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Chapter Two

Vector Spaces

The first chapter began by introducing Gauss’ method and finished with a fair understanding, keyed on the
Linear Combination Lemma, of how it finds the solution set of a linear system. Gauss’ method systemat-
ically takes linear combinations of the rows. With that insight, we now move to a general study of linear
combinations.

We need a setting for this study. At times in the first chapter, we’ve combined vectors from R?, at
other times vectors from R?, and at other times vectors from even higher-dimensional spaces. Thus, our
first impulse might be to work in R™, leaving n unspecified. This would have the advantage that any of the
results would hold for R? and for R® and for many other spaces, simultaneously.

But, if having the results apply to many spaces at once is advantageous then sticking only to R™’s is
overly restrictive. We’d like the results to also apply to combinations of row vectors, as in the final section of
the first chapter. We’ve even seen some spaces that are not just a collection of all of the same-sized column
vectors or row vectors. For instance, we’ve seen a solution set of a homogeneous system that is a plane,
inside of R3. This solution set is a closed system in the sense that a linear combination of these solutions is
also a solution. But it is not just a collection of all of the three-tall column vectors; only some of them are
in this solution set.

We want the results about linear combinations to apply anywhere that linear combinations are sensible.
We shall call any such set a wvector space. Our results, instead of being phrased as “Whenever we have a
collection in which we can sensibly take linear combinations . ..”, will be stated as “In any vector space ...”.

Such a statement describes at once what happens in many spaces. The step up in abstraction from
studying a single space at a time to studying a class of spaces can be hard to make. To understand its
advantages, consider this analogy. Imagine that the government made laws one person at a time: “Leslie
Jones can’t jay walk.” That would be a bad idea; statements have the virtue of economy when they apply
to many cases at once. Or, suppose that they ruled, “Kim Ke must stop when passing the scene of an
accident.” Contrast that with, “Any doctor must stop when passing the scene of an accident.” More general
statements, in some ways, are clearer.

I Definition of Vector Space

We shall study structures with two operations, an addition and a scalar multiplication, that are subject
to some simple conditions. We will reflect more on the conditions later, but on first reading notice how
reasonable they are. For instance, surely any operation that can be called an addition (e.g., column vector
addition, row vector addition, or real number addition) will satisfy all the conditions in (1) below.
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4 Chapter Two. Vector Spaces

1.1 Definition and Examples

1.1 Definition A wvector space (over R) consists of a set V along with two operations ‘+’ and ‘-’ subject
to these conditions.

Where v,w € V, (1) their vector sum v + w is an element of V. If u,v,w € V then (2) v+w =w+v
and (3) (v+ w) +u = v+ (w+wu). (4) There is a zero vector 0 € V such that v +0 = v for all v € V.
(5) Each v € V has an additive inverse w € V such that w + v = 0.

If r, s are scalars, members of R, and v,w € V then (6) each scalar multiple r-visin V. If r,s € R and
v,w € V then (7) (r+s)-v=r-v+s-v,and 8) r-(v+w) =r-v+r-w, and (9) (rs)-v=r-(s-v), and
(10) 1-v =w.

1.2 Remark Because it involves two kinds of addition and two kinds of multiplication, that definition may
seem confused. For instance, in condition (7) ‘(r +s)-v = r-v + s-v’, the first ‘+’ is the real number
addition operator while the ‘4’ to the right of the equals sign represents vector addition in the structure V.
These expressions aren’t ambiguous because, e.g., r and s are real numbers so ‘r + s’ can only mean real
number addition.

The best way to go through the examples below is to check all ten conditions in the definition. That
check is written out at length in the first example. Use it as a model for the others. Especially important
are the first condition ‘v 4+ w is in V'’ and the sixth condition ‘r-v is in V. These are the closure conditions.
They specify that the addition and scalar multiplication operations are always sensible —they are defined
for every pair of vectors, and every scalar and vector, and the result of the operation is a member of the set
(see Example 1.4).

1.3 Example The set R? is a vector space if the operations ‘+’ and ¢-> have their usual meaning.

+ = r- =
T2 Y2 T2 + Y2 T2 TT2
We shall check all of the conditions.
There are five conditions in item (1). For (1), closure of addition, note that for any vy, vs, w1, w2 € R the

result of the sum
(2)+(0)- ()
+ =
V2 wo Vg + Wwo

is a column array with two real entries, and so is in R2. For (2), that addition of vectors commutes, take all
entries to be real numbers and compute

(%1 w1 U1 +wq w1 + V1 w1 V1
“+ = = = +
V2 w2 Vo + wo wo + Vs w2 V2
(the second equality follows from the fact that the components of the vectors are real numbers, and the
addition of real numbers is commutative). Condition (3), associativity of vector addition, is similar.

() + () () = (e
_ (vl + (wy + u1)>

vo + (w2 + uz)
= (o) + () + Cap

For the fourth condition we must produce a zero element — the vector of zeroes is it.

() ()= C2)
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For (5), to produce an additive inverse, note that for any vy,v2 € R we have

(2)-()-)

so the first vector is the desired additive inverse of the second.
The checks for the five conditions having to do with scalar multiplication are just as routine. For (6),
closure under scalar multiplication, where r,v;,v2 € R,

()= ()
- =
() rve
is a column array with two real entries, and so is in R2. Next, this checks (7).
vi) _ ((r+s)vi\ _ [rvr +svr) _ [(wn [(wn
(r+s) (’Ug) n ((r +s)v2> B (T‘Uz +sv2) =T (vz) ts (vz)

For (8), that scalar multiplication distributes from the left over vector addition, we have this.

() ()= Con o) = Gatrn) = () = ()
o9 () = () = () = ()

and tenth conditions are also straightforward.

()= ()= ()

In a similar way, each R™ is a vector space with the usual operations of vector addition and scalar
multiplication. (In R!, we usually do not write the members as column vectors, i.e., we usually do not write
‘(w)’. Instead we just write ‘n’.)

The ninth

1.4 Example This subset of R? that is a plane through the origin

x
P={ly||z+y+2=0}
z

is a vector space if ‘+’ and -’ are interpreted in this way.

z1 T2 x1 + T2 T rT
il +ly2 ] =1yt r-ly|=1ry
21 29 21+ 29 z rz

The addition and scalar multiplication operations here are just the ones of R?, reused on its subset P. We
say that P inherits these operations from R®. This example of an addition in P

1 -1 0
1 ]1+10 =11
—2 1 -1

illustrates that P is closed under addition. We’ve added two vectors from P —that is, with the property
that the sum of their three entries is zero—and the result is a vector also in P. Of course, this example of
closure is not a proof of closure. To prove that P is closed under addition, take two elements of P

I I

(1 Y2
z1 z9
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(membership in P means that z1 + y1 + 21 = 0 and z2 + y2 + 22 = 0), and observe that their sum

X1 + T2
Y1+ Y2
21 + 29

is also in P since its entries add (z1 + z2) + (y1 +y2) + (21 + 22) = (T1 + y1 + 21) + (T2 + y2 + 22) to 0. To
show that P is closed under scalar multiplication, start with a vector from P

T

Y
b4

(so that  +y + z = 0) and then for r € R observe that the scalar multiple

x rr
r yl=1ry
z rz

satisfies that rz + ry +rz = r(x + y + 2) = 0. Thus the two closure conditions are satisfied. Verification of
the other conditions in the definition of a vector space are just as straightforward.

1.5 Example Example 1.3 shows that the set of all two-tall vectors with real entries is a vector space.
Example 1.4 gives a subset of an R” that is also a vector space. In contrast with those two, consider the set
of two-tall columns with entries that are integers (under the obvious operations). This is a subset of a vector
space, but it is not itself a vector space. The reason is that this set is not closed under scalar multiplication,
that is, it does not satisfy condition (6). Here is a column with integer entries, and a scalar, such that the

outcome of the operation
4 2
03:3) = (15)

is not a member of the set, since its entries are not all integers.

1.6 Example The singleton set

—~—
OO OO
——

is a vector space under the operations

+

OO OO
OO OO
o O OO
OO OO

0
0
0
0

that it inherits from R%.

A vector space must have at least one element, its zero vector. Thus a one-element vector space is the
smallest one possible.

1.7 Definition A one-element vector space is a trivial space.

Warning! The examples so far involve sets of column vectors with the usual operations. But vector
spaces need not be collections of column vectors, or even of row vectors. Below are some other types of
vector spaces. The term ‘vector space’ does not mean ‘collection of columns of reals’. It means something
more like ‘collection in which any linear combination is sensible’.
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1.8 Example Consider Ps = {ao + a17 + a27? + azz® | ap, - - .,as € R}, the set of polynomials of degree
three or less (in this book, we’ll take constant polynomials, including the zero polynomial, to be of degree
zero). It is a vector space under the operations

(ag + a1z + apx® + asx®) + (bo + by + box® + bz®)
= (ap + bo) + (a1 + b1)z + (as + b2)z* + (a3 + b3)2®

and
r-(ap + a1 + axx® + a3x®) = (rag) + (ra1)z + (raz)z? + (ras)z®

(the verification is easy). This vector space is worthy of attention because these are the polynomial operations
familiar from high school algebra. For instance, 3 - (1 — 2z + 3z? — 42%) — 2 - (2 = 3z + 2?2 — (1/2)2?) =
-1+ 72% — 1123,

Although this space is not a subset of any R”, there is a sense in which we can think of P3 as “the same”
as R*. If we identify these two spaces’s elements in this way

ag

a1
3 corresponds to

ag +a1x + az:v2 + aszx
as

then the operations also correspond. Here is an example of corresponding additions.

1 -2z +0z2 + 123 _12 ?, i’

+ 243z 4+ 72? - 42° corresponds to + =
o 0 7 7
3+ 1x+ Tx* — 3z 1 _4 _3

Things we are thinking of as “the same” add to “the same” sum. Chapter Three makes precise this idea of
vector space correspondence. For now we shall just leave it as an intuition.

1.9 Example The set Moy of 2x2 matrices with real number entries is a vector space under the natural
entry-by-entry operations.

a b (v )2 (@ +w b4z fa b)Y _ (ra rb
c d y z) \e+y d+z "\e d) " \re rd
As in the prior example, we can think of this space as “the same” as R?.

1.10 Example The set {f | f: N — R} of all real-valued functions of one natural number variable is a
vector space under the operations

(it f2) (n) = fi(n) + fa(n)  (r-f)(n) =rf(n)

so that if, for example, fi(n) = n? + 2sin(n) and fa(n) = —sin(n) + 0.5 then (fi +2f2) (n) = n? + 1.
We can view this space as a generalization of Example 1.3 —instead of 2-tall vectors, these functions are
like infinitely-tall vectors.

fin)=n?+1

1
; 2
5 corresponds to b

—_

0

W= O3

—

0

Addition and scalar multiplication are component-wise, as in Example 1.3. (We can formalize “infinitely-tall”
by saying that it means an infinite sequence, or that it means a function from N to R.)
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1.11 Example The set of polynomials with real coefficients
{ap + a1z + - -+ + apz™ | n € N and ag,...,a, € R}

makes a vector space when given the natural ‘+’

(a0 + a1z +--- 4+ anz™) + (bo + bz + - -- + bpz"™)
= (ap + bo) + (a1 + b))z +--- + (an + bp)z"
and ‘.
r-(ap + a1z + ...a,2") = (rag) + (ra1)z + ... (ray)z"™

This space differs from the space P3 of Example 1.8. This space contains not just degree three polynomials,
but degree thirty polynomials and degree three hundred polynomials, too. Each individual polynomial of
course is of a finite degree, but the set has no single bound on the degree of all of its members.

This example, like the prior one, can be thought of in terms of infinite-tuples. For instance, we can think
of 1+ 3z + 522 as corresponding to (1,3,5,0,0,...). However, don’t confuse this space with the one from
Example 1.10. Each member of this set has a bounded degree, so under our correspondence there are no

elements from this space matching (1,2,5,10, ...). The vectors in this space correspond to infinite-tuples
that end in zeroes.

1.12 Example The set {f | f: R — R} of all real-valued functions of one real variable is a vector space
under these.

(fi+ 12) (@) = fi(e) + o) (r-f) () =7 f()

The difference between this and Example 1.10 is the domain of the functions.

1.13 Example The set F = {acos6 + bsin6 | a,b € R} of real-valued functions of the real variable 6 is a
vector space under the operations

(a1 cos@ + by sinf) + (as cos @ + ba sinf) = (a1 + az) cos @ + (by + by) sin 6

and
r - (acosf + bsind) = (ra) cos + (rb) sin 6

inherited from the space in the prior example. (We can think of F' as “the same” as R? in that a cos 6+ bsin
corresponds to the vector with components a and b.)

1.14 Example The set
{f{RoR| d2—f+f:0}
' dx?
is a vector space under the, by now natural, interpretation.
(f+9)(2) =f@) +9(x) (r-f)(@)=rf(2)
In particular, notice that closure is a consequence:

&(f+9)
dxz?

f
dz?

rp+ELy

+(f+9) =( 12

and

2 2
D v en=rGt+p

of basic Calculus. This turns out to equal the space from the prior example —functions satisfying this
differential equation have the form a cos@ + bsin # —but this description suggests an extension to solutions
sets of other differential equations.
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1.15 Example The set of solutions of a homogeneous linear system in n variables is a vector space under
the operations inherited from R™. For closure under addition, if

U1 w1

both satisfy the condition that their entries add to 0 then v + w also satisfies that condition: ¢; (v1 +w1) +
cooF ep(vp +wy) = (rvr + -+ F cpvy) + (ciwr + -+ - + cuwy) = 0. The checks of the other conditions are
just as routine.

As we've done in those equations, we often omit the multiplication symbol ‘-’. We can distinguish
the multiplication in ‘civi’ from that in ‘rv’ since if both multiplicands are real numbers then real-real
multiplication must be meant, while if one is a vector then scalar-vector multiplication must be meant.

The prior example has brought us full circle since it is one of our motivating examples.

1.16 Remark Now, with some feel for the kinds of structures that satisfy the definition of a vector space,
we can reflect on that definition. For example, why specify in the definition the condition that 1-v = v but
not a condition that 0-v = 07

One answer is that this is just a definition — it gives the rules of the game from here on, and if you don’t
like it, put the book down and walk away.

Another answer is perhaps more satisfying. People in this area have worked hard to develop the right
balance of power and generality. This definition has been shaped so that it contains the conditions needed
to prove all of the interesting and important properties of spaces of linear combinations. As we proceed, we
shall derive all of the properties natural to collections of linear combinations from the conditions given in
the definition.

The next result is an example. We do not need to include these properties in the definition of vector
space because they follow from the properties already listed there.

1.17 Lemma In any vector space V, for any v € V and r € R, we have (1) 0-v =0, and (2) (-1-v)+v =0,
and (3) r-0=0.

Proor. For (1), note that v = (14+0)-v = v+ (0-v). Add to both sides the additive inverse of v, the vector
w such that w +v =0.

wt+v=w+v+0-v
0=04+0-v
0=0-v

The second item is easy: (—1-v) +v =(=1+4+1)-v =0-v = 0 shows that we can write ‘—v’ for the
additive inverse of v without worrying about possible confusion with (—1) - v.
For (3), thisr-0=1r-(0-0) = (r-0)-0=0 will do. QED

We finish with a recap.

Our study in Chapter One of Gaussian reduction led us to consider collections of linear combinations.
So in this chapter we have defined a vector space to be a structure in which we can form such combinations,
expressions of the form ¢; - vy + --- + ¢, - v, (subject to simple conditions on the addition and scalar
multiplication operations). In a phrase: vector spaces are the right context in which to study linearity.

Finally, a comment. From the fact that it forms a whole chapter, and especially because that chapter
is the first one, a reader could come to think that the study of linear systems is our purpose. The truth is,
we will not so much use vector spaces in the study of linear systems as we will instead have linear systems
start us on the study of vector spaces. The wide variety of examples from this subsection shows that the
study of vector spaces is interesting and important in its own right, aside from how it helps us understand
linear systems. Linear systems won’t go away. But from now on our primary objects of study will be vector
spaces.
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Exercises
1.18 Give the zero vector from each of these vector spaces.
(a) The space of degree three polynomials under the natural operations
(b) The space of 2x4 matrices
(c) The space {f:[0..1] - R | f is continuous}
(d) The space of real-valued functions of one natural number variable
v' 1.19 Find the additive inverse, in the vector space, of the vector.
(a) In Ps, the vector —3 — 2z + 2°.
1 -1
0 3 )

(b) In the space 2x2,
(c) In {ae® + be™ " | a,b € R}, the space of functions of the real variable z under the natural operations, the
vector 3e” —2e” ",
v' 1.20 Show that each of these is a vector space.
(a) The set of linear polynomials P; = {ao + a1z | a0, a1 € R} under the usual polynomial addition and scalar
multiplication operations.
(b) The set of 2x2 matrices with real entries under the usual matrix operations.
(c) The set of three-component row vectors with their usual operations.

(d) The set

L={ €R4|x+y—z+w=0}

S v 8

under the operations inherited from R?.
v" 1.21 Show that each of these is not a vector space. (Hint. Start by listing two members of each set.)
(a) Under the operations inherited from R?, this set

{(y) ER’ |z+y+2z=1}

z
(b) Under the operations inherited from R?, this set

x
{(,y) €R3 |x2+y2+z2=1}

z

{(Z i) |a,b,cER}

(d) Under the usual polynomial operations,
{ao + a1z + asz” | a0, a1,a2 € RT}

(c) Under the usual matrix operations,

where R* is the set of reals greater than zero
(e) Under the inherited operations,

{(z) € R? |w+3y=4and2x—y=3and6m+4y=10}

1.22 Define addition and scalar multiplication operations to make the complex numbers a vector space over R.
v' 1.23 Is the set of rational numbers a vector space over R under the usual addition and scalar multiplication
operations?
1.24 Show that the set of linear combinations of the variables x,y, z is a vector space under the natural addition
and scalar multiplication operations.
1.25 Prove that this is not a vector space: the set of two-tall column vectors with real entries subject to these

operations.
1 T2 Tr1 — X2 Zz rr
+ = T =

1.26 Prove or disprove that R® is a vector space under these operations.

T T2 0 T re
o 1)+ ()= ) = -()-(2)
21 22 0 z rz



Section I. Definition of Vector Space 11

T1 T2 0 T 0
(b) <y1> + (yz) = (0) and r (y) = (0)
Z21 Z2 0 V4 0
v 1.27 For each, decide if it is a vector space; the intended operations are the natural ones.

(a) The diagonal 2x2 matrices
a 0
{(0 b) | a,b € R}

{( ¢ “”)|m,yeR}

(b) This set of 2x2 matrices

z+y Y
(c) This set
x

{ Z €R4|:1:+y+w:1}

w

(d) The set of functions {f: R — R | df /dz + 2f = 0}
(e) The set of functions {f: R - R | df [dx +2f = 1}
v' 1.28 Prove or disprove that this is a vector space: the real-valued functions f of one real variable such that
f(7)=0.
v 1.29 Show that the set R* of positive reals is a vector space when ‘x 4 3’ is interpreted to mean the product of
and y (so that 2+ 3 is 6), and ‘r - 2’ is interpreted as the r-th power of z.
1.30 Is {(z,y) | z,y € R} a vector space under these operations?
(a) (z1,91) + (x2,92) = (x1 + 22,51 +2) and 7 - (2,y) = (rz,y)
(b) (#1,51) + (T2, ¥2) = (#1 + @2,91 +y2) and 7 - (z,y) = (rz,0)
1.31 Prove or disprove that this is a vector space: the set of polynomials of degree greater than or equal to two,
along with the zero polynomial.
1.32 At this point “the same” is only an intuition, but nonetheless for each vector space identify the k for which
the space is “the same” as R*.
(a) The 2x3 matrices under the usual operations
(b) The nxm matrices (under their usual operations)

(c) This set of 2x 2 matrices
{(Z 2) | a,b,c € R}

{(‘; 2) |a+b+c=0}

v' 1.33 Using + to represent vector addition and - for scalar multiplication, restate the definition of vector space.
v’ 1.34 Prove these.
(a) Any vector is the additive inverse of the additive inverse of itself.
(b) Vector addition left-cancels: if v, s,t € V then v+ s = v + ¢ implies that s = t.
1.35 The definition of vector spaces does not explicitly say that 0 + v = v (it instead says that v + 0 = v). Show
that it must nonetheless hold in any vector space.

(d) This set of 2x2 matrices

v' 1.36 Prove or disprove that this is a vector space: the set of all matrices, under the usual operations.
1.37 In a vector space every element has an additive inverse. Can some elements have two or more?
1.38 (a) Prove that every point, line, or plane thru the origin in R® is a vector space under the inherited
operations.
(b) What if it doesn’t contain the origin?
v 1.39 Using the idea of a vector space we can easily reprove that the solution set of a homogeneous linear system
has either one element or infinitely many elements. Assume that v € V is not 0.
(a) Prove that r-v =0 if and only if r = 0.
(b) Prove that r1 -v =72 - v if and only if ry = rs.
(c) Prove that any nontrivial vector space is infinite.
(d) Use the fact that a nonempty solution set of a homogeneous linear system is a vector space to draw the
conclusion.
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1.40 Is this a vector space under the natural operations: the real-valued functions of one real variable that are
differentiable?

1.41 A wector space over the compler numbers C has the same definition as a vector space over the reals except
that scalars are drawn from C instead of from R. Show that each of these is a vector space over the complex
numbers. (Recall how complex numbers add and multiply: (ao + a1?) + (bo + b1%) = (ao + bo) + (a1 + b1)i and
((10 + ali)(bo + bll) = (aobo — albl) =+ (a0b1 + albo)i.)

(a) The set of degree two polynomials with complex coefficients
(b) This set

b

1.42 Find a property shared by all of the R"’s not listed as a requirement for a vector space.

{(0 ((;) |a,b€Canda+b=0+0i}

v 1.43 (a) Prove that a sum of four vectors v1,...,v4 € V can be associated in any way without changing the
result.
((v1 +v2) +v3) +va = (v1 + (v2 + v3)) +v4
= (v1 +v2) + (v3 + v4)
=wv1 + ((v2 + v3) + v4)
=wv1 + (v2 + (v3 + v4))
This allows us to simply write ‘vy + v2 + vs + v4’ without ambiguity.

(b) Prove that any two ways of associating a sum of any number of vectors give the same sum. (Hint. Use
induction on the number of vectors.)
1.44 For any vector space, a subset that is itself a vector space under the inherited operations (e.g., a plane
through the origin inside of R?) is a subspace.
(a) Show that {ao + a1z + asx” | ao + a1 + az = 0} is a subspace of the vector space of degree two polynomials.
(b) Show that this is a subspace of the 2x 2 matrices.

{(Z g) la+b=0}

(c) Show that a nonempty subset S of a real vector space is a subspace if and only if it is closed under linear
combinations of pairs of vectors: whenever ci,c2 € R and s1,$2 € S then the combination civ1 4 cavz is in S.

1.2 Subspaces and Spanning Sets

One of the examples that led us to introduce the idea of a vector space was the solution set of a homogeneous
system. For instance, we’ve seen in Example 1.4 such a space that is a planar subset of R®. There, the vector
space R? contains inside it another vector space, the plane.

2.1 Definition For any vector space, a subspace is a subset that is itself a vector space, under the inherited
operations.

2.2 Example The plane from the prior subsection,

X
P={ly]||z+y+2=0}
z

is a subspace of R3. As specified in the definition, the operations are the ones that are inherited from the
larger space, that is, vectors add in P as they add in R3

Al Io X1 + T2
yi |+ ly2 ) =1 yL+y
21 23 21+ 22

and scalar multiplication is also the same as it is in R3. To show that P is a subspace, we need only note
that it is a subset and then verify that it is a space. Checking that P satisfies the conditions in the definition
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of a vector space is routine. For instance, for closure under addition, just note that if the summands satisfy
that 1 + y1 + 21 = 0 and 22 + y2 + 22 = 0 then the sum satisfies that (21 + 22) + (y1 + y2) + (21 + 22) =
(1‘1 + 11 +21)+(IE2 +y2+z2) =0.

2.3 Example The z-axis in R? is a subspace where the addition and scalar multiplication operations are

the inherited ones.
x1 n T2\ _ (X1 + X2 fz\ _(rz
0 0/~ o "o/ T \o

As above, to verify that this is a subspace, we simply note that it is a subset and then check that it
satisfies the conditions in definition of a vector space. For instance, the two closure conditions are satisfied:
(1) adding two vectors with a second component of zero results in a vector with a second component of zero,
and (2) multiplying a scalar times a vector with a second component of zero results in a vector with a second
component of zero.

2.4 Example Another subspace of R? is

its trivial subspace.

Any vector space has a trivial subspace {0}. At the opposite extreme, any vector space has itself for a
subspace. These two are the improper subspaces. Other subspaces are proper.

2.5 Example The condition in the definition requiring that the addition and scalar multiplication opera-
tions must be the ones inherited from the larger space is important. Consider the subset {1} of the vector
space R'. Under the operations 1+1 =1 and -1 = 1 that set is a vector space, specifically, a trivial space.
But it is not a subspace of R! because those aren’t the inherited operations, since of course R! has 1+1 = 2.

2.6 Example All kinds of vector spaces, not just R”’s, have subspaces. The vector space of cubic polynomi-
als {a + bz + cx® + dz® | a,b,c,d € R} has a subspace comprised of all linear polynomials {m + nz | m,n € R}.

2.7 Example Another example of a subspace not taken from an R" is one from the examples following
the definition of a vector space. The space of all real-valued functions of one real variable f: R — R has a
subspace of functions satisfying the restriction (d? f/dz?) + f = 0.

2.8 Example Being vector spaces themselves, subspaces must satisfy the closure conditions. The set Rt
is not a subspace of the vector space R! because with the inherited operations it is not closed under scalar
multiplication: if v = 1 then —1-v ¢ RT.

The next result says that Example 2.8 is prototypical. The only way that a subset can fail to be a
subspace (if it is nonempty and the inherited operations are used) is if it isn’t closed.

2.9 Lemma For a nonempty subset S of a vector space, under the inherited operations, the following are
equivalent statements.*
(1) S is a subspace of that vector space
(2) S is closed under linear combinations of pairs of vectors: for any vectors s;,s2 € S and scalars ry,79
the vector r1s1 + 1985 isin S
(3) S is closed under linear combinations of any number of vectors: for any vectors si1,...,s, € S and
scalars r1,...,T, the vector 1181 + -+ +rps, isin S.

Briefly, the way that a subset gets to be a subspace is by being closed under linear combinations.
Proor. ‘The following are equivalent’ means that each pair of statements are equivalent.

=02 @=0 =0

*More information on equivalence of statements is in the appendix.
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We will show this equivalence by establishing that (1) = (3) = (2) = (1). This strategy is suggested
by noticing that (1) = (3) and (3) = (2) are easy and so we need only argue the single implication
2 = 1.

For that argument, assume that S is a nonempty subset of a vector space V and that S is closed under
combinations of pairs of vectors. We will show that S is a vector space by checking the conditions.

The first item in the vector space definition has five conditions. First, for closure under addition, if
81,82 € Sthen s;+s5 € S, as sy +82 = 1-51+1-52. Second, for any s1,s2 € S, because addition is inherited
from V, the sum s; + s2 in S equals the sum s; + s2 in V, and that equals the sum s2 + s1 in V' (because V
is a vector space, its addition is commutative), and that in turn equals the sum s2 + s1 in S. The argument
for the third condition is similar to that for the second. For the fourth, consider the zero vector of V' and
note that closure of S under linear combinations of pairs of vectors gives that (where s is any member of the
nonempty set S) 0-s+0-s=0is in S; showing that 0 acts under the inherited operations as the additive
identity of S is easy. The fifth condition is satisfied because for any s € S, closure under linear combinations
shows that the vector 0-0 4+ (—1) - s is in S; showing that it is the additive inverse of s under the inherited
operations is routine.

The checks for item (2) are similar and are saved for Exercise 32. QED

We usually show that a subset is a subspace with (2) = (1).

2.10 Remark At the start of this chapter we introduced vector spaces as collections in which linear
combinations are “sensible”. The above result speaks to this.

The vector space definition has ten conditions but eight of them —the conditions not about closure —
simply ensure that referring to the operations as an ‘addition’ and a ‘scalar multiplication’ is sensible.
The proof above checks that these eight are inherited from the surrounding vector space provided that the
nonempty set S satisfies Theorem 2.9’s statement (2) (e.g., commutativity of addition in S follows right from
commutativity of addition in V). So, in this context, this meaning of “sensible” is automatically satisfied.

In assuring us that this first meaning of the word is met, the result draws our attention to the second
meaning of “sensible”. It has to do with the two remaining conditions, the closure conditions. Above, the two
separate closure conditions inherent in statement (1) are combined in statement (2) into the single condition
of closure under all linear combinations of two vectors, which is then extended in statement (3) to closure
under combinations of any number of vectors. The latter two statements say that we can always make sense
of an expression like r1 81 + r2s2, without restrictions on the r’s —such expressions are “sensible” in that the
vector described is defined and is in the set S.

This second meaning suggests that a good way to think of a vector space is as a collection of unrestricted
linear combinations. The next two examples take some spaces and describe them in this way. That is, in
these examples we parametrize, just as we did in Chapter One to describe the solution set of a homogeneous
linear system.

2.11 Example This subset of R?

T
S={ly]|z-2y+2=0}
z

is a subspace under the usual addition and scalar multiplication operations of column vectors (the check
that it is nonempty and closed under linear combinations of two vectors is just like the one in Example 2.2).
To parametrize, we can take z — 2y + z = 0 to be a one-equation linear system and expressing the leading
variable in terms of the free variables z = 2y — z.

2y —z 2 -1
S={| v ly,zeRy={y[1]+=z| 0 y,2 € R}
Z 0 1

Now the subspace is described as the collection of unrestricted linear combinations of those two vectors. Of
course, in either description, this is a plane through the origin.
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2.12 Example This is a subspace of the 2x 2 matrices
a 0O
L—{(b c>|a+b+c—0}

(checking that it is nonempty and closed under linear combinations is easy). To parametrize, express the
condition as a = —b —c.

L:{<_bb_c 2)|b,ceR}:{b(_11 8)+c<_01 (1))|b,ce]R}

As above, we’ve described the subspace as a collection of unrestricted linear combinations (by coincidence,
also of two elements).

Parametrization is an easy technique, but it is important. We shall use it often.

2.13 Definition The span (or linear closure) of a nonempty subset S of a vector space is the set of all
linear combinations of vectors from S.

(S) = {c181 + -+ + cnsn | €1,---,¢n € Rand s9,...,5, € S}
The span of the empty subset of a vector space is the trivial subspace.

No notation for the span is completely standard. The square brackets used here are common, but so are
‘span(S)’ and ‘sp(S)’.

2.14 Remark In Chapter One, after we showed that the solution set of a homogeneous linear system can
be written as {¢181 + -+ - + ¢k Sk | c1,--.,¢; € R}, we described that as the set ‘generated’ by the 8’s. We
now have the technical term; we call that the ‘span’ of the set {81,...,8:}-

Recall also the discussion of the “tricky point” in that proof. The span of the empty set is defined to
be the set {0} because we follow the convention that a linear combination of no vectors sums to 0. Besides,
defining the empty set’s span to be the trivial subspace is a convienence in that it keeps results like the next
one from having annoying exceptional cases.

2.15 Lemma In a vector space, the span of any subset is a subspace.

Proor. Call the subset S. If S is empty then by definition its span is the trivial subspace. If S is not empty
then by Lemma 2.9 we need only check that the span (S) is closed under linear combinations. For a pair of
vectors from that span, v =c¢181 + -+ + ¢Sy and W = cpq1Sp+1 + -+ + CmSm, a linear combination

p-(cisi+ -+ cnsn) + 1 (Cot1Snt1 + -+ + CmSm)
=pc181 + -+ PCpSp +rept18pt1 + - FTrCMSm

(p, r scalars) is a linear combination of elements of S and so is in (S) (possibly some of the s;’s forming v
equal some of the s;’s from w, but it does not matter). QED

The converse of the lemma, holds: any subspace is the span of some set, because a subspace is obviously
the span of the set of its members. Thus a subset of a vector space is a subspace if and only if it is a
span. This fits the intuition that a good way to think of a vector space is as a collection in which linear
combinations are sensible.

Taken together, Lemma 2.9 and Lemma 2.15 show that the span of a subset S of a vector space is the
smallest subspace containing all the members of S.

2.16 Example In any vector space V, for any vector v, the set {r-v | r € R} is a subspace of V. For
instance, for any vector v € R?, the line through the origin containing that vector, {kv | k € R} is a subspace
of R3. This is true even when v is the zero vector, in which case the subspace is the degenerate line, the
trivial subspace.



16 Chapter Two. Vector Spaces

2.17 Example The span of this set is all of R2.

)2

To check this we must show that any member of R? is a linear combination of these two vectors. So we
ask: for which vectors (with real components z and y) are there scalars ¢; and ¢o such that this holds?

o)== ()= )

Gauss’ method

c1t+e=x -—-p+ c1+ = T
1 2 p1T.P2 1 2
c1—cr=y —2co=—-x+y

with back substitution gives co = (x — y)/2 and ¢; = (2 + y)/2. These two equations show that for any z
and y that we start with, there are appropriate coefficients ¢; and ¢ making the above vector equation true.
For instance, for x = 1 and y = 2 the coefficients c; = —1/2 and ¢; = 3/2 will do. That is, any vector in R?
can be written as a linear combination of the two given vectors.

Since spans are subspaces, and we know that a good way to understand a subspace is to parametrize its
description, we can try to understand a set’s span in that way.

2.18 Example Consider, in Py, the span of the set {3z — 2%, 2x}. By the definition of span, it is the set of
unrestricted linear combinations of the two {c1(3z — z2) + c2(27) | ¢1,¢2 € R}. Clearly polynomials in this
span must have a constant term of zero. Is that necessary condition also sufficient?

We are asking: for which members ay2? +a;x + ag of Py are there ¢; and ¢ such that ayz? + a1z +ag =
c1(3z — 2%) + ¢2(2x)? Since polynomials are equal if and only if their coefficients are equal, we are looking
for conditions on az, a;, and ag satisfying these.

—C1 =as
3c1 +2c =aq
0= ao
Gauss’ method gives that ¢; = —ag, ca = (3/2)az + (1/2)a;, and 0 = ag. Thus the only condition on

polynomials in the span is the condition that we knew of —as long as ag = 0, we can give appropriate
coefficients ¢; and ca to describe the polynomial ag + a;z + a22? as in the span. For instance, for the
polynomial 0 — 4z + 32, the coefficients ¢; = —3 and ¢2 = 5/2 will do. So the span of the given set is
{a1z + axz? | ai,as € R}.

This shows, incidentally, that the set {z,z?} also spans this subspace. A space can have more than
one spanning set. Two other sets spanning this subspace are {z,z?, —z + 22*} and {z,z + 2%,z + 227,... }.
(Naturally, we usually prefer to work with spanning sets that have only a few members.)

2.19 Example These are the subspaces of R? that we now know of, the trivial subspace, the lines through
the origin, the planes through the origin, and the whole space (of course, the picture shows only a few of the
infinitely many subspaces). In the next section we will prove that R® has no other type of subspaces, so in
fact this picture shows them all.
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The subsets are described as spans of sets, using a minimal number of members, and are shown connected to
their supersets. Note that these subspaces fall naturally into levels —planes on one level, lines on another,
etc. —according to how many vectors are in a minimal-sized spanning set.

So far in this chapter we have seen that to study the properties of linear combinations, the right setting
is a collection that is closed under these combinations. In the first subsection we introduced such collections,
vector spaces, and we saw a great variety of examples. In this subsection we saw still more spaces, ones
that happen to be subspaces of others. In all of the variety we’ve seen a commonality. Example 2.19 above
brings it out: vector spaces and subspaces are best understood as a span, and especially as a span of a small
number of vectors. The next section studies spanning sets that are minimal.

Exercises

v' 2.20 Which of these subsets of the vector space of 2x2 matrices are subspaces under the inherited operations? For
each one that is a subspace, parametrize its description. For each that is not, give a condition that fails.

(a){(g 2>|a,beR}
(b){(‘O‘ g)|a+b=0}
(c){(g 2>|a+b=5}

o

(d) {(g b) la+b=0,ceR}

v 2.21 Is this a subspace of Pa: {ao + a1z + a2x® | ag + 2a1 + a2 = 4}? If it is then parametrize its description.
v' 2.22 Decide if the vector lies in the span of the set, inside of the space.

2 1\ /0
@ (2). 1(0). (o)
1 o/ \1

(b) z — 23, {z®,2¢ + 2%,z + 2°}, in P;

0 1 1 0\ (2 0),.
() (4 2)’{<1 1)’(2 3)}"“MM

2.23 Which of these are members of the span ({cos® z,sin® }) in the vector space of real-valued functions of one
real variable?

(@) f(@)=1 (b) f(x)=3+2” (c) f(x)=sinz (d) f(x)= cos(2a)
v 2.24 Which of these sets spans R®? That is, which of these sets has the property that any three-tall vector can
be expressed as a suitable linear combination of the set’s elements?

SHHO GO D6 =006 0
()60
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v’ 2.25 Parametrize each subspace’s description. Then express each subspace as a span.
(a) The subset {(a b c) | a — ¢ = 0} of the three-wide row vectors

(b) This subset of Moy
a b
{<c d) | a+d=0}

{(Z Z) |2a—c—d=0anda+3b=0}

(c) This subset of Moy

(d) The subset {a + bz + cz® | a—2b+c=0}of P3
(e) The subset of P2 of quadratic polynomials p such that p(7) =0

v 2.26 Find a set to span the given subspace of the given space. (Hint. Parametrize each.)
(a) the zz-plane in R

(b) {<y> |3z +2+2=0}in R

X
(o) { Z |22 +y+w=0andy+2 =0} in R*

w
(d) {ao + a1z + a2z + azz® | ao + a1 =0 and as — as = 0} in Ps
(e) The set P4 in the space Pa
(f) Moz in Moo

2.27 Is R? a subspace of R®?

v 2.28 Decide if each is a subspace of the vector space of real-valued functions of one real variable.

(a) The even functions {f: R - R | f(—z) = f(z) for all z}. For example, two members of this set are fi(z) =
z? and fo(z) = cos(z).
(b) The odd functions {f: R -+ R | f(—z) = —f(x) for all }. Two members are f3(z) = 2> and fa(z) = sin(z).

2.29 Example 2.16 says that for any vector v that is an element of a vector space V, the set {r-v | r€R}is a
subspace of V. (This is of course, simply the span of the singleton set {v}.) Must any such subspace be a proper
subspace, or can it be improper?

2.30 An example following the definition of a vector space shows that the solution set of a homogeneous linear
system is a vector space. In the terminology of this subsection, it is a subspace of R™ where the system has n
variables. What about a non-homogeneous linear system; do its solutions form a subspace (under the inherited
operations)?

2.31 Example 2.19 shows that R® has infinitely many subspaces. Does every nontrivial space have infinitely many
subspaces?

2.32 Finish the proof of Lemma 2.9.

2.33 Show that each vector space has only one trivial subspace.

v 2.34 Show that for any subset S of a vector space, the span of the span equals the span ((S)) = (S). (Hint.
Members of (S) are linear combinations of members of S. Members of ((S)) are linear combinations of linear
combinations of members of S.)

2.35 All of the subspaces that we've seen use zero in their description in some way. For example, the subspace
in Example 2.3 consists of all the vectors from R? with a second component of zero. In contrast, the collection
of vectors from R? with a second component of one does not form a subspace (it is not closed under scalar
multiplication). Another example is Example 2.2, where the condition on the vectors is that the three components
add to zero. If the condition were that the three components add to one then it would not be a subspace (again,
it would fail to be closed). This exercise shows that a reliance on zero is not strictly necessary. Consider the set

x
{(y) |z+y+2z=1}
z
under these operations.

1 T2 r1+x2— 1 T re—r+1
n|+ly2 )= Y1+ Y2 rly|= Y
21 22 21+ 22 z rz

(a) Show that it is not a subspace of R®. (Hint. See Example 2.5).
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(b) Show that it is a vector space. Note that by the prior item, Lemma 2.9 can not apply.
(c) Show that any subspace of R® must pass through the origin, and so any subspace of R* must involve zero
in its description. Does the converse hold? Does any subset of R® that contains the origin become a subspace
when given the inherited operations?
2.36 We can give a justification for the convention that the sum of zero-many vectors equals the zero vector.
Consider this sum of three vectors v1 + v2 + vs.
(a) What is the difference between this sum of three vectors and the sum of the first two of these three?
(b) What is the difference between the prior sum and the sum of just the first one vector?
(c) What should be the difference between the prior sum of one vector and the sum of no vectors?
(d) So what should be the definition of the sum of no vectors?
2.37 Is a space determined by its subspaces? That is, if two vector spaces have the same subspaces, must the two
be equal?
2.38 (a) Give a set that is closed under scalar multiplication but not addition.
(b) Give a set closed under addition but not scalar multiplication.
(c) Give a set closed under neither.
2.39 Show that the span of a set of vectors does not depend on the order in which the vectors are listed in that
set.
2.40 Which trivial subspace is the span of the empty set? Is it

0
{(0)} CR’ or {0+0z}CP,
0
or some other subspace?
2.41 Show that if a vector is in the span of a set then adding that vector to the set won’t make the span any
bigger. Is that also ‘only if’?
v' 2.42 Subspaces are subsets and so we naturally consider how ‘is a subspace of’ interacts with the usual set
operations.
(a) If A, B are subspaces of a vector space, must AN B be a subspace? Always? Sometimes? Never?
(b) Must AU B be a subspace?
(c) If A is a subspace, must its complement be a subspace?
(Hint. Try some test subspaces from Example 2.19.)
v 2.43 Does the span of a set depend on the enclosing space? That is, if W is a subspace of V and S is a subset of
W (and so also a subset of V'), might the span of S in W differ from the span of S in V'?
2.44 Ts the relation ‘is a subspace of’ transitive? That is, if V' is a subspace of W and W is a subspace of X, must
V be a subspace of X?
v 2.45 Because ‘span of’ is an operation on sets we naturally consider how it interacts with the usual set opera-
tions.
(a) If S C T are subsets of a vector space, is (S) C (T')? Always? Sometimes? Never?
(b) If S, T are subsets of a vector space, is (SUT) = (S) U (T')?
(c) If S, T are subsets of a vector space, is (SNT) = (S)N(T)?
(d) Is the span of the complement equal to the complement of the span?
2.46 Reprove Lemma 2.15 without doing the empty set separately.
2.47 Find a structure that is closed under linear combinations, and yet is not a vector space. (Remark. This is a
bit of a trick question.)
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II Linear Independence

The prior section shows that a vector space can be understood as an unrestricted linear combination of
some of its elements — that is, as a span. For example, the space of linear polynomials {a + bz | a,be R} is
spanned by the set {1, z}. The prior section also showed that a space can have many sets that span it. The
space of linear polynomials is also spanned by {1,2z} and {1, z, 2z}.

At the end of that section we described some spanning sets as ‘minimal’; but we never precisely defined
that word. We could take ‘minimal’ to mean one of two things. We could mean that a spanning set is
minimal if it contains the smallest number of members of any set with the same span. With this meaning
{1,z,2z} is not minimal because it has one member more than the other two. Or we could mean that a
spanning set is minimal when it has no elements that can be removed without changing the span. Under this
meaning {1, z,2z} is not minimal because removing the 2z and getting {1,z} leaves the span unchanged.

The first sense of minimality appears to be a global requirement, in that to check if a spanning set is
minimal we seemingly must look at all the spanning sets of a subspace and find one with the least number
of elements. The second sense of minimality is local in that we need to look only at the set under discussion
and consider the span with and without various elements. For instance, using the second sense, we could
compare the span of {1, z, 2z} with the span of {1, z} and note that the 2z is a “repeat” in that its removal
doesn’t shrink the span.

In this section we will use the second sense of ‘minimal spanning set’ because of this technical convenience.
However, the most important result of this book is that the two senses coincide; we will prove that in the
section after this one.

I1.1 Definition and Examples

We first characterize when a vector can be removed from a set without changing the span of that set.

1.1 Lemma Where S is a subset of a vector space V,
(S) =(SU{v}) ifandonlyif v € (S)
for any v € V.

Proor. The left to right implication is easy. If (S) = (S U {v}) then, since v € (S U{v}), the equality of the
two sets gives that v € (S).

For the right to left implication assume that v € (S) to show that (S) = (S U {v}) by mutual inclusion.
The inclusion (S} C (S U {v}) is obvious. For the other inclusion (S) D (S U {v}), write an element of
(SU{v}) as dov +dys1 + - -+ dySm and substitute v’s expansion as a linear combination of members of the
same set do(coto + - - + ¢cxtg) + diS1 + - - + dp S This is a linear combination of linear combinations and
so distributing dp results in a linear combination of vectors from S. Hence each member of (S U {v}) is also

a member of (S). QED
1.2 Example In R, where
1 0 2
v=10] wva=|1 vg= 11
0 0 0

the spans ({v1,v2}) and ({v1,v2,v3}) are equal since vs is in the span ({v1,va2}).

The lemma says that if we have a spanning set then we can remove a v to get a new set .S with the same
span if and only if v is a linear combination of vectors from S. Thus, under the second sense described above,
a spanning set is minimal if and only if it contains no vectors that are linear combinations of the others in
that set. We have a term for this important property.

1.3 Definition A subset of a vector space is linearly independent if none of its elements is a linear
combination of the others. Otherwise it is linearly dependent.
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Here is an important observation: although this way of writing one vector as a combination of the others
S0 =c181 +C282+ -+ CnSp

visually sets s¢ off from the other vectors, algebraically there is nothing special in that equation about sg.
For any s; with a coefficient ¢; that is nonzero, we can rewrite the relationship to set off s;.

si = (1/ci)so + (—c1/ci)s1 + -+ + (—cn/ci)sn

When we don’t want to single out any vector by writing it alone on one side of the equation we will instead
say that sg,s1,...,8, are in a linear relationship and write the relationship with all of the vectors on the
same side. The next result rephrases the linear independence definition in this style. It gives what is usually
the easiest way to compute whether a finite set is dependent or independent.

1.4 Lemma A subset S of a vector space is linearly independent if and only if for any distinct s1,...,8, € S
the only linear relationship among those vectors

181+ +cpsp, =0 C1,---,¢n €R
is the trivial one: ¢; =0,..., ¢, =0.

Proor. This is a direct consequence of the observation above.

If the set S is linearly independent then no vector s; can be written as a linear combination of the other
vectors from S so there is no linear relationship where some of the s’s have nonzero coefficients. If S is not
linearly independent then some s; is a linear combination s; = ¢181 + -+ -+ ¢;j—18;—1 + Ci+1Si+1 ++ - -+ CpSp Of
other vectors from S, and subtracting s; from both sides of that equation gives a linear relationship involving
a nonzero coefficient, namely the —1 in front of s;. QED

1.5 Example In the vector space of two-wide row vectors, the two-element set {(40 15) , (—50 25)} is
linearly independent. To check this, set

c1- (40 15) +cp- (=50 25)=(0 0)
and solving the resulting system

40¢1 — 50c2 =0 7(15/4_0){)14-/)2 40¢; — 50c =0
15¢1 + 25¢2 =0 (175/4)62 =0

shows that both ¢; and ¢o are zero. So the only linear relationship between the two given row vectors is the
trivial relationship.
In the same vector space, {(40 15),(20 7.5)} is linearly dependent since we can satisfy

¢ (40 15) +cr- (20 7.5)=(0 0)
with ¢; =1 and ¢3 = —2.

1.6 Remark Recall the Statics example that began this book. We first set the unknown-mass objects at
40 cm and 15 cm and got a balance, and then we set the objects at —50 cm and 25 cm and got a balance.
With those two pieces of information we could compute values of the unknown masses. Had we instead
first set the unknown-mass objects at 40 cm and 15 cm, and then at 20 cm and 7.5 cm, we would not
have been able to compute the values of the unknown masses (try it). Intuitively, the problem is that the
(20 7.5) information is a “repeat” of the (40 15) information—that is, (20 7.5) is in the span of the
set {(40 15)} —and so we would be trying to solve a two-unknowns problem with what is essentially one
piece of information.
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1.7 Example The set {1+ z,1 — 2} is linearly independent in Ps, the space of quadratic polynomials with
real coefficients, because

04+0z+0z% =ci(1+ ) +c2(1 —z) = (c1 +¢2) + (c1 — ¢2)z + 022
gives

C1+C2:0 —p1t+p2 C1 + 62:0
61—02:0 262:0

since polynomials are equal only if their coefficients are equal. Thus, the only linear relationship between
these two members of Py is the trivial one.

1.8 Example In R?, where

3 2 4
v = 4 Vg = 9 V3 = 18
5 2 4

the set S = {v1,v2,v3} is linearly dependent because this is a relationship
O-v14+2-v5—1-v3=0
where not all of the scalars are zero (the fact that some of the scalars are zero doesn’t matter).

1.9 Remark That example illustrates why, although Definition 1.3 is a clearer statement of what indepen-
dence is, Lemma 1.4 is more useful for computations. Working straight from the definition, someone trying
to compute whether S is linearly independent would start by setting v; = cove + c3vs and concluding that
there are no such ¢z and ¢3. But knowing that the first vector is not dependent on the other two is not
enough. This person would have to go on to try v2 = civ1 + ¢c3vs to find the dependence ¢; =0, ¢z = 1/2.
Lemma 1.4 gets the same conclusion with only one computation.

1.10 Example The empty subset of a vector space is linearly independent. There is no nontrivial linear
relationship among its members as it has no members.

1.11 Example In any vector space, any subset containing the zero vector is linearly dependent. For
example, in the space P2 of quadratic polynomials, consider the subset {1 + z,z + x2,0}.

One way to see that this subset is linearly dependent is to use Lemma 1.4: we have 0-v1 +0-v2+1-0 =0,
and this is a nontrivial relationship as not all of the coefficients are zero. Another way to see that this subset
is linearly dependent is to go straight to Definition 1.3: we can express the third member of the subset as
a linear combination of the first two, namely, civ; + covs = 0 is satisfied by taking ¢; = 0 and ¢c2 = 0 (in
contrast to the lemma, the definition allows all of the coefficients to be zero).

(There is still another way to see that this subset is dependent that is subtler. The zero vector is equal
to the trivial sum, that is, it is the sum of no vectors. So in a set containing the zero vector, there is an
element that can be written as a combination of a collection of other vectors from the set, specifically, the
zero vector can be written as a combination of the empty collection.)

The above examples, especially Example 1.5, underline the discussion that begins this section. The
next result says that given a finite set, we can produce a linearly independent subset by discarding what
Remark 1.6 calls “repeats”.

1.12 Theorem In a vector space, any finite subset has a linearly independent subset with the same span.

Proor. If the set S = {s1,...,8,} is linearly independent then S itself satisfies the statement, so assume
that it is linearly dependent.

By the definition of dependence, there is a vector s; that is a linear combination of the others. Call that
vector v;. Discard it — define the set S; = S — {v1}. By Lemma 1.1, the span does not shrink (S;) = (5).

Now, if S; is linearly independent then we are finished. Otherwise iterate the prior paragraph: take
a vector v that is a linear combination of other members of S; and discard it to derive Sy = Sy — {v2}
such that (S2) = (S1). Repeat this until a linearly independent set S; appears; one must appear eventually
because S is finite and the empty set is linearly independent. (Formally, this argument uses induction on 7,
the number of elements in the starting set. Exercise 37 asks for the details.) QED
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1.13 Example This set spans R3.

1 0 1 0 3
S={{o}),{2),(2],{-1],13])}
0 0 0 1 0
Looking for a linear relationship
1 0 1 0 3 0
C1 0]+ C2 2| + C3 2]+ Cq -1+ Cs 31 =10
0 0 0 1 0 0

gives a three equations/five unknowns linear system whose solution set can be parametrized in this way.

C1 -1 -3
Co -1 -3/2
{les|=cs| 1 |+ecs 0 |03,C5€R}
C4 0 0
Cs 0 1

So S is linearly dependent. Setting c3 = 0 and ¢z = 1 shows that the fifth vector is a linear combination of
the first two. Thus, Lemma 1.1 says that discarding the fifth vector

1 0 1 0
Slz{ 01,12),({2]).[-1 }
0 0 0 1

leaves the span unchanged (S1) = (S). Now, the third vector of S is a linear combination of the first two
and we get

1\ /0 0
Ss={[o],[2],[-1]}
0o/ \o 1

with the same span as S;, and therefore the same span as S, but with one difference. The set S» is linearly
independent (this is easily checked), and so discarding any of its elements will shrink the span.

Theorem 1.12 describes producing a linearly independent set by shrinking, that is, by taking subsets. We
finish this subsection by considering how linear independence and dependence, which are properties of sets,
interact with the subset relation between sets.

1.14 Lemma Any subset of a linearly independent set is also linearly independent. Any superset of a
linearly dependent set is also linearly dependent.

Proor. This is clear. QED

Restated, independence is preserved by subset and dependence is preserved by superset.

Those are two of the four possible cases of interaction that we can consider. The third case, whether linear
dependence is preserved by the subset operation, is covered by Example 1.13, which gives a linearly dependent
set S with a subset S; that is linearly dependent and another subset Sy that is linearly independent.

That leaves one case, whether linear independence is preserved by superset. The next example shows
what can happen.

1.15 Example In each of these three paragraphs the subset S is linearly independent.

For the set
1

s={|o]}
0

the span (S) is the z axis. Here are two supersets of S, one linearly dependent and the other linearly
independent.
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1 -3 1 0
dependent: {{0],| 0 |} independent: {[0 |, 1]}
0 0 0 0
Checking the dependence or independence of these sets is easy.
For
1 0
S={{0],({1]}
0 0
the span (S) is the zy plane. These are two supersets.
1 0 3 1 0 0
dependent: {{0|,|1]),[-2]} independent: {{0],|1],{0]}
0 0 0 0 0 1
If
1 0 0
S={10],{1],10]}
0 0 1
then (S) = R3. A linearly dependent superset is
1 0 0 2
dependent: {[{0],{1],(0],{-1]}

0 0 1 3

but there are no linearly independent supersets of S. The reason is that for any vector that we would add
to make a superset, the linear dependence equation

T 1 0 0
y|l=c1 0] +c2|1]+¢cs|O
z 0 0 1

has a solution ¢; =z, ¢c; =y, and ¢3 = 2.

So, in general, a linearly independent set may have a superset that is dependent. And, in general, a
linearly independent set may have a superset that is independent. We can characterize when the superset is
one and when it is the other.

1.16 Lemmma Where S is a linearly independent subset of a vector space V,
S U {v} is linearly dependent if and only if v € (S)

for any v € V with v ¢ S.

Proor. One implication is clear: if v € (S) then v = ¢181 + ¢282 + - - - + ¢, 8, Where each s; € S and ¢; € R,
and so 0 = ¢181 + €282 + -+ - + ¢p Sy, + (—1)v is a nontrivial linear relationship among elements of S U {v}.
The other implication requires the assumption that S is linearly independent. With S U {v} linearly
dependent, there is a nontrivial linear relationship cov + ¢181 + ¢282 + - - - + ¢, 8, = 0 and independence of S
then implies that ¢y # 0, or else that would be a nontrivial relationship among members of S. Now rewriting
this equation as v = —(¢1/co)s1 — -+ — (¢n/co)sn shows that v € (S). QED

(Compare this result with Lemma 1.1. Both say, roughly, that v is a “repeat” if it is in the span of S.
However, note the additional hypothesis here of linear independence.)

1.17 Corollary A subset S = {s1,...,s,} of a vector space is linearly dependent if and only if some s; is
a linear combination of the vectors sy, ..., s;_1 listed before it.

Proor. Consider Sy = {}, S1 = {s1}, S2 = {51, s2}, etc. Some index ¢ > 1 is the first one with S;_; U {s;}
linearly dependent, and there s; € (S;_1). QED
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Lemma 1.16 can be restated in terms of independence instead of dependence: if S is linearly independent
and v ¢ S then the set S U {v} is also linearly independent if and only if v & (S). Applying Lemma 1.1, we
conclude that if S is linearly independent and v ¢ S then S U {v} is also linearly independent if and only
if (S U {v}) # (S). Briefly, when passing from S to a superset Sp, to preserve linear independence we must
expand the span (S7) D (S).

Example 1.15 shows that some linearly independent sets are maximal —have as many elements as pos-
sible—in that they have no supersets that are linearly independent. By the prior paragraph, a linearly
independent sets is maximal if and only if it spans the entire space, because then no vector exists that is not
already in the span.

This table summarizes the interaction between the properties of independence and dependence and the
relations of subset and superset.

S1CS S1DO8
S independent | S7 must be independent S1 may be either
S dependent S1 may be either S1 must be dependent

In developing this table we’ve uncovered an intimate relationship between linear independence and span.
Complementing the fact that a spanning set is minimal if and only if it is linearly independent, a linearly
independent set is maximal if and only if it spans the space.

In summary, we have introduced the definition of linear independence to formalize the idea of the minimal-
ity of a spanning set. We have developed some properties of this idea. The most important is Lemma 1.16,
which tells us that a linearly independent set is maximal when it spans the space.

Exercises
v 1.18 Decide whether each subset of R? is linearly dependent or linearly independent.

@1(3) () i)
o1(p)-() ¢
()0
o (3)-()-(5)-(2)

v' 1.19 Which of these subsets of P3 are linearly dependent and which are independent?
(a) {3—=z+92%,5 -6z + 322, 1 + 1z — 5z?}
(b) {—a? 1+ 42"}
(c) {2+z+72%3 -z + 22,4 — 327}
(d) {8+ 3z + 32%, = + 222, 2 + 2 + 22,8 — 2z + 5z?}
v 1.20 Prove that each set {f, g} is linearly independent in the vector space of all functions from R to R.
(a) f(z) =z and g(z) =1/z
(b) f(z) = cos(z) and g(z) = sin(z)
(c) f(z) =¢€" and g(z) = In(z)

v/ 1.21 Which of these subsets of the space of real-valued functions of one real variable is linearly dependent and
which is linearly independent? (Note that we have abbreviated some constant functions; e.g., in the first item,
the ‘2’ stands for the constant function f(z) =2.)

(a) {2,4sin’(z),cos?(z)}  (b) {L,sin(z),sin(2z)}  (c) {z,cos(z)} (d) {(1 +2)* 2 + 22,3}
(e) {cos(2),sin®(x),cos(x)}  (£) {0,,27}

1.22 Does the equation sin’(z)/ cos®(z) = tan®(z) show that this set of functions {sin’(x),cos’(z),tan’(z)} is
a linearly dependent subset of the set of all real-valued functions with domain the interval (—n/2..7/2) of real
numbers between —7/2 and 7/2)?

1.23 Why does Lemma 1.4 say “distinct”?
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v' 1.24 Show that the nonzero rows of an echelon form matrix form a linearly independent set.
v 1.25 (a) Show that if the set {u,v,w} is linearly independent set then so is the set {u,u + v,u + v + w}.
(b) What is the relationship between the linear independence or dependence of the set {u,v,w} and the inde-
pendence or dependence of {u —v,v — w,w — u}?
1.26 Example 1.10 shows that the empty set is linearly independent.
(a) When is a one-element set linearly independent?
(b) How about a set with two elements?
1.27 In any vector space V, the empty set is linearly independent. What about all of V7

1.28 Show that if {z,y,z} is linearly independent then so are all of its proper subsets: {z,y}, {z,z}, {y, 2},

{z},{y}, {#}, and {}. Is that ‘only if’ also?
1.29 (a) Show that this
1 -1
s=i(a)-(2)
0 0
3
)
0

is in the span of S by finding ¢; and c2 giving a linear relationship.

1 -1 3
ca|l] +ec 2 =2
0 0 0
Show that the pair ¢1, c2 is unique.

(c) Assume that S is a subset of a vector space and that v is in (S}, so that v is a linear combination of vectors
from S. Prove that if S is linearly independent then a linear combination of vectors from S adding to v is
unique (that is, unique up to reordering and adding or taking away terms of the form 0 - s). Thus S as a
spanning set is minimal in this strong sense: each vector in (S) is “hit” a minimum number of times— only
once.

(d) Prove that it can happen when S is not linearly independent that distinct linear combinations sum to the
same vector.

is a linearly independent subset of R3.
(b) Show that

1.30 Prove that a polynomial gives rise to the zero function if and only if it is the zero polynomial. (Comment.
This question is not a Linear Algebra matter, but we often use the result. A polynomial gives rise to a function
in the obvious way: © — cpx™ + -+ c1x + ¢o.)

1.31 Return to Section 1.2 and redefine point, line, plane, and other linear surfaces to avoid degenerate cases.

1.32 (a) Show that any set of four vectors in R? is linearly dependent.

(b) Is this true for any set of five? Any set of three?
(c) What is the most number of elements that a linearly independent subset of R”> can have?

v 1.33 Is there a set of four vectors in R®, any three of which form a linearly independent set?

1.34 Must every linearly dependent set have a subset that is dependent and a subset that is independent?

1.35 In R*, what is the biggest linearly independent set you can find? The smallest? The biggest linearly
dependent set? The smallest? (‘Biggest’ and ‘smallest’ mean that there are no supersets or subsets with the same
property.)

v/ 1.36 Linear independence and linear dependence are properties of sets. We can thus naturally ask how those
properties act with respect to the familiar elementary set relations and operations. In this body of this sub-
section we have covered the subset and superset relations. We can also consider the operations of intersection,
complementation, and union.

(a) How does linear independence relate to intersection: can an intersection of linearly independent sets be
independent? Must it be?

(b) How does linear independence relate to complementation?

(c) Show that the union of two linearly independent sets need not be linearly independent.

(d) Characterize when the union of two linearly independent sets is linearly independent, in terms of the
intersection of the span of each.

v' 1.37 For Theorem 1.12,

(a) fill in the induction for the proof;
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(b) give an alternate proof that starts with the empty set and builds a sequence of linearly independent subsets
of the given finite set until one appears with the same span as the given set.

1.38 With a little calculation we can get formulas to determine whether or not a set of vectors is linearly inde-

pendent.
(a) Show that this subset of R?
a b
((e)G)
is linearly independent if and only if ad — bc # 0.
(b) Show that this subset of R
a b c
{td).{e].{f])}
g h i

is linearly independent iff aei + bfg + cdh — hfa — idb — gec # 0.

(c) When is this subset of R

a b
)6
g h
linearly independent?

(d) This is an opinion question: for a set of four vectors from R*, must there be a formula involving the sixteen

entries that determines independence of the set? (You needn’t produce such a formula, just decide if one exists.)
v 1.39 (a) Prove that a set of two perpendicular nonzero vectors from R” is linearly independent when n > 1.
(b) What if n =17 n =07
(c) Generalize to more than two vectors.
1.40 Consider the set of functions from the open interval (—1..1) to R.

(a) Show that this set is a vector space under the usual operations.

(b) Recall the formula for the sum of an infinite geometric series: 14+ +2*4---=1/(1—z) for all z € (—1..1).
Why does this not express a dependence inside of the set {g(z) = 1/(1 — z), fo(z) = 1, fi(z) = =, fa(z) = 22,...}
(in the vector space that we are considering)? (Hint. Review the definition of linear combination.)

(c) Show that the set in the prior item is linearly independent.

This shows that some vector spaces exist with linearly independent subsets that are infinite.

1.41 Show that, where S is a subspace of V, if a subset T of S is linearly independent in S then T is also linearly
independent in V. Is that ‘only if’?
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IIT Basis and Dimension

The prior section ends with the statement that a spanning set is minimal when it is linearly independent
and a linearly independent set is maximal when it spans the space. So the notions of minimal spanning set
and maximal independent set coincide. In this section we will name this idea and study its properties.

I11.1 Basis
1.1 Definition A basis for a vector space is a sequence of vectors that form a set that is linearly independent
and that spans the space.

We denote a basis with angle brackets (81, 32,...) to signify that this collection is a sequence* —the
order of the elements is significant. (The requirement that a basis be ordered will be needed, for instance,
in Definition 1.13.)

1.2 Example This is a basis for R2.

It is linearly independent
2 1\ _ (0 2¢1 +1e2=0 o
a(a()=() = LI = a=as

2c1 + 1les ==z
dcy + lea =y

and it spans R2.

= c=2r—yandc =(y—2z)/2

-6

differs from the prior one because the vectors are in a different order. The verification that it is a basis is
just as in the prior example.

1.3 Example This basis for R?

1.4 Example The space R? has many bases. Another one is this.

o) G)

The verification is easy.

1.5 Definition For any R”,

1 0 0
0 1 0
Sn = < : ? : ? ? : )
0 0 1
is the standard (or natural) basis. We denote these vectors by ey, ..., €.

(Calculus books refer to R2’s standard basis vectors 2 and j instead of e; and ey, and they refer to R®’s
standard basis vectors ¢, 7, and k instead of e;, ez, and e3.) Note that the symbol ‘e;” means something
different in a discussion of R® than it means in a discussion of R2.

*More information on sequences is in the appendix.
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1.6 Example Consider the space {a-cosf +b-sinf | a,b € R} of functions of the real variable 6. This is
a natural basis.
(1-cos@+0-sinh,0-cosf +1-sinf) = (cosb,sinf)

Another, more generic, basis is (cos§ — sin 6,2 cosf + 3sinf). Verfication that these two are bases is Exer-
cise 22.

1.7 Example A natural basis for the vector space of cubic polynomials Ps is (1, z, 22, z3). Two other bases
for this space are (x2,3z%,6x,6) and (1,1+ 2,1+ + 22,1 + x + 2% + 2%). Checking that these are linearly
independent and span the space is easy.

1.8 Example The trivial space {0} has only one basis, the empty one ().
1.9 Example The space of finite-degree polynomials has a basis with infinitely many elements (1, z, z2,...).

1.10 Example We have seen bases before. In the first chapter we described the solution set of homogeneous
systems such as this one
z+y —w=0

z4+w=0
by parametrizing.
-1 1
1 0
{ o v+ q|wlywe R}
0 1

That is, we described the vector space of solutions as the span of a two-element set. We can easily check that
this two-vector set is also linearly independent. Thus the solution set is a subspace of R* with a two-element
basis.

1.11 Example Parameterization helps find bases for other vector spaces, not just for solution sets of
homogeneous systems. To find a basis for this subspace of Mays

{(Z 8) |a+b—2c=0}

we rewrite the condition as a = —b + 2c.

{(_b:% 8>|b,C€R}={b(_01 (1)>+c<i 8>|b,ceR}

Thus, this is a natural candidate for a basis.

-1 1 2 0
(@ o)1 0
The above work shows that it spans the space. To show that it is linearly independent is routine.

Consider again Example 1.2. It involves two verifications.

In the first, to check that the set is linearly independent we looked at linear combinations of the set’s
members that total to the zero vector ¢181 + 282 = (g). The resulting calculation shows that such a
combination is unique, that ¢; must be 0 and ¢; must be 0.

The second verification, that the set spans the space, looks at linear combinations that total to any
member of the space ¢181 + c282 = (z) In Example 1.2 we noted only that the resulting calculation shows
that such a combination exists, that for each x,y there is a ¢;, co. However, in fact the calculation also shows
that the combination is unique: ¢; must be (y — z)/2 and ¢, must be 2z — y.

That is, the first calculation is a special case of the second. The next result says that this holds in general
for a spanning set: the combination totaling to the zero vector is unique if and only if the combination
totaling to any vector is unique.
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1.12 Theorem In any vector space, a subset is a basis if and only if each vector in the space can be
expressed as a linear combination of elements of the subset in a unique way.

We consider combinations to be the same if they differ only in the order of summands or in the addition or
deletion of terms of the form ‘0 - 3.

Proor. By definition, a sequence is a basis if and only if its vectors form both a spanning set and a linearly
independent set. A subset is a spanning set if and only if each vector in the space is a linear combination of
elements of that subset in at least one way.

Thus, to finish we need only show that a subset is linearly independent if and only if every vector in the
space is a linear combination of elements from the subset in at most one way. Consider two expressions of a
vector as a linear combination of the members of the basis. We can rearrange the two sums, and if necessary
add some 03; terms, so that the two sums combine the same 3’s in the same order: v = ¢1 81 +¢c2f2+- - -+cnfn
and v =d181 +doff2 + -+ - + d, - Now

afr+cefo+ -+ epfrn=difr +dafo+---+dnfn

holds if and only if
(Cl - dl)ﬂl + -+ (Cn - dn)ﬂn =0

holds, and so asserting that each coefficient in the lower equation is zero is the same thing as asserting that
¢; = d; for each 1. QED

1.13 Definition In a vector space with basis B the representation of v with respect to B is the column
vector of the coefficients used to express v as a linear combination of the basis vectors:

C1

C2
Repp(v) =

Cn

where B = (f1,...,0,) and v = c101 + c2f2 + - - - + ¢nfBn- The ¢’s are the coordinates of v with respect to
B.

We will later do representations in contexts that involve more than one basis. To help with the book-
keeping, we shall often attach a subscript B to the column vector.

1.14 Example In Pj3, with respect to the basis B = (1, 2z, 2x?, 2x3), the representation of x + z? is

0
1/2
1/2

0

Repg(z + $2) =
B

(note that the coordinates are scalars, not vectors). With respect to a different basis D = {1+ z,1 — z,z +
22,z + %), the representation

Repp(z + z?) =

O = OO

is different.

1.15 Remark This use of column notation and the term ‘coordinates’ has both a down side and an up
side.

The down side is that representations look like vectors from R™, which can be confusing when the vector
space we are working with is R™, especially since we sometimes omit the subscript base. We must then infer
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the intent from the context. For example, the phrase ‘in R?, where v = (3)’ refers to the plane vector that,
when in canonical position, ends at (3,2). To find the coordinates of that vector with respect to the basis

we solve

2 (1) ()= )

to get that ¢; = 3 and ¢o = 1/2. Then we have this.

Reps(0) = 3]

Here, although we’ve ommited the subscript B from the column, the fact that the right side is a representation
is clear from the context.

The up side of the notation and the term ‘coordinates’ is that they generalize the use that we are familiar
with: in R" and with respect to the standard basis &,, the vector starting at the origin and ending at
(v1,...,v,) has this representation.

U1 U1

Repgn( : )=

Un Un En

Our main use of representations will come in the third chapter. The definition appears here because the
fact that every vector is a linear combination of basis vectors in a unique way is a crucial property of bases,
and also to help make two points. First, we fix an order for the elements of a basis so that coordinates can
be stated in that order. Second, for calculation of coordinates, among other things, we shall restrict our
attention to spaces with bases having only finitely many elements. We will see that in the next subsection.

Exercises
v 1.16 Decide if each is a basis for R®.

OB 00 @000 =100

v 1.17 Represent the vector with respect to the basis.

o (- () (e

) 2>+23, D=(,1+z,1+z+z>1+x+2>+2°) CPs
0
-1 "
(c) NE 4 CR
1
1.18 Find a basis for P2, the space of all quadratic polynomials. Must any such basis contain a polynomial of
each degree: degree zero, degree one, and degree two?
1.19 Find a basis for the solution set of this system.
1 —4x2+ 323 — 4=0
2x1 — 8xs + 6x3 — 224 =0
v' 1.20 Find a basis for Mays, the space of 2x2 matrices.
v' 1.21 Find a basis for each.
(a) The subspace {a2z> + a1z + ao | a2 — 2a1 = ao} of P
(b) The space of three-wide row vectors whose first and second components add to zero

(c) This subspace of the 2x 2 matrices
a b
{(0 C) | c—2b=0}
1.22 Check Example 1.6.

v' 1.23 Find the span of each set and then find a basis for that span.
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(a) {1+=z,1+22}inP> (b) {2—22,3+42°}in P>
v' 1.24 Find a basis for each of these subspaces of the space P3 of cubic polynomials.
(a) The subspace of cubic polynomials p(z) such that p(7) =0
(b) The subspace of polynomials p(z) such that p(7) =0 and p(5) =0
(c) The subspace of polynomials p(z) such that p(7) = 0, p(5) = 0, and p(3) =0
(d) The space of polynomials p(z) such that p(7) =0, p(5) =0, p(3) =0, and p(1) =0
1.25 We’ve seen that it is possible for a basis to remain a basis when it is reordered. Must it remain a basis?
1.26 Can a basis contain a zero vector?
v 1.27 Let (1, B2, B3) be a basis for a vector space.
(a) Show that (c181,c232,csfBs) is a basis when c1,¢2,c3 # 0. What happens when at least one ¢; is 07
(b) Prove that (@1, a2, as) is a basis where a; = 1 + S;.
1.28 Find one vector v that will make each into a basis for the space.

1 1 0
(a) ((1> ,v) in R*>  (b) ((1) ) (1) ) in R (¢) (z,1+2%v) in P,
0 0

v' 1.29 Where (B1,...,3r) is a basis, show that in this equation

c1fi+ -+ eufr = chr1Brt1 + -+ cnfBa
each of the ¢;’s is zero. Generalize.
1.30 A basis contains some of the vectors from a vector space; can it contain them all?
1.31 Theorem 1.12 shows that, with respect to a basis, every linear combination is unique. If a subset is not a
basis, can linear combinations be not unique? If so, must they be?
v' 1.832 A square matrix is symmetric if for all indices ¢ and j, entry i, j equals entry j, 1.
(a) Find a basis for the vector space of symmetric 2x 2 matrices.
(b) Find a basis for the space of symmetric 3 x3 matrices.
(c) Find a basis for the space of symmetric nxn matrices.
v 1.33 We can show that every basis for R® contains the same number of vectors.
(a) Show that no linearly independent subset of R® contains more than three vectors.
(b) Show that no spanning subset of R® contains fewer than three vectors. (Hint. Recall how to calculate the
span of a set and show that this method, when applied to two vectors, cannot yield all of R?.)

1.34 One of the exercises in the Subspaces subsection shows that the set

x
{(y> |z +y+z=1}
z
is a vector space under these operations.

1 T2 T1+x2—1 T re—r+1
n | +ly2 | = Y1+ Y2 rly] = TY
21 22 21+ 22 z rz

Find a basis.

I11.2 Dimension

In the prior subsection we defined the basis of a vector space, and we saw that a space can have many
different bases. For example, following the definition of a basis, we saw three different bases for R?. So we
cannot talk about “the” basis for a vector space. True, some vector spaces have bases that strike us as more
natural than others, for instance, R?’s basis £ or R®’s basis £ or P»’s basis (1,z,z?). But, for example
in the space {a2z> + a1z + ag | 2ay — ag = ay }, no particular basis leaps out at us as the most natural one.
We cannot, in general, associate with a space any single basis that best describes that space.

We can, however, find something about the bases that is uniquely associated with the space. This
subsection shows that any two bases for a space have the same number of elements. So, with each space we
can associate a number, the number of vectors in any of its bases.

This brings us back to when we considered the two things that could be meant by the term ‘minimal
spanning set’. At that point we defined ‘minimal’ as linearly independent, but we noted that another
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reasonable interpretation of the term is that a spanning set is ‘minimal’ when it has the fewest number of
elements of any set with the same span. At the end of this subsection, after we have shown that all bases
have the same number of elements, then we will have shown that the two senses of ‘minimal’ are equivalent.

Before we start, we first limit our attention to spaces where at least one basis has only finitely many
members.

2.1 Definition A vector space is finite-dimensional if it has a basis with only finitely many vectors.

(One reason for sticking to finite-dimensional spaces is so that the representation of a vector with respect to
a basis is a finitely-tall vector, and so can be easily written.) From now on we study only finite-dimensional
vector spaces. We shall take the term ‘vector space’ to mean ‘finite-dimensional vector space’. Other spaces
are interesting and important, but they lie outside of our scope.

To prove the main theorem we shall use a technical result.

2.2 Lemma (Exchange Lemma) Assume that B = (f#1,...,0y) is a basis for a vector space, and that
for the vector v the relationship v = ¢1081 + c2f82 + -+ - + ¢, 8, has ¢; # 0. Then exchanging 3; for v yields
another basis for the space.

Proor. Call the outcome of the exchange B= (Biy--vyBiz1,0, Bit1y- -y Pn)-
We first show that B is linearly independent. Any relationship dif1 + -+ +div + - - + d, 3, = 0 among
the members of B, after substitution for v,

dify+- 4 di- (et F it et enfn) + o+ dufBn =0 (%)

gives a linear relationship among the members of B. The basis B is linearly independent, so the coefficient
dic; of B; is zero. Because ¢; is assumed to be nonzero, d; = 0. Using this in equation (*) above gives that
all of the other d’s are also zero. Therefore B is linearly independent.

We finish by showing that B has the same span as B. Half of this argument, that (B) C (B), is easy; any
member dy 1+ - -+d;v+- - -+d,, B of (B) can be written dy 81+ - -+d;- (1 81+ -+ ¢nfn)+- - - +dnSBn, which
is a linear combination of linear combinations of members of B, and hence is in (B). For the (B) C (B) half
of the argument, recall that when v = ¢1 81 + - - - + ¢, 8, With ¢; # 0, then the equation can be rearranged to
Bi = (=c1/ci)Br+---+ (1/ci)v+-- -+ (—=cn/ci) Bn- Now, consider any member di By +---+difi + -+ -+ dnfn
of (B), substitute for j; its expression as a linear combination of the members of B, and recognize (as in the
first half of this argument) that the result is a linear combination of linear combinations, of members of B,
and hence is in (B). QED

2.3 Theorem In any finite-dimensional vector space, all of the bases have the same number of elements.

Proor. Fix a vector space with at least one finite basis. Choose, from among all of this space’s bases, one
B = (f1,---,08,) of minimal size. We will show that any other basis D = (d1,02,...) also has the same
number of members, n. Because B has minimal size, D has no fewer than n vectors. We will argue that it
cannot have more than n vectors.

The basis B spans the space and §; is in the space, so §; is a nontrivial linear combination of elements
of B. By the Exchange Lemma, §; can be swapped for a vector from B, resulting in a basis By, where one
element is ¢ and all of the n — 1 other elements are 3’s.

The prior paragraph forms the basis step for an induction argument. The inductive step starts with a
basis By (for 1 < k < n) containing k£ members of D and n — k members of B. We know that D has at least
n members so there is a dx11. Represent it as a linear combination of elements of By. The key point: in that
representation, at least one of the nonzero scalars must be associated with a 3; or else that representation
would be a nontrivial linear relationship among elements of the linearly independent set D. Exchange &1
for B; to get a new basis By1 with one d more and one 8 fewer than the previous basis By.

Repeat the inductive step until no 8’s remain, so that B,, contains d1,...,d,. Now, D cannot have more
than these n vectors because any 0,41 that remains would be in the span of B,, (since it is a basis) and
hence would be a linear combination of the other §’s, contradicting that D is linearly independent. = QED

2.4 Definition The dimension of a vector space is the number of vectors in any of its bases.
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2.5 Example Any basis for R™ has n vectors since the standard basis &, has n vectors. Thus, this definition
generalizes the most familiar use of term, that R™ is n-dimensional.

2.6 Example The space P,, of polynomials of degree at most n has dimension n + 1. We can show this by
exhibiting any basis—(1,z,...,2™) comes to mind —and counting its members.

2.7 Example A trivial space is zero-dimensional since its basis is empty.

Again, although we sometimes say ‘finite-dimensional’ as a reminder, in the rest of this book all vector
spaces are assumed to be finite-dimensional. An instance of this is that in the next result the word ‘space’
should be taken to mean ‘finite-dimensional vector space’.

2.8 Corollary No linearly independent set can have a size greater than the dimension of the enclosing
space.

Proor. Inspection of the above proof shows that it never uses that D spans the space, only that D is linearly
independent. QED

2.9 Example Recall the subspace diagram from the prior section showing the subspaces of R®. Each
subspace shown is described with a minimal spanning set, for which we now have the term ‘basis’. The
whole space has a basis with three members, the plane subspaces have bases with two members, the line
subspaces have bases with one member, and the trivial subspace has a basis with zero members. When
we saw that diagram we could not show that these are the only subspaces that this space has. We can
show it now. The prior corollary proves that the only subspaces of R® are either three-, two-, one-, or
zero-dimensional. Therefore, the diagram indicates all of the subspaces. There are no subspaces somehow,
say, between lines and planes.

2.10 Corollary Any linearly independent set can be expanded to make a basis.

Proor. If a linearly independent set is not already a basis then it must not span the space. Adding to it a
vector that is not in the span preserves linear independence. Keep adding, until the resulting set does span
the space, which the prior corollary shows will happen after only a finite number of steps. QED

2.11 Corollary Any spanning set can be shrunk to a basis.

Proor. Call the spanning set S. If S is empty then it is already a basis (the space must be a trivial space). If
S = {0} then it can be shrunk to the empty basis, thereby making it linearly independent, without changing
its span.

Otherwise, S contains a vector s; with s; # 0 and we can form a basis By = (s1). If (B1) = (S) then we
are done.

If not then there is a so € (S) such that so & (B1). Let By = (s1, 82); if (Ba) = (S) then we are done.

We can repeat this process until the spans are equal, which must happen in at most finitely many
steps. QED

2.12 Corollary In an n-dimensional space, a set of n vectors is linearly independent if and only if it spans
the space.

Proor. First we will show that a subset with n vectors is linearly independent if and only if it is a basis.
‘If” is trivially true —bases are linearly independent. ‘Only if’ holds because a linearly independent set can
be expanded to a basis, but a basis has n elements, so this expansion is actually the set that we began with.

To finish, we will show that any subset with n vectors spans the space if and only if it is a basis. Again,
‘if” is trivial. ‘Only if’ holds because any spanning set can be shrunk to a basis, but a basis has n elements
and so this shrunken set is just the one we started with. QED

The main result of this subsection, that all of the bases in a finite-dimensional vector space have the
same number of elements, is the single most important result in this book because, as Example 2.9 shows,
it describes what vector spaces and subspaces there can be. We will see more in the next chapter.
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2.13 Remark The case of infinite-dimensional vector spaces is somewhat controversial. The statement
‘any infinite-dimensional vector space has a basis’ is known to be equivalent to a statement called the
Axiom of Choice (see [Blass 1984]). Mathematicians differ philosophically on whether to accept or reject
this statement as an axiom on which to base mathematics (although, the great majority seem to accept
it). Consequently the question about infinite-dimensional vector spaces is still somewhat up in the air. (A
discussion of the Axiom of Choice can be found in the Frequently Asked Questions list for the Usenet group
sci.math. Another accessible reference is [Rucker].)

Exercises
Assume that all spaces are finite-dimensional unless otherwise stated.
v' 2.14 Find a basis for, and the dimension of, Ps.
2.15 Find a basis for, and the dimension of, the solution set of this system.
1 —4zs + 323 — z4=0
2x1 — 8x2 + 623 — 224 =0
v' 2.16 Find a basis for, and the dimension of, Moax2, the vector space of 2x 2 matrices.
2.17 Find the dimension of the vector space of matrices

a b
c d
subject to each condition.

(a) a,b,c,d € R
(b)a—b+2c=0anddeR
(¢)a+b+c=0,a+b—c=0,andd €R
v/ 2.18 Find the dimension of each.
(a) The space of cubic polynomials p(z) such that p(7) =0
(b) The space of cubic polynomials p(z) such that p(7) = 0 and p(5) =0
(¢) The space of cubic polynomials p(x) such that p(7) =0, p(5) = 0, and p(3) =0
(d) The space of cubic polynomials p(x) such that p(7) =0, p(5) =0, p(3) =0, and p(1) =0
2.19 What is the dimension of the span of the set {cos®6,sin> 6, cos 20,sin 20}? This span is a subspace of the
space of all real-valued functions of one real variable.
2.20 Find the dimension of C*7, the vector space of 47-tuples of complex numbers.
2.21 What is the dimension of the vector space Msxs of 3 x5 matrices?
v 2.22 Show that this is a basis for R*.

)

b

1 1 1
0 1 1

( 0 b) 0 bl 1 )
0 0 1
(The results of this subsection can be used to simplify this job.)

2.23 Refer to Example 2.9.
(a) Sketch a similar subspace diagram for Ps.
(b) Sketch one for Mays.

v’ 2.24 Where S is a set, the functions f: S — R form a vector space under the natural operations: the sum f + g
is the function given by f + g (s) = f(s) + g(s) and the scalar product is given by - f (s) =7 - f(s). What is the
dimension of the space resulting for each domain?

(a) S={1} (b) S={1,2} (c) S={1,...,n}
2.25 (See Exercise 24.) Prove that this is an infinite-dimensional space: the set of all functions f: R — R under
the natural operations.

(=}

2.26 (See Exercise 24.) What is the dimension of the vector space of functions f: S — R, under the natural
operations, where the domain S is the empty set?

2.27 Show that any set of four vectors in R? is linearly dependent.
2.28 Show that the set (a1, a2, a3) C R? is a basis if and only if there is no plane through the origin containing
all three vectors.
2.29 (a) Prove that any subspace of a finite dimensional space has a basis.
(b) Prove that any subspace of a finite dimensional space is finite dimensional.



36 Chapter Two. Vector Spaces

2.30 Where is the finiteness of B used in Theorem 2.37
v 2.31 Prove that if U and W are both three-dimensional subspaces of R® then U N W is non-trivial. Generalize.
2.32 Because a basis for a space is a subset of that space, we are naturally led to how the property ‘is a basis’
interacts with set operations.
(a) Consider first how bases might be related by ‘subset’. Assume that U, W are subspaces of some vector space
and that U C W. Can there exist bases By for U and Bw for W such that By C Bw? Must such bases exist?
For any basis By for U, must there be a basis By for W such that By C Bw?
For any basis Bw for W, must there be a basis By for U such that By C Bw?
For any bases By, Bw for U and W, must By be a subset of By ?
(b) Is the intersection of bases a basis? For what space?
(c) Is the union of bases a basis? For what space?
(d) What about complement?
(Hint. Test any conjectures against some subspaces of R®.)
v' 2.833 Consider how ‘dimension’ interacts with ‘subset’. Assume U and W are both subspaces of some vector space,
and that U C W.
(a) Prove that dim(U) < dim(W).
(b) Prove that equality of dimension holds if and only if U = W.
(c) Show that the prior item does not hold if they are infinite-dimensional.

? 2.34 For any vector v in R® and any permutation o of the numbers 1, 2, ..., n (that is, o is a rearrange-
ment of those numbers into a new order), define o(v) to be the vector whose components are v,(1), Vo (2), - - -,
and v,(,) (where o(1) is the first number in the rearrangement, etc.). Now fix v and let V' be the span of
{o(v) | o permutes 1, ..., n}. What are the possibilities for the dimension of V'? [Wohascum no. 47]

I11.3 Vector Spaces and Linear Systems

We will now reconsider linear systems and Gauss’ method, aided by the tools and terms of this chapter.
We will make three points.

For the first point, recall the first chapter’s Linear Combination Lemma and its corollary: if two matrices
are related by row operations A — --- — B then each row of B is a linear combination of the rows of A.
That is, Gauss’ method works by taking linear combinations of rows. Therefore, the right setting in which
to study row operations in general, and Gauss’ method in particular, is the following vector space.

3.1 Definition The row space of a matrix is the span of the set of its rows. The row rank is the dimension
of the row space, the number of linearly independent rows.

()

then Rowspace(A) is this subspace of the space of two-component row vectors.

3.2 Example If

{Cl' (2 3)+Cg' (4 6) |Cl,62 ER}

The linear dependence of the second on the first is obvious and so we can simplify this description to
{c-(2 3)|ceR}.

3.3 Lemma If the matrices A and B are related by a row operation
ApiH—>ij or AE)B or Akij

(for 1 # j and k # 0) then their row spaces are equal. Hence, row-equivalent matrices have the same row
space, and hence also, the same row rank.
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Proor. By the Linear Combination Lemma’s corollary, each row of B is in the row space of A. Further,
Rowspace(B) C Rowspace(A4) because a member of the set Rowspace(B) is a linear combination of the
rows of B, which means it is a combination of a combination of the rows of A, and hence, by the Linear
Combination Lemma, is also a member of Rowspace(A).

For the other containment, recall that row operations are reversible: A — B if and only if B — A.
With that, Rowspace(4) C Rowspace(B) also follows from the prior paragraph, and so the two sets are
equal. QED

Thus, row operations leave the row space unchanged. But of course, Gauss’ method performs the row
operations systematically, with a specific goal in mind, echelon form.

3.4 Lemma The nonzero rows of an echelon form matrix make up a linearly independent set.

ProOF. A result in the first chapter, Lemma IT1.?77?, states that in an echelon form matrix, no nonzero row
is a linear combination of the other rows. This is a restatement of that result into new terminology. QED

Thus, in the language of this chapter, Gaussian reduction works by eliminating linear dependences among
rows, leaving the span unchanged, until no nontrivial linear relationships remain (among the nonzero rows).
That is, Gauss’ method produces a basis for the row space.

3.5 Example From any matrix, we can produce a basis for the row space by performing Gauss’ method
and taking the nonzero rows of the resulting echelon form matrix. For instance,

1 3 1 . 1 3 1
1 4 1| “odproetes g1
2 0 5) “tes 00 3

produces the basis ((1 3 1),(0 1 0),(0 0 3)) for the row space. This is a basis for the row space
of both the starting and ending matrices, since the two row spaces are equal.

Using this technique, we can also find bases for spans not directly involving row vectors.

3.6 Definition The column space of a matrix is the span of the set of its columns. The column rank is
the dimension of the column space, the number of linearly independent columns.

Our interest in column spaces stems from our study of linear systems. An example is that this system

€1+ 3¢+ Tes =dy
2¢1 + 3co + 8¢z =ds
co + 2¢c3 =ds

4cq +4c3 =dy

has a solution if and only if the vector of d’s is a linear combination of the other column vectors,

1 3 7 dy
2 3 8 d
Clol Tl TS| 2T dz
4 0 4 dy

meaning that the vector of d’s is in the column space of the matrix of coefficients.

3.7 Example Given this matrix,

= O N =
O = W Ww
SN CREeCREN|
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to get a basis for the column space, temporarily turn the columns into rows and reduce.

12 0 4 \ , 2 0 4
3 3 1 0 “deeieges g 301 _12
7 8 2 4) TTetes 0 0 0 0
Now turn the rows back to columns.
1 0
2 -3
del-1 3D
4 —12

The result is a basis for the column space of the given matrix.

3.8 Definition The transpose of a matrix is the result of interchanging the rows and columns of that
matrix. That is, column j of the matrix A is row j of A™®% and vice versa.

So the instructions for the prior example are “transpose, reduce, and transpose back”.
We can even, at the price of tolerating the as-yet-vague idea of vector spaces being “the same”, use Gauss’
method to find bases for spans in other types of vector spaces.

3.9 Example To get a basis for the span of {z? + z*,22% + 3%, —22 — 3z} in the space Py, think
of these three polynomials as “the same” as the row vectors (0 0 1 0 1), (0 0 2 0 3), and
(0 0 -1 0 -3), apply Gauss’ method

00 1 0 1 s 20t 0010 1
00 2 0 3 LIPS g 0 0 0 1
00 -1 0 -3 prtes 00000

and translate back to get the basis (z2 + z*, ). (As mentioned earlier, we will make the phrase “the same”
precise at the start of the next chapter.)

Thus, our first point in this subsection is that the tools of this chapter give us a more conceptual
understanding of Gaussian reduction.
For the second point of this subsection, consider the effect on the column space of this row reduction.

1 2 —2p1+p2 1 2
G3) = 60
The column space of the left-hand matrix contains vectors with a second component that is nonzero. But the

column space of the right-hand matrix is different because it contains only vectors whose second component is
zero. It is this knowledge that row operations can change the column space that makes next result surprising.

3.10 Lemma Row operations do not change the column rank.

Proor. Restated, if A reduces to B then the column rank of B equals the column rank of A.

We will be done if we can show that row operations do not affect linear relationships among columns
(e.g., if the fifth column is twice the second plus the fourth before a row operation then that relationship
still holds afterwards), because the column rank is just the size of the largest set of unrelated columns. But
this is exactly the first theorem of this book: in a relationship among columns,

ai1 ain 0

as1 az,n 0
Cl . A _|_ PP _|_ Cn . A —

am,1 Am,n 0

row operations leave unchanged the set of solutions (cy,...,¢p)- QED
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Another way, besides the prior result, to state that Gauss’ method has something to say about the column
space as well as about the row space is to consider again Gauss-Jordan reduction. Recall that it ends with
the reduced echelon form of a matrix, as here.

1 31 6 1 3 0 2

2 6 3 16 —_— o — 0 01 4

1 31 6 0 00O
Consider the row space and the column space of this result. Our first point made above says that a basis for
the row space is easy to get: simply collect together all of the rows with leading entries. However, because this
is a reduced echelon form matrix, a basis for the column space is just as easy: take the columns containing
the leading entries, that is, (e1, es). (Linear independence is obvious. The other columns are in the span of
this set, since they all have a third component of zero.) Thus, for a reduced echelon form matrix, bases for
the row and column spaces can be found in essentially the same way —by taking the parts of the matrix,
the rows or columns, containing the leading entries.

3.11 Theorem The row rank and column rank of a matrix are equal.

Proor. First bring the matrix to reduced echelon form. At that point, the row rank equals the number of
leading entries since each equals the number of nonzero rows. Also at that point, the number of leading
entries equals the column rank because the set of columns containing leading entries consists of some of the
e;’s from a standard basis, and that set is linearly independent and spans the set of columns. Hence, in
the reduced echelon form matrix, the row rank equals the column rank, because each equals the number of
leading entries.

But Lemma 3.3 and Lemma 3.10 show that the row rank and column rank are not changed by using row
operations to get to reduced echelon form. Thus the row rank and the column rank of the original matrix
are also equal. QED

3.12 Definition The rank of a matrix is its row rank or column rank.

So our second point in this subsection is that the column space and row space of a matrix have the same
dimension. Our third and final point is that the concepts that we’ve seen arising naturally in the study of
vector spaces are exactly the ones that we have studied with linear systems.

3.13 Theorem For linear systems with n unknowns and with matrix of coefficients A4, the statements
(1) the rank of A is r
(2) the space of solutions of the associated homogeneous system has dimension n — r

are equivalent.

So if the system has at least one particular solution then for the set of solutions, the number of parameters
equals n — r, the number of variables minus the rank of the matrix of coefficients.

Proor. The rank of A is r if and only if Gaussian reduction on A ends with r nonzero rows. That’s true if
and only if echelon form matrices row equivalent to A have r-many leading variables. That in turn holds if
and only if there are n — r free variables. QED

3.14 Remark [Munkres] Sometimes that result is mistakenly remembered to say that the general solution
of an n unknown system of m equations uses n —m parameters. The number of equations is not the relevant
figure, rather, what matters is the number of independent equations (the number of equations in a maximal
independent set). Where there are r independent equations, the general solution involves n — r parameters.

3.15 Corollary Where the matrix A is nxn, the statements
(1) the rank of A isn
(2) A is nonsingular

(3) the rows of A form a linearly independent set

(4) the columns of A form a linearly independent set
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(5) any linear system whose matrix of coefficients is A has one and only one solution
are equivalent.

Proor. Clearly (1) < (2) <= (3) <= (4). The last, (4) <= (5), holds because a set of n column
vectors is linearly independent if and only if it is a basis for R”, but the system

aii ai,n dy
az,1 as,n da
c1 . +--4cy ) =
Am,1 Am,n dm
has a unique solution for all choices of dy,...,d, € R if and only if the vectors of a’s form a basis. QED

Exercises
3.16 Transpose each.

0
2 1 2 1 1 4 3
(a) (3 1) (b) (1 3) (c) (6 ; 8) (d) (g) (e) (-1 -2)
v' 3.17 Decide if the vector is in the row space of the matrix.

5 1 0 1 3
(a) (3 1),(1 0) (b) (—1 g ;),(1 1 1)

v' 8.18 Decide if the vector is in the column space.

1 3 1 1
@ (D6 @ 1) ()

v' 3.19 Find a basis for the row space of this matrix.

2 0 3 4
01 1 -1
3 1 0 2
1 0 -4 -1

v 3.20 Find the rank of each matrix.

2 1 3 1 -1 2 1 3 2 0 0 0
(a) (1 ~1 2) (b) <3 -3 6> (c) <5 1 1) (d) <0 0 0)
1 0 3 -2 2 —4 6 4 3 0 0 0

v' 3.21 Find a basis for the span of each set.

(@ {(1 3),(-1 3),(1 4),(2 1)} CMpe

1 3 1
w(2) (1) (2)ex
1) \-1/ \-3

(c) {14+2,1—2%3+22—2°} CPs
10 1 10 3\ /(-1 0 -5
(d) {(3 1 —1) ’ (2 1 4) ’ (—1 -1 —9>} € Mz

3.22 Which matrices have rank zero? Rank one?
v’ 3.23 Given a, b, c € R, what choice of d will cause this matrix to have the rank of one?

(¢ 3)

1 3 -1 5 0 4
2 0 1 0 41
3.25 Show that a linear system with at least one solution has at most one solution if and only if the matrix of
coefficients has rank equal to the number of its columns.
v’ 8.26 If a matrix is 5x 9, which set must be dependent, its set of rows or its set of columns?

3.27 Give an example to show that, despite that they have the same dimension, the row space and column space
of a matrix need not be equal. Are they ever equal?

3.24 Find the column rank of this matrix.
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3.28 Show that theset {(1,—1,2,-3),(1,1,2,0),(3,—1,6,—6)} does not have the same span as {(1,0, 1, 0), (0,2, 0, 3)}.
What, by the way, is the vector space?
v 3.29 Show that this set of column vectors

dy 3r+2y+4z=d;
d2 | there are x, y, and z such that « — z=d>

ds 2z 4+ 2y + 5z =d3

is a subspace of R3. Find a basis.
3.30 Show that the transpose operation is linear:

(’l"A + SB)trans — TAtrans + thrans

for r,s € R and A, B € Myuxn,
v 3.31 In this subsection we have shown that Gaussian reduction finds a basis for the row space.
(a) Show that this basis is not unique — different reductions may yield different bases.
(b) Produce matrices with equal row spaces but unequal numbers of rows.
(c) Prove that two matrices have equal row spaces if and only if after Gauss-Jordan reduction they have the
same NONZzero rows.
3.32 Why is there not a problem with Remark 3.14 in the case that r is bigger than n?
3.33 Show that the row rank of an m xn matrix is at most m. Is there a better bound?
v 3.34 Show that the rank of a matrix equals the rank of its transpose.
3.35 True or false: the column space of a matrix equals the row space of its transpose.
v' 3.36 We have seen that a row operation may change the column space. Must it?
3.37 Prove that a linear system has a solution if and only if that system’s matrix of coefficients has the same rank
as its augmented matrix.
3.38 An m xn matrix has full row rank if its row rank is m, and it has full column rank if its column rank is
n.
(a) Show that a matrix can have both full row rank and full column rank only if it is square.
(b) Prove that the linear system with matrix of coefficients A has a solution for any di, ..., d,’s on the right
side if and only if A has full row rank.
(c) Prove that a homogeneous system has a unique solution if and only if its matrix of coefficients A has full
column rank.
(d) Prove that the statement “if a system with matrix of coefficients A has any solution then it has a unique
solution” holds if and only if A has full column rank.
3.39 How would the conclusion of Lemma 3.3 change if Gauss’ method is changed to allow multiplying a row by
zero?
v’ 3.40 What is the relationship between rank(A) and rank(—A)? Between rank(A) and rank(kA)? What, if any, is
the relationship between rank(A), rank(B), and rank(A + B)?

I11.4 Combining Subspaces

This subsection is optional. It is required only for the last sections of Chapter Three and Chapter Five and
for occasional exercises, and can be passed over without loss of continuity.

This chapter opened with the definition of a vector space, and the middle consisted of a first analysis of the
idea. This subsection closes the chapter by finishing the analysis, in the sense that ‘analysis’ means “method
of determining the ...essential features of something by separating it into parts” [Macmillan Dictionary].

A common way to understand things is to see how they can be built from component parts. For instance,
we think of R® as put together, in some way, from the z-axis, the y-axis, and z-axis. In this subsection
we will make this precise; we will describe how to decompose a vector space into a combination of some of
its subspaces. In developing this idea of subspace combination, we will keep the R® example in mind as a
benchmark model.

Subspaces are subsets and sets combine via union. But taking the combination operation for subspaces
to be the simple union operation isn’t what we want. For one thing, the union of the z-axis, the y-axis,
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and z-axis is not all of R?, so the benchmark model would be left out. Besides, union is all wrong for this
reason: a union of subspaces need not be a subspace (it need not be closed; for instance, this R® vector

1 0 0 1
Ol+11|]+|0]=1]1
0 0 1 1

is in none of the three axes and hence is not in the union). In addition to the members of the subspaces, we
must at least also include all of the linear combinations.

4.1 Definition Where W1,..., W} are subspaces of a vector space, their sum is the span of their union
Wi+Ws+---+ Wy = <W1UW2U...Wk).

(The notation, writing the ‘+’ between sets in addition to using it between vectors, fits with the practice of
using this symbol for any natural accumulation operation.)

4.2 Example The R® model fits with this operation. Any vector w € R3® can be written as a linear
combination c;v1 4 c2v2 + c3vs where v; is a member of the z-axis, etc., in this way

wy wy 0 0
w3 0 0 w3

and so R® = z-axis + y-axis + z-axis.

4.3 Example A sum of subspaces can be less than the entire space. Inside of Py, let L be the subspace of
linear polynomials {a + bx | a,b € R} and let C be the subspace of purely-cubic polynomials {cz? | c € R}.
Then L + C' is not all of P,. Instead, it is the subspace L + C' = {a + bz + cz® | a,b,c € R}.

4.4 Example A space can be described as a combination of subspaces in more than one way. Besides the
decomposition R® = z-axis + y-axis + z-axis, we can also write R®> = zy-plane + yz-plane. To check this,
note that any w € R® can be written as a linear combination of a member of the zy-plane and a member of
the yz-plane; here are two such combinations.

wy wq 0 wq wy 0
w9 =1- (1%)) +]. 0 w2 =1- w2/2 +]. ’LU2/2
w3 0 w3 w3 0 w3

The above definition gives one way in which a space can be thought of as a combination of some of its
parts. However, the prior example shows that there is at least one interesting property of our benchmark
model that is not captured by the definition of the sum of subspaces. In the familiar decomposition of R3,
we often speak of a vector’s ‘x part’ or ‘y part’ or ‘z part’. That is, in this model, each vector has a unique
decomposition into parts that come from the parts making up the whole space. But in the decomposition
used in Example 4.4, we cannot refer to the “xy part” of a vector —these three sums

1 1 0 1 0 1 0
3 0 3 0 3 0 3

all describe the vector as comprised of something from the first plane plus something from the second plane,
but the “xy part” is different in each.

That is, when we consider how R® is put together from the three axes “in some way”, we might mean
“in such a way that every vector has at least one decomposition”, and that leads to the definition above.
But if we take it to mean “in such a way that every vector has one and only one decomposition” then we
need another condition on combinations. To see what this condition is, recall that vectors are uniquely
represented in terms of a basis. We can use this to break a space into a sum of subspaces such that any
vector in the space breaks uniquely into a sum of members of those subspaces.
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4.5 Example The benchmark is R® with its standard basis £3 = (e1, €2, e3). The subspace with the basis
B; = (e1) is the z-axis. The subspace with the basis Bs = {e2) is the y-axis. The subspace with the basis
B3 = {e3) is the z-axis. The fact that any member of R® is expressible as a sum of vectors from these
subspaces
T T 0 0
y]=1{0]+|y|+1]0
z 0 0 z

is a reflection of the fact that £ spans the space — this equation

T 1 0 0
Yyl =c1 |0 +c2|1] +c3|O0
z 0 0 1

has a solution for any z,y,z € R. And, the fact that each such expression is unique reflects that fact that
&3 is linearly independent — any equation like the one above has a unique solution.

4.6 Example We don’t have to take the basis vectors one at a time, the same idea works if we conglomerate
them into larger sequences. Consider again the space R® and the vectors from the standard basis £3. The
subspace with the basis B; = (e1,es) is the xzz-plane. The subspace with the basis By = (es) is the y-axis.
As in the prior example, the fact that any member of the space is a sum of members of the two subspaces
in one and only one way

T T 0
y]l =10+ 1|y
z z 0

is a reflection of the fact that these vectors form a basis— this system

T 1 0 0
y|=( |0]) +ez[0]))+eca|l
z 0 1 0

has one and only one solution for any z,y,2z € R.

These examples illustrate a natural way to decompose a space into a sum of subspaces in such a way that
each vector decomposes uniquely into a sum of vectors from the parts. The next result says that this way is
the only way.

4.7 Definition The concatenation of the sequences By = (B1,1,---,81,m1)5 -+-» Bk = {Br1y-- - Bronz) 1S
their adjoinment.
By By --- Br={Bi1,.---sB1,n1,P21,--,Brni)

4.8 Lemma Let V be a vector space that is the sum of some of its subspaces V = W; + .-+ Wy. Let By,
, By, be any bases for these subspaces. Then the following are equivalent.
(1) For every v € V, the expression v = w; + - - - + wy, (with w; € W;) is unique.
(2) The concatenation By ---~ By is a basis for V.
(3) The nonzero members of {wy,...,wr} (with w; € W;) form a linearly independent set—among
nonzero vectors from different W;’s, every linear relationship is trivial.

Proor. We will show that (1) = (2), that (2) = (3), and finally that (3) = (1). For these
arguments, observe that we can pass from a combination of w’s to a combination of 3’s
diwy + - + dpwy,

=di(c1af1a+ -+ i)+ +Hde(ckaiBri + -+ Chong Bryng)
=dicii-Pig+ -+ dickng - B (%)

and vice versa.
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For (1) = (2), assume that all decompositions are unique. We will show that B, ---~ By spans the
space and is linearly independent. It spans the space because the assumption that V' = Wj + - - -+ W}, means
that every v can be expressed as v = wy + - -- + wy, which translates by equation () to an expression of
v as a linear combination of the f’s from the concatenation. For linear independence, consider this linear
relationship.

0=c1,1B1,1 + - + ki, B,

Regroup as in (x) (that is, take dy, ..., di to be 1 and move from bottom to top) to get the decomposition
0 = wy + -+ + wy. Because of the assumption that decompositions are unique, and because the zero vector
obviously has the decomposition 0 = 0 + --- + 0, we now have that each w; is the zero vector. This means
that ¢;18i1 + -+ - + Ci,n; Bi,n; = 0. Thus, since each B; is a basis, we have the desired conclusion that all of
the ¢’s are zero.

For (2) = (3), assume that B, --- By is a basis for the space. Consider a linear relationship among
nonzero vectors from different W;’s,

0= “‘+diwi+"'

in order to show that it is trivial. (The relationship is written in this way because we are considering a
combination of nonzero vectors from only some of the W;’s; for instance, there might not be a w; in this
combination.) Asin (x),0= -- '+di(ci,1,3j,1 +: ot Cing; ﬂz’,ni) +-0 = - 4dicipn ',81',1 +---+dicin, ﬂ,,n, +---
and the linear independence of B, - B gives that each coefficient d;c; ; is zero. Now, w; is a nonzero
vector, so at least one of the ¢; ;’s is not zero, and thus d; is zero. This holds for each d;, and therefore the
linear relationship is trivial.

Finally, for (3) = (1), assume that, among nonzero vectors from different W;’s, any linear relationship
is trivial. Consider two decompositions of a vector v = wy +--- +wy and v = uy + - - - + uy, in order to show
that the two are the same. We have

0= (wy+---+wg) — (ur +---+up) = (w1 —ur) +---+ (wp — ug)

which violates the assumption unless each w; —u; is the zero vector. Hence, decompositions are unique. QED

4.9 Definition A collection of subspaces {W71, ..., W} is independent if no nonzero vector from any W;
is a linear combination of vectors from the other subspaces Wy, ..., W;_1, W;11,..., Wk.
4.10 Definition A vector space V is the direct sum (or internal direct sum) of its subspaces W1, ..., Wy, if

V = Wi +Ws+---+W; and the collection {W1, ..., Wy} is independent. We write V =W, @Wo@...&Wy.

4.11 Example The benchmark model fits: R® = z-axis @ y-axis @ z-axis.

4.12 Example The space of 2x 2 matrices is this direct sum.

{(8 2>|a,deR}@{<8 8>|beR}@{<2 8>|ceIR<}

It is the direct sum of subspaces in many other ways as well; direct sum decompositions are not unique.
4.13 Corollary The dimension of a direct sum is the sum of the dimensions of its summands.

Proor. In Lemma 4.8, the number of basis vectors in the concatenation equals the sum of the number of
vectors in the subbases that make up the concatenation. QED

The special case of two subspaces is worth mentioning separately.

4.14 Definition When a vector space is the direct sum of two of its subspaces, then they are said to be
complements.

4.15 Lemma A vector space V is the direct sum of two of its subspaces W; and W, if and only if it is the
sum of the two V = W + W5 and their intersection is trivial Wy N W = {0}.
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Proor. Suppose first that V = Wy @ Wa. By definition, V is the sum of the two. To show that the two
have a trivial intersection, let v be a vector from W7 N W5 and consider the equation v = v. On the left side
of that equation is a member of W7, and on the right side is a linear combination of members (actually, of
only one member) of W5. But the independence of the spaces then implies that v = 0, as desired.

For the other direction, suppose that V is the sum of two spaces with a trivial intersection. To show that
V is a direct sum of the two, we need only show that the spaces are independent —no nonzero member of
the first is expressible as a linear combination of members of the second, and vice versa. This is true because
any relationship wy = ciwz1 + - - + dpwa k. (with wy € Wy and w, ; € W, for all j) shows that the vector
on the left is also in W, since the right side is a combination of members of W5. The intersection of these
two spaces is trivial, so w; = 0. The same argument works for any ws. QED

4.16 Example In the space R?, the z-axis and the y-axis are complements, that is, R? = z-axis @ y-axis.
A space can have more than one pair of complementary subspaces; another pair here are the subspaces
consisting of the lines y =z and y = 2z.

4.17 Example In the space F = {acosf + bsinf | a,b € R}, the subspaces W1 = {acosf | a € R} and
Wy = {bsiné | b € R} are complements. In addition to the fact that a space like F' can have more than
one pair of complementary subspaces, inside of the space a single subspace like W; can have more than one
complement — another complement of Wy is W3 = {bsin6 + bcosé | b e R}.

4.18 Example In R3?, the zy-plane and the yz-planes are not complements, which is the point of the
discussion following Example 4.4. One complement of the xy-plane is the z-axis. A complement of the
yz-plane is the line through (1,1,1).

4.19 Example Following Lemma 4.15, here is a natural question: is the simple sum V. = W; + --- + Wy
also a direct sum if and only if the intersection of the subspaces is trivial? The answer is that if there are
more than two subspaces then having a trivial intersection is not enough to guarantee unique decomposition
(i.e., is not enough to ensure that the spaces are independent). In R?, let W, be the z-axis, let W, be the
y-axis, and let W3 be this.

q

Ws={|q||greR}
r

The check that R® = W, + Wy + W3 is easy. The intersection Wi N Wy N Wy is trivial, but decompositions
aren’t unique.

T 0 0 T T—y 0 Y
y| =0l +ly—z]+|z]|= 0 +10]+ 1|y
z 0 0 z 0 0 z

(This example also shows that this requirement is also not enough: that all pairwise intersections of the
subspaces be trivial. See Exercise 30.)

In this subsection we have seen two ways to regard a space as built up from component parts. Both are
useful; in particular, in this book the direct sum definition is needed to do the Jordan Form construction in
the fifth chapter.

Exercises
v 4.20 Decide if R? is the direct sum of each Wy and Wo.

(a) le{(§> |xeR},W2={(i> |z eR}

(b) le{(z) | s eR}, W2:{<1_sls) | s €R}
(c) W1 =R*, W = {0}
(d) W1=W2={<; |t R}

() () remn () ) e
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v 4.21 Show that R® is the direct sum of the zy-plane with each of these.

(a) the z-axis
{(z) | z € R}

(b) the line

4.22 Is P> the direct sum of {a + bx> | a,b €R} and {cz | c€R}?

v 4.23 In P,, the even polynomials are the members of this set

E={pePn | p(—z) = p(z) for all z}
and the odd polynomials are the members of this set.
O={peP, | p(—z) = —p(x) for all z}
Show that these are complementary subspaces.
4.24 Which of these subspaces of R®

Wi: the z-axis, Wo: the y-axis, Wj: the z-axis,

Wa: the plane x +y + 2z =0, Ws: the yz-plane
can be combined to

(a) sum to R®?  (b) direct sum to R3?

v 4.25 Show that P,, = {ao | a0 ER} @ ... {anz" | an € R}.

4.26 What is W1 + Wy if Wi C W?

4.27 Does Example 4.5 generalize? That is, is this true or false: if a vector space V has a basis (81, ..., 8,) then
it is the direct sum of the spans of the one-dimensional subspaces V = {({51}) @ ... ® ({B.})?

4.28 Can R* be decomposed as a direct sum in two different ways? Can R!?

4.29 This exercise makes the notation of writing ‘4’ between sets more natural. Prove that, where W1, ..., W
are subspaces of a vector space,

Wi+ -4+ Wy={wi+was+---+wp | wr € Wi,...,wp € Wi},
and so the sum of subspaces is the subspace of all sums.

4.30 (Refer to Example 4.19. This exercise shows that the requirement that pariwise intersections be trivial is
genuinely stronger than the requirement only that the intersection of all of the subspaces be trivial.) Give a vector
space and three subspaces Wi, Wa, and W3 such that the space is the sum of the subspaces, the intersection of
all three subspaces W1 N Wa N W3 is trivial, but the pairwise intersections Wi N Ws, W1 N W3, and W N W3 are
nontrivial.

v' 4.31 Prove that if V. =W1&®...® W} then W; NWj is trivial whenever ¢ # j. This shows that the first half of the
proof of Lemma 4.15 extends to the case of more than two subspaces. (Example 4.19 shows that this implication
does not reverse; the other half does not extend.)

4.32 Recall that no linearly independent set contains the zero vector. Can an independent set of subspaces contain
the trivial subspace?

v' 4.33 Does every subspace have a complement?

v 4.34 Let W1, W> be subspaces of a vector space.

(a) Assume that the set S; spans Wi, and that the set S spans W5. Can S; U Sy span Wi + W»2? Must it?
(b) Assume that S; is a linearly independent subset of W1 and that S; is a linearly independent subset of W5.
Can S1 US> be a linearly independent subset of Wi + W>? Must it?

4.35 When a vector space is decomposed as a direct sum, the dimensions of the subspaces add to the dimension

of the space. The situation with a space that is given as the sum of its subspaces is not as simple. This exercise

considers the two-subspace special case.
(a) For these subspaces of Moo find Wi N Wa, dim(W; N W), W1 + Wa, and dim(W1 + Wa).

W1={((c] g)|c,deR} W2={(2 8>|b,ceR}

(b) Suppose that U and W are subspaces of a vector space. Suppose that the sequence (1, ..., B¢} is a basis for
U NW. Finally, suppose that the prior sequence has been expanded to give a sequence {1, ..., 45, B1,--.,Bk)
that is a basis for U, and a sequence {81, ..., Bk,w1,...,wp) that is a basis for W. Prove that this sequence

(.u’ly"':/"‘jaﬁla'":ﬂkawly"':wp)

is a basis for for the sum U + W.
(c) Conclude that dim(U + W) = dim(U) + dim(W) — dim(U N W).
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(d) Let W1 and W> be eight-dimensional subspaces of a ten-dimensional space. List all values possible for
dim(Wi N Wa).
4.36 Let V =W1 @ ... ®d W} and for each index ¢ suppose that S; is a linearly independent subset of W;. Prove
that the union of the S;’s is linearly independent.
4.37 A matrix is symmetric if for each pair of indices 7 and j, the 4,j entry equals the j,i entry. A matrix is
antisymmetric if each i, j entry is the negative of the j,7 entry.
(a) Give a symmetric 2x2 matrix and an antisymmetric 2x2 matrix. (Remark. For the second one, be careful
about the entries on the diagional.)
(b) What is the relationship between a square symmetric matrix and its transpose? Between a square antisym-
metric matrix and its transpose?
(c) Show that My, is the direct sum of the space of symmetric matrices and the space of antisymmetric
matrices.
4.38 Let Wi, W, W3 be subspaces of a vector space. Prove that (W1 NWs2)+ (W1 NW3) C Wi N(Wa+Ws). Does
the inclusion reverse?
4.39 The example of the z-axis and the y-axis in R? shows that W1 @ W2 = V' does not imply that Wy UW, = V.
Can W1 @ Wy =V and W1 UW> =V happen?
v 4.40 Our model for complementary subspaces, the z-axis and the y-axis in R?, has one property not used here.
Where U is a subspace of R® we define the orthocomplement of U to be
Ut ={veRr" |v'u=0forallu€U}
(read “U perp”).
(a) Find the orthocomplement of the z-axis in R”.
(b) Find the orthocomplement of the z-axis in R?.
(c) Find the orthocomplement of the zy-plane in R®.
(d) Show that the orthocomplement of a subspace is a subspace.
(e) Show that if W is the orthocomplement of U then U is the orthocomplement of W.
(f) Prove that a subspace and its orthocomplement have a trivial intersection.
(g) Conclude that for any n and subspace U C R® we have that R* = U @ U~.
(h) Show that dim(U) + dim(U") equals the dimension of the enclosing space.
v' 4.41 Consider Corollary 4.13. Does it work both ways—that is, supposing that V. = Wi + -+ + Wy, is V =
Wi @ ...® W if and only if dim(V) = dim(W1) + - - - + dim(W4)?
4.42 We know that if V = W1 @ W5 then there is a basis for V that splits into a basis for W1 and a basis for Ws.
Can we make the stronger statement that every basis for V splits into a basis for Wi and a basis for W»?
4.43 We can ask about the algebra of the ‘4’ operation.
(a) Is it commutative; is Wi + Wa = Wa + W17
(b) Is it associative; is (W1 + Wa) + W3 = Wy + (W2 + Ws)?
(c) Let W be a subspace of some vector space. Show that W+ W = W.
(d) Must there be an identity element, a subspace I such that I + W =W + I = W for all subspaces W7
(e) Does left-cancelation hold: if Wi + Wy = W1 + W3 then Wy = W37 Right cancelation?
4.44 Consider the algebraic properties of the direct sum operation.
(a) Does direct sum commute: does V = Wi @& W5 imply that V = Wy @ W1 ?
(b) Prove that direct sum is associative: (W1 @ W) ® W3 = W1 & (W @ W3).
(c) Show that R? is the direct sum of the three axes (the relevance here is that by the previous item, we needn’t
specify which two of the threee axes are combined first).
(d) Does the direct sum operation left-cancel: does W1 @ Wa = Wi @ W3 imply W> = W3? Does it right-cancel?
(e) There is an identity element with respect to this operation. Find it.
(f) Do some, or all, subspaces have inverses with respect to this operation: is there a subspace W of some vector
space such that there is a subspace U with the property that U @ W equals the identity element from the prior
item?
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I Homomorphisms

The definition of isomorphism has two conditions. In this section we will consider the second one, that the
map must preserve the algebraic structure of the space. We will focus on this condition by studying maps
that are required only to preserve structure; that is, maps that are not required to be correspondences.

Experience shows that this kind of map is tremendously useful in the study of vector spaces. For one
thing, as we shall see in the second subsection below, while isomorphisms describe how spaces are the same,
these maps describe how spaces can be thought of as alike.

1.1 Definition

1.1 Definition A function between vector spaces h: V — W that preserves the operations of addition
if v1,v9 € V then h(vy + v2) = h(v1) + h(v2)
and scalar multiplication
ifveV and r € R then h(r -v) =7 - h(v)
is a homomorphism or linear map.

1.2 Example The projection map m: R® — R?

is a homomorphism. It preserves addition

1 T2 T1 + T2 o+ z1 T2
1 2
w({w )+ (o =t mtm = (2 75) =at{w )y a{ )
21 22 z1 + 22 21 22

and scalar multiplication.

X1 rTr1 re I
wr- |y ])==(|rn ):<r 1>:r-7r( v |)
U1
21 TZ1 21

This map is not an isomorphism since it is not one-to-one. For instance, both 0 and e3 in R® are mapped to
the zero vector in R2.

1.3 Example Of course, the domain and codomain might be other than spaces of column vectors. Both
of these are homomorphisms; the verifications are straightforward.

(1) f12 PQ — P3 given by
ap + a1z + asx® = aor + (a1/2)2* + (az/3)2®

a b
(c d) —a+d
1.4 Example Between any two spaces there is a zero homomorphism, mapping every vector in the domain
to the zero vector in the codomain.

(2) f2: M2><2 - R given by
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1.5 Example These two suggest why we use the term ‘linear map’.

(1) The map g: R® — R given by
T
y | -5 3042y —4.52
2

is linear (i.e., is a homomorphism). In contrast, the map §: R® — R given by

x
y| - 3042y —452+1
z
is not; for instance,
0 1 0 1
g({0] +10))=4 while g({0])+g({0])=5
0 0 0 0

(to show that a map is not linear we need only produce one example of a linear combination that is
not preserved).

(2) The first of these two maps t1,t2: R® — R? is linear while the second is not.

x x
y | (53: h 2y) and L (53; - 2y)
e r+y e xy

<

Finding an example that the second fails to preserve structure is easy.

What distinguishes the homomorphisms is that the coordinate functions are linear combinations of the
arguments. See also Exercise 23.

Obviously, any isomorphism is a homomorphism —an isomorphism is a homomorphism that is also a
correspondence. So, one way to think of the ‘homomorphism’ idea is that it is a generalization of ‘isomor-
phism’, motivated by the observation that many of the properties of isomorphisms have only to do with the
map’s structure preservation property and not to do with it being a correspondence. As examples, these two
results from the prior section do not use one-to-one-ness or onto-ness in their proof, and therefore apply to
any homomorphism.

1.6 Lemma A homomorphism sends a zero vector to a zero vector.
1.7 Lemma Each of these is a necessary and sufficient condition for f: V' — W to be a homomorphism.
(1) fler-vi+ca-v2) =c1- f(v1) +ca- f(v2) for any ¢1,¢2 € R and v1,v2 € V
(2) fler-vi+--+ecn-vp)=c1-fr1)+---+cn- flup) forany ¢1,...,¢cp ERand vq,...,v, €V
Part (1) is often used to check that a function is linear.

1.8 Example The map f: R2 — R* given by

z/2
x }L} 0
y T4y
3y
satisfies (1) of the prior result
r1(21/2) +ra(72/2) z1/2 T2/2
0 _, o |, 0
ri(zy +y1) +r2(z2 + y2) N ETERT o2+
r1(3y1) + r2(3y2) 3y 3y2

and so it is a homomorphism.
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However, some of the results that we have seen for isomorphisms fail to hold for homomorphisms in
general. Consider the theorem that an isomorphism between spaces gives a correspondence between their
bases. Homomorphisms do not give any such correspondence; Example 1.2 shows that there is no such
correspondence, and another example is the zero map between any two nontrivial spaces. Instead, for
homomorphisms a weaker but still very useful result holds.

1.9 Theorem A homomorphism is determined by its action on a basis. That is, if (81, ..., 8,) is a basis of
a vector space V and wy, ..., w, are (perhaps not distinct) elements of a vector space W then there exists
a homomorphism from V' to W sending 8y to wy, ..., and f, to w,, and that homomorphism is unique.

Proor. We will define the map by associating $; with wi, etc., and then extending linearly to all of the
domain. That is, where v = ¢181 + - -+ + ¢, the map h: V — W is given by h(v) = cyw1 + -+ - + chwy.
This is well-defined because, with respect to the basis, the representation of each domain vector v is unique.

This map is a homomorphism since it preserves linear combinations; where v; = ¢ 81 + - - - + ¢, 8, and
vg =d1 1 + - -+ + dpBn, we have this.

h(T’1U1 + 7’2?)2) = h((’f'lcl + ’f'zdl),Bl + -+ (rlcn + Tzdn)ﬂn)
= (ric1 + rodi)wy + - -+ + (r1cy + r2dp)wy
rlh(vl) —|—’I‘2]’L(’U2)

And, this map is unique since if h: V — W is another homomorphism such that ﬁ(ﬂ,) = w; for each i
then h and h agree on all of the vectors in the domain.
h(v) = h(c1fi + -+ + cnbBn)
= CIE(IBI) +oeee cnﬁ(ﬂn)

=cawy + -+ cpw,

= h(v)
Thus, h and h are the same map. QED

1.10 Example This result says that we can construct a homomorphism by fixing a basis for the domain
and specifying where the map sends those basis vectors. For instance, if we specify a map h: R? — R? that
acts on the standard basis & in this way

(-3 ()= )

then the action of A on any other member of the domain is also specified. For instance, the value of h on

this argument
()=o) =2 () =2 m (o) -2 n (1) - (5)

is a direct consequence of the value of h on the basis vectors.
Later in this chapter we shall develop a scheme, using matrices, that is convienent for computations like
this one.

Just as the isomorphisms of a space with itself are useful and interesting, so too are the homomorphisms
of a space with itself.

1.11 Definition A linear map from a space into itself t: V' — V is a linear transformation.

1.12 Remark In this book we use ‘linear transformation’ only in the case where the codomain equals the
domain, but it is widely used in other texts as a general synonym for ‘homomorphism’.
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1.13 Example The map on R? that projects all vectors down to the z-axis
z\ (@
Y 0

1.14 Example The derivative map d/dz: P, — Py,

is a linear transformation.

d/d
ao+ a1+ -+ az" '/—fal+2a2x+3a3x2+---+nanx"_1

is a linear transformation, as this result from calculus notes: d(cif + cag)/dz = ¢1 (df /dz) + ¢2 (dg/dx).
1.15 Example The matrix transpose map

R

is a linear transformation of Maxs. Note that this transformation is one-to-one and onto, and so in fact it is
an automorphism.

We finish this subsection about maps by recalling that we can linearly combine maps. For instance, for

these maps from R? to itself
x f 2z x 9 0
0) (@) = ()= ()

the linear combination 5f — 2g is also a map from R?2 to itself.

T 5'f;2)g 10z
Y 5z — 10y

1.16 Lemma For vector spaces V and W, the set of linear functions from V to W is itself a vector space,
a subspace of the space of all functions from V to W. It is denoted £(V,W).

Proor. This set is non-empty because it contains the zero homomorphism. So to show that it is a subspace
we need only check that it is closed under linear combinations. Let f,g: V — W be linear. Then their sum
is linear

(f +9)(c1v1 + cov2) = e1 f(v1) + ca f(v2) + c1g(v1) + c2g(v2)
= cl(f +g)(v1) +02(f +9)(U2)

and any scalar multiple is also linear.

(r- f)(crvr + cavz) = rcr f(v1) + c2 f(v2))
=c1(r- f)(v1) +e2(r - f)(v2)

Hence £(V,W) is a subspace. QED

We started this section by isolating the structure preservation property of isomorphisms. That is, we
defined homomorphisms as a generalization of isomorphisms. Some of the properties that we studied for
isomorphisms carried over unchanged, while others were adapted to this more general setting.

It would be a mistake, though, to view this new notion of homomorphism as derived from, or somehow
secondary to, that of isomorphism. In the rest of this chapter we shall work mostly with homomorphisms,
partly because any statement made about homomorphisms is automatically true about isomorphisms, but
more because, while the isomorphism concept is perhaps more natural, experience shows that the homomor-
phism concept is actually more fruitful and more central to further progress.

Exercises
v 1.17 Decide if each h: R® — R? is linear.
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x xr xr xr
(a) h(@) = (x . +z) (b) h(@) = (8) (c) h(@) = (}) (d) ”(@) = (;;_* j’z)

v' 1.18 Decide if each map h: Mo — R is linear.
a b
(a) h(<c d))—a+d

(b) h((Z 3>)=ad—bc
() h((z Z)):2a+3b+c—d
(d) h((i Z))=a2+b2

v' 1.19 Show that these two maps are homomorphisms.
(a) d/dx: Ps — P2 given by ao + a1z + a2z’ + asz® maps to a1 + 2as2x + 3asz>
(b) f: Py — P3 given by bo + bix + bax® maps to box + (b1/2)z> + (b2/3)2®
Are these maps inverse to each other?
1.20 Is (perpendicular) projection from R® to the zz-plane a homomorphism? Projection to the yz-plane? To the
z-axis? The y-axis? The z-axis? Projection to the origin?
1.21 Show that, while the maps from Example 1.3 preserve linear operations, they are not isomorphisms.
1.22 Is an identity map a linear transformation?
v 1.23 Stating that a function is ‘linear’ is different than stating that its graph is a line.
(a) The function fi: R — R given by fi(z) = 2z — 1 has a graph that is a line. Show that it is not a linear

function.
(b) The function f»: R*> — R given by
x
(y) =+ 2y
does not have a graph that is a line. Show that it is a linear function.

v' 1.24 Part of the definition of a linear function is that it respects addition. Does a linear function respect subtrac-

tion?
1.25 Assume that h is a linear transformation of V' and that (81,...,8r) is a basis of V. Prove each state-
ment.
(a) If h(B;) = 0 for each basis vector then h is the zero map.
(b) If h(B;) = B for each basis vector then h is the identity map.
(c) If there is a scalar r such that h(83;) = r - 3; for each basis vector then h(v) = r - v for all vectors in V.

v 1.26 Consider the vector space RT where vector addition and scalar multiplication are not the ones inherited from
R but rather are these: a + b is the product of a and b, and r - a is the r-th power of a. (This was shown to
be a vector space in an earlier exercise.) Verify that the natural logarithm map In: Rt — R is a homomorphism
between these two spaces. Is it an isomorphism?

v 1.27 Consider this transformation of R?.

()~ ()
y y/3
Find the image under this map of this ellipse.
{(jj) | @/4) + (*/9) = 1}

v 1.28 Imagine a rope wound around the earth’s equator so that it fits snugly (suppose that the earth is a sphere).
How much extra rope must be added to raise the circle to a constant six feet off the ground?

v 1.29 Verify that this map h: R®* - R

() ()0

1.30 Show that every homomorphism from R' to R' acts via multiplication by a scalar. Conclude that every
nontrivial linear transformation of R! is an isomorphism. Is that true for transformations of R?? R"?

is linear. Generalize.
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1.31 (a) Show that for any scalars a1,1,...,am,» this map h: R® — R™ is a homomorphism.

r1 a1,1%1 + -+ a1,0Tn
}_)
Tn Am,1%1 + -+ GmnTn
(b) Show that for each i, the i-th derivative operator d’/dz’ is a linear transformation of P,. Conclude that
for any scalars cg,...,co this map is a linear transformation of that space.
k—1

f._)£f+c d—f+...+c if+cf
dz*® Pl gkt Yz 0
1.32 Lemma 1.16 shows that a sum of linear functions is linear and that a scalar multiple of a linear function is

linear. Show also that a composition of linear functions is linear.
v 1.833 Where f: V — W is linear, suppose that f(vi) = wi, ..., f(vn) = wy, for some vectors wi, ...
w.
(a) If the set of w’s is independent, must the set of v’s also be independent?
(b) If the set of v’s is independent, must the set of w’s also be independent?
(c) If the set of w’s spans W, must the set of v’s span V7
(d) If the set of v’s spans V, must the set of w’s span W?
1.34 Generalize Example 1.15 by proving that the matrix transpose map is linear. What is the domain and

, Wy from

codomain?
1.35 (a) Whereu,v € R", the line segment connecting them is defined to be theset £ = {t -u+ (1 —¢t) - v | t €[0..1]}.

Show that the image, under a homomorphism h, of the segment between u and v is the segment between h(u)

and h(v).
(b) A subset of R™ is convez if, for any two points in that set, the line segment joining them lies entirely in

that set. (The inside of a sphere is convex while the skin of a sphere is not.) Prove that linear maps from R”
to R™ preserve the property of set convexity.

v 1.36 Let h: R® — R™ be a homomorphism.
(a) Show that the image under h of a line in R" is a (possibly degenerate) line in R".

(b) What happens to a k-dimensional linear surface?
1.37 Prove that the restriction of a homomorphism to a subspace of its domain is another homomorphism.
1.38 Assume that h: V — W is linear.
(a) Show that the rangespace of this map {h(v) | v € V'} is a subspace of the codomain W.
(b) Show that the nullspace of this map {v €V | h(v) = 0w} is a subspace of the domain V.
(c) Show that if U is a subspace of the domain V then its image {h(u) | u € U} is a subspace of the codomain
W. This generalizes the first item.

(d) Generalize the second item.
1.39 Consider the set of isomorphisms from a vector space to itself. Is this a subspace of the space £(V,V) of

homomorphisms from the space to itself?

1.40 Does Theorem 1.9 need that (81, ..

.,PBn) is a basis? That is, can we still get a well-defined and unique
homomorphism if we drop either the condition that the set of 3’s be linearly independent, or the condition that

it span the domain?
1.41 Let V be a vector space and assume that the maps fi, f2: V — R! are linear.
(a) Define a map F: V — R? whose component functions are the given linear ones.

fi(v)
v (f2(v)>
Show that F' is linear.

(b) Does the converse hold —is any linear map from V to R?> made up of two linear component maps to R"?

(c) Generalize.

1.2 Rangespace and Nullspace

Isomorphisms and homomorphisms both preserve structure. The difference is that homomorphisms needn’t
be onto and needn’t be one-to-one. This means that homomorphisms are a more general kind of map, subject
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to fewer restrictions than isomorphisms. We will examine what can happen with homomorphisms that is
prevented by the extra restrictions satisfied by isomorphisms.

We first consider the effect of dropping the onto requirement, of not requiring as part of the definition
that a homomorphism be onto its codomain. For instance, the injection map ¢: R? — R3

is not an isomorphism because it is not onto. Of course, being a function, a homomorphism is onto some
set, namely its range; the map ¢ is onto the zy-plane subset of R*.

2.1 Lemma Under a homomorphism, the image of any subspace of the domain is a subspace of the
codomain. In particular, the image of the entire space, the range of the homomorphism, is a subspace of the
codomain.

ProoF. Let h: V — W be linear and let S be a subspace of the domain V. The image h(S) is a subset of
the codomain W. It is nonempty because S is nonempty and thus to show that h(S) is a subspace of W we
need only show that it is closed under linear combinations of two vectors. If h(s1) and h(sz) are members of
h(S) then ¢1 - h(s1) +c2 - h(s2) = h(cy - s1) + h(cz - s2) = h(cr - 81 + ¢2 - 82) is also a member of h(S) because
it is the image of ¢; - 81 + ¢2 - s2 from S. QED

2.2 Definition The rangespace of a homomorphism h: V. — W is
Z(h) = {h(v) | veV}
sometimes denoted h(V'). The dimension of the rangespace is the map’s rank.

(We shall soon see the connection between the rank of a map and the rank of a matrix.)

2.3 Example Recall that the derivative map d/dz: P3s — P3 given by ag + a1z + a22? + azz® — a1 +
2asz+3a3z? is linear. The rangespace #(d/dz) is the set of quadratic polynomials {r + sz + tz> | r,s,t € R}.
Thus, the rank of this map is three.

2.4 Example With this homomorphism h: Maye — Ps

(Z 2) — (a+ b+ 2d) + 0z + c2® + c2®
an image vector in the range can have any constant term, must have an z coeflicient of zero, and must have
the same coefficient of z? as of z*. That is, the rangespace is Z(h) = {r + 0z + sz? + sz? | r,s € R} and so
the rank is two.

The prior result shows that, in passing from the definition of isomorphism to the more general definition
of homomorphism, omitting the ‘onto’ requirement doesn’t make an essential difference. Any homomorphism
is onto its rangespace.

However, omitting the ‘one-to-one’ condition does make a difference. A homomorphism may have many
elements of the domain that map to one element of the codomain. Below is a “bean ” sketch of a many-to-one
map between sets.* It shows three elements of the codomain that are each the image of many members of
the domain.

*More information on many-to-one maps is in the appendix.
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Recall that for any function h: V' — W, the set of elements of V' that are mapped to w € W is the inverse
image h~(w) = {v € V | h(v) = w}. Above, the three sets of many elements on the left are inverse images.

2.5 Example Consider the projection 7: R® — R?

which is a homomorphism that is many-to-one. In this instance, an inverse image set is a vertical line of

vectors in the domain.
)
R3
@

2.6 Example This homomorphism h: R? — R!

(Z)@Hy

is also many-to-one; for a fixed w € R!, the inverse image h~*(w)

R2 %\ R!

w

is the set of plane vectors whose components add to w.

The above examples have only to do with the fact that we are considering functions, specifically, many-
to-one functions. They show the inverse images as sets of vectors that are related to the image vector w.
But these are more than just arbitrary functions, they are homomorphisms; what do the two preservation
conditions say about the relationships?

In generalizing from isomorphisms to homomorphisms by dropping the one-to-one condition, we lose the
property that we’ve stated intuitively as: the domain is “the same as” the range. That is, we lose that
the domain corresponds perfectly to the range in a one-vector-by-one-vector way. What we shall keep, as
the examples below illustrate, is that a homomorphism describes a way in which the domain is “like”, or
“analgous to”, the range.

2.7 Example We think of R? as being like R?, except that vectors have an extra component. That is, we
think of the vector with components z, y, and z as like the vector with components z and y. In defining
the projection map 7, we make precise which members of the domain we are thinking of as related to which
members of the codomain.

Understanding in what way the preservation conditions in the definition of homomorphism show that the
domain elements are like the codomain elements is easiest if we draw R? as the zy-plane inside of R?. (Of
course, R? is a set of two-tall vectors while the zy-plane is a set of three-tall vectors with a third component
of zero, but there is an obvious correspondence.) Then, 7(v) is the “shadow” of v in the plane and the
preservation of addition property says that
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k % e

1 2 - 1+ o+
yl above ( plus yz above ( 2) equals | y1 +y2 | above ( ! 2)
Y1 Y2 + Y2

21 22 21+ 22

Briefly, the shadow of a sum 7 (v, + v2) equals the sum of the shadows 7(v1) + 7(v2). (Preservation of scalar
multiplication has a similar interpretation.)

Redrawing by separating the two spaces, moving the codomain R? to the right, gives an uglier picture
but one that is more faithful to the “bean” sketch.

=

Again in this drawing, the vectors that map to w; lie in the domain in a vertical line (only one such vector
is shown, in gray). Call any such member of this inverse image a “w; vector”. Similarly, there is a vertical
line of “wy vectors” and a vertical line of “w; 4+ ws vectors”. Now, 7 has the property that if m(v1) = w;
and 7(v2) = wa then 7(vy + v2) = w(v1) + m(v2) = wy + wy. This says that the vector classes add, in the
sense that any w; vector plus any wy vector equals a w; + we vector, (A similar statement holds about the
classes under scalar multiplication.)

Thus, although the two spaces R?® and R? are not isomorphic, 7 describes a way in which they are
alike: vectors in R® add as do the associated vectors in R2 — vectors add as their shadows add.

2.8 Example A homomorphism can be used to express an analogy between spaces that is more subtle
than the prior one. For the map
T\ h
(y) — Tty

from Example 2.6 fix two numbers wq,ws in the range R. A v; that maps to w; has components that add
to wy, that is, the inverse image h~!(w;) is the set of vectors with endpoint on the diagonal line z +y = w;.
Call these the “w; vectors”. Similarly, we have the “w, vectors” and the “w; + wy vectors”. Then the
addition preservation property says that

71 + U2
7
1 1-)‘2

a “wi vector” plus a “ws2 vector” equals a “wi + w2 vector”.

Restated, if a w; vector is added to a ws vector then the result is mapped by h to a wi + wa vector. Briefly,
the image of a sum is the sum of the images. Even more briefly, h(v; +v2) = h(v1)+ h(vz2). (The preservation
of scalar multiplication condition has a similar restatement.)

2.9 Example The inverse images can be structures other than lines. For the linear map h: R® — R?

x
- (Y
z
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the inverse image sets are planes z = 0, = 1, etc., perpendicular to the z-axis.

e

We won’t describe how every homomorphism that we will use is an analogy because the formal sense
that we make of “alike in that ...” is ‘a homomorphism exists such that ... ’. Nonetheless, the idea that a
homomorphism between two spaces expresses how the domain’s vectors fall into classes that act like the the
range’s vectors is a good way to view homomorphisms.

Another reason that we won’t treat all of the homomorphisms that we see as above is that many vector
spaces are hard to draw (e.g., a space of polynomials). However, there is nothing bad about gaining insights
from those spaces that we are able to draw, especially when those insights extend to all vector spaces. We
derive two such insights from the three examples 2.7, 2.8, and 2.9.

First, in all three examples, the inverse images are lines or planes, that is, linear surfaces. In particular,
the inverse image of the range’s zero vector is a line or plane through the origin — a subspace of the domain.

2.10 Lemma For any homomorphism, the inverse image of a subspace of the range is a subspace of the
domain. In particular, the inverse image of the trivial subspace of the range is a subspace of the domain.

Proor. Let h V — W be a homomorphism and let S be a subspace of the rangespace h. Consider h=1(S) =
{veV | h(v) € S}, the inverse image of the set S. It is nonempty because it contains Oy, since h(0y) = O,
which is an element S, as S is a subspace. To show that h=1(S) is closed under linear combinations, let v;
and vy be elements, so that h(v;) and h(vs) are elements of S, and then ¢jv; + cavy is also in the inverse
image because h(civ1 + cavs) = c1h(v1) + c2h(vz) is a member of the subspace S. QED

2.11 Definition The nullspace or kernel of a linear map h: V — W is the inverse image of Oy
N (h) = h™' (Ow) = {v € V | h(v) = Ow}.

The dimension of the nullspace is the map’s nullity.

TR

2.12 Example The map from Example 2.3 has this nullspace 4" (d/dz) = {ao + 0z + 022 + 023 | ag € R}.
2.13 Example The map from Example 2.4 has this nullspace.

/(h):{(‘o‘ (a—?b/Q) | a,be R}

Now for the second insight from the above pictures. In Example 2.7, each of the vertical lines is squashed
down to a single point—m, in passing from the domain to the range, takes all of these one-dimensional
vertical lines and “zeroes them out”, leaving the range one dimension smaller than the domain. Similarly,
in Example 2.8, the two-dimensional domain is mapped to a one-dimensional range by breaking the domain
into lines (here, they are diagonal lines), and compressing each of those lines to a single member of the range.
Finally, in Example 2.9, the domain breaks into planes which get “zeroed out”, and so the map starts with
a three-dimensional domain but ends with a one-dimensional range—this map “subtracts” two from the
dimension. (Notice that, in this third example, the codomain is two-dimensional but the range of the map
is only one-dimensional, and it is the dimension of the range that is of interest.)
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2.14 Theorem A linear map’s rank plus its nullity equals the dimension of its domain.

Proor. Let h: V — W be linear and let By = {81,...,08k) be a basis for the nullspace. Extend that to a
basis By = (B1,---,Bk; Bk+1,- - -, Bn) for the entire domain. We shall show that Bg = (h(Bk+1),-- -, h{(Brn))
is a basis for the rangespace. Then counting the size of these bases gives the result.

To see that Bpg is linearly independent, consider the equation cg1h(Bry1) + -+ + cph(Bn) = Ow. This
gives that h(cg+1Bk+1 + -+ + cnfBn) = Ow and 80 cgr1Bk+1 + -+ - + ¢nfByn is in the nullspace of h. As By is a
basis for this nullspace, there are scalars ¢y, ..., ¢, € R satisfying this relationship.

afr+ -+ cerPr = k1 Brr1 + -+ cnfin

But By is a basis for V' so each scalar equals zero. Therefore Bp, is linearly independent.
To show that Bp spans the rangespace, consider h(v) € %(h) and write v as a linear combination
v =c1f + -+ + ¢ Bn of members of By. This gives h(v) = h(c1f1 + -+ + ¢nfn) = cth(B1) + -+ +

ckh(Br) + cry1h(Bre1) + -+ + c,h(B,) and since By, ..., Bk are in the nullspace, we have that h(v) =
0+4+---+0+ckr1h(Bry1) + -+ + cnh(Br). Thus, h(v) is a linear combination of members of Bg, and so By
spans the space. QED
2.15 Example Where h: R® — R* is
z
AN
2 Y
0
the rangespace and nullspace are
0 0
#(h) ={|, |a,be R} and A(h)={[0]|z€R}
z
0

and so the rank of h is two while the nullity is one.

2.16 Example Ift: R — R is the linear transformation x — —4z, then the range is Z(t) = R!, and so the
rank of ¢ is one and the nullity is zero.

2.17 Corollary The rank of a linear map is less than or equal to the dimension of the domain. Equality
holds if and only if the nullity of the map is zero.

We know that an isomorphism exists between two spaces if and only if their dimensions are equal. Here
we see that for a homomorphism to exist, the dimension of the range must be less than or equal to the
dimension of the domain. For instance, there is no homomorphism from R? onto R®. There are many
homomorphisms from R? into R?, but none is onto all of three-space.

The rangespace of a linear map can be of dimension strictly less than the dimension of the domain
(Example 2.3’s derivative transformation on P3 has a domain of dimension four but a range of dimension
three). Thus, under a homomorphism, linearly independent sets in the domain may map to linearly depen-
dent sets in the range (for instance, the derivative sends {1,z,z?,2%} to {0,1,2z,32}). That is, under a
homomorphism, independence may be lost. In contrast, dependence stays.

2.18 Lemma Under a linear map, the image of a linearly dependent set is linearly dependent.

PrROOF. Suppose that ¢jvq + - -+ + ¢pv, = Oy, with some ¢; nonzero. Then, because h(civr + -+ + cpv,) =
cih(vy) + -+ + eph(v,) and because h(0y) = Ow, we have that cih(v1) + - - + eph(vy) = Oy with some
nonzero ¢;. QED

When is independence not lost? One obvious sufficient condition is when the homomorphism is an
isomorphism. This condition is also necessary; see Exercise 35. We will finish this subsection comparing
homomorphisms with isomorphisms by observing that a one-to-one homomorphism is an isomorphism from
its domain onto its range.
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2.19 Definition A linear map that is one-to-one is nonsingular.

(In the next section we will see the connection between this use of ‘nonsingular’ for maps and its familiar
use for matrices.)

2.20 Example This nonsingular homomorphism ¢: R? — R3

T
(m) — |y
y 0

gives the obvious correspondence between R? and the zy-plane inside of R®.
The prior observation allows us to adapt some results about isomorphisms to this setting.

2.21 Theorem In an n-dimensional vector space V', these:
(1) h is nonsingular, that is, one-to-one
2) h has a linear inverse
) A (h) = {0}, that is, nullity(h) =0
) rank(h) = n
5) if (B1,...,Bn) is a basis for V then (h(B1),...,h(B,)) is a basis for Z(h)
are equivalent statements about a linear map h: V — W.

(
(3
(4
(

Proor. We will first show that (1) <= (2). We will then show that (1) = (3) = (4) = (56) = (2).

For (1) = (2), suppose that the linear map h is one-to-one, and so has an inverse. The domain of
that inverse is the range of A and so a linear combination of two members of that domain has the form
c1h(v1) + cah(v2). On that combination, the inverse h~! gives this.

=t (erh(vy) + eah(v2)) = h™ (h(civy + cav2))
=h"toh(civr + cavs)
= C1V1 + C2V2
=cih o h(v1) + cah ™' o h(va)
=c1 - h™H(h(v1)) + ¢z - B (h(v2))

Thus the inverse of a one-to-one linear map is automatically linear. But this also gives the (1) = (2)
implication, because the inverse itself must be one-to-one.

Of the remaining implications, (1) = (3) holds because any homomorphism maps Oy to Ow, but a
one-to-one map sends at most one member of V' to O .

Next, (3) = (4) is true since rank plus nullity equals the dimension of the domain.

For (4) = (5), to show that (h(B1),...,h(Br)) is a basis for the rangespace we need only show that
it is a spanning set, because by assumption the range has dimension n. Consider h(v) € #Z(h). Expressing
v as a linear combination of basis elements produces h(v) = h(c1 1 + c2f82 + -+ - + ¢nfBrn), which gives that
h(v) = c1h(B1) + - -- + cph(Br), as desired.

Finally, for the (5) = (2) implication, assume that (81, ..., B,) is a basis for V so that (h(51),. .., h(B,))
is a basis for Z(h). Then every w € Z(h) a the unique representation w = c¢1h(81) + -+ - + ¢, h(B,). Define
a map from Z(h) to V by

w = cftefet -+ enfn
(uniqueness of the representation makes this well-defined). Checking that it is linear and that it is the inverse
of h are easy. QED

We’ve now seen that a linear map shows how the structure of the domain is like that of the range. Such
a map can be thought to organize the domain space into inverse images of points in the range. In the special
case that the map is one-to-one, each inverse image is a single point and the map is an isomorphism between
the domain and the range.

Exercises
v 2.22 Let h: P3s — P4 be given by p(z) — z - p(x). Which of these are in the nullspace? Which are in the
rangespace?



62 Chapter Three. Linear Maps between Vector Spaces

(@) 2 ()0 (c) 7 (d) 12z2-052> (e) 1+ 32> —2°
v' 2.23 Find the nullspace, nullity, rangespace, and rank of each map.

(a) h: R* — P3 given by
(Z) r—)a+am+ax2

a b
(c d) —a+d

(a b) > a+b+c+ds?
c d

(b) h: M2e — R given by
(c) h: Mo — P> given by

(d) the zero map Z: R® —+ R*
v’ 2.24 Find the nullity of each map.
(a) h: R® — R® of rank five (b) h: Ps — P; of rank one  (c) h: R® — R?, an onto map
(d) h: Maxs — Mays, onto
v 2.25 What is the nullspace of the differentiation transformation d/dz: P, — P,? What is the nullspace of the
second derivative, as a transformation of P,? The k-th derivative?
2.26 Example 2.7 restates the first condition in the definition of homomorphism as ‘the shadow of a sum is the
sum of the shadows’. Restate the second condition in the same style.
2.27 For the homomorphism h: P3 — P; given by h(ao + a1z + a22” + asz®) = ao + (a0 +a1)z + (a2 + a3)z® find
these.
(@ #(h) (b) K '(2-2%) (c) h'(1+2?)
v 2.28 For the map f: R> — R given by
x
f( (y) )=2z+y

sketch these inverse image sets: f~1(—=3), f71(0), and f1(1).
v 2.29 Each of these transformations of P3 is nonsingular. Find the inverse function of each.
(a) ao + a1z + a2z’ + asx® — ao + a1z + 202> + 3azz®
(b) ao + a1z + a2z? + azz® = ag + axx + a1z% + asx®
(c) ao + a1z + a22” + asz® = a1 + axx + asx® + aoz®
(d) ao + a1z + a22” + asz® — ao + (a0 + a1)z + (a0 + a1 + a2)z” + (a0 + a1 + a2 + as)z®

2.30 Describe the nullspace and rangespace of a transformation given by v — 2v.

2.31 List all pairs (rank(h), nullity(h)) that are possible for linear maps from R® to R3.

2.32 Does the differentiation map d/dz: P, — P, have an inverse?

v 2.33 Find the nullity of the map h: P, — R given by

z=1
ao+a1z+ -+ anz” — ao+ a1z +--- +anz” de.
z=0

2.34 (a) Prove that a homomorphism is onto if and only if its rank equals the dimension of its codomain.

(b) Conclude that a homomorphism between vector spaces with the same dimension is one-to-one if and only
if it is onto.

2.35 Show that a linear map is nonsingular if and only if it preserves linear independence.

2.36 Corollary 2.17 says that for there to be an onto homomorphism from a vector space V to a vector space W,
it is necessary that the dimension of W be less than or equal to the dimension of V. Prove that this condition is
also sufficient; use Theorem 1.9 to show that if the dimension of W is less than or equal to the dimension of V,
then there is a homomorphism from V' to W that is onto.

2.37 Let h: V — R be a homomorphism, but not the zero homomorphism. Prove that if (51,...,8,) is a basis
for the nullspace and if v € V' is not in the nullspace then (v, 1, ..., B,) is a basis for the entire domain V.

v 2.38 Recall that the nullspace is a subset of the domain and the rangespace is a subset of the codomain. Are
they necessarily distinct? Is there a homomorphism that has a nontrivial intersection of its nullspace and its
rangespace?

2.39 Prove that the image of a span equals the span of the images. That is, where h: V — W is linear, prove
that if S is a subset of V' then h((S)) equals (h(S)). This generalizes Lemma 2.1 since it shows that if U is any
subspace of V' then its image {h(u) | u € U} is a subspace of W, because the span of the set U is U.
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v 2.40 (a) Prove that for any linear map h: V — W and any w € W, the set h~'(w) has the form
{v+n|ne(h)}
for v € V with h(v) = w (if h is not onto then this set may be empty). Such a set is a coset of 4" (h) and is

denoted v + A (h).
(b) Consider the map ¢: R*> — R? given by
z) ¢, (az + by
y cx +dy
for some scalars a, b, ¢, and d. Prove that t is linear.
(c) Conclude from the prior two items that for any linear system of the form
ax+by=-e
cx+dy=f
the solution set can be written (the vectors are members of R?)
{p+h | h satisfies the associated homogeneous system}

where p is a particular solution of that linear system (if there is no particular solution then the above set is

empty).
(d) Show that this map h: R® — R™ is linear
T a1171 + -+ a1nn
= -
Tn Am,1%1 + -+ AQm,nTn
for any scalars a1,1, ..., @m,». Extend the conclusion made in the prior item.

(e) Show that the k-th derivative map is a linear transformation of P, for each k. Prove that this map is a
linear transformation of that space
d* d* ! d
= —f+ck-15——f+ -ta—f+c
f dmkf b ldxkflf lda:f of
for any scalars cg, ..., co. Draw a conclusion as above.

2.41 Prove that for any transformation ¢: V' — V that is rank one, the map given by composing the operator with
itself tot: V — V satisfies t ot = r - ¢t for some real number 7.

2.42 Show that for any space V of dimension n, the dual space
L(V,R) ={h: V =R | h is linear}
is isomorphic to R™. It is often denoted V*. Conclude that V* = V.
2.43 Show that any linear map is the sum of maps of rank one.

2.44 Is ‘is homomorphic to’ an equivalence relation? (Hint: the difficulty is to decide on an appropriate meaning
for the quoted phrase.)

2.45 Show that the rangespaces and nullspaces of powers of linear maps ¢t: V' — V form descending
VOREA)DRH)D...
and ascending
forcHycH () C...
chains. Also show that if k is such that Z(t*) = Z(t**1) then all following rangespaces are equal: Z(t*) =
R(thTY) = R(t*2).... Similarly, if A (t*) = A (") then A (t*) = &/ (F*T) = 4 (tFFD) = ...
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I Computing Linear Maps
The prior section shows that a linear map is determined by its action on a basis. In fact, the equation
h(vy=h(cr-B1+--+cn-Bn)=c1-h(B1)+ -+ cn-h(Brn)

shows that, if we know the value of the map on the vectors in a basis, then we can compute the value of the
map on any vector v at all. We just need to find the ¢’s to express v with respect to the basis.

This section gives the scheme that computes, from the representation of a vector in the domain Repg(v),
the representation of that vector’s image in the codomain Repp,(h(v)), using the representations of h(f1),

ey h(Bn).

II.1 Representing Linear Maps with Matrices

1.1 Example Consider a map h with domain R?> and codomain R® (fixing

B=<(§)=(i)> and D= é : —(0)2 , % )

as the bases for these spaces) that is determined by this action on the vectors in the domain’s basis.

2\ & ! 1\ »n
0 — |1 4 —
1 0
To compute the action of this map on any vector at all from the domain, we first express h(51) and h(S32)
with respect to the codomain’s basis:

N =

1 1 1 0 1 0

1) =0{0)—5{=2|+1|0| so Repp(h(f1)= |-1/2

1 0 0 1 1 D
1 1 0 1 1
2]l =1{0]-1|-2]+0]0 so Repp(h(B:)) = [ -1
0 0 0 1 0/,

(these are easy to check). Then, as described in the preamble, for any member v of the domain, we can
express the image h(v) in terms of the h(3)’s.

h(v) = h(c: - (g) ter- (i))
— -h((g))Jch-h(@)

1 1 0 1 1 0 1
=0 f0]-5(-2)+1 (o) +e-ao]-1{-2]+0f0)
0 0 1 0 0 1
1 1 0 1
= (001 + ].CQ) -10] + (——Cl — 102) -l =2 + (].Cl + OCQ) -10
0 2 0 1

Thus,
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Oc1 + 1o

with Repg(v) = (21> then Repp(h(v)) = | —(1/2)e1 — 1e2
2 lci + Oco
For instance,
2
. 4 1 4
with Repg( ) = then Repp( h( ))= | -5/2
8 2) g 8 1
We will express computations like the one above with a matrix notation.
0 1 c Oc1 + lec2
_]_/2 -1 (cl) = (—1/2)01 —leo
1 0 2/ B lep + Oco

In the middle is the argument v to the map, represented with respect to the domain’s basis B by a column
vector with components ¢; and ¢y. On the right is the value h(v) of the map on that argument, represented
with respect to the codomain’s basis D by a column vector with components Oc; + 1lca, etc. The matrix on
the left is the new thing. It consists of the coefficients from the vector on the right, 0 and 1 from the first
row, —1/2 and —1 from the second row, and 1 and 0 from the third row.

This notation simply breaks the parts from the right, the coefficients and the ¢’s, out separately on the
left, into a vector that represents the map’s argument and a matrix that we will take to represent the map
itself.

1.2 Definition Suppose that V and W are vector spaces of dimensions n and m with bases B and D,
and that h: V — W is a linear map. If

hi,1 hin
ha1 h2,n
Repp(h(B) = | . | - Repp(h(Bn))=| .
hm,l D hm,n D
then
hl,l h1,2 000 hl,n
h2,1 h2,2 000 h2,n
RepB,D(h) = .
hm,l hm,2 coo hm,n B,D

is the matriz representation of h with respect to B, D.

Briefly, the vectors representing the h(8)’s are adjoined to make the matrix representing the map.

Repp.p(h) = | Repp(h(81)) | - |Repp(h(Bn))

Observe that the number of columns n of the matrix is the dimension of the domain of the map, and the
number of rows m is the dimension of the codomain.

1.3 Example If h: R® — P is given by

ay
as li) (2&1 + a2) + (—a3)1'
as
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then where
0 0 2
B=({0],12],{0])) and D={(1+2z,-1+z)
1 0 0
the action of h on B is given by
0 0 2
0] - —= 2] 22 0]+ 4
1 0 0

and a simple calculation gives

Repp (i) = (j@D Repp (2) = (_11)D Rep (4) = (—22)13

showing that this is the matrix representing h with respect to the bases.

-1/2 1 2
RepB,D(h‘) = (_152 -1 _2)
B,D

We will use lower case letters for a map, upper case for the matrix, and lower case again for the entries
of the matrix. Thus for the map h, the matrix representing it is H, with entries h; ;.

1.4 Theorem Assume that V and W are vector spaces of dimensions m and n with bases B and D, and
that h: V — W is a linear map. If h is represented by

hl,l h1,2 hl,n
h2’1 h2,2 .. h2’n
RepB,D(h) = .
hmi hma2 o hmn B.D
and v € V is represented by
&]
C2
Repg(v) =

¢n) g

then the representation of the image of v is this.

hiicr + hipca + -+ -+ hyney
ha,ic1 + haoca + -+ -+ ha ey
Repp(h(v)) = :

hm,lcl i hm,202 +---+ hm,ncn D
Proor. Exercise 28. QED

We will think of the matrix Repg p(h) and the vector Repg(v) as combining to make the vector
Repp (h(v)).

1.5 Definition The matriz-vector product of a m xn matrix and a n x1 vector is this.

ail a2 ... Qip % a1,1€1 +ai2c2 + -+ a1 ,nCp
as1 Q22 ... Q2gp as1¢1 + azpac + -+ a2 pnCp

cn )
Gm,a1 Am2 ... (amn Gm,1C1 + am,2C2 +-- Gm,nCn
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The point of Definition 1.2 is to generalize Example 1.1, that is, the point of the definition is Theo-
rem 1.4, that the matrix describes how to get from the representation of a domain vector with respect to
the domain’s basis to the representation of its image in the codomain with respect to the codomain’s basis.
With Definition 1.5, we can restate this as: application of a linear map is represented by the matrix-vector
product of the map’s representative and the vector’s representative.

1.6 Example With the matrix from Example 1.3 we can calculate where that map sends this vector.

4

This vector is represented, with respect to the domain basis B, by

0

Repp(v) = [ 1/2
2 /)5

and so this is the representation of the value h(v) with respect to the codomain basis D.

0
RepD(h(U))z(:ig —11 _22)BD 142

C((=1/2)-0+1-(1/2) +2-2 9/2
- ((—1/2)-0—1-(1/2)—2-2>D - (—Q/Z)D

To find h(v) itself, not its representation, take (9/2)(1+ z) — (9/2)(-1+z) = 9.

1.7 Example Let 7: R® — R? be projection onto the zy-plane. To give a matrix representing this map,

we first fix bases.
1 -1

mi(o) (o) (7)) 2@

For each vector in the domain’s basis, we find its image under the map.

1 N 1 N -1 |

0 — 0 1] — 1 0| +— 0

0 0 1

Then we find the representation of each image with respect to the codomain’s basis

menol(3)) = (1) menot (= (3) menat (3= ()

(these are easily checked). Finally, adjoining these representations gives the matrix representing = with

respect to B, D.
1 0 -1
Repp p(m) = ( )
; -1 1 1 B.D

We can illustrate Theorem 1.4 by computing the matrix-vector product representing the following statement
about the projection map.

Representing this vector from the domain with respect to the domain’s basis

2 1
Repp([2])= |2
1 1

B
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gives this matrix-vector product.

2 1
1 0 -1 0
RepD(Tr( 1 )) = (_1 1 1 ) 2 = (2)
1 B,D \1 B D

Expanding this representation into a linear combination of vectors from D

(1) 2 ()= ()

checks that the map’s action is indeed reflected in the operation of the matrix. (We will sometimes compress
these three displayed equations into one

in the course of a calculation.)

We now have two ways to compute the effect of projection, the straightforward formula that drops each
three-tall vector’s third component to make a two-tall vector, and the above formula that uses representations
and matrix-vector multiplication. Compared to the first way, the second way might seem complicated.
However, it has advantages. The next example shows that giving a formula for some maps is simplified by
this new scheme.

1.8 Example To represent a rotation map ts: R2 — R? that turns all vectors in the plane counterclockwise

through an angle 6
|/ tﬂ/ﬁ |/tﬂ/6(a)
=
T T

we start by fixing bases. Using & both as a domain basis and as a codomain basis is natural, Now, we find
the image under the map of each vector in the domain’s basis.

1 (o, (cOS 0 0 oy (— sin 0
0 sin @ 1 cos @
Then we represent these images with respect to the codomain’s basis. Because this basis is &3, vectors are

represented by themselves. Finally, adjoining the representations gives the matrix representing the map.

cosf —sin 0)

Repg, ¢, (to) = (sine cosf

The advantage of this scheme is that just by knowing how to represent the image of the two basis vectors,
we get a formula that tells us the image of any vector at all; here a vector rotated by 6 = /6.

()5 (0 4 (9 ()

(Again, we are using the fact that, with respect to &, vectors represent themselves.)

We have already seen the addition and scalar multiplication operations of matrices and the dot product
operation of vectors. Matrix-vector multiplication is a new operation in the arithmetic of vectors and
matrices. Nothing in Definition 1.5 requires us to view it in terms of representations. We can get some
insight into this operation by turning away from what is being represented, and instead focusing on how the
entries combine.
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1.9 Example In the definition the width of the matrix equals the height of the vector. Hence, the first
product below is defined while the second is not.

1 00 (1] (1 1 0 0) /(1

4 3 1 9 —\6 4 3 1)\0
One reason that this product is not defined is purely formal: the definition requires that the sizes match,
and these sizes don’t match. Behind the formality, though, is a reason why we will leave it undefined —

the matrix represents a map with a three-dimensional domain while the vector represents a member of a
two-dimensional space.

A good way to view a matrix-vector product is as the dot products of the rows of the matrix with the
column vector.
1
C2 -
a;1 Qjo .. Qin . = | aj1c1 +ai2¢2 + ...+ a;pcy

Cn

Looked at in this row-by-row way, this new operation generalizes dot product.
Matrix-vector product can also be viewed column-by-column.

higi hi2 ... hin c1 hiic1 + hiaco + -+ -+ hincy
hag  hap ... hagn C2 ha,1c1 + haaca + -+ -+ ho ey
hm,l hm,z - hm,n Cn hm,1(31 + hm’QCZ + -+ hm,ncn
hi,1 hin
ha,1 han
=0 . +---+cn
hm 1 hm n

) )

1.10 Example
2
1 0 -1 1 0 -1 1
G o3 (526 G)-6)

The result has the columns of the matrix weighted by the entries of the vector. This way of looking at
it brings us back to the objective stated at the start of this section, to compute h(ci1f81 + - -+ + ¢nfn) as
c1h(B1) + -+ + cnh(Bn).

We began this section by noting that the equality of these two enables us to compute the action of A
on any argument knowing only h(B1), ..., h(8,). We have developed this into a scheme to compute the
action of the map by taking the matrix-vector product of the matrix representing the map and the vector

representing the argument. In this way, any linear map is represented with respect to some bases by a
matrix. In the next subsection, we will show the converse, that any matrix represents a linear map.

Exercises
v/ 1.11 Multiply the matrix

by each vector (or state “not defined”).

R

1.12 Perform, if possible, each matrix-vector multiplication.
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1 1
2 1 4 1 1 0 1 1
@ () @) oG @)
v' 1.13 Solve this matrix equation.
2 1 1 T 8
0 1 3|[y]=|4
1 -1 2 z 4

v' 1.14 For a homomorphism from Ps to P3 that sends
114z, z—1+2z, and z°—z—2

3

where does 1 — 3z + 22 go?
v 1.15 Assume that h: R? — R® is determined by this action.

2 0
0 -1
Using the standard bases, find

(a) the matrix representing this map;
(b) a general formula for h(v).
v 1.16 Let d/dz: P3 — P3 be the derivative transformation.
(a) Represent d/dx with respect to B, B where B = (1,z, 2%, z3).
(b) Represent d/dz with respect to B, D where D = (1, 2z, 3z, 4z°).
v' 1.17 Represent each linear map with respect to each pair of bases.
(a) d/dx: P, — P, with respect to B, B where B = (1,z,...,z"), given by
a0+ a1z 4+ asz® +- -+ anz” = a1+ 2a2x + - + nanz” "

(b) [: Pn = Pny1 with respect to By, Bny1 where B; = (1, x,...,a%), given by

a0 + a1 + asz® + -+ anz” > @z + Lz 4 ... 20 gt
2 n+1
(c) folz Pr — R with respect to B,&; where B = (1,z,...,z") and & = (1), given by
2 n a1 an
a+aix+ax” +---+anr = a0+ o+ +
2 n+1

(d) evals: P, — R with respect to B,&; where B = (1,z,...,2") and & = (1), given by
a0+ a1z +asx’ + -+ anz" = ao+ar-3+as-3>+---+a,-3"
(e) slide_1: P, — P, with respect to B, B where B = (1,z,...,z"), given by
a0 +arz+aw’ 4+ - +anz" S aotar-(@+1) 4+ +a, - (z+1)"

1.18 Represent the identity map on any nontrivial space with respect to B, B, where B is any basis.
1.19 Represent, with respect to the natural basis, the transpose transformation on the space Max2 of 2x2 matrices.
1.20 Assume that B = (81, B2, 83, B4) is a basis for a vector space. Represent with respect to B, B the transfor-
mation that is determined by each.
(a) B1 > B2, B2 > B3, B3+ Ba, B2 0
(b) B1 = B2, B2 0, Bz > Ba, fa >0
(c) B> B2, B2 > B3, B3 =0, fa > 0
1.21 Example 1.8 shows how to represent the rotation transformation of the plane with respect to the standard
basis. Express these other transformations also with respect to the standard basis.
(a) the dilation map ds, which multiplies all vectors by the same scalar s
(b) the reflection map f;, which reflects all all vectors across a line £ through the origin

v 1.22 Consider a linear transformation of R?> determined by these two.
1 N 2 1 s -1
1 0 0 0
(a) Represent this transformation with respect to the standard bases.
(b) Where does the transformation send this vector?

9
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(c) Represent this transformation with respect to these bases.

()G o))

(d) Using B from the prior item, represent the transformation with respect to B, B.

1.23 Suppose that h: V — W is nonsingular so that by Theorem 2.21, for any basis B = (81,...,8,) C V the
image h(B) = (h(f1),-..,h(Brn)) is a basis for W.
(a) Represent the map h with respect to B, h(B).
(b) For a member v of the domain, where the representation of v has components ci, ..., ¢n, represent the
image vector h(v) with respect to the image basis h(B).

1.24 Give a formula for the product of a matrix and e;, the column vector that is all zeroes except for a single
one in the ¢-th position.

v' 1.25 For each vector space of functions of one real variable, represent the derivative transformation with respect
to B, B.
(a) {acosz +bsinz | a,b € R}, B = (cosz,sinz)
(b) {ae® + be® | a,b €R}, B = (", )
(c) {a + bz + ce® + dze” | a,b,c,d € R}, B =(1,z,e”,ze”)

1.26 Find the range of the linear transformation of R? represented with respect to the standard bases by each
matrix.

(a) <(1] 8) (b) <g (2]> (c¢) a matrix of the form (;a be)

v/ 1.27 Can one matrix represent two different linear maps? That is, can Repg p(h) = Repj, f)(il)?
1.28 Prove Theorem 1.4.

v' 1.29 Example 1.8 shows how to represent rotation of all vectors in the plane through an angle 8 about the origin,
with respect to the standard bases.

(a) Rotation of all vectors in three-space through an angle 6 about the z-axis is a transformation of R®. Represent
it with respect to the standard bases. Arrange the rotation so that to someone whose feet are at the origin and
whose head is at (1,0,0), the movement appears clockwise.

(b) Repeat the prior item, only rotate about the y-axis instead. (Put the person’s head at es.)

(c) Repeat, about the z-axis.

(d) Extend the prior item to R*. (Hint: ‘rotate about the z-axis’ can be restated as ‘rotate parallel to the
zy-plane’.)

1.30 (Schur’s Triangularization Lemma)

(a) Let U be a subspace of V' and fix bases By C By. What is the relationship between the representation
of a vector from U with respect to By and the representation of that vector (viewed as a member of V') with
respect to By 7

(b) What about maps?

(c) Fix a basis B = {(f1,...,0,) for V and observe that the spans

fop) ={0} c{sh c{B,Bhc -+ C(B)=V

form a strictly increasing chain of subspaces. Show that for any linear map h: V — W there is a chain
Wo={0} CW1 C--- CW,, =W of subspaces of W such that

for each 1.

(d) Conclude that for every linear map h: V — W there are bases B,D so the matrix representing h with
respect to B, D is upper-triangular (that is, each entry h;; with ¢ > j is zero).

(e) Is an upper-triangular representation unique?

I11.2 Any Matrix Represents a Linear Map
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The prior subsection shows that the action of a linear map h is described by a matrix H, with respect to
appropriate bases, in this way.

v hl,l“l + -+ hl,nvn
v = s IL) B = h(U)
: I :

Un B hm,lvl + e+ hm,nvn D

In this subsection, we will show the converse, that each matrix represents a linear map.

Recall that, in the definition of the matrix representation of a linear map, the number of columns of
the matrix is the dimension of the map’s domain and the number of rows of the matrix is the dimension of
the map’s codomain. Thus, for instance, a 2 x 3 matrix cannot represent a map from R° to R*. The next
result says that, beyond this restriction on the dimensions, there are no other limitations: the 2 x3 matrix
represents a map from any three-dimensional space to any two-dimensional space.

2.1 Theorem Any matrix represents a homomorphism between vector spaces of appropriate dimensions,
with respect to any pair of bases.

Proor. For the matrix

hl,l h1,2 e hl,'ﬂ

h2,1 h2,2 e h2’n
H= ,

hm,l hm’z “en hm,n

fix any mn-dimensional domain space V' and any m-dimensional codomain space W. Also fix bases B =
(B1,---,Bn) and D = (b1, ...,0n,) for those spaces. Define a function h: V' — W by: where v in the domain
is represented as
U1
Repp(v) =

Un B

then its image h(v) is the member the codomain represented by

hiav1 + -+ hi pvp
Repp(h(v)) = :

hm,lvl + -+ hm,nvn D

that is, h(v) = h(v1B1+- - -+vpBy) is defined to be (hy 1v1+- -+ h1 pvn) 01+ -+ (Am,1v1+- - -+ R nn) O
(This is well-defined by the uniqueness of the representation Repg(v).)

Observe that h has simply been defined to make it the map that is represented with respect to B, D by
the matrix H. So to finish, we need only check that h is linear. If v,u € V are such that

m U1
Repg(v) = | : and Repg(u) =

and ¢,d € R then the calculation

h(cv + du) = (hl,l(cvl +dug) + -+ hyp(cv, + dun)) -0+
oot (hma(cvr + dug) + -+ + hipn(cvn + duy)) - 0m
=c-h(v)+d-h(u)

provides this verification. QED
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2.2 Example Which map the matrix represents depends on which bases are used. If

13 ). e (). () memim (). (0

then hy: R?2 — R2 represented by H with respect to By, D; maps

()=, = 6),=0)

while hy: R?2 — R2? represented by H with respect to By, D is this map.

C1 _ Ca — Ca _ 0
C2 C1 B 0 Do C2
These two are different. The first is projection onto the x axis, while the second is projection onto the y axis.

So not only is any linear map described by a matrix but any matrix describes a linear map. This means
that we can, when convenient, handle linear maps entirely as matrices, simply doing the computations,
without have to worry that a matrix of interest does not represent a linear map on some pair of spaces of
interest. (In practice, when we are working with a matrix but no spaces or bases have been specified, we will
often take the domain and codomain to be R” and R™ and use the standard bases. In this case, because the
representation is transparent — the representation with respect to the standard basis of v is v —the column
space of the matrix equals the range of the map. Consequently, the column space of H is often denoted by
Z#(H).)

With the theorem, we have characterized linear maps as those maps that act in this matrix way. Each
linear map is described by a matrix and each matrix describes a linear map. We finish this section by
illustrating how a matrix can be used to tell things about its maps.

2.3 Theorem The rank of a matrix equals the rank of any map that it represents.

ProoF. Suppose that the matrix H is m xn. Fix domain and codomain spaces V' and W of dimension n
and m, with bases B = (f1,...,8,) and D. Then H represents some linear map h between those spaces
with respect to these bases whose rangespace

{h(v) |v€V}={h(clﬂ1+---+ann) | C1y---yCn € R}
={C1h(ﬂ1)++cnh(ﬂn) | Cly---,Cn ER}

is the span ({h(B1),...,h(Bn)}). The rank of h is the dimension of this rangespace.

The rank of the matrix is its column rank (or its row rank; the two are equal). This is the dimension of the
column space of the matrix, which is the span of the set of column vectors ({Repp (h(51)),- .-, Repp(h(Bn))})-

To see that the two spans have the same dimension, recall that a representation with respect to a
basis gives an isomorphism Repp: W — R™. Under this isomorphism, there is a linear relationship among
members of the rangespace if and only if the same relationship holds in the column space, e.g, 0 = c;h(B1) +
-+ 4 cph(By) if and only if 0 = ¢;Repp(h(B1)) + - - - + cnRepp(h(Br)). Hence, a subset of the rangespace is
linearly independent if and only if the corresponding subset of the column space is linearly independent. This
means that the size of the largest linearly independent subset of the rangespace equals the size of the largest
linearly independent subset of the column space, and so the two spaces have the same dimension. QED

2.4 Example Any map represented by

1 2 2
1 21
0 0 3
0 0 2

must, by definition, be from a three-dimensional domain to a four-dimensional codomain. In addition,
because the rank of this matrix is two (we can spot this by eye or get it with Gauss’ method), any map
represented by this matrix has a two-dimensional rangespace.
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2.5 Corollary Let h be a linear map represented by a matrix H. Then h is onto if and only if the rank of
H equals the number of its rows, and h is one-to-one if and only if the rank of H equals the number of its
columns.

Proor. For the first half, the dimension of the rangespace of h is the rank of h, which equals the rank of
H by the theorem. Since the dimension of the codomain of A is the number of rows in H, if the rank of H
equals the number of rows, then the dimension of the rangespace equals the dimension of the codomain. But
a subspace with the same dimension as its superspace must equal that superspace (a basis for the rangespace
is a linearly independent subset of the codomain, whose size is equal to the dimension of the codomain, and
so this set is a basis for the codomain).

For the second half, a linear map is one-to-one if and only if it is an isomorphism between its domain
and its range, that is, if and only if its domain has the same dimension as its range. But the number of
columns in h is the dimension of A’s domain, and by the theorem the rank of H equals the dimension of h’s
range. QED

The above results end any confusion caused by our use of the word ‘rank’ to mean apparently different
things when applied to matrices and when applied to maps. We can also justify the dual use of ‘nonsingular’.
We’ve defined a matrix to be nonsingular if it is square and is the matrix of coefficients of a linear system
with a unique solution, and we’ve defined a linear map to be nonsingular if it is one-to-one.

2.6 Corollary A square matrix represents nonsingular maps if and only if it is a nonsingular matrix. Thus,
a matrix represents an isomorphism if and only if it is square and nonsingular.

Proor. Immediate from the prior result. QED

2.7 Example Any map from R? to P; represented with respect to any pair of bases by
1 2
0 3

2.8 Example Any map g: V — W represented by

G o

is not nonsingular because this matrix is not nonsingular.

is nonsingular because this matrix has rank two.

We’ve now seen that the relationship between maps and matrices goes both ways: fixing bases, any
linear map is represented by a matrix and any matrix describes a linear map. That is, by fixing spaces
and bases we get a correspondence between maps and matrices. In the rest of this chapter we will explore
this correspondence. For instance, we’ve defined for linear maps the operations of addition and scalar
multiplication and we shall see what the corresponding matrix operations are. We shall also see the matrix
operation that represent the map operation of composition. And, we shall see how to find the matrix that
represents a map’s inverse.

Exercises

v 2.9 Decide if the vector is in the column space of the matrix.

1 -1 1 2
@ (G @0 o 1))

v 2.10 Decide if each vector lies in the range of the map from R® to R* represented with respect to the standard
bases by the matrix.
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11 3\ (1 2 0 3\ [1
(a) (0 1 4)’ (3) (b) (4 0 6)’(1)

v 2.11 Consider this matrix, representing a transformation of R?, and these bases for that space.

T =6 o) ()

(a) To what vector in the codomain is the first member of B mapped?
(b) The second member?
(c) Where is a general vector from the domain (a vector with components = and y) mapped? That is, what
transformation of R? is represented with respect to B, D by this matrix?
2.12 What transformation of F' = {a cos + bsin | a,b € R} is represented with respect to B = (cos §—sin 6, sin )
and D = {cos 6 + sin 6, cos §) by this matrix?
0 0
o

v 2.13 Decide if 1 4 2z is in the range of the map from R® to P, represented with respect to £ and (1,1 + 22, )

by this matrix.
1 3 0
<0 1 0)
1 0 1

2.14 Example 2.8 gives a matrix that is nonsingular, and is therefore associated with maps that are nonsingu-
lar.
(a) Find the set of column vectors representing the members of the nullspace of any map represented by this
matrix.
(b) Find the nullity of any such map.
(c) Find the set of column vectors representing the members of the rangespace of any map represented by this
matrix.
(d) Find the rank of any such map.
(e) Check that rank plus nullity equals the dimension of the domain.

v' 2.15 Because the rank of a matrix Aequals the ra.pk of any map it represents, if one matrix represents two different
maps H = Repg p(h) = Repp p(h) (where h,h: V — W) then the dimension of the rangespace of h equals the

dimension of the rangespace of h. Must these equal-dimensioned rangespaces actually be the same?

v 2.16 Let V be an n-dimensional space with bases B and D. Consider a map that sends, for v € V, the column
vector representing v with respect to B to the column vector representing v with respect to D. Show that is a
linear transformation of R”™.

2.17 Example 2.2 shows that changing the pair of bases can change the map that a matrix represents, even though
the domain and codomain remain the same. Could the map ever not change? Is there a matrix H, vector spaces
V and W, and associated pairs of bases B1, D1 and B2, D2 (with By # B2 or D1 # Ds or both) such that the
map represented by H with respect to Bi1, D1 equals the map represented by H with respect to Bz, D27

v’ 2.18 A square matrix is a diagonal matrix if it is all zeroes except possibly for the entries on its upper-left to
lower-right diagonal —its 1,1 entry, its 2,2 entry, etc. Show that a linear map is an isomorphism if there are
bases such that, with respect to those bases, the map is represented by a diagonal matrix with no zeroes on the
diagonal.

2.19 Describe geometrically the action on R* of the map represented with respect to the standard bases &, &2 by

this matrix.
3 0
0 2

6 €D 6

2.20 The fact that for any linear map the rank plus the nullity equals the dimension of the domain shows that
a necessary condition for the existence of a homomorphism between two spaces, onto the second space, is that
there be no gain in dimension. That is, where h: V — W is onto, the dimension of W must be less than or equal
to the dimension of V.

(a) Show that this (strong) converse holds: no gain in dimension implies that there is a homomorphism and,
further, any matrix with the correct size and correct rank represents such a map.

Do the same for these.
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(b) Are there bases for R® such that this matrix

1 0 0
H=[(2 0 0
010

represents a map from R® to R® whose range is the zy plane subspace of R3?

2.21 Let V be an n-dimensional space and suppose that © € R". Fix a basis B for V and consider the map

hy: V — R given v — z * Repg(v) by the dot product.

(a) Show that this map is linear.
(b) Show that for any linear map g: V — R there is an £ € R" such that g = h,.
(c) In the prior item we fixed the basis and varied the x to get all possible linear maps. Can we get all possible
linear maps by fixing an = and varying the basis?

2.22 Let V, W, X be vector spaces with bases B, C, D.
(a) Suppose that h: V — W is represented with respect to B, C by the matrix H. Give the matrix representing
the scalar multiple rh (where r € R) with respect to B, C' by expressing it in terms of H.
(b) Suppose that h,g: V — W are represented with respect to B, C by H and G. Give the matrix representing
h + g with respect to B,C by expressing it in terms of H and G.
(c) Suppose that h: V' — W is represented with respect to B,C by H and g: W — X is represented with respect
to C, D by G. Give the matrix representing g o h with respect to B, D by expressing it in terms of H and G.
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IIT Change of Basis

Representations, whether of vectors or of maps, vary with the bases. For instance, with respect to the two

bases &5 and
- (3.2

for R2, the vector e; has two different representations.

Repe,(ct) = (o) Repten) = (1))

Similarly, with respect to €3, &> and &, B, the identity map has two different representations.

Repg, ¢, (id) = (é (1)) Repe, p(id) = Gg —11//22)

With our point of view that the objects of our studies are vectors and maps, in fixing bases we are adopting
a scheme of tags or names for these objects, that are convienent for computation. We will now see how to
translate among these names — we will see exactly how representations vary as the bases vary.

II1I.1 Changing Representations of Vectors

In converting Repg(v) to Repp(v) the underlying vector v doesn’t change. Thus, this translation is accom-
plished by the identity map on the space, described so that the domain space vectors are represented with
respect to B and the codomain space vectors are represented with respect to D.

Vet B
id |
Vet D

(The diagram is vertical to fit with the ones in the next subsection.)

1.1 Definition The change of basis matrix for bases B, D C V is the representation of the identity map
id: V — V with respect to those bases.

Repp,p(id) = | Repp(81) | - | Repp ()

1.2 Lemma Left-multiplication by the change of basis matrix for B, D converts a representation with
respect to B to one with respect to D. Conversly, if left-multiplication by a matrix changes bases M -
Repg(v) = Repp(v) then M is a change of basis matrix.

Proor. For the first sentence, for each v, as matrix-vector multiplication represents a map application,
Repp p(id) - Repg(v) = Repp(id(v) ) = Repp(v). For the second sentence, with respect to B, D the matrix
M represents some linear map, whose action is v — v, and is therefore the identity map. QED

1.3 Example With these bases for R?,
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v (- (55), s (1- (),

the change of basis matrix is this.

because

o= (3

We can see this matrix at work by finding the two representations of ey

()= (1) e (- (1)

and checking that the conversion goes as expected.

-1/2 -1/2 1\ _ [1/2
3/2  1/2 J\-2) = \1/2
We finish this subsection by recognizing that the change of basis matrices are familiar.

1.4 Lemma A matrix changes bases if and only if it is nonsingular.

Proor. For one direction, if left-multiplication by a matrix changes bases then the matrix represents an
invertible function, simply because the function is inverted by changing the bases back. Such a matrix is
itself invertible, and so nonsingular.

To finish, we will show that any nonsingular matrix M performs a change of basis operation from any
given starting basis B to some ending basis. Because the matrix is nonsingular, it will Gauss-Jordan reduce to
the identity, so there are elementatry reduction matrices such that R, --- Ry - M = I. Elementary matrices
are invertible and their inverses are also elementary, so multiplying from the left first by R, !, then by
R,_17%, etc., gives M as a product of elementary matrices M = Ry~ *---R,~*. Thus, we will be done if
we show that elementary matrices change a given basis to another basis, for then R, changes B to some
other basis B,, and R, ! changes B, to some B,._1, ..., and the net effect is that M changes B to Bj.
We will prove this about elementary matrices by covering the three types as separate cases.

Applying a row-multiplication matrix

C1 C1
Mi (k‘) C; = kci
Cn Cp

changes a representation with respect to (81,...,8i,...,0n) to one with respect to (51,...,(1/k)B:,- .-, Bn)
in this way.
v=c1 P+ -+ -Bi+- - -+cnPn
= oc-frt+o ke (U/E)Bi+- - +en-fn=v
Similarly, left-multiplication by a row-swap matrix P; ; changes a representation with respect to the basis
(B1,.--3Biy---, B4, ., Pn) into one with respect to the basis (81,...,06;,...,5,...,0s) in this way.
v=c - Brtte Bt teiBit ot enBa
— Cl‘,81+"‘+Cj‘ﬂj+"'+ci‘,8i+“‘+cn‘/8n='U

And, a representation with respect to (81,...,08:,-..,8j,---,0n) changes via left-multiplication by a row-
combination matrix C; ;(k) into a representation with respect to (81,...,8; — kBj,---,Bj,---+Bn)

v=cr- P+t BiteBitten B
= Cl'ﬂ1+"'+cz"(ﬂi_kﬂj)+"'+(k0i+cj)'ﬂj+"'+cn'5n=v
(the definition of reduction matrices specifies that ¢ # k and k # 0 and so this last one is a basis). QED
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1.5 Corollary A matrix is nonsingular if and only if it represents the identity map with respect to some
pair of bases.

In the next subsection we will see how to translate among representations of maps, that is, how to change
Repp p(h) to Repg p(h). The above corollary is a special case of this, where the domain and range are the
same space, and where the map is the identity map.

() (2)

find the change of basis matrices from D to & and from &> to D. Multiply the two.
v 1.7 Find the change of basis matrix for B, D C R%.

@8- ®s-60-(). () @s=().(o-e

@ =) (=) ()

1.8 For the bases in Exercise 7, find the change of basis matrix in the other direction, from D to B.
v' 1.9 Find the change of basis matrix for each B, D C Ps.
(a) B={1,z,2%),D ={z*1,z) (b) B=(l,z,2%),D={(1,14+2,1+2+2% (c) B=(2,2z,2%),D=
Q+221— 2%z +2%)
v 1.10 Decide if each changes bases on R*>. To what basis is £2 changed?

(a) (3 Z) () <§ }) () (;1 _48> (d) (} ‘11)

1.11 Find bases such that this matrix represents the identity map with respect to those bases.

3 1 4
2 -1 1
0o 0 4

1.12 Conside the vector space of real-valued functions with basis (sin(z), cos(x)). Show that (2 sin(x)+cos(z), 3 cos(x))
is also a basis for this space. Find the change of basis matrix in each direction.

1.13 Where does this matrix
(005(20) sin(20) )
sin(20) —cos(26)
send the standard basis for R?? Any other bases? Hint. Consider the inverse.
v' 1.14 What is the change of basis matrix with respect to B, B?
1.15 Prove that a matrix changes bases if and only if it is invertible.
1.16 Finish the proof of Lemma 1.4.
v/ 1.17 Let H be a nxn nonsingular matrix. What basis of R® does H change to the standard basis?
v 1.18 (a) In P3 with basis B = (1 +z,1 — z,2% 4+ 2®,2? — 2®) we have this represenatation.
0
1
1
2/ g
Find a basis D giving this different representation for the same polynomial.
1

0
2

0/ b
(b) State and prove that any nonzero vector representation can be changed to any other.
Hint. The proof of Lemma 1.4 is constructive—it not only says the bases change, it shows how they change.
1.19 Let V, W be vector spaces, and let B, B be bases for V and D, D be bases for W. Where h: V — W is linear,
find a formula relating Repg p(h) to Reps p(h).

Exercises
v 1.6 In R?, where

Repp(l —a +32° —2°) =

Repp(1 —z +32° —2°) =

v' 1.20 Show that the columns of an nxn change of basis matrix form a basis for R”. Do all bases appear in that
way: can the vectors from any R™ basis make the columns of a change of basis matrix?
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()~ ()

That is, find a M that left-multiplies the starting vector to yield the ending vector. Is there a matrix having
these two effects?

@ ()-() ()~ @)~ @~

Give a necessary and sufficient condition for there to be a matrix such that v1 — w1 and v — wa.

v' 1.21 Find a matrix having this effect.

II1.2 Changing Map Representations

The first subsection shows how to convert the representation of a vector with respect to one basis to the
representation of that same vector with respect to another basis. Here we will see how to convert the
representation of a map with respect to one pair of bases to the representation of that map with respect to
a different pair. That is, we want the relationship between the matrices in this arrow diagram.

h
Vw.r.t. B T) Ww.r.t. D

id | id |

h
. B i ert D

To move from the lower-left of this diagram to the lower-right we can either go straight over, or else up to Vg
then over to Wp and then down. Restated in terms of the matrices, we can calculate H = Repp p,(h) either

by simply using B and D, or else by first changing bases with Rep 5,p(id) then multiplying by H = Repg p(h)
and then changing bases with Rep, p(id). This equation summarizes.

H = Repy, 5(id) - H - Repy 4 (id) (%)

(To compare this equation with the sentence before it, remember that the equation is read from right to left
because function composition is read right to left and matrix multiplication represent the composition.)

2.1 Example The matrix

v (e i)~ (5 )

represents, with respect to €2, s, the transformation ¢: R? — R? that rotates vectors m/6 radians counter-

clockwise.
( 3+ V3) /2
i . (1+3v3) /2
1r /6

We can translate that representation with respect to &, &> to one with respect to

() ()0
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by using the arrow diagram and formula () above.

t
R?N.I‘.t. Ea T) R%v.r.t. Ea

id | id | T = Repy, p(id) - T - Repy g, (id)
2 t 2
w.r.t. B ’f’ IRw.r.t:. f)

Note that Repg, p(id) can be calculated as the matrix inverse of Repp, ¢, (id).

Repy p(t) = (_01 g) : (\{%2 x_/%@ G g>
_(G-V3)/6 (3+2V3)/3
((1+x/§)/6 v3/3 )

Although the new matrix is messier-appearing, the map that it represents is the same. For instance, to
replicate the effect of ¢ in the picture, start with B,

enal(3) = (1),

@ “"),, 0),= (05508),

apply T,

and check it against D

_ ((=3+V3)/2

. (_1> R (2) - ((1+3\/3)/2)

6 0 6 3
to see that it is the same result as above.

2.2 Example On R? the map

T Y+ z
Y ri> r—+z
Z rT+y

that is represented with respect to the standard basis in this way

011
Rlep(c/'3 ,E3 (t) = ]. 0 ].
1 10

can also be represented with respect to another basis

1 1 1 -1 0 O
0 —2 1 0 0 2

in a way that is simpler, in that the action of a diagonal matrix is easy to understand.

Naturally, we usually prefer basis changes that make the representation easier to understand. When the
representation with respect to equal starting and ending bases is a diagonal matrix we say the map or matrix
has been diagonalized. In Chaper Five we shall see which maps and matrices are diagonalizable, and where
one is not, we shall see how to get a representation that is nearly diagonal.

We finish this subsection by considering the easier case where representations are with respect to possibly
different starting and ending bases. Recall that the prior subsection shows that a matrix changes bases if
and only if it is nonsingular. That gives us another version of the above arrow diagram and equation (x).
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2.3 Definition Same-sized matrices H and H are matriz equivalent if there are nonsingular matrices P
and @ such that H = PHQ.

2.4 Corollary Matrix equivalent matrices represent the same map, with respect to appropriate pairs of
bases.

Exercise 19 checks that matrix equivalence is an equivalence relation. Thus it partitions the set of matrices
into matrix equivalence classes.

H matrix equivalent

trices:
All matrices to I

We can get some insight into the classes by comparing matrix equivalence with row equivalence (recall that
matrices are row equivalent when they can be reduced to each other by row operations). In H = PHQ,
the matrices P and @) are nonsingular and thus each can be written as a product of elementary reduction
matrices (Lemma ?7?). Left-multiplication by the reduction matrices making up P has the effect of performing
row operations. Right-multiplication by the reduction matrices making up @) performs column operations.
Therefore, matrix equivalence is a generalization of row equivalence — two matrices are row equivalent if one
can be converted to the other by a sequence of row reduction steps, while two matrices are matrix equivalent
if one can be converted to the other by a sequence of row reduction steps followed by a sequence of column
reduction steps.

Thus, if matrices are row equivalent then they are also matrix equivalent (since we can take @ to be the
identity matrix and so perform no column operations). The converse, however, does not hold.

b)) (o)

are matrix equivalent because the second can be reduced to the first by the column operation of taking —1
times the first column and adding to the second. They are not row equivalent because they have different
reduced echelon forms (in fact, both are already in reduced form).

2.5 Example These two

We will close this section by finding a set of representatives for the matrix equivalence classes.*

2.6 Theorem Any mxn matrix of rank k is matrix equivalent to the mxn matrix that is all zeros except
that the first k diagonal entries are ones.

10 0 0 0
01 0 0 0
00 1 0 0
00 0 0 0
00 0 0 0

Sometimes this is described as a block partial-identity form.

(+17)

*More information on class representatives is in the appendix.
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Proor. As discussed above, Gauss-Jordan reduce the given matrix and combine all the reduction matrices
used there to make P. Then use the leading entries to do column reduction and finish by swapping columns
to put the leading ones on the diagonal. Combine the reduction matrices used for those column operations
into Q. QED

2.7 Example We illustrate the proof by finding the P and @ for this matrix.

1 21 -1
0 01 -1
2 4 2 =2
First Gauss-Jordan row-reduce.
1 -1 0 1 00 1 21 -1 1 2 0 O
0 1 0 0 1 0 0 01 -1]=1{(0 01 -1
0 0 1 -2 0 1 2 4 2 -2 000 O

Then column-reduce, which involves right-multiplication.

120 0 1 -2 00 1.0 00 100 0
0 1 00 0100
0 01 -1 =0 0 1 0
000 0 0 0 10 0011 000 0
0 0 01 0 0 01
Finish by swapping columns.
1000 (1] 8 (1) 8 1000
0 010 010 ol 0100
00 00O 000 1 0 00O

Finally, combine the left-multipliers together as P and the right-multipliers together as @ to get the PHQ
equation.

1 -1 0 121—1(1)8_128 1000
o 1 oo)j{oor —a)fg? o T]=[o100
2 0 1) \2 42 2|0 o 0] 000 0

2.8 Corollary Two same-sized matrices are matrix equivalent if and only if they have the same rank. That
is, the matrix equivalence classes are characterized by rank.

Proor. Two same-sized matrices with the same rank are equivalent to the same block partial-identity matrix.
QED

2.9 Example The 2x2 matrices have only three possible ranks: zero, one, or two. Thus there are three
matrix-equivalence classes.

~(88) - (89)
- (89)

Three equivalence

All 2x2 matrices:
classes

Each class consists of all of the 2 x 2 matrices with the same rank. There is only one rank zero matrix, so
that class has only one member, but the other two classes each have infinitely many members.
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In this subsection we have seen how to change the representation of a map with respect to a first pair of
bases to one with respect to a second pair. That led to a definition describing when matrices are equivalent
in this way. Finally we noted that, with the proper choice of (possibly different) starting and ending bases,
any map can be represented in block partial-identity form.

One of the nice things about this representation is that, in some sense, we can completely understand
the map when it is expressed in this way: if the bases are B = {81,...,8,) and D = (d1,...,6,,) then the
map sends

1B+ -+ ckBr + Chp1Brar + o+ Cafn > 181+ +epdp +0+--+0

where k is the map’s rank. Thus, we can understand any linear map as a kind of projection.

1 C1

Ck . Ck
Ck+1 0

¢n / B 0/p

Of course, “understanding” a map expressed in this way requires that we understand the relationship between
B and D. However, despite that difficulty, this is a good classification of linear maps.

Exercises
v' 2.10 Decide if these matrices are matrix equivalent.

13 0) (2 2 1
(2) (2 3 0)’(0 5 —1)
0 3\ (40
o (i 1) 5)
13\ (1 3
() (2 6)’ (2 —6>

v' 2.11 Find the canonical representative of the matrix-equivalence class of each matrix.
2 1 0 01 0 2
(a)(420) (b) {1 1 0 4
3 3 3 -1
2.12 Suppose that, with respect to
1 1
B=& D= <(1) , (_1)>

the transformation ¢: R*> — R? is represented by this matrix.

G %)

Use change of basis matrices to represent ¢t with respect to each pair.

RPN
- () (o). ()

v 2.13 What sizes are P and Q in the equation H = PHQ?
v' 2.14 Use Theorem 2.6 to show that a square matrix is nonsingular if and only if it is equivalent to an identity
matrix.
v' 2.15 Show that, where A is a nonsingular square matrix, if P and @ are nonsingular square matrices such that
PAQ =1then QP = A~ %
v 2.16 Why does Theorem 2.6 not show that every matrix is diagonalizable (see Example 2.2)7
2.17 Must matrix equivalent matrices have matrix equivalent transposes?
2.18 What happens in Theorem 2.6 if & = 07
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v' 2.19 Show that matrix-equivalence is an equivalence relation.

v' 2.20 Show that a zero matrix is alone in its matrix equivalence class. Are there other matrices like that?
2.21 What are the matrix equivalence classes of matrices of transformations on R!? R3?
2.22 How many matrix equivalence classes are there?
2.23 Are matrix equivalence classes closed under scalar multiplication? Addition?

2.24 Let t: R* — R" represented by T with respect to &y, E,-
(a) Find Repp p(t) in this specific case.

() ()0

(b) Describe Repp p(t) in the general case where B = (f1,..., 8n).

2.25 (a) Let V have bases B; and B and suppose that W has the basis D. Where h: V — W, find the formula
that computes Repg, p(h) from Repp, p(h).
(b) Repeat the prior question with one basis for V' and two bases for W.

2.26 (a) If two matrices are matrix-equivalent and invertible, must their inverses be matrix-equivalent?
(b) If two matrices have matrix-equivalent inverses, must the two be matrix-equivalent?
(¢) If two matrices are square and matrix-equivalent, must their squares be matrix-equivalent?
(d) If two matrices are square and have matrix-equivalent squares, must they be matrix-equivalent?

v’ 2.27 Square matrices are similar if they represent the same transformation, but each with respect to the same
ending as starting basis. That is, Repp, g, (t) is similar to Repp, 5, (t)-
(a) Give a definition of matrix similarity like that of Definition 2.3.
(b) Prove that similar matrices are matrix equivalent.
(c) Show that similarity is an equivalence relation.
(d) Show that if T' is similar to T then T? is similar to ’f’2, the cubes are similar, etc. Contrast with the prior
ezercise.

(e) Prove that there are matrix equivalent matrices that are not similar.
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I Similarity

1.1 Definition and Examples

We’ve defined H and H to be matrix-equivalent if there are nonsingular matrices P and ) such that
H = PHQ. That definition is motivated by this diagram

h
Vw.r.t. B H ? Ww.r.t. D

id | id |

%

w.r.t.

h
B ~ Ww.r.t. b

showing that H and H both represent h but with respect to different pairs of bases. We now specialize
that setup to the case where the codomain equals the domain, and where the codomain’s basis equals the
domain’s basis.

Vw.r.t. B ;) Vw.r.t. B

id | id |

t
Vw.r.t. D — Vw.nt. D

To move from the lower left to the lower right we can either go straight over, or up, over, and then down.
In matrix terms,

. .y —1
Repp p(t) = Repp p(id) Repp 5(t) (Repp p(id))
(recall that a representation of composition like this one reads right to left).

1.1 Definition The matrices T and S are similar if there is a nonsingular P such that T = PSP~

Since nonsingular matrices are square, the similar matrices 7" and S must be square and of the same size.

2 1 2 -3
=(i1) 5= 3)
calculation gives that S is similar to this matrix.
0 -1
=)
1.3 Example The only matrix similar to the zero matrix is itself: PZP~! = PZ = Z. The only matrix
similar to the identity matrix is itself: PIP~! = PP~! =I.

1.2 Example With these two,

Since matrix similarity is a special case of matrix equivalence, if two matrices are similar then they are
equivalent. What about the converse: must matrix equivalent square matrices be similar? The answer is
no. The prior example shows that the similarity classes are different from the matrix equivalence classes,
because the matrix equivalence class of the identity consists of all nonsingular matrices of that size. Thus,
for instance, these two are matrix equivalent but not similar.

() ()

So some matrix equivalence classes split into two or more similarity classes—similarity gives a finer par-
tition than does equivalence. This picture shows some matrix equivalence classes subdivided into similarity
classes.
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To understand the similarity relation we shall study the similarity classes. We approach this question
in the same way that we’ve studied both the row equivalence and matrix equivalence relations, by finding a
canonical form for representatives* of the similarity classes, called Jordan form. With this canonical form,
we can decide if two matrices are similar by checking whether they reduce to the same representative. We’ve
also seen with both row equivalence and matrix equivalence that a canonical form gives us insight into the
ways in which members of the same class are alike (e.g., two identically-sized matrices are matrix equivalent
if and only if they have the same rank).

1 3 0 0 4 2
(4 3) (8 %) (4 )
check that T = PSP~ 1.

v' 1.5 Example 1.3 shows that the only matrix similar to a zero matrix is itself and that the only matrix similar to
the identity is itself.
(a) Show that the 1x1 matrix (2), also, is similar only to itself.
(b) Is a matrix of the form cI for some scalar ¢ similar only to itself?
(c) Is a diagonal matrix similar only to itself?
1.6 Show that these matrices are not similar.

1 0 4 1 0 1
1 1 3 0 1 1
2 1 7 3 1 2

1.7 Consider the transformation t: P, — P» described by #® — 2 +1, 2 > x> — 1, and 1 — 3.
(a) Find T = Repp p(t) where B = (2%, x,1).
(b) Find S = Repp, p(t) where D = (1,14 z,1+z + z°).
(c) Find the matrix P such that T = PSP~'.
v 1.8 Exhibit an nontrivial similarity relationship in this way: let ¢: C2 — C? act by

1 N 3 —1 N —1

2 0 1 2
and pick two bases, and represent ¢ with respect to then T = Repp p(t) and S = Repp (). Then compute the
P and P! to change bases from B to D and back again.

Exercises
1.4 For

1.9 Explain Example 1.3 in terms of maps.
v 1.10 Are there two matrices A and B that are similar while A? and B? are not similar? [Halmos]
v' 1.11 Prove that if two matrices are similar and one is invertible then so is the other.
v/ 1.12 Show that similarity is an equivalence relation.
1.13 Consider a matrix representing, with respect to some B, B, reflection across the z-axis in R?. Consider also
a matrix representing, with respect to some D, D, reflection across the y-axis. Must they be similar?
1.14 Prove that similarity preserves determinants and rank. Does the converse hold?
1.15 Is there a matrix equivalence class with only one matrix similarity class inside? One with infinitely many
similarity classes?
1.16 Can two different diagonal matrices be in the same similarity class?
v 1.17 Prove that if two matrices are similar then their k-th powers are similar when k£ > 0. What if £ <07
v 1.18 Let p(z) be the polynomial c,x™+- - -+c1Z+co. Show that if T is similar to S then p(T) = ¢, T"+- - -+c1T+col
is similar to p(S) = ¢, S™ +--- + 1S + col.
1.19 List all of the matrix equivalence classes of 1x1 matrices. Also list the similarity classes, and describe which
similarity classes are contained inside of each matrix equivalence class.
1.20 Does similarity preserve sums?
1.21 Show that if T — AI and N are similar matrices then 7" and N + AI are also similar.

*More information on representatives is in the appendix.



90 Chapter Five. Similarity and Diagonalization

1.2 Diagonalizability

The prior subsection defines the relation of similarity and shows that, although similar matrices are nec-
essarily matrix equivalent, the converse does not hold. Some matrix-equivalence classes break into two or
more similarity classes (the nonsingular nxn matrices, for instance). This means that the canonical form for
matrix equivalence, a block partial-identity, cannot be used as a canonical form for matrix similarity because
the partial-identities cannot be in more than one similarity class, so there are similarity classes without one.
This picture illustrates. As earlier in this book, class representatives are shown with stars.

We are developing a canonical form for representatives of the similarity classes. We naturally try to build
on our previous work, meaning first that the partial identity matrices should represent the similarity classes
into which they fall, and beyond that, that the representatives should be as simple as possible. The simplest
extension of the partial-identity form is a diagonal form.

2.1 Definition A transformation is diagonalizable if it has a diagonal representation with respect to the
same basis for the codomain as for the domain. A diagonalizable matriz is one that is similar to a diagonal
matrix: T is diagonalizable if there is a nonsingular P such that PT P~ is diagonal.

G 7)
G9-G 20 HE 2

2.3 Example Not every matrix is diagonalizable. The square of

-

is the zero matrix. Thus, for any map n that N represents (with respect to the same basis for the domain as
for the codomain), the composition non is the zero map. This implies that no such map n can be diagonally
represented (with respect to any B, B) because no power of a nonzero diagonal matrix is zero. That is, there
is no diagonal matrix in N’s similarity class.

2.2 Example The matrix

is diagonalizable.

That example shows that a diagonal form will not do for a canonical form — we cannot find a diagonal
matrix in each matrix similarity class. However, the canonical form that we are developing has the property
that if a matrix can be diagonalized then the diagonal matrix is the canonical representative of the similarity
class. The next result characterizes which maps can be diagonalized.

2.4 Corollary A transformation ¢ is diagonalizable if and only if there is a basis B = (f1,...,8,) and
scalars A,..., A, such that ¢(5;) = \;5; for each i.

Proor. This follows from the definition by considering a diagonal representation matrix.

: : A 0

Repp p(t) = | Repp(t(B1)) | --- | Repg(t(Bn)) [ = | : - :
: : 0 An

This representation is equivalent to the existence of a basis satisfying the stated conditions simply by the
definition of matrix representation. QED
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(3 )

we take it as the representation of a transformation with respect to the standard basis T' = Repg, ¢, (t) and
we look for a basis B = (1, f2) such that

A 0
Repp p(t) = (01 )\2)

that is, such that t(81) = A1 81 and ¢(82) = Aa2fs.

(6 Da=nem (5 3)p=ren

We are looking for scalars  such that this equation

3 2\ () _ b1
@ 6= )
has solutions b; and b2, which are not both zero. Rewrite that as a linear system.
B3—x) b + 2:b,=0 (%)
(]. - .’L') . b2 =0

In the bottom equation the two numbers multiply to give zero only if at least one of them is zero so there
are two possibilities, b = 0 and £ = 1. In the by = 0 possibility, the first equation gives that either by = 0
or z = 3. Since the case of both by = 0 and by = 0 is disallowed, we are left looking at the possibility of
x = 3. With it, the first equation in (x) is 0-b; + 2 - bo = 0 and so associated with 3 are vectors with a
second component of zero and a first component that is free.

6 3) () =)

That is, one solution to (x) is Ay = 3, and we have a first basis vector.

=()

In the x = 1 possibility, the first equation in (x) is 2 - by + 2 - by = 0, and so associated with 1 are vectors
whose second component is the negative of their first component.

D) =)

Thus, another solution is A2 = 1 and a second basis vector is this.
1
&—(4)

t
R\z’v.r.t. Ea —T_> R\z’v.nt. Es

id | id |
Rt s —— Koo s

and noting that the matrix Repp ¢, (id) is easy leads to this diagonalization.

6D-62) GG )

In the next subsection, we will expand on that example by considering more closely the property of
Corollary 2.4. This includes seeing another way, the way that we will routinely use, to find the A’s.

2.5 Example To diagonalize

To finish, drawing the similarity diagram
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Exercises
v' 2.6 Repeat Example 2.5 for the matrix from Example 2.2.
2.7 Diagonalize these upper triangular matrices.
-2 1 5 4
@ (1) o( Y
v' 2.8 What form do the powers of a diagonal matrix have?

2.9 Give two same-sized diagonal matrices that are not similar. Must any two different diagonal matrices come
from different similarity classes?
2.10 Give a nonsingular diagonal matrix. Can a diagonal matrix ever be singular?
v' 2.11 Show that the inverse of a diagonal matrix is the diagonal of the the inverses, if no element on that diagonal
is zero. What happens when a diagonal entry is zero?
2.12 The equation ending Example 2.5

(b 2) (6 -6

is a bit jarring because for P we must take the first matrix, which is shown as an inverse, and for P~! we take
the inverse of the first matrix, so that the two —1 powers cancel and this matrix is shown without a superscript
—1.

(a) Check that this nicer-appearing equation holds.

6062664

(b) Is the previous item a coincidence? Or can we always switch the P and the P~'?
2.13 Show that the P used to diagonalize in Example 2.5 is not unique.
2.14 Find a formula for the powers of this matrix Hint: see Exercise 8.
v' 2.15 Diagonalize these.

-3 1
-4 2
1 1 0 1
@ (5 0) (1)
2.16 We can ask how diagonalization interacts with the matrix operations. Assume that t,s: V — V are each
diagonalizable. Is ct diagonalizable for all scalars ¢? What about t + s? ¢t o s?7

v 2.17 Show that matrices of this form are not diagonalizable.

1 ¢
(0 1) c#0
2.18 Show that each of these is diagonalizable.

(a) <; ?) (b) <Z Z) x,, z scalars

1.3 Eigenvalues and Eigenvectors

In this subsection we will focus on the property of Corollary 2.4.

3.1 Definition A transformation ¢: V — V has a scalar eigenvalue X if there is a nonzero eigenvector
¢ € V such that t(¢) = A - (.

(“Eigen” is German for “characteristic of” or “peculiar to”; some authors call these characteristic values
and vectors. No authors call them “peculiar”.)

3.2 Example The projection map
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has an eigenvalue of 1 associated with any eigenvector of the form

T
Y
0

where z and y are non-0 scalars. On the other hand, 2 is not an eigenvalue of 7 since no non-0 vector is
doubled.

That example shows why the ‘non-0’ appears in the definition. Disallowing 0 as an eigenvector eliminates
trivial eigenvalues.

3.3 Example The only transformation on the trivial space {0} is 0 — 0. This map has no eigenvalues
because there are no non-0 vectors v mapped to a scalar multiple A - v of themselves.

3.4 Example Consider the homomorphism ¢: P; — Py given by ¢o + c1z + (co + ¢1) + (co + ¢1)z. The
range of t is one-dimensional. Thus an application of ¢ to a vector in the range will simply rescale that
vector: ¢ + cx — (2¢) + (2¢)xz. That is, ¢t has an eigenvalue of 2 associated with eigenvectors of the form
¢+ cx where ¢ # 0.

This map also has an eigenvalue of 0 associated with eigenvectors of the form ¢ — cx where ¢ # 0.

3.5 Definition A square matrix 7" has a scalar eigenvalue X associated with the non-Q eigenvector ( if
T¢=X-(.

3.6 Remark Although this extension from maps to matrices is obvious, there is a point that must be made.
Eigenvalues of a map are also the eigenvalues of matrices representing that map, and so similar matrices
have the same eigenvalues. But the eigenvectors are different —similar matrices need not have the same
eigenvectors.

For instance, consider again the transformation ¢: P; — Py given by ¢o + c1z — (co + ¢1) + (co + ¢1)x.
It has an eigenvalue of 2 associated with eigenvectors of the form ¢+ cx where ¢ # 0. If we represent ¢ with
respect to B = (1 + 1z,1 — 1x)

2 0
T= RepB,B(t) = (0 0)

then 2 is an eigenvalue of T, associated with these eigenvectors.

(@) 16 0) @) =Gp=1(5)1ecnro

On the other hand, representing ¢ with respect to D = (2 + 1z,1 + 0z) gives

3 1
S = RepD,D(t) = (_3 _1)

and the eigenvectors of S associated with the eigenvalue 2 are these.

@)1 @)= E1() inecnro

Thus similar matrices can have different eigenvectors.

Here is an informal description of what’s happening. The underlying transformation doubles the eigen-
vectors v = 2-v. But when the matrix representing the transformation is T' = Reppg g(t) then it “assumes”
that column vectors are representations with respect to B. In contrast, S = Repp p(t) “assumes” that
column vectors are representations with respect to D. So the vectors that get doubled by each matrix look
different.

The next example illustrates the basic tool for finding eigenvectors and eigenvalues.
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3.7 Example What are the eigenvalues and eigenvectors of this matrix?

1 2 1
T=|2 0 -2
-1 2 3

To find the scalars z such that T'¢ = z¢ for non-0 eigenvectors (, bring everything to the left-hand side

1 2 1 z1 Z1
2 0 -2 29| —x|22] =0
-1 2 3 z3 zZ3

and factor (T — zI){ = 0. (Note that it says T — zI; the expression T' — = doesn’t make sense because T is
a matrix while z is a scalar.) This homogeneous linear system

l1—2z 2 1 z1 0
2 0—2 =2 2ol =10
-1 2 3—z 23 0
has a non-0 solution if and only if the matrix is singular. We can determine when that happens.
0=|T —zI|
1—xz 2 1

=| 2 00—z -2
-1 2 3—=z

=2 —42% + 4z
=z(x —2)?

The eigenvalues are A\; = 0 and A2 = 2. To find the associated eigenvectors, plug in each eigenvalue. Plugging
in Ay = 0 gives

1-0 2 1 21 0 21 a
2 0-0 -2 20| =10 - 20| = | —a
-1 2 3—0 23 0 23 a

for a scalar parameter a # 0 (a is non-0 because eigenvectors must be non-0). In the same way, plugging in
Ao = 2 gives

1-2 2 1 21 0 21 b
2 0-2 -2 z2] =10 — 2] =10
-1 2 3—-2 z23 0 z3 b

with b # 0.
3.8 Example If

= (5 )

(here 7 is not a projection map, it is the number 3.14...) then

T—T 1
0 33—z

so S has eigenvalues of A\; = 7w and A2 = 3. To find associated eigenvectors, first plug in A; for z:

(075 E)-0) = ()0

for a scalar a # 0, and then plug in As:

E0 - 0-(1)

= (z—7)(z-3)

where b # 0.
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3.9 Definition The characteristic polynomial of a square matrix T is the determinant of the matrix
T — zI, where z is a variable. The characteristic equation is |T — zI| = 0. The characteristic polynomial
of a transformation ¢ is the polynomial of any Repg g(t).

Exercise 30 checks that the characteristic polynomial of a transformation is well-defined, that is, any choice
of basis yields the same polynomial.

3.10 Lemma A linear transformation on a nontrivial vector space has at least one eigenvalue.

Proor. Any root of the characteristic polynomial is an eigenvalue. Over the complex numbers, any polyno-
mial of degree one or greater has a root. (This is the reason that in this chapter we’ve gone to scalars that
are complex.) QED

Notice the familiar form of the sets of eigenvectors in the above examples.

3.11 Definition The eigenspace of a transformation ¢ associated with the eigenvalue A is V) =
{¢ | t(¢) = AC}U{0}. The eigenspace of a matrix is defined analogously.

3.12 Lemma An eigenspace is a subspace.

PrOOF. An eigenspace must be nonempty — for one thing it contains the zero vector —and so we need only
check closure. Take vectors (1, ..., (, from V), to show that any linear combination is in V)

terG + G+ +enln) = at(G) + -+ cnt(Gn)
=M1+ -+ epAln
=Ae1G + -+ enln)
(the second equality holds even if any ¢; is 0 since t(0) = A- 0 = 0). QED

3.13 Example In Example 3.8 the eigenspace associated with the eigenvalue 7 and the eigenspace associated
with the eigenvalue 3 are these.

=i(§) laem  w=1(770) jpem

3.14 Example In Example 3.7, these are the eigenspaces associated with the eigenvalues 0 and 2.

a b
Vo={|-a]|acR}, Va={|0]|beR}.
a b

3.15 Remark The characteristic equation is 0 = z(x — 2)? so in some sense 2 is an eigenvalue “twice”.
However there are not “twice” as many eigenvectors, in that the dimension of the eigenspace is one, not two.
The next example shows a case where a number, 1, is a double root of the characteristic equation and the
dimension of the associated eigenspace is two.

3.16 Example With respect to the standard bases, this matrix

1 00
010
0 00
represents projection.
x T
y| = |y z,y,z € C
z 0

Its eigenspace associated with the eigenvalue 0 and its eigenspace associated with the eigenvalue 1 are easy

to find.
0 (4]

Vo={[0]|]|eseC Vi={|c]|ec1,2€C}
C3 0
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By the lemma, if two eigenvectors v; and ve are associated with the same eigenvalue then any linear
combination of those two is also an eigenvector associated with that same eigenvalue. But, if two eigenvectors
vy and vs are associated with different eigenvalues then the sum v; 4+ v2 need not be related to the eigenvalue
of either one. In fact, just the opposite. If the eigenvalues are different then the eigenvectors are not linearly
related.

3.17 Theorem For any set of distinct eigenvalues of a map or matrix, a set of associated eigenvectors,
one per eigenvalue, is linearly independent.

Proor. We will use induction on the number of eigenvalues. If there is no eigenvalue or only one eigenvalue
then the set of associated eigenvectors is empty or is a singleton set with a non-0 member, and in either case
is linearly independent.

For induction, assume that the theorem is true for any set of k distinct eigenvalues, suppose that
At,-.., Ap+1 are distinct eigenvalues, and let vy, ...,vE4+1 be associated eigenvectors. If civr + - - - + cpvr +
Ck+1Vg+1 = 0 then after multiplying both sides of the displayed equation by Ar41, applying the map or
matrix to both sides of the displayed equation, and subtracting the first result from the second, we have this.

c1(Mkg1 — A)vr + -+ ce(Aep1 — Ae)ve + ot (Aet1 — Aog1)Vkg1 =0

The induction hypothesis now applies: ¢; (Ags1 —A1) =0, ..., ck(Ars1 — Ax) = 0. Thus, as all the eigenvalues

are distinct, ¢y, ..., ¢ are all 0. Finally, now cgy; must be 0 because we are left with the equation vy #
0. QED
3.18 Example The eigenvalues of

2 -2 2

0 1 1

-4 8 3

are distinct: Ay =1, Ao =2, and A3 = 3. A set of associated eigenvectors like

2 9 2
{11],(4]),(1]}
0 4 2

is linearly independent.
3.19 Corollary An nxn matrix with n distinct eigenvalues is diagonalizable.

Proor. Form a basis of eigenvectors. Apply Corollary 2.4. QED

Exercises
3.20 For each, find the characteristic polynomial and the eigenvalues.

(a) (140 :;’) (b) (}1 §) (c) (2 3) (@) (3 8) (e) ((1] (1’)

v 3.21 For each matrix, find the characteristic equation, and the eigenvalues and associated eigenvectors.

() o

3.22 Find the characteristic equation, and the eigenvalues and associated eigenvectors for this matrix. Hint. The
eigenvalues are complex.
-2 -1
5 2

3.23 Find the characteristic polynomial, the eigenvalues, and the associated eigenvectors of this matrix.

1 1 1
0 0 1
0 0 1

v 3.24 For each matrix, find the characteristic equation, and the eigenvalues and associated eigenvectors.
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3 -2 0 0 1 0
@ (-2 3 o] ® [0 o 1
0 0 5 4 -17 8
v 3.25 Let t: P> — P> be
ao + a1z + azz’ — (5ao + 6a1 + 2a2) — (a1 + 8a2)x + (a0 — 2a2)x>.

Find its eigenvalues and the associated eigenvectors.
3.26 Find the eigenvalues and eigenvectors of this map ¢: My — Mo.

a b 2¢ a+c
(c d)'_)(b—2c d)

v 3.27 Find the eigenvalues and associated eigenvectors of the differentiation operator d/dz: Ps — Ps.
3.28 Prove that the eigenvalues of a triangular matrix (upper or lower triangular) are the entries on the diagonal.
v 3.29 Find the formula for the characteristic polynomial of a 2x2 matrix.
3.30 Prove that the characteristic polynomial of a transformation is well-defined.
v 3.31 (a) Can any non-0 vector in any nontrivial vector space be a eigenvector? That is, given a v # 0 from a
nontrivial V, is there a transformation ¢t: V — V and a scalar A € R such that t(v) = Av?
(b) Given a scalar A, can any non-0 vector in any nontrivial vector space be an eigenvector associated with the
eigenvalue A7
v 8.32 Suppose that t: V — V and T = Repp p(t). Prove that the eigenvectors of T associated with A are the
non-0 vectors in the kernel of the map represented (with respect to the same bases) by 7" — AI.
3.33 Prove that if a, ..., d are all integers and a + b = ¢ + d then

a b
c d
has integral eigenvalues, namely a + b and a — c.
v 3.34 Prove that if T is nonsingular and has eigenvalues A1, ..., A, then 77! has eigenvalues 1/\1,...,1/A,. Is
the converse true?
v 3.35 Suppose that T is nxn and ¢, d are scalars.
(a) Prove that if T has the eigenvalue \ with an associated eigenvector v then v is an eigenvector of ¢T' + dI
associated with eigenvalue cA + d.
(b) Prove that if T' is diagonalizable then so is ¢I' + dI.
v 3.36 Show that A is an eigenvalue of T if and only if the map represented by 7' — AI is not an isomorphism.
3.37 [Strang 80]
(a) Show that if X is an eigenvalue of A then A\* is an eigenvalue of A".
(b) What is wrong with this proof generalizing that? “If X is an eigenvalue of A and p is an eigenvalue for B,
then Ay is an eigenvalue for AB, for, if Az = Az and Bz = px then ABx = Apux = pAzpiz”?
3.38 Do matrix-equivalent matrices have the same eigenvalues?
3.39 Show that a square matrix with real entries and an odd number of rows has at least one real eigenvalue.

-1 2 2
2 2 2
-3 —6 —6

3.41 Suppose that P is a nonsingular nxn matrix. Show that the similarity transformation map tp: Muxn — Mapxn
sending T+ PTP™! is an isomorphism.
? 3.42 Show that if A is an m square matrix and each row (column) sums to ¢ then c is a characteristic root of A.
[Math. Mag., Nov. 1967]

3.40 Diagonalize.
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