigenvector of A with associated eigenvalue 2 1λ = . For 2 1λ = , one computes that a basis 

for the eigenspace is 
1 1
1 , 0 .
0 2

    
    
    
        

 This basis may be converted via orthogonal projection to an 

orthogonal basis for the eigenspace: { }2 3

1 1
, 1 , 1 .

0 4

    
    = −    
        

v v  The eigenvectors 1v , 2v , and 3v  may be 

normalized to get the vectors 1

2 /3
2 /3 ,
1/ 3

− 
 =  
  

u  2

1/ 2

1/ 2 ,
0

 
 

=  
 
  

u  and 3

1/ 18

1/ 18 .

4 / 18

 
 

=  
 
  

u  Let  

   [ ]1 2 3

2 /3 1/ 2 1/ 18 10 0 0
2 /3 1/ 2 1/ 18 and 0 1 0

0 0 11/ 3 0 4 / 18

P D

 −     = = − =         

u u u  

  Then P orthogonally diagonalizes A, and 1A PDP−= . 
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 25. a. True. See Theorem 2 and the paragraph preceding the theorem.  
 b. True. This is a particular case of the statement in Theorem 1, where u and v are nonzero.  
 c. False. There are n real eigenvalues (Theorem 3), but they need not be distinct (Example 3).  
 d. False. See the paragraph following formula (2), in which each u is a unit vector.  

 26. a. True. See Theorem 2.  
 b. True. See the displayed equation in the paragraph before Theorem 2.  
 c. False. An orthogonal matrix can be symmetric (and hence orthogonally diagonalizable), but not every 

orthogonal matrix is symmetric. See the matrix P in Example 2.  
 d. True. See Theorem 3(b).  

 27. Since A is symmetric, ( )T T T T TT TB AB B A B B AB= = , and TB AB  is symmetric. Applying this result with 
A = I gives TB B  is symmetric. Finally, ( )T T TT T TBB B B BB= = , so TBB  is symmetric. 

 28. Let A be an n × n symmetric matrix. Then  

   ( ) ( ) ( )T T T TA A A A A⋅ = = = = ⋅x y x y x y x y x y  

  since TA A= . 

 29. Since A is orthogonally diagonalizable, 1A PDP−= , where P is orthogonal and D is diagonal. Since A is 
invertible, 1 1 1 1 1( )A PDP PD P− − − − −= = . Notice that 1D−  is a diagonal matrix, so 1A−  is orthogonally 
diagonalizable.  

 30. If A and B are orthogonally diagonalizable, then A and B are symmetric by Theorem 2. If AB = BA,  
then ( ) ( )T T T TAB BA A B AB= = = . So AB is symmetric and hence is orthogonally diagonalizable by 
Theorem 2.  

 31. The Diagonalization Theorem of Section 5.3 says that the columns of P are linearly independent 
eigenvectors corresponding to the eigenvalues of A listed on the diagonal of D. So P has exactly k 
columns of eigenvectors corresponding to λ. These k columns form a basis for the eigenspace. 

 32. If 1,A PRP−=  then 1 .P AP R− =  Since P is orthogonal, TR P AP= . Hence ( )T T T T T TTR P AP P A P= = =  
,TP AP R=  which shows that R is symmetric. Since R is also upper triangular, its entries above the 

diagonal must be zeros to match the zeros below the diagonal. Thus R is a diagonal matrix. 

 33. It is previously been found that A is orthogonally diagonalized by P, where  

   [ ]1 2 3

1/ 2 1/ 6 1/ 3 8 0 0
1/ 2 1/ 6 1/ 3 and 0 6 0

0 0 30 2 / 6 1/ 3

P D

 − −     = = − =         

u u u  

  Thus the spectral decomposition of A is  

   1 1 1 2 2 2 3 3 3 1 1 2 2 3 3λ λ λ 8 6 3T T T T T TA = + + = + +u u u u u u u u u u u u  

   
1/ 2 1/ 2 0 1/ 6 1/ 6 2 / 6 1/ 3 1/ 3 1/ 3

8 1/ 2 1/ 2 0 6 1/ 6 1/ 6 2 / 6 3 1/ 3 1/ 3 1/ 3
0 0 0 2 / 6 2 / 6 4 / 6 1/ 3 1/ 3 1/ 3

− −     
     = − + − +     
     − −     
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 34. It is previously been found that A is orthogonally diagonalized by P, where  

   [ ]1 2 3

1/ 2 1/ 18 2 / 3 7 0 0
0 4 / 18 1/ 3 and 0 7 0

0 0 21/ 2 1/ 18 2 / 3

P D

 − −     = = − =      −   

u u u  

  Thus the spectral decomposition of A is  

  1 1 1 2 2 2 3 3 3 1 1 2 2 3 3λ λ λ 7 7 2T T T T T TA = + + = + −u u u u u u u u u u u u  

   
1/ 2 0 1/ 2 1/18 4 /18 1/18 4 / 9 2 / 9 4 / 9

7 0 0 0 7 4 /18 16 /18 4 /18 2 2 /9 1/ 9 2 /9
1/ 2 0 1/ 2 1/18 4 /18 1/18 4 / 9 2 / 9 4 / 9

− − −     
     = + − − −     
     − − −     

 

 35. a. Given x in n, ( ) ( ) ( ) ,T T Tb = = =x uu x u u x u x u  because Tu x  is a scalar. So Bx = (x ⋅ u)u. Since u is a 
unit vector, Bx is the orthogonal projection of x onto u.  

 b. Since ( ) ,T T T TT T TB B= = = =uu u u uu  B is a symmetric matrix. Also, 
2 ( )( ) ( )T T T T TB B= = = =uu uu u u u u uu  because 1.T =u u   

 c. Since 1T =u u , ( ) ( ) (1)T TB = = = =u uu u u u u u u , so u is an eigenvector of B with corresponding 
eigenvalue 1.  

 36. Given any y in n, let ŷ = By and z = y – ŷ . Suppose that TB B=  and 2B B= . Then .TB B BB B= =   

a. Since ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0T T T T TB B B B B B B B B⋅ = − ⋅ = ⋅ − ⋅ = − = − =z y y y y y y y y y y y y y y y y , z is 
orthogonal to ˆ.y  

b. Any vector in W = Col B has the form Bu for some u. Noting that B is symmetric, Exercise 28 gives  
   ( y – ŷ ) ⋅ (Bu) = [B(y – ŷ )] ⋅ u = [By – BBy] ⋅ u = 0 

  since 2 .B B=  So y – ŷ  is in ,W ⊥  and the decomposition y = ŷ + (y – ŷ ) expresses y as the sum of a 
vector in W and a vector in .W ⊥  By the Orthogonal Decomposition Theorem in Section 6.3, this 
decomposition is unique, and so ŷ  must be proj .W y  

 37. [M] Let 

5 2 9 6
2 5 6 9

.
9 6 5 2
6 9 2 5

A

− 
 − =
 −
 −  

 The eigenvalues of A are 18, 10, 4, and –12. For λ = 18, one 

computes that a basis for the eigenspace is 

1
1

,
1
1

− 
 
 
 −
 
  

 which can be normalized to get 1

1/ 2
1/ 2

.
1/ 2
1/ 2

− 
 
 =
 −
 
  

u  For  

λ = 10, one computes that a basis for the eigenspace is 

1
1
1
1

 
 
 
 
 
  

, which can be normalized to get 2

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 =
 
 
  

u  
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For λ = 4, one computes that a basis for the eigenspace is 

1
1
1
1

 
 
 
 −
 −  

, which can be normalized to get 

3

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 =
 −
 −  

u  For λ = –12, one computes that a basis for the eigenspace is 

1
1

,
1
1

 
 − 
 −
 
  

 which can be 

normalized to get 4

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 − =
 −
 
  

u  Let [ ]1 2 3 4

1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2

P

− 
 − = =
 − − −
 −  

u u u u  and 

18 0 0 0
0 10 0 0

.
0 0 4 0
0 0 0 12

D

 
 
 =
 
 −  

 Then P orthogonally diagonalizes A, and 1A PDP−= . 

 38. [M] Let 

.38 .18 .06 .04

.18 .59 .04 .12
.

.06 .04 .47 .12

.04 .12 .12 .41

A

− − − 
 − − =
 − − −
 − −  

 The eigenvalues of A are .25, .30, .55, and .75. For λ = .25, 

one computes that a basis for the eigenspace is 

4
2

,
2
1

 
 
 
 
 
  

 which can be normalized to get 1

.8

.4
.

.4

.2

 
 
 =
 
 
  

u  For  

λ = .30, one computes that a basis for the eigenspace is 

1
2

,
2
4

− 
 − 
 
 
  

 which can be normalized to get 

2

.2

.4
.

.4

.8

− 
 − =
 
 
  

u  For λ = .55, one computes that a basis for the eigenspace is 

2
1

,
4
2

 
 − 
 −
 
  

 which can be normalized 

to get 3

.4

.2
.

.8

.4

 
 − =
 −
 
  

u  For λ = .75, one computes that a basis for the eigenspace is 

2
4

,
1
2

− 
 
 
 −
 
  

 which can be 
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normalized to get 4

.4

.8
.

.2

.4

− 
 
 =
 −
 
  

u  Let [ ]1 2 3 4

.8 .2 .4 .4

.4 .4 .2 .8

.4 .4 .8 .2

.2 .8 .4 .4

P

− − 
 − − = =
 − −
 
  

u u u u  and 

.25 0 0 0
0 .30 0 0

.
0 0 .55 0
0 0 0 .75

D

 
 
 =
 
 
  

 Then P orthogonally diagonalizes A, and 1A PDP−= . 

 39. [M] Let 

.31 .58 .08 .44
.58 .56 .44 .58

.
.08 .44 .19 .08
.44 .58 .08 .31

A

 
 − − =
 −
 − −  

 The eigenvalues of A are .75, 0, and –1.25. For λ = .75, one 

computes that a basis for the eigenspace is 

1 3
0 2

, .
0 2
1 0

    
    
                    

 This basis may be converted via orthogonal 

projection to the orthogonal basis 

1 3
0 4

, .
0 4
1 3

    
    
             −       

 These vectors can be normalized to get 1

1/ 2
0

,
0

1/ 2

 
 
 =  
 
  

u  

2

3/ 50

4 / 50
.

4 / 50

3/ 50

 
 
 

=  
 
 − 

u  For λ = 0, one computes that a basis for the eigenspace is 

2
1

,
4
2

− 
 − 
 
 
  

 which can be 

normalized to get 3

.4

.2
.

.8

.4

− 
 − =
 
 
  

u  For λ = –1.25, one computes that a basis for the eigenspace is 

2
4

,
1
2

− 
 
 
 −
 
  

 

which can be normalized to get 4

.4

.8
.

.2

.4

− 
 
 =
 −
 
  

u  

  Let [ ]1 2 3 4

1/ 2 3/ 50 .4 .4

0 4 / 50 .2 .8

0 4 / 50 .8 .2

1/ 2 3/ 50 .4 .4

P

 − −
 

− 
= =  

− 
 − 

u u u u  and 

.75 0 0 0
0 .75 0 0
0 0 0 0
0 0 0 1.25

D

 
 
 =
 
 −  

. Then P 

orthogonally diagonalizes A, and 1A PDP−= . 
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 40. [M] Let 

10 2 2 6 9
2 10 2 6 9

.2 2 10 6 9
6 6 6 26 9
9 9 9 9 19

A

− 
 − 
 = −
 − − − 
 − 

 The eigenvalues of A are 8, 32, –28, and 17. For λ = 8, one 

computes that a basis for the eigenspace is 

1 1
1 0

, .0 1
0 0
0 0

 −   
    −         
    
    
        

 This basis may be converted via orthogonal 

projection to the orthogonal basis 

1 1
1 1

, .0 2
0 0
0 0

    
    −        − 
    
    
        

 These vectors can be normalized to get 

1

1/ 2

1/ 2
,0

0
0

 
 
− 
 =
 
 
 
  

u  2

1/ 6

1/ 6
.2 / 6

0
0

 
 
 
 = − 
 
 
  

u  For λ = 32, one computes that a basis for the eigenspace is 

1
1

,1
3
0

 
 
 
 
 − 
  

 which 

can be normalized to get 3

1/ 12

1/ 12
.1/ 12

3/ 12
0

 
 
 
 =  
 − 
  

u  For λ = –28, one computes that a basis for the eigenspace is 

1
1

,1
1
4

 
 
 
 
 
 
 − 

 which can be normalized to get 4

1/ 20

1/ 20
.1/ 20

1/ 20

4 / 20

 
 
 
 =  
 
 
 − 

u  For λ = 17, one computes that a basis for the 

eigenspace is 

1
1

,1
1
1

 
 
 
 
 
 
  

 which can be normalized to get 5

1/ 5

1/ 5
.1/ 5

1/ 5

1/ 5

 
 
 
 =  
 
 
  

u  
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  Let [ ]1 2 3 4 5

1/ 2 1/ 6 1/ 12 1/ 20 1/ 5

1/ 2 1/ 6 1/ 12 1/ 20 1/ 5

0 2 / 6 1/ 12 1/ 20 1/ 5

0 0 3/ 12 1/ 20 1/ 5

0 0 0 4 / 20 1/ 5

P

 
 
− 
 = = − 
 − 
 − 

u u u u u  and 

8 0 0 0 0
0 8 0 0 0

.0 0 32 0 0
0 0 0 28 0
0 0 0 0 17

D

 
 
 
 =
 − 
  

 Then P orthogonally diagonalizes A, and 1A PDP−= . 

7.2 SOLUTIONS 

Notes: This section can provide a good conclusion to the course, because the mathematics here is widely 
used in applications. For instance, Exercises 23 and 24 can be used to develop the second derivative test for 
functions of two variables. However, if time permits, some interesting applications still lie ahead. Theorem 4 
is used to prove Theorem 6 in Section 7.3, which in turn is used to develop the singular value decomposition. 

 1. a. [ ] 21 2
1 2 1 1 2 2

2

5 1/ 3
5 (2 / 3)

1/ 3 1
T x

A x x x x x x
x
  

= = + +  
   

x x   

 b. When 
6

,
1
 

=  
 

x  2 25(6) (2 / 3)(6)(1) (1) 185.T A = + + =x x  

 c. When 
1

,
3
 

=  
 

x  2 25(1) (2 / 3)(1)(3) (3) 16.T A = + + =x x  

 2. a. [ ]
1

2 2 2
1 2 3 2 1 2 3 1 2 2 3

3

4 3 0
3 2 1 4 2 6 2
0 1 1

T
x

A x x x x x x x x x x x
x

   
   = = + + + +   
      

x x   

 b. When 
2
1 ,
5

 
 = − 
  

x  2 2 24(2) 2( 1) (5) 6(2)( 1) 2( 1)(5) 21.T A = + − + + − + − =x x  

 c. When 

1/ 3

1/ 3 ,

1/ 3

 
 

=  
 
  

x  2 2 24(1/ 3) 2(1/ 3) (1/ 3) 6(1/ 3)(1/ 3) 2(1/ 3)(1/ 3) 5.T A = + + + + =x x  

 3. a. The matrix of the quadratic form is 
10 3

.
3 3

− 
 − − 

 

 b. The matrix of the quadratic form is 
5 3/ 2

.
3/ 2 0
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 4. a. The matrix of the quadratic form is 
20 15/ 2

.
15 / 2 10
 
 − 

 

 b. The matrix of the quadratic form is 
0 1/ 2

.
1/ 2 0
 
 
 

 

 5. a. The matrix of the quadratic form is 
8 3 2
3 7 1 .
2 1 3

− 
 − − 
 − − 

 

 b. The matrix of the quadratic form is 
0 2 3
2 0 4 .
3 4 0

 
 − 
 − 

 

 6. a. The matrix of the quadratic form is 
5 5/ 2 3/ 2

5/ 2 1 0 .
3/ 2 0 7

− 
 − 
 − 

 

 b. The matrix of the quadratic form is 
0 2 0
2 0 2 .
0 2 1

− 
 − 
  

 

 7. The matrix of the quadratic form is 
1 5

.
5 1

A
 

=  
 

 The eigenvalues of A are 6 and –4. An eigenvector for 

λ = 6 is 
1

,
1
 
 
 

 which may be normalized to 1
1/ 2

.
1/ 2

 
=  
  

u  An eigenvector for λ = –4 is 
1

,
1

− 
 
 

 which may 

be normalized to 2
1/ 2

.
1/ 2

 −
=  
  

u  Then 1A PDP−= , where [ ]1 2
1/ 2 1/ 2

1/ 2 1/ 2
P

 −
= =  

  
u u  and 

6 0
.

0 4
D

 
=  − 

 The desired change of variable is x = Py, and the new quadratic form is  

   2 2
1 2( ) ( ) 6 4T T T T TA P A P P AP D y y= = = = −x x y y y y y y  

 8. The matrix of the quadratic form is 
9 4 4
4 7 0 .
4 0 11

A
− 

 = − 
  

 The eigenvalues of A are 3, 9, and 15. An 

eigenvector for λ = 3 is 
2
2 ,
1

− 
 − 
  

 which may be normalized to 1

2 /3
2 /3 .
1/ 3

− 
 = − 
  

u  An eigenvector for λ = 9 is 

1
2 ,
2

− 
 
 
  

 which may be normalized to 2

1/ 3
2 / 3 .
2 / 3

− 
 =  
  

u  An eigenvector for λ = 15 is 
2
1 ,
2

 
 − 
  

 which may be 
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normalized to 3

2 /3
1/ 3 .
2 /3

 
 = − 
  

u  Then 1A PDP−= , where [ ]1 2 3

2 /3 1/ 3 2 / 3
2 /3 2 / 3 1/ 3
1/ 3 2 / 3 2 / 3

P
− − 
 = = − − 
  

u u u  and 

3 0 0
0 9 0 .
0 0 15

D
 
 =  
  

 The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2
1 2 3( ) ( ) 3 9 15T T T T TA P A P P AP D y y y= = = = + +x x y y y y y y  

 9. The matrix of the quadratic form is 
3 2

.
2 6

A
− 

=  − 
 The eigenvalues of A are 7 and 2, so the quadratic 

form is positive definite. An eigenvector for λ = 7 is 
1

,
2

− 
 
 

 which may be normalized to 1
1/ 5

.
2 / 5

 −
=  
  

u  

An eigenvector for λ = 2 is 
2

,
1
 
 
 

 which may be normalized to 2
2 / 5

.
1/ 5

 
=  
  

u  Then 1A PDP−= , where 

[ ]1 2
1/ 5 2 / 5

2 / 5 1/ 5
P

 −
= =  

  
u u  and 

7 0
.

0 2
D

 
=  
 

 The desired change of variable is x = Py, and the 

new quadratic form is  

   2 2
1 2( ) ( ) 7 2T T T T TA P A P P AP D y y= = = = +x x y y y y y y  

 10. The matrix of the quadratic form is 
9 4

.
4 3

A
− 

=  − 
 The eigenvalues of A are 11 and 1, so the quadratic 

form is positive definite. An eigenvector for λ = 11 is 
2

,
1

 
 − 

 which may be normalized to 1
2 / 5

.
1/ 5

 
=  

−  
u  

An eigenvector for λ = 1 is 
1
2
 
 
 

, which may be normalized to 2
1/ 5

.
2 / 5

 
=  
  

u  Then 1A PDP−= , where 

[ ]1 2
2 / 5 1/ 5

1/ 5 2 / 5
P

 
= =  

−  
u u  and 

11 0
.

0 1
D

 
=  
 

 The desired change of variable is x = Py, and the 

new quadratic form is  

   2 2
1 2( ) ( ) 11T T T T TA P A P P AP D y y= = = = +x x y y y y y y  

 11. The matrix of the quadratic form is 
2 5

.
5 2

A
 

=  
 

 The eigenvalues of A are 7 and –3, so the quadratic 

form is indefinite. An eigenvector for λ = 7 is 
1

,
1
 
 
 

 which may be normalized to 1
1/ 2

.
1/ 2

 
=  
  

u  An 

eigenvector for λ = –3 is 
1

,
1

− 
 
 

 which may be normalized to 2
1/ 2

.
1/ 2

 −
=  
  

u  Then 1A PDP−= ,  
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  where [ ]1 2
1/ 2 1/ 2

1/ 2 1/ 2
P

 −
= =  

  
u u  and 

7 0
.

0 3
D

 
=  − 

 The desired change of variable is x = Py, 

and the new quadratic form is  

   2 2
1 2( ) ( ) 7 3T T T T TA P A P P AP D y y= = = = −x x y y y y y y  

 12. The matrix of the quadratic form is 
5 2

.
2 2

A
− 

=  − 
 The eigenvalues of A are –1 and –6, so the quadratic 

form is negative definite. An eigenvector for λ = –1 is 
1

,
2
 
 
 

 which may be normalized to 1
1/ 5

.
2 / 5

 
=  
  

u  

An eigenvector for λ = –6 is 
2

,
1

− 
 
 

 which may be normalized to 2
2 / 5

.
1/ 5

 −
=  
  

u  Then 1A PDP−= , 

where [ ]1 2
1/ 5 2 / 5

2 / 5 1/ 5
P

 −
= =  

  
u u  and 

1 0
0 6

D
− 

=  − 
. The desired change of variable is x = Py, 

and the new quadratic form is  

   2 2
1 2( ) ( ) 6T T T T TA P A P P AP D y y= = = = − −x x y y y y y y  

 13. The matrix of the quadratic form is 
1 3

.
3 9

A
− 

=  − 
 The eigenvalues of A are 10 and 0, so the quadratic 

form is positive semidefinite. An eigenvector for λ = 10 is 
1

,
3

 
 − 

 which may be normalized to 

1
1/ 10

.
3/ 10

 
=  

−  
u  An eigenvector for λ = 0 is 

3
,

1
 
 
 

 which may be normalized to 2
3/ 10

.
1/ 10

 
=  
  

u  Then 

1A PDP−= , where [ ]1 2
1/ 10 3/ 10

3/ 10 1/ 10
P

 
= =  

−  
u u  and 

10 0
.

0 0
D

 
=  
 

 The desired change of 

variable is x = Py, and the new quadratic form is  

   2
1( ) ( ) 10T T T T TA P A P P AP D y= = = =x x y y y y y y  

 14. The matrix of the quadratic form is 
8 3

.
3 0

A
 

=  
 

 The eigenvalues of A are 9 and –1, so the quadratic 

form is indefinite. An eigenvector for λ = 9 is 
3

,
1
 
 
 

 which may be normalized to 1
3/ 10

.
1/ 10

 
=  
  

u  An 

eigenvector for λ = –1 is 
1

,
3

− 
 
 

 which may be normalized to 2
1/ 10

.
3/ 10

 −
=  
  

u  Then 1A PDP−= , where 

[ ]1 2
3/ 10 1/ 10

1/ 10 3/ 10
P

 −
= =  

  
u u  and 

9 0
.

0 1
D

 
=  − 

 The desired change of variable is x = Py, and the 

new quadratic form is  

   2 2
1 2( ) ( ) 9T T T T TA P A P P AP D y y= = = = −x x y y y y y y  
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 15. [M] The matrix of the quadratic form is 

2 2 2 2
2 6 0 0

.
2 0 9 3
2 0 3 9

A

− 
 − =
 −
 −  

 The eigenvalues of A are 0, –6, –8, 

and –12, so the quadratic form is negative semidefinite. The corresponding eigenvectors may be 
computed:  

   

3 0 1 0
1 2 1 0

λ 0 : , λ 6 : , λ 8: , λ 12 :
1 1 1 1
1 1 1 1

−       
       −       = = − = − = −
       −
       
              

 

  These eigenvectors may be normalized to form the columns of P, and 1A PDP−= , where  

   

3/ 12 0 1/ 2 0 0 0 0 0
1/ 12 2 / 6 1/ 2 0 0 6 0 0

and
0 0 8 01/ 12 1/ 6 1/ 2 1/ 2
0 0 0 121/ 12 1/ 6 1/ 2 1/ 2

P D

 −     − −   = =   −−     −   

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2
2 3 4( ) ( ) 6 8 12T T T T TA P A P P AP D y y y= = = = − − −x x y y y y y y  

 16. [M] The matrix of the quadratic form is 

4 3/ 2 0 2
3/ 2 4 2 0

.
0 2 4 3/ 2
2 0 3/ 2 4

A

− 
 
 =
 
 −  

 The eigenvalues of A are 13/2 

and 3/2, so the quadratic form is positive definite. The corresponding eigenvectors may be computed:  

   

4 3 4 3
0 5 0 5

λ 13/ 2 : , , λ 3/ 2 : ,
3 4 3 4
5 0 5 0

   −       
          −          = =          −                              

 

  Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the 
columns of P, and 1A PDP−= , where  

   

3/ 50 4 / 50 3/ 50 4 / 50 13/ 2 0 0 0
5/ 50 0 5/ 50 0 0 13/ 2 0 0

and
0 0 3/ 2 04 / 50 3/ 50 4 / 50 3/ 50
0 0 0 3/ 20 5/ 50 0 5/ 50

P D

 −     −   = =   −        

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2 2
1 2 3 4

13 13 3 3( ) ( )
2 2 2 2

T T T T TA P A P P AP D y y y y= = = = + + +x x y y y y y y  
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 17. [M] The matrix of the quadratic form is 

1 9 / 2 0 6
9 / 2 1 6 0

.
0 6 1 9 / 2
6 0 9 / 2 1

A

− 
 
 =
 
 −  

 The eigenvalues of A are 17/2 

and –13/2, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:  

   

4 3 4 3
0 5 0 5

λ 17 / 2 : , , λ 13/ 2 : ,
3 4 3 4
5 0 5 0

   −       
          −          = = −          −                              

 

  Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the 
columns of P, and 1A PDP−= , where  

   

3/ 50 4 / 50 3/ 50 4 / 50 17 / 2 0 0 0
5/ 50 0 5/ 50 0 0 17 / 2 0 0

and
0 0 13/ 2 04 / 50 3/ 50 4 / 50 3/ 50
0 0 0 13/ 20 5/ 50 0 5/ 50

P D

 −     −   = =   −−     −   

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2 2
1 2 3 4

17 17 13 13( ) ( )
2 2 2 2

T T T T TA P A P P AP D y y y y= = = = + − −x x y y y y y y  

 18. [M] The matrix of the quadratic form is 

11 6 6 6
6 1 0 0

.
6 0 0 1
6 0 1 0

A

− − − 
 − − =
 − −
 − −  

 The eigenvalues of A are 17, 1, –1, 

and –7, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:  

   

3 0 0 1
1 0 2 1

λ 17 : , λ 1: , λ 1: , λ 7 :
1 1 1 1
1 1 1 1

−       
       −       = = = − = −
       −
       
              

 

  These eigenvectors may be normalized to form the columns of P, and 1A PDP−= , where  

   

3/ 12 0 0 1/ 2 17 0 0 0
1/ 12 0 2 / 6 1/ 2 0 1 0 0

and
0 0 1 01/ 12 1/ 2 1/ 6 1/ 2
0 0 0 71/ 12 1/ 2 1/ 6 1/ 2

P D

 −        = =   −−     −   

 

  The desired change of variable is x = Py, and the new quadratic form is  

   2 2 2 2
1 2 3 4( ) ( ) 17 7T T T T TA P A P P AP D y y y y= = = = + − −x x y y y y y y  

 19. Since 8 is larger than 5, the 2
2x  term should be as large as possible. Since 2 2

1 2 1x x+ = , the largest value 
that 2x  can take is 1, and 1 0x =  when 2 1x = . Thus the largest value the quadratic form can take when 

1T =x x  is 5(0) + 8(1) = 8. 
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 20. Since 5 is larger in absolute value than –3, the 2
1x  term should be as large as possible. Since 2 2

1 2 1x x+ = , 
the largest value that 1x  can take is 1, and 2 0x =  when 1 1x = . Thus the largest value the quadratic form 
can take when 1T =x x  is 5(1) – 3(0) = 5. 

 21. a. True. See the definition before Example 1, even though a nonsymmetric matrix could be used to 
compute values of a quadratic form.  

 b. True. See the paragraph following Example 3.  
 c. True. The columns of P in Theorem 4 are eigenvectors of A. See the Diagonalization Theorem in 

Section 5.3.  
 d. False. Q(x) = 0 when x = 0.  
 e. True. See Theorem 5(a).  
 f. True. See the Numerical Note after Example 6.  

 22. a. True. See the paragraph before Example 1.  
 b. False. The matrix P must be orthogonal and make TP AP  diagonal. See the paragraph before 

Example 4.  
 c. False. There are also “degenerate” cases: a single point, two intersecting lines, or no points at all. See 

the subsection “A Geometric View of Principal Axes.”  
 d. False. See the definition before Theorem 5.  
 e. True. See Theorem 5(b). If T Ax x  has only negative values for x ≠ 0, then T Ax x  is negative definite.  

 23. The characteristic polynomial of A may be written in two ways:  

   2 2λ
det( λ ) det λ ( )λ

λ
a b

A I a d ad b
b d
− 

− = = − + + − − 
 

  and  

   2
1 2 1 2 1 2(λ λ )(λ λ ) λ (λ λ )λ λ λ− − = − + +  

  The coefficients in these polynomials may be equated to obtain 1 2λ λ a d+ = +  and 1 2λ λ =  
2 detad b A− = . 

 24. If det A > 0, then by Exercise 23, 1 2λ λ 0> , so that 1λ  and 2λ  have the same sign; also, 
2det 0ad A b= + > .  

 a. If det A > 0 and a > 0, then d > 0 also, since ad > 0. By Exercise 23, 1 2λ λ 0a d+ = + > . Since 1λ  and 

2λ  have the same sign, they are both positive. So Q is positive definite by Theorem 5.  
 b. If det A > 0 and a < 0, then d < 0 also, since ad > 0. By Exercise 23, 1 2λ λ 0a d+ = + < . Since 1λ  and 

2λ  have the same sign, they are both negative. So Q is negative definite by Theorem 5.  
 c. If det A < 0, then by Exercise 23, 1 2λ λ 0< . Thus 1λ  and 2λ  have opposite signs. So Q is indefinite by 

Theorem 5.  

 25. Exercise 27 in Section 7.1 showed that TB B  is symmetric. Also ( ) || || 0T T TB B B B B= = ≥x x x x x , so the 
quadratic form is positive semidefinite, and the matrix TB B  is positive semidefinite. Suppose that B is 
square and invertible. Then if 0,T TB B =x x  || Bx || = 0 and Bx = 0. Since B is invertible, x = 0. Thus if 
x ≠ 0, 0T TB B >x x  and TB B  is positive definite. 
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 26. Let ,TA PDP=  where 1.TP P−=  The eigenvalues of A are all positive: denote them 1λ , ,λ .n…  Let C be 
the diagonal matrix with 1λ , , λn…  on its diagonal. Then 2 TD C C C= = . If TB PCP= , then B is 
positive definite because its eigenvalues are the positive numbers on the diagonal of C. Also  

   ( ) ( ) ( )( )T T T T TT T T T T T TB B PCP PCP P C P PCP PC CP PDP A= = = = =  

  since .TP P I=  

 27. Since the eigenvalues of A and B are all positive, the quadratic forms T Ax x  and T Bx x  are positive 
definite by Theorem 5. Let x ≠ 0. Then 0T A >x x  and 0T B >x x , so ( ) 0T T TA B A B+ = + >x x x x x x , and 
the quadratic form ( )T A B+x x  is positive definite. Note that A + B is also a symmetric matrix. Thus by 
Theorem 5 all the eigenvalues of A + B must be positive. 

 28. The eigenvalues of A are all positive by Theorem 5. Since the eigenvalues of 1A−  are the reciprocals of 
the eigenvalues of A (see Exercise 25 in Section 5.1), the eigenvalues of 1A−  are all positive. Note that 

1A−  is also a symmetric matrix. By Theorem 5, the quadratic form 1T A−x x  is positive definite. 

7.3 SOLUTIONS 

Notes: Theorem 6 is the main result needed in the next two sections. Theorem 7 is mentioned in Example 2 
of Section 7.4. Theorem 8 is needed at the very end of Section 7.5. The economic principles in Example 6 
may be familiar to students who have had a course in macroeconomics. 

 1. The matrix of the quadratic form on the left is 
5 2 0
2 6 2 .
0 2 7

A
 
 = − 
 − 

 The equality of the quadratic forms 

implies that the eigenvalues of A are 9, 6, and 3. An eigenvector may be calculated for each eigenvalue 
and normalized:  

   
1/ 3 2 / 3 2 / 3

λ 9 : 2 / 3 ,λ 6 : 1/ 3 ,λ 3: 2 / 3
2 / 3 1/ 3 1/ 3

−     
     = = =     
     −     

 

  The desired change of variable is x = Py, where 
1/ 3 2 / 3 2 / 3
2 / 3 1/ 3 2 / 3 .
2 / 3 2 / 3 1/ 3

P
− 

 =  
 − 

 

 2. The matrix of the quadratic form on the left is 
3 1 1
1 2 2 .
1 2 2

A
 
 =  
  

 The equality of the quadratic forms 

implies that the eigenvalues of A are 5, 2, and 0. An eigenvector may be calculated for each eigenvalue 
and normalized:  

   

1/ 3 2 / 6 0

λ 5: 1/ 3 , λ 2 : 1/ 6 , λ 0 : 1/ 2

1/ 3 1/ 6 1/ 2

   −  
     

= = = −     
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  The desired change of variable is x = Py, where 

1/ 3 2 / 6 0

1/ 3 1/ 6 1/ 2 .

1/ 3 1/ 6 1/ 2

P

 −
 

= − 
 
  

 

 3. (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A. By Exercise 1, 1λ 9.=  

(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. By Exercise 1, 
1/ 3
2 /3 .
2 /3

 
 = ±  
 − 

u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A. By Exercise 1, 2λ 6.=  

 4. (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A. By Exercise 2, 1λ 5.=  

(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. By Exercise 2, 

1/ 3

1/ 3 .

1/ 3

 
 

= ±  
 
  

u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A. By Exercise 2, 2λ 2.=  

 5. The matrix of the quadratic form is 
5 2

.
2 5

A
− 

=  − 
 The eigenvalues of A are 1λ 7=  and 2λ 3.=  

(a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 7.  

(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 
1
1

− 
 
 

 is an 

eigenvector corresponding to 1λ 7,=  so 
1/ 2

.
1/ 2

 −
= ±  

  
u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 3.  

 6. The matrix of the quadratic form is 
7 3/ 2

.
3/ 2 3

A
 

=  
 

 The eigenvalues of A are 1λ 15/ 2=  and 2λ 5/ 2.=  

(a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 15/2.  
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(b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 
3
1
 
 
 

 is an 

eigenvector corresponding to 1λ 7,=  so 
3/ 10

.
1/ 10

 
= ±  

  
u  

(c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 5/2.  

 7. The eigenvalues of the matrix of the quadratic form are 1λ 2,=  2λ 1,= −  and 3λ 4.= −  By Theorem 6, 
the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit eigenvector u 

corresponding to the greatest eigenvalue 1λ  of A. One may compute that 
1/ 2

1
1

 
 
 
  

 is an eigenvector 

corresponding to 1λ 2,=  so 
1/ 3
2 /3 .
2 /3

 
 = ±  
  

u  

 8. The eigenvalues of the matrix of the quadratic form are 1λ 9,=  and 2λ 3.= −  By Theorem 6, the 
maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit eigenvector u corresponding 

to the greatest eigenvalue 1λ  of A. One may compute that 
1
0
1

− 
 
 
  

 and 
2
1
0

− 
 
 
  

 are linearly independent 

eigenvectors corresponding to 1λ 2,=  so u can be any unit vector which is a linear combination of 
1
0
1

− 
 
 
  

 

and 
2
1 .
0

− 
 
 
  

 Alternatively, u can be any unit vector which is orthogonal to the eigenspace corresponding to 

the eigenvalue 2λ 3.= −  Since multiples of 
1
2
1

 
 
 
  

 are eigenvectors corresponding to 2λ 3,= −  u can be any 

unit vector orthogonal to 
1
2 .
1

 
 
 
  

 

 9. This is equivalent to finding the maximum value of T Ax x  subject to the constraint 1.T =x x  By Theorem 
6, this value is the greatest eigenvalue 1λ  of the matrix of the quadratic form. The matrix of the quadratic 

form is 
7 1

,
1 3

A
− 

=  − 
 and the eigenvalues of A are 1λ 5 5,= +  2λ 5 5.= −  Thus the desired 

constrained maximum value is 1λ 5 5.= +  
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 10. This is equivalent to finding the maximum value of T Ax x  subject to the constraint 1T =x x . By Theorem 
6, this value is the greatest eigenvalue 1λ  of the matrix of the quadratic form. The matrix of the quadratic 

form is 
3 1

,
1 5

A
− − 

=  − 
 and the eigenvalues of A are 1λ 1 17,= +  2λ 1 17.= −  Thus the desired 

constrained maximum value is 1λ 1 17.= +  

 11. Since x is an eigenvector of A corresponding to the eigenvalue 3, Ax = 3x, and (3 )T TA = =x x x x  
23( ) 3 || || 3T = =x x x  since x is a unit vector. 

 12. Let x be a unit eigenvector for the eigenvalue λ. Then (λ ) λ( ) λT T TA = = =x x x x x x  since 1T =x x . So λ 
must satisfy m ≤ λ ≤ M. 

 13. If m = M, then let t = (1 – 0)m + 0M = m and .n=x u  Theorem 6 shows that .T
n nA m=u u  Now suppose 

that m < M, and let t be between m and M. Then 0 ≤ t – m ≤ M – m and 0 ≤ (t – m)/(M – m) ≤ 1. Let  
α = (t – m)/(M – m), and let 11 .nα α= − +x u u  The vectors 1 nα− u  and 1α u  are orthogonal 
because they are eigenvectors for different eigenvectors (or one of them is 0). By the Pythagorean 
Theorem  

  2 2 2 2 2
1 1|| || || 1 || || || |1 ||| || | ||| || (1 ) 1T

n nα α α α α α= = − + = − + = − + =x x x u u u u  

  since nu  and 1u  are unit vectors and 0 ≤ α ≤ 1. Also, since nu  and 1u  are orthogonal,  

   1 1( 1 ) ( 1 )T T
n nA Aα α α α= − + − +x x u u u u  

   1 1( 1 ) ( 1 )T
n nm Mα α α α= − + − +u u u u  

   1 1|1 | | | (1 )T T
n nm M m M tα α α α= − + = − + =u u u u  

  Thus the quadratic form T Ax x  assumes every value between m and M for a suitable unit vector x. 

 14. [M] The matrix of the quadratic form is 

0 1/ 2 3/ 2 15
1/ 2 0 15 3/ 2

.
3/ 2 15 0 1/ 2

15 3/ 2 1/ 2 0

A

 
 
 =
 
 
  

 The eigenvalues of A are 

1λ 17,=  2λ 13,=  3λ 14,= −  and 4λ 16.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 17.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

1
1
1
1

 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 17,=  so 

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 = ±
 
 
  

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 13.  
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 15. [M] The matrix of the quadratic form is 

0 3/ 2 5/ 2 7 / 2
3/ 2 0 7 / 2 5/ 2

.
5 / 2 7 / 2 0 3/ 2
7 / 2 5/ 2 3/ 2 0

A

 
 
 =
 
 
  

 The eigenvalues of A are 

1λ 15/ 2,=  2λ 1/ 2,= −  3λ 5/ 2,= −  and 4λ 9 / 2.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 15/2.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

1
1
1
1

 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 15/ 2,=  so 

1/ 2
1/ 2

.
1/ 2
1/ 2

 
 
 = ±
 
 
  

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is –1/2.  

 16. [M] The matrix of the quadratic form is 

4 3 5 5
3 0 3 3

.
5 3 0 1
5 3 1 0

A

− − − 
 − − − =
 − − −
 − − −  

 The eigenvalues of A are 1λ 9,=  

2λ 3,=  3λ 1,=  and 4λ 9.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is 9.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

2
0
1
1

− 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 9,=  so 

2 / 6
0

.
1/ 6

1/ 6

 −
 
 = ±  
 
  

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is 3.  
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 17. [M] The matrix of the quadratic form is 

6 2 2 2
2 10 0 0

.
2 0 13 3
2 0 3 13

A

− − − − 
 − − =
 − −
 − −  

 The eigenvalues of A are 1λ 4,= −  

2λ 10,= −  3λ 12,= −  and 4λ 16.= −  

 (a) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  is the greatest 
eigenvalue 1λ  of A, which is –4.  

 (b) By Theorem 6, the maximum value of T Ax x  subject to the constraint 1T =x x  occurs at a unit 

eigenvector u corresponding to the greatest eigenvalue 1λ  of A. One may compute that 

3
1
1
1

− 
 
 
 
 
  

 is an 

eigenvector corresponding to 1λ 4,= −  so 

3/ 12

1/ 12
.

1/ 12

1/ 12

 −
 
 

= ±  
 
 
 

u  

 (c) By Theorem 7, the maximum value of T Ax x  subject to the constraints 1T =x x  and 0T =x u  is the 
second greatest eigenvalue 2λ  of A, which is –10. 

7.4 SOLUTIONS 

Notes: The section presents a modern topic of great importance in applications, particularly in computer 
calculations. An understanding of the singular value decomposition is essential for advanced work in science 
and engineering that requires matrix computations. Moreover, the singular value decomposition explains 
much about the structure of matrix transformations. The SVD does for an arbitrary matrix almost what an 
orthogonal decomposition does for a symmetric matrix. 

 1. Let 
1 0

.
0 3

A
 

=  − 
 Then 

1 0
,

0 9
TA A

 
=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 9=  and 2λ 1.=  Thus the singular values of A are 1 9 3σ = =  and 2 1 1.σ = =  

 2. Let 
5 0

.
0 0

A
− 

=  
 

 Then 
25 0

,
0 0

TA A
 

=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 25=  and 2λ 0.=  Thus the singular values of A are 1 25 5σ = =  and 2 0 0.σ = =  

 3. Let 
6 1

.
0 6

A
 

=  
  

 Then 
6 6

,
6 7

TA A
 

=  
  

 and the characteristic polynomial of TA A  is 

2λ 13λ 36 (λ 9)(λ 4),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 9=  and 2λ 4.=  
Thus the singular values of A are 1 9 3σ = =  and 2 4 2.σ = =  
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 4. Let 
3 2

.
0 3

A
 

=  
  

 Then 
3 2 3

,
2 3 7

TA A
 

=  
  

 and the characteristic polynomial of TA A  is 

2λ 10λ 9 (λ 9)(λ 1),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 9=  and 2λ 1.=  
Thus the singular values of A are 1 9 3σ = =  and 2 1 1.σ = =  

 5. Let 
3 0

.
0 0

A
− 

=  
 

 Then 
9 0

,
0 0

TA A
 

=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 9=  and 2λ 0.=  Associated unit eigenvectors may be computed:  

   
1 0

λ 9 : ,λ 0 :
0 1
   

= =   
   

 

  Thus one choice for V is 
1 0

.
0 1

V
 

=  
 

 The singular values of A are 1 9 3σ = =  and 2 0 0.σ = =  Thus 

the matrix Σ is 
3 0

.
0 0
 

Σ =  
 

 Next compute  

   1 1
1

11
0

A
σ

− 
= =  

 
u v  

  Because Av2 = 0, the only column found for U so far is u1. Find the other column of U is found by 

extending {u1} to an orthonormal basis for 2. An easy choice is u2 = 
0

.
1
 
 
 

 

  Let 
1 0

.
0 1

U
− 

=  
 

 Thus  

   
1 0 3 0 1 0
0 1 0 0 0 1

TA U V
−     

= Σ =      
     

 

 6. Let 
2 0

.
0 1

A
− 

=  − 
 Then 

4 0
,

0 1
TA A

 
=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing 

order) 1λ 4=  and 2λ 1.=  Associated unit eigenvectors may be computed:  

   
1 0

λ 4 : ,λ 1:
0 1
   

= =   
   

 

  Thus one choice for V is 
1 0

.
0 1

V
 

=  
 

 The singular values of A are 1 4 2σ = =  and 2 1 1.σ = =  Thus 

the matrix Σ is 
2 0

.
0 1
 

Σ =  
 

 Next compute  

   1 1 2 2
1 2

1 01 1,
0 1

A A
σ σ

−   
= = = =   −   

u v u v  

  Since 1 2{ , }u u  is a basis for 2, let 
1 0

.
0 1

U
− 

=  − 
 Thus  

   
1 0 2 0 1 0
0 1 0 1 0 1

TA U V
−     

= Σ =      −     
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 7. Let 
2 1

.
2 2

A
− 

=  
 

 Then 
8 2

,
2 5

TA A
 

=  
 

 and the characteristic polynomial of TA A  is 

2λ 13λ 36 (λ 9)(λ 4),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 9=  and 2λ 4.=  
Associated unit eigenvectors may be computed:  

   
2 / 5 1/ 5

λ 9 : ,λ 4 :
1/ 5 2 / 5

   −
= =   

      
 

  Thus one choice for V is 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 −

=  
  

 The singular values of A are 1 9 3σ = =  and 

2 4 2.σ = =  Thus the matrix Σ is 
3 0

.
0 2
 

Σ =  
 

 Next compute  

   1 1 2 2
1 2

1/ 5 2 / 51 1,
2 / 5 1/ 5

A A
σ σ

   −
= = = =   

      
u v u v  

  Since 1 2{ , }u u  is a basis for 2, let 
1/ 5 2 / 5

.
2 / 5 1/ 5

U
 −

=  
  

 Thus  

   
1/ 5 2 / 5 3 0 2 / 5 1/ 5

0 22 / 5 1/ 5 1/ 5 2 / 5
TA U V

   −  
= Σ =     

−       
 

 8. Let 
2 3

.
0 2

A
 

=  
 

 Then 
4 6

,
6 13

TA A
 

=  
 

 and the characteristic polynomial of TA A  is 

2λ 17λ 16 (λ 16)(λ 1),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 16=  and 2λ 1.=  
Associated unit eigenvectors may be computed:  

   
1/ 5 2 / 5

λ 16 : ,λ 1:
2 / 5 1/ 5

   −
= =   

      
 

  Thus one choice for V is 
1/ 5 2 / 5

.
2 / 5 1/ 5

V
 −

=  
  

 The singular values of A are 1 16 4σ = =  and 

2 1 1.σ = =  Thus the matrix Σ is 
4 0

.
0 1
 

Σ =  
 

 Next compute  

   1 1 2 2
1 2

2 / 5 1/ 51 1,
1/ 5 2 / 5

A A
σ σ

   −
= = = =   

      
u v u v  

  Since 1 2{ , }u u  is a basis for 2, let 
2 / 5 1/ 5

.
1/ 5 2 / 5

U
 −

=  
  

 Thus  

   
2 / 5 1/ 5 4 0 1/ 5 2 / 5

0 11/ 5 2 / 5 2 / 5 1/ 5
TA U V

   −  
= Σ =     

−       
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 9. Let 
7 1
0 0 .
5 5

A
 
 =  
  

 Then 
74 32

,
32 26

TA A
 

=  
 

 and the characteristic polynomial of TA A  is 

2λ 100λ 900 (λ 90)(λ 10),− + = − −  and the eigenvalues of TA A  are (in decreasing order) 1λ 90=  and 

2λ 10.=  Associated unit eigenvectors may be computed:  

   
2 / 5 1/ 5

λ 90 : ,λ 10 :
1/ 5 2 / 5

   −
= =   

      
 

  Thus one choice for V is 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 −

=  
  

 The singular values of A are 1 90 3 10σ = =  and 

2 10.σ =  Thus the matrix Σ is 

3 10 0

0 10 .
0 0

 
 

Σ =  
 
  

 Next compute  

   1 1 2 2
1 2

1/ 2 1/ 2
1 10 , 0

1/ 2 1/ 2

A A
σ σ

   −
   

= = = =   
   
   

u v u v  

  Since 1 2{ , }u u  is not a basis for 3, we need a unit vector 3u  that is orthogonal to both 1u  and 2.u  The 

vector 3u  must satisfy the set of equations 1 0T =u x  and 2 0.T =u x  These are equivalent to the linear 
equations  

   1 2 3
3

1 2 3

0 0
0 0

, so 1 , and 1
0 0

0 0

x x x
x x x

   
+ + =    = =   − + + =

      

x u  

  Therefore let 
1/ 2 1/ 2 0

0 0 1

1/ 2 1/ 2 0

U
 −
 

=  
 
 

. Thus  

   

3 10 01/ 2 1/ 2 0
2 / 5 1/ 5

0 0 1 0 10
1/ 5 2 / 50 01/ 2 1/ 2 0

TA U V

  −     
= Σ =     

−     
    

 

 10. Let 
4 2
2 1 .
0 0

A
− 

 = − 
  

 Then 
20 10

,
10 5

TA A
− 

=  − 
 and the characteristic polynomial of TA A  is 

2λ 25λ λ(λ 25)− = − , and the eigenvalues of TA A  are (in decreasing order) 1λ 25=  and 2λ 0.=  
Associated unit eigenvectors may be computed:  

   
2 / 5 1/ 5

λ 25 : ,λ 0 :
1/ 5 2 / 5

   
= =   

−      
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  Thus one choice for V is 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 

=  
−  

 The singular values of A are 1 25 5σ = =  and 

2 0 0.σ = =  Thus the matrix Σ is 
5 0
0 0 .
0 0

 
 Σ =  
  

 Next compute  

   1 1
1

2 / 5
1 1/ 5

0
A

σ

 
 

= =  
 
  

u v  

  Because Av2 = 0, the only column found for U so far is u1. Find the other columns of U found by 
extending {u1} to an orthonormal basis for 3. In this case, we need two orthogonal unit vectors u2 and 
u3 that are orthogonal to u1. Each vector must satisfy the equation 1 0,T =u x which is equivalent to the 
equation 2x1 + x2 = 0. An orthonormal basis for the solution set of this equation is 

   2 3

1/ 5 0
2 / 5 , 0 .

0 1

      = − =         

u u  

  Therefore, let 

2 / 5 1/ 5 0

1/ 5 2 / 5 0 .
0 0 1

U

 
 

= − 
 
  

 Thus  

   

2 / 5 1/ 5 0 5 0
2 / 5 1/ 5

1/ 5 2 / 5 0 0 0
1/ 5 2 / 50 0 1 0 0

TA U V

      − = Σ = −            

 

 11. Let 
3 1
6 2 .
6 2

A
− 
 = − 
 − 

 Then 
81 27

,
27 9

TA A
− 

=  − 
 and the characteristic polynomial of TA A  is 

2λ 90λ λ(λ 90),− = −  and the eigenvalues of TA A  are (in decreasing order) 1λ 90=  and 2λ 0.=  
Associated unit eigenvectors may be computed:  

   
3/ 10 1/ 10

λ 90 : , λ 0 : .
1/ 10 3/ 10

   
= =   

−      
 

  Thus one choice for V is 
3/ 10 1/ 10

.
1/ 10 3/ 10

V
 

=  
−  

 The singular values of A are 1 90 3 10σ = =  and 

2 0 0.σ = =  Thus the matrix Σ is 
3 10 0

0 0 .
0 0

 
 

Σ =  
 
 

 Next compute  

   1 1
1

1/ 3
1 2 /3

2 /3
A

σ

− 
 = =  
  

u v  
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  Because Av2 = 0, the only column found for U so far is u1. The other columns of U can be found by 
extending {u1} to an orthonormal basis for 3. In this case, we need two orthogonal unit vectors u2 and 
u3 that are orthogonal to u1. Each vector must satisfy the equation 1 0,T =u x which is equivalent to the 
equation 1 2 32 2 0.x x x− + + =  An orthonormal basis for the solution set of this equation is 

   2 3

2 /3 2 / 3
1/ 3 , 2 / 3 .
2 /3 1/ 3

   
   = − =   
   −   

u u  

  Therefore, let 
1/ 3 2 / 3 2 / 3
2 /3 1/3 2 / 3 .
2 /3 2 /3 1/ 3

U
− 
 = − 
 − 

 Thus  

   
1/ 3 2 / 3 2 / 3 3 10 0

3/ 10 1/ 10
2 /3 1/ 3 2 / 3 0 0

1/ 10 3/ 102 /3 2 / 3 1/ 3 0 0

TA U V
 −   −  = Σ = −         −   

 

 12. Let 
1 1
0 1 .
1 1

A
 
 =  
 − 

 Then 
2 0

,
0 3

TA A
 

=  
 

 and the eigenvalues of TA A  are seen to be (in decreasing order) 

1λ 3=  and 2λ 2.=  Associated unit eigenvectors may be computed:  

   
0 1

λ 3: , λ 2 :
1 0
   

= =   
   

 

  Thus one choice for V is 
0 1

.
1 0

V
 

=  
 

 The singular values of A are 1 3σ =  and 2 2.σ =  Thus the 

matrix Σ is 

3 0

0 2 .
0 0

 
 

Σ =  
 
  

 Next compute  

   1 1 2 2
1 2

1/ 3 1/ 2
1 11/ 3 , 0

1/ 3 1/ 2

A A
σ σ

   
   

= = = =   
   −    

u v u v  

  Since 1 2{ , }u u  is not a basis for 3, we need a unit vector 3u  that is orthogonal to both 1u  and 2.u  The 

vector 3u  must satisfy the set of equations 1 0T =u x  and 2 0.T =u x  These are equivalent to the linear 
equations  

   1 2 3
3

1 2 3

1/ 61
0

,so 2 ,and 2 / 6
0 0

1 1/ 6

x x x
x x x

    + + =  = − = −  + − =       

x u  
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  Therefore let 

1/ 3 1/ 2 1/ 6

1/ 3 0 2 / 6 .

1/ 3 1/ 2 1/ 6

U

 
 

= − 
 

−  

 Thus  

   

1/ 3 1/ 2 1/ 6 3 0
0 1

1/ 3 0 2 / 6 0 2
1 0

0 01/ 3 1/ 2 1/ 6

TA U V

   
     

= Σ = −     
    

−      

 

 13. Let 
3 2 2

.
2 3 2

A
 

=  − 
 Then 

3 2
2 3 ,
2 2

TA
 
 =  
 − 

 
17 8

,
8 17

TT T TA A AA
 

= =  
 

 and the eigenvalues of TT TA A  

are seen to be (in decreasing order) 1λ 25=  and 2λ 9.=  Associated unit eigenvectors may be computed:  

   
1/ 2 1/ 2

λ 25 : , λ 9 :
1/ 2 1/ 2

   −
= =   

      
 

  Thus one choice for V is 
1/ 2 1/ 2

.
1/ 2 1/ 2

V
 −

=  
  

 The singular values of TA  are 1 25 5σ = =  and 

2 9 3.σ = =  Thus the matrix Σ is 
5 0
0 3 .
0 0

 
 Σ =  
  

 Next compute  

   1 1 2 2
1 2

1/ 2 1/ 18
1 11/ 2 , 1/ 18

0 4 / 18

T TA A
σ σ

   −
   

= = = =   
   

−      

u v u v  

  Since 1 2{ , }u u  is not a basis for 3, we need a unit vector 3u  that is orthogonal to both 1u  and 2.u  The 

vector 3u  must satisfy the set of equations 1 0T =u x  and 2 0.T =u x  These are equivalent to the linear 
equations  

   1 2 3
3

1 2 3

2 2 / 3
0 0

, so 2 , and 2 / 3
4 0

1 1/ 3

x x x
x x x

− −   
+ + =    = =   − + − =

      

x u  

  Therefore let 

1/ 2 1/ 18 2 / 3

1/ 2 1/ 18 2 / 3 .

0 4 / 18 1/ 3

U

 − −
 

=  
 

−  

 Thus  

   

1/ 2 1/ 18 2 / 3 5 0
1/ 2 1/ 2

1/ 2 1/ 18 2 / 3 0 3
1/ 2 1/ 20 00 4 / 18 1/ 3

T TA U V

 − −      = Σ =      −     −    
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  An SVD for A is computed by taking transposes:  

   

1/ 2 1/ 2 0
1/ 2 1/ 2 5 0 0

1/ 18 1/ 18 4 / 18
0 3 01/ 2 1/ 2 2 / 3 2 / 3 1/ 3

A

 
  −  

= − −    
      −  

 

 14. From Exercise 7, TA U V= Σ  with 
2 / 5 1/ 5

.
1/ 5 2 / 5

V
 −

=  
  

 Since the first column of V is unit eigenvector 

associated with the greatest eigenvalue 1λ  of ,TA A  so the first column of V is a unit vector at which  
|| Ax || is maximized. 

 15. a. Since A has 2 nonzero singular values, rank A = 2.  

 b. By Example 6, 1 2

.40 .78
{ , } .37 , .33

.84 .52

 −   
    = −    
    − −    

u u  is a basis for Col A and 3

.58
{ } .58

.58

  
  = −  
    

v  is a basis  

for Nul A.  

 16. a. Since A has 2 nonzero singular values, rank A = 2.  

 b. By Example 6, 1 2

.86 .11
{ , } .31 , .68

.41 .73

 − −   
    =     
    −    

u u  is a basis for Col A and 3 4

.65 .34

.08 .42
{ , } ,

.16 .84

.73 .08

 −   
    
    =     − −     − −       

v v  is 

a basis for Nul A.  

 17. Let 1.TA U V U V −= Σ = Σ  Since A is square and invertible, rank A = n, and all of the entries on the 

diagonal of Σ must be nonzero. So 1 1 1 1 1 1( ) .TA U V V U V U− − − − − −= Σ = Σ = Σ  

 18. First note that the determinant of an orthogonal matrix is ±1, because 1 det det TI U U= = =  
2(det )(det ) (det ) .TU U U=  Suppose that A is square and .TA U V= Σ  Then Σ is square, and 

1det (det )(det )(det ) detT
nA U V σ σ= Σ = ± Σ = ± … . 

 19. Since U and V are orthogonal matrices,  

   1( ) ( ) ( )T T T T T T T T T TA A U V U V V U U V V V V V −= Σ Σ = Σ Σ = Σ Σ = Σ Σ  

  If 1, , rσ σ…  are the diagonal entries in Σ, then TΣ Σ  is a diagonal matrix with diagonal entries 2 2
1 , , rσ σ…  

and possibly some zeros. Thus V diagonalizes TA A  and the columns of V are eigenvectors of TA A  by 
the Diagonalization Theorem in Section 5.3. Likewise  

   1( ) ( ) ( )T T T T T T T T T TAA U V U V U V V U U U U U −= Σ Σ = Σ Σ = ΣΣ = ΣΣ  

  so U diagonalizes TAA  and the columns of U must be eigenvectors of TAA . Moreover, the 
Diagonalization Theorem states that 2 2

1 , , rσ σ…  are the nonzero eigenvalues of TA A . Hence 1, , rσ σ…  
are the nonzero singular values of A. 

 20. If A is positive definite, then TA PDP= , where P is an orthogonal matrix and D is a diagonal matrix. 
The diagonal entries of D are positive because they are the eigenvalues of a positive definite matrix. 
Since P is an orthogonal matrix, TPP I=  and the square matrix TP  is invertible. Moreover, 
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1 1 1( ) ( ) ( ) ,T T TP P P P− − −= = =  so TP  is an orthogonal matrix. Thus the factorization TA PDP=  has the 
properties that make it a singular value decomposition. 

 21. Let .TA U V= Σ  The matrix PU is orthogonal, because P and U are both orthogonal. (See Exercise 29 in 
Section 6.2). So the equation ( ) TPA PU V= Σ  has the form required for a singular value decomposition. 
By Exercise 19, the diagonal entries in Σ are the singular values of PA. 

 22. The right singular vector 1v  is an eigenvector for the largest eigenvector 1λ  of .TA A  By Theorem 7 in 

Section 7.3, the second largest eigenvalue 2λ  is the maximum of ( )T TA Ax x  over all unit vectors 
orthogonal to 1v . Since 2( ) || || ,T TA A A=x x x  the square root of 2λ ,  which is the second largest singular 
value of A, is the maximum of || Ax || over all unit vectors orthogonal to 1.v  

 23. From the proof of Theorem 10, [ ]1 1 .r rU σ σΣ = … …u u 0 0  The column-row expansion of the 

product ( ) TU VΣ  shows that  

   
1

1 1 1( ) ( )

T

T TT
r r r

T
n

A U V U σ σ
 
 

= Σ = Σ = +…+ 
 
  

v
u v u v

v

 

  where r is the rank of A. 

 24. From Exercise 23, 1 1 1 .T T T
r r rA σ σ= +…+v u v u  Then since 

0 for
,

1 for
T
i j

i j
i j

≠
=  =

u u  

   1 1 1( ) ( ) ( )T T T T T
j r r r j j j j j j j j j j jA σ σ σ σ σ= +…+ = = =u v u v u u v u u v u u v  

 25. Consider the SVD for the standard matrix A of T, say TA U V= Σ . Let 1{ , , }nB = …v v  and 

1{ , , }mC = …u u  be bases for n and m constructed respectively from the columns of V and U. Since the 
columns of V are orthogonal, T

j jV =v e , where je  is the jth column of the n × n identity matrix. To find 
the matrix of T relative to B and C, compute  

   ( ) T
j j j j j j j j j jT A U V U U Uσ σ σ= = Σ = Σ = = =v v v e e e u  

  so [ ( )]j C j jT σ=v e . Formula (4) in the discussion at the beginning of Section 5.4 shows that the 
“diagonal” matrix Σ is the matrix of T relative to B and C. 

 26. [M] Let 

18 13 4 4
2 19 4 12

.
14 11 12 8

2 21 4 8

A

− − 
 − =
 − −
 −  

 Then 

528 392 224 176
392 1092 176 536

,
224 176 192 128
176 536 128 288

TA A

− − 
 − − =
 − −
 − −  

 and the eigenvalues 

of TA A  are found to be (in decreasing order) 1λ 1600,=  2λ 400,=  3λ 100,=  and 4λ 0.=  Associated 
unit eigenvectors may be computed:  

   1 2 3 4

.4 .8 .4 .2

.8 .4 .2 .4
λ : ,λ : ,λ : ,λ :

.2 .4 .8 .4

.4 .2 .4 .8

− −       
       − −       
       − −
       
              

 



414 CHAPTER 7 • Symmetric Matrices and Quadratic Forms 

  Thus one choice for V is 

.4 .8 .4 .2

.8 .4 .2 .4
.

.2 .4 .8 .4

.4 .2 .4 .8

V

− − 
 − − =
 − −
 
  

 The singular values of A are 1 40,σ =  1 20,σ =  

3 10,σ =  and 4 0.σ =  Thus the matrix Σ is 

40 0 0 0
0 20 0 0

.
0 0 10 0
0 0 0 0

 
 
 Σ =
 
 
  

 Next compute  

   1 1 2 2
1 2

.5 .5

.5 .51 1, ,

.5 .5

.5 .5

A A
σ σ

−   
   
   = = = =
   −
   
      

u v u v  

   3 3
3

.5

.51

.5

.5

A
σ

− 
 
 = =
 
 −  

u v  

  Because Av4 = 0, only three columns of U have been found so far. The last column of U can be found  
by extending {u1, u2, u3} to an orthonormal basis for 4. The vector u4 must satisfy the set of equations 

1 0,T =u x  2 0,T =u x  and 3 0.T =u x These are equivalent to the linear equations 

   
1 2 3 4

1 2 3 4 4

1 2 3 4

1 .5
0

1 .5
0, so , and .

1 .5
0

1 .5

x x x x
x x x x
x x x x

− −   
+ + + =    − −   − + − + = = =

   
− + + − =    

      

x u  

  Therefore, let 

.5 .5 .5 .5

.5 .5 .5 .5
.

.5 .5 .5 .5

.5 .5 .5 .5

U

− − − 
 − =
 −
 −  

 Thus  

  

.5 .5 .5 .5 40 0 0 0 .4 .8 .2 .4

.5 .5 .5 .5 0 20 0 0 .8 .4 .4 .2

.5 .5 .5 .5 0 0 10 0 .4 .2 .8 .4

.5 .5 .5 .5 0 0 0 0 .2 .4 .4 .8

TA U V

− − − − −     
     −     = Σ =
     − − −
     − − −          

 

 27. [M] Let 

6 8 4 5 4
2 7 5 6 4

.
0 1 8 2 2
1 2 4 4 8

A

− − − 
 − − =
 − −
 − − −  

 Then 

41 32 38 14 8
32 118 3 92 74

,38 3 121 10 52
14 92 10 81 72

8 74 52 72 100

TA A

− − − 
 − − − 
 = − − −
 − − 
 − − − 

 and the 

eigenvalues of TA A  are found to be (in decreasing order) 1λ 270.87,=  2λ 147.85,=  3λ 23.73,=  

4λ 18.55,=  and 5λ 0.=  Associated unit eigenvectors may be computed: 
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   1 2 3 4 5

.10 .39 .74 .41 .36
.61 .29 .27 .50 .48

λ : ,λ : ,λ : ,λ : ,λ :.21 .84 .07 .45 .19
.52 .14 .38 .23 .72
.55 .19 .49 .58 .29

− − − −         
         − − −         
         − − −
         − − − −         
         − −         

 

  Thus one choice for V is 

.10 .39 .74 .41 .36
.61 .29 .27 .50 .48

..21 .84 .07 .45 .19
.52 .14 .38 .23 .72
.55 .19 .49 .58 .29

V

− − − − 
 − − − 
 = − − −
 − − − − 
 − − 

 The nonzero singular values of A are 

1 16.46,σ =  1 12.16,σ =  3 4.87,σ =  and 4 4.31.σ =  Thus the matrix Σ is 
16.46 0 0 0 0

0 12.16 0 0 0
.

0 0 4.87 0 0
0 0 0 4.31 0

 
 
 Σ =
 
 
  

 Next compute  

   1 1 2 2
1 2

.57 .65

.63 .241 1, ,

.07 .63
.51 .34

A A
σ σ

− −   
   −   = = = =
   −
   −      

u v u v  

   3 3 4 4
3 4

.42 .27

.68 .291 1,

.53 .56

.29 .73

A A
σ σ

−   
   − −   = = = =
   −
   − −      

u v u v  

  Since 1 2 3 4{ , , , }u u u u  is a basis for 4, let 

.57 .65 .42 .27

.63 .24 .68 .29
.

.07 .63 .53 .56
.51 .34 .29 .73

U

− − − 
 − − − =
 − −
 − − −  

 Thus  

   TA U V= Σ  

  

.10 .61 .21 .52 .55
.57 .65 .42 .27 16.46 0 0 0 0

.39 .29 .84 .14 .19
.63 .24 .68 .29 0 12.16 0 0 0

= .74 .27 .07 .38 .49
.07 .63 .53 .56 0 0 4.87 0 0

.41 .50 .45 .23 .58
.51 .34 .29 .73 0 0 0 4.31 0

.36 .4

− − −
− − −   

− − −   − − −    − − −
   − −

− −   − − −       − − 8 .19 .72 .29

 
 
 
 
 
 
 − − − 
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 28. [M] Let 

4 0 7 7
6 1 11 9

.
7 5 10 19
1 2 3 1

A

− − 
 − =
 −
 − −  

 Then 

102 43 27 52
43 30 33 88

,
27 33 279 335
52 88 335 492

TA A

− − 
 − − − =
 − −
 −  

 and the eigenvalues of 

TA A  are found to be (in decreasing order) 1λ 749.9785,=  2λ 146.2009,=  3λ 6.8206,=  and 
6

4λ 1.3371 10 .−= ×  The singular values of A are thus 1 27.3857,σ =  2 12.0914,σ =  3 2.61163,σ =  and 

4 .00115635.σ =  The condition number 1 4/ 23,683.σ σ =  

 29. [M] Let 

5 3 1 7 9
6 4 2 8 8

.7 5 3 10 9
9 6 4 9 5
8 5 2 11 4

A

 
 − 
 =
 − − 
  

 Then 

255 168 90 160 47
168 111 60 104 30

,90 60 34 39 8
160 104 39 415 178
47 30 8 178 267

TA A

 
 
 
 =
 
 
  

 and the eigenvalues 

of TA A  are found to be (in decreasing order) 1λ 672.589,=  2λ 280.745,=  3λ 127.503,=  4λ 1.163,=  
and 7

5λ 1.428 10 .−= ×  The singular values of A are thus 1 25.9343,σ =  2 16.7554,σ =  3 11.2917,σ =  

4 1.07853,σ =  and 5 .000377928.σ =  The condition number 1 5/ 68,622.σ σ =  

7.5 SOLUTIONS 

Notes: The application presented here has turned out to be of interest to a wide variety of students, including 
engineers. I cover this in Course Syllabus 3 described above, but I only have time to mention the idea briefly 
to my other classes. 

 1. The matrix of observations is 
19 22 6 3 2 20
12 6 9 15 13 5

X
 

=  
 

 and the sample mean is 

72 121 .
60 106

M
   

= =   
   

 The mean-deviation form B is obtained by subtracting M from each column of X, so 

7 10 6 9 10 8
.

2 4 1 5 3 5
B

− − − 
=  − − − 

 The sample covariance matrix is  

   
430 135 86 271 1
135 80 27 166 1 5

TS BB
− −   

= = =   − −−    
 

 2. The matrix of observations is 
1 5 2 6 7 3
3 11 6 8 15 11

X
 

=  
 

 and the sample mean is 
24 41 .
54 96

M
   

= =   
   

 

The mean-deviation form B is obtained by subtracting M from each column of X, so 
3 1 2 2 3 1

.
6 2 3 1 6 2

B
− − − 

=  − − − 
 The sample covariance matrix is  

   
28 40 5.6 81 1
40 90 8 186 1 5

TS BB
   

= = =   −    
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 3. The principal components of the data are the unit eigenvectors of the sample covariance matrix S. One 

computes that (in descending order) the eigenvalues of 
86 27
27 16

S
− 

=  − 
 are 1λ 95.2041=  and 

2λ 6.79593.=  One further computes that corresponding eigenvectors are 1
2.93348

1
− 

=  
 

v  and 

2
.340892

.
1

 
=  
 

v  These vectors may be normalized to find the principal components, which are 

1
.946515
.322659

 
=  − 

u  for 1λ 95.2041=  and 2
.322659
.946515
 

=  
 

u  for 2λ 6.79593.=  

 4. The principal components of the data are the unit eigenvectors of the sample covariance matrix S. One 

computes that (in descending order) the eigenvalues of 
5.6 8

8 18
S

 
=  
 

 are 1λ 21.9213=  and 

2λ 1.67874.=  One further computes that corresponding eigenvectors are 1
.490158

1
 

=  
 

v  and 

2
2.04016

.
1

− 
=  
 

v  These vectors may be normalized to find the principal components, which are 

1
.44013

.897934
 

=  
 

u  for 1λ 21.9213=  and 2
.897934

.44013
− 

=  
 

u  for 2λ 1.67874.=  

 5. [M] The largest eigenvalue of 
164.12 32.73 81.04

32.73 539.44 249.13
81.04 249.13 189.11

S
 
 =  
  

 is 1λ 677.497,=  and the first principal 

component of the data is the unit eigenvector corresponding to 1λ , which is 1

.129554

.874423

.467547

 
 =  
  

u . The fraction 

of the total variance that is contained in this component is 1λ / tr( ) 677.497 /(164.12 539.44S = + +  
189.11) .758956,=  so 75.8956% of the variance of the data is contained in the first principal component. 

 6. [M] The largest eigenvalue of 
29.64 18.38 5.00
18.38 20.82 14.06
5.00 14.06 29.21

S
 
 =  
  

 is 1λ 51.6957,=  and the first principal 

component of the data is the unit eigenvector corresponding to 1λ ,  which is 1

.615525

.599424 .

.511683

 
 =  
  

u  Thus one 

choice for the new variable is 1 1 2 3.615525 .599424 .511683 .y x x x= + +  The fraction of the total variance 
that is contained in this component is 1λ / tr( ) 51.6957 /(29.64 20.82 29.21) .648872,S = + + =  so 
64.8872% of the variance of the data is explained by 1.y  
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 7. Since the unit eigenvector corresponding to 1λ 95.2041=  is 1
.946515

,
.322659

 
=  − 

u  one choice for the new 

variable is 1 1 2.946515 .322659 .y x x= −  The fraction of the total variance that is contained in this 
component is 1λ / tr( ) 95.2041/(86 16) .933374,S = + =  so 93.3374% of the variance of the data is 
explained by 1.y  

 8. Since the unit eigenvector corresponding to 1λ 21.9213=  is 1
.44013

,
.897934
 

=  
 

u  one choice for the new 

variable is 1 1 2.44013 .897934 .y x x= +  The fraction of the total variance that is contained in this 
component is 1λ / tr( ) 21.9213/(5.6 18) .928869,S = + =  so 92.8869% of the variance of the data is 
explained by 1.y  

 9. The largest eigenvalue of 
5 2 0
2 6 2
0 2 7

S
 
 =  
  

 is 1λ 9,=  and the first principal component of the data is the 

unit eigenvector corresponding to 1λ ,  which is 1

1/ 3
2 /3 .
2 /3

 
 =  
  

u  Thus one choice for y is 

1 2 3(1/ 3) (2 / 3) (2 / 3) ,y x x x= + +  and the variance of y is 1λ 9.=  

 10. [M] The largest eigenvalue of 
5 4 2
4 11 4
2 4 5

S
 
 =  
  

 is 1λ 15,=  and the first principal component of the data 

is the unit eigenvector corresponding to 1λ ,  which is 1

1/ 6

2 / 6 .

1/ 6

 
 

=  
 
  

u  Thus one choice for y is 

1 2 3(1/ 6) (2 / 6) (1/ 6) ,y x x x= + +  and the variance of y is 1λ 15.=  

 11. a. If w is the vector in N with a 1 in each position, then [ ]1 1N N… = +…+ =X X w X X 0  since the 

kX  are in mean-deviation form. Then  

  [ ] [ ]1 1 1
T T T T

N N NP P P P … = … = … = = Y Y w X X w X X w 0 0  

  Thus 1 ,N+…+ =Y Y 0  and the kY  are in mean-deviation form.  

b. By part a., the covariance matrix SY  of 1, , N…Y Y  is  

   [ ][ ]1 1
1

1
T

N NS
N

= … …
−Y Y Y Y Y  

   [ ] [ ]1 1
1 ( )

1
T T T

N NP P
N

= … …
−

X X X X  

   [ ][ ]1 1
1

1
TT T

N NP P P SP
N

 = … … = − 
X X X X  

  since the kX  are in mean-deviation form.  



Chapter  7 • Supplementary  Exercises   419 

 12. By Exercise 11, the change of variables X = PY changes the covariance matrix S of X into the covariance 
matrix TP SP  of Y. The total variance of the data as described by Y is tr( ).TP SP  However, since TP SP  
is similar to S, they have the same trace (by Exercise 25 in Section 5.4). Thus the total variance of the 
data is unchanged by the change of variables X = PY. 

 13. Let M be the sample mean for the data, and let ˆ .k k= −X X M  Let 1
ˆ ˆ

NB  = … X X  be the matrix of 

observations in mean-deviation form. By the row-column expansion of ,TBB  the sample covariance 
matrix is  

   1
1

TS BB
N

=
−

 

   
1

1

ˆ
1 ˆ ˆ

1 ˆ

T

N
T
N

N

 
  = …   −  
 

X
X X

X

 

   
1

1 ˆ ˆ
1

N N
T T

k k k k
k kN N= =1

1= = ( − )( − )
− −1∑ ∑X X X M X M  

Chapter 7 SUPPLEMENTARY EXERCISES 

 1. a. True. This is just part of Theorem 2 in Section 7.1. The proof appears just before the statement of 
the theorem.  

 b. False. A counterexample is 
0 1

.
1 0

A
− 

=  
 

  

 c. True. This is proved in the first part of the proof of Theorem 6 in Section 7.3. It is also a 
consequence of Theorem 7 in Section 6.2.  

 d. False. The principal axes of T Ax x  are the columns of any orthogonal matrix P that diagonalizes A. 
Note: When A has an eigenvalue whose eigenspace has dimension greater than 1, the principal axes 
are not uniquely determined.  

 e. False. A counterexample is 
1 1

.
1 1

P
− 

=  
 

 The columns here are orthogonal but not orthonormal.  

 f. False. See Example 6 in Section 7.2.  

 g. False. A counterexample is 
2 0
0 3

A
 

=  − 
 and 

1
.

0
 

=  
 

x  Then 2 0T A = >x x , but T Ax x  is an 

indefinite quadratic form.  
 h. True. This is basically the Principal Axes Theorem from Section 7.2. Any quadratic form can be 

written as T Ax x  for some symmetric matrix A.  
 i. False. See Example 3 in Section 7.3.  
 j. False. The maximum value must be computed over the set of unit vectors. Without a restriction on 

the norm of x, the values of T Ax x  can be made as large as desired.  
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 k. False. Any orthogonal change of variable x = Py changes a positive definite quadratic form into 
another positive definite quadratic form. Proof: By Theorem 5 of Section 7.2., the classification of a 
quadratic form is determined by the eigenvalues of the matrix of the form. Given a form ,T Ax x  the 
matrix of the new quadratic form is 1 ,P AP−  which is similar to A and thus has the same eigenvalues 
as A.  

 l. False. The term “definite eigenvalue” is undefined and therefore meaningless.  

 m. True. If x = Py, then 1( ) ( )T T T T TA P A P P AP P AP−= = =x x y y y y y y .  

 n. False. A counterexample is 
1 1

.
1 1

U
− 

=  − 
 The columns of U must be orthonormal to make TUU x  

the orthogonal projection of x onto Col U.  
 o. True. This follows from the discussion in Example 2 of Section 7.4., which refers to a proof given 

in Example 1.  

 p. True. Theorem 10 in Section 7.4 writes the decomposition in the form ,TU VΣ  where U and V are 
orthogonal matrices. In this case, TV  is also an orthogonal matrix. Proof: Since V is orthogonal, V 
is invertible and 1 .TV V− =  Then 1 1( ) ( ) ( ) ,T T T TV V V− −= =  and since V is square and invertible, TV  
is an orthogonal matrix.  

 q. False. A counterexample is 
2 0

.
0 1

A
 

=  
 

 The singular values of A are 2 and 1, but the singular 

values of TA A  are 4 and 1.  

 2. a. Each term in the expansion of A is symmetric by Exercise 35 in Section 7.1. The fact that 
( )T T TB C B C+ = +  implies that any sum of symmetric matrices is symmetric, so A is symmetric.  

 b. Since 1 1 1T =u u  and 1 0T
j =u u  for j ≠ 1,  

  1 1 1 1 1 1 1 1 1 1 1 1 1(λ ) (λ ) λ ( ) λ ( ) λT T T T
n n n n n nA = +…+ = +…+ =u u u u u u u u u u u u u u  

  Since 1 ≠u 0 , 1λ  is an eigenvalue of A. A similar argument shows that λ j  is an eigenvalue of A for  
j = 2, …, n. 

 3. If rank A = r, then dim Nul A = n – r by the Rank Theorem. So 0 is an eigenvalue of A with multiplicity  
n – r, and of the n terms in the spectral decomposition of A exactly n – r are zero. The remaining r terms 
(which correspond to nonzero eigenvalues) are all rank 1 matrices, as mentioned in the discussion of the 
spectral decomposition.  

 4. a. By Theorem 3 in Section 6.1, (Col ) Nul NulTA A A⊥ = =  since .TA A=  

 b. Let y be in n. By the Orthogonal Decomposition Theorem in Section 6.3, y = ŷ + z, where ŷ  is in 

Col A and z is in (Col ) .A ⊥  By part a., z is in Nul A.  

 5. If Av = λv for some nonzero λ, then 1 1λ (λ ),A A− −= =v v v  which shows that v is a linear combination of 
the columns of A. 

 6. Because A is symmetric, there is an orthonormal eigenvector basis 1{ , , }n…u u  for n. Let r = rank A.  
If r = 0, then A = O and the decomposition of Exercise 4(b) is y = 0 + y for each y in n; if r = n then the 
decomposition is y = y + 0 for each y in n. 

  Assume that 0 < r < n. Then dim Nul A = n – r by the Rank Theorem, and so 0 is an eigenvalue of A with 
multiplicity n – r. Hence there are r nonzero eigenvalues, counted according to their multiplicities. 
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Renumber the eigenvector basis if necessary so that 1, , r…u u  are the eigenvectors corresponding to the 
nonzero eigenvalues. By Exercise 5, 1, , r…u u  are in Col A. Also, 1, ,r n+ …u u  are in Nul A because these 
vectors are eigenvectors corresponding to the eigenvalue 0. For y in n, there are scalars 1, , nc c…  such 
that  

   1 1 1 1

ˆ
r r r r n nc c c c+ += +…+ + +…+

Z

y u u u u
y

 

  This provides the decomposition in Exercise 4(b). 

 7. If TA R R=  and R is invertible, then A is positive definite by Exercise 25 in Section 7.2.  

  Conversely, suppose that A is positive definite. Then by Exercise 26 in Section 7.2, TA B B=  for some 
positive definite matrix B. Since the eigenvalues of B are positive, 0 is not an eigenvalue of B and B is 
invertible. Thus the columns of B are linearly independent. By Theorem 12 in Section 6.4, B = QR for 
some n × n matrix Q with orthonormal columns and some upper triangular matrix R with positive entries 
on its diagonal. Since Q is a square matrix, ,TQ Q I=  and  

   ( ) ( )T T T T TA B B QR QR R Q QR R R= = = =  

  and R has the required properties. 

 8. Suppose that A is positive definite, and consider a Cholesky factorization of TA R R=  with R upper 
triangular and having positive entries on its diagonal. Let D be the diagonal matrix whose diagonal 
entries are the entries on the diagonal of R. Since right-multiplication by a diagonal matrix scales the 
columns of the matrix on its left, the matrix 1TL R D−=  is lower triangular with 1’s on its diagonal.  
If U = DR, then 1 .TA R D DR LU−= =  

 9. If A is an m × n matrix and x is in n, then 2( ) ( ) || || 0.T T TA A A A A= = ≥x x x x x  Thus TA A  is positive 
semidefinite. By Exercise 22 in Section 6.5, rank rank .TA A A=  

 10. If rank G = r, then dim Nul G = n – r by the Rank Theorem. Hence 0 is an eigenvalue of G with 
multiplicity n – r, and the spectral decomposition of G is  

   1 1 1λ λT T
r r rG = +…+u u u u  

  Also 1λ , ,λr…  are positive because G is positive semidefinite. Thus  

   ( )( ) ( )( )1 1 1 1λ λ λ λT T
r r r rG = +…+u u u u  

  By the column-row expansion of a matrix product, TG BB=  where B is the n × r matrix 

1 1λ λ .r rB  = … u u  Finally, TG A A=  for .TA B=  

 11. Let TA U V= Σ  be a singular value decomposition of A. Since U is orthogonal, TU U I=  and 
T TA U U UV PQ= Σ =  where 1TP U U U U −= Σ = Σ  and .TQ UV=  Since Σ is symmetric, P is 

symmetric, and P has nonnegative eigenvalues because it is similar to Σ, which is diagonal with 
nonnegative diagonal entries. Thus P is positive semidefinite. The matrix Q is orthogonal since it is the 
product of orthogonal matrices. 

 12. a. Because the columns of rV  are orthonormal,  

   1 1( )( ) ( )T T T T
r r r r r r r rAA U DV V D U U DD U U U+ − −= = =y y y y  
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  Since T
r rU U y  is the orthogonal projection of y onto Col rU  by Theorem 10 in Section 6.3, and  

since Col ColrU A=  by (5) in Example 6 of Section 7.4, AA+y  is the orthogonal projection of  
y onto Col A.  

 b. Because the columns of rU  are orthonormal,  

   1 1( )( ) ( )T T T T
r r r r r r r rA A V D U U DV V D DV V V+ − −= = =x x x x  

  Since T
r rV V x  is the orthogonal projection of x onto Col rV  by Theorem 10 in Section 6.3, and since 

Col RowrV A=  by (8) in Example 6 of Section 7.4, A A+ x  is the orthogonal projection of x onto 
Row A.  

 c. Using the reduced singular value decomposition, the definition of A+ , and the associativity of matrix 
multiplication gives:  

   1 1( )( )( ) ( )( )T T T T T
r r r r r r r r r rAA A U DV V D U U DV U DD U U DV+ − −= =  

   1 T T
r r r rU DD DV U DV A−= = =  

   1 1 1 1( )( )( ) ( )( )T T T T T
r r r r r r r r r rA AA V D U U DV V D U V D DV V D U+ + − − − −= =  

   1 1 1T T
r r r rV D DD U V D U A− − − += = =  

 13. a. If b = Ax, then .A A A+ + += =x b x  By Exercise 12(a), +x  is the orthogonal projection of x onto  
Row A.  

b. From part (a) and Exercise 12(c), ( ) ( ) .A A A A AA A A+ + += = = =x x x x b  

c. Let Au = b. Since +x  is the orthogonal projection of x onto Row A, the Pythagorean Theorem shows 
that 2 2 2 2|| || || || || || || || ,+ + += + − ≥u x u x x  with equality only if .+=u x  

 14. The least-squares solutions of Ax = b are precisely the solutions of Ax = ˆ ,b  where b̂ is the orthogonal 
projection of b onto Col A. From Exercise 13, the minimum length solution of Ax = b̂  is ˆ ,A+b  so ˆA+b  
is the minimum length least-squares solution of Ax = b. However, ˆ AA+=b b  by Exercise 12(a) and 
hence ˆA A AA+ + + += = Αb b b  by Exercise 12(c). Thus A+b  is the minimum length least-squares solution 
of Ax = b.  

 15. [M] The reduced SVD of A is ,T
r rA U DV=  where  

   

.966641 .253758 .034804
9.84443 0 0

.185205 .786338 .589382
, 0 2.62466 0 ,

.125107 .398296 .570709
0 0 1.09467

.125107 .398296 .570709

rU D

− 
  − −   = =   −
    −  

 

   

.313388 .009549 .633795

.313388 .009549 .633795
and .633380 .023005 .313529

.633380 .023005 .313529

.035148 .999379 .002322

rV

− 
 − 
 = − −
 − 
  

 

  So the pseudoinverse 1 T
r rA V D U+ −=  may be calculated, as well as the solution ˆ A+=x b  for the system 

Ax = b:  
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.05 .35 .325 .325

.05 .35 .325 .325
ˆ,.05 .15 .175 .175

.05 .15 .175 .175

.10 .30 .150 .150

A+

− − .7   
   − − .7   
   = =− − − −.8
   − .8   
   − − − .6   

x  

  Row reducing the augmented matrix for the system ˆTA =z x  shows that this system has a solution, so x̂  

is in Col Row .TA A=  A basis for Nul A is 1 2

0 1
0 1

{ , } , ,1 0
1 0
0 0

 −   
    
        =  
    
    
        

a a  and an arbitrary element of Nul A is 

1 2.c d= +u a a  One computes that ˆ|| ,|| = 131/50x  while ˆ|| .c d2 2+ ||= (131/50) + 2 + 2x u  Thus if  
u ≠ 0, || x̂ || < || x̂  + u ||, which confirms that x̂  is the minimum length solution to Ax = b. 

 16. [M] The reduced SVD of A is ,T
r rA U DV=  where  

   

.337977 .936307 .095396
12.9536 0 0

.591763 .290230 .752053
, 0 1.44553 0 ,

.231428 .062526 .206232
0 0 .337763

.694283 .187578 .618696

rU D

− 
  −   = =   − − −
    − − −  

 

   

.690099 .721920 .050939
0 0 0

and .341800 .387156 .856320
.637916 .573534 .513928

0 0 0

rV

− 
 
 
 = −
 
 
  

 

  So the pseudoinverse 1 T
r rA V D U+ −=  may be calculated, as well as the solution ˆ A+=x b  for the  

system Ax = b:  

   

.5 0 .05 .15
0 0 0 0

ˆ,0 2 .5 1.5
.5 1 .35 1.05
0 0 0 0

A+

− − 2.3   
   0   
   = = 5.0
   − − − −.9   
   0   

x  

  Row reducing the augmented matrix for the system ˆTA =z x  shows that this system has a solution, so x̂  

is in Col RowTA A= . A basis for Nul A is 1 2

0 0
1 0

{ , } , ,0 0
0 0
0 1

    
    
        =  
    
    
        

a a  and an arbitrary element of Nul A is 

1 2.c d= +u a a  One computes that ˆ|| ,|| = 311/10x  while ˆ|| .c d2 2+ || = (311/10) + +x u  Thus if u ≠ 0, 
|| x̂ || < || x̂ + u ||, which confirms that x̂  is the minimum length solution to Ax = b. 


