
1 Complex numbers

The complex numbers C are the real numbers R extended by an imaginary unit i with i2 = −1 .

C = { z : z = a + ib, a, b ∈ R } z = a + ib ⇔ Re(z) = a, Im(z) = b.

a is the real part of z = a + ib, and b the imaginary part. On the Argand diagram:
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Real axis: horizontal
Imaginary axis: vertical

Addition, subtraction and multiplication also extend from real numbers to complex numbers:

(a + ib) ± (c + id) = (a± c) + i(b± d)

(a + ib)(c + id) = ac + ibc + iad + i2bd = (ac− bd) + i(bc + ad)

Examples: (2 + 4i) + (2− i) = 4 + 3i, (2 + 4i)(2− i) = 8 + 6i

Exercises: If z = 1 + 2i and w = 1− 4i , calculate z + w, z − 2w, wz and (w + 1)z.

The complex conjugate of z = a + ib is z = a− ib . The modulus is ‖z‖ =
√

a2 + b2 .

Note that z · z = ‖z‖2 because (a + ib)(a− ib) = a2 − (ib)2 = a2 + b2.

Using the conjugate and modulus we can divide by any non-zero complex number:

If z 6= 0 :
1
z

=
1
z
· z

z
=

z

‖z‖2
,

1
a + ib

=
a

a2 + b2
− ib

a2 + b2

Example: If z = 3− 4i then z = 3 + 4i and ‖z‖ =
√

32 + 42 = 5, and so z−1 = 3
25 + 4

25 i.

Arithmetic with complex numbers satisfies

Distributive law: u(w + z) = uw + uz

Commutative laws: w + z = z + w zw = wz

Associative laws: u + (w + z) = (u + w) + z (uw)z = u(wz)

and: w + z = w + z wz = w z

‖wz‖ = ‖w‖ ‖z‖ z = z

Re(z) = 1
2(z + z) Im(z) = 1

2i(z − z)

Exercises: Check the last 6 laws in the case w = 5 + 12i and z = 3− 4i.
Show also that ‖w + z‖ 6= ‖w‖+ ‖z‖.
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1.1 Factorising polynomials and solving equations

A polynomial of degree n is an expression of the form

f(z) = λn zn + λn−1 zn−1 + · · · + λ2 z2 + λ1 z + λ0

for some constant coefficients λi. We are interested in factorising f(z), and in solving f(z) = 0.

Theorem: A constant α is a solution of f(z) = 0 if and only if (z − α) is a factor of f(z).

A solution of f(z) = 0 is sometimes called a root of f(z) = 0 or a zero of f(z).

Examples: The polynomial f(z) = z2 − 3z + 2 factorises into (z − 1)(z − 2), and the equation
f(z) = 0 has solutions z = 1 and z = 2. Note that f(z) = z2−1 = (z +1)(z−1), but the polynomial
f(z) = z2 + 1 does not factorise unless we use complex numbers:

z2 + 1 = (z − i)(z + i) , z2 + 1 = 0 has solutions z = ±i .

We can factorise any quadratic polynomial over the complex numbers

a z2 + b z + c = a(z − α1)(z − α2) ⇔ α1, α2 =
−b±

√
b2 − 4ac

2a
= − b

2a
±

√(
b

2a

)2

− c

a

Example: The roots of z2 − 4z + 5 = 0 are 2±
√

22 − 5 = 2± i, that is,

z2 − 4z + 5 = (z − 2 + i)(z − 2− i) .

The Fundamental Theorem of Algebra says this isn’t just true for quadratic polynomials:

Theorem: Any polynomial of degree n factorises as a product of n linear factors over C.

That is, any polynomial of degree n has n possible complex solutions [some may be repeated!]

Example: Find all the zeros of the polynomials (i) f(z) = z3 + z2 + z + 1, (ii) f(z) = z4 − 1.

(i) We can see one solution of f(z) = 0 is z = −1, so (z + 1) is a factor of f(z). In fact

f(z) = z3 + z2 + z + 1 = (z + 1)(z2 + 1) = (z + 1)(z − i)(z + i)

so the roots of f(z) = 0 are −1, i,−i. (ii) Both 1 and −1 are zeros, and so are i and −i.

Theorem: Suppose all the coefficients of the polynomial f(z) are real numbers.
Then if z = α is a solution of f(z) = 0, so is the conjugate z = α.

Proof: Because all the coefficients λi are real, the complex conjugate of f(z) is just f(z), so if f(α) = 0
then f(α) = f(α) = 0 = 0 also.

Example: If 1 + i is one root of f(z) = z3 + 4z2 − 10z + 12 = 0, find the others.

Solution: If 1 + i is a root, so is 1− i. Suppose α is the other. Then

f(z) = z3 +4z2−10z +12 = (z−1− i)(z−1+ i)(z−α) = (z2−2z +2)(z−α) ⇒ α = −6 .
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1.2 Modulus–argument form

A complex number z = x + iy may be given in terms of polar coordinates (r, θ) instead of the
usual rectangular cartesian coordinates (x, y). On the Argand diagram one can see that r is just the
modulus ‖z‖, and θ is the argument: the angle from the positive real axis to 0z.

d - 1�
�
�
��

z = 1 + 2i

r
6

AKAK
θ

2i

z = x + iy

(x, y) ↔ (r, θ)
r = ‖z‖ = +

√
x2 + y2

x = r cos θ , y = r sin θ

z = r(cos θ + i sin θ)

From the equations x = r cos θ and y = r sin θ we see that the argument satisfies y/x = tan θ .
We can add multiples of 2π (that is, 360◦) to the argument without changing the complex number,
so we usually take the principal value: an angle between −180◦ and +180◦, or between −π and π

if we are using radians instead of degrees.

Examples: (i) Convert z = 1 + 2i to the form r(cos θ + i sin θ).
(ii) If z = x + iy has polar coordinates r =

√
2 and θ = π/4, find x and y.

(i) r = ‖z‖ =
√

12 + 22 =
√

5 and tan(θ) = 2/1, so θ = tan−1(2) = 1.1 radians or 63.4◦.
(ii) x = r cos θ =

√
2 cos(π/4) = 1 and y = r sin θ =

√
2 sin(π/4) = 1.

Knowing the tangent is not quite enough to know the argument θ: we must take care especially if x

or y are negative. Note that tan−1(y/x) = tan−1(−y/− x) and that tan θ = tan(θ ± π).

Exercise: If z1 = 1 + i
√

3 = 2(cos π
3 + i sin π

3 ), express z2 = −1 + i
√

3, z3 = −1− i
√

3, z4 = 1− i
√

3
in modulus-argument form. Sketch these 4 points on the Argand diagram.

If complex numbers are expressed in polar coordinates, multiplication becomes much simpler:

Theorem: If z = r(cos θ + i sin θ) and w = s(cos φ + i sinφ) then zw = rs(cos(θ + φ) + i sin(θ + φ))

In other words: to multiply complex numbers, just multiply the moduli and add the arguments.

Proof: zw = r(cos θ + i sin θ) s(cos φ + i sinφ) = rs (cos θ + i sin θ)(cos φ + i sinφ) =
= rs ((cos θ cos φ− sin θ sinφ) + i(cos θ sinφ + sin θ cos φ)) = rs (cos(θ + φ) + i sin(θ + φ))

Not only is multiplication easier when we know the modulus-argument form, so are inverses, division
and conjugation: if z = r(cos θ + i sin θ) and w = s(cos φ + i sinφ) then

z = r (cos(−θ) + i sin(−θ)), z−1 =
1
r

(cos(−θ) + i sin(−θ)),
z

w
=

r

s
(cos(θ− φ) + i sin(θ− φ)).

To find quotients one divides the moduli and subtracts the arguments. Note that the argument of the
imaginary unit i is π/2 (or 90◦), so multiplying or dividing by i is the same as adding or subtracting
π/2 to the angle and converting to the principal value.
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1.3 Exponential form and de Moivre’s theorem

In the same way that multiplication is achieved by multiplying moduli and adding arguments, and
division by dividing moduli and subtracting arguments, it turns out that any power of a complex
number z = x + iy = r(cos θ + i sin θ) may be calculated by multiplying the argument, and taking
the power of the modulus.

Theorem: If z = x + iy = r(cos θ + i sin θ) then zn = rn(cos(nθ) + i sin(nθ)).

If ‖z‖ = 1 then we have the special case: (cos θ + i sin θ)n = cos(nθ) + i sin(nθ) .

Exercise: If z = 1
2 +

√
3

2 i, sketch the values of zn on the Argand diagram, for n = 0,±1,±2,±3,±4.

One of the easiest ways of proving the theorem is to use a trick involving series expansions.
For any x,

ex = 1 + x +
1
2
x2 +

1
3!

x3 +
1
4!

x4 +
1
5!

x5 +
1
6!

x6 + · · ·

cos(x) = 1 − 1
2
x2 +

1
4!

x4 − 1
6!

x6 + · · ·

sin(x) = x − 1
3!

x3 +
1
5!

x5 − · · ·


⇒ eiθ = cos θ + i sin θ

Therefore z = r(cos θ + i sin θ) can be written in exponential form z = reiθ and zn = rneinθ.

Exercise: Give the rules for multiplication and division of complex numbers in exponential form.

1.4 Applications

Trigonometric identities: If z = cos θ + i sin θ then z4 can be calculated in two ways:

cos(4θ) + i sin(4θ) = cos4 θ + 4i cos3 θ sin θ + 6i2 cos2 θ sin2 θ + 4i3 cos θ sin3 θ + i4 sin4 θ

and so cos(4θ) = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ and sin(4θ) = 4 cos3 θ sin θ − 4 cos θ sin3 θ .

Exercise: Using the relation Re(z) = 1
2(z + z), prove that 8 cos4 θ = cos 4θ + 4 cos 2θ + 3.

Solutions of equations of the form zn = w: The obvious solution is z = n
√

w. Why is this not
good enough? Because we know that a polynomial of degree n should have n solutions.

The answer is to write w as a complex number and allow non-principal values for the argument.
Instead of writing w = seiφ we write w = sei(φ+2kπ) for all the values k = 0, 1, . . . , n− 1.

Then zn = w can be written as z = w1/n, so we have to divide these arguments φ + 2kπ by n,

zn = w ⇐⇒ z = n
√

s eiφ/n, n
√

s ei(φ+2π)/n, n
√

s ei(φ+4π)/n, . . . n
√

s ei(φ+2(n−1)π)/n .

Exercise: Find all the solutions of z6 = 1 and of z4 = 16i, and show them on the Argand diagram.

4



Tutorial exercises

1. Calculate:

(i) (3 + 4i) + (8− 2i) (ii) (3 + 4i)− (8− 2i) (iii) (3 + 4i)− 2(8− 2i)

(iv) (3 + 4i)i (v) i3 (vi) i4 − i−1

(vii) i5 − i6 (viii) i1001 (ix) (1 + i)(1− i)

(x) (1 + i)−1 (xi) (1 + 5i)/(1 + i) (xii) (4− 7i)/(3− i)

2. Indicate the the answers to the previous question on an Argand diagram.

3. If z = 4− 3i, w = −1 + 2i, u = 1 + i, calculate:

(i) z (ii) 1/z (iii) z/‖z‖ (iv) z/z

(v) z/(z + z) (vi) z + u (vii) w/z (viii) w/z

(ix) w + z/z (x) u2 (xi) u2 − w2 (xii) (u− w)(u + w)

4. Draw an Argand diagram for the answers of the previous question, together with the complex
numbers z, w, u. What is the relation between z and z in the diagram?

5. Solve the following equations:

(i) z2 − 2z + 5 = 0 (ii) z2 − 6z + 25 = 0 (iii) z2 + 2z + 10 = 0

(iv) z4 − 3z2 − 4 = 0 (v) 5z2 + 6z + 2 = 0

(vi) z3 − 6z2 + 13z − 10 = 0 : (try z = 2)

(vii) z4 − z3 + z + 35 = 0 : (try 2 + i
√

3)

6. Prove that if z = a + ib is a solution of a polynomial equation f(z) = 0 with real coefficients,
then z2 − 2az + (a2 + b2) is a factor of f(z).

7. Using the fact that the zeros of any real polynomial occur in conjugate pairs, prove that all
real polynomial equations of odd degree have at least one real root. Give an example to show
this is not true for equations of even degree.

8. Solve the equations (i) z2 + 2iz + 2 = 0 and (ii) z2 = i.

9. Find the equation whose roots are 1, 2, −2, 1 + i and 1− i.
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10. If a and b are real numbers and 1 + 3i is a root of the equation z4 − 6z3 + az2 + bz + 70 = 0,
find the values of a and b and the other 3 roots of the equation.

11. Convert the following to polar form (r, θ), with θ in radians:

(i) −
√

8 + i
√

8 (ii)
√

3− 3i (iii) −4
√

3 + 4i

12. Convert the following to cartesian form, x + iy, and draw them on the Argand diagram:

(i) (2, π/3) (ii) (2,−π/3) (iii) (−2, π/3) (iv)
√

3(cos(2π/3) + i sin(2π/3))

13. Convert the following to the form r(cos θ + i sin θ), with θ in radians:

(i) 3 + i
√

3 (ii) 4− 4i (iii) −4i (iv) −3 + i4

14. Find the modulus and principal argument of (a) z = 1 + i and (b) w =
√

3 + i.
Use these answers to find the moduli and principal arguments of

(i) zw (ii) z/w (iii) w/z (iv) w3 (v) 1/z (vi) iz

15. Given a point z on the Argand diagram, explain how to construct the points

(i) 2z (ii) −z (iii) |z| (iv) iz (v) 1 + iz (vi) (1 + i)z (vii) z2

16. Use modulus-argument form to simplify the following:

(i) (
√

3− i)2/(2i)3 (ii) (1 + i)3/(1− i)3 (iii) (−
√

3 + i)4(−1 + i)3

17. Express sin 3θ and cos 3θ in terms of sin θ and cos θ.

18. Express sin3 θ and sin3 θ cos4 θ in terms of sines of multiples of θ.

19. Solve: (i) z3 + 27i = 0, (ii) z4 − 1 = i
√

3, (iii) (z − 1)4 = (z + 1)4.

Factorise completely the polynomials f(z) = z3 + 27i and g(z) = z4 − 1− i
√

3.

20. Find all the fifth-roots of unity, that is, find the roots α1, α2, . . . , α5 of the equation z5 = 1.

If α1 = 1 and none of the other solutions are real, expand the following expressions:

(i) (x− α2)(x− α3)(x− α4)(x− α5)

(ii) (x− α1)(x− α2)(x− α3)(x− α4)(x− α5)
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Tutorial Exercise Solutions

1. (i) 11 + 2i ; (ii) −5 + 6i ; (iii) −13 + 8i ; (iv) −4 + 3i ; (v) −i ; (vi) 1 + i ;

(vii) 1 + i ; (viii) i ; (ix) 2 ; (x) 1
2 −

i
2 ; (xi) 3 + 2i ; (xii) (4− 7i)(3 + i)/10 = 19

10 −
17
10 i.

3. (i) 4 + 3i ; (ii) 4
25 −

3
25 i ; (iii) 4

5 −
3
5 i ; (iv) z

z = z2

|z|2 = 7
25 + 24

25 i ; (v) z
z+z = z

8 = 1
2 −

3
8 i ;

(vi) 5 + 2i ; (vii) (−1 + 2i)( 4
25 −

3
25 i) = 2

25 + 11
25 i ; (viii) 2

25 −
11
25 i ; (ix) = w

z + 1 = 27
25 + 11

25 i ;
(x) 2i ; (xi) 2i− (−3− 4i) = 3 + 6i ; (xii) 3 + 6i.

5. i) z = 1
2(2±

√
4− 20) = 1

2(2±
√
−16) = 1

2(2± 4i) = 1± 2i.

ii) z = 1
2(6±

√
36− 100) = 1

2(6±
√
−64) = 1

2(6± 8i) = 3± 4i.

iii) z = 1
2(−2±

√
4− 40) = 1

2(−2±
√
−36) = 1

2(−2± 6i) = −1± 3i.

iv) Put w = z2, then w2 − 3w − 4 = 0 is (w − 4)(w + 1) = 0 so w = 4 or −1; z = ±2 or ±i.

v) z = 1
10(−6±

√
36− 40) = 1

10(−6±
√
−4) = 1

10(−6± 2i) = −3
5 ±

i
5 .

vi) 23−6×22 +13×2−10 = 0 so 2 is a solution, so (z−2) is a factor. Writing the polynomial
z3 − 6z2 + 13z − 10 = (z − 2)(z2 + az + 5) we need −6z2 = −2z2 + az2 so a = −4.

Solving z2 − 4z + 5 = 0 in the usual way gives the other two solutions z = 2± i.

vii) If you check that 2 + i
√

3 is a root, then 2 − i
√

3 is too, so we have factors (z − 2 − i
√

3)
and (z − 2 + i

√
3). But (z − 2− i

√
3)(z − 2 + i

√
3) = (z2 − 4z + 7) so we write the polynomial

z4 − z3 + z + 35 = (z2 − 4z + 7)(z2 + az + 5) in which −z3 = az3 − 4z3 so a = 3.

Finally the equation z2 + 3z + 5 = 0 gives the other two solutions z = −3
2 ±

√
11
2 i.

6. If a+ ib is a root, so is a− ib, and we have a factor (z− a− ib)(z− a+ ib) = z2− 2az + a2 + b2.

7. A real polynomial f(z) has a factor (z2 − 2az + a2 + b2) for each pair of complex conjugate
zeros. If f(z) has odd degree there will therefore be at least one linear factor (z − α) left.

This is not true for even degree polynomials: z2 + 1 = 0 has no real roots.

8. i) z = 1
2(−2i±

√
−4− 8) = −i±

√
−3 = (−1±

√
3)i

ii) Recall (1+i)2 = 12+2i−1 = 2i so
√

2
√

i = ±(1+i), and z2 = i has solutions z = ±
√

2
2 (1+i).

9. Each root is a factor: (z− 1)(z− 2)(z + 2)(z− 1− i)(z− 1 + i) = (z− 1)(z2− 4)(z2− 2z + 2) =
(z3−z2−4z+4)(z2−2z+2) = z5−3z4+10z2−16z+8, so equation is z5−3z4+10z2−16z+8 = 0.

10. If equation is real and 1 + 3i is a root then 1− 3i is another root and we have a factor (z− 1−
3i)(z−1+3i) = z2−2z+10. We must have z4−6z3+az2+bz+70 = (z2−2z+10)(z2+cz+7),
in which −6z3 = cz3 − 2z3 so c = −4, and so a = 7− 2c + 10 = 25, b = 10c− 14 = −54.

Now the other two roots are the roots of z2 − 4z + 7 = 0, which are 2± i
√

3.

11. i) r = | −
√

8 + i
√

8| = 4, θ = 3π/4; ii) r = |
√

3− 3i| = 2
√

3, θ = −pi/3;

iii) r = | − 4
√

3 + 4i| = 8, θ = 5π/6.
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12. i) 2(cos(π/3) + i sin(π/3)) = 1 + i
√

3; ii) 2(cos(−π/3) + i sin(−π/3)) = 1− i
√

3;

iii) −2(cos(π/3)+i sin(π/3)) = −1−i
√

3; iv)
√

3(cos(2π/3)+i sin(2π/3)) = −
√

3/2+3i/2.

13. i) r = |3 + i
√

3| = 2
√

3, θ = π/6; ii) r = |4− 4i| = 4
√

2, θ = −π/4;

iii) r = | − 4i| = 4, θ = −π/2; iv) r = | − 3 + 4i| = 5, θ = 2.214 rad.

14. To find the argument of a product, quotient or power, just add, subtract or multiply angles.

z = 1 + i w =
√

3 + i zw z/w w/z w3 1/z iz

modulus:
√

2 2 2
√

2
√

2/2
√

2 8
√

2/2
√

2
argument: π/4 π/6 5π/12 π/12 −π/12 π/2 −π/4 3π/4

16. i)
(
√

3− i)2

(2i)3
=

(2(cos(−π/6) + i sin(−π/6)))2

(2(cos(π/2) + i sin(π/2)))3
=

4(cos(−π/3) + i sin(−π/3))
8(cos(3π/2) + i sin(3π/2))

=

= 1
2(cos(−π/3− 3π/2) + i sin(−π/3− 3π/2)) = 1

2(cos(π/6) + i sin(π/6)) =
√

3/4 + i/4.

ii)
(1 + i)3

(1− i)3
=

(
√

2(cos(π/4) + i sin(π/4)))3

(
√

2(cos(−π/4) + i sin(−π/4)))3
= cos(3π/2) + i sin(3π/2) = −i

iii) (−
√

3 + i)4(−1 + i)3 = (2(cos(5π/6) + i sin(5π/6)))4(
√

2(cos(3π/4) + i sin(3π/4)))3

= 32
√

2(cos(67π/12) + i sin(67π/12)) = 32
√

2(cos(−5π/12) + i sin(−5π/12)), or 11.7− 43.7i.

17. cos(3θ) + i sin(3θ) = (cos(θ) + i sin(θ))3 = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ.
Compare imaginary and real parts: sin 3θ = 3 cos2 θ sin θ− sin3 θ, cos 3θ = cos3 θ−3 cos θ sin2 θ.

18. If z = cos(θ) + i sin(θ) = eiθ then z − z = z − z−1 = eiθ − e−iθ = 2i sin θ and we can write:

−8i sin3 θ = (eiθ − e−iθ)3 = e3iθ − 3eiθ + 3e−iθ − e−3iθ = 2i sin 3θ − 6i sin θ

so that sin3 θ = −1
4 sin 3θ + 3

4 sin θ.

Using also eiθ + e−iθ = 2 cos θ we have

−8i sin3 θ × 16 cos4 θ = (eiθ − e−iθ)3(eiθ + e−iθ)4 = (e2iθ − e−2iθ)3(eiθ + e−iθ)

= (e6iθ − 3e2iθ + 3e−2iθ − e−6iθ)(eiθ + e−iθ)

= e7iθ − e−7iθ + e5iθ − e−5iθ − 3(e3iθ − e−3iθ + eiθ − e−iθ)

=⇒ sin3 θ cos4 θ = − 1
64

(sin 7θ + sin 5θ) +
3
64

(sin 3θ + sin θ)

19. i) z3 = −27i = 33e3iπ/2, 33e−iπ/2 or 33e−5iπ/2 ⇒ z = 3eiπ/2, 3e−iπ/6 or 3e−5iπ/6.

ii) z4 = 1 + i
√

3 = 2eiπ/3 = 2e(6k+1)iπ/3 ⇒ z = 4
√

2 ei(6k+1)π/12 (k = −2,−1, 0, 1).

iii) (z +1)4− (z− 1)4 = ((z +1)2− (z− 1)2)((z +1)2 +(z− 1)2) = 4z(2z2 +2) = 0 ⇔ z = 0,±i.

20. z5 = 1 = e2kiπ ⇒ z = e2ki/5 (k = 0,±1,±2), that is, z = 1, cos 2π
5 ± sin 2π

5 , cos 4π
5 ± sin 4π

5 .

(x − e2iπ/5)(x − e−2iπ/5)(x − e4iπ/5)(x − e−4iπ/5) = (x2 − 2x cos 2π
5 + 1)(x2 − 2x cos 4π

5 + 1) =
x4+x3+x2+x+1 and obviously (x−1)(x−e2iπ/5)(x−e−2iπ/5)(x−e4iπ/5)(x−e−4iπ/5) = x5−1.
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